WorldWideScience

Sample records for electron emitting electrode

  1. Potential Formation in Front of an Electron Emitting Electrode in a Two-Electron Temperature Plasma

    International Nuclear Information System (INIS)

    Gyergyek, T.; Cercek, M.; Erzen, D.

    2003-01-01

    Plasma potential formation in the pre-sheath region of a floating electron emitting electrode (collector) is studied theoretically in a two-electron-temperature plasma using a static kinetic plasma-sheath model. Dependence of the collector floating potential, the plasma potential in the pre-sheath region, and the critical emission coefficient on the hot electron density and temperature is calculated. It is found that for high hot to cool electron temperature ratio a double layer like solutions exist in a certain range of hot to cool electron densities

  2. Organic light emitting diode with light extracting electrode

    Energy Technology Data Exchange (ETDEWEB)

    Bhandari, Abhinav; Buhay, Harry

    2017-04-18

    An organic light emitting diode (10) includes a substrate (20), a first electrode (12), an emissive active stack (14), and a second electrode (18). At least one of the first and second electrodes (12, 18) is a light extracting electrode (26) having a metallic layer (28). The metallic layer (28) includes light scattering features (29) on and/or in the metallic layer (28). The light extracting features (29) increase light extraction from the organic light emitting diode (10).

  3. Organic light emitting diodes with spin polarized electrodes

    NARCIS (Netherlands)

    Arisi, E.; Bergenti, I.; Dediu, V.; Loi, M.A.; Muccini, M.; Murgia, M.; Ruani, G.; Taliani, C.; Zamboni, R.

    2003-01-01

    Electrical and optical properties of Alq3 based organic light emitting diodes with normal and spin polarized electrodes are presented. Epitaxial semitransparent highly spin polarized La0.7Sr0.3MnO3 were used as hole injector, substituting the traditional indium tin oxide electrode. A comparison of

  4. Control of secondary electrons from ion beam impact using a positive potential electrode

    Energy Technology Data Exchange (ETDEWEB)

    Crowley, T. P., E-mail: tpcrowley@xanthotechnologies.com; Demers, D. R.; Fimognari, P. J. [Xantho Technologies, LLC, Madison, Wisconsin 53705 (United States)

    2016-11-15

    Secondary electrons emitted when an ion beam impacts a detector can amplify the ion beam signal, but also introduce errors if electrons from one detector propagate to another. A potassium ion beam and a detector comprised of ten impact wires, four split-plates, and a pair of biased electrodes were used to demonstrate that a low-voltage, positive electrode can be used to maintain the beneficial amplification effect while greatly reducing the error introduced from the electrons traveling between detector elements.

  5. Polymer-metal hybrid transparent electrodes for flexible electronics

    Science.gov (United States)

    Kang, Hongkyu; Jung, Suhyun; Jeong, Soyeong; Kim, Geunjin; Lee, Kwanghee

    2015-03-01

    Despite nearly two decades of research, the absence of ideal flexible and transparent electrodes has been the largest obstacle in realizing flexible and printable electronics for future technologies. Here we report the fabrication of ‘polymer-metal hybrid electrodes’ with high-performance properties, including a bending radius 95% and a sheet resistance solar cells that exhibit a high power conversion efficiency of 10% and polymer light-emitting diodes that can outperform those based on transparent conducting oxides.

  6. Bipolar Electrode Array Embedded in a Polymer Light-Emitting Electrochemical Cell.

    Science.gov (United States)

    Gao, Jun; Chen, Shulun; AlTal, Faleh; Hu, Shiyu; Bouffier, Laurent; Wantz, Guillaume

    2017-09-20

    A linear array of aluminum discs is deposited between the driving electrodes of an extremely large planar polymer light-emitting electrochemical cell (PLEC). The planar PLEC is then operated at a constant bias voltage of 100 V. This promotes in situ electrochemical doping of the luminescent polymer from both the driving electrodes and the aluminum discs. These aluminum discs function as discrete bipolar electrodes (BPEs) that can drive redox reactions at their extremities. Time-lapse fluorescence imaging reveals that p- and n-doping that originated from neighboring BPEs can interact to form multiple light-emitting p-n junctions in series. This provides direct evidence of the working principle of bulk homojunction PLECs. The propagation of p-doping is faster from the BPEs than from the positive driving electrode due to electric field enhancement at the extremities of BPEs. The effect of field enhancement and the fact that the doping fronts only need to travel the distance between the neighboring BPEs to form a light-emitting junction greatly reduce the response time for electroluminescence in the region containing the BPE array. The near simultaneous formation of multiple light-emitting p-n junctions in series causes a measurable increase in cell current. This indicates that the region containing a BPE is much more conductive than the rest of the planar cell despite the latter's greater width. The p- and n-doping originating from the BPEs is initially highly confined. Significant expansion and divergence of doping occurred when the region containing the BPE array became more conductive. The shape and direction of expanded doping strongly suggest that the multiple light-emitting p-n junctions, formed between and connected by the array of metal BPEs, have functioned as a single rod-shaped BPE. This represents a new type of BPE that is formed in situ and as a combination of metal, doped polymers, and forward-biased p-n junctions connected in series.

  7. Organic Light-Emitting Diodes on Solution-Processed Graphene Transparent Electrodes

    KAUST Repository

    Wu, Junbo

    2010-01-26

    Theoretical estimates indicate that graphene thin films can be used as transparent electrodes for thin-film devices such as solar cells and organic light-emitting diodes, with an unmatched combination of sheet resistance and transparency. We demonstrate organic light-emitting diodes with solution-processed graphene thin film transparent conductive anodes. The graphene electrodes were deposited on quartz substrates by spincoating of an aqueous dispersion of functionalized graphene, followed by a vacuum anneal step to reduce the sheet resistance. Small molecular weight organic materials and a metal cathode were directly deposited on the graphene anodes, resulting in devices with a performance comparable to control devices on indium-tin-oxide transparent anodes. The outcoupling efficiency of devices on graphene and indium-tin-oxide is nearly identical, in agreement with model predictions. © 2010 American Chemical Society.

  8. Organic Light-Emitting Diodes on Solution-Processed Graphene Transparent Electrodes

    KAUST Repository

    Wu, Junbo; Agrawal, Mukul; Becerril, Héctor A.; Bao, Zhenan; Liu, Zunfeng; Chen, Yongsheng; Peumans, Peter

    2010-01-01

    Theoretical estimates indicate that graphene thin films can be used as transparent electrodes for thin-film devices such as solar cells and organic light-emitting diodes, with an unmatched combination of sheet resistance and transparency. We

  9. A study of effects of electrode contacts on performance of organic-based light-emitting field-effect transistors

    Science.gov (United States)

    Kim, Dae-Kyu; Choi, Jong-Ho

    2018-02-01

    Herein is presented a comparative performance analysis of heterojunction organic-based light-emitting field-effect transistors (OLEFETs) with symmetric (Au only) and asymmetric (Au and LiF/Al) electrode contacts. The devices had a top source-drain contact with long-channel geometry and were produced by sequentially depositing p-type pentacene and n-type N,N‧-ditridecylperylene-3,4,9,10-tetracarboxylic diimide (P13) using a neutral cluster beam deposition apparatus. The spectroscopic, structural and morphological properties of the organic thin films were examined using photoluminescence (PL) spectroscopy, X-ray diffraction (XRD) method, laser scanning confocal and atomic force microscopy (LSCM, AFM). Based upon the growth of high-quality, well-packed crystalline thin films, the devices demonstrated ambipolar field-effect characteristics, stress-free operational stability, and light emission under ambient conditions. Various device parameters were derived from the fits of the observed characteristics. The hole mobilities were nearly equal irrespective of the electrode contacts, whereas the electron mobilities of the transistors with LiF/Al drain electrodes were higher due to the low injection barrier. For the OLEFETs with symmetric electrodes, electroluminescence (EL) occurred only in the vicinity of the hole-injecting electrode, whereas for the OLEFETs with asymmetric electrodes, the emission occurred in the vicinity of both hole- and electron-injecting electrodes. By tuning the carrier injection and transport through high- and low-work function metals, the hole-electron recombination sites could be controlled. The operating conduction and light emission mechanism are discussed with the aid of EL images obtained using a charge-coupled device (CCD) camera.

  10. Enhanced device performances of a new inverted top-emitting OLEDs with relatively thick Ag electrode.

    Science.gov (United States)

    Park, So-Ra; Suh, Min Chul

    2018-02-19

    To improve the device performances of top-emitting organic light emitting diodes (TEOLEDs), we developed a new inverted TEOLEDs structure with silver (Ag) metal as a semi-transparent top electrode. Especially, we found that the use of relatively thick Ag electrode without using any carrier injection layer is beneficial to realize highly efficient device performances. Also, we could insert very thick overlying hole transport layer (HTL) on the emitting layer (EML) which could be very helpful to suppress the surface plasmon polariton (SPP) coupling if it is applied to the common bottom-emission OLEDs (BEOLEDs). As a result, we could realize noteworthy high current efficiency of approximately ~188.1 cd/A in our new inverted TEOLEDs with 25 nm thick Ag electrode.

  11. White organic light-emitting diodes with 4 nm metal electrode

    Science.gov (United States)

    Lenk, Simone; Schwab, Tobias; Schubert, Sylvio; Müller-Meskamp, Lars; Leo, Karl; Gather, Malte C.; Reineke, Sebastian

    2015-10-01

    We investigate metal layers with a thickness of only a few nanometers as anode replacement for indium tin oxide (ITO) in white organic light-emitting diodes (OLEDs). The ultrathin metal electrodes prove to be an excellent alternative that can, with regard to the angular dependence and efficiency of the OLED devices, outperform the ITO reference. Furthermore, unlike ITO, the thin composite metal electrodes are readily compatible with demanding architectures (e.g., top-emission or transparent OLEDs, device unit stacking, etc.) and flexible substrates. Here, we compare the sheet resistance of both types of electrodes on polyethylene terephthalate for different bending radii. The electrical performance of ITO breaks down at a radius of 10 mm, while the metal electrode remains intact even at radii smaller than 1 mm.

  12. Effects of emitted electron temperature on the plasma sheath

    International Nuclear Information System (INIS)

    Sheehan, J. P.; Kaganovich, I. D.; Wang, H.; Raitses, Y.; Sydorenko, D.; Hershkowitz, N.

    2014-01-01

    It has long been known that electron emission from a surface significantly affects the sheath surrounding that surface. Typical fluid theory of a planar sheath with emitted electrons assumes that the plasma electrons follow the Boltzmann relation and the emitted electrons are emitted with zero energy and predicts a potential drop of 1.03T e /e across the sheath in the floating condition. By considering the modified velocity distribution function caused by plasma electrons lost to the wall and the half-Maxwellian distribution of the emitted electrons, it is shown that ratio of plasma electron temperature to emitted electron temperature significantly affects the sheath potential when the plasma electron temperature is within an order of magnitude of the emitted electron temperature. When the plasma electron temperature equals the emitted electron temperature the emissive sheath potential goes to zero. One dimensional particle-in-cell simulations corroborate the predictions made by this theory. The effects of the addition of a monoenergetic electron beam to the Maxwellian plasma electrons were explored, showing that the emissive sheath potential is close to the beam energy only when the emitted electron flux is less than the beam flux

  13. Transparent conductive graphene electrode in GaN-based ultra-violet light emitting diodes.

    Science.gov (United States)

    Kim, Byung-Jae; Mastro, Michael A; Hite, Jennifer; Eddy, Charles R; Kim, Jihyun

    2010-10-25

    We report a graphene-based transparent conductive electrode for use in ultraviolet (UV) GaN light emitting diodes (LEDs). A few-layer graphene (FLG) layer was mechanically deposited. UV light at a peak wavelength of 368 nm was successfully emitted by the FLG layer as transparent contact to p-GaN. The emission of UV light through the thin graphene layer was brighter than through the thick graphene layer. The thickness of the graphene layer was characterized by micro-Raman spectroscopy. Our results indicate that this novel graphene-based transparent conductive electrode holds great promise for use in UV optoelectronics for which conventional ITO is less transparent than graphene.

  14. Organometal halide perovskite light-emitting diodes with laminated carbon nanotube electrodes

    Science.gov (United States)

    Shan, Xin; Bade, Sri Ganesh R.; Geske, Thomas; Davis, Melissa; Smith, Rachel; Yu, Zhibin

    2017-08-01

    Organometal halide perovskite light-emitting diodes (LEDs) with laminated carbon nanotube (CNT) electrodes are reported. The LEDs have an indium tin oxide (ITO) bottom electrode, a screen printed methylammonium lead tribromide (MAPbBr3)/polymer composite thin film as the emissive layer, and laminated CNT as the top electrode. The devices can be turned on at 2.2 V, reaching a brightness of 4,960 cd m-2 and a current efficiency of 1.54 cd A-1 at 6.9 V. The greatly simplified fabrication process in this work can potentially lead to the scalable manufacturing of large size and low cost LED panels in the future.

  15. White organic light-emitting diodes with 4 nm metal electrode

    Energy Technology Data Exchange (ETDEWEB)

    Lenk, Simone; Schwab, Tobias; Schubert, Sylvio; Müller-Meskamp, Lars; Leo, Karl; Reineke, Sebastian [Institut für Angewandte Photophysik, Technische Universität Dresden, George-Bähr-Straße 1, 01069 Dresden (Germany); Gather, Malte C. [Institut für Angewandte Photophysik, Technische Universität Dresden, George-Bähr-Straße 1, 01069 Dresden (Germany); Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews KY16 9SS (United Kingdom)

    2015-10-19

    We investigate metal layers with a thickness of only a few nanometers as anode replacement for indium tin oxide (ITO) in white organic light-emitting diodes (OLEDs). The ultrathin metal electrodes prove to be an excellent alternative that can, with regard to the angular dependence and efficiency of the OLED devices, outperform the ITO reference. Furthermore, unlike ITO, the thin composite metal electrodes are readily compatible with demanding architectures (e.g., top-emission or transparent OLEDs, device unit stacking, etc.) and flexible substrates. Here, we compare the sheet resistance of both types of electrodes on polyethylene terephthalate for different bending radii. The electrical performance of ITO breaks down at a radius of 10 mm, while the metal electrode remains intact even at radii smaller than 1 mm.

  16. Electrode breakdown potentials in MHD plasmas

    International Nuclear Information System (INIS)

    Sodha, M.S.; Raju, G.V.R.; Kumar, A.S.; Gupta, Bhumesh

    1988-01-01

    Electrode breakdown potentials and current densities have been calculated for both the thermionically electron emitting and non-emitting cathodes. Calculated values have been compared with the available experimental results. It is found that the cathode potential drop for the breakdown is almost unaffected by the emission. However, both the total potential difference between the anode and the cathode and the current density at the breakdown are higher for electron-emitting cathodes than for non-emitting cathodes. (author)

  17. Efficient and bright organic light-emitting diodes on single-layer graphene electrodes

    Science.gov (United States)

    Li, Ning; Oida, Satoshi; Tulevski, George S.; Han, Shu-Jen; Hannon, James B.; Sadana, Devendra K.; Chen, Tze-Chiang

    2013-08-01

    Organic light-emitting diodes are emerging as leading technologies for both high quality display and lighting. However, the transparent conductive electrode used in the current organic light-emitting diode technologies increases the overall cost and has limited bendability for future flexible applications. Here we use single-layer graphene as an alternative flexible transparent conductor, yielding white organic light-emitting diodes with brightness and efficiency sufficient for general lighting. The performance improvement is attributed to the device structure, which allows direct hole injection from the single-layer graphene anode into the light-emitting layers, reducing carrier trapping induced efficiency roll-off. By employing a light out-coupling structure, phosphorescent green organic light-emitting diodes exhibit external quantum efficiency >60%, while phosphorescent white organic light-emitting diodes exhibit external quantum efficiency >45% at 10,000 cd m-2 with colour rendering index of 85. The power efficiency of white organic light-emitting diodes reaches 80 lm W-1 at 3,000 cd m-2, comparable to the most efficient lighting technologies.

  18. Design of micro, flexible light-emitting diode arrays and fabrication of flexible electrodes

    International Nuclear Information System (INIS)

    Gao, Dan; Wang, Weibiao; Liang, Zhongzhu; Liang, Jingqiu; Qin, Yuxin; Lv, Jinguang

    2016-01-01

    In this study, we design micro, flexible light-emitting diode (LED) array devices. Using theoretical calculations and finite element simulations, we analyze the deformation of the conventional single electrode bar. Through structure optimization, we obtain a three-dimensional (3D), chain-shaped electrode structure, which has a greater bending degree. The optimized electrodes not only have a bigger bend but can also be made to spin. When the supporting body is made of polydimethylsiloxane (PDMS), the maximum bending degree of the micro, flexible LED arrays (4  ×  1 arrays) was approximately 230 µ m; this was obtained using the finite element method. The device (4  ×  1 arrays) can stretch to 15%. This paper describes the fabrication of micro, flexible LED arrays using microelectromechancial (MEMS) technology combined with electroplating technology. Specifically, the isolated grooves are made by dry etching which can isolate and protect the light-emitting units. A combination of MEMS technology and wet etching is used to fabricate the large size spacing. (paper)

  19. Indium tin oxide-rod/single walled carbon nanotube based transparent electrodes for ultraviolet light-emitting diodes

    International Nuclear Information System (INIS)

    Yun, Min Ju; Kim, Hee-Dong; Kim, Kyeong Heon; Sung, Hwan Jun; Park, Sang Young; An, Ho-Myoung; Kim, Tae Geun

    2013-01-01

    In this paper, we report a transparent conductive oxide electrode scheme working for ultraviolet light-emitting diodes based on indium tin oxide (ITO)-rod and a single walled carbon nanotube (SWCNT) layer. We prepared four samples with ITO-rod, SWCNT/ITO-rod, ITO-rod/SWCNT, and SWCNT/ITO-rod/SWCNT structures for comparison. As a result, the sample with SWCNT/ITO-rod/SWCNT structures showed the highest transmittance over 90% at 280 nm and the highest Ohmic behavior (with sheet resistance of 5.33 kΩ/□) in the current–voltage characteristic curves. - Highlights: • Transparent conductive oxide (TCO) electrodes are proposed for UV light-emitting diodes. • These TCO electrodes are based on evaporated indium tin oxide (ITO)-rods. • Single walled carbon nanotube (SWCNT) layers are used as a current spreading layer. • The proposed TCO electrode structures show more than 90% transmittance at 280 nm

  20. Emerging Transparent Conducting Electrodes for Organic Light Emitting Diodes

    Directory of Open Access Journals (Sweden)

    Tze-Bin Song

    2014-03-01

    Full Text Available Organic light emitting diodes (OLEDs have attracted much attention in recent years as next generation lighting and displays, due to their many advantages, including superb performance, mechanical flexibility, ease of fabrication, chemical versatility, etc. In order to fully realize the highly flexible features, reduce the cost and further improve the performance of OLED devices, replacing the conventional indium tin oxide with better alternative transparent conducting electrodes (TCEs is a crucial step. In this review, we focus on the emerging alternative TCE materials for OLED applications, including carbon nanotubes (CNTs, metallic nanowires, conductive polymers and graphene. These materials are selected, because they have been applied as transparent electrodes for OLED devices and achieved reasonably good performance or even higher device performance than that of indium tin oxide (ITO glass. Various electrode modification techniques and their effects on the device performance are presented. The effects of new TCEs on light extraction, device performance and reliability are discussed. Highly flexible, stretchable and efficient OLED devices are achieved based on these alternative TCEs. These results are summarized for each material. The advantages and current challenges of these TCE materials are also identified.

  1. A surface-electrode quadrupole guide for electrons

    Energy Technology Data Exchange (ETDEWEB)

    Hoffrogge, Johannes Philipp

    2012-12-19

    This thesis reports on the design and first experimental realization of a surface-electrode quadrupole guide for free electrons. The guide is based on a miniaturized, planar electrode layout and is driven at microwave frequencies. It confines electrons in the near-field of the microwave excitation, where strong electric field gradients can be generated without resorting to resonating structures or exceptionally high drive powers. The use of chip-based electrode geometries allows the realization of versatile, microstructured potentials with the perspective of novel quantum experiments with guided electrons. I present the design, construction and operation of an experiment that demonstrates electron confinement in a planar quadrupole guide for the first time. To this end, electrons with kinetic energies from one to ten electron-volts are guided along a curved electrode geometry. The stability of electron guiding as a function of drive parameters and electron energy has been studied. A comparison with numerical particle tracking simulations yields good qualitative agreement and provides a deeper understanding of the electron dynamics in the guiding potential. Furthermore, this thesis gives a detailed description of the design of the surface-electrode layout. This includes the development of an optimized coupling structure to inject electrons into the guide with minimum transverse excitation. I also discuss the extension of the current setup to longitudinal guide dimensions that are comparable to or larger than the wavelength of the drive signal. This is possible with a modified electrode layout featuring elevated signal conductors. Electron guiding in the field of a planar, microfabricated electrode layout allows the generation of versatile and finely structured guiding potentials. One example would be the realization of junctions that split and recombine a guided electron beam. Furthermore, it should be possible to prepare electrons in low-lying quantum mechanical

  2. A surface-electrode quadrupole guide for electrons

    International Nuclear Information System (INIS)

    Hoffrogge, Johannes Philipp

    2012-01-01

    This thesis reports on the design and first experimental realization of a surface-electrode quadrupole guide for free electrons. The guide is based on a miniaturized, planar electrode layout and is driven at microwave frequencies. It confines electrons in the near-field of the microwave excitation, where strong electric field gradients can be generated without resorting to resonating structures or exceptionally high drive powers. The use of chip-based electrode geometries allows the realization of versatile, microstructured potentials with the perspective of novel quantum experiments with guided electrons. I present the design, construction and operation of an experiment that demonstrates electron confinement in a planar quadrupole guide for the first time. To this end, electrons with kinetic energies from one to ten electron-volts are guided along a curved electrode geometry. The stability of electron guiding as a function of drive parameters and electron energy has been studied. A comparison with numerical particle tracking simulations yields good qualitative agreement and provides a deeper understanding of the electron dynamics in the guiding potential. Furthermore, this thesis gives a detailed description of the design of the surface-electrode layout. This includes the development of an optimized coupling structure to inject electrons into the guide with minimum transverse excitation. I also discuss the extension of the current setup to longitudinal guide dimensions that are comparable to or larger than the wavelength of the drive signal. This is possible with a modified electrode layout featuring elevated signal conductors. Electron guiding in the field of a planar, microfabricated electrode layout allows the generation of versatile and finely structured guiding potentials. One example would be the realization of junctions that split and recombine a guided electron beam. Furthermore, it should be possible to prepare electrons in low-lying quantum mechanical

  3. Room-temperature spin-polarized organic light-emitting diodes with a single ferromagnetic electrode

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Baofu, E-mail: b.ding@ecu.edu.au; Alameh, Kamal, E-mail: k.alameh@ecu.edu.au [Electron Science Research Institute, Edith Cowan University, 270 Joondalup Drive, Joondalup WA 6027 Australia (Australia); Song, Qunliang [Institute for Clean Energy and Advanced Materials, Southwest University, Chongqing 400715 (China)

    2014-05-19

    In this paper, we demonstrate the concept of a room-temperature spin-polarized organic light-emitting diode (Spin-OLED) structure based on (i) the deposition of an ultra-thin p-type organic buffer layer on the surface of the ferromagnetic electrode of the Spin-OLED and (ii) the use of oxygen plasma treatment to modify the surface of that electrode. Experimental results demonstrate that the brightness of the developed Spin-OLED can be increased by 110% and that a magneto-electroluminescence of 12% can be attained for a 150 mT in-plane magnetic field, at room temperature. This is attributed to enhanced hole and room-temperature spin-polarized injection from the ferromagnetic electrode, respectively.

  4. The effect of dopant-induced electron traps on spectrum evolution of doped organic light-emitting devices

    Energy Technology Data Exchange (ETDEWEB)

    Zhan, Y.Q. [Surface Physics Laboratory (National Key Laboratory), Lab of Advanced Materials, Fudan University, Shanghai 200433 (China)]. E-mail: yqzhan@fudan.edu.cn; Zhou, J. [Surface Physics Laboratory (National Key Laboratory), Lab of Advanced Materials, Fudan University, Shanghai 200433 (China); Zhou, Y.C. [Surface Physics Laboratory (National Key Laboratory), Lab of Advanced Materials, Fudan University, Shanghai 200433 (China); Wu, Y. [Surface Physics Laboratory (National Key Laboratory), Lab of Advanced Materials, Fudan University, Shanghai 200433 (China); Yang, H. [Surface Physics Laboratory (National Key Laboratory), Lab of Advanced Materials, Fudan University, Shanghai 200433 (China); Li, F.Y. [Surface Physics Laboratory (National Key Laboratory), Lab of Advanced Materials, Fudan University, Shanghai 200433 (China); Ding, X.M. [Surface Physics Laboratory (National Key Laboratory), Lab of Advanced Materials, Fudan University, Shanghai 200433 (China); Hou, X.Y. [Surface Physics Laboratory (National Key Laboratory), Lab of Advanced Materials, Fudan University, Shanghai 200433 (China)]. E-mail: xyhou@fudan.edu.cn

    2007-05-07

    A prototype of light emitting device with two symmetrically located Al/LiF electrodes is fabricated to study the voltage dependence of emission spectra. 4-(dicyanomethylene)-2-methyl-6- (pdimethylaminostyryl)-4H-pyran doped tris-(8-hydroxy-quinolinato) aluminum thin film is the emitting layer of the device. Experiments show that with increasing applied voltage the emission intensity of the device decreases, of which the dopant emission intensity decreases more steeply than that of the host. Based on the theory of space-charge-limited current in insulator with a single shallow trap level it is deduced that the photoluminescence intensity of the dopant emission decreases linearly with applied voltage, in good agreement with experimental measurements. The evolution of the emission spectra can be well explained by the suggested mechanism that the electrons are trapped in the dopant molecules, which blocks the energy transfer from the host, and leads to more excitons in the host to emit light.

  5. The effect of dopant-induced electron traps on spectrum evolution of doped organic light-emitting devices

    International Nuclear Information System (INIS)

    Zhan, Y.Q.; Zhou, J.; Zhou, Y.C.; Wu, Y.; Yang, H.; Li, F.Y.; Ding, X.M.; Hou, X.Y.

    2007-01-01

    A prototype of light emitting device with two symmetrically located Al/LiF electrodes is fabricated to study the voltage dependence of emission spectra. 4-(dicyanomethylene)-2-methyl-6- (pdimethylaminostyryl)-4H-pyran doped tris-(8-hydroxy-quinolinato) aluminum thin film is the emitting layer of the device. Experiments show that with increasing applied voltage the emission intensity of the device decreases, of which the dopant emission intensity decreases more steeply than that of the host. Based on the theory of space-charge-limited current in insulator with a single shallow trap level it is deduced that the photoluminescence intensity of the dopant emission decreases linearly with applied voltage, in good agreement with experimental measurements. The evolution of the emission spectra can be well explained by the suggested mechanism that the electrons are trapped in the dopant molecules, which blocks the energy transfer from the host, and leads to more excitons in the host to emit light

  6. Nano-honeycomb structured transparent electrode for enhanced light extraction from organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Xiao-Bo; Qian, Min; Wang, Zhao-Kui, E-mail: zkwang@suda.edu.cn, E-mail: lsliao@suda.edu.cn; Liao, Liang-Sheng, E-mail: zkwang@suda.edu.cn, E-mail: lsliao@suda.edu.cn [Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123 (China)

    2015-06-01

    A universal nano-sphere lithography method has been developed to fabricate nano-structured transparent electrode, such as indium tin oxide (ITO), for light extraction from organic light-emitting diodes (OLEDs). Perforated SiO{sub 2} film made from a monolayer colloidal crystal of polystyrene spheres and tetraethyl orthosilicate sol-gel is used as a template. Ordered nano-honeycomb pits on the ITO electrode surface are obtained by chemical etching. The proposed method can be utilized to form large-area nano-structured ITO electrode. More than two folds' enhancement in both current efficiency and power efficiency has been achieved in a red phosphorescent OLED which was fabricated on the nano-structured ITO substrate.

  7. Field emitted electron trajectories for the CEBAF cavity

    International Nuclear Information System (INIS)

    Yunn, B.C.; Sundelin, R.M.

    1993-06-01

    Electromagnetic fields of the superconducting 5-cell CEBAF cavity with its fundamental power coupler are solved numerically with URMEL and MAFIA codes. Trajectories of field emitted electrons following the Fowler-Nordheim relation are studied with a numerical program which accepts the URMEL/MAFIA fields. Emission sites and gradients are determined for those electrons which can reach the cold ceramic window either directly or by an energetic backscattering. The peak and average impact energy and current are found. The generation of dark current by field emitted electrons has also been studied, and its relevance to CEBAF operation is briefly discussed

  8. Electron emitting filaments for electron discharge devices

    International Nuclear Information System (INIS)

    Leung, K.N.; Pincosy, P.A.; Ehlers, K.W.

    1988-01-01

    This patent describes an electron emitting device for use in an electron discharge system. It comprises: a filament having a pair of terminal ends, electrical supply means for supplying electrical power to the terminal ends of the filament for directly heating the filament by the passage of an electrical current along the filament between the terminal ends, the filament being substantially tapered in cross section continuously in one direction from one of its pair of terminal ends to another of its pair of terminal ends to achieve uniform heating of the filament along the length thereof by compensating for the nonuniform current along the filament due to the emission of electrons therefrom

  9. Synergetic electrode architecture for efficient graphene-based flexible organic light-emitting diodes.

    Science.gov (United States)

    Lee, Jaeho; Han, Tae-Hee; Park, Min-Ho; Jung, Dae Yool; Seo, Jeongmin; Seo, Hong-Kyu; Cho, Hyunsu; Kim, Eunhye; Chung, Jin; Choi, Sung-Yool; Kim, Taek-Soo; Lee, Tae-Woo; Yoo, Seunghyup

    2016-06-02

    Graphene-based organic light-emitting diodes (OLEDs) have recently emerged as a key element essential in next-generation displays and lighting, mainly due to their promise for highly flexible light sources. However, their efficiency has been, at best, similar to that of conventional, indium tin oxide-based counterparts. We here propose an ideal electrode structure based on a synergetic interplay of high-index TiO2 layers and low-index hole-injection layers sandwiching graphene electrodes, which results in an ideal situation where enhancement by cavity resonance is maximized yet loss to surface plasmon polariton is mitigated. The proposed approach leads to OLEDs exhibiting ultrahigh external quantum efficiency of 40.8 and 62.1% (64.7 and 103% with a half-ball lens) for single- and multi-junction devices, respectively. The OLEDs made on plastics with those electrodes are repeatedly bendable at a radius of 2.3 mm, partly due to the TiO2 layers withstanding flexural strain up to 4% via crack-deflection toughening.

  10. Organic light-emitting diodes using novel embedded al gird transparent electrodes

    Science.gov (United States)

    Peng, Cuiyun; Chen, Changbo; Guo, Kunping; Tian, Zhenghao; Zhu, Wenqing; Xu, Tao; Wei, Bin

    2017-03-01

    This work demonstrates a novel transparent electrode using embedded Al grids fabricated by a simple and cost-effective approach using photolithography and wet etching. The optical and electrical properties of Al grids versus grid geometry have been systematically investigated, it was found that Al grids exhibited a low sheet resistance of 70 Ω □-1 and a light transmission of 69% at 550 nm with advantages in terms of processing conditions and material cost as well as potential to large scale fabrication. Indium Tin Oxide-free green organic light-emitting diodes (OLED) based on Al grids transparent electrodes was demonstrated, yielding a power efficiency >15 lm W-1 and current efficiency >39 cd A-1 at a brightness of 2396 cd m-2. Furthermore, a reduced efficiency roll-off and higher brightness have been achieved compared with ITO-base device.

  11. Stable angular emission spectra in white organic light-emitting diodes using graphene/PEDOT:PSS composite electrode.

    Science.gov (United States)

    Cho, Hyunsu; Lee, Hyunkoo; Lee, Jonghee; Sung, Woo Jin; Kwon, Byoung-Hwa; Joo, Chul-Woong; Shin, Jin-Wook; Han, Jun-Han; Moon, Jaehyun; Lee, Jeong-Ik; Cho, Seungmin; Cho, Nam Sung

    2017-05-01

    In this work, we suggest a graphene/ poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) composite as a transparent electrode for stabilizing white emission of organic light-emitting diodes (OLEDs). Graphene/PEDOT:PSS composite electrodes have increased reflectance when compared to graphene itself, but their reflectance is still lower than that of ITO itself. Changes in the reflectance of the composite electrode have the advantage of suppressing the angular spectral distortion of white emission OLEDs and achieving an efficiency of 16.6% for white OLEDs, comparable to that achieved by graphene-only electrodes. By controlling the OLED structure to compensate for the two-beam interference effect, the CIE color coordinate change (Δxy) of OLEDs based on graphene/PEDOT:PSS composite electrodes is 0.018, less than that based on graphene-only electrode, i.e.,0.027.

  12. All solution-processed micro-structured flexible electrodes for low-cost light-emitting pressure sensors fabrication.

    Science.gov (United States)

    Shimotsu, Rie; Takumi, Takahiro; Vohra, Varun

    2017-07-31

    Recent studies have demonstrated the advantage of developing pressure-sensitive devices with light-emitting properties for direct visualization of pressure distribution, potential application to next generation touch panels and human-machine interfaces. To ensure that this technology is available to everyone, its production cost should be kept as low as possible. Here, simple device concepts, namely, pressure sensitive flexible hybrid electrodes and OLED architecture, are used to produce low-cost resistive or light-emitting pressure sensors. Additionally, integrating solution-processed self-assembled micro-structures into the flexible hybrid electrodes composed of an elastomer and conductive materials results in enhanced device performances either in terms of pressure or spatial distribution sensitivity. For instance, based on the pressure applied, the measured values for the resistances of pressure sensors range from a few MΩ down to 500 Ω. On the other hand, unlike their evaporated equivalents, the combination of solution-processed flexible electrodes with an inverted OLED architectures display bright green emission when a pressure over 200 kPa is applied. At a bias of 3 V, their luminance can be tuned by applying a higher pressure of 500 kPa. Consequently, features such as fingernails and fingertips can be clearly distinguished from one another in these long-lasting low-cost devices.

  13. Low-energy plasma-cathode electron gun with a perforated emission electrode

    Science.gov (United States)

    Burdovitsin, Victor; Kazakov, Andrey; Medovnik, Alexander; Oks, Efim; Tyunkov, Andrey

    2017-11-01

    We describe research of influence of the geometric parameters of perforated electrode on emission parameters of a plasma cathode electron gun generating continuous electron beams at gas pressure 5-6 Pa. It is shown, that the emission current increases with increasing the hole diameters and decreasing the thickness of the perforated emission electrode. Plasma-cathode gun with perforated electron can provide electron extraction with an efficiency of up to 72 %. It is shown, that the current-voltage characteristic of the electron gun with a perforated emission electrode differs from that of similar guns with fine mesh grid electrode. The plasma-cathode electron gun with perforated emission electrode is used for electron beam welding and sintering.

  14. A solvated electron lithium electrode for secondary batteries

    Science.gov (United States)

    Sammells, A. F.; Semkow, K. W.

    1986-09-01

    Attention is given to a novel method for the achievement of high electro-chemical reversibility in Li-based nonaqueous cells, using a liquid negative electrode that consists of Li dissolved in liquid ammonia as a solvated electron Li electrode. The containment of this liquid negative active material from direct contact to a liquid nonaqueous electrolyte in the positive electrode compartment was realized through the use of a Li-intercalated, electronically conducting ceramic membrane.

  15. Plasma structures in front of a floated emissive electrode

    International Nuclear Information System (INIS)

    Ishiguro, S.; Sato, N.

    1993-01-01

    A particle simulation with plasma source is carried out on plasma structures generated by an electron emissive electrode floated in a collisionless plasma. When low-temperature, high-density thermal electrons are emitted, there appears a negative potential dip in front of the electrode, which is always accompanied by a low-frequency oscillation. On the other hand, three regimes of plasma structures appear for an electron beam injection. When a high-flux electron beam is injected, an electron sheath is generated in front of the electrode. The sheath reflects ions flowing to the electrode, providing an increase in the plasma density. When a low-flux electron beam is injected, no electron sheath is generated. When an intermediate-flux beam is injected, the electron sheath structure appears periodically in time. The lifetime of the sheath is proportional to the system length. These results of beam injection are almost consistent with those of a Q-machine experiment

  16. Effect of generation on the electronic properties of light-emitting dendrimers

    Science.gov (United States)

    Burn, Paul L.; Halim, Mounir; Pillow, Jonathan N. G.; Samuel, Ifor D. W.

    1999-12-01

    We have compared the optical and electronic properties of a series of porphyrin centered dendrimers containing stilbene dendrons. The first and second generation dendrimers could be spin-coated from solution to form good quality thin films. Incorporation into single layer light-emitting diodes gave red-light emission with maximum external quantum efficiencies of 0.02% and 0.04% for the first and second generation dendrimers respectively. We have determined by photoluminescence studies that energy can be transferred efficiently from the stilbene dendrons to the porphyrin core and that PL emission is from the core. Cyclic voltammetry studies on the dendrimers show that the reductions are porphyrin centered with the dendrons only affecting the rate of heterogeneous electron transfer between the electrode and the dendrimers. This suggests that charge mobility within a dendrimer film in an LED will be affected by the porphyrin edge to porphyrin edge distance. We have studied the hydrodynamic radii of the dendrimers by gel permeation chromatography and found as expected that the average porphyrin edge to dendron edge distance increases with generation. This is consistent with the slowing of heterogeneous electron transfer observed in the cyclic voltammetry on increasing the generation number and suggests that the dendrons are interleaved in the solid state to facilitate charge transport.

  17. Influence of indium tin oxide electrodes deposited at room temperature on the properties of organic light-emitting devices

    International Nuclear Information System (INIS)

    Satoh, Toshikazu; Fujikawa, Hisayoshi; Taga, Yasunori

    2005-01-01

    The influence of indium tin oxide (ITO) electrodes deposited at room temperature (ITO-RT) on the properties of organic light-emitting devices (OLEDs) has been studied. The OLED on the ITO-RT showed an obvious shorter lifetime and higher operating voltage than that on the conventional ITO electrode deposited at 573 K. The result of an in situ x-ray photoelectron spectroscopy analysis of the ITO electrode and the organic layer suggested that many of the hydroxyl groups that originate in the amorphous structure of the ITO-RT electrode oxidize the organic layer. The performance of the OLED on the ITO-RT is able to be explained by the oxidation of the organic layer

  18. POWER, METALLURGICAL AND CHEMICAL MECHANICAL ENGINEERING THERMOELECTRIC EVENTS IN LIGHT-EMITTING BIPOLAR SEMICONDUCTOR STRUCTURES

    Directory of Open Access Journals (Sweden)

    P. A. Magomedova

    2017-01-01

    Full Text Available Objective. The development of light-emitting bipolar semiconductor structures having a low level of parasitic heat release.Methods. A method for converting thermoelectric heat in bipolar semiconductor structures into optical radiation to divert the excess energy into the environment was developed. At the same time, the cooling effect on thermoelectric junctions remains. Instead of an inertial process of conductive or convective heat transfer, practically instantaneous heat removal from electronic components to the environment takes place.Results. As a result, light-emitting bipolar semiconductor structures will allow more powerful devices with greater speed and degree of integration to be created. It is possible to produce transparent LED matrices with a two-way arrangement of transparent solar cells and mirror metal electrodes along the perimeter. When current is applied, the LED matrix on one of the transitions will absorb thermal energy; on other electrodes, it will emit radiation that is completely recovered into electricity by means of transparent solar cells following repeated reflection between the mirror electrodes. The low efficiency of solar cells will be completely compensated for with the multiple passages of photons through these batteries.Conclusion. Light-emitting bipolar semiconductor structures will not only improve the reliability of electronic components in a wide range of performance characteristics, but also improve energy efficiency through the use of optical radiation recovery. Semiconductor thermoelectric devices using optical phenomena in conjunction with the Peltier effect allow a wide range of energy-efficient components of radio electronic equipment to be realised, both for discrete electronics and for microsystem techniques. Systems for obtaining ultra-low temperatures in order to achieve superconductivity are of particular value. 

  19. Receivers for processing electron beam pick-up electrode signals

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    There are several methods of determining the transverse position of the electron beam, based upon sensing either the electric field, the magnetic field, or both. At the NSLS the transverse beam position monitors each consist of a set of four circular electrodes. There are 48 sets of pick-up electrodes in the X-ray ring and 24 in the VUV storage ring for determining the electron orbit, and a few extra sets installed for specialized purposes. When the beam passes between the four electrodes, charge is induced on each electrode, the amount depending upon the distance of the beam from that electrode. If V a , V b , V c and V d given by a difference between pairs of electrodes normalized for variations in beam current by dividing by the sum of electrode voltages. The method of processing these signals depends upon their time structure. The electrons circulating around the vacuum chamber are concentrated in short bunches within stability buckets produced by the accelerating voltage in the RF cavities. The charges induced on the pickup electrodes then are narrow pulses, a fraction of a nanosecond long, and would result in a monopolar voltage pulses if it were not for the impedance of the cable connecting the electrode to the processing apparatus. The capacitance between each electrode and the chamber wall is only a few picofarads and is effectively in parallel with the cable impedance (50 ohms). Thus an appreciable amount of the charge flows off the electrode while the bunch is between the electrodes, resulting in potential of opposite sign as the bunch is leaving the vicinity of the electrode. The resulting signal consists of a series of bipolar pulses, each of less than one nanosecond duration

  20. Improve the surface of silver nanowire transparent electrode using a double-layer structure for the quantum-dot light-emitting diodes

    Science.gov (United States)

    Cho, Seok Hyeon; Been Heo, Su; Kang, Seong Jun

    2018-03-01

    We developed a double-layer structured transparent electrode for use in flexible quantum-dot light-emitting diodes (QLEDs). Silver nanowires (AgNWs) and highly conductive poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) were coated on a transparent substrate to obtain a highly conductive and flexible transparent electrode. The highly conductive PEDOT:PSS improved the surface roughness of the AgNWs transparent electrode film as well as the surface coverage area of the film. The double-layer structured transparent electrode showed superior mechanical properties than conventional indium-tin oxide (ITO) and AgNWs transparent electrodes. QLEDs with the double-layer structured transparent electrode also showed good reliability under cyclic bending conditions. These results indicate that the double-layer structured AgNWs/PEDOT:PSS transparent electrode described here is a feasible alternative to ITO transparent electrodes for flexible QLEDs.

  1. Highly efficient inverted top emitting organic light emitting diodes using a transparent top electrode with color stability on viewing angle

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung-Bum; Lee, Jeong-Hwan; Moon, Chang-Ki; Kim, Jang-Joo, E-mail: jjkim@snu.ac.kr [Department of Materials Science and Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of)

    2014-02-17

    We report a highly efficient phosphorescent green inverted top emitting organic light emitting diode with excellent color stability by using the 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile/indium zinc oxide top electrode and bis(2-phenylpyridine)iridium(III) acetylacetonate as the emitter in an exciplex forming co-host system. The device shows a high external quantum efficiency of 23.4% at 1000 cd/m{sup 2} corresponding to a current efficiency of 110 cd/A, low efficiency roll-off with 21% at 10 000 cd/m{sup 2} and low turn on voltage of 2.4 V. Especially, the device showed very small color change with the variation of Δx = 0.02, Δy = 0.02 in the CIE 1931 coordinates as the viewing angle changes from 0° to 60°. The performance of the device is superior to that of the metal/metal cavity structured device.

  2. Hot electron-induced electrochemiluminescence at polyetherimide-carbon black-based electrodes

    International Nuclear Information System (INIS)

    Salminen, Kalle; Grönroos, Päivi; Johansson, Leena-Sisko; Campbell, Joseph; Kulmala, Sakari

    2017-01-01

    Highlights: • Generation of hydrated electrons at carbon paste electrodes. • Hydrated electrons are able to produce intense chemiluminescence. • Relationship between carbon black content in electrode and HECL studied. • Performance of composite electrodes is similar to aluminum electrodes. • The present electrodes are good alternative for disposable assay cartridges. - Abstract: Various luminophores produce strong electrogenerated chemiluminescence during cathodic pulse polarization of the present insulating film-covered carbon paste electrodes in fully aqueous solutions. First electrodes made of a commercial conductive carbon paste were successfully utilized as working electrodes and their surface was characterized by ESCA. Then custom in-laboratory made improved composite electrodes were manufactured from the same insulating polymer and conducting carbon black particles. The relationship between the amount of carbon present on the composite electrode, in the bulk and on the surface, and the intensity of electrogenerated chemiluminescence was studied further. The overall performance of these composite electrodes makes them viable low-cost replacements for metal/insulator type electrodes such as oxide-coated silicon electrodes.

  3. Atom probe tomography of a commercial light emitting diode

    International Nuclear Information System (INIS)

    Larson, D J; Prosa, T J; Olson, D; Lawrence, D; Clifton, P H; Kelly, T F; Lefebvre, W

    2013-01-01

    The atomic-scale analysis of a commercial light emitting diode device purchased at retail is demonstrated using a local electrode atom probe. Some of the features are correlated with transmission electron microscopy imaging. Subtle details of the structure that are revealed have potential significance for the design and performance of this device

  4. Highly transparent, low-haze, hybrid cellulose nanopaper as electrodes for flexible electronics

    KAUST Repository

    Xu, Xuezhu

    2016-06-01

    Paper is an excellent candidate to replace plastics as a substrate for flexible electronics due to its low cost, renewability and flexibility. Cellulose nanopaper (CNP), a new type of paper made of nanosized cellulose fibers, is a promising substrate material for transparent and flexible electrodes due to its potentially high transparency and high mechanical strength. Although CNP substrates can achieve high transparency, they are still characterized by high diffuse transmittance and small direct transmittance, resulting in high optical haze of the substrates. In this study, we proposed a simple methodology for large-scale production of high-transparency, low-haze CNP comprising both long cellulose nanofibrils (CNFs) and short cellulose nanocrystals (CNCs). By varying the CNC/CNF ratio in the hybrid CNP, we could tailor its total transmittance, direct transmittance and diffuse transmittance. By increasing the CNC content, the optical haze of the hybrid CNP could be decreased and its transparency could be increased. The direct transmittance and optical haze of the CNP were 75.1% and 10.0%, respectively, greatly improved from the values of previously reported CNP (31.1% and 62.0%, respectively). Transparent, flexible electrodes were fabricated by coating the hybrid CNP with silver nanowires (AgNWs). The electrodes showed a low sheet resistance (minimum 1.2 Ω sq-1) and a high total transmittance (maximum of 82.5%). The electrodes were used to make a light emitting diode (LED) assembly to demonstrate their potential use in flexible displays. © 2016 The Royal Society of Chemistry.

  5. Blue and white phosphorescent organic light emitting diode performance improvement by confining electrons and holes inside double emitting layers

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Yu-Sheng; Hong, Lin-Ann; Juang, Fuh-Shyang; Chen, Cheng-Yin

    2014-09-15

    In this research, complex emitting layers (EML) were fabricated using TCTA doping hole-transport material in the front half of a bipolar 26DCzPPy as well as PPT doping electron-transport material in the back half of 26DCzPPy. Blue dopant FIrpic was also mixed inside the complex emitting layer to produce a highly efficient blue phosphorescent organic light emitting diode (OLED). The hole and electron injection and carrier recombination rate were effectively increased. The fabricated complex emitting layers exhibited current efficiency of 42 cd/A and power efficiency of 30 lm/W when the luminance was 1000 cd/m{sup 2}, driving voltage was 4.4 V, and current density was 2.4 mA/cm{sup 2}. A white OLED component was then manufactured by doping red dopant [Os(bpftz){sub 2}(PPh{sub 2}Me){sub 2}] (Os) in proper locations. When the Os dopant was doped in between the complex emitting layers, excitons were effectively confined within, increasing the recombination rate and therefore reducing the color shift. The resulting Commission Internationale de L’Eclairage (CIE) coordinates shifted from 4 to 10 V is (Δx=−0.04, Δy=+0.01). The component had a current efficiency of 35.7 cd/A, a power efficiency of 24 lm/W, driving voltage of 4.6 V and a CIE{sub x,y} of (0.31,0.35) at a luminance of 1000 cd/m{sup 2}, with a maximum luminance of 15,600 cd/m{sup 2} at 10 V. Attaching an outcoupling enhancement film was applied to increase the luminance efficiency to 30 lm/W. - Highlights: • Used the complex double emitting layers. • Respectively doped hole and electron transport material in the bipolar host. • Electrons and holes are effectively confined within EMLs to produce excitons.

  6. Blue and white phosphorescent organic light emitting diode performance improvement by confining electrons and holes inside double emitting layers

    International Nuclear Information System (INIS)

    Tsai, Yu-Sheng; Hong, Lin-Ann; Juang, Fuh-Shyang; Chen, Cheng-Yin

    2014-01-01

    In this research, complex emitting layers (EML) were fabricated using TCTA doping hole-transport material in the front half of a bipolar 26DCzPPy as well as PPT doping electron-transport material in the back half of 26DCzPPy. Blue dopant FIrpic was also mixed inside the complex emitting layer to produce a highly efficient blue phosphorescent organic light emitting diode (OLED). The hole and electron injection and carrier recombination rate were effectively increased. The fabricated complex emitting layers exhibited current efficiency of 42 cd/A and power efficiency of 30 lm/W when the luminance was 1000 cd/m 2 , driving voltage was 4.4 V, and current density was 2.4 mA/cm 2 . A white OLED component was then manufactured by doping red dopant [Os(bpftz) 2 (PPh 2 Me) 2 ] (Os) in proper locations. When the Os dopant was doped in between the complex emitting layers, excitons were effectively confined within, increasing the recombination rate and therefore reducing the color shift. The resulting Commission Internationale de L’Eclairage (CIE) coordinates shifted from 4 to 10 V is (Δx=−0.04, Δy=+0.01). The component had a current efficiency of 35.7 cd/A, a power efficiency of 24 lm/W, driving voltage of 4.6 V and a CIE x,y of (0.31,0.35) at a luminance of 1000 cd/m 2 , with a maximum luminance of 15,600 cd/m 2 at 10 V. Attaching an outcoupling enhancement film was applied to increase the luminance efficiency to 30 lm/W. - Highlights: • Used the complex double emitting layers. • Respectively doped hole and electron transport material in the bipolar host. • Electrons and holes are effectively confined within EMLs to produce excitons

  7. Material for electrodes of low temperature plasma generators

    Science.gov (United States)

    Caplan, Malcolm; Vinogradov, Sergel Evge'evich; Ribin, Valeri Vasil'evich; Shekalov, Valentin Ivanovich; Rutberg, Philip Grigor'evich; Safronov, Alexi Anatol'evich

    2008-12-09

    Material for electrodes of low temperature plasma generators. The material contains a porous metal matrix impregnated with a material emitting electrons. The material uses a mixture of copper and iron powders as a porous metal matrix and a Group IIIB metal component such as Y.sub.2O.sub.3 is used as a material emitting electrons at, for example, the proportion of the components, mass %: iron: 3-30; Y.sub.2O.sub.3:0.05-1; copper: the remainder. Copper provides a high level of heat conduction and electric conductance, iron decreases intensity of copper evaporation in the process of plasma creation providing increased strength and lifetime, Y.sub.2O.sub.3 provides decreasing of electronic work function and stability of arc burning. The material can be used for producing the electrodes of low temperature AC plasma generators used for destruction of liquid organic wastes, medical wastes, and municipal wastes as well as for decontamination of low level radioactive waste, the destruction of chemical weapons, warfare toxic agents, etc.

  8. A Solution Processed Flexible Nanocomposite Electrode with Efficient Light Extraction for Organic Light Emitting Diodes

    Science.gov (United States)

    Li, Lu; Liang, Jiajie; Chou, Shu-Yu; Zhu, Xiaodan; Niu, Xiaofan; Zhibinyu; Pei, Qibing

    2014-03-01

    Highly efficient organic light emitting diodes (OLEDs) based on multiple layers of vapor evaporated small molecules, indium tin oxide transparent electrode, and glass substrate have been extensively investigated and are being commercialized. The light extraction from the exciton radiative decay is limited to less than 30% due to plasmonic quenching on the metallic cathode and the waveguide in the multi-layer sandwich structure. Here we report a flexible nanocomposite electrode comprising single-walled carbon nanotubes and silver nanowires stacked and embedded in the surface of a polymer substrate. Nanoparticles of barium strontium titanate are dispersed within the substrate to enhance light extraction efficiency. Green polymer OLED (PLEDs) fabricated on the nanocomposite electrode exhibit a maximum current efficiency of 118 cd/A at 10,000 cd/m2 with the calculated external quantum efficiency being 38.9%. The efficiencies of white PLEDs are 46.7 cd/A and 30.5%, respectively. The devices can be bent to 3 mm radius repeatedly without significant loss of electroluminescent performance. The nanocomposite electrode could pave the way to high-efficiency flexible OLEDs with simplified device structure and low fabrication cost.

  9. Organic light emitting diode with surface modification layer

    Science.gov (United States)

    Basil, John D.; Bhandari, Abhinav; Buhay, Harry; Arbab, Mehran; Marietti, Gary J.

    2017-09-12

    An organic light emitting diode (10) includes a substrate (12) having a first surface (14) and a second surface (16), a first electrode (32), and a second electrode (38). An emissive layer (36) is located between the first electrode (32) and the second electrode (38). The organic light emitting diode (10) further includes a surface modification layer (18). The surface modification layer (18) includes a non-planar surface (30, 52).

  10. Structure of electron collection electrode in dye-sensitized nanocrystalline TiO2

    International Nuclear Information System (INIS)

    Yanagida, Masatoshi; Numata, Youhei; Yoshimatsu, Keiichi; Ochiai, Masayuki; Naito, Hiroyoshi; Han, Liyuan

    2013-01-01

    As part of the effort to control electron transport in the TiO 2 films of dye-sensitized solar cells (DSCs), the structure of the electron collection electrode on the films has been investigated. Here, we report the comparison between a sandwich-type dye-sensitized solar cell (SW-DSC), in which the TiO 2 film is sandwiched between a TCO glass front electron collection electrode and a sputtered Ti back charge collection electrode, and a normal DSC (N-DSC), which has no back electrode. In N-DSCs, electrons in TiO 2 that are far from the front electrode have to diffuse for a long distance (ca. 10 μm), and therefore, the photocurrent cannot rapidly respond to light with a modulation frequency >100 Hz. In SW-DSCs, the photocurrent response was enhanced at frequencies between 10 and 500 Hz because electrons in TiO 2 can be extracted by both front and back electrodes, which can be also explained by an electron diffusion model. Calculations based on the electron diffusion model suggested that a high short-circuit photocurrent could be maintained in SW-DSCs even when the electron diffusion length in the TiO 2 film was shortened.

  11. Sheath formation of a plasma containing multiply charged ions, cold and hot electrons, and emitted electrons

    International Nuclear Information System (INIS)

    You, H.J.

    2012-01-01

    It is quite well known that ion confinement is an important factor in an electron cyclotron resonance ion source (ECRIS) as it is closely related to the plasma potential. A model of sheath formation was extended to a plasma containing multiply charged ions (MCIs), cold and hot electrons, and secondary electrons emitted either by MCIs or hot electrons. In the model, a modification of the 'Bohm criterion' was given, the sheath potential drop and the critical emission condition were also analyzed. It appears that the presence of hot electrons and emitted electrons strongly affects the sheath formation so that smaller hot electrons and larger emission current result in reduced sheath potential (or floating potential). However the sheath potential was found to become independent of the emission current J when J > J c , (where J c is the critical emission current. The paper is followed by the associated poster

  12. Interaction of measles virus vectors with Auger electron emitting radioisotopes

    International Nuclear Information System (INIS)

    Dingli, David; Peng, K.-W.; Harvey, Mary E.; Vongpunsawad, Sompong; Bergert, Elizabeth R.; Kyle, Robert A.; Cattaneo, Roberto; Morris, John C.; Russell, Stephen J.

    2005-01-01

    A recombinant measles virus (MV) expressing the sodium iodide symporter (NIS) is being considered for therapy of advanced multiple myeloma. Auger electrons selectively damage cells in which the isotope decays. We hypothesized that the Auger electron emitting isotope 125 I can be used to control viral proliferation. MV was engineered to express both carcinoembryonic antigen and NIS (MV-NICE). Cells were infected with MV-NICE and exposed to 125 I with appropriate controls. MV-NICE replication in vitro is inhibited by the selective uptake of 125 I by cells expressing NIS. Auger electron damage is partly mediated by free radicals and abrogated by glutathione. In myeloma xenografts, control of MV-NICE with 125 I was not possible under the conditions of the experiment. MV-NICE does not replicate faster in the presence of radiation. Auger electron emitting isotopes effectively stop propagation of MV vectors expressing NIS in vitro. Additional work is necessary to translate these observations in vivo

  13. Powering microbes with electricity: direct electron transfer from electrodes to microbes.

    Science.gov (United States)

    Lovley, Derek R

    2011-02-01

    The discovery of electrotrophs, microorganisms that can directly accept electrons from electrodes for the reduction of terminal electron acceptors, has spurred the investigation of a wide range of potential applications. To date, only a handful of pure cultures have been shown to be capable of electrotrophy, but this process has also been inferred in many studies with undefined consortia. Potential electron acceptors include: carbon dioxide, nitrate, metals, chlorinated compounds, organic acids, protons and oxygen. Direct electron transfer from electrodes to cells has many advantages over indirect electrical stimulation of microbial metabolism via electron shuttles or hydrogen production. Supplying electrons with electrodes for the bioremediation of chlorinated compounds, nitrate or toxic metals may be preferable to adding organic electron donors or hydrogen to the subsurface or bioreactors. The most transformative application of electrotrophy may be microbial electrosynthesis in which carbon dioxide and water are converted to multi-carbon organic compounds that are released extracellularly. Coupling photovoltaic technology with microbial electrosynthesis represents a novel photosynthesis strategy that avoids many of the drawbacks of biomass-based strategies for the production of transportation fuels and other organic chemicals. The mechanisms for direct electron transfer from electrodes to microorganisms warrant further investigation in order to optimize envisioned applications. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.

  14. Evaluation of high-energy brachytherapy source electronic disequilibrium and dose from emitted electrons.

    Science.gov (United States)

    Ballester, Facundo; Granero, Domingo; Pérez-Calatayud, José; Melhus, Christopher S; Rivard, Mark J

    2009-09-01

    The region of electronic disequilibrium near photon-emitting brachytherapy sources of high-energy radionuclides (60Co, 137CS, 192Ir, and 169Yb) and contributions to total dose from emitted electrons were studied using the GEANT4 and PENELOPE Monte Carlo codes. Hypothetical sources with active and capsule materials mimicking those of actual sources but with spherical shape were examined. Dose contributions due to source photons, x rays, and bremsstrahlung; source beta-, Auger electrons, and internal conversion electrons; and water collisional kerma were scored. To determine if conclusions obtained for electronic equilibrium conditions and electron dose contribution to total dose for the representative spherical sources could be applied to actual sources, the 192Ir mHDR-v2 source model (Nucletron B.V., Veenendaal, The Netherlands) was simulated for comparison to spherical source results and to published data. Electronic equilibrium within 1% is reached for 60Co, 137CS, 192Ir, and 169Yb at distances greater than 7, 3.5, 2, and 1 mm from the source center, respectively, in agreement with other published studies. At 1 mm from the source center, the electron contributions to total dose are 1.9% and 9.4% for 60Co and 192Ir, respectively. Electron emissions become important (i.e., > 0.5%) within 3.3 mm of 60Co and 1.7 mm of 192Ir sources, yet are negligible over all distances for 137Cs and 169Yb. Electronic equilibrium conditions along the transversal source axis for the mHDR-v2 source are comparable to those of the spherical sources while electron dose to total dose contribution are quite different. Electronic equilibrium conditions obtained for spherical sources could be generalized to actual sources while electron contribution to total dose depends strongly on source dimensions, material composition, and electron spectra.

  15. Top emitting white OLEDs

    Energy Technology Data Exchange (ETDEWEB)

    Freitag, Patricia; Luessem, Bjoern; Leo, Karl [Technische Universitaet Dresden, Institut fuer Angewandte Photophysik, George-Baehr-Strasse 1, 01069 Dresden (Germany)

    2009-07-01

    Top emitting organic light emitting diodes (TOLEDs) provide a number of interesting opportunities for new applications, such as the opportunity to fabricate ITO-free devices by using opaque substrates. This makes it possible to manufacture low cost OLEDs for signage and lighting applications. A general top emitting device consists of highly reflecting metal contacts as anode and semitransparent cathode, the latter one for better outcouling reasons. In between several organic materials are deposited as charge transporting, blocking, and emission layers. Here, we show a top emitting white organic light emitting diode with silver electrodes arranged in a p-i-n structure with p- and n-doped charge transport layers. The centrical emission layer consists of two phosphorescent (red and green) and one fluorescent (blue) emitter systems separated by an ambipolar interlayer to avoid mutual exciton quenching. By adding an additional dielectric capping layer on top of the device stack, we achieve a reduction of the strong microcavity effects which appear due to the high reflection of both metal electrodes. Therefore, the outcoupled light shows broad and nearly angle-independent emission spectra, which is essential for white light emitting diodes.

  16. Hybrid metal grid-polymer-carbon nanotube electrodes for high luminance organic light emitting diodes

    International Nuclear Information System (INIS)

    Sam, F Laurent M; Dabera, G Dinesha M R; Lai, Khue T; Mills, Christopher A; Rozanski, Lynn J; Silva, S Ravi P

    2014-01-01

    Organic light emitting diodes (OLEDs) incorporating grid transparent conducting electrodes (TCEs) with wide grid line spacing suffer from an inability to transfer charge carriers across the gaps in the grids to promote light emission in these areas. High luminance OLEDs fabricated using a hybrid TCE composed of poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS PH1000) or regioregular poly(3-hexylthiophene)-wrapped semiconducting single-walled carbon nanotubes (rrP3HT-SWCNT) in combination with a nanometre thin gold grid are reported here. OLEDs fabricated using the hybrid gold grid/PH1000 TCE have a luminance of 18 000 cd m −2 at 9 V; the same as the reference indium tin oxide (ITO) OLED. The gold grid/rrP3HT-SWCNT OLEDs have a lower luminance of 8260 cd m −2 at 9 V, which is likely due to a rougher rrP3HT-SWCNT surface. These results demonstrate that the hybrid gold grid/PH1000 TCE is a promising replacement for ITO in future plastic electronics applications including OLEDs and organic photovoltaics. For applications where surface roughness is not critical, e.g. electrochromic devices or discharge of static electricity, the gold grid/rrP3HT-SWCNT hybrid TCE can be employed. (paper)

  17. Three-electrode pulse electron gun with currents up to 250 A

    International Nuclear Information System (INIS)

    Grigor'ev, Yu.V.; Shanturin, L.P.

    1977-01-01

    The design and operating conditions of a pulsed electron gun are described. The electron gun has three electrodes: a cathode, an anode and a control electrode in the form of a grid. The cathode is made from lanthanum hexaboride, which ensures its operation in a low vacuum at a temperature of 1,700 deg C. The control electrode and anode grid are fabricated from sheet tantalum. The anode-grid characteristics of the gun are given. It is shown that at an accelerating voltage of 100 kV, a temperature of 1,700 deg C and a zero control electrode potential the beam current is 250 A

  18. Electrode Cultivation and Interfacial Electron Transport in Subsurface Microorganisms

    Science.gov (United States)

    Karbelkar, A. A.; Jangir, Y.; Reese, B. K.; Wanger, G.; Anderson, C.; El-Naggar, M.; Amend, J.

    2016-12-01

    Continental subsurface environments can present significant energetic challenges to the resident microorganisms. While these environments are geologically diverse, potentially allowing energy harvesting by microorganisms that catalyze redox reactions, many of the abundant electron donors and acceptors are insoluble and therefore not directly bioavailable. Microbes can use extracellular electron transfer (EET) as a metabolic strategy to interact with redox active surfaces. This process can be mimicked on electrode surfaces and hence can lead to enrichment and quantification of subsurface microorganisms A primary bioelectrochemical enrichment with different oxidizing and reducing potentials set up in a single bioreactor was applied in situ to subsurface microorganisms residing in iron oxide rich deposits in the Sanford Underground Research Facility. Secondary enrichment revealed a plethora of classified and unclassified subsurface microbiota on both oxidizing and reducing potentials. From this enrichment, we have isolated a Gram-positive Bacillus along with Gram-negative Cupriavidus and Anaerospora strains (as electrode reducers) and Comamonas (as an electrode oxidizer). The Bacillus and Comamonas isolates were subjected to a detailed electrochemical characterization in half-reactors at anodic and cathodic potentials, respectively. An increase in cathodic current upon inoculation and cyclic voltammetry measurements confirm the hypothesis that Comamonas is capable of electron uptake from electrodes. In addition, measurements of Bacillus on anodes hint towards novel mechanisms that allow EET from Gram-positive bacteria. This study suggests that electrochemical approaches are well positioned to dissect such extracellular interactions that may be prevalent in the subsurface, while using physical electrodes to emulate the microhabitats, redox and geochemical gradients, and the spatially dependent interspecies interactions encountered in the subsurface. Electrochemical

  19. Electron beam diodes using ferroelectric cathodes

    International Nuclear Information System (INIS)

    Ivers, J.D.; Schaechter, L.; Nation, J.A.; Kerslick, G.S.

    1993-01-01

    A new high current density electron source is investigated. The source consists of a polarized ceramic disk with aluminum electrodes coated on both faces. The front electrode is etched in a periodic grid to expose the ceramic beneath. A rapid change in the polarization state of the ceramic results in the emission of a high density electron cloud into a 1 to 10mm diode gap. The anode potential is maintained by a charged transmission line. Some of the emitted electrons traverse the gap and an electron current flows. The emitted electron current has been measured as a function of the gap spacing and the anode potential. Current densities in excess of 70 A/cm 2 have been measured. The current is found to vary linearly with the anode voltage for gaps < 10 mm, and exceeds the Child-Langmuir current by at least two orders of magnitude. The experimental data will be compared with predictions from a model based on the emission of a cloud of electrons from the ferroelectric which in turn reflex in the diode gap

  20. Fabrication of silver nanowires and metal oxide composite transparent electrodes and their application in UV light-emitting diodes

    Science.gov (United States)

    Yan, Xingzhen; Ma, Jiangang; Xu, Haiyang; Wang, Chunliang; Liu, Yichun

    2016-08-01

    In this paper, we prepared the silver nanowires (AgNWs)/aluminum-doped zinc oxide (AZO) composite transparent conducting electrodes for n-ZnO/p-GaN heterojunction light emitting-diodes (LEDs) by drop casting AgNW networks and subsequent atomic layer deposition (ALD) of AZO at 150 °C. The contact resistances between AgNWs were dramatically reduced by pre-annealing in the vacuum chamber before the ALD of AZO. In this case, AZO works not only as the conformal passivation layer that protects AgNWs from oxidation, but also as the binding material that improves AgNWs adhesion to substrates. Due to the localized surface plasmons (LSPs) of the AgNWs resonant coupling with the ultraviolet (UV) light emission from the LEDs, a higher UV light extracting efficiency is achieved from LEDs with the AgNWs/AZO composite electrodes in comparison with the conventional AZO electrodes. Additionally, the antireflective nature of random AgNW networks in the composite electrodes caused a broad output light angular distribution, which could be of benefit to certain optoelectronic devices like LEDs and solar cells.

  1. Highly efficient exciplex organic light-emitting diodes incorporating a heptazine derivative as an electron acceptor.

    Science.gov (United States)

    Li, Jie; Nomura, Hiroko; Miyazaki, Hiroshi; Adachi, Chihaya

    2014-06-11

    Highly efficient exciplex systems incorporating a heptazine derivative () as an electron acceptor and 1,3-di(9H-carbazol-9-yl)benzene () as an electron donor are developed. An organic light-emitting diode containing 8 wt% : as an emitting layer exhibits a maximum external quantum efficiency of 11.3%.

  2. Electron beam deposition system causing little damage to organic layers

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Minoru [Research Center for Solar Energy Chemistry, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 (Japan); Business Incubation Department, Hitachi Zosen Corporation, 2-11 Funamachi 2-Chome, Taisho-ku, Osaka 551-0022 (Japan); Matsumura, Michio, E-mail: matsu@chem.es.osaka-u.ac.jp [Research Center for Solar Energy Chemistry, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 (Japan); Maeda, Yasuhiro [Business Incubation Department, Hitachi Zosen Corporation, 2-11 Funamachi 2-Chome, Taisho-ku, Osaka 551-0022 (Japan)

    2011-07-29

    Conditions for deposition of an aluminum (Al) layer on an organic light-emitting layer with an electron beam (EB) deposition system were optimized with respect to deposition rate and damage to organic layers. The damage to the organic layers was found to be mostly caused by X-rays emitted from a target bombarded with accelerated electrons. In order to decrease the X-ray intensity while maintaining a high deposition rate, we used an EB source which emits high-density EB at low acceleration voltage. In addition, we inserted a heat reflector and a sintered-carbon liner between the Al target and copper crucible to improve heat insulation. As a result, the voltage needed for the deposition of Al electrodes at a rate of about 8 nm/s was lowered from normal voltages of 2.0 kV or higher to as low as 1.5 kV. To reduce the number of electrons hitting the substrate, we set pole pieces near the target and an electron trap in the chamber. The devices on which Al electrodes were deposited with the EB system showed almost the same properties as those of devices on which the Al electrodes were deposited by a resistive-heating method.

  3. Characteristics of ITO electrode grown by linear facing target sputtering with ladder type magnetic arrangement for organic light emitting diodes

    International Nuclear Information System (INIS)

    Jeong, Jin-A; Kim, Han-Ki; Lee, Jae-Young; Lee, Jung-Hwan; Bae, Hyo-Dae; Tak, Yoon-Heung

    2009-01-01

    The preparation and characteristics of indium tin oxide (ITO) electrodes grown using a specially designed linear facing target sputtering (LFTS) system with a ladder type magnet arrangement for organic light emitting diodes (OLED) are described. It was found that the electrical and optical properties of the ITO electrode were critically dependent on the Ar/O 2 flow ratio, while its structural and surface properties remained fairly constant regardless of the Ar/O 2 flow ratio, due to the low substrate temperature during the plasma damage-free sputtering. Under the optimized conditions, we obtained an ITO electrode with the lowest sheet resistance of 39.4 Ω/sq and high transmittance of 90.1% (550 nm wavelength) at room temperature. This suggests that LFTS is a promising low temperature and plasma damage free sputtering technology for preparing high-quality ITO electrodes for OLEDs and flexible OLEDs at room temperature.

  4. Improving Single-Carbon-Nanotube-Electrode Contacts Using Molecular Electronics.

    Science.gov (United States)

    Krittayavathananon, Atiweena; Ngamchuea, Kamonwad; Li, Xiuting; Batchelor-McAuley, Christopher; Kätelhön, Enno; Chaisiwamongkhol, Korbua; Sawangphruk, Montree; Compton, Richard G

    2017-08-17

    We report the use of an electroactive species, acetaminophen, to modify the electrical connection between a carbon nanotube (CNT) and an electrode. By applying a potential across two electrodes, some of the CNTs in solution occasionally contact the electrified interface and bridge between two electrodes. By observing a single CNT contact between two microbands of an interdigitated Au electrode in the presence and absence of acetaminophen, the role of the molecular species at the electronic junction is revealed. As compared with the pure CNT, the current magnitude of the acetaminophen-modified CNTs significantly increases with the applied potentials, indicating that the molecule species improves the junction properties probably via redox shuttling.

  5. Electrodes as Terminal Electron Acceptors in Anaerobic Ammonium Oxidation

    Science.gov (United States)

    Ruiz-Urigüen, M.; Jaffe, P. R.

    2017-12-01

    Anaerobic ammonium (NH4+) oxidation under iron (Fe) reducing conditions is a microbial- mediated process known as Feammox. This is a novel pathway in the nitrogen cycle, and a key process for alleviating NH4+ accumulation in anoxic soils, wetlands, and wastewater. Acidimicrobiaceae-bacterium A6, phylum Actinobacteria, are one type of autotrophic bacteria linked to this process. The Feammox-bacteria obtain their energy by oxidizing NH4+ and transferring the electrons to a terminal electron acceptor (TEA). Under environmental conditions, iron oxides are the TEAs. However, in this study we show that electrodes in Microbial Electrolysis Cells (MECs) or electrodes set in the field can be used as TEAs by Feammox-bacteria. The potential difference between electrodes is the driving force for electron transfer, making the reaction energetically feasible. Our results show that MECs containing Feammox cultures can remove NH4+ up to 3.5 mg/L in less than 4 hours, compared to an average of 9 mg/L in 2 weeks when cultured under traditional conditions. Concomitantly, MECs produce an average current of 30.5 A/m3 whilst dead bacteria produced low (Actinobacteria when compared to bulk soil. Electrodes as TEAs enhance electrogenic bacteria recovery and culturing. The use of MECs for the productions of Feammox-bacteria eliminates the dependence of Fe, a finite electron acceptor, therefore, allowing for continuous NH4+ removal. Finally, Fe-free Feammox-bacteria can be applied to reduce other metals of environmental concern; therefore, opening the range of possible application of Feammox-bacteria.

  6. Electron transfer reactions to probe the electrode/solution interface

    Energy Technology Data Exchange (ETDEWEB)

    Capitanio, F.; Guerrini, E.; Colombo, A.; Trasatti, S. [Milan Univ., Milan (Italy). Dept. of Physical Chemistry and Electrochemistry

    2008-07-01

    The reactions that occur at the interface between an electrode and an electrolyte were examined with particular reference to the interaction of different electrode surfaces with redox couples. A semi-integration or convolution technique was used to study the kinetics of electron transfer on different electrode materials with different hydrophilic behaviour, such as Boron-Doped-Diamond (BDD), Au and Pt. Standard reversible redox couples were also investigated, including (Fe3+/2+, Fe(CN)63-/4-, Ru(NH3)63+/2+, Co(NH3)63+/2+, Ir4+/3+, V4+/5+ and V3+/2+). The proposed method proved to be simple, straightforward and reliable since the obtained kinetic information was in good agreement with data in the literature. It was concluded that the kinetics of the electrode transfer reactions depend on the chemical nature of the redox couple and electrode material. The method should be further extended to irreversible couples and other electrode materials such as mixed oxide electrodes. 3 refs., 2 figs.

  7. Improvement of SOFC electrodes using mixed ionic-electronic conductors

    Energy Technology Data Exchange (ETDEWEB)

    Matsuzaki, Y.; Hishinuma, M. [Tokyo Gas Co., Ltd. (Japan)

    1996-12-31

    Since the electrode reaction of SOFC is limited to the proximity of a triple phase boundary (TPB), the local current density at the electrode and electrolyte interface is larger than mean current density, which causes large ohmic and electrode polarization. This paper describes an application of mixed ionic-electronic conductors to reduce such polarization by means of (1) enhancing ionic conductivity of the electrolyte surface layer by coating a high ionic conductors, and (2) reducing the local current density by increasing the electrochemically active sites.

  8. Blue emitting 1,8-naphthalimides with electron transport properties for organic light emitting diode applications

    Science.gov (United States)

    Ulla, Hidayath; Kiran, M. Raveendra; Garudachari, B.; Ahipa, T. N.; Tarafder, Kartick; Adhikari, Airody Vasudeva; Umesh, G.; Satyanarayan, M. N.

    2017-09-01

    In this article, the synthesis, characterization and use of two novel naphthalimides as electron-transporting emitter materials for organic light emitting diode (OLED) applications are reported. The molecules were obtained by substituting electron donating chloro-phenoxy group at the C-4 position. A detailed optical, thermal, electrochemical and related properties were systematically studied. Furthermore, theoretical calculations (DFT) were performed to get a better understanding of the electronic structures. The synthesized molecules were used as electron transporters and emitters in OLEDs with three different device configurations. The devices with the molecules showed blue emission with efficiencies of 1.89 cdA-1, 0.98 lmW-1, 0.71% at 100 cdm-2. The phosphorescent devices with naphthalimides as electron transport materials displayed better performance in comparison to the device without any electron transporting material and were analogous with the device using standard electron transporting material, Alq3. The results demonstrate that the naphthalimides could play a significant part in the progress of OLEDs.

  9. Enhancing light out-coupling of organic light-emitting devices using indium tin oxide-free low-index transparent electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yi-Hsiang; Lu, Chun-Yang; Tsai, Shang-Ta; Tsai, Yu-Tang; Chen, Chien-Yu; Tsai, Wei-Lung; Lin, Chun-Yu; Chang, Hong-Wei; Lee, Wei-Kai; Jiao, Min; Wu, Chung-Chih, E-mail: wucc@ntu.edu.tw [Department of Electrical Engineering, Graduate Institute of Photonics and Optoelectronics, Graduate Institute of Electronics Engineering, and Innovative Photonics Advanced Research Center (i-PARC), National Taiwan University, Taipei 10617, Taiwan (China)

    2014-05-05

    With its increasing and sufficient conductivity, the conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) has been capable of replacing the widely used but less cost-effective indium tin oxides (ITOs) as alternative transparent electrodes for organic light-emitting devices (OLEDs). Intriguingly, PEDOT:PSS also possesses an optical refractive index significantly lower than those of ITO and typical organic layers in OLEDs and well matching those of typical OLED substrates. Optical simulation reveals that by replacing ITO with such a low-index transparent electrode, the guided modes trapped within the organic/ITO layers in conventional OLEDs can be substantially suppressed, leading to more light coupled into the substrate than the conventional ITO device. By applying light out-coupling structures onto outer surfaces of substrates to effectively extract radiation into substrates, OLEDs using such low-index transparent electrodes achieve enhanced optical out-coupling and external quantum efficiencies in comparison with conventional OLEDs using ITO.

  10. The effect of different electrodes on the electronic transmission of benzene junctions: Analytical approach

    Energy Technology Data Exchange (ETDEWEB)

    Mohebbi, Razie; Seyed-Yazdi, Jamileh, E-mail: j.seyedyazdi@vru.ac.ir

    2016-06-01

    In this paper we have investigated the electronic transmission of systems electrode–benzene–electrode using the Landauer approach. The effect of different electrodes made of metal (Au) and semiconductors (Si, TiO{sub 2}) is investigated. These three electrodes are compared between them and the results show that the electronic transmission of benzene junctions, when using semiconductor electrodes, is associated to a gap in transmission which is due to the electrodes band gap. As a consequence, a threshold voltage is necessary to obtain conducting channels.

  11. All-solution processed polymer light-emitting diodes with air stable metal-oxide electrodes

    NARCIS (Netherlands)

    Bruyn, P. de; Moet, D.J.D.; Blom, P.W.M.

    2012-01-01

    We present an all-solution processed polymer light-emitting diode (PLED) using spincoated zinc oxide (ZnO) and vanadium pentoxide (V2O5) as electron and hole injecting contact, respectively. We compare the performance of these devices to the standard PLED design using PEDOT:PSS as anode and Ba/Al as

  12. DAФNE Operation with Electron-Cloud-Clearing Electrodes

    CERN Document Server

    Alesini, D; Gallo, A; Guiducci, S; Milardi, C; Stella, A; Zobov, Mikhail; De Santis, S; Demma, Theo; Raimondi, P

    2013-01-01

    The effects of an electron cloud (e-cloud) on beam dynamics are one of the major factors limiting performances of high intensity positron, proton, and ion storage rings. In the electron-positron collider DAΦNE, namely, a horizontal beam instability due to the electron-cloud effect has been identified as one of the main limitations on the maximum stored positron beam current and as a source of beam quality deterioration. During the last machine shutdown in order to mitigate such instability, special electrodes have been inserted in all dipole and wiggler magnets of the positron ring. It has been the first installation all over the world of this type since long metallic electrodes have been installed in all arcs of the collider positron ring and are currently used during the machine operation in collision. This has allowed a number of unprecedented measurements (e-cloud instabilities growth rate, transverse beam size variation, tune shifts along the bunch train) where the e-cloud contribution is clearly eviden...

  13. Aerosol jet printed silver nanowire transparent electrode for flexible electronic application

    Science.gov (United States)

    Tu, Li; Yuan, Sijian; Zhang, Huotian; Wang, Pengfei; Cui, Xiaolei; Wang, Jiao; Zhan, Yi-Qiang; Zheng, Li-Rong

    2018-05-01

    Aerosol jet printing technology enables fine feature deposition of electronic materials onto low-temperature, non-planar substrates without masks. In this work, silver nanowires (AgNWs) are proposed to be printed into transparent flexible electrodes using a Maskless Mesoscale Material Deposition Aerosol Jet® printing system on a glass substrate. The influence of the most significant process parameters, including printing cycles, printing speed, and nozzle size, on the performance of AgNW electrodes was systematically studied. The morphologies of printed patterns were characterized by scanning electron microscopy, and the transmittance was evaluated using an ultraviolet-visible spectrophotometer. Under optimum conditions, high transparent AgNW electrodes with a sheet resistance of 57.68 Ω/sq and a linewidth of 50.9 μm were obtained, which is an important step towards a higher performance goal for flexible electronic applications.

  14. Enhancement of electron injection in inverted bottom-emitting organic light-emitting diodes using Al/LiF compound thin film

    Science.gov (United States)

    Nie, Qu-yang; Zhang, Fang-hui

    2018-05-01

    The inverted bottom-emitting organic light-emitting devices (IBOLEDs) were prepared, with the structure of ITO/Al ( x nm)/LiF (1 nm)/Bphen (40 nm)/CBP: GIr1 (14%):R-4b (2%) (10 nm)/BCP (3 nm)/CBP:GIr1 (14%):R-4b (2%) (20 nm)/TCTA (10 nm)/NPB (40 nm)/MoO3 (40 nm)/Al (100 nm), where the thickness of electron injection layer Al ( x) are 0 nm, 2 nm, 3 nm, 4 nm and 5 nm, respectively. In this paper, the electron injection condition and luminance properties of inverted devices were investigated by changing the thickness of Al layer in Al/LiF compound thin film. It turns out that the introduction of Al layer can improve electron injection of the devices dramatically. Furthermore, the device exerts lower driving voltage and higher current efficiency when the thickness of electron injection Al layer is 3 nm. For example, the current efficiency of the device with 3-nm-thick Al layer reaches 19.75 cd·A-1 when driving voltage is 7 V, which is 1.24, 1.17 and 17.03 times larger than those of the devices with 2 nm, 4 nm and 5 nm Al layer, respectively. The device property reaches up to the level of corresponding conventional device. In addition, all inverted devices with electron injection Al layer show superior stability of color coordinate due to the adoption of co-evaporation emitting layer and BCP spacer-layer, and the color coordinate of the inverted device with 3-nm-thick Al layer only changes from (0.580 6, 0.405 6) to (0.532 8, 0.436 3) when driving voltage increases from 6 V to 10 V.

  15. Ultralow-Power Electronic Trapping of Nanoparticles with Sub-10 nm Gold Nanogap Electrodes.

    Science.gov (United States)

    Barik, Avijit; Chen, Xiaoshu; Oh, Sang-Hyun

    2016-10-12

    We demonstrate nanogap electrodes for rapid, parallel, and ultralow-power trapping of nanoparticles. Our device pushes the limit of dielectrophoresis by shrinking the separation between gold electrodes to sub-10 nm, thereby creating strong trapping forces at biases as low as the 100 mV ranges. Using high-throughput atomic layer lithography, we manufacture sub-10 nm gaps between 0.8 mm long gold electrodes and pattern them into individually addressable parallel electronic traps. Unlike pointlike junctions made by electron-beam lithography or larger micron-gap electrodes that are used for conventional dielectrophoresis, our sub-10 nm gold nanogap electrodes provide strong trapping forces over a mm-scale trapping zone. Importantly, our technology solves the key challenges associated with traditional dielectrophoresis experiments, such as high voltages that cause heat generation, bubble formation, and unwanted electrochemical reactions. The strongly enhanced fields around the nanogap induce particle-transport speed exceeding 10 μm/s and enable the trapping of 30 nm polystyrene nanoparticles using an ultralow bias of 200 mV. We also demonstrate rapid electronic trapping of quantum dots and nanodiamond particles on arrays of parallel traps. Our sub-10 nm gold nanogap electrodes can be combined with plasmonic sensors or nanophotonic circuitry, and their low-power electronic operation can potentially enable high-density integration on a chip as well as portable biosensing.

  16. Microcavity-Free Broadband Light Outcoupling Enhancement in Flexible Organic Light-Emitting Diodes with Nanostructured Transparent Metal-Dielectric Composite Electrodes.

    Science.gov (United States)

    Xu, Lu-Hai; Ou, Qing-Dong; Li, Yan-Qing; Zhang, Yi-Bo; Zhao, Xin-Dong; Xiang, Heng-Yang; Chen, Jing-De; Zhou, Lei; Lee, Shuit-Tong; Tang, Jian-Xin

    2016-01-26

    Flexible organic light-emitting diodes (OLEDs) hold great promise for future bendable display and curved lighting applications. One key challenge of high-performance flexible OLEDs is to develop new flexible transparent conductive electrodes with superior mechanical, electrical, and optical properties. Herein, an effective nanostructured metal/dielectric composite electrode on a plastic substrate is reported by combining a quasi-random outcoupling structure for broadband and angle-independent light outcoupling of white emission with an ultrathin metal alloy film for optimum optical transparency, electrical conduction, and mechanical flexibility. The microcavity effect and surface plasmonic loss can be remarkably reduced in white flexible OLEDs, resulting in a substantial increase in the external quantum efficiency and power efficiency to 47.2% and 112.4 lm W(-1).

  17. Influences of wide-angle and multi-beam interference on the chromaticity and efficiency of top-emitting white organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Lingling; Zhou, Hongwei; Chen, Shufen, E-mail: iamsfchen@njupt.edu.cn; Liu, Bin; Wang, Lianhui [Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023 (China); Shi, Hongying [Jiangsu-Singapore Joint Research Center for Organic/Bio- Electronics and Information Displays and Institute of Advanced Materials, Nanjing Tech University, Nanjing 211816 (China); Huang, Wei, E-mail: iamdirector@njupt.edu.cn [Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023 (China); Jiangsu-Singapore Joint Research Center for Organic/Bio- Electronics and Information Displays and Institute of Advanced Materials, Nanjing Tech University, Nanjing 211816 (China)

    2015-02-28

    Wide-angle interference (WI) and multi-beam interference (MI) in microcavity are analyzed separately to improve chromaticity and efficiency of the top-emitting white organic light-emitting diodes (TWOLEDs). A classic electromagnetic theory is used to calculate the resonance intensities of WI and MI in top-emitting organic light-emitting diodes (TOLEDs) with influence factors (e.g., electrodes and exciton locations) being considered. The role of WI on the performances of TOLEDs is revealed through using δ-doping technology and comparing blue and red EML positions in top-emitting and bottom-emitting devices. The blue light intensity significantly increases and the chromaticity of TWOLEDs is further improved with the use of enhanced WI (the blue emitting layer moving towards the reflective electrode) in the case of a weak MI. In addition, the effect of the thicknesses of light output layer and carrier transport layers on WI and MI are also investigated. Apart from the microcavity effect, other factors, e.g., carrier balance and carrier recombination regions are considered to obtain TWOLEDs with high efficiency and improved chromaticity near white light equal-energy point.

  18. Organic Light-Emitting Diodes with a Perylene Interlayer Between the Electrode-Organic Interface

    Science.gov (United States)

    Saikia, Dhrubajyoti; Sarma, Ranjit

    2018-01-01

    The performance of an organic light-emitting diode (OLED) with a vacuum-deposited perylene layer over a fluorine-doped tin oxide (FTO) surface is reported. To investigate the effect of the perylene layer on OLED performance, different thicknesses of perylene are deposited on the FTO surface and their current density-voltages (J-V), luminance-voltages (L-V) and device efficiency characteristics at their respective thickness are studied. Further analysis is carried out with an UV-visible light double-beam spectrophotometer unit, a four-probe resistivity unit and a field emission scanning electron microscope set up to study the optical transmittance, sheet resistance and surface morphology of the bilayer anode film. We used N,N'-bis(3-methyl phenyl)- N,N'(phenyl)-benzidine (TPD) as the hole transport layer, Tris(8-hydroxyquinolinato)aluminum (Alq3) as a light-emitting layer and lithium fluoride as an electron injection layer. The luminance efficiency of an OLED structure with a 9-nm-thick perylene interlayer is increased by 2.08 times that of the single-layer FTO anode OLED. The maximum value of current efficiency is found to be 5.25 cd/A.

  19. Demonstration of electron clearing effect by means of a clearing electrode in high-intensity positron ring

    International Nuclear Information System (INIS)

    Suetsugu, Y.; Fukuma, H.; Wang, L.; Pivi, M.; Morishige, A.; Suzuki, Y.; Tsukamoto, M.; Tsuchiya, M.

    2009-01-01

    In the beam pipe of high-intensity positron/proton storage rings, undesired electron clouds may be first produced by photoelectrons and the ionization of residual gases; then the clouds increase by the secondary electron emission. In this study, a strip-line clearing electrode has been developed to mitigate the electron-cloud effect in high-intensity positron/proton storage rings. The electrode is composed of a thin tungsten layer with a thickness of 0.1 mm formed on a thin alumina ceramic layer with a thickness of 0.2 mm. The narrow alumina gap between the electrode and the beam pipe decreases the beam impedance and also enhances the heat transfer from the electrode to the beam pipe. A test model has been installed in the KEK B-factory (KEKB) positron ring, along with an electron monitor with a retarding grid. The electron density in a field free region decreased by one order of magnitude was observed on the application of ±500 V to the electrode at a beam current of 1.6 A with 1585 bunches. The reduction in the electron density was more drastic in a vertical magnetic field of 0.77 T, that is, the electron density decreased by several orders by applying +500 V to the electrode at the same beam current. This experiment is the first experiment demonstrating the principle of the clearing electrode that is used to mitigate the electron-cloud effect in a positron ring.

  20. Fabrication of dissimilar metal electrodes with nanometer interelectrode distance for molecular electronic device characterization

    International Nuclear Information System (INIS)

    Guillorn, Michael A.; Carr, Dustin W.; Tiberio, Richard C.; Greenbaum, Elias; Simpson, Michael L.

    2000-01-01

    We report a versatile process for the fabrication of dissimilar metal electrodes with a minimum interelectrode distance of less than 6 nm using electron beam lithography and liftoff pattern transfer. This technique provides a controllable and reproducible method for creating structures suited for the electrical characterization of asymmetric molecules for molecular electronics applications. Electrode structures employing pairs of Au electrodes and non-Au electrodes were fabricated in three different patterns. Parallel electrode structures 300 μm long with interelectrode distances as low as 10 nm, 75 nm wide electrode pairs with interelectrode distances less than 6 nm, and a multiterminal electrode structure with reproducible interelectrode distances of 8 nm were realized using this technique. The processing issues associated with the fabrication of these structures are discussed along with the intended application of these devices. (c) 2000 American Vacuum Society

  1. Organic against inorganic electrodes grown onto polymer substrates for flexible organic electronics applications

    International Nuclear Information System (INIS)

    Logothetidis, S.; Laskarakis, A.

    2009-01-01

    One of the most challenging topics in the area of organic electronic devices is the growth of transparent electrodes onto flexible polymeric substrates that will be characterized by enhanced conductivity in combination with high optical transparency. An essential aspect for these materials is their synthesis and/or microstructure which define the transparency, the stability and the interfacial chemistry which in turn determine the performance and stability of the organic electronic devices, such as organic light emitting diodes, organic photovoltaics, etc. In this work, we will discuss the latest advances in the growth of organic (e.g. PEDOT:PSS) and inorganic (e.g. zinc oxide-ZnO, indium tin oxide-ITO) conductive materials and their deposition onto flexible polymeric substrates. We will compare the optical, structural, nano-mechanical and nano-topographical properties of the inorganic and organic materials and we investigate the effect of their structure on their properties and functionality. In the case of the organic conductive materials, we will discuss the effects of PEDOT:PSS weight ratios and the various spin speeds on their optical and electrical properties. Furthermore, in the case of ZnO the growth mechanisms, interface phenomena, crystallinity and optical properties of ZnO thin films grown onto polymer and hybrid (inorganic-organic) flexible substrates will be also discussed.

  2. Lifetime enhanced phosphorescent organic light emitting diode using an electron scavenger layer

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seokhwan; Kim, Ji Whan; Lee, Sangyeob, E-mail: sy96.lee@samsung.com [Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., 130 Samsung-ro, Suwon, Gyeonggi 443-803 (Korea, Republic of)

    2015-07-27

    We demonstrate a method to improve lifetime of a phosphorescent organic light emitting diode (OLED) using an electron scavenger layer (ESL) in a hole transporting layer (HTL) of the device. We use a bis(1-(phenyl)isoquinoline)iridium(III)acetylacetonate [Ir(piq){sub 2}(acac)] doped HTL to stimulate radiative decay, preventing thermal degradation in HTL. The ESL effectively prevented non-radiative decay of leakage electron in HTL by converting non-radiative decay to radiative decay via a phosphorescent red emitter, Ir(piq){sub 2}(acac). The lifetime of device (t{sub 95}: time after 5% decrease of luminance) has been increased from 75 h to 120 h by using the ESL in a phosphorescent green-emitting OLED.

  3. Impact of interlayer processing conditions on the performance of GaN light-emitting diode with specific NiOx/graphene electrode.

    Science.gov (United States)

    Chandramohan, S; Kang, Ji Hye; Ryu, Beo Deul; Yang, Jong Han; Kim, Seongjun; Kim, Hynsoo; Park, Jong Bae; Kim, Taek Yong; Cho, Byung Jin; Suh, Eun-Kyung; Hong, Chang-Hee

    2013-02-01

    This paper reports on the evaluation of the impact of introducing interlayers and postmetallization annealing on the graphene/p-GaN ohmic contact formation and performance of associated devices. Current-voltage characteristics of the graphene/p-GaN contacts with ultrathin Au, Ni, and NiO(x) interlayers were studied using transmission line model with circular contact geometry. Direct graphene/p-GaN interface was identified to be highly rectifying and postmetallization annealing improved the contact characteristics as a result of improved adhesion between the graphene and the p-GaN. Ohmic contact formation was realized when interlayer is introduced between the graphene and p-GaN followed by postmetallization annealing. Temperature-dependent I-V measurements revealed that the current transport was modified from thermionic field emission for the direct graphene/p-GaN contact to tunneling for the graphene/metal/p-GaN contacts. The tunneling mechanism results from the interfacial reactions that occur between the metal and p-GaN during the postmetallization annealing. InGaN/GaN light-emitting diodes with NiO(x)/graphene current spreading electrode offered a forward voltage of 3.16 V comparable to that of its Ni/Au counterpart, but ended up with relatively low light output power. X-ray photoelectron spectroscopy provided evidence for the occurrence of phase transformation in the graphene-encased NiO(x) during the postmetallization annealing. The observed low light output is therefore correlated to the phase change induced transmittance loss in the NiO(x)/graphene electrode. These findings provide new insights into the behavior of different interlayers under processing conditions that will be useful for the future development of opto-electronic devices with graphene-based electrodes.

  4. Graphene-based integrated electrodes for flexible lithium ion batteries

    International Nuclear Information System (INIS)

    Shi, Ying; Wen, Lei; Zhou, Guangmin; Chen, Jing; Pei, Songfeng; Huang, Kun; Cheng, Hui-Ming; Li, Feng

    2015-01-01

    We have prepared flexible free-standing electrodes with anode and cathode active materials deposited on a highly conductive graphene membrane by a two-step filtration method. Compared with conventional electrodes using metal as current collectors, these electrodes have displayed stronger adhesion, superior electrochemical performance, higher energy density, and better flexibility. A full lithium ion battery assembled by adopting these graphene-based electrodes has showed high rate capability and long cyclic life. We have also assembled a thin, lightweight, and flexible lithium ion battery with poly-(dimethyl siloxane) sheets as packaging material to light a red light-emitting diode. This flexible battery can be easily bent without structural failure or performance loss and operated well under a bent state. The fabrication process of these graphene-based integrated electrodes only has two filtration steps; thus it is easy to scale up. These results suggest great potential for these graphene-based flexible batteries in lightweight, bendable, and wearable electronic devices. (paper)

  5. The modification of glassy carbon and gold electrodes with aryl diazonium salt: The impact of the electrode materials on the rate of heterogeneous electron transfer

    International Nuclear Information System (INIS)

    Liu Guozhen; Liu Jingquan; Boecking, Till; Eggers, Paul K.; Gooding, J. Justin

    2005-01-01

    The heterogeneous electron-transfer properties of ferrocenemethylamine coupled to a series of mixed 4-carboxyphenyl/phenyl monolayers on glassy carbon (GC) and gold electrodes were investigated, by cyclic voltammetry, in aqueous buffer solutions. The electrodes were derivatized in a step-wise process. Electrochemical reduction of mixtures of 4-carboxyphenyl and phenyl diazonium salts on the electrode surfaces yielded stable monolayers. The introduction of carboxylic acid moieties onto the surfaces was verified by X-ray photoelectron spectroscopy. Subsequently the 4-carboxyphenyl moieties were activated using water-soluble carbodiimide and N-hydroxysuccinimide and reacted with ferrocenemethylamine. The rate constants of electron transfer through the monolayer systems were determined from cyclic voltammograms using the Marcus theory for electron transfer and were found to be an order of magnitude higher for the ferrocene-modified monolayer systems on gold than those on GC electrodes. The results suggest the electrode material has an important influence on the rate of electron transfer

  6. Light-Emitting Pickles

    Science.gov (United States)

    Vollmer, M.; Mollmann, K-P.

    2015-01-01

    We present experiments giving new insights into the classical light-emitting pickle experiment. In particular, measurements of the spectra and temperatures, as well as high-speed recordings, reveal that light emission is connected to the polarity of the electrodes and the presence of hydrogen.

  7. Fabrication of a Combustion-Reacted High-Performance ZnO Electron Transport Layer with Silver Nanowire Electrodes for Organic Solar Cells.

    Science.gov (United States)

    Park, Minkyu; Lee, Sang-Hoon; Kim, Donghyuk; Kang, Juhoon; Lee, Jung-Yong; Han, Seung Min

    2018-02-28

    Herein, a new methodology for solution-processed ZnO fabrication on Ag nanowire network electrode via combustion reaction is reported, where the amount of heat emitted during combustion was minimized by controlling the reaction temperature to avoid damaging the underlying Ag nanowires. The degree of participation of acetylacetones, which are volatile fuels in the combustion reaction, was found to vary with the reaction temperature, as revealed by thermogravimetric and compositional analyses. An optimized processing temperature of 180 °C was chosen to successfully fabricate a combustion-reacted ZnO and Ag nanowire hybrid electrode with a sheet resistance of 30 Ω/sq and transmittance of 87%. A combustion-reacted ZnO on Ag nanowire hybrid structure was demonstrated as an efficient transparent electrode and electron transport layer for the PTB7-Th-based polymer solar cells. The superior electrical conductivity of combustion-reacted ZnO, compared to that of conventional sol-gel ZnO, increased the external quantum efficiency over the entire absorption range, whereas a unique light scattering effect due to the presence of nanopores in the combustion-derived ZnO further enhanced the external quantum efficiency in the 450-550 nm wavelength range. A power conversion efficiency of 8.48% was demonstrated for the PTB7-Th-based polymer solar cell with the use of a combustion-reacted ZnO/Ag NW hybrid transparent electrode.

  8. Test-beds for molecular electronics: metal-molecules-metal junctions based on Hg electrodes.

    Science.gov (United States)

    Simeone, Felice Carlo; Rampi, Maria Anita

    2010-01-01

    Junctions based on mesoscopic Hg electrodes are used to characterize the electrical properties of the organic molecules organized in self-assembled monolayers (SAMs). The junctions M-SAM//SAM-Hg are formed by one electrode based on metals (M) such as Hg, Ag, Au, covered by a SAM, and by a second electrode always formed by a Hg drop carrying also a SAM. The electrodes, brought together by using a micromanipulator, sandwich SAMs of different nature at the contact area (approximately = 0.7 microm2). The high versatility of the system allows a series of both electrical and electrochemical junctions to be assembled and characterized: (i) The compliant nature of the Hg electrodes allows incorporation into the junction and measurement of the electrical behavior of a large number of molecular systems and correlation of their electronic structure to the electrical behavior; (ii) by functionalizing both electrodes with SAMs exposing different functional groups, X and Y, it is possible to compare the rate of electron transfer through different X...Y molecular interactions; (iii) when the junction incorporates one of the electrode formed by a semitransparent film of Au, it allows electrical measurements under irradiation of the sandwiched SAMs. In this case the junction behaves as a photoswitch; iv) incorporation of redox centres with low lying, easily reachable energy levels, provides electron stations as indicated by the hopping mechanism dominating the current flow; (v) electrochemical junctions incorporating redox centres by both covalent and electrostatic interactions permit control of the potential of the electrodes with respect to that of the redox state by means of an external reference electrode. Both these junctions show an electrical behavior similar to that of conventional diodes, even though the mechanism generating the current flow is different. These systems, demonstrating high mechanical stability and reproducibility, easy assembly, and a wide variety of

  9. Shielded button electrodes for time-resolved measurements of electron cloud buildup

    International Nuclear Information System (INIS)

    Crittenden, J.A.; Billing, M.G.; Li, Y.; Palmer, M.A.; Sikora, J.P.

    2014-01-01

    We report on the design, deployment and signal analysis for shielded button electrodes sensitive to electron cloud buildup at the Cornell Electron Storage Ring. These simple detectors, derived from a beam-position monitor electrode design, have provided detailed information on the physical processes underlying the local production and the lifetime of electron densities in the storage ring. Digitizing oscilloscopes are used to record electron fluxes incident on the vacuum chamber wall in 1024 time steps of 100 ps or more. The fine time steps provide a detailed characterization of the cloud, allowing the independent estimation of processes contributing on differing time scales and providing sensitivity to the characteristic kinetic energies of the electrons making up the cloud. By varying the spacing and population of electron and positron beam bunches, we map the time development of the various cloud production and re-absorption processes. The excellent reproducibility of the measurements also permits the measurement of long-term conditioning of vacuum chamber surfaces

  10. Electron beam dynamics in an ultrafast transmission electron microscope with Wehnelt electrode.

    Science.gov (United States)

    Bücker, K; Picher, M; Crégut, O; LaGrange, T; Reed, B W; Park, S T; Masiel, D J; Banhart, F

    2016-12-01

    High temporal resolution transmission electron microscopy techniques have shown significant progress in recent years. Using photoelectron pulses induced by ultrashort laser pulses on the cathode, these methods can probe ultrafast materials processes and have revealed numerous dynamic phenomena at the nanoscale. Most recently, the technique has been implemented in standard thermionic electron microscopes that provide a flexible platform for studying material's dynamics over a wide range of spatial and temporal scales. In this study, the electron pulses in such an ultrafast transmission electron microscope are characterized in detail. The microscope is based on a thermionic gun with a Wehnelt electrode and is operated in a stroboscopic photoelectron mode. It is shown that the Wehnelt bias has a decisive influence on the temporal and energy spread of the picosecond electron pulses. Depending on the shape of the cathode and the cathode-Wehnelt distance, different emission patterns with different pulse parameters are obtained. The energy spread of the pulses is determined by space charge and Boersch effects, given by the number of electrons in a pulse. However, filtering effects due to the chromatic aberrations of the Wehnelt electrode allow the extraction of pulses with narrow energy spreads. The temporal spread is governed by electron trajectories of different length and in different electrostatic potentials. High temporal resolution is obtained by excluding shank emission from the cathode and aberration-induced halos in the emission pattern. By varying the cathode-Wehnelt gap, the Wehnelt bias, and the number of photoelectrons in a pulse, tradeoffs between energy and temporal resolution as well as beam intensity can be made as needed for experiments. Based on the characterization of the electron pulses, the optimal conditions for the operation of ultrafast TEMs with thermionic gun assembly are elaborated. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Facile direct electron transfer in glucose oxidase modified electrodes

    International Nuclear Information System (INIS)

    Wang Dan; Chen Liwei

    2009-01-01

    Glucose oxidase (GOx) is widely used in the glucose biosensor industry. However, mediatorless direct electron transfer (DET) from GOx to electrode surfaces is very slow. Recently, mediatorless DET has been reported via the incorporation of nanomaterials such as carbon nanotubes and nanoparticles in the modification of electrodes. Here we report GOx electrodes showing DET without the need for any nanomaterials. The enzyme after immobilization with poly-L-lysine (PLL) and Nafion retains the biocatalytic activities and oxidizes glucose efficiently. The amperometric response of Nafion-PLL-GOx modified electrode is linearly proportional to the concentration of glucose up to 10 mM with a sensitivity of 0.75 μA/mM at a low detection potential (-0.460 V vs. Ag/AgCl). The methodology developed in this study will have impact on glucose biosensors and biofuel cells and may potentially simplify enzyme immobilization in other biosensing systems.

  12. Highly Conductive PEDOT:PSS Films with 1,3-Dimethyl-2-Imidazolidinone as Transparent Electrodes for Organic Light-Emitting Diodes.

    Science.gov (United States)

    Kim, Jin Hee; Joo, Chul Woong; Lee, Jonghee; Seo, Yoon Kyung; Han, Joo Won; Oh, Ji Yoon; Kim, Jong Su; Yu, Seunggun; Lee, Jae Hyun; Lee, Jeong-Ik; Yun, Changhun; Choi, Bum Ho; Kim, Yong Hyun

    2016-09-01

    Highly conductive poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) ( PSS) films as transparent electrodes for organic light-emitting diodes (OLEDs) are doped with a new solvent 1,3-dimethyl-2-imidazolidinone (DMI) and are optimized using solvent post-treatment. The DMI doped PSS films show significantly enhanced conductivities up to 812.1 S cm(-1) . The sheet resistance of the PSS films doped with DMI is further reduced by various solvent post-treatment. The effect of solvent post-treatment on DMI doped PSS films is investigated and is shown to reduce insulating PSS in the conductive films. The solvent posttreated PSS films are successfully employed as transparent electrodes in white OLEDs. It is shown that the efficiency of OLEDs with the optimized DMI doped PSS films is higher than that of reference OLEDs doped with a conventional solvent (ethylene glycol). The results present that the optimized PSS films with the new solvent of DMI can be a promising transparent electrode for low-cost, efficient ITO-free white OLEDs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Numerical study on the electron—wall interaction in a Hall thruster with segmented electrodes placed at the channel exit

    International Nuclear Information System (INIS)

    Qing Shao-Wei; E Peng; Xu Dian-Guo; Duan Ping

    2013-01-01

    Electron—wall interaction is always recognized as an important physical problem because of its remarkable influences on thruster discharge and performance. Based on existing theories, an electrode is predicted to weaken electron—wall interaction due to its low secondary electron emission characteristic. In this paper, the electron—wall interaction in an Aton-type Hall thruster with low-emissive electrodes placed near the exit of discharge channel is studied by a fully kinetic particle-in-cell method. The results show that the electron—wall interaction in the region of segmented electrode is indeed weakened, but it is significantly enhanced in the remaining region of discharge channel. It is mainly caused by electrode conductive property which makes equipotential lines convex toward channel exit and even parallel to wall surface in near-wall region; this convex equipotential configuration results in significant physical effects such as repelling electrons, which causes the electrons to move toward the channel center, and the electrons emitted from electrodes to be remarkably accelerated, thereby increasing electron temperature in the discharge channel, etc. Furthermore, the results also indicate that the discharge current in the segmented electrode case is larger than in the non-segmented electrode case, which is qualitatively in accordance with previous experimental results. (physics of gases, plasmas, and electric discharges)

  14. Time of flight spectra of electrons emitted from graphite after positron annihilation

    International Nuclear Information System (INIS)

    Gladen, R W; Chirayath, V A; Chrysler, M D; Mcdonald, A D; Fairchild, A J; Shastry, K; Koymen, A R; Weiss, A H

    2017-01-01

    Low energy (∼2 eV) positrons were deposited onto the surface of highly oriented pyrolytic graphite (HOPG) using a positron beam equipped with a time of flight (TOF) spectrometer. The energy of the electrons emitted as a result of various secondary processes due to positron annihilation was measured using the University of Texas at Arlington’s (UTA) TOF spectrometer. The positron annihilation-induced electron spectra show the presence of a carbon KLL Auger peak at ∼263 eV. The use of a very low energy beam allowed us to observe a new feature not previously seen: a broad peak which reached to a maximum intensity at ∼4 eV and extended up to a maximum energy of ∼15 eV. The low energy nature of the peak was confirmed by the finding that the peak was eliminated when a tube in front of the sample was biased at -15 V. The determination that the electrons in the peak are leaving the surface with energies up to 7 times the incoming positron energy indicates that the electrons under the broad peak were emitted as a result of a positron annihilation related process. (paper)

  15. Pyridine substituted spirofluorene derivative as an electron transport material for high efficiency in blue organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Soon Ok; Yook, Kyoung Soo; Lee, Jun Yeob, E-mail: leej17@dankook.ac.k

    2010-11-01

    The quantum efficiency of blue fluorescent organic light-emitting diodes was enhanced by 20% using a pyridine substituted spirofluorene-benzofluorene derivative as an electron transport material. 2',7'-Di(pyridin-3-yl)spiro[benzofluorene-7,9'-fluorene] (SPBP) was synthesized and it was used as the electron transport material to block the hole leakage from the emitting layer. The improvement of the quantum efficiency and power efficiency of the blue fluorescent organic light-emitting diodes using the SPBP was investigated.

  16. Efficient and color-saturated inverted bottom-emitting organic light-emitting devices with a semi-transparent metal-assisted electron injection layer

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Meng-Huan, E-mail: kinneas.ac94g@nctu.edu.t [Department of Applied Chemistry, National Chiao Tung University, 210 R, CPT Building, 1001 Ta Hsueh Road, Hsinchu 300, Taiwan (China); Wu, Chang-Yen [Department of Photonics, National Chiao Tung University, Hsinchu 300, Taiwan (China); Chen, Teng-Ming [Department of Applied Chemistry, National Chiao Tung University, 210 R, CPT Building, 1001 Ta Hsueh Road, Hsinchu 300, Taiwan (China); Chen, Chin H. [Display Institute, Microelectronics and Information Systems Research Center, National Chiao Tung University, Hsinchu 300, Taiwan (China)

    2011-01-15

    We report the development of highly efficient and color-saturated green fluorescent 10-(2-benzothiazolyl)-1,1,7,7-tetramethyl-2,3,6,7-tetrahydro-1H,5H, 11H-benzo[l]pyrano-[6,7,8-ij]quinolizin-11-one dye-doped inverted bottom-emitting organic light-emitting diode (IBOLED). This was enabled by the insertion of a silver (Ag) based semi-transparent metal-assisted electron injection layer between the ITO cathode and n-doped electron transporting layer. This IBOLED with ITO/Ag bilayer cathode with its synergistic microcavity effect achieved luminous efficiencies of 20.7 cd/A and 12.4 lm/W and a saturated CIE{sub x,y} of (0.22, 0.72) at 20 mA/cm{sup 2}, which are twice better than those of the conventional OLED and have over 60% improvement on IBOLED without ITO/Ag bilayer cathode.

  17. [Influence of MnO3 on Photoelectric Performance in Organic Light Emitting Diodes].

    Science.gov (United States)

    Guan, Yun-xia; Chen, Li-jia; Chen, Ping; Fu, Xiao-qiang; Niu, Lian-bin

    2016-03-01

    Organic Light Emitting Diodes (OLEDs) has been a promising new research point that has received much attention recently. Emission in a conventional OLED originates from the recombination of carriers (electrons and holes) that are injected from external electrodes. In the device, Electrons, on the other hand, are injected from the Al cathode to an electron-transporting layer and travel to the same emissive zone. Holes are injected from the transparent ITO anode to a hole-transporting layer and holes reach an emitting zone through the holetransporting layer. Electrons and holes recombine at the emissive film to formsinglet excited states, followed by emissive light. It is because OLED is basically an optical device and its structure consists of organic or inorganic layers of sub-wavelength thickness with different refractive indices. When the electron and holes are injected through the electrodes, they combine in the emission zone emitting the photons. These photons will have the reflection and transmission at each interface and the interference will determine the intensity profile. The emissive light reflected at the interfaces or the metallic electrode returns to the emissive layer and affects the radiation current efficiency. Microcavity OLED can produce saturated colors and narrow the emission spetrum as a new kind of technique. In the paper, we fabricate microcavity OLED using glass substrate. Ag film acts as the anode reflector mirror; NPB serves as the hole-transporting material; Alq3 is electron-transporting material and organic emissive material; Ag film acts as cathode reflector mirror. The microcavity OLED structures named as A, B, C and D are glass/Ag(15 nm)/MoO3 (x nm)/NPB(50 nm)/Alq3 (60 nm)/A1(100 nm). Here, A, x = 4 nm; B, x = 7 nm; C, x = 10 nm; D, x = 13 nm. The characteristic voltage, brightness and current of these devices are investigated in the electric field. The luminance from the Devices A, B, C and D reaches the luminance of 928, 1 369, 2

  18. Preparation of TiO2-based nanotubes/nanoparticles composite thin film electrodes for their electron transport properties

    International Nuclear Information System (INIS)

    Zhao, Wanyu; Fu, Wuyou; Chen, Jingkuo; Li, Huayang; Bala, Hari; Wang, Xiaodong; Sun, Guang; Cao, Jianliang; Zhang, Zhanying

    2015-01-01

    The composite thin film electrodes were prepared with one-dimensional (1D) TiO 2 -B nanotubes (NTs) and zero-dimensional TiO 2 nanoparticles (NPs) based on different weight ratios. The electron transport properties of the NTs/NPs composite thin film electrodes applied for dye-sensitized solar cells had been investigated systematically. The results indicated that although the amount of dye adsorption decreased slightly, the devices with the NTs/NPs composite thin film electrodes could obtain higher open-circuit voltage and overall conversion efficiency compared to devices with pure TiO 2 NPs electrodes by rational tuning the weight ratio of TiO 2 -B NTs and TiO 2 NPs. When the weight ratio of TiO 2 -B NTs in the NTs/NPs composite thin film electrodes increased, the density of states and recombination rate decreased. The 1D structure of TiO 2 -B NTs can provide direct paths for electron transport, resulting in higher electron lifetime, electron diffusion coefficient and electron diffusion length. The composite thin film electrodes possess the merits of the rapid electron transport of TiO 2 -B NTs and the high surface area of TiO 2 NPs, which has great applied potential in the field of photovoltaic devices. - Highlights: • The composite thin film electrodes (CTFEs) were prepared with nanotubes and nanoparticles. • The CTFEs possess the rapid electron transport and high surface area. • The CTFEs exhibit lower recombination rate and longer electron life time. • The CTFEs have great applied potential in the field of photovoltaic devices

  19. Electrochemically oxidized electronic and ionic conducting nanostructured block copolymers for lithium battery electrodes.

    Science.gov (United States)

    Patel, Shrayesh N; Javier, Anna E; Balsara, Nitash P

    2013-07-23

    Block copolymers that can simultaneously conduct electronic and ionic charges on the nanometer length scale can serve as innovative conductive binder material for solid-state battery electrodes. The purpose of this work is to study the electronic charge transport of poly(3-hexylthiophene)-b-poly(ethylene oxide) (P3HT-PEO) copolymers electrochemically oxidized with lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) salt in the context of a lithium battery charge/discharge cycle. We use a solid-state three-terminal electrochemical cell that enables simultaneous conductivity measurements and control over electrochemical doping of P3HT. At low oxidation levels (ratio of moles of electrons removed to moles of 3-hexylthiophene moieties in the electrode), the electronic conductivity (σe,ox) increases from 10(-7) S/cm to 10(-4) S/cm. At high oxidation levels, σe,ox approaches 10(-2) S/cm. When P3HT-PEO is used as a conductive binder in a positive electrode with LiFePO4 active material, P3HT is electrochemically active within the voltage window of a charge/discharge cycle. The electronic conductivity of the P3HT-PEO binder is in the 10(-4) to 10(-2) S/cm range over most of the potential window of the charge/discharge cycle. This allows for efficient electronic conduction, and observed charge/discharge capacities approach the theoretical limit of LiFePO4. However, at the end of the discharge cycle, the electronic conductivity decreases sharply to 10(-7) S/cm, which means the "conductive" binder is now electronically insulating. The ability of our conductive binder to switch between electronically conducting and insulating states in the positive electrode provides an unprecedented route for automatic overdischarge protection in rechargeable batteries.

  20. Carbon Electrode-Molecule Junctions: A Reliable Platform for Molecular Electronics.

    Science.gov (United States)

    Jia, Chuancheng; Ma, Bangjun; Xin, Na; Guo, Xuefeng

    2015-09-15

    The development of reliable approaches to integrate individual or a small collection of molecules into electrical nanocircuits, often termed "molecular electronics", is currently a research focus because it can not only overcome the increasing difficulties and fundamental limitations of miniaturization of current silicon-based electronic devices, but can also enable us to probe and understand the intrinsic properties of materials at the atomic- and/or molecular-length scale. This development might also lead to direct observation of novel effects and fundamental discovery of physical phenomena that are not accessible by traditional materials or approaches. Therefore, researchers from a variety of backgrounds have been devoting great effort to this objective, which has started to move beyond simple descriptions of charge transport and branch out in different directions, reflecting the interdisciplinarity. This Account exemplifies our ongoing interest and great effort in developing efficient lithographic methodologies capable of creating molecular electronic devices through the combination of top-down micro/nanofabrication with bottom-up molecular assembly. These devices use nanogapped carbon nanomaterials (such as single-walled carbon nanotubes (SWCNTs) and graphene), with a particular focus on graphene, as point contacts formed by electron beam lithography and precise oxygen plasma etching. Through robust amide linkages, functional molecular bridges terminated with diamine moieties are covalently wired into the carboxylic acid-functionalized nanogaps to form stable carbon electrode-molecule junctions with desired functionalities. At the macroscopic level, to improve the contact interface between electrodes and organic semiconductors and lower Schottky barriers, we used SWCNTs and graphene as efficient electrodes to explore the intrinsic properties of organic thin films, and then build functional high-performance organic nanotransistors with ultrahigh responsivities

  1. InGaN/AlGaInN-based ultraviolet light-emitting diodes with indium gallium tin oxide electrodes

    International Nuclear Information System (INIS)

    Kim, Sukwon; Kim, Tae Geun

    2015-01-01

    In this study, In- and Sn-doped GaO (IGTO) is proposed as an alternative transparent conductive electrode for indium tin oxide (ITO) to improve the performance of InGaN/AlGaInN-based near ultraviolet light-emitting diodes (NUV LEDs). IGTO films were prepared by co-sputtering the ITO and Ga_2O_3 targets under various target power ratios. Among those, IGTO films post-annealed at 700 °C under a hydrogen environment gave rise to a transmittance of 94% at 385 nm and a contact resistance of 9.4 × 10"−"3 Ω-cm"2 with a sheet resistance of 124 Ω/ϒ. Compared to ITO-based NUV LEDs, the IGTO-based NUV LED showed a 9% improvement in the light output power, probably due to IGTO's higher transmittance, although the forward voltage was still higher by 0.23 V. - Highlights: • Indium gallium tin oxide (IGTO) for near-ultraviolet light-emitting diode is proposed. • IGTO is fabricated by co-sputtering the ITO and Ga_2O_3 targets and hydrogen annealing. • IGTO shows a 94% transmittance at 385 nm and a 9.4 × 10"−"3 Ω-cm"2 contact resistance. • Near-ultraviolet light-emitting diode with IGTO shows improved optical performance.

  2. Carbon nanotube-graphene composite film as transparent conductive electrode for GaN-based light-emitting diodes

    KAUST Repository

    Kang, Chun Hong

    2016-08-23

    Transparent conductive electrodes (TCE) made of carbon nanotube (CNT) and graphene composite for GaN-based light emitting diodes (LED) are presented. The TCE with 533-Ω/□ sheet resistance and 88% transmittance were obtained when chemical-vapor-deposition grown graphene was fused across CNT networks. With an additional 2-nm thin NiOx interlayer between the TCE and top p-GaN layer of the LED, the forward voltage was reduced to 5.12 V at 20-mA injection current. Four-fold improvement in terms of light output power was observed. The improvement can be ascribed to the enhanced lateral current spreading across the hybrid CNT-graphene TCE before injection into the p-GaN layer.

  3. Carbon nanotube-graphene composite film as transparent conductive electrode for GaN-based light-emitting diodes

    KAUST Repository

    Kang, Chun Hong; Shen, Chao; M. Saheed, M. Shuaib; Mohamed, Norani Muti; Ng, Tien Khee; Ooi, Boon S.; Burhanudin, Zainal Arif

    2016-01-01

    Transparent conductive electrodes (TCE) made of carbon nanotube (CNT) and graphene composite for GaN-based light emitting diodes (LED) are presented. The TCE with 533-Ω/□ sheet resistance and 88% transmittance were obtained when chemical-vapor-deposition grown graphene was fused across CNT networks. With an additional 2-nm thin NiOx interlayer between the TCE and top p-GaN layer of the LED, the forward voltage was reduced to 5.12 V at 20-mA injection current. Four-fold improvement in terms of light output power was observed. The improvement can be ascribed to the enhanced lateral current spreading across the hybrid CNT-graphene TCE before injection into the p-GaN layer.

  4. Electron beam dynamics in an ultrafast transmission electron microscope with Wehnelt electrode

    Energy Technology Data Exchange (ETDEWEB)

    Bücker, K.; Picher, M.; Crégut, O. [Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504 CNRS, Université de Strasbourg, 23 rue du Loess, 67034 Strasbourg (France); LaGrange, T. [Interdisciplinary Centre for Electron Microscopy, École Polytechnique Fédérale de Lausanne, 1015 Lausanne (Switzerland); Reed, B.W.; Park, S.T.; Masiel, D.J. [Integrated Dynamic Electron Solutions, Inc., 5653 Stoneridge Drive 117, Pleasanton, CA 94588 (United States); Banhart, F., E-mail: florian.banhart@ipcms.unistra.fr [Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504 CNRS, Université de Strasbourg, 23 rue du Loess, 67034 Strasbourg (France)

    2016-12-15

    High temporal resolution transmission electron microscopy techniques have shown significant progress in recent years. Using photoelectron pulses induced by ultrashort laser pulses on the cathode, these methods can probe ultrafast materials processes and have revealed numerous dynamic phenomena at the nanoscale. Most recently, the technique has been implemented in standard thermionic electron microscopes that provide a flexible platform for studying material's dynamics over a wide range of spatial and temporal scales. In this study, the electron pulses in such an ultrafast transmission electron microscope are characterized in detail. The microscope is based on a thermionic gun with a Wehnelt electrode and is operated in a stroboscopic photoelectron mode. It is shown that the Wehnelt bias has a decisive influence on the temporal and energy spread of the picosecond electron pulses. Depending on the shape of the cathode and the cathode-Wehnelt distance, different emission patterns with different pulse parameters are obtained. The energy spread of the pulses is determined by space charge and Boersch effects, given by the number of electrons in a pulse. However, filtering effects due to the chromatic aberrations of the Wehnelt electrode allow the extraction of pulses with narrow energy spreads. The temporal spread is governed by electron trajectories of different length and in different electrostatic potentials. High temporal resolution is obtained by excluding shank emission from the cathode and aberration-induced halos in the emission pattern. By varying the cathode-Wehnelt gap, the Wehnelt bias, and the number of photoelectrons in a pulse, tradeoffs between energy and temporal resolution as well as beam intensity can be made as needed for experiments. Based on the characterization of the electron pulses, the optimal conditions for the operation of ultrafast TEMs with thermionic gun assembly are elaborated. - Highlights: • A detailed characterization of electron

  5. Electrode quenching control for highly efficient CsPbBr3 perovskite light-emitting diodes via surface plasmon resonance and enhanced hole injection by Au nanoparticles

    Science.gov (United States)

    Meng, Yan; Wu, Xiaoyan; Xiong, Ziyang; Lin, Chunyan; Xiong, Zuhong; Blount, Ethan; Chen, Ping

    2018-04-01

    Compared to organic-inorganic hybrid metal halide perovskites, all-inorganic cesium lead halides (e.g, CsPbBr3) hold greater promise in being emissive materials for light-emitting diodes owing to their superior optoelectronic properties as well as their higher stabilities. However, there is still considerable potential for breakthroughs in the current efficiency of CsPbBr3 perovskite light-emitting diodes (PeLEDs). Electrode quenching is one of the main problems limiting the current efficiency of PeLEDs when poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) is used as the hole injection layer. In this work, electrode quenching control was realized via incorporating Au NPs into PEDOT:PSS. As a result, the CsPbBr3 PeLEDs realized an improvement in maximum luminescence ranging from ˜2348 to ˜7660 cd m-2 (˜226% enhancement) and current efficiency from 1.65 to 3.08 cd A-1 (˜86% enhancement). Such substantial enhancement of the electroluminescent performance can be attributed to effective electrode quenching control at the PEDOT:PSS/CsPbBr3 perovskite interface via the combined effects of local surface plasma resonance coupling and enhanced hole transportation in the PEDOT:PSS layer by Au nanoparticles.

  6. Multiscale phase mapping of LiFePO4-based electrodes by transmission electron microscopy and electron forward scattering diffraction.

    Science.gov (United States)

    Robert, Donatien; Douillard, Thierry; Boulineau, Adrien; Brunetti, Guillaume; Nowakowski, Pawel; Venet, Denis; Bayle-Guillemaud, Pascale; Cayron, Cyril

    2013-12-23

    LiFePO4 and FePO4 phase distributions of entire cross-sectioned electrodes with various Li content are investigated from nanoscale to mesoscale, by transmission electron microscopy and by the new electron forward scattering diffraction technique. The distributions of the fully delithiated (FePO4) or lithiated particles (LiFePO4) are mapped on large fields of view (>100 × 100 μm(2)). Heterogeneities in thin and thick electrodes are highlighted at different scales. At the nanoscale, the statistical analysis of 64 000 particles unambiguously shows that the small particles delithiate first. At the mesoscale, the phase maps reveal a core-shell mechanism at the scale of the agglomerates with a preferential pathway along the electrode porosities. At larger scale, lithiation occurs in thick electrodes "stratum by stratum" from the surface in contact with electrolyte toward the current collector.

  7. Organic bistable light-emitting devices

    Science.gov (United States)

    Ma, Liping; Liu, Jie; Pyo, Seungmoon; Yang, Yang

    2002-01-01

    An organic bistable device, with a unique trilayer structure consisting of organic/metal/organic sandwiched between two outmost metal electrodes, has been invented. [Y. Yang, L. P. Ma, and J. Liu, U.S. Patent Pending, U.S. 01/17206 (2001)]. When the device is biased with voltages beyond a critical value (for example 3 V), the device suddenly switches from a high-impedance state to a low-impedance state, with a difference in injection current of more than 6 orders of magnitude. When the device is switched to the low-impedance state, it remains in that state even when the power is off. (This is called "nonvolatile" phenomenon in memory devices.) The high-impedance state can be recovered by applying a reverse bias; therefore, this bistable device is ideal for memory applications. In order to increase the data read-out rate of this type of memory device, a regular polymer light-emitting diode has been integrated with the organic bistable device, such that it can be read out optically. These features make the organic bistable light-emitting device a promising candidate for several applications, such as digital memories, opto-electronic books, and recordable papers.

  8. Direct electron transfer from glucose oxidase immobilized on a nano-porous glassy carbon electrode

    International Nuclear Information System (INIS)

    Haghighi, Behzad; Tabrizi, Mahmoud Amouzadeh

    2011-01-01

    Highlights: → A direct electron transfer reaction of glucose oxidase was observed on the surface of a nano-porous glassy carbon electrode. → A pair of well-defined and reversible redox peaks was observed at the formal potential of approximately -0.439 V. → The apparent electron transfer rate constant was measured to be 5.27 s -1 . → A mechanism for the observed direct electron transfer reaction was proposed, which consists of a two-electron and a two-proton transfer. - Abstract: A pair of well-defined and reversible redox peaks was observed for the direct electron transfer (DET) reaction of an immobilized glucose oxidase (GOx) on the surface of a nano-porous glassy carbon electrode at the formal potential (E o ') of -0.439 V versus Ag/AgCl/saturated KCl. The electron transfer rate constant (k s ) was calculated to be 5.27 s -1 . The dependence of E o ' on pH indicated that the direct electron transfer of the GOx was a two-electron transfer process, coupled with two-proton transfer. The results clearly demonstrate that the nano-porous glassy carbon electrode is a cost-effective and ready-to-use scaffold for the fabrication of a glucose biosensor.

  9. Direct electron transfer from glucose oxidase immobilized on a nano-porous glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Haghighi, Behzad, E-mail: haghighi@iasbs.ac.ir [Department of Chemistry, Institute for Advanced Studies in Basic Sciences, P.O. Box 45195-1159, Gava Zang, Zanjan (Iran, Islamic Republic of); Tabrizi, Mahmoud Amouzadeh [Department of Chemistry, Institute for Advanced Studies in Basic Sciences, P.O. Box 45195-1159, Gava Zang, Zanjan (Iran, Islamic Republic of)

    2011-11-30

    Highlights: > A direct electron transfer reaction of glucose oxidase was observed on the surface of a nano-porous glassy carbon electrode. > A pair of well-defined and reversible redox peaks was observed at the formal potential of approximately -0.439 V. > The apparent electron transfer rate constant was measured to be 5.27 s{sup -1}. > A mechanism for the observed direct electron transfer reaction was proposed, which consists of a two-electron and a two-proton transfer. - Abstract: A pair of well-defined and reversible redox peaks was observed for the direct electron transfer (DET) reaction of an immobilized glucose oxidase (GOx) on the surface of a nano-porous glassy carbon electrode at the formal potential (E{sup o}') of -0.439 V versus Ag/AgCl/saturated KCl. The electron transfer rate constant (k{sub s}) was calculated to be 5.27 s{sup -1}. The dependence of E{sup o}' on pH indicated that the direct electron transfer of the GOx was a two-electron transfer process, coupled with two-proton transfer. The results clearly demonstrate that the nano-porous glassy carbon electrode is a cost-effective and ready-to-use scaffold for the fabrication of a glucose biosensor.

  10. Ignitor electrode system design for the pulses electron irradiators device

    International Nuclear Information System (INIS)

    Lely Susita RM; Ihwanul Aziz

    2016-01-01

    The designed ignitor electrode system is a system used to initiate the plasma discharge. It consists of two pieces which are placed on both side of the plasma vessel. Each of the ignitor electrode system consists of a cathode, an anode and insulator between the cathode and the anode. The best cathode material for ignitor electrode system is Mg due to its lowest ion erosion rate (γi =11.7 μg/C) and its low cohesive energy (1.51 eV). The specifications of ignitor electrode system designed for the pulse electron irradiators is as follow: Mg cathode materials in the form of rod having a diameter of 6.35 mm and length of 76.75 mm. Anode material are made of non magnetic of SS 304 cylinder shaped with an outer diameter of 88.53 mm, an inner diameter of 81.53 mm and a thickness of 3.50 mm. Insulating material between the cathode and the anode is made of teflon cylinder shaped, outer diameter of 9.50 mm, an inner diameter of 6.35 mm and a length of 30 mm. Based on the ignitor electrode system design, the next step is construction and function test of the ignitor electrode system. (author)

  11. Trans-membrane electron transfer in red blood cells immobilized in a chitosan film on a glassy carbon electrode

    International Nuclear Information System (INIS)

    Yu, Chunmei; Wang, Li; Zhu, Zhenkun; Bao, Ning; Gu, Haiying

    2014-01-01

    We have studied the trans-membrane electron transfer in human red blood cells (RBCs) immobilized in a chitosan film on a glassy carbon electrode (GCE). Electron transfer results from the presence of hemoglobin (Hb) in the RBCs. The electron transfer rate (k s ) of Hb in RBCs is 0.42 s −1 , and <1.13 s −1 for Hb directly immobilized in the chitosan film. Only Hb molecules in RBCs that are closest to the plasma membrane and the surface of the electrode can undergo electron transfer to the electrode. The immobilized RBCs displayed sensitive electrocatalytic response to oxygen and hydrogen peroxide. It is believed that this cellular biosensor is of potential significance in studies on the physiological status of RBCs based on observing their electron transfer on the modified electrode. (author)

  12. Effect of trapped electrons on the transient current density and luminance of organic light-emitting diode

    Science.gov (United States)

    Lee, Jiun-Haw; Chen, Chia-Hsun; Lin, Bo-Yen; Shih, Yen-Chen; Lin, King-Fu; Wang, Leeyih; Chiu, Tien-Lung; Lin, Chi-Feng

    2018-04-01

    Transient current density and luminance from an organic light-emitting diode (OLED) driven by voltage pulses were investigated. Waveforms with different repetition rate, duty cycle, off-period, and on-period were used to study the injection and transport characteristics of electron and holes in an OLED under pulse operation. It was found that trapped electrons inside the emitting layer (EML) and the electron transporting layer (ETL) material, tris(8-hydroxyquinolate)aluminum (Alq3) helped for attracting the holes into the EML/ETL and reducing the driving voltage, which was further confirmed from the analysis of capacitance-voltage and displacement current measurement. The relaxation time and trapped filling time of the trapped electrons in Alq3 layer were ~200 µs and ~600 µs with 6 V pulse operation, respectively.

  13. InGaN/AlGaInN-based ultraviolet light-emitting diodes with indium gallium tin oxide electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sukwon; Kim, Tae Geun, E-mail: tgkim1@korea.ac.kr

    2015-09-30

    In this study, In- and Sn-doped GaO (IGTO) is proposed as an alternative transparent conductive electrode for indium tin oxide (ITO) to improve the performance of InGaN/AlGaInN-based near ultraviolet light-emitting diodes (NUV LEDs). IGTO films were prepared by co-sputtering the ITO and Ga{sub 2}O{sub 3} targets under various target power ratios. Among those, IGTO films post-annealed at 700 °C under a hydrogen environment gave rise to a transmittance of 94% at 385 nm and a contact resistance of 9.4 × 10{sup −3} Ω-cm{sup 2} with a sheet resistance of 124 Ω/ϒ. Compared to ITO-based NUV LEDs, the IGTO-based NUV LED showed a 9% improvement in the light output power, probably due to IGTO's higher transmittance, although the forward voltage was still higher by 0.23 V. - Highlights: • Indium gallium tin oxide (IGTO) for near-ultraviolet light-emitting diode is proposed. • IGTO is fabricated by co-sputtering the ITO and Ga{sub 2}O{sub 3} targets and hydrogen annealing. • IGTO shows a 94% transmittance at 385 nm and a 9.4 × 10{sup −3} Ω-cm{sup 2} contact resistance. • Near-ultraviolet light-emitting diode with IGTO shows improved optical performance.

  14. The different electron transport of two nanotubes incorporated in working electrode of dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaobo, E-mail: zhangxiaobo@chnu.edu.cn [School of Physics, Huaibei Normal University, Huaibei 235000, Anhui (China); Eco-Materials and Renewable Energy Research Centre (ERERC), Nanjing University, Nanjing 210093 (China); Tian, Hanmin; Wang, Xiangyan; Xue, Guogang; Tian, Zhipeng; Zhang, Jiyuan; Yuan, Shikui [Eco-Materials and Renewable Energy Research Centre (ERERC), Nanjing University, Nanjing 210093 (China); Yu, Tao; Zou, Zhigang [Eco-Materials and Renewable Energy Research Centre (ERERC), Nanjing University, Nanjing 210093 (China); National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China)

    2013-11-25

    Highlights: •Two TiO{sub 2} nanotubes are separately incorporated in working electrode of DSSCs. •The 6-μm-tubes incorporation improves electron transport in the cell. •The 1-μm-tubes incorporation impedes electron transport in the cell. •Both 1-D electron diffusion and nanotube percolation promote electron transport. •Electron residing at the end of 1-μm-tubes maybe impedes electron transport. -- Abstract: Two different-length (6 μm and 1 μm) TiO{sub 2} nanotubes were prepared and incorporated in working electrode of dye-sensitized solar cells (DSSCs). The analyses of the electrochemical impedance spectra of cells demonstrate that, the electron transport resistance R{sub w} decreases and increases separately to 0.3 Ω in 6-μm-tubes-cell and to 15.1 Ω in 1-μm-tubes-cell comparing with that 1.4 Ω in P25-cell, reflecting the improved electron transport in 6-μm-tubes-cell and impeded electron transport in 1-μm-tubes-cell. The reason is ascribed to the different electron transport in working electrode due to the incorporation of nanotubes. For the 6-μm-tubes incorporation, both 1-D electron diffusion along nanotubes and nanotube percolation improve electron transport in working electrode, but they cannot improve electron transport for the 1-μm-tubes incorporation. On the contrary, the 1-μm-tubes incorporation may impede electron transport because of electron residing occurring seriously at the end of 1-μm-tubes. The results of this work will help to understand the specific nature of electron transport in TiO{sub 2} nanotubes in DSSCs.

  15. A robust yellow-emitting metallophosphor with electron-injection/-transporting traits for highly efficient white organic light-emitting diodes.

    Science.gov (United States)

    Zhou, Guijiang; Yang, Xiaolong; Wong, Wai-Yeung; Wang, Qi; Suo, Si; Ma, Dongge; Feng, Jikang; Wang, Lixiang

    2011-10-24

    With the aim of endowing triplet emitters in the development of organic light-emitting devices (OLEDs) with electron-injection/-transporting (EI/ET) features, the phenylsulfonyl moiety was introduced into the phenyl ring of a 2-phenylpyridine (Hppy) ligand and the yellow phosphorescent heteroleptic iridium(III) complex 1 was developed. It was shown that the SO(2)Ph unit could provide EI/ET character to 1, as indicated from both electrochemical and computational data. Complex 1 is a promising yellow-emitting material for both monochromatic OLEDs and white OLEDs (WOLEDs). The outstanding electronic traits associated with 1, coupled with careful device design, afforded very attractive electroluminescent performances for two-element WOLEDs, including a low turn-on voltage of less than 3.7 V, a maximum brightness of 48,000 cd m(-2), an external quantum efficiency of 13.0%, a luminance efficiency of 34.7 cd A(-1), and a power efficiency of 24.3 Lm W(-1). In addition, a good color rendering index (CRI) of about 74, a stable white color with a Commission Internationale de L'Eclairage (CIE(x,y)) variation of Δ(x, y) OLED research. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. TiN coated aluminum electrodes for DC high voltage electron guns

    International Nuclear Information System (INIS)

    Mamun, Md Abdullah A.; Elmustafa, Abdelmageed A.; Taus, Rhys; Forman, Eric; Poelker, Matthew

    2015-01-01

    Preparing electrodes made of metals like stainless steel, for use inside DC high voltage electron guns, is a labor-intensive and time-consuming process. In this paper, the authors report the exceptional high voltage performance of aluminum electrodes coated with hard titanium nitride (TiN). The aluminum electrodes were comparatively easy to manufacture and required only hours of mechanical polishing using silicon carbide paper, prior to coating with TiN by a commercial vendor. The high voltage performance of three TiN-coated aluminum electrodes, before and after gas conditioning with helium, was compared to that of bare aluminum electrodes, and electrodes manufactured from titanium alloy (Ti-6Al-4V). Following gas conditioning, each TiN-coated aluminum electrode reached −225 kV bias voltage while generating less than 100 pA of field emission (<10 pA) using a 40 mm cathode/anode gap, corresponding to field strength of 13.7 MV/m. Smaller gaps were studied to evaluate electrode performance at higher field strength with the best performing TiN-coated aluminum electrode reaching ∼22.5 MV/m with field emission less than 100 pA. These results were comparable to those obtained from our best-performing electrodes manufactured from stainless steel, titanium alloy and niobium, as reported in references cited below. The TiN coating provided a very smooth surface and with mechanical properties of the coating (hardness and modulus) superior to those of stainless steel, titanium-alloy, and niobium electrodes. These features likely contributed to the improved high voltage performance of the TiN-coated aluminum electrodes

  17. Lambertian white top-emitting organic light emitting device with carbon nanotube cathode

    Science.gov (United States)

    Freitag, P.; Zakhidov, Al. A.; Luessem, B.; Zakhidov, A. A.; Leo, K.

    2012-12-01

    We demonstrate that white organic light emitting devices (OLEDs) with top carbon nanotube (CNT) electrodes show almost no microcavity effect and exhibit essentially Lambertian emission. CNT top electrodes were applied by direct lamination of multiwall CNT sheets onto white small molecule OLED stack. The devices show an external quantum efficiency of 1.5% and high color rendering index of 70. Due to elimination of the cavity effect, the devices show good color stability for different viewing angles. Thus, CNT electrodes are a viable alternative to thin semitransparent metallic films, where the strong cavity effect causes spectral shift and non-Lambertian angular dependence. Our method of the device fabrication is simple yet effective and compatible with virtually any small molecule organic semiconductor stack. It is also compatible with flexible substrates and roll-to-roll fabrication.

  18. Highly Conductive Transparent and Flexible Electrodes Including Double-Stacked Thin Metal Films for Transparent Flexible Electronics.

    Science.gov (United States)

    Han, Jun Hee; Kim, Do-Hong; Jeong, Eun Gyo; Lee, Tae-Woo; Lee, Myung Keun; Park, Jeong Woo; Lee, Hoseung; Choi, Kyung Cheol

    2017-05-17

    To keep pace with the era of transparent and deformable electronics, electrode functions should be improved. In this paper, an innovative structure is suggested to overcome the trade-off between optical and electrical properties that commonly arises with transparent electrodes. The structure of double-stacked metal films showed high conductivity (electronics are expected.

  19. Direct electron transfer of horseradish peroxidase on Nafion-cysteine modified gold electrode

    International Nuclear Information System (INIS)

    Hong, Jun; Moosavi-Movahedi, Ali Akbar; Ghourchian, Hedayatollah; Rad, Ahmad Molaei; Rezaei-Zarchi, Saeed

    2007-01-01

    Direct electron transfer of horseradish peroxidase, immobilized on a functional membrane-modified gold electrode, was studied. The electrode showed a quasi-reversible electrochemical redox behavior with a formal potential of 60mV (versus Ag/AgCl) in 20mM potassium phosphate buffer solution at pH 7.0 and temperature 25 o C. The cathodic transfer coefficient was 0.42 and electron transfer rate constant was evaluated to be 1.6s -1 . Furthermore, the modified electrode was used as a biosensor and exhibited a satisfactory stability and sensitivity to H 2 O 2 . The linear range of this biosensor for H 2 O 2 determination was from 5.0x10 -6 to 1.5x10 -4 M while its detection limit, based on a signal-to-noise ratio of 3, was 1.3x10 -6 M. The apparent Michaelis-Menten constant (K m app ) for immobilized HRP was calculated to be 1.6x10 -4 M

  20. Electron tunneling in nanoscale electrodes for battery applications

    Science.gov (United States)

    Yamada, Hidenori; Narayanan, Rajaram; Bandaru, Prabhakar R.

    2018-03-01

    It is shown that the electrical current that may be obtained from a nanoscale electrochemical system is sensitive to the dimensionality of the electrode and the density of states (DOS). Considering the DOS of lower dimensional systems, such as two-dimensional graphene, one-dimensional nanotubes, or zero-dimensional quantum dots, yields a distinct variation of the current-voltage characteristics. Such aspects go beyond conventional Arrhenius theory based kinetics which are often used in experimental interpretation. The obtained insights may be adapted to other devices, such as solid-state batteries. It is also indicated that electron transport in such devices may be considered through electron tunneling.

  1. Molecular Basis for Electron Flow Within Metal-and Electrode-Reducing Biofilms

    Energy Technology Data Exchange (ETDEWEB)

    Bond, Daniel R. [Univ. of Minnesota, Minneapolis, MN (United States)

    2016-11-01

    Electrochemical, spectral, genetic, and biochemical techniques were developed to reveal that a diverse suite of redox proteins and structural macromolecules outside the cell work together to move electrons long distances between Geobacter cells to metals and electrodes. In this project, we greatly expanded the known participants in the electron transfer pathway of Geobacter. For example, in addition to well-studied pili, polysaccharides contribute to anchoring, different cytochromes are required under different conditions, strategies change with redox potential, and the localization of these components can change depending on where cells are located in a biofilm. By inventing new electrodes compatible with real-time spectral measurements, we were able to visualize the redox status of biofilms in action, leading to a hypothesis that long-distance electron transfer is ultimately limiting in these systems and redox potentials change within biofilms. The goals of this project were met, as we were able to 1) identify new elements crucial to the expression, assembly and function of the extracellular electron transfer phenotype 2) expand spectral and electrochemical techniques to define the mechanism and route of electron transfer through the matrix, and 3) combine this knowledge to build the next generation of genetic tools for study of this complex process.

  2. Simulation of Electron Beam Trajectory of Thermionic Electron Gun Type with Pierce Electrode

    International Nuclear Information System (INIS)

    Suprapto; Djoko-SP; Djasiman

    2000-01-01

    The simulation of electron beam trajectory for electron gun of electron beam machine has been done. The simulation is carried out according to mechanical design of the electron gun. The simulation is carried out by using the software made by Andrzej Soltan Institute for Nuclear Studies, Swierk-Poland. The result obtained from simulation is approximately parallel electron beam trajectory of 20 mA beam current at 0.66 kV anode voltage, 15 mm cathode-anode distance and 67.5 o cathode angle. Arrangement of electron gun and accelerating tube with 15 kV voltage between anode and the first electrode of accelerating tube yields focus distance of 34 mm from the to cathode. To obtain the approximately parallel beam trajectory which has -0.03 o entrance angles to accelerating tube, the suitable cathode-anode voltage is 12.66 kV. With the entrance angle of -0.03 o it is expected that the electron beam can be accelerated and the beam profile has a small divergence after passing the accelerating tube. (author)

  3. Origin of Nanobubbles Electrochemically Formed in a Magnetic Field: Ionic Vacancy Production in Electrode Reaction

    Science.gov (United States)

    Aogaki, Ryoichi; Sugiyama, Atsushi; Miura, Makoto; Oshikiri, Yoshinobu; Miura, Miki; Morimoto, Ryoichi; Takagi, Satoshi; Mogi, Iwao; Yamauchi, Yusuke

    2016-07-01

    As a process complementing conventional electrode reactions, ionic vacancy production in electrode reaction was theoretically examined; whether reaction is anodic or cathodic, based on the momentum conservation by Newton’s second law of motion, electron transfer necessarily leads to the emission of original embryo vacancies, and dielectric polarization endows to them the same electric charge as trans- ferred in the reaction. Then, the emitted embryo vacancies immediately receive the thermal relaxation of solution particles to develop steady-state vacancies. After the vacancy production, nanobubbles are created by the collision of the vacancies in a vertical magnetic field.

  4. Laser Processed Silver Nanowire Network Transparent Electrodes for Novel Electronic Devices

    Science.gov (United States)

    Spechler, Joshua Allen

    Silver nanowire network transparent conducting layers are poised to make headway into a space previously dominated by transparent conducting oxides due to the promise of a flexible, scaleable, lab-atmosphere processable alternative. However, there are many challenges standing in the way between research scale use and consumer technology scale adaptation of this technology. In this thesis we will explore many, and overcome a few of these challenges. We will address the poor conductivity at the narrow nanowire-nanowire junction points in the network by developing a laser based process to weld nanowires together on a microscopic scale. We address the need for a comparative metric for transparent conductors in general, by taking a device level rather than a component level view of these layers. We also address the mechanical, physical, and thermal limitations to the silver nanowire networks by making composites from materials including a colorless polyimide and titania sol-gel. Additionally, we verify our findings by integrating these processes into devices. Studying a hybrid organic/inorganic heterojunction photovoltaic device we show the benefits of a laser processed electrode. Green phosphorescent organic light emitting diodes fabricated on a solution phase processed silver nanowire based electrode show favorable device metrics compared to a conductive oxide electrode based control. The work in this thesis is intended to push the adoption of silver nanowire networks to further allow new device architectures, and thereby new device applications.

  5. Electron transfer between a quinohemoprotein alcohol dehydrogenase and an electrode via a redox polymer network

    NARCIS (Netherlands)

    Stigter, E.C.A.; Jong, G.A.H. de; Jongejan, J.A.; Duine, J.A.; Lugt, J.P. van der; Somers, W.A.C.

    1996-01-01

    A quinohemoprotein alcohol dehydrogenase (QH-EDH) from Comamonas testosteroni was immobilized on an electrode in a redox polymer network consisting of a polyvinylpyridine partially N-complexed with osmiumbis-(bipyridine)chloride. The enzyme effectively transfers electrons to the electrode via the

  6. Efficient electron injection from solution-processed cesium stearate interlayers in organic light-emitting diodes

    NARCIS (Netherlands)

    Wetzelaer, G. A. H.; Najafi, A.; Kist, R. J. P.; Kuik, M.; Blom, P. W. M.

    2013-01-01

    The electron-injection capability of solution-processed cesium stearate films in organic light-emitting diodes is investigated. Cesium stearate, which is expected to exhibit good solubility and film formation due to its long hydrocarbon chain, is synthesized using a straightforward procedure.

  7. The fabrication and single electron transport of Au nano-particles placed between Nb nanogap electrodes

    International Nuclear Information System (INIS)

    Nishino, T; Negishi, R; Ishibashi, K; Kawao, M; Nagata, T; Ozawa, H

    2010-01-01

    We have fabricated Nb nanogap electrodes using a combination of molecular lithography and electron beam lithography. Au nano-particles with anchor molecules were placed in the gap, the width of which could be controlled on a molecular scale (∼2 nm). Three different anchor molecules which connect the Au nano-particles and the electrodes were tested to investigate their contact resistance, and a local gate was fabricated underneath the Au nano-particles. The electrical transport measurements at liquid helium temperatures indicated single electron transistor (SET) characteristics with a charging energy of about ∼ 5 meV, and a clear indication of the effect of superconducting electrodes was not observed, possibly due to the large tunnel resistance.

  8. Diffraction structures in delta electron spectra emitted in heavy-ion atom collisions

    International Nuclear Information System (INIS)

    Liao, C.; Bhalla, C.; Shingal, R.; Schmidt-Boecking, H.; Shinpaugh, J.; Wolf, W.; Wolf, H.

    1992-01-01

    We have measured doubly differential cross sections DDCS for projectiles between F and Au and find evidence for strong diffraction structure in the Binary Encounter region of the emitted electron spectra for Au(Z=79), I(Z=53) and Cu(Z=29) projectiles, however not for F projectiles in the collision energy range between 0.2 and 0.5 MeV/u. (orig.)

  9. Radiation-emitting Electronic Product Codes

    Data.gov (United States)

    U.S. Department of Health & Human Services — This database contains product names and associated information developed by the Center for all products, both medical and non-medical, which emit radiation. It...

  10. Spin-polarized light-emitting diodes based on organic bipolar spin valves

    Science.gov (United States)

    Vardeny, Zeev Valentine; Nguyen, Tho Duc; Ehrenfreund, Eitan Avraham

    2017-10-25

    Spin-polarized organic light-emitting diodes are provided. Such spin-polarized organic light-emitting diodes incorporate ferromagnetic electrodes and show considerable spin-valve magneto-electroluminescence and magneto-conductivity responses, with voltage and temperature dependencies that originate from the bipolar spin-polarized space charge limited current.

  11. Single side Emitting Transparent OLED lamp

    NARCIS (Netherlands)

    Lifka, H.; Verschuren, C.A.; Bruls, D.M.; Tanase, C.

    2011-01-01

    Transparent OLEDs offer great potential for novel applications. Preferably, the light should be emitted from one side only. This can bedone to some extent by modifying electrode thicknesses, but at the cost of reduced transparency. Here, we demonstrate a new approach tomake single side emissive

  12. The effects of changing the electrodes temperature on the tunnel magnetoresistance in the ferromagnetic single electron transistor

    Science.gov (United States)

    Ahmadi, N.; Pourali, N.; Kavaz, E.

    2018-01-01

    Ferromagnetic single electron transistor with electrodes having different temperatures is investigated and the effects of changing electrodes temperature on TMR of system are studied. A modified orthodox theory is used to study the system and to calculate the electron tunneling transition rate. The results show that the temperature of electrodes can be an effective tool to control and tune the tunnel magnetoresistance of FM-SET. Also, the effects of parameters such as resistance ratio of junctions, magnetic polarization and spin relaxation time on the behaviour of the system are studied.

  13. All conducting polymer electrodes for asymmetric solid-state supercapacitors

    KAUST Repository

    Kurra, Narendra

    2015-02-16

    In this study, we report the fabrication of solid-state asymmetric supercapacitors (ASCs) based on conducting polymer electrodes on a plastic substrate. Nanostructured conducting polymers of poly(3,4-ethylenedioxythiophene), PEDOT, and polyaniline (PANI) are deposited electrochemically over Au-coated polyethylene naphthalate (PEN) plastic substrates. Due to the electron donating nature of the oxygen groups in the PEDOT, reduction potentials are higher, allowing it to be used as a negative electrode material. In addition, the high stability of PEDOT in its oxidised state makes it capable to exhibit electrochemical activity in a wide potential window. This can qualify PEDOT to be used as a negative electrode in fabricating asymmetric solid state supercapacitors with PANI as a positive electrode while employing polyvinyl alcohol (PVA)/H2SO4 gel electrolyte. The ASCs exhibit a maximum power density of 2.8 W cm−3 at an energy density of 9 mW h cm−3, which is superior to the carbonaceous and metal oxide based ASC solid state devices. Furthermore, the tandem configuration of asymmetric supercapacitors is shown to be capable of powering a red light emitting diode for about 1 minute after charging for 10 seconds.

  14. Structure of the spin polarization spectrum of secondary electrons emitted from nickel

    International Nuclear Information System (INIS)

    Helman, J.S.

    1985-01-01

    The main features of the structure observed in the energy resolved spin polarization of secondary electrons emitted from Ni are interpreted in terms of surface and bulk plasmon assisted emission. The model also predicts a measureable shift of the main polarization peak of about 0.3 eV to lower energies as the temperature is raised from room temperature to closely below the Curie temperature. (Author) [pt

  15. Electron transfer at boron-doped diamond electrodes modified by graphitic micro-domains

    Energy Technology Data Exchange (ETDEWEB)

    Mahe, E.; Devilliers, D. [Pierre et Marie Curie Univ., Paris (France). Electrochemistry Lab.; Comninellis, C. [Lausanne Ecole Polytechnique, Lausanne (Switzerland). Groupe de Genie Electrochimique

    2006-07-01

    Boron-doped (BDD) electrodes have been used in electrolysis procedures for the last 10 years. The mechanical stability of the electrode, its large electrochemical window and its low capacitive current place this new electrode material as an alternative for replacing more costly or toxic materials such as mercury. However, the ferri/ferrocyanide system of boron-doped electrodes has shown contradictory results in the literature. This study proposed a cathodic pre-treatment which relied on the presence of residual graphitic domains formed during the preparation of the BDD film. An experiment was conducted in which the doping procedure was used to control the amount of graphitic phase on the electrode with highly oriented pyrolytic graphite (HOPG) grafted on the BDD surface. Surface characterization with Raman spectroscopy and Scanning Electron Microscopy (SEM) was then carried out using cyclic voltammetry and electrochemical impedance spectroscopy. The electroanalytical determination of the amount of graphitic micro-domains was described and a pulse procedure was proposed which obtained a reproducible surface state. 2 refs., 2 figs.

  16. Light-emitting diodes based on solution-processed nontoxic quantum dots: oxides as carrier-transport layers and introducing molybdenum oxide nanoparticles as a hole-inject layer.

    Science.gov (United States)

    Bhaumik, Saikat; Pal, Amlan J

    2014-07-23

    We report fabrication and characterization of solution-processed quantum dot light-emitting diodes (QDLEDs) based on a layer of nontoxic and Earth-abundant zinc-diffused silver indium disulfide (AIZS) nanoparticles as an emitting material. In the QDLEDs fabricated on indium tin oxide (ITO)-coated glass substrates, we use layers of oxides, such as graphene oxide (GO) and zinc oxide (ZnO) nanoparticles as a hole- and electron-transport layer, respectively. In addition, we introduce a layer of MoO3 nanoparticles as a hole-inject one. We report a comparison of the characteristics of different device architectures. We show that an inverted device architecture, ITO/ZnO/AIZS/GO/MoO3/Al, yields a higher electroluminescence (EL) emission, compared to direct ones, for three reasons: (1) the GO/MoO3 layers introduce barriers for electrons to reach the Al electrode, and, similarly, the ZnO layers acts as a barrier for holes to travel to the ITO electrode; (2) the introduction of a layer of MoO3 nanoparticles as a hole-inject layer reduces the barrier height for holes and thereby balances charge injection in the inverted structure; and (3) the wide-bandgap zinc oxide next to the ITO electrode does not absorb the EL emission during its exit from the device. In the QDLEDs with oxides as carrier inject and transport layers, the EL spectrum resembles the photoluminescence emission of the emitting material (AIZS), implying that excitons are formed in the quaternary nanocrystals and decay radiatively.

  17. SPEAKING IN LIGHT - Jupiter radio signals as deflections of light-emitting electron beams in a vacuum chamber

    Science.gov (United States)

    Petrovic, K.

    2015-10-01

    Light emitting electron beam generated in a vacuum chamber is used as a medium for visualizing Jupiter's electromagnetic radiation. Dual dipole array antenna is receiving HF radio signals that are next amplified to radiate a strong electromagnetic field capable of influencing the propagation of electron beam in plasma. Installation aims to provide a platform for observing the characteristics of light emitting beam in 3D, as opposed to the experiments with cathode ray tubes in 2-dimensional television screens. Gas giant 'speaking' to us by radio waves bends the light in the tube, allowing us to see and hear the messages of Jupiter - God of light and sky.

  18. High voltage performance of a dc photoemission electron gun with centrifugal barrel-polished electrodes

    Science.gov (United States)

    Hernandez-Garcia, C.; Bullard, D.; Hannon, F.; Wang, Y.; Poelker, M.

    2017-09-01

    The design and fabrication of electrodes for direct current (dc) high voltage photoemission electron guns can significantly influence their performance, most notably in terms of maximum achievable bias voltage. Proper electrostatic design of the triple-point junction shield electrode minimizes the risk of electrical breakdown (arcing) along the insulator-cable plug interface, while the electrode shape is designed to maintain work, we describe a centrifugal barrel-polishing technique commonly used for polishing the interior surface of superconducting radio frequency cavities but implemented here for the first time to polish electrodes for dc high voltage photoguns. The technique reduced polishing time from weeks to hours while providing surface roughness comparable to that obtained with diamond-paste polishing and with unprecedented consistency between different electrode samples. We present electrode design considerations and high voltage conditioning results to 360 kV (˜11 MV/m), comparing barrel-polished electrode performance to that of diamond-paste polished electrodes. Tests were performed using a dc high voltage photogun with an inverted-geometry ceramic insulator design.

  19. Overcoming the limitations of silver nanowire electrodes for light emitting applications

    Science.gov (United States)

    Chen, Dustin Yuan

    aforementioned method is applied to understanding the electrical stability of silver nanowires. At the time of publication, previous works on the electrical failure of silver nanowires centered on the observation of failure under current flow, without a solution offered for how to mitigate the phenomenon. However, because the underlying purpose of these electrodes is to transport current, providing a solution for the failure flow is paramount to the success of AgNWs in future commercial applications. The importance of the development of this solution cannot be understated, especially in light of the fact that silver nanowires have been shown to fail under electrical stresses below typical operating conditions of various optoelectronic devices. The same technique mentioned previously can be leveraged for electrically stable silver nanowire networks, which show significant morphological stability over pristine silver nanowires when electrically stressed at normal operating conditions for OLEDs. These electrically stable substrates were able to produce high performance OLEDs with lifetimes 140% longer than the same devices fabricated on ITO, and 20% higher than non-electrically stable AgNW-based substrates. Thirdly, the thermally and electrically stable substrate was used to fabricate a high performing perovskite quantum dot light-emitting device exhibiting high flexibility. The use of quantum dots instead of perovskite precursors and post treatment to convert the precursors to perovskite allowed for several new innovations. Due to the elimination of highly polar solvents typically required with perovskite precursors, a broadened range of architectures can be achieved. Furthermore, due to the small dimensions of the quantum dots in contrast to thick films of perovskite formed from precursors, the active layer can extremely thin, allowing for high mechanical flexibility. The performance metrics achieved of 10.4 cd/A, 8.1 lm/W, and 2.6% EQE at a brightness of 1000 cd/m2 were enabled

  20. Two-dimensional Cu2Si sheet: a promising electrode material for nanoscale electronics

    Science.gov (United States)

    Meng Yam, Kah; Guo, Na; Zhang, Chun

    2018-06-01

    Building electronic devices on top of two-dimensional (2D) materials has recently become one of most interesting topics in nanoelectronics. Finding high-performance 2D electrode materials is one central issue in 2D nanoelectronics. In the current study, based on first-principles calculations, we compare the electronic and transport properties of two nanoscale devices. One device consists of two single-atom-thick planar Cu2Si electrodes, and a nickel phthalocyanine (NiPc) molecule in the middle. The other device is made of often-used graphene electrodes and a NiPc molecule. Planer Cu2Si is a new type of 2D material that was recently predicted to exist and be stable under room temperature [11]. We found that at low bias voltages, the electric current through the Cu2Si–NiPc–Cu2Si junction is about three orders higher than that through graphene–NiPc–graphene. Detailed analysis shows that the surprisingly high conductivity of Cu2Si–NiPc–Cu2Si originates from the mixing of the Cu2Si state near Fermi energy and the highest occupied molecular orbital of NiPc. These results suggest that 2D Cu2Si may be an excellent candidate for electrode materials for future nanoscale devices.

  1. Chlorinated indium tin oxide electrode by InCl{sub 3} aqueous solution for high-performance organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Yun; Wang, Bo; Wang, Zhao-Kui, E-mail: zkwang@suda.edu.cn, E-mail: lsliao@suda.edu.cn; Liao, Liang-Sheng, E-mail: zkwang@suda.edu.cn, E-mail: lsliao@suda.edu.cn [Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123 (China); Zhou, Dong-Ying [Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123 (China); College of Physics, Optoelectronics and Energy, Soochow University, Suzhou, Jiangsu 215123 (China)

    2016-04-11

    The authors develop a facile and effective method to produce the chlorinated indium tin oxide (Cl-ITO) treated by InCl{sub 3} aqueous solution and UV/ozone. The work function of the Cl-ITO achieved by this treatment is as high as 5.69 eV, which is increased by 1.09 eV compared with that of the regular ITO without any treatment. Further investigation proved that the enhancement of the work function is attributed to the formation of In-Cl bonds on the Cl-ITO surface. Green phosphorescent organic light-emitting devices based on the Cl-ITO electrodes exhibit excellent electroluminescence performance, elongating lifetime due to the improvement in hole injection.

  2. Electron current extraction from radio frequency excited micro-dielectric barrier discharges

    International Nuclear Information System (INIS)

    Wang, Jun-Chieh; Kushner, Mark J.; Leoni, Napoleon; Birecki, Henryk; Gila, Omer

    2013-01-01

    Micro dielectric barrier discharges (mDBDs) consist of micro-plasma devices (10–100 μm diameter) in which the electrodes are fully or partially covered by dielectrics, and often operate at atmospheric pressure driven with radio frequency (rf) waveforms. In certain applications, it may be desirable to extract electron current out of the mDBD plasma, which necessitates a third electrode. As a result, the physical structure of the m-DBD and the electron emitting properties of its materials are important to its operation. In this paper, results from a two-dimensional computer simulation of current extraction from mDBDs sustained in atmospheric pressure N 2 will be discussed. The mDBDs are sandwich structures with an opening of tens-of-microns excited with rf voltage waveforms of up to 25 MHz. Following avalanche by electron impact ionization in the mDBD cavity, the plasma can be expelled from the cavity towards the extraction electrode during the part of the rf cycle when the extraction electrode appears anodic. The electron current extraction can be enhanced by biasing this electrode. The charge collection can be controlled by choice of rf frequency, rf driving voltage, and permittivity of the dielectric barrier.

  3. Metal-interconnection-free integration of InGaN/GaN light emitting diodes with AlGaN/GaN high electron mobility transistors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chao; Cai, Yuefei; Liu, Zhaojun; Ma, Jun; Lau, Kei May, E-mail: eekmlau@ust.hk [Photonics Technology Center, Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)

    2015-05-04

    We report a metal-interconnection-free integration scheme for InGaN/GaN light emitting diodes (LEDs) and AlGaN/GaN high electron mobility transistors (HEMTs) by combining selective epi removal (SER) and selective epitaxial growth (SEG) techniques. SER of HEMT epi was carried out first to expose the bottom unintentionally doped GaN buffer and the sidewall GaN channel. A LED structure was regrown in the SER region with the bottom n-type GaN layer (n-electrode of the LED) connected to the HEMTs laterally, enabling monolithic integration of the HEMTs and LEDs (HEMT-LED) without metal-interconnection. In addition to saving substrate real estate, minimal interface resistance between the regrown n-type GaN and the HEMT channel is a significant improvement over metal-interconnection. Furthermore, excellent off-state leakage characteristics of the driving transistor can also be guaranteed in such an integration scheme.

  4. Metal-interconnection-free integration of InGaN/GaN light emitting diodes with AlGaN/GaN high electron mobility transistors

    International Nuclear Information System (INIS)

    Liu, Chao; Cai, Yuefei; Liu, Zhaojun; Ma, Jun; Lau, Kei May

    2015-01-01

    We report a metal-interconnection-free integration scheme for InGaN/GaN light emitting diodes (LEDs) and AlGaN/GaN high electron mobility transistors (HEMTs) by combining selective epi removal (SER) and selective epitaxial growth (SEG) techniques. SER of HEMT epi was carried out first to expose the bottom unintentionally doped GaN buffer and the sidewall GaN channel. A LED structure was regrown in the SER region with the bottom n-type GaN layer (n-electrode of the LED) connected to the HEMTs laterally, enabling monolithic integration of the HEMTs and LEDs (HEMT-LED) without metal-interconnection. In addition to saving substrate real estate, minimal interface resistance between the regrown n-type GaN and the HEMT channel is a significant improvement over metal-interconnection. Furthermore, excellent off-state leakage characteristics of the driving transistor can also be guaranteed in such an integration scheme

  5. Experiment study on four button electrode used to monitor position of high current electron-beam

    International Nuclear Information System (INIS)

    Xu Tiezheng; Wang Huacen; Xie Yutong; Zhang Wenwei

    2004-01-01

    The button electrode is one that widely used in high energy accelerators, such as storage ring, and the button electrode has many merit like high accuracy, high resolution, resisting magnetic field, simple machinery, without magnetic core and low cost, etc. It's helpful that the button electrode is used as the beam position monitor in the linear induction accelerator. The experimental facilities have been designed and set up and it can simulate the beam of linear induction accelerator. The button electrode beam position monitor experiment have been done on the experimental facilities. The result of the experiment prove that the button electrode has an accuracy of 0.5 mm, and can reflect the wave of electron-beam accurately

  6. Optical radiation emitted by a silver surface bombarded by low-energy electrons

    International Nuclear Information System (INIS)

    Miserey, F.; Lebon, P.; Septier, A.; Trehin, F.; Beaugrand, C.

    1975-01-01

    Thick silver targets are obtained on flat glass discs by evaporation in a UHV cell (p -10 torr) and their optical coefficients measured by ellipsometry. A field-emission electron gun bombards a limited region of the target, corresponding to the entry pupil of a light spectrometer. Radiation emitted in the domain 250-600nm is analyzed for both normal and parallel polarizations. Spectral distributions of photons are obtained by using a very sensitive counting device including a multi channel analyzer. First experimental results concerning optical radiation generated by 6keV electrons are reported and compared to Transition Radiation and Bremsstrahlung theoretical spectra [fr

  7. Decoupling electron and ion storage and the path from interfacial storage to artificial electrodes

    Science.gov (United States)

    Chen, Chia-Chin; Maier, Joachim

    2018-02-01

    The requirements for rechargeable batteries place high demands on the electrodes. Efficient storage means accommodating both ions and electrons, not only in substantial amounts, but also with substantial velocities. The materials' space could be largely extended by decoupling the roles of ions and electrons such that transport and accommodation of ions take place in one phase of a composite, and transport and accommodation of electrons in the other phase. Here we discuss this synergistic concept being equally applicable for positive and negative electrodes along with examples from the literature for Li-based and Ag-based cells. Not only does the concept have the potential to mitigate the trade-off between power density and energy density, it also enables a generalized view of bulk and interfacial storage as necessary for nanocrystals. It furthermore allows for testable predictions of heterogeneous storage in passivation layers, dependence of transfer resistance on the state of charge, or heterogeneous storage of hydrogen at appropriate contacts. We also present an outlook on constructing artificial mixed-conductor electrodes that have the potential to achieve both high energy density and high power density.

  8. Direct transparent electrode patterning on layered GaN substrate by screen printing of indium tin oxide nanoparticle ink for Eu-doped GaN red light-emitting diode

    Science.gov (United States)

    Kashiwagi, Y.; Koizumi, A.; Takemura, Y.; Furuta, S.; Yamamoto, M.; Saitoh, M.; Takahashi, M.; Ohno, T.; Fujiwara, Y.; Murahashi, K.; Ohtsuka, K.; Nakamoto, M.

    2014-12-01

    Transparent electrodes were formed on Eu-doped GaN-based red-light-emitting diode (GaN:Eu LED) substrates by the screen printing of indium tin oxide nanoparticle (ITO np) inks as a wet process. The ITO nps with a mean diameter of 25 nm were synthesized by the controlled thermolysis of a mixture of indium complexes and tin complexes. After the direct screen printing of ITO np inks on GaN:Eu LED substrates and sintering at 850 °C for 10 min under atmospheric conditions, the resistivity of the ITO film was 5.2 mΩ cm. The fabricated LED up to 3 mm square surface emitted red light when the on-voltage was exceeded.

  9. The dynamic behavior of thin-film ionic transition metal complex-based light-emitting electrochemical cells

    Energy Technology Data Exchange (ETDEWEB)

    Meier, Sebastian B., E-mail: sebastian.meier@belectric.com, E-mail: wiebke.sarfert@siemens.com [Department of Materials Science VI: Materials for Electronics and Energy Technology, Friedrich-Alexander-University of Erlangen-Nuremberg, 91058 Erlangen (Germany); Siemens AG, Corporate Technology, CT RTC MAT IEC-DE, 91058 Erlangen (Germany); Hartmann, David; Sarfert, Wiebke, E-mail: sebastian.meier@belectric.com, E-mail: wiebke.sarfert@siemens.com [Siemens AG, Corporate Technology, CT RTC MAT IEC-DE, 91058 Erlangen (Germany); Winnacker, Albrecht [Department of Materials Science VI: Materials for Electronics and Energy Technology, Friedrich-Alexander-University of Erlangen-Nuremberg, 91058 Erlangen (Germany)

    2014-09-14

    Light-emitting electrochemical cells (LECs) have received increasing attention during recent years due to their simple architecture, based on solely air-stabile materials, and ease of manufacture in ambient atmosphere, using solution-based technologies. The LEC's active layer offers semiconducting, luminescent as well as ionic functionality resulting in device physical processes fundamentally different as compared with organic light-emitting diodes. During operation, electrical double layers (EDLs) form at the electrode interfaces as a consequence of ion accumulation and electrochemical doping sets in leading to the in situ development of a light-emitting p-i-n junction. In this paper, we comment on the use of impedance spectroscopy in combination with complex nonlinear squares fitting to derive key information about the latter events in thin-film ionic transition metal complex-based light-emitting electrochemical cells based on the model compound bis-2-phenylpyridine 6-phenyl-2,2´-bipyridine iridium(III) hexafluoridophosphate ([Ir(ppy)₂(pbpy)][PF₆]). At operating voltages below the bandgap potential of the ionic complex used, we obtain the dielectric constant of the active layer, the conductivity of mobile ions, the transference numbers of electrons and ions, and the thickness of the EDLs, whereas the transient thickness of the p-i-n junction is determined at voltages above the bandgap potential. Most importantly, we find that charge transport is dominated by the ions when carrier injection from the electrodes is prohibited, that ion movement is limited by the presence of transverse internal interfaces and that the width of the intrinsic region constitutes almost 60% of the total active layer thickness in steady state at a low operating voltage.

  10. Measurement of the transverse polarization of electrons emitted in free-neutron decay.

    Science.gov (United States)

    Kozela, A; Ban, G; Białek, A; Bodek, K; Gorel, P; Kirch, K; Kistryn, St; Kuźniak, M; Naviliat-Cuncic, O; Pulut, J; Severijns, N; Stephan, E; Zejma, J

    2009-05-01

    Both components of the transverse polarization of electrons (sigmaT1, sigmaT2) emitted in the beta-decay of polarized, free neutrons have been measured. The T-odd, P-odd correlation coefficient quantifying sigmaT2, perpendicular to the neutron polarization and electron momentum, was found to be R=0.008+/-0.015+/-0.005. This value is consistent with time reversal invariance and significantly improves limits on the relative strength of imaginary scalar couplings in the weak interaction. The value obtained for the correlation coefficient associated with sigmaT1, N=0.056+/-0.011+/-0.005, agrees with the Standard Model expectation, providing an important sensitivity test of the experimental setup.

  11. Transparent Electrodes for Efficient Optoelectronics

    KAUST Repository

    Morales-Masis, Monica

    2017-03-30

    With the development of new generations of optoelectronic devices that combine high performance and novel functionalities (e.g., flexibility/bendability, adaptability, semi or full transparency), several classes of transparent electrodes have been developed in recent years. These range from optimized transparent conductive oxides (TCOs), which are historically the most commonly used transparent electrodes, to new electrodes made from nano- and 2D materials (e.g., metal nanowire networks and graphene), and to hybrid electrodes that integrate TCOs or dielectrics with nanowires, metal grids, or ultrathin metal films. Here, the most relevant transparent electrodes developed to date are introduced, their fundamental properties are described, and their materials are classified according to specific application requirements in high efficiency solar cells and flexible organic light-emitting diodes (OLEDs). This information serves as a guideline for selecting and developing appropriate transparent electrodes according to intended application requirements and functionality.

  12. Transparent Electrodes for Efficient Optoelectronics

    KAUST Repository

    Morales-Masis, Monica; De Wolf, Stefaan; Woods-Robinson, Rachel; Ager, Joel W.; Ballif, Christophe

    2017-01-01

    With the development of new generations of optoelectronic devices that combine high performance and novel functionalities (e.g., flexibility/bendability, adaptability, semi or full transparency), several classes of transparent electrodes have been developed in recent years. These range from optimized transparent conductive oxides (TCOs), which are historically the most commonly used transparent electrodes, to new electrodes made from nano- and 2D materials (e.g., metal nanowire networks and graphene), and to hybrid electrodes that integrate TCOs or dielectrics with nanowires, metal grids, or ultrathin metal films. Here, the most relevant transparent electrodes developed to date are introduced, their fundamental properties are described, and their materials are classified according to specific application requirements in high efficiency solar cells and flexible organic light-emitting diodes (OLEDs). This information serves as a guideline for selecting and developing appropriate transparent electrodes according to intended application requirements and functionality.

  13. Ab initio investigation of barium-scandium-oxygen coatings on tungsten for electron emitting cathodes

    Science.gov (United States)

    Vlahos, Vasilios; Booske, John H.; Morgan, Dane

    2010-02-01

    Microwave, x-ray, and radio-frequency radiation sources require a cathode emitting electrons into vacuum. Thermionic B-type dispenser cathodes consist of BaxOz coatings on tungsten (W), where the surface coatings lower the W work function and enhance electron emission. The new and promising class of scandate cathodes modifies the B-type surface through inclusion of Sc, and their superior emissive properties are also believed to stem from the formation of a low work function surface alloy. In order to better understand these cathode systems, density-functional theory (DFT)-based ab initio modeling is used to explore the stability and work function of BaxScyOz on W(001) monolayer-type surface structures. It is demonstrated how surface depolarization effects can be calculated easily using ab initio calculations and fitted to an analytic depolarization equation. This approach enables the rapid extraction of the complete depolarization curve (work function versus coverage relation) from relatively few DFT calculations, useful for understanding and characterizing the emitting properties of novel cathode materials. It is generally believed that the B-type cathode has some concentration of Ba-O dimers on the W surface, although their structure is not known. Calculations suggest that tilted Ba-O dimers are the stable dimer surface configuration and can explain the observed work function reduction corresponding to various dimer coverages. Tilted Ba-O dimers represent a new surface coating structure not previously proposed for the activated B-type cathode. The thermodynamically stable phase of Ba and O on the W surface was identified to be the Ba0.25O configuration, possessing a significantly lower Φ value than any of the Ba-O dimer configurations investigated. The identification of a more stable Ba0.25O phase implies that if Ba-O dimers cover the surface of emitting B-type cathodes, then a nonequilibrium steady state must dominate the emitting surface. The identification of

  14. The effects of electrode materials on the conversion efficiency of a direct converter used in neutral beam injection systems

    International Nuclear Information System (INIS)

    Noda, Shunichi; Nagae, Hiroshi; Yano, Hidenobu; Masuda, Mitsuharu; Akazaki, Masanori

    1986-01-01

    The injection of fast neutral beams into plasmas is thought to be the most promising way for the fusion plasma heating. Fast neutral beams are obtained by injecting fast ions into a neutralizer cell, in which ions are neutralized through charge exchange collisions with the ambient gas. However, the neutralization efficiency in the neutralizer cell is so low that the net power may not be extracted from a fusion reactor unless the energy of the ions being not neutralized in the cell is recovered. The present paper describes some problems associated with the electrostatic direct energy recovery of fast ion beams for this purpose. The titanium and molybdenum were tested as the direct converter electrode materials, and it was found that the conversion efficiency and the conditioning process of the converter electrode depended strongly on the electrode material. The effect of secondary electrons emitted from the electron repeller on the conversion efficiency was also made clear in the present experiments. (author)

  15. WO3 nanorods-modified carbon electrode for sustained electron uptake from Shewanella oneidensis MR-1 with suppressed biofilm formation

    International Nuclear Information System (INIS)

    Zhang, Feng; Yuan, Shi-Jie; Li, Wen-Wei; Chen, Jie-Jie; Ko, Chi-Chiu; Yu, Han-Qing

    2015-01-01

    Highlights: • WO 3 nanorods-modified carbon paper was used as the anode of MFC. • WO 3 nanorods suppressed biofilm growth on the electrode surface. • Sustained electron transfer from cells to electrode via riboflavin was achieved. • C–WO 3 nanorods enable stable and efficient EET process in long-time operation. - Abstract: Carbon materials are widely used as electrodes for bioelectrochemical systems (BES). However, a thick biofilm tends to grow on the electrode surface during continuous operation, resulting in constrained transport of electrons and nutrients at the cell-electrode interface. In this work, we tackled this problem by adopting a WO 3 -nanorods modified carbon electrode (C–WO 3 nanorods), which completely suppressed the biofilm growth of Shewanella Oneidensis MR-1. Moreover, the C–WO 3 nanorods exhibited high electric conductivity and strong response to riboflavin. These two factors together make it possible for the C–WO 3 nanorods to maintain a sustained, efficient process of electron transfer from the MR-1 planktonic cells. As a consequence, the microbial fuel cells with C–WO 3 nanorods anode showed more stable performance than the pure carbon paper and WO 3 -nanoparticles systems in prolonged operation. This work suggests that WO 3 nanorods have the potential to be used as a robust and biofouling-resistant electrode material for practical bioelectrochemical applications

  16. Electrode structures of polymer-electrolyte fuel cells (PEFC). An electron microscopy approach to the characterization of the electrode structure of polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Scheiba, Frieder

    2009-01-28

    Polymer electrolyte fuel cells (PEFC) have a complex electrode structure, which usually consists of a catalyst, a catalyst support, a polymer electrolyte and pores. The materials used are largely amorphous, have a strong defective structure or have particle diameter of only a few nanometers. In the electrode the materials form highly disordered aggregated structures. Both aspects complicate a systematic structural analysis significantly. However, thorough knowledge of the electrode structure, is needed for systematic advancement of fuel cell technology and to obtain a better understanding of mass and charge carrier transport processes in the electrode. Because of the complex structure of the electrode, an approach based on the examination of electrode thin-sections by electron microscopy was chosen in this work to depicting the electrode structure experimentally. The present work presents these studies of the electrode structure. Some fundamental issues as the influence of the polymer electrolyte concentration and the polarity of the solvent used in the electrode manufacturing process were addressed. During the analysis particular attention was payed to the distribution and structure of the polymer electrolyte. A major problem to the investigations, were the low contrast between the polymer electrolyte, the catalyst support material and the embedding resin. Therefore, dilerent techniques were investigated in terms of their ability to improve the contrast. In this context, a computer-assisted acquisition procedure for energy filtered transmission electron microscopy (EF-TEM) was developed. The acquisition procedure permits a significant extension of the imageable sample. At the same time, it was possible to substantially reduce beam damage of the specimen and to minimize drift of the sample considerably. This allowed unambiguous identification of the polymer electrolyte in the electrode. It could further be shown, that the polymer electrolyte not only coats the

  17. Electronic Transport in Single Molecule Junctions: Control of the Molecule-Electrode Coupling Through Intramolecular Tunneling Barriers

    DEFF Research Database (Denmark)

    Danilov, Andrey; Kubatkin, Sergey; Kafanov, Sergey

    2008-01-01

    We report on single molecule electron transport measurements of two oligophenylenevinylene (OPV3) derivatives placed in a nanogap between gold (Au) or lead (Pb) electrodes in a field effect transistor device. Both derivatives contain thiol end groups that allow chemical binding to the electrodes....... One derivative has additional methylene groups separating the thiols from the delocalized -electron system. The insertion of methylene groups changes the open state conductance by 3-4 orders of magnitude and changes the transport mechanism from a coherent regime with finite zero-bias conductance...

  18. High-energy coherent terahertz radiation emitted by wide-angle electron beams from a laser-wakefield accelerator

    Science.gov (United States)

    Yang, Xue; Brunetti, Enrico; Jaroszynski, Dino A.

    2018-04-01

    High-charge electron beams produced by laser-wakefield accelerators are potentially novel, scalable sources of high-power terahertz radiation suitable for applications requiring high-intensity fields. When an intense laser pulse propagates in underdense plasma, it can generate femtosecond duration, self-injected picocoulomb electron bunches that accelerate on-axis to energies from 10s of MeV to several GeV, depending on laser intensity and plasma density. The process leading to the formation of the accelerating structure also generates non-injected, sub-picosecond duration, 1–2 MeV nanocoulomb electron beams emitted obliquely into a hollow cone around the laser propagation axis. These wide-angle beams are stable and depend weakly on laser and plasma parameters. Here we perform simulations to characterise the coherent transition radiation emitted by these beams if passed through a thin metal foil, or directly at the plasma–vacuum interface, showing that coherent terahertz radiation with 10s μJ to mJ-level energy can be produced with an optical to terahertz conversion efficiency up to 10‑4–10‑3.

  19. Virtual electrodes for high-density electrode arrays

    Science.gov (United States)

    Cela, Carlos J.; Lazzi, Gianluca

    2015-10-13

    The present embodiments are directed to implantable electrode arrays having virtual electrodes. The virtual electrodes may improve the resolution of the implantable electrode array without the burden of corresponding complexity of electronic circuitry and wiring. In a particular embodiment, a virtual electrode may include one or more passive elements to help steer current to a specific location between the active electrodes. For example, a passive element may be a metalized layer on a substrate that is adjacent to, but not directly connected to an active electrode. In certain embodiments, an active electrode may be directly coupled to a power source via a conductive connection. Beneficially, the passive elements may help to increase the overall resolution of the implantable array by providing additional stimulation points without requiring additional wiring or driver circuitry for the passive elements.

  20. Smooth-surface silver nanowire electrode with high conductivity and transparency on functional layer coated flexible film

    Energy Technology Data Exchange (ETDEWEB)

    Lee, So Hee; Lim, Sooman; Kim, Haekyoung, E-mail: hkkim@ynu.ac.kr

    2015-08-31

    Transparent conductive electrode (TCE) with silver nanowires has been widely studied as an alternative of indium tin oxide for flexible electronic or optical devices such as organic light-emitting diodes, and solar cells. However, it has an issue of surface roughness due to nanowire's intrinsic properties. Here, to achieve a smooth electrode with high conductivity and transmittance on polyethylene terephthalate (PET) substrates, a functional layer of poly(N-vinylpyrrolidone) (PVP) is utilized with a mechanical transfer process. The silver nanowire electrode on PVP-coated PET with low surface roughness of 9 nm exhibits the low sheet resistance of 18 Ω □{sup −1} and high transmittance of 87.6%. It is produced by transferring the silver nanowire electrode spin-coated on the glass to PVP-coated PET using a pressure of 10 MPa for 10 min. Silver nanowire electrode on PVP-coated PET demonstrates the stable sheet resistance of 18 Ω □{sup −1} after the mechanical taping test due to strong adhesion between PVP functional layer and silver nanowires. Smooth TCE with silver nanowires could be proposed as a transparent electrode for flexible electronic or optical devices, which consist of thin electrical active layers on TCE. - Highlights: • Silver nanowire (Ag NWs) transparent electrodes were fabricated on flexible film. • Flexible film was coated with poly N-vinylpyrrolidone (PVP). • PVP layer plays roles as an adhesive layer and matrix in electrode. • Ag NWs electrode exhibited with low surface roughness of 9 nm. • Ag NWs electrode has a low resistance (18 Ω ☐{sup −1}) and high transmittance (87.6%)

  1. Smooth-surface silver nanowire electrode with high conductivity and transparency on functional layer coated flexible film

    International Nuclear Information System (INIS)

    Lee, So Hee; Lim, Sooman; Kim, Haekyoung

    2015-01-01

    Transparent conductive electrode (TCE) with silver nanowires has been widely studied as an alternative of indium tin oxide for flexible electronic or optical devices such as organic light-emitting diodes, and solar cells. However, it has an issue of surface roughness due to nanowire's intrinsic properties. Here, to achieve a smooth electrode with high conductivity and transmittance on polyethylene terephthalate (PET) substrates, a functional layer of poly(N-vinylpyrrolidone) (PVP) is utilized with a mechanical transfer process. The silver nanowire electrode on PVP-coated PET with low surface roughness of 9 nm exhibits the low sheet resistance of 18 Ω □ −1 and high transmittance of 87.6%. It is produced by transferring the silver nanowire electrode spin-coated on the glass to PVP-coated PET using a pressure of 10 MPa for 10 min. Silver nanowire electrode on PVP-coated PET demonstrates the stable sheet resistance of 18 Ω □ −1 after the mechanical taping test due to strong adhesion between PVP functional layer and silver nanowires. Smooth TCE with silver nanowires could be proposed as a transparent electrode for flexible electronic or optical devices, which consist of thin electrical active layers on TCE. - Highlights: • Silver nanowire (Ag NWs) transparent electrodes were fabricated on flexible film. • Flexible film was coated with poly N-vinylpyrrolidone (PVP). • PVP layer plays roles as an adhesive layer and matrix in electrode. • Ag NWs electrode exhibited with low surface roughness of 9 nm. • Ag NWs electrode has a low resistance (18 Ω ☐ −1 ) and high transmittance (87.6%)

  2. Direct transparent electrode patterning on layered GaN substrate by screen printing of indium tin oxide nanoparticle ink for Eu-doped GaN red light-emitting diode

    International Nuclear Information System (INIS)

    Kashiwagi, Y.; Yamamoto, M.; Saitoh, M.; Takahashi, M.; Ohno, T.; Nakamoto, M.; Koizumi, A.; Fujiwara, Y.; Takemura, Y.; Murahashi, K.; Ohtsuka, K.; Furuta, S.

    2014-01-01

    Transparent electrodes were formed on Eu-doped GaN-based red-light-emitting diode (GaN:Eu LED) substrates by the screen printing of indium tin oxide nanoparticle (ITO np) inks as a wet process. The ITO nps with a mean diameter of 25 nm were synthesized by the controlled thermolysis of a mixture of indium complexes and tin complexes. After the direct screen printing of ITO np inks on GaN:Eu LED substrates and sintering at 850 °C for 10 min under atmospheric conditions, the resistivity of the ITO film was 5.2 mΩ cm. The fabricated LED up to 3 mm square surface emitted red light when the on-voltage was exceeded

  3. Direct transparent electrode patterning on layered GaN substrate by screen printing of indium tin oxide nanoparticle ink for Eu-doped GaN red light-emitting diode

    Energy Technology Data Exchange (ETDEWEB)

    Kashiwagi, Y., E-mail: kasiwagi@omtri.or.jp; Yamamoto, M.; Saitoh, M.; Takahashi, M.; Ohno, T.; Nakamoto, M. [Osaka Municipal Technical Research Institute, 1-6-50 Morinomiya, Joto-ku, Osaka 536-8553 (Japan); Koizumi, A.; Fujiwara, Y. [Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Takemura, Y.; Murahashi, K.; Ohtsuka, K. [Okuno Chemical Industries Co., Ltd., 2-1-25 Hanaten-nishi, Joto-ku, Osaka 536-0011 (Japan); Furuta, S. [Tomoe Works Co., Ltd., 7-13 Tsurumachi, Amagasaki 660-0092 (Japan)

    2014-12-01

    Transparent electrodes were formed on Eu-doped GaN-based red-light-emitting diode (GaN:Eu LED) substrates by the screen printing of indium tin oxide nanoparticle (ITO np) inks as a wet process. The ITO nps with a mean diameter of 25 nm were synthesized by the controlled thermolysis of a mixture of indium complexes and tin complexes. After the direct screen printing of ITO np inks on GaN:Eu LED substrates and sintering at 850 °C for 10 min under atmospheric conditions, the resistivity of the ITO film was 5.2 mΩ cm. The fabricated LED up to 3 mm square surface emitted red light when the on-voltage was exceeded.

  4. Low Energy Electron Gun on Board a Scientific Satellite GEOTAIL

    OpenAIRE

    TSUTSUI, Minoru; ONISHI, Yoshiaki; MATSUMOTO, Hiroshi; KIMURA, Iwane; 筒井, 稔; 大西, 嘉昭; 松本, 紘; 木村, 磐根

    1988-01-01

    A low energy electron gun to be used for beam-plasma interaction experiments by a scientific satellite GEOTAIL has been designed and manufactured. Electrodes of the gun have been modified from the Pierce type gun because of the use of a directly heated cathode. Spatial density distributions of beam electrons emitted from the new gun have been measured in a large vacuum chamber, and characteristic curves of emission currents for some beam energies and cathode powers have been checked repeatedl...

  5. Liquid metals as electrodes in polymer light emitting diodes

    NARCIS (Netherlands)

    Andersson, G.G.; Gommans, H.H.P.; Denier van der Gon, A.W.; Brongersma, H.H.

    2003-01-01

    We demonstrate that liquid metals can be used as cathodes in light emitting diodes (pLEDs). The main difference between the use of liquid cathodes and evaporated cathodes is the sharpness of the metal–polymer interface. Liquid metal cathodes result in significantly sharper metal–organic interfaces

  6. Modulating indium doped tin oxide electrode properties for laccase electron transfer enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Diaconu, Mirela [National Institute for Biological Sciences, Centre of Bioanalysis, 296 Spl. Independentei, Bucharest 060031 (Romania); Chira, Ana [National Institute for Biological Sciences, Centre of Bioanalysis, 296 Spl. Independentei, Bucharest 060031 (Romania); Politehnica University of Bucharest, Faculty of Applied Chemistry and Materials Science, 1-7 Polizu Str., 011061 (Romania); Radu, Lucian, E-mail: gl_radu@chim.upb.ro [Politehnica University of Bucharest, Faculty of Applied Chemistry and Materials Science, 1-7 Polizu Str., 011061 (Romania)

    2014-08-28

    Indium doped tin oxide (ITO) electrodes were functionalized with gold nanoparticles (GNPs) and cysteamine monolayer to enhance the heterogeneous electron transfer process of laccase from Trametes versicolor. The assembly of GNP on ITO support was performed through generation of H{sup +} species at the electrode surface by hydroquinone electrooxidation at 0.9 V vs Ag/AgCl. Uniform distribution of gold nanoparticle aggregates on electrode surfaces was confirmed by atomic force microscopy. The size of GNP aggregates was in the range of 200–500 nm. The enhanced charge transfer at the GNP functionalized ITO electrodes was observed by cyclic voltammetry (CV) and electrochemical impedance spectroscopy. Electrocatalytic behavior of laccase immobilized on ITO modified electrode toward oxygen reduction reaction was evaluated using CV in the presence of 2,2′-azino-bis 3-ethylbenzothiazoline-6-sulfuric acid (ABTS). The obtained sigmoidal-shaped voltammograms for ABTS reduction in oxygen saturated buffer solution are characteristic for a catalytic process. The intensity of catalytic current increased linearly with mediator concentration up to 6.2 × 10{sup −4} M. The registered voltammogram in the absence of ABTS mediator clearly showed a significant faradaic current which is the evidence of the interfacial oxygen reduction. - Highlights: • Assembly of gold nanoparticles on indium tin oxide support at positive potentials • Electrochemical and morphological evaluation of the gold nanoparticle layer assembly • Bioelectrocatalytic oxygen reduction on laccase modified electrode.

  7. Organic Light-Emitting Transistors: Materials, Device Configurations, and Operations.

    Science.gov (United States)

    Zhang, Congcong; Chen, Penglei; Hu, Wenping

    2016-03-09

    Organic light-emitting transistors (OLETs) represent an emerging class of organic optoelectronic devices, wherein the electrical switching capability of organic field-effect transistors (OFETs) and the light-generation capability of organic light-emitting diodes (OLEDs) are inherently incorporated in a single device. In contrast to conventional OFETs and OLEDs, the planar device geometry and the versatile multifunctional nature of OLETs not only endow them with numerous technological opportunities in the frontier fields of highly integrated organic electronics, but also render them ideal scientific scaffolds to address the fundamental physical events of organic semiconductors and devices. This review article summarizes the recent advancements on OLETs in light of materials, device configurations, operation conditions, etc. Diverse state-of-the-art protocols, including bulk heterojunction, layered heterojunction and laterally arranged heterojunction structures, as well as asymmetric source-drain electrodes, and innovative dielectric layers, which have been developed for the construction of qualified OLETs and for shedding new and deep light on the working principles of OLETs, are highlighted by addressing representative paradigms. This review intends to provide readers with a deeper understanding of the design of future OLETs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Physics of electron and lithium-ion transport in electrode materials for Li-ion batteries

    International Nuclear Information System (INIS)

    Wu Musheng; Xu Bo; Ouyang Chuying

    2016-01-01

    The physics of ionic and electrical conduction at electrode materials of lithium-ion batteries (LIBs) are briefly summarized here, besides, we review the current research on ionic and electrical conduction in electrode material incorporating experimental and simulation studies. Commercial LIBs have been widely used in portable electronic devices and are now developed for large-scale applications in hybrid electric vehicles (HEV) and stationary distributed power stations. However, due to the physical limits of the materials, the overall performance of today’s LIBs does not meet all the requirements for future applications, and the transport problem has been one of the main barriers to further improvement. The electron and Li-ion transport behaviors are important in determining the rate capacity of LIBs. (topical review)

  9. The impact of surface coverage on the kinetics of electron transfer through redox monolayers on a silicon electrode surface

    International Nuclear Information System (INIS)

    Ciampi, Simone; Choudhury, Moinul H.; Ahmad, Shahrul Ainliah Binti Alang; Darwish, Nadim; Brun, Anton Le; Gooding, J.Justin

    2015-01-01

    Graphical abstract: The impact of surface coverage on the kinetics of electron transfer through redox monolayers on a silicon electrode surface. ABSTRACT: The impact of the coverage of ferrocene moieties, attached to a silicon electrode modified via hydrosilylation of a dialkyne, on the kinetics of electron transfer between the redox species and the electrode is explored. The coverage of ferrocene is controlled by varying the coupling time between azidomethylferrocene and the distal alkyne of the monolayer via the copper assisted azide-alkyne cycloaddition reaction. All other variables in the surface preparation are maintained identical. What is observed is that the higher the surface coverage of the ferrocene moieties the faster the apparent rates of electron transfer. This surface coverage-dependent kinetic effect is attributed to electrons hopping between ferrocene moieties across the redox film toward hotspots for the electron transfer event. The origin of these hotspots is tentatively suggested to result from minor amounts of oxide on the underlying silicon surface that reduce the barrier for the electron transfer.

  10. The effects of electron and hole transport layer with the electrode work function on perovskite solar cells

    Science.gov (United States)

    Deng, Quanrong; Li, Yiqi; Chen, Lian; Wang, Shenggao; Wang, Geming; Sheng, Yonglong; Shao, Guosheng

    2016-09-01

    The effects of electron and hole transport layer with the electrode work function on perovskite solar cells with the interface defects were simulated by using analysis of microelectronic and photonic structures-one-dimensional (AMPS-1D) software. The simulation results suggest that TiO2 electron transport layer provides best device performance with conversion efficiency of 25.9% compared with ZnO and CdS. The threshold value of back electrode work function for Spiro-OMeTAD, NiO, CuI and Cu2O hole transport layer are calculated to be 4.9, 4.8, 4.7 and 4.9 eV, respectively, to reach the highest conversion efficiency. The mechanisms of device physics with various electron and hole transport materials are discussed in details. The device performance deteriorates gradually as the increased density of interface defects located at ETM/absorber or absorber/HTM. This research results can provide helpful guidance for materials and metal electrode choice for perovskite solar cells.

  11. New design of the pulsed electro-acoustic upper electrode for space charge measurements during electronic irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Riffaud, J.; Griseri, V.; Berquez, L. [UPS, LAPLACE, Université de Toulouse, 118 Route de Narbonne, Toulouse F-31062, France and CNRS, LAPLACE, Toulouse F-31062 (France)

    2016-07-15

    The behaviour of space charges injected in irradiated dielectrics has been studied for many years for space industry applications. In our case, the pulsed electro-acoustic method is chosen in order to determine the spatial distribution of injected electrons. The feasibility of a ring-shaped electrode which will allow the measurements during irradiation is presented. In this paper, a computer simulation is made in order to determine the parameters to design the electrode and find its position above the sample. The obtained experimental results on polyethylene naphthalate samples realized during electronic irradiation and through relaxation under vacuum will be presented and discussed.

  12. Overshoot effects of electron on efficiency droop in InGaN/GaN MQW light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yang; Liu, Zhiqiang, E-mail: lzq@semi.ac.cn, E-mail: spring@semi.ac.cn; Yi, Xiaoyan, E-mail: lzq@semi.ac.cn, E-mail: spring@semi.ac.cn; Guo, Yao; Wu, Shaoteng; Yuan, Guodong; Wang, JunXi; Wang, Guohong; Li, Jinmin [R& D Center for Semiconductor Lighting, Chinese Academy of Sciences, Beijing 100083 (China); State Key Laboratory of Solid State Lighting, Beijing 100083 (China); Beijing Engineering Research Center for the 3rd Generation Semiconductor Materials and Application, Beijing 100083 (China)

    2016-04-15

    To evaluate electron leakage in InGaN/GaN multiple quantum well (MQW) light emitting diodes (LEDs), analytic models of ballistic and quasi-ballistic transport are developed. With this model, the impact of critical variables effecting electron leakage, including the electron blocking layer (EBL), structure of multiple quantum wells (MQWs), polarization field, and temperature are explored. The simulated results based on this model shed light on previously reported experimental observations and provide basic criteria for suppressing electron leakage, advancing the design of InGaN/GaN LEDs.

  13. Top-Emitting White Organic Light-Emitting Diodes Based on Cu as Both Anode and Cathode

    International Nuclear Information System (INIS)

    Mu Ye; Zhang Zhen-Song; Wang Hong-Bo; Qu Da-Long; Wu Yu-Kun; Yan Ping-Rui; Li Chuan-Nan; Zhao Yi

    2015-01-01

    It is still challenging to obtain broadband emission covering visible light spectrum as much as possible with negligible angular dependence. In this work, we demonstrate a low driving voltage top-emitting white organic light-emitting diode (TEWOLED) based on complementary blue and yellow phosphor emitters with negligible angular dependence. The bottom copper anode with medium reflectance, which is compatible with the standard complementary metal oxide semiconductor (CMOS) technology below 0.13 μm, and the semitransparent multilayer Cs2CO3/Al/Cu cathode as a top electrode, are introduced to realize high-performance TEWOLED. Our TEWOLED achieves high efficiencies of 15.4 cd/A and 12.1 lm/W at a practical brightness of 1000 cd/m 2 at low voltage of 4 V. (paper)

  14. Tailoring of polarization in electron blocking layer for electron confinement and hole injection in ultraviolet light-emitting diodes

    International Nuclear Information System (INIS)

    Lu, Yu-Hsuan; Pilkuhn, Manfred H.; Fu, Yi-Keng; Chu, Mu-Tao; Huang, Shyh-Jer; Su, Yan-Kuin; Wang, Kang L.

    2014-01-01

    The influence of the AlGaN electron blocking layer (EBL) with graded aluminum composition on electron confinement and hole injection in AlGaN-based ultraviolet light-emitting diodes (LEDs) are investigated. The light output power of LED with graded AlGaN EBL was markedly improved, comparing to LED with conventional EBL. In experimental results, a high increment of 86.7% can be obtained in light output power. Simulation analysis shows that via proper modification of the barrier profile from the last barrier of the active region to EBL, not only the elimination of electron overflow to p-type layer can be achieved but also the hole injection into the active region can be enhanced, compared to a conventional LED structure. The dominant factor to the performance improvement is shown to be the modulation of polarization field by the graded Al composition in EBL

  15. Tailoring of polarization in electron blocking layer for electron confinement and hole injection in ultraviolet light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yu-Hsuan; Pilkuhn, Manfred H. [Department of Electrical Engineering, Institute of Microelectronics and Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 70101, Taiwan (China); Fu, Yi-Keng; Chu, Mu-Tao [Electronics and Optoelectronics Research Laboratories, Industrial Technology Research Institute, Hsinchu 31040, Taiwan (China); Huang, Shyh-Jer, E-mail: yksu@mail.ncku.edu.tw, E-mail: totaljer48@gmail.com [Department of Electrical Engineering, Institute of Microelectronics and Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 70101, Taiwan (China); Department of Electrical Engineering, University of California at Los Angeles, Los Angeles, California 90095 (United States); Su, Yan-Kuin, E-mail: yksu@mail.ncku.edu.tw, E-mail: totaljer48@gmail.com [Department of Electrical Engineering, Institute of Microelectronics and Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 70101, Taiwan (China); Department of Electronic Engineering, Kun-Shan University, Tainan 71003, Taiwan (China); Wang, Kang L. [Department of Electrical Engineering, University of California at Los Angeles, Los Angeles, California 90095 (United States)

    2014-03-21

    The influence of the AlGaN electron blocking layer (EBL) with graded aluminum composition on electron confinement and hole injection in AlGaN-based ultraviolet light-emitting diodes (LEDs) are investigated. The light output power of LED with graded AlGaN EBL was markedly improved, comparing to LED with conventional EBL. In experimental results, a high increment of 86.7% can be obtained in light output power. Simulation analysis shows that via proper modification of the barrier profile from the last barrier of the active region to EBL, not only the elimination of electron overflow to p-type layer can be achieved but also the hole injection into the active region can be enhanced, compared to a conventional LED structure. The dominant factor to the performance improvement is shown to be the modulation of polarization field by the graded Al composition in EBL.

  16. High-performance all-printed amorphous oxide FETs and logics with electronically compatible electrode/ channel interface.

    Science.gov (United States)

    Sharma, Bhupendra Kumar; Stoesser, Anna; Mondal, Sandeep Kumar; Garlapati, Suresh K; Fawey, Mohammed H; Chakravadhanula, Venkata Sai Kiran; Kruk, Robert; Hahn, Horst; Dasgupta, Subho

    2018-06-12

    Oxide semiconductors typically show superior device performance compared to amorphous silicon or organic counterparts, especially, when they are physical vapor deposited. However, it is not easy to reproduce identical device characteristics when the oxide field-effect transistors (FETs) are solution-processed/ printed; the level of complexity further intensifies with the need to print the passive elements as well. Here, we developed a protocol for designing the most electronically compatible electrode/ channel interface based on the judicious material selection. Exploiting this newly developed fabrication schemes, we are now able to demonstrate high-performance all-printed FETs and logic circuits using amorphous indium-gallium-zinc oxide (a-IGZO) semiconductor, indium tin oxide (ITO) as electrodes and composite solid polymer electrolyte as the gate insulator. Interestingly, all-printed FETs demonstrate an optimal electrical performance in terms of threshold voltages and device mobility and may very well be compared with devices fabricated using sputtered ITO electrodes. This observation originates from the selection of electrode/ channel materials from the same transparent semiconductor oxide family, resulting in the formation of In-Sn-Zn-O (ITZO) based diffused a-IGZO/ ITO interface that controls doping density while ensuring high electrical performance. Compressive spectroscopic studies reveal that Sn doping mediated excellent band alignment of IGZO with ITO electrodes is responsible for the excellent device performance observed. All-printed n-MOS based logic circuits have also been demonstrated towards new-generation portable electronics.

  17. How to emit a high-power electron beam from a magnetospheric spacecraft?

    Science.gov (United States)

    Delzanno, G. L.; Lucco Castello, F.; Borovsky, J.; Miars, G.; Leon, O.; Gilchrist, B. E.

    2017-12-01

    The idea of using a high-power electron beam to actively probe magnetic-field-line connectivity in space has been discussed since the 1970's. It could solve longstanding questions in magnetospheric/ionospheric physics by establishing causality between phenomena occurring in the magnetosphere and their image in the ionosphere. However, this idea has never been realized onboard a magnetospheric spacecraft because the tenuous magnetospheric plasma cannot provide the return current necessary to keep the charging of the spacecraft under control. Recently, Delzanno et al. [1] have proposed a spacecraft-charging mitigation scheme to enable the emission of a high-power electron beam from a magnetospheric spacecraft. It is based on the plasma contactor, i.e. a high-density neutral plasma emitted prior to and with the electron beam. The contactor acts as an ion emitter (not as an electron collector, as previously thought): a high ion current can be emitted off the quasi-spherical contactor surface, without the strong space-charge limitations typical of planar ion beams, and the electron-beam current can be successfully compensated. In this work, we will discuss our theoretical/simulation effort to improve the understanding of contactor-based ion emission. First, we will present a simple mathematical model useful for the interpretation of the results of [1]. The model is in spherical geometry and the contactor dynamics is described by only two surfaces (its quasi-neutral surface and the front of the outermost ions). It captures the results of self-consistent Particle-In-Cell (PIC) simulations with good accuracy and highlights the physics behind the charge-mitigation scheme clearly. PIC simulations connecting the 1D model to the actual geometry of the problem will be presented to obtain the scaling of the spacecraft potential varying contactor emission area. Finally, results for conditions relevant to an actual mission will also be discussed. [1] G. L. Delzanno, J. E. Borovsky

  18. Pierce electrodes for a multigap accelerating system

    International Nuclear Information System (INIS)

    Davydenko, V.I.; Ivanov, A.A.; Kotelnikov, I.A.; Tiunov, M.A.

    2007-01-01

    A well-known Pierce's solution that allows to focus a beam of charged particles using properly shaped electrodes outside the beam is generalized to the case of multigap accelerating system. Simple parametric formulae for Pierce electrodes are derived for an accelerating system with current density, limited either by space charge or by emitting property of the cathode. As an example of general approach, Pierce electrodes shape is analyzed for a system with two accelerating gaps. It is shown that precise Pierce's solution exists if acceleration rate within second gap is lower than within first gap. In the opposite case quasi-Pierce solution can be implemented using non-equipotential electrode between the gaps, and guidelines, based on numerical simulations, for the design of equipotential focusing electrodes are given

  19. Electron irradiation of near-UV GaN/InGaN light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, In-Hwan; Cho, Han-Su [Department of Materials Science and Engineering, Korea University, Seoul (Korea, Republic of); Polyakov, Alexander Y.; Smirnov, N.B.; Shchemerov, I.V.; Zinovyev, R.A.; Didenko, S.I.; Lagov, P.B. [National University of Science and Technology MISiS, Moscow (Russian Federation); Shmidt, N.M.; Shabunina, E.I. [Ioffe Physico-Technical Institute, St. Petersburg (Russian Federation); Tal' nishnih, N.A. [Submicron Heterostructures for Microelectronics Research and Engineering Center, St. Petersburg (Russian Federation); Hwang, Sung-Min [Soft-Epi, Inc., Opo-ro 240, Gwangju-si, Gyeonggi-do (Korea, Republic of); Pearton, S.J. [Department of Materials Science and Engineering, University of Florida, Gainesville, FL (United States)

    2017-10-15

    Irradiation with 6 MeV electrons of near-UV (peak wavelength 385-390 nm) multi-quantum-well (MQW) GaN/InGaN light emitting diodes (LEDs) causes an increase in density of deep electron traps near E{sub c} -0.8 and E{sub c} -1 eV, and correlates to a 90% decrease of electroluminescence (EL) efficiency after a fluence of 1.1 x 10{sup 16} cm{sup -2}. The likely origin of the EL efficiency decrease is this increase in concentration of the E{sub c} -0.8 eV and E{sub c} -1 eV traps. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Operation of a novel hot-electron vertical-cavity surface-emitting laser

    Science.gov (United States)

    Balkan, Naci; O'Brien-Davies, Angela; Thoms, A. B.; Potter, Richard J.; Poolton, Nigel; Adams, Michael J.; Masum, J.; Bek, Alpan; Serpenguzel, Ali; Aydinli, Atilla; Roberts, John S.

    1998-07-01

    The hot Electron Light Emission and Lasing in Semiconductor Heterostructures devices (HELLISH-1) is novel surface emitter consisting of a GaAs quantum well, within the depletion region, on the n side of Ga1-xAlxAs p- n junction. It utilizes hot electron transport parallel to the layers and injection of hot electron hole pairs into the quantum well through a combination of mechanisms including tunnelling, thermionic emission and diffusion of `lucky' carriers. Super Radiant HELLISH-1 is an advanced structure incorporating a lower distributed Bragg reflector (DBR). Combined with the finite reflectivity of the upper semiconductor-air interface reflectivity it defines a quasi- resonant cavity enabling emission output from the top surface with a higher spectral purity. The output power has increased by two orders of magnitude and reduced the full width at half maximum (FWHM) to 20 nm. An upper DBR added to the structure defines HELLISH-VCSEL which is currently the first operational hot electron surface emitting laser and lases at room temperature with a 1.5 nm FWHM. In this work we demonstrate and compare the operation of UB-HELLISH-1 and HELLISH-VCSEL using experimental and theoretical reflectivity spectra over an extensive temperature range.

  1. Tunable blue organic light emitting diode based on aluminum calixarene supramolecular complex

    Science.gov (United States)

    Legnani, C.; Reyes, R.; Cremona, M.; Bagatin, I. A.; Toma, H. E.

    2004-07-01

    In this letter, the results of supramolecular organic light emitting diodes using a calix[4] arene complex thin film as emitter and electron transporting layer are presented. The devices were grown onto glass substrates coated with indium-tin-oxide layer and aluminum thick (150nm) cathode. By applying a dc voltage between the device electrodes in forward bias condition, a blue light emission in the active area of the device was observed. It was found that the electroluminescent emission peak can be tuned between 470 and 510nm changing the applied voltage bias from 4.3 to 5.4V. The observed tunable emission can be associated with an energy transfer from the calixarene compound.

  2. Comparison of Enamel and Stainless Steel Electron Cloud Clearing Electrodes Tested in the CERN Proton Synchrotron

    CERN Document Server

    Caspers, Friedhelm; Mahner, C; Wendel, JC

    2010-01-01

    During the 2007 run with the nominal LHC proton beam, electron cloud has been clearly identified and characterized in the PS using a dedicated setup with shielded button-type pickups. Efficient electron cloud suppression could be achieved with a stainless steel stripline-type electrode biased to negative and positive voltages up to ± 1 kV. For the 2008 run, a second setup was installed in straight section 84 of the PS where the stainless steel was replaced by a stripline composed of an enamel insulator with a resistive coating. In contrast to ordinary stripline electrodes this setup presents a very low beam coupling impedance and could thus be envisaged for long sections of high-intensity machines. Here, we present first comparative measurements with this new type of enamel clearing electrode using the nominal LHC beam with 72 bunches and 25 ns bunch spacing.

  3. Salt-Doped Polymer Light-Emitting Devices

    Science.gov (United States)

    Gautier, Bathilde

    Polymer Light-Emitting Electrochemical Cells (PLECs) are solid state devices based on the in situ electrochemical doping of the luminescent polymer and the formation of a p-n junction where light is emitted upon the application of a bias current or voltage. PLECs answer the drawbacks of polymer light-emitting diodes as they do not require an ultra-thin active layer nor are they reliant on low work function cathode materials that are air unstable. However, because of the dynamic nature of the doping, they suffer from slow response times and poor stability over time. Frozen-junction PLECs offer a solution to these drawbacks, yet they are impractical due to their sub-ambient operation temperature requirement. Our work presented henceforth aims to achieve room temperature frozen-junction PLECS. In order to do that we removed the ion solvating/transporting polymer from the active layer, resulting in a luminescent polymer combined solely with a salt sandwiched between an ITO electrode and an aluminum electrode. The resulting device was not expected to operate like a PLEC due to the absence of an ion-solvating and ion-transporting medium. However, we discovered that the polymer/salt devices could be activated by applying a large voltage bias, resulting in much higher current and luminance. More important, the activated state is quasi static. Devices based on the well-known orange-emitting polymer MEH-PPV displayed a luminance storage half-life of 150 hours when activated by forward bias (ITO biased positively with respect to the aluminum) and 200 hours when activated by reverse bias. More remarkable yet, devices based on a green co-polymer displayed no notable decay in current density or luminance even after being stored for 1200 hours at room temperature! PL imaging under UV excitation demonstrates the presence of doping. These devices are described herein along with an explanation of their operating mechanisms.

  4. Highly transparent, low-haze, hybrid cellulose nanopaper as electrodes for flexible electronics

    Science.gov (United States)

    Xuezhu Xu; Jian Zhou; Long Jiang; Gilles Lubineau; Tienkhee Ng; Boon S. Ooi; Hsien-Yu Liao; Chao Shen; Long Chen; Junyong Zhu

    2016-01-01

    Paper is an excellent candidate to replace plastics as a substrate for flexible electronics due to its low cost, renewability and flexibility. Cellulose nanopaper (CNP), a new type of paper made of nanosized cellulose fibers, is a promising substrate material for transparent and flexible electrodes due to its potentially high transparency and high mechanical strength....

  5. Shape of electron lines emitted by a fast particle in atomic collisions. Influence of the acceptance function

    International Nuclear Information System (INIS)

    Bordenave-Montesquieu, A.; Gleizes, A.; Benoit-Cattin, P.; Boudjema, M.

    1980-01-01

    In order to explain the large energy broadening of the lines observed in energy spectra of electrons emitted by fast particles, an accurate knowledge of the angular acceptance function of the electron energy analyser is necessary. A simple method is proposed which can give an accurate function for most atomic collisions: the various approximations are discussed. It is also shown that the analyser transmission depends on the acceptance angle. (author)

  6. Auger Emitting Radiopharmaceuticals for Cancer Therapy

    Science.gov (United States)

    Falzone, Nadia; Cornelissen, Bart; Vallis, Katherine A.

    Radionuclides that emit Auger electrons have been of particular interest as therapeutic agents. This is primarily due to the short range in tissue, controlled linear paths and high linear energy transfer of these particles. Taking into consideration that ionizations are clustered within several cubic nanometers around the point of decay the possibility of incorporating an Auger emitter in close proximity to the cancer cell DNA has immense therapeutic potential thus making nuclear targeted Auger-electron emitters ideal for precise targeting of cancer cells. Furthermore, many Auger-electron emitters also emit γ-radiation, this property makes Auger emitting radionuclides a very attractive option as therapeutic and diagnostic agents in the molecular imaging and management of tumors. The first requirement for the delivery of Auger emitting nuclides is the definition of suitable tumor-selective delivery vehicles to avoid normal tissue toxicity. One of the main challenges of targeted radionuclide therapy remains in matching the physical and chemical characteristics of the radionuclide and targeting moiety with the clinical character of the tumor. Molecules and molecular targets that have been used in the past can be classified according to the carrier molecule used to deliver the Auger-electron-emitting radionuclide. These include (1) antibodies, (2) peptides, (3) small molecules, (4) oligonucleotides and peptide nucleic acids (PNAs), (5) proteins, and (6) nanoparticles. The efficacy of targeted radionuclide therapy depends greatly on the ability to increase intranuclear incorporation of the radiopharmaceutical without compromising toxicity. Several strategies to achieve this goal have been proposed in literature. The possibility of transferring tumor therapy based on the emission of Auger electrons from experimental models to patients has vast therapeutic potential, and remains a field of intense research.

  7. Arbitrary helicity control of circularly polarized light from lateral-type spin-polarized light-emitting diodes at room temperature

    Science.gov (United States)

    Nishizawa, Nozomi; Aoyama, Masaki; Roca, Ronel C.; Nishibayashi, Kazuhiro; Munekata, Hiro

    2018-05-01

    We demonstrate arbitrary helicity control of circularly polarized light (CPL) emitted at room temperature from the cleaved side facet of a lateral-type spin-polarized light-emitting diode (spin-LED) with two ferromagnetic electrodes in an antiparallel magnetization configuration. Driving alternate currents through the two electrodes results in polarization switching of CPL with frequencies up to 100 kHz. Furthermore, tuning the current density ratio in the two electrodes enables manipulation of the degree of circular polarization. These results demonstrate arbitrary electrical control of polarization with high speed, which is required for the practical use of lateral-type spin-LEDs as monolithic CPL light sources.

  8. Electron emission and plasma generation in a modulator electron gun using ferroelectric cathode

    International Nuclear Information System (INIS)

    Chen Shutao; Zheng Shuxin; Zhu Ziqiu; Dong Xianlin; Tang Chuanxiang

    2006-01-01

    Strong electron emission and dense plasma generation have been observed in a modulator electron gun with a Ba 0.67 Sr 0.33 TiO 3 ferroelectric cathode. Parameter of the modulator electron gun and lifetime of the ferroelectric cathode were investigated. It was shown that electron emission from Ba 0.67 Sr 0.33 TiO 3 cathode with a positive triggering pulse is a sort of plasma emission. Electrons were emitted by the co-effect of surface plasma and non-compensated negative polarization charges at the surface of the ferroelectric. The element analyses of the graphite collector after emission process was performed to show the ingredient of the plasma consist of Ba, Ti and Cu heavy cations of the ceramic compound and electrode. It was demonstrated the validity of the Child-Langmuir law by introducing the decrease of vacuum gap and increase of emission area caused by the expansion of the surface plasma

  9. Secondary-electron-emission losses in multistage depressed collectors and traveling-wave-tube efficiency improvements with carbon collector electrode surfaces

    Science.gov (United States)

    Ramins, P.; Ebihara, B. T.

    1986-01-01

    Secondary-electron-emission losses in multistage depressed collectors (MDC's) and their effects on overall traveling-wave-tube (TWT) efficiency were investigated. Two representative TWT's and several computer-modeled MDC's were used. The experimental techniques provide the measurement of both the TWT overall and the collector efficiencies. The TWT-MDC performance was optimized and measured over a wide range of operating conditions, with geometrically identical collectors, which utilized different electrode surface materials. Comparisons of the performance of copper electrodes to that of various forms of carbon, including pyrolytic and iisotropic graphites, were stressed. The results indicate that: (1) a significant improvement in the TWT overall efficiency was obtained in all cases by the use of carbon, rather than copper electrodes, and (2) that the extent of this efficiency enhancement depended on the characteristics of the TWT, the TWT operating point, the MDC design, and collector voltages. Ion textured graphite was found to be particularly effective in minimizing the secondary-electron-emission losses. Experimental and analytical results, however, indicate that it is at least as important to provide a maximum amount of electrostatic suppression of secondary electrons by proper MDC design. Such suppression, which is obtained by ensuring that a substantial suppressing electric field exists over the regions of the electrodes where most of the current is incident, was found to be very effective. Experimental results indicate that, with proper MDC design and the use of electrode surfaces with low secondary-electron yield, degradation of the collector efficiency can be limited to a few percent.

  10. Enhancing Carrier Injection Using Graded Superlattice Electron Blocking Layer for UVB Light-Emitting Diodes

    KAUST Repository

    Janjua, Bilal

    2014-12-01

    We have studied enhanced carrier injection by having an electron blocking layer (EBL) based on a graded superlattice (SL) design. Here, we examine, using a selfconsistent 6 × 6 k.p method, the energy band alignment diagrams under equilibrium and forward bias conditions while also considering carrier distribution and recombination rates (Shockley-Read-Hall, Auger, and radiative recombination rates). The graded SL is based on AlxGa1-xN (larger bandgap) Al0:5Ga0:5N (smaller bandgap) SL, where x is changed from 0.8 to 0.56 in steps of 0.06. Graded SL was found to be effective in reducing electron leakage and enhancing hole injection into the active region. Due to our band engineering scheme for EBL, four orders-of-magnitude enhancement were observed in the direct recombination rate, as compared with the conventional bulk EBL consisting of Al0:8Ga0:2N. An increase in the spatial overlap of carrier wavefunction was obtained due to polarization-induced band bending in the active region. An efficient single quantum-well ultraviolet-B light-emitting diode was designed, which emits at 280 nm. This is the effective wavelength for water disinfection application, among others.

  11. Direct Observation of Virtual Electrode Formation Through a Novel Electrolyte-to-Electrode Transition

    Science.gov (United States)

    Siegel, David; El Gabaly, Farid; Bartelt, Norman; McCarty, Kevin

    2014-03-01

    Novel electrochemical solutions to problems in energy storage and transportation can drive renewable energy to become an economically viable alternative to fossil fuels. In many electrochemical systems, the behavior of a device can be fundamentally limited by the surface area of a triple phase boundary, the boundary region where a gas-phase species, electrode, and electrolyte coincide. When the electrode is an ionic insulator the triple phase boundary is typically a one-dimensional boundary with nanometer-scale thickness: ions cannot transport through the electrode, while electrons cannot be transported through the electrolyte. Here we present direct experimental measurements of a novel electrolyte-to-electrode transition with photoemission electron microscopy, and observe that the surface of an ionically conductive, electronically insulative solid oxide electrolyte undergoes a transition into a mixed electron-ion conductor in the vicinity of a metal electrode. Our direct experimental measurements allow us to characterize this system and address the mechanisms of ionic reactions and transport through comparisons with theoretical modeling to provide us with a physical picture of the processes involved. Our results provide insight into one of the mechanisms of ion transport in an electrochemical cell that may be generalizable to other systems.

  12. Electron emission from MOS electron emitters with clean and cesium covered gold surface

    DEFF Research Database (Denmark)

    Nielsen, Gunver; Thomsen, Lasse Bjørchmar; Johansson, Martin

    2009-01-01

    MOS (metal-oxide-semiconductor) electron emitters consisting of a Si substrate, a SiO2 tunnel barrier and a Ti (1 nm)/Au(7 nm) top-electrode, with an active area of 1 cm(2) have been produced and studied with surface science techniques under UHV (ultra high vacuum) conditions and their emission...... characteristics have been investigated. It is known, that deposition of an alkali metal on the emitting surface lowers the work function and increases the emission efficiency. For increasing Cs coverages the surface has been characterized by X-ray Photoelectron Spectroscopy (XPS), Ion Scattering Spectroscopy (ISS...

  13. Electron guns for accelerators

    International Nuclear Information System (INIS)

    Rangarajan, L.M.; Mahadevan, S.; Ramamurthi, S.S.

    1995-01-01

    The high voltage, high current electron guns developed elsewhere for Linacs are based on cathode pulsing with direct emitting cathodes. Our grid pulsed triode gun employs indirect emitting cathode pellet under electron bombardment or a direct cathode emitter. Electron beam from the gun is injected to the accelerator guide at 40 kV and pulse duration is 2.8μsec. The gun is limited to axially symmetric geometry and electron optical design is optimized by computer programming. The gun with a water cooled Faraday cup is connected to a vacuum system comprising of a sputter ion pump and sorption pump. Working pressure is 1x10 -6 Pa. Gun is designed to be baked as an assembly at temperatures of 400 degC while vacuum processing. Materials are therefore restricted to refractory metals, SS, OFHC copper and all the electrodes are housed inside a ceramic tube. Lower Z graphite is used as a base material of Faraday cup. Grid is non-intercepting modulator anode, a new feature introduced, as compared to meshed grid system by others. CAT gun delivers 160 mA current pulses at 40 kV and its working characteristics such as perveance, emittance and beam radius compare well with SLAC and Hermosa guns. The above guns can be used for electron beam machines such as medical Linacs, industrial accelerators and EB welding equipment. (author). 2 refs., 2 figs

  14. Polarized electrode enhances biological direct interspecies electron transfer for methane production in upflow anaerobic bioelectrochemical reactor.

    Science.gov (United States)

    Feng, Qing; Song, Young-Chae; Yoo, Kyuseon; Kuppanan, Nanthakumar; Subudhi, Sanjukta; Lal, Banwari

    2018-08-01

    The influence of polarized electrodes on the methane production, which depends on the sludge concentration, was investigated in upflow anaerobic bioelectrochemical (UABE) reactor. When the polarized electrode was placed in the bottom zone with a high sludge concentration, the methane production was 5.34 L/L.d, which was 53% higher than upflow anaerobic sludge blanket (UASB) reactor. However, the methane production was reduced to 4.34 L/L.d by placing the electrode in the upper zone of the UABE reactor with lower sludge concentration. In the UABE reactor, the methane production was mainly improved by the enhanced biological direct interspecies electron transfer (bDIET) pathway, and the methane production via the electrode was a minor fraction of less than 4% of total methane production. The polarized electrodes that placed in the bottom zone with a high sludge concentration enhance the bDIET for methane production in the UABE reactor and greatly improve the methane production. Copyright © 2018. Published by Elsevier Ltd.

  15. Investigation of ITO free transparent conducting polymer based electrode

    Science.gov (United States)

    Sharma, Vikas; Sapna, Sachdev, Kanupriya

    2016-05-01

    The last few decades have seen a significant improvement in organic semiconductor technology related to solar cell, light emitting diode and display panels. The material and structure of the transparent electrode is one of the major concerns for superior performance of devices such as OPV, OLED, touch screen and LCD display. Commonly used ITO is now restricted due to scarcity of indium, its poor mechanical properties and rigidity, and mismatch of energy levels with the active layer. Nowadays DMD (dielectric-metal-dielectric) structure is one of the prominent candidates as alternatives to ITO based electrode. We have used solution based spin coated polymer layer as the dielectric layer with silver thin film embedded in between to make a polymer-metal-polymer (PMP) structure for TCE applications. The PMP structure shows low resistivity (2.3 x 10-4Ω-cm), high carrier concentration (2.9 x 1021 cm-3) and moderate transparency. The multilayer PMP structure is characterized with XRD, AFM and Hall measurement to prove its suitability for opto-electronic device applications.

  16. Investigation of ITO free transparent conducting polymer based electrode

    International Nuclear Information System (INIS)

    Sharma, Vikas; Sapna,; Sachdev, Kanupriya

    2016-01-01

    The last few decades have seen a significant improvement in organic semiconductor technology related to solar cell, light emitting diode and display panels. The material and structure of the transparent electrode is one of the major concerns for superior performance of devices such as OPV, OLED, touch screen and LCD display. Commonly used ITO is now restricted due to scarcity of indium, its poor mechanical properties and rigidity, and mismatch of energy levels with the active layer. Nowadays DMD (dielectric-metal-dielectric) structure is one of the prominent candidates as alternatives to ITO based electrode. We have used solution based spin coated polymer layer as the dielectric layer with silver thin film embedded in between to make a polymer-metal-polymer (PMP) structure for TCE applications. The PMP structure shows low resistivity (2.3 x 10"−"4Ω-cm), high carrier concentration (2.9 x 10"2"1 cm"−"3) and moderate transparency. The multilayer PMP structure is characterized with XRD, AFM and Hall measurement to prove its suitability for opto-electronic device applications.

  17. Investigation of ITO free transparent conducting polymer based electrode

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Vikas; Sapna,; Sachdev, Kanupriya [Department of Physics, Malaviya National Institute of Technology Jaipur, JLN Marg, Jaipur-India-302017 (India)

    2016-05-23

    The last few decades have seen a significant improvement in organic semiconductor technology related to solar cell, light emitting diode and display panels. The material and structure of the transparent electrode is one of the major concerns for superior performance of devices such as OPV, OLED, touch screen and LCD display. Commonly used ITO is now restricted due to scarcity of indium, its poor mechanical properties and rigidity, and mismatch of energy levels with the active layer. Nowadays DMD (dielectric-metal-dielectric) structure is one of the prominent candidates as alternatives to ITO based electrode. We have used solution based spin coated polymer layer as the dielectric layer with silver thin film embedded in between to make a polymer-metal-polymer (PMP) structure for TCE applications. The PMP structure shows low resistivity (2.3 x 10{sup −4}Ω-cm), high carrier concentration (2.9 x 10{sup 21} cm{sup −3}) and moderate transparency. The multilayer PMP structure is characterized with XRD, AFM and Hall measurement to prove its suitability for opto-electronic device applications.

  18. Light Emitting, Photovoltaic or Other Electronic Apparatus and System

    Science.gov (United States)

    Ray, William Johnstone (Inventor); Lowenthal, Mark D. (Inventor); Shotton, Neil O. (Inventor); Blanchard, Richard A. (Inventor); Lewandowski, Mark Allan (Inventor); Fuller, Kirk A. (Inventor); Frazier, Donald Odell (Inventor)

    2018-01-01

    The present invention provides an electronic apparatus, such as a lighting device comprised of light emitting diodes (LEDs) or a power generating apparatus comprising photovoltaic diodes, which may be created through a printing process, using a semiconductor or other substrate particle ink or suspension and using a lens particle ink or suspension. An exemplary apparatus comprises a base; at least one first conductor; a plurality of diodes coupled to the at least one first conductor; at least one second conductor coupled to the plurality of diodes; and a plurality of lenses suspended in a polymer deposited or attached over the diodes. The lenses and the suspending polymer have different indices of refraction. In some embodiments, the lenses and diodes are substantially spherical, and have a ratio of mean diameters or lengths between about 10:1 and 2:1. The diodes may be LEDs or photovoltaic diodes, and in some embodiments, have a junction formed at least partially as a hemispherical shell or cap.

  19. Controlled Vectorial Electron Transfer and Photoelectrochemical Applications of Layered Relay/Photosensitizer-Imprinted Au Nanoparticle Architectures on Electrodes.

    Science.gov (United States)

    Metzger, Tzuriel S; Tel-Vered, Ran; Willner, Itamar

    2016-03-23

    Two configurations of molecularly imprinted bis-aniline-bridged Au nanoparticles (NPs) for the specific binding of the electron acceptor N,N'-dimethyl-4,4'-bipyridinium (MV(2+) ) and for the photosensitizer Zn(II)-protoporphyrin IX (Zn(II)-PP-IX) are assembled on electrodes, and the photoelectrochemical features of the two configurations are discussed. Configuration I includes the MV(2+) -imprinted Au NPs matrix as a base layer, on which the Zn(II)-PP-IX-imprinted Au NPs layer is deposited, while configuration II consists of a bilayer corresponding to the reversed imprinting order. Irradiation of the two electrodes in the presence of a benzoquinone/benzohydroquinone redox probe yields photocurrents of unique features: (i) Whereas configuration I yields an anodic photocurrent, the photocurrent generated by configuration II is cathodic. (ii) The photocurrents obtained upon irradiation of the imprinted electrodes are substantially higher as compared to the nonimprinted surfaces. The high photocurrents generated by the imprinted Au NPs-modified electrodes are attributed to the effective loading of the imprinted matrices with the MV(2+) and Zn(II)-PP-IX units and to the effective charge separation proceeding in the systems. The directional anodic/cathodic photocurrents are rationalized in terms of vectorial electron transfer processes dictated by the imprinting order and by the redox potentials of the photosensitizer/electron acceptor units associated with the imprinted sites in the two configurations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Manipulating the Local Light Emission in Organic Light-Emitting Diodes by using Patterned Self-Assembled Monolayers

    NARCIS (Netherlands)

    Mathijssen, S.G.J.; Hal, P.A. van; Biggelaar, T.J.M. van den; Smits, E.C.P.; Boer, B. de; Kemerink, M.; Janssen, R.A.J.; Leeuw, D.M. de

    2008-01-01

    In organic light-emitting diodes (OLEDs), interface dipoles play an important role in the process of charge injection from the metallic electrode into the active organic layer.[1,2] An oriented dipole layer changes the effective work function of the electrode because of its internal electric field.

  1. Laccase on Black Pearl 2000 modified glassy carbon electrode: Characterization of direct electron transfer and biological sensing properties for pyrocatechol

    International Nuclear Information System (INIS)

    Wang Kunqi; Tang Juan; Zhang Zuoming; Gao Ying; Chen Gang

    2012-01-01

    Highlights: ► Laccase can complete direct electron transfer process on BP2000 matrices. ► Laccase immobilized on BP2000 matrices has catalytic oxidation effect to pyrocatechol. ► A pyrocatechol biosensor has constructed been using Nafion/Lac-BP2000/GC electrode. ► Detection limit and linear range of the biosensor are 0.003 mM and 0.003–5.555 mM. - Abstract: In this paper, it was found that Laccase (Lac) could be stably immobilized on the glassy carbon electrode modified with Black Pearl 2000 (BP2000) and Nafion by a simple technique. The adsorption behavior of Lac immobilized on BP2000 matrix was characterized by environment scanning electron microscope (ESEM), ultraviolet–visible (UV–vis) and Fourier transform infrared (FTIR), which demonstrated that BP2000 could facilitate the electron exchange between the active center of Lac and modified electrode. The direct electrochemistry and electrocatalysis behavior of Lac on the modified electrode were characterized by cyclic voltammogram (CV) which indicated that Lac immobilized on the modified electrode displayed a direct, nearly reversible and surface-controlled redox reaction with an enhanced electron-transfer rate constant of 1.940 s −1 at the scan rate of 100 mV s −1 in 0.1 M phosphate buffer solution (PBS) (pH 7.0). Furthermore, it was also discovered that, in the presence of O 2 , Lac immobilized on the modified electrode exhibited the electrocatalytic response to pyrocatechol, and the kinetic apparent Michaelis-constant (K M app ) obtained from the Lineweaver–Burk equation was 1.79 mM. The detection limit, linear range and sensitivity of the Lac biosensor were 0.003 mM, 0.003–5.555 mM and 99.84 μA mM −1 cm −2 , respectively.

  2. Performance Enhancement of Organic Light-Emitting Diodes Using Electron-Injection Materials of Metal Carbonates

    Science.gov (United States)

    Shin, Jong-Yeol; Kim, Tae Wan; Kim, Gwi-Yeol; Lee, Su-Min; Shrestha, Bhanu; Hong, Jin-Woong

    2016-05-01

    Performance of organic light-emitting diodes was investigated depending on the electron-injection materials of metal carbonates (Li2CO3 and Cs2CO3 ); and number of layers. In order to improve the device efficiency, two types of devices were manufactured by using the hole-injection material (Teflon-amorphous fluoropolymer -AF) and electron-injection materials; one is a two-layer reference device ( ITO/Teflon-AF/Alq3/Al ) and the other is a three-layer device (ITO/Teflon-AF/Alq3/metal carbonate/Al). From the results of the efficiency for the devices with hole-injection layer and electron-injection layer, it was found that the electron-injection layer affects the electrical properties of the device more than the hole-injection layer. The external-quantum efficiency for the three-layer device with Li2CO3 and Cs2CO3 layer is improved by approximately six and eight times, respectively, compared with that of the two-layer reference device. It is thought that a use of electron-injection layer increases recombination rate of charge carriers by the active injection of electrons and the blocking of holes.

  3. Effects of Electrode Distances on Geometric Structure and Electronic Transport Properties of Molecular 4,4'-Bipyridine Junction

    International Nuclear Information System (INIS)

    Li Zongliang; Zou Bin; Wang Chuankui; Luo Yi

    2006-01-01

    Influences of electrode distances on geometric structure of molecule and on electronic transport properties of molecular junctions have been investigated by means of a generalized quantum chemical approach based on the elastic scattering Green's function method. Numerical results show that, for organic molecule 4,4'-bipyridine, the geometric structure of the molecule especially the dihedral angle between the two pyridine rings is sensitive to the distances between the two electrodes. The currents of the molecular junction are taken nonlinearly increase with the increase of the bias. Shortening the distance of the metallic electrodes will result in stronger coupling and larger conductance

  4. New method for characterizing electron mediators in microbial systems using a thin-layer twin-working electrode cell.

    Science.gov (United States)

    Hassan, Md Mahamudul; Cheng, Ka Yu; Ho, Goen; Cord-Ruwisch, Ralf

    2017-01-15

    Microbial biofilms are significant ecosystems where the existence of redox gradients drive electron transfer often via soluble electron mediators. This study describes the use of two interfacing working electrodes (WEs) to simulate redox gradients within close proximity (250µm) for the detection and quantification of electron mediators. By using a common counter and reference electrode, the potentials of the two WEs were independently controlled to maintain a suitable "voltage window", which enabled simultaneous oxidation and reduction of electron mediators as evidenced by the concurrent anodic and cathodic currents, respectively. To validate the method, the electrochemical properties of different mediators (hexacyanoferrate, HCF, riboflavin, RF) were characterized by stepwise shifting the "voltage window" (ranging between 25 and 200mV) within a range of potentials after steady equilibrium current of both WEs was established. The resulting differences in electrical currents between the two WEs were recorded across a defined potential spectrum (between -1V and +0.5V vs. Ag/AgCl). Results indicated that the technique enabled identification (by the distinct peak locations at the potential scale) and quantification (by the peak of current) of the mediators for individual species as well as in an aqueous mixture. It enabled a precise determination of mid-potentials of the externally added mediators (HCF, RF) and mediators produced by pyocyanin-producing Pseudomonas aeruginosa (WACC 91) culture. The twin working electrode described is particularly suitable for studying mediator-dependent microbial electron transfer processes or simulating redox gradients as they exist in microbial biofilms. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. White top emitting OLED with angle independent emission characteristic

    Energy Technology Data Exchange (ETDEWEB)

    Thomschke, Michael; Freitag, Patricia; Schwartz, Gregor; Nitsche, Robert; Walzer, Karsten; Leo, Karl [Technische Universitaet Dresden, Institut fuer Angewandte Photophysik, Georg-Baehr-Strasse 1, 01062 Dresden (Germany)

    2008-07-01

    The general device structure of a top emitting organic light emitting diode (OLED) consists of several organic layers sandwiched in between two metal contacts, with the top one being semitransparent for light outcoupling reasons. Due to the high reflectivity of the electrodes, strong microcavity effects occur which lead to a preferred emission of light of a certain wavelength with main outcoupling in forward direction. This creates rather narrow emission bands, accompanied by strong spectral shifts upon viewing angle variation. By using an organic capping layer on top of the semitransparent metal contact, this unwanted effect can be reduced. This is important especially for white light emission for the use of OLEDs in future lighting applications. Our optical simulations show that the strong angular dependence of the emission color almost vanishes. To verify the simulations we study white top emitting OLEDs based on an approach which are adapted to the top emitting case.

  6. Impact of rounded electrode corners on breakdown characteristics of AlGaN/GaN high-electron mobility transistors

    Science.gov (United States)

    Yamazaki, Taisei; Asubar, Joel T.; Tokuda, Hirokuni; Kuzuhara, Masaaki

    2018-05-01

    We investigated the impact of rounded electrode corners on the breakdown characteristics of AlGaN/GaN high-electron mobility transistors. For standard reference devices, catastrophic breakdown occurred predominantly near the sharp electrode corners. By introducing a rounded-electrode architecture, premature breakdown at the corners was mitigated. Moreover, the rate of breakdown voltage (V BR) degradation with an increasing gate width (W G) was significantly lower for devices with rounded corners. When W G was increased from 100 µm to 10 mm, the V BR of the reference device dropped drastically, from 1,200 to 300 V, whereas that of the rounded-electrode device only decreased to a respectable value of 730 V.

  7. Effects of electron blocking and hole trapping of the red guest emitter materials on hybrid white organic light emitting diodes

    International Nuclear Information System (INIS)

    Hong, Lin-Ann; Vu, Hoang-Tuan; Juang, Fuh-Shyang; Lai, Yun-Jr; Yeh, Pei-Hsun; Tsai, Yu-Sheng

    2013-01-01

    Hybrid white organic light emitting diodes (HWOLEDs) with fluorescence and phosphorescence hybrid structures are studied in this work. HWOLEDs were fabricated with blue/red emitting layers: fluorescent host material doped with sky blue material, and bipolar phosphorescent host emitting material doped with red dopant material. An electron blocking layer is applied that provides hole red guest emitter hole trapping effects, increases the charge carrier injection quantity into the emitting layers and controls the recombination zone (RZ) that helps balance the device color. Spacer layers were also inserted to expand the RZ, increase efficiency and reduce energy quenching along with roll-off effects. The resulting high efficiency warm white OLED device has the lower highest occupied molecule orbital level red guest material, current efficiency of 15.9 cd/A at current density of 20 mA/cm 2 , and Commission Internationale de L'Eclairage coordinates of (0.34, 0.39)

  8. Effects of electron blocking and hole trapping of the red guest emitter materials on hybrid white organic light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Lin-Ann; Vu, Hoang-Tuan [National Formosa University, Institute of Electro-Optical and Materials Science, Huwei, Yunlin County, Taiwan (China); Juang, Fuh-Shyang, E-mail: fsjuang@seed.net.tw [National Formosa University, Institute of Electro-Optical and Materials Science, Huwei, Yunlin County, Taiwan (China); Lai, Yun-Jr [National Formosa University, Institute of Electro-Optical and Materials Science, Huwei, Yunlin County, Taiwan (China); Yeh, Pei-Hsun [Raystar Optronics, Inc., 5F No. 25, Keya Rd. Daya Township, Taichung County, Taiwan (China); Tsai, Yu-Sheng [National Formosa University, Institute of Electro-Optical and Materials Science, Huwei, Yunlin County, Taiwan (China)

    2013-10-01

    Hybrid white organic light emitting diodes (HWOLEDs) with fluorescence and phosphorescence hybrid structures are studied in this work. HWOLEDs were fabricated with blue/red emitting layers: fluorescent host material doped with sky blue material, and bipolar phosphorescent host emitting material doped with red dopant material. An electron blocking layer is applied that provides hole red guest emitter hole trapping effects, increases the charge carrier injection quantity into the emitting layers and controls the recombination zone (RZ) that helps balance the device color. Spacer layers were also inserted to expand the RZ, increase efficiency and reduce energy quenching along with roll-off effects. The resulting high efficiency warm white OLED device has the lower highest occupied molecule orbital level red guest material, current efficiency of 15.9 cd/A at current density of 20 mA/cm{sup 2}, and Commission Internationale de L'Eclairage coordinates of (0.34, 0.39)

  9. Nanocrystalline silicon as the light emitting material of a field emission display device

    International Nuclear Information System (INIS)

    Biaggi-Labiosa, A; Sola, F; Resto, O; Fonseca, L F; Gonzalez-BerrIos, A; Jesus, J De; Morell, G

    2008-01-01

    A nanocrystalline Si-based paste was successfully tested as the light emitting material in a field emission display test device that employed a film of carbon nanofibers as the electron source. Stable emission in the 550-850 nm range was obtained at 16 V μm -1 . This relatively low field required for intense cathodoluminescence (CL) from the PSi paste may lead to longer term reliability of both the electron emitting and the light emitting materials, and to lower power consumption. Here we describe the synthesis, characterization, and analyses of the light emitting nanostructured Si paste and the electron emitting C nanofibers used for building the device, including x-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy. The corresponding spectra and field emission curves are also shown and discussed

  10. Characteristics of a cold cathode electron source combined with secondary electron emission in a FED

    International Nuclear Information System (INIS)

    Lei Wei; Zhang Xiaobing; Zhou Xuedong; Zhu Zuoya; Lou Chaogang; Zhao Hongping

    2005-01-01

    In electron beam devices, the voltage applied to the cathode (w.r.t. grid voltage) provides the initial energy for the electrons. Based on the type of electron emission, the electron sources are (mainly) classified into thermionic cathodes and cold cathodes. The power consumption of a cold cathode is smaller than that of a thermionic cathode. The delay time of the electron emission from a cold cathode following the voltage rise is also smaller. In cathode ray tubes, field emission display (=FED) panels and other devices, the electron current emitted from the cathode needs to be modulated. Since the strong electric field, which is required to extract electrons from the cold cathode, accelerates the electrons to a high velocity near the gate electrode, the required voltage swing for the current modulation is also high. The design of the driving circuit becomes quite difficult and expensive for a high driving voltage. In this paper, an insulator plate with holes is placed in front of a cold cathode. When the primary electrons hit the surface of the insulator tunnels, secondary electrons are generated. In this paper, the characteristics of the secondary electrons emitted from the gate structure are studied. Because the energies of the secondary electrons are smaller than that of the primary electron, the driving voltage for the current modulation is decreased by the introduction of the insulator tunnels, resulting in an improved energy uniformity of the electron beam. Triode structures with inclined insulator tunnels and with double insulator plates are also fabricated and lead to further improvements in the energy uniformity. The improved energy uniformity predicted by the simulation calculations is demonstrated by the improved brightness uniformity in the screen display images

  11. Enhanced brightness of organic light-emitting diodes based on Mg:Ag cathode using alkali metal chlorides as an electron injection layer

    International Nuclear Information System (INIS)

    Zou Ye; Deng Zhenbo; Xu Denghui; Lü Zhaoyue; Yin Yuehong; Du Hailiang; Chen Zheng; Wang Yongsheng

    2012-01-01

    Different thicknesses of cesium chloride (CsCl) and various alkali metal chlorides were inserted into organic light-emitting diodes (OLEDs) as electron injection layers (EILs). The basic structure of OLED is indium tin oxide (ITO)/N,N′-diphenyl-N,N′-bis(1-napthyl-phenyl)-1.1′-biphenyl-4.4′-diamine (NPB)/tris-(8-hydroxyquinoline) aluminum (Alq 3 )/Mg:Ag/Ag. The electroluminescent (EL) performance curves show that both the brightness and efficiency of the OLEDs can be obviously enhanced by using a thin alkali metal chloride layer as an EIL. The electron injection barrier height between the Alq 3 layer and Mg:Ag cathode is reduced by inserting a thin alkali metal chloride as an EIL, which results in enhanced electron injection and electron current. Therefore, a better balance of hole and electron currents at the emissive interface is achieved and consequently the brightness and efficiency of OLEDs are improved. - Highlights: ► Alkaline metal chlorides were used as electron injection layers in organic light-emitting diodes based on Mg:Ag cathode. ► Brightness and efficiency of OLEDs with alkaline metal chlorides as electron injection layers were all greatly enhanced. ► The Improved OLED performance was attributed to the possible interfacial chemical reaction. ► Electron-only devices are fabricated to demonstrate the electron injection enhancement.

  12. Recombination zone in white organic light emitting diodes with blue and orange emitting layers

    Science.gov (United States)

    Tsuboi, Taiju; Kishimoto, Tadashi; Wako, Kazuhiro; Matsuda, Kuniharu; Iguchi, Hirofumi

    2012-10-01

    White fluorescent OLED devices with a 10 nm thick blue-emitting layer and a 31 nm thick orange-emitting layer have been fabricated, where the blue-emitting layer is stacked on a hole transport layer. An interlayer was inserted between the two emitting layers. The thickness of the interlayer was changed among 0.3, 0.4, and 1.0 nm. White emission with CIE coordinates close to (0.33, 0.33) was observed from all the OLEDs. OLED with 0.3 nm thick interlayer gives the highest maximum luminous efficiency (11 cd/A), power efficiency (9 lm/W), and external quantum efficiency (5.02%). The external quantum efficiency becomes low with increasing the interlayer thickness from 0 nm to 1.0 nm. When the location of the blue- and orange-emitting layers is reversed, white emission was not obtained because of too weak blue emission. It is suggested that the electron-hole recombination zone decreases nearly exponentially with a distance from the hole transport layer.

  13. Device characteristics of organic light-emitting diodes based on electronic structure of the Ba-doped Alq3 layer.

    Science.gov (United States)

    Lim, Jong Tae; Kim, Kyung Nam; Yeom, Geun Young

    2009-12-01

    Organic light-emitting diodes (OLEDs) with a Ba-doped tris(8-quinolinolato)aluminum(III) (Alq3) layer were fabricated to reduce the barrier height for electron injection and to improve the electron conductivity. In the OLED consisting of glass/ITO/4,4',4"-tris[2-naphthylphenyl-1-phenylamino]triphenylamine (2-TNATA, 30 nm)/4,4'-bis[N-(1-napthyl)-N-phenyl-amino]-biphenyl (NPB, 18 nm)/Alq3 (42 nm)/Ba-doped Alq3 (20 nm, x%: x = 0, 10, 25, and 50)/Al (100 nm), the device with the Alq3 layer doped with 10% Ba showed the highest light out-coupling characteristic. However, as the Ba dopant concentration was increased from 25% to 50%, this device characteristic was largely reduced. The characteristics of these devices were interpreted on the basis of the chemical reaction between Ba and Alq3 and the electron injection property by analyzing the electronic structure of the Ba-doped Alq3 layer. At a low Ba doping of 10%, mainly the Alq3 radical anion species was formed. In addition, the barrier height for electron injection in this layer was decreased to 0.6 eV, when compared to the pristine Alq3 layer. At a high Ba doping of 50%, the Alq3 molecules were severely decomposed. When the Ba dopant concentration was changed, the light-emitting characteristics of the devices were well coincided with the formation mechanism of Alq3 radical anion and Alq3 decomposition species.

  14. Method of electroplating a conversion electron emitting source on implant

    Science.gov (United States)

    Srivastava, Suresh C [Setauket, NY; Gonzales, Gilbert R [New York, NY; Adzic, Radoslav [East Setauket, NY; Meinken, George E [Middle Island, NY

    2012-02-14

    Methods for preparing an implant coated with a conversion electron emitting source (CEES) are disclosed. The typical method includes cleaning the surface of the implant; placing the implant in an activating solution comprising hydrochloric acid to activate the surface; reducing the surface by H.sub.2 evolution in H.sub.2SO.sub.4 solution; and placing the implant in an electroplating solution that includes ions of the CEES, HCl, H.sub.2SO.sub.4, and resorcinol, gelatin, or a combination thereof. Alternatively, before tin plating, a seed layer is formed on the surface. The electroplated CEES coating can be further protected and stabilized by annealing in a heated oven, by passivation, or by being covered with a protective film. The invention also relates to a holding device for holding an implant, wherein the device selectively prevents electrodeposition on the portions of the implant contacting the device.

  15. Concept and Development of an Electronic Framework Intended for Electrode and Surrounding Environment Characterization In Vivo

    Directory of Open Access Journals (Sweden)

    Stefan B. Rieger

    2016-12-01

    Full Text Available There has been substantial progress over the last decade towards miniaturizing implantable microelectrodes for use in Active Implantable Medical Devices (AIMD. Compared to the rapid development and complexity of electrode miniaturization, methods to monitor and assess functional integrity and electrical functionality of these electrodes, particularly during long term stimulation, have not progressed to the same extent. Evaluation methods that form the gold standard, such as stimulus pulse testing, cyclic voltammetry and electrochemical impedance spectroscopy, are either still bound to laboratory infrastructure (impractical for long term in vivo experiments or deliver no comprehensive insight into the material’s behaviour. As there is a lack of cost effective and practical predictive measures to understand long term electrode behaviour in vivo, material investigations need to be performed after explantation of the electrodes. We propose the analysis of the electrode and its environment in situ, to better understand and correlate the effects leading to electrode failure. The derived knowledge shall eventually lead to improved electrode designs, increased electrode functionality and safety in clinical applications. In this paper, the concept, design and prototyping of a sensor framework used to analyse the electrode’s behaviour and to monitor diverse electrode failure mechanisms, even during stimulation pulses, is presented. We focused on the electronic circuitry and data acquisition techniques required for a conceptual multi-sensor system. Functionality of single modules and a prototype framework have been demonstrated, but further work is needed to convert the prototype system into an implantable device. In vitro studies will be conducted first to verify sensor performance and reliability.

  16. Confocal fluorescence microscopy investigation of visible emitting defects induced by electron beam lithography in LIF films

    International Nuclear Information System (INIS)

    Montereali, R. M.; Bigotta, S.; Pace, A.; Piccinini, M.; Burattini, E.; Grilli, A.; Raco, A.; Giammatteo, M.; L'Aquila Univ., L'Aquila; Picozzi, P.; Santucci, S.; L'Aquila Univ., L'Aquila

    2000-01-01

    Low energy electron irradiation of lithium fluoride (LiF), in the form of bulk crystals and films, gives rise to the stable formation of primary F defects and aggregated color centers in a thin layer located at the surface of the investigated material. For the first time a confocal light scanning microscope (CLSM) in fluorescence mode was used to reconstruct the depth distribution of efficiently emitting laser active color centers in a stripe-like region induced by 12 and 16 keV electrons on LiF films thermally evaporated on glass. The formation of the F3+ and F2 aggregated defects appears restricted to the electron penetration and proportional to their energy depth profile, as obtained from Monte Carlo simulations [it

  17. Electronically conductive polymer binder for lithium-ion battery electrode

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gao; Xun, Shidi; Battaglia, Vincent S.; Zheng, Honghe

    2017-05-16

    A family of carboxylic acid group containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  18. Liquid-phase exfoliation of chemical vapor deposition-grown single layer graphene and its application in solution-processed transparent electrodes for flexible organic light-emitting devices

    International Nuclear Information System (INIS)

    Wu, Chaoxing; Li, Fushan; Wu, Wei; Chen, Wei; Guo, Tailiang

    2014-01-01

    Efficient and low-cost methods for obtaining high performance flexible transparent electrodes based on chemical vapor deposition (CVD)-grown graphene are highly desirable. In this work, the graphene grown on copper foil was exfoliated into micron-size sheets through controllable ultrasonication. We developed a clean technique by blending the exfoliated single layer graphene sheets with conducting polymer to form graphene-based composite solution, which can be spin-coated on flexible substrate, forming flexible transparent conducting film with high conductivity (∼8 Ω/□), high transmittance (∼81% at 550 nm), and excellent mechanical robustness. In addition, CVD-grown-graphene-based polymer light emitting diodes with excellent bendable performances were demonstrated

  19. Efficient and colour-stable hybrid white organic light-emitting diodes utilizing electron-hole balanced spacers

    International Nuclear Information System (INIS)

    Leem, Dong-Seok; Kim, Ji Whan; Kim, Jang-Joo; Jung, Sung Ouk; Kim, Seul-Ong; Kwon, Soon-Ki; Kim, Se Hoon; Kim, Kee Young; Kim, Yun-Hi

    2010-01-01

    High-efficiency two-colour white organic light-emitting diodes (WOLEDs) comprising a newly synthesized iridium complex orange phosphor ((impy) 2 Ir(acac)) and a blue fluorophor (BD012) have been realized by placing several kinds of thin spacers between two emitters. Hybrid WOLEDs with a spacer composed of a hole-transporting N,N-dicarbazolyl-3,5-benzene (mCP) and an electron-transporting 4,7-diphenyl-1,10-phenanthroline (Bphen) exhibit a high external quantum efficiency (EQE) of up to 8.4% and a negligible colour change (the colour coordinate of (0.39, 0.41) at 1000 cd m -2 ) with increasing brightness, whereas the device using a hole-transporting mCP spacer shows a relatively low EQE of 6.2% and a large shift of emitting colour with increasing brightness. Device performance is further characterized based on the charge transport behaviour of the spacers inserted between the two emitters.

  20. Direct electrochemistry and intramolecular electron transfer of ascorbate oxidase confined on L-cysteine self-assembled gold electrode.

    Science.gov (United States)

    Patil, Bhushan; Kobayashi, Yoshiki; Fujikawa, Shigenori; Okajima, Takeyoshi; Mao, Lanqun; Ohsaka, Takeo

    2014-02-01

    A direct electrochemistry and intramolecular electron transfer of multicopper oxidases are of a great importance for the fabrication of these enzyme-based bioelectrochemical-devices. Ascorbate oxidase from Acremonium sp. (ASOM) has been successfully immobilized via a chemisorptive interaction on the l-cysteine self-assembled monolayer modified gold electrode (cys-SAM/AuE). Thermodynamics and kinetics of adsorption of ASOM on the cys-SAM/AuE were studied using cyclic voltammetry. A well-defined redox wave centered at 166±3mV (vs. Ag│AgCl│KCl(sat.)) was observed in 5.0mM phosphate buffer solution (pH7.0) at the fabricated ASOM electrode, abbreviated as ASOM/cys-SAM/AuE, confirming a direct electrochemistry, i.e., a direct electron transfer (DET) between ASOM and cys-SAM/AuE. The direct electrochemistry of ASOM was further confirmed by taking into account the chemical oxidation of ascorbic acid (AA) by O2 via an intramolecular electron transfer in the ASOM as well as the electrocatalytic oxidation of AA at the ASOM/cys-SAM/AuE. Thermodynamics and kinetics of the adsorption of ASOM on the cys-SAM/AuE have been elaborated along with its direct electron transfer at the modified electrodes on the basis of its intramolecular electron transfer and electrocatalytic activity towards ascorbic acid oxidation and O2 reduction. ASOM saturated surface area was obtained as 2.41×10(-11)molcm(-2) with the apparent adsorption coefficient of 1.63×10(6)Lmol(-1). The ASOM confined on the cys-SAM/AuE possesses its essential enzymatic function. © 2013.

  1. Direct electron transfer and electrocatalysis of glucose oxidase immobilized on glassy carbon electrode modified with Nafion and mesoporous carbon FDU-15

    International Nuclear Information System (INIS)

    Wang Kunqi; Yang Hua; Zhu Lin; Ma Zhongsu; Xing Shenyang; Lv Qiang; Liao Jianhui; Liu Changpeng; Xing Wei

    2009-01-01

    In this paper, it was found that glucose oxidase (GOD) has been stably immobilized on glassy carbon electrode modified with mesoporous carbon FDU-15 (MC-FDU-15) and Nafion by simple technique. The sorption behavior of GOD immobilized on MC-FDU-15 matrix was characterized by transmission electron microscopy (TEM), ultraviolet-visible (UV-vis), FTIR, respectively, which demonstrated that MC-FDU-15 could facilitate the electron exchange between the active center of GOD and electrode. The direct electrochemistry and electrocatalysis behavior of GOD on the modified electrode were characterized by cyclic voltammogram (CV) which indicated that GOD immobilized on Nafion and MC-FDU-15 matrices display direct, reversible and surface-controlled redox reaction with an enhanced electron transfer rate constant of 4.095 s -1 in 0.1 M phosphate buffer solution (PBS) (pH 7.12). Furthermore, it was also discovered that, in the presence of O 2 , GOD immobilized on Nafion and MC-FDU-15 matrices could produce a linear response to glucose. Thus, Nafion/GOD-MC-FDU-15/GC electrode is hopeful to be used in glucose biosensor. In addition, GOD immobilized on MC-FDU-15 and Nafion matrices possesses an excellent bioelectrocatalytic activity for the reduction of O 2 . So, the Nafion/GOD-MC-FDU-15/GC electrode can be utilized as the cathode in biofuel cell.

  2. Radiation emitting devices regulations

    International Nuclear Information System (INIS)

    1970-01-01

    The Radiation Emitting Devices Regulations are the regulations referred to in the Radiation Emitting Devices Act and relate to the operation of devices. They include standards of design and construction, standards of functioning, warning symbol specifications in addition to information relating to the seizure and detention of machines failing to comply with the regulations. The radiation emitting devices consist of the following: television receivers, extra-oral dental x-ray equipment, microwave ovens, baggage inspection x-ray devices, demonstration--type gas discharge devices, photofluorographic x-ray equipment, laser scanners, demonstration lasers, low energy electron microscopes, high intensity mercury vapour discharge lamps, sunlamps, diagnostic x-ray equipment, ultrasound therapy devices, x-ray diffraction equipment, cabinet x-ray equipment and therapeutic x-ray equipment

  3. Influence of the electronic structures on the heterogeneous photoelectrocatalytic performance of Ti/Ru{sub x}Sn{sub 1-x}O{sub 2} electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhijie, E-mail: 1061739408@qq.com [College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108 (China); Zhu, Junqiu, E-mail: zhujunqiu@xmut.edu.com [School of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian 362000 (China); Zhang, Shuai, E-mail: 601314274@qq.com [College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108 (China); Shao, Yanqun, E-mail: yqshao1989@163.com [College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108 (China); Lin, Deyuan, E-mail: lindeyuan_fj@126.com [Electric Power Research Institute of State Grid Fujian Electric Power Co. Ltd., Fuzhou 350007 (China); Zhou, Jianfeng, E-mail: 1277018923@qq.com [College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108 (China); Chen, Yunxiang, E-mail: rogerchen@163.com [Electric Power Research Institute of State Grid Fujian Electric Power Co. Ltd., Fuzhou 350007 (China); Tang, Dian, E-mail: diantang@fzu.edu.cn [College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108 (China)

    2017-07-05

    Highlights: • Ti/Ru{sub x}Sn{sub 1-x}O{sub 2} electrodes possessed photocatalytic and electrocatalytic activity were prepared by thermal decomposition method. • The effect of electronic structure on electronic conductivity, electrocatalytic and photocatalytic activity were studied. • The photoelectric-synergistic catalytic activity of the Ti/Ru{sub x}Sn{sub 1-x}O{sub 2} electrodes was studied upon UV irradiation. • The Ti/Ru{sub 0.05}Sn{sub 0.95}O{sub 2} electrode has good catalytic activity and excellent stability. - Abstract: DSA-type Ti/Ru{sub x}Sn{sub 1-x}O{sub 2} electrodes were prepared by thermal decomposition method as photoelectrocatalysts (PECs) and extensively characterized by various sophisticated techniques. First-principles calculations was employed to study the effects of Ru content on the electronic structures of the Ru{sub x}Sn{sub 1-x}O{sub 2} coatings. The photoelectric-synergistic catalytic activity of the Ti/Ru{sub x}Sn{sub 1-x}O{sub 2} electrodes was evaluated for the degradation of methyl orange (MO) in aqueous solution. The results show that the RuO{sub 2}−SnO{sub 2} solid solution could be formed. The band gaps of the Ru{sub x}Sn{sub 1-x}O{sub 2} coatings gradually decreased and eventually turned into metallic conductivity with the increase of ruthenium content. As a PEC electrode, reducing band gap is helpful to improve electronic conductivity and the electrocatalytic activity, but not always advantageous to increase the photocatalytic activity. Because too narrow band gap will sacrifice the photogenerated charge carriers and thus reduce photocatalytic activity of the electrode. In our experiments, the rate constant of Ti/Ru{sub 0.05}Sn{sub 0.95}O{sub 2} electrode increased with increasing Ru content and exhibited the maximum rate for 5% Ru loading. The stability test showed the photoelectrocatalytic activity of the Ti/Ru{sub 0.05}Sn{sub 0.95}O{sub 2} electrode almost had no attenuation after 100 h photoelectrolysis, revealing

  4. Tunable color parallel tandem organic light emitting devices with carbon nanotube and metallic sheet interlayers

    Energy Technology Data Exchange (ETDEWEB)

    Oliva, Jorge; Desirena, Haggeo; De la Rosa, Elder [Centro de Investigaciones en Optica, A.P. 1-948, León, Guanajuato 37160 (Mexico); Papadimitratos, Alexios [Solarno Inc., Coppell, Texas 75019 (United States); University of Texas at Dallas, Richardson, Texas 75080 (United States); Zakhidov, Anvar A., E-mail: Zakhidov@utdallas.edu [Solarno Inc., Coppell, Texas 75019 (United States); University of Texas at Dallas, Richardson, Texas 75080 (United States); Energy Efficiency Center, National University of Science and Technology, MISiS, Moscow 119049 (Russian Federation)

    2015-11-21

    Parallel tandem organic light emitting devices (OLEDs) were fabricated with transparent multiwall carbon nanotube sheets (MWCNT) and thin metal films (Al, Ag) as interlayers. In parallel monolithic tandem architecture, the MWCNT (or metallic films) interlayers are an active electrode which injects similar charges into subunits. In the case of parallel tandems with common anode (C.A.) of this study, holes are injected into top and bottom subunits from the common interlayer electrode; whereas in the configuration of common cathode (C.C.), electrons are injected into the top and bottom subunits. Both subunits of the tandem can thus be monolithically connected functionally in an active structure in which each subunit can be electrically addressed separately. Our tandem OLEDs have a polymer as emitter in the bottom subunit and a small molecule emitter in the top subunit. We also compared the performance of the parallel tandem with that of in series and the additional advantages of the parallel architecture over the in-series were: tunable chromaticity, lower voltage operation, and higher brightness. Finally, we demonstrate that processing of the MWCNT sheets as a common anode in parallel tandems is an easy and low cost process, since their integration as electrodes in OLEDs is achieved by simple dry lamination process.

  5. Surface-conduction electron-emitter characteristics and fabrication based on vertically aligned carbon nanotube arrays

    Energy Technology Data Exchange (ETDEWEB)

    Shih, Yi-Ting [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Road, Taipei 10607, Taiwan (China); Li, Kuan-Wei [Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Road, Taipei 10607, Taiwan (China); Honda, Shin-ichi [Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280 (Japan); Lin, Pao-Hung; Huang, Ying-Sheng [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Road, Taipei 10607, Taiwan (China); Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Road, Taipei 10607, Taiwan (China); Lee, Kuei-Yi, E-mail: kylee@mail.ntust.edu.tw [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Road, Taipei 10607, Taiwan (China); Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Road, Taipei 10607, Taiwan (China)

    2017-06-01

    Graphical abstract: The pattern design provides a new structure of surface-conduction electron-emitter display (SED). Delta-star shaped vertically aligned CNT (VACNT) arrays with 20o tips can simultaneously provide three emitters to bombard the sides of equilateral triangles pattern of VACNT, which produces numerous secondary electrons and enhance the SED efficiency. - Highlights: • The carbon nanotube (CNT) has replaced palladium oxide (PdO) as the electrode material for surface-conduction electron-emitter (SCE) applications. • The vertically aligned CNT (VACNT) arrays with 20° tips of the delta-star arrangement are used as cathodes that easily emit electrons. The cathode pattern simultaneously provides three emitters to bombard the sides of equilateral triangles pattern of VACNT. • The VACNT arrays were covered with magnesium oxide (MgO) nanostructures to promote the surface-conduction electron-emitter display (SED) efficiency (η). • The η was stably maintained in the 75–85% range. The proposed design provides a facile new method for developing SED applications. - Abstract: The carbon nanotube (CNT) has replaced palladium oxide (PdO) as the electrode material for surface-conduction electron-emitter (SCE) applications. Vertically aligned CNT arrays with a delta-star arrangement were patterned and synthesized onto a quartz substrate using photolithography and thermal chemical vapor deposition. Delta-star shaped VACNT arrays with 20° tips are used as cathodes that easily emit electrons because of their high electrical field gradient. In order to improve the field emission and secondary electrons (SEs) in SCE applications, magnesium oxide (MgO) nanostructures were coated onto the VACNT arrays to promote the surface-conduction electron-emitter display (SED) efficiency (η). According to the definition of η in SCE applications, in this study, the η was stably maintained in the 75–85% range. The proposed design provides a facile new method for

  6. Evaluation of the tripolar electrode stimulation method by numerical analysis and animal experiments for cochlear implants.

    Science.gov (United States)

    Miyoshi, S; Sakajiri, M; Ifukube, T; Matsushima, J

    1997-01-01

    We have proposed the Tripolar Electrode Stimulation Method (TESM) which may enable us to narrow the stimulation region and to move continuously the stimulation site for the cochlear implants. We evaluated whether or not TESM works according to a theory based on numerical analysis using the auditory nerve fiber model. In this simulation, the sum of the excited model fibers were compared with the compound actions potentials obtained from animal experiments. As a result, this experiment showed that TESM could narrow a stimulation region by controlling the sum of the currents emitted from the electrodes on both sides, and continuously move a stimulation site by changing the ratio of the currents emitted from the electrodes on both sides.

  7. Electronically conductive polymer binder for lithium-ion battery electrode

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gao; Xun, Shidi; Battaglia, Vincent S.; Zheng, Honghe; Wu, Mingyan

    2017-08-01

    A family of carboxylic acid groups containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. Triethyleneoxide side chains provide improved adhesion to materials such as, graphite, silicon, silicon alloy, tin, tin alloy. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  8. Electronically conductive polymer binder for lithium-ion battery electrode

    Science.gov (United States)

    Liu, Gao; Xun, Shidi; Battaglia, Vincent S.; Zheng, Honghe; Wu, Mingyan

    2015-07-07

    A family of carboxylic acid groups containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. Triethyleneoxide side chains provide improved adhesion to materials such as, graphite, silicon, silicon alloy, tin, tin alloy. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  9. Electronic structures of spinterface for thiophene molecule adsorbed at Co, Fe, and Ni electrode: First principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Linlin; Tian, Yanli; Yuan, Xiaobo; Hu, Guichao; Ren, Junfeng, E-mail: renjf@sdnu.edu.cn

    2016-12-15

    Highlights: • Thiophene molecule could be spin polarized when adsorbed at Co(001), Fe(100), and Ni(111) surfaces. • The biggest spin polarization will be obtained when the thiophene molecule adsorbed at the Fe(100) surface. • The spin polarization is originated from the interfacial orbital hybridizations between the 3d orbital of ferromagnetic electrodes and the 2p orbital of the thiophene molecule. - Abstract: First principles calculations are adopted to study the spin polarization properties of thiophene molecule which adsorbed at the Co, Fe, and Ni electrode surfaces. The density of states, spin-polarized density distributions as well as the differential charge density distributions are obtained. It is found that the p orbital of the thiophene molecule will interact with the d orbital of the ferromagnetic electrodes, which will generate new spin coupling states and lead to obvious spin polarization in the thiophene molecule. Different electrodes induce different spin polarization properties, and in which the Fe electrode will bring the biggest spin polarization of the thiophene molecule. People can selectively and efficiently inject spin polarized electrons into molecules by choosing suitable ferromagnetic electrodes in organic spintronic devices.

  10. Immunoassay of C-reactive protein by hot electron induced electrochemiluminescence using integrated electrodes with hydrophobic sample confinement

    Energy Technology Data Exchange (ETDEWEB)

    Ylinen-Hinkka, T., E-mail: tiina.ylinen-hinkka@aalto.fi [Laboratory of Analytical Chemistry, Aalto University School of Chemical Technology, P.O. Box 16100, FI-00076 Aalto (Finland); Niskanen, A.J.; Franssila, S. [Department of Materials Science and Engineering, Aalto University School of Chemical Technology, P.O. Box 16200, FI-00076 Aalto (Finland); Kulmala, S. [Laboratory of Analytical Chemistry, Aalto University School of Chemical Technology, P.O. Box 16100, FI-00076 Aalto (Finland)

    2011-09-19

    Highlights: {center_dot} C-reactive protein has been determined in the concentration range 0.01-10 mg L{sup -1} using an electrochemiluminescence microchip which employs integrated electrodes with hydrophobic sample confinement. {center_dot} This arrangement enables very simple and fast CRP analysis amenable to point-of-care applications. - Abstract: C-reactive protein (CRP) was determined in the concentration range 0.01-10 mg L{sup -1} using hot electron induced electrochemiluminescence (HECL) with devices combining both working and counter electrodes and sample confinement on a single chip. The sample area on the electrodes was defined by a hydrophobic ring, which enabled dispensing the reagents and the analyte directly on the electrode. Immunoassay of CRP by HECL using integrated electrodes is a good candidate for a high-sensitivity point-of-care CRP-test, because the concentration range is suitable, miniaturisation of the measurement system has been demonstrated and the assay method with integrated electrodes is easy to use. High-sensitivity CRP tests can be used to monitor the current state of cardiovascular disease and also to predict future cardiovascular problems in apparently healthy people.

  11. A pyrroloquinolinequinone-dependent glucose dehydrogenase (PQQ-GDH)-electrode with direct electron transfer based on polyaniline modified carbon nanotubes for biofuel cell application

    International Nuclear Information System (INIS)

    Schubart, Ivo W.; Göbel, Gero; Lisdat, Fred

    2012-01-01

    Graphical abstract: - Abstract: In this study we present a pyrroloquinolinequinone-dependent glucose dehydrogenase [(PQQ)-GDH] electrode with direct electron transfer between the enzyme and electrode. Soluble pyrroloquinolinequinone-dependent glucose dehydrogenase from Acinetobacter calcoaceticus is covalently bound to an electropolymerized polyaniline copolymer film on a multi-walled carbon nanotube (MWCNT)-modified gold electrode. The pulsed electropolymerization of 2-methoxyaniline-5-sulfonic acid (MASA) and m-aminobenzoic acid (ABA) is optimized with respect to the efficiency of the bioelectrocatalytic conversion of glucose. The glucose oxidation starts at −0.1 V vs. Ag/AgCl and current densities up to 500 μA/cm 2 at low potential of +0.1 V vs. Ag/AgCl can be achieved. The electrode shows a glucose sensitivity in the range from 0.1 mM to 5 mM at a potential of +0.1 V vs. Ag/Ag/Cl. The dynamic range is extended to 100 mM at +0.4 V vs. Ag/AgCl. The electron transfer mechanism is studied and buffer effects are investigated. The developed enzyme electrode is examined for bioenergetic application by assembling of a membrane-less biofuel cell. For the cathode a bilirubin oxidase (BOD) based MWCNT-modified gold electrode with direct electron transfer (DET) is used. The biofuel cell exhibits a cell potential of 680 ± 20 mV and a maximum power density of up to 65 μW/cm 2 at 350 mV vs. Ag/AgCl.

  12. Electrochemical Sensing of Neurotoxic Agents Based on Their Electron Transfer Promotion Effect on an Au Electrode.

    Science.gov (United States)

    Shimada, Hiroshi; Noguchi, Shiori; Yamamoto, Masahiro; Nishiyama, Katsuhiko; Kitamura, Yusuke; Ihara, Toshihiro

    2017-06-06

    An electrochemical molecular sensor based on a new principle is reported. Nereistoxin (NRT, 4-N,N-dimethylamino-1,2-dithiolane), a naturally occurring neurotoxin (nicotinic acetylcholine receptor agonist), was adsorbed on an Au electrode via Au-S covalent bonding and accelerated the electron transfer between the electrode and the marker, ferricyanide anion. The contrast between the electrochemical responses obtained with the bare and NRT-modified Au electrodes was more pronounced at a low ionic strength of the supporting electrolyte, KCl. In the presence of 1 mM KCl, almost a 0/1 contrast between the signals was obtained through electrostatic interaction between the protonated tertiary amino group of NRT and the anionic ferricyanide ion. No current was observed with an electrode modified with mercaptopropionic acid. An unusually low ionic strength thickened the electric double layer to the degree where current was not observed with the bare electrode. The effect of the electrostatic concentration of the marker ion becomes obvious under such conditions. Commercially available NRT-related pesticides such as Cartap and Bensultap were also detected using the same format after pretreatments by hydrolysis/reduction. The present sensing method was successfully applied to human serum with satisfactory sensitivity.

  13. Device model investigation of bilayer organic light emitting diodes

    International Nuclear Information System (INIS)

    Crone, B. K.; Davids, P. S.; Campbell, I. H.; Smith, D. L.

    2000-01-01

    Organic materials that have desirable luminescence properties, such as a favorable emission spectrum and high luminescence efficiency, are not necessarily suitable for single layer organic light-emitting diodes (LEDs) because the material may have unequal carrier mobilities or contact limited injection properties. As a result, single layer LEDs made from such organic materials are inefficient. In this article, we present device model calculations of single layer and bilayer organic LED characteristics that demonstrate the improvements in device performance that can occur in bilayer devices. We first consider an organic material where the mobilities of the electrons and holes are significantly different. The role of the bilayer structure in this case is to move the recombination away from the electrode that injects the low mobility carrier. We then consider an organic material with equal electron and hole mobilities but where it is not possible to make a good contact for one carrier type, say electrons. The role of a bilayer structure in this case is to prevent the holes from traversing the device without recombining. In both cases, single layer device limitations can be overcome by employing a two organic layer structure. The results are discussed using the calculated spatial variation of the carrier densities, electric field, and recombination rate density in the structures. (c) 2000 American Institute of Physics

  14. Efficient and colour-stable hybrid white organic light-emitting diodes utilizing electron-hole balanced spacers

    Energy Technology Data Exchange (ETDEWEB)

    Leem, Dong-Seok; Kim, Ji Whan; Kim, Jang-Joo [Department of Materials Science and Engineering, and OLED Center, Seoul National University, Seoul 151-744 (Korea, Republic of); Jung, Sung Ouk; Kim, Seul-Ong; Kwon, Soon-Ki [School of Materials Science and Engineering, and Engineering Research Institute (ERI), Gyeongsang National University, Jinju 660-701 (Korea, Republic of); Kim, Se Hoon; Kim, Kee Young [Dongwoo Fine-Chem Co., Ltd, Pyeongtaek 451-822 (Korea, Republic of); Kim, Yun-Hi, E-mail: jjkim@snu.ac.k, E-mail: skwon@gnu.ac.k [Department of Chemistry and RINS, Gyeongsang National University, Jinju 660-701 (Korea, Republic of)

    2010-10-13

    High-efficiency two-colour white organic light-emitting diodes (WOLEDs) comprising a newly synthesized iridium complex orange phosphor ((impy){sub 2}Ir(acac)) and a blue fluorophor (BD012) have been realized by placing several kinds of thin spacers between two emitters. Hybrid WOLEDs with a spacer composed of a hole-transporting N,N-dicarbazolyl-3,5-benzene (mCP) and an electron-transporting 4,7-diphenyl-1,10-phenanthroline (Bphen) exhibit a high external quantum efficiency (EQE) of up to 8.4% and a negligible colour change (the colour coordinate of (0.39, 0.41) at 1000 cd m{sup -2}) with increasing brightness, whereas the device using a hole-transporting mCP spacer shows a relatively low EQE of 6.2% and a large shift of emitting colour with increasing brightness. Device performance is further characterized based on the charge transport behaviour of the spacers inserted between the two emitters.

  15. Polymer light emitting diodes

    International Nuclear Information System (INIS)

    Gautier-Thianche, Emmmanuelle

    1998-01-01

    We study sandwich type semiconducting polymer light emitting diodes; anode/polymer/cathode. ITO is selected as anode, this polymer is a blend of a commercially available polymer with a high hole transport ability: polyvinyl-carbazole and a laser dye: coumarin-515. Magnesium covered with silver is chosen for the anode. We study the influence of polymer thickness and coumarin doping ratio on electroluminescence spectrum, electric characteristics and quantum efficiency. An important drawback is that diodes lifetime remains low. In the second part of our study we determine degradations causes with X-Ray reflectivity experiments. It may be due to ITO very high roughness. We realize a new type of planar electroluminescent device: a channel type electroluminescent device in which polymer layer is inserted into an aluminium channel. Such a device is by far more stable than using classical sandwich structures with the same polymer composition: indeed, charges are generated by internal-field ionization and there is no injection from the electrode to the polymer. This avoids electrochemical reactions at electrodes, thus reducing degradations routes. (author) [fr

  16. Effect of molecular properties on the performance of polymer light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Marta M.D.; Almeida, A.M.; Correia, Helena M.G.; Ribeiro, R. Mendes; Stoneham, A.M

    2004-11-15

    The performance of a single layer polymer light-emitting diode depends on several interdependent factors, although recombination between electrons and holes within the polymer layer is believed to play an important role. Our aim is to carry out computer experiments in which bipolar charge carriers are injected in polymer networks made of poly(p-phenylene vinylene) chains randomly oriented. In these simulations, we follow the charge evolution in time from some initial state to the steady state. The intra-molecular properties of the polymer molecules obtained from self-consistent quantum molecular dynamics calculations are used in the mesoscopic model. The purpose of the present work is to clarify the effects of intra-molecular charge mobility and energy disorder on recombination efficiency. In particular, we find that charge mobility along the polymer chains has a serious influence on recombination within the polymer layer. Our results also show that energy disorder due to differences in ionization potential and electron affinity of neighbouring molecules affects mainly recombinations that occur near the electrodes at polymer chains parallel to them.

  17. Effect of molecular properties on the performance of polymer light-emitting diodes

    International Nuclear Information System (INIS)

    Ramos, Marta M.D.; Almeida, A.M.; Correia, Helena M.G.; Ribeiro, R. Mendes; Stoneham, A.M.

    2004-01-01

    The performance of a single layer polymer light-emitting diode depends on several interdependent factors, although recombination between electrons and holes within the polymer layer is believed to play an important role. Our aim is to carry out computer experiments in which bipolar charge carriers are injected in polymer networks made of poly(p-phenylene vinylene) chains randomly oriented. In these simulations, we follow the charge evolution in time from some initial state to the steady state. The intra-molecular properties of the polymer molecules obtained from self-consistent quantum molecular dynamics calculations are used in the mesoscopic model. The purpose of the present work is to clarify the effects of intra-molecular charge mobility and energy disorder on recombination efficiency. In particular, we find that charge mobility along the polymer chains has a serious influence on recombination within the polymer layer. Our results also show that energy disorder due to differences in ionization potential and electron affinity of neighbouring molecules affects mainly recombinations that occur near the electrodes at polymer chains parallel to them

  18. Impact of Plasma Electron Flux on Plasma Damage-Free Sputtering of Ultrathin Tin-Doped Indium Oxide Contact Layer on p-GaN for InGaN/GaN Light-Emitting Diodes.

    Science.gov (United States)

    Son, Kwang Jeong; Kim, Tae Kyoung; Cha, Yu-Jung; Oh, Seung Kyu; You, Shin-Jae; Ryou, Jae-Hyun; Kwak, Joon Seop

    2018-02-01

    The origin of plasma-induced damage on a p -type wide-bandgap layer during the sputtering of tin-doped indium oxide (ITO) contact layers by using radiofrequency-superimposed direct current (DC) sputtering and its effects on the forward voltage and light output power (LOP) of light-emitting diodes (LEDs) with sputtered ITO transparent conductive electrodes (TCE) is systematically studied. Changing the DC power voltage from negative to positive bias reduces the forward voltages and enhances the LOP of the LEDs. The positive DC power drastically decreases the electron flux in the plasma obtained by plasma diagnostics using a cutoff probe and a Langmuir probe, suggesting that the repulsion of plasma electrons from the p -GaN surface can reduce plasma-induced damage to the p -GaN. Furthermore, electron-beam irradiation on p -GaN prior to ITO deposition significantly increases the forward voltages, showing that the plasma electrons play an important role in plasma-induced damage to the p -GaN. The plasma electrons can increase the effective barrier height at the ITO/deep-level defect (DLD) band of p -GaN by compensating DLDs, resulting in the deterioration of the forward voltage and LOP. Finally, the plasma damage-free sputtered-ITO TCE enhances the LOP of the LEDs by 20% with a low forward voltage of 2.9 V at 20 mA compared to LEDs with conventional e-beam-evaporated ITO TCE.

  19. Anaerobic arsenite oxidation with an electrode serving as the sole electron acceptor: A novel approach to the bioremediation of arsenic-polluted groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Pous, Narcis [Laboratory of Chemical and Environmental Engineering (LEQUiA), Institute of the Environment, University of Girona, C/Maria Aurèlia Capmany, 69 E-17071 Girona (Spain); Casentini, Barbara; Rossetti, Simona; Fazi, Stefano [Water Research Institute (IRSA-CNR), National Research Council, Via Salaria Km 29.300, 00015 Monterotondo (Italy); Puig, Sebastià [Laboratory of Chemical and Environmental Engineering (LEQUiA), Institute of the Environment, University of Girona, C/Maria Aurèlia Capmany, 69 E-17071 Girona (Spain); Aulenta, Federico, E-mail: aulenta@irsa.cnr.it [Water Research Institute (IRSA-CNR), National Research Council, Via Salaria Km 29.300, 00015 Monterotondo (Italy)

    2015-02-11

    Highlights: • As(III) was oxidized to As(V) in a bioelectrochemical system. • A polarized graphite electrode served as electron acceptor. • Gammaproteobacteria were the dominating organisms at the electrode. - Abstract: Arsenic contamination of soil and groundwater is a serious problem worldwide. Here we show that anaerobic oxidation of As(III) to As(V), a form which is more extensively and stably adsorbed onto metal-oxides, can be achieved by using a polarized (+497 mV vs. SHE) graphite anode serving as terminal electron acceptor in the microbial metabolism. The characterization of the microbial populations at the electrode, by using in situ detection methods, revealed the predominance of gammaproteobacteria. In principle, the proposed bioelectrochemical oxidation process would make it possible to provide As(III)-oxidizing microorganisms with a virtually unlimited, low-cost and low-maintenance electron acceptor as well as with a physical support for microbial attachment.

  20. Anaerobic arsenite oxidation with an electrode serving as the sole electron acceptor: A novel approach to the bioremediation of arsenic-polluted groundwater

    International Nuclear Information System (INIS)

    Pous, Narcis; Casentini, Barbara; Rossetti, Simona; Fazi, Stefano; Puig, Sebastià; Aulenta, Federico

    2015-01-01

    Highlights: • As(III) was oxidized to As(V) in a bioelectrochemical system. • A polarized graphite electrode served as electron acceptor. • Gammaproteobacteria were the dominating organisms at the electrode. - Abstract: Arsenic contamination of soil and groundwater is a serious problem worldwide. Here we show that anaerobic oxidation of As(III) to As(V), a form which is more extensively and stably adsorbed onto metal-oxides, can be achieved by using a polarized (+497 mV vs. SHE) graphite anode serving as terminal electron acceptor in the microbial metabolism. The characterization of the microbial populations at the electrode, by using in situ detection methods, revealed the predominance of gammaproteobacteria. In principle, the proposed bioelectrochemical oxidation process would make it possible to provide As(III)-oxidizing microorganisms with a virtually unlimited, low-cost and low-maintenance electron acceptor as well as with a physical support for microbial attachment

  1. Electron Transfer Reactivity Patterns at Chemically Modified Electrodes: Fundamentals and Application to the Optimization of Redox Recycling Amplification Systems

    Energy Technology Data Exchange (ETDEWEB)

    Bergren, Adam Johan [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    Electroanalytical chemistry is often utilized in chemical analysis and Fundamental studies. Important advances have been made in these areas since the advent of chemically modified electrodes: the coating of an electrode with a chemical film in order to impart desirable, and ideally, predictable properties. These procedures enable the exploitation of unique reactivity patterns. This dissertation presents studies that investigate novel reaction mechanisms at self-assembled monolayers on gold. In particular, a unique electrochemical current amplification scheme is detailed that relies on a selective electrode to enable a reactivity pattern that results in regeneration of the analyte (redox recycling). This regenerating reaction can occur up to 250 times for each analyte molecule, leading to a notable enhancement in the observed current. The requirements of electrode selectivity and the resulting amplification and detection limit improvements are described with respect to the heterogeneous and homogeneous electron transfer rates that characterize the system. These studies revealed that the heterogeneous electrolysis of the analyte should ideally be electrochemically reversible, while that for the regenerating agent should be held to a low level. Moreover, the homogeneous reaction that recycles the analyte should occur at a rapid rate. The physical selectivity mechanism is also detailed with respect to the properties of the electrode and redox probes utilized. It is shown that partitioning of the analyte into/onto the adlayer leads to the extraordinary selectivity of the alkanethiolate monolayer modified electrode. Collectively, these studies enable a thorough understanding of the complex electrode mechanism required for successful redox recycling amplification systems, Finally, in a separate (but related) study, the effect of the akyl chain length on the heterogeneous electron transfer behavior of solution-based redox probes is reported, where an odd-even oscillation

  2. Fabrication of an Organic Light-Emitting Diode from New Host π Electron Rich Zinc Complex

    Science.gov (United States)

    Jafari, Mohammad Reza; Janghouri, Mohammad; Shahedi, Zahra

    2017-01-01

    A new π electron rich zinc complex was used as a fluorescent material in organic light-emitting diodes (OLEDs). Devices with a structure of indium tin oxide/poly (3,4-ethylenedi-oxythiophene):poly(styrenesulfonate) (PEDOT: PSS) (50 nm)/polyvinylcarbazole (60 nm)/Zn: %2 porphyrin derivatives (45 nm)/Al (150 nm) were fabricated. Porphyrin derivatives accounting for 2 wt.% in the π electron rich zinc complex were used as a host. The electroluminescence (EL) spectra of porphyrin derivatives indicated a red shift, as π electron rich zinc complex EL spectra. The device (4) has also a luminance of 3420 cd/m2 and maximum efficiency of 1.58 cd/A at 15 V, which are the highest values among four devices. The result of Commission International del'Eclairage (CIE) (X, Y) coordinate and EL spectrum of device (3) indicated that it is more red shifted compared to other devices. Results of this work indicate that π electron rich zinc complex is a promising host material for high efficiency red OLEDs and has a simple structure compared to Alq3-based devices.

  3. The influence of electrode angle on the minimization of the aberration coefficients of the two electrodes electrostatic immersion lens

    International Nuclear Information System (INIS)

    Al-Khashab, M. A.; Ahmad, A. A.

    2012-01-01

    This paper deals with electron optical properties of a set asymmetrical electrostatic immersion lenses with two electrodes which have been designed using different angles (θ) of the outer lens electrodes as well as air gaps (S) between the electrodes of each lens. It was found that the angle of the outer electrode and the air gap have a clear effect on the electron optical performance of such lenses. In addition to that, it was noticed that the better electron optical properties occurred when the angle of the outer electrode equals (θ = O d egree) and the air gap equals (S = 11 mm). the results of the perferable design of the prsent work were compared with those in published papers in terms of the optical properties. It was found that results are in good agreement with each other. (authors).

  4. Electrode redox reactions with polarizable molecules

    Science.gov (United States)

    Matyushov, Dmitry V.

    2018-04-01

    A theory of redox reactions involving electron transfer between a metal electrode and a polarizable molecule in solution is formulated. Both the existence of molecular polarizability and its ability to change due to electron transfer distinguish this problem from classical theories of interfacial electrochemistry. When the polarizability is different between the oxidized and reduced states, the statistics of thermal fluctuations driving the reactant over the activation barrier becomes non-Gaussian. The problem of electron transfer is formulated as crossing of two non-parabolic free energy surfaces. An analytical solution for these free energy surfaces is provided and the activation barrier of electrode electron transfer is given in terms of two reorganization energies corresponding to the oxidized and reduced states of the molecule in solution. The new non-Gaussian theory is, therefore, based on two theory parameters in contrast to one-parameter Marcus formulation for electrode reactions. The theory, which is consistent with the Nernst equation, predicts asymmetry between the cathodic and anodic branches of the electrode current. They show different slopes at small electrode overpotentials and become curved at larger overpotentials. However, the curvature of the Tafel plot is reduced compared to the Marcus-Hush model and approaches the empirical Butler-Volmer form with different transfer coefficients for the anodic and cathodic currents.

  5. Effect of annealing over optoelectronic properties of graphene based transparent electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Shriniwas, E-mail: sniwas89@gmail.com; Kaur, Inderpreet, E-mail: inderpreety@yahoo.co.in [Academy of Scientific and Innovative Research- Central Scientific Instruments Organisation (AcSIR-CSIO), Sector-30C, Chandigarh (India); Council of Scientific and Industrial Research- Central Scientific Instruments Organisation (CSIR-CSIO), Sector-30C, Chandigarh (India)

    2016-04-13

    Graphene, an atom–thick two dimensional graphitic material have led various fundamental breakthroughs in the field of science and technology. Due to their exceptional optical, physical and electrical properties, graphene based transparent electrodes have shown several applications in organic light emitting diodes, solar cells and thin film transistors. Here, we are presenting effect of annealing over optoelectronic properties of graphene based transparent electrodes. Graphene based transparent electrodes have been prepared by wet chemical approach over glass substrates. After fabrication, these electrodes tested for optical transmittance in visible region. Sheet resistance was measured using four probe method. Effect of thermal annealing at 200 °C was studied over optical and electrical performance of these electrodes. Optoelectronic performance was judged from ratio of direct current conductivity to optical conductivity (σ{sub dc}/σ{sub opt}) as a figure of merit for transparent conductors. The fabricated electrodes display good optical and electrical properties. Such electrodes can be alternatives for doped metal oxide based transparent electrodes.

  6. Effect of annealing over optoelectronic properties of graphene based transparent electrodes

    Science.gov (United States)

    Yadav, Shriniwas; Kaur, Inderpreet

    2016-04-01

    Graphene, an atom-thick two dimensional graphitic material have led various fundamental breakthroughs in the field of science and technology. Due to their exceptional optical, physical and electrical properties, graphene based transparent electrodes have shown several applications in organic light emitting diodes, solar cells and thin film transistors. Here, we are presenting effect of annealing over optoelectronic properties of graphene based transparent electrodes. Graphene based transparent electrodes have been prepared by wet chemical approach over glass substrates. After fabrication, these electrodes tested for optical transmittance in visible region. Sheet resistance was measured using four probe method. Effect of thermal annealing at 200 °C was studied over optical and electrical performance of these electrodes. Optoelectronic performance was judged from ratio of direct current conductivity to optical conductivity (σdc/σopt) as a figure of merit for transparent conductors. The fabricated electrodes display good optical and electrical properties. Such electrodes can be alternatives for doped metal oxide based transparent electrodes.

  7. Standard electrode potential, Tafel equation, and the solvation thermodynamics.

    Science.gov (United States)

    Matyushov, Dmitry V

    2009-06-21

    Equilibrium in the electronic subsystem across the solution-metal interface is considered to connect the standard electrode potential to the statistics of localized electronic states in solution. We argue that a correct derivation of the Nernst equation for the electrode potential requires a careful separation of the relevant time scales. An equation for the standard metal potential is derived linking it to the thermodynamics of solvation. The Anderson-Newns model for electronic delocalization between the solution and the electrode is combined with a bilinear model of solute-solvent coupling introducing nonlinear solvation into the theory of heterogeneous electron transfer. We therefore are capable of addressing the question of how nonlinear solvation affects electrochemical observables. The transfer coefficient of electrode kinetics is shown to be equal to the derivative of the free energy, or generalized force, required to shift the unoccupied electronic level in the bulk. The transfer coefficient thus directly quantifies the extent of nonlinear solvation of the redox couple. The current model allows the transfer coefficient to deviate from the value of 0.5 of the linear solvation models at zero electrode overpotential. The electrode current curves become asymmetric in respect to the change in the sign of the electrode overpotential.

  8. Numerical simulation of optical and electronic properties for multilayer organic light-emitting diodes and its application in engineering education

    Science.gov (United States)

    Chang, Shu-Hsuan; Chang, Yung-Cheng; Yang, Cheng-Hong; Chen, Jun-Rong; Kuo, Yen-Kuang

    2006-02-01

    Organic light-emitting diodes (OLEDs) have been extensively developed in the past few years. The OLED displays have advantages over other displays, such as CRT, LCD, and PDP in thickness, weight, brightness, response time, viewing angle, contrast, driving power, flexibility, and capability of self-emission. In this work, the optical and electronic properties of multilayer OLED devices are numerically studied with an APSYS (Advanced Physical Model of Semiconductor Devices) simulation program. Specifically, the emission and absorption spectra of the Alq 3, DCM, PBD, and SA light-emitting layers, and energy band diagrams, electron-hole recombination rates, and current-voltage characteristics of the simulated OLED devices, typically with a multilayer structure of metal/Alq 3/EML/TPD/ITO constructed by Lim et al., are investigated and compared to the experimental results. The physical models utilized in this work are similar to those presented by Ruhstaller et al. and Hoffmann et al. The simulated results indicate that the emission spectra of the Alq 3, DCM, PBD, and SA light-emitting layers obtained in this study are in good agreement with those obtained experimentally by Zugang et al. Optimization of the optical and electronic performance of the multilayer OLED devices are attempted. In order to further promote the research results, the whole numerical simulation process for optimizing the design of OLED devices has been applied to a project-based course of OLED device design to enhance the students' skills in photonics device design at the Graduate Institute of Photonics of National Changhua University of Education in Taiwan. In the meantime, the effectiveness of the course has been proved by various assessments. The application of the results is a useful point of reference for the research on photonics device design and engineering education. Therefore, it proffers a synthetic effect between innovation and practical application.

  9. The use of ionic salt dyes as amorphous, thermally stable emitting layers in organic light-emitting diodes

    Science.gov (United States)

    Chondroudis, Konstantinos; Mitzi, David B.

    2000-01-01

    The conversion of two neutral dye molecules (D) to ionic salts (H2N-D-NH2ṡ2HX) and their utilization as emitting layers in organic light-emitting diodes (OLEDs) is described. The dye salts, AEQTṡ2HCl and APTṡ2HCl, can be deposited as amorphous films using conventional evaporation techniques. X-ray diffraction and scanning electron microscopy analysis, coupled with thermal annealing studies, demonstrate the resistance of the films to crystallization. This stability is attributed to strong ionic forces between the relatively rigid molecules. OLEDs incorporating such salts for emitting layers exhibit better thermal stability compared with devices made from the corresponding neutral dyes (H2N-D-NH2). These results suggest that ionic salts may more generally enable the formation of thermally stable, amorphous emitting, and charge transporting layers.

  10. High-efficiency green phosphorescent organic light-emitting diodes with double-emission layer and thick N-doped electron transport layer

    Energy Technology Data Exchange (ETDEWEB)

    Nobuki, Shunichiro, E-mail: shunichiro.nobuki.nb@hitachi.com [Hitachi Research Laboratory, Hitachi Ltd., 7-1-1 Omika-cho, Hitachi-city, Ibaraki 319-1292 (Japan); Wakana, Hironori; Ishihara, Shingo [Hitachi Research Laboratory, Hitachi Ltd., 7-1-1 Omika-cho, Hitachi-city, Ibaraki 319-1292 (Japan); Mikami, Akiyoshi [Dept. of Electrical Engineering, Kanazawa Institute of Technology, 7-1 Ohgigaoka, Nonoichimachi, Ishikawa 921-8501 (Japan)

    2014-03-03

    We have developed green phosphorescent organic light-emitting diodes (OLEDs) with high external quantum efficiency of 59.7% and power efficiency of 243 lm/W at 2.73 V at 0.053 mA/cm{sup 2}. A double emission layer and a thick n-doped electron transport layer were adopted to improve the exciton recombination factor. A high refractive index hemispherical lens was attached to a high refractive index substrate for extracting light trapped inside the substrate and the multiple-layers of OLEDs to air. Additionally, we analyzed an energy loss mechanism to clarify room for the improvement of our OLEDs including the charge balance factor. - Highlights: • We developed high efficiency green phosphorescent organic light-emitting diode (OLED). • Our OLED had external quantum efficiency of 59.7% and power efficiency of 243 lm/W. • A double emission layer and thick n-doped electron transport layer were adopted. • High refractive index media (hemispherical lens and substrate) were also used. • We analyzed an energy loss mechanism to clarify the charge balance factor of our OLED.

  11. Observation of total electron content and irregularities in electron density using GHz band radiowaves emitted from satellite

    International Nuclear Information System (INIS)

    Ogawa, Tadahiko; Fujita, Masaharu; Awaka, Jun.

    1978-01-01

    The experiments to investigate the influence of troposphere on millimeter and sub-millimeter wave propagation were carried out, using the engineering test satellite -- 2 (ETS-2) which became the Japanese first stationary satellite and carries the transmitter emitting beacon waves of 1.7, 11.5 and 34.5 GHz coherent each other. By these experiments, it was found that the waves of 1.7 and 11.5 GHz were affected by the ionosphere. The measurement of total electron content using GHz band waves was the first trial in the world, and is capable of grasping its change with higher accuracy than conventional methods. Scintillation of 1.7 GHz is mainly the phenomenon during night, and it was revealed that it has a peak at 22.30 local time and occurred through the radiowave scattering owing to the irregularities of the ionosphere. It is also suggested that some plasma instability is generated in the place where electron density gradient in the ionosphere is large, and the irregularities of fine scale are produced, assuming from GHz band scintillations at the time of magnetic storm. The relations among wave number spectrum, scintillation frequency spectrum and S4 index (statistical quantity to give estimate for scintillation amplitude) can be derived by the weak scattering theory (Simple scattering theory). As seen above, the diagnosis of plasma disturbances in the ionosphere is feasible by the simultaneous observations of total electron content and scintillation. (Wakatsuki, Y.)

  12. Pyridine Based Polymer Light-Emitting Devices

    National Research Council Canada - National Science Library

    Wang, Y

    1997-01-01

    ...) as a hole transporting/electron blocking layer. This improves the device efficiency and brightness significantly due to the charge confinement and exciplex emission at the PVK/emitting polymer interface...

  13. Manufacturing process and electrode properties of palladium-electroded ionic polymer–metal composite

    International Nuclear Information System (INIS)

    Chang, Longfei; Chen, Hualing; Zhu, Zicai; Li, Bo

    2012-01-01

    This paper primarily focuses on the manufacturing process of palladium-electroded ionic polymer–metal composite (IPMC). First, according to the special properties of Pd, many experiments were done to determine several specific procedures, including the addition of a reducing agent and the time consumed. Subsequently, the effects of the core manufacturing steps on the electrode morphology were revealed by scanning electron microscopy studies of 22 IPMC samples treated with different combinations of manufacturing steps. Finally, the effects of electrode characteristics on the electromechanical properties, including the sheet resistivity, the elastic modulus and the electro-active performance, of IPMCs were evaluated experimentally and analyzed according to the electrode morphology. (paper)

  14. Enhanced quantum efficiency in blue-emitting polymer/dielectric nanolayer nanocomposite light-emitting devices

    International Nuclear Information System (INIS)

    Park, Jong Hyeok; Lim, Yong Taik; Park, O Ok; Yu, Jae-Woong; Kim, Jai Kyeong; Kim, Young Chul

    2004-01-01

    Light-emitting devices based on environmentally stable, blue-emitting polymer/dielectric nanolayer nanocomposites were fabricated by blending poly(di-octylfluorene) (PDOF) with organo-clay. By reducing the excimer formation that leads to long wavelength tails, the photoluminescence (PL) and electroluminescence (EL) color purity of the device was enhanced. When a conjugated polymer/dielectric nanolayer nanocomposite is applied to an EL device, we expect an electronic structure similar to the well-known quantum well in small nanodomains. The ratio of PDOF/organo-clay was regulated from 2:1 to 0.5:1 (w/w). The light-emitting device of 0.5:1 (w/w) blend demonstrated the highest quantum efficiency (QE), 0.72% (ph/el), which is ∼500 times higher value compared with that of the pure PDOF layer device. However, the driving voltage of the nanocomposite devices tended to increase with increasing organo-clay content

  15. Operation voltage behavior of organic light emitting diodes with polymeric buffer layers doped by weak electron acceptor

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Hyeon Soo; Cho, Sang Hee [Department of Information Display and Advanced Display Research Center, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Seo, Jaewon; Park, Yongsup [Department of Physics, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Suh, Min Chul, E-mail: mcsuh@khu.ac.kr [Department of Information Display and Advanced Display Research Center, Kyung Hee University, Seoul 130-701 (Korea, Republic of)

    2013-11-01

    We present polymeric buffer materials based on poly[2,7-(9,9-dioctyl-fluorene)-co-(1,4-phenylene -((4-sec-butylphenyl)imino)-1,4-phenylene)] (TFB) for highly efficient solution processed organic light emitting diodes (OLEDs). Doped TFB with 9,10-dicyanoanthracene, a weak electron acceptor results in significant improvement of current flow and driving voltage. Maximum current- and power-efficiency value of 12.6 cd/A and 18.1 lm/W are demonstrated from phosphorescent red OLEDs with this doped polymeric anode buffer system. - Highlights: • Polymeric buffer materials for organic light emitting diodes (OLEDs). • Method to control hole conductivity of polymeric buffer layer in OLED device. • Enhanced current density of buffer layers upon 9,10-dicyanoanthracene (DCA) doping. • Comparison of OLED devices having polymeric buffer layer with or without DCA. • Effect on operating voltage by doping DCA in the buffer layer.

  16. A new electrode design for ambipolar injection in organic semiconductors.

    Science.gov (United States)

    Kanagasekaran, Thangavel; Shimotani, Hidekazu; Shimizu, Ryota; Hitosugi, Taro; Tanigaki, Katsumi

    2017-10-17

    Organic semiconductors have attracted much attention for low-cost, flexible and human-friendly optoelectronics. However, achieving high electron-injection efficiency is difficult from air-stable electrodes and cannot be equivalent to that of holes. Here, we present a novel concept of electrode composed of a bilayer of tetratetracontane (TTC) and polycrystalline organic semiconductors (pc-OSC) covered by a metal layer. Field-effect transistors of single-crystal organic semiconductors with the new electrodes of M/pc-OSC/TTC (M: Ca or Au) show both highly efficient electron and hole injection. Contact resistance for electron injection from Au/pc-OSC/TTC and hole injection from Ca/pc-OSC/TTC are comparable to those for electron injection from Ca and hole injection from Au, respectively. Furthermore, the highest field-effect mobilities of holes (22 cm 2  V -1  s -1 ) and electrons (5.0 cm 2  V -1  s -1 ) are observed in rubrene among field-effect transistors with electrodes so far proposed by employing Ca/pc-OSC/TTC and Au/pc-OSC/TTC electrodes for electron and hole injection, respectively.One of technological challenges building organic electronics is efficient injection of electrons at metal-semiconductor interfaces compared to that of holes. The authors show an air-stable electrode design with induced gap states, which support Fermi level pinning and thus ambipolar carrier injection.

  17. Transparent Electrodes Based on Silver Nanowire Networks: From Physical Considerations towards Device Integration.

    Science.gov (United States)

    Bellet, Daniel; Lagrange, Mélanie; Sannicolo, Thomas; Aghazadehchors, Sara; Nguyen, Viet Huong; Langley, Daniel P; Muñoz-Rojas, David; Jiménez, Carmen; Bréchet, Yves; Nguyen, Ngoc Duy

    2017-05-24

    The past few years have seen a considerable amount of research devoted to nanostructured transparent conducting materials (TCM), which play a pivotal role in many modern devices such as solar cells, flexible light-emitting devices, touch screens, electromagnetic devices, and flexible transparent thin film heaters. Currently, the most commonly used TCM for such applications (ITO: Indium Tin oxide) suffers from two major drawbacks: brittleness and indium scarcity. Among emerging transparent electrodes, silver nanowire (AgNW) networks appear to be a promising substitute to ITO since such electrically percolating networks exhibit excellent properties with sheet resistance lower than 10 Ω/sq and optical transparency of 90%, fulfilling the requirements of most applications. In addition, AgNW networks also exhibit very good mechanical flexibility. The fabrication of these electrodes involves low-temperature processing steps and scalable methods, thus making them appropriate for future use as low-cost transparent electrodes in flexible electronic devices. This contribution aims to briefly present the main properties of AgNW based transparent electrodes as well as some considerations relating to their efficient integration in devices. The influence of network density, nanowire sizes, and post treatments on the properties of AgNW networks will also be evaluated. In addition to a general overview of AgNW networks, we focus on two important aspects: (i) network instabilities as well as an efficient Atomic Layer Deposition (ALD) coating which clearly enhances AgNW network stability and (ii) modelling to better understand the physical properties of these networks.

  18. Flexible bottom-emitting white organic light-emitting diodes with semitransparent Ni/Ag/Ni anode.

    Science.gov (United States)

    Koo, Ja-Ryong; Lee, Seok Jae; Lee, Ho Won; Lee, Dong Hyung; Yang, Hyung Jin; Kim, Woo Young; Kim, Young Kwan

    2013-05-06

    We fabricated a flexible bottom-emitting white organic light-emitting diode (BEWOLED) with a structure of PET/Ni/Ag/Ni (3/6/3 nm)/ NPB (50 nm)/mCP (10 nm)/7% FIrpic:mCP (10 nm)/3% Ir(pq)(2) acac:TPBi (5 nm)/7% FIrpic:TPBi (5 nm)/TPBi (10 nm)/Liq (2 nm)/ Al (100 nm). To improve the performance of the BEWOLED, a multilayered metal stack anode of Ni/Ag/Ni treated with oxygen plasma for 60 sec was introduced into the OLED devices. The Ni/Ag/Ni anode effectively enhanced the probability of hole-electron recombination due to an efficient hole injection into and charge balance in an emitting layer. By comparing with a reference WOLED using ITO on glass, it is verified that the flexible BEWOLED showed a similar or better electroluminescence (EL) performance.

  19. Towards Flexible Transparent Electrodes Based on Carbon and Metallic Materials

    Directory of Open Access Journals (Sweden)

    Minghui Luo

    2017-01-01

    Full Text Available Flexible transparent electrodes (FTEs with high stability and scalability are in high demand for the extremely widespread applications in flexible optoelectronic devices. Traditionally, thin films of indium thin oxide (ITO served the role of FTEs, but film brittleness and scarcity of materials limit its further application. This review provides a summary of recent advances in emerging transparent electrodes and related flexible devices (e.g., touch panels, organic light-emitting diodes, sensors, supercapacitors, and solar cells. Mainly focusing on the FTEs based on carbon nanomaterials (e.g., carbon nanotubes and graphene and metal materials (e.g., metal grid and metal nanowires, we discuss the fabrication techniques, the performance improvement, and the representative applications of these highly transparent and flexible electrodes. Finally, the challenges and prospects of flexible transparent electrodes will be summarized.

  20. Tetracene-based organic light-emitting transistors: optoelectronic properties and electron injection mechanism

    NARCIS (Netherlands)

    Santato, C.; Capelli, R.; Loi, M.A.; Murgia, M.; Cicoira, F.; Roy, Arunesh; Stallinga, P; Zamboni, R.; Rost, C.; Karg, S.F.; Muccini, M.

    2004-01-01

    Optoelectronic properties of light-emitting field-effect transistors (LETs) fabricated on bottom-contact transistor structures using a tetracene film as charge-transport and light-emitting material are investigated. Electroluminescence generation and transistor current are correlated, and the bias

  1. Direct electron transfer of hemoglobin in a CdS nanorods and Nafion composite film on carbon ionic liquid electrode

    International Nuclear Information System (INIS)

    Sun Wei; Wang Dandan; Li Guicun; Zhai Ziqin; Zhao Ruijun; Jiao Kui

    2008-01-01

    In this paper the direct electron transfer of hemoglobin (Hb) was carefully investigated by using a room temperature ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF 6 ) modified carbon paste electrode (CILE) as the basal working electrode. Hb was immobilized on the surface of CILE with the nanocomposite film composed of Nafion and CdS nanorods by a step-by-step method. UV-vis and FT-IR spectra showed that Hb in the composite film remained its native structure. The direct electrochemical behaviors of Hb in the composite film were further studied in a pH 7.0 phosphate buffer solution (PBS). A pair of well-defined and quasi-reversible cyclic voltammetric peaks of Hb was obtained with the formal potential (E 0 ') at -0.295 V (vs. SCE), which was the characteristic of heme Fe(III)/Fe(II) redox couples. The direct electrochemistry of Hb was achieved on the modified electrode and the apparent heterogeneous electron transfer rate constant (k s ) was calculated to be 0.291 s -1 . The formal potentials of Hb Fe(III)/Fe(II) couple shifted negatively with the increase of buffer pH and a slope value of -45.1 mV/pH was got, which indicated that one electron transfer accompanied with one proton transportation. The fabricated Hb sensor showed good electrocatalytic manner to the reduction of trichloroacetic acid (TCA)

  2. Low-Energy Electrons Emitted in Ion Collisions with Thin Foils

    Science.gov (United States)

    Kraemer, Michael; Kozhuharov, Christophor; Durante, Marco; Hagmann, Siegbert; Kraft, Gerhard; Lineva, Natallia

    The realistic description of radiation damage after charged particle passage is an ongoing issue for both radiotherapy as well as space applications. In both areas of applied radiological science, living as well as nonliving matter is exposed to ionizing radiation, and it is of vital interest to predict the responses of structures like cells, detectors or electronic devices. In ion beam radiotherapy, for example, the Local Effect Model (LEM) is being used to calculate radiobiological effects with so far unprecedented versatility. This has been shown in the GSI radiotherapy pilot project and consequently this model has become the "industry standard" for treatment planning in subsequent commercial ion radiotherapy sites. The model has also been extended to nonliving matter, i.e. to describe the response of solid state detectors such as TLDs and films. A prerequisite for this model (and possibly similar ones) is the proper description of microscopic track structure and energy deposition. In particular, the area at a very low distance (¡20 nm) from the ion path needs special attention due to the locally very high dose and the rather limited experimental evidence for the shape of the dose distribution. The dose distribution at low distances is inevitably associated with the creation and transport of low-energy (sub-keV) electrons. While some data, elementary cross sections as well as dose distributions, exist for gaseous media, i.e. under single collision conditions, experimental data for the condensed phase are scarce. We have, therefore, launched a project aimed at systematic research of the energy and angular distributions of low-energy (sub-keV) electrons emitted from solids. These investigations com-prise creation as well as transport of low-energy electrons under multiple collision conditions and hence require accounting for the properties of the target, both bulk and surface, i.e. for the inherent inhomogeneity of the thickness and for the surface roughness. To

  3. A charge inverter for III-nitride light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zi-Hui, E-mail: zh.zhang@hebut.edu.cn, E-mail: wbi@hebut.edu.cn, E-mail: volkan@stanfordalumni.org, E-mail: sunxw@sustc.edu.cn; Zhang, Yonghui; Bi, Wengang, E-mail: zh.zhang@hebut.edu.cn, E-mail: wbi@hebut.edu.cn, E-mail: volkan@stanfordalumni.org, E-mail: sunxw@sustc.edu.cn; Geng, Chong; Xu, Shu [Key Laboratory of Electronic Materials and Devices of Tianjin, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Beichen District, Tianjin 300401 (China); Demir, Hilmi Volkan, E-mail: zh.zhang@hebut.edu.cn, E-mail: wbi@hebut.edu.cn, E-mail: volkan@stanfordalumni.org, E-mail: sunxw@sustc.edu.cn [LUMINOUS Centre of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore (Singapore); Department of Electrical and Electronics, Department of Physics, and UNAM-Institute of Material Science and Nanotechnology, Bilkent University, TR-06800 Ankara (Turkey); Sun, Xiao Wei, E-mail: zh.zhang@hebut.edu.cn, E-mail: wbi@hebut.edu.cn, E-mail: volkan@stanfordalumni.org, E-mail: sunxw@sustc.edu.cn [LUMINOUS Centre of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore (Singapore); Department of Electrical and Electronic Engineering, College of Engineering, South University of Science and Technology, 1088 Xue-Yuan Road, Nanshan, Shenzhen, Guangdong 518055 (China)

    2016-03-28

    In this work, we propose a charge inverter that substantially increases the hole injection efficiency for InGaN/GaN light-emitting diodes (LEDs). The charge inverter consists of a metal/electrode, an insulator, and a semiconductor, making an Electrode-Insulator-Semiconductor (EIS) structure, which is formed by depositing an extremely thin SiO{sub 2} insulator layer on the p{sup +}-GaN surface of a LED structure before growing the p-electrode. When the LED is forward-biased, a weak inversion layer can be obtained at the interface between the p{sup +}-GaN and SiO{sub 2} insulator. The weak inversion region can shorten the carrier tunnel distance. Meanwhile, the smaller dielectric constant of the thin SiO{sub 2} layer increases the local electric field within the tunnel region, and this is effective in promoting the hole transport from the p-electrode into the p{sup +}-GaN layer. Due to the improved hole injection, the external quantum efficiency is increased by 20% at 20 mA for the 350 × 350 μm{sup 2} LED chip. Thus, the proposed EIS holds great promise for high efficiency LEDs.

  4. A charge inverter for III-nitride light-emitting diodes

    International Nuclear Information System (INIS)

    Zhang, Zi-Hui; Zhang, Yonghui; Bi, Wengang; Geng, Chong; Xu, Shu; Demir, Hilmi Volkan; Sun, Xiao Wei

    2016-01-01

    In this work, we propose a charge inverter that substantially increases the hole injection efficiency for InGaN/GaN light-emitting diodes (LEDs). The charge inverter consists of a metal/electrode, an insulator, and a semiconductor, making an Electrode-Insulator-Semiconductor (EIS) structure, which is formed by depositing an extremely thin SiO 2 insulator layer on the p + -GaN surface of a LED structure before growing the p-electrode. When the LED is forward-biased, a weak inversion layer can be obtained at the interface between the p + -GaN and SiO 2 insulator. The weak inversion region can shorten the carrier tunnel distance. Meanwhile, the smaller dielectric constant of the thin SiO 2 layer increases the local electric field within the tunnel region, and this is effective in promoting the hole transport from the p-electrode into the p + -GaN layer. Due to the improved hole injection, the external quantum efficiency is increased by 20% at 20 mA for the 350 × 350 μm 2 LED chip. Thus, the proposed EIS holds great promise for high efficiency LEDs.

  5. Electron injection mechanisms of green organic light-emitting devices fabricated utilizing a double electron injection layer consisting of cesium carbonate and fullerene

    International Nuclear Information System (INIS)

    Yang, J.S.; Choo, D.C.; Kim, T.W.; Jin, Y.Y.; Seo, J.H.; Kim, Y.K.

    2010-01-01

    Electron injection mechanisms of the luminance efficiency of green organic light-emitting devices (OLEDs) fabricated utilizing a cesium carbonate (Cs 2 CO 3 )/fullerene (C 60 ) heterostructure acting as an electron injection layer (EIL) were investigated. Current density-voltage and luminance-voltage measurements showed that the current densities and the luminances of the OLEDs with a Cs 2 CO 3 or Cs 2 CO 3 /C 60 EIL were higher than that of the OLEDs with a Liq EIL. The luminance efficiency of the OLEDs with a Cs 2 CO 3 EIL was almost three times higher than that of the OLEDs with a Liq EIL. Because the electron injection efficiency of the Cs 2 CO 3 layer in OLEDs was different from that of the C 60 layer, the luminance efficiency of the OLEDs with a double EIL consisting of a Cs 2 CO 3 layer and a C 60 layer was smaller than that of the OLEDs with a Cs 2 CO 3 EIL. The electron injection mechanisms of OLEDs with a Cs 2 CO 3 and C 60 double EIL are described on the basis of the experimental results.

  6. Nanoscale biomemory composed of recombinant azurin on a nanogap electrode

    International Nuclear Information System (INIS)

    Chung, Yong-Ho; Lee, Taek; Choi, Jeong-Woo; Park, Hyung Ju; Yun, Wan Soo; Min, Junhong

    2013-01-01

    We fabricate a nanoscale biomemory device composed of recombinant azurin on nanogap electrodes. For this, size-controllable nanogap electrodes are fabricated by photolithography, electron beam lithography, and surface catalyzed chemical deposition. Moreover, we investigate the effect of gap distance to optimize the size of electrodes for a biomemory device and explore the mechanism of electron transfer from immobilized protein to a nanogap counter-electrode. As the distance of the nanogap electrode is decreased in the nanoscale, the absolute current intensity decreases according to the distance decrement between the electrodes due to direct electron transfer, in contrast with the diffusion phenomenon of a micro-electrode. The biomemory function is achieved on the optimized nanogap electrode. These results demonstrate that the fabricated nanodevice composed of a nanogap electrode and biomaterials provides various advantages such as quantitative control of signals and exclusion of environmental effects such as noise. The proposed bioelectronics device, which could be mass-produced easily, could be applied to construct a nanoscale bioelectronics system composed of a single biomolecule. (paper)

  7. Femtosecond laser ablation of gold interdigitated electrodes for electronic tongues

    Science.gov (United States)

    Manzoli, Alexandra; de Almeida, Gustavo F. B.; Filho, José A.; Mattoso, Luiz H. C.; Riul, Antonio; Mendonca, Cleber R.; Correa, Daniel S.

    2015-06-01

    Electronic tongue (e-tongue) sensors based on impedance spectroscopy have emerged as a potential technology to evaluate the quality and chemical composition of food, beverages, and pharmaceuticals. E-tongues usually employ transducers based on metal interdigitated electrodes (IDEs) coated with a thin layer of an active material, which is capable of interacting chemically with several types of analytes. IDEs are usually produced by photolithographic methods, which are time-consuming and costly, therefore, new fabrication technologies are required to make it more affordable. Here, we employed femtosecond laser ablation with pulse duration of 50 fs to microfabricate gold IDEs having finger width from 2.3 μm up to 3.2 μm. The parameters used in the laser ablation technique, such as light intensity, scan speed and beam spot size have been optimized to achieve uniform IDEs, which were characterized by optical and scanning electron microscopy. The electrical properties of gold IDEs fabricated by laser ablation were evaluated by impedance spectroscopy, and compared to those produced by conventional photolithography. The results show that femtosecond laser ablation is a promising alternative to conventional photolithography for fabricating metal IDEs for e-tongue systems.

  8. Barbed channels enhance unidirectional connectivity between neuronal networks cultured on multi electrode arrays

    Science.gov (United States)

    le Feber, Joost; Postma, Wybren; de Weerd, Eddy; Weusthof, Marcel; Rutten, Wim L. C.

    2015-01-01

    Cultured neurons on multi electrode arrays (MEAs) have been widely used to study various aspects of neuronal (network) functioning. A possible drawback of this approach is the lack of structure in these networks. At the single cell level, several solutions have been proposed to enable directed connectivity, and promising results were obtained. At the level of connected sub-populations, a few attempts have been made with promising results. First assessment of the designs' functionality, however, suggested room for further improvement. We designed a two chamber MEA aiming to create a unidirectional connection between the networks in both chambers (“emitting” and “receiving”). To achieve this unidirectionality, all interconnecting channels contained barbs that hindered axon growth in the opposite direction (from receiving to emitting chamber). Visual inspection showed that axons predominantly grew through the channels in the promoted direction. This observation was confirmed by spontaneous activity recordings. Cross-correlation between the signals from two electrodes inside the channels suggested signal propagation at ≈2 m/s from emitting to receiving chamber. Cross-correlation between the firing patterns in both chambers indicated that most correlated activity was initiated in the emitting chamber, which was also reflected by a significantly lower fraction of partial bursts (i.e., a one-chamber-only burst) in the emitting chamber. Finally, electrical stimulation in the emitting chamber induced a fast response in that chamber, and a slower response in the receiving chamber. Stimulation in the receiving chamber evoked a fast response in that chamber, but no response in the emitting chamber. These results confirm the predominantly unidirectional nature of the connecting channels from emitting to receiving chamber. PMID:26578869

  9. Barbed channels enhance unidirectional connectivity between neuronal networks cultured on multi electrode arrays.

    Directory of Open Access Journals (Sweden)

    Joost eLe Feber

    2015-11-01

    Full Text Available Cultured neurons on multi electrode arrays (MEAs have been widely used to study various as-pects of neuronal (network functioning. A possible drawback of this approach is the lack of structure in these networks. At the single cell level, several solutions have been proposed to ena-ble directed connectivity, and promising results were obtained. At the level of connected sub-populations, a few attempts have been made with promising results. First assessment of the de-signs’ functionality, however, suggested room for further improvement.We designed a two chamber MEA aiming to create a unidirectional connection between the net-works in both chambers (‘emitting’ and ‘receiving’. To achieve this unidirectionality, all inter-connecting channels contained barbs that hindered axon growth in the opposite direction (from receiving to emitting chamber. Visual inspection showed that axons predominantly grew through the channels in the promoted direction . This observation was confirmed by spontaneous activity recordings. Cross-correlation between the signals from two electrodes inside the channels suggested signal propagation at ≈2 m/s from emitting to receiving chamber. Cross-correlation between the firing patterns in both chambers indicated that most correlated activity was initiated in the emitting chamber, which was also reflected by a significantly lower fraction of partial bursts (e. a one-chamber-only burst in the emitting chamber. Finally, electrical stimulation in the emitting chamber induced a fast response in that chamber, and a slower response in the receiving chamber. Stimulation in the receiving chamber evoked a fast response in that chamber, but no response in the emitting chamber. These results confirm the predominantly unidirectional nature of the connecting channels from emitting to receiving chamber.

  10. Nanofabrication Technology for Production of Quantum Nano-Electronic Devices Integrating Niobium Electrodes and Optically Transparent Gates

    Science.gov (United States)

    2018-01-01

    TECHNICAL REPORT 3086 January 2018 Nanofabrication Technology for Production of Quantum Nano-electronic Devices Integrating Niobium Electrodes...work described in this report was performed for the by the Advanced Concepts and Applied Research Branch (Code 71730) and the Science and Technology ...Applied Sciences Division iii EXECUTIVE SUMMARY This technical report demonstrates nanofabrication technology for Niobium heterostructures and

  11. Chemical formation of soft metal electrodes for flexible and wearable electronics.

    Science.gov (United States)

    Wang, Dongrui; Zhang, Yaokang; Lu, Xi; Ma, Zhijun; Xie, Chuan; Zheng, Zijian

    2018-06-18

    Flexible and wearable electronics is one major technology after smartphones. It shows remarkable application potential in displays and informatics, robotics, sports, energy harvesting and storage, and medicine. As an indispensable part and the cornerstone of these devices, soft metal electrodes (SMEs) are of great significance. Compared with conventional physical processes such as vacuum thermal deposition and sputtering, chemical approaches for preparing SMEs show significant advantages in terms of scalability, low-cost, and compatibility with the soft materials and substrates used for the devices. This review article provides a detailed overview on how to chemically fabricate SMEs, including the material preparation, fabrication technologies, methods to characterize their key properties, and representative studies on different wearable applications.

  12. Geobacter sulfurreducens adapts to low electrode potential for extracellular electron transfer

    International Nuclear Information System (INIS)

    Peng, Luo; Zhang, Xiao-Ting; Yin, Jie; Xu, Shuo-Yuan; Zhang, Yong; Xie, De-Ti; Li, Zhen-Lun

    2016-01-01

    Microbial extracellular electron transfer (EET) occurring in natural and engineering processes is attracting increasing interests. While a meaningful question for bioenergetics, microbial physiology and microbial electrochemical systems; less is known about the lower limit of electron acceptor reduction potential for EET. It is also unclear how microbes adapt to weak electron acceptors. This study evaluated Geobacter sulfurreducens biofilms grown with an electrode poised at −0.25 V vs. SHE. This potential was found to be sufficient for microbial metabolism and proliferation. The turnover cyclic voltammetries found that these biofilms had a half-saturation potential of −0.242 ± 0.004 V, in contrast to −0.151 ± 0.003 V for that of the biofilms grown under 0.2 V. For the biofilms grown under 0.2 V, differential pulse voltammetry showed that the metabolic current was mediated by interfacial cofactors with mid-point potential around −0.16 V performing single-electron electron transfer (ET). The major electron conduits for the biofilms respiring under −0.25 V had mid-point potentials of −0.22 V or −0.26 V, which appeared to perform two-electron ET. Under the non-turnover condition, both biofilms showed similar patterns in voltammograms and the low-potential conduits largely disappeared for the biofilms grown under −0.25 V. Transcriptome analysis identified 17 cytochrome-c genes significantly up-regulated for the biofilms grown under −0.25 V, together with many other genes linked to the ET system. It was also noted that, lowering the poised potential from −0.25 V to −0.28 V (the fuel standard oxidation potential) did not fully inhibit microbial respiration.

  13. Top-emitting organic light-emitting diodes.

    Science.gov (United States)

    Hofmann, Simone; Thomschke, Michael; Lüssem, Björn; Leo, Karl

    2011-11-07

    We review top-emitting organic light-emitting diodes (OLEDs), which are beneficial for lighting and display applications, where non-transparent substrates are used. The optical effects of the microcavity structure as well as the loss mechanisms are discussed. Outcoupling techniques and the work on white top-emitting OLEDs are summarized. We discuss the power dissipation spectra for a monochrome and a white top-emitting OLED and give quantitative reports on the loss channels. Furthermore, the development of inverted top-emitting OLEDs is described.

  14. Invariable optical properties of phosphor-free white light-emitting diode under electrical stress

    International Nuclear Information System (INIS)

    Hao, Long; Hao, Fang; Sheng-Li, Qi; Li-Wen, Sang; Wen-Yu, Cao; Jian, Yan; Jun-Jing, Deng; Zhi-Jian, Yang; Guo-Yi, Zhang

    2010-01-01

    This paper reports that a dual-wavelength white light-emitting diode is fabricated by using a metal-organic chemical vapor deposition method. Through a 200-hours' current stress, the reverse leakage current of this light-emitting diode increases with the aging time, but the optical properties remained unchanged despite the enhanced reverse leakage current. Transmission electron microscopy and cathodeluminescence images show that indium atoms were assembled in and around V-shape pits with various compositions, which can be ascribed to the emitted white light. Evolution of cathodeluminescence intensities under electron irradiation is also performed. Combining cathodeluminescence intensities under electron irradiation and above results, the increase of leakage channels and crystalline quality degradation are realized. Although leakage channels increase with aging, potential fluctuation caused by indium aggregation can effectively avoid the impact of leakage channels. Indium aggregation can be attributed to the mechanism of preventing optical degradation in phosphor-free white light-emitting diode. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  15. Nearly Efficiency-Droop-Free AlGaN-Based Ultraviolet Light-Emitting Diodes with a Specifically Designed Superlattice p-Type Electron Blocking Layer for High Mg Doping Efficiency

    Science.gov (United States)

    Zhang, Zi-Hui; Huang Chen, Sung-Wen; Chu, Chunshuang; Tian, Kangkai; Fang, Mengqian; Zhang, Yonghui; Bi, Wengang; Kuo, Hao-Chung

    2018-04-01

    This work reports a nearly efficiency-droop-free AlGaN-based deep ultraviolet light-emitting diode (DUV LED) emitting in the peak wavelength of 270 nm. The DUV LED utilizes a specifically designed superlattice p-type electron blocking layer (p-EBL). The superlattice p-EBL enables a high hole concentration in the p-EBL which correspondingly increases the hole injection efficiency into the multiple quantum wells (MQWs). The enhanced hole concentration within the MQW region can more efficiently recombine with electrons in the way of favoring the radiative recombination, leading to a reduced electron leakage current level. As a result, the external quantum efficiency for the proposed DUV LED structure is increased by 100% and the nearly efficiency-droop-free DUV LED structure is obtained experimentally.

  16. A structural study of solid electrolyte interface on negative electrode of lithium-Ion battery by electron microscopy.

    Science.gov (United States)

    Matsushita, Tadashi; Watanabe, Jiro; Nakao, Tatsuya; Yamashita, Seiichi

    2014-11-01

    For the last decades, the performance of the lithium-ion battery (LIB) has been significantly improved and its applications have been expanding rapidly. However, its performance has yet to be enhanced.In the lithium-ion battery development, it is important to elucidate the electrode structure change in detail during the charge and discharge cycling. In particular, solid electrolyte interface (SEI) formed by decomposition of the electrolytes on the graphite negative electrode surface should play an important role for battery properties. Therefore, it is essential to control the structure and composition of SEI to improve the battery performance. Here, we conducted a scanning electron microscope (SEM) and transmission electron microscope (TEM) study to elucidate the structures of the SEI during the charge and discharge process using LiNi1/3Co1/3Mn1/3O2 [1] cathode and graphite anode. [2] Since SEI is a lithium-containing compound with high activity, it was observed without being exposed to the atmosphere. The electrodes including SEI were sampled after dismantling batteries with cutoff voltages of 3V and 4.2V for the charge process and 3V for the discharge process. Fig.1 shows SEM images of the graphite electrode surface during the charge and discharge process. The change of the SEI structure during the process was clearly observed. Further, TEM images showed that the SEI grew thicker during the charge process and becomes thinner when discharged. These results with regard to the reversible SEI structure could give a new insight for the battery development.jmicro;63/suppl_1/i21/DFU056F1F1DFU056F1Fig. 1.SEM images of the graphite electrode surface:(a) before charge process;(b) with charge-cutoff voltage of 3.0V; (c) with charge-cutoff voltage of 4.2V; (d) with discharge-cutoff voltage of 3.0V. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Beam based measurement of beam position monitor electrode gains

    Directory of Open Access Journals (Sweden)

    D. L. Rubin

    2010-09-01

    Full Text Available Low emittance tuning at the Cornell Electron Storage Ring (CESR test accelerator depends on precision measurement of vertical dispersion and transverse coupling. The CESR beam position monitors (BPMs consist of four button electrodes, instrumented with electronics that allow acquisition of turn-by-turn data. The response to the beam will vary among the four electrodes due to differences in electronic gain and/or misalignment. This variation in the response of the BPM electrodes will couple real horizontal offset to apparent vertical position, and introduce spurious measurements of coupling and vertical dispersion. To alleviate this systematic effect, a beam based technique to measure the relative response of the four electrodes has been developed. With typical CESR parameters, simulations show that turn-by-turn BPM data can be used to determine electrode gains to within ∼0.1%.

  18. Beam based measurement of beam position monitor electrode gains

    Science.gov (United States)

    Rubin, D. L.; Billing, M.; Meller, R.; Palmer, M.; Rendina, M.; Rider, N.; Sagan, D.; Shanks, J.; Strohman, C.

    2010-09-01

    Low emittance tuning at the Cornell Electron Storage Ring (CESR) test accelerator depends on precision measurement of vertical dispersion and transverse coupling. The CESR beam position monitors (BPMs) consist of four button electrodes, instrumented with electronics that allow acquisition of turn-by-turn data. The response to the beam will vary among the four electrodes due to differences in electronic gain and/or misalignment. This variation in the response of the BPM electrodes will couple real horizontal offset to apparent vertical position, and introduce spurious measurements of coupling and vertical dispersion. To alleviate this systematic effect, a beam based technique to measure the relative response of the four electrodes has been developed. With typical CESR parameters, simulations show that turn-by-turn BPM data can be used to determine electrode gains to within ˜0.1%.

  19. Robust high temperature oxygen sensor electrodes

    DEFF Research Database (Denmark)

    Lund, Anders

    Platinum is the most widely used material in high temperature oxygen sensor electrodes. However, platinum is expensive and the platinum electrode may, under certain conditions, suffer from poisoning, which is detrimental for an oxygen sensor. The objective of this thesis is to evaluate electrode...... materials as candidates for robust oxygen sensor electrodes. The present work focuses on characterising the electrochemical properties of a few electrode materials to understand which oxygen electrode processes are limiting for the response time of the sensor electrode. Three types of porous platinum......-Dansensor. The electrochemical properties of the electrodes were characterised by electrochemical impedance spectroscopy (EIS), and the structures were characterised by x-ray diffraction and electron microscopy. At an oxygen partial pressures of 0.2 bar, the response time of the sensor electrode was determined by oxygen...

  20. Implications of electronic short circuiting in plasma sprayed solid oxide fuel cells on electrode performance evaluation by electrochemical impedance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    White, B.D. [Department of Mechanical Engineering, The University of British Columbia, 2054-6250 Applied Sciences Lane, Vancouver, British Columbia (Canada); Kesler, O. [Department of Mechanical and Industrial Engineering, University of Toronto, 5 King' s College Road, Toronto, Ontario (Canada)

    2008-02-15

    Electronic short circuiting of the electrolyte in a solid oxide fuel cell (SOFC) arising from flaws in the plasma spray fabrication process has been found to have a significant effect on the perceived performance of the electrodes, as evaluated by electrochemical impedance spectroscopy (EIS). The presence of a short circuit has been found to lead to the underestimation of the electrode polarization resistance (R{sub p}) and hence an overestimation of electrode performance. The effect is particularly noticeable when electrolyte resistance is relatively high, for example during low to intermediate temperature operation, leading to an obvious deviation from the expected Arrhenius-type temperature dependence of R{sub p}. A method is developed for determining the real electrode performance from measurements of various cell properties, and strategies for eliminating the occurrence of short circuiting in plasma sprayed cells are identified. (author)

  1. Implications of electronic short circuiting in plasma sprayed solid oxide fuel cells on electrode performance evaluation by electrochemical impedance spectroscopy

    Science.gov (United States)

    White, B. D.; Kesler, O.

    Electronic short circuiting of the electrolyte in a solid oxide fuel cell (SOFC) arising from flaws in the plasma spray fabrication process has been found to have a significant effect on the perceived performance of the electrodes, as evaluated by electrochemical impedance spectroscopy (EIS). The presence of a short circuit has been found to lead to the underestimation of the electrode polarization resistance (R p) and hence an overestimation of electrode performance. The effect is particularly noticeable when electrolyte resistance is relatively high, for example during low to intermediate temperature operation, leading to an obvious deviation from the expected Arrhenius-type temperature dependence of R p. A method is developed for determining the real electrode performance from measurements of various cell properties, and strategies for eliminating the occurrence of short circuiting in plasma sprayed cells are identified.

  2. Photoreactive and Metal-Platable Copolymer Inks for High-Throughput, Room-Temperature Printing of Flexible Metal Electrodes for Thin-Film Electronics.

    Science.gov (United States)

    Yu, You; Xiao, Xiang; Zhang, Yaokang; Li, Kan; Yan, Casey; Wei, Xiaoling; Chen, Lina; Zhen, Hongyu; Zhou, Hang; Zhang, Shengdong; Zheng, Zijian

    2016-06-01

    Photoreactive and metal-platable copolymer inks are reported for the first time to allow high-throughput printing of high-performance flexible electrodes at room temperature. This new copolymer ink accommodates various types of printing technologies, such as soft lithography molding, screen printing, and inkjet printing. Electronic devices including resistors, sensors, solar cells, and thin-film transistors fabricated with these printed electrodes show excellent electrical performance and mechanical flexibility. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. On electrode erosion in fluorescent lamps during instant start

    Energy Technology Data Exchange (ETDEWEB)

    Hadrath, S.

    2006-09-15

    A fluorescent lamp driven with an 'instant start electronic control gear' starts in a glow mode. In the glow mode, which lasts typically for tens of milliseconds, the cathode fall exceeds hundreds of volts. This causes high energy ion bombardment of the electrode which heats the electrode, and induces a transition from glow to arc mode. In the arc mode the electrode emits thermionically and the cathode fall drops to the 12 - 15 V range. Unfortunately, the high energy ion bombardment during the glow mode leads also to intense sputtering of electrode material, including tungsten as well as emitter. Thus, instant started fluorescent lamps often suffer from early failures due to coil fracture. Therefore, the investigation of tungsten erosion during instant start is necessary and was the main goal of this work. The density of neutral atomic tungsten is determined by laser-induced fluorescence (LIF) and optical emission spectroscopy measurements (OES). Investigations are performed on a low-pressure argon dc discharge and on commercial fluorescent lamps. To include the entire temperature profile along the electrode the diffuse and spot operation modes of the dc lamp are studied experimentally and theoretically. The measured dependencies of the cathode temperature along the coil on the discharge and heating parameters are compared with the calculated results. For the first time the tungsten erosion during instant start of commercial fluorescent lamps was experimentally investigated in this work. The erosion process could be related to sputtering. A reconstruction of the temporal evolution of the absolute tungsten population density of the ground state during the glow mode was presented. The sputtered tungsten density increases immediately with the ignition, reaches a maximum where the discharge contracts at the end of the glow mode, and decreases some milliseconds before the glow-to-arc transition takes place. The maximum tungsten density was observed within a

  4. Improvement of the noise figure of the CEBAF switched electrode electronics BPM system

    International Nuclear Information System (INIS)

    Powers, T.

    1998-01-01

    The Continuous Electron Beam Accelerator Facility (CEBAF) is a high-intensity continuous wave electron accelerator for nuclear physics located at Thomas Jefferson National Accelerator Facility. A beam energy of 4 GeV is achieved by recirculating the electron beam five times through two anti-parallel 400 MeV linacs. In the linacs, where there is recirculated beam, the BPM specifications must be met for beam intensities between 1 and 100 μA. In the transport lines the BPM specifications must be met for beam intensities between 100 nA and 200 μA. To avoid a complete redesign of the existing electronics, we investigated ways to improve the noise figure of the linac BPM switched-electrode electronics (SEE) so that they could be used in the transport lines. We found that the out-of-band noise contributed significantly to the overall system noise figure. This paper will focus on the source of the excessive out-of-band noise and how it was reduced. The development, commissioning and operational results of this low noise variant of the linac style SEE BPMs as well as techniques for determining the noise figure of the rf chain will also be presented. copyright 1998 American Institute of Physics

  5. Studying electron transfer through alkanethiol self-assembled monolayers on a hanging mercury drop electrode using potentiometric measurements.

    Science.gov (United States)

    Cohen-Atiya, Meirav; Mandler, Daniel

    2006-10-14

    A new approach based on measuring the change of the open-circuit potential (OCP) of a hanging mercury drop electrode (HMDE), modified with alkanethiols of different chain length conducted in a solution containing a mixture of Ru(NH3)6(2+) and Ru(NH3)6(3+) is used for studying electron transfer across the monolayer. Following the time dependence of the OCP allowed the extraction of the kinetic parameters, such as the charge transfer resistance (R(ct)) and the electron transfer rate constant (k(et)), for different alkanethiol monolayers. An electron tunneling coefficient, beta, of 0.9 A(-1) was calculated for the monolayers on Hg.

  6. Synthesis, electronic structure and luminescent properties of a new red-emitting phosphor GdBiW2O9:Eu3+

    Science.gov (United States)

    Xie, Zhi; Zhou, Weiwei; Zhao, Wang; Zhang, Hao; Hu, Qichang; Xu, Xuee

    2017-10-01

    Red phosphor of GdBiW2O9:Eu3+ was prepared by solid-state reaction method. The phase purity and structure of the samples were characterized by XRD. The electronic structures of GdBiW2O9 host were estimated by DFT calculation. The PLE and PL spectra were also investigated. The optimal luminescent properties of GdBiW2O9:Eu3+ phosphors were obtained at 900 °C with 40 mol% of Eu3+ concentration. The phosphors can be excited efficiently by 396 nm NUV light and emit intense red light peaking at 618 nm. The results indicate GdBiW2O9:Eu3+ can act as a potential red-emitting phosphor for LEDs application.

  7. Efficient Computation of Coherent Synchrotron Radiation Taking into Account 6D Phase Space Distribution of Emitting Electrons

    International Nuclear Information System (INIS)

    Chubar, O.; Couprie, M.-E.

    2007-01-01

    CPU-efficient method for calculation of the frequency domain electric field of Coherent Synchrotron Radiation (CSR) taking into account 6D phase space distribution of electrons in a bunch is proposed. As an application example, calculation results of the CSR emitted by an electron bunch with small longitudinal and large transverse sizes are presented. Such situation can be realized in storage rings or ERLs by transverse deflection of the electron bunches in special crab-type RF cavities, i.e. using the technique proposed for the generation of femtosecond X-ray pulses (A. Zholents et. al., 1999). The computation, performed for the parameters of the SOLEIL storage ring, shows that if the transverse size of electron bunch is larger than the diffraction limit for single-electron SR at a given wavelength -- this affects the angular distribution of the CSR at this wavelength and reduces the coherent flux. Nevertheless, for transverse bunch dimensions up to several millimeters and a longitudinal bunch size smaller than hundred micrometers, the resulting CSR flux in the far infrared spectral range is still many orders of magnitude higher than the flux of incoherent SR, and therefore can be considered for practical use

  8. Multilayered phosphorescent polymer light-emitting diodes using a solution-processed n-doped electron transport layer

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yuehua; Zhang, Mengke [Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210023 (China); Zhang, Xinwen, E-mail: iamxwzhang@njupt.edu.cn [Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210023 (China); Lei, Zhenfeng; Zhang, Xiaolin; Hao, Lin; Fan, Quli [Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210023 (China); Lai, Wenyong, E-mail: iamwylai@njupt.edu.cn [Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210023 (China); Huang, Wei [Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210023 (China); Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816 (China)

    2017-06-15

    Efficient multilayered green phosphorescent polymer light-emitting devices (PhPLEDs) were successfully fabricated using a solution-processed n-doped small molecular electron transporting layer (ETL) composed of 1,3,5-tris(N-phenyl-benzimidazol-2-yl)-benzene (TPBi) and CsF. We found that the electroluminescence properties of the devices with n-doped ETLs are significantly improved. The maximum luminance efficiency of the device with 7.5 wt% CsF doped TPBi ETL reached 26.9 cd/A, which is 1.5 times as large as that of the undoped device. The impedance spectra of the devices and electron transport properties of the CsF doped ETLs demonstrate that doping dramatically decreases the impedance and enhances the electrical conductivity. Similarly, enhanced performance of PhPLED is also observed by use of CsF-doped 4,7-diphenyl-1,10 -phenanthroline (BPhen) ETL. These results demonstrate that CsF can be used as an effective n-dopant in solution-processed devices.

  9. Multilayered phosphorescent polymer light-emitting diodes using a solution-processed n-doped electron transport layer

    International Nuclear Information System (INIS)

    Chen, Yuehua; Zhang, Mengke; Zhang, Xinwen; Lei, Zhenfeng; Zhang, Xiaolin; Hao, Lin; Fan, Quli; Lai, Wenyong; Huang, Wei

    2017-01-01

    Efficient multilayered green phosphorescent polymer light-emitting devices (PhPLEDs) were successfully fabricated using a solution-processed n-doped small molecular electron transporting layer (ETL) composed of 1,3,5-tris(N-phenyl-benzimidazol-2-yl)-benzene (TPBi) and CsF. We found that the electroluminescence properties of the devices with n-doped ETLs are significantly improved. The maximum luminance efficiency of the device with 7.5 wt% CsF doped TPBi ETL reached 26.9 cd/A, which is 1.5 times as large as that of the undoped device. The impedance spectra of the devices and electron transport properties of the CsF doped ETLs demonstrate that doping dramatically decreases the impedance and enhances the electrical conductivity. Similarly, enhanced performance of PhPLED is also observed by use of CsF-doped 4,7-diphenyl-1,10 -phenanthroline (BPhen) ETL. These results demonstrate that CsF can be used as an effective n-dopant in solution-processed devices.

  10. Direct electron transfer of glucose oxidase and biosensing for glucose based on PDDA-capped gold nanoparticle modified graphene/multi-walled carbon nanotubes electrode.

    Science.gov (United States)

    Yu, Yanyan; Chen, Zuanguang; He, Sijing; Zhang, Beibei; Li, Xinchun; Yao, Meicun

    2014-02-15

    In this work, poly (diallyldimethylammonium chloride) (PDDA)-capped gold nanoparticles (AuNPs) functionalized graphene (G)/multi-walled carbon nanotubes (MWCNTs) nanocomposites were fabricated. Based on the electrostatic attraction, the G/MWCNTs hybrid material can be decorated with AuNPs uniformly and densely. The new hierarchical nanostructure can provide a larger surface area and a more favorable microenvironment for electron transfer. The AuNPs/G/MWCNTs nanocomposite was used as a novel immobilization platform for glucose oxidase (GOD). Direct electron transfer (DET) was achieved between GOD and the electrode. Field emission scanning electron microscopy (FESEM), UV-vis spectroscopy and cyclic voltammetry (CV) were used to characterize the electrochemical biosensor. The glucose biosensor fabricated based on GOD electrode modified with AuNPs/G/MWCNTs demonstrated satisfactory analytical performance with high sensitivity (29.72mAM(-1)cm(-2)) and low limit of detection (4.8 µM). The heterogeneous electron transfer rate constant (ΚS) and the apparent Michaelis-Menten constant (Km) of GOD were calculated to be 11.18s(-1) and 2.09 mM, respectively. With satisfactory selectivity, reproducibility, and stability, the nanostructure we proposed offered an alternative for electrode fabricating and glucose biosensing. © 2013 Elsevier B.V. All rights reserved.

  11. Improved Temperature Diagnostic for Non-Neutral Plasmas with Single-Electron Resolution

    Science.gov (United States)

    Shanman, Sabrina; Evans, Lenny; Fajans, Joel; Hunter, Eric; Nelson, Cheyenne; Sierra, Carlos; Wurtele, Jonathan

    2016-10-01

    Plasma temperature diagnostics in a Penning-Malmberg trap are essential for reliably obtaining cold, non-neutral plasmas. We have developed a setup for detecting the initial electrons that escape from a trapped pure electron plasma as the confining electrode potential is slowly reduced. The setup minimizes external noise by using a silicon photomultiplier to capture light emitted from an MCP-amplified phosphor screen. To take advantage of this enhanced resolution, we have developed a new plasma temperature diagnostic analysis procedure which takes discrete electron arrival times as input. We have run extensive simulations comparing this new discrete algorithm to our existing exponential fitting algorithm. These simulations are used to explore the behavior of these two temperature diagnostic procedures at low N and at high electronic noise. This work was supported by the DOE DE-FG02-06ER54904, and the NSF 1500538-PHY.

  12. Investigation of the connection between plasma temperature and electrode temperature in metal-halide lamps

    International Nuclear Information System (INIS)

    Fromm, D.C.; Gleixner, K.H.; Lieder, G.H.

    2002-01-01

    Spatial profiles of electrode temperatures and plasma temperatures have been measured on 'real' HID lamps filled with a commercial metal-halide compound. The absolute accuracy of pyrometric determination of electrode tip temperatures was ±30 K, while the determination of plasma core temperatures, using a modified Bartels method, has an accuracy of ±100 K. We could deduce a close correlation between the plasma temperature in front of an electrode T p and its tip temperature T t due to the influence of the cataphoresis. If T p is reduced at the cathode the T t value has also lowered, whereas T p at the anode is raised together with its T t data. This correlation disappears at ballast frequencies above 100 Hz, whereas the cataphoresis influence on T p continues up to 500 Hz. Based on the latter limit, a rough estimation of the cataphoresis velocity delivers 700 cm s -1 . As a tentative interpretation, we suggest that the connection between T p and T t is caused by an increase of the ion part of the total current at the cathode due to Na accumulation before it. Thus, the cathode has to emit fewer electrons and works at a lower temperature. Further results are the temporal behaviour of T t depends on the ballast type. For vertical operation the strong influence of convection on T t has also to be taken into account. Above 100 Hz, where only convection plays a role, the upper electrode T t exceeds the T t value of the lower electrode by nearly 400 K. This discrepancy one may explain, tentatively, by convection heating of the upper electrode and convection cooling of the lower one. (author)

  13. Investigation of organic light-emitting diodes with novel organic electron injection layers

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sunae; Sethuraman, Kunjithapatham; An, Jongdeok; Im, Chan [Konkuk University, Seoul (Korea, Republic of); Hwang, Boseon [Jinwoong Industrial Co. Ltd., Seoul (Korea, Republic of)

    2012-03-15

    1-(diphenyl-phosphinoyl)-4-(2,2-diphenyl-vinyl)-benzene (DpDvB) and 4-(diphenyl-phosphinoyl)-4'-(2,2-diphenyl-vinyl)-biphenyl (DpDvBp) have been prepared and used as efficient electron injection layers (EILs) between aluminum cathode and tris (8-hydroxyquinoline) aluminum organic light emitting diodes (OLED). The performances of devices with different thicknesses of DpDvB and DpDvBp were investigated. Experimental results show that the turn-on voltage of the devices was decreased and the luminance of the devices was enhanced with increasing thickness of the EILs. Power efficiencies of 1.07 lm/W and 0.97 lm/W were obtained by inserting a 3-nm-thick EIL of DpDvB and a 5 nm thick EIL of DpDvBp, respectively. These efficiencies are comparable to that of the device using LiF as an EIL. The results prove that DpDvB and DpDvBp layers are also suitable for efficient EILs in OLEDs.

  14. Light emitting diodes as a plant lighting source

    Energy Technology Data Exchange (ETDEWEB)

    Bula, R.J.; Tennessen, D.J.; Morrow, R.C. [Wisconsin Center for Space Automation and Robotics, Madison, WI (United States); Tibbitts, T.W. [Univ. of Wisconsin, Madison, WI (United States)

    1994-12-31

    Electroluminescence in solid materials is defined as the generation of light by the passage of an electric current through a body of solid material under an applied electric field. A specific type of electroluminescence, first noted by Lossew in 1923, involves the generation of photons when electrons are passed through a p-n junction of certain solid materials (junction of a n-type semiconductor, an electron donor, and a p-type semiconductor, an electron acceptor). Development efforts to translate these observations into visible light emitting devices, however, was not undertaken until the 1950s. The term, light emitting diode (LEDs), was first used in a report by Wolfe, et al., in 1955. The development of this light emitting semiconductor technology dates back less than 30 years. During this period of time, the LED has evolved from a rare and expensive light generating device to one of the most widely used electronic components. The most popular applications of the LED are as indicators or as optoelectronic switches. However, several recent advances in LED technology have made possible the utilization of LEDs for applications that require a high photon flux, such as for plant lighting in controlled environments. The new generation of LEDs based on a gallium aluminum arsenide (GaAlAS) semiconductor material fabricated as a double heterostructure on a transparent substrate has opened up many new applications for these LEDs.

  15. Schiff Base modified on CPE electrode and PCB gold electrode for selective determination of silver ion

    Science.gov (United States)

    Leepheng, Piyawan; Suramitr, Songwut; Phromyothin, Darinee

    2017-09-01

    The schiff base was synthesized by 2,5-thiophenedicarboxaldehyde and 1,2,4-thiadiazole-3,5-diamine with condensation method. There was modified on carbon paste electrode (CPE) and Printed circuit board (PCB) gold electrode for determination silver ion. The schiff base modified electrodes was characterized by atomic force microscopy (AFM) and scanning electron microscopy (SEM), respectively. The electrochemical study was reported by cyclic voltammetry method and impedance spectroscopy using modified electrode as working electrode, platinum wire and Ag/AgCl as counter electrode and reference electrode, respectively. The modified electrodes have suitable detection for Ag+. The determination of silver ions using the modified electrodes depended linearly on Ag+ concentration in the range 1×10-10 M to 1×10-7 M, with cyclic voltammetry sensitivity were 2.51×108 μAM-1 and 1.88×108 μAM-1 for PCB gold electrode and CPE electrode, respectively, limits of detection were 5.33×10-9 M and 1.99×10-8 M for PCB gold electrode and CPE electrode, respectively. The modified electrodes have high accuracy, inexpensive and can applied to detection Ag+ in real samples.

  16. Nanometer-spaced electrodes with calibrated separation

    NARCIS (Netherlands)

    Kervennic, Y.V.; Van der Zant, H.S.J.; Morpurgo, A.F.; Gurevich, L.; Kouwenhoven, L.P.

    2002-01-01

    We have fabricated pairs of platinum electrodes with separation between 20 and 3.5 nm. Our technique combines electron beam lithography and chemical electrodeposition. We show that the measurement of the conductance between the two electrodes through the electrolyte provides an accurate and

  17. Characterisation of nano-interdigitated electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Skjolding, L H D; Ribayrol, A; Montelius, L [Division of Solid State Physics, Lund University, Box 118, SE-221 00 Lund (Sweden); Spegel, C [Department of Analytical Chemistry Lund University, Box 124, SE-221 00 Lund (Sweden); Emneus, J [MIC - Department of Micro and Nanotechnology, DTU - Building 345 East, DK-2800 Kgs. Lyngby (Denmark)], E-mail: lars_henrik.daehli_skjolding@ftf.lth.se

    2008-03-15

    Interdigitated electrodes made up of two individually addressable interdigitated comb-like electrode structures have frequently been suggested as ultra sensitive electrochemical biosensors. Since the signal enhancement effects due to cycling of the reduced and oxidized species are strongly dependent on the inter electrode distances, since the nature of the enhancement is due to overlying diffusion layers, interdigitated electrodes with an electrode separation of less then one micrometer are desired for maximum signal amplification. Fabrication of submicron structures can only be made by advanced lithography techniques. By use of electron beam lithography we have fabricated arrays of interdigitated electrodes with an electrode separation distance of 200 nm and an electrode finger width of likewise 200 nm. The entire electrode structure is 100 micrometre times 100 micrometre, and the active electrode area is dictated by the opening in the passivation layer, that is defined by UV lithography. Here we report measurements of redox cycling of ferrocyanide by coupled cyclic voltammograms, where the potential at one of the working electrodes are varied and either an oxidising or reducing potential is applied to the complimentary interdigitated electrode. The measurements show fast conversion and high collection efficiency round 87% as expected for nano-interdigitated electrodes.

  18. Diffuse charge and Faradaic reactions in porous electrodes

    NARCIS (Netherlands)

    Biesheuvel, P.M.; Yu, F.; Bazant, M.Z.

    2011-01-01

    Porous electrodes instead of flat electrodes are widely used in electrochemical systems to boost storage capacities for ions and electrons, to improve the transport of mass and charge, and to enhance reaction rates. Existing porous electrode theories make a number of simplifying assumptions: (i) The

  19. Nanosecond field emitted and photo-field emitted current pulses from ZrC tips

    International Nuclear Information System (INIS)

    Ganter, R.; Bakker, R.J.; Gough, C.; Paraliev, M.; Pedrozzi, M.; Le Pimpec, F.; Rivkin, L.; Wrulich, A.

    2006-01-01

    In order to find electron sources with low thermal emittance, cathodes based on single tip field emitter are investigated. Maximum peak current, measured from single tip in ZrC with a typical apex radius around 1 μm, are presented. Voltage pulses of 2 ns duration and up to 50 kV amplitude lead to field emission current up to 470 mA from one ZrC tip. Combination of high applied electric field with laser illumination gives the possibility to modulate the emission with laser pulses. Nanoseconds current pulses have been emitted with laser pulses at 1064 nm illuminating a ZrC tip under high-DC electric field. The dependence of photo-field emitted current with the applied voltage can be explained by the Schottky effect

  20. Nanosecond field emitted and photo-field emitted current pulses from ZrC tips

    Energy Technology Data Exchange (ETDEWEB)

    Ganter, R. [Paul Scherrer Institut, Villigen, CH 5232 (Switzerland)]. E-mail: romain.ganter@psi.ch; Bakker, R.J. [Paul Scherrer Institut, Villigen, CH 5232 (Switzerland); Gough, C. [Paul Scherrer Institut, Villigen, CH 5232 (Switzerland); Paraliev, M. [Paul Scherrer Institut, Villigen, CH 5232 (Switzerland); Pedrozzi, M. [Paul Scherrer Institut, Villigen, CH 5232 (Switzerland); Le Pimpec, F. [Paul Scherrer Institut, Villigen, CH 5232 (Switzerland); Rivkin, L. [Paul Scherrer Institut, Villigen, CH 5232 (Switzerland); Wrulich, A. [Paul Scherrer Institut, Villigen, CH 5232 (Switzerland)

    2006-09-15

    In order to find electron sources with low thermal emittance, cathodes based on single tip field emitter are investigated. Maximum peak current, measured from single tip in ZrC with a typical apex radius around 1 {mu}m, are presented. Voltage pulses of 2 ns duration and up to 50 kV amplitude lead to field emission current up to 470 mA from one ZrC tip. Combination of high applied electric field with laser illumination gives the possibility to modulate the emission with laser pulses. Nanoseconds current pulses have been emitted with laser pulses at 1064 nm illuminating a ZrC tip under high-DC electric field. The dependence of photo-field emitted current with the applied voltage can be explained by the Schottky effect.

  1. Photoresponse of poly(para-phenylenevinylene) light-emitting diodes

    International Nuclear Information System (INIS)

    Wei, X.; Raikh, M.; Vardeny, Z.V.; Yang, Y.; Moses, D.

    1994-01-01

    We have studied the photoresponses of poly(para-phenylene vinylene) (PPV) light-emitting diodes (LED's) with PPV derivatives sandwiched between tin oxide (ITO) and metals including calcium, aluminum, and copper. Under illumination all diodes exhibit relatively large photoconductive I(V) responses which cross the dark I(V) curve at a forward-bias voltage V 0 that scales with the difference in work functions between the ITO and metal electrodes, the open-circuit voltage saturates at V 0 and is temperature independent, and the enhanced electroluminescence intensity of the illuminated LED's correlates with the photocurrent

  2. Polymer and small molecule based hybrid light source

    Science.gov (United States)

    Choong, Vi-En; Choulis, Stelios; Krummacher, Benjamin Claus; Mathai, Mathew; So, Franky

    2010-03-16

    An organic electroluminescent device, includes: a substrate; a hole-injecting electrode (anode) coated over the substrate; a hole injection layer coated over the anode; a hole transporting layer coated over the hole injection layer; a polymer based light emitting layer, coated over the hole transporting layer; a small molecule based light emitting layer, thermally evaporated over the polymer based light emitting layer; and an electron-injecting electrode (cathode) deposited over the electroluminescent polymer layer.

  3. Structural and Electronic Features of Sb-Based Electrode Materials: 121Sb Moessbauer Spectrometry

    International Nuclear Information System (INIS)

    Ionica, C. M.; Aldon, L.; Lippens, P. E.; Morato, F.; Olivier-Fourcade, J.; Jumas, J.-C.

    2004-01-01

    Lithium insertion mechanisms in two antimony based compounds: CoSb 3 and CoSb have been studied by means of 121 Sb Moessbauer spectrometry. Structural and electronic modifications induced by insertion of lithium have been characterised for different depths of discharge. In all cases the insertion mechanisms can be described from several steps. In the first step antimony is partially dispersed in the metallic matrix with amorphisation of the electrode material and in a second step we can observe the alloy forming (Li 3 Sb). However this amorphous alloy remains in interaction with the matrix allowing then a good reversibility.

  4. Clean graphene electrodes on organic thin-film devices via orthogonal fluorinated chemistry.

    Science.gov (United States)

    Beck, Jonathan H; Barton, Robert A; Cox, Marshall P; Alexandrou, Konstantinos; Petrone, Nicholas; Olivieri, Giorgia; Yang, Shyuan; Hone, James; Kymissis, Ioannis

    2015-04-08

    Graphene is a promising flexible, highly transparent, and elementally abundant electrode for organic electronics. Typical methods utilized to transfer large-area films of graphene synthesized by chemical vapor deposition on metal catalysts are not compatible with organic thin-films, limiting the integration of graphene into organic optoelectronic devices. This article describes a graphene transfer process onto chemically sensitive organic semiconductor thin-films. The process incorporates an elastomeric stamp with a fluorinated polymer release layer that can be removed, post-transfer, via a fluorinated solvent; neither fluorinated material adversely affects the organic semiconductor materials. We used Raman spectroscopy, atomic force microscopy, and scanning electron microscopy to show that chemical vapor deposition graphene can be successfully transferred without inducing defects in the graphene film. To demonstrate our transfer method's compatibility with organic semiconductors, we fabricate three classes of organic thin-film devices: graphene field effect transistors without additional cleaning processes, transparent organic light-emitting diodes, and transparent small-molecule organic photovoltaic devices. These experiments demonstrate the potential of hybrid graphene/organic devices in which graphene is deposited directly onto underlying organic thin-film structures.

  5. Polarization of X-ray lines emitted from plasma-focus discharges; Problems of interpretation

    International Nuclear Information System (INIS)

    Jakubowski, L.

    2002-01-01

    In high current pulse discharges of the Plasma Focus (PF) type, inside the collapsing pinch column, there are formed local micro-regions of high-density and high-temperature plasma, so-called hot spots. Individual hot spots are separated in space and time. Each hot spot is characterized by its specific electron concentration and temperature, as well as by the emission of X-ray lines with different polarization. When numerous hot spots are produced it is impossible to determine local plasma parameters and to interpret the polarization effects. To eliminate this problem this study was devoted to the realization of PF-type discharges with single hot spot only. It has been achieved by a choice of the electrode configuration, which facilitated the formation of a single hot spot emitting intense X-ray lines. At the chosen experimental conditions it was possible to determine local plasma parameters and to demonstrate evident differences in the polarization of the observed X-ray lines. (author)

  6. Polarization of x-ray lines emitted from plasma-focus discharges; Problems of interpretation

    International Nuclear Information System (INIS)

    Jakubowski, L.; Sadowski, M.J.; Baronova, E.O.

    2003-01-01

    In high current pulse discharges of the Plasma Focus (PF) type, inside the collapsing pinch column, there are formed local micro-regions of high-density and high-temperature plasma, so-called hot spots. Individual hot spots are separated in space and time. Each hot spot is characterized by its specific electron concentration and temperature, as well as by the emission of X-ray lines with different polarization. When numerous hot spots are produced it is impossible to determine local plasma parameters and to interpretate the polarization effects. To eliminate this problem this study was devoted to the realization of PF-type discharges with single hot spot only. It has been achieved by a choice of the electrode configuration, which facilitated the formation of a single hot spot emitting intense X-ray lines. At the chosen experimental conditions it was possible to determine local plasma parameters and to demonstrate evident differences in the polarization of the observed X-ray lines. (author)

  7. Broadband mid-infrared superlattice light-emitting diodes

    Science.gov (United States)

    Ricker, R. J.; Provence, S. R.; Norton, D. T.; Boggess, T. F.; Prineas, J. P.

    2017-05-01

    InAs/GaSb type-II superlattice light-emitting diodes were fabricated to form a device that provides emission over the entire 3-5 μm mid-infrared transmission window. Variable bandgap emission regions were coupled together using tunnel junctions to emit at peak wavelengths of 3.3 μm, 3.5 μm, 3.7 μm, 3.9 μm, 4.1 μm, 4.4 μm, 4.7 μm, and 5.0 μm. Cascading the structure recycles the electrons in each emission region to emit several wavelengths simultaneously. At high current densities, the light-emitting diode spectra broadened into a continuous, broadband spectrum that covered the entire mid-infrared band. When cooled to 77 K, radiances of over 1 W/cm2 sr were achieved, demonstrating apparent temperatures above 1000 K over the 3-5 μm band. InAs/GaSb type-II superlattices are capable of emitting from 3 μm to 30 μm, and the device design can be expanded to include longer emission wavelengths.

  8. Oxygen-deficient hematite nanorods as high-performance and novel negative electrodes for flexible asymmetric supercapacitors.

    Science.gov (United States)

    Lu, Xihong; Zeng, Yinxiang; Yu, Minghao; Zhai, Teng; Liang, Chaolun; Xie, Shilei; Balogun, Muhammad-Sadeeq; Tong, Yexiang

    2014-05-21

    Oxygen-deficient α-Fe2 O3 nanorods with outstanding capacitive performance are developed and demonstrated as novel negative electrodes for flexible asymmetric supercapacitors. The asymmetric-supercapacitor device based on the oxygen-deficient α-Fe2 O3 nanorod negative electrode and a MnO2 positive electrode achieves a maximum energy density of 0.41 mW·h/cm(3) ; it is also capable of charging a mobile phone and powering a light-emitting diode indicator. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Absorbed dose evaluation of Auger electron-emitting radionuclides: impact of input decay spectra on dose point kernels and S-values.

    Science.gov (United States)

    Falzone, Nadia; Lee, Boon Q; Fernández-Varea, José M; Kartsonaki, Christiana; Stuchbery, Andrew E; Kibédi, Tibor; Vallis, Katherine A

    2017-03-21

    The aim of this study was to investigate the impact of decay data provided by the newly developed stochastic atomic relaxation model BrIccEmis on dose point kernels (DPKs - radial dose distribution around a unit point source) and S-values (absorbed dose per unit cumulated activity) of 14 Auger electron (AE) emitting radionuclides, namely 67 Ga, 80m Br, 89 Zr, 90 Nb, 99m Tc, 111 In, 117m Sn, 119 Sb, 123 I, 124 I, 125 I, 135 La, 195m Pt and 201 Tl. Radiation spectra were based on the nuclear decay data from the medical internal radiation dose (MIRD) RADTABS program and the BrIccEmis code, assuming both an isolated-atom and condensed-phase approach. DPKs were simulated with the PENELOPE Monte Carlo (MC) code using event-by-event electron and photon transport. S-values for concentric spherical cells of various sizes were derived from these DPKs using appropriate geometric reduction factors. The number of Auger and Coster-Kronig (CK) electrons and x-ray photons released per nuclear decay (yield) from MIRD-RADTABS were consistently higher than those calculated using BrIccEmis. DPKs for the electron spectra from BrIccEmis were considerably different from MIRD-RADTABS in the first few hundred nanometres from a point source where most of the Auger electrons are stopped. S-values were, however, not significantly impacted as the differences in DPKs in the sub-micrometre dimension were quickly diminished in larger dimensions. Overestimation in the total AE energy output by MIRD-RADTABS leads to higher predicted energy deposition by AE emitting radionuclides, especially in the immediate vicinity of the decaying radionuclides. This should be taken into account when MIRD-RADTABS data are used to simulate biological damage at nanoscale dimensions.

  10. Performance of the Chemical and Electrochemical Composites of PPy/CNT as Electrodes in Type I Supercapacitors

    Directory of Open Access Journals (Sweden)

    S. C. Canobre

    2015-01-01

    Full Text Available Polypyrrole (PPy is one of the most studied conducting polymers and a very promising material for various applications such as lithium-ion secondary batteries, light-emitting devices, capacitors, and supercapacitors, owing to its many advantages, including good processability, easy handling, and high electronic conductivity. In this work, PPy films were chemically and electrochemically synthesized, both in and around carbon nanotubes (CNTs. The cyclic voltammograms of the device, composed of the electrochemically synthesized PPy/CNT composites as working and counter electrodes (Type I supercapacitor with p-type doping, showed a predominantly capacitive profile with low impedance values and good electrochemical stability, with the anodic charge remaining almost constant (11.38 mC, a specific capacitance value of 530 F g−1 after 50 charge and discharge cycles, and a coulombic efficiency of 99.2%. The electrochemically synthesized PPy/CNT composite exhibited better electrochemical properties compared to those obtained for the chemically synthesized composite. Thus, the electrochemically synthesized PPy/CNT composite is a promising material to be used as electrodes in Type I supercapacitors.

  11. Light-addressable amperometric electrodes for enzyme sensors based on direct quantum dot-electrode contacts

    Science.gov (United States)

    Riedel, M.; Göbel, G.; Parak, W. J.; Lisdat, F.

    2014-03-01

    Quantum dots allow the generation of charge carriers upon illumination. When these particles are attached to an electrode a photocurrent can be generated. This allows their use as a light-switchable layer on the surface. The QDs can not only exchange electronics with the electrode, but can also interact with donor or acceptor compounds in solution providing access to the construction of signal chains starting from an analytic molecule. The magnitude and the direction of the photocurrent depend on several factors such as electrode polarization, solution pH and composition. These defined dependencies have been evaluated with respect to the combination of QD-electrodes with enzyme reactions for sensorial purpose. CdSe/ZnS-QD-modified electrodes can be used to follow enzymatic reactions in solution based on the oxygen sensitivity. In order to develop a photoelectrochemical biosensor, e.g. glucose oxidase is immobilized on the CdSe/ZnS-electrode. One immobilization strategy applies the layer-by-layer-technique of GOD and a polyelectrolyte. Photocurrent measurements of such a sensor show a clear concentration dependent behavior. The principle of combing QD oxidase. The sensitivity of quantum dot electrodes can be influenced by additional nanoparticles, but also by multiple layers of the QDs. In another direction of research it can be influenced by additional nanoparticles, but also by multiple layers of the QDs. In another direction of research it can be demonstrated that direct electron transfer from excited quantum dots can be achieved with the redox protein cytochrome c. This allows the detection of the protein, but also interaction partners such as a enzymes or superoxide.

  12. All-Quantum-Dot Infrared Light-Emitting Diodes

    KAUST Repository

    Yang, Zhenyu

    2015-12-22

    © 2015 American Chemical Society. Colloidal quantum dots (CQDs) are promising candidates for infrared electroluminescent devices. To date, CQD-based light-emitting diodes (LEDs) have employed a CQD emission layer sandwiched between carrier transport layers built using organic materials and inorganic oxides. Herein, we report the infrared LEDs that use quantum-tuned materials for each of the hole-transporting, the electron-transporting, and the light-emitting layers. We successfully tailor the bandgap and band position of each CQD-based component to produce electroluminescent devices that exhibit emission that we tune from 1220 to 1622 nm. Devices emitting at 1350 nm achieve peak external quantum efficiency up to 1.6% with a low turn-on voltage of 1.2 V, surpassing previously reported all-inorganic CQD LEDs.

  13. Electron beam and mechanical lithographies as enabling factors for organic-based device fabrication

    International Nuclear Information System (INIS)

    Visconti, P.; Pisignano, D.; Della Torre, A.; Persano, L.; Maruccio, G.; Biasco, A.; Cingolani, R.; Rinaldi, R.

    2005-01-01

    Organic-based photonics and molecular electronics are attracting an increasing interest in modern science. The realization of high-resolution master structures by electron beam lithography (EBL) and their transfer to different organic functional materials by mechanical lithographies allow to fully exploit the wide flexibility of molecular systems for opto- and nanoelectronic devices. Planar nanojunctions, consisting of two metallic electrodes separated by an insulating medium, permit to test the molecular conduction properties. Since the typical size of a biomolecule is of the order of a few nanometer, hybrid molecular electronic (HME) devices need metallic electrodes separated by a nanometer-scale channel. Conversely, photonic applications often require 100 nm to 1 μm features on large areas. In this work, we report on the fabrication of both large-area periodic master structures with resolution down to 200 nm, and planar metallic electrodes with sub-10 nm separation obtained by EBL followed by metal electroplating deposition. The fabricated 3-terminal bio-nanodevices show a transistor-like behaviour with a maximum voltage gain of 0.76. Moreover, we developed a number of mechanical patterning methods, including soft hot embossing, rapid prototyping, sub-micrometer fluidics, high- and room-temperature nanoimprinting, to fabricate planar nanostructures on both biomolecular and organic materials. These allowed us a high-fidelity pattern transfer up to 100-nm scale resolution, without reducing the emission yields of light-emitting organics, thus opening the way to the one-step realization of organic-based confined optoelectronic devices

  14. Metal sulfide electrodes and energy storage devices thereof

    Science.gov (United States)

    Chiang, Yet-Ming; Woodford, William Henry; Li, Zheng; Carter, W. Craig

    2017-02-28

    The present invention generally relates to energy storage devices, and to metal sulfide energy storage devices in particular. Some aspects of the invention relate to energy storage devices comprising at least one flowable electrode, wherein the flowable electrode comprises an electroactive metal sulfide material suspended and/or dissolved in a carrier fluid. In some embodiments, the flowable electrode further comprises a plurality of electronically conductive particles suspended and/or dissolved in the carrier fluid, wherein the electronically conductive particles form a percolating conductive network. An energy storage device comprising a flowable electrode comprising a metal sulfide electroactive material and a percolating conductive network may advantageously exhibit, upon reversible cycling, higher energy densities and specific capacities than conventional energy storage devices.

  15. High density plasma productions by hydrogen storage electrode in the Tohoku University Heliac

    International Nuclear Information System (INIS)

    Utoh, H.; Takahashi, H.; Tanaka, Y.; Takenaga, M.; Ogawa, M.; Shinde, J.; Iwazaki, K.; Shinto, K.; Kitajima, S.; Sasao, M.; Nishimura, K.; Inagaki, S.

    2005-01-01

    In the Tohoku University Heliac (TU-Heliac), the influence of a radial electric field on improved modes has been investigated by an electrode biasing. In both positive and negative biasing experiments by the stainless steel (SUS) electrode (cold-electron or ion collection), the improvement of plasma confinement was clearly observed. Furthermore, by negative biasing with a hot cathode (electron injection), the radial electric fields can be actively controlled as a consequence of the control of the electrode current I E . By using the electrode made of a hydrogen storage metal, for example Titanium (Ti) or Vanadium (V), the following possibility can be expected: (1) ions accelerated from the positive biased electrode allow the simulation for the orbit loss of high-energy particles, (2) the electrons/neutral- particles injected from the negative biased electrode provide the production of the high- density plasma, if hydrogen are successfully stored in the electrode. In this present work, several methods were tried as the treatment for hydrogen storage. In the case of the Ti electrode biased positively after the treatment, the improvement of plasma confinement was observed in He plasma, which were same as the experimental results of the SUS electrode. However, in the electron density profiles inside the electrode position there was difference between the biased plasma by the Ti electrode and that by the SUS electrode. In some of Ar discharges biased negatively with the Ti electrode after the treatment, the electron density and the line intensity of H α increased about 10 times of those before biasing. This phenomenon has not been observed in the Ar plasma biased by the SUS electrode. This result suggested that the Ti electrode injected electrons/neutral-hydrogen into the plasma. This high-density plasma productions were observed only 1 ∼ 3 times in the one treatment for hydrogen storage. By using a Vanadium (V) electrode, productions of the high-density plasma

  16. All-solid-state carbonate-selective electrode based on screen-printed carbon paste electrode

    International Nuclear Information System (INIS)

    Li, Guang; Lyu, Xiaofeng; Wang, Zhan; Rong, Yuanzhen; Hu, Ruifen; Wang, You; Luo, Zhiyuan

    2017-01-01

    A novel disposable all-solid-state carbonate-selective electrode based on a screen-printed carbon paste electrode using poly(3-octylthiophene-2,5-diyl) (POT) as an ion-to-electron transducer has been developed. The POT was dropped onto the reaction area of the carbon paste electrode covered by the poly(vinyl chloride) (PVC) membrane, which contains N,N-Dioctyl-3 α ,12 α -bis(4-trifluoroacetylbenzoyloxy)-5 β -cholan-24-amide as a carbonate ionophore. The electrode showed a near-Nernstian slope of  −27.5 mV/decade with a detection limit of 3.6 * 10 −5 mol l −1 . Generally, the detection time was 30 s. Because these electrodes are fast, convenient and low in cost, they have the potential to be mass produced and used in on-site testing as disposable sensors. Furthermore, the repeatability, reproducibility and stability have been studied to evaluate the properties of the electrodes. Measurement of the carbonate was also conducted in a human blood solution and achieved good performance. (paper)

  17. A review on organic spintronic materials and devices: I. Magnetic field effect on organic light emitting diodes

    Directory of Open Access Journals (Sweden)

    Rugang Geng

    2016-06-01

    Full Text Available Organic spintronics is an emerging and potential platform for future electronics and display due to the intriguing properties of organic semiconductors (OSCs. For the past decade, studies have focused on three types of organic spintronic phenomena: (i magnetic field effect (MFE in organic light emitting diodes (OLEDs, where spin mixing between singlet and triplet polaron pairs (PP can be influenced by an external magnetic field leading to organic magnetoresistive effect (OMAR; (ii magnetoresistance (MR in organic spin valves (OSVs, where spin injection, transport, manipulation, and detection have been demonstrated; and (iii magnetoelectroluminescence (MEL bipolar OSVs or spin-OLEDs, where spin polarized electrons and holes are simultaneously injected into the OSC layer, leading to the dependence of electroluminescence intensity on relative magnetization of the electrodes. In this first of two review papers, we present major experimental results on OMAR studies and current understanding of OMAR using several spin dependent processes in organic semiconductors. During the discussion, we highlight some of the outstanding challenges in this promising research field. Finally, we provide an outlook on the future of organic spintronics.

  18. Comparative investigation on electrochemical behavior of hydroquinone at carbon ionic liquid electrode, ionic liquid modified carbon paste electrode and carbon paste electrode

    International Nuclear Information System (INIS)

    Zhang, Ya; Zheng, Jian Bin

    2007-01-01

    Ionic liquid, 1-heptyl-3-methylimidazolium hexafluorophosphate (HMIMPF 6 ), has been used to fabricate two new electrodes, carbon ionic liquid electrode (CILE) and ionic liquid modified carbon paste electrode (IL/CPE), using graphite powder mixed with HMIMPF 6 or the mixture of HMIMPF 6 /paraffin liquid as the binder, respectively. The electrochemical behaviors of hydroquinone at the CILE, the IL/CPE and the CPE were investigated in phosphate buffer solution. At all these electrodes, hydroquinone showed a pair of redox peaks. The order of the current response and the standard rate constant of hydroquinone at these electrodes were as follows: CILE > IL/CPE > CPE, while the peak-to-peak potential separation was in an opposite sequence: CILE < IL/CPE < CPE. The results show the superiority of CILE to IL/CPE and CPE, and IL/CPE to CPE in terms of promoting electron transfer, improving reversibility and enhancing sensitivity. The CILE was chosen as working electrode to determine hydroquinone by differential pulse voltammetry, which can be used for sensitive, simple and rapid determination of hydroquinone in medicated skin cosmetic cream

  19. Ultrasmooth, extremely deformable and shape recoverable Ag nanowire embedded transparent electrode.

    Science.gov (United States)

    Nam, Sanggil; Song, Myungkwan; Kim, Dong-Ho; Cho, Byungjin; Lee, Hye Moon; Kwon, Jung-Dae; Park, Sung-Gyu; Nam, Kee-Seok; Jeong, Yongsoo; Kwon, Se-Hun; Park, Yun Chang; Jin, Sung-Ho; Kang, Jae-Wook; Jo, Sungjin; Kim, Chang Su

    2014-04-25

    Transparent electrodes have been widely used in electronic devices such as solar cells, displays, and touch screens. Highly flexible transparent electrodes are especially desired for the development of next generation flexible electronic devices. Although indium tin oxide (ITO) is the most commonly used material for the fabrication of transparent electrodes, its brittleness and growing cost limit its utility for flexible electronic devices. Therefore, the need for new transparent conductive materials with superior mechanical properties is clear and urgent. Ag nanowire (AgNW) has been attracting increasing attention because of its effective combination of electrical and optical properties. However, it still suffers from several drawbacks, including large surface roughness, instability against oxidation and moisture, and poor adhesion to substrates. These issues need to be addressed before wide spread use of metallic NW as transparent electrodes can be realized. In this study, we demonstrated the fabrication of a flexible transparent electrode with superior mechanical, electrical and optical properties by embedding a AgNW film into a transparent polymer matrix. This technique can produce electrodes with an ultrasmooth and extremely deformable transparent electrode that have sheet resistance and transmittance comparable to those of an ITO electrode.

  20. Observation of intermittent transition by electrode biasing in Heliotron J

    International Nuclear Information System (INIS)

    Shimizu, Kosuke; Kitajima, Sumio; Okamoto, Atsushi

    2015-01-01

    We observed intermittent increases in the electrode current in electrode biasing experiments in Heliotron J. In addition, electron density and floating potential showed pulsating behavior associated with the electrode current. The relation between line density and electrode current and that between floating potential and electrode current showed a hysteresis feature in transitions. Then it is evident that the pulsating behavior was the intermittent transition between two distinctive states. We also observed the mode (∼10 kHz) that accompanied the pulsating behavior in the power spectrum density of the floating potential and ion saturation current obtained via fast Fourier transform. The electron density gradient increased, and subsequently the power spectrum density of the fluctuation increased. (author)

  1. Near UV-Blue Excitable Green-Emitting Nanocrystalline Oxide

    Directory of Open Access Journals (Sweden)

    C. E. Rodríguez-García

    2011-01-01

    Full Text Available Green-emitting Eu-activated powders were produced by a two-stage method consisting of pressure-assisted combustion synthesis and postannealing in ammonia. The as-synthesized powders exhibited a red photoluminescence (PL peak located at =616 nm when excited with =395 nm UV. This emission peak corresponds to the 5D0→7F2 transition in Eu3+. After annealing in ammonia, the PL emission changed to an intense broad-band peak centered at =500 nm, most likely produced by 4f65d1→4f7 electronic transitions in Eu2+. This green-emitting phosphor has excitation band in the near UV-blue region (=300–450 nm. X-ray diffraction analysis reveals mainly the orthorhombic EuAlO3 and Al2O3 phases. Transmission electron microscopy observations showed that the grains are formed by faceted nanocrystals (~4 nm of polygonal shape. The excellent excitation and emission properties make these powders very promising to be used as phosphors in UV solid-state diodes coupled to activate white-emitting lamps.

  2. Conical pinched electron beam diode for intense ion beam source

    International Nuclear Information System (INIS)

    Matsukawa, Yoshinobu; Nakagawa, Yoshiro

    1982-01-01

    For the purpose of improvement of the pinched electron beam diode, the production of an ion beam by a diode with electrodes in a conical shape was studied at low voltage operation (--200 kV). The ion beam is emitted from a small region of the diode apex. The mean ion beam current density near the axis at 12 cm from the diode apex is two or three times that from an usual flat parallel diode with the same dimension and impedance. The brightness and the power brightness at the otigin are 450 MA/cm 2 sr and 0.12 TW/cm 2 sr respectively. (author)

  3. Effect Of Electromagnetic Waves Emitted From Mobile Phone On Brain Stem Auditory Evoked Potential In Adult Males.

    Science.gov (United States)

    Singh, K

    2015-01-01

    Mobile phone (MP) is commonly used communication tool. Electromagnetic waves (EMWs) emitted from MP may have potential health hazards. So, it was planned to study the effect of electromagnetic waves (EMWs) emitted from the mobile phone on brainstem auditory evoked potential (BAEP) in male subjects in the age group of 20-40 years. BAEPs were recorded using standard method of 10-20 system of electrode placement and sound click stimuli of specified intensity, duration and frequency.Right ear was exposed to EMW emitted from MP for about 10 min. On comparison of before and after exposure to MP in right ear (found to be dominating ear), there was significant increase in latency of II, III (p potential.

  4. Templated synthesis, characterization, and sensing application of macroscopic platinum nanowire network electrodes

    DEFF Research Database (Denmark)

    Wang, D. H.; Kou, R.; Gil, M. P.

    2005-01-01

    properties of the electrodes, such as electrochemical active area and methanol oxidation, have also been studied. Compared with conventional polycrystalline Pt electrodes, these novel nanowire network electrodes possess high electrochemical active areas and demonstrate higher current densities and a lower...... onset potential for methanol electro-oxidation. Enzymatic Pt nanowire-network-based sensors show higher sensitivity for glucose detection than that using conventional polycrystalline Pt electrode. Such macroscopic nanowire network electrodes provide ideal platforms for sensing and other device......Abstract: Novel platinum nanowire network electrodes have been fabricated through electrodeposition using mesoporous silica thin films as templates. These electrodes were characterized by X-ray diffraction, transmission electron microscope, and scanning electron microscope. The electrochemical...

  5. Electrochemical characterization of screen-printed and conventional carbon paste electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Fanjul-Bolado, Pablo; Hernandez-Santos, David; Lamas-Ardisana, Pedro Jose [Departamento de Quimica Fisica y Analitica, Universidad de Oviedo, 33006 Oviedo, Asturias (Spain); Martin-Pernia, Alberto [Departamento de Ingenieria Electrica, Electronica de Computadores y Sistemas, Universidad de Oviedo, 33204 Gijon, Asturias (Spain); Costa-Garcia, Agustin [Departamento de Quimica Fisica y Analitica, Universidad de Oviedo, 33006 Oviedo, Asturias (Spain)], E-mail: costa@fq.uniovi.es

    2008-04-01

    This work compares the electroactivity of a conventional carbon paste electrode and non-pretreated commercially available screen-printed carbon electrodes (from Alderon Biosciences, University of Florence and DropSens) towards some benchmark redox couples like hexaammineruthenium (III), ferricyanide, p-aminophenol and hydroquinone. While cyclic voltammograms of Ru{sup 3+} did not show significative electron transfer reactivity differences between the electrodes tested, the other redox systems exhibited higher reversible behaviours on DropSens electrodes. Scanning electron microscopy and roughness analysis with a profilometer were applied to detect the surface morphology of the working electrodes. The roughness evaluated of the screen-printed carbon working electrodes increased in this order Alderon < University of Florence < DropSens. Finally, the most electrochemically active and rough unpretreated electrode (DropSens commercial screen-printed electrode) was used to study the electrochemical-chemical reaction mechanism of indigo carmine oxidation in 0.1 M sulphuric acid. This study showed that the adsorption of the oxidation product of indigo carmine is stabilized when it is adsorbed on the surface of the electrode.

  6. Electrochemical characterization of screen-printed and conventional carbon paste electrodes

    International Nuclear Information System (INIS)

    Fanjul-Bolado, Pablo; Hernandez-Santos, David; Lamas-Ardisana, Pedro Jose; Martin-Pernia, Alberto; Costa-Garcia, Agustin

    2008-01-01

    This work compares the electroactivity of a conventional carbon paste electrode and non-pretreated commercially available screen-printed carbon electrodes (from Alderon Biosciences, University of Florence and DropSens) towards some benchmark redox couples like hexaammineruthenium (III), ferricyanide, p-aminophenol and hydroquinone. While cyclic voltammograms of Ru 3+ did not show significative electron transfer reactivity differences between the electrodes tested, the other redox systems exhibited higher reversible behaviours on DropSens electrodes. Scanning electron microscopy and roughness analysis with a profilometer were applied to detect the surface morphology of the working electrodes. The roughness evaluated of the screen-printed carbon working electrodes increased in this order Alderon < University of Florence < DropSens. Finally, the most electrochemically active and rough unpretreated electrode (DropSens commercial screen-printed electrode) was used to study the electrochemical-chemical reaction mechanism of indigo carmine oxidation in 0.1 M sulphuric acid. This study showed that the adsorption of the oxidation product of indigo carmine is stabilized when it is adsorbed on the surface of the electrode

  7. High perveance electron gun for the electron cooling system

    International Nuclear Information System (INIS)

    Korotaev, Yu.; Meshkov, I.; Petrov, A.; Sidorin, A.; Smirnov, A.; Syresin, E.; Titkova, I.

    2000-01-01

    The cooling time in the electron cooling system is inversely proportional to the beam current. To obtain high current of the electron beam the control electrode of the gun is provided with a positive potential and an electrostatic trap for secondary electrons appears inside the electron gun. This leads to a decrease in the gun perveance. To avoid this problem, the adiabatic high perveance electron gun with the clearing control electrode is designed in JINR (J. Bosser, Y. Korotaev, I. Meshkov, E. Syresin et al., Nucl. Instr. and Meth. A 391 (1996) 103. Yu. Korotaev, I. Meshkov, A. Sidorin, A. Smirnov, E. Syresin, The generation of electron beams with perveance of 3-6 μA/V 3/2 , Proceedings of SCHEF'99). The clearing control electrode has a transverse electric field, which clears secondary electrons. Computer simulations of the potential map were made with RELAX3D computer code (C.J. Kost, F.W. Jones, RELAX3D User's Guide and References Manual)

  8. High perveance electron gun for the electron cooling system

    CERN Document Server

    Korotaev, Yu V; Petrov, A; Sidorin, A; Smirnov, A; Syresin, E M; Titkova, I

    2000-01-01

    The cooling time in the electron cooling system is inversely proportional to the beam current. To obtain high current of the electron beam the control electrode of the gun is provided with a positive potential and an electrostatic trap for secondary electrons appears inside the electron gun. This leads to a decrease in the gun perveance. To avoid this problem, the adiabatic high perveance electron gun with the clearing control electrode is designed in JINR (J. Bosser, Y. Korotaev, I. Meshkov, E. Syresin et al., Nucl. Instr. and Meth. A 391 (1996) 103. Yu. Korotaev, I. Meshkov, A. Sidorin, A. Smirnov, E. Syresin, The generation of electron beams with perveance of 3-6 mu A/V sup 3 sup / sup 2 , Proceedings of SCHEF'99). The clearing control electrode has a transverse electric field, which clears secondary electrons. Computer simulations of the potential map were made with RELAX3D computer code (C.J. Kost, F.W. Jones, RELAX3D User's Guide and References Manual).

  9. One-pot synthesis of CoNiO2 single-crystalline nanoparticles as high-performance electrode materials of asymmetric supercapacitors

    Science.gov (United States)

    Du, Weimin; Gao, Yanping; Tian, Qingqing; Li, Dan; Zhang, Zhenhu; Guo, Jiaojiao; Qian, Xuefeng

    2015-09-01

    A facile one-pot solvothermal method has been developed to synthesize CoNiO2 single-crystalline nanoparticles. Crystal phase, morphology, crystal lattice, and composition of the obtained products were characterized by X-ray diffraction, scanning electron microscope, high-resolution transmission electron microscopy, and energy-dispersive X-ray analysis, respectively. Results revealed that the as-synthesized CoNiO2 nanoparticles belong to cubic structure with narrow size-distribution (8-10 nm). Subsequently, new asymmetric supercapacitors were successfully assembled with CoNiO2 nanoparticles as positive electrode and activated carbon as negative electrode. The electrochemical results show that asymmetric supercapacitors based on CoNiO2 nanoparticles possess excellent supercapacitor properties, i.e., a stable electrochemical window of 0-1.7 V, higher energy density of 24.0 Wh/kg at a power density of 415.4 W/kg, and excellent cycling stability (96.8 % capacitance retention after 5000 charge-discharge cycles). Meanwhile, both a light-emitting diode and a mini fan can be powered by two series connection asymmetric supercapacitors. These results imply that the present asymmetric supercapacitors based on CoNiO2 nanoparticles possess the promising potential application in the field of high-performance energy storage.

  10. One-pot synthesis of CoNiO2 single-crystalline nanoparticles as high-performance electrode materials of asymmetric supercapacitors

    International Nuclear Information System (INIS)

    Du, Weimin; Gao, Yanping; Tian, Qingqing; Li, Dan; Zhang, Zhenhu; Guo, Jiaojiao; Qian, Xuefeng

    2015-01-01

    A facile one-pot solvothermal method has been developed to synthesize CoNiO 2 single-crystalline nanoparticles. Crystal phase, morphology, crystal lattice, and composition of the obtained products were characterized by X-ray diffraction, scanning electron microscope, high-resolution transmission electron microscopy, and energy-dispersive X-ray analysis, respectively. Results revealed that the as-synthesized CoNiO 2 nanoparticles belong to cubic structure with narrow size-distribution (8–10 nm). Subsequently, new asymmetric supercapacitors were successfully assembled with CoNiO 2 nanoparticles as positive electrode and activated carbon as negative electrode. The electrochemical results show that asymmetric supercapacitors based on CoNiO 2 nanoparticles possess excellent supercapacitor properties, i.e., a stable electrochemical window of 0–1.7 V, higher energy density of 24.0 Wh/kg at a power density of 415.4 W/kg, and excellent cycling stability (96.8 % capacitance retention after 5000 charge–discharge cycles). Meanwhile, both a light-emitting diode and a mini fan can be powered by two series connection asymmetric supercapacitors. These results imply that the present asymmetric supercapacitors based on CoNiO 2 nanoparticles possess the promising potential application in the field of high-performance energy storage.

  11. Why LiFePO4 is a safe battery electrode: Coulomb repulsion induced electron-state reshuffling upon lithiation.

    Science.gov (United States)

    Liu, Xiaosong; Wang, Yung Jui; Barbiellini, Bernardo; Hafiz, Hasnain; Basak, Susmita; Liu, Jun; Richardson, Thomas; Shu, Guojiun; Chou, Fangcheng; Weng, Tsu-Chien; Nordlund, Dennis; Sokaras, Dimosthenis; Moritz, Brian; Devereaux, Thomas P; Qiao, Ruimin; Chuang, Yi-De; Bansil, Arun; Hussain, Zahid; Yang, Wanli

    2015-10-21

    LiFePO4 is a battery cathode material with high safety standards due to its unique electronic structure. We performed systematic experimental and theoretical studies based on soft X-ray emission, absorption, and hard X-ray Raman spectroscopy of LixFePO4 nanoparticles and single crystals. The results clearly show a non-rigid electron-state reconfiguration of both the occupied and unoccupied Fe-3d and O-2p states during the (de)lithiation process. We focus on the energy configurations of the occupied states of LiFePO4 and the unoccupied states of FePO4, which are the critical states where electrons are removed and injected during the charge and discharge process, respectively. In LiFePO4, the soft X-ray emission spectroscopy shows that, due to the Coulomb repulsion effect, the occupied Fe-3d states with the minority spin sit close to the Fermi level. In FePO4, the soft X-ray absorption and hard X-ray Raman spectroscopy show that the unoccupied Fe-3d states again sit close to the Fermi level. These critical 3d electron state configurations are consistent with the calculations based on modified Becke and Johnson potentials GGA+U (MBJGGA+U) framework, which improves the overall lineshape prediction compared with the conventionally used GGA+U method. The combined experimental and theoretical studies show that the non-rigid electron state reshuffling guarantees the stability of oxygen during the redox reaction throughout the charge and discharge process of LiFePO4 electrodes, leading to the intrinsic safe performance of the electrodes.

  12. Coherent properties of a tunable low-energy electron-matter-wave source

    Science.gov (United States)

    Pooch, A.; Seidling, M.; Kerker, N.; Röpke, R.; Rembold, A.; Chang, W. T.; Hwang, I. S.; Stibor, A.

    2018-01-01

    A general challenge in various quantum experiments and applications is to develop suitable sources for coherent particles. In particular, recent progress in microscopy, interferometry, metrology, decoherence measurements, and chip-based applications rely on intensive, tunable, coherent sources for free low-energy electron-matter waves. In most cases, the electrons get field emitted from a metal nanotip, where its radius and geometry toward a counter electrode determines the field distribution and the emission voltage. A higher emission is often connected to faster electrons with smaller de Broglie wavelengths, requiring larger pattern magnification after matter-wave diffraction or interferometry. This can be prevented with a well-known setup consisting of two counter electrodes that allow independent setting of the beam intensity and velocity. However, it needs to be tested if the coherent properties of such a source are preserved after the acceleration and deceleration of the electrons. Here, we study the coherence of the beam in a biprism interferometer with a single atom tip electron field emitter if the particle velocity and wavelength varies after emission. With a Wien filter measurement and a contrast correlation analysis we demonstrate that the intensity of the source at a certain particle wavelength can be enhanced up to a factor of 6.4 without changing the transverse and longitudinal coherence of the electron beam. In addition, the energy width of the single atom tip emitter was measured to be 377 meV, corresponding to a longitudinal coherence length of 82 nm. The design has potential applications in interferometry, microscopy, and sensor technology.

  13. Response of the plasma to the size of an anode electrode biased near the plasma potential

    International Nuclear Information System (INIS)

    Barnat, E. V.; Laity, G. R.; Baalrud, S. D.

    2014-01-01

    As the size of a positively biased electrode increases, the nature of the interface formed between the electrode and the host plasma undergoes a transition from an electron-rich structure (electron sheath) to an intermediate structure containing both ion and electron rich regions (double layer) and ultimately forms an electron-depleted structure (ion sheath). In this study, measurements are performed to further test how the size of an electron-collecting electrode impacts the plasma discharge the electrode is immersed in. This is accomplished using a segmented disk electrode in which individual segments are individually biased to change the effective surface area of the anode. Measurements of bulk plasma parameters such as the collected current density, plasma potential, electron density, electron temperature and optical emission are made as both the size and the bias placed on the electrode are varied. Abrupt transitions in the plasma parameters resulting from changing the electrode surface area are identified in both argon and helium discharges and are compared to the interface transitions predicted by global current balance [S. D. Baalrud, N. Hershkowitz, and B. Longmier, Phys. Plasmas 14, 042109 (2007)]. While the size-dependent transitions in argon agree, the size-dependent transitions observed in helium systematically occur at lower electrode sizes than those nominally derived from prediction. The discrepancy in helium is anticipated to be caused by the finite size of the interface that increases the effective area offered to the plasma for electron loss to the electrode

  14. Microscopic mechanism of electron transfer through the hydrogen bonds between carboxylated alkanethiol molecules connected to gold electrodes

    KAUST Repository

    Li, Yang; Tu, Xingchen; Wang, Minglang; Wang, Hao; Sanvito, Stefano; Hou, Shimin

    2014-01-01

    © 2014 AIP Publishing LLC. The atomic structure and the electron transfer properties of hydrogen bonds formed between two carboxylated alkanethiol molecules connected to gold electrodes are investigated by employing the non-equilibrium Green's function formalism combined with density functional theory. Three types of molecular junctions are constructed, in which one carboxyl alkanethiol molecule contains two methylene, -CH2, groups and the other one is composed of one, two, or three -CH2 groups. Our calculations show that, similarly to the cases of isolated carboxylic acid dimers, in these molecular junctions the two carboxyl, -COOH, groups form two H-bonds resulting in a cyclic structure. When self-interaction corrections are explicitly considered, the calculated transmission coefficients of these three H-bonded molecular junctions at the Fermi level are in good agreement with the experimental values. The analysis of the projected density of states confirms that the covalent Au-S bonds localized at the molecule-electrode interfaces and the electronic coupling between -COOH and S dominate the low-bias junction conductance. Following the increase of the number of the -CH2 groups, the coupling between -COOH and S decreases deeply. As a result, the junction conductance decays rapidly as the length of the H-bonded molecules increases. These findings not only provide an explanation to the observed distance dependence of the electron transfer properties of H-bonds, but also help the design of molecular devices constructed through H-bonds.

  15. Microscopic mechanism of electron transfer through the hydrogen bonds between carboxylated alkanethiol molecules connected to gold electrodes

    KAUST Repository

    Li, Yang

    2014-11-07

    © 2014 AIP Publishing LLC. The atomic structure and the electron transfer properties of hydrogen bonds formed between two carboxylated alkanethiol molecules connected to gold electrodes are investigated by employing the non-equilibrium Green\\'s function formalism combined with density functional theory. Three types of molecular junctions are constructed, in which one carboxyl alkanethiol molecule contains two methylene, -CH2, groups and the other one is composed of one, two, or three -CH2 groups. Our calculations show that, similarly to the cases of isolated carboxylic acid dimers, in these molecular junctions the two carboxyl, -COOH, groups form two H-bonds resulting in a cyclic structure. When self-interaction corrections are explicitly considered, the calculated transmission coefficients of these three H-bonded molecular junctions at the Fermi level are in good agreement with the experimental values. The analysis of the projected density of states confirms that the covalent Au-S bonds localized at the molecule-electrode interfaces and the electronic coupling between -COOH and S dominate the low-bias junction conductance. Following the increase of the number of the -CH2 groups, the coupling between -COOH and S decreases deeply. As a result, the junction conductance decays rapidly as the length of the H-bonded molecules increases. These findings not only provide an explanation to the observed distance dependence of the electron transfer properties of H-bonds, but also help the design of molecular devices constructed through H-bonds.

  16. Effects of electron transport material on blue organ light-emitting diode with fluorescent dopant of BCzVBi.

    Science.gov (United States)

    Meng, Mei; Song, Wook; Kim, You-Hyun; Lee, Sang-Youn; Jhun, Chul-Gyu; Zhu, Fu Rong; Ryu, Dae Hyun; Kim, Woo-Young

    2013-01-01

    High efficiency blue organic light emitting diodes (OLEDs), based on 2-me-thyl-9,10-di(2-naphthyl) anthracene (MADN) doped with 4,4'-bis(9-ethyl-3-carbazovinylene)-1,1'-biphenyl (BCzVBi), were fabricated using two different electron transport layers (ETLs) of tris(8-hydroxyquinolino)-aluminum (Alq3) and 4,7-di-phenyl-1,10-phenanthroline (Bphen). Bphen ETL layers favored the efficient hole-electron recombination in the emissive layer of the BCzVBi-doped blue OLEDs, leading to high luminous efficiency and quantum efficiency of 8.34 cd/A at 100 mA/cm2 and 5.73% at 100 cd/m2, respectively. Maximum luminance of blue OLED with Bphen ETL and Alq3 ETL were 10670 cd/m2, and CIExy coordinates of blue OLEDs were (0.180, 0279) and (0.155, 0.212) at 100 cd/m2.

  17. White organic light-emitting devices with high color purity and stability

    Science.gov (United States)

    Bai, Yajie; Liu, Su; Li, Hairong; Liu, Chunjuan; Wang, Jinshun; Chang, Jinxian

    2014-04-01

    A white organic light-emitting device (WOLED) with dual-emitting layers was presented, in which the blue fluorescent dye 2,5,8,11-terta-tertbutylperylene (TBPe) was doped in 2-methyl-9, 10-di(2-naphthyl)-anthracene (MADN) as a blue-emitting layer, while 5,6,11,12-tetraphenylnaphthacene (rubrene, Rb) was doped in the above-mentioned materials as a yellow-emitting layer. The fabricated monochromatic devices using the blue- and yellow-emitting layer have demonstrated that the direct charge trapping mechanism is the dominant emission mechanism in the yellow OLED. Studies on the WOLEDs with dual-emitting layers have shown that the performances of these devices are strongly susceptible to the thickness of the emitting layer and the stack order of two emitting layers. Structure of ITO(160 nm)/NPB(30 nm)/MADN: 5 wt%TBPe: 3 wt%Rb(10 nm)/MADN: 5 wt%TBPe(20 nm)/BCP (10 nm)/Alq3(20 nm)/Al(100 nm) was determined to be the most favorable WOLED. The maximum luminance of 16 000 cd cm-2 at the applied voltage of 13.4 V and Commission International de 1‧Eclairage (CIE) coordinates of (0.3263, 0.3437) which is closer to the standard white light (CIE (0.33, 0.33)) than the most recent reported WOLEDs were obtained. Moreover, there is just slight variation of CIE coordinates (ΔCIEx, y = 0.0171, 0.0167; corresponding Δu‧v‧ = 0.0119) when the current density increases from 10 to 100 mA cm-2. It reveals that the emissive dopant Rb acts as charge traps to improve electron-hole balance, provides sites for electron-hole recombination and thus makes carriers distribute more evenly in the dual-emitting layers which broaden the recombination zone and improve the stability of the CIE coordinates.

  18. Hierarchical meso/macro-porous carbon fabricated from dual MgO templates for direct electron transfer enzymatic electrodes

    Science.gov (United States)

    Funabashi, Hiroto; Takeuchi, Satoshi; Tsujimura, Seiya

    2017-03-01

    We designed a three-dimensional (3D) hierarchical pore structure to improve the current production efficiency and stability of direct electron transfer-type biocathodes. The 3D hierarchical electrode structure was fabricated using a MgO-templated porous carbon framework produced from two MgO templates with sizes of 40 and 150 nm. The results revealed that the optimal pore composition for a bilirubin oxidase-catalysed oxygen reduction cathode was a mixture of 33% macropores and 67% mesopores (MgOC33). The macropores improve mass transfer inside the carbon material, and the mesopores improve the electron transfer efficiency of the enzyme by surrounding the enzyme with carbon.

  19. Sculptured platinum nanowire counter electrodes for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyeonseok [Department of Electrical Engineering, Pennsylvania State University, University Park 16802 (United States); Horn, Mark W., E-mail: MHorn@engr.psu.edu [Department of Engineering Science and Mechanics, Pennsylvania State University, University Park 16802-6812 (United States)

    2013-07-01

    Sculptured platinum nanowire thin films were formed by oblique angle electron beam evaporation with a 5° vapor incidence angle and incorporated as counter electrodes for dye-sensitized solar cells (DSSCs). For the comparison of the performance, bare fluorine doped tin oxide, planar Pt electrodes and counter electrodes treated with chloroplatinic acid were prepared. The sculptured Pt nanowire electrodes showed five times lower charge transfer resistance (0.121 [Ω∗cm{sup 2}]) than that of Pt planar electrode (0.578 [Ω∗cm{sup 2}]) and when the Pt nanowire electrodes are treated with an H{sub 2}PtCl{sub 6} solution have more than ten times lower charge transfer resistance (0.04025 [Ω∗cm{sup 2}]). Moreover, Pt nanowire films used as a counter electrode lead to enhancement in current density and efficiency in comparison with Pt planar counter electrodes. The conversion efficiency with planar electrodes was 5.1 [%] while the efficiency of DSSC with platinum nanowire counter electrodes reached to 5.63 [%] under AM 1.5 illumination. - Highlights: • Pt sculptured thin films (STFs) fabricated by electron beam evaporator. • The STFs featured higher roughness and lower charge transfer resistance. • Improved performance of dye-sensitized solar cells by Pt STFs counter electrodes.

  20. Understanding the mechanism of direct electrochemistry of mitochondria-modified electrodes from yeast, potato and bovine sources at carbon paper electrodes

    International Nuclear Information System (INIS)

    Giroud, Fabien; Nicolo, Tera A.; Koepke, Sara J.; Minteer, Shelley D.

    2013-01-01

    Although mitochondria have been used for bio-electrochemistry for over 5 years, little is known about their direct electrochemistry mechanism. This paper focuses on developing a better understanding of the electron transfer mechanism of mitochondria from three different organisms at carbon electrodes. Yeast, potato and bovine mitochondria have been successfully isolated and immobilized onto Toray paper electrodes via vapor deposited silica. Organelle-modified electrodes were first characterized using cyclic voltammetry. Similar electrochemical signals were obtained for all organisms. Direct electron transfer was observed when a metabolite of the Krebs cycle was present in the buffer solution. Control experiments based on the immobilization of two electron carriers contained in mitochondria, cytochrome c and a quinone (coenzyme Q 10 ), tend to show the electron transfer mechanism to the carbon material comes from the quinone pool of the organelles. As quinones are known to be pH-dependent, we further investigated the response of the electrochemical signal of the three isolated mitochondria and the two electron carriers separately. The half wave potentials obtained from the organelles appeared to be pH-dependent and their variations are comparable to coenzyme Q 10 rather than cytochrome c. Finally, extraction of both the cytochrome c and the quinone pool from intact mitochondria was performed to validate our hypothesis that direct electrochemistry of mitochondria happens via the quinone pool. Electrochemistry of immobilized quinone-depleted mitochondria validated the hypothesis that the mitochondria are communicating with the electrodes through the quinone pool

  1. Glucose Oxidation on Gold-modified Copper Electrode

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Jieun; Pyo, Sung Gyu; Son, Hyungbin; Kim, Sookil [Chung-Ang Univ., Seoul (Korea, Republic of); Ahn, Sang Hyun; Son, Hyungbin [Korea Institute of Science and Technology, Seoul (Korea, Republic of)

    2013-09-15

    The activities of Au-modified Cu electrodes toward glucose oxidation are evaluated according to their fabrication conditions and physico-chemical properties. The Au-modified Cu electrodes are fabricated by the galvanic displacement of Au on a Cu substrate and the characteristics of the Au particles are controlled by adjusting the displacement time. From the glucose oxidation tests, it is found that the Au modified Cu has superior activity to the pure Au or Cu film, which is evidenced by the negative shift in the oxidation potential and enhanced current density during the electrochemical oxidation. Though the activity of the Au nanoparticles is a contributing factor, the enhanced activity of the Au-modified Cu electrode is due to the increased oxidation number of Cu through the electron transfer from Cu to more electronegative Au. The depletion of electron in Cu facilitates the oxidation of glucose. The stability of the Au-modified Cu electrode was also studied by chronoamperometry.

  2. Electrochemically synthesized stretchable polypyrrole/fabric electrodes for supercapacitor

    International Nuclear Information System (INIS)

    Yue, Binbin; Wang, Caiyun; Ding, Xin; Wallace, Gordon G.

    2013-01-01

    Wearable electronics offer the combined advantages of both electronics and fabrics. Being an indispensable part of these electronics, lightweight, stretchable and wearable power sources are strongly demanded. Here we describe a daily-used cotton fabric coated with polypyrrole as electrode for stretchable supercapacitors. Polypyrrole was synthesized on the Au coated fabric via an electrochemical polymerization process with p-toluenesulfonic acid (p-TS) as dopant from acetonitrile solution. This material was characterized with FESEM, tensile stress, and studied as a supercapacitor electrode in 1.0 M NaCl. This conductive textile electrode can sustain up to 140% strain without electric failure. It delivers a high specific capacitance of 254.9 F g −1 at a scan rate of 10 mV s −1 , and keeps almost unchanged at an applied strain (i.e. 30% and 50%) but with an improved cycling stability

  3. Improved performance of quantum dot light emitting diode by modulating electron injection with yttrium-doped ZnO nanoparticles

    Science.gov (United States)

    Li, Jingling; Guo, Qiling; Jin, Hu; Wang, Kelai; Xu, Dehua; Xu, Yongjun; Xu, Gang; Xu, Xueqing

    2017-10-01

    In a typical light emitting diode (QD-LED), with ZnO nanoparticles (NPs) serving as the electron transport layer (ETL) material, excessive electron injection driven by the matching conduction band maximum (CBM) between the QD and this oxide layer usually causes charge imbalance and degrades the device performance. To address this issue, the electronic structure of ZnO NPs is modified by the yttrium (Y) doping method. We demonstrate that the CBM of ZnO NPs has a strong dependence on the Y-doping concentration, which can be tuned from 3.55 to 2.77 eV as the Y doping content increases from 0% to 9.6%. This CBM variation generates an enlarged barrier between the cathode and this ZnO ETL benefits from the modulation of electron injection. By optimizing electron injection with the use of a low Y-doped (2%) ZnO to achieve charge balance in the QD-LED, device performance is significantly improved with maximum luminance, peak current efficiency, and maximal external quantum efficiency increase from 4918 cd/m2, 11.3 cd/A, and 4.5% to 11,171 cd/m2, 18.3 cd/A, and 7.3%, respectively. This facile strategy based on the ETL modification enriches the methodology of promoting QD-LED performance.

  4. Nonadiabatic dynamics of electron injection into organic molecules

    International Nuclear Information System (INIS)

    Zhu Li-Ping; Qiu Yu; Tong Guo-Ping

    2012-01-01

    We numerically investigate the injection process of electrons from metal electrodes to one-dimensional organic molecules by combining the extended Su—Schrieffer—Heeger (SSH) model with a nonadiabatic dynamics method. It is found that a match between the Fermi level of electrodes and the highest occupied molecular orbital (HOMO) or the lowest unoccupied molecular orbital (LUMO) of organic molecules can be greatly affected by the length of the organic chains, which has a great impact on electron injection. The correlation between oligomers and electrodes is found to open more efficient channels for electron injection as compared with that in polymer/electrode structures. For oligomer/electrode structures, we show that the Schottky barrier essentially does not affect the electron injection as the electrode work function is smaller than a critical value. This means that the Schottky barrier is pinned for a small work-function electrode. For polymer/electrode structures, we find that it is possible for the Fermi level of electrodes to be pinned to the polaronic level. The condition under which the Fermi level of electrodes exceeds the polaronic level of polymers is shown to not always lead to spontaneous electron transfer from electrodes to polymers. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  5. Principles of phosphorescent organic light emitting devices.

    Science.gov (United States)

    Minaev, Boris; Baryshnikov, Gleb; Agren, Hans

    2014-02-07

    Organic light-emitting device (OLED) technology has found numerous applications in the development of solid state lighting, flat panel displays and flexible screens. These applications are already commercialized in mobile phones and TV sets. White OLEDs are of especial importance for lighting; they now use multilayer combinations of organic and elementoorganic dyes which emit various colors in the red, green and blue parts of the visible spectrum. At the same time the stability of phosphorescent blue emitters is still a major challenge for OLED applications. In this review we highlight the basic principles and the main mechanisms behind phosphorescent light emission of various classes of photofunctional OLED materials, like organic polymers and oligomers, electron and hole transport molecules, elementoorganic complexes with heavy metal central ions, and clarify connections between the main features of electronic structure and the photo-physical properties of the phosphorescent OLED materials.

  6. Effective Area and Charge Density of Iridium Oxide Neural Electrodes

    International Nuclear Information System (INIS)

    Harris, Alexander R.; Paolini, Antonio G.; Wallace, Gordon G.

    2017-01-01

    The effective electrode area and charge density of iridium metal and anodically activated iridium has been measured by optical and electrochemical techniques. The degree of electrode activation could be assessed by changes in electrode colour. The reduction charge, activation charge, number of activation pulses and charge density were all strongly correlated. Activated iridium showed slow electron transfer kinetics for reduction of a dissolved redox species. At fast voltammetric scan rates the linear diffusion electroactive area was unaffected by iridium activation. At slow voltammetric scan rates, the steady state diffusion electroactive area was reduced by iridium activation. The steady state current was consistent with a ring electrode geometry, with lateral resistance reducing the electrode area. Slow electron transfer on activated iridium would require a larger overpotential to reduce or oxidise dissolved species in tissue, limiting the electrodes charge capacity but also reducing the likelihood of generating toxic species in vivo.

  7. Light-Emitting Devices Based on Pyridine-Containing Conjugated Polymers

    National Research Council Canada - National Science Library

    Wang, Y

    1997-01-01

    ...) as hole transporting/electron blocking polymer, which improves the device efficiency and brightness significantly due to the charge confinement and exciplex emission at the PVK/emitting polymer interface...

  8. Electrostatic X-ray image recording device with mesh-base photocathode photoelectron discriminator means

    International Nuclear Information System (INIS)

    1977-01-01

    An electrostatic X-ray image recording device having a pair of spaced electrodes with a gas-filled gap therebetween, and including discrimination means, having a conductive mesh supporting a photocathodic material, positioned in the gas-filled gap between a first electrode having a layer of ultraviolet-emitting fluorescent material and a second electrode having a plastic sheet adjacent thereto for receiving photoelectrons emitted by the photocathodic material and accelerated to the second electrode by an applied field. The photoconductor-mesh element discriminates against fast electrons, produced by direct impingement of X-rays upon the photocathode to substantially reduce secondary electron production and amplification, thereby increasing both the signal-to-noise and contrast ratios. The electrostatic image formed on the plastic sheet is developed by zerographic techniques after exposure. (Auth.)

  9. One-pot synthesis of CoNiO{sub 2} single-crystalline nanoparticles as high-performance electrode materials of asymmetric supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Du, Weimin, E-mail: dwmchem@163.com; Gao, Yanping; Tian, Qingqing; Li, Dan; Zhang, Zhenhu; Guo, Jiaojiao [Anyang Normal University, College of Chemistry and Chemical Engineering (China); Qian, Xuefeng [Shanghai Jiao Tong University, School of Chemistry and Chemical Technology (China)

    2015-09-15

    A facile one-pot solvothermal method has been developed to synthesize CoNiO{sub 2} single-crystalline nanoparticles. Crystal phase, morphology, crystal lattice, and composition of the obtained products were characterized by X-ray diffraction, scanning electron microscope, high-resolution transmission electron microscopy, and energy-dispersive X-ray analysis, respectively. Results revealed that the as-synthesized CoNiO{sub 2} nanoparticles belong to cubic structure with narrow size-distribution (8–10 nm). Subsequently, new asymmetric supercapacitors were successfully assembled with CoNiO{sub 2} nanoparticles as positive electrode and activated carbon as negative electrode. The electrochemical results show that asymmetric supercapacitors based on CoNiO{sub 2} nanoparticles possess excellent supercapacitor properties, i.e., a stable electrochemical window of 0–1.7 V, higher energy density of 24.0 Wh/kg at a power density of 415.4 W/kg, and excellent cycling stability (96.8 % capacitance retention after 5000 charge–discharge cycles). Meanwhile, both a light-emitting diode and a mini fan can be powered by two series connection asymmetric supercapacitors. These results imply that the present asymmetric supercapacitors based on CoNiO{sub 2} nanoparticles possess the promising potential application in the field of high-performance energy storage.

  10. Polymer electronics

    CERN Document Server

    Geoghegan, Mark

    2013-01-01

    Polymer electronics is the science behind many important new developments in technology, such as the flexible electronic display (e-ink) and many new developments in transistor technology. Solar cells, light-emitting diodes, and transistors are all areas where plastic electronics is likely to, or is already having, a serious impact on our daily lives. With polymer transistors and light-emitting diodes now being commercialised, there is a clear need for a pedagogic text thatdiscusses the subject in a clear and concise fashion suitable for senior undergraduate and graduate students. The content

  11. Sulfur tolerant composite cermet electrodes for solid oxide electrochemical cells

    Science.gov (United States)

    Isenberg, Arnold O.

    1987-01-01

    An electrochemical apparatus is made containing an exterior electrode bonded to the exterior of a tubular, solid, oxygen ion conducting electrolyte where the electrolyte is also in contact with an interior electrode, said exterior electrode comprising particles of an electronic conductor contacting the electrolyte, where a ceramic metal oxide coating partially surrounds the particles and is bonded to the electrolyte, and where a coating of an ionic-electronic conductive material is attached to the ceramic metal oxide coating and to the exposed portions of the particles.

  12. Novel high-voltage power lateral MOSFET with adaptive buried electrodes

    International Nuclear Information System (INIS)

    Zhang Wen-Tong; Wu Li-Juan; Qiao Ming; Luo Xiao-Rong; Zhang Bo; Li Zhao-Ji

    2012-01-01

    A new high-voltage and low-specific on-resistance (R on,sp ) adaptive buried electrode (ABE) silicon-on-insulator (SOI) power lateral MOSFET and its analytical model of the electric fields are proposed. The MOSFET features are that the electrodes are in the buried oxide (BOX) layer, the negative drain voltage V d is divided into many partial voltages and the output to the electrodes is in the buried oxide layer and the potentials on the electrodes change linearly from the drain to the source. Because the interface silicon layer potentials are lower than the neighboring electrode potentials, the electronic potential wells are formed above the electrode regions, and the hole potential wells are formed in the spacing of two neighbouring electrode regions. The interface hole concentration is much higher than the electron concentration through designing the buried layer electrode potentials. Based on the interface charge enhanced dielectric layer field theory, the electric field strength in the buried layer is enhanced. The vertical electric field E I and the breakdown voltage (BV) of ABE SOI are 545 V/μm and −587 V in the 50 μm long drift region and the 1 μm thick dielectric layer, and a low R on,sp is obtained. Furthermore, the structure also alleviates the self-heating effect (SHE). The analytical model matches the simulation results. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  13. Design of extraction system on grid of plasma generator electrode for pulsed electron irradiator

    International Nuclear Information System (INIS)

    Agus Purwadi; Bambang Siswanto; Lely Susita RM; Suprapto; Anjar Anggraini H; Ihwanul Azis

    2016-01-01

    It has been carried out design and study of electron extraction particularly for obtaining the electron extraction current via grid on the Plasma Generator Chamber (PGC) caused by the existence of extraction voltage U_a. Electrons of plasma surface emitted to acceleration region through emission window and then extracted acceleration by extraction voltage U_a through foil window to atmospheric region for being applied to any target. Applied extraction voltage U_a on PEI device influences the forming and energy value of electron extraction current I_e then the PGC dimension influences the product of thermal electron emission current I_e_0. It has been determinated the PGC geometry and dimension of producing electron extraction current based on arc discharge plasma current to desire on any plasma density. From the calculation yield for the value of plasma density n_e = 78 x 10"1"0 cm"-"3 and the arc discharge current Id = 80 A (pulse width τ = 100µs) used the PGC size of (80 x 20 x 40) cm"3. Emission window area of (65 x 15) cm"2 located on the low part surface of PGC is covered by a grid sheet made of stainless steel of rectangular shape and the distance of one grid hole to another is 0,25 mm each others. Current value of I_e beside depends on plasma parameters also depends on the size of grid holes. The optimum of geometry and size is rectangular with its side size of p ≈ 0,50 mm with the plasma parameters optimum (density value n_e = 10"1"6 m"-"3 and electron temperature T_e = 6 eV). From the initial experiment yields obtained that the electron extraction efficiency value α = 37,25 % on extraction voltage V = 3 kV. (author)

  14. A glucose biosensor based on direct electron transfer of glucose oxidase immobilized onto glassy carbon electrode modified with nitrophenyl diazonium salt

    International Nuclear Information System (INIS)

    Nasri, Zahra; Shams, Esmaeil

    2013-01-01

    Graphical abstract: - Abstract: This study reports a novel, simple and fast approach for construction of a highly stable glucose biosensor based on the immobilization of glucose oxidase (GOx) onto a glassy carbon electrode (GCE) electrografted with 4-aminophenyl (AP) by diazonium chemistry. Aminophenyl was used as cross-linker for covalent attachment of glucose oxidase to the electrode surface. Cyclic voltammograms of the GOx-modified GCE in phosphate buffer solution exhibited a pair of well-defined redox peaks, attesting the direct electron transfer (DET) of GOx with the underlying electrode. The proposed biosensor could be used to detect glucose based on the consumption of O 2 with the oxidation of glucose catalyzed by GOx and exhibited a wide linear range of glucose from 0.05 mM to 4.5 mM and low detection limit of 10 μM. The surface coverage of active GOx, heterogeneous electron transfer rate constant (k s ) and Michaelis–Menten constant (K M ) of immobilized GOx were 1.23 × 10 −12 mol cm −2 , 4.25 s −1 and 2.95 mM, respectively. The great stability of this biosensor, technically simple and possibility of preparation at short period of time make this method suitable for fabrication of low-cost glucose biosensors

  15. Printable inorganic nanomaterials for flexible transparent electrodes: from synthesis to application

    Science.gov (United States)

    Wang, Dingrun; Mei, Yongfeng; Huang, Gaoshan

    2018-01-01

    Printed and flexible electronics are definitely promising cutting-edge electronic technologies of the future. They offer a wide-variety of applications such as flexible circuits, flexible displays, flexible solar cells, skin-like pressure sensors, and radio frequency identification tags in our daily life. As the most-fundamental component of electronics, electrodes are made of conductive materials that play a key role in flexible and printed electronic devices. In this review, various inorganic conductive materials and strategies for obtaining highly conductive and uniform electrodes are demonstrated. Applications of printed electrodes fabricated via these strategies are also described. Nevertheless, there are a number of challenges yet to overcome to optimize the processing and performance of printed electrodes. Project supported by the National Natural Science Foundation of China (Nos. 51475093, U1632115), the Science and Technology Commission of Shanghai Municipality (No. 14JC1400200), the National Key Technologies R&D Program of China (No. 2015ZX02102-003), and the Changjiang Young Scholars Programme of China.

  16. Multi-solution processes of small molecule for flexible white organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Yu-Sheng, E-mail: ystsai@nfu.edu.tw [Institute of Electro-optical and Materials Science, National Formosa University, Yunlin 63201, Taiwan, ROC (China); Chittawanij, Apisit; Hong, Lin-Ann; Guo, Siou-Wei [Institute of Electro-optical and Materials Science, National Formosa University, Yunlin 63201, Taiwan, ROC (China); Wang, Ching-Chiun [Department of Solid State Lighting Technology, Mechanical and Systems Research Laboratories, Industrial Technology Research Institute, Hsinchu 31040, Taiwan, ROC (China); Juang, Fuh-Shyang [Institute of Electro-optical and Materials Science, National Formosa University, Yunlin 63201, Taiwan, ROC (China); Lai, Shih-Hsiang [Department of Solid State Lighting Technology, Mechanical and Systems Research Laboratories, Industrial Technology Research Institute, Hsinchu 31040, Taiwan, ROC (China); Lin, Yang-Ching [Institute of Electro-optical and Materials Science, National Formosa University, Yunlin 63201, Taiwan, ROC (China)

    2016-04-01

    Most small molecule organic light emitting diode (SM-OLED) device structures are made in one layer using solution-based processing because the solution is usually a high dissolvent material that easily attacks the layer below it. We demonstrate a simple and reliable stamping technique for fabricating multi-solution process flexible white SM-OLEDs. The structure is anode/spin-hole injection layer/spin-emitting layer/stamping-electron transport layer/cathode. Poly(di-methyl silane) (PDMS) stamp is used for transferring electron transport layer. An intermediate ultraviolet-ozone surface treatment is introduced to temporarily modify the PDMS stamp surface. Then, the solution-based electron transport layer film can therefore be uniformly formed on top of the PDMS surface. After that the electron transport layer film on the PDMS stamp is transfer-printed onto the emitting layer with suitable heating and pressing. A solution-based processing is successfully established to efficiently fabricate flexible white SM-OLEDs. The SM-OLEDs were obtained at the current density of 20 mA/cm{sup 2}, luminance of 1062 cd/m{sup 2}, current efficiency of 5.57 cd/A, and Commission internationale de l'éclairage coordinate of (0.32, 0.35). - Highlights: • All solution-processed small molecule materials (emitting layer, electron transport layer). • Poly(di-methylsilane) (PDMS) stamp is subsequently used for stamping transfer. • The flexible white SM-OLEDs are based on solution-processes with a low-cost method.

  17. Multi-solution processes of small molecule for flexible white organic light-emitting diodes

    International Nuclear Information System (INIS)

    Tsai, Yu-Sheng; Chittawanij, Apisit; Hong, Lin-Ann; Guo, Siou-Wei; Wang, Ching-Chiun; Juang, Fuh-Shyang; Lai, Shih-Hsiang; Lin, Yang-Ching

    2016-01-01

    Most small molecule organic light emitting diode (SM-OLED) device structures are made in one layer using solution-based processing because the solution is usually a high dissolvent material that easily attacks the layer below it. We demonstrate a simple and reliable stamping technique for fabricating multi-solution process flexible white SM-OLEDs. The structure is anode/spin-hole injection layer/spin-emitting layer/stamping-electron transport layer/cathode. Poly(di-methyl silane) (PDMS) stamp is used for transferring electron transport layer. An intermediate ultraviolet-ozone surface treatment is introduced to temporarily modify the PDMS stamp surface. Then, the solution-based electron transport layer film can therefore be uniformly formed on top of the PDMS surface. After that the electron transport layer film on the PDMS stamp is transfer-printed onto the emitting layer with suitable heating and pressing. A solution-based processing is successfully established to efficiently fabricate flexible white SM-OLEDs. The SM-OLEDs were obtained at the current density of 20 mA/cm"2, luminance of 1062 cd/m"2, current efficiency of 5.57 cd/A, and Commission internationale de l'éclairage coordinate of (0.32, 0.35). - Highlights: • All solution-processed small molecule materials (emitting layer, electron transport layer). • Poly(di-methylsilane) (PDMS) stamp is subsequently used for stamping transfer. • The flexible white SM-OLEDs are based on solution-processes with a low-cost method.

  18. A solid-contact Pb2+-selective electrode using poly(2-methoxy-5-(2'-ethylhexyloxy)-p-phenylene vinylene) as ion-to-electron transducer

    International Nuclear Information System (INIS)

    Yu Shunyang; Li Fuhai; Yin Tanji; Liu Yongming; Pan, Dawei; Qin Wei

    2011-01-01

    Highlights: → All reagents used for the electrodes preparation were commercially available. → The lower detection limit of the proposed electrode reached subnanomolar levels. → No water film was observed with conventional commercially available PVC ion-sensing membranes. → This research provides an excellent strategy for fabrication of robust polymeric ion sensors. - Abstract: In this work, a novel all-solid-state polymeric membrane Pb 2+ -selective electrode was developed by using for the first time poly(2-methoxy-5-(2'-ethylhexyloxy)-p-phenylene vinylene) (MEH-PPV) as solid contact. To demonstrate the ion-to-electron transducing ability of MEH-PPV, chronopotentiometry and electrochemical impedance spectroscopy measurements were carried out. The proposed electrodes showed a Nernstian response of 29.1 mV decade -1 and a lower detection limit of subnanomolar level. No water film was observed with the conventional plasticized PVC membrane. This work demonstrates a new strategy for the fabrication of robust potentiometric ion sensors.

  19. Dynamic environmental transmission electron microscopy observation of platinum electrode catalyst deactivation in a proton-exchange-membrane fuel cell.

    Science.gov (United States)

    Yoshida, Kenta; Xudong, Zhang; Bright, Alexander N; Saitoh, Koh; Tanaka, Nobuo

    2013-02-15

    Spherical-aberration-corrected environmental transmission electron microscopy (AC-ETEM) was applied to study the catalytic activity of platinum/amorphous carbon electrode catalysts in proton-exchange-membrane fuel cells (PEMFCs). These electrode catalysts were characterized in different atmospheres, such as hydrogen and air, and a conventional high vacuum of 10(-5) Pa. A high-speed charge coupled device camera was used to capture real-time movies to dynamically study the diffusion and reconstruction of nanoparticles with an information transfer down to 0.1 nm, a time resolution below 0.2 s and an acceleration voltage of 300 kV. With such high spatial and time resolution, AC-ETEM permits the visualization of surface-atom behaviour that dominates the coalescence and surface-reconstruction processes of the nanoparticles. To contribute to the development of robust PEMFC platinum/amorphous carbon electrode catalysts, the change in the specific surface area of platinum particles was evaluated in hydrogen and air atmospheres. The deactivation of such catalysts during cycle operation is a serious problem that must be resolved for the practical use of PEMFCs in real vehicles. In this paper, the mechanism for the deactivation of platinum/amorphous carbon electrode catalysts is discussed using the decay rate of the specific surface area of platinum particles, measured first in a vacuum and then in hydrogen and air atmospheres for comparison.

  20. Light-extraction enhancement of GaN-based 395  nm flip-chip light-emitting diodes by an Al-doped ITO transparent conductive electrode.

    Science.gov (United States)

    Xu, Jin; Zhang, Wei; Peng, Meng; Dai, Jiangnan; Chen, Changqing

    2018-06-01

    The distinct ultraviolet (UV) light absorption of indium tin oxide (ITO) limits the performance of GaN-based near-UV light-emitting diodes (LEDs). Herein, we report an Al-doped ITO with enhanced UV transmittance and low sheet resistance as the transparent conductive electrode for GaN-based 395 nm flip-chip near-UV LEDs. The thickness dependence of optical and electrical properties of Al-doped ITO films is investigated. The optimal Al-doped ITO film exhibited a transmittance of 93.2% at 395 nm and an average sheet resistance of 30.1  Ω/sq. Meanwhile, at an injection current of 300 mA, the forward voltage decreased from 3.14 to 3.11 V, and the light output power increased by 13% for the 395 nm near-UV flip-chip LEDs with the optimal Al-doped ITO over those with pure ITO. This Letter provides a simple and repeatable approach to further improve the light extraction efficiency of GaN-based near-UV LEDs.

  1. Efficiency of solution-processed multilayer polymer light-emitting diodes using charge blocking layers

    Science.gov (United States)

    Kasparek, Christian; Rörich, Irina; Blom, Paul W. M.; Wetzelaer, Gert-Jan A. H.

    2018-01-01

    By blending semiconducting polymers with the cross-linkable matrix ethoxylated-(4)-bisphenol-a-dimethacrylate (SR540), an insoluble layer is acquired after UV-illumination. Following this approach, a trilayer polymer light-emitting diode (PLED) consisting of a blend of poly[N,N'-bis(4-butylphenyl)-N,N'-bis(phenyl)-benzidine] (poly-TPD) and SR540 as an electron-blocking layer, Super Yellow-Poly(p-phenylene vinylene) (SY-PPV) blended with SR540 as an emissive layer, and poly(9,9-di-n-octylfluorenyl-2,7-diyl) as a hole-blocking layer is fabricated from solution. The trilayer PLED shows a 23% increase in efficiency at low voltage as compared to a single layer SY-PPV PLED. However, at higher voltage, the advantage in current efficiency gradually decreases. A combined experimental and modelling study shows that the increased efficiency is not only due to the elimination of exciton quenching at the electrodes but also due to suppressed nonradiative trap-assisted recombination due to carrier confinement. At high voltages, holes can overcome the hole-blocking barrier, which explains the efficiency roll-off.

  2. Beyond Slurry-Cast Supercapacitor Electrodes: PAN/MWNT Heteromat-Mediated Ultrahigh Capacitance Electrode Sheets

    Science.gov (United States)

    Lee, Jung Han; Kim, Jeong A.; Kim, Ju-Myung; Lee, Sun-Young; Yeon, Sun-Hwa; Lee, Sang-Young

    2017-01-01

    Supercapacitors (SCs) have garnered considerable attention as an appealing power source for forthcoming smart energy era. An ultimate challenge facing the SCs is the acquisition of higher energy density without impairing their other electrochemical properties. Herein, we demonstrate a new class of polyacrylonitrile (PAN)/multi-walled carbon tube (MWNT) heteromat-mediated ultrahigh capacitance electrode sheets as an unusual electrode architecture strategy to address the aforementioned issue. Vanadium pentoxide (V2O5) is chosen as a model electrode material to explore the feasibility of the suggested concept. The heteromat V2O5 electrode sheets are produced through one-pot fabrication based on concurrent electrospraying (for V2O5 precursor/MWNT) and electrospinning (for PAN nanofiber) followed by calcination, leading to compact packing of V2O5 materials in intimate contact with MWNTs and PAN nanofibers. As a consequence, the heteromat V2O5 electrode sheets offer three-dimensionally bicontinuous electron (arising from MWNT networks)/ion (from spatially reticulated interstitial voids to be filled with liquid electrolytes) conduction pathways, thereby facilitating redox reaction kinetics of V2O5 materials. In addition, elimination of heavy metallic foil current collectors, in combination with the dense packing of V2O5 materials, significantly increases (electrode sheet-based) specific capacitances far beyond those accessible with conventional slurry-cast electrodes.

  3. Bremsstrahlung of fast electrons in long air gaps

    Energy Technology Data Exchange (ETDEWEB)

    Oreshkin, E. V.; Barengolts, S. A. [P. N. Lebedev Physical Institute, RAS, 119991 Moscow (Russian Federation); General Physics Institute, RAS, 119991 Moscow (Russian Federation); Chaikovsky, S. A. [P. N. Lebedev Physical Institute, RAS, 119991 Moscow (Russian Federation); Institute of High Current Electronics, SB RAS, 634055 Tomsk (Russian Federation); Oginov, A. V.; Shpakov, K. V.; Bogachenkov, V. A. [P. N. Lebedev Physical Institute, RAS, 119991 Moscow (Russian Federation)

    2012-01-15

    The results of an experiment on discharges in long atmospheric pressure air gaps at a pulsed voltage of amplitude up to 800 kV and risetime 150-200 ns have been analyzed. In the experiment, a radiation pulse of photon energy >5 keV and duration 10-20 ns was observed. In analyzing the experimental data it was supposed that a streamer is a plasma protrusion whose surface is equipotential to the cathode surface. It has been shown that the x-ray pulse results from the switch of electrons into the mode of ''runaway'' from the head of anode-directed streamers. For the electrons injected in the electrode gap from the streamer head, conditions for their switching into the mode of continuous acceleration are realized due to the enhanced electric field at the head. The predicted maximum of the spectrum of the bremsstrahlung generated by the runaway electron beam is around 15 keV. The presence of a maximum in the bremsstrahlung spectrum is due to that the photons emitted by electrons are absorbed by atoms of the gas in which the discharge operate.

  4. III-V group compound semiconductor light-emitting element having a doped tantalum barrier layer

    International Nuclear Information System (INIS)

    Oanna, Y.; Ozawa, N.; Yamashita, M.; Yasuda, N.

    1984-01-01

    Disclosed is a III-V Group compound semiconductor light-emitting element having a III-V Group compound semiconductor body with a p-n junction and including a p-type layer involved in forming the p-n junction; and a multi-layer electrode mounted on the p-type layer of the semiconductor body. The electrode comprises a first layer of gold alloy containing a small amount of beryllium or zinc and formed in direct contact with the p-type layer of the semiconductor body and an uppermost layer formed of gold or aluminum. A tantalum layer doped with carbon, nitrogen and/or oxygen is formed between the first layer and the uppermost layer by means of vacuum vapor deposition

  5. Construction and direct electrochemistry of orientation controlled laccase electrode.

    Science.gov (United States)

    Li, Ying; Zhang, Jiwei; Huang, Xirong; Wang, Tianhong

    2014-03-28

    A laccase has multiple redox centres. Chemisorption of laccases on a gold electrode through a polypeptide tag introduced at the protein surface provides an isotropic orientation of laccases on the Au surface, which allows the orientation dependent study of the direct electrochemistry of laccase. In this paper, using genetic engineering technology, two forms of recombinant laccase which has Cys-6×His tag at the N or C terminus were generated. Via the Au-S linkage, the recombinant laccase was assembled orientationally on gold electrode. A direct electron transfer and a bioelectrocatalytic activity toward oxygen reduction were observed on the two orientation controlled laccase electrodes, but their electrochemical behaviors were found to be quite different. The orientation of laccase on the gold electrode affects both the electron transfer pathway and the electron transfer efficiency of O2 reduction. The present study is helpful not only to the in-depth understanding of the direct electrochemistry of laccase, but also to the development of laccase-based biofuel cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Layer-by-Layer Assembly of Glucose Oxidase on Carbon Nanotube Modified Electrodes.

    Science.gov (United States)

    Suroviec, Alice H

    2017-01-01

    The use of enzymatically modified electrodes for the detection of glucose or other non-electrochemically active analytes is becoming increasingly common. Direct heterogeneous electron transfer to glucose oxidase has been shown to be kinetically difficult, which is why electron transfer mediators or indirect detection is usually used for monitoring glucose with electrochemical sensors. It has been found, however, that electrodes modified with single or multi-walled carbon nanotubes (CNTs) demonstrate fast heterogeneous electron transfer kinetics as compared to that found for traditional electrodes. Incorporating CNTs into the assembly of electrochemical glucose sensors, therefore, affords the possibility of facile electron transfer to glucose oxidase, and a more direct determination of glucose. This chapter describes the methods used to use CNTs in a layer-by-layer structure along with glucose oxidase to produce an enzymatically modified electrode with high turnover rates, increased stability and shelf-life.

  7. Cathodic electrogenerated chemiluminescence of aromatic Tb(III) chelates at polystyrene-graphite composite electrodes

    International Nuclear Information System (INIS)

    Salminen, Kalle; Grönroos, Päivi; Tuomi, Sami; Kulmala, Sakari

    2017-01-01

    Tb(III) chelates exhibit intense hot electron-induced electrogenerated chemiluminescence during cathodic polarization of metal/polystyrene-graphite (M/PG) electrodes in fully aqueous solutions. The M/PG working electrode provides a sensitive means for the determination of aromatic Tb(III) chelates at nanomolar concentration levels with a linear log-log calibration curve spanning more than five orders of magnitude. The charge transport and other properties of these novel electrodes were studied by electrochemiluminescence measurements and cyclic voltammetry. The present composite electrodes can by utilized both under pulse polarization and DC polarization unlike oxide-coated metal electrodes which do not tolerate cathodic DC polarization. The present cost-effective electrodes could be utilized e.g. in immunoassays where polystyrene is extensively used as a solid phase for various bioaffinity assays by using electrochemiluminescent Tb(III) chelates or e.g. Ru(bpy) 3 2+ as labels. - Highlights: • Generation of hydrated electrons at Polystyrene-graphite electrodes. • The insulating polystyrene layer on the outer electrode surface seems necessary. • Hydrated electrons are able to produce chemiluminescence. • Strongest signal and lowest std. dev. achieved at same graphite weight fraction.

  8. A numerical study on the charge transport in TPD/Alq3-based organic light emitting diodes.

    Science.gov (United States)

    Kim, K S; Hwang, Y W; Lee, H G; Won, T Y

    2014-08-01

    We report our simulation study on the charge transport characteristic of the multi-layer structure for organic light emitting diodes (OLEDs). We performed a numerical simulation on a multilayer structure comprising a hole transport layer (HTL), an emission layer (EML), and an electron transport layer (ETL) between both electrodes. The material of the HTL is TPD (N,N'-Bis (3-methylphenyl)-N,N'-bis(phenyl) benzidine), and the ETL includes Alq3 (Tris (8-hyroxyquinolinato) aluminium). Here, we investigated the parameters such as recombination rates which influence the efficiency of the charge transport between layers in bilayer OLEDs. We also analyzed a transient response during the turn on/off period and the carrier transport in accordance with the variation of the injection barrier and applied voltage. In addition, our numerical simulation revealed that the insertion of the EML affects the photonic characteristics in bilayer structure and also the efficiency due to the difference in the internal barrier height.

  9. Micro-light-emitting-diode array with dual functions of visible light communication and illumination

    International Nuclear Information System (INIS)

    Huang Yong; Guo Zhi-You; Sun Hui-Qing; Huang Hong-Yong

    2017-01-01

    We demonstrate high-speed blue 4 × 4 micro-light-emitting-diode (LED) arrays with 14 light-emitting units (two light-emitting units are used as the positive and negative electrodes for power supply, respectively) comprising multiple quantum wells formed of GaN epitaxial layers grown on a sapphire substrate, and experimentally test their applicability for being used as VLC transmitters and illuminations. The micro-LED arrays provide a maximum −3-dB frequency response of 60.5 MHz with a smooth frequency curve from 1 MHz to 500 MHz for an optical output power of 165 mW at an injection current of 30 mA, which, to our knowledge, is the highest response frequency ever reported for blue GaN-based LEDs operating at that level of optical output power. The relationship between the frequency and size of the device single pixel diameter reveals the relationship between the response frequency and diffusion capacitance of the device. (paper)

  10. Perovskites as electrodes of solid cells in sensitive elements of oxygen ion

    International Nuclear Information System (INIS)

    Gandurska, J.; Sniezynska, I.; Marek, A.; Szwagierczak, D.; Kulawik, J.

    1997-01-01

    The perovskite family comprises many compounds used in electronic applications. In this work perovskite materials based on LaCrO 3 were investigated, destined for electrodes of solid electrolyte oxygen sensors. lanthanum chromite powders modified by calcium, strontium and aluminium were prepared by the coprecipitation-calcination technique. The powders were examined using thermal analysis, x-ray diffraction analysis, scanning electron microscopy and transmission electron microscopy. Introductory studies of electromotive force of oxygen cells with yttria stabilized zirconia as solid electrolyte and perovskite-based electrodes proved that it is possible to replace expensive Pt electrodes by much cheaper perovskite ones. (author)

  11. Effect of multipactor conditioning on technical electrode surfaces

    International Nuclear Information System (INIS)

    Graves, T. P.; Spektor, R.; Stout, P.

    2009-01-01

    Historically, multipactor conditioning has been utilized to remove surface contaminants from rf electrodes by electron-stimulated gas desorption, and such conditioning has been shown to reduce multipactor susceptibility. Multipactor threshold improvements are due to increasing E 1 , the minimum energy for the secondary electron coefficient, δ>1, such that resonant electrons are incapable of producing discharge-sustaining secondary emission. Using an rf amplitude sweep technique, the evolution of the multipactor threshold is measured as a function of multipactor conditioning time for a series of technical electrode surfaces. Results show over +3 dB of threshold improvement in copper and gold electrodes, while the aluminum threshold actually decreases with conditioning exposure. Additionally, these conditioning results indicate the possible voltage region for transient-mode multipaction (TMM), which can cause significant risk to rf systems such as space satellite components for which in-situ conditioning is generally not possible. Experimental results and supporting Monte Carlo particle tracking simulation results are presented.

  12. GaN light-emitting device based on ionic liquid electrolyte

    Science.gov (United States)

    Hirai, Tomoaki; Sakanoue, Tomo; Takenobu, Taishi

    2018-06-01

    Ionic liquids (ILs) are attractive materials for fabricating unique hybrid devices based on electronics and electrochemistry; thus, IL-gated transistors and organic light-emitting devices of light-emitting electrochemical cells (LECs) are investigated for future low-voltage and high-performance devices. In LECs, voltage application induces the formation of electrochemically doped p–n homojunctions owing to ion rearrangements in composites of semiconductors and electrolytes, and achieves electron–hole recombination for light emission at the homojunctions. In this work, we applied this concept of IL-induced electrochemical doping to the fabrication of GaN-based light-emitting devices. We found that voltage application to the layered IL/GaN structure accumulated electrons on the GaN surface owing to ion rearrangements and improved the conductivity of GaN. The ion rearrangement also enabled holes to be injected by the strong electric field of electric double layers on hole injection contacts. This simultaneous injection of holes and electrons into GaN mediated by ions achieves light emission at a low voltage of around 3.4 V. The light emission from the simple IL/GaN structure indicates the usefulness of an electrochemical technique in generating light emission with great ease of fabrication.

  13. Effects of emission layer doping on the spatial distribution of charge and host recombination rate density in organic light emitting devices: A numerical study

    Science.gov (United States)

    Li, Yanli; Zhou, Maoqing; Zheng, Tingcai; Yao, Bo; Peng, Yingquan

    2013-12-01

    Based on drift-diffusion theory, a numerical model of the doping of a single energy level trap in the emission layer of an organic light emitting device (OLED) was developed, and the effects of doping of this single energy level trap on the distribution of the charge density, the recombination rate density, and the electric field in single- and double-layer OLEDs were studied numerically. The results show that by doping the n-type (p-type) emission layer with single energy electron (hole) traps, the distribution of the recombination rate density can be tuned and shifted, which is useful for improvement of the device performance by reduced electrode quenching or for realization of desirable special functions, e.g., emission spectrum tuning in multiple dye-doped white OLEDs.

  14. Effects of emission layer doping on the spatial distribution of charge and host recombination rate density in organic light emitting devices: A numerical study

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yanli; Zhou, Maoqing; Zheng, Tingcai; Yao, Bo [Institute of Microelectronics, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China); Peng, Yingquan, E-mail: yqpeng@lzu.edu.cn [Institute of Microelectronics, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China); Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China)

    2013-12-28

    Based on drift-diffusion theory, a numerical model of the doping of a single energy level trap in the emission layer of an organic light emitting device (OLED) was developed, and the effects of doping of this single energy level trap on the distribution of the charge density, the recombination rate density, and the electric field in single- and double-layer OLEDs were studied numerically. The results show that by doping the n-type (p-type) emission layer with single energy electron (hole) traps, the distribution of the recombination rate density can be tuned and shifted, which is useful for improvement of the device performance by reduced electrode quenching or for realization of desirable special functions, e.g., emission spectrum tuning in multiple dye-doped white OLEDs.

  15. Effects of emission layer doping on the spatial distribution of charge and host recombination rate density in organic light emitting devices: A numerical study

    International Nuclear Information System (INIS)

    Li, Yanli; Zhou, Maoqing; Zheng, Tingcai; Yao, Bo; Peng, Yingquan

    2013-01-01

    Based on drift-diffusion theory, a numerical model of the doping of a single energy level trap in the emission layer of an organic light emitting device (OLED) was developed, and the effects of doping of this single energy level trap on the distribution of the charge density, the recombination rate density, and the electric field in single- and double-layer OLEDs were studied numerically. The results show that by doping the n-type (p-type) emission layer with single energy electron (hole) traps, the distribution of the recombination rate density can be tuned and shifted, which is useful for improvement of the device performance by reduced electrode quenching or for realization of desirable special functions, e.g., emission spectrum tuning in multiple dye-doped white OLEDs

  16. Washing-free heterogeneous immunosensor using proximity-dependent electron mediation between an enzyme label and an electrode.

    Science.gov (United States)

    Dutta, Gorachand; Kim, Sinyoung; Park, Seonhwa; Yang, Haesik

    2014-05-06

    Washing processes, essential in most heterogeneous labeled assays, have been a big hurdle in simplifying the detection procedure and reducing assay time. Nevertheless, less attention has been paid to washing-free heterogeneous labeled assays. We report a purely washing-free immunosensor that allows fast, sensitive, and single-step detection of prostate-specific antigen in serum with low interference. Proximity-dependent electron mediation of ferrocenemethanol (Fc) between an indium-tin oxide (ITO) electrode and a glucose-oxidase (GOx) label allows us to discriminate between a bound and an unbound label: a bound label offers faster electron mediation than an unbound one. The electrooxidation of Fc at a low applied potential (0.13 V vs Ag/AgCl) and a low electrocatalytic ITO electrode and the oxidation of l-ascorbic acid by l-ascorbate oxidase minimize the effect of the interfering species. With a high concentration of glucose (200 mM), the signal and background levels are hardly dependent on the glucose-concentration variation in the sample. The washing-free immunosensor can detect a concentration of ca. 1 pg/mL for mouse IgG in phosphate-buffered saline and a concentration of ca. 10 pg/mL for prostate-specific antigen spiked in female serum after an incubation period of 10 min. The concentrations measured with actual clinical serum samples are in good agreement with the concentrations measured with a commercial instrument, which renders the washing-free heterogeneous immunosensor appealing for practical use.

  17. Electrochemical and Electron Paramagnetic Resonance Study of the Mechanism of Oxidation of Phenazine-di-N-oxide in the Presence of Isopropyl alcohol at Glassy Carbon and Single-Walled Carbon Nanotube Electrodes

    International Nuclear Information System (INIS)

    Kulakovskaya, S.I.; Kulikov, A.V.; Sviridova, L.N.; Stenina, E.V.

    2014-01-01

    Graphical abstract: - Highlights: • The mechanism of oxidation of phenazine-di-N-oxide in the presence of isopropyl alcohol was studied. • The results are explained in terms of the E 1 C 1 E 2 C 2 mechanism of the two-stage electrode process. • The total two-electron catalytic oxidation of i-PrOH in the complex with the phenazine-di-N-oxide radical cation was assumed to occur. - Abstract: The mechanism of oxidation of phenazine-di-N-oxide in the presence of isopropyl alcohol was studied by cyclic voltammetry at glassy carbon (GC) and single-walled carbon nanotubes (SWCNT) electrodes in 0.1 M LiClO 4 solutions in acetonitrile. The adsorption of phenazine-di-N-oxide at SWCNT electrode in 0.1 M LiClO 4 solution in acetonitrile was investigated by measurement of the dependence of the differential double layer capacitance of the electrode C on potential E. The effect of isopropyl alcohol on the shape of cyclic voltammograms (CVs) of phenazine-di-N-oxide and the intensity of Electron Paramagnetic Resonance (EPR) signal of its radical cation was investigated. The catalytic currents were recorded at the oxidation of phenazine-di-N-oxide at SWCNT and GC electrodes in the presence of isopropyl alcohol. The results were explained in terms of the E 1 C 1 E 2 C 2 mechanism of two-stage electrode process characterized by catalytic current recorded at the second electrode stage. The overall two-electron catalytic oxidation of isopropyl alcohol in complex with the phenazine-di-N-oxide radical cation was assumed to occur. It was shown that SWCNT electrodes can be used in the electrocatalytic oxidation of organic compounds in the presence of electrochemically generated phenazine-di-N-oxide radical cation

  18. Monte Carlo random walk simulation of electron transport in confined porous TiO2 as a promising candidate for photo-electrode of nano-crystalline solar cells

    Science.gov (United States)

    Javadi, M.; Abdi, Y.

    2015-08-01

    Monte Carlo continuous time random walk simulation is used to study the effects of confinement on electron transport, in porous TiO2. In this work, we have introduced a columnar structure instead of the thick layer of porous TiO2 used as anode in conventional dye solar cells. Our simulation results show that electron diffusion coefficient in the proposed columnar structure is significantly higher than the diffusion coefficient in the conventional structure. It is shown that electron diffusion in the columnar structure depends both on the cross section area of the columns and the porosity of the structure. Also, we demonstrate that such enhanced electron diffusion can be realized in the columnar photo-electrodes with a cross sectional area of ˜1 μm2 and porosity of 55%, by a simple and low cost fabrication process. Our results open up a promising approach to achieve solar cells with higher efficiencies by engineering the photo-electrode structure.

  19. Monte Carlo random walk simulation of electron transport in confined porous TiO2 as a promising candidate for photo-electrode of nano-crystalline solar cells

    International Nuclear Information System (INIS)

    Javadi, M.; Abdi, Y.

    2015-01-01

    Monte Carlo continuous time random walk simulation is used to study the effects of confinement on electron transport, in porous TiO 2 . In this work, we have introduced a columnar structure instead of the thick layer of porous TiO 2 used as anode in conventional dye solar cells. Our simulation results show that electron diffusion coefficient in the proposed columnar structure is significantly higher than the diffusion coefficient in the conventional structure. It is shown that electron diffusion in the columnar structure depends both on the cross section area of the columns and the porosity of the structure. Also, we demonstrate that such enhanced electron diffusion can be realized in the columnar photo-electrodes with a cross sectional area of ∼1 μm 2 and porosity of 55%, by a simple and low cost fabrication process. Our results open up a promising approach to achieve solar cells with higher efficiencies by engineering the photo-electrode structure

  20. Electron Emitters

    National Research Council Canada - National Science Library

    Tzeng, Yonhua

    2002-01-01

    When two carbon-nanotube coated electrodes are placed at a small distance from each other, electron emission from carbon nanotubes allows a DC or AC electrical current to flow between these two electrodes...

  1. Electron dynamics and plasma jet formation in a helium atmospheric pressure dielectric barrier discharge jet

    Energy Technology Data Exchange (ETDEWEB)

    Algwari, Q. Th. [Centre for Plasma Physics, School of Maths and Physics, Queen' s University Belfast, University Road, Belfast, Northern Ireland BT7 1NN (United Kingdom); Electronic Department, College of Electronics Engineering, Mosul University, Mosul 41002 (Iraq); O' Connell, D. [Centre for Plasma Physics, School of Maths and Physics, Queen' s University Belfast, University Road, Belfast, Northern Ireland BT7 1NN (United Kingdom); York Plasma Institute, Department of Physics, University of York, York YO10 5DD (United Kingdom)

    2011-09-19

    The excitation dynamics within the main plasma production region and the plasma jets of a kHz atmospheric pressure dielectric barrier discharge (DBD) jet operated in helium was investigated. Within the dielectric tube, the plasma ignites as a streamer-type discharge. Plasma jets are emitted from both the powered and grounded electrode end; their dynamics are compared and contrasted. Ignition of these jets are quite different; the jet emitted from the powered electrode is ignited with a slight time delay to plasma ignition inside the dielectric tube, while breakdown of the jet at the grounded electrode end is from charging of the dielectric and is therefore dependent on plasma production and transport within the dielectric tube. Present streamer theories can explain these dynamics.

  2. Highly efficient white top-emitting organic light-emitting diodes with forward directed light emission

    Energy Technology Data Exchange (ETDEWEB)

    Freitag, Patricia; Reineke, Sebastian; Furno, Mauro; Luessem, Bjoern; Leo, Karl [Institut fuer Angewandte Photophysik, TU Dresden (Germany)

    2010-07-01

    The demand for highly efficient and energy saving illumination has increased considerably during the last decades. Organic light emitting diodes (OLEDs) are promising candidates for future lighting technologies. They offer high efficiency along with excellent color quality, allowing substantially lower power consumption than traditional illuminants. Recently, especially top-emitting devices have attracted high interest due to their compatibility with opaque substrates like metal sheets. In this contribution, we demonstrate top-emitting OLEDs with white emission spectra employing a multilayer hybrid cavity structure with two highly efficient phosphorescent emitter materials for orange-red (Ir(MDQ)2(acac)) and green (Ir(ppy)3) emission as well as the stable fluorescent blue emitter TBPe. To improve the OLED performance and modify the color quality, two different electron blocking layers and anode material combinations are tested. Compared to Lambertian emission, our devices show considerably enhanced forward emission, which is preferred for most lighting applications. Besides broadband emission and angle independent emission maxima, power efficiencies of 13.3 lm/W at 3 V and external quantum efficiencies of 5.3% are achieved. The emission shows excellent CIE coordinates of (0.420,0.407) at approx. 1000 cd/m{sup 2} and color rendering indices up to 77.

  3. Printed assemblies of ultrathin, microscale inorganic light emitting diodes for deformable and semitransparent displays

    Science.gov (United States)

    Rogers, John A.; Nuzzo, Ralph; Kim, Hoon-sik; Brueckner, Eric; Park, Sang Il; Kim, Rak Hwan

    2017-05-09

    Described herein are printable structures and methods for making, assembling and arranging electronic devices. A number of the methods described herein are useful for assembling electronic devices where one or more device components are embedded in a polymer which is patterned during the embedding process with trenches for electrical interconnects between device components. Some methods described herein are useful for assembling electronic devices by printing methods, such as by dry transfer contact printing methods. Also described herein are GaN light emitting diodes and methods for making and arranging GaN light emitting diodes, for example for display or lighting systems.

  4. Surface characterization by energy distribution measurements of secondary electrons and of ion-induced electrons

    International Nuclear Information System (INIS)

    Bauer, H.E.; Seiler, H.

    1988-01-01

    Instruments for surface microanalysis (e.g. scanning electron or ion microprobes, emission electron or ion microscopes) use the current of emitted secondary electrons or of emitted ion-induced electrons for imaging of the analysed surface. These currents, integrating over all energies of the emitted low energy electrons, are however, not well suited to surface analytical purposes. On the contrary, the energy distribution of these electrons is extremely surface-sensitive with respect to shape, size, width, most probable energy, and cut-off energy. The energy distribution measurements were performed with a cylindrical mirror analyser and converted into N(E), if necessary. Presented are energy spectra of electrons released by electrons and argon ions of some contaminated and sputter cleaned metals, the change of the secondary electron energy distribution from oxidized aluminium to clean aluminium, and the change of the cut-off energy due to work function change of oxidized aluminium, and of a silver layer on a platinum sample. The energy distribution of the secondary electrons often shows detailed structures, probably due to low-energy Auger electrons, and is broader than the energy distribution of ion-induced electrons of the same object point. (author)

  5. Field Emission of Wet Transferred Suspended Graphene Fabricated on Interdigitated Electrodes.

    Science.gov (United States)

    Xu, Ji; Wang, Qilong; Tao, Zhi; Qi, Zhiyang; Zhai, Yusheng; Wu, Shengqi; Zhang, Xiaobing; Lei, Wei

    2016-02-10

    Suspended graphene (SG) membranes could enable strain-engineering of ballistic Dirac fermion transport and eliminate the extrinsic bulk disorder by annealing. When freely suspended without contact to any substrates, graphene could be considered as the ultimate two-dimensional (2D) morphology, leading to special field characteristics with the 2D geometrical effect and effectively utilized as an outstanding structure to explore the fundamental electronic or optoelectronic mechanism. In this paper, we report field emission characterization on an individual suspended few-layer graphene. A controllable wet transfer method is used to obtain the continuous and suspended graphene membrane on interdigitated gold electrodes. This suspended structure displays an overall field emission from the entirely surface, except for the variation in the emitting positions, acquiring a better enhancement than the exfoliated graphene on the conventional flat substrate. We also observe the transition process from space charge flow at low bias to the Fowler-Nordheim theory at high current emission regime. It could enable theoretical and experimental investigation of the typical electron emission properties of the 2D regime. Numerical simulations are also carried out to study the electrical properties of the suspended structure. Further improvement on the fabrication would realize low disorder, high quality, and large-scale suspended graphene devices.

  6. Shewanella oneidensis in a lactate-fed pure-culture and a glucose-fed co-culture with Lactococcus lactis with an electrode as electron acceptor

    Science.gov (United States)

    Bioelectrochemical systems (BESs) employing mixed microbial communities as biocatalysts are gaining importance as potential renewable energy, bioremediation, or biosensing devices. While we are beginning to understand how individual microbial species interact with an electrode as electron donor, li...

  7. Biomedical implementation of liquid metal ink as drawable ECG electrode and skin circuit.

    Directory of Open Access Journals (Sweden)

    Yang Yu

    Full Text Available BACKGROUND: Conventional ways of making bio-electrodes are generally complicated, expensive and unconformable. Here we describe for the first time the method of applying Ga-based liquid metal ink as drawable electrocardiogram (ECG electrodes. Such material owns unique merits in both liquid phase conformability and high electrical conductivity, which provides flexible ways for making electrical circuits on skin surface and a prospective substitution of conventional rigid printed circuit boards (PCBs. METHODS: Fundamental measurements of impedance and polarization voltage of the liquid metal ink were carried out to evaluate its basic electrical properties. Conceptual experiments were performed to draw the alloy as bio-electrodes to acquire ECG signals from both rabbit and human via a wireless module developed on the mobile phone. Further, a typical electrical circuit was drawn in the palm with the ink to demonstrate its potential of implementing more sophisticated skin circuits. RESULTS: With an oxide concentration of 0.34%, the resistivity of the liquid metal ink was measured as 44.1 µΩ·cm with quite low reactance in the form of straight line. Its peak polarization voltage with the physiological saline was detected as -0.73 V. The quality of ECG wave detected from the liquid metal electrodes was found as good as that of conventional electrodes, from both rabbit and human experiments. In addition, the circuit drawn with the liquid metal ink in the palm also runs efficiently. When the loop was switched on, all the light emitting diodes (LEDs were lit and emitted colorful lights. CONCLUSIONS: The liquid metal ink promises unique printable electrical properties as both bio-electrodes and electrical wires. The implemented ECG measurement on biological surface and the successfully run skin circuit demonstrated the conformability and attachment of the liquid metal. The present method is expected to innovate future physiological measurement and

  8. Flexible one-structure arched triboelectric nanogenerator based on common electrode for high efficiency energy harvesting and self-powered motion sensing

    Science.gov (United States)

    Chen, Xi; He, Jian; Song, Linlin; Zhang, Zengxing; Tian, Zhumei; Wen, Tao; Zhai, Cong; Chen, Yi; Cho, Jundong; Chou, Xiujian; Xue, Chenyang

    2018-04-01

    Triboelectric nanogenerators are widely used because of low cost, simple manufacturing process and high output performance. In this work, a flexible one-structure arched triboelectric nanogenerator (FOAT), based on common electrode to combine the single-electrode mode and contact-separation, was designed using silicone rubber, epoxy resin and flexible electrode. The peak-to-peak short circuit current of 18μ A and the peak-to-peak open circuit voltage of 570V can be obtained from the FOAT with the size of 5×7 cm2 under the frequency of 3Hz and the pressure of 300N. The peak-to-peak short circuit current of FOAT is increased by 29% and 80%, and the peak-to-peak open circuit voltage is increased by 33% and 54% compared with single-electrode mode and contact-separation mode, respectively. FOAT realizes the combination of two generation modes, which improves the output performance of triboelectric nanogenerator (TENG). 62 light-emitting-diodes (LEDs) can be completely lit up and 2.2μ F capacitor can be easily charged to 1.2V in 9s. When the FOAT is placed at different parts of the human body, the human motion energy can be harvested and be the sensing signal for motion monitoring sensor. Based on the above characteristics, FOAT exhibits great potential in illumination, power supplies for wearable electronic devices and self-powered motion monitoring sensor via harvesting the energy of human motion.

  9. Electron gun for a multiple beam klystron with magnetic compression of the electron beams

    Science.gov (United States)

    Ives, R. Lawrence; Tran, Hien T; Bui, Thuc; Attarian, Adam; Tallis, William; David, John; Forstall, Virginia; Andujar, Cynthia; Blach, Noah T; Brown, David B; Gadson, Sean E; Kiley, Erin M; Read, Michael

    2013-10-01

    A multi-beam electron gun provides a plurality N of cathode assemblies comprising a cathode, anode, and focus electrode, each cathode assembly having a local cathode axis and also a central cathode point defined by the intersection of the local cathode axis with the emitting surface of the cathode. Each cathode is arranged with its central point positioned in a plane orthogonal to a device central axis, with each cathode central point an equal distance from the device axis and with an included angle of 360/N between each cathode central point. The local axis of each cathode has a cathode divergence angle with respect to the central axis which is set such that the diverging magnetic field from a solenoidal coil is less than 5 degrees with respect to the projection of the local cathode axis onto a cathode reference plane formed by the device axis and the central cathode point, and the local axis of each cathode is also set such that the angle formed between the cathode reference plane and the local cathode axis results in minimum spiraling in the path of the electron beams in a homogenous magnetic field region of the solenoidal field generator.

  10. Assessing the role of secondary electron emission on the characteristics of 6-cavity magnetrons with transparent cathode through particle-in-cell simulations

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Hao; Joshi, Ravi P., E-mail: rjoshi@odu.edu [Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, Virginia 23529-0246 (United States); Prasad, Sarita; Schamiloglu, Edl [Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, New Mexico 87131-0001 (United States); Ludeking, Lars [ATK Mission Systems, 8560 Cinderbed Road, Suite 700, Newington, Virginia 22122 (United States)

    2014-05-21

    Effects of secondary electron emission (SEE) on the performance of a 6-cavity relativistic magnetron with transparent cathodes are probed through particle-in-cell simulations. Appropriate relations for the secondary electron yield have been developed and used. For comparisons, separate simulations have been performed with- and without electron cascading. Simulation results seem to indicate SEE to be detrimental to the power output due to deviations in the starting trajectories of secondary electrons, and the reduced fraction with synchronized rotational velocity. A higher reduction in output power is predicted with electron cascading, though mode competition was not seen at the 0.65 T field. A possible solution to mitigating SEE in magnetrons for high power microwave applications would be to alter the surface properties of emitting electrodes through irradiation, which can lead to graphitic film formation.

  11. Electronic structure of low work function electrodes modified by C{sub 16}H{sub 33}SH

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyunbok [Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA, 01003 (United States); Cho, Sang Wan, E-mail: dio8027@yonsei.ac.kr [Department of Physics, Yonsei University, 1 Yonseidae-gil, Wonju-si, Gangwon-do, 220-710 (Korea, Republic of); Park, Sang Han; Cho, Mann-Ho; Yi, Yeonjin [Institute of Physics and Applied Physics, Yonsei University, 50 Yonsei-ro, Seodaemoon-Gu, Seoul, 120-749 (Korea, Republic of)

    2014-10-15

    Highlights: • The electronic structure of pentacene/C{sub 16}H{sub 33}SH/Au is investigated. • The work function of Au is significantly decreased with C{sub 16}H{sub 33}SH treatment. • The reduced work function is attributed to its permanent dipole moment. - Abstract: Organic and printed electronics technologies require electrodes with low work functions to facilitate the transport of electrons in and out of various optoelectronic devices. We show that the surface modifier of 1-hexadecanethiol reduces the work function of conductors using in situ ultraviolet photoemission spectroscopy, and we combine experimental and theoretical methods to investigate the origin of the work function changes. The interfacial electronic structures of pentacene/1-hexadecanethiol/Au were investigated via in situ ultraviolet photoemission spectroscopy and X-ray photoemission spectroscopy in order to understand the change in the carrier injection barrier and chemical reactions upon surface modification. Theoretical calculations using density functional theory were also performed to understand the charge distribution of 1-hexadecanethiol, which affects the reduction of the work function. The 1-hexadecanethiol surface modifier is processed in air from solution, providing an appealing alternative to chemically-reactive low-work-function metals.

  12. Facile in-situ fabrication of graphene/riboflavin electrode for microbial fuel cells

    International Nuclear Information System (INIS)

    Wang, Qian-Qian; Wu, Xia-Yuan; Yu, Yang-Yang; Sun, De-Zhen; Jia, Hong-Hua; Yong, Yang-Chun

    2017-01-01

    A novel graphene/riboflavin (RF) composite electrode was developed and its potential application as microbial fuel cell (MFC) anode was demonstrated. Graphene layers were first grown on the surface of graphite electrode by a one-step in-situ electrochemical exfoliation approach. Then, noncovalent functionalization of the graphene layers with RF was achieved by a simple spontaneous adsorption process. The graphene/RF electrode was extensively characterized by transmission electron microscopy, Fourier transform infrared spectroscopy, Raman analysis, and cyclic voltammetry analysis. Remarkably, when applied as the anode of Shewanella oneidensis MR-1 inoculated MFCs, the graphene/RF electrode significantly decreased charge transfer over-potential and enhanced cell attachment, which in turn delivered about 5.3- and 2.5-fold higher power output, when compared with that produced by the bare graphite paper electrode and graphene electrode, respectively. These results demonstrated that electron shuttle immobilization on the electrode surface could be a promising and practical strategy for improving the performance of microbial electrochemical systems.

  13. Electrochemical oxidation of nitrite on nanodiamond powder electrode

    Energy Technology Data Exchange (ETDEWEB)

    Chen, L.H.; Zang, J.B.; Wang, Y.H.; Bian, L.Y. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China)

    2008-03-10

    Nanodiamond (ND) powder electrodes were fabricated and the electrochemical properties were investigated in the solution containing nitrite in this article. This electrode exhibits substantial catalytic ability toward the oxidation of nitrite anions. The electrochemical oxidation mechanism of nitrite on the ND powder electrode is discussed. The oxidation of NaNO{sub 2} is a two-electron transfer process. The electrode reaction rate constant k is estimated to be 2.013 x 10{sup -4} cm/s and (1 - {alpha})n{sub {alpha}} is 0.1643. The peak current increases linearly with the rising of the concentration of NaNO{sub 2}. (author)

  14. Carbon Nanotube Web with Carboxylated Polythiophene "Assist" for High-Performance Battery Electrodes.

    Science.gov (United States)

    Kwon, Yo Han; Park, Jung Jin; Housel, Lisa M; Minnici, Krysten; Zhang, Guoyan; Lee, Sujin R; Lee, Seung Woo; Chen, Zhongming; Noda, Suguru; Takeuchi, Esther S; Takeuchi, Kenneth J; Marschilok, Amy C; Reichmanis, Elsa

    2018-04-24

    A carbon nanotube (CNT) web electrode comprising magnetite spheres and few-walled carbon nanotubes (FWNTs) linked by the carboxylated conjugated polymer, poly[3-(potassium-4-butanoate) thiophene] (PPBT), was designed to demonstrate benefits derived from the rational consideration of electron/ion transport coupled with the surface chemistry of the electrode materials components. To maximize transport properties, the approach introduces monodispersed spherical Fe 3 O 4 (sFe 3 O 4 ) for uniform Li + diffusion and a FWNT web electrode frame that affords characteristics of long-ranged electronic pathways and porous networks. The sFe 3 O 4 particles were used as a model high-capacity energy active material, owing to their well-defined chemistry with surface hydroxyl (-OH) functionalities that provide for facile detection of molecular interactions. PPBT, having a π-conjugated backbone and alkyl side chains substituted with carboxylate moieties, interacted with the FWNT π-electron-rich and hydroxylated sFe 3 O 4 surfaces, which enabled the formation of effective electrical bridges between the respective components, contributing to efficient electron transport and electrode stability. To further induce interactions between PPBT and the metal hydroxide surface, polyethylene glycol was coated onto the sFe 3 O 4 particles, allowing for facile materials dispersion and connectivity. Additionally, the introduction of carbon particles into the web electrode minimized sFe 3 O 4 aggregation and afforded more porous FWNT networks. As a consequence, the design of composite electrodes with rigorous consideration of specific molecular interactions induced by the surface chemistries favorably influenced electrochemical kinetics and electrode resistance, which afforded high-performance electrodes for battery applications.

  15. Defining the origins of electron transfer at screen-printed graphene-like and graphite electrodes: MoO2 nanowire fabrication on edge plane sites reveals electrochemical insights.

    Science.gov (United States)

    Rowley-Neale, Samuel J; Brownson, Dale A C; Banks, Craig E

    2016-08-18

    Molybdenum (di)oxide (MoO2) nanowires are fabricated onto graphene-like and graphite screen-printed electrodes (SPEs) for the first time, revealing crucial insights into the electrochemical properties of carbon/graphitic based materials. Distinctive patterns observed in the electrochemical process of nanowire decoration show that electron transfer occurs predominantly on edge plane sites when utilising SPEs fabricated/comprised of graphitic materials. Nanowire fabrication along the edge plane sites (and on edge plane like-sites/defects) of graphene/graphite is confirmed with Cyclic Voltammetry, Scanning Electron Microscopy (SEM) and Raman Spectroscopy. Comparison of the heterogeneous electron transfer (HET) rate constants (k°) at unmodified and nanowire coated SPEs show a reduction in the electrochemical reactivity of SPEs when the edge plane sites are effectively blocked/coated with MoO2. Throughout the process, the basal plane sites of the graphene/graphite electrodes remain relatively uncovered; except when the available edge plane sites have been utilised, in which case MoO2 deposition grows from the edge sites covering the entire surface of the electrode. This work clearly illustrates the distinct electron transfer properties of edge and basal plane sites on graphitic materials, indicating favourable electrochemical reactivity at the edge planes in contrast to limited reactivity at the basal plane sites. In addition to providing fundamental insights into the electron transfer properties of graphite and graphene-like SPEs, the reported simple, scalable, and cost effective formation of unique and intriguing MoO2 nanowires realised herein is of significant interest for use in both academic and commercial applications.

  16. Investigation of electro-optical properties for electrochemical luminescence device with a new electrode structure

    Science.gov (United States)

    Ok, Jung-Woo; Pooyodying, Pattarapon; Anuntahirunrat, Jirapat; Sung, Youl-Moon

    2018-04-01

    In this paper, we investigate electrochemical luminescent (ECL) device with a new structure and the ECL cell device with proposed electrode configuration works reliably at AC voltage. In particular, the conventional ECL cell has counter electrodes in which a cathode and an anode are opposed to each other, whereas the proposed structure has parallel electrodes in which a cathode and an anode are arranged on a single substrate. The proposed electrode configuration has a structural feature that electric short-circuiting is less likely to occur during bending than the conventional electrode configuration. The electro-optical characteristics of the new electrode configuration such as the current density, the light emission intensity, and the time evolution of the emission are investigated. The proposed ECL device exhibited higher light emitting efficiency than the conventional structure. Especially, at AC operation mode, the new structure showed the distinctive luminescence characteristic which is combined the first luminescence near the surface of electrode with the delayed second luminescence near the center of between electrodes. It was closely related to the behavior of luminescent particles. The proposed the ECL cell structure is expected to be utilized as a flexible display device by taking advantage of its characteristics and practicality.

  17. Magnetic field enhanced electroluminescence in organic light emitting diodes based on electron donor-acceptor exciplex blends

    Science.gov (United States)

    Baniya, Sangita; Basel, Tek; Sun, Dali; McLaughlin, Ryan; Vardeny, Zeev Valy

    2016-03-01

    A useful process for light harvesting from injected electron-hole pairs in organic light emitting diodes (OLED) is the transfer from triplet excitons (T) to singlet excitons (S) via reverse intersystem crossing (RISC). This process adds a delayed electro-luminescence (EL) emission component that is known as thermally activated delayed fluorescence (TADF). We have studied electron donor (D)/acceptor(A) blends that form an exciplex manifold in which the energy difference, ΔEST between the lowest singlet (S1) and triplet (T1) levels is relatively small (exciplex blend is enhanced up to 40% by applying a relatively weak magnetic field of 50 mT at ambient. Moreover the MEL response is activated with activation energy similar that of the EL emission. This suggests that the large magneto-EL originates from an additional spin-mixing channel between singlet and triplet states of the generated exciplexes, which is due to TADF. We will report on the MEL dependencies on the temperature, bias voltage, and D-A materials for optimum OLED performance. Supported by SAMSUNG Global Research Outreach (GRO) program, and also by the NSF-Material Science & Engineering Center (MRSEC) program at the University of Utah (DMR-1121252).

  18. Nanofabrication strategies for advanced electrode materials

    Directory of Open Access Journals (Sweden)

    Chen Kunfeng

    2017-09-01

    Full Text Available The development of advanced electrode materials for high-performance energy storage devices becomes more and more important for growing demand of portable electronics and electrical vehicles. To speed up this process, rapid screening of exceptional materials among various morphologies, structures and sizes of materials is urgently needed. Benefitting from the advance of nanotechnology, tremendous efforts have been devoted to the development of various nanofabrication strategies for advanced electrode materials. This review focuses on the analysis of novel nanofabrication strategies and progress in the field of fast screening advanced electrode materials. The basic design principles for chemical reaction, crystallization, electrochemical reaction to control the composition and nanostructure of final electrodes are reviewed. Novel fast nanofabrication strategies, such as burning, electrochemical exfoliation, and their basic principles are also summarized. More importantly, colloid system served as one up-front design can skip over the materials synthesis, accelerating the screening rate of highperformance electrode. This work encourages us to create innovative design ideas for rapid screening high-active electrode materials for applications in energy-related fields and beyond.

  19. Study on electroactive and electrocatalytic surfaces of single walled carbon nanotube-modified electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Salinas-Torres, David [Departamento de Quimica Fisica and Instituto Universitario de Materiales de Alicante, Universidad de Alicante, Apdo. de Correos 99, E-03080 Alicante (Spain); Huerta, Francisco [Departamento de Ingenieria Textil y Papelera, Universidad Politecnica de Valencia, Plaza Ferrandiz y Carbonell, 1. E-03801 Alcoy (Spain); Montilla, Francisco, E-mail: francisco.montilla@ua.e [Departamento de Quimica Fisica and Instituto Universitario de Materiales de Alicante, Universidad de Alicante, Apdo. de Correos 99, E-03080 Alicante (Spain); Morallon, Emilia [Departamento de Quimica Fisica and Instituto Universitario de Materiales de Alicante, Universidad de Alicante, Apdo. de Correos 99, E-03080 Alicante (Spain)

    2011-02-01

    An investigation of the electrocatalysis of single-walled carbon nanotubes modified electrodes has been performed in this work. Nanotube-modified electrodes present a surface area much higher than the bare glassy carbon surfaces as determined by capacitance measurements. Several redox probes were selected for checking the reactivity of specific sites at the carbon nanotube surface. The presence of carbon nanotubes on the electrode improves the kinetics for all the reactions studied compared with the bare glassy carbon electrode with variations of the heterogeneous electron transfer rate constant up to 5 orders of magnitude. The most important effects are observed for the benzoquinone/hydroquinone and ferrocene/ferricinium redox couples, which show a remarkable improvement of their electron transfer kinetics on SWCNT-modified electrodes, probably due to strong {pi}-{pi} interaction between the organic molecules and the walls of the carbon nanotubes. For many of the reactions studied, less than 1% of the nanotube-modified electrode surface is transferring charge to species in solution. This result suggests that only nanotube tips are active sites for the electron transfer in such cases. On the contrary, the electroactive surface for the reactions of ferrocene and quinone is higher indicating that the electron transfer is produced also from the nanotube walls.

  20. Study on electroactive and electrocatalytic surfaces of single walled carbon nanotube-modified electrodes

    International Nuclear Information System (INIS)

    Salinas-Torres, David; Huerta, Francisco; Montilla, Francisco; Morallon, Emilia

    2011-01-01

    An investigation of the electrocatalysis of single-walled carbon nanotubes modified electrodes has been performed in this work. Nanotube-modified electrodes present a surface area much higher than the bare glassy carbon surfaces as determined by capacitance measurements. Several redox probes were selected for checking the reactivity of specific sites at the carbon nanotube surface. The presence of carbon nanotubes on the electrode improves the kinetics for all the reactions studied compared with the bare glassy carbon electrode with variations of the heterogeneous electron transfer rate constant up to 5 orders of magnitude. The most important effects are observed for the benzoquinone/hydroquinone and ferrocene/ferricinium redox couples, which show a remarkable improvement of their electron transfer kinetics on SWCNT-modified electrodes, probably due to strong π-π interaction between the organic molecules and the walls of the carbon nanotubes. For many of the reactions studied, less than 1% of the nanotube-modified electrode surface is transferring charge to species in solution. This result suggests that only nanotube tips are active sites for the electron transfer in such cases. On the contrary, the electroactive surface for the reactions of ferrocene and quinone is higher indicating that the electron transfer is produced also from the nanotube walls.

  1. Recent Advances in Polymeric Materials Used as Electron Mediators and Immobilizing Matrices in Developing Enzyme Electrodes

    Directory of Open Access Journals (Sweden)

    Mambo Moyo

    2012-01-01

    Full Text Available Different classes of polymeric materials such as nanomaterials, sol-gel materials, conducting polymers, functional polymers and biomaterials have been used in the design of sensors and biosensors. Various methods have been used, for example from direct adsorption, covalent bonding, crossing-linking with glutaraldehyde on composites to mixing the enzymes or use of functionalized beads for the design of sensors and biosensors using these polymeric materials in recent years. It is widely acknowledged that analytical sensing at electrodes modified with polymeric materials results in low detection limits, high sensitivities, lower applied potential, good stability, efficient electron transfer and easier immobilization of enzymes on electrodes such that sensing and biosensing of environmental pollutants is made easier. However, there are a number of challenges to be addressed in order to fulfill the applications of polymeric based polymers such as cost and shortening the long laboratory synthetic pathways involved in sensor preparation. Furthermore, the toxicological effects on flora and fauna of some of these polymeric materials have not been well studied. Given these disadvantages, efforts are now geared towards introducing low cost biomaterials that can serve as alternatives for the development of novel electrochemical sensors and biosensors. This review highlights recent contributions in the development of the electrochemical sensors and biosensors based on different polymeric material. The synergistic action of some of these polymeric materials and nanocomposites imposed when combined on electrode during sensing is discussed.

  2. Design, commissioning and operational results of wide dynamic range BPM switched electrode electronics

    International Nuclear Information System (INIS)

    Powers, T.; Doolittle, L.; Ursic, R.; Wagner, J.

    1997-01-01

    The Continuous Electron Beam Accelerator Facility (CEBAF) is a high-intensity, continuous-wave electron accelerator for nuclear physics. Total acceleration of 4 GeV is achieved by recirculating the beam through two 400-MeV linacs. The operating currents over which the linac beam position monitoring system must meet specifications are 1 μA to 1000 μA. A system was developed in 1994 and installed in the spring of 1995 that switches four electrode signals at 120 kHz through two signal-conditioning chains that use computer-controlled variable gain amplifiers with a dynamic range greater than 80 dB. The system timing was tuned to the machine recirculation period of 4.2 μs so that components of the multipass beam could be resolved in the linacs. Other features of this VME-based system include long-term stability and high-speed data acquisition, which make it suitable for use as both a time-domain diagnostic tool and as part of a variety of beam feedback systems. The computer interface has enough control over the hardware to make a thorough self-calibration and verification-of-operation routine possible. copyright 1997 American Institute of Physics

  3. Multi-component intermetallic electrodes for lithium batteries

    Science.gov (United States)

    Thackeray, Michael M; Trahey, Lynn; Vaughey, John T

    2015-03-10

    Multi-component intermetallic negative electrodes prepared by electrochemical deposition for non-aqueous lithium cells and batteries are disclosed. More specifically, the invention relates to composite intermetallic electrodes comprising two or more compounds containing metallic or metaloid elements, at least one element of which can react with lithium to form binary, ternary, quaternary or higher order compounds, these compounds being in combination with one or more other metals that are essentially inactive toward lithium and act predominantly, but not necessarily exclusively, to the electronic conductivity of, and as current collection agent for, the electrode. The invention relates more specifically to negative electrode materials that provide an operating potential between 0.05 and 2.0 V vs. metallic lithium.

  4. Electrode Conduction Processes Segmented Electrode-Insulator Ratio Effects in MHD Power Generation Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Pain, H. J.; Fearn, D. G.; Distefano, E. [Imperial College. London (United Kingdom)

    1966-10-15

    (a) Electrode conduction processes have been investigated using a plasma produced in an electromagnetic shock tube operating with argon at 70 {mu}mHg pressure. Complete voltage-current characteristics were obtained by the variation of load and applied voltage. These indicated the existence of two conduction regimes with a complex transition region. In the first regime the current, controlled by ion mobility, rose linearly with voltage to saturate between 10 mA and 1 A depending on conditions. Electrode contamination was significant. The second regime involved large currents controlled by electron mobility and emission from the cathode. The current again increased linearly with voltage and reached 200 A. Observation of induced voltages in transverse magnetic fields and of plasma deceleration in non-uniform fields showed that in the electromagnetic shock tube the plasma was heated predominantly by the driver discharge. Its conductivity was calculated using properties measured by a Langmuir double probe. In both regimes the plasma conductivity was also found from the gradient of the voltage current characteristics using experimental electric field fringing factors and the experimental values were compared with theory. (b) Larger-scale experiments used a combustion-driven shock tube where argon plasma flow, magnetic field and induced current flow were mutually orthogonal. The supersonic flow velocity and thermodynamic parameters of the plasma were accurately known. The electrode channel consisted of a segmented system of 12 electrode pairs with an electrode insulator ratio ranging from 1 to 21, with electrode plus insulator length remaining constant, and with maximum Hall parameter values of unity. Different electrode load combinations (Faraday and Hall generators) have been studied in measuring the power generated and the flow of longitudinal currents between adjacent electrodes. A maximum power of 0,8 MW was obtained, the power output decreasing inversely with the

  5. Electrode Conduction Processes Segmented Electrode-Insulator Ratio Effects in MHD Power Generation Experiments

    International Nuclear Information System (INIS)

    Pain, H.J.; Fearn, D.G.; Distefano, E.

    1966-01-01

    (a) Electrode conduction processes have been investigated using a plasma produced in an electromagnetic shock tube operating with argon at 70 μmHg pressure. Complete voltage-current characteristics were obtained by the variation of load and applied voltage. These indicated the existence of two conduction regimes with a complex transition region. In the first regime the current, controlled by ion mobility, rose linearly with voltage to saturate between 10 mA and 1 A depending on conditions. Electrode contamination was significant. The second regime involved large currents controlled by electron mobility and emission from the cathode. The current again increased linearly with voltage and reached 200 A. Observation of induced voltages in transverse magnetic fields and of plasma deceleration in non-uniform fields showed that in the electromagnetic shock tube the plasma was heated predominantly by the driver discharge. Its conductivity was calculated using properties measured by a Langmuir double probe. In both regimes the plasma conductivity was also found from the gradient of the voltage current characteristics using experimental electric field fringing factors and the experimental values were compared with theory. (b) Larger-scale experiments used a combustion-driven shock tube where argon plasma flow, magnetic field and induced current flow were mutually orthogonal. The supersonic flow velocity and thermodynamic parameters of the plasma were accurately known. The electrode channel consisted of a segmented system of 12 electrode pairs with an electrode insulator ratio ranging from 1 to 21, with electrode plus insulator length remaining constant, and with maximum Hall parameter values of unity. Different electrode load combinations (Faraday and Hall generators) have been studied in measuring the power generated and the flow of longitudinal currents between adjacent electrodes. A maximum power of 0,8 MW was obtained, the power output decreasing inversely with the

  6. Influence of ITO patterning on reliability of organic light emitting devices

    International Nuclear Information System (INIS)

    Wang, Zhaokui; Naka, Shigeki; Okada, Hiroyuki

    2009-01-01

    Indium tin oxide (ITO) films are widely used for a transparent electrode of organic light emitting devices (OLEDs) because of its excellent conductivity and transparency. Two types of ITO substrates with different surface roughness were selected to use as anode of OLEDs. In addition, two types of etching process of ITO substrate, particularly the etching time, were also carried out. It was found that the surface roughness and/or the etching process of ITO substrate strongly influenced on an edge of ITO surface, further affected the operating characteristics and reliability of devices.

  7. Opto-electronic properties and light-emitting device application of widegap layered oxychalcogenides: LaCuOCh (Ch=chalcogen) and La2CdO2Se2

    International Nuclear Information System (INIS)

    Hiramatsu, Hidenori; Hirano, Masahiro; Kamioka, Hayato; Ueda, Kazushige; Ohta, Hiromichi; Kamiya, Toshio; Hosono, Hideo

    2006-01-01

    Electronic and optical properties of widegap oxychalcogenides, LaCuOCh (Ch chalcogen) and La 2 CdO 2 Se 2 , are reviewed with a focus on those relevant to their layered crystal structures, including high hole mobility, degenerate p-type conduction, room temperature exciton, and large third order optical nonlinearity. In particular, the widegap p-type metallic conduction was realized in Mg-doped LaCuOSe: the first demonstration among any class of widegap materials including GaN:Mg. Furthermore, we demonstrate the room temperature operation of a blue light-emitting diode using a pn hetero-junction composed of a LaCuOSe epilayer and an n-type amorphous InGaZn 5 O 8 . Those results strongly suggest that a series of the layered oxychalcogenides are applicable to the light-emitting layers in opto-electronic devices that operate in the ultraviolet-blue region as well as to transparent p-type conductors. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  8. Efficient Flexible Organic/Inorganic Hybrid Perovskite Light-Emitting Diodes Based on Graphene Anode.

    Science.gov (United States)

    Seo, Hong-Kyu; Kim, Hobeom; Lee, Jaeho; Park, Min-Ho; Jeong, Su-Hun; Kim, Young-Hoon; Kwon, Sung-Joo; Han, Tae-Hee; Yoo, Seunghyup; Lee, Tae-Woo

    2017-03-01

    Highly efficient organic/inorganic hybrid perovskite light-emitting diodes (PeLEDs) based on graphene anode are developed for the first time. Chemically inert graphene avoids quenching of excitons by diffused metal atom species from indium tin oxide. The flexible PeLEDs with graphene anode on plastic substrate show good bending stability; they provide an alternative and reliable flexible electrode for highly efficient flexible PeLEDs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Bifunctional electrodes for unitised regenerative fuel cells

    International Nuclear Information System (INIS)

    Altmann, Sebastian; Kaz, Till; Friedrich, Kaspar Andreas

    2011-01-01

    Research highlights: → Different oxygen electrode configurations for the operation in a unitised reversible fuel cell were tested. → Polarisation curves and EIS measurements were recorded. → The mixture of catalysts performs best for the present stage of electrode development. → Potential improvements for the different compositions are discussed. - Abstract: The effects of different configurations and compositions of platinum and iridium oxide electrodes for the oxygen reaction of unitised regenerative fuel cells (URFC) are reported. Bifunctional oxygen electrodes are important for URFC development because favourable properties for the fuel cell and the electrolysis modes must be combined into a single electrode. The bifunctional electrodes were studied under different combinations of catalyst mixtures, multilayer arrangements and segmented configurations with single catalyst areas. Distinct electrochemical behaviour was observed for both modes and can be explained on the basis of impedance spectroscopy. The mixture of both catalysts performs best for the present stage of electrode development. Also, the multilayer electrodes yielded good results with the potential for optimisation. The influence of ionic and electronic resistances on the relative performance is demonstrated. However, penalties due to cross currents in the heterogeneous electrodes were identified and explained by comparing the performance curves with electrodes composed of a single catalyst. Potential improvements for the different compositions are discussed.

  10. Colour tuneable light-emitting transistor

    Energy Technology Data Exchange (ETDEWEB)

    Feldmeier, Eva J.; Melzer, Christian; Seggern, Heinz von [Electronic Materials Department, Institute of Materials Science, Technische Universitaet Darmstadt (Germany)

    2010-07-01

    In recent years the interest in ambipolar organic light-emitting field-effect transistors has increased steadily as the devices combine switching behaviour of transistors with light emission. Usually, small molecules and polymers with a band gap in the visible spectral range serve as semiconducting materials. Mandatory remain balanced injection and transport properties for both charge carrier types to provide full control of the spatial position of the recombination zone of electrons and holes in the transistor channel via the applied voltages. As will be presented here, the spatial control of the recombination zone opens new possibilities towards light-emitting devices with colour tuneable emission. In our contribution an organic light-emitting field-effect transistors is presented whose emission colour can be changed by the applied voltages. The organic top-contact field-effect transistor is based on a parallel layer stack of acenes serving as organic transport and emission layers. The transistor displays ambipolar characteristics with a narrow recombination zone within the transistor channel. During operation the recombination zone can be moved by a proper change in the drain and gate bias from one organic semiconductor layer to another one inducing a change in the emission colour. In the presented example the emission maxima can be switched from 530 nm to 580 nm.

  11. Improvement in Electrode Performance of Novel SWCNT Loaded Three-Dimensional Porous RVC Composite Electrodes by Electrochemical Deposition Method

    Science.gov (United States)

    Almoigli, Mohammed; Meriey, Al Yahya; Alharbi, Khalid N.

    2018-01-01

    The three-dimensional (3D) composite electrodes were prepared by depositing different amounts of acid-functionalized single-walled carbon nanotubes (a-SWCNTs) on porous reticulated vitreous carbon (RVC) through the electrochemical deposition method. The SWCNT was functionalized by the reflux method in nitric acid and was proven by Raman and visible spectra. The optimum time for sonication to disperse the functionalized SWCNT (a-SWCNT) in dimethyl formamide (DMF) well was determined by UV spectra. The average pore size of RVC electrodes was calculated from scanning electron microscopy (SEM) images. Moreover, the surface morphology of composite electrodes was also examined by SEM study. All 3D electrodes were evaluated for their electrochemical properties by cyclic voltammetry. The result showed that the value of specific capacitance of the electrode increases with the increase in the amount of a-SWCNT in geometric volume. However, the value of specific capacitance per gram decreases with the increase in scan rate as well as the amount of a-SWCNT. The stability of the electrodes was also tested. This revealed that all the electrodes were stable; however, lower a-SWCNT-loaded electrodes had excellent cyclic stability. These results suggest that the a-SWCNT-coated RVC electrodes have promise as an effective technology for desalination. PMID:29301258

  12. Comparative study of graphene and its derivative materials as an electrode in OLEDs

    Science.gov (United States)

    Srivastava, Anshika; Kumar, Brijesh

    2018-04-01

    In current scenario, the organic materials have given a revolutionary evolution in the electronics industry. As, the organic light emitting diodes (OLEDs) have almost replaced the conventional technologies due to the use of organic based materials. However, the next generations OLEDs are intensively desired nowadays for high definition display technology. There are various concern involved in the successful design of OLEDs. Electrodes are one of the electrical conductors, which play a vital role in the construction of OLEDs. The performance of OLED is majorly affected by the material used for electrodes. Due to the requirement of transparent, flexible and inexpensive anodes in bottom emissive OLEDs, ITO was replaced by graphene material. Graphene is a single layer 2-dimensional transparent carbon allotrope which showed prodigious potential to escalate the device performance. Although graphene demonstrated impressive characteristics in various applications, it showed unfavorable work function for many other devices. Thus, derivative materials of graphene such as graphene oxide, graphane and β - graphdiyne were synthesized by several researchers. By comparing graphene and its derivatives as an anode of OLEDs, it has been found that graphene oxide showed the preeminent performance among all. In this paper, all the comparisons are investigated by using a standard device constructed by piling layers of anode/ m_MTDATA/ NPB/ Alq3: QAD/ Alq3/ cathode in TCAD ATLAS device simulator.

  13. Interfacial electron transfer of glucose oxidase on poly(glutamic acid)-modified glassy carbon electrode and glucose sensing.

    Science.gov (United States)

    Zhou, Xuechou; Tan, Bingcan; Zheng, Xinyu; Kong, Dexian; Li, Qinglu

    2015-11-15

    The interfacial electron transfer of glucose oxidase (GOx) on a poly(glutamic acid)-modified glassy carbon electrode (PGA/GCE) was investigated. The redox peaks measured for GOx and flavin adenine dinucleotide (FAD) are similar, and the anodic peak of GOx does not increase in the presence of glucose in a mediator-free solution. These indicate that the electroactivity of GOx is not the direct electron transfer (DET) between GOx and PGA/GCE and that the observed electroactivity of GOx is ascribed to free FAD that is released from GOx. However, efficient electron transfer occurred if an appropriate mediator was placed in solution, suggesting that GOx is active. The PGA/GCE-based biosensor showed wide linear response in the range of 0.5-5.5 mM with a low detection limit of 0.12 mM and high sensitivity and selectivity for measuring glucose. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Spin resolved electronic transport through N@C20 fullerene molecule between Au electrodes: A first principles study

    Science.gov (United States)

    Caliskan, Serkan

    2018-05-01

    Using first principles study, through Density Functional Theory combined with Non Equilibrium Green's Function Formalism, electronic properties of endohedral N@C20 fullerene molecule joining Au electrodes (Au-N@C20) was addressed in the presence of spin property. The electronic transport behavior across the Au-N@C20 molecular junction was investigated by spin resolved transmission, density of states, molecular orbitals, differential conductance and current-voltage (I-V) characteristics. Spin asymmetric variation was clearly observed in the results due to single N atom encapsulated in the C20 fullerene cage, where the N atom played an essential role in the electronic behavior of Au-N@C20. This N@C20 based molecular bridge, exhibiting a spin dependent I-V variation, revealed a metallic behavior within the bias range from -1 V to 1 V. The induced magnetic moment, spin polarization and other relevant quantities associated with the spin resolved transport were elucidated.

  15. Monte Carlo random walk simulation of electron transport in confined porous TiO{sub 2} as a promising candidate for photo-electrode of nano-crystalline solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Javadi, M.; Abdi, Y., E-mail: y.abdi@ut.ac.ir [Nanophysics Research Laboratory, Department of Physics, University of Tehran, North Kargar, Tehran (Iran, Islamic Republic of)

    2015-08-14

    Monte Carlo continuous time random walk simulation is used to study the effects of confinement on electron transport, in porous TiO{sub 2}. In this work, we have introduced a columnar structure instead of the thick layer of porous TiO{sub 2} used as anode in conventional dye solar cells. Our simulation results show that electron diffusion coefficient in the proposed columnar structure is significantly higher than the diffusion coefficient in the conventional structure. It is shown that electron diffusion in the columnar structure depends both on the cross section area of the columns and the porosity of the structure. Also, we demonstrate that such enhanced electron diffusion can be realized in the columnar photo-electrodes with a cross sectional area of ∼1 μm{sup 2} and porosity of 55%, by a simple and low cost fabrication process. Our results open up a promising approach to achieve solar cells with higher efficiencies by engineering the photo-electrode structure.

  16. Alternative transparent electrodes for organic light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Tomita, Yuto

    2008-07-01

    In this work, two types of alternative transparent electrodes, ZnO:Al and PEDOT, were studied for OLEDs. The ZnO:Al films were fabricated with a conventional DC magnetron sputtering. Optimised ZnO:Al with low resistivity was obtained by a high carrier concentration supplied mainly from the oxygen vacancies and Al impurity, and a high mobility by the improvement of crystallinity. The film thickness of the ZnO:Al was altered to achieve good optoelectronic characteristics. With a thickness of approximately 190nm, it reached a low sheet resistance of 22 {proportional_to} 60 {omega}/sq and an average transmittance in visible range of >90%. Moreover, important parameters for the OLED application such as very smooth surface roughness and low refractive index were simultaneously obtained. The ZnO:Al films were structured for OLEDs use with a standard photolithography process. As another candidate, PEDOT:PSS Baytron {sup registered} PH510 with 5 wt% of DMSO was investigated. The 100 nm thick PEDOT films were prepared with the spin-coating method, obtaining a high transmittance of 92.7% in the visible range. The high resistivity (200 {omega}/sq) was overcome using a highly conductive metal grid, which resulted in similar current injection to ITO. The OLEDs on the PEDOT anode showed a high rectification ratio even without a cleaning process prior to the OLED deposition. White OLEDs on the 5 x 5 cm{sup 2} PEDOT substrate achieved more than 10 lm/W of power efficiency using an optical scattering foil. Finally, 10 x 10 cm{sup 2} PEDOT substrates were prepared for OLEDs. First results showed low luminance homogeneity and low efficiencies. A new type of layout was given, which was designed in terms of luminance homogeneity and efficiency using the simulation. (orig.)

  17. Probing Electrode Heterogeneity Using Fourier-Transformed Alternating Current Voltammetry: Application to a Dual-Electrode Configuration.

    Science.gov (United States)

    Tan, Sze-Yin; Unwin, Patrick R; Macpherson, Julie V; Zhang, Jie; Bond, Alan M

    2017-03-07

    Quantitative studies of electron transfer processes at electrode/electrolyte interfaces, originally developed for homogeneous liquid mercury or metallic electrodes, are difficult to adapt to the spatially heterogeneous nanostructured electrode materials that are now commonly used in modern electrochemistry. In this study, the impact of surface heterogeneity on Fourier-transformed alternating current voltammetry (FTACV) has been investigated theoretically under the simplest possible conditions where no overlap of diffusion layers occurs and where numerical simulations based on a 1D diffusion model are sufficient to describe the mass transport problem. Experimental data that meet these requirements can be obtained with the aqueous [Ru(NH 3 ) 6 ] 3+/2+ redox process at a dual-electrode system comprised of electrically coupled but well-separated glassy carbon (GC) and boron-doped diamond (BDD) electrodes. Simulated and experimental FTACV data obtained with this electrode configuration, and where distinctly different heterogeneous charge transfer rate constants (k 0 values) apply at the individual GC and BDD electrode surfaces, are in excellent agreement. Principally, because of the far greater dependence of the AC current magnitude on k 0 , it is straightforward with the FTACV method to resolve electrochemical heterogeneities that are ∼1-2 orders of magnitude apart, as applies in the [Ru(NH 3 ) 6 ] 3+/2+ dual-electrode configuration experiments, without prior knowledge of the individual kinetic parameters (k 0 1 and k 0 2 ) or the electrode size ratio (θ 1 :θ 2 ). In direct current voltammetry, a difference in k 0 of >3 orders of magnitude is required to make this distinction.

  18. Study of Dye-Sensitized Solar Cells by Scanning Electron Micrograph Observation and Thickness Optimization of Porous TiO2 Electrodes

    Directory of Open Access Journals (Sweden)

    Seigo Ito

    2009-01-01

    Full Text Available In order to improve the photoenergy conversion efficiency of dye-sensitized solar cells (DSCs, it is important to optimize their porous TiO2 electrodes. This paper examines the surface and cross-sectional views of the electrodes using scanning electron micrography. Two types of samples for cross-sectional viewing were prepared by mechanically breaking the substrate and by using an Ar-ion etching beam. The former displays the surface of the TiO2 particles and the latter shows the cross-section of the TiO2 particles. We found interesting surface and cross-sectional structures in the scattering layer containing the 400 nm diameter particles, which have an angular and horned shape. The influence of TiO2 particle size and the thickness of the nanocrystalline-TiO2 electrode in DSCs using four kinds of sensitizing dyes (D149, K19, N719 and Z907 and two kinds of electrolytes (acetonitrile-based and ionic-liquid electrolytes are discussed in regards to conversion efficiency, which this paper aims to optimize.

  19. Mechano-chemical degradation of flexible electrodes for optoelectronic device applications

    International Nuclear Information System (INIS)

    Bejitual, T.S.; Morris, N.J.; Cronin, S.D.; Cairns, D.R.; Sierros, K.A.

    2013-01-01

    The electrical, optical, and structural integrity of flexible transparent electrodes is of paramount importance in the design and fabrication of optoelectronic devices such as organic light emitting diodes, liquid crystal displays, touch panels, solar cells, and solid-state lighting. The electrodes may corrode due to acid-containing pressure sensitive adhesives present in the device stacks. In addition, structural failure may occur due to external applied loading. The combined action and further accumulation of both repeated mechanical loading and corrosion can aggravate the loss of functionality of the electrodes. In this study we investigate, using the design of experimental methods, the effects of corrosion, applied mechanical strain, film thickness, and number of bending cycles on the electrical and structural integrity of indium tin oxide (ITO) and carbon nanotube (CNT) films both coated on polyethylene terephthalate (PET) substrates. In situ electrical resistance measurements suggest that fatigue-corrosion is found to be the most critical failure mode for the ITO-based coatings. For example, the change in ITO electrical resistance increase under fatigue-corrosion (1% strain, 150,000 cycles) is 5.8 times higher than that of fatigue mode alone. On the other hand, a minimum change in electrical resistance of the CNT-based electrodes is found when applying the same conditions. - Highlights: • Combined mechano-chemical effects on electrode durability. • CNT-based electrodes outperform ITO counterparts. • Importance of combined fatigue and corrosion action on device reliability

  20. Mechano-chemical degradation of flexible electrodes for optoelectronic device applications

    Energy Technology Data Exchange (ETDEWEB)

    Bejitual, T.S.; Morris, N.J.; Cronin, S.D.; Cairns, D.R.; Sierros, K.A., E-mail: kostas.sierros@mail.wvu.edu

    2013-12-31

    The electrical, optical, and structural integrity of flexible transparent electrodes is of paramount importance in the design and fabrication of optoelectronic devices such as organic light emitting diodes, liquid crystal displays, touch panels, solar cells, and solid-state lighting. The electrodes may corrode due to acid-containing pressure sensitive adhesives present in the device stacks. In addition, structural failure may occur due to external applied loading. The combined action and further accumulation of both repeated mechanical loading and corrosion can aggravate the loss of functionality of the electrodes. In this study we investigate, using the design of experimental methods, the effects of corrosion, applied mechanical strain, film thickness, and number of bending cycles on the electrical and structural integrity of indium tin oxide (ITO) and carbon nanotube (CNT) films both coated on polyethylene terephthalate (PET) substrates. In situ electrical resistance measurements suggest that fatigue-corrosion is found to be the most critical failure mode for the ITO-based coatings. For example, the change in ITO electrical resistance increase under fatigue-corrosion (1% strain, 150,000 cycles) is 5.8 times higher than that of fatigue mode alone. On the other hand, a minimum change in electrical resistance of the CNT-based electrodes is found when applying the same conditions. - Highlights: • Combined mechano-chemical effects on electrode durability. • CNT-based electrodes outperform ITO counterparts. • Importance of combined fatigue and corrosion action on device reliability.

  1. Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes

    Science.gov (United States)

    Zhang, Liuqi; Yang, Xiaolei; Jiang, Qi; Wang, Pengyang; Yin, Zhigang; Zhang, Xingwang; Tan, Hairen; Yang, Yang (Michael); Wei, Mingyang; Sutherland, Brandon R.; Sargent, Edward H.; You, Jingbi

    2017-06-01

    Inorganic perovskites such as CsPbX3 (X=Cl, Br, I) have attracted attention due to their excellent thermal stability and high photoluminescence quantum efficiency. However, the electroluminescence quantum efficiency of their light-emitting diodes was CsPbBr3 lattice and by depositing a hydrophilic and insulating polyvinyl pyrrolidine polymer atop the ZnO electron-injection layer to overcome these issues. As a result, we obtained light-emitting diodes exhibiting a high brightness of 91,000 cd m-2 and a high external quantum efficiency of 10.4% using a mixed-cation perovskite Cs0.87MA0.13PbBr3 as the emitting layer. To the best of our knowledge, this is the brightest and most-efficient green perovskite light-emitting diodes reported to date.

  2. Fabrication and properties of light-emitting diodes based on self-assembled multilayers of poly(phenylene vinylene)

    Science.gov (United States)

    Fou, A. C.; Onitsuka, O.; Ferreira, M.; Rubner, M. F.; Hsieh, B. R.

    1996-05-01

    Light-emitting diodes have been fabricated from self-assembled multilayers of poly(p-phenylene vinylene) (PPV) and two different polyanions; polystyrene sulfonic acid (SPS) and polymethacrylic acid (PMA). The type of polyanion used to assemble the multilayer thin films was found to dramatically influence the behavior and performance of devices fabricated with indium tin oxide and aluminum electrodes. Light-emitting devices fabricated from PMA/PPV multilayers were found to exhibit luminance levels in the range of 20-60 cd/m2, a thickness dependent turn-on voltage and classical rectifying behavior with rectification ratios greater than 105. In sharp contrast, the devices based on SPS/PPV exhibited near symmetric current-voltage curves, thickness independent turn-on voltages and much lower luminance levels. The significant difference in device behavior observed between these two systems is primarily due to a doping effect induced either chemically or electrochemically by the sulfonic acid groups of SPS. It was also found that the performance of these devices depends on the type of layer that is in contact with the Al top electrode thereby making it possible to manipulate device efficiency at the molecular level.

  3. A solid-contact Pb{sup 2+}-selective electrode using poly(2-methoxy-5-(2'-ethylhexyloxy)-p-phenylene vinylene) as ion-to-electron transducer

    Energy Technology Data Exchange (ETDEWEB)

    Yu Shunyang [CAS and Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003 (China); Li Fuhai [CAS and Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003 (China); Chemistry and Chemical Engineering College, Yantai University, Yantai 264005 (China); Yin Tanji [CAS and Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003 (China); Liu Yongming [Chemistry and Chemical Engineering College, Yantai University, Yantai 264005 (China); Pan, Dawei [CAS and Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003 (China); Qin Wei, E-mail: wqin@yic.ac.cn [CAS and Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003 (China)

    2011-09-30

    Highlights: {yields} All reagents used for the electrodes preparation were commercially available. {yields} The lower detection limit of the proposed electrode reached subnanomolar levels. {yields} No water film was observed with conventional commercially available PVC ion-sensing membranes. {yields} This research provides an excellent strategy for fabrication of robust polymeric ion sensors. - Abstract: In this work, a novel all-solid-state polymeric membrane Pb{sup 2+}-selective electrode was developed by using for the first time poly(2-methoxy-5-(2'-ethylhexyloxy)-p-phenylene vinylene) (MEH-PPV) as solid contact. To demonstrate the ion-to-electron transducing ability of MEH-PPV, chronopotentiometry and electrochemical impedance spectroscopy measurements were carried out. The proposed electrodes showed a Nernstian response of 29.1 mV decade{sup -1} and a lower detection limit of subnanomolar level. No water film was observed with the conventional plasticized PVC membrane. This work demonstrates a new strategy for the fabrication of robust potentiometric ion sensors.

  4. Design, development and characterization of tetrode type electron gun system for generation of low energy electrons

    International Nuclear Information System (INIS)

    Deore, A.V.; Bhoraskar, V.N.; Dhole, S.D.

    2011-01-01

    A tetrode type electron gun system for the generation of low energy electrons was designed, developed and characterized. An electron gun having four electrodes namely cathode, focusing electrode, control electrode and anode has been designed for the irradiation experiments. This electron gun is capable to provide electrons of energy over the range of 1 keV to 20 keV, with current maximum upto 100 μA. The electron gun and a faraday cup are mounted in the evacuated cylindrical chamber. The samples are fixed on the faraday cup and irradiated with low energy electrons at a pressure around 10 -6 mbar. In this electron gun system, at any electron energy over the entire range, the electron beam diameter can be varied from 5 to 120 mm on the Faraday cup mounted at a distance of 200 mm from the anode in the chamber. Also, the circular shape of the beam spot was maintained, even though the beam current and beam diameter are varied. The uniformity of the electron beam over the entire beam area was measured with a multi electrode assembly and found to be well within 15%. This system is being used for the synthesis and diffusion of metal and semiconductor nanoparticles in polymeric materials. (author)

  5. Flexible probe for measuring local conductivity variations in Li-ion electrode films

    Science.gov (United States)

    Hardy, Emilee; Clement, Derek; Vogel, John; Wheeler, Dean; Mazzeo, Brian

    2018-04-01

    Li-ion battery performance is governed by electronic and ionic properties of the battery. A key metric that characterizes Li-ion battery cell performance is the electronic conductivity of the electrodes, which are metal foils with thin coatings of electrochemically active materials. To accurately measure the spatial variation of electronic conductivity of these electrodes, a micro-four-line probe (μ4LP) was designed and used to non-destructively measure the properties of commercial-quality Li-ion battery films. This previous research established that the electronic conductivity of film electrodes is not homogeneous throughout the entirety of the deposited film area. In this work, a micro-N-line probe (μNLP) and a flexible micro-flex-line probe (μFLP) were developed to improve the non-destructive micro-scale conductivity measurements that we can take. These devices were validated by comparing test results to that of the predecessor, the micro-four-line probe (μ4LP), on various commercial-quality Li-ion battery electrodes. Results show that there is significant variation in conductivity on a millimeter and even micrometer length scale through the electrode film. Compared to the μ4LP, the μNLP and μFLP also introduce additional measurement configuration possibilities, while providing a more robust design. Researchers and manufacturers can use these probes to identify heterogeneity in their electrodes during the fabrication process, which will lead to the development of better batteries.

  6. A novel red-emitting phosphor for white light-emitting diodes

    International Nuclear Information System (INIS)

    Ren, Fuqiang; Chen, Donghua

    2010-01-01

    A novel red-emitting phosphor of Eu 3+ -activated molybdate was prepared at 850 o C by a modified solid-state reaction. Photoluminescence (PL) results showed that the phosphor can be efficiently excited by UV-visible light from 350 to 550 nm, and exhibited bright red emission at 614 nm. XPS are taken to investigate the structure and compositions of this material. The crystallization and particle sizes of the phosphor have been investigated by using powder X-ray diffraction (XRD) and transmission electron microscopy (TEM). TEM images show that the grain size of the phosphor is about 30 nm which is in full agreement with the theoretical calculation data from the XRD patterns.

  7. Electromechanical properties of indium–tin–oxide/poly(3,4-ethylenedioxythiophene): Poly(styrenesulfonate) hybrid electrodes for flexible transparent electrodes

    International Nuclear Information System (INIS)

    Jung, Sunghoon; Lim, Kyounga; Kang, Jae-Wook; Kim, Jong-Kuk; Oh, Se-In; Eun, Kyoungtae; Kim, Do-Geun; Choa, Sung-Hoon

    2014-01-01

    We investigated an indium–tin–oxide (ITO)/poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) hybrid electrode as a potential flexible and transparent electrode. In particular, the mechanical integrity of an ITO/PEDOT:PSS hybrid electrode deposited onto a polyethylene terephthalate (PET) substrate was investigated via outer/inner bending, twisting, stretching, and adhesion tests. A PEDOT:PSS layer was inserted between ITO and PET substrate as a buffer layer to improve the flexibility and electrical properties. When a PEDOT:PSS layer was inserted, the sheet resistance of the 20 nm-thick ITO film decreased from 270 Ω/square to 57 Ω/square. Notably, the ITO/PEDOT:PSS hybrid electrode had a constant resistance change (ΔR/R 0 ) within an outer and inner bending radius of 3 mm. The bending fatigue test showed that the ITO/PEDOT:PSS hybrid electrode can withstand 10,000 bending cycles. Furthermore, the stretched ITO/PEDOT:PSS hybrid electrode showed a fairly constant resistance change up to 4%, which is more stable than the resistance change of the ITO electrode. The ITO/PEDOT:PSS electrode also shows good adhesion strength. The superior flexibility of the ITO/PEDOT:PSS hybrid electrode is attributed to the existence of a flexible PEDOT:PSS layer. This indicates that the hybridization of an ITO and PEDOT:PSS layer is a promising electrode scheme for next-generation flexible transparent electrodes. - Highlights: • We propose a hybrid electrode for flexible electronics. • Electrode made from In 2 O 3 :SnO 2 /poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) • PEDOT:PSS as a buffer layer increases flexibility and electrical conductivity. • Hybrid electrode has a superior flexibility. • Hybrid electrode can be a promising flexible transparent electrode scheme

  8. Microbial electrosynthesis: understanding and strengthening microbe-electrode interactions

    DEFF Research Database (Denmark)

    Tremblay, Pier-Luc; Höglund, Daniel; Ammam, Fariza

    2014-01-01

    in the last decade that could significantly change the current ways of synthesizing chemicals. MES is a process in which electroautotrophic microbes reduce CO2 to multicarbon organics using electrical current as a source of electron. Electricity necessary for MES can be harvested from renewable resources...... relying on co-cultures and investigating extracellular electron transfer from the cathode to the microbes are some of the strategies that we are implementing to transform MES into a commercially viable technology....... such as solar energy, wind turbine or wastewater treatment processes. The net outcome is that renewable energy get store in the covalent bonds of valuable chemicals synthesized from greenhouse gas. However, low electron transferrates from the electrode to microbes, poor adherence of cells on the electrode...

  9. Low-cost electrochemical treatment of indium tin oxide anodes for high-efficiency organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Hui Cheng, Chuan, E-mail: chengchuanhui@dlut.edu.cn; Shan Liang, Ze; Gang Wang, Li; Dong Gao, Guo; Zhou, Ting; Ming Bian, Ji; Min Luo, Ying [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Tong Du, Guo, E-mail: dugt@dlut.edu.cn [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China)

    2014-01-27

    We demonstrate a simple low-cost approach as an alternative to conventional O{sub 2} plasma treatment to modify the surface of indium tin oxide (ITO) anodes for use in organic light-emitting diodes. ITO is functionalized with F{sup −} ions by electrochemical treatment in dilute hydrofluoric acid. An electrode with a work function of 5.2 eV is achieved following fluorination. Using this electrode, a maximum external quantum efficiency of 26.0% (91 cd/A, 102 lm/W) is obtained, which is 12% higher than that of a device using the O{sub 2} plasma-treated ITO. Fluorination also increases the transparency in the near-infrared region.

  10. Plasma Characterization of Hall Thruster with Active and Passive Segmented Electrodes

    International Nuclear Information System (INIS)

    Raitses, Y.; Staack, D.; Fisch, N.J.

    2002-01-01

    Non-emissive electrodes and ceramic spacers placed along the Hall thruster channel are shown to affect the plasma potential distribution and the thruster operation. These effects are associated with physical properties of the electrode material and depend on the electrode configuration, geometry and the magnetic field distribution. An emissive segmented electrode was able to maintain thruster operation by supplying an additional electron flux to sustain the plasma discharge between the anode and cathode neutralizer. These results indicate the possibility of new configurations for segmented electrode Hall thruster

  11. Enhanced Optoelectronic Properties of PFO/Fluorol 7GA Hybrid Light Emitting Diodes via Additions of TiO2 Nanoparticles

    Directory of Open Access Journals (Sweden)

    Bandar Ali Al-Asbahi

    2016-09-01

    Full Text Available The effect of TiO2 nanoparticle (NP content on the improvement of poly(9,9′-di-n-octylfluorenyl-2,7-diyl (PFO/Fluorol 7GA organic light emitting diode (OLED performance is demonstrated here. The PFO/Fluorol 7GA blend with specific ratios of TiO2 NPs was prepared via a solution blending method before being spin-coated onto an indium tin oxide (ITO substrate to act as an emissive layer in OLEDs. A thin aluminum layer as top electrode was deposited onto the emissive layer using the electron beam chamber. Improvement electron injection from the cathode was achieved upon incorporation of TiO2 NPs into the PFO/Fluorol 7GA blend, thus producing devices with intense luminance and lower turn-on voltage. The ITO/(PFO/Fluorol 7GA/TiO2/Al OLED device exhibited maximum electroluminescence intensity and luminance at 25 wt % of TiO2 NPs, while maximum luminance efficiency was achieved with 15 wt % TiO2 NP content. In addition, this work proved that the performance of the devices was strongly affected by the surface morphology, which in turn depended on the TiO2 NP content.

  12. MOLED: Simulation of multilayer organic light emitting diodes

    Science.gov (United States)

    Houili, H.; Tutiš, E.; Lütjens, H.; Bussac, M. N.; Zuppiroli, L.

    2003-12-01

    MOLED solves the dynamics of electrons and holes in multilayer Organic Light Emitting Diodes (OLED). The carriers are injected on the positive and negative electrodes of the device by tunneling through a potential barrier. Thermal excitation processes across the barrier are also included. In the interior of the device the electron-hole recombination occurs when the two carriers are close enough, according to a model inspired from the one of Langevin. A fraction of these recombined pairs gives photons. The charge transport inside the organic material occurs through hopping. Several choices of mobility formulae are available in the code. MOLED can be used for OLEDs with an arbitrary number of layers. The output consists of numerous fields that describe the device performance. For example, there are the current, the recombination and the charge density distributions, the electric field distribution, the current-voltage characteristics and the device internal quantum efficiency. Program summaryTitle of program: MOLED Catalogue identifier: ADSG Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADSG Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Operating systems under which the program has been tested: Unix, Linux Programming language used: FORTRAN 90 Memory required to execute with typical data: 2 MB No. of bytes in distributed program: 26 942 No. of bits in a word: 64 Peripherals used: permanent disk storage No. of lines in distributed program, including test data, etc.: 3695 Distribution format: tar gzip file Nature of the physical problem: Injection of electrons and holes into an organic electroluminescent material occurs through tunneling from metal electrodes. The transport of carriers inside the molecular medium proceeds by hopping from one molecule to another. The emission of light is a result of their radiative Langevin recombination (for a review see [Scott et al., Synthetic Metals 111-112 (2000) 289; Friend et al

  13. Thermoelectric energy recovery at ionic-liquid/electrode interface

    Energy Technology Data Exchange (ETDEWEB)

    Bonetti, Marco; Nakamae, Sawako; Huang, Bo Tao; Wiertel-Gasquet, Cécile; Roger, Michel [Service de Physique de l’Etat Condensé, CEA-IRAMIS-SPEC, CNRS-UMR 3680, CEA Saclay, F-91191 Gif-sur-Yvette Cedex (France); Salez, Thomas J. [Service de Physique de l’Etat Condensé, CEA-IRAMIS-SPEC, CNRS-UMR 3680, CEA Saclay, F-91191 Gif-sur-Yvette Cedex (France); École des Ponts ParisTech, 6 et 8 avenue Blaise Pascal, Champs-sur-Marne, F-77455 Marne-la-Vallée (France)

    2015-06-28

    A thermally chargeable capacitor containing a binary solution of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)-imide in acetonitrile is electrically charged by applying a temperature gradient to two ideally polarisable electrodes. The corresponding thermoelectric coefficient is −1.7 mV/K for platinum foil electrodes and −0.3 mV/K for nanoporous carbon electrodes. Stored electrical energy is extracted by discharging the capacitor through a resistor. The measured capacitance of the electrode/ionic-liquid interface is 5 μF for each platinum electrode while it becomes four orders of magnitude larger, ≈36 mF, for a single nanoporous carbon electrode. Reproducibility of the effect through repeated charging-discharging cycles under a steady-state temperature gradient demonstrates the robustness of the electrical charging process at the liquid/electrode interface. The acceleration of the charging by convective flows is also observed. This offers the possibility to convert waste-heat into electric energy without exchanging electrons between ions and electrodes, in contrast to what occurs in most thermogalvanic cells.

  14. Electrochemical detection of nitrite based on the polythionine/carbon nanotube modified electrode

    International Nuclear Information System (INIS)

    Deng, Chunyan; Chen, Jinzhuo; Nie, Zhou; Yang, Minghui; Si, Shihui

    2012-01-01

    In this paper, thionine was electro-polymerized onto the surface of carbon nanotube (CNT)-modified glassy carbon (GC) to fabricate the polythionine (PTH)/CNT/GC electrode. It was found that the electro-reduction current of nitrite was enhanced greatly at the PTH/CNT/GC electrode. It may be demonstrated that PTH was used as a mediator for electrocatalytic reduction of nitrite, and CNTs as an excellent nanomaterial can improve the electron transfer between the electrode and nitrite. Therefore, based on the synergic effect of PTH and CNTs, the PTH/CNT/GC electrode was employed to detect nitrite, and the high sensitivity of 5.81 μA mM −1 , and the detection limit of 1.4 × 10 −6 M were obtained. Besides, the modified electrode showed an inherent stability, fast response time, and good anti-interference ability. These suggested that the PTH/CNT/GC electrode was favorable and reliable for the detection of nitrite. - Highlights: ► Polythionine (PTH) was used as a mediator for electrocatalytic reduction of nitrite. ► Carbon nanotubes (CNTs) improve electron transfer between the electrode and nitrite. ► The PTH/CNT/glassy carbon electrode showed excellent nitrite detection performance.

  15. Carbon and Redox Tolerant Infiltrated Oxide Fuel-Electrodes for Solid Oxide Cells

    DEFF Research Database (Denmark)

    Skafte, Theis Løye; Sudireddy, Bhaskar Reddy; Blennow, P.

    2016-01-01

    To solve issues of coking and redox instability related to the presence of nickel in typical fuel electrodes in solid oxide cells,Gd-doped CeO2 (CGO) electrodes were studied using symmetriccells. These electrodes showed high electro-catalytic activity, butlow electronic conductivity. When...... infiltrated with Sr0.99Fe0.75Mo0.25O3-δ (SFM), the electronic conductivity wasenhanced. However, polarization resistance of the cells increased,suggesting that the infiltrated material is less electro-catalyticallyactive and was partly blocking the CGO surface reaction sites. Theactivity could be regained...... by infiltrating nano-sized CGO orNiCGO on top of SFM, while still sustaining the high electronicconductivity. Ohmic resistance of the electrodes was thuspractically eliminated and performance comparable to, or betterthan, state-of-the-art fuel electrodes was achieved. The Nicontaining cells were damaged by carbon...

  16. Measurement of the intensity ratio of Auger and conversion electrons for the electron capture decay of 125I

    Science.gov (United States)

    Alotiby, M.; Greguric, I.; Kibédi, T.; Lee, B. Q.; Roberts, M.; Stuchbery, A. E.; Tee, Pi; Tornyi, T.; Vos, M.

    2018-03-01

    Auger electrons emitted after nuclear decay have potential application in targeted cancer therapy. For this purpose it is important to know the Auger electron yield per nuclear decay. In this work we describe a measurement of the ratio of the number of conversion electrons (emitted as part of the nuclear decay process) to the number of Auger electrons (emitted as part of the atomic relaxation process after the nuclear decay) for the case of 125I. Results are compared with Monte-Carlo type simulations of the relaxation cascade using the BrIccEmis code. Our results indicate that for 125I the calculations based on rates from the Evaluated Atomic Data Library underestimate the K Auger yields by 20%.

  17. Measurement of the intensity ratio of Auger and conversion electrons for the electron capture decay of 125I.

    Science.gov (United States)

    Alotiby, M; Greguric, I; Kibédi, T; Lee, B Q; Roberts, M; Stuchbery, A E; Tee, Pi; Tornyi, T; Vos, M

    2018-03-21

    Auger electrons emitted after nuclear decay have potential application in targeted cancer therapy. For this purpose it is important to know the Auger electron yield per nuclear decay. In this work we describe a measurement of the ratio of the number of conversion electrons (emitted as part of the nuclear decay process) to the number of Auger electrons (emitted as part of the atomic relaxation process after the nuclear decay) for the case of 125 I. Results are compared with Monte-Carlo type simulations of the relaxation cascade using the BrIccEmis code. Our results indicate that for 125 I the calculations based on rates from the Evaluated Atomic Data Library underestimate the K Auger yields by 20%.

  18. Self-assembly of monodisperse starburst carbon spheres into hierarchically organized nanostructured supercapacitor electrodes.

    Science.gov (United States)

    Kim, Sung-Kon; Jung, Euiyeon; Goodman, Matthew D; Schweizer, Kenneth S; Tatsuda, Narihito; Yano, Kazuhisa; Braun, Paul V

    2015-05-06

    We report a three-dimensional (3D) porous carbon electrode containing both nanoscale and microscale porosity, which has been hierarchically organized to provide efficient ion and electron transport. The electrode organization is provided via the colloidal self-assembly of monodisperse starburst carbon spheres (MSCSs). The periodic close-packing of the MSCSs provides continuous pores inside the 3D structure that facilitate ion and electron transport (electrode electrical conductivity ∼0.35 S m(-1)), and the internal meso- and micropores of the MSCS provide a good specific capacitance. The capacitance of the 3D-ordered porous MSCS electrode is ∼58 F g(-1) at 0.58 A g(-1), 48% larger than that of disordered MSCS electrode at the same rate. At 1 A g(-1) the capacitance of the ordered electrode is 57 F g(-1) (95% of the 0.24 A g(-1) value), which is 64% greater than the capacitance of the disordered electrode at the same rate. The ordered electrode preserves 95% of its initial capacitance after 4000 charging/discharging cycles.

  19. Nickel–copper hybrid electrodes self-adhered onto a silicon wafer by supersonic cold-spray

    International Nuclear Information System (INIS)

    Lee, Jong-Gun; Kim, Do-Yeon; Kang, Byungjun; Kim, Donghwan; Song, Hee-eun; Kim, Jooyoung; Jung, Woonsuk; Lee, Dukhaeng; Al-Deyab, Salem S.; James, Scott C.; Yoon, Sam S.

    2015-01-01

    High-performance electrodes are fabricated through supersonic spraying of nickel and copper particles. These electrodes yield low specific resistivities, comparable to electrodes produced by screen-printed silver paste and light-induced plating. The appeal of this fabrication method is the low cost of copper and large area scalability of supersonic spray-coating techniques. The copper and nickel electrode was fabricated in the open air without any pre- or post-treatment. The spray-coated copper–nickel electrode was characterized by optical microscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction, and energy dispersive spectroscopy. Although both SEM and TEM images confirmed voids trapped between flattened particles in the fabricated electrode, this electrode’s resistivity was order 10 −6 Ω cm, which is comparable to the bulk value for pure copper

  20. AZO/Ag/AZO anode for resonant cavity red, blue, and yellow organic light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Gentle, A. R., E-mail: angus.gentle@uts.edu.au; Smith, G. B. [School of Mathematical and Physical Sciences and Institute of Nanoscale Technology, University of Technology Sydney, P.O. Box 123, Broadway, New South Wales 2007 (Australia); Yambem, S. D.; Burn, P. L.; Meredith, P. [Centre for Organic Photonics and Electronics, School of Chemistry and Molecular Biosciences and School of Mathematics and Physics, The University of Queensland, St Lucia, Queensland 4072 (Australia)

    2016-06-28

    Indium tin oxide (ITO) is the transparent electrode of choice for organic light-emitting diodes (OLEDs). Replacing ITO for cost and performance reasons is a major drive across optoelectronics. In this work, we show that changing the transparent electrode on red, blue, and yellow OLEDs from ITO to a multilayer buffered aluminium zinc oxide/silver/aluminium zinc oxide (AZO/Ag/AZO) substantially enhances total output intensity, with better control of colour, its constancy, and intensity over the full exit hemisphere. The thin Ag containing layer induces a resonant cavity optical response of the complete device. This is tuned to the emission spectra of the emissive material while minimizing internally trapped light. A complete set of spectral intensity data is presented across the full exit hemisphere for each electrode type and each OLED colour. Emission zone modelling of output spectra at a wide range of exit angles to the normal was in excellent agreement with the experimental data and hence could, in principle, be used to check and adjust production settings. These multilayer transparent electrodes show significant potential for both eliminating indium from OLEDs and spectrally shaping the emission.

  1. Systems and methods for producing low work function electrodes

    Science.gov (United States)

    Kippelen, Bernard; Fuentes-Hernandez, Canek; Zhou, Yinhua; Kahn, Antoine; Meyer, Jens; Shim, Jae Won; Marder, Seth R.

    2015-07-07

    According to an exemplary embodiment of the invention, systems and methods are provided for producing low work function electrodes. According to an exemplary embodiment, a method is provided for reducing a work function of an electrode. The method includes applying, to at least a portion of the electrode, a solution comprising a Lewis basic oligomer or polymer; and based at least in part on applying the solution, forming an ultra-thin layer on a surface of the electrode, wherein the ultra-thin layer reduces the work function associated with the electrode by greater than 0.5 eV. According to another exemplary embodiment of the invention, a device is provided. The device includes a semiconductor; at least one electrode disposed adjacent to the semiconductor and configured to transport electrons in or out of the semiconductor.

  2. Electron gun controlled smart structure

    Science.gov (United States)

    Martin, Jeffrey W.; Main, John Alan; Redmond, James M.; Henson, Tammy D.; Watson, Robert D.

    2001-01-01

    Disclosed is a method and system for actively controlling the shape of a sheet of electroactive material; the system comprising: one or more electrodes attached to the frontside of the electroactive sheet; a charged particle generator, disposed so as to direct a beam of charged particles (e.g. electrons) onto the electrode; a conductive substrate attached to the backside of the sheet; and a power supply electrically connected to the conductive substrate; whereby the sheet changes its shape in response to an electric field created across the sheet by an accumulation of electric charge within the electrode(s), relative to a potential applied to the conductive substrate. Use of multiple electrodes distributed across on the frontside ensures a uniform distribution of the charge with a single point of e-beam incidence, thereby greatly simplifying the beam scanning algorithm and raster control electronics, and reducing the problems associated with "blooming". By placing a distribution of electrodes over the front surface of a piezoelectric film (or other electroactive material), this arrangement enables improved control over the distribution of surface electric charges (e.g. electrons) by creating uniform (and possibly different) charge distributions within each individual electrode. Removal or deposition of net electric charge can be affected by controlling the secondary electron yield through manipulation of the backside electric potential with the power supply. The system can be used for actively controlling the shape of space-based deployable optics, such as adaptive mirrors and inflatable antennae.

  3. Advanced Graphene-Based Binder-Free Electrodes for High-Performance Energy Storage.

    Science.gov (United States)

    Ji, Junyi; Li, Yang; Peng, Wenchao; Zhang, Guoliang; Zhang, Fengbao; Fan, Xiaobin

    2015-09-23

    The increasing demand for energy has triggered tremendous research effort for the development of high-performance and durable energy-storage devices. Advanced graphene-based electrodes with high electrical conductivity and ion accessibility can exhibit superior electrochemical performance in energy-storage devices. Among them, binder-free configurations can enhance the electron conductivity of the electrode, which leads to a higher capacity by avoiding the addition of non-conductive and inactive binders. Graphene, a 2D material, can be fabricated into a porous and flexible structure with an interconnected conductive network. Such a conductive structure is favorable for both electron and ion transport to the entire electrode surface. In this review, the main processes used to prepare binder-free graphene-based hybrids with high porosity and well-designed electron conductive networks are summarized. Then, the applications of free-standing binder-free graphene-based electrodes in energy-storage devices are discussed. Future research aspects with regard to overcoming the technological bottlenecks are also proposed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Electrochemical evaluation of avidin-biotin interaction on self-assembled gold electrodes

    International Nuclear Information System (INIS)

    Ding, S.-J.; Chang, B.-W.; Wu, C.-C.; Lai, M.-F.; Chang, H.-C.

    2005-01-01

    The avidin-biotin interaction on 11-mercaptoundecanoic acid self-assembled gold electrodes was investigated by means of cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The interfacial properties of the modified electrodes were evaluated in the presence of the Fe(China) 6 3-/4- couple redox as a probe. A simple equivalent circuit model with a constant phase element was used to interpret the obtained impedance spectra. The results of cyclic voltammetry showed that the voltammetric behavior of the redox probe was influenced by the electrode surface modification. It is evident that the accumulation of treated substances and the binding of biotin to avidin on the electrode surface resulted in the increasing electron-transfer resistance and the decreasing capacitance. The changes in the electron-transfer resistance on the avidin-modified electrodes were more sensitive than that in the capacitance while detecting biotin over the 2-10 μg/mL concentration. The detection amount can be as low as 20 ng/mL based on the electron-transfer resistance that presented the change of 4.3 kΩ without the use of labels. The development of a rapid, facile, and sensitive method for the quantitation of nanogram quantities of biomolecules utilizing EIS may be achieved

  5. Shape-Tailorable Graphene-Based Ultra-High-Rate Supercapacitor for Wearable Electronics.

    Science.gov (United States)

    Xie, Binghe; Yang, Cheng; Zhang, Zhexu; Zou, Peichao; Lin, Ziyin; Shi, Gaoquan; Yang, Quanhong; Kang, Feiyu; Wong, Ching-Ping

    2015-06-23

    With the bloom of wearable electronics, it is becoming necessary to develop energy storage units, e.g., supercapacitors that can be arbitrarily tailored at the device level. Although gel electrolytes have been applied in supercapacitors for decades, no report has studied the shape-tailorable capability of a supercapacitor, for instance, where the device still works after being cut. Here we report a tailorable gel-based supercapacitor with symmetric electrodes prepared by combining electrochemically reduced graphene oxide deposited on a nickel nanocone array current collector with a unique packaging method. This supercapacitor with good flexibility and consistency showed excellent rate performance, cycling stability, and mechanical properties. As a demonstration, these tailorable supercapacitors connected in series can be used to drive small gadgets, e.g., a light-emitting diode (LED) and a minimotor propeller. As simple as it is (electrochemical deposition, stencil printing, etc.), this technique can be used in wearable electronics and miniaturized device applications that require arbitrarily shaped energy storage units.

  6. Direct electrodeposition of metal nanowires on electrode surface

    International Nuclear Information System (INIS)

    Gambirasi, Arianna; Cattarin, Sandro; Musiani, Marco; Vazquez-Gomez, Lourdes; Verlato, Enrico

    2011-01-01

    A method for decorating the surface of disk electrodes with metal nanowires is presented. Cu and Ni nanowires with diameters from 1.0 μm to 0.2 μm are directly deposited on the electrode surface using a polycarbonate membrane filter template maintained in contact with the metal substrate by the soft homogeneous pressure of a sponge soaked with electrolyte. The morphologic and structural properties of the deposit are characterized by scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD). The latter shows that the head of nanowires with diameter of 0.4 μm is ordinarily polycrystalline, and that of nanowires with diameter of 0.2 μm is almost always monocrystalline for Cu and frequently also for Ni. Cyclic voltammetries and impedance investigations recorded in alkaline solutions at representative Ni electrodes decorated with nanowires provide consistent values of roughness factor, in the range 20-25.

  7. Electron-spin polarization in tunnel junctions with ferromagnetic EuS barriers

    International Nuclear Information System (INIS)

    Hao, X.; Moodera, J.S.; Meservey, R.

    1989-01-01

    The authors report here spin-polarized tunneling experiments using non-ferromagnetic electrodes and ferromagnetic EuS barriers. Because of the conduction band in EuS splits into spin-up and spin-down subbands when the temperature is below 16.7 K, the Curie temperature of EuS, the tunnel barrier for electrons with different spin directions is different, therefore giving rise to tunnel current polarization. The spin-filter effect, as it may be called, was observed earlier, directly or indirectly, by several groups: Esaki et al. made a tunneling study on junctions having EuS and EuSe barriers; Thompson et al. studied Schottky barrier tunneling between In and doped EuS; Muller et al. and Kisker et al. performed electron field emission experiments on EuS-coated tungsten tips. The field emission experiments gave a maximum polarization of (89 + 7)% for the emitted electrons. Although the previous tunneling studies did not directly show electron polarization, their results were explained by the same spin- filter effect. This work uses the spin-polarized tunneling technique to show directly that tunnel current is indeed polarized and polarization can be as high as 85%

  8. Number distribution of emitted electrons by MeV H+ impact on carbon

    Science.gov (United States)

    Ogawa, H.; Koyanagi, Y.; Hongo, N.; Ishii, K.; Kaneko, T.

    2017-09-01

    The statistical distributions of the number of the forward- and backward-emitted secondary electrons (SE's) from a thin carbon foil have been measured in coincidence with foil-transmitted H+ ions of 0.5-3.0 MeV in every 0.5 MeV step. The measured SE energy spectra were fitted by assuming a Pólya distribution for the simultaneous n-SE emission probabilities. For our previous data with a couple of the carbon foils with different thicknesses, a similar analysis has been carried out. As a result, it was found that the measured spectra could be reproduced as well as by an analysis without placing any restriction on the emission probabilities both for the forward and backward SE emission. The obtained b-parameter of the Pólya distribution, which is a measure of the deviation from a Poisson distribution due to the cascade multiplication by high energy internal SE's, increases monotonically with the incident energy of proton beams. On the other hand, a clear foil-thickness dependence is not observed for the b-parameter. A theoretical model which could reproduced the magnitude of the b-parameter for the SE energy spectra obtained with thick Au, Cu and Al targets is found to overestimates our values for thin carbon foils significantly. Another model calculation is found to reproduce our b-values very well.

  9. Electronic device and method of manufacturing an electronic device

    NARCIS (Netherlands)

    2009-01-01

    An electronic device comprising at least one die stack having at least a first die (D1) comprising a first array of light emitting units (OLED) for emitting light, a second layer (D2) comprising a second array of via holes (VH) and a third die (D3) comprising a third array of light detecting units

  10. Measurements of radionuclide activity by the (e-α, β, γ, Lx) coincidence method using electrons with energies of a few eV emitted from radionuclides

    International Nuclear Information System (INIS)

    Frolov, E.A.

    1994-01-01

    A study was made of the possibility of measuring radionuclide activities by the method of coincidence of electrons with energies of a few eV emitted from the valence shells of radioactive atoms with nuclear radiations. The low energy electrons were detected with a detector equipped with microchannel plates with trochoidal focusing of an original design. Photons were detected with NaI(TI) detectors. A 100 μm thick plastic scintillator was used to detect beta- and alpha-particles. The investigation shows that it is possible to use this method for accurate measurements of radionuclide activity. (orig.)

  11. Efficiency enhancement of tandem organic light-emitting devices by a combined charge generation layer and organic n-type bis(ethylenedithio)-tetrathiafulvalene-doped electron transport layer

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jin Taek; Kim, Dae Hun; Koh, Eun Im; Kim, Tae Whan

    2014-11-03

    While the operating voltage of the tandem organic light-emitting devices (OLEDs) with both an organic p-type 1,4,5,8,9,11-hexaazatriphenylene hexacarbonitrile charge generation layer and a bis(ethylenedithio)-tetrathiafulvalene (BEDT-TTF)-doped 1,3,5-tris(N-phenylbenzimiazole-2-yl)benzene (TPBi) electron transport layer (ETL) was 1.3 V lower than that of the tandem OLEDs with a BEDT-TTF-undoped TPBi ETL. Luminance efficiency of the tandem OLEDs with a BEDT-TTF-doped TPBi ETL was 3.6 cd/A higher than that of the typical OLEDs. The increase in the luminance efficiency and the decrease in the operating voltage of the tandem OLEDs were attributed to improved electron injection due to the insertion of the BEDT-TTF-doped TPBi ETL. - Highlights: • Tandem organic light-emitting diodes (OLED) were fabricated. • OLED fabricated with an n-type bis(ethylenedithio)-tetrathiafulvalene. • Operating voltage of the tandem OLED was decreased from 19.8 to 18.5 V. • Luminance efficiency of the tandem OLED was increased from 31.8 to 35.4 cd/A. • Enhancement of the luminance efficiency in the tandem OLED was achieved.

  12. Efficiency enhancement of tandem organic light-emitting devices by a combined charge generation layer and organic n-type bis(ethylenedithio)-tetrathiafulvalene-doped electron transport layer

    International Nuclear Information System (INIS)

    Cho, Jin Taek; Kim, Dae Hun; Koh, Eun Im; Kim, Tae Whan

    2014-01-01

    While the operating voltage of the tandem organic light-emitting devices (OLEDs) with both an organic p-type 1,4,5,8,9,11-hexaazatriphenylene hexacarbonitrile charge generation layer and a bis(ethylenedithio)-tetrathiafulvalene (BEDT-TTF)-doped 1,3,5-tris(N-phenylbenzimiazole-2-yl)benzene (TPBi) electron transport layer (ETL) was 1.3 V lower than that of the tandem OLEDs with a BEDT-TTF-undoped TPBi ETL. Luminance efficiency of the tandem OLEDs with a BEDT-TTF-doped TPBi ETL was 3.6 cd/A higher than that of the typical OLEDs. The increase in the luminance efficiency and the decrease in the operating voltage of the tandem OLEDs were attributed to improved electron injection due to the insertion of the BEDT-TTF-doped TPBi ETL. - Highlights: • Tandem organic light-emitting diodes (OLED) were fabricated. • OLED fabricated with an n-type bis(ethylenedithio)-tetrathiafulvalene. • Operating voltage of the tandem OLED was decreased from 19.8 to 18.5 V. • Luminance efficiency of the tandem OLED was increased from 31.8 to 35.4 cd/A. • Enhancement of the luminance efficiency in the tandem OLED was achieved

  13. Nickel electrodes as a cheap and versatile platform for studying structure and function of immobilized redox proteins

    Energy Technology Data Exchange (ETDEWEB)

    Han, Xiao Xia [State Key Laboratory of Supramolecular Structure and Materials, Jilin University, 2699 Qianjin Street, Changchun 130012 (China); Institut für Chemie, Technische Universität Berlin, Sekr. PC14, Strasse des 17. Juni 135, D-10623 Berlin (Germany); Li, Junbo [State Key Laboratory of Supramolecular Structure and Materials, Jilin University, 2699 Qianjin Street, Changchun 130012 (China); Öner, Ibrahim Halil [Institut für Chemie, Technische Universität Berlin, Sekr. PC14, Strasse des 17. Juni 135, D-10623 Berlin (Germany); Zhao, Bing [State Key Laboratory of Supramolecular Structure and Materials, Jilin University, 2699 Qianjin Street, Changchun 130012 (China); Leimkühler, Silke [Institut für Biochemie und Biologie, Universität Potsdam, Karl-Liebknecht Straße 24-25, H. 25, Golm D-14476 (Germany); Hildebrandt, Peter [Institut für Chemie, Technische Universität Berlin, Sekr. PC14, Strasse des 17. Juni 135, D-10623 Berlin (Germany); Weidinger, Inez M., E-mail: i.weidinger@mailbox.tu-berlin.de [Institut für Chemie, Technische Universität Berlin, Sekr. PC14, Strasse des 17. Juni 135, D-10623 Berlin (Germany)

    2016-10-19

    Practical use of many bioelectronic and bioanalytical devices is limited by the need of expensive materials and time consuming fabrication. Here we demonstrate the use of nickel electrodes as a simple and cheap solid support material for bioelectronic applications. The naturally nanostructured electrodes showed a surprisingly high electromagnetic surface enhancement upon light illumination such that immobilization and electron transfer reactions of the model redox proteins cytochrome b{sub 5} (Cyt b{sub 5}) and cytochrome c (Cyt c) could be followed via surface enhanced resonance Raman spectroscopy. It could be shown that the nickel surface, when used as received, promotes a very efficient binding of the proteins upon preservation of their native structure. The immobilized redox proteins could efficiently exchange electrons with the electrode and could even act as an electron relay between the electrode and solubilized myoglobin. Our results open up new possibility for nickel electrodes as an exceptional good support for bioelectronic devices and biosensors on the one hand and for surface enhanced spectroscopic investigations on the other hand. - Highlights: • Nickel electrodes were used without further functionalization as supports for various redox proteins. • It was possible to monitor the immobilized proteins via surface enhanced Raman spectroscopy. • The native structure of the immobilized proteins was preserved and they could exchange electrons with the Ni electrode. • The immobilized redox proteins worked as an electron relay between electrode and solubilized myoglobin.

  14. Recent Developments of Nanostructured Electrodes for Bioelectrocatalysis of Dioxygen Reduction

    Directory of Open Access Journals (Sweden)

    Marcin Opallo

    2011-01-01

    Full Text Available The recent development of nanostructured electrodes for bioelectrocatalytic dioxygen reduction catalysed by two copper oxidoreductases, laccase and bilirubin oxidase, is reviewed. Carbon-based nanomaterials as carbon nanotubes or carbon nanoparticles are frequently used for electrode modification, whereas there are only few examples of biocathodes modified with metal or metal oxide nanoparticles. These nanomaterials are adsorbed on the electrode surface or embedded in multicomponent film. The nano-objects deposited act as electron shuttles between the enzyme and the electrode substrate providing favourable conditions for mediatorless bioelectrocatalysis.

  15. Electron-transporting layer doped with cesium azide for high-performance phosphorescent and tandem white organic light-emitting devices

    Science.gov (United States)

    Yu, Yaoyao; Chen, Xingming; Jin, Yu; Wu, Zhijun; Yu, Ye; Lin, Wenyan; Yang, Huishan

    2017-07-01

    Cesium azide was employed as an effective n-dopant in the electron-transporting layer (ETL) of organic light-emitting devices (OLEDs) owing to its low deposition temperature and high ambient stability. By doping cesium azide onto 4,7-diphenyl-1,10-phenanthroline, a green phosphorescent OLED having best efficiencies of 66.25 cd A-1, 81.22 lm W-1 and 18.82% was realized. Moreover, the efficiency roll-off from 1000 cd m-2 to 10 000 cd m-2 is only 12.9%, which is comparable with or even lower than that of devices utilizing the co-host system. Physical mechanisms for the improvement of device performance were studied in depth by analyzing the current density-voltage (J-V) characteristics of the electron-only devices. In particular, by comparing the J-V characteristics of the electron-only devices instead of applying the complicated ultraviolet photoelectron spectrometer measurements, we deduced the decrease in barrier height for electron injection at the ETL/cathode contact. Finally, an efficient tandem white OLED utilizing the n-doped layer in the charge generation unit (CGU) was constructed. As far as we know, this is the first report on the application of this CGU for fabricating tandem white OLEDs. The emissions of the tandem device are all in the warm white region from 1213 cd m-2 to 10870 cd m-2, as is beneficial to the lighting application.

  16. Electron-transporting layer doped with cesium azide for high-performance phosphorescent and tandem white organic light-emitting devices

    International Nuclear Information System (INIS)

    Yu, Yaoyao; Chen, Xingming; Jin, Yu; Wu, Zhijun; Yu, Ye; Lin, Wenyan; Yang, Huishan

    2017-01-01

    Cesium azide was employed as an effective n-dopant in the electron-transporting layer (ETL) of organic light-emitting devices (OLEDs) owing to its low deposition temperature and high ambient stability. By doping cesium azide onto 4,7-diphenyl-1,10-phenanthroline, a green phosphorescent OLED having best efficiencies of 66.25 cd A −1 , 81.22 lm W −1 and 18.82% was realized. Moreover, the efficiency roll-off from 1000 cd m −2 to 10 000 cd m −2 is only 12.9%, which is comparable with or even lower than that of devices utilizing the co-host system. Physical mechanisms for the improvement of device performance were studied in depth by analyzing the current density–voltage ( J – V ) characteristics of the electron-only devices. In particular, by comparing the J – V characteristics of the electron-only devices instead of applying the complicated ultraviolet photoelectron spectrometer measurements, we deduced the decrease in barrier height for electron injection at the ETL/cathode contact. Finally, an efficient tandem white OLED utilizing the n-doped layer in the charge generation unit (CGU) was constructed. As far as we know, this is the first report on the application of this CGU for fabricating tandem white OLEDs. The emissions of the tandem device are all in the warm white region from 1213 cd m −2 to 10870 cd m −2 , as is beneficial to the lighting application. (paper)

  17. The effect of electrodes on 11 acene molecular spin valve: Semi-empirical study

    Science.gov (United States)

    Aadhityan, A.; Preferencial Kala, C.; John Thiruvadigal, D.

    2017-10-01

    A new revolution in electronics is molecular spintronics, with the contemporary evolution of the two novel disciplines of spintronics and molecular electronics. The key point is the creation of molecular spin valve which consists of a diamagnetic molecule in between two magnetic leads. In this paper, non-equilibrium Green's function (NEGF) combined with Extended Huckel Theory (EHT); a semi-empirical approach is used to analyse the electron transport characteristics of 11 acene molecular spin valve. We examine the spin-dependence transport on 11 acene molecular junction with various semi-infinite electrodes as Iron, Cobalt and Nickel. To analyse the spin-dependence transport properties the left and right electrodes are joined to the central region in parallel and anti-parallel configurations. We computed spin polarised device density of states, projected device density of states of carbon and the electrode element, and transmission of these devices. The results demonstrate that the effect of electrodes modifying the spin-dependence behaviours of these systems in a controlled way. In Parallel and anti-parallel configuration the separation of spin up and spin down is lager in the case of iron electrode than nickel and cobalt electrodes. It shows that iron is the best electrode for 11 acene spin valve device. Our theoretical results are reasonably impressive and trigger our motivation for comprehending the transport properties of these molecular-sized contacts.

  18. Highly efficient single-layer dendrimer light-emitting diodes with balanced charge transport

    Science.gov (United States)

    Anthopoulos, Thomas D.; Markham, Jonathan P. J.; Namdas, Ebinazar B.; Samuel, Ifor D. W.; Lo, Shih-Chun; Burn, Paul L.

    2003-06-01

    High-efficiency single-layer-solution-processed green light-emitting diodes based on a phosphorescent dendrimer are demonstrated. A peak external quantum efficiency of 10.4% (35 cd/A) was measured for a first generation fac-tris(2-phenylpyridine) iridium cored dendrimer when blended with 4,4'-bis(N-carbazolyl)biphenyl and electron transporting 1,3,5-tris(2-N-phenylbenzimidazolyl)benzene at 8.1 V. A maximum power efficiency of 12.8 lm/W was measured also at 8.1 V and 550 cd/m2. These results indicate that, by simple blending of bipolar and electron-transporting molecules, highly efficient light-emitting diodes can be made employing a very simple device structure.

  19. Diagnostics of ballistic electrons in a dc/rf hybrid capacitively coupled discharge

    International Nuclear Information System (INIS)

    Xu Lin; Chen, Lee; Funk, Merritt; Ranjan, Alok; Hummel, Mike; Bravenec, Ron; Sundararajan, Radha; Economou, Demetre J.; Donnelly, Vincent M.

    2008-01-01

    The energy distribution of ballistic electrons in a dc/rf hybrid parallel-plate capacitively coupled plasma reactor was measured. Ballistic electrons originated as secondaries produced by ion and electron bombardment of the electrodes. The energy distribution of ballistic electrons peaked at the value of the negative bias applied to the dc electrode. As that bias became more negative, the ballistic electron current on the rf substrate electrode increased dramatically. The ion current on the dc electrode also increased

  20. High efficiency rubrene based inverted top-emission organic light emitting devices with a mixed single layer

    International Nuclear Information System (INIS)

    Wang, Zhaokui; Lou, Yanhui; Naka, Shigeki; Okada, Hiroyuki

    2010-01-01

    Inverted top-emission organic light emitting devices (TEOLEDs) with a mixed single layer by mixing of electron transport materials (PyPySPyPy and Alq 3 ), hole transport material (α-NPD) and dope material (rubrene) were investigated. Maximum power efficiency of 3.5 lm/W and maximum luminance of 7000 cd/m 2 were obtained by optimizing the mixing ratio of PyPySPyPy:Alq 3 :α-NPD:rubrene=25:50:25:1. Luminance and power efficiency of mixed single layer device were two times improved compared to bi-layer heterojunction device and tri-layer heterojunction device. Lifetime test also shows that the mixed single layer device exhibits longer operational lifetimes of 343 h, which is three times longer than the 109 h for tri-layer device, and two times longer than the 158 h for bi-layer device. In addition, the maximum luminance and power efficiency were obtained at 20,000 cd/m 2 and 7.5 lm/W, respectively, when a TPD layer of 45 nm was capped onto the top metal electrode.

  1. Kinetic and geometric aspects of solid oxide fuel cell electrodes

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Skaarup, Steen

    1996-01-01

    The paper gives an overview of the main factors controlling the performance of the solid oxide fuel cell (SOFC) electrodes, emphasizing the most widely chosen anodes and cathodes, Ni-YSZ and LSM-YSZ. They are often applied as composites (mixtures) of the electron conducting electrode material...

  2. Confocal fluorescence microscopy investigation of visible emitting defects induced by electron beam lithography in LIF films

    Energy Technology Data Exchange (ETDEWEB)

    Montereali, R.M.; Bigotta, S.; Pace, A.; Piccinini, M. [ENEA, Divisione Fisica Applicata, Centro Ricerche Frascati, Frascati, RM (Italy); Burattini, E.; Grilli, A.; Raco, A. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Fisica, Frascati, Rome (Italy); Giammatteo, M. [Unita' Istituto Nazionale di Fisica Nucleare, Frascati, RM (Italy)]|[L' Aquila Univ., L' Aquila (Italy). Centro di Microscopia Elettronica; Picozzi, P.; Santucci, S. [Unita' Istituto Nazionale di Fisica Nucleare, Frascati, RM (Italy)]|[L' Aquila Univ., L' Aquila (Italy). Dipt. di Fisica

    2000-07-01

    Low energy electron irradiation of lithium fluoride (LiF), in the form of bulk crystals and films, gives rise to the stable formation of primary F defects and aggregated color centers in a thin layer located at the surface of the investigated material. For the first time a confocal light scanning microscope (CLSM) in fluorescence mode was used to reconstruct the depth distribution of efficiently emitting laser active color centers in a stripe-like region induced by 12 and 16 keV electrons on LiF films thermally evaporated on glass. The formation of the F{sub 3}{sup +} and F{sub 2} aggregated defects appears restricted to the electron penetration and proportional to their energy depth profile, as obtained from Monte Carlo simulations. [Italian] L'irraggiamento con elettroni di bassa energia del fluoruro di litio (LiF), in forma di cristalli e film, induce la formazione di difetti primari F e centri di colore aggregati stabili in un sottile strato localizzato alla superficie del materiale investigato. Per la prima volta un microscopio confocale a scansione (CLSM) in modalita' fluorescenza e' stato usato per ricostruire la distribuzione di centri di colore laser attivi ad alta efficienza di emissione nel visibile, in strisce colorate ottenute con elettroni da 12 e 16 keV su film di LiF evaporati termicamente su vetro. La formazione dei difetti aggregati F2 e F3+ risulta ristretta spazialmente nella regione di penetrazione degli elettroni e proporzionale al profilo della distribuzione dell'energia da essi depositata, ricavata tramite simulazioni Monte Carlo.

  3. Nanostructured Solid Oxide Fuel Cell Electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Sholklapper, Tal Zvi [Univ. of California, Berkeley, CA (United States)

    2007-01-01

    The ability of Solid Oxide Fuel Cells (SOFC) to directly and efficiently convert the chemical energy in hydrocarbon fuels to electricity places the technology in a unique and exciting position to play a significant role in the clean energy revolution. In order to make SOFC technology cost competitive with existing technologies, the operating temperatures have been decreased to the range where costly ceramic components may be substituted with inexpensive metal components within the cell and stack design. However, a number of issues have arisen due to this decrease in temperature: decreased electrolyte ionic conductivity, cathode reaction rate limitations, and a decrease in anode contaminant tolerance. While the decrease in electrolyte ionic conductivities has been countered by decreasing the electrolyte thickness, the electrode limitations have remained a more difficult problem. Nanostructuring SOFC electrodes addresses the major electrode issues. The infiltration method used in this dissertation to produce nanostructure SOFC electrodes creates a connected network of nanoparticles; since the method allows for the incorporation of the nanoparticles after electrode backbone formation, previously incompatible advanced electrocatalysts can be infiltrated providing electronic conductivity and electrocatalysis within well-formed electrolyte backbones. Furthermore, the method is used to significantly enhance the conventional electrode design by adding secondary electrocatalysts. Performance enhancement and improved anode contamination tolerance are demonstrated in each of the electrodes. Additionally, cell processing and the infiltration method developed in conjunction with this dissertation are reviewed.

  4. Mechanically stable ternary heterogeneous electrodes for energy storage and conversion.

    Science.gov (United States)

    Gao, Libo; Zhang, Hongti; Surjadi, James Utama; Li, Peifeng; Han, Ying; Sun, Dong; Lu, Yang

    2018-02-01

    Recently, solid asymmetric supercapacitor (ASC) has been deemed as an emerging portable power storage or backup device for harvesting natural resources. Here we rationally engineered a hierarchical, mechanically stable heterostructured FeCo@NiCo layered double hydroxide (LDH) with superior capacitive performance by a simple two-step electrodeposition route for energy storage and conversion. In situ scanning electron microscope (SEM) nanoindentation and electrochemical tests demonstrated the mechanical robustness and good conductivity of FeCo-LDH. This serves as a reliable backbone for supporting the NiCo-LDH nanosheets. When employed as the positive electrode in the solid ASC, the assembly presents high energy density of 36.6 W h kg -1 at a corresponding power density of 783 W kg -1 and durable cycling stability (87.3% after 5000 cycles) as well as robust mechanical stability without obvious capacitance fading when subjected to bending deformation. To demonstrate its promising capability for practical energy storage applications, the ASC has been employed as a portable energy source to power a commercially available digital watch, mini motor car, or household lamp bulb as well as an energy storage reservoir, coupled with a wind energy harvester to power patterned light-emitting diodes (LEDs).

  5. Preparation and characterization of RuO2/polypyrrole electrodes for supercapacitors

    Science.gov (United States)

    Li, Xiang; Wu, Yujiao; Zheng, Feng; Ling, Min; Lu, Fanghai

    2014-11-01

    Polypyrrole (PPy) embedded RuO2 electrodes were prepared by the composite method. Precursor solution of RuO2 was coated on tantalum sheet and annealed at 260 °C for 2.5 h to develop a thin film. PPy particles were deposited on RuO2 films and dried at 80 °C for 12 h to form composite electrode. Microstructure and morphology of RuO2/PPy electrode were characterized using Fourier transform infrared spectrometer, X-ray diffraction and scanning electron microscopy, respectively. Our results confirmed that counter ions are incorporated into RuO2 matrix. Structure of the composite with amorphous phase was verified by X-ray diffraction. Analysis by scanning electron microscopy reveals that during grain growth of RuO2/PPy, PPy particle size sharply increases as deposition time is over 20 min. Electrochemical properties of RuO2/PPy electrode were calculated using cyclic voltammetry. As deposition times of PPy are 10, 20, 25 and 30 min, specific capacitances of composite electrodes reach 657, 553, 471 and 396 F g-1, respectively. Cyclic behaviors of RuO2/PPy composite electrodes are stable.

  6. Thermal and mechanical study of a MIG-type electron gun for a 31 GHz, 100 k W gyrotron

    International Nuclear Information System (INIS)

    Patire Junior, H.; Barroso, J.J.

    1994-01-01

    A thermal and mechanical study of a MIG-type electron gun has been made to determine the temperature distribution in all the gun elements as a function of the input heater power. Appropriate materials were selected to minimize both the conduction and radiation thermal losses. The electron emitting surface operates at an average temperature of 1000 0 C with 374 W input power in the heating filament system. The purpose of the present study is to reduce the input heater power while keeping the required operating cathode temperature and to improve the gun design from a constructional point of view aiming at extending the capabilities of the electron gun. A thermal software has been used by considering the operation conditions taking into account external convection by forced air and thermal radiation transfer between the electrodes of the gun. (author). 5 refs, 4 figs, 1 tab

  7. Electrochemical Oxidation of Glycerol Using Gold Electrode

    International Nuclear Information System (INIS)

    Mohamed Rozali Othman; Amirah Ahmad

    2015-01-01

    Cyclic voltammetry, potential linear V and chronocuolometry methods were carried out to gain electrochemical behavior of glycerol at a gold electrode. Potassium hydroxide and sulfuric acid were chosen to be the electrolyte for the electro-oxidation of this organic compound. Besides gold plate electrode, gold composite electrode (Au-PVC) was also used as the working electrode. The Au-PVC composite electrode was characterized by Scanning Electron Microscopy (SEM) to determine its morphological aspects before and after used in electrochemical oxidation of glycerol. In alkaline solution, the adsorption of hydroxide species onto the surface of both gold plate and composite Au-PVC electrodes occurs at potential around 500 mV vs SCE. However, at gold plate electrode, there was a small, broad peak before the drastic escalation of current densities which indicates the charge transfer of the chemisorbed OH - anion. In acidic media, the gold oxide was formed after potential 1.0 V. From the cyclic voltammogram glycerol undergo oxidation twice in potassium hydroxide at gold plate and Au-PVC composite electrodes, while in sulfuric acid, oxidation reaction happened once for glycerol on the gold plate electrode. Overall, electrochemical oxidation of glycerol was more effective in alkaline media. Tafel graph which plotted from potential linear V method shows that Au-PVC composite electrode is better than gold plate electrode for the electro-oxidation of glycerol in alkaline solution. Electrochemical oxidation of glycerol products as analyzed by Gas Chromatography-Mass Spectrometry (GC-MS) produced several carboxylic acids and phenolic compounds. (author)

  8. Inkjet printing the three organic functional layers of two-colored organic light emitting diodes

    International Nuclear Information System (INIS)

    Coenen, Michiel J.J.; Slaats, Thijs M.W.L.; Eggenhuisen, Tamara M.; Groen, Pim

    2015-01-01

    Inkjet printing allows for the roll-2-roll fabrication of organic electronic devices at an industrial scale. In this paper we demonstrate the fabrication of two-colored organic light emitting diodes (OLEDs) in which three adjacent organic device layers were inkjet printed from halogen free inks. The resulting devices demonstrate the possibilities offered by this technique for the fabrication of OLEDs for signage and personalized electronics. - Highlights: • Two-colored organic light emitting diodes with 3 inkjet printed device layers were fabricated. • All materials were printed from halogen free inks. • Inkjet printing of emissive materials is suitable for signage applications

  9. Electrostatic interaction between an enzyme and electrodes in the electric double layer examined in a view of direct electron transfer-type bioelectrocatalysis.

    Science.gov (United States)

    Sugimoto, Yu; Kitazumi, Yuki; Tsujimura, Seiya; Shirai, Osamu; Yamamoto, Masahiro; Kano, Kenji

    2015-01-15

    Effects of the electrode poential on the activity of an adsorbed enzyme has been examined by using copper efflux oxidase (CueO) as a model enzyme and by monitoring direct electron transfer (DET)-type bioelectrocatalysis of oxygen reduction. CueO adsorbed on bare Au electrodes at around the point of zero charge (E(pzc)) shows the highest DET activity, and the activity decreases as the adsorption potential (E(ad); at which the enzyme adsorbs) is far from E(pzc). We propose a model to explain the phenomena in which the electrostatic interaction between the enzyme and electrodes in the electric double layer affects the orientation and the stability of the adsorbed enzyme. The self-assembled monolayer of butanethiol on Au electrodes decreases the electric field in the outside of the inner Helmholtz plane and drastically diminishes the E(ad) dependence of the DET activity of CueO. When CueO is adsorbed on bare Au electrodes under open circuit potential and then is held at hold potentials (E(ho)) more positive than E(pzc), the DET activity of the CueO rapidly decreases with the hold time. The strong electric field with positive surface charge density on the metallic electrode (σ(M)) leads to fatal denaturation of the adsorbed CueO. Such denaturation effect is not so serious at E(ho)

  10. Activity patterns of cultured neural networks on micro electrode arrays

    NARCIS (Netherlands)

    Rutten, Wim; van Pelt, J.

    2001-01-01

    A hybrid neuro-electronic interface is a cell-cultured micro electrode array, acting as a neural information transducer for stimulation and/or recording of neural activity in the brain or the spinal cord (ventral motor region or dorsal sensory region). It consists of an array of micro electrodes on

  11. A compact electron gun using field emitter array

    International Nuclear Information System (INIS)

    Asakawa, M.R.; Ikeda, A.; Miyabe, N.; Yamaguchi, S.; Kusaba, M.; Tsunawaki, Y.

    2008-01-01

    A compact electron gun using field emitter array has been developed. With a simple triode configuration consisting of FEA, mid-electrode and anode electrode, the electron gun produces a parallel beam with a diameter of 0.5 mm. This electron gun is applicable for compact radiation sources such as Cherenkov free-electron lasers

  12. Flexible transparent electrode

    Science.gov (United States)

    Demiryont, Hulya; Shannon, Kenneth C., III; Moorehead, David; Bratcher, Matthew

    2011-06-01

    This paper presents the properties of the EclipseTECTM transparent conductor. EclipseTECTM is a room temperature deposited nanostructured thin film coating system comprised of metal-oxide semiconductor elements. The system possesses metal-like conductivity and glass-like transparency in the visible region. These highly conductive TEC films exhibit high shielding efficiency (35dB at 1 to 100GHz). EclipseTECTM can be deposited on rigid or flexible substrates. For example, EclipseTECTM deposited on polyethylene terephthalate (PET) is extremely flexible that can be rolled around a 9mm diameter cylinder with little or no reduction in electrical conductivity and that can assume pre-extension states after an applied stress is relieved. The TEC is colorless and has been tailored to have high visible transmittance which matches the eye sensitivity curve and allows the viewing of true background colors through the coating. EclipseTECTM is flexible, durable and can be tailored at the interface for applications such as electron- or hole-injecting OLED electrodes as well as electrodes in flexible displays. Tunable work function and optical design flexibility also make EclipseTECTM well-suited as a candidate for grid electrode replacement in next-generation photovoltaic cells.

  13. Aluminum-doped zinc oxide films as transparent conductive electrode for organic light-emitting devices

    International Nuclear Information System (INIS)

    Jiang, X.; Wong, F.L.; Fung, M.K.; Lee, S.T.

    2003-01-01

    Highly transparent conductive, aluminum-doped zinc oxide (ZnO:Al) films were deposited on glass substrates by midfrequency magnetron sputtering of metallic aluminum-doped zinc target. ZnO:Al films with surface work functions between 3.7 and 4.4 eV were obtained by varying the sputtering conditions. Organic light-emitting diodes (OLEDs) were fabricated on these ZnO:Al films. A current efficiency of higher than 3.7 cd/A, was achieved. For comparison, 3.9 cd/A was achieved by the reference OLEDs fabricated on commercial indium-tin-oxide substrates

  14. Electrode-electrolyte interface model of tripolar concentric ring electrode and electrode paste.

    Science.gov (United States)

    Nasrollaholhosseini, Seyed Hadi; Steele, Preston; Besio, Walter G

    2016-08-01

    Electrodes are used to transform ionic currents to electrical currents in biological systems. Modeling the electrode-electrolyte interface could help to optimize the performance of the electrode interface to achieve higher signal to noise ratios. There are previous reports of accurate models for single-element biomedical electrodes. In this paper we develop a model for the electrode-electrolyte interface for tripolar concentric ring electrodes (TCRE) that are used to record brain signals.

  15. Effective Electrochemistry of Human Sulfite Oxidase Immobilized on Quantum-Dots-Modified Indium Tin Oxide Electrode.

    Science.gov (United States)

    Zeng, Ting; Leimkühler, Silke; Koetz, Joachim; Wollenberger, Ulla

    2015-09-30

    The bioelectrocatalytic sulfite oxidation by human sulfite oxidase (hSO) on indium tin oxide (ITO) is reported, which is facilitated by functionalizing of the electrode surface with polyethylenimine (PEI)-entrapped CdS nanoparticles and enzyme. hSO was assembled onto the electrode with a high surface loading of electroactive enzyme. In the presence of sulfite but without additional mediators, a high bioelectrocatalytic current was generated. Reference experiments with only PEI showed direct electron transfer and catalytic activity of hSO, but these were less pronounced. The application of the polyelectrolyte-entrapped quantum dots (QDs) on ITO electrodes provides a compatible surface for enzyme binding with promotion of electron transfer. Variations of the buffer solution conditions, e.g., ionic strength, pH, viscosity, and the effect of oxygen, were studied in order to understand intramolecular and heterogeneous electron transfer from hSO to the electrode. The results are consistent with a model derived for the enzyme by using flash photolysis in solution and spectroelectrochemistry and molecular dynamic simulations of hSO on monolayer-modified gold electrodes. Moreover, for the first time a photoelectrochemical electrode involving immobilized hSO is demonstrated where photoexcitation of the CdS/hSO-modified electrode lead to an enhanced generation of bioelectrocatalytic currents upon sulfite addition. Oxidation starts already at the redox potential of the electron transfer domain of hSO and is greatly increased by application of a small overpotential to the CdS/hSO-modified ITO.

  16. Analysis by SIMS and AES of H:TiO2 electrodes

    International Nuclear Information System (INIS)

    Pena, J.L.; Farias, M.H.; Sanchez Sinencio, F.

    1981-01-01

    TiO 2 electrodes produced by heating in H 2 atmosphere have been analysed. SIMS (Secondary Ion Mass Spectroscopy) and AES (Auger Electron Spectroscopy) techniques were used in order to identify the atomic composition in the electrodes surface. (A.R.H.) [pt

  17. Calculating the radiation characteristics of accelerated electrons in laser-plasma interactions

    International Nuclear Information System (INIS)

    Li, X. F.; Yu, Q.; Qu, J. F.; Kong, Q.; Gu, Y. J.; Ma, Y. Y.; Kawata, S.

    2016-01-01

    In this paper, we studied the characteristics of radiation emitted by electrons accelerated in a laser–plasma interaction by using the Lienard–Wiechert field. In the interaction of a laser pulse with a underdense plasma, electrons are accelerated by two mechanisms: direct laser acceleration (DLA) and laser wakefield acceleration (LWFA). At the beginning of the process, the DLA electrons emit most of the radiation, and the DLA electrons emit a much higher peak photon energy than the LWFA electrons. As the laser–plasma interaction progresses, the LWFA electrons become the major radiation emitter; however, even at this stage, the contribution from DLA electrons is significant, especially to the peak photon energy.

  18. Thickness shear mode quartz crystal resonators with optimized elliptical electrodes

    International Nuclear Information System (INIS)

    Ma Ting-Feng; Feng Guan-Ping; Zhang Chao; Jiang Xiao-Ning

    2011-01-01

    Quartz crystal resonators (QCRs) with circular electrodes have been widely used for various liquid and gas sensing applications. In this work, quartz crystal resonators with elliptical electrodes were studied and tested for liquid property measurement. Mindlin's theory was used to optimize the dimension and geometry of the electrodes and a 5-MHz QCR with minimum series resistance and without any spurious modes was obtained. A series of AT-cut QCRs with elliptical electrodes of different sizes were fabricated and their sensing performances were compared to devices with circular electrodes. The experimental result shows that the device with elliptical electrodes can obtain lower resonance impedance and a higher Q factor, which results in a better loading capability. Even though the sensitivities of devices with elliptical and circular electrodes are found to be similar, the sensor with elliptical electrodes has much higher resolution due to a better frequency stability. The study indicates that the performance of QCRs with elliptical electrodes is superior to that of traditional QCRs with circular electrodes. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  19. Multispectral surface plasmon resonance approach for ultra-thin silver layer characterization: Application to top-emitting OLED cathode

    Science.gov (United States)

    Taverne, S.; Caron, B.; Gétin, S.; Lartigue, O.; Lopez, C.; Meunier-Della-Gatta, S.; Gorge, V.; Reymermier, M.; Racine, B.; Maindron, T.; Quesnel, E.

    2018-01-01

    While dielectric/metal/dielectric (DMD) multilayer thin films have raised considerable interest as transparent and conductive electrodes in various optoelectronic devices, the knowledge of optical characteristics of thin metallic layers integrated in such structures is still rather approximate. The multispectral surface plasmon resonance characterization approach described in this work precisely aims at providing a rigorous methodology able to accurately determine the optical constants of ultra-thin metallic films. As a practical example, the refractive index and extinction dispersion curves of 8 to 25 nm-thick silver layers have been investigated. As a result, their extreme dependence on the layer thickness is highlighted, in particular in a thickness range close to the critical threshold value (˜10 nm) where the silver film becomes continuous and its electrical conductance/optical transmittance ratio particularly interesting. To check the validity of the revisited Ag layers constant dispersion curves deduced from this study, they were introduced into a commercial optical model software to simulate the behavior of various optoelectronic building blocks from the simplest ones (DMD electrodes) to much more complex structures [full organic light emitting device (OLED) stacks]. As a result, a much better prediction of the emission spectrum profile as well as the angular emission pattern of top-emitting OLEDs is obtained. On this basis, it is also shown how a redesign of the top encapsulation thin film of OLEDs is necessary to better take benefit from the advanced DMD electrode. These results should particularly interest the micro-OLED display field where bright and directive single color pixel emission is required.

  20. A transparent electrode based on a metal nanotrough network.

    Science.gov (United States)

    Wu, Hui; Kong, Desheng; Ruan, Zhichao; Hsu, Po-Chun; Wang, Shuang; Yu, Zongfu; Carney, Thomas J; Hu, Liangbing; Fan, Shanhui; Cui, Yi

    2013-06-01

    Transparent conducting electrodes are essential components for numerous flexible optoelectronic devices, including touch screens and interactive electronics. Thin films of indium tin oxide-the prototypical transparent electrode material-demonstrate excellent electronic performances, but film brittleness, low infrared transmittance and low abundance limit suitability for certain industrial applications. Alternatives to indium tin oxide have recently been reported and include conducting polymers, carbon nanotubes and graphene. However, although flexibility is greatly improved, the optoelectronic performance of these carbon-based materials is limited by low conductivity. Other examples include metal nanowire-based electrodes, which can achieve sheet resistances of less than 10Ω □(-1) at 90% transmission because of the high conductivity of the metals. To achieve these performances, however, metal nanowires must be defect-free, have conductivities close to their values in bulk, be as long as possible to minimize the number of wire-to-wire junctions, and exhibit small junction resistance. Here, we present a facile fabrication process that allows us to satisfy all these requirements and fabricate a new kind of transparent conducting electrode that exhibits both superior optoelectronic performances (sheet resistance of ~2Ω □(-1) at 90% transmission) and remarkable mechanical flexibility under both stretching and bending stresses. The electrode is composed of a free-standing metallic nanotrough network and is produced with a process involving electrospinning and metal deposition. We demonstrate the practical suitability of our transparent conducting electrode by fabricating a flexible touch-screen device and a transparent conducting tape.

  1. A Fabrication Technique for Nano-gap Electrodes by Atomic Force Microscopy Nano lithography

    International Nuclear Information System (INIS)

    Jalal Rouhi; Shahrom Mahmud; Hutagalung, S.D.; Kakooei, S.

    2011-01-01

    A simple technique is introduced for fabrication of nano-gap electrodes by using nano-oxidation atomic force microscopy (AFM) lithography with a Cr/ Pt coated silicon tip. AFM local anodic oxidation was performed on silicon-on-insulator (SOI) surfaces by optimization of desired conditions to control process in contact mode. Silicon electrodes with gaps of sub 31 nm were fabricated by nano-oxidation method. This technique which is simple, controllable, inexpensive and fast is capable of fabricating nano-gap structures. The current-voltage measurements (I-V) of the electrodes demonstrated very good insulating characteristics. The results show that silicon electrodes have a great potential for fabrication of single molecule transistors (SMT), single electron transistors (SET) and the other nano electronic devices. (author)

  2. Characterization and electrochemical studies of Nafion/nano-TiO2 film modified electrodes

    International Nuclear Information System (INIS)

    Yuan Shuai; Hu Shengshui

    2004-01-01

    A nano-TiO 2 film from stable aqueous dispersion has been modified on a glassy carbon electrode (GCE), and was characterized by scanning electron microscopy (SEM) and surface-enhanced Raman spectroscopy (SERS). This nanostructured film exhibits an ability to improve the electron-transfer rate between electrode and dopamine (DA), and electrocatalyze the redox of DA. The electrocatalytical behavior of DA was examined by cyclic voltammetry (CV). Combined with Nafion, the bilayer-modified electrode (N/T/GCE) gives a sensitive voltammetric response of DA regardless of excess ascorbic acid (AA). Electrochemical impedance spectroscopy (EIS) at a fixed potential was performed at variously treated GCEs. The mechanism of the electrode reaction of DA at N/T/GCE and the equivalent circuits of different GCEs have been proposed

  3. Trap effect of an ultrathin DCJTB layer in organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yuanmin [Institute of Optoelectronic Technology, Key Laboratory for Information Storage, Displays and Materials, Beijing Jiaotong University, Beijing 100044 (China); Teng Feng [Institute of Optoelectronic Technology, Key Laboratory for Information Storage, Displays and Materials, Beijing Jiaotong University, Beijing 100044 (China)]. E-mail: advanced9898@126.com; Xu Zheng [Institute of Optoelectronic Technology, Key Laboratory for Information Storage, Displays and Materials, Beijing Jiaotong University, Beijing 100044 (China); Hou Yanbing [Institute of Optoelectronic Technology, Key Laboratory for Information Storage, Displays and Materials, Beijing Jiaotong University, Beijing 100044 (China); Yang Shengyi [Institute of Optoelectronic Technology, Key Laboratory for Information Storage, Displays and Materials, Beijing Jiaotong University, Beijing 100044 (China); Xu Xurong [Institute of Optoelectronic Technology, Key Laboratory for Information Storage, Displays and Materials, Beijing Jiaotong University, Beijing 100044 (China)

    2005-08-15

    An improved performance of organic light-emitting diodes has been obtained by using 4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl) -4Hpyran (DCJTB) as an ultrathin emitting layer. When 0.1 nm DCJTB was inserted between the hole-transporting layer and electron-transporting layer, for an unoptimized device indium-tin oxide (ITO)/naphtylphenyliphenyl diamine (NPB)/DCJTB (0.1 nm)/8-hydroxyquinoline aluminum (Alq{sub 3})/Al, the maximum brightness was 1531 cd m{sup -2} at 15 V. Compared with doped devices ITO/NPB/Alq{sub 3}:DCJTB (1%)/Alq{sub 3}/LiF/Al, a higher efficiency has been achieved. Compared with the conventional device ITO/NPB/Alq{sub 3}/Al, the inserted device has a slightly higher current efficiency and lower turn-on voltage. We suggest the ultrathin DCJTB layer acts as trap for carriers, and the accumulated holes at the hole-transport layer/electron-transport layer interface have enhanced the electric field in the electron-transport layer and improved the electron injection at the cathode.

  4. Applications of Graphene-Modified Electrodes in Microbial Fuel Cells

    Directory of Open Access Journals (Sweden)

    Fei Yu

    2016-09-01

    Full Text Available Graphene-modified materials have captured increasing attention for energy applications due to their superior physical and chemical properties, which can significantly enhance the electricity generation performance of microbial fuel cells (MFC. In this review, several typical synthesis methods of graphene-modified electrodes, such as graphite oxide reduction methods, self-assembly methods, and chemical vapor deposition, are summarized. According to the different functions of the graphene-modified materials in the MFC anode and cathode chambers, a series of design concepts for MFC electrodes are assembled, e.g., enhancing the biocompatibility and improving the extracellular electron transfer efficiency for anode electrodes and increasing the active sites and strengthening the reduction pathway for cathode electrodes. In spite of the challenges of MFC electrodes, graphene-modified electrodes are promising for MFC development to address the reduction in efficiency brought about by organic waste by converting it into electrical energy.

  5. Electrochemical Reduction of Oxygen on Anthraquinone/Carbon Nanotubes Nanohybrid Modified Glassy Carbon Electrode in Neutral Medium

    Directory of Open Access Journals (Sweden)

    Zheng Gong

    2013-01-01

    Full Text Available The electrochemical behaviors of monohydroxy-anthraquinone/multiwall carbon nanotubes (MHAQ/MWCNTs nanohybrid modified glassy carbon (MHAQ/MWCNTs/GC electrodes in neutral medium were investigated; also reported was their application in the electrocatalysis of oxygen reduction reaction (ORR. The resulting MHAQ/MWCNTs nanohybrid was characterized by scanning electron microscope (SEM and transmission electron microscope (TEM. It was found that the ORR at the MHAQ/MWCNTs/GC electrode occurs irreversibly at a potential about 214 mV less negative than at a bare GC electrode in pH 7.0 buffer solution. Cyclic voltammetric and rotating disk electrode (RDE techniques indicated that the MHAQ/MWCNTs nanohybrid has high electrocatalytic activity for the two-electron reduction of oxygen in the studied potential range. The kinetic parameters of ORR at the MHAQ/MWCNTs nanohybrid modified GC electrode were also determined by RDE and EIS techniques.

  6. Effect of the electric field during annealing of organic light emitting diodes for improving its on/off ratio.

    Science.gov (United States)

    Sharma, Rahul K; Katiyar, Monica; Rao, I V Kameshwar; Unni, K N Narayanan; Deepak

    2016-01-28

    If an organic light emitting diode is to be used as part of a matrix addressed array, it should exhibit low reverse leakage current. In this paper we present a method to improve the on/off ratio of such a diode by simultaneous application of heat and electric field post device fabrication. A green OLED with excellent current efficiency was seen to be suffering from a poor on/off ratio of 10(2). After examining several combinations of annealing along with the application of a reverse bias voltage, the on/off ratio of the same device could be increased by three orders of magnitude, specifically when the device was annealed at 80 °C under reverse bias (-15 V) followed by slow cooling also under the same bias. Simultaneously, the forward characteristics of the device were relatively unaffected. The reverse leakage in the OLED is mainly due to the injection of minority carriers in the hole transport layer (HTL) and the electron transport layer (ETL), in this case, of holes in tris-(8-hydroxyquinoline)aluminum(Alq3) and electrons in 4,4',4''-tris(N-3-methylphenyl-N-phenylamino)triphenylamine (m-MTDATA). Hence, to investigate these layers adjacent to the electrodes, we fabricated their single layer devices. The possibility of bulk traps present adjacent to electrodes providing states for injection was ruled out after estimating the trap density both before and after the reverse biased annealing. The temperature independent current in reverse bias ruled out the possibility of thermionic injection. The origin of the reverse bias current is attributed to the availability of interfacial hole levels in Alq3 at the cathode work function level in the as-fabricated device; the suppression of the same being attributed to the fact that these levels in Alq3 are partly removed after annealing under an electric field.

  7. Rational design of metal-organic electronic devices: A computational perspective

    Science.gov (United States)

    Chilukuri, Bhaskar

    Organic and organometallic electronic materials continue to attract considerable attention among researchers due to their cost effectiveness, high flexibility, low temperature processing conditions and the continuous emergence of new semiconducting materials with tailored electronic properties. In addition, organic semiconductors can be used in a variety of important technological devices such as solar cells, field-effect transistors (FETs), flash memory, radio frequency identification (RFID) tags, light emitting diodes (LEDs), etc. However, organic materials have thus far not achieved the reliability and carrier mobility obtainable with inorganic silicon-based devices. Hence, there is a need for finding alternative electronic materials other than organic semiconductors to overcome the problems of inferior stability and performance. In this dissertation, I research the development of new transition metal based electronic materials which due to the presence of metal-metal, metal-pi, and pi-pi interactions may give rise to superior electronic and chemical properties versus their organic counterparts. Specifically, I performed computational modeling studies on platinum based charge transfer complexes and d 10 cyclo-[M(mu-L)]3 trimers (M = Ag, Au and L = monoanionic bidentate bridging (C/N~C/N) ligand). The research done is aimed to guide experimental chemists to make rational choices of metals, ligands, substituents in synthesizing novel organometallic electronic materials. Furthermore, the calculations presented here propose novel ways to tune the geometric, electronic, spectroscopic, and conduction properties in semiconducting materials. In addition to novel material development, electronic device performance can be improved by making a judicious choice of device components. I have studied the interfaces of a p-type metal-organic semiconductor viz cyclo-[Au(mu-Pz)] 3 trimer with metal electrodes at atomic and surface levels. This work was aimed to guide the device

  8. Optically Transparent Thin-Film Electrode Chip for Spectroelectrochemical Sensing

    Energy Technology Data Exchange (ETDEWEB)

    Branch, Shirmir D.; Lines, Amanda M.; Lynch, John A.; Bello, Job M.; Heineman, William R.; Bryan, Samuel A.

    2017-07-03

    The electrochemical and spectroelectrochemical applications of an optically transparent thin film electrode chip are investigated. The working electrode is composed of indium tin oxide (ITO); the counter and quasi-reference electrodes are composed of platinum. The stability of the platinum quasi-reference electrode is modified by coating it with a planar, solid state Ag/AgCl layer. The Ag/AgCl reference is characterized with scanning electron microscopy and energy-dispersive X-ray spectroscopy. Open circuit potential measurements indicate that the potential of the planar Ag/AgCl electrode varies a maximum of 20 mV over four days. Cyclic voltammetry measurements show that the electrode chip is comparable to a standard electrochemical cell. Randles-Sevcik analysis of 10 mM K3[Fe(CN)6] in 0.1 M KCl using the electrode chip shows a diffusion coefficient of 1.59 × 10-6 cm2/s, in comparison to the standard electrochemical cell value of 2.38 × 10-6 cm2/s. By using the electrode chip in an optically transparent thin layer electrode (OTTLE), the spectroelectrochemical modulation of [Ru(bpy)3]2+ florescence was demonstrated, achieving a detection limit of 36 nM.

  9. The spin-dependent electronic transport properties of M(dcdmp)2 (M = Cu, Au, Co, Ni) molecular devices based on zigzag graphene nanoribbon electrodes

    Science.gov (United States)

    Li, Dongde; Wu, Di; Zhang, Xiaojiao; Zeng, Bowen; Li, Mingjun; Duan, Haiming; Yang, Bingchu; Long, Mengqiu

    2018-05-01

    The spin-dependent electronic transport properties of M(dcdmp)2 (M = Cu, Au, Co, Ni; dcdmp = 2,3-dicyano-5,6-dimercaptopyrazyne) molecular devices based on zigzag graphene nanoribbon (ZGNR) electrodes were investigated by density functional theory combined nonequilibrium Green's function method (DFT-NEGF). Our results show that the spin-dependent transport properties of the M(dcdmp)2 molecular devices can be controlled by the spin configurations of the ZGNR electrodes, and the central 3d-transition metal atom can introduce a larger magnetism than that of the nonferrous metal one. Moreover, the perfect spin filtering effect, negative differential resistance, rectifying effect and magnetic resistance phenomena can be observed in our proposed M(dcdmp)2 molecular devices.

  10. Same-Side Platinum Electrodes for Metal Assisted Etching of Porous Silicon

    Science.gov (United States)

    2015-11-01

    Platinum Electrodes for Metal Assisted Etching of Porous Silicon by Matthew H Ervin and Brian Isaacson Sensors and Electron Devices Directorate...SUBTITLE Same-Side Platinum Electrodes for Metal Assisted Etching of Porous Silicon 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT

  11. Faradaic impedance titration and control of electron transfer of 1-(12-mercaptododecyl)imidazole monolayer on a gold electrode

    International Nuclear Information System (INIS)

    Hwang, Seongpil; Lee, Bang Sook; Chi, Young Shik; Kwak, Juhyoun; Choi, Insung S.; Lee, Sang-gi

    2008-01-01

    In this work, we studied interfacial proton transfer of the self-assembled monolayer (SAM) of 1-(12-mercaptododecyl)imidazole on a gold electrode by faradaic impedance titration method with Fe(CN) 6 3- as an anionic redox probe molecule. The surface pK 1/2 was found to be 7.3, which was nearly the same as that of 1-alkylimidazole in solution. We also investigated the electrochemical properties of the SAM-modified electrode by cyclic voltammetry. Cyclic voltammetry was performed (1) in the solution containing Fe(CN) 6 3- with repeated alternation of pH values to investigate the electrostatic interaction of the protonated or deprotonated imidazole with Fe(CN) 6 3- and (2) in the acidic or basic electrolyte containing Ru(NH 3 ) 6 3+ as a cationic redox probe to verify the effect of the polarity of a redox probe. We observed the reversible adsorption/desorption of Fe(CN) 6 3- and concluded that the adsorbed Fe(CN) 6 3- catalyzed the electron transfer of both Fe(CN) 6 3- itself and cationic Ru(NH 3 ) 6 3+

  12. Mediated Electron Transfer at Vertically Aligned Single-Walled Carbon Nanotube Electrodes During Detection of DNA Hybridization

    Science.gov (United States)

    Wallen, Rachel; Gokarn, Nirmal; Bercea, Priscila; Grzincic, Elissa; Bandyopadhyay, Krisanu

    2015-06-01

    Vertically aligned single-walled carbon nanotube (VASWCNT) assemblies are generated on cysteamine and 2-mercaptoethanol (2-ME)-functionalized gold surfaces through amide bond formation between carboxylic groups generated at the end of acid-shortened single-walled carbon nanotubes (SWCNTs) and amine groups present on the gold surfaces. Atomic force microscopy (AFM) imaging confirms the vertical alignment mode of SWCNT attachment through significant changes in surface roughness compared to bare gold surfaces and the lack of any horizontally aligned SWCNTs present. These SWCNT assemblies are further modified with an amine-terminated single-stranded probe-DNA. Subsequent hybridization of the surface-bound probe-DNA in the presence of complementary strands in solution is followed using impedance measurements in the presence of Fe(CN)6 3-/4- as the redox probe in solution, which show changes in the interfacial electrochemical properties, specifically the charge-transfer resistance, due to hybridization. In addition, hybridization of the probe-DNA is also compared when it is attached directly to the gold surfaces without any intermediary SWCNTs. Contrary to our expectations, impedance measurements show a decrease in charge-transfer resistance with time due to hybridization with 300 nM complementary DNA in solution with the probe-DNA attached to SWCNTs. In contrast, an increase in charge-transfer resistance is observed with time during hybridization when the probe-DNA is attached directly to the gold surfaces. The decrease in charge-transfer resistance during hybridization in the presence of VASWCNTs indicates an enhancement in the electron transfer process of the redox probe at the VASWCNT-modified electrode. The results suggest that VASWCNTs are acting as mediators of electron transfer, which facilitate the charge transfer of the redox probe at the electrode-solution interface.

  13. Strain response of stretchable micro-electrodes: Controlling sensitivity with serpentine designs and encapsulation

    International Nuclear Information System (INIS)

    Gutruf, Philipp; Walia, Sumeet; Nur Ali, Md; Sriram, Sharath; Bhaskaran, Madhu

    2014-01-01

    The functionality of flexible electronics relies on stable performance of thin film micro-electrodes. This letter investigates the behavior of gold thin films on polyimide, a prevalent combination in flexible devices. The dynamic behavior of gold micro-electrodes has been studied by subjecting them to stress while monitoring their resistance in situ. The shape of the electrodes was systematically varied to examine resistive strain sensitivity, while an additional encapsulation was applied to characterize multilayer behavior. The realized designs show remarkable tolerance to repetitive strain, demonstrating that curvature and encapsulation are excellent approaches for minimizing resistive strain sensitivity to enable durable flexible electronics

  14. High-voltage electrode optimization towards uniform surface treatment by a pulsed volume discharge

    International Nuclear Information System (INIS)

    Ponomarev, A V; Pedos, M S; Scherbinin, S V; Mamontov, Y I; Ponomarev, S V

    2015-01-01

    In this study, the shape and material of the high-voltage electrode of an atmospheric pressure plasma generation system were optimised. The research was performed with the goal of achieving maximum uniformity of plasma treatment of the surface of the low-voltage electrode with a diameter of 100 mm. In order to generate low-temperature plasma with the volume of roughly 1 cubic decimetre, a pulsed volume discharge was used initiated with a corona discharge. The uniformity of the plasma in the region of the low-voltage electrode was assessed using a system for measuring the distribution of discharge current density. The system's low-voltage electrode - collector - was a disc of 100 mm in diameter, the conducting surface of which was divided into 64 radially located segments of equal surface area. The current at each segment was registered by a high-speed measuring system controlled by an ARM™-based 32-bit microcontroller. To facilitate the interpretation of results obtained, a computer program was developed to visualise the results. The program provides a 3D image of the current density distribution on the surface of the low-voltage electrode. Based on the results obtained an optimum shape for a high-voltage electrode was determined. Uniformity of the distribution of discharge current density in relation to distance between electrodes was studied. It was proven that the level of non-uniformity of current density distribution depends on the size of the gap between electrodes. Experiments indicated that it is advantageous to use graphite felt VGN-6 (Russian abbreviation) as the material of the high-voltage electrode's emitting surface. (paper)

  15. Coaxial fiber supercapacitor using all-carbon material electrodes.

    Science.gov (United States)

    Le, Viet Thong; Kim, Heetae; Ghosh, Arunabha; Kim, Jaesu; Chang, Jian; Vu, Quoc An; Pham, Duy Tho; Lee, Ju-Hyuck; Kim, Sang-Woo; Lee, Young Hee

    2013-07-23

    We report a coaxial fiber supercapacitor, which consists of carbon microfiber bundles coated with multiwalled carbon nanotubes as a core electrode and carbon nanofiber paper as an outer electrode. The ratio of electrode volumes was determined by a half-cell test of each electrode. The capacitance reached 6.3 mF cm(-1) (86.8 mF cm(-2)) at a core electrode diameter of 230 μm and the measured energy density was 0.7 μWh cm(-1) (9.8 μWh cm(-2)) at a power density of 13.7 μW cm(-1) (189.4 μW cm(-2)), which were much higher than the previous reports. The change in the cyclic voltammetry characteristics was negligible at 180° bending, with excellent cycling performance. The high capacitance, high energy density, and power density of the coaxial fiber supercapacitor are attributed to not only high effective surface area due to its coaxial structure and bundle of the core electrode, but also all-carbon materials electrodes which have high conductivity. Our coaxial fiber supercapacitor can promote the development of textile electronics in near future.

  16. Flexible Graphene Electrodes for Prolonged Dynamic ECG Monitoring

    Directory of Open Access Journals (Sweden)

    Cunguang Lou

    2016-11-01

    Full Text Available This paper describes the development of a graphene-based dry flexible electrocardiography (ECG electrode and a portable wireless ECG measurement system. First, graphene films on polyethylene terephthalate (PET substrates and graphene paper were used to construct the ECG electrode. Then, a graphene textile was synthesized for the fabrication of a wearable ECG monitoring system. The structure and the electrical properties of the graphene electrodes were evaluated using Raman spectroscopy, scanning electron microscopy (SEM, and alternating current impedance spectroscopy. ECG signals were then collected from healthy subjects using the developed graphene electrode and portable measurement system. The results show that the graphene electrode was able to acquire the typical characteristics and features of human ECG signals with a high signal-to-noise (SNR ratio in different states of motion. A week-long continuous wearability test showed no degradation in the ECG signal quality over time. The graphene-based flexible electrode demonstrates comfortability, good biocompatibility, and high electrophysiological detection sensitivity. The graphene electrode also combines the potential for use in long-term wearable dynamic cardiac activity monitoring systems with convenience and comfort for use in home health care of elderly and high-risk adults.

  17. Anodized Steel Electrodes for Supercapacitors.

    Science.gov (United States)

    Sagu, Jagdeep S; Wijayantha, K G Upul; Bohm, Mallika; Bohm, Siva; Kumar Rout, Tapan

    2016-03-09

    Steel was anodized in 10 M NaOH to enhance its surface texture and internal surface area for application as an electrode in supercapacitors. A mechanism was proposed for the anodization process. Field-emission gun scanning electron microscopy (FEGSEM) studies of anodized steel revealed that it contains a highly porous sponge like structure ideal for supercapacitor electrodes. X-ray photoelectron spectroscopy (XPS) measurements showed that the surface of the anodized steel was Fe2O3, whereas X-ray diffraction (XRD) measurements indicated that the bulk remained as metallic Fe. The supercapacitor performance of the anodized steel was tested in 1 M NaOH and a capacitance of 18 mF cm(-2) was obtained. Cyclic voltammetry measurements showed that there was a large psueudocapacitive contribution which was due to oxidation of Fe to Fe(OH)2 and then further oxidation to FeOOH, and the respective reduction of these species back to metallic Fe. These redox processes were found to be remarkably reversible as the electrode showed no loss in capacitance after 10000 cycles. The results demonstrate that anodization of steel is a suitable method to produce high-surface-area electrodes for supercapacitors with excellent cycling lifetime.

  18. Three-dimensional modeling of charge transport, injection and recombination in organic light-emitting diodes

    NARCIS (Netherlands)

    Holst, van der J.J.M.

    2010-01-01

    Organic light-emitting diodes (OLEDs) are ideally suited for lighting and display applications. Commercial OLED displays as well as OLED white-light sources are presently being introduced to the market. Essential electronic processes in OLEDs are the injection of electrons and holes into an organic

  19. Al nanogrid electrode for ultraviolet detectors.

    Science.gov (United States)

    Ding, G; Deng, J; Zhou, L; Gan, Q; Hwang, J C M; Dierolf, V; Bartoli, F J; Mazuir, C; Schoenfeld, W V

    2011-09-15

    Optical properties of Al nanogrids of different pitches and gaps were investigated both theoretically and experimentally. Three-dimensional finite-difference time-domain simulation predicted that surface plasmons at the air/Al interface would enhance ultraviolet transmission through the subwavelength gaps of the nanogrid, making it an effective electrode on GaN-based photodetectors to compensate for the lack of transparent electrode and high p-type doping. The predicted transmission enhancement was verified by confocal scanning optical microscopy performed at 365 nm. The quality of the nanogrids fabricated by electron-beam lithography was verified by near-field scanning optical microscopy and scanning electron microscopy. Based on the results, the pitch and gap of the nanogrids can be optimized for the best trade-off between electrical conductivity and optical transmission at different wavelengths. Based on different cutoff wavelengths, the nanogrids can also double as a filter to render photodetectors solar-blind.

  20. Basic electrochemical properties of sputtered gold film electrodes

    International Nuclear Information System (INIS)

    Libansky, Milan; Zima, Jiri; Barek, Jiri; Reznickova, Alena; Svorcik, Vaclav; Dejmkova, Hana

    2017-01-01

    Gold nanolayers made by sputtering of pure gold (physical vapour deposition) are commonly used for many biophysical and material applications. However, the use of sputtering method for fabrication of working electrodes for electroanalytical purposes is less common. This paper focuses on the testing and characterization of sputtered working roughened gold nanostructured film electrodes, which fall into category of upcoming desirable new generation of nanostructured gold working electrodes. Gold nanostructured films (80 nm thin) were sputtered onto 50 μm thin PTFE substrates with three different types of treatment: pristine, plasma treated, and plasma treated and subsequently spontaneously grafted with biphenyl-4,4′-dithiol. The characterization of gold nanostructured film electrodes was carried out by examination of the electrode reaction of standard redox probes (ferrocyanide/ferricyanide, hydroquinone/benzoquinone) in different types of supporting electrolytes (BR buffers of various pH, KCl, KNO 3 , H 2 SO 4 ), by exploration of the electrode surface by scanning electron microscopy, by atomic force microscopy accompanied by elementary analysis and contact angle measurements. The testing of electrodes was complemented by an attempt to calculate their real surface areas from Randles-Sevcik equation. All results were compared to conventional bulk gold electrode. The practical applicability of the nanostructured gold electrodes as sensors for the determination of environmental pollutants was verified by voltammetric determination of hydroquinone as a model electrochemically oxidisable organic environmental pollutant.