WorldWideScience

Sample records for electron beam weld

  1. Electron beam welding

    International Nuclear Information System (INIS)

    Schwartz, M.M.

    1974-01-01

    Electron-beam equipment is considered along with fixed and mobile electron-beam guns, questions of weld environment, medium and nonvacuum welding, weld-joint designs, tooling, the economics of electron-beam job shops, aspects of safety, quality assurance, and repair. The application of the process in the case of individual materials is discussed, giving attention to aluminum, beryllium, copper, niobium, magnesium, molybdenum, tantalum, titanium, metal alloys, superalloys, and various types of steel. Mechanical-property test results are examined along with the areas of application of electron-beam welding

  2. Electron beam welding

    International Nuclear Information System (INIS)

    Gabbay, M.

    1972-01-01

    The bead characteristics and the possible mechanisms of the electron beam penetration are presented. The different welding techniques are exposed and the main parts of an electron beam welding equipment are described. Some applications to nuclear, spatial and other industries are cited [fr

  3. Definition of Beam Diameter for Electron Beam Welding

    Energy Technology Data Exchange (ETDEWEB)

    Burgardt, Paul [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pierce, Stanley W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dvornak, Matthew John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-11

    It is useful to characterize the dimensions of the electron beam during process development for electron beam welding applications. Analysis of the behavior of electron beam welds is simplest when a single number can be assigned to the beam properties that describes the size of the beam spot; this value we generically call the “beam diameter”. This approach has worked well for most applications and electron beam welding machines with the weld dimensions (width and depth) correlating well with the beam diameter. However, in recent weld development for a refractory alloy, Ta-10W, welded with a low voltage electron beam machine (LVEB), it was found that the weld dimensions (weld penetration and weld width) did not correlate well with the beam diameter and especially with the experimentally determined sharp focus point. These data suggest that the presently used definition of beam diameter may not be optimal for all applications. The possible reasons for this discrepancy and a suggested possible alternative diameter definition is the subject of this paper.

  4. Multipass autogenous electron beam welding

    International Nuclear Information System (INIS)

    Murphy, J.L.; Mustaleski, T.M. Jr.; Watson, L.C.

    1986-01-01

    A multipass, autogenous welding procedure was developed for 7.6 mm (0.3 in.) wall thickness Type 304L stainless steel cylinders. The joint geometry has a 1.5 mm (0.06 in.) root-face width and a rectangular stepped groove that is 0.762 mm (0.03 in.) wide at the top of the root face and extends 1.5 mm in height, terminating into a groove width of 1.27 mm which extends to the outside of the 1.27 mm high weld-boss. One weld pass is made on the root, three passes on the 0.762 mm wide groove and three passes to complete the weld. Multipass, autogenous, electron beam welds maintain the characteristic high depth-to-width ratios and low heat input of single-pass, electron beam welds. The increased part distortion (which is still much less than from arc processes) in multipass weldments is corrected by a preweld machined compensation. Mechanical properties of multipass welds compare well with single-pass welds. The yield strength of welds in aluminum alloy 5083 is approximately the same for single-pass or multipass electron beam and gas, metal-arc welds. The incidence and size of porosity is less in multipass electron beam welding of aluminum as compared to gas, metal-arc welds. The multipass, autogenous, electron beam welding method has proven to be a reliable way to make some difficult welds in multilayer parts or in an instance where inside part temperature or weld underbead must be controlled and weld discontinuities must be minimized

  5. Electron backscattering for process control in electron beam welding

    International Nuclear Information System (INIS)

    Ardenne, T. von; Panzer, S.

    1983-01-01

    A number of solutions to the automation of electron beam welding is presented. On the basis of electron backscattering a complex system of process control has been developed. It allows an enlarged imaging of the material's surface, improved adjustment of the beam focusing and definite focus positioning. Furthermore, both manual and automated positioning of the electron beam before and during the welding process has become possible. Monitoring of the welding process for meeting standard welding requirements can be achieved with the aid of a control quantity derived from the results of electronic evaluation of the high-frequency electron backscattering

  6. Effect of beam oscillation on borated stainless steel electron beam welds

    Energy Technology Data Exchange (ETDEWEB)

    RajaKumar, Guttikonda [Tagore Engineering College, Chennai (India). Dept. of Mechanical Engineering; Ram, G.D. Janaki [Indian Institute of Technology (IIT), Chennai (India). Dept. of Metallurgical and Materials Engineering; Rao, S.R. Koteswara [SSN College of Engineering, Chennai (India). Mechanical Engineering

    2015-07-01

    Borated stainless steels are used in nuclear power plants to control neutron criticality in reactors as control rods, shielding material, spent fuel storage racks and transportation casks. In this study, bead on plate welds were made using gas tungsten arc welding (GTAW) and electron beam welding (EBW) processes. Electron beam welds made using beam oscillation technique exhibited higher tensile strength values compared to that of GTA welds. Electron beam welds were found to show fine dendritic microstructure while GTA welds exhibited larger dendrites. While both processes produced defect free welds, GTA welds are marked by partially melted zone (PMZ) where the hardness is low. EBW obviate the PMZ failure due to low heat input and in case of high heat input GTA welding process failure occurs in the PMZ.

  7. Effect of beam oscillation on borated stainless steel electron beam welds

    International Nuclear Information System (INIS)

    RajaKumar, Guttikonda; Ram, G.D. Janaki; Rao, S.R. Koteswara

    2015-01-01

    Borated stainless steels are used in nuclear power plants to control neutron criticality in reactors as control rods, shielding material, spent fuel storage racks and transportation casks. In this study, bead on plate welds were made using gas tungsten arc welding (GTAW) and electron beam welding (EBW) processes. Electron beam welds made using beam oscillation technique exhibited higher tensile strength values compared to that of GTA welds. Electron beam welds were found to show fine dendritic microstructure while GTA welds exhibited larger dendrites. While both processes produced defect free welds, GTA welds are marked by partially melted zone (PMZ) where the hardness is low. EBW obviate the PMZ failure due to low heat input and in case of high heat input GTA welding process failure occurs in the PMZ.

  8. Electron beam welding of iridium heat source capsules

    International Nuclear Information System (INIS)

    Mustaleski, T.M.; Yearwood, J.C.; Burgan, C.E.; Green, L.A.

    1991-01-01

    The development of the welding procedures for the production of DOP-26 iridium alloy cups for heat source encapsulation is described. All the final assembly welds were made using the electron beam welding process. The welding of the 0.13-mm weld shield required the use of computer controlled X-Y table and a run-off tab. Welding of the frit vent to the cup required that a laser weld be made to hold the frit assembly edges together for the final electron beam weld. Great care is required in tooling design and beam placement to achieve acceptable results. Unsuccessful attempts to use laser beam welding for heat shield butt weld are discussed

  9. Design of automatic tracking system for electron beam welding

    International Nuclear Information System (INIS)

    He Chengdan; Chinese Academy of Space Technology, Lanzhou; Li Heqi; Li Chunxu; Ying Lei; Luo Yan

    2004-01-01

    The design and experimental process of an automatic tracking system applied to local vacuum electron beam welding are dealt with in this paper. When the annular parts of an exactitude apparatus were welded, the centre of rotation of the electron gun and the centre of the annular weld are usually not superposed because of the machining error, workpiece's setting error and so on. In this teaching process, a little bundle of electron beam is used to scan the weld groove, the amount of the secondary electrons reflected from the workpiece is different when the electron beam scans the both sides and the centre of the weld groove. The difference can indicate the position of the weld and then a computer will record the deviation between the electron beam spot and the centre of the weld groove. The computer will analyze the data and put the data into the storage software. During the welding process, the computer will modify the position of the electron gun based on the deviation to make the electron beam spot centered on the annular weld groove. (authors)

  10. Welding by using doubly-deflected rotating electron beam

    International Nuclear Information System (INIS)

    Dabek, J.W.; Friedel, K.

    1997-01-01

    The paper presents the welding process by using double-deflected rotating electron beam, as a method to obtain good quality welds. It is shown possible variants of work of modified beam, principles of creation, process control and results of welding. Comparison of quality welds obtained by using traditional and modified electron beams is made too. (author). 11 refs, 8 figs

  11. Shimmed electron beam welding process

    Science.gov (United States)

    Feng, Ganjiang; Nowak, Daniel Anthony; Murphy, John Thomas

    2002-01-01

    A modified electron beam welding process effects welding of joints between superalloy materials by inserting a weldable shim in the joint and heating the superalloy materials with an electron beam. The process insures a full penetration of joints with a consistent percentage of filler material and thereby improves fatigue life of the joint by three to four times as compared with the prior art. The process also allows variable shim thickness and joint fit-up gaps to provide increased flexibility for manufacturing when joining complex airfoil structures and the like.

  12. Electron-beam welding of thorium-doped iridium alloy sheets

    International Nuclear Information System (INIS)

    David, S.A.; Liu, C.T.; Hudson, J.D.

    1979-04-01

    Modified iridium alloys containing 100 ppM Th were found to be very susceptible to hot-cracking during gas tungsten-arc and electron-beam welding. However, the electron-beam welding process showed greater promise of success in welding these alloys, in particular Ir--0.3% W doped with 200 ppM Th and 50 ppM Al. The weldability of this particular alloy was extremely sensitive to the welding parameters, such as beam focus condition and welding speed, and the resulting fusion zone structure. At low speed successful electron-beam welds were made over a narrow range of beam focus conditions. However, at high speeds successful welds can be made over an extended range of focus conditions. The fusion zone grain structure is a strong function of welding speed and focus condition, as well. In the welds that showed hot-cracking, a region of positive segregation of thorium was identified at the fusion boundary. This highly thorium-segregated region seems to act as a potential source for the nucleation of a liquation crack, which later grows as a centerline crack

  13. Electron beam welding fundamentals and applications

    International Nuclear Information System (INIS)

    Mara, G.L.; Armstrong, R.E.

    1975-01-01

    The electron beam welding process is described and the unique mode of operation and penetration explained by a description of the forces operating within the weld pool. This penetration model is demonstrated by high speed cinematography of the weld pool on several materials. The conditions under which weld defects are formed are discussed and examples are presented. (auth)

  14. Some electron beam welding equipments for the nuclear industry

    International Nuclear Information System (INIS)

    Helm, H.; Rodier, R.; Sayegh, G.

    1978-01-01

    Results of various electron beam welding equipment developed for the nuclear industry obtained from a 100 kW electron beam machine to weld thick plates made of stainless steel and reactor steel, and from some equipment with local vacuum to weld pipes onto a pipe wall. (orig.) [de

  15. Numerical simulation of electron beam welding with beam oscillations

    Science.gov (United States)

    Trushnikov, D. N.; Permyakov, G. L.

    2017-02-01

    This research examines the process of electron-beam welding in a keyhole mode with the use of beam oscillations. We study the impact of various beam oscillations and their parameters on the shape of the keyhole, the flow of heat and mass transfer processes and weld parameters to develop methodological recommendations. A numerical three-dimensional mathematical model of electron beam welding is presented. The model was developed on the basis of a heat conduction equation and a Navier-Stokes equation taking into account phase transitions at the interface of a solid and liquid phase and thermocapillary convection (Marangoni effect). The shape of the keyhole is determined based on experimental data on the parameters of the secondary signal by using the method of a synchronous accumulation. Calculations of thermal and hydrodynamic processes were carried out based on a computer cluster, using a simulation package COMSOL Multiphysics.

  16. Application of local vacuum slide sealing electron beam welding procedure

    International Nuclear Information System (INIS)

    Sato, Shozo; Takano, Genta; Minami, Masaharu; Enami, Koji; Uchikawa, Takashi; Kuri, Shuhei

    1982-01-01

    Electron beam welding process is efficient and is superior in workmanship and its application to the welding of large plate structures is eagerly awaited. However, since electron beam welding is generally performed with the object of welding entirely put in a vacuum chamber, high welding cost becomes a problem. In response to this demand, two kinds of local vacuum slide sealing type electron beam welding machines have been developed. These welding machines are designed to perform welding with only the neighborhood of the weld line put in vacuum, one of which is for longitudinal joints and the other for circumferential joints. The welding machine for circumferential joints has been put to practical use for the welding of nucear fusion reactor vacuum vessels (outside diameter 3.5 m, inside diameter 1.7 m), showing that it is applicable to the welding of large structures. (author)

  17. Innovative electron-beam welding of high-melting metals

    International Nuclear Information System (INIS)

    Behr, W.; Reisgen, U.

    2007-01-01

    Since its establishment as nuclear research plant Juelich in the year 1956, the research centre Juelich (FZJ) is concerned with the material processing of special metals. Among those are, above all, the high-melting refractory metals niobium, molybdenum and tungsten. Electron beam welding has always been considered to be an innovative special welding method; in the FZJ, electron beam welding has, moreover, always been adapted to the increasing demands made by research partners and involved manufacturing and design sectors. From the manual equipment technology right up to highly modern multi-beam technique, the technically feasible for fundamental research has, this way, always been realised. (Abstract Copyright [2007], Wiley Periodicals, Inc.) [de

  18. Two-process approach to electron beam welding control

    International Nuclear Information System (INIS)

    Lastovirya, V.N.

    1987-01-01

    The analysis and synthesis of multi-dimensional welding control systems, which require the usage of computers, should be conducted within the temporal range. From the general control theory point two approaches - one-process and two-process - are possible to electron beam welding. In case of two-process approach, subprocesses of heat source formation and direct metal melting are separated. Two-process approach leads to two-profile control system and provides the complete controlability of electron beam welding within the frameworks of systems with concentrated, as well as, with distributed parameters. Approach choice for the given problem solution is determined, first of all, by stability degree of heat source during welding

  19. Electron beam welding of high-purity copper accelerator cells

    International Nuclear Information System (INIS)

    Delis, K.; Haas, H.; Schlebusch, P.; Sigismund, E.

    1986-01-01

    The operating conditions of accelerator cells require high thermal conductivity, low gas release in the ultrahigh vacuum, low content of low-melting metals and an extremely good surface quality. In order to meet these requirements, high-purity copper (OFHC, Grade 1, according to ASTM B 170-82 and extra specifications) is used as structural material. The prefabricated components of the accelerator cells (noses, jackets, flanges) are joined by electron beam welding, the weld seam being assessed on the basis of the same criteria as the base material. The welding procedures required depend, first, on the material and, secondly, on the geometries involved. Therefore experimental welds were made first on standardized specimens in order to study the behaviour of the material during electron beam welding and the influence of parameter variations. The welded joints of the cell design were planned on the basis of these results. Seam configuration, welding procedures and the parameters were optimized on components of original geometry. The experiments have shown that high-quality joints of this grade of copper can be produced by the electron beam welding process, if careful planning and preparation of the seams and adequate containment of the welding pool are assured. (orig.)

  20. Technology of electron beam welding for Zr-4 alloy spacer grid

    International Nuclear Information System (INIS)

    Pei Qiusheng; Wu Xueyi; Yang Qishun

    1989-10-01

    The welding technology for Zr-4 alloy spacer grid by using vacuum electron beam was studied. Through a series of welding technological experiments, metallographic examinations of seam structure and detecting tests for welding defect by X-ray defectoscopy, a good welding technology was selected to meet the requirements. The experimental results indicated that the Zr-4 alloy spacer grid welded by vacuum electron beam welding is feasible

  1. Electron beam welding of heat exchangers

    International Nuclear Information System (INIS)

    Chergov, I.V.; Jarinov, V.I.; Minine, V.A.

    1983-01-01

    For a long time neither qualitative, nor quantitative criteria have been available that would have allowed choosing the most suitable welding techniques from the three stated below: 1) electron gun rotates relative to stationary tube; 2) electron beam is magnetically deviated relative to stationary tube; 3) permanent deviation magnet is rotated mechanically relative to stationary tube and gun. To our experience, the 2nd technique is most promising when welding 16x1.5 diameter stainless tubes. The e-b welds are vulnerable to root defects. With welding done in a movable manner, the root defect area will be found to locate in the tube plate body and, hence, the weldment, as a whole, will not be impaired [fr

  2. Electron beam welding of aluminium components

    International Nuclear Information System (INIS)

    Maajid, Ali; Vadali, S.K.; Maury, D.K.

    2015-01-01

    Aluminium is one of the most widely used materials in industries like transportation, shipbuilding, manufacturing, aerospace, nuclear, etc. The challenges in joining of aluminium are distortion, cleanliness and quality. Main difficulties faced during fusion welding of aluminium components are removal of surface oxide layer, weld porosity, high heat input requirement, distortion, hot cracking, etc. Physical properties of aluminium such as its high thermal conductivity, high coefficient of thermal expansion, no change in colour at high temperature, large difference in the melting points of the metal and its oxide (∼ 1400 °C) compound the difficulties faced during welding. Gas Tungsten Arc Welding (GTAW), Gas Metal Arc Welding (GMAW), Plasma Arc Welding (PAW), etc are generally used in industries for fusion welding of aluminium alloys. However in case of thicker jobs the above processes are not suitable due to requirements of elaborate edge preparation, preheating of jobs, fixturing to prevent distortion, etc. Moreover, precise control over the heat input during welding and weld bead penetration is not possible with above processes. Further, if heat sensitive parts are located near the weld joint then high energy density beam welding process like Electron Beam Welding (EBW) is the best possible choice for aluminium welding.This paper discusses EB welding of aluminium components, typical geometry of components, selection/optimization of welding parameters, problems faced during standardization of welding and process parameters and their remedies etc.

  3. Fundamental studies on electron beam welding on heat resistant superalloys for nuclear plants, 6

    International Nuclear Information System (INIS)

    Susei, Syuzo; Shimizu, Sigeki; Nagai, Hiroyoshi; Aota, Toshikazu; Satoh, Keisuke

    1980-01-01

    In this report, base metal of superalloys for nuclear plants, its electron beam and TIG weld joints were compared with each other in the mechanical properties. Obtained conclusions are summarized as follows: 1) TIG weld joint is superior to electron beam weld joint and base metal in 0.2% proof stress irrespective of the material, and electron beam weld joint is also superior to base metal. There is an appreciable difference in tensile stress between base metal and weld joint regardless of the materials. Meanwhile, electron beam weld joint is superior to TIG weld joint in both elongation and reduction of area. 2) Electron beam weld joint has considerably higher low-cycle fatigue properties at elevated temperatures than TIG weld joint, and it is usually as high as base metal. 3) In the secondary creep rate, base metal of Hastelloy X (HAEM) has higher one than its weld joints. However, electron beam weld joint is nearly comparable to the base metal. 4) There is hardly any appreciable difference between base metal and weld joint in the creep rupture strength without distinction of the material. In the ductility, base metal is much superior and is followed by electron beam weld joint and TIG weld joint in the order of high ductility. However, electron beam weld joint is rather comparable to base metal. 5) In consideration of welded pipe with a circumferential joint, the weld joint should be evaluated in terms of secondary creep rate, elongation and rupture strength. As the weld joint of high creep rupture strength approaches the base metal in the secondary creep rate and the elongation, it seems to be more resistant against the fracture due to creep deformation. In this point of view, electron beam weld joint is far superior to TIG weld joint and nearly comparable to the base metal. (author)

  4. Testing of electron beam welding by ultrasonic transducers

    International Nuclear Information System (INIS)

    Touffait, A.-M.; Roule, M.; Destribats, M.-T.

    1978-01-01

    Focalized ultrasonic testing is well adapted to the study of electron beam welding. This type of welding leads to narrow weld beads and to small dimension testing zones. Focalized transducers can be used enabling very small defects to be detected [fr

  5. Electron Beam Welding of Gear Wheels by Splitted Beam

    Directory of Open Access Journals (Sweden)

    Dřímal Daniel

    2014-06-01

    Full Text Available This contribution deals with the issue of electron beam welding of high-accurate gear wheels composed of a spur gearing and fluted shaft joined with a face weld for automotive industry. Both parts made of the high-strength low-alloy steel are welded in the condition after final machining and heat treatment, performed by case hardening, whereas it is required that the run-out in the critical point of weldment after welding, i. e. after the final operation, would be 0.04 mm max..

  6. Investigations in thermal fields and stress fields induced by electron beam welding

    International Nuclear Information System (INIS)

    Basile, G.

    1979-12-01

    This document presents the thermal study of electron beam welding and identifies stresses and strains from welding: description of the operating principles of the electron gun and characterization of various welding parameters, examination of the temperature fields during electron beam welding development of various mathematic models and comparison with experimental results, measurement and calculation of stresses and strains in the medium plane of the welding assembly, residual stresses analysis [fr

  7. Electron Beam Welding of a Depleted Uranium Alloy to Niobium Using a Calibrated Electron Beam Power Density Distribution

    International Nuclear Information System (INIS)

    Elmer, J.W.; Teruya, A.T.; Terrill, P.E.

    2000-01-01

    Electron beam test welds were made joining flat plates of commercially pure niobium to a uranium-6wt%Nb (binary) alloy. The welding parameters and joint design were specifically developed to minimize mixing of the niobium with the U-6%Nb alloy. A Modified Faraday Cup (MFC) technique using computer-assisted tomography was employed to determine the precise power distribution of the electron beam so that the welding parameters could be directly transferred to other welding machines and/or to other facilities

  8. Electron-beam welding of aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Brillant, Marcel; de Bony, Yves

    1980-08-15

    The objective of this article is to describe the status of the application of electron-beam welding to aluminum alloys. These alloys are widely employed in the aeronautics, space and nuclear industries.

  9. Laser and electron beam welding of Ti-alloys: Literature review

    Energy Technology Data Exchange (ETDEWEB)

    Cam, G; Santos, J.F. dos; Kocak, M [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Werkstofforschung

    1998-12-31

    The welding of titanium alloys must be conducted in completely inert or vacuum environments due to the strong affinity of titanium to oxygen. Residual stresses in titanium welds can greatly influence the performance of a fabricated aerospace component by degrading fatigue properties. Moreover, distortion can cause difficulties in the final assembly and operation of high-tolerance aerospace systems. Power beam welding processes, namely laser and electron beam welding, offer remarkable advantages over conventional fusion welding processes and have a great potential to produce full-penetration, single-pass autogenous welds with minimal component distortion due to low heat input and high reproducibility of joint quality. Moreover, electron beam welding process, which is conducted in a vacuum chamber, inherently provides better atmospheric protection. Although considerable progress has been made in welding of titanium alloys by power beam processes, there is still a lack of a complete set of mechanical properties data of these joints. Furthermore, the problem of solid-state cracking in fusion welding of {gamma}-TiAl intermetallic alloys due to their low ductility is still to be overcome. The purpose of this literature review is to outline the progress made in this area and to provide basic information for the Brite-Euram project entitled assessment of quality of power beam weld joints ``ASPOW``. (orig.) 31 refs.

  10. Electron beam welding of dissimilar metals

    International Nuclear Information System (INIS)

    Metzger, G.; Lison, R.

    1976-01-01

    Thirty-three two-memeber combinations of dissimilar metals were electron beam welded as square-groove butt joints in 0.08 and 0.12 in. sheet material. Many joints were ''braze welded'' by offsetting the electron beam about 0.02 in. from the butt joint to achieve fusion of the lower melting point metal, but no significant fusion of the other member of the pair. The welds were evaluated by visual and metallographic examination, transverse tensile tests, and bend tests. The welds Ag/Al, Ag/Ni15Cr7Fe, Cu/Ni15Cr7Fe, Cu/V, Cu20Ni/Ni15Cr7Fe, Fe18Cr8Ni/Ni, Fe18Cr8Ni/Ni15Cr7Fe, Nb/Ti, Nb/V, Ni/Ni15Cr7Fe, and Cb/V10Ti were readily welded and weld properties were excellent. Others which had only minor defects included the Ag/Cu20Ni, Ag/Ti, Ag/V, Cu/Fe18Cr8Ni, Cu/V10Ti, Cu20Ni/Fe18Cr8Ni, and Ti/Zr2Sn welds. The Cu/Ni weld had deep undercut, but was in other respects excellent. The mechanical properties of the Ag/Fe18Cr8Ni weld were poor, but the defect could probably be corrected. Difficulty with cracking was experienced with the Al/Ni and Fe18Cr8Ni/V welds, but sound welds had excellent mechanical properties. The remaining welds Al-Cu, Al/Cu20Ni, Al/Fe18Cr8Ni, Al/Ni15Cr7Fe, Cu20Ni/V, Cu20Ni/V10Ti, Cb/Zr2Sn, Ni/Ti, Ni15Cr7Fe/V, Ni15Cr7Fe/V10Ti, and Ti/V were unsuccessful, due to brittle phases, primarily at the weld metal-base metal interface. In addition to the two-member specimens, several joints were made by buttering. Longitudinal weld specimens of the three-member combination Al/Ni/Fe18Cr8Ni and the five member combination Fe18Cr8Ni/V/Cb/Ti/Zr2Sn showed good tensile strength and satisfactory elongation. 6 tables, 16 figures

  11. Comparative estimation of the properties of heat resisting nickel alloy welded joints made by electron-beam and arc welding

    International Nuclear Information System (INIS)

    Morochko, V.P.; Sorokin, L.I.; Yakushin, B.F.; Moryakov, V.F.

    1977-01-01

    As compared to argon arc welding of refractory nickel alloys at 15 m/hour rate, electron beam welding decreases energy consumption per unit length (from 4300 to 2070 cal/cm), the weld area (from 108 to 24 mm 2 ), and the length of the thermal effect zone (from 0.9-1.8 to 0.4-0.8 mm). Electron beam welding also provides for better resistance to hot cracking in the weld metal and in the near-weld zone, as compared to automatic argon arc welding and manual welding with addition of the basic metal. However, this advantage is observed only at welding rates less than 45 m/hour. Electron beam welded joints of refractory nickel alloys with intermetallide reinforcement have higher strength, plasticity and impact strength, and lower scattering of these properties than arc welded joints

  12. Today's status of application of high power electron beam welding to heavy electric machinery

    International Nuclear Information System (INIS)

    Kita, Hisanao; Okuni, Tetsuo; Sejima, Itsuhiko.

    1980-01-01

    The progress in high energy welding is remarkable in recent years, and electron beam welding is now widely used in heavy industries. However, there are number of problems to be solved in the application of high power electron beam welding to ultra thick steel plates (over 100 mm). The following matters are described: the economy of high power electron beam welding; the development of the welding machines; the problems in the actual application; the instances of the welding in a high-pressure spherical gas tank, non-magnetic steel structures and high-precision welded structures; weldor training; etc. For the future rise in the capacities of heavy electric machinery, the high efficiency by high power electron beam welding will be useful. The current status is its applications to the high-precision welding of large structures with 6 m diameter and the high-quality welding of heavy structures with 160 mm thickness. (J.P.N.)

  13. Electron-beam fusion welding of beryllium

    International Nuclear Information System (INIS)

    Campbell, R.P.; Dixon, R.D.; Liby, A.L.

    1978-01-01

    Ingot-sheet beryllium (Be) having three different chemistries and three different thicknesses was fusion-welded by the electron-beam process. Several different preheats were used to obtain 100% penetration and crack-free welds. Cracking susceptability was found to be related to aluminum (Al) content; the higher Al-content material was most susceptable. However, adequate preheat allowed full penetration and crack-free welds to be made in all materials tested. The effect of a post-weld heat treatment on the mechanical properties of these compositions was also determined. The heat treatment produced no significant effect on the ultimate tensile strength. However, the yield strength was decreased and the ductility was increased. These changes are attributed to the formation of AlFeBe 4 and FeBe 11

  14. Cu-Fe welding techniques by electromagnetic and electron beam welding processes

    International Nuclear Information System (INIS)

    Kumar, Satendra; Saroj, P.C.; Kulkarni, M.R.; Sharma, A.; Rajawat, R.K.; Saha, T.K.

    2015-01-01

    Electromagnetic welding being a solid state welding process has been found suitable for welding Copper and Iron which are conventionally very tricky. Owing to good electrical conductivity of both copper and iron, they are best suited combination for EM welding. For the experimental conditions presented above, 1.0 mm wall thickness of Cu tube was lap welded to Fe disc. A heavy duty four disc stainless steel coil was used for electromagnetic welding of samples. MSLD of the welded samples indicated leak proof joints. Metallographic examination of the welds also revealed defect free interfaces. Electron beam welding is also a non-conventional welding process used for joining dissimilar materials. Autogenous welding of the above specimen was carried out by EBW method for the sake of comparison. A characterization analysis of the above mentioned joining processes will be discussed in the paper. (author)

  15. Electron beam welding: study of process capabilities and limitations towards development of nuclear components

    International Nuclear Information System (INIS)

    Vadolia, Gautam; Singh, Kongkham Premjit

    2015-01-01

    Electron beam (EB) welding technology is an established and widely adopted technique in nuclear research and development area. Electron Beam welding is thought of as a candidate process for ITER Vacuum Vessel Fabrication. Dhruva Reactor @ BARC, Mumbai and Niobium Superconducting accelerator Cavitity @ BARC has adopted the EB welding technique as a fabrication route. The highly concentrated energy input of the electron beam has added the advantages over the conventional welding as being less HAZ and provided smooth and clean surface. EB Welding has also been used for the joining of various reactive and refractory materials. EB system as heat source has also been used for vacuum brazing application. The Welding Institute (TWI) has demonstrated that EBW is potentially suitable to produce high integrity joints in 50 mm pure copper. TWI has also examined 150 kV Reduced Pressure Electron Beam (RPEB) gun in welding 140 mm and 147 mm thickness Nuclear Reactor Pressure Vessel Steel (SA 508 grade). EBW in 10 mm thick SS316 plates were studied at IPR and results were encouraging. In this paper, the pros and cons and role of electron beam process will be studied to analyze the importance of electron beam welding in nuclear components fabrication. Importance of establishing the high precision Wire Electro Discharge Machining (WEDM) facility will also be discussed. (author)

  16. Structure and properties of an aluminium alloy welded by electron beam

    International Nuclear Information System (INIS)

    Ruzimov, Sh.M.; Palvanov, S.R.; Pogrebnjak, A.D.

    2005-01-01

    Full text: In the given work the experimental results on research of influence of electronic beams on structure of an aluminum alloy are submitted. As a basis of samples the alloy Al-Mg-Zn-Cu by the additives Se-0.5 % and Nb-0.15 % is chosen. Samples from a cast aluminum alloy by thickness of 3 mm such as B-96 were welded with an electronic beam in three different modes at radius circle of a root of a welded seam of 5 mm. The welding was carried out by an alloy Amg 63 and Sv-1571 with application electron team welding joint of parts. The basic influence on the given process makes energy - allocation of an electronic beam. For research of phase structure used of X-ray beams (XRD), DRON-2 in copper K α - Cu measurement. For research of structure and morphology of a surface used optical microscope with increase 800-1500 times and electronic microscope with the microanalysis. On figures of optical microscopy the morphology of a seam sharply differs from morphology of an initial part. The microanalysis carried out with a place of a seam, has shown presence of the whole spectrum of elements, such as, Al; Zn; Na; Mg; Cu; and Mn. All measurements carried out in welding zone and in frontier zones that it was possible to carry out the comparative analysis. The element structure of these zones essentially differs in dependence of a condition of welding

  17. Evaluation of a method to shield a welding electron beam from magnetic interference

    Science.gov (United States)

    Wall, W. A.

    1976-01-01

    It is known that electron beams are easily deflected by magnetic and electrostatic fields. Therefore, to prevent weld defects, stray electromagnetic fields are avoided in electron beam welding chambers if at all possible. The successful results of tests conducted at MSFC to evaluate a simple magnetic shield made from steel tubing are reported. Tests indicate that this shield was up to 85 percent effective in reducing magnetic effects on the electron beam of a welding machine. In addition, residual magnetic fields within the shield were so nearly uniform that the net effect on the beam alignment was negligible. It is concluded that the shield, with the addition of a tungsten liner, could be used in production welding.

  18. Measuring and recording system for electron beam welding parameters

    International Nuclear Information System (INIS)

    Lobanova, N.G.; Lifshits, M.L.; Efimov, I.I.

    1987-01-01

    The observation possibility during electron beam welding of circular articles with guaranteed clearance of welding bath leading front in joint gap and flare cloud over the bath by means of television monitor is considered. The composition and operation mode of television measuring system for metric characteristics of flare cloud and altitude of welding bath leading front in the clearance are described

  19. Electron Beam Welding of Thick Copper Material

    Energy Technology Data Exchange (ETDEWEB)

    Broemssen, Bernt von [IVF Industriforskning och utveckling AB, Stockholm (Sweden)

    2002-08-01

    The purpose of this study was to review the two variants of the Electron Beam Welding (EBW) processes developed (or used) by 1- SKB, Sweden with assistance from TWI, England and 2 - POSIVA, Finland with assistance from Outokumpu, Finland. The aim was also to explain the principle properties of the EBW method: how it works, the parameters controlling the welding result but also giving rise to benefits, and differences between the EBW variants. The main conclusions are that both SKB and POSIVA will within a few years succeed to qualify their respective EBW method for welding of copper canisters. The Reduced Pressure EBW that SKB use today seems to be very promising in order to avoid root defects. If POSIVA does not succeed to avoid root defects with the high vacuum method and the beam oscillation technique it should be possible for POSIVA to incorporate the Reduced Pressure technique albeit with significant changes to the EBW equipment. POSIVA has possibly an advantage over SKB with the beam oscillation technique used, which gives an extra degree of freedom to affect the weld quality. The beam oscillation could be of importance for closing of the keyhole. Before EBW of lids, the material certification showing the alloy content (specifying min and max impurity percentages) and the mechanical properties should be checked. The welded material needs also to be tested for mechanical properties. If possible the weld should have a toughness level equal to that of the unwelded parent material. Specifically some conclusions are reported regarding the SKB equipment. Suggestions for further development are also given in the conclusion chapter.

  20. Electron Beam Welding of Thick Copper Material

    International Nuclear Information System (INIS)

    Broemssen, Bernt von

    2002-08-01

    The purpose of this study was to review the two variants of the Electron Beam Welding (EBW) processes developed (or used) by 1- SKB, Sweden with assistance from TWI, England and 2 - POSIVA, Finland with assistance from Outokumpu, Finland. The aim was also to explain the principle properties of the EBW method: how it works, the parameters controlling the welding result but also giving rise to benefits, and differences between the EBW variants. The main conclusions are that both SKB and POSIVA will within a few years succeed to qualify their respective EBW method for welding of copper canisters. The Reduced Pressure EBW that SKB use today seems to be very promising in order to avoid root defects. If POSIVA does not succeed to avoid root defects with the high vacuum method and the beam oscillation technique it should be possible for POSIVA to incorporate the Reduced Pressure technique albeit with significant changes to the EBW equipment. POSIVA has possibly an advantage over SKB with the beam oscillation technique used, which gives an extra degree of freedom to affect the weld quality. The beam oscillation could be of importance for closing of the keyhole. Before EBW of lids, the material certification showing the alloy content (specifying min and max impurity percentages) and the mechanical properties should be checked. The welded material needs also to be tested for mechanical properties. If possible the weld should have a toughness level equal to that of the unwelded parent material. Specifically some conclusions are reported regarding the SKB equipment. Suggestions for further development are also given in the conclusion chapter

  1. Contribution to a research on electron beam welding of metals

    International Nuclear Information System (INIS)

    Stohr, J.

    1964-03-01

    The electron beam welding of metals is performed by the travelling of the focusing point along the junction of two pieces to be connected. Welding parameters are the electron gun power W, the value of the electron impact surface S, the welding speed s. From the beginning of our research in 1954, the preponderant part played by specific power W/s on the shape of the welded zone and the penetrating depth, became evident. A more methodical research has been undertaken in the laboratories of C.E.N. under the patronage of Professor CHAUDRON, in order to define in a better way the importance of the different welding parameters and to determine their influence on the metallurgical qualities of welded assemblies. This research induced us to define an electron gun adapted as well as possible to the performance of weldings, not only from the point of view of behaviour, especially during the passage from the atmospheric to a low pressure at 10 -5 Torr, necessary for the carrying out of a welding, but also from the point of view of adjustment conveniences of the different welding parameters, indispensable to the intended research work. The variations of welding parameters show that the shape of the molten zone turns from a circle segment to that of a very high triangle, which implies a continual change of the mode of heat transmission. Tests have been made, in order to confirm this way of looking, especially in order to achieve isotherms in dynamic operating and also the comparison of these isotherms with that recorded while using a method of argon arc welding. The thermal balance of energy supplied to the part, the necessary welding energy, and the energy loss (through conduction, radiation and evaporation) has also been established. These results proved that almost the whole of energy has been used for melting, that the different losses are negligible and that heat transmission can not occur by thermal conduction through the part during 'welding' time, when operating under

  2. Microstructural Characteristics and Mechanical Properties of an Electron Beam-Welded Ti/Cu/Ni Joint

    Science.gov (United States)

    Zhang, Feng; Wang, Ting; Jiang, Siyuan; Zhang, Binggang; Feng, Jicai

    2018-05-01

    Electron beam welding experiments of TA15 titanium alloy to GH600 nickel superalloy with and without a copper sheet interlayer were carried out. Surface appearance, microstructure and phase constitution of the joint were examined by optical microscopy, scanning electron microscopy and x-ray diffraction analysis. Mechanical properties of Ti/Ni and Ti/Cu/Ni joint were evaluated based on tensile strength and microhardness tests. The results showed that cracking occurred in Ti/Ni electron beam weldment for the formation of brittle Ni-Ti intermetallics, while a crack-free electron beam-welded Ti/Ni joint can be obtained by using a copper sheet as filler metal. The addition of copper into the weld affected the welding metallurgical process of the electron beam-welded Ti/Ni joint significantly and was helpful for restraining the formation of Ti-Ni intermetallics in Ti/Ni joint. The microstructure of the weld was mainly characterized by a copper-based solid solution and Ti-Cu interfacial intermetallic compounds. Ti-Ni intermetallic compounds were almost entirely suppressed. The hardness of the weld zone was significantly lower than that of Ti/Ni joint, and the tensile strength of the joint can be up to 282 MPa.

  3. Microstructure evolution of electron beam welded Ti3Al-Nb joint

    International Nuclear Information System (INIS)

    Feng Jicai; Wu Huiqiang; He Jingshan; Zhang Bingang

    2005-01-01

    The microstructure evolution characterization in high containing Nb, low Al titanium aluminide alloy of electron beam welded joints was investigated by means of OM, SEM, XRD, TEM and microhardness analysis. The results indicated that the microstructure of the weld metal made with electron beam under the welding conditions employed in this work was predominantly metastable, retaining ordered β phase (namely B2 phase), and was independent of the welding parameters but independent of the size and the orientation of the weld solidification structures. As the heat input is decreased, the cellular structure zone is significantly reduced, and then the crystallizing morphology of fusion zone presented dendritically columnar structure. There existed grain growth coarsening in heat affected zone (HAZ) for insufficient polygonization. Both fusion zone (FZ) and the HAZ had higher microhardness than the base metal

  4. The fracture mechanics of steam turbine electron beam welded rotors

    International Nuclear Information System (INIS)

    Coulon, P.A.

    1987-01-01

    Increased steam turbine unit ratings presupposes that steelmakers are capable of manufacturing larger and larger rotor components. However, there are few steelmakers in the world capable of manufacturing monobloc rotors for high rated turbines, which limits the choice of supplier. Most nuclear turbine rotors have a composite arrangement and are made either by shrinking discs on a shaft or using elements welded together. Those in favour of welding have applied a classical socalled ''submerged'' method using a filler metal. However welding can also be performed by using an Electron Beam in a vacuum room without a filler metal. This technique has many advantages: mechanical characteristics of the joint are identical to those of the base material after tempering without heat affected zones. Moreover, parts are only very slightly deformed during welding. Two steam turbine rotors have been produced in this way. This paper described the destructive tests carried out in the four Electron Beam (EB) welds (two on each rotor)

  5. Fundamental studies of electron beam welding of heat-resistant superalloys for nuclear plants, 5

    International Nuclear Information System (INIS)

    Arata, Yoshiaki; Terai, Kiyohide; Nagai, Hiroyoshi; Shimizu, Shigeki; Aota, Toshiichi.

    1978-01-01

    In this paper, the mechanical properties of base metal, its electron beam and TIG weld joint of superalloys for nuclear plants were made clear and compared with each other. As a result, it has been clarified that electron beam weld joint is superior to TIG weld joint and nearly comparable to base metal. (author)

  6. Fundamental studies on electron-beam welding of heat-resistant superalloys for nuclear plants: Report 4. Mechanical properties of welded joints

    International Nuclear Information System (INIS)

    Susei, S.; Shimizu, S.; Aota, T.

    1982-04-01

    In this report, electron-beam (EB) welded joints and TIG welded joints of various superalloys to be used for nuclear plants, such as Hastelloy-type, Inconel-type and Incoloy-type, are systematically evaluated in terms of tensile properties, low-cycle fatigue properties at elevated temperatures, creep and creep-rupture properties. It was fully confirmed as conclusion that the EB welded joints are superior to the TIG welded ones in mechanical properties, especially at high temperature. In the evaluation of creep properties, ductility is one of the most important criteria to represent the resistance against fracture due to creep deformation, and this criterion is very useful in evaluating the properties of welded joints. Therefore, the more comparable to the base metal the electron beam welded joint becomes in terms of ductility, the more resistant is it against fracture. From this point of view, the electron beam welded joint is considerably superior to the TIG welded joint [fr

  7. Electron beam welding of heavy section 3Cr-1.5Mo alloy

    International Nuclear Information System (INIS)

    King, J.F.; David, S.A.; Nasreldin, A.

    1986-01-01

    Welding of thick section steels is a common practice in the fabrication of pressure vessels for energy systems. The fabrication cost is strongly influenced by the speed at which these large components can be welded. Conventional welding processes such as shielded metal arc (SMA) and submerged arc (SA) are time-consuming and expensive. Hence there is a great need to reduce welding time and the tonnage of weld metal deposited. Electron beam welding (EBW) is a process that potentially could be used to achieve dramatic reduction in the welding time and costs. The penetrating ability of the beam produces welds with high depth-to-width ratios at relatively high travel speeds, making it possible to weld thick sections with one or two passes without filler metals and other consumables. The paper describes a study that was undertaken to investigate the feasibility of using a high power electron beam welding machine to weld heavy section steel. The main emphasis of this work was concentrated on determining the mechanical properties of the resulting weldment, characterizing the microstructure of the various weldment regions, and comparing these results with those from other processes. One of the steels selected for the heavy section electron beam welding study was a new 3 Cr-1.5 Mo-0.1 V alloy. The steel was developed at the AMAX Materials Research Center by Wada and co-workers for high temperature, high pressure hydrogen service as a possible improved replacement for 2-1/4 Cr-1 Mo steels. The excellent strength and toughness of this steel make it a promising candidate for future pressure vessels such as those for coal gasifiers. The work was conducted on 102 mm (4 in.) thick plates of this material in the normalized-and-tempered condition

  8. Study of residual stresses in CT test specimens welded by electron beam

    Science.gov (United States)

    Papushkin, I. V.; Kaisheva, D.; Bokuchava, G. D.; Angelov, V.; Petrov, P.

    2018-03-01

    The paper reports result of residual stress distribution studies in CT specimens reconstituted by electron beam welding (EBW). The main aim of the study is evaluation of the applicability of the welding technique for CT specimens’ reconstitution. Thus, the temperature distribution during electron beam welding of a CT specimen was calculated using Green’s functions and the residual stress distribution was determined experimentally using neutron diffraction. Time-of-flight neutron diffraction experiments were performed on a Fourier stress diffractometer at the IBR-2 fast pulsed reactor in FLNP JINR (Dubna, Russia). The neutron diffraction data estimates yielded a maximal stress level of ±180 MPa in the welded joint.

  9. Research on electron beam welding technology of steel HR-4

    International Nuclear Information System (INIS)

    Guo Peng; Guan Kai

    2001-01-01

    The electron beam weldability of HR- 4 steels (J75 and J90) is studied and the welding parameters needed for design and usage are presented. The assessment on the effect of mechanical properties by different processing order of welding and heat-treatment is made

  10. THE INFLUENCE OF POSTHEAT TREATMENT ON FERRITE REDISTRIBUTION IN DUPLEX STEELS ELECTRON BEAM WELDS

    OpenAIRE

    Zita Iždinská; František Kolenič

    2009-01-01

    The duplex stainless steel is two-phase steel with the structure composed of austenite and ferrite with optimum austenite/ferrite proportion 50%. At present, classical arc processes for welding duplex steels are generally regarded as acceptable. On the other hand electron and laser beam welding is up to now considered less suitable for welding duplex steels. The submitted work presents the results of testing various thermal conditions at welding duplex stainless steel with electron beam. It w...

  11. Electron beam welding using fusion and cold wire fill

    International Nuclear Information System (INIS)

    Kuncz, F.F.

    1977-01-01

    A straight-fusion (self-filler) welding technique generally poses no problem for electron beam welding. However, where control of penetration is a critical item and burn-through cannot be tolerated, this technique may not be satisfactory. To assure against beam-spike burn-through on a 1/4-inch deep weld joint, a low-power root-fusion pass, supplemented by numerous filler passes, was selected. However, this technique proved to have numerous problems. Voiding and porosity showed frequently in the first applications of this cold-wire filler process. Taper-out cratering, bead-edge undercutting, and spatter were also problems. These imperfections, however, were overcome. Employment of a circle generator provided the necessary heating of the joint walls to eliminate voids. The moving beam spot also provided a stirring action, lessening porosity. Taper-out cratering was eliminated by adjusting the timing of the current cutoff and wire-feed cutoff. Undercutting, bead height, and spatter were controlled by beam defocus

  12. THE INFLUENCE OF POSTHEAT TREATMENT ON FERRITE REDISTRIBUTION IN DUPLEX STEELS ELECTRON BEAM WELDS

    Directory of Open Access Journals (Sweden)

    Zita Iždinská

    2009-04-01

    Full Text Available The duplex stainless steel is two-phase steel with the structure composed of austenite and ferrite with optimum austenite/ferrite proportion 50%. At present, classical arc processes for welding duplex steels are generally regarded as acceptable. On the other hand electron and laser beam welding is up to now considered less suitable for welding duplex steels. The submitted work presents the results of testing various thermal conditions at welding duplex stainless steel with electron beam. It was shown, that application of suitable postheat made possible to reduce the ferrite content in weld metal.

  13. Possibility of designing television control system for welded joint formation on electron beam welding

    International Nuclear Information System (INIS)

    Lifshits, M.L.; Lobanova, N.G.

    1987-01-01

    Regression equations (models), connecting seam characteristics: width and depth with the welding bath leading front in joint gap and seam width respectively - are obtained at electron beam welding of circular articles with guaranteed clearance with application of television control system. Dispersion analysis showed the models adequancy to the process in the range, where they were identified

  14. Effect of weld spacing on microstructure and mechanical properties of CLAM electron beam welding joints

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Yutao; Huang, Bo, E-mail: aufa0007@163.com; Zhang, Junyu; Zhang, Baoren; Liu, Shaojun; Huang, Qunying

    2016-11-15

    Highlights: • The welded joints of CLAM steel with different weld spacings have been fabricated with electron beam welding, and a simplified model of CLAM sheet was proposed. • The microstructure and mechanical properties such as microhardness, impact and tensile were investigated at different welding spacing for both conditions of as-welded and post weld heat treatment (PWHT). • The effect of the welding thermal cycle was significantly when the weld spacings were smaller than 4 mm. • When the weld spacing was small enough, the original microstructures would be fragmented with the high heat input. - Abstract: China low activation martensitic (CLAM) steel has been chosen as the primary structural material in the designs of dual function lithium-lead (DFLL) blanket for fusion reactors, China helium cooled ceramic breeder (HCCB) test blanket module (TBM) for ITER and China fusion engineering test reactor (CFETR) blanket. The cooling components of the blankets are designed with high density cooling channels (HDCCs) to remove the high nuclear thermal effectively. Hence, the welding spacing among the channels are small. In this paper, the welded joints of CLAM steel with different weld spacings have been fabricated with electron beam welding (EBW). The weld spacing was designed to be 2 mm, 3 mm, 4 mm, 6 mm and 8 mm. The microstructure and mechanical properties such as microhardness, impact and tensile were investigated at different welding spacing for both conditions of as-welded and post weld heat treatment (PWHT). The PWHT is tempering at 740 °C for 120 min. The results showed that the grain size in the heat affected zone (HAZ) increased with the increasing weld spacing, and the joint with small weld spacing had a better performance after PWHT. This work would give useful guidance to improve the preparation of the cooling components of blanket.

  15. Microstructure and mechanical properties of electron beam welded dissimilar steel to Fe–Al alloy joints

    Energy Technology Data Exchange (ETDEWEB)

    Dinda, Soumitra Kumar; Basiruddin Sk, Md.; Roy, Gour Gopal [Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur (India); Srirangam, Prakash, E-mail: p.srirangam@warwick.ac.uk [Warwick Manufacturing Group (WMG), University of Warwick, Coventry CV4 7AL (United Kingdom)

    2016-11-20

    Electron beam welding (EBW) technique was used to perform dissimilar joining of plain carbon steel to Fe–7%Al alloy under three different weld conditions such as with beam oscillation, without beam oscillation and at higher welding speed. The effect of weld parameters on the microstructure and mechanical properties of dissimilar joints was studied using optical microscopy, SEM, EBSD, hardness, tensile and erichsen cup tests. Microstructure results show that the application of beam oscillation resulted in uniform and homogeneous microstructure compared to without beam oscillations and higher welding speed. Further, it was observed that weld microstructure changes from equiaxed to columnar grains depending on the weld speed. High weld speed results in columnar grain structure in the weld joint. Erichsen cup test results show that the application of beam oscillation results in excellent formability as compared to high weld speed. Tensile test results show no significant difference in strength properties in all three weld conditions, but the ductility was found to be highest for joints obtained with the application of weld beam oscillation as compared to without beam oscillation and high weld speed. This study shows that the application of beam oscillations plays an important role in improving the weld quality and performance of EBW dissimilar steel to Fe–Al joints.

  16. Evaluation of Electron Beam Welding Performance of AA6061-T6 Plate-type Fuel Assembly

    International Nuclear Information System (INIS)

    Kim, Soo-Sung; Seo, Kyoung-Seok; Lee, Don-Bae; Park, Jong-Man; Lee, Yoon-Sang; Lee, Chong-Tak

    2014-01-01

    As one of the most commonly used heat-treatable aluminum alloys, AA6061-T6 aluminum alloy is available in a wide range of structural materials. Typically, it is used in structural members, auto-body sheet and many other applications. Generally, this alloy is easily welded by conventional GTAW (Gas Tungsten Arc Welding), LBW (Laser Beam Welding) and EBW(Electron Beam Welding). However, certain characteristics, such as solidification cracking, porosity, HAZ (Heat-affected Zone) degradation must be considered during welding. Because of high energy density and low heat input, especially LBW and EBW processes possess the advantage of minimizing the fusing zone and HAZ and producing deeper penetration than arc welding processes. In present study, to apply for the plate-type nuclear fuel fabrication and assembly, a fundamental electron beam welding experiment using AA6061-T6 aluminum alloy specimens was conducted. Furthermore, to establish the suitable welding process, and satisfy the requirements of the weld quality, EBW apparatus using an electron welding gun and vacuum chamber was developed, and preliminary investigations for optimizing the welding parameters of the specimens using AA6061-T6 aluminum plates were also performed. The EB weld quality of AA6061-T6 aluminum alloy for the plate-type fuel assembly has been also studied by the weld penetrations of side plate to end fitting and fixing bar and weld inspections using computed tomography

  17. austenitic stainless steel by electron beam welding process

    African Journals Online (AJOL)

    user

    Electron beam welding (EBW) is a fusion joining process that produces a ... fabrication of engineering parts with low-distortion joints, although its application to large assemblies is often restricted by the ... speed, focal point location, focal spot size, etc. ... Experimental data were collected as per central composite design and ...

  18. Application of electron beam welding to large size pressure vessels made of thick low alloy steel

    International Nuclear Information System (INIS)

    Kuri, S.; Yamamoto, M.; Aoki, S.; Kimura, M.; Nayama, M.; Takano, G.

    1993-01-01

    The authors describe the results of studies for application of the electron beam welding to the large size pressure vessels made of thick low alloy steel (ASME A533 Gr.B cl.2 and A533 Gr.A cl.1). Two major problems for applying the EBW, the poor toughness of weld metal and the equipment to weld huge pressure vessels are focused on. For the first problem, the effects of Ni content of weld metal, welding conditions and post weld heat treatment are investigated. For the second problem, an applicability of the local vacuum EBW to a large size pressure vessel made of thick plate is qualified by the construction of a 120 mm thick, 2350 mm outside diameter cylindrical model. The model was electron beam welded using local vacuum chamber and the performance of the weld joint is investigated. Based on these results, the electron beam welding has been applied to the production of a steam generator for a PWR. (author). 3 refs., 10 figs., 4 tabs

  19. Investigations on the structure – Property relationships of electron beam welded Inconel 625 and UNS 32205

    International Nuclear Information System (INIS)

    Devendranath Ramkumar, K.; Sridhar, R.; Periwal, Saurabh; Oza, Smitkumar; Saxena, Vimal; Hidad, Preyas; Arivazhagan, N.

    2015-01-01

    Highlights: • Joining of dissimilar metals of Inconel 625 and UNS S32205 using electron beam welding. • Detailed structure – property relationship of dissimilar welds. • Improved metallurgical and tensile properties from the EB welding. - Abstract: The metallurgical and mechanical properties of electron beam welded Ni based superalloy Inconel 625 and UNS S32205 duplex stainless steel plates have been investigated in the present study. Interface microstructure studies divulged the absence of any grain coarsening effects or the formation of any secondary phases at the heat affected zone (HAZ) of the electron beam (EB) weldments. Tensile studies showed that the fracture occurred at the weld zone in all the trials and the average weld strength was reported to be 850 MPa. Segregation of Mo rich phases was witnessed at the inter-dendritic arms of the fusion zone. The study recommended the use of EB welding for joining these dissimilar metals by providing detailed structure – property relationships

  20. Process parameters-weld bead geometry interactions and their influence on mechanical properties: A case of dissimilar aluminium alloy electron beam welds

    Directory of Open Access Journals (Sweden)

    P. Mastanaiah

    2018-04-01

    Full Text Available Prediction of weld bead geometry is always an interesting and challenging research topic as it involves understanding of complex multi input and multi output system. The weld bead geometry has a profound impact on the load bearing capability of a weld joint, which in-turn decides the performance in real time service conditions. The present study introduces a novel approach of detecting a relationship between weld bead geometry and mechanical properties (e.g. tensile load for the purpose of catering the best the process could offer. The significance of the proposed approach is demonstrated by a case of dissimilar aluminium alloy (AA2219 and AA5083 electron beam welds. A mathematical model of tensile braking load as a function of geometrical attributes of weld bead geometry is presented. The results of investigation suggests the effective thickness of weld – a geometric parameter of weld bead has the most significant influence on tensile breaking load of dissimilar weld joint. The observations on bead geometry and the mechanical properties (microhardness, ultimate tensile load and face bend angle are correlated with detailed metallurgical analysis. The fusion zone of dissimilar electron beam weld has finer grain size with a moderate evaporation and segregation of alloying elements magnesium and copper respectively. The mechanical properties of weld joint are controlled by optimum bead geometry and HAZ softening in weaker AA5083 Al alloy. Keywords: Electron beam welding, AA2219, AA5083, Bead geometry, Tensile breaking load

  1. Mechanical properties of weldings by electron beams on alloy 8090 (CP 271)

    International Nuclear Information System (INIS)

    Le Poac, P.; Nomine, A.M.; Miannay, D.

    1987-06-01

    Weldings by electron beams got on rings in alloy 8090 in the T4 and T6 state are mechanically tested in traction in the original state of welding or after a thermal processing of 12 hours at 210 0 C [fr

  2. Tensile properties of electron-beam-welded single crystals of molybdenum

    International Nuclear Information System (INIS)

    Hiraoka, Yutaka; Okada, Masatoshi; Irie, Hirosada; Fujii, Tadayuki.

    1987-01-01

    The purpose of this study is to investigate the macro- and microstructures and the tensile properties of electron-beam-welded single crystals of molybdenum. The single-crystal sheets were prepared by means of secondary recrystallization. The welding was carried out by a melt-run technique. The weld metal had the same crystallographic orientation as the base metal, and no grain boundary was observed. However, many large weld pores were formed mostly along the weld bond. The strength and ductility of the welded joints of single crystals were almost the same as those of the base metal (''annealed'' single crystals). It is concluded that the joint efficiency of molybdenum single crystals at room temperature or above was excellent and nearly 100 %. (author)

  3. Upgrade of laser and electron beam welding database

    CERN Document Server

    Furman, Magdalena

    2014-01-01

    The main purpose of this project was to fix existing issues and update the existing database holding parameters of laser-beam and electron-beam welding machines. Moreover, the database had to be extended to hold the data for the new machines that arrived recently at the workshop. As a solution - the database had to be migrated to Oracle framework, the new user interface (using APEX) had to be designed and implemented with the integration with the CERN web services (EDMS, Phonebook, JMT, CDD and EDH).

  4. Electron beam welding of the dissimilar Zr-based bulk metallic glass and Ti metal

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jonghyun [Department of Material Science, Kumamoto University, Kumamoto 860-8555 (Japan)], E-mail: joindoc@kumamoto-u.ac.jp; Kawamura, Y. [Department of Material Science, Kumamoto University, Kumamoto 860-8555 (Japan)

    2007-04-15

    We successfully welded 3 mm thick Zr{sub 41}Be{sub 23}Ti{sub 14}Cu{sub 12}Ni{sub 10} bulk metallic glass plate to Ti metal by electron beam welding with a beam irradiated 0.4 mm on the BMG side of the interface. There was no crystallization or defects in the weld because changes in the chemical composition of the weld metal were prevented. Bending showed that the welded sample had a higher strength than the Ti base metal. The interface had a 10 {mu}m thick interdiffusion layer of Zr and Ti.

  5. Effects of heat treatment and welding process on superelastic behaviour and microstructure of micro electron beam welded NiTi

    Directory of Open Access Journals (Sweden)

    Balz Isabel

    2016-09-01

    Full Text Available Medical devices with small dimensions made of superelastic NiTi become more popular, but joining these parts remains challenging. Since laser welding was found to be an option, electron beam welding seems to be an interesting alternative as it provides additional advantages due to the precise beam positioning and the high vacuum. Superelasticity is influenced by microstructure and surface layer composition that are mainly affected by welding process and by heat treatment and therefore will be investigated in the present paper.

  6. Effect of Post Weld Heat Treatment on Corrosion Behavior of AA2014 Aluminum – Copper Alloy Electron Beam Welds

    Science.gov (United States)

    Venkata Ramana, V. S. N.; Mohammed, Raffi; Madhusudhan Reddy, G.; Srinivasa Rao, K.

    2018-03-01

    The present work pertains to the study of corrosion behavior of aluminum alloy electron beam welds. The aluminium alloy used in the present study is copper containing AA2014 alloy. Electron Beam Welding (EBW) was used to weld the alloys in annealed (O) condition. Microstructural changes across the welds were recorded and the effect of post weld heat treatment (PWHT) in T4 (Solutionized and naturally aged) condition on pitting corrosion resistance was studied. A software based PAR basic electrochemical system was used for potentio-dynamic polarization tests. From the study it is observed that weld in O condition is prone to more liquation than that of PWHT condition. This may be attributed to re-melting and solidification of excess eutectic present in the O condition of the base metal. It was also observed that slightly higher hardness values are recorded in O condition than that of PWHT condition. The pitting corrosion resistance of the PMZ/HAZ in PWHT condition is better than that of O condition. This is attributed to copper segregation at the grain boundaries of PMZ in O condition.

  7. Measuring penetration depth of electron beam welds. Final report

    International Nuclear Information System (INIS)

    Hill, J.W.; Collins, M.C.; Mentesana, C.P.; Watterson, C.E.

    1975-07-01

    The feasibility of evaluating electron beam welds using state-of-the-art techniques in the fields of holographic interferometry, micro-resistance measurements, and heat transfer was studied. The holographic study was aimed at evaluating weld defects by monitoring variations in weld strength under mechanical stress. The study, along with successful work at another facility, proved the feasibility of this approach for evaluating welds, but it did not assign any limitations to the technique. The micro-resistance study was aimed at evaluating weld defects by measuring the electrical resistance across the weld junction as a function of distance along the circumference. Experimentation showed this method, although sensitive, is limited by the same factors affecting other conventional nondestructive tests. Nevertheless, it was successful at distinguishing between various depths of penetration. It was also shown to be a sensitive thickness gage for thin-walled parts. The infrared study was aimed at evaluating weld defects by monitoring heat transfer through the weld under transient thermal conditions. Experimentation showed that this theoretically sound technique is not workable with the infrared equipment currently available at Bendix Kansas City. (U.S.)

  8. Technical assistance to AECL: electron beam welding of thick-walled copper containers for nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    Maak, P.Y.Y.

    1984-01-01

    This report describes the results of Phase Two of the copper electron beam welding project for the final closure of copper containers for nuclear fuel waste disposal. It has been demonstrated that single pass, electron beam square butt welds (depth of weld penetration > 25 mm) can be made without preheat in both electrolytic tough-pitch copper and oxygen-free copper plates. The present results show that oxygen-free copper exhibits better weldability than the electrolytic tough-pitch copper in terms of weld penetration and vulnerability to weld defects such as gas porosity, erratic metal overflow and blow holes. The results of ultrasonic inspection studies of the welds are also discussed

  9. Electron Beam Welding of Duplex Steels with using Heat Treatment

    Science.gov (United States)

    Schwarz, Ladislav; Vrtochová, Tatiana; Ulrich, Koloman

    2010-01-01

    This contribution presents characteristics, metallurgy and weldability of duplex steels with using concentrated energy source. The first part of the article describes metallurgy of duplex steels and the influence of nitrogen on their solidification. The second part focuses on weldability of duplex steels with using electron beam aimed on acceptable structure and corrosion resistance performed by multiple runs of defocused beam over the penetration weld.

  10. Improving the properties of stainless steel electron-beam welds by laser treatment

    International Nuclear Information System (INIS)

    Wu Xueyi; Zhou Changchi

    1991-10-01

    For improving the properties of corrosion resistance of stainless steel, which is widely used in nuclear engineering, the technological test on rapid fusing and setting formed by using laser treatment in electron-beam welds on stainless steel was investigated and the analytical results of welding structure and properties were reported. The experimental results show that after laser treatment more finegrained structure in the surface of the welding centreline and welding heat-affected zone was observed. Segregation of chemical composition was reduced. Plasticity and corrosion resistance in the welding zone was increased. Intergranular corrosion of heat-affected zone was improved

  11. Investigation of hot cracking in deep penetration electron beam welds

    Energy Technology Data Exchange (ETDEWEB)

    Thorvaldson, W.G.

    1978-06-10

    A defect in a deep penetration electron beam weld of 304L stainless steel to 21-6-9 stainless steel has been identified as a centerline hot crack. The study discussed in this report was made to define and to eliminate the cause of cracking.

  12. Numerical model of the plasma formation at electron beam welding

    Energy Technology Data Exchange (ETDEWEB)

    Trushnikov, D. N., E-mail: trdimitr@yandex.ru [The Department for Applied Physics, Perm National Research Polytechnic University, Perm 614990 (Russian Federation); The Department for Welding Production and Technology of Constructional Materials, Perm National Research Polytechnic University, Perm 614990 (Russian Federation); Mladenov, G. M., E-mail: gmmladenov@abv.bg [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradsko Shose, 1784 Sofia (Bulgaria); Technology Centre of Electron Beam and Plasma Technologies and Techniques, 68-70 Vrania, ap.10, Banishora, 1309 Sofia (Bulgaria)

    2015-01-07

    The model of plasma formation in the keyhole in liquid metal as well as above the electron beam welding zone is described. The model is based on solution of two equations for the density of electrons and the mean electron energy. The mass transfer of heavy plasma particles (neutral atoms, excited atoms, and ions) is taken into account in the analysis by the diffusion equation for a multicomponent mixture. The electrostatic field is calculated using the Poisson equation. Thermionic electron emission is calculated for the keyhole wall. The ionization intensity of the vapors due to beam electrons and high-energy secondary and backscattered electrons is calibrated using the plasma parameters when there is no polarized collector electrode above the welding zone. The calculated data are in good agreement with experimental data. Results for the plasma parameters for excitation of a non-independent discharge are given. It is shown that there is a need to take into account the effect of a strong electric field near the keyhole walls on electron emission (the Schottky effect) in the calculation of the current for a non-independent discharge (hot cathode gas discharge). The calculated electron drift velocities are much bigger than the velocity at which current instabilities arise. This confirms the hypothesis for ion-acoustic instabilities, observed experimentally in previous research.

  13. Low cycle fatigue behavior of electron beam and friction welded joints of an α-β titanium alloy

    International Nuclear Information System (INIS)

    Mohandas, T.; Varma, V.K.; Banerjee, D.; Kutumbarao, V.V.

    1996-01-01

    Fusion welds in titanium alloys, with intermediate β stabilizing additions, show poor mechanical properties due to large fusion zone grain size coupled with a brittle plate martensitic microstructure and hydrogen induced microporosity. These problems, associated with fusion welding, have been reported to be overcome by friction welding. The alloy used in this study is a Soviet composition (VT9) of the α-β class with the nominal chemical composition Ti-6.5Al-3.3Mo-1.6Zr-0.3 Si (in weight percent), intended to be used as discs and blades in compressor stages of gas turbine engine where low cycle fatigue (LCF) loading is experienced. Electron beam welding of the alloy was largely unsuccessful for the reasons described above. Fatigue properties of such welds had large scatter due to the presence of microporosity. A continuous drive friction welding technique was investigated to overcome this problem These welds showed encouraging results in that microporosity, a problem in the electron beam welding, was not observed and the mechanical properties were at par or better than those of the base metal. This paper deals with the study of stress controlled LCF behavior of friction welds and electron beam welds of the α-β titanium alloy at ambient temperature and the results are compared with those of base metal

  14. Study on the Applicability of Electron Beam Welding Methods to Assembly a Fuel Compact and Al Cover Plate of Research Reactor Plate Type Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hae In; Lee, Yoon Sang; Lee, Don Dae; Jeong, Yong Jin; Kwon, Sun Chil; Kim, Soo Sung; Park, Jong Man [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    Among the research reactor plate type fuel fabrication processes, there is an assembly process between fuel meat compact and Al cover plates using a welding method prior to rolling process. The assembly process is such as the Al frame and Al cover plate should be welded properly as shown in Fig. 1. For welding, TIG(Tungsten Inert Gas) welding methods has been used conventionally, but in this study an electron beam welding(EB welding) technique which uses the electron beam of a high velocity for joining two materials is introduced to the assembly. The work pieces are melted as the kinetic energy of the electron beam is transformed into heat to join the two parts of the weld. The welding is often done in the conditions in a vacuum to prevent dispersion of the electron beam. The electron beam welding process has many ad-vantages such as contamination of the welds could be prevented, the penetration of the weld is deep, and also the strain of the welding area is less than other methods. In this study, to find optimal condition of the EB welding process, a welding speed, a beam current and an acceleration voltage were changed. To analyzing the welding results, the shape of the beads and defects of welding area was used. The width and depth of the beads were measured as well

  15. Study on the Applicability of Electron Beam Welding Methods to Assembly a Fuel Compact and Al Cover Plate of Research Reactor Plate Type Fuel

    International Nuclear Information System (INIS)

    Lee, Hae In; Lee, Yoon Sang; Lee, Don Dae; Jeong, Yong Jin; Kwon, Sun Chil; Kim, Soo Sung; Park, Jong Man

    2012-01-01

    Among the research reactor plate type fuel fabrication processes, there is an assembly process between fuel meat compact and Al cover plates using a welding method prior to rolling process. The assembly process is such as the Al frame and Al cover plate should be welded properly as shown in Fig. 1. For welding, TIG(Tungsten Inert Gas) welding methods has been used conventionally, but in this study an electron beam welding(EB welding) technique which uses the electron beam of a high velocity for joining two materials is introduced to the assembly. The work pieces are melted as the kinetic energy of the electron beam is transformed into heat to join the two parts of the weld. The welding is often done in the conditions in a vacuum to prevent dispersion of the electron beam. The electron beam welding process has many ad-vantages such as contamination of the welds could be prevented, the penetration of the weld is deep, and also the strain of the welding area is less than other methods. In this study, to find optimal condition of the EB welding process, a welding speed, a beam current and an acceleration voltage were changed. To analyzing the welding results, the shape of the beads and defects of welding area was used. The width and depth of the beads were measured as well

  16. A study of electron beam welding of Mo based TZM alloy

    International Nuclear Information System (INIS)

    Chakraborty, S.P.; Krishnamurthy, N.

    2013-12-01

    Mo based TZM alloy is one of the most promising refractory alloy having several unique high temperature properties suitable for structural applications in the new generation advanced nuclear reactors. However, this alloy easily picks up interstitial impurities such as N 2 , H 2 and C from air during welding due to its reactive nature. High melting point of TZM alloy also restricts use of conventional welding technique for welding. Hence, Electron beam welding (EBW) technique with its deep penetration power to produce narrow heat affected zones under high vacuum was employed to overcome the above welding constraints by conducting a systematic study using both processes of bead on plate and butt joint configuration. Uniform and defect free weld joints were produced. Weld joints were subjected to optical characterization, chemical homogeneity analysis and microhardness profile study across the width of welds. Improved grain structure with equiaxed grains was obtained in the weld zone as compared to fibrous base structure. Original chemical composition was retained in the weld zone. The detailed results are described in this report. (author)

  17. Electrochemical Testing of Gas Tungsten Arc Welded and Reduced Pressure Electron Beam Welded Alloy 22

    International Nuclear Information System (INIS)

    Day, S D; Wong, F G; Gordon, S R; Wong, L L; Rebak, R B

    2006-01-01

    Alloy 22 (N06022) is the material selected for the fabrication of the outer shell of the nuclear waste containers for the Yucca Mountain high-level nuclear waste repository site. A key technical issue in the waste package program has been the integrity of the container weld joints. The currently selected welding process for fabricating and sealing the containers is the traditional gas tungsten arc welding (GTAW) or TIG method. An appealing faster alternative technique is reduced pressure electron beam (RPEB) welding. It was of interest to compare the corrosion properties of specimens prepared using both types of welding techniques. Standard electrochemical tests were carried on GTAW and RPEB welds as well as on base metal (non-welded) to determine their relative corrosion behavior in simulated concentrated water (SCW) at 90 C (alkaline), 1 M HCl at 60 C (acidic) and 1 M NaCl at 90 C (neutral) solutions. Results show that for all practical purposes, the three tested materials had the same electrochemical behavior in the three tested electrolytes

  18. Electrochemical Testing of Gas Tungsten ARC Welded and Reduced Pressure Electron Beam Welded Alloy 22

    International Nuclear Information System (INIS)

    S. Daniel Day; Frank M.G. Wong; Steven R. Gordon; Lana L. Wong; Raul B. Rebak

    2006-01-01

    Alloy 22 (N06022) is the material selected for the fabrication of the outer shell of the nuclear waste containers for the Yucca Mountain high-level nuclear waste repository site. A key technical issue in the waste package program has been the integrity of the container weld joints. The currently selected welding process for fabricating and sealing the containers is the traditional gas tungsten arc welding (GTAW) or TIC method. An appealing faster alternative technique is reduced pressure electron beam (RPEB) welding. It was of interest to compare the corrosion properties of specimens prepared using both types of welding techniques. Standard electrochemical tests were carried on GTAW and RPEB welds as well as on base metal (non-welded) to determine their relative corrosion behavior in simulated concentrated water (SCW) at 90 C (alkaline), 1 M HCI at 60 C (acidic) and 1 M NaCl at 90 C (neutral) solutions. Results show that for all practical purposes, the three tested materials had the same electrochemical behavior in the three tested electrolytes

  19. Ti–6Al–4V welded joints via electron beam welding: Microstructure, fatigue properties, and fracture behavior

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaoguang [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Co-Innovation Center for Advanced Aero-Engine, Beijing 100191 (China); Li, Shaolin [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Qi, Hongyu, E-mail: qhy@buaa.edu.cn [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Co-Innovation Center for Advanced Aero-Engine, Beijing 100191 (China)

    2014-03-01

    The effect of microstructural characteristics on the fatigue properties of electron beam-welded joints of forged Ti–6Al–4V and its fracture behavior were investigated. Tensile tests and fatigue tests were conducted at room temperature in air atmosphere. The test data were analyzed in relation to microstructure, high-cycle fatigue properties, low-cycle fatigue properties, and fatigue crack propagation properties. The high-cycle fatigue test results indicated that the fatigue strength of the joint welded via electron beam welding was higher than that of the base metal because the former had a high yield strength and all high-cycle fatigue specimens were fractured in the base metal. Although the joint specimens had a lower low-cycle fatigue life than the base metal, they mainly ruptured at the fusion zone of the joint specimen and their crack initiation mechanism is load-dependent. The fatigue crack propagation test results show that the joint had a slower crack propagation rate than the base metal, which can be attributed to the larger grain in the fusion zone.

  20. METHOD OF ELECTRON BEAM PROCESSING

    DEFF Research Database (Denmark)

    2003-01-01

    As a rule, electron beam welding takes place in a vacuum. However, this means that the workpieces in question have to be placed in a vacuum chamber and have to be removed therefrom after welding. This is time−consuming and a serious limitation of a process the greatest advantage of which is the o......As a rule, electron beam welding takes place in a vacuum. However, this means that the workpieces in question have to be placed in a vacuum chamber and have to be removed therefrom after welding. This is time−consuming and a serious limitation of a process the greatest advantage of which...... is the option of welding workpieces of large thicknesses. Therefore the idea is to guide the electron beam (2) to the workpiece via a hollow wire, said wire thereby acting as a prolongation of the vacuum chamber (4) down to workpiece. Thus, a workpiece need not be placed inside the vacuum chamber, thereby...... exploiting the potential of electron beam processing to a greater degree than previously possible, for example by means of electron beam welding...

  1. Development of a high power electron beam welding gun with replaceable high voltage feed-through insulators

    Energy Technology Data Exchange (ETDEWEB)

    Saha, T.K; Mascarenhas, M.; Kandaswamy, E., E-mail: tanmay@barc.gov.in [Power Beam Equipment Design Section, Bhabha Atomic Research Centre, Mumbai (India)

    2014-07-01

    Ceramic to metal sealed feed-through insulators are commonly used in electron beam welding gun. The above feed-through insulators are susceptible to failure, as the brazing joints in them are not always very strong. Failure in one of these feed-through could render the complete gun unusable. This problem has already been faced in BARC, which led to the development of the electron gun with replaceable feed through insulators. A 24 kW Electron Beam Welding (EBW) gun with indigenous designed replaceable insulators is fabricated in BARC. Emphasis during the design of the gun had been to reduce the use of imported components to zero. This paper describes the design and fabrication of this gun and reports various simulations and tests performed. Beam trajectory of the gun is numerically computed and presented. Weld passes were carried out on stainless steel plates show satisfactory penetrations. (author)

  2. Fabrication of AA6061-T6 Plate Type Fuel Assembly Using Electron Beam Welding Process

    International Nuclear Information System (INIS)

    Kim, Soosung; Seo, Kyoungseok; Lee, Donbae; Park, Jongman; Lee, Yoonsang; Lee, Chongtak

    2014-01-01

    AA6061-T6 aluminum alloy is easily welded by conventional GTAW (Gas Tungsten Arc Welding), LBW (Laser Beam Welding) and EBW. However, certain characteristics, such as solidification cracking, porosity, HAZ (Heat-affected Zone) degradation must be considered during welding. Because of high energy density and low heat input, especially LBW and EBW processes possess the advantage of minimizing the fusing zone and HAZ and producing deeper penetration than arc welding processes. In present study, to apply for the nuclear fuel plate fabrication and assembly, a fundamental EBW experiment using AA6061-T6 aluminum alloy specimens was conducted. Furthermore, to establish the welding process, and satisfy the requirements of the weld quality, EBW apparatus using an electron welding gun and vacuum chamber was developed, and preliminary investigations for optimizing the welding parameters of the specimens using AA6061-T6 aluminum plates were also performed. The EB weld quality of AA6061-T6 aluminum alloy for the fuel plate assembly has been also studied by the shrinkage measurement and weld inspection using computed tomography. This study was carried out to determine the suitable welding parameters and to evaluate tensile strength of AA6061-T6 aluminum alloy. In the present experiment, satisfactory electron beam welding process of the full-sized sample was being developed. Based on this fundamental study, fabrication of the plate-type fuel assembly will be provided for the future Ki-Jang research reactor project

  3. Electron beam deflection control system of a welding and surface modification installation

    Science.gov (United States)

    Koleva, E.; Dzharov, V.; Gerasimov, V.; Tsvetkov, K.; Mladenov, G.

    2018-03-01

    In the present work, we examined the patterns of the electron beam motion when controlling the transverse with respect to the axis of the beam homogeneous magnetic field created by the coils of the deflection system the electron gun. During electron beam processes, the beam motion is determined the process type (welding, surface modification, etc.), the technological mode, the design dimensions of the electron gun and the shape of the processed samples. The electron beam motion is defined by the cumulative action of two cosine-like control signals generated by a functional generator. The signal control is related to changing the amplitudes, frequencies and phases (phase differences) of the generated voltages. We realized the motion control by applying a graphical user interface developed by us and an Arduino Uno programmable microcontroller. The signals generated were calibrated using experimental data from the available functional generator. The free and precise motion on arbitrary trajectories determines the possible applications of an electron beam process to carrying out various scientific research tasks in material processing.

  4. Ultrasonic testing of electron beam closure weld on pressure vessel

    International Nuclear Information System (INIS)

    Andrews, R.W.

    1975-01-01

    One of the special products manufactured at the General Electric Neutron Devices Department (GEND) is a small stainless steel vessel designed to hold a component under high pressure for long periods. The vessel is a thick-walled cylinder with a threaded receptacle into which a plug is screwed and welded after receiving the unit to be tested. The test cavity is then pressurized through a small diameter opening in the bottom and that opening is welded closed. When x-ray inspection techniques did not reveal defective welds at the threaded plug in a pressured vessel, occasional ''leakers'' occurred. With normal equipment tolerances, the electron beam spike tends to wander from the desired path, particularly at the root of the weld. Ultrasonic techniques were used to successfully inspect the weld. The testing technique is based on the observation that ultrasonic energy is reflected from the unwelded screw threads and not from the regions where the threads are completely fused together by welding. Any gas pore or any threaded region outside the weld bead can produce an echo. The units are rotated while the ultrasonic transducer travels in a direction parallel to the axis of rotation and toward the welded end. This produces a helical scan which is converted to a two-dimensional presentation in which incomplete welds can be noted. (U.S.)

  5. Electron beam welding of flanges with tubular shafts of steel 40KhNMA

    International Nuclear Information System (INIS)

    Leskov, G.I.; Zhivaga, L.I.; Shipitsyn, B.N.; Savichev, R.V.

    1975-01-01

    The results are presented of elaborating the technological process for the electron beam welding of flanges with a tube of the 40KhNMA steel and of investigation into the quality of the welded joints. A welded piece has been fabricated conforming to the technology suggested observing the parameters worked-out in the following sequence: assembling the piece; pre-welding of the edges in some points; welding; high tempering; welds quality control; removal of the seam reinforcement inside of the tube and the weld root to the depth of 2 mm; quenching; tempering; welds quality control; finishing. The welds quality control consists in visual inspection, ultrasonic testing, magnetic flaw detection, as well as X-ray and metallographic analyses. The mechanical properties are studied on notched samples cut out of the welded joints. The test results have shown that the mechanical properties of the welded joints meet the requirements on the same level with the base metal

  6. Ti-6Al-4V electron beam weld qualification using laser scanning confocal microscopy

    International Nuclear Information System (INIS)

    Wanjara, P.; Brochu, M.; Jahazi, M.

    2005-01-01

    Processing conditions for manufacturing Ti-6Al-4V components by welding using an electron beam source are known to influence the transformation microstructure in the narrow fusion and heat-affected zones of the weld region. This work examined the effect of multiple-sequence welding on the characteristics of the transformed beta microstructure, using laser scanning confocal microscopy to resolve the Widmanstaetten alpha-beta structure in the fusion zone. The evolution in the alpha interlamellar spacing and plate thickness with processing was then related to microhardness measurements in the weld region

  7. Diffractive beam shaping for enhanced laser polymer welding

    Science.gov (United States)

    Rauschenberger, J.; Vogler, D.; Raab, C.; Gubler, U.

    2015-03-01

    Laser welding of polymers increasingly finds application in a large number of industries such as medical technology, automotive, consumer electronics, textiles or packaging. More and more, it replaces other welding technologies for polymers, e. g. hot-plate, vibration or ultrasonic welding. At the same rate, demands on the quality of the weld, the flexibility of the production system and on processing speed have increased. Traditionally, diode lasers were employed for plastic welding with flat-top beam profiles. With the advent of fiber lasers with excellent beam quality, the possibility to modify and optimize the beam profile by beam-shaping elements has opened. Diffractive optical elements (DOE) can play a crucial role in optimizing the laser intensity profile towards the optimal M-shape beam for enhanced weld seam quality. We present results on significantly improved weld seam width constancy and enlarged process windows compared to Gaussian or flat-top beam profiles. Configurations in which the laser beam diameter and shape can be adapted and optimized without changing or aligning the laser, fiber-optic cable or optical head are shown.

  8. Microstructural and Mechanical Characterization of Electron Beam Welded Joints of High Strength S960QL and Weldox 1300 Steel Grades

    Directory of Open Access Journals (Sweden)

    Błacha S.

    2017-06-01

    Full Text Available The paper shows the results of metallographic examination and mechanical properties of electron beam welded joints of quenched and tempered S960QL and Weldox 1300 steel grades. The aim of this study was to examine the feasibility of producing good quality electron beam welded joints without filler material.

  9. Real-time measurement of electron beam weld penetration in uranium by acoustic emission monitoring

    International Nuclear Information System (INIS)

    Whittaker, J.W.; Murphy, J.L.

    1991-07-01

    High quality electron beam (EB) welds are required in uranium test articles. Acoustic emission (AE) techniques are under development with the goal of measuring weld penetration in real-time. One technique, based on Average Signal Level (ASL) measurement was used to record weld AE signatures. Characteristic AE signatures were recorded for bead-on-plate (BOP) and butt joint (BJ) welds made under varied welding conditions. AE waveforms were sampled to determine what microscopic AE behavior led to the observed macroscopic signature features. Deformation twinning and weld expulsion are two of the main sources of emission. AE behavior was correlated with weld penetration as measured by standard metallographic techniques. The ASL value was found to increase approximately linearly with weld penetration in BJ welds. These results form the basis for a real-time monitoring technique for weld penetration. 5 refs

  10. Metallurgy and deformation of electron beam welded similar titanium alloys

    Science.gov (United States)

    Pasang, T.; Sabol, J. C.; Misiolek, W. Z.; Mitchell, R.; Short, A. B.; Littlefair, G.

    2012-04-01

    Butt welded joins were produced between commercially pure titanium and various titanium alloys using an electron beam welding technique. The materials used represent commercially pure grade, α-β alloy and β alloy. They were CP Ti, Ti-6Al-4V (Ti64) and Ti-5Al-5V-5Mo-3Cr (Ti5553), respectively. Grains were largest in the FZs of the different weldments, decreasing in size towards the heat affected zones (HAZs) and base metals. Hardness measurements taken across the traverse cross-sections of the weldments were constant from base metal-to-weld-to-base metal for CP Ti/CP Ti and Ti64/Ti64 welds, while the FZ of Ti5553/Ti5553 had a lower hardness compared with the base metal. During tensile testing the CP Ti/CP Ti weldments fractured at the base metal, whereas both the Ti64/Ti64 and Ti5553/Ti5553 broke at the weld zones. Fracture surface analysis suggested microvoid coalescence as the failure mechanism. The compositional analysis showed a relatively uniform distribution of solute elements from base metal-to-weld-to-base metal. CP Ti has always been known for its excellent weldability, Ti64 has good weldability and, preliminary results indicated that Ti5553 alloy is also weldable.

  11. Device for electron beam machining

    International Nuclear Information System (INIS)

    Panzer, S.; Ardenne, T. von; Liebergeld, H.

    1984-01-01

    The invention concerns a device for electron beam machining, in particular welding. It is aimed at continuous operation of the electron irradiation device. This is achieved by combining the electron gun with a beam guiding chamber, to which vacuum chambers are connected. The working parts to be welded can be arranged in the latter

  12. An investigation of fusion zone microstructures in electron beam welding of copper-stainless steel

    International Nuclear Information System (INIS)

    Magnabosco, I.; Ferro, P.; Bonollo, F.; Arnberg, L.

    2006-01-01

    The article presents a study of three different welded joints produced by electron beam welding dissimilar materials. The junctions were obtained between copper plates and three different austenitic stainless steel plates. Different welding parameters were used according to the different thicknesses of the samples. Morphological, microstructural and mechanical (micro-hardness test) analyses of the weld bead were carried out. The results showed complex heterogeneous fusion zone microstructures characterized both by rapid cooling and poor mixing of the materials which contain main elements which are mutually insoluble. Some defects such as porosity and microfissures were also found. They are mainly due to the process and geometry parameters

  13. Fracture toughness properties of similar and dissimilar electron beam welds

    International Nuclear Information System (INIS)

    Kocak, M.; Junghans, E.

    1994-01-01

    The weldability aspects, tensile and Crack Tip Opening Displacement (CTOD) toughness properties of 9Cr1MoNbV (P91) martensitic steel with austenitic 316L steel were evaluated for electron beam (EB) welds on 35 mm thick pates. The effects of mechanical heterogeneity (mis-matching) at the vicinity of the crack tip of dissimilar three point bend specimens on the CTOD fracture toughness values was also discussed. The CTOD tests were performed on similar and dissimilar EB welds of austenitic and tempered martensitic P91 steels at room temperature. Dilution of austenitic with martensitic steel resulted in predominantly martensitic EB weld metal, exhibiting rather high yield strength and hardness. Nevertheless, the weld metal produced high CTOD toughness values due to the beneficial effect of the lower strength austenitic steel part of the specimen in which crack deviation occured (mis-match effect). The coarse grained HAZ of the P91 steel side exhibits extremely poor CTOD toughness properties in the as-welded condition at room temperature. The CTOD values obtained are believed to be representing the intrinsic property of this zone since the distance of the crack tip to the weaker austenitic steel part of the SENB specimens was too large to cause an effective stress relaxation at the crack tip. Further post weld heat treatment at 750 C for two hours improved the CTOD toughness marginally. (orig.)

  14. Microstructural characterization of laser and electron beam (EB) welds of Nb-1Zr-0.1C alloy

    International Nuclear Information System (INIS)

    Badgujar, B.P.; Tewari, R.; Dey, G.K.; Samajdar, I.

    2015-01-01

    Nb-1wt%Zr-0.1wt%C alloy is being considered for the structural applications in proposed Compact High Temperature Reactor (CHTR) on account of its excellent combination of high temperature properties. The applications of this alloy calls for welding, which is a difficult task due to its reactive nature, higher thermal conductivity and melting point. The high energy density techniques like laser and electron beam were employed to produce the welds on sheets of Nb-alloy at various processing parameters in bead-on-plate and square butt joint configurations. The weld joints produced were characterized by studying their optical, Scanning Electron Microscopy (SEM) and Electron Back Scattering Diffraction (EBSD) micro-graphs. The SEM micrograph of EB fusion zone along with the heat affected zone (HAZ) and the base region were studied and abrupt changes in the grain morphology were found in each zone. The fusion zone shows larger grains indicating the rapid grain growth after solidification, whereas the HAZ shows relatively smaller size of the grains but still much larger than the base zone. The SEM micrograph of central part of the same butt weld shows clear grain boundaries with a large variation in the grain size (45-82 micrometer) in the weld region. The heat affected zone (HAZ) and base metal showed fine carbide precipitates along the grain boundaries, whereas carbides were found dissolved in the weld zone. The EBSD micrograph of electron beam fusion zone describing the grain orientation in the weld region are described. The micro-hardness profile across the width of welds was also studied. The detailed results of all these studies are described in this paper. (author)

  15. Electron beam weld parameter set development and cavity cost

    International Nuclear Information System (INIS)

    John Brawley; John Mammossor; Larry Philips

    1997-01-01

    Various methods have recently been considered for use in the cost-effective manufacturing of large numbers of niobium cavities. A method commonly assumed to be too expensive is the joining of half cells by electron beam welding (EBW), as has been done with multipurpose EBW equipment for producing small numbers of cavities at accelerator laboratories. The authors have begun to investigate the advantages that would be available if a single-purpose, task-specific EBW processing tool were used to produce cavities in a high-volume commercial-industrial context. For such a tool and context they have sought to define an EBW parameter set that is cost-effective not only in terms of per-cavity production cost, but also in terms of the minimization of quench-producing weld defects. That is, they define cavity cost-effectiveness to include both production and performance costs. For such an EBW parameter set, they have developed a set of ideal characteristics, produced and tested samples and a complete cavity, studied the weld-defect question, and obtained industrial estimates of cavity high-volume production costs. The investigation in ongoing. This paper reports preliminary findings

  16. Electron beam generated in low pressure noble gas atmosphere – Compact device construction and applications

    International Nuclear Information System (INIS)

    Zawada, A.; Konarski, P.

    2013-01-01

    During the process of low vacuum electron beam welding the energy of electrons is lower than the energy of electrons in the classical electron beam welding equipment. The classical electron beam welding can not always be used to weld of small work-piece details. Sometimes it’s impossible to reduce the electron beam energy because of poor focusing in the conventional electron beam welding machines. Low vacuum electron beam welding technique is well suitable to several niche products, such as thermocouples or aluminium seals. It also allows to treat the surface of dielectric materials, which is not possible using classical electron beam welding technique. The costs of low vacuum electron beam welding process are very low. (authors)

  17. Empirical modeling of high-intensity electron beam interaction with materials

    Science.gov (United States)

    Koleva, E.; Tsonevska, Ts; Mladenov, G.

    2018-03-01

    The paper proposes an empirical modeling approach to the prediction followed by optimization of the exact shape of the cross-section of a welded seam, as obtained by electron beam welding. The approach takes into account the electron beam welding process parameters, namely, electron beam power, welding speed, and distances from the magnetic lens of the electron gun to the focus position of the beam and to the surface of the samples treated. The results are verified by comparison with experimental results for type 1H18NT stainless steel samples. The ranges considered of the beam power and the welding speed are 4.2 – 8.4 kW and 3.333 – 13.333 mm/s, respectively.

  18. An Experimental Evaluation of Electron Beam Welded Thixoformed 7075 Aluminum Alloy Plate Material

    Directory of Open Access Journals (Sweden)

    Ava Azadi Chegeni

    2017-12-01

    Full Text Available Two plates of thixoformed 7075 aluminum alloy were joined using Electron Beam Welding (EBW. A post-welding-heat treatment (PWHT was performed within the semi-solid temperature range of this alloy at three temperatures, 610, 617 and 628 °C, for 3 min. The microstructural evolution and mechanical properties of EB welded plates, as well as the heat-treated specimens, were investigated in the Base Metal (BM, Heat Affected Zone (HAZ, and Fusion Zone (FZ, using optical microscopy, Scanning Electron Microscopy (SEM, EDX (Energy Dispersive X-ray Analysis, and Vickers hardness test. Results indicated that after EBW, the grain size substantially decreased from 67 µm in both BM and HAZ to 7 µm in the FZ, and a hardness increment was observed in the FZ as compared to the BM and HAZ. Furthermore, the PWHT led to grain coarsening throughout the material, along with a further increase in hardness in the FZ.

  19. Forming mechanism and avoiding measures of blue-ring on electronic beam welding sample after water corrosion

    International Nuclear Information System (INIS)

    Ren Defang; Luo Xiandian; Tong Shenxiu; Guo Xulin; Peng Haiqing

    2001-01-01

    After water corrosion in compliance with ASTM G2, the blue ring appears on the nuclear fuel rod samples of AFA 2G welded by using a Big Chamber Electron Beam Welder made in Russia. The characteristics, appearance, chemical composition, microstructure of b lue ring a nd some condition test are described. The mechanism of forming blue ring may be depicted as following: welding metal vapor and the splash produced by secondary and scatter electrons on metal clamp and gun body deposit in the area between HAZ and substrate because of the water cooling down effects on the clamp; these deposits, after water corrosion, appears as blue ring on the fuel rod surface. Avoiding measure is that the side of the clamp closing to weld seal is chamfered, while making the welding chamber cleaner

  20. Development of the electron beam welding of the aluminium alloy 6061-T6 for the Jules Horowitz reactor

    International Nuclear Information System (INIS)

    Leblanc, Y.

    2013-01-01

    The aluminium alloy 6061-T6 has been selected for the construction of the Jules Horowitz's reactor vessel. This reactor vessel is pressurized and will be made through butt welding of ∼ 2 cm thick aluminium slabs. The electron beam welding process has been tested and qualified. It appears that this welding process allows: -) welding without pre-heating, -) vacuum welding, -) welding of 100% of the thickness in one passage, -) very low deforming welding process, -) very low density and very low volume of blow holes, -) weak ZAT (Thermal Affected Zones), and -) high reproducibility that permits automation. (A.C.)

  1. Effect of trace solute hydrogen on the fatigue life of electron beam welded Ti-6Al-4V alloy joints

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Junhui; Hu, Shubing, E-mail: 187352581@qq.com; Ji, Longbo

    2017-01-27

    This paper describes an experimental hydrogenating treatment on a Ti-6Al-4V fatigue specimen containing an electron beam welding joint. The effect of trace solute hydrogen on the microstructures and fatigue behavior of welded Ti-6Al-4V alloy joints was investigated using an optical microscope, X-ray diffractometer, scanning electron microscope, transmission electron microscope and other methodologies. The results demonstrated that no hydride formed in the hydrogenated weld joint at a hydrogen concentration of less than 0.140 wt%. Internal hydrogen, which was present in the alloy in the form of solid solution atoms, caused lattice distortion in the β phase. The fatigue properties of the Ti-6Al-4V weld joint hydrogenated with trace solute hydrogen decreased significantly. The solute hydrogen led to an increase in the brittleness of the hydrogenated weld joint. The dislocation densities in the secondary α and β phase were higher. Fatigue cracks nucleated at the α/β interfaces. The effect of solute hydrogen accelerated the separation of the persistent slip bands, which decreased the threshold required for fatigue crack growth. Solute hydrogen also accelerated the fatigue crack growth rate. These two factors contributed to the degradation of the fatigue life in the electron beam welded Ti-6Al-4V alloy joints.

  2. The Low Pressure Gas Effects On The Potency Of An Electron Beam On Ceramic Fabric Materials For Space Welding

    Science.gov (United States)

    Nunes, Arthur C., Jr.; Fragomeni, James M.; Munafo, Paul M. (Technical Monitor)

    2001-01-01

    This investigation was undertaken to evaluate if molten metal or electron beam impingement could damage or burn through the fabric of the astronauts Extravehicular Mobility Unit (EMU) during electron beam welding exercises performed in space. An 8 kilovolt electron beam with a current in the neighborhood of 100 milliamps from the Ukrainian space welding "Universal Hand Tool" burned holes in Nextel AF-62 ceramic cloth designed to withstand temperatures up to 1427 C. The burnthrough time was on the order of 8 seconds at standoff distances between UHT and cloth ranging from 6 to 24 inches. At both closer (2") and farther (48") standoff distances the potency of the beam against the cloth declined and the burnthrough time went up significantly. Prior to the test it had been expected that the beam would lay down a static charge on the cloth and be deflected without damaging the cloth. The burnthrough is thought to be an effect of partial transmission of beam power by a stream of positive ions generated by the high voltage electron beam from contaminant gas in the "vacuum" chamber. A rough quantitative theoretical computation appears to substantiate this possibility.

  3. Laser beam welding and friction stir welding of 6013-T6 aluminium alloy sheet

    International Nuclear Information System (INIS)

    Braun, R.; Dalle Donne, C.; Staniek, G.

    2000-01-01

    Butt welds of 1.6 mm thick 6013-T6 sheet were produced using laser beam welding and friction stir welding processes. Employing the former joining technique, filler powders of the alloys Al-5%Mg and Al-12%Si were used. Microstructure, hardness profiles, tensile properties and the corrosion behaviour of the welds in the as-welded condition were investigated. The hardness in the weld zone was lower compared to that of the base material in the peak-aged temper. Hardness minima were measured in the fusion zone and in the thermomechanically affected zone for laser beam welded and friction stir welded joints, respectively. Metallographic and fractographic examinations revealed pores in the fusion zone of the laser beam welds. Porosity was higher in welds made using the filler alloy Al-5%Mg than using the filler metal Al-12%Si. Transmission electron microscopy indicated that the β '' (Mg 2 Si) hardening precipitates were dissolved in the weld zone due to the heat input of the joining processes. Joint efficiencies achieved for laser beam welds depended upon the filler powders, being about 60 and 80% using the alloys Al-5%Mg and Al-12%Si, respectively. Strength of the friction stir weld approached over 80% of the ultimate tensile strength of the 6013-T6 base material. Fracture occurred in the region of hardness minima unless defects in the weld zone led to premature failure. The heat input during welding did not cause a degradation of the corrosion behaviour of the welds, as found in continuous immersion tests in an aqueous chloride-peroxide solution. In contrast to the 6013-T6 parent material, the weld zone was not sensitive to intergranular corrosion. Alternate immersion tests in 3.5% NaCl solution indicated high stress corrosion cracking resistance of the joints. For laser beam welded sheet, the weld zone of alternately immersed specimens suffered severe degradation by pitting and intergranular corrosion, which may be associated with galvanic coupling of filler metal and

  4. Characterization of electron beam welded Zircaloy-4

    International Nuclear Information System (INIS)

    Anishetty, Sharath; Manna, I.; Majumdar, J. Dutta

    2015-01-01

    Zirconium (Zr) alloys are the backbone materials for thermal reactors because of their low neutron absorption cross section and in addition have suitable properties like high temperature mechanical and corrosion properties. For various structural applications, different Zirconium based alloys are used. Zircaloy-4 (Zr-4) is most commonly used as channel boxes in boiling water reactors (BWRs), intermediate grid applications in pressurized water reactors (PWRs) and in fuel cladding. Zircaloy cladding acts as a barrier between the radioactive fuel and exterior coolants. Therefore, the structural integrity of the cladding tube is extremely important in the safe operation of reactors. Efforts are being made to produce Zircaloy-4 products with better mechanical properties. Different routes of processing are involved like forging, pilgering and extrusion are developed over years in fabricating components to improve in-reactor performance. In this study, microstructure and hardness properties of electron beam welded Zr-4 was evaluated

  5. Feasibility study of electron beam welding of spent nuclear fuel canisters

    International Nuclear Information System (INIS)

    Sanderson, A.; Szluha, T.F.; Turner, J.L.; Leggatt, R.H.

    1983-04-01

    A thick walled copper container is presently the prime Swedish alternative for encapsulation of spent nuclear fuel. In order to demonstrate the feasibility of encapsulating high-level nuclear waste in copper containers, a study of electron beam welding of thick copper has been performed. Two copper qualities have been investigated, oxygen free high conductivity (OFHC) copper and phosphorous desoxydized high conductivity copper (PDO). The findings in this study are summarized below. In 100 mm thick copper penetration can be achived at power level of about 75 kW (typically 150 kV x 500 mA) at welding speed of 100 mm/min. The welds in OFHC copper made under these conditions are free from major defects during constant welding conditions. The welds in PDO copper show a microporosity level considerably higher than those in OFHC copper, but no major defects are produced in the welds in PDO copper. In the ending of the weld (ie the fade out) it is still not possible to completely eliminate root and cold-shut defects. A semi-full-scale lid weld has been performed successfully. Automatic ultrasonic C-scan has been shown to be useful in detecting and displaying defects, but some problems still remain with defect sizing. The different speciments of OFHS copper had different attenuation of the ultrasonic signal, forged copper showing a far lower attenuation than hot extruded copper, indicating that attention must be paid in choosing copper that allows accurate ultrasonic testing. Resiudal stresses in the welded zone has been measured and are found to lie in the range -32N/mm 2 to +36N/mm 2 . The peak stress was less than half the assumed value of the proof stress of the fused metal. (authors)

  6. An analysis of electron beam welds in a dual coolant liquid metal breeder blanket

    International Nuclear Information System (INIS)

    Cizelj, L.; Riesch-Oppermann, H.; Kernforschungszentrum Karlsruhe GmbH

    1994-10-01

    Numerical simulation of electron beam welding of blanket segments was performed using non-linear finite element code ABAQUS. The thermal and stress fields were assumed uncoupled, while preserving the temperature dependency of all material parameters. The martensite-austenite and austenite-martensite transformations were taken into account through volume shrinking/expansion effects, which is consistent with available data. The distributions of post welding residual stress in a complex geometry of the first wall are obtained. Also, the effects of preheating and post-welding heat treatment were addressed. Time dependent temperature and stress-strain fields obtained provide good insight into the welding process. They may be used directly to support reliability and life-time studies of blanket structures. On the other hand, they provide useful hints about the feasibility of the geometrical configurations as proposed by different design concepts. (orig.) [de

  7. Residual stress reduction in beam welded joints by means of stress redistribution using defocused electron or laser beams; Eigenspannungsreduktion in strahlgeschweissten Naehten mittels Spannungsumlagerung durch den Einsatz defokussierter Elektronen- bzw. Laserstrahlen

    Energy Technology Data Exchange (ETDEWEB)

    Toelle, Florian

    2013-08-01

    Among the multiple advantages of beam welding processes the high longitudinal residual stresses in beam welds ranging till the local yield stress are one disadvantage. These high stresses can influence the service life of the welded components. The residual stresses in other welding processes exist in an equal high level but primarily in the transverse direction to the weld. To mitigate the high residual stresses a couple of methods were developed for these welding processes in the last decades. However these methods need large contact surfaces next to the welds for the installation of matched heating and cooling elements and other additional equipment. Furthermore, the previous developed stress mitigating processes offer a low efficiency for the small beam welds. The stress reduction by using the welding source after the welding process for a remote heat treatment of the welded components afford a flexible tool for the stress mitigation in beam welds. This method does not need any additional equipment and it is applicable for complex welding and component geometries. During this post welding heat treatment the material next to the weld is heated by the defocused electron or by the defocused laser beam, respectively, to temperatures of some hundreds degree Celsius. Hereby low plastic deformations in these regions are generated. While cooling down due to the thermal shrinkage the material between the weld and the heat treated region is compressed in longitudinal direction to the weld. This intermediate material zone constrained the shrinkage of the weld while cooling down from the melting temperature and leads to the high longitudinal residual stresses in the weld. In consequence of the compression of this intermediate zones by the heat treated zones the resistance to the shrinkage of the weld is lowered and the longitudinal stresses in the weld are reduced. In the process the quantity of the stress reduction is controlled by the selection of the process parameters

  8. Laser and electron beam welding study on niobium based Nb-1Zr-0.1C alloy

    International Nuclear Information System (INIS)

    Badgujar, B.P.; Kushwaha, R.P.; Tewari, R.; Dey, G.K.

    2016-01-01

    The refractory metal based alloys are most suitable for the structural applications in high temperature reactors envisaged to operate at temperature higher than 1000°C. The Nb-1Zr-0.1C (wt. %) is being considered for structural applications in the proposed Compact High Temperature Reactors (CHTR). The welding of this alloy is a difficult task due to its reactive nature and higher thermal conductivity. Laser and Electron Beam (EB) welds were produced on sheet of Nb-1Zr-0.1C alloy at various processing parameters and their effects on weld quality was studied by characterizing their optical and SEM micrographs and microhardness profile. The joining efficiency of both welding processes were also studied. The laser welds done in air with argon shielding showed higher hardness values compared to EB welds indicating need for adequate shielding. This study will help to find the optimized welding parameters to produce defect free welds of Nb-1Zr-0.1C alloy. (author)

  9. Effect of shroud material on the spherical aberration in electromagnetic focusing lens used in electron beam welding machines

    International Nuclear Information System (INIS)

    Saha, Srijit Kumar; Gupta, Sachin; Kandaswamy, E.

    2015-01-01

    Beam Power density on the target (typically 10"5 -10"6 W/cm"2 ) plays a major role in attaining good weld quality in electron beam welding. Spherical aberration in the electromagnetic focusing lenses places a limitation in attaining the required power density on the target. Conventionally, iron or low carbon steel core are being used as a shroud material in the electromagnetic lenses. The practical difficulty faced in the long term performance of these lenses has initiated a systematic study for various shroud materials and the effect on spherical aberration limited spot size. The particle trajectories were simulated with different magnetic materials, using commercial software. The spherical aberration was found to be the lowest in the air core lens. The possibility of using an aircore electromagnetic focusing lens in electron beam machines is discussed in this paper. The beam power density is limited by various factors such as spherical aberration, space charge aberrations, gun alignment and power source parameters. (author)

  10. Current-driven ion-acoustic and potential-relaxation instabilities excited in plasma plume during electron beam welding

    Energy Technology Data Exchange (ETDEWEB)

    Trushnikov, D. N., E-mail: trdimitr@yandex.ru [The department for Applied Physics, Perm National Research Polytechnic University, Perm, 614990 (Russian Federation); Mladenov, G. M., E-mail: gmmladenov@abv.bg; Koleva, E. G., E-mail: eligeorg@abv.bg [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradsko Shose, 1784, Sofia (Bulgaria); Technology Centre of Electron Beam and Plasma Technologies and Techniques, 68-70 Vrania, ap.10, Banishora,1309, Sofia (Bulgaria); Belenkiy, V. Ya., E-mail: mtf@pstu.ru; Varushkin, S. V., E-mail: stepan.varushkin@mail.ru [The department for Welding Production and Technology of Constructional Materials, Perm National Research Polytechnic University, Perm, 614990 (Russian Federation)

    2014-04-15

    Many papers have sought correlations between the parameters of secondary particles generated above the beam/work piece interaction zone, dynamics of processes in the keyhole, and technological processes. Low- and high-frequency oscillations of the current, collected by plasma have been observed above the welding zone during electron beam welding. Low-frequency oscillations of secondary signals are related to capillary instabilities of the keyhole, however; the physical mechanisms responsible for the high-frequency oscillations (>10 kHz) of the collected current are not fully understood. This paper shows that peak frequencies in the spectra of the collected high-frequency signal are dependent on the reciprocal distance between the welding zone and collector electrode. From the relationship between current harmonics frequency and distance of the collector/welding zone, it can be estimated that the draft velocity of electrons or phase velocity of excited waves is about 1600 m/s. The dispersion relation with the properties of ion-acoustic waves is related to electron temperature 10 000 K, ion temperature 2 400 K and plasma density 10{sup 16} m{sup −3}, which is analogues to the parameters of potential-relaxation instabilities, observed in similar conditions. The estimated critical density of the transported current for creating the anomalous resistance state of plasma is of the order of 3 A·m{sup −2}, i.e. 8 mA for a 3–10 cm{sup 2} collector electrode. Thus, it is assumed that the observed high-frequency oscillations of the current collected by the positive collector electrode are caused by relaxation processes in the plasma plume above the welding zone, and not a direct demonstration of oscillations in the keyhole.

  11. Residual stresses due to weld repairs, cladding and electron beam welds and effect of residual stresses on fracture behavior. Annual report, September 1, 1977--November 30, 1978

    International Nuclear Information System (INIS)

    Rybicki, E.F.

    1978-11-01

    The study is divided into three tasks. Task I is concerned with predicting and understanding the effects of residual stresses due to weld repairs of pressure vessels. Task II examines residual stresses due to an electron beam weld. Task III addresses the problem of residual stresses produced by weld cladding at a nozzle vessel intersection. The objective of Task I is to develop a computational model for predicting residual stress states due to a weld repair of pressure vessel and thereby gain an understanding of the mechanisms involved in the creation of the residual stresses. Experimental data from the Heavy Section Steel Technology (HSST) program at Oak Ridge National Laboratories (ORNL) is used to validate the computational model. In Task II, the residual stress model is applied to the case of an electron beam weld of a compact tension freacture specimen. The results in the form of residual stresses near the weld are then used to explain unexpected fracture behavior which is observed in the testing of the specimen. For Task III, the residual stress model is applied to the cladding process used in nozzle regions of nuclear pressure vessels. The residual stresses obtained from this analysis are evaluated to determine their effect on the phenomena of under-clad cracking

  12. Electron-beam welding of the grill flanges of the FTU additional heating system

    International Nuclear Information System (INIS)

    Cucchiaro, A.; Marra, A.

    1994-10-01

    The research and development program of the fusion sector of ENEA (Italian Agency for New Technologies, Energy and Environment) Frascati center is mainly based on experiments on the Frascati Tokamak Upgrade (FTU) machine. The FTU is a medium-high magnetic field (8 T) tokamak with a radio-frequency (RF) additional heating system (8 MW, 8 GHz) that can heat the plasma to temperatures of fusionistic interest. The RF power is coupled to the plasma by a coupling structure consisting of three grills, each formed of an array of waveguides welded at the terminal flanges by an electron-beam technique. This solution allows highly accurate dimensions and optimum clean-surface conditions of the welded copper joints

  13. Analysis of the crystallographic signature of electron beam welds in Cu: implications for variations in etching characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Trimby, Patrick (Oxford Instruments Nordiska AB, Lidingoe (Sweden))

    2009-06-15

    The proposed design for the long term disposal of radioactive waste in Sweden involves the use of corrosion-resistant copper containers. The manufacture of these containers involves the welding of forged lids onto fabricated copper tubes; however, it has been reported (SKB report TR-02-07) that the grain sizes obtained in the lids and bottoms is much coarser than in the side walls (the tubes). The electro beam welding (EBW) of the lids onto the tubes also produces significant grain coarsening, as well as the growth of intermetallic phases at grain boundaries (SKB report TR-06-01). One of the fundamental questions regarding the suitability of these containers concerns the distribution and nature of corrosion at the lid-wall interface. Previous studies have focused on the possibility of grain boundary corrosion, and have concluded that the boundary corrosion is limited and is not likely to adversely affect the properties of the containers. However, differences in the corrosion/etching characteristics between the lid, the wall and the weld areas are observed. The cylinder wall shows reduced boundary etching compared to the weld area and the cylinder lid. This preliminary study investigates whether these differences can be explained by the crystallographic characteristics of the copper in these regions. A single sample, taken from an electron beam welded canister lid, was analysed using electron backscattered diffraction: a summary of the results from this study and some preliminary conclusions are presented in this report

  14. Microstructural Characterization and Mechanical Properties of Electron Beam Welded Joint of High Strength Steel Grade S690QL

    Directory of Open Access Journals (Sweden)

    Błacha S.

    2016-06-01

    Full Text Available In the paper the results of metallographic examination and mechanical properties of electron beam welded joint of quenched and tempered steel grade S690QL are presented. Metallographic examination revealed that the concentrated electron beam significantly affect the changes of microstructure in the steel. Parent material as a delivered condition (quenched and tempered had a bainitic-martensitic microstructure at hardness about 290 HV0.5. After welding, the microstructure of heat affected zone is composed mainly of martensite (in the vicinity of the fusion line of hardness 420 HV0.5. It should be noted, however, that the microstructure of steel in the heat affected zone varies with the distance from the fusion line. The observed microstructural changes were in accordance with the CCT-S transformation diagram for the examined steel.

  15. Electron beam welding in the fabrication of thick-walled large-size pipes of C-Mn steels. Final report; Elektronenstrahlschweissen bei der Fertigung von dickwandigen Grossrohren aus C-Mn-Staehlen. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Woeste, K

    2001-11-01

    This research project investigates electron beam welding as a method of fabrication of large-size pipes with longitudinal welds. The effects of the welding speed on the mechanical and technological properties of the weld are investigated. From the economic view, electron beam welding is much more favourable than submerged-arc welding. [German] Dieses Forschungsprojekt soll dazu beitragen, das Elektronenstrahlschweissen als Fertigungsverfahren fuer laengsnahtgeschweisste Grossrohre zu qualifizieren. Dabei wird der Einfluss der Schweissgeschwindigkeit auf die mechanisch-technologischen Eigenschaften der Schweissung untersucht. Im Wirtschaftlichkeitsvergleich schneidet Elektronenstrahlschweissverfahren gegenueber dem Unterpulverschweissverfahren eindeutig besser ab.

  16. Method of beam welding metallic parts together and apparatus for doing same

    Science.gov (United States)

    Lewandowski, E.F.; Cassidy, D.A.; Sommer, R.G.

    1985-11-29

    This method provides for temporarily clamping a metallic piece to one side of a metallic plate while leaving the opposite side of the plate exposed, and providing a heat conductive heat sink body configured to engage the adjacent portions of such one side of the plate and the piece at all regions proximate to but not at the interface between these components. The exposed side of such plate is then subjected to an electron welding beam, in exact registry with but opposite to the piece. The electron welding beam is supplied with adequate energy for penetrating through the plate, across the interface, and into the piece, whereby the electron welding beam produces molten material from both the plate and the piece in the region of the interface. The molten material flows into any interstices that may exist in the interface, and upon cooling solidifies to provide a welded joint between the plate and piece, where the interface was, virtually without any interstices. The heat sink material prevents the molten material from extrucing beyond what was the interface, to provide a clean welded joint. The heat sink body also mechanically holds the plate and piece together prior to the actual welding.

  17. Electron-beam-induced welding of 3D nano-objects from beneath

    International Nuclear Information System (INIS)

    Moskalenko, A V; Burbridge, D J; Viau, G; Gordeev, S N

    2007-01-01

    Exposure of a sample to the electron beam in a scanning electron microscope (SEM) results in the growth of a film of amorphous carbon due to decomposition of hydrocarbon molecules, which are always present in small quantities in the SEM chamber. This growth is induced mainly by secondary electrons backscattered by atoms of both the sample and substrate. We show that, because the secondary electrons are spread beyond the exposed area, this deposit can be grown in areas of geometric shadow and therefore can be used for bonding of different complex 3D nano-objects to a substrate. This is demonstrated by welding 100 nm Fe-Co-Ni nanoparticles to the surface of 2D graphite. The tip of an atomic force microscope was used to probe the mechanical properties of the formed nanostructures. We observed that, for layers thicker than 25 nm, the nanoparticle is bonded so strongly that it is easier to break the particle than to separate it from the substrate

  18. APPARATUS FOR ELECTRON BEAM HEATING CONTROL

    Science.gov (United States)

    Jones, W.H.; Reece, J.B.

    1962-09-18

    An improved electron beam welding or melting apparatus is designed which utilizes a high voltage rectifier operating below its temperature saturation region to decrease variations in electron beam current which normally result from the gas generated in such apparatus. (AEC)

  19. Stress corrosion cracking tests on electron beam welded carbon steel specimens in carbonate-bicarbonate solution

    International Nuclear Information System (INIS)

    Parkins, R.N.

    1985-04-01

    Stress corrosion cracking tests have been performed on tapered carbon steel test pieces containing electron beam welds with a view to defining susceptibility to such cracking in a carbonate-bicarbonate solution at 90 C and an appropriate electrode potential. The tests involved applying cyclic loads to the specimens and it is shown that the threshold stress for cracking reduces linearly with increase in the magnitude of the cyclic load component. Extrapolation of these trends to zero fluctuating stress indicates static load threshold stresses in the vicinity of the yield stress (i.e. about 300 N/mm 2 for parent plate without a weld, 400 N/mm 2 for specimens with welds on one side only and 600 N/mm 2 for specimens having welds penetrating through the thickness of the specimen). The averages of the maximum crack velocities observed were least for parent plate material and greatest for weld metal, the former being essentially intergranular in morphology and the latter mostly transgranular, with heat affected zone material being intermediate between these extremes. (author)

  20. Limit load solution for electron beam welded joints with single edge weld center crack in tension

    Science.gov (United States)

    Lu, Wei; Shi, Yaowu; Li, Xiaoyan; Lei, Yongping

    2012-05-01

    Limit loads are widely studied and several limit load solutions are proposed to some typical geometry of weldments. However, there are no limit load solutions exist for the single edge crack weldments in tension (SEC(T)), which is also a typical geometry in fracture analysis. The mis-matching limit load for thick plate with SEC(T) are investigated and the special limit load solutions are proposed based on the available mis-matching limit load solutions and systematic finite element analyses. The real weld configurations are simplified as a strip, and different weld strength mis-matching ratio M, crack depth/width ratio a/ W and weld width 2H are in consideration. As a result, it is found that there exists excellent agreement between the limit load solutions and the FE results for almost all the mis-matching ration M, a/ W and ligament-to-weld width ratio ( W-a)/ H. Moreover, useful recommendations are given for evaluating the limit loads of the EBW structure with SEC(T). For the EBW joints with SEC(T), the mis-matching limit loads can be obtained assuming that the components are wholly made of base metal, when M changing from 1.6 to 0.6. When M decreasing to 0.4, the mis-matching limit loads can be obtained assuming that the components are wholly made of base metal only for large value of ( W-a)/ H. The recommendations may be useful for evaluating the limit loads of the EBW structures with SEC(T). The engineering simplifications are given for assessing the limit loads of electron beam welded structure with SEC(T).

  1. Quantitative characterization of the microstructure of an electron-beam welded medium strength Al-Zn-Mg alloy

    Energy Technology Data Exchange (ETDEWEB)

    Deschamps, A., E-mail: alexis.deschamps@simap.grenoble-inp.fr [SIMAP, INPGrenoble-CNRS-UJF, BP 75, 38402 St Martin d' Heres Cedex (France); Ringeval, S.; Texier, G. [SIMAP, INPGrenoble-CNRS-UJF, BP 75, 38402 St Martin d' Heres Cedex (France) and CEA, centre de Valduc, SEMP, LECM, 21120 Is-Sur-Tille (France); Delfaut-Durut, L. [CEA, centre de Valduc, SEMP, LECM, 21120 Is-Sur-Tille (France)

    2009-08-20

    The microstructure of an electron beam weld of a medium strength Al-4.5%Zn-1%Mg (wt.%) alloy has been characterized in terms of solute element distribution, grain structure and fine-scale precipitates after a T6 post-welding heat treatment. It is found that the weld nugget consists of small grains, whose size (1-50 {mu}m) is heterogeneously distributed. The nugget composition is unaffected in Mg but depleted of 20% in Zn in the first run zone. This is shown to affect the fine-scale precipitate microstructure, which has been mapped in the weld cross-section using Small-Angle X-ray Scattering. It is shown that the nugget exhibits a precipitate size only slightly different from that of the base material after the post-welding heat treatment, and that the difference in volume fraction, much more significant, can be understood from the magnitude of the solute depletion. The relative precipitate sizes and volume fractions in the weld nugget and base material enable to understand effectively the corresponding microhardness levels.

  2. Hydrogen assisted stress-cracking behaviour of electron beam welded supermartensitic stainless steel weldments

    International Nuclear Information System (INIS)

    Bala Srinivasan, P.; Sharkawy, S.W.; Dietzel, W.

    2004-01-01

    Supermartensitic stainless steel (SMSS) grades are gaining popularity as an alternate material to duplex and super duplex stainless steels for applications in oil and gas industries. The weldability of these steels, though reported to be better when compared to conventional martensitic stainless steels, so far has been addressed with duplex stainless steel electrodes/fillers. This work addresses the stress-cracking behaviour of weldments of a high-grade supermartensitic stainless steel (11% Cr, 6.5% Ni and 2% Mo) in the presence of hydrogen. Welds were produced with matching consumables, using electron beam welding (EBW) process. Weldments were subjected to slow strain rate tests in 0.1 M NaOH solution, with introduction of hydrogen into the specimens by means of potentiostatic cathodic polarisation at a potential of -1200 mV versus Ag/AgCl electrode. Reference tests were performed in air for comparison, and the results suggest that both the SMSS base material and the EB weld metal are susceptible to embrittlement under the conditions of hydrogen charging

  3. Probability of defect detection of Posiva's electron beam weld

    International Nuclear Information System (INIS)

    Kanzler, D.; Mueller, C.; Pitkaenen, J.

    2013-12-01

    The report 'Probability of Defect Detection of Posiva's electron beam weld' describes POD curves of four NDT methods radiographic testing, ultrasonic testing, eddy current testing and visual testing. POD-curves are based on the artificial defects in reference blocks. The results are devoted to the demonstration of suitability of the methods for EB weld testing. Report describes methodology and procedure applied by BAM. Report creates a link from the assessment of the reliability and inspection performance to the risk assessment process of the canister final disposal project. Report ensures the confirmation of the basic quality of the NDT methods and their capability to describe the quality of the EB-weld. The probability of detection curves are determined based on the MIL-1823 standard and it's reliability guidelines. The MIL-1823 standard was developed for the determination of integrity of gas turbine engines for the US military. In the POD-process there are determined as a key parameter for the defect detectability the a90/95 magnitudes, i.e. the size measure a of the defect, for which the lower 95 % confidence band crosses the 90 % POD level. By this way can be confirmed that defects with a size of a90/95 will be detected with 90 % probability. In case the experiment will be repeated 5 % might fall outside this confidence limit. (orig.)

  4. Fundamental studies on electron beam welding on heat-resistant superalloys for nuclear plants, 2

    International Nuclear Information System (INIS)

    Arata, Yoshiaki; Terai, Kiyohide; Nagai, Hiroyoshi; Shimizu, Shigeki; Aota, Toshiichi.

    1978-01-01

    In this report, the correlation was discussed between the susceptibility to weld cracking in electron beam welding of heat-resistant superalloys for nuclear plants and its characteristics of hot ductility. Trans-Varestraint and Varestraint tests. Obtained conclusions may be summarized as follows, using technical symbols which are given meanings in this report. 1) Such criteria obtained in the hot ductility test are herein employed to evaluate the susceptibility to microcracking as sub(ND) T sub(H), sub(ND) T sub(C), ΔT sub(H.C) (= sub(ND) T sub(H) - sub(ND) T sub(C)) and sub(B) T sub(R) (= T sub(L) - sub(ND) T sub(C)). Both with the decrease of sub(ND) T sub(H) and sub(ND) T sub(C) and with the increase of ΔT sub(H.C) and sub(B) T sub(R), superalloys are considered to become more susceptible to microcracking. Of these criteria, ΔT sub(H.C.) and sub(B) T sub(R) correlate best with q sub(CR) which is one of the effective criteria to evaluate the susceptibility to microcracking in the electron beam welding. 2) It is recognized that ΔT sub(H.C) and sub(B) T sub(R) in hot ductility test correlate well with sub(TV) T sub(R.5%) in Trans-Varestraint test and sub(V) C sub(m.1%) in the Varestraint test. 3) sub(TV) T sub(R.5%) in the Trans-Varestraint test and sub(V) C sub(m.1%) in the Varestraint test are respectively effective to evaluate the susceptibility to microcracking. Moreover, these criteria clearly correlate with q sub(CR). (auth.)

  5. Electron Gun for Computer-controlled Welding of Small Components

    Czech Academy of Sciences Publication Activity Database

    Dupák, Jan; Vlček, Ivan; Zobač, Martin

    2001-01-01

    Roč. 62, 2-3 (2001), s. 159-164 ISSN 0042-207X R&D Projects: GA AV ČR IBS2065015 Institutional research plan: CEZ:AV0Z2065902 Keywords : Electron beam-welding machine * Electron gun * Computer- control led beam Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.541, year: 2001

  6. Electron-beam-welded segmental heat pipes of AlMgSi 1 for the thermal model of the satellite Aeros-A

    Energy Technology Data Exchange (ETDEWEB)

    Hoell, H.; Lasar, H.

    1974-07-01

    For the purposes of tests with the thermal model of the German aeronomy satellite Aeros-A, a heat pipe system of optimized weight was developed in order to transport thermal energy from the solar cells of the cylindrical satellite to the conical bottom. Because of stringent requirements on the fabrication process, electron beam welding is used for bonding. The welding process is described and preliminary test results are given. (LEW)

  7. Microstructure evolution and fracture behaviour for electron beam ...

    Indian Academy of Sciences (India)

    Unknown

    The effect of microstructural characteristics on fracture behaviour mechanism for electron beam welding of ... petrochemical plants and surgical implants (Messler 1981;. Jinkeun ... viding a scientific basis for welded structure design, manu-.

  8. Mehanical Properties of Electron Beam Welded Joints in Thick Gage CA6NM Stainless Steel

    Science.gov (United States)

    Sarafan, Sheida; Wanjara, Priti; Gholipour, Javad; Champliaud, Henri; Mathieu, Louis

    2017-10-01

    Design of hydroelectric turbine components requires high integrity welds (without detectable volumetric defects) in heavy gage sections of stainless steel materials, such as ASTM A743 grade CA6NM—a low carbon 13% Cr-4% Ni martensitic stainless steel that is manufactured in cast form. In this work, 90-mm-thick plates of CA6NM were joined using a single-pass autogenous electron beam (EB) welding process and the mechanical properties were evaluated in the as-welded condition to characterize the performance of the joints. The static tensile properties that were evaluated in two directions—transverse and longitudinal to the EB weld seam—demonstrated conformance of the joints with the requirements of the ASME Section IX standard. The Charpy impact energies of the EB welds—measured at -18 °C on samples with V-notch roots located in the fusion and heat-affected zones—met the minimum requirements of 27 J specified in ASME Section VIII standard. In addition, bend tests that were conducted on the entire weld cross section displayed no discontinuities on the tension side of the bent joints. Hence, the developed EB welding process was demonstrated to render high-performance joints and promises key advantages for industrialization, such as cost savings through reductions in consumable material, production time and labor intensity.

  9. Residual stress measurement of electron beam welded copper plates using prism hole drilling method

    International Nuclear Information System (INIS)

    Laakkonen, M.

    2013-12-01

    Eleven electron beam (EB) welded copper plates were measured in this investigation with Prism hole drilling equipment made by Stresstech Oy. All samples contained a linear weld in their center. Two different sets of plates were measured in this investigation. The first set included five samples (X436, X437, X438, X439 and X440) which were welded using four different welding speeds. Samples X439 and X440 were welded with the same speed but X440 is the only sample of the set that received a cosmetic pass. The second set received heat treatments at four different temperatures. Samples X456 and X458 were annealed at the same temperature but sample X456 received a cosmetic pass while X458 did not. Samples X455 and X457 were both annealed at a different temperature, with (X455) or without (X457) the cosmetic pass. Two areas were machined from the samples. About five millimeters was machined from the surfaces on the both of areas. Machined surfaces located on the top surfaces. The measurement points on the top surface are located on the weld and 20 mm and 120 mm from the weld on machined areas. Lower surface measurements are located -20 mm, 20 mm and 120 mm from the weld. All measurements were about 122 mm from the edges perpendicular to the weld. The top surfaces of all samples were machined in two areas across the weld. About 5 mm were removed. Stress measurements on the top surfaces were performed in these two areas, on the weld and 20 mm and 120 mm away from the weld. Stresses were also measured on the back sides, at -20 mm, 20 mm and 120 mm distance from the weld. All measurement locations were about 122mm from the sample edges. Most of the measurements give tensile strengths from 0 MPa to 30 MPa. Stresses parallel to the weld were slightly higher than weld stresses in transverse direction. The machined surfaces have residual stress values above 30 MPa near the surface. (orig.)

  10. Residual stress measurement of electron beam welded copper plates using prism hole drilling method

    Energy Technology Data Exchange (ETDEWEB)

    Laakkonen, M. [Stresstech Oy, Jyvaeskylae (Finland)

    2013-12-15

    Eleven electron beam (EB) welded copper plates were measured in this investigation with Prism hole drilling equipment made by Stresstech Oy. All samples contained a linear weld in their center. Two different sets of plates were measured in this investigation. The first set included five samples (X436, X437, X438, X439 and X440) which were welded using four different welding speeds. Samples X439 and X440 were welded with the same speed but X440 is the only sample of the set that received a cosmetic pass. The second set received heat treatments at four different temperatures. Samples X456 and X458 were annealed at the same temperature but sample X456 received a cosmetic pass while X458 did not. Samples X455 and X457 were both annealed at a different temperature, with (X455) or without (X457) the cosmetic pass. Two areas were machined from the samples. About five millimeters was machined from the surfaces on the both of areas. Machined surfaces located on the top surfaces. The measurement points on the top surface are located on the weld and 20 mm and 120 mm from the weld on machined areas. Lower surface measurements are located -20 mm, 20 mm and 120 mm from the weld. All measurements were about 122 mm from the edges perpendicular to the weld. The top surfaces of all samples were machined in two areas across the weld. About 5 mm were removed. Stress measurements on the top surfaces were performed in these two areas, on the weld and 20 mm and 120 mm away from the weld. Stresses were also measured on the back sides, at -20 mm, 20 mm and 120 mm distance from the weld. All measurement locations were about 122mm from the sample edges. Most of the measurements give tensile strengths from 0 MPa to 30 MPa. Stresses parallel to the weld were slightly higher than weld stresses in transverse direction. The machined surfaces have residual stress values above 30 MPa near the surface. (orig.)

  11. Characterization of an Additive Manufactured TiAl Alloy-Steel Joint Produced by Electron Beam Welding.

    Science.gov (United States)

    Basile, Gloria; Baudana, Giorgio; Marchese, Giulio; Lorusso, Massimo; Lombardi, Mariangela; Ugues, Daniele; Fino, Paolo; Biamino, Sara

    2018-01-17

    In this work, the characterization of the assembly of a steel shaft into a γ-TiAl part for turbocharger application, obtained using Electron Beam Welding (EBW) technology with a Ni-based filler, was carried out. The Ti-48Al-2Nb-0.7Cr-0.3Si (at %) alloy part was produced by Electron Beam Melting (EBM). This additive manufacturing technology allows the production of a lightweight part with complex shapes. The replacement of Nickel-based superalloys with TiAl alloys in turbocharger automotive applications will lead to an improvement of the engine performance and a substantial reduction in fuel consumption and emission. The welding process allows a promising joint to be obtained, not affecting the TiAl microstructure. Nevertheless, it causes the formation of diffusive layers between the Ni-based filler and both steel and TiAl, with the latter side being characterized by a very complex microstructure, which was fully characterized in this paper by means of Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy, and nanoindentation. The diffusive interface has a thickness of about 6 µm, and it is composed of several layers. Specifically, from the TiAl alloy side, we find a layer of Ti₃Al followed by Al₃NiTi₂ and AlNi₂Ti. Subsequently Ni becomes more predominant, with a first layer characterized by abundant carbide/boride precipitation, and a second layer characterized by Si-enrichment. Then, the chemical composition of the Ni-based filler is gradually reached.

  12. An automated system for studying the power distribution of electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Filarowski, C.A.

    1994-12-01

    Precise welds with an electron beam welder are difficult to reproduce because the factors effecting the electron beam current density distribution are not easily controlled. One method for measuring the power density distribution in EB welds uses computer tomography to reconstruct an image of the current density distribution. This technique uses many separate pieces of hardware and software packages to obtain the data and then reconstruct it consequently, transferring this technology between different machines and operators is difficult. Consolidating all of the hardware and software into one machine to execute the same tasks will allow for real-time measurement of the EB power density distribution and will provide a facilitated means for transferring various welding procedure between different machines and operators, thereby enhancing reproducibility of electron beam welds.

  13. Electron beam selectively seals porous metal filters

    Science.gov (United States)

    Snyder, J. A.; Tulisiak, G.

    1968-01-01

    Electron beam welding selectively seals the outer surfaces of porous metal filters and impedances used in fluid flow systems. The outer surface can be sealed by melting a thin outer layer of the porous material with an electron beam so that the melted material fills all surface pores.

  14. Numerical investigation on the variation of welding stresses after material removal from a thick titanium alloy plate joined by electron beam welding

    International Nuclear Information System (INIS)

    Liu, Chuan; Zhang, Jianxun; Wu, Bing; Gong, Shuili

    2012-01-01

    Highlights: → After less materials removal from the top, stresses on the bottom remain unchanged. → The transverse stress within the weld decreases significantly with material removal. → Local material removal does not influence the longitudinal stress significantly. -- Abstract: The stress modification after material removal from a 50 mm thick titanium alloy plate jointed by electron beam welding (EBW) was investigated through the finite element method (FEM). The welding experiment and milling process were carried out to experimentally determine the stresses induced by EBW and their modification after local material removal. The modification of as-welded stresses due to the local material removal method and the whole layer removal method was discussed with the finite element analysis. Investigated results showed that with less materials removal from the top, the stresses on the bottom surface remain almost unchanged; after material removal from the top and bottom part, the transverse stress on the newly-formed surface decreases significantly as compared to the as-welded stresses at the same locations; however, the stress modification only occurs at the material removal region in the case of local region removal method; the longitudinal stress decreases with the whole layer removal method while remains almost unchanged with the local region removal method.

  15. MODULATED PLASMA ELECTRON BEAMS

    Energy Technology Data Exchange (ETDEWEB)

    Stauffer, L. H.

    1963-08-15

    Techniques have been developed for producing electron beams of two amperes or more, from a plasma within a hollow cathode. Electron beam energies of 20 kilovolts are readily obtained and power densities of the order of 10,000 kilowatts per square inch can be obtained with the aid of auxiliary electromagnetic focusing. An inert gas atmosphere of a few microns pressure is used to initiate and maintain the beam. Beam intensity increases with both gas pressure and cathode potential but may be controlled by varying the potential of an internal electrode. Under constant pressure and cathode potential the beam intensity may be varied over a wide range by adjusting the potential of the internal control electrode. The effects of cathode design on the volt-ampere characteristics of the beam and the design of control electrodes are described. Also, performance data in both helium and argon are given. A tentative theory of the origin of electrons and of beam formation is proposed. Applications to vacuum metallurgy and to electron beam welding are described and illustrated. (auth)

  16. Mechanical properties of 9Cr–1W reduced activation ferritic martensitic steel weldment prepared by electron beam welding process

    Energy Technology Data Exchange (ETDEWEB)

    Das, C.R., E-mail: chitta@igcar.gov.in [Indira Gandhi Center for Atomic Research, Kalpakkam 603102 (India); Albert, S.K. [Indira Gandhi Center for Atomic Research, Kalpakkam 603102 (India); Sam, Shiju [Institute for Plasma Research, Gandhinagar (India); Mastanaiah, P. [Defense Research and Development Laboratory, Hyderabad (India); Chaitanya, G.M.S.K.; Bhaduri, A.K.; Jayakumar, T. [Indira Gandhi Center for Atomic Research, Kalpakkam 603102 (India); Murthy, C.V.S. [Defense Research and Development Laboratory, Hyderabad (India); Kumar, E. Rajendra [Institute for Plasma Research, Gandhinagar (India)

    2014-11-15

    Highlights: • Width of HAZ is smaller in the 9Cr–1W RAFM weldment prepared by EB process compared to that reported for TIG weldments in literature. • Weld joint is stronger than that of the base metal. • Toughness of weld metal prepared by EB welding process is comparable to that (in PWHT condition) prepared by TIG process. • DBTT of as-welded 9Cr–1W RAFM weldment prepared by EB process is comparable to that reported for TIG weld metal in PWHT condition. - Abstract: Microstructure and mechanical properties of the weldments prepared from 9Cr–1W reduced activation ferritic martensitic (RAFM) steel using electron beam welding (EBW) process were studied. Microstructure consists of tempered lath martensite where precipitates decorating the boundaries in post weld heat treated (PWHT) condition. Lath and precipitate sizes were found to be finer in the weld metal than in base metal. Accordingly, hardness of the weld metal was found to be higher than the base metal. Tensile strength of the cross weldment specimen was 684 MPa, which was comparable with the base metal tensile strength of 670 MPa. On the other hand, DBTT of 9Cr–1W weld metal in as-welded condition is similar to that reported for TIG weld metal in PWHT condition.

  17. Mechanical properties of 9Cr–1W reduced activation ferritic martensitic steel weldment prepared by electron beam welding process

    International Nuclear Information System (INIS)

    Das, C.R.; Albert, S.K.; Sam, Shiju; Mastanaiah, P.; Chaitanya, G.M.S.K.; Bhaduri, A.K.; Jayakumar, T.; Murthy, C.V.S.; Kumar, E. Rajendra

    2014-01-01

    Highlights: • Width of HAZ is smaller in the 9Cr–1W RAFM weldment prepared by EB process compared to that reported for TIG weldments in literature. • Weld joint is stronger than that of the base metal. • Toughness of weld metal prepared by EB welding process is comparable to that (in PWHT condition) prepared by TIG process. • DBTT of as-welded 9Cr–1W RAFM weldment prepared by EB process is comparable to that reported for TIG weld metal in PWHT condition. - Abstract: Microstructure and mechanical properties of the weldments prepared from 9Cr–1W reduced activation ferritic martensitic (RAFM) steel using electron beam welding (EBW) process were studied. Microstructure consists of tempered lath martensite where precipitates decorating the boundaries in post weld heat treated (PWHT) condition. Lath and precipitate sizes were found to be finer in the weld metal than in base metal. Accordingly, hardness of the weld metal was found to be higher than the base metal. Tensile strength of the cross weldment specimen was 684 MPa, which was comparable with the base metal tensile strength of 670 MPa. On the other hand, DBTT of 9Cr–1W weld metal in as-welded condition is similar to that reported for TIG weld metal in PWHT condition

  18. Contribution to a research on electron beam welding of metals; Contribution a l'etude de la soudure des metaux par faisceau d'electrons

    Energy Technology Data Exchange (ETDEWEB)

    Stohr, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-03-15

    The electron beam welding of metals is performed by the travelling of the focusing point along the junction of two pieces to be connected. Welding parameters are the electron gun power W, the value of the electron impact surface S, the welding speed s. From the beginning of our research in 1954, the preponderant part played by specific power W/s on the shape of the welded zone and the penetrating depth, became evident. A more methodical research has been undertaken in the laboratories of C.E.N. under the patronage of Professor CHAUDRON, in order to define in a better way the importance of the different welding parameters and to determine their influence on the metallurgical qualities of welded assemblies. This research induced us to define an electron gun adapted as well as possible to the performance of weldings, not only from the point of view of behaviour, especially during the passage from the atmospheric to a low pressure at 10{sup -5} Torr, necessary for the carrying out of a welding, but also from the point of view of adjustment conveniences of the different welding parameters, indispensable to the intended research work. The variations of welding parameters show that the shape of the molten zone turns from a circle segment to that of a very high triangle, which implies a continual change of the mode of heat transmission. Tests have been made, in order to confirm this way of looking, especially in order to achieve isotherms in dynamic operating and also the comparison of these isotherms with that recorded while using a method of argon arc welding. The thermal balance of energy supplied to the part, the necessary welding energy, and the energy loss (through conduction, radiation and evaporation) has also been established. These results proved that almost the whole of energy has been used for melting, that the different losses are negligible and that heat transmission can not occur by thermal conduction through the part during 'welding' time, when operating

  19. Control of spiking in partial penetration of electron beam welds. Final report, 1 October 1969--1 October 1976

    International Nuclear Information System (INIS)

    1976-01-01

    An investigation of the penetration mechanism of high energy density electron beams and an evaluation of electron beam deflection as a method of penetration control are presented. A discussion of electron beam mechanics including several penetration theories is presented in the introduction and background. Slur radiographs made using a pinhole x-ray camera are evaluated to determine velocity and acceleration of the point of beam impingement. Methods of cavity closure are discussed with possible causes of surface sealing of the beam cavity. A method of penetration, after the cavity has closed, based on the curves relating velocity and acceleration to penetration distance is considered. An estimate of cavity pressure is made from the maximum acceleration of the beam-metal interface. A system using an x-ray detector coupled with a beam deflecting device is detailed and evaluated. As this is the first attempt at penetration control by beam deflection the investigation seeks only to determine the feasibility of the idea without attempting a thorough analysis of range of abilities or quality of welds made by such devices. Based on several specimens which are presented beam deflection appears capable of controlling penetration depth. It is hoped that the ideas presented here will inspire future research along these lines

  20. Characterization of an Additive Manufactured TiAl Alloy—Steel Joint Produced by Electron Beam Welding

    Directory of Open Access Journals (Sweden)

    Gloria Basile

    2018-01-01

    Full Text Available In this work, the characterization of the assembly of a steel shaft into a γ-TiAl part for turbocharger application, obtained using Electron Beam Welding (EBW technology with a Ni-based filler, was carried out. The Ti-48Al-2Nb-0.7Cr-0.3Si (at % alloy part was produced by Electron Beam Melting (EBM. This additive manufacturing technology allows the production of a lightweight part with complex shapes. The replacement of Nickel-based superalloys with TiAl alloys in turbocharger automotive applications will lead to an improvement of the engine performance and a substantial reduction in fuel consumption and emission. The welding process allows a promising joint to be obtained, not affecting the TiAl microstructure. Nevertheless, it causes the formation of diffusive layers between the Ni-based filler and both steel and TiAl, with the latter side being characterized by a very complex microstructure, which was fully characterized in this paper by means of Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy, and nanoindentation. The diffusive interface has a thickness of about 6 µm, and it is composed of several layers. Specifically, from the TiAl alloy side, we find a layer of Ti3Al followed by Al3NiTi2 and AlNi2Ti. Subsequently Ni becomes more predominant, with a first layer characterized by abundant carbide/boride precipitation, and a second layer characterized by Si-enrichment. Then, the chemical composition of the Ni-based filler is gradually reached.

  1. The laser beam welding test of ODS fuel claddings

    International Nuclear Information System (INIS)

    Uwaba, Tomoyuki; Ukai, Shigeharu

    2004-06-01

    As a alternative method of pressurized resistance welding being currently developed, integrity evaluations for a laser beam welding joint between a ODS cladding tube and a FMS end plug were conducted for the purpose of studying the applicability of the laser beam welding technique to the welding with the lower end plug. The laser beam welding causes blowholes in the welding zone, whose effect on the high cycle fatigue strength of the joint is essential because of the flow-induced vibration during irradiation. The rotary bending tests using specimens with laser beam welding between ODS cladding tubes and FMS end plugs were carried out to evaluate the fatigue strength of the welding joint containing blowholes. The fatigue limit of stress amplitude about 200 MPa from 10 6 -10 7 cycles suggested that the laser beam welding joint had enough strength against the flow-induced vibration. Sizing of blowholes in the welding zone by using a micro X ray CT technique estimated the rate of defect areas due to blowholes at 1-2%. It is likely that the fatigue strength remained nearly unaffected by blowholes because of the no correlation between the breach of the rotary bending test specimen and the rate of defect area. Based on results of tensile test, internal burst test, Charpy impact test and fatigue test of welded zone, including study of allowable criteria of blowholes in the inspection, it is concluded that the laser beam welding can be probably applied to the welding between the ODS cladding tube and the FMS lower end plug. (author)

  2. Comparison of creep rupture behavior of tungsten inert gas and electron beam welded grade 91 steel

    International Nuclear Information System (INIS)

    Dey, H.C.; Vanaja, J.; Laha, K.; Bhaduri, A.K.; Albert, S.K.; Roy, G.G.

    2016-01-01

    Creep rupture behavior of Grade 91 steel weld joints fabricated by multi-pass tungsten inert gas (TIG) and electron beam welding (EBW) processes has been studied and compared with base metal. Cross-weld creep specimens were fabricated from the X-ray radiography qualified and post weld heat treated (760°C/4 h) weld joints. Creep testing of weld joints and base metal was carried out at 650°C over a stress range of 40°120 MPa. Creep life of EBW joint is comparable to base metal; whereas multi-pass TIG joint have shown significant drop in creep life tested for the same stress level. Both types of weld joints show Type IV cracking for all the stress levels. The steady state creep rate of multi-pass TIG is found to be fifteen times than that of EBW joint for stress level of 80 MPa, which may be attributed to over tempering, more re-austenization, and fine grain structure of inter-critical and fine grain heat affected zone regions of the TIG joint. In contrast, single-pass and rapid weld thermal cycles associated with EBW process causes minimum phase transformation in the corresponding regions of heat affected zone. Microstructure studies on creep tested specimens shows creep cavities formed at the primary austenite grain boundaries nucleated on coarse carbide precipitates. The hardness measured across the weld on creep tested specimens shows significant drop in hardness in the inter-critical and fine grain heat affected zone regions of multi-pass TIG (176 VHN) in comparison to 192 VHN in the corresponding locations in EBW joint. (author)

  3. Strength Evaluation of Heat Affected Zone in Electron Beam Welded ARAA for HCCR TBM in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, J. S.; Kim, S. K.; Jin, H. G.; Lee, E. H.; Lee, D. W. [KAERI, Daejeon (Korea, Republic of); Cho, S. [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The Korean helium cooled ceramic reflector (HCCR) test blanket module (TBM) has been developed for ITER, and Korean reduced activation ferritic martensitic (RAFM) steel, called advanced reduced activation alloy (ARAA), has also been developed for a structural material of the HCCR TBM. One case of limited optimized electron beam (EB) welding conditions was selected based on previous work, and the weldability of an EB weld was evaluated for TBM fabrication. The micro-hardness was measured from the base to the weld region, and the microstructures were also observed. A small punch (SP) test considering the HAZ was carried out at room and high (550 .deg. C) temperatures. The empirical mechanical properties of HAZ in the EB weld were evaluated, and the fracture behavior was investigated after the SP test. The SP results show that the estimated yield and tensile strength of the HAZ were higher than the base metal at both temperatures. Korean RAFM steel, ARAA, was developed as a TBM structural material. Using one of the program alloys in ARAA (F206), one case of a limited optimized EB welding condition was selected based on previous works, and the weldability of an EB weld using the SP test was evaluated for TBM fabrication at room and high (550 .deg. C) temperatures. From a micro-Vickers hardness evaluation, the HAZ gave the highest values compared with the other regions. The irregular grain boundaries in the HAZ were observed, but its width was narrower than the TIG weld from the previous results. The optimized welding methods such as the TIG, EB, and laser weld, and the welding procedure considering the PWHT are being established, and the weldability evaluation is also progressing according to the development of the ARAA for the fusion material application in Korea.

  4. Integrated control system for electron beam processes

    Science.gov (United States)

    Koleva, L.; Koleva, E.; Batchkova, I.; Mladenov, G.

    2018-03-01

    The ISO/IEC 62264 standard is widely used for integration of the business systems of a manufacturer with the corresponding manufacturing control systems based on hierarchical equipment models, functional data and manufacturing operations activity models. In order to achieve the integration of control systems, formal object communication models must be developed, together with manufacturing operations activity models, which coordinate the integration between different levels of control. In this article, the development of integrated control system for electron beam welding process is presented as part of a fully integrated control system of an electron beam plant, including also other additional processes: surface modification, electron beam evaporation, selective melting and electron beam diagnostics.

  5. Effects of filler wire on residual stress in electron beam welded QCr0.8 copper alloy to 304 stainless steel joints

    International Nuclear Information System (INIS)

    Zhang, Bing-Gang; Zhao, Jian; Li, Xiao-Peng; Chen, Guo-Qing

    2015-01-01

    The electron beam welding (EBW) of 304 stainless steel to QCr0.8 copper alloy with or without copper filler wire was studied in detail. The temperature fields and magnitude and distribution of stress fields in the joints during the welding process were numerically simulated using finite element method. The temperature cycles and residual stresses were also experimentally measured by thermometric and hole-drilling methods, respectively. The accuracy of the modeling procedure was verified by the good agreement between the calculated results and experimental data. The temperature distribution in the joint was found to be asymmetric along the center of weld. In particular, the temperature in the copper alloy plate is much higher than that in the 304 SS plate owing to the great difference in thermal conductivity between the two materials. The peak three-dimensional residual stresses all appeared at the interface between the copper and steel in the two different joints. Furthermore, the weld was subjected to tensile stress. The longitudinal residual stress, generally the most harmful to the integrity of the structure among the stress components in EBW with filler wire (EBFW), was 53 MPa lower than that of autogenous EBW (AEBW), and the through-thickness residual stress was 12 MPa lower. The transverse residual stress of EBFW was 44 MPa higher than that of AEBW. However, analysis of the von Mises stress showed that the EBFW process effectively reduced the extent of the high residual stress region in the weld location and the magnitude of the residual stresses in the copper side compared with those of the AEBW joint. - Highlights: • Copper and steel was welded by electron beam welding with copper filler wire. • The copper wire fed into gap can reduce the peak value of residual stress. • The peak value of longitudinal stress can be reduced 53 MPa by the filler wire. • The range of nov Mises stress in the weld could be reduced by the wire

  6. Influence of heat input in electron beam process on microstructure and properties of duplex stainless steel welded interface

    Science.gov (United States)

    Zhang, Zhiqiang; Jing, Hongyang; Xu, Lianyong; Han, Yongdian; Zhao, Lei; Lv, Xiaoqing; Zhang, Jianyang

    2018-03-01

    The influence of heat input in electron beam (EB) process on microstructure, mechanical properties, and pitting corrosion resistance of duplex stainless steel (DSS) welded interface was investigated. The rapid cooling in EB welding resulted in insufficient austenite formation. The austenite mainly consisted of grain boundary austenite and intragranular austenite, and there was abundant Cr2N precipitation in the ferrite. The Ni, Mo, and Si segregation indicated that the dendritic solidification was primarily ferrite in the weld. The weld exhibited higher hardness, lower toughness, and poorer pitting corrosion resistance than the base metal. The impact fractures of the welds were dominated by the transgranular cleavage failure of the ferrite. The ferrite was selectively attacked because of its lower pitting resistance equivalent number than that of austenite. The Cr2N precipitation accelerated the pitting corrosion. In summary, the optimised heat input slightly increased the austenite content, reduced the segregation degree and ferrite texture intensity, decreased the hardness, and improved the toughness and pitting corrosion resistance. However, the effects were limited. Furthermore, optimising the heat input could not suppress the Cr2N precipitation. Taking into full consideration the microstructure and properties, a heat input of 0.46 kJ/mm is recommended for the EB welding of DSS.

  7. Applicability evaluation of eddy current testing for underwater laser beam welding

    International Nuclear Information System (INIS)

    Kobayashi, Noriyasu; Kasuya, Takashi; Ueno, Souichi; Ochiai, Makoto; Yuguchi, Yasuhiro

    2010-01-01

    We clarified a defect detecting capability of eddy current testing (ECT) as a surface inspection technique for underwater laser beam welding. An underwater laser beam welding procedure includes groove caving as a preparation, laser beam welding in groove and welding surface grinding as a post treatment. Therefore groove and grinded welding surface inspections are required underwater. We curried out defect detection tests using three kinds of specimens simulated a groove, reactor vessel nozzle dissimilar metal welding materials and a laser beam welding material with a cross coil ECT probe. From experimental results, we confirmed that it is possible to detect 0.3 mm or more depth electro-discharge machining slits on machining surfaces in all specimens and an ECT has possibility as a surface inspection technique for underwater laser beam welding. (author)

  8. Underwater laser beam welding of Alloy 690

    International Nuclear Information System (INIS)

    Hino, Takehisa; Tamura, Masataka; Kono, Wataru; Kawano, Shohei; Yoda, Masaki

    2009-01-01

    Stress Corrosion Clacking (SCC) has been reported at Alloy 600 welds between nozzles and safe-end in Pressurized Water Reactor (PWR) plant. Alloy 690, which has higher chromium content than Alloy 600, has been applied for cladding on Alloy 600 welds for repairing damaged SCC area. Toshiba has developed Underwater Laser Beam Welding technique. This method can be conducted without draining, so that the repairing period and the radiation exposure during the repair can be dramatically decreased. In some old PWRs, high-sulfur stainless steel is used as the materials for this section. It has a high susceptibility of weld cracks. Therefore, the optimum welding condition of Alloy 690 on the high-sulfur stainless steel was investigated with our Underwater Laser Beam Welding unit. Good cladding layer, without any crack, porosity or lack of fusion, could be obtained. (author)

  9. Summary of the guideline on underwater laser beam repair welding

    International Nuclear Information System (INIS)

    Ichikawa, Hiroya; Yoda, Masaki; Motora, Yuichi

    2013-01-01

    It is known that stress corrosion cracking (SCC) might occur at the weld of a reactor pressure vessel or core internals. Underwater laser beam clad welding for mitigation of SCC has been already established and the guideline 'Underwater laser beam clad welding' was published. Moreover, the guideline 'Seal welding' was also published as a repair method for SCC. In addition to these guidelines, the guideline 'Underwater laser beam repair welding' was newly published in November, 2012 for the repair welding after completely removing a SCC crack occurred in weld or base metal. This paper introduces the summary of this guideline. (author)

  10. Cracking in fusion zone and heat affected zone of electron beam welded Inconel-713LC gas turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Chamanfar, A., E-mail: achamanfar@gmail.com [Département de Génie Mécanique, École de Technologie Supérieure, 1100 rue Notre-Dame Ouest, Montréal, Québec, Canada H3C 1K3 (Canada); Jahazi, M. [Département de Génie Mécanique, École de Technologie Supérieure, 1100 rue Notre-Dame Ouest, Montréal, Québec, Canada H3C 1K3 (Canada); Bonakdar, A.; Morin, E. [Siemens Canada Limited, 9545 Côte-de-Liesse, Dorval, Québec, Canada H9P 1A5 (Canada); Firoozrai, A. [Département de Génie Mécanique, École de Technologie Supérieure, 1100 rue Notre-Dame Ouest, Montréal, Québec, Canada H3C 1K3 (Canada)

    2015-08-26

    Electron beam welding (EBW) of shrouds in Inconel-713LC low pressure gas turbine blades was associated with cracking in fusion zone (FZ) and heat affected zone (HAZ) leading to a high scrap rate in manufacturing of gas turbine blades. In this study, in order to develop a detailed map of cracks and understand the root cause of cracking, a comprehensive microstructural and numerical analysis was performed. The elemental mapping in scanning electron microscope (SEM)-energy dispersive spectral analysis revealed segregation of alloying elements in the cracked area of FZ and HAZ. In other words, one of the cracking mechanisms in FZ and HAZ was found to be segregation induced liquation and subsequent cracking due to thermal and mechanical tensile stresses generated during EBW. Cracking in FZ also occurred because of low strength of the solidifying weld metal as well as solidification contraction. As well, γ′ dissolution and reprecipitation in HAZ leading to decreased ductility and generation of contraction stresses was another mechanism for cracking in HAZ. The numerical model was capable to predict the cracking location as well as cracking orientation with respect to the weld line.

  11. Study of the Welding Electron Gun Optical Properties for Work Piece Imaging

    Czech Academy of Sciences Publication Activity Database

    Vlček, Ivan

    2009-01-01

    Roč. 44, 5-6 (2009), s. 70-72 ISSN 0861-4717 R&D Projects: GA AV ČR KAN300100702 Institutional research plan: CEZ:AV0Z20650511 Keywords : electron beam welding * electron gun * electron optics design Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  12. Metallurgical examination of powder metallurgy uranium alloy welds

    International Nuclear Information System (INIS)

    Morrison, A.G.M.; Dobbins, A.G.; Holbert, R.K.; Doughty, M.W.

    1986-01-01

    Inertia welding provided a successful technique for joining full density, powder metallurgy uranium-6 wt pct niobium alloy. Initial joining attempts concentrated on the electron beam method, but this method failed to produce a sound weld. The electron beam welds and the inertia welds were evaluated by radiography and metallography. Electron beam welds were attempted on powder metallurgy plates which contained various levels of oxygen and nitrogen. All welds were porous. Sixteen inertia welds were made and all welds were radiographically sound. The tensile properties of the joints were found to be equivalent to the p/m base metal properties

  13. Electron beam additive manufacturing with wire - Analysis of the process

    Science.gov (United States)

    Weglowski, Marek St.; Błacha, Sylwester; Pilarczyk, Jan; Dutkiewicz, Jan; Rogal, Łukasz

    2018-05-01

    The electron beam additive manufacturing process with wire is a part of global trend to find fast and efficient methods for producing complex shapes elements from costly metal alloys such as stainless steels, nickel alloys, titanium alloys etc. whose production by other conventional technologies is unprofitable or technically impossible. Demand for additive manufacturing is linked to the development of new technologies in the automotive, aerospace and machinery industries. The aim of the presented work was to carried out research on electron beam additive manufacturing with a wire as a deposited (filler) material. The scope of the work was to investigate the influence of selected technological parameters such as: wire feed rate, beam current, travelling speed, acceleration voltage on stability of the deposition process and geometric dimensions of the padding welds. The research revealed that, at low beam currents, the deposition process is unstable. The padding weld reinforcement is non-uniform. Irregularity of the width, height and straightness of the padding welds can be observed. At too high acceleration voltage and beam current, burn-through of plate and excess penetration weld can be revealed. The achieved results and gained knowledge allowed to produce, based on EBAM with wire process, whole structure from stainless steel.

  14. Helium and its effects on the creep-fatigue behaviour of electron beam welds in the steel AISI-316-L

    International Nuclear Information System (INIS)

    Paulus, M.

    1992-12-01

    Within the scope of R and D work for materials development for the NET fusion experiment (Next European Torus) and the International Thermonuclear Experimental Reactor (ITER), the task reported was to examine electron beam welds in the austenitic stainless steel AISI 316 L (NET reference material) for their fatigue behaviour under creep load, and the effects of helium implantation on there mechanical properties. (orig.) [de

  15. Toughness study of an under matched welded joint: application to the mechanical integrity of the electron beam welded joint of 6016-T6 aluminium alloy

    International Nuclear Information System (INIS)

    Rekik, Wissal

    2016-01-01

    For the demonstration of the integrity of the most sensitive nuclear components, conventional defects, as cracks for example, must be considered within the design step as required by the nuclear safety authority. This phase is particularly crucial for dimensioning of welded structures. To ensure a conservative prediction, the position of the initial crack within the welded joint must be the most detrimental in fracture behavior. Commonly used analyzes consider homogeneous structure with the behavior of the base metal of the welded joint, considered as the weakest metallurgical zone in the case of an overmatched weld. In contrast, similar analysis is not conservative in case of under matched weld. The thesis contributes by the development of an experimental and numerical methodology allowing the identification of the detrimental metallurgical zone in fracture behavior of an under matched welded joint. The methodology proposed is applied to an electron beam welded joint on al 6061-T6. To reach this goal, the gradient of the mechanical behavior along the welded joint was first identified. This is particularly interesting to conduct an advanced analysis based on a multi material approach. In a second step, the fracture behavior of the welded joint was studied on CT specimen. The transferability of the J integral at initiation was approved on another geometry: this represents an important foundation for the transferability assumption to structure. Finally, a numerical analysis on full scale tube was developed. Residual welding stresses and structural effects were considered. The results demonstrate that the heat affected zone located at 13 mm from the middle of the welded joint is the most detrimental zone for fracture analysis. This contradicts the conventional methods conducted on fracture analysis which consider a conventional defect within the fusion zone. (author) [fr

  16. Hybrid welding of hollow section beams for a telescopic lifter

    Science.gov (United States)

    Jernstroem, Petteri

    2003-03-01

    Modern lifting equipment is normally constructed using hollow section beams in a telescopic arrangement. Telescopic lifters are used in a variety number of applications including e.g. construction and building maintenance. Also rescue sector is one large application field. It is very important in such applications to use a lightweight and stable beam construction, which gives a high degree of flexibility in working high and width. To ensure a high weld quality of hollow section beams, high efficiency and minimal distortion, a welding process with a high power density is needed. The alternatives, in practice, which fulfill these requirements, are laser welding and hybrid welding. In this paper, the use of hybrid welding process (combination of CO2 laser welding and GMAW) in welding of hollow section beam structure is presented. Compared to laser welding, hybrid welding allows wider joint tolerances, which enables joints to be prepared and fit-up less accurately, aving time and manufacturing costs. A prerequisite for quality and effective use of hybrid welding is, however, a complete understanding of the process and its capabilities, which must be taken into account during both product design and manufacture.

  17. Effect of micromorphology at the fatigue crack tip on the crack growth in electron beam welded Ti-6Al-4V joint

    International Nuclear Information System (INIS)

    Tao, Junhui; Hu, Shubing; Ji, Longbo

    2016-01-01

    In this paper, we describe experiments on welded joints of Ti-6Al-4V alloy specimens exhibiting fatigue characteristics in the base metal (BM), hot affected zone (HAZ) and fuse zone (FZ). The effect of micromorphology on crack propagation at the tip of the fatigue crack in joints formed by electron beam welding was investigated using an optical microscope, transmission electron microscope and other methodologies. The results demonstrated that the fatigue crack originated in and propagated along α/β boundaries in the BM. In the HAZ, the fatigue crack occurred at the boundary between martensite laths, and propagated through most irregular-equiaxed α phases and a few martensite laths. In the FZ, the fatigue crack originated at the boundaries between the fine crushing phases among martensite laths, and propagated along a majority of α/β boundaries and several narrow martensite laths. The electron beam welded joint of Ti-6Al-4V alloy showed instances of zigzag fatigue cracks that increased in degree from lowest in the HAZ, moderate in the FZ to greatest in the BM. Conversely, fatigue crack growth rate (FCGR) was greatest in the HAZ, less in the FZ and slowest in the BM. - Highlights: •Ti-6Al-4V welded joint exhibits different fatigue characteristics. •The fatigue crack propagates along α/β boundaries in the BM. •The fatigue crack propagates through α phases and martensite laths in the HAZ. •The fatigue crack propagates along α/β boundaries and martensite laths in the FZ. •Fatigue crack growth rate is fastest in the HAZ, less in the FZ, slowest in the BM.

  18. Electron Beam Welding of IN792 DS: Effects of Pass Speed and PWHT on Microstructure and Hardness.

    Science.gov (United States)

    Angella, Giuliano; Barbieri, Giuseppe; Donnini, Riccardo; Montanari, Roberto; Richetta, Maria; Varone, Alessandra

    2017-09-05

    Electron Beam (EB) welding has been used to realize seams on 2 mm-thick plates of directionally solidified (DS) IN792 superalloy. The first part of this work evidenced the importance of pre-heating the workpiece to avoid the formation of long cracks in the seam. The comparison of different pre-heating temperatures (PHT) and pass speeds ( v ) allowed the identification of optimal process parameters, namely PHT = 300 °C and v = 2.5 m/min. The microstructural features of the melted zone (MZ); the heat affected zone (HAZ), and base material (BM) were investigated by optical microscopy (OM), scanning electron microscopy (SEM), energy dispersion spectroscopy (EDS), electron back-scattered diffraction (EBSD), X-ray diffraction (XRD), and micro-hardness tests. In the as-welded condition; the structure of directionally oriented grains was completely lost in MZ. The γ' phase in MZ consisted of small (20-40 nm) round shaped particles and its total amount depended on both PHT and welding pass speed, whereas in HAZ, it was the same BM. Even if the amount of γ' phase in MZ was lower than that of the as-received material, the nanometric size of the particles induced an increase in hardness. EDS examinations did not show relevant composition changes in the γ' and γ phases. Post-welding heat treatments (PWHT) at 700 and 750 °C for two hours were performed on the best samples. After PWHTs, the amount of the ordered phase increased, and the effect was more pronounced at 750 °C, while the size of γ' particles in MZ remained almost the same. The hardness profiles measured across the joints showed an upward shift, but peak-valley height was a little lower, indicating more homogeneous features in the different zones.

  19. Application of CO2 laser beam weld for repair of fuel element of nuclear reactor 'YAYOI'

    International Nuclear Information System (INIS)

    Hashimoto, Mitsuo; Yanagi, Hideharu; Sukegawa, Toshio; Saito, Isao; Sasuga, Norihiko; Aizawa, Nagaaki; Miya, Kenzo

    1986-01-01

    The present studies are to develop CO 2 laser beam welding techniques in order to apply for repoint of nuclear reactor fuel of Fast Neutron Source Reactor YAYOI. For that purpos, many experiments were conduted to obtain various effects of laser welding variables with use of SUS 304 plates, pipes and simulated dumy fuels. These experiments provided us an optimal welding condition through metallurgical observations, non-destructive and mechanical tests. It was found that the laser welds exhibited properties equivalent to those of the base metal, in addition they provided us a favorable system than that of electron beam welds against a cladding of radioactive nuclear fuel in a hot cell. The present paper reports on the characteristics of laser welds, structural analysis of fuel element and a system design of remotely operated devices setting in a hot cell. (author)

  20. Laser beam-plasma plume interaction during laser welding

    Science.gov (United States)

    Hoffman, Jacek; Moscicki, Tomasz; Szymanski, Zygmunt

    2003-10-01

    Laser welding process is unstable because the keyhole wall performs oscillations which results in the oscillations of plasma plume over the keyhole mouth. The characteristic frequencies are equal to 0.5-4 kHz. Since plasma plume absorbs and refracts laser radiation, plasma oscillations modulate the laser beam before it reaches the workpiece. In this work temporary electron densities and temperatures are determined in the peaks of plasma bursts during welding with a continuous wave CO2 laser. It has been found that during strong bursts the plasma plume over the keyhole consists of metal vapour only, being not diluted by the shielding gas. As expected the values of electron density are about two times higher in peaks than their time-averaged values. Since the plasma absorption coefficient scales as ~N2e/T3/2 (for CO2 laser radiation) the results show that the power of the laser beam reaching the metal surface is modulated by the plasma plume oscillations. The attenuation factor equals 4-6% of the laser power but it is expected that it is doubled by the refraction effect. The results, together with the analysis of the colour pictures from streak camera, allow also interpretation of the dynamics of the plasma plume.

  1. Thermo-mechanical modelling of high temperature crack growth in electron beam welding of a CuCrZr alloy

    International Nuclear Information System (INIS)

    Wisniewski, J.

    2009-03-01

    The aim of this research thesis is to find out which crack initiation criteria can be applied in the case of electron beam welding of CuCrZr alloy components. After a literature survey on the high temperature cracking phenomenon, the author describes its microscopic origins and presents the main high temperature crack growth criteria. He reports metallurgical, thermal and mechanical characterizations of the studied alloy performed by optical, scanning electronic and transmission electronic microscopy, crystallographic analysis, residual stress determination using the hole method, mechanical testing at room and high temperature (from room temperature to 1000 C), determination of solidification route and of thermal conductivity, and thermal expansion measurements. He describes electron beam weldability tests performed on the alloy. As these tests are performed on simple geometry samples, they allow the high temperature crack growth to be observed. These experiments are then modelled using two finite element codes, Castem and Calcosoft. Then, after a presentation of the main hypotheses used in these numerical models, the author applies the high temperature crack growth criteria. Results obtained for theses criteria are then analysed and discussed

  2. Metallurgical characterization of pulsed current gas tungsten arc, friction stir and laser beam welded AZ31B magnesium alloy joints

    International Nuclear Information System (INIS)

    Padmanaban, G.; Balasubramanian, V.

    2011-01-01

    This paper reports the influences of welding processes such as friction stir welding (FSW), laser beam welding (LBW) and pulsed current gas tungsten arc welding (PCGTAW) on mechanical and metallurgical properties of AZ31B magnesium alloy. Optical microscopy, scanning electron microscopy, transmission electron microscopy and X-Ray diffraction technique were used to evaluate the metallurgical characteristics of welded joints. LBW joints exhibited superior tensile properties compared to FSW and PCGTAW joints due to the formation of finer grains in weld region, higher fusion zone hardness, the absence of heat affected zone, presence of uniformly distributed finer precipitates in weld region.

  3. Investigation on fracture toughness of laser beam welded steels

    International Nuclear Information System (INIS)

    Riekehr, S.; Cam, G.; Santos, J.F. dos; Kocak, M.; Klein, R.M.; Fischer, R.

    1999-01-01

    Laser beam welding is currently used in the welding of a variety of structural materials including hot and cold rolled steels, high strength low alloy and stainless steels, aluminium and titanium alloys, refractory and high temperature alloys and dissimilar materials. This high power density welding process has unique advantages of cost effectiveness, low distortion, high welding speed, easy automation, deep penetration, narrow bead width, and narrow HAZ compared to the conventional fusion welding processes. However, there is a need to understand the deformation and fracture properties of laser beam weld joints in order to use this cost effective process for fabrication of structural components fully. In the present study, an austenitic stainless steel, X5CrNi18 10 (1.4301) and a ferritic structural steel, RSt37-2 (1.0038), with a thickness of 4 mm were welded by 5 kW CO 2 laser process. Microhardness measurements were conducted to determine the hardness profiles of the joints. Flat micro-tensile specimens were extracted from the base metal, fusion zone, and heat affected zone of ferritic joint to determine the mechanical property variation across the joint and the strength mismatch ratio between the base metal and the fusion zone. Moreover, fracture mechanics specimens were extracted from the joints and tested at room temperature to determine fracture toughness, Crack Tip Opening Displacement (CTOD), of the laser beam welded specimens. The effect of the weld region strength mis-matching on the fracture toughness of the joints have been evaluated. Crack initiation, crack growth and crack deviation processes have also been examined. These results were used to explain the influence of mechanical heterogeneity of the weld region on fracture behaviour. This work is a part of the ongoing Brite-Euram project Assessment of Quality of Power Beam Weld Joints (ASPOW). (orig.)

  4. Global and local characteristics of an autogenous single pass electron beam weld in thick gage UNS S41500 steel

    Energy Technology Data Exchange (ETDEWEB)

    Sarafan, S., E-mail: Sheida.Sarafan.1@ens.etsmtl.ca [École de Technologie Supérieure, Montréal, Québec, Canada H3C 1K3 (Canada); National Research Council Canada, Aerospace, Montréal, Québec, Canada H3T 2B2 (Canada); Wanjara, P., E-mail: priti.wanjara@nrc-cnrc.gc.ca [National Research Council Canada, Aerospace, Montréal, Québec, Canada H3T 2B2 (Canada); Gholipour, J., E-mail: Javad.gholipour@nrc-cnrc.gc.ca [National Research Council Canada, Aerospace, Montréal, Québec, Canada H3T 2B2 (Canada); Champliaud, H., E-mail: henri.champliaud@etsmtl.ca [École de Technologie Supérieure, Montréal, Québec, Canada H3C 1K3 (Canada)

    2016-06-01

    Electron beam welding of UNS S41500, a low carbon martensitic stainless steel utilized in hydroelectric turbine manufacturing, was investigated by applying a single pass autogenous process to penetrate a section thickness of 72 mm without preheating. In the as-welded and post-weld heat treated conditions, the evolution in microhardness and microstructure across the weldments, as well as the global and local tensile properties, were evaluated. In the as-welded condition, assessment of the microhardness and the associated microstructure across the welds led to the identification of six regions, including the fusion zone, four heat affected zones and the base metal; each of these regions consisted of different phase constituents, such as tempered martensite, untempered martensite, delta ferrite and retained austenite. Post-weld heat treatment, undertaken to temper the untempered martensite in the as-welded microstructure, was effective in homogenizing the hardness across the weldment. The mechanical response of the welds, determined through tensile testing at room temperature with an automated non-contact three-dimensional deformation measurement system, indicated that the global tensile properties in the as-welded and post-weld heat treated conditions met the acceptance criteria in the ASME Section IX standard. Also, evaluation of the local tensile properties in the fusion and heat affected zones of the as-welded samples allowed a more comprehensive understanding of the strength and ductility associated with the different microstructures in the “composite” nature of the weldment. Fractographic analysis demonstrated dimpled features on the tensile fracture surfaces and failure was associated with debonding between the martensitic matrix and the secondary phases (such as delta ferrite and retained austenite) that resulted in the formation, growth and coalescence of voids into a macroscale crack.

  5. Enhancement of mechanical properties and failure mechanism of electron beam welded 300M ultrahigh strength steel joints

    International Nuclear Information System (INIS)

    Zhang, Guodong; Yang, Xinqi; He, Xinlong; Li, Jinwei; Hu, Haichao

    2013-01-01

    Highlights: ► Normalizing at 970 °C plus quenching and tempering cannot refine the columnar grains. ► Ductility and toughness of conventional quenched and tempered joint are very low. ► An optimum combination of strength and ductility was obtained for the welded joints. ► Intergranular cracked columnar dendritic grains were found on the fracture surface. -- Abstract: In this study, four post-weld heat treatment (PWHT) schedules were selected to enhance the mechanical properties of electron beam welded 300M ultrahigh strength steel joints. The microstructure, mechanical properties and fractography of specimens under the four post-weld heat treatment (PWHT) conditions were investigated and also compared with the base metal (BM) specimens treated by conventional quenching and tempering (QT). Results of macro and microstructures indicate that all of the four PWHT procedures did not eliminate the coarse columnar dendritic grains in weld metal (WM). Whereas, the morphology of the weld centerline and the boundaries of the columnar dendritic grains in WM of weld joint specimens subjected to the PWHT procedure of normalizing at 970 °C for 1 h followed by conventional quenching and tempering (W-N2QT) are indistinct. The width of martensite lath in WM of W-N2QT is narrower than that of specimens subjected to other PWHT procedures. Experimental results indicate that the ductility and toughness of conventional quenched and tempered joints are very low compared with the BM specimens treated by conventional QT. However, the strength and impact toughness of the W-N2QT specimens are superior to those of the BM specimen treated by conventional QT, and the ductility is only slightly inferior to that of the latter.

  6. High-energy-beam welding of type 316LN stainless steel for cryogenic applications

    International Nuclear Information System (INIS)

    Siewert, T.A.; Gorni, D.; Kohn, G.

    1988-01-01

    Laser and electron beam welds in 25-mm-thick AISI 316LN specimens containing 0.16 wt.$% N were evaluated for fusion reactor applications and their mechanical properties were compared with those of welds generated by lower productivity processes such as shielded-metal-arc and gas-metal-arc welding. Tensile tests were performed on transverse tensile specimens at 4 K. For both welding processes the fractures occurred in the base metal at a strength level near 950 MPa. This indicated that the weld and heat affected zone had a strength similar to that of the base metal. The 4 K weld fracture toughness was only slightly less than that for the base metal and comparable to the best values achieved with conventional welding processes in 316Ln weld metal. The Charpy V-notch absorbed energies averaged near 70 J at 76 K. Metallographic analysis revealed cellular and fully austenitic solidification with little porosity and no evidence of hot cracking

  7. Incoloy 800 steam generator tubes stubbing by laser and electron beams process

    International Nuclear Information System (INIS)

    Bonnin, P.; Noel, J.P.; Gauthier, J.P.; Peigney, A.

    1988-01-01

    The electron beam welding conditions are optimized for different thermal cycles and chemical compositions of the fusion zone. The metallurgical and mechanical properties of the joints are described and compared with the properties of laser and TIG welds [fr

  8. Effects of the Heterogeneity in the Electron Beam Welded Joint on Mechanical Properties of Ti6Al4V Alloy

    Science.gov (United States)

    Liu, Jing; Gao, Xiao-Long; Zhang, Lin-Jie; Zhang, Jian-Xun

    2015-01-01

    The aim of this investigation was to evaluate the effect of microstructure heterogeneity on the tensile and low cycle fatigue properties of electron beam welded (EBW) Ti6Al4V sheets. To achieve this goal, the tensile and low cycle fatigue property in the EBW joints and base metal (BM) specimens is compared. During the tensile testing, digital image correlation technology was used to measure the plastic strain field evolution within the specimens. The experimental results showed that the tensile ductility and low cycle fatigue strength of EBW joints are lower than that of BM specimens, mainly because of the effect of microstructure heterogeneity of the welded joint. Moreover, the EBW joints exhibit the cyclic hardening behavior during low fatigue process, while BM specimens exhibit the cyclic softening behavior. Compared with the BM specimens with uniform microstructure, the heterogeneity of microstructure in the EBW joint is found to decrease the mechanical properties of welded joint.

  9. Tensile properties of four types of austenitic stainless steel welded joints

    International Nuclear Information System (INIS)

    Balladon, P.

    1990-01-01

    In the field of an LMFBR research programme on austenitic stainless steel welds in a Shared Cost Action Safety, Research Area 8, coordinated by JRC-Ispra, four cooperating laboratories (ECN, IKE/MPA, the Welding Institute and UNIREC) have been involved in the fabrication and extensive characterization of welded joints made from one plate of ICL 167 stainless steel. The materials included parent metal, four vacuum electron beam welds, one non vacuum electron beam weld, one submerged arc weld, one gas metal arc weld and one manual metal arc weld. This report summarizes the 106 tensile tests performed at room temperature and 550 0 C, including the influence of strain rate, specimen orientation and welding procedure. Main results are that electron beam welds have tensile properties close to those of parent metal with higher values of yield strength in longitudinal orientation and lower values of total elongation in transverse orientation but with a similar reduction of area, that filler metal welds own the highest values of yield strength and lowest values of ductility. Most of the welds properties are higher than the minimum specified for parent metal, except for some values of total elongation, mainly in transverse orientation. In view of using electron beam welding for production of components used in LMFBR, results obtained show that tensile properties of electron beam welds compare well to those of classical welds. (author)

  10. Development of laser beam welding for the lip seal configuration

    International Nuclear Information System (INIS)

    Yadav, Ashish; Joshi, Jaydeep; Singh, Dhananjay Kumar; Natu, Harshad; Rotti, Chandramouli; Bandyopadhyay, Mainak; Chakraborty, Arun

    2015-01-01

    Highlights: • Laser welding parameter optimization for required weld penetration. • Parametric study of actual scenarios like air gap, plate & beam misalignment. • Destructive and non-destructive examination of the welds and He-leak testing. - Abstract: A vacuum seal using the lip sealing technique is emerging as the most likely choice for fusion devices, to comply with the requirement of maintainability. The welding technology considered for lip sealing is laser welding, due to the attributes of small spot diameter, low concentrated heat input, high precision and penetration. To establish the process, an experiment has been conducted on a sample size of 150 mm × 50 mm having thickness of 2 mm, material AISI304L to assess the dependence of beam parameters like, laser power, speed and focusing distance on penetration and quality of weld joint. Further, the assessment of the effect of welding set-up variables like air-gap between plates, plate misalignment, and laser beam misalignment on the weld quality is also required. This paper presents the results of this experimental study and also the plan for developing a large (∼10 m) size laser welded seal, that simulates, appropriately, the configuration required in large dimension fusion devices.

  11. Development of laser beam welding for the lip seal configuration

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Ashish, E-mail: ashish.yadav@iter-india.org [ITER-India, Institute for Plasma Research, Sector 25, Gandhinagar 382016, Gujarat (India); Joshi, Jaydeep; Singh, Dhananjay Kumar [ITER-India, Institute for Plasma Research, Sector 25, Gandhinagar 382016, Gujarat (India); Natu, Harshad [Magod Laser Machining Pvt. Ltd., KIADB Ind. Area, Jigani, Anekal Taluk, Bengaluru 560105 (India); Rotti, Chandramouli; Bandyopadhyay, Mainak; Chakraborty, Arun [ITER-India, Institute for Plasma Research, Sector 25, Gandhinagar 382016, Gujarat (India)

    2015-10-15

    Highlights: • Laser welding parameter optimization for required weld penetration. • Parametric study of actual scenarios like air gap, plate & beam misalignment. • Destructive and non-destructive examination of the welds and He-leak testing. - Abstract: A vacuum seal using the lip sealing technique is emerging as the most likely choice for fusion devices, to comply with the requirement of maintainability. The welding technology considered for lip sealing is laser welding, due to the attributes of small spot diameter, low concentrated heat input, high precision and penetration. To establish the process, an experiment has been conducted on a sample size of 150 mm × 50 mm having thickness of 2 mm, material AISI304L to assess the dependence of beam parameters like, laser power, speed and focusing distance on penetration and quality of weld joint. Further, the assessment of the effect of welding set-up variables like air-gap between plates, plate misalignment, and laser beam misalignment on the weld quality is also required. This paper presents the results of this experimental study and also the plan for developing a large (∼10 m) size laser welded seal, that simulates, appropriately, the configuration required in large dimension fusion devices.

  12. Assessment of Electron Beam Welding in Shipyard Construction,

    Science.gov (United States)

    1985-12-01

    ELECTRON BEAM APPLICATORS QUESTIONNAIRE 1. Applicators Name: McCay Tool & Engr. Co. 2. Address: 1449 West Lark, Fenton , Mo. 3...had very li tt le undercut and requ ired no cosmet ic pass. TESTING AND RESULTS ’re~t ing wi ~ pt-f’)rimev oil spc inens inl t he- fol lowing manner. 1...Penetration Cosmet . c Accelerating Voltage (KV) 75 70 Beam Current (ma) 115 30 Travel Speed (IPM) 8 18 Beam focus (Amps programmed) 4.38 4.70 Gun to Work

  13. Study on laser beam welding technology for nuclear power plants

    International Nuclear Information System (INIS)

    Chida, Itaru; Shiihara, Katsunori; Fukuda, Takeshi; Kono, Wataru; Obata, Minoru; Morishima, Yasuo

    2012-01-01

    Laser beam welding is one of the jointing processes by irradiating laser beam on the material surface locally and widely used at various industrial fields. Toshiba has developed various laser-based maintenance and repair technologies and already applied them to several existing nuclear power plants. Laser cladding is a technique to weld the corrosion resistant metal onto a substrate surface by feeding filler wire to improve the corrosion resistance. Temper-bead welding is the heat input process to provide the desired microstructure properties of welded low alloy steels without post weld heat treatment, by inducing proper heat cycle during laser welding. Both laser welding technologies would be performed underwater by blowing the shielding gas for creating the local dry area. In this report, some evaluation results of material characteristics by temper-bead welding to target at Reactor Coolant System nozzle of PWR are presented. (author)

  14. Microstructural evolution of fusion zone in laser beam welds of pure titanium

    International Nuclear Information System (INIS)

    Liu, H.; Nakata, K.; Zhang, J.X.; Yamamoto, N.; Liao, J.

    2012-01-01

    Microstructural evolution of fusion zone in laser beam welds of pure titanium was studied by means of electron backscattering diffraction. The microstructural evolution is strongly affected by the β → α transformation mechanism dependent on the cooling rate during phase transformation. The long-range diffusional transformation mainly occurs in the fusion zone at the low cooling rate, and the massive transformation dominantly takes place at the high cooling rate. For this reason, the grain morphologies probably change from the granular-like to columnar-like grains with the cooling rate increasing. - Highlights: ► Microstructures of fusion zone in laser beam welds of pure titanium are studied. ► Increasing cooling rate changes grain morphology from granular to columnar one. ► Final microstructures depend on the β→α transformation mechanisms.

  15. Mechanical properties of similar and dissimilar weldments of RAFMS and AISI 316L (N) SS prepared by electron beam welding process

    Energy Technology Data Exchange (ETDEWEB)

    Albert, S.K., E-mail: shaju@igcar.gov.in [Indira Gandhi Center for Atomic Research, Kalpakkam 603 102 (India); Das, C.R. [Indira Gandhi Center for Atomic Research, Kalpakkam 603 102 (India); Sam, Shiju [Institute of Plasma Research, Gandhi Nagar (India); Mastanaiah, P.; Patel, M. [Defence Research and Development Laboratory, Hyderabad (India); Bhaduri, A.K.; Jayakumar, T. [Indira Gandhi Center for Atomic Research, Kalpakkam 603 102 (India); Murthy, C.V.S. [Defence Research and Development Laboratory, Hyderabad (India); Kumar, Rajendra [Institute of Plasma Research, Gandhi Nagar (India)

    2014-10-15

    Highlights: • Increase of W content in RAFM steel can result in retention of delta ferrite in the EB weld of the steel. • Presence of delta ferrite seems to affect the ductile brittle transition temperature of the weld metal. • There is improper mixing of the two base metals in the fusion zone dissimilar welds of RAFM steel and austenitic stainless steel made by EB welding. - Abstract: Effect of weld metal composition on microstructure and toughness of weld metal is studied in this paper. Weld joints of reduced activation ferritic/martensitic (RAFM) steel containing 1.0 and 1.4 wt.% W were prepared using electron beam welding (EBW) process. Dissimilar weld joints between 1.0 wt.% W RAFM steel and AISI 316L (N) SS were also prepared using EBW process. The effect of post weld heat treatment (PWHT) temperatures on microstructure and mechanical properties was also studied. Microstructural observation reveals delta–ferrite in 1.4 wt.% W containing weld metal, which is absent in 1.0 wt.% W weld metal. In the case of the dissimilar weld metal, microstructure shows presence of lath martensite and retained austenite. Austenite was stable even after PWHT and its presence is attributed to high nickel (5–6 wt.%) content in the dissimilar weld metal. Hardness of RAFM steel weld metal was found to be 270–290 VHN after PWHT at 750 °C for 2 h. Impact toughness of both 1.0 and 1.4 wt.% W RAFM steel is high (>250 J) at ambient temperature. However, after PWHT, variation of toughness with temperature is more drastic for 1.4 wt.% W RAFM steel weld metal than the other. As a result, ductile brittle transition temperature (DBTT) for the 1.4 wt.% steel weld metal is close to 0 °C while that of the 1.0 wt.% W steel is close to that of the base metal (∼−80 °C)

  16. A process model for the heat-affected zone microstructure evolution in duplex stainless steel weldments: Part II. Application to electron beam welding

    Science.gov (United States)

    Hemmer, H.; Grong, Ø.; Klokkehaug, S.

    2000-03-01

    In the present investigation, a process model for electron beam (EB) welding of different grades of duplex stainless steels (i.e. SAF 2205 and 2507) has been developed. A number of attractive features are built into the original finite element code, including (1) a separate module for prediction of the penetration depth and distribution of the heat source into the plate, (2) adaptive refinement of the three-dimensional (3-D) element mesh for quick and reliable solution of the differential heat flow equation, and (3) special subroutines for calculation of the heat-affected zone (HAZ) microstructure evolution. The process model has been validated by comparison with experimental data obtained from in situ thermocouple measurements and optical microscope examinations. Subsequently, its aptness to alloy design and optimization of welding conditions for duplex stainless steels is illustrated in different numerical examples and case studies pertaining to EB welding of tubular joints.

  17. Defect detectability of eddy current testing for underwater laser beam welding

    International Nuclear Information System (INIS)

    Ueno, Souichi; Kobayashi, Noriyasu; Ochiai, Makoto; Kasuya, Takashi; Yuguchi, Yasuhiro

    2011-01-01

    We clarified defect detectability of eddy current testing (ECT) as a surface inspection technique for underwater laser beam welding works of dissimilar metal welding (DMW) of reactor vessel nozzle. The underwater laser beam welding procedure includes groove caving as a preparation, laser beam welding in the grooves and welded surface grinding as a post treatment. Therefore groove and welded surface inspections are required in the underwater condition. The ECT is a major candidate as this inspection technique because a penetrant testing is difficult to perform in the underwater condition. Several kinds of experiments were curried out using a cross coil an ECT probe and ECT data acquisition system in order to demonstrate the ECT defect detectability. We used specimens, simulating groove and DMW materials at an RV nozzle, with electro-discharge machining (EDM) slits over it. Additionally, we performed a detection test for artificial stress corrosion cracking (SCC) defects. From these experimental results, we confirmed that an ECT was possible to detect EDM slits 0.3 mm or more in depth and artificial SCC defects 0.02 mm to 0.48 mm in depth on machined surface. Furthermore, the underwater ECT defect detectability is equivalent to that in air. We clarified an ECT is sufficiently usable as a surface inspection technique for underwater laser beam welding works. (author)

  18. Study on laser beam welding technology for nuclear power plants title

    International Nuclear Information System (INIS)

    Chida, Itaru; Shiihara, Katsunori; Fukuda, Takeshi; Kono, Wataru; Obata, Minoru; Morishima, Yasuo

    2011-01-01

    Laser beam welding is one of the jointing processes by irradiating laser beam on the material surface locally and widely used at various industrial fields. Toshiba has developed various laser-based maintenance and repair technologies and already applied them to several existing nuclear power plants. Laser cladding is a technique to weld the corrosion resistant metal onto a substrate surface by feeding filler wire to improve the corrosion resistance. Temper-bead welding is the heat input process to provide the desired microstructure properties of welded low alloy steels without post weld heat treatment, by inducing proper heat cycle during laser welding. Both laser welding technologies would be performed underwater by blowing the shielding gas for creating the local dry area. In this report, some evaluation results of material characteristics by temper-bead welding to target at Reactor Coolant System nozzle of PWR are presented. (author)

  19. Hybrid laser-TIG welding, laser beam welding and gas tungsten arc welding of AZ31B magnesium alloy

    International Nuclear Information System (INIS)

    Liu Liming; Wang Jifeng; Song Gang

    2004-01-01

    Welding of AZ31B magnesium alloy was carried out using hybrid laser-TIG (LATIG) welding, laser beam welding (LBW) and gas tungsten arc (TIG) welding. The weldability and microstructure of magnesium AZ31B alloy welded using LATIG, LBW and TIG were investigated by OM and EMPA. The experimental results showed that the welding speed of LATIG was higher than that of TIG, which was caught up with LBW. Besides, the penetration of LATIG doubles that of TIG, and was four times that of LBW. In addition, arc stability was improved in hybrid of laser-TIG welding compared with using the TIG welding alone, especially at high welding speed and under low TIG current. It was found that the heat affect zone of joint was only observed in TIG welding, and the size of grains in it was evidently coarse. In fusion zone, the equiaxed grains exist, whose size was the smallest welded by LBW, and was the largest by TIG welding. It was also found that Mg concentration of the fusion zone was lower than that of the base one by EPMA in three welding processes

  20. New technique of skin embedded wire double-sided laser beam welding

    Science.gov (United States)

    Han, Bing; Tao, Wang; Chen, Yanbin

    2017-06-01

    In the aircraft industry, double-sided laser beam welding is an approved method for producing skin-stringer T-joints on aircraft fuselage panels. As for the welding of new generation aluminum-lithium alloys, however, this technique is limited because of high hot cracking susceptibility and strengthening elements' uneven distributions within weld. In the present study, a new technique of skin embedded wire double-sided laser beam welding (LBW) has been developed to fabricate T-joints consisting of 2.0 mm thick 2060-T8/2099-T83 aluminum-lithium alloys using eutectic alloy AA4047 filler wire. Necessary dimension parameters of the novel groove were reasonably designed for achieving crack-free welds. Comparisons were made between the new technique welded T-joint and conventional T-joint mainly on microstructure, hot crack, elements distribution features and mechanical properties within weld. Excellent crack-free microstructure, uniform distribution of silicon and superior tensile properties within weld were found in the new skin embedded wire double-sided LBW T-joints.

  1. Heat affected zone liquation cracking in electron beam welded third generation nickel base superalloys

    International Nuclear Information System (INIS)

    Ojo, O.A.; Wang, Y.L.; Chaturvedi, M.C.

    2008-01-01

    The weldability of directionally solidified nickel base superalloy TMS-75 and TMS-75+C was investigated by autogenous bead-on-plate electron beam welding. The analysis of microsegregation that occurred during solidification of the as-cast alloys indicated that while W and Re segregated into the γ dendrites of both the alloys, Ta, Hf and C were rejected into the interdendritic liquid in the TMS-75+C. Heat affected zone intergranular liquation cracking was observed in both the materials and was observed to be closely associated with liquated γ-γ' eutectic microconstituent. The TMS-75+C alloy, however, exhibited a reduced extent of HAZ cracking compared to TMS-75. Suppression of terminal solidification reaction involving non-invariant γ-γ' eutectic transformation due to modification of primary solidification path by carbon addition is suggested to be an important factor contributing to reduced susceptibility of TMS-75+C alloy to HAZ liquation cracking relative to the TMS-75 superalloy

  2. Flaw preparations for HSST program vessel fracture mechanics testing: mechanical-cyclic pumping and electron-beam weld-hydrogen-charge cracking schemes

    International Nuclear Information System (INIS)

    Holz, P.P.

    1980-06-01

    The purpose of the document is to present schemes for flaw preparations in heavy section steel. The ability of investigators to grow representative sharp cracks of known size, location, and orientation is basic to representative field testing to determine data for potential flaw propagation, fracture behavior, and margin against fracture for high-pressure-, high-temperature-service steel vessels subjected to increasing pressurization and/or thermal shock. Gaging for analytical stress and strain procedures and ultrasonic and acoustic emission instrumentation can then be applied to monitor the vessel during testing and to study crack growth. This report presents flaw preparations for HSST fracture mechanics testing. Cracks were grown by two techniques: (1) a mechanical method wherein a premachined notch was sharpened by pressurization and (2) a method combining electron-beam welds and hydrogen charging to crack the chill zone of a rapidly placed autogenous weld. The mechanical method produces a naturally occurring growth shape controlled primarily by the shape of the machined notch; the welding-electrochemical method produces flaws of uniform depth from the surface of a wall or machined notch. Theories, details, discussions, and procedures are covered for both of the flaw-growing schemes

  3. Perspectives of special welding methods. 1

    International Nuclear Information System (INIS)

    Herden, G.; Buness, G.; Wiesner, P.

    1976-01-01

    Laser, electron, ion, and light beam welding as well as plasma arc welding are considered to be special fusion welding methods. The stage of development and possible future applications of these methods are described. (author)

  4. Studies on post weld heat treatment of dissimilar aluminum alloys by laser beam welding technique

    Science.gov (United States)

    Srinivas, B.; Krishna, N. Murali; Cheepu, Muralimohan; Sivaprasad, K.; Muthupandi, V.

    2018-03-01

    The present study mainly focuses on post weld heat treatment (PWHT) of AA5083 and AA6061 alloys by joining these using laser beam welding at three different laser power and two different beam spot sizes and three different welding speeds. Effects of these parameters on microstructural and mechanical properties like hardness, tensile strength were studied at PWHT condition and significant changes had been observed. The PWHT used was artificial aging technique. The microstructural observations revealed that there was a appreciable changes were taken place in the grain size. The microhardness observations proven that the change in the hardness profile in AA6061 was appreciable than in the AA5083. The tensile strength of 246 MPa was recorded as highest. The fractured surfaces observed are predominantly ductile in nature.

  5. Atom-probe field-ion microscopy investigation of CMSX-4 Ni-base superalloy laser beam welds

    International Nuclear Information System (INIS)

    Babu, S.S.; David, S.A.; Vitek, J.M.; Miller, M.K.

    1996-01-01

    CMSX-4 superalloy laser beam welds were investigated by transmission electron microscopy and atom probe field-ion microscopy (APFIM). The weld microstructure consisted of fine (10- to 50-nm) irregularly shaped γ' precipitates (0.65 to 0.75 volume fraction) within the γ matrix. APFIM compositions of the γ and γ' phases were found to be different from those in the base metal. Concentration profiles across the γ and γ' phases showed extensive variations of Cr, Co and Al concentrations as a function of distance within the γ phase. Calculated lattice misfits near the γ/γ' interface in the welds are positive values compared to the negative values for base metal. (orig.)

  6. Analysis of the effect of the Electron-Beam welding sequence for a fixed manufacturing route using finite element simulations applied to ITER vacuum vessel manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Martín-Menéndez, Cristina, E-mail: cristina@natec-ingenieros.com [Numerical Analysis Technologies, S.L. Marqués de San Esteban No. 52, 33206 Gijón (Spain); Rodríguez, Eduardo [Department of Mechanical Engineering, University of Oviedo, Campus de Gijón, 33203 Gijón (Spain); Ottolini, Marco [Ansaldo Nucleare S.p.A., Corso Perrone 25, 16152 Genova (Italy); Caixas, Joan [F4E, c/Josep Pla, n.2, Torres Diagonal Litoral, Edificio B3, E-08019 Barcelona (Spain); Guirao, Julio [Numerical Analysis Technologies, S.L. Marqués de San Esteban No. 52, 33206 Gijón (Spain)

    2016-03-15

    Highlights: • The simulation methodology employed in this paper is able to adapt inside a complex manufacturing route. • The effect of the sequence is lower in a highly constrained assembly than in a lowly constrained one. • The most relevant influence on the distortions is the jigs design, instead of the welding sequence. • The welding distortion analysis should be used as a guidance to design and improve the manufacturing strategy. - Abstract: The ITER Vacuum Vessel Sectors have very tight tolerances and high density of welding. Therefore, prediction and reduction of welding distortion are critical to allow the final assembly with the other Vacuum Vessel Sectors without the production of a full scale prototype. In this paper, the effect of the welding sequence in the distortions inside a fixed manufacturing route and in a highly constrained assembly is studied in the poloidal segment named inboard (PS1). This is one of the four poloidal segments (PS) assembled for the sector. Moreover, some restrictions and limitations in the welding sequence related to the manufacturing process are explained. The results obtained show that the effect of the sequence is lower in a highly constrained assembly than in a low constrained one. A prototype manufactured by AMW consortium (PS1 mock-up) is used in order to validate the finite element method welding simulation employed. The obtained results confirmed that for Electron-Beam welds, both the welding simulation and the mock-up show a low value of distortions.

  7. Welding problems in nuclear power engineering

    International Nuclear Information System (INIS)

    Zubchenko, A.S.

    1986-01-01

    The problems of welding industry in nuclear power plant engineering, mainly related to the improvement of molten bath protection, are considered. Development of new materials for welding electrodes, for cladding and welding fluxes, is pointed out. Production of the following equipment is brought to a commercial level: welding heads and welding machines for branch pipe welding, anticorrosion cladding, zonal thermal treatment, electron beam welding facilities for the welding and maintenance of turbineblades, equipment for nondestructive testing of welded joints

  8. Finite element simulation of the welding process and structural behaviour of welded components

    International Nuclear Information System (INIS)

    Locci, J.M.; Rouvray, A. de; Barbe, B.; Poirier, J.

    1977-01-01

    In the field of inelastic analysis of nuclear metal structures, the computation of residual stresses in welds, and their effects on the strength of welded components is of major importance. This paper presents an experimentally checked finite element simulation with the general nonlinear program PAM NEP-D, of the electron beam welding of two thick hemispherical shells, and the behaviour of the welded sphere under various additional thermomechanical sollicitations. (Auth.)

  9. Welding of iridium heat source capsule components

    International Nuclear Information System (INIS)

    Mustaleski, T.M.; Yearwood, J.C.; Burgan, C.E.; Green, L.A.

    1991-01-01

    Interplanetary spacecraft have long used radioisotope thermoelectric generators (RTG) to produce power for instrumentation. These RTG produce electrical energy from the heat generated through the radioactive decay of plutonium-238. The plutonium is present as a ceramic pellet of plutonium oxide. The pellet is encapsulated in a containment shell of iridium. Iridium is the material of choice for these capsules because of its compatibility with the plutonium dioxide. The high-energy beam welding (electron beam and laser) processes used in the fabrication of the capsules has not been published. These welding procedures were originally developed at the Mound Laboratories and have been adapted for use at the Oak Ridge Y-12 Plant. The work involves joining of thin material in small sizes to exacting tolerances. There are four different electron beam welds on each capsule, with one procedure being used in three locations. There is also a laser weld used to seal the edges of a sintered frit assembly. An additional electron beam weld is also performed to seal each of the iridium blanks in a stainless steel waster sheet prior to forming. In the transfer of these welding procedures from one facility to another, a number of modifications were necessary. These modifications are discussed in detail, as well as the inherent problems in making welds in material which is only 0.005 in. thick. In summary, the paper discusses the welding of thin components of iridium using the high energy beam processes. While the peculiarities of iridium are pertinent to the discussion, much of the information is of general interest to the users of these processes. This is especially true of applications involving thin materials and high-precision assemblies

  10. Four examples of non-ferrous metal electron beam welding

    International Nuclear Information System (INIS)

    Sommeria, J.

    1989-01-01

    The welding of superconducting cavity resonators made of niobium for particle accelerators is described. Then the welding of four plates in zircaloy 2 containing the fuel of the Orphee reactor is presented. The two other examples concern power transistor and motor support for planes. 9 figs [fr

  11. Dual-beam laser welding of AZ31B magnesium alloy in zero-gap lap joint configuration

    Science.gov (United States)

    Harooni, Masoud; Carlson, Blair; Kovacevic, Radovan

    2014-03-01

    Porosity within laser welds of magnesium alloys is one of the main roadblocks to achieving high quality joints. One of the causes of pore formation is the presence of pre-existing coatings on the surface of magnesium alloy such as oxide or chromate layers. In this study, single-beam and dual-beam laser heat sources are investigated in relation to mitigation of pores resulting from the presence of the as-received oxide layer on the surface of AZ31B-H24 magnesium alloy during the laser welding process. A fiber laser with a power of up to 4 kW is used to weld samples in a zero-gap lap joint configuration. The effect of dual-beam laser welding with different beam energy ratios is studied on the quality of the weld bead. The purpose of this paper is to identify the beam ratio that best mitigates pore formation in the weld bead. The laser molten pool and the keyhole condition, as well as laser-induced plasma plume are monitored in real-time by use of a high speed charge-coupled device (CCD) camera assisted with a green laser as an illumination source. Tensile and microhardness tests were used to measure the mechanical properties of the laser welded samples. Results showed that a dual-beam laser configuration can effectively mitigate pore formation in the weld bead by a preheating-welding mechanism.

  12. A Fundamental Study of Laser Beam Welding Aluminum-Lithium Alloy 2195 for Cryogenic Tank Applications

    Science.gov (United States)

    Martukanitz, R. P.; Jan. R.

    1996-01-01

    Based on the potential for decreasing costs of joining stiffeners to skin by laser beam welding, a fundamental research program was conducted to address the impediments identified during an initial study involving laser beam welding of aluminum-lithium alloys. Initial objectives of the program were the identification of governing mechanism responsible for process related porosity while establishing a multivariant relationship between process parameters and fusion zone geometry for laser beam welds of alloy 2195. A three-level fractional factorial experiment was conducted to establish quantitative relationships between primary laser beam processing parameters and critical weld attributes. Although process consistency appeared high for welds produced during partial completion of this study, numerous cracks on the top-surface of the welds were discovered during visual inspection and necessitated additional investigations concerning weld cracking. Two experiments were conducted to assess the effect of filler alloy additions on crack sensitivity: the first experiment was used to ascertain the effects of various filler alloys on cracking and the second experiment involved modification to process parameters for increasing filler metal dilution. Results indicated that filler alloys 4047 and 4145 showed promise for eliminating cracking.

  13. Laser beam welding of titanium additive manufactured parts

    OpenAIRE

    Wits, Wessel Willems; Jauregui Becker, Juan Manuel

    2015-01-01

    In this paper the joinability of titanium Additive Manufactured (AM) parts is explored. Keyhole welding, using a pulsed laser beam, of conventionally produced parts is compared to AM parts. Metal AM parts are notorious for having remaining porosities and other non-isotropic properties due to the layered manufacturing process. This study shows that due to these deficiencies more energy per unit weld length is required to obtain a similar keyhole geometry for titanium AM parts. It is also demon...

  14. Scaling of spiking and humping in keyhole welding

    Energy Technology Data Exchange (ETDEWEB)

    Wei, P S; Chuang, K C [Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); DebRoy, T [Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Ku, J S, E-mail: pswei@mail.nsysu.edu.tw, E-mail: cielo.zhuang@gmail.com, E-mail: rtd1@psu.edu, E-mail: jsku@mail.nsysu.edu.tw [Institute of Materials Science and Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan (China)

    2011-06-22

    Spiking, rippling and humping seriously reduce the strength of welds. The effects of beam focusing, volatile alloying element concentration and welding velocity on spiking, coarse rippling and humping in keyhole mode electron-beam welding are examined through scale analysis. Although these defects have been studied in the past, the mechanisms for their formation are not fully understood. This work relates the average amplitudes of spikes to fusion zone depth for the welding of Al 6061, SS 304 and carbon steel, and Al 5083. The scale analysis introduces welding and melting efficiencies and an appropriate power distribution to account for the focusing effects, and the energy which is reflected and escapes through the keyhole opening to the surroundings. The frequency of humping and spiking can also be predicted from the scale analysis. The analysis also reveals the interrelation between coarse rippling and humping. The data and the mechanistic findings reported in this study are useful for understanding and preventing spiking and humping during keyhole mode electron and laser beam welding.

  15. Investigation on AISI 304 austenitic stainless steel to AISI 4140 low alloy steel dissimilar joints by gas tungsten arc, electron beam and friction welding

    International Nuclear Information System (INIS)

    Arivazhagan, N.; Singh, Surendra; Prakash, Satya; Reddy, G.M.

    2011-01-01

    Research highlights: → Beneficial effects of FRW, GTAW and EBW joints of dissimilar AISI 304 and AISI 4140 materials. → Comparative study of FRW, GTAW and EBW joints on mechanical properties. → SEM/EDAX, XRD analysis on dissimilar AISI 304 and AISI 4140 materials. -- Abstract: This paper presents the investigations carried out to study the microstructure and mechanical properties of AISI 304 stainless steel and AISI 4140 low alloy steel joints by Gas Tungsten Arc Welding (GTAW), Electron Beam Welding (EBW) and Friction Welding (FRW). For each of the weldments, detailed analysis was conducted on the phase composition, microstructure characteristics and mechanical properties. The results of the analysis shows that the joint made by EBW has the highest tensile strength (681 MPa) than the joint made by GTAW (635 Mpa) and FRW (494 Mpa). From the fractographs, it could be observed that the ductility of the EBW and GTA weldment were higher with an elongation of 32% and 25% respectively when compared with friction weldment (19%). Moreover, the impact strength of weldment made by GTAW is higher compared to EBW and FRW.

  16. Overview of advanced process control in welding within ERDA

    International Nuclear Information System (INIS)

    Armstrong, R.E.

    1977-01-01

    The special kinds of demands placed on ERDA weapons and reactors require them to have very reliable welds. Process control is critical in achieving this reliability. ERDA has a number of advanced process control projects underway with much of the emphasis being on electron beam welding. These include projects on voltage measurement, beam-current control, beam focusing, beam spot tracking, spike suppression, and computer control. A general discussion of process control in welding is followed by specific examples of some of the advanced joining process control projects in ERDA

  17. Studies on Fusion Welding of High Nitrogen Stainless Steel: Microstructure, Mechanical and corrosion Behaviour

    Science.gov (United States)

    Mohammed, Raffi; Srinivasa Rao, K.; Madhusudhan Reddy, G.

    2018-03-01

    An attempt has been made in the present investigation to weld high nitrogen steel of 5mm thick plates using various process i.e., shielded metal arc welding (SMAW), gas tungsten arc welding (GTAW) and autogenous electron beam welding (EBW) process. Present work is aimed at studying the microstructural changes and its effects on mechanical properties and corrosion resistance. Microstructure is characterized by optical, scanning electron microscopy and electron back scattered diffraction technique. Vickers hardness, tensile properties, impact toughness and face bend ductility testing of the welds was carried out. Pitting corrosion resistance of welds was determined using potentio-dynamic polarization testing in 3.5%NaCl solution. Results of the present investigation established that SMA welds made using Cr-Mn-N electrode were observed to have a austenite dendritic grain structure in the weld metal and is having poor mechanical properties but good corrosion resistance. GTA welds made using 18Ni (MDN 250) filler wire were observed to have a reverted austenite in martensite matrix of the weld metal and formation of unmixed zone at the fusion boundary which resulted in better mechanical properties and poor corrosion resistance. Fine grains and uniform distribution of delta ferrite in the austenite matrix and narrow width of weld zone are observed in autogeneous electron beam welds. A good combination of mechanical properties and corrosion resistance was achieved for electron beam welds of high nitrogen steel when compared to SMA and GTA welds.

  18. Preliminary assessment of the fracture behavior of weld material in full-thickness clad beams

    International Nuclear Information System (INIS)

    Keeney, J.A.; Bass, B.R.; McAfee, W.J.; Iskander, S.K.

    1994-10-01

    This report describes a testing program that utilizes full-thickness clad beam specimens to quantify fracture toughness for shallow cracks in material for which metallurgical conditions are prototypic of those found in reactor pressure vessels (RPVs). The beam specimens are fabricated from a section of an RPV wall (removed from a canceled nuclear plant) that includes weld, plate, and clad material. Metallurgical factors potentially influencing fracture toughness for shallow cracks in the beam specimens include material gradients due to welding and cladding applications, as well as material inhomogeneities in welded regions due to reheating in multiple weld passes. A summary of the testing program includes a description of the specimen geometry, material properties, the testing procedure, and the experimental results form three specimens. The yield strength of the weld material was determined to be 36% higher than the yield strength of the base material. An irradiation-induced increase in yield strength of the weld material could result in a yield stress that exceeds the upper limit where code curves are valid. The high yield strength for prototypic weld material may have implications for RPV structural integrity assessments. Analyses of the test data are discussed, including comparisons of measured displacements with finite-element analysis results, applications of toughness estimation techniques, and interpretations of constraint conditions implied by stress-based constraint methodologies. Metallurgical conditions in the region of the cladding heat-affected zone are proposed as a possible explanation for the lower-bound fracture toughness measured with one of the shallow-crack clad beam specimens. Fracture toughness data from the three clad beam specimens are compared with other shallow- and deep-crack uniaxial beam and cruciform data generated previously from A 533 Grade B plate material

  19. Developments in welding and joining methods of metallic materials

    International Nuclear Information System (INIS)

    Pilarczyk, J.

    2007-01-01

    The impact of the welding technology on the economy development. The welding and joining methods review. The particular role of the laser welding and its interesting applications: with filler metal, twin spot laser welding, hybrid welding process, remote welding. The fiber lasers. The high intensity electron beams applications for surface modification. The TIG welding with the use of the active flux. Friction welding, friction stir welding and friction linear welding. (author)

  20. Structure/property relationships in multipass GMA welding of beryllium.

    Energy Technology Data Exchange (ETDEWEB)

    Hochanadel, P. W. (Patrick W.); Hults, W. L. (William L.); Thoma, D. J. (Dan J.); Dave, V. R. (Vivek R.); Kelly, A. M. (Anna Marie); Pappin, P. A. (Pallas A.); Cola, M. J. (Mark J.); Burgardt, P. (Paul)

    2001-01-01

    Beryllium is an interesting metal that has a strength to weight ratio six times that of steel. Because of its unique mechanical properties, beryllium is used in aerospace applications such as satellites. In addition, beryllium is also used in x-ray windows because it is nearly transparent to x-rays. Joining of beryllium has been studied for decades (Ref.l). Typically joining processes include braze-welding (either with gas tungsten arc or gas metal arc), soldering, brazing, and electron beam welding. Cracking which resulted from electron beam welding was recently studied to provide structure/property relationships in autogenous welds (Ref. 2). Braze-welding utilizes a welding arc to melt filler, and only a small amount of base metal is melted and incorporated into the weld pool. Very little has been done to characterize the braze-weld in terms of the structure/property relationships, especially with reference to multipass welding. Thus, this investigation was undertaken to evaluate the effects of multiple passes on microstructure, weld metal composition, and resulting material properties for beryllium welded with aluminum-silicon filler metal.

  1. Heat Source - Materials Interactions during Fusion Welding.

    Science.gov (United States)

    1982-04-30

    the capabilities of ultrasonic weld pool measurement, and to address questions of applications to active pool size control. -- mom- 44 TIG welding ...preparation. The fraction of absorbed power increases dramatically upon formation of a keyhole . As a result, welds made with sharply beveled edge...laser end electron beam welding processes characteristically produce a deel,, narrow weld bead. This bead is formed by a keyhole mode of operation in

  2. Electron beam welding of copper lids. Status report up to 2001-12-31

    International Nuclear Information System (INIS)

    Claesson, Soeren; Ronneteg, Ulf

    2003-10-01

    The report describes a summary of achieved results from 21 lid welds and numerous test block welds, performed at SKB Canister Laboratory in Oskarshamn for the period 1999-02-12 to 2001-12-31. Good weld quality has been achieved and some welds fulfilled the preliminary interpretation criteria, but the weld process need to be further developed before process qualification. Many different parameter settings have been tested and the influence on the weld profile has been mapped and documented. Deformations of the canister after welding have been measured and found to be very small. The preliminary inspection methods of the weld quality works satisfactory for the need of the development of the weld process. The welding machine is a new design developed for welding of thick copper in reduced pressure and performs well, but suffers from teething problems, which has delayed the work with development of the weld process. The welding system needs to be further developed and improved to work more reliably in a production plant

  3. High Power Laser Beam Welding of Thick-walled Ferromagnetic Steels with Electromagnetic Weld Pool Support

    Science.gov (United States)

    Fritzsche, André; Avilov, Vjaceslav; Gumenyuk, Andrey; Hilgenberg, Kai; Rethmeier, Michael

    The development of modern high power laser systems allows single pass welding of thick-walled components with minimal distortion. Besides the high demands on the joint preparation, the hydrostatic pressure in the melt pool increases with higher plate thicknesses. Reaching or exceeding the Laplace pressure, drop-out or melt sagging are caused. A contactless electromagnetic weld support system was used for laser beam welding of thick ferromagnetic steel plates compensating these effects. An oscillating magnetic field induces eddy currents in the weld pool which generate Lorentz forces counteracting the gravity forces. Hysteresis effects of ferromagnetic steels are considered as well as the loss of magnetization in zones exceeding the Curie temperature. These phenomena reduce the effective Lorentz forces within the weld pool. The successful compensation of the hydrostatic pressure was demonstrated on up to 20 mm thick plates of duplex and mild steel by a variation of the electromagnetic power level and the oscillation frequency.

  4. Underwater cladding with laser beam and plasma arc welding

    International Nuclear Information System (INIS)

    White, R.A.; Fusaro, R.; Jones, M.G.; Solomon, H.D.; Milian-Rodriguez, R.R.

    1997-01-01

    Two welding processes, plasma arc (transferred arc) (PTA) and laser beam, were investigated to apply cladding to austenitic stainless steels and Inconel 600. These processes have long been used to apply cladding layers , but the novel feature being reported here is that these cladding layers were applied underwater, with a water pressure equivalent to 24 m (80 ft). Being able to apply the cladding underwater is very important for many applications, including the construction of off-shore oil platforms and the repair of nuclear reactors. In the latter case, being able to weld underwater eliminates the need for draining the reactor and removing the fuel. Welding underwater in reactors presents numerous challenges, but the ability to weld without having to drain the reactor and remove the fuel provides a huge cost savings. Welding underwater in reactors must be done remotely, but because of the radioactive corrosion products and neutron activation of the steels, remote welding would also be required even if the reactor is drained and the fuel removed. In fact, without the shielding of the water, the remote welding required if the reactor is drained might be even more difficult than that required with underwater welds. Furthermore, as shall be shown, the underwater welds that the authors have made were of high quality and exhibit compressive rather than tensile residual stresses

  5. Potential ceramics processing applications with high-energy electron beams

    International Nuclear Information System (INIS)

    Struve, K.W.; Turman, B.N.

    1993-01-01

    High-energy, high-current electron beams may offer unique features for processing of ceramics that are not available with any other heat source. These include the capability to instantaneously heat to several centimeters in depth, to preferentially deposit energy in dense, high-z materials, to process at atmospheric pressures in air or other gases, to have large control over heating volume and heating rate, and to have efficient energy conversion. At a recent workshop organized by the authors to explore opportunities for electron beam processing of ceramics, several applications were identified for further development. These were ceramic joining, fabrication of ceramic powders, and surface processing of ceramics. It may be possible to join ceramics by either electron-beam brazing or welding. Brazing with refractory metals might also be feasible. The primary concern for brazing is whether the braze material can wet to the ceramic when rapidly heated by an electron beam. Raw ceramic powders, such as silicon nitride and aluminum nitride, which are difficult to produce by conventional techniques, could possibly be produced by vaporizing metals in a nitrogen atmosphere. Experiments need to be done to verify that the vaporized metal can fully react with the nitrogen. By adjusting beam parameters, high-energy beams can be used to remove surface flaws which are often sites of fracture initiation. They can also be used for surface cleaning. The advantage of electron beams rather than ion beams for this application is that the heat deposition can be graded into the material. The authors will discuss the capabilities of beams from existing machines for these applications and discuss planned experiments

  6. Review of the utilization of laser and electron beam methods in the nuclear domain

    International Nuclear Information System (INIS)

    Charissoux, C.; Bonnin, P.; Calvet, J.N.; Contre, M.

    1987-01-01

    The use of laser and electron beams by the nuclear industry for making components, fabricating fuels, waste processing, maintenance, and dismantling installations is reviewed. The advantages in welding include very rapid thermal cycles, deep weld zones with a restricted effect on surrounding material, and reduced residual stress. Surface treatments can also take advantage of these benefits. In cutting, the intrinsic advantages of the laser are completed by its high potential for robotization [fr

  7. Ductile fracture of two-phase welds under 77K

    International Nuclear Information System (INIS)

    Yushchenko, K.A.; Voronin, S.A.; Pustovit, A.I.; Shavel', A.V.

    1984-01-01

    The effect of the type of welding and fillers on crack resistance of welded joints high-strength steel EhP810 and its various compounds with steels EhP666, 08Kh18N10T has been studied. For the welding of steel EhP810 with steels EhP810, EhP666, 08Kh18N10T electron-beam, automatic, argon tungsten arc with non-consumable electrode with various fillers, as well as argon metal-arc welding with consumable electrode, were used. It is shown, that for a joint, made by electron-beam welding, parameters σsub(u), Ksub(IcJ), KCV are higher than for a joint of a similar phase structure made using filler wire EhP659-VI. It is explained by the fact, that during electron-beam welding joint metal refining takes place, which removes gases. In welded joints of chP810 steel, having joints with austenitic structure, characteristic of crack resistance Ssub(c) increases by more than 0.2 mm in contrast to two-phase joints, which conventional yield strength at 77 K exceeds 1000 MPa. It is worth mentioning, that for other classes of steels formation of two-phase structure of joint increases welded joint resistance to brittle fracture. It is possible to obtain the required structure of joint with assigned level of resistance to brittle fracture by means of the use of different fillers, optimum and welding procedure, regulaing the part of the basic metal in joint content

  8. Improving electron beam weldability of heavy steel plates for PWR-steam generator

    International Nuclear Information System (INIS)

    Tomita, Yukio; Mabuchi, Hidesato; Koyama, Kunio

    1996-01-01

    Installation and replacement of many PWR-steam generators are planned inside and outside Japan. The steel plates for steam generators are heavy in thickness, and increase the number of welding passes and prolong the welding time. Electron beam welding (EBW) can greatly reduce the welding period compared with conventional welding methods (narrow-gap gas metal arc welding (GMAW) and submerged arc welding (SAW)). The problems in applying EBW are to prevent weld defects and to improve the toughness of the weld metal. Defect-free welding procedures were successfully established even in thick steel plates. The factors that deteriorate weld-metal (WM) toughness of EBW were investigated. The manufacturing process, which utilizes a new secondary refining process at steelmaking and a high-torque mill at plate mill in actual mass-production, were established. EBW base metal and WM have better properties including fracture toughness than those of conventional welding processes. As a result, an application of EBW to the fabrication of PWR-steam generators has become possible. Large amounts of ASTM A533 Gr B Cl 2 (JIS SQV2B) steel plates in actual PWR-steam generators have come to be produced (more than 1,500 ton) by applying EBW. (author)

  9. Characteristics of Laser Beam and Friction Stir Welded AISI 409M Ferritic Stainless Steel Joints

    Science.gov (United States)

    Lakshminarayanan, A. K.; Balasubramanian, V.

    2012-04-01

    This article presents the comparative evaluation of microstructural features and mechanical properties of friction stir welded (solid-state) and laser beam welded (high energy density fusion welding) AISI 409M grade ferritic stainless steel joints. Optical microscopy, microhardness testing, transverse tensile, and impact tests were performed. The coarse ferrite grains in the base material were changed to fine grains consisting duplex structure of ferrite and martensite due to the rapid cooling rate and high strain induced by severe plastic deformation caused by frictional stirring. On the other hand, columnar dendritic grain structure was observed in fusion zone of laser beam welded joints. Tensile testing indicates overmatching of the weld metal relative to the base metal irrespective of the welding processes used. The LBW joint exhibited superior impact toughness compared to the FSW joint.

  10. On post-weld heat treatment cracking in tig welded superalloy ATI 718Plus

    Science.gov (United States)

    Asala, G.; Ojo, O. A.

    The susceptibility of heat affected zone (HAZ) to cracking in Tungsten Inert Gas (TIG) welded Allvac 718Plus superalloy during post-weld heat treatment (PWHT) was studied. Contrary to the previously reported case of low heat input electron beam welded Allvac 718Plus, where HAZ cracking occurred during PWHT, the TIG welded alloy is crack-free after PWHT, notwithstanding the presence of similar micro-constituents that caused cracking in the low input weld. Accordingly, the formation of brittle HAZ intergranular micro-constituents may not be a sufficient factor to determine cracking propensity, the extent of heat input during welding may be another major factor that influences HAZ cracking during PWHT of the aerospace superalloy Allvac 718Plus.

  11. Fusion welding of thin metal foils

    International Nuclear Information System (INIS)

    Casey, H.

    1975-01-01

    Aspects of fusion welding of thin metal foils are reviewed and the current techniques employed at LASL to join foils are described. Techniques for fusion welding approximately 0.025-mm-thick foils of copper, aluminum, and stainless steels have been developed using both electron beam and laser welding equipment. These techniques, together with the related aspects of joint design, tooling and fixturing, joint preparation, and modifications to the commercially available welding equipment, are included in the review. (auth)

  12. Effect of technological procedures on the crack resistance of nickel alloy welded joints under heat treatment

    International Nuclear Information System (INIS)

    Bagdasarov, Yu.S.; Sorokin, L.I.; Yakushin, B.F.; Moryashchev, S.F.

    1983-01-01

    Comparison of the efficiency of some technological procedures directed to the increase of crack resistance of KhN50MBKTYUR (EhP99) alloy welded joints under heat treatment was conducted. Welded joints were manufactured by the methods of electron beam welding, laser welding, automatic argon-arc welding. The latter was conducted by conventional technology as well as with electromagnetic mixing of liquid metal of welding bath, with compulsory cooling of weld matal, with pulse arc. It is shown that the high fracture resistance of welded joints, manufactured by electron beam and laser welding is achieved by combination of high mechanical properties of heat affected zone metal and reduced elastic potential energy margin of residual welding stresses (as compared to argon-arc welding)

  13. Laser beam welding of titanium additive manufactured parts

    NARCIS (Netherlands)

    Wits, Wessel Willems; Jauregui Becker, Juan Manuel

    2015-01-01

    In this paper the joinability of titanium Additive Manufactured (AM) parts is explored. Keyhole welding, using a pulsed laser beam, of conventionally produced parts is compared to AM parts. Metal AM parts are notorious for having remaining porosities and other non-isotropic properties due to the

  14. Microstructure and Mechanical Properties of 21-6-9 Stainless Steel Electron Beam Welds

    Science.gov (United States)

    Elmer, John W.; Ellsworth, G. Fred; Florando, Jeffrey N.; Golosker, Ilya V.; Mulay, Rupalee P.

    2017-04-01

    Welds can either be stronger or weaker than the base metals that they join depending on the microstructures that form in the fusion and heat-affected zones of the weld. In this paper, weld strengthening in the fusion zone of annealed 21-6-9 stainless steel is investigated using cross-weld tensile samples, hardness testing, and microstructural characterization. Due to the stronger nature of the weld, the cross-weld tensile tests failed in the base metal and were not able to generate true fusion zone mechanical properties. Nanoindentation with a spherical indenter was instead used to predict the tensile behavior for the weld metal. Extrapolation of the nanoindentation results to higher strains was performed using the Steinberg-Guinan and Johnson-Cook strength models, and the results can be used for weld strength modeling purposes. The results illustrate how microstructural refinement and residual ferrite formation in the weld fusion zone can be an effective strengthener for 21-6-9 stainless steel.

  15. Electron beam welding of heavy thicknesses with a 200 KW gun

    International Nuclear Information System (INIS)

    Binard, J.; Ducrot, A.

    1986-09-01

    In this report, we describe our 200 kW gun, 100 m 3 vacuum chamber E B welding equipment, implemented since 1985 to increase the process development in the heavy mechanics; to score the goal, we study the influence of parameters as: welding positions, chemical analysis of the material and workpiece thickness. Simultaneously, we carry out welding tests of branch pipes or nozzles on tubes and shells. Some results are shown and good mechanical properties are obtained on thicknesses up to 300 mm

  16. Advanced fusion welding processes, solid state joining and a successful marriage. [production of aerospace structures

    Science.gov (United States)

    Miller, F. R.

    1972-01-01

    Joining processes for aerospace systems combine fusion welding and solid state joining during production of metal structures. Detailed characteristics of electron beam welding, plasma arc welding, diffusion welding, inertia welding and weldbond processes are discussed.

  17. Effects of B4C Addition on the Laser Beam Welding Characteristics of Al/SiC MMCs Produced By P/M

    Directory of Open Access Journals (Sweden)

    Serdar KARAOĞLU

    2011-01-01

    Full Text Available Fusion weldability characteristics of metal matrix composites (MMC produced by powder metallurgy (P/M are usually insufficient due to unwanted micro-structural changes that occur during welding. This study aims to investigate the effects of B4C addition as reinforcement on the weld quality of Al/SiC MMCs. After the production of Al/SiC MMCs by P/M with or without the addition of B4C, laser beam welding (LBW characteristics of the materials were investigated by focusing on the integrity of the welds. Optical microscopy (OM, scanning electron microscopy (SEM, and energy dispersive X-ray analysis (EDX were utilized for the characterization of the welds. Results show that Al/SiC MMCs produced by P/M can not be easily welded by LBW, but weldability characteristics of the material can be improved by the addition of B4C.

  18. A comparative study of laser beam welding and laser-MIG hybrid welding of Ti-Al-Zr-Fe titanium alloy

    International Nuclear Information System (INIS)

    Li Ruifeng; Li Zhuguo; Zhu Yanyan; Rong Lei

    2011-01-01

    Research highlights: → Ti-Al-Zr-Fe titanium alloy sheets were welded by LBW and LAMIG methods. → LAMIG welded joints have better combination of strength and ductility. → LAMIG welding is proved to be feasible for the production of titanium sheet joints. - Abstract: Ti-Al-Zr-Fe titanium alloy sheets with thickness of 4 mm were welded using laser beam welding (LBW) and laser-MIG hybrid welding (LAMIG) methods. To investigate the influence of the methods difference on the joint properties, optical microscope observation, microhardness measurement and mechanical tests were conducted. Experimental results show that the sheets can be welded at a high speed of 1.8 m/min and power of 8 kW, with no defects such as, surface oxidation, porosity, cracks and lack of penetration in the welding seam. In addition, all tensile test specimens fractured at the parent metal. Compared with the LBW, the LAMIG welding method can produce joints with higher ductility, due to the improvement of seam formation and lower microhardness by employing a low strength TA-10 welding wire. It can be concluded that LAMIG is much more feasible for welding the Ti-Al-Zr-Fe titanium alloy sheets.

  19. Fundamental Study of Electron Beam Welding of AA6061-T6 Aluminum Alloy for Nuclear Fuel Plate Assembly (II)

    International Nuclear Information System (INIS)

    Kim, Soosung; Lee, Haein; Lee, Donbae; Park, Jongman; Lee, Yoonsang

    2013-01-01

    Certain characteristics, such as solidification cracking, porosity, HAZ (Heat-affected Zone) degradation must be considered during welding. Because of high energy density and low heat input, especially LBW and EBW processes posses the advantage of minimizing the fusing zone and HAZ and producing deeper penetration than arc welding processes. In present study, to apply for the nuclear fuel plate fabrication and assembly, a fundamental EBW experiment using AA6061-T6 aluminum alloy specimens was conducted. Furthermore, to establish the welding process, and satisfy the requirements of the weld quality, EBW apparatus using a electron welding gun and vacuum chamber was developed, and preliminary investigations for optimizing the welding parameters of the specimens using AA6061-T6 aluminum plates were also performed. In this experiment, a feasibility test was carried out by tensile tester, bead-on-plate welding and metallographic examination to comply with the aluminum welding procedure. The EB weld quality of AA6061-T6 aluminum alloy for the fuel plate assembly has been also studied by the mechanical testing and microstructure examinations. This study was carried out to determine the suitable welding process and to investigate tensile strength of AA6061-T6 aluminum alloy. In the present experiment, satisfactory EBW of the square butt weld specimens was developed. In comparison with the rolling directions of test specimens, the tensile strengths were no difference between the longitudinal and transverse welds. Based on this fundamental study, fabrication and assembly of the nuclear fuel plates will be provided for the future Kijang research reactor project

  20. Effect of gaussian beam on microstructural and mechanical properties of dissimilarlaser welding ofAA5083 and AA6061 alloys

    Science.gov (United States)

    Srinivas, B.; Cheepu, Muralimohan; Sivaprasad, K.; Muthupandi, V.

    2018-03-01

    The present study focuses on a sheet thickness of 4 mm using different laser power and welding rate by the laser beam welding (LBW) at a beam size180 μm. The observations on the weldments are showing that thermal conductivity of the materials plays a major role on microstructural changes. The as-welded mechanical properties were studied by correlation with its microstructures. Due to the steeper temperature gradient during the laser beam welding AA6061 was showing the greater variation compares with AA5083 side in the micro hardness studies.Also, the tensile strength of 241 MPa has been reported as highest with the welds made of laser powerat 3.5 kW and welding rate at 3.5 mmin-1.

  1. Numerical simulation of electron behavior and beam heating on a material surface

    International Nuclear Information System (INIS)

    Shioda, K.; Hashidate, Y.; Kumagai, M.

    1991-01-01

    A method of numerical analysis is investigated for the manufacturing processes employing electron beam heating, such as hardening, cutting, and welding. High-energy electrons (10 ∼ 50 keV) impinge upon the surface of a material and diffuse by multiple elastic/nonelastic scattering caused by atoms. Although the electron collisions with atomic nuclei can be treated approximately as elastic, collisions with orbital electrons of atoms are nonelastic. Fast electrons are decelerated in the course of atomic excitation or X-ray radiation, transferring their kinetic energy to the lattice system as thermal energy. In this paper, the difference between the heat-generating density and the electron density is clarified numerically, as well as the penetration depth and the reflection ratio of the electron beam. Calculated results for these quantities show good agreement with the referenced data. In addition, the difference between the penetration depth of the electrons and that of the heat, which has never been discussed in detail before, is clarified

  2. Welding process automation in power machine building

    International Nuclear Information System (INIS)

    Mel'bard, S.N.; Shakhnov, A.F.; Shergov, I.V.

    1977-01-01

    The level of welding automation operations in power engineering and ways of its enhancement are highlighted. Used as the examples of comlex automation are an apparatus for the horizontal welding of turbine rotors, remotely controlled automatic machine for welding ring joint of large-sized vessels, equipment for the electron-beam welding of steam turbine assemblies of alloyed steels. The prospects of industrial robots are noted. The importance of the complex automation of technological process, including stocking, assemblying, transportation and auxiliary operations, is emphasized

  3. Electron beam freeforming of stainless steel using solid wire feed

    International Nuclear Information System (INIS)

    Wanjara, P.; Brochu, M.; Jahazi, M.

    2007-01-01

    The use of electron beam technology for freeforming build-ups on 321 stainless steel substrates was investigated in this work by using 347 stainless steel as a filler metal. The electron beam freeforming studies indicated that line build-ups could be deposited on the substrate material for optimized processing conditions and a slight linear thickening of the re-build occurred as a function of the deposited layer. The evolution in the formation of the Ti (C, N) (Nb, Ti) carbonitrides and Nb (C, N) precipitates was demonstrated to counteract the formation of detrimental Cr-carbides usually observed during welding stainless steels. The mechanical properties of the re-build were similar to the properties of the base metal, showing that homogeneous properties can be expected in the repaired components

  4. The characteristics of welded joints for air conditioning application

    Science.gov (United States)

    Weglowski, M. St.; Weglowska, A.; Miara, D.; Kwiecinski, K.; Błacha, S.; Dworak, J.; Rykala, J.; Pikula, J.; Ziobro, G.; Szafron, A.; Zimierska-Nowak, P.; Richert, M.; Noga, P.

    2017-10-01

    In the paper the results of metallographic examination of welded joints for air-conditioning elements are presented. The European directives 2006/40/EC on the greenhouse gasses elimination demand to stop using traditional refrigerant and to change it to R744 (CO2) medium in air conditioning installation. The R744 refrigerant is environmental friendly medium if compared with standard solution such as R12, R134a or R1234yf and safer for passengers than R1234yf. The non-standard thermodynamic parameters of the R744 which translate into high pressure and high temperature require specific materials to develop the shape and to specify the technology of manufacturing for the particular elements of the conduits and moreover the technologies of joining for the whole structure, which would meet the exploitation requirements of the new air-conditioning system. To produce the test welded joints of stainless steels four different joining technologies were applied: laser welding, plasma welding, electron beam welding as well as high speed rotation welding. This paper describes the influence of the selected welding process on the macrostructure and microstructure of welded joints of AISI 304 and AISI 316L steels. The results indicated that plasma welding laser welding and electron beam welding technologies guaranty the proper quality of welded joints and can be used for the air conditioning application in automotive industry. However, high speed rotation welding not guarantee the good quality of welded joints and cannot be used for above application.

  5. Laser beam welding of Waspaloy: Characterization and corrosion behavior evaluation

    Science.gov (United States)

    Shoja Razavi, Reza

    2016-08-01

    In this work, a study on Nd:YAG laser welding of Waspaloy sheets has been made. Microstructures, phase changes and hardness of the laser joint were investigated using optical microscopy, scanning electron microscopy (SEM), field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS), X-ray diffraction analysis (XRD) and vickers microhardness (HV0.3). Corrosion behavior of the weldment at low temperature in 3.5%wt NaCl solution at room temperature was also investigated using open circuit potential and cyclic potentiodynamic polarization tests. Hot corrosion studies were conducted on samples in the molten salt environment (Na2SO4-60%V2O5) at 900 °C for 50 h. Results indicated that the microstructure of weld zone was mainly dendritic grown epitaxially in the direction perpendicular to the weld boundary and heat transfer. Moreover, the Ti-Mo carbide particles were observed in the structure of the weld zone and base metal. The average size of carbides formed in the base metal (2.97±0.5 μm) was larger than that of the weld zone (0.95±0.2 μm). XRD patterns of the weld zone and base metal showed that the laser welding did not alter the phase structure of the weld zone, being in γ-Ni(Cr) single phase. Microhardness profile showed that the hardness values of the weld zone (210-261 HV) were lower than that of the base metal (323-330 HV). Electrochemical and hot corrosion tests indicated that the corrosion resistance of the weld metal was greater than the base metal in both room and high temperatures.

  6. Laser Beam Welding of Ultra-high Strength Chromium Steel with Martensitic Microstructure

    Science.gov (United States)

    Dahmen, Martin; Janzen, Vitalij; Lindner, Stefan; Wagener, Rainer

    A new class of steels is going to be introduced into sheet manufacturing. Stainless ferritic and martensitic steels open up opportunities for sheet metal fabrication including hot stamping. Strengths of up to 2 GPa at fracture elongations of 15% can be attained through this. Welding of these materials, as a result, became a challenge. Energy-reduced welding methods with in-situ heat treatment are required in order to ensure the delicate and complex heat control. Laser beam welding is the joining technique of choice to supply minimum heat input to the fusion process and to apply efficient heat control. For two application cases, tailored blank production in as-rolled condition and welding during assembly in hot stamped condition, welding processes have been developed. The welding suitability is shown through metallurgical investigations of the welds. Crash tests based on the KS-II concept as well as fatigue tests prove the applicability of the joining method.

  7. Laser welding of galvanized steel: analytical study in view of dual-beam solution

    International Nuclear Information System (INIS)

    Iqbal, S.; Gualini, M.M.S.

    2005-01-01

    In this paper, the solution of a new dual laser beam method to lap weld galvanized steel sheets is being discussed, modeled and analyzed. This method involves a pre-cursor beam and a higher-power actual beam used on the job in tandem, generated independently or otherwise split from the same source. The pre-cursor beam cuts a slot, thus making an exit path for the zinc vapours, while the second beam performs the needed welding. After giving detailed theoretical coverage and diverse mathematical simulations, the paper also presents and discusses some experimental results of the method. Along with this, a comparison is being made with some other methods proposed till today to solve this problem including some quantitative analysis. As presented, general view in industrial perspective supports this method to be easier to implement on the production lines along with yielding desired results. (author)

  8. Recent progress of welding technology applied for nuclear components

    International Nuclear Information System (INIS)

    Kobayashi, T.; Hoshino, T.; Koide, H.; Yamamoto, T.; Takahashi, T.; Hashimoto, T.

    2005-01-01

    More than 30 years have been passed since the first nuclear power plant was in operation. Various needs for welding technology have been emerged and the technology has been developed. This paper first describes the key technologies in BWR power plants and then introduces ones in PWR power plants. Welding techniques are introduced in detail. Applications of arc welding, gas tungsten arc welding, electroslag welding, electron beam welding are explained. In order to avoid stress corrosion cracking, water jet and laser peening techniques are used. (author)

  9. Welding of nickel free high nitrogen stainless steel: Microstructure and mechanical properties

    Directory of Open Access Journals (Sweden)

    Raffi Mohammed

    2017-04-01

    Full Text Available High nitrogen stainless steel (HNS is a nickel free austenitic stainless steel that is used as a structural component in defence applications for manufacturing battle tanks as a replacement of the existing armour grade steel owing to its low cost, excellent mechanical properties and better corrosion resistance. Conventional fusion welding causes problems like nitrogen desorption, solidification cracking in weld zone, liquation cracking in heat affected zone, nitrogen induced porosity and poor mechanical properties. The above problems can be overcome by proper selection and procedure of joining process. In the present work, an attempt has been made to correlate the microstructural changes with mechanical properties of fusion and solid state welds of high nitrogen steel. Shielded metal arc welding (SMAW, gas tungsten arc welding (GTAW, electron beam welding (EBW and friction stir welding (FSW processes were used in the present work. Optical microscopy, scanning electron microscopy and electron backscatter diffraction were used to characterize microstructural changes. Hardness, tensile and bend tests were performed to evaluate the mechanical properties of welds. The results of the present investigation established that fully austenitic dendritic structure was found in welds of SMAW. Reverted austenite pools in the martensite matrix in weld zone and unmixed zones near the fusion boundary were observed in GTA welds. Discontinuous ferrite network in austenite matrix was observed in electron beam welds. Fine recrystallized austenite grain structure was observed in the nugget zone of friction stir welds. Improved mechanical properties are obtained in friction stir welds when compared to fusion welds. This is attributed to the refined microstructure consisting of equiaxed and homogenous austenite grains.

  10. Microstructural characterization of weld joints of 9Cr reduced activation ferritic martensitic steel fabricated by different joining methods

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Paul, V.; Saroja, S.; Albert, S.K.; Jayakumar, T.; Rajendra Kumar, E., E-mail: vtp@igcar.gov.in

    2014-10-15

    This paper presents a detailed electron microscopy study on the microstructure of various regions of weldment fabricated by three welding methods namely tungsten inert gas welding, electron beam welding and laser beam welding in an indigenously developed 9Cr reduced activation ferritic/martensitic steel. Electron back scatter diffraction studies showed a random micro-texture in all the three welds. Microstructural changes during thermal exposures were studied and corroborated with hardness and optimized conditions for the post weld heat treatment have been identified for this steel. Hollomon–Jaffe parameter has been used to estimate the extent of tempering. The activation energy for the tempering process has been evaluated and found to be corresponding to interstitial diffusion of carbon in ferrite matrix. The type and microchemistry of secondary phases in different regions of the weldment have been identified by analytical transmission electron microscopy. - Highlights: • Comparison of microstructural parameters in TIG, electron beam and laser welds of RAFM steel • EBSD studies to illustrate the absence of preferred orientation and identification of prior austenite grain size using phase identification map • Optimization of PWHT conditions for indigenous RAFM steel • Study of kinetics of tempering and estimation of apparent activation energy of the process.

  11. Laser beam welding of new ultra-high strength and supra-ductile steels

    Science.gov (United States)

    Dahmen, Martin

    2015-03-01

    Ultra-high strength and supra-ductile are entering fields of new applications. Those materials are excellent candidates for modern light-weight construction and functional integration. As ultra-high strength steels the stainless martensitic grade 1.4034 and the bainitic steel UNS 53835 are investigated. For the supra-ductile steels stand two high austenitic steels with 18 and 28 % manganese. As there are no processing windows an approach from the metallurgical base on is required. Adjusting the weld microstructure the Q+P and the QT steels require weld heat treatment. The HSD steel is weldable without. Due to their applications the ultra-high strength steels are welded in as-rolled and strengthened condition. Also the reaction of the weld on hot stamping is reflected for the martensitic grades. The supra-ductile steels are welded as solution annealed and work hardened by 50%. The results show the general suitability for laser beam welding.

  12. Vapor plume oscillation mechanisms in transient keyhole during tandem dual beam fiber laser welding

    Science.gov (United States)

    Chen, Xin; Zhang, Xiaosi; Pang, Shengyong; Hu, Renzhi; Xiao, Jianzhong

    2018-01-01

    Vapor plume oscillations are common physical phenomena that have an important influence on the welding process in dual beam laser welding. However, until now, the oscillation mechanisms of vapor plumes remain unclear. This is primarily because mesoscale vapor plume dynamics inside a millimeter-scale, invisible, and time-dependent keyhole are difficult to quantitatively observe. In this paper, based on a developed three-dimensional (3D) comprehensive model, the vapor plume evolutions in a dynamical keyhole are directly simulated in tandem dual beam, short-wavelength laser welding. Combined with the vapor plume behaviors outside the keyhole observed by high-speed imaging, the vapor plume oscillations in dynamical keyholes at different inter-beam distances are the first, to our knowledge, to be quantitatively analyzed. It is found that vapor plume oscillations outside the keyhole mainly result from vapor plume instabilities inside the keyhole. The ejection velocity at the keyhole opening and dynamical behaviors outside the keyhole of a vapor plume both violently oscillate with the same order of magnitude of high frequency (several kHz). Furthermore, the ejection speed at the keyhole opening and ejection area outside the keyhole both decrease as the beam distance increases, while the degree of vapor plume instability first decreases and then increases with increasing beam distance from 0.6 to 1.0 mm. Moreover, the oscillation mechanisms of a vapor plume inside the dynamical keyhole irradiated by dual laser beams are investigated by thoroughly analyzing the vapor plume occurrence and flow process. The vapor plume oscillations in the dynamical keyhole are found to mainly result from violent local evaporations and severe keyhole geometry variations. In short, the quantitative method and these findings can serve as a reference for further understanding of the physical mechanisms in dual beam laser welding and of processing optimizations in industrial applications.

  13. Underwater laser beam welding technology for reactor vessel nozzles of PWRs

    International Nuclear Information System (INIS)

    Yoda, Masaki; Tamura, Masataka; Tamura, Masataka

    2010-01-01

    Toshiba has developed an underwater laser beam welding technology for the maintenance of reactor vessel nozzles of pressurized water reactors (PWRs), which eliminates the need for the drainage of water from the reactor vessel. The new welding system makes it possible to both reduce the work period and minimize the radiation exposure of workers compared with conventional technologies for welding in ambient air. We have confirmed the effectiveness of this technology through experiments in which stress corrosion cracking (SCC) was mitigated on the inner surfaces of nozzles. We are promoting its practical application in Japan and overseas in cooperation with Westinghouse Electric Company, a group company of Toshiba. (author)

  14. Application of e-beam welding in W/Cu divertor project for EAST

    International Nuclear Information System (INIS)

    Wang, Wanjing; Li, Qiang; Zhao, Sixiang; Xu, Yue; Wei, Ran; Cao, Lei; Yao, Damao; Qin, Sigui; Peng, Lingjian; Shi, Yingli; Pan, Ningjie; Liu, Guohui; Li, Hui; Luo, Guang-Nan

    2015-01-01

    Highlights: • To develop the actively cooled W/Cu components, we have to meet the application of EBW. • In this work, the microstructure of the fusion zone and the mechanical properties of Cu−Cu and Cu−Ni joint welded by EBW have been investigated. • In the practice of quality control, it was found that under present standard the helium leak detection is unreliable. Thus the UT has been introduced and the premier results have shown it's effective. • In addition, the control of configuration tolerance has also been investigated. And a solidified welding procedure with jigs was established before the batch production. - Abstract: In the development of EAST actively cooled W/Cu components, the ITER-grade CuCrZr has been chosen as the heat sink material for its good thermomechanics properties. To realize the seal joint of the heat sink, a large number of electron beam welding (EBW) of CuCrZr/CuCrZr or CuCrZr/Inconel625 has been carried out. In the quality control of the W/Cu components, the helium leak detection at thermal condition has been performed on the entire components before delivery. However, in the operation of EAST device some micro leak on the components was detected indicating that the helium leak detection under present standard was unreliable for the quality control. Therefore, the ultrasonic non-destructive testing technique was introduced to exclude the defects. In addition, the welding shrinkage and bending has also been investigated to meet the required tight tolerances for plasma-facing components in vacuum vessel.

  15. Application of e-beam welding in W/Cu divertor project for EAST

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wanjing, E-mail: wjwang@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP), Hefei, Anhui (China); Li, Qiang; Zhao, Sixiang; Xu, Yue; Wei, Ran; Cao, Lei; Yao, Damao [Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP), Hefei, Anhui (China); Qin, Sigui; Peng, Lingjian; Shi, Yingli; Pan, Ningjie; Liu, Guohui [Advanced Technology and Materials Company - AT& M, Beijing (China); Li, Hui [Beijing Zhongke Electric Co. Ltd., Beijing (China); Luo, Guang-Nan [Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP), Hefei, Anhui (China)

    2015-10-15

    Highlights: • To develop the actively cooled W/Cu components, we have to meet the application of EBW. • In this work, the microstructure of the fusion zone and the mechanical properties of Cu−Cu and Cu−Ni joint welded by EBW have been investigated. • In the practice of quality control, it was found that under present standard the helium leak detection is unreliable. Thus the UT has been introduced and the premier results have shown it's effective. • In addition, the control of configuration tolerance has also been investigated. And a solidified welding procedure with jigs was established before the batch production. - Abstract: In the development of EAST actively cooled W/Cu components, the ITER-grade CuCrZr has been chosen as the heat sink material for its good thermomechanics properties. To realize the seal joint of the heat sink, a large number of electron beam welding (EBW) of CuCrZr/CuCrZr or CuCrZr/Inconel625 has been carried out. In the quality control of the W/Cu components, the helium leak detection at thermal condition has been performed on the entire components before delivery. However, in the operation of EAST device some micro leak on the components was detected indicating that the helium leak detection under present standard was unreliable for the quality control. Therefore, the ultrasonic non-destructive testing technique was introduced to exclude the defects. In addition, the welding shrinkage and bending has also been investigated to meet the required tight tolerances for plasma-facing components in vacuum vessel.

  16. Three-dimensional chemical analysis of laser-welded NiTi–stainless steel wires using a dual-beam FIB

    International Nuclear Information System (INIS)

    Burdet, P.; Vannod, J.; Hessler-Wyser, A.; Rappaz, M.; Cantoni, M.

    2013-01-01

    The biomedical industry has an increasing demand for processes to join dissimilar metals, such as laser welding of NiTi and stainless steel wires. A region of the weld close to the NiTi interface, which previously was shown to be prone to cracking, was further analyzed by energy dispersive spectrometry (EDS) extended in the third dimension using a focused ion beam. As the spatial resolution of EDS analysis is not precise enough to resolve the finest parts of the microstructure, a new segmentation method that uses in addition secondary-electron images of higher spatial resolution was developed. Applying these tools, it is shown that this region of the weld close to the NiTi interface does not comprise a homogeneous intermetallic layer, but is rather constituted by a succession of different intermetallics, the composition of which can be directly correlated with the solidification path in the ternary Fe–Ni–Ti Gibbs simplex

  17. Refined Analysis of Fatigue Crack Initiation Life of Beam-to-Column Welded Connections of Steel Frame under Strong Earthquake

    Directory of Open Access Journals (Sweden)

    Weilian Qu

    2017-01-01

    Full Text Available This paper presents a refined analysis for evaluating low-cycle fatigue crack initiation life of welded beam-to-column connections of steel frame structures under strong earthquake excitation. To consider different length scales between typical beam and column components as well as a few crucial beam-to-column welded connections, a multiscale finite element (FE model having three different length scales is formulated. The model can accurately analyze the inelastic seismic response of a steel frame and then obtain in detail elastoplastic stress and strain field near the welded zone of the connections. It is found that the welded zone is subjected to multiaxial nonproportional loading during strong ground motion and the elastoplastic stress-strain field of the welded zone is three-dimensional. Then, using the correlation of the Fatemi-Socie (FS parameter versus fatigue life obtained by the experimental crack initiation fatigue data of the structural steel weldment subjected to multiaxial loading, the refined evaluation approach of fatigue crack initiation life is developed based on the equivalent plastic strain at fatigue critical position of beam end seams of crucial welded connections when the steel frame is subjected to the strong earthquake excitation.

  18. Electron Beam Diagnostics in Plasmas Based on Electron Beam Ionization

    Science.gov (United States)

    Leonhardt, Darrin; Leal-Quiros, Edbertho; Blackwell, David; Walton, Scott; Murphy, Donald; Fernsler, Richard; Meger, Robert

    2001-10-01

    Over the last few years, electron beam ionization has been shown to be a viable generator of high density plasmas with numerous applications in materials modification. To better understand these plasmas, we have fielded electron beam diagnostics to more clearly understand the propagation of the beam as it travels through the background gas and creates the plasma. These diagnostics vary greatly in sophistication, ranging from differentially pumped systems with energy selective elements to metal 'hockey pucks' covered with thin layers of insulation to electrically isolate the detector from the plasma but pass high energy beam electrons. Most importantly, absolute measurements of spatially resolved beam current densities are measured in a variety of pulsed and continuous beam sources. The energy distribution of the beam current(s) will be further discussed, through experiments incorporating various energy resolving elements such as simple grids and more sophisticated cylindrical lens geometries. The results are compared with other experiments of high energy electron beams through gases and appropriate disparities and caveats will be discussed. Finally, plasma parameters are correlated to the measured beam parameters for a more global picture of electron beam produced plasmas.

  19. Twin-spot laser welding of advanced high-strength multiphase microstructure steel

    Science.gov (United States)

    Grajcar, Adam; Morawiec, Mateusz; Różański, Maciej; Stano, Sebastian

    2017-07-01

    The study addresses the results concerning the laser welding of TRIP (TRansformation Induced Plasticity) steel using a beam focused at two spots (also referred to as twin-spot laser welding). The analysis involved the effect of variable welding thermal cycles on the properties and microstructure of welded joints. The tests were performed using a linear energy of 0.048 and 0.060 kJ/mm and the laser beam power distribution of 50%:50%, 60%:40% and 70%:30%. The tests also involved welding performed using a linear energy of 0.150 kJ/mm and the laser beam power distribution of 70%:30%. In addition, the research included observations of the microstructure of the fusion zone, heat affected zone and the transition zone using light microscopy and scanning electron microscopy. The fusion zone was composed of blocky-lath martensite whereas the HAZ (heat-affected zone) was characterised by the lath microstructure containing martensite, bainite and retained austenite. The distribution of twin-spot laser beam power significantly affected the microstructure and hardness profiles of welded joints. The highest hardness (480-505 HV), regardless of welding variants used, was observed in the HAZ.

  20. Ohmic contact junction of carbon nanotubes fabricated by in situ electron beam deposition

    International Nuclear Information System (INIS)

    Wang, Y G; Wang, T H; Lin, X W; Dravid, V P

    2006-01-01

    We present experimental evidence of in situ fabrication of multi-walled carbon nanotube junctions via electron beam induced deposition. The tip-to-tip interconnection of the nanotubes involves the alignment of two nanotubes via a piezodriven nanomanipulator and nano-welding by electron beam deposition. Hydrocarbon contamination from the pump oil vapour of the vacuum system of the TEM chamber was used as the solder; this is superior to the already available metallic solders because its composition is identical to the carbon nanotube. The hydrocarbon deposition, with perfect wettability, on the nanotubes establishes strong mechanical binding between the two nanotubes to form an integrated structure. Consequently, the nanotubes cross-linked by the hydrocarbon solder produce good electrical and mechanical connections. The joint dimension was determined by the size of the electron beam, which results in a sound junction with well-defined geometry and the smallest junction size obtained so far. In situ electric measurement showed a linear current-voltage property for the multi-walled nanotube junction

  1. An electromagnetically focused electron beam line source

    International Nuclear Information System (INIS)

    Iqbal, Munawar; Masood, Khalid; Rafiq, Mohammad; Chaudhary, Maqbool A.; Aleem, Fazal-e-

    2003-01-01

    A directly heated thermionic electron beam source was constructed. A tungsten wire of length 140 mm with diameter 0.9 mm was used as a cathode. An emission current of 5000 mA was achieved at an input heating power of 600 W. Cathode to anode distance of 6 mm with acceleration voltage of 10 kV was used. A uniform external magnetic field of 50 G was employed to obtain a well-focused electron beam at a deflection of 180 deg., with cathode to work site distance of 130 mm. Dimensions of the beam (1.25x120 mm) recorded at the work site were found to be in good agreement with the designed length of cathode. The deformation of the cathode was overcome by introducing a spring action mechanism, which gives uniform emission current density throughout the emission surface. We have achieved the saturation limit of the designed source resulting in smooth and swift operation of the gun for many hours (10-15 h continuously). The design of gun is so simple that it can accommodate longer cathodes for obtaining higher emission values. This gun has made it possible to coat large substrate surfaces at much faster evaporation rate at lower cost. It can also be useful in large-scale vacuum metallurgy plants for melting, welding and heat treatment

  2. Effect of post-weld heat treatments on strength and toughness behavior of T-250 maraging steel welded by laser beam

    International Nuclear Information System (INIS)

    Li, Kun; Shan, Jiguo; Wang, Chunxu; Tian, Zhiling

    2016-01-01

    This paper elucidates here the strength and toughness behavior of T-250 maraging steel welded by laser beam under different approaches of three post-weld heat treatments, i.e. aging (A), solutionizing+aging (SA) and homogenizing+solutionizing+aging (HSA). The microstructures of the weld metals with A and SA processes both comprised of finely dispersive Ni 3 (Ti, Mo) precipitates, small martensite lath and reverted austenite along the grain boundary. However, in the weld metal with HSA process, it exhibited the same Ni 3 (Ti, Mo) precipitate with the large martensite lath and the absence of reverted austenite. The ultimate tensile strength and static toughness of the welded joint with HSA process were 1350.6 MPa and 63.8 MJ m −3 , respectively. The static toughness has been remarkably improved from 71% to 91% of the applied parent metal compared with that of the welded joint with A process. The present study underscores that the Ni 3 (Ti, Mo) precipitate and martensite are significant to ensure the high strength of welded joints. Due to its inconsistent deformation with the matrix of martensite, the reverted austenite has a notable influence on the toughness of welded joints. It shows that the post-weld heat treatments of HSA process can influence the mechanical behavior of welded joints by eliminating the reverted austenite.

  3. Effect of post-weld heat treatments on strength and toughness behavior of T-250 maraging steel welded by laser beam

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kun [Laser Processing Research Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Shan, Jiguo, E-mail: shanjg@mail.tsinghua.edu.cn [Laser Processing Research Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Key Laboratory for Advanced Materials Professing Technology, Ministry of Education, Tsinghua University, Beijing 100084 (China); Wang, Chunxu; Tian, Zhiling [Institute for Special Steel, Central Iron & Steel Research Institute, Beijing 100081 (China)

    2016-04-29

    This paper elucidates here the strength and toughness behavior of T-250 maraging steel welded by laser beam under different approaches of three post-weld heat treatments, i.e. aging (A), solutionizing+aging (SA) and homogenizing+solutionizing+aging (HSA). The microstructures of the weld metals with A and SA processes both comprised of finely dispersive Ni{sub 3}(Ti, Mo) precipitates, small martensite lath and reverted austenite along the grain boundary. However, in the weld metal with HSA process, it exhibited the same Ni{sub 3}(Ti, Mo) precipitate with the large martensite lath and the absence of reverted austenite. The ultimate tensile strength and static toughness of the welded joint with HSA process were 1350.6 MPa and 63.8 MJ m{sup −3}, respectively. The static toughness has been remarkably improved from 71% to 91% of the applied parent metal compared with that of the welded joint with A process. The present study underscores that the Ni{sub 3}(Ti, Mo) precipitate and martensite are significant to ensure the high strength of welded joints. Due to its inconsistent deformation with the matrix of martensite, the reverted austenite has a notable influence on the toughness of welded joints. It shows that the post-weld heat treatments of HSA process can influence the mechanical behavior of welded joints by eliminating the reverted austenite.

  4. Advanced electron beam techniques

    International Nuclear Information System (INIS)

    Hirotsu, Yoshihiko; Yoshida, Yoichi

    2007-01-01

    After 100 years from the time of discovery of electron, we now have many applications of electron beam in science and technology. In this report, we review two important applications of electron beam: electron microscopy and pulsed-electron beam. Advanced electron microscopy techniques to investigate atomic and electronic structures, and pulsed-electron beam for investigating time-resolved structural change are described. (author)

  5. Microstructural analysis of laser weld fusion zone in Haynes 282 superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Osoba, L.O. [Department of Mechanical and Manufacturing Engineering, University of Manitoba, Winnipeg, Manitoba, R3T 5V6 (Canada); Ding, R.G. [Department of Metallurgy and Materials Engineering, University of Birmingham, Birmingham B15 2TT (United Kingdom); Ojo, O.A., E-mail: ojo@cc.umanitoba.ca [Department of Mechanical and Manufacturing Engineering, University of Manitoba, Winnipeg, Manitoba, R3T 5V6 (Canada)

    2012-03-15

    Analytical electron microscopy and spectroscopy analyses of the fusion zone (FZ) microstructure in autogenous laser beam welded Haynes 282 (HY 282) superalloy were performed. The micro-segregation patterns observed in the FZ indicate that Co, Cr and Al exhibited a nearly uniform distribution between the dendrite core and interdendritic regions while Ti and Mo were rejected into the interdendritic liquid during the weld solidification. Transmission electron diffraction analysis and energy dispersive X-ray microanalysis revealed the second phase particles formed along the FZ interdendritic region to be Ti-Mo rich MC-type carbide particles. Weld FZ solidification cracking, which is sometimes associated with the formation of {gamma}-{gamma}' eutectic in {gamma}' precipitation strengthened nickel-base superalloys, was not observed in the HY 282 superalloy. Modified primary solidification path due to carbon addition in the newly developed superalloy is used to explain preclusion of weld FZ solidification cracking in the material. - Highlights: Black-Right-Pointing-Pointer A newly developed superalloy was welded by CO{sub 2} laser beam joining technique. Black-Right-Pointing-Pointer Electron microscopy characterization of the weld microstructure was performed. Black-Right-Pointing-Pointer Identified interdendritic microconstituents consist of MC-type carbides. Black-Right-Pointing-Pointer Modification of primary solidification path is used to explain cracking resistance.

  6. Microstructural analysis of laser weld fusion zone in Haynes 282 superalloy

    International Nuclear Information System (INIS)

    Osoba, L.O.; Ding, R.G.; Ojo, O.A.

    2012-01-01

    Analytical electron microscopy and spectroscopy analyses of the fusion zone (FZ) microstructure in autogenous laser beam welded Haynes 282 (HY 282) superalloy were performed. The micro-segregation patterns observed in the FZ indicate that Co, Cr and Al exhibited a nearly uniform distribution between the dendrite core and interdendritic regions while Ti and Mo were rejected into the interdendritic liquid during the weld solidification. Transmission electron diffraction analysis and energy dispersive X-ray microanalysis revealed the second phase particles formed along the FZ interdendritic region to be Ti–Mo rich MC-type carbide particles. Weld FZ solidification cracking, which is sometimes associated with the formation of γ–γ' eutectic in γ' precipitation strengthened nickel-base superalloys, was not observed in the HY 282 superalloy. Modified primary solidification path due to carbon addition in the newly developed superalloy is used to explain preclusion of weld FZ solidification cracking in the material. - Highlights: ► A newly developed superalloy was welded by CO 2 laser beam joining technique. ► Electron microscopy characterization of the weld microstructure was performed. ► Identified interdendritic microconstituents consist of MC-type carbides. ► Modification of primary solidification path is used to explain cracking resistance.

  7. Welding, Bonding and Fastening, 1984

    Science.gov (United States)

    Buckley, J. D. (Editor); Stein, B. A. (Editor)

    1985-01-01

    A compilation of papers presented in a joint NASA, American Society for Metals, The George Washington University, American Welding Soceity, and Society of Manufacturing Engineers conference on Welding, Bonding, and Fastening at Langley Research Center, Hampton, VA, on October 23 to 25, 1984 is given. Papers were presented on technology developed in current research programs relevant to welding, bonding, and fastening of structural materials required in fabricating structures and mechanical systems used in the aerospace, hydrospace, and automotive industries. Topics covered in the conference included equipment, hardware and materials used when welding, brazing, and soldering, mechanical fastening, explosive welding, use of unique selected joining techniques, adhesives bonding, and nondestructive evaluation. A concept of the factory of the future was presented, followed by advanced welding techniques, automated equipment for welding, welding in a cryogenic atmosphere, blind fastening, stress corrosion resistant fasteners, fastening equipment, explosive welding of different configurations and materials, solid-state bonding, electron beam welding, new adhesives, effects of cryogenics on adhesives, and new techniques and equipment for adhesive bonding.

  8. Welding techniques development of CLAM steel for Test Blanket Module

    Energy Technology Data Exchange (ETDEWEB)

    Li Chunjing [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230027 (China)], E-mail: lcj@ipp.ac.cn; Huang Qunying; Wu Qingsheng; Liu Shaojun [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230027 (China); Lei Yucheng [Jiangsu University, Zhenjiang, Jiangsu, 212013 (China); Muroga, Takeo; Nagasaka, Takuya [National Institute for Fusion Science, Toki, Jifu, 509-5292 (Japan); Zhang Jianxun [Xi' an Jiaotong University, Xi' an, Shanxi, 710049 (China); Li Jinglong [Northwestern Polytechnical University, Xi' an, Shanxi, 710072 (China)

    2009-06-15

    Fabrication techniques for Test Blanket Module (TBM) with CLAM are being under development. Effect of surface preparation on the HIP diffusion bonding joints was studied and good joints with Charpy impact absorbed energy close to that of base metal have been obtained. The mechanical properties test showed that effect of HIP process on the mechanical properties of base metal was little. Uniaxial diffusion bonding experiments were carried out to study the effect of temperature on microstructure and mechanical properties. And preliminary experiments on Electron Beam Welding (EBW), Tungsten Inert Gas (TIG) Welding and Laser Beam Welding (LBW) were performed to find proper welding techniques to assemble the TBM. In addition, the thermal processes assessed with a Gleeble thermal-mechanical machine were carried out as well to assist the fusion welding research.

  9. A comparative evaluation of microstructural and mechanical behavior of fiber laser beam and tungsten inert gas dissimilar ultra high strength steel welds

    Directory of Open Access Journals (Sweden)

    Jaiteerth R. Joshi

    2016-12-01

    Full Text Available The influence of different welding processes on the mechanical properties and the corresponding variation in the microstructural features have been investigated for the dissimilar weldments of 18% Ni maraging steel 250 and AISI 4130 steel. The weld joints are realized through two different fusion welding processes, tungsten inert arc welding (TIG and laser beam welding (LBW, in this study. The dissimilar steel welds were characterized through optical microstructures, microhardness survey across the weldment and evaluation of tensile properties. The fiber laser beam welds have demonstrated superior mechanical properties and reduced heat affected zone as compared to the TIG weldments.

  10. Welding for fusion grade neutral beam components - requirements, challenges, experiences and learnings

    International Nuclear Information System (INIS)

    Joshi, Jaydeep; Patel, Hitesh; Yadav, Ashish; Rotti, Chandramouli; Bandyopadhyay, Mainak; Chakraborty, Arun

    2016-01-01

    Negative ion based Neutral Beam Injectors (NBI) are the integral part of large size fusion devices where Neutral Beams of Hydrogen/Deuterium atoms are injected into the fusion reactor to heat the plasma, drive a plasma current, provide fuel to the plasma and also help to diagnose the plasma through spectroscopic measurements. The presentation shares the experiences of handling, some of special welding activities applicable for fusion prototypes developments, experiments, methodology developed for the inspection/tests, criteria considered with the appropriate justifications. This also shares the view point of authors code should further be supplement and incorporate the fusion specific applications considering future needs. In addition, explorations to meet our future needs of welding with specific attention to indigenous developments have been described

  11. Reduction of Biomechanical and Welding Fume Exposures in Stud Welding.

    Science.gov (United States)

    Fethke, Nathan B; Peters, Thomas M; Leonard, Stephanie; Metwali, Mahmoud; Mudunkotuwa, Imali A

    2016-04-01

    The welding of shear stud connectors to structural steel in construction requires a prolonged stooped posture that exposes ironworkers to biomechanical and welding fume hazards. In this study, biomechanical and welding fume exposures during stud welding using conventional methods were compared to exposures associated with use of a prototype system that allowed participants to weld from an upright position. The effect of base material (i.e. bare structural beam versus galvanized decking) on welding fume concentration (particle number and mass), particle size distribution, and particle composition was also explored. Thirty participants completed a series of stud welding simulations in a local apprenticeship training facility. Use of the upright system was associated with substantial reductions in trunk inclination and the activity levels of several muscle groups. Inhalable mass concentrations of welding fume (averaged over ~18 min) when using conventional methods were high (18.2 mg m(-3) for bare beam; 65.7 mg m(-3) for through deck), with estimated mass concentrations of iron (7.8 mg m(-3) for bare beam; 15.8 mg m(-3) for through deck), zinc (0.2 mg m(-3) for bare beam; 15.8 mg m(-3) for through deck), and manganese (0.9 mg m(-3) for bare beam; 1.5 mg m(-3) for through deck) often exceeding the American Conference of Governmental Industrial Hygienists Threshold Limit Values (TLVs). Number and mass concentrations were substantially reduced when using the upright system, although the total inhalable mass concentration remained above the TLV when welding through decking. The average diameters of the welding fume particles for both bare beam (31±17 nm) through deck conditions (34±34 nm) and the chemical composition of the particles indicated the presence of metallic nanoparticles. Stud welding exposes ironworkers to potentially high levels of biomechanical loading (primarily to the low back) and welding fume. The upright system used in this study improved exposure

  12. Electron beam instabilities in gyrotron beam tunnels

    International Nuclear Information System (INIS)

    Pedrozzi, M.; Alberti, S.; Hogge, J.P.; Tran, M.Q.; Tran, T.M.

    1997-10-01

    Electron beam instabilities occurring in a gyrotron electron beam can induce an energy spread which might significantly deteriorate the gyrotron efficiency. Three types of instabilities are considered to explain the important discrepancy found between the theoretical and experimental efficiency in the case of quasi-optical gyrotrons (QOG): the electron cyclotron maser instability, the Bernstein instability and the Langmuir instability. The low magnetic field gradient in drift tubes of QOG makes that the electron cyclotron maser instability can develop in the drift tube at very low electron beam currents. Experimental measurements show that with a proper choice of absorbing structures in the beam tunnel, this instability can be suppressed. At high beam currents, the electrostatic Bernstein instability can induce a significant energy spread at the entrance of the interaction region. The induced energy spread scales approximately linearly with the electron beam density and for QOG one observes that the beam density is significantly higher than the beam density of an equivalent cylindrical cavity gyrotron. (author) figs., tabs., refs

  13. Corrosion resistance of copper canister weld material

    International Nuclear Information System (INIS)

    Gubner, Rolf; Andersson, Urban

    2007-03-01

    The proposed design for a final repository for spent fuel and other long-lived residues is based on the multi-barrier principle. The waste will be encapsulated in sealed cylindrical canisters, which will be placed in granite bedrock and surrounded by compacted bentonite clay. The canister design is based on a thick cast iron insert fitted inside a copper canister. SKB has since several years developed manufacturing processes for the canister components using a network of manufacturers. For the encapsulation process SKB has built the Canister Laboratory to demonstrate and develop the encapsulation technique in full scale. The critical part of the encapsulation of spent fuel is the sealing of the canister which is done by welding the copper lid to the cylindrical part of the canister. Two welding techniques have been developed in parallel, Electron Beam Welding (EBW) and Friction Stir Welding (FSW). During the past two decades, SKB has developed the technology EBW at The Welding Institute (TWI) in Cambridge, UK. The development work at the Canister Laboratory began in 1999. In electron beam welding, a gun is used to generate the electron beam which is aimed at the joint. The beam heats up the material to the melting point allowing a fusion weld to be formed. The gun was developed by TWI and has a unique design for use at reduced pressure. The system has gone through a number of improvements under the last couple of years including implementation of a beam oscillation system. However, during fabrication of the outer copper canisters there will be some unavoidable grain growth in the welded areas. As grains grow they will tend to concentrate impurities at the new grain boundaries that might pose adverse effects on the corrosion resistance of welds. As a new method for joining, SKB has been developing friction stir welding (FSW) for sealing copper canisters for spent nuclear fuel in cooperation with TWI since 1997. FSW was invented in 1991 at TWI and is a thermo

  14. Corrosion resistance of copper canister weld material

    Energy Technology Data Exchange (ETDEWEB)

    Gubner, Rolf; Andersson, Urban [Corrosion and Metals Research Institute, Sto ckholm (Sweden)

    2007-03-15

    The proposed design for a final repository for spent fuel and other long-lived residues is based on the multi-barrier principle. The waste will be encapsulated in sealed cylindrical canisters, which will be placed in granite bedrock and surrounded by compacted bentonite clay. The canister design is based on a thick cast iron insert fitted inside a copper canister. SKB has since several years developed manufacturing processes for the canister components using a network of manufacturers. For the encapsulation process SKB has built the Canister Laboratory to demonstrate and develop the encapsulation technique in full scale. The critical part of the encapsulation of spent fuel is the sealing of the canister which is done by welding the copper lid to the cylindrical part of the canister. Two welding techniques have been developed in parallel, Electron Beam Welding (EBW) and Friction Stir Welding (FSW). During the past two decades, SKB has developed the technology EBW at The Welding Institute (TWI) in Cambridge, UK. The development work at the Canister Laboratory began in 1999. In electron beam welding, a gun is used to generate the electron beam which is aimed at the joint. The beam heats up the material to the melting point allowing a fusion weld to be formed. The gun was developed by TWI and has a unique design for use at reduced pressure. The system has gone through a number of improvements under the last couple of years including implementation of a beam oscillation system. However, during fabrication of the outer copper canisters there will be some unavoidable grain growth in the welded areas. As grains grow they will tend to concentrate impurities at the new grain boundaries that might pose adverse effects on the corrosion resistance of welds. As a new method for joining, SKB has been developing friction stir welding (FSW) for sealing copper canisters for spent nuclear fuel in cooperation with TWI since 1997. FSW was invented in 1991 at TWI and is a thermo

  15. Joining of cemented carbides to steel by laser beam welding

    Energy Technology Data Exchange (ETDEWEB)

    Barbatti, C.; Garcia, J.; Pyzalla, A. [Max-Planck-Institut fuer Eisenforschung GmbH, 40237 Duesseldorf (Germany); Liedl, G. [TU Wien, Institut fuer Umform- und Hochleistungslasertechnik (IFLT), 1040 Vienna (Austria)

    2007-11-15

    Welding of dissimilar materials such as steel and cemented carbides (hardmetals, cermets) is particularly challenging e.g. because mismatches in their thermal expansion coefficients and thermal conductivities result in residual stress formation and because of the formation of brittle intermetallic phases. Laser beam welding of cemented carbides to steel appears as an attractive complementary technique to conventional brazing processes due to its high precision, high process speed, low heat input and the option of welding without filler. Here a laser welding process including pre-heat treatment and post-heat treatment was applied successfully to joining as-sintered and nitrided hardmetals and cermets to low alloyed steel. The microstructure and mechanical properties of the welds are investigated by microscopy, X-ray diffraction, microhardness measurements, and bending tests. The results reveal that the three-step laser beam welding process produced crack-free and non-porous joints. Nitridation of the cemented carbides results in a significant reduction of the amount of brittle intermetallic phases. The mechanical properties of the joints are competitive to those of the conventional brazed steel-cemented carbide joints. (Abstract Copyright [2007], Wiley Periodicals, Inc.) [German] Das Schweissen von ungleichartigen Werkstoffen wie z. B. Staehlen mit Hartmetallen und Cermets stellt eine erhebliche Herausforderung dar, u. a. infolge der unterschiedlichen thermischen Ausdehnungskoeffizienten und Waermeleitfaehigkeiten, welche die Bildung von Eigenspannungen zur Folge haben, sowie aufgrund der Bildung sproeder intermetallischer Phasen. Das Laserstrahlschweissen von Hartmetallen/Cermets mit Stahl erscheint als attraktives komplementaeres Verfahren zum ueblicherweise verwendeten Loeten, da es die Herstellung von Verbindungen mit hoeherer Praezision, hoeherer Geschwindigkeit sowie geringerem Waermeeintrag erlaubt und die Verwendung eines Zusatzwerkstoffs nicht notwendig ist

  16. A reliability analysis framework with Monte Carlo simulation for weld structure of crane's beam

    Science.gov (United States)

    Wang, Kefei; Xu, Hongwei; Qu, Fuzheng; Wang, Xin; Shi, Yanjun

    2018-04-01

    The reliability of the crane product in engineering is the core competitiveness of the product. This paper used Monte Carlo method analyzed the reliability of the weld metal structure of the bridge crane whose limit state function is mathematical expression. Then we obtained the minimum reliable welding feet height value for the welds between cover plate and web plate on main beam in different coefficients of variation. This paper provides a new idea and reference for the growth of the inherent reliability of crane.

  17. Structural and mechanical properties of welded joints of reduced activation martensitic steels

    International Nuclear Information System (INIS)

    Filacchioni, G.; Montanari, R.; Tata, M.E.; Pilloni, L.

    2002-01-01

    Gas tungsten arc welding and electron beam welding methods were used to realise welding pools on plates of reduced activation martensitic steels. Structural and mechanical features of these simulated joints have been investigated in as-welded and post-welding heat-treated conditions. The research allowed to assess how each welding technique affects the original mechanical properties of materials and to find suitable post-welding heat treatments. This paper reports results from experimental activities on BATMAN II and F82H mod. steels carried out in the frame of the European Blanket Project - Structural Materials Program

  18. Beam electron microprobe

    CERN Document Server

    Stoller, D; Muterspaugh, M W; Pollock, R E

    1999-01-01

    A beam profile monitor based on the deflection of a probe electron beam by the electric field of a stored, electron-cooled proton beam is described and first results are presented. Electrons were transported parallel to the proton beam by a uniform longitudinal magnetic field. The probe beam may be slowly scanned across the stored beam to determine its intensity, position, and size. Alternatively, it may be scanned rapidly over a narrow range within the interior of the stored beam for continuous observation of the changing central density during cooling. Examples of a two dimensional charge density profile obtained from a raster scan and of a cooling alignment study illustrate the scope of measurements made possible by this device.

  19. Interactions Between Fibroblast Cells and Laser Beam Welded AISI 2205 Duplex Stainless Steel

    Directory of Open Access Journals (Sweden)

    Ceyhun KÖSE

    2018-05-01

    Full Text Available Because of their high mechanical strength, excellent corrosion resistance and good weldability, duplex stainless steels are mostly used in industries such as oil, chemistry, petrochemistry, food and occasionally used in medical industry. These properties have enabled us to use duplex stainless steels in biomedical applications recently. Accordingly, duplex stainless steel material can be highly important to examine the toxic effect on the cells. In this study, the effect of the AISI 2205 duplex stainless steels which are joined by CO2 laser beam welding on viability of L929 fibroblast cells has been studied in vitro for the first time. For this aim, the cells were kept in DMEM/F-12 (Thermofisher Scientific 31331-028 medium for 7 days. The viability study was experimentally studied using the MTT (Thiazolyl Blue Tetrazolium Bromide method for 7 days. The cell viability of the laser beam welded sample has been detected to be higher than that of the base metal and the control based on 7th day data. According to the obtained results, it was revealed that laser beam welded and base metal AISI 2205 duplex stainless steel has been found suitable to study for biomedical applications. DOI: http://dx.doi.org/10.5755/j01.ms.24.2.18006

  20. Aspects of welding of zircaloy thin tube to end plugin the experimental welding facility of fuel element fabrication laboratory

    International Nuclear Information System (INIS)

    Shafy, M.; El-Hakim, E.

    1997-01-01

    The work was achieved within the scope of developing egyptian nuclear fuel fabrication laboratory in inshas. It showed the results of developing a welding facility for performing a qualified zircaloy-2 and 4 thin tubes to end weld joints. The welding chamber design was developed to get qualified weld for both PWR and CANDU fuel rod configurations. Experimental works for optimizing the welding parameters of tungsten inert gas (TIG) welding and electron beam (EB) welding processes were achieved. The ld penetration deeper than the wall tube thickness can be obtained for qualified end plug weld joints. It recommended to use steel compensating block for radiographic inspection of end plug weld joints. The predominate defects that can be expected in end plug weld joints, are lack of penetration and cavity. The microstructure of the fusion zone and heat affected zones are Widmanstaetten structure and its grain size is drastically sensible to the heat generation and removal of arc welding. 16 figs

  1. Influence of nitrogen in the shielding gas on corrosion resistance of duplex stainless steel welds

    Science.gov (United States)

    Bhatt, R. B.; Kamat, H. S.; Ghosal, S. K.; de, P. K.

    1999-10-01

    The influence of nitrogen in shielding gas on the corrosion resistance of welds of a duplex stainless steel (grade U-50), obtained by gas tungsten arc (GTA) with filler wire, autogenous GTA (bead-on-plate), electron beam welding (EBW), and microplasma techniques, has been evaluated in chloride solutions at 30 °C. Pitting attack has been observed in GTA, electron beam welding, and microplasma welds when welding has been carried out using pure argon as the shielding gas. Gas tungsten arc welding with 5 to 10% nitrogen and 90 to 95% argon, as the shielding gas, has been found to result in an improved pitting corrosion resistance of the weldments of this steel. However, the resistance to pitting of autogenous welds (bead-on-plate) obtained in pure argon as the shielding gas has been observed to remain unaffected. Microscopic examination, electron probe microanalysis (EPMA), and x-ray diffraction studies have revealed that the presence of nitrogen in the shielding gas in the GTA welds not only modifies the microstructure and the austenite to ferrite ratio but also results in a nearly uniform distribution of the various alloying elements, for example, chromium, nickel, and molybdenum among the constitutent phases, which are responsible for improved resistance to pitting corrosion.

  2. Evaluation of laser welding techniques for hydrogen transmission. Final report, September 1977-November 1979

    Energy Technology Data Exchange (ETDEWEB)

    Mucci, J

    1980-05-01

    This program was established to determine the feasibility of laser beam welding as a fabrication method for hydrogen transmission and is a precursor in the effort to systematically provide the technological base necessary for large-scale, economic pipeline transmission of fuel for a hydrogen energy system. The study contributes to the technology base by establishing the effect of conventional weld processes and laser beam welding on the mechanical properties of two classes of steels in an air and high pressure gaseous hydrogen environment. Screening evaluation of the tensile, low-cycle fatigue and fracture toughness properties and metallurgical analyses provide the basis for concluding that laser beam welding of AISI 304L stainless steel and ASTM A106B carbon steel can produce weldments of comparable quality to those produced by gas-tungsten arc and electron beam welding and is at least equally compatible with 13.8 MPa (2000 psig) gaseous hydrogen environment.

  3. Progress in welding studies for Canadian nuclear fuel waste disposal containers

    International Nuclear Information System (INIS)

    Maak, P.Y.Y.

    1985-11-01

    This report describes the progress in the development of closure-welding technology for Canadian nuclear fuel waste disposal containers. Titanium, copper and Inconel 625 are being investigated as candidate materials for fabrication of these containers. Gas-tungsten-arc welding, gas metal-arc-welding, resistance-heated diffusion bonding and electron beam welding have been evaluated as candidate closure welding processes. Characteristic weldment properties, relative merits of welding techniques, suitable weld joint configurations and fit-up tolerances, and welding parameter control ranges have been identified for various container designs. Furthermore, the automation requirements for candidate welding processes have been assessed. Progress in the development of a computer-controlled remote gas-shielded arc welding system is described

  4. Electron Beam Generation in Tevatron Electron Lenses

    International Nuclear Information System (INIS)

    Kamerdzhiev, V.; Kuznetsov, G.; Shiltsev, V.; Solyak, N.; Tiunov, M.

    2006-01-01

    New type of high perveance electron guns with convex cathode has been developed. Three guns described in this article are built to provide transverse electron current density distributions needed for Electron Lenses for beam-beam compensation in the Tevatron collider. The current distribution can be controlled either by the gun geometry or by voltage on a special control electrode located near cathode. We present the designs of the guns and report results of beam measurements on the test bench. Because of their high current density and low transverse temperature of electrons, electron guns of this type can be used in electron cooling and beam-beam compensation devices

  5. Electron beam generation in Tevatron electron lenses

    International Nuclear Information System (INIS)

    Kamerdzhiev, V.; Kuznetsov, G.; Shiltsev, V.; Solyak, N.; Tiunov, M.

    2006-01-01

    New type of high perveance electron guns with convex cathode has been developed. Three guns described in this article are built to provide transverse electron current density distributions needed for Electron Lenses for beam-beam compensation in the Tevatron collider. The current distribution can be controlled either by the gun geometry or by voltage on a special control electrode located near cathode. We present the designs of the guns and report results of beam measurements on the test bench. Because of their high current density and low transverse temperature of electrons, electron guns of this type can be used in electron cooling and beam-beam compensation devices

  6. Application of electron beam irradiation, (1). Development and application of electron beam processors

    International Nuclear Information System (INIS)

    Katsumura, Yosuke

    1994-01-01

    This paper deals with characteristics, equipment (principle and kinds), present conditions, and future issues in the application of electron beam irradiation. Characteristics of electron beams are described in terms of the following: chemical and biological effects of radiation; energy and penetrating power of electron beams; and principle and kinds of electron beam accelerator. Industrial application of electron beam irradiation has advantages of high speed procedure and producibility, less energy, avoidance of poisonous gas, and extreme reduction of organic solvents to be used. The present application of electron beam irradiation cen be divided into the following: (1) hardening of resin or coated membrane; (2) improvement of macromolecular materials; (3) environmental protection; (4) sterilization; (5) food sterilization. The present equipment for electron beam irradiation is introduced according to low energy, medium energy, and high energy equipment. Finally, future issues focuses on (1) the improvement of traceability system and development of electron dosimetric techniques and (2) food sterilization. (N.K.)

  7. Welding and joining of single crystals of BCC refractory metals

    International Nuclear Information System (INIS)

    Hiraoka, Yutaka; Fujii, Tadayuki

    1989-01-01

    Welding and joining is one of key technologies for the wider utilizations of a material. In the present work, the applicability of welding and joining for a single crystal of BCC refractory metal was investigated. Electron-beam welding and tungsten-inert-gas welding by a melt-run technique, and high-temperature brazing by using brazing metals such as Mo-40%Ru alloy, vanadium or platinum were conducted for molybdenum single crystal which had been prepared by means of secondary recrystallization. 12 refs.,12 figs., 2 tabs. (Author)

  8. Mechanism of formation and methods of removing magnetic blowing in welding

    International Nuclear Information System (INIS)

    Korol'kov, P.

    1998-01-01

    All welding processes using the electric arc or electron beams are characterised by the detrimental effect of magnetic fields: the electrons of the welding arc are subjected to the effect of the magnetic force distorting their trajectory. In most cases, the arc is deflected along the area of preparation for welding but, in this case, a natural magnetic field forms around the are and, consequently, arc in his unstable and, under severe conditions, the arc breaks up. The effect of the magnetic field of the welding are depends not only on its strength but also the shape and the depth of the area of preparation for welding, the specific pass in welding and arc voltage. Thus, the effect of the magnetic fields is the strongest in the deep and narrow areas of preparation for welding. In most cases, this effect is stronger in welding the weld root, and in subsequent passes the magnetic flux is shunted by the deposited metal. (author)

  9. Manufacture and characterization of austenitic steel welded joints

    International Nuclear Information System (INIS)

    Simoni, O.; Boerman, D.J.; Krischer, W.

    1990-01-01

    This paper describes the results of the first phase of the project, i.e. manufacturing and characterization of welded austenitic steel and the test matrix adopted to test the mechanical resistance of the welding. Five different welding methods have been tested and characterized in comparison to the parent material. The reference material was an AISI 316 L type steel close to the French Superphenix composition. The results of the mechanical testing and the relative comparison of the five welding methods are described in separate papers of the same session. As a general conclusion, the vacuum electron-beam welding proved to have better properties than the other weld methods and to attain in most cases the properties of the parent material. (author)

  10. Recent progress on gas tungsten arc welding of vanadium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Grossbeck, M.L.; King, J.F.; Alexander, D.J. [Oak Ridge National Lab., TN (United States)] [and others

    1997-08-01

    Emphasis has been placed on welding 6.4 mm plate, primarily by gas tungsten arc (GTA) welding. The weld properties were tested using blunt notch Charpy testing to determine the ductile to brittle transition temperature (DBTT). Erratic results were attributed to hydrogen and oxygen contamination of the welds. An improved gas clean-up system was installed on the welding glove box and the resulting high purity welds had Charpy impact properties similar to those of electron beam welds with similar grain size. A post-weld heat treatment (PWHT) of 950{degrees}C for two hours did not improve the properties of the weld in cases where low concentrations of impurities were attained. Further improvements in the gas clean-up system are needed to control hydrogen contamination.

  11. Advanced cutting, welding and inspection methods for vacuum vessel assembly and maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Jones, L. E-mail: jonesl@ipp.mgg.de; Alfile, J.-P.; Aubert, Ph.; Punshon, C.; Daenner, W.; Kujanpaeae, V.; Maisonnier, D.; Serre, M.; Schreck, G.; Wykes, M

    2000-11-01

    ITER requires a 316 l stainless steel, double-skinned vacuum vessel (VV), each shell being 60 mm thick. EFDA (European Fusion Development Agreement) is investigating methods to be used for performing welding and NDT during VV assembly and also cutting and re-welding for remote sector replacement, including the development of an Intersector Welding Robot (IWR) [Jones et al. This conference]. To reduce the welding time, distortions and residual stresses of conventional welding, previous work concentrated on CO{sub 2} laser welding and cutting processes [Jones et al. Proc. Symp. Fusion Technol., Marseilles, 1998]. NdYAG laser now provides the focus for welding of the rearside root and for completing the weld for overhead positions with multipass filling. Electron beam (E-beam) welding with local vacuum offers a single-pass for most of the weld depth except for overhead positions. Plasma cutting has shown the capability to contain the backside dross and preliminary work with NdYAG laser cutting has shown good results. Automated ultrasonic inspection of assembly welds will be improved by the use of a phased array probe system that can focus the beam for accurate flaw location and sizing. This paper describes the recent results of process investigations in this R and D programme, involving five European sites and forming part of the overall VV/blanket research effort [W. Daenner et al. This conference].

  12. Welding uranium with a multikilowatt, continuous-wave, carbon dioxide laser welder

    International Nuclear Information System (INIS)

    Turner, P.W.; Townsend, A.B.

    1977-01-01

    A 15-kilowatt, continuous-wave carbon dioxide laser was contracted to make partial-penetration welds in 6.35-and 12.7-mm-thick wrought depleted uranium plates. Welding power and speed ranged from 2.3 to 12.9 kilowatts and from 21 to 127 millimeters per second, respectively. Results show that depth-to-width ratios of at least unity are feasible. The overall characteristics of the process indicate it can produce welds resembling those made by the electron-beam welding process

  13. Characterisation of weld zone reactions in dissimilar glass-to-aluminium pulsed picosecond laser welds

    Energy Technology Data Exchange (ETDEWEB)

    Ciuca, Octav P., E-mail: octav.ciuca@manchester.ac.uk [School of Materials, University of Manchester, Manchester, M13 9PL (United Kingdom); Carter, Richard M. [Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh, EH14 4AS (United Kingdom); Prangnell, Philip B. [School of Materials, University of Manchester, Manchester, M13 9PL (United Kingdom); Hand, Duncan P. [Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh, EH14 4AS (United Kingdom)

    2016-10-15

    Precision welded joints, produced between fused silica glass and aluminium by a newly-developed picosecond-pulse laser technique, have been analysed for the first time using a full range of electron microscopy methods. The welds were produced as lap joints by focusing a 1.2 μm diameter laser beam through the transparent glass top sheet, slightly below the surface of the metal bottom sheet. Despite the extremely short interaction time, extensive reaction was observed in the weld zone, which involved the formation of nanocrystalline silicon and at least two transitional alumina phases, γ- and δ-Al{sub 2}O{sub 3}. The weld formation process was found to be complex and involved: the formation of a constrained plasma cavity at the joint interface, non-linear absorption in the glass, and the creation of multiple secondary keyholes in the metal substrate by beam scattering. The joint area was found to expand outside of the main interaction volume, as the energy absorbed into the low conductivity and higher melting point silica glass sheet melted the aluminium surface across a wider contact area. The reasons for the appearance of nanocrystalline Si and transitional alumina reaction products within the welds are discussed. - Highlights: •Pulsed laser welding of dissimilar materials causes extensive chemical reactivity. •Metastable Al{sub 2}O{sub 3} phases form due to laser-induced highly-transient thermal regime. •Fused silica is reduced by Al to form nanocrystalline Si. •Mechanism of joint formation is discussed.

  14. Electron beam-cured coating

    International Nuclear Information System (INIS)

    Kishi, Naoyuki

    1976-01-01

    The method for hardening coatings by the irradiation with electron beams is reviewed. The report is divided into seven parts, namely 1) general description and characteristics of electron beam-cured coating, 2) radiation sources of curing, 3) hardening conditions and reaction behaviour, 4) uses and advantages, 5) latest trends of the industry, 6) practice in the field of construction materials, and 7) economy. The primary characteristics of the electron beam hardening is that graft reaction takes place between base resin and coating to produce strong adhesive coating without any pretreatment. A variety of base resins are developed. High class esters of acrylic acid monomers and methacrylic acid monomers are mainly used as dilutants recently. At present, scanning type accelerators are used, but the practical application of the system producing electron beam of curtain type is expected. The dose rate dependence, the repetitive irradiation and the irradiation atmosphere are briefly described. The filed patent applications on the electron beam hardening were analyzed by the officer of Japan Patent Agency. The production lines for coatings by the electron beam hardening in the world are listed. In the electron beam-cured coating, fifty percent of given energy is consumed effectively for the electron beam hardening, and the solvents discharged from ovens and polluting atmosphere are not used, because the paints of high solid type is used. The running costs of the electron beam process are one sixth of the thermal oven process. (Iwakiri, K.)

  15. Welding of the VNZh7-3 alloy with the VT1-0 titanium by laser beam

    International Nuclear Information System (INIS)

    Baranov, M.S.; Voshchinskij, M.L.; Fedorov, P.M.; Shilov, I.F.; Zytner, G.D.

    1980-01-01

    Found is the principle possibility of the laser welding of dissimilar metals and the optimum welding mode as well with the testing of quality and strength indices of welded joints and with mode test on structural elements. The possibility of laser welding of the sintered VNZh 7-3 alloy with the VT1-0 titanium in argon is shown. Studied is the technique of forming of welded edge joint of the above dissimilar metals. Established is the optimum method of laser beam setting at an angle of 20 deg to the butt surface and with the shift by 1/3 of diameter of welded point in the titanium direction. Shear tests of elementary and natural samples have shown that real strength of welded joint exceeds the VT1-0 titanium strength. Macro- and microstructure of welded joints has layer-vortex alloy structure on the base of the VT1-0 titanium inclusion of tungsten grains that indicates the intensive mixing of metals during the welding

  16. Effect of dual laser beam on dissimilar welding-brazing of aluminum to galvanized steel

    Science.gov (United States)

    Mohammadpour, Masoud; Yazdian, Nima; Yang, Guang; Wang, Hui-Ping; Carlson, Blair; Kovacevic, Radovan

    2018-01-01

    In this investigation, the joining of two types of galvanized steel and Al6022 aluminum alloy in a coach peel configuration was carried out using a laser welding-brazing process in dual-beam mode. The feasibility of this method to obtain a sound and uniform brazed bead with high surface quality at a high welding speed was investigated by employing AlSi12 as a consumable material. The effects of alloying elements on the thickness of intermetallic compound (IMC) produced at the interface of steel and aluminum, surface roughness, edge straightness and the tensile strength of the resultant joint were studied. The comprehensive study was conducted on the microstructure of joints by means of a scanning electron microscopy and EDS. Results showed that a dual-beam laser shape and high scanning speed could control the thickness of IMC as thin as 3 μm and alter the failure location from the steel-brazed interface toward the Al-brazed interface. The numerical simulation of thermal regime was conducted by the Finite Element Method (FEM), and simulation results were validated through comparative experimental data. FEM thermal modeling evidenced that the peak temperatures at the Al-steel interface were around the critical temperature range of 700-900 °C that is required for the highest growth rate of IMC. However, the time duration that the molten pool was placed inside this temperature range was less than 1 s, and this duration was too short for diffusion-control based IMC growth.

  17. Finite element analysis of spot laser of steel welding temperature history

    Directory of Open Access Journals (Sweden)

    Shibib Khalid S.

    2009-01-01

    Full Text Available Laser welding process reduces the heat input to the work-piece which is the main goal in aerospace and electronics industries. A finite element model for axi-symmetric transient heat conduction has been used to predict temperature distribution through a steel cylinder subjected to CW laser beam of rectangular beam profile. Many numerical improvements had been used to reduce time of calculation and size of the program so as to achieve the task with minimum time required. An experimental determined absorptivity has been used to determine heat induced when laser interact with material. The heat affected zone and welding zone have been estimated to determine the effect of welding on material. The ratio of depth to width of the welding zone can be changed by proper selection of beam power to meet the specific production requirement. The temperature history obtained numerically has been compared with experimental data indicating good agreement.

  18. Influence of the Overlapping Factor and Welding Speed on T-Joint Welding of Ti6Al4V and Inconel 600 Using Low-Power Fiber Laser

    Directory of Open Access Journals (Sweden)

    Shamini Janasekaran

    2016-06-01

    Full Text Available Double-sided laser beam welding of skin-stringer joints is an established method for many applications. However, in certain cases with limited accessibility, single-sided laser beam joining is considered. In the present study, single-sided welding of titanium alloy Ti6Al4V and nickel-based alloy Inconel 600 in a T-joint configuration was carried out using continuous-wave (CW, low-power Ytterbium (Yb-fiber laser. The influence of the overlapping factor and welding speed of the laser beam on weld morphology and properties was investigated using scanning electron microscopy (SEM and X-ray diffraction (XRD, respectively. XRD analysis revealed the presence of intermetallic layers containing NiTi and NiTi2 at the skin-stringer joint. The strength of the joints was evaluated using pull testing, while the hardness of the joints was analyzed using Vickers hardness measurement at the base metal (BM, fusion zone (FZ and heat-affected zone (HAZ. The results showed that the highest force needed to break the samples apart was approximately 150 N at a laser welding power of 250 W, welding speed of 40 mm/s and overlapping factor of 50%. During low-power single-sided laser welding, the properties of the T-joints were affected by the overlapping factor and laser welding speed.

  19. Glow-discharge-created electron beams and beam-excited lasers

    International Nuclear Information System (INIS)

    Meyer, J.D.

    1989-01-01

    Efficiently created glow discharge electron beams have been developed and studied in detail. The beam mode of operation occurs in the abnormal glow adjacent to the glow-to-arc transition regime. In contrast to electron beams generated in high vacuum from thermionic electron emitting sources, this type of discharge creates electrons directly in soft vacuum by secondary electron emission from cold cathode surfaces following the bombardment of the cathode surface by fast ions and neutral atoms. Factors influencing the efficient electron emission from cold cathodes are presented with emphasis on cathode materials. Sintered ceramic-metal cathodes and oxide-coated cathodes are presented, both of which can produce high power, efficiently generated, d.c. electron beams with discharge currents up to 1 amp (∼130 mA/cm 2 ) at volt ages of up to 6 kV. Novel cathode designs and discharge geometries are presented with specific emphasis on both self-focussed beams emitted from circular cathodes and line-source electron beams emitted from rectangular cathodes forming a thin sheet of electrons. Electrostatically focussed line-source electron beams are spatially characterized by experimentally measuring the effect of discharge parameters and cathode design upon the focussed beam width, focal point, and uniformity. This is achieved by scanning a current collecting detector in three dimensions in order to profile the distribution of electron beam current. Discharge electron beams are further characterized by their electron energy distribution. Measured electron flux energy distributions of transmitted beam electrons in the negative glow are compared to theoretical models. The relative effects of elastic and inelastic collisions mechanisms upon both the overall form and detailed structure of the energy distribution are discussed

  20. High-Temperature Tensile Behaviors of Base Metal and Electron Beam-Welded Joints of Ni-20Cr-9Mo-4Nb Superalloy

    Science.gov (United States)

    Gupta, R. K.; Anil Kumar, V.; Sukumaran, Arjun; Kumar, Vinod

    2018-05-01

    Electron beam welding of Ni-20Cr-9Mo-4Nb alloy sheets was carried out, and high-temperature tensile behaviors of base metal and weldments were studied. Tensile properties were evaluated at ambient temperature, at elevated temperatures of 625 °C to 1025 °C, and at strain rates of 0.1 to 0.001 s-1. Microstructure of the weld consisted of columnar dendritic structure and revealed epitaxial mode of solidification. Weld efficiency of 90 pct in terms of strength (UTS) was observed at ambient temperature and up to an elevated temperature of 850 °C. Reduction in strength continued with further increase of test temperature (up to 1025 °C); however, a significant improvement in pct elongation is found up to 775 °C, which was sustained even at higher test temperatures. The tensile behaviors of base metal and weldments were similar at the elevated temperatures at the respective strain rates. Strain hardening exponent `n' of the base metal and weldment was 0.519. Activation energy `Q' of base metal and EB weldments were 420 to 535 kJ mol-1 determined through isothermal tensile tests and 625 to 662 kJ mol-1 through jump-temperature tensile tests. Strain rate sensitivity `m' was low ( 775 °C) is attributed to the presence of recrystallized grains. Up to 700 °C, the deformation is through slip, where strain hardening is predominant and effect of strain rate is minimal. Between 775 °C to 850 °C, strain hardening is counterbalanced by flow softening, where cavitation limits the deformation (predominantly at lower strain rate). Above 925 °C, flow softening is predominant resulting in a significant reduction in strength. Presence of precipitates/accumulated strain at high strain rate results in high strength, but when the precipitates were coarsened at lower strain rates or precipitates were dissolved at a higher temperature, the result was a reduction in strength. Further, the accumulated strain assisted in recrystallization, which also resulted in a reduction in strength.

  1. Dynamic analysis of I cross beam section dissimilar plate joined by TIG welding

    Science.gov (United States)

    Sani, M. S. M.; Nazri, N. A.; Rani, M. N. Abdul; Yunus, M. A.

    2018-04-01

    In this paper, finite element (FE) joint modelling technique for prediction of dynamic properties of sheet metal jointed by tungsten inert gas (TTG) will be presented. I cross section dissimilar flat plate with different series of aluminium alloy; AA7075 and AA6061 joined by TTG are used. In order to find the most optimum set of TTG welding dissimilar plate, the finite element model with three types of joint modelling were engaged in this study; bar element (CBAR), beam element and spot weld element connector (CWELD). Experimental modal analysis (EMA) was carried out by impact hammer excitation on the dissimilar plates that welding by TTG method. Modal properties of FE model with joints were compared and validated with model testing. CWELD element was chosen to represent weld model for TTG joints due to its accurate prediction of mode shapes and contains an updating parameter for weld modelling compare to other weld modelling. Model updating was performed to improve correlation between EMA and FEA and before proceeds to updating, sensitivity analysis was done to select the most sensitive updating parameter. After perform model updating, average percentage of error of the natural frequencies for CWELD model is improved significantly.

  2. Welding feasibility study of U-shape lips at ITER Port-Plug with new laser beam sources

    Energy Technology Data Exchange (ETDEWEB)

    Behr, W., E-mail: w.behr@fz-juelich.de; Faidel, D.; Fischer, K.; Pap, M.; Offermanns, G.

    2013-10-15

    A “Cut and weld feasibility study of U shape lips” shown on June 2007 was initial of the following investigations. A new solution for Port Plug sealing at ITER was demanded and the experience in laser beam welding of the ZAT (Central Institute of Technology) in Jülich (Research Centre Jülich) offered an alternative solution. Up to now mechanically fixed sealing or sealing by TIG welding is used with typical benefits and problems, as heat input, shrinkage or limited room for tools. New disc-laser application for tight welding (leakage rate < 10{sup −9} mbar l/s) of the sealing lips is presented in the following. Both in the metallographic investigation and by means of leakage rate investigation the suitability of the selected procedure as seal alternative at the ITER Port Plug could be pointed out. The distance between two connections can be reduced to approx. 5 mm. The presented milling process for weld seam removal offers an option additionally to laser beam cutting. Final tests with a new disc-laser source offered additional benefits concerning seam quality, process stability and seam geometry. The distance between two connections will be reduced to less than 3 mm in next investigations. Construction unit near investigations and a demo part in original size underline finally the industrial suitability of the laser-welding-process for Port-Plug sealing at ITER.

  3. Electron beams in radiation therapy

    International Nuclear Information System (INIS)

    Bruinvis, I.A.D.

    1987-01-01

    Clinical electron beams in interaction with beam flattening and collimating devices are studied, in order to obtain the means for adequate electron therapy. A treatment planning method for arbitrary field shapes is developed that takes the properties of the collimated electron beams into account. An electron multiple-scattering model is extended to incorporate a model for the loss of electrons with depth, in order to improve electron beam dose planning. A study of ionisation measurements in two different phantom materials yields correction factors for electron beam dosimetry. (Auth.)

  4. Study of welding characteristics of inconel 600 alloy using a continuous wave Nd:YAG laser beam

    International Nuclear Information System (INIS)

    Song, Seong Wook; Yoo, Young Tae; Shin, Ho Jun

    2004-01-01

    Laser beam welding is increasingly being used in welding of structural steels. The laser welding process is one of the most advanced manufacturing technologies owing to its high speed and deep penetration. The thermal cycles associated with laser welding are generally much faster than those involved in conventional arc welding processes, leading to a rather small weld zone. Experiments are performed for Inconel 600 plates changing several process parameter such as laser power, welding speed, shielding gas flow rate, presence of surface pollution, with fixed or variable gap and misalignment between plate and plate, etc. The follow conclusions can be drawn that laser power and welding speed have a pronounced effect on size and shape of the fusion zone. Increase in welding speed resulted in an increase in weld depth/ aspect ratio and hence a decrease in the fusion zone size. The penetration depth increased with the increase in laser power. Welding characteristics of austienite Inconel 600 using a continuous wave Nd:YAG laser are experimentally investigated. This paper describes the weld ability of inconel 600 for machine structural use by Nd:YAG laser

  5. Latest MIG, TIG arc-YAG laser hybrid welding systems for various welding products

    Science.gov (United States)

    Ishide, Takashi; Tsubota, Shuho; Watanabe, Masao

    2003-03-01

    Laser welding is capable of high-efficiency low-strain welding, and so its applications are started to various products. We have also put the high-power YAG laser of up to 10 kW to practical welding use for various products. On the other hand the weakest point of this laser welding is considered to be strict in the welding gap aiming allowance. In order to solve this problem, we have developed hybrid welding of TIG, MIG arc and YAG laser, taking the most advantages of both the laser and arc welding. Since the electrode is coaxial to the optical axis of the YAG laser in this process, it can be applied to welding of various objects. In the coaxial MIG, TIG-YAG welding, in order to make irradiation positions of the YAG laser beams having been guided in a wire or an electrode focused to the same position, the beam transmitted in fibers is separated to form a space between the separated beams, in which the laser is guided. With this method the beam-irradiating area can be brought near or to the arc-generating point. This enables welding of all directions even for the member of a three-dimensional shape. This time we carried out welding for various materials and have made their welding of up to 1 mm or more in welding groove gap possible. We have realized high-speed 1-pass butt welding of 4m/min in welding speed with the laser power of 3 kW for an aluminum alloy plate of approximately 4 mm thick. For a mild steel plate also we have realized butt welding of 1m/min with 5 kW for 6 mm thick. Further, in welding of stainless steel we have shown its welding possibility, by stabilizing the arc with the YAG laser in the welding atmosphere of pure argon, and shown that this welding is effective in high-efficiency welding of various materials. Here we will report the fundamental welding performances and applications to various objects for the coaxial MIG, TIG-YAG welding we have developed.

  6. Weld defects analysis of 60 mm thick SS316L mock-ups of TIG and EB welds by ultrasonic inspection for fusion reactor vacuum vessel applications

    International Nuclear Information System (INIS)

    Buddu, Ramesh Kumar; Shaikh, Shamsuddin; Raole, P.M.; Sarkar, B.

    2015-01-01

    The present paper reports the weld quality inspections carried with 60 mm thick AISI welds of SS316L. The high thickness steel plates requirement is due to the specific applications in case of advanced fusion reactor structural components like vacuum vessel and others. Different kind welds are proposed for the thick plate joints like Tungsten Inert Gas (TIG) welding, Electron beam welding as per stringent conditions (like very low distortions and residual stresses) for the vacuum vessel fabrication. Mock-ups of laboratory scale welds are fabricated by TIG (multi-pass) and EB (double pass) process techniques and different weld quality inspections are carried by different NDT tests. The welds are examined with Liquid penetrant examination to check sub surface cracks/discontinuities towards the defects observation

  7. Temperature profiles induced by a stationary CW laser beam in a multi-layer structure: application to solar cell interconnect welding

    Energy Technology Data Exchange (ETDEWEB)

    Oh, J.E.; Ianno, N.J.; Ahmed, A.U.

    1985-01-01

    A three-dimensional heat transfer model for heating of a multilayer structure by a stationary Gaussian CW CO/sub 2/ laser beam is developed and applied to solar cell interconnect welding. This model takes into account the temperature dependence of the thermal conductivity and diffusivity as well as free carrier absorption of the incident beam in the silicon where appropriate. Finally, the theoretical temperature profiles are used to determine the weld spot size and these values are compared to results obtained from a simple welding experiment, where excellent agreement is obtained. 18 references, 13 figures.

  8. Prediction of residual stresses in electron beam welded Ti-6Al-4V plates

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Lianyong; Ge, Keke; Jing, Hongyang; Zhao, Lei; Lv, Xiaoqing [Tianjin Univ. (China); Han, Yongdian [Tianjin Univ. (China). Key Lab. of Advanced Joining Technology

    2017-05-01

    A thermo-metallurgical procedure based on the SYSWELD code was developed to predict welding temperature field, microstructure and residual stress in butt-welded Ti-6Al-4V plate taking into account phase transformation. The formation of martensite was confirmed by the CCT diagram and microstructure in the weld joint, which significantly affects the magnitude of residual stress. The hole drilling procedure was utilized to measure the values of residual stress at the top surface of the specimen, which are in well agreement with the numerical results. Both simulated and test results show that the magnitude and distribution of residual stress on the surface of the plate present a large gradient feature from the weld joint to the base metal. Moreover, the distribution law of residual stresses in the plate thickness was further analyzed for better understanding of its generation and evolution.

  9. Mechanical Properties of Laser Beam Welded Ultra-high Strength Chromium Steel with Martensitic Microstructure

    Science.gov (United States)

    Dahmen, Martin; Janzen, Vitalij; Lindner, Stefan; Wagener, Rainer

    A new class of steels is going to be introduced into sheet manufacturing. Stainless ferritic and martensitic steels open up opportunities for sheet metal fabrication including hot stamping. A strength of up to 2 GPa at a fracture strain of 15% can be attained. Welding of these materials became apparently a challenge. Energy-reduced welding methods with in-situ heat treatment are required in order to ensure the delicate and complex heat control. Laser beam welding is the joining technique of choice to supply minimum heat input to the fusion process and to apply an efficient heat control. For two application cases, production of tailored blanks in as-rolled condition and welding in assembly in hot stamped conditions, welding processes have been developed. The welding suitability is shown in metallurgical investigations of the welds. Crash tests based on the KSII concept as well as fatigue tests prove the applicability of the joining method. For the case of assembly also joining with deep drawing and manganese boron steel was taken into consideration. The strength of the joint is determined by the weaker partner but can benefit from its ductility.

  10. Study on laser welding of austenitic stainless steel by varying incident angle of pulsed laser beam

    Science.gov (United States)

    Kumar, Nikhil; Mukherjee, Manidipto; Bandyopadhyay, Asish

    2017-09-01

    In the present work, AISI 304 stainless steel sheets are laser welded in butt joint configuration using a robotic control 600 W pulsed Nd:YAG laser system. The objective of the work is of twofold. Firstly, the study aims to find out the effect of incident angle on the weld pool geometry, microstructure and tensile property of the welded joints. Secondly, a set of experiments are conducted, according to response surface design, to investigate the effects of process parameters, namely, incident angle of laser beam, laser power and welding speed, on ultimate tensile strength by developing a second order polynomial equation. Study with three different incident angle of laser beam 89.7 deg, 85.5 deg and 83 deg has been presented in this work. It is observed that the weld pool geometry has been significantly altered with the deviation in incident angle. The weld pool shape at the top surface has been altered from semispherical or nearly spherical shape to tear drop shape with decrease in incident angle. Simultaneously, planer, fine columnar dendritic and coarse columnar dendritic structures have been observed at 89.7 deg, 85.5 deg and 83 deg incident angle respectively. Weld metals with 85.5 deg incident angle has higher fraction of carbide and δ-ferrite precipitation in the austenitic matrix compared to other weld conditions. Hence, weld metal of 85.5 deg incident angle achieved higher micro-hardness of ∼280 HV and tensile strength of 579.26 MPa followed by 89.7 deg and 83 deg incident angle welds. Furthermore, the predicted maximum value of ultimate tensile strength of 580.50 MPa has been achieved for 85.95 deg incident angle using the developed equation where other two optimum parameter settings have been obtained as laser power of 455.52 W and welding speed of 4.95 mm/s. This observation has been satisfactorily validated by three confirmatory tests.

  11. Development and prevention of porosity in the fusion welding of thick titanium alloys

    International Nuclear Information System (INIS)

    Kulikov, F.R.; Redchits, V.V.; Khokhlov, V.V.

    1975-01-01

    This article describes the results of experimental investigations of the mechanics of formation of porosity in electron-beam welding, single-pass and multipass welding in argon with a consumable and non-consumable electrode, and also in the electroslag welding of alloys VT14 and VT22 from 10 to 60mm thick. It was established that nuclei of gas phase form at the moment of fusion of the edges of the parts being welded, the end surfaces of which have machining defects. The weld metal porosity can be prevented by: careful machining of the faying surfaces of the parts to be welded immediately before welding; the use of welding conditions ensuring long pool existence time, sufficient for hydrogen bubbles to float up and escape; intensification of the weld pool degassing process by using fluxes based on metal fluorides and chlorides, applied to the ends of the root part of the faying edges, and on the filler wire; reduction of the gas pressure in the beam channel by making gas-escape paths

  12. Welding of a powder metallurgy uranium alloy

    International Nuclear Information System (INIS)

    Holbert, R.K.; Doughty, M.W.; Alexander-Morrison, G.M.

    1989-01-01

    The interest at the Oak Ridge Y-12 Plant in powder metallurgy (P/M) uranium parts is due to the potential cost savings in the fabrication of the material, to achieving a more homogeneous product, and to the reduction of uranium scrap. The joining of P/M uranium-6 wt-% niobium (U-6Nb) alloys by the electron beam (EB) welding process results in weld porosity. Varying the EB welding parameters did not eliminate the porosity. Reducing the oxygen and nitrogen content in this P/M uranium material did minimize the weld porosity, but this step made the techniques of producing the material more difficult. Therefore, joining wrought and P/M U-6Nb rods with the inertia welding technique is considered. Since no gases will be evolved with the solid-state welding process and the weld area will be compacted, porosity should not be a problem in the inertia welding of uranium alloys. The welds that are evaluated are wrought-to-wrought, wrought-to-P/M, and P/M-to-P/M U-6Nb samples

  13. Liquid phase and supercooled liquid phase welding of bulk metallic glasses

    International Nuclear Information System (INIS)

    Kawamura, Y.

    2004-01-01

    Recent progress on welding in bulk metallic glasses (BMGs) has been reviewed. BMGs have been successfully welded to BMGs or crystalline metals by liquid phase welding using explosion, pulse-current and electron-beam methods, and by supercooled liquid phase welding using friction method. Successful welding of the liquid phase methods was due to the high glass-forming ability of the BMGs and the high concentration of welding energy in these methods. In contrast, the supercooled liquid phase welding was successful due to the thermally stable supercooled liquid state of the BMGs and the superplasticity and viscous flow of the supercooled liquid. The successful welding of BMGs to BMGs and crystalline materials is promising for the future development of BMGs as engineering materials

  14. Studies on A-TIG welding of Low Activation Ferritic/Martensitic (LAFM) steel

    International Nuclear Information System (INIS)

    Vasantharaja, P.; Vasudevan, M.

    2012-01-01

    Low Activation Ferritic–Martensitic steels (LAFM) are chosen as the candidate material for structural components in fusion reactors. The structural components are generally fabricated by welding processes. Activated Tungsten Inert Gas (A-TIG) welding is an emerging process for welding of thicker components. In the present work, attempt was made to develop A-TIG welding technology for LAFM steel plates of 10 mm thick. Activated flux was developed for LAFM steel by carrying out various bead-on-plate TIG welds without flux and with flux. The optimum flux was identified as one which gave maximum depth of penetration at minimum heat input values. With the optimized flux composition, LAFM steel plate of 10 mm thickness was welded in square butt weld joint configuration using double side welding technique. Optical and Scanning Electron Microscopy was used for characterizing the microstructures. Microhardness measurements were made across the weld cross section for as welded and post weld heat treated samples. Tensile and impact toughness properties were determined. The mechanical properties values obtained in A-TIG weld joint were comparable to that obtained in weld joints of LAFM steel made by Electron beam welding process.

  15. Studies on A-TIG welding of Low Activation Ferritic/Martensitic (LAFM) steel

    Science.gov (United States)

    Vasantharaja, P.; Vasudevan, M.

    2012-02-01

    Low Activation Ferritic-Martensitic steels (LAFM) are chosen as the candidate material for structural components in fusion reactors. The structural components are generally fabricated by welding processes. Activated Tungsten Inert Gas (A-TIG) welding is an emerging process for welding of thicker components. In the present work, attempt was made to develop A-TIG welding technology for LAFM steel plates of 10 mm thick. Activated flux was developed for LAFM steel by carrying out various bead-on-plate TIG welds without flux and with flux. The optimum flux was identified as one which gave maximum depth of penetration at minimum heat input values. With the optimized flux composition, LAFM steel plate of 10 mm thickness was welded in square butt weld joint configuration using double side welding technique. Optical and Scanning Electron Microscopy was used for characterizing the microstructures. Microhardness measurements were made across the weld cross section for as welded and post weld heat treated samples. Tensile and impact toughness properties were determined. The mechanical properties values obtained in A-TIG weld joint were comparable to that obtained in weld joints of LAFM steel made by Electron beam welding process.

  16. Device for the radiation centering at electron emitters

    International Nuclear Information System (INIS)

    Panzer, S.; Ardenne, T. von; Jessat, K.; Bahr, G.

    1985-01-01

    The invention has been directed at a device for a simplified and reliable centering of electron beams at electron emitters in particular for welding and thermal surface modifications. The electron beam has been focussed relatively to an electron-optical lens. A movable masked electron detector has been arranged at the electron beam deflection plane. The electron detector is connected with an electronic data evaluation equipment

  17. METHOD AND SYSTEM FOR LASER WELDING

    DEFF Research Database (Denmark)

    2008-01-01

    The invention relates to laser welding of at least two adjacent, abutting or overlapping work pieces in a welding direction using multiple laser beams guided to a welding region, wherein at least two of the multiple laser beams are coupled into the welding region so as to form a melt and at least...

  18. Microstructure and mechanical performance of autogenously fibre laser beam welded Ti-6242 butt joints

    Energy Technology Data Exchange (ETDEWEB)

    Kashaev, Nikolai, E-mail: nikolai.kashaev@hzg.de; Pugachev, Dmitry; Ventzke, Volker; Fomin, Fedor; Burkhardt, Irmela; Enz, Josephin; Riekehr, Stefan

    2017-05-10

    This work deals with the effects of laser beam power, focus position and advance speed on the geometry, microstructure and mechanical properties such as the tensile strength and microhardness of autogenously fibre laser beam welded Ti-6Al-2Sn-4Zr-2Mo (denoted as Ti-6242) butt joints used for high temperature applications. The Ti-6242 sheet employed here is characterized by a globular (α+β) microstructure. Laser beam welded butt joints consisted of a martensitic fusion zone, inhomogeneous heat affected zones and equiaxed base materials. The microhardness increased from 330 HV 0.3 in base material to 430 HV 0.3 in fusion zone due to the martensitic transformation. Butt joints showed the base material level of strength in tensile test. The local increase in microhardness provided a shielding effect that protected the Ti-6242 butt joint against mechanical damage during the static tensile load test. The predicted critical total underfill depth that does not reduce the tensile strength of the weld was determined to be 25% of the specimen thickness. - Highlights: • Autogenous fibre LBW of Ti-6242 was successfully achieved. • Butt joints showed low levels of porosity and an appropriate seam geometry. • Base material level of strength achieved for tensile strength. • Predicted critical underfill depth is 25% of the specimen thickness.

  19. Relativistic electron beams above thunderclouds

    DEFF Research Database (Denmark)

    Füellekrug, M.; Roussel-Dupre, R.; Symbalisty, E. M. D.

    2011-01-01

    Non-luminous relativistic electron beams above thunderclouds have been detected by the radio signals of low frequency similar to 40-400 kHz which they radiate. The electron beams occur similar to 2-9 ms after positive cloud-to-ground lightning discharges at heights between similar to 22-72 km above...... thunderclouds. Intense positive lightning discharges can also cause sprites which occur either above or prior to the electron beam. One electron beam was detected without any luminous sprite which suggests that electron beams may also occur independently of sprites. Numerical simulations show that beams...... of electrons partially discharge the lightning electric field above thunderclouds and thereby gain a mean energy of similar to 7MeV to transport a total charge of similar to-10mC upwards. The impulsive current similar to 3 x 10(-3) Am-2 associated with relativistic electron beams above thunderclouds...

  20. Some studies on weld bead geometries for laser spot welding process using finite element analysis

    International Nuclear Information System (INIS)

    Siva Shanmugam, N.; Buvanashekaran, G.; Sankaranarayanasamy, K.

    2012-01-01

    Highlights: → In this study, a 2 kW Nd:YAG laser welding system is used to conduct laser spot welding trials. → The size and shape of the laser spot weld is predicted using finite element simulation. → The heat input is assumed to be a three-dimensional conical Gaussian heat source. → The result highlights the effect of beam incident angle on laser spot welds. → The achieved results of numerical simulation are almost identical with a real weldment. -- Abstract: Nd:YAG laser beam welding is a high power density welding process which has the capability to focus the beam to a very small spot diameter of about 0.4 mm. It has favorable characteristics namely, low heat input, narrow heat affected zone and lower distortions, as compared to conventional welding processes. In this study, finite element method (FEM) is applied for predicting the weld bead geometry i.e. bead length (BL), bead width (BW) and depth of penetration (DP) in laser spot welding of AISI 304 stainless steel sheet of thickness 2.5 mm. The input parameters of laser spot welding such as beam power, incident angle of the beam and beam exposure time are varied for conducting experimental trials and numerical simulations. Temperature-dependent thermal properties of AISI 304 stainless steel, the effect of latent heat of fusion, and the convective and radiative aspects of boundary conditions are considered while developing the finite element model. The heat input to the developed model is assumed to be a three-dimensional conical Gaussian heat source. Finite-element simulations of laser spot welding were carried out by using Ansys Parametric Design Language (APDL) available in finite-element code, ANSYS. The results of the numerical analysis provide the shape of the weld beads for different ranges of laser input parameters that are subsequently compared with the results obtained through experimentation and it is found that they are in good agreement.

  1. Simulation of residual stresses and deformations in electron beam-welded copper canisters

    International Nuclear Information System (INIS)

    Aronen, A.; Leikko, J.; Taskinen, P.; Karvinen, R.

    2013-07-01

    This report presents the modelling of residual stresses and deformations of an EB-welded copper canister. Two different mock-up lengths are modelled with the Abaqus FEA program, and the similarity of those results is studied. Canister mock-ups of 450 mm and 915 mm were chosen for the test cases. The heat treatment results presented in Taskinen 2009 are used as input data for the mechanical model. For the mechanical analysis some simplifications were made to the model. The contact surface between pipe and lid is assumed to be tied and support from the bottom surface is provided with four support points. Results show that, due to the similarity of 450 mm and 915 mm canisters, the short mock-up can be used to predict the stresses and deformation on a full-length canister (5000 mm). The similarity of the temperature fields has already been shown in the previous reports (Taskinen 2009). The main result in the deformation is the shape of the canister in the residual state. The top of the canister tries to shrink, resulting in the lid buckling inwards. The deformation of the lid of the canister is about 2.2 mm at the centre of the lid. The main results in the stresses are the stress level on the surface, the deviation of stresses over the circle and the stresses near the welding. On the surface there are areas where the circumferential stress is at tension. However, radial and axial stresses are usually in compression on the surface. The deviation of the stress level over the circle is quite small, except in the overlap area and near it. The residual stresses from 0 deg C to 45 deg C change remarkably, but over the rest of the area the stresses are more constant. Near the welding the stresses on the top surface are in compression, but in the centre of the welding the stresses are in tension. In the modelling, the possibility of calculating a mechanical model with the contact surface between pipe and lid, so that they could be separated during the welding, was also tested

  2. Simulation of residual stresses and deformations in electron beam-welded copper canisters

    Energy Technology Data Exchange (ETDEWEB)

    Aronen, A.; Leikko, J.; Taskinen, P.; Karvinen, R. [Tampere Univ. of Technology (Finland)

    2013-07-15

    This report presents the modelling of residual stresses and deformations of an EB-welded copper canister. Two different mock-up lengths are modelled with the Abaqus FEA program, and the similarity of those results is studied. Canister mock-ups of 450 mm and 915 mm were chosen for the test cases. The heat treatment results presented in Taskinen 2009 are used as input data for the mechanical model. For the mechanical analysis some simplifications were made to the model. The contact surface between pipe and lid is assumed to be tied and support from the bottom surface is provided with four support points. Results show that, due to the similarity of 450 mm and 915 mm canisters, the short mock-up can be used to predict the stresses and deformation on a full-length canister (5000 mm). The similarity of the temperature fields has already been shown in the previous reports (Taskinen 2009). The main result in the deformation is the shape of the canister in the residual state. The top of the canister tries to shrink, resulting in the lid buckling inwards. The deformation of the lid of the canister is about 2.2 mm at the centre of the lid. The main results in the stresses are the stress level on the surface, the deviation of stresses over the circle and the stresses near the welding. On the surface there are areas where the circumferential stress is at tension. However, radial and axial stresses are usually in compression on the surface. The deviation of the stress level over the circle is quite small, except in the overlap area and near it. The residual stresses from 0 deg C to 45 deg C change remarkably, but over the rest of the area the stresses are more constant. Near the welding the stresses on the top surface are in compression, but in the centre of the welding the stresses are in tension. In the modelling, the possibility of calculating a mechanical model with the contact surface between pipe and lid, so that they could be separated during the welding, was also tested

  3. Residual stress characterization of welds using x-ray diffraction techniques

    International Nuclear Information System (INIS)

    Pineault, J.A.; Brauss, M.E.

    1996-01-01

    Neglect of residual stresses created during processes lead to stress corrosion cracking, distortion, fatigue cracking, premature failures in components, and instances of over design. Automated residual stress mapping and truly portable equipment have now made the characterization of residual stresses using x-ray diffraction (XRI) practical. The nondestructive nature of the x-ray diffraction technique has made the tile residual stress characterization of welds a useful tool for process optimization and failure analysis, particularly since components can be measured before and after welding and post welding processes. This paper illustrates the importance of residual stress characterization in welds and presents examples where x-ray diffraction techniques were applied in the characterization of various kinds of welds. arc welds, TIG welds, resistance welds, laser welds and electron beam welds. Numerous techniques are available to help manage potentially harmfull residual stresses created during the welding process thus, the effects of a few example post weld processes such as grinding, heat treating and shot peening are also addressed

  4. Effect of laser beam position on mechanical properties of F82H/SUS316L butt-joint welded by fiber laser

    Energy Technology Data Exchange (ETDEWEB)

    Serizawa, Hisashi, E-mail: serizawa@jwri.osaka-u.ac.jp [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Mori, Daiki; Ogiwara, Hiroyuki; Mori, Hiroaki [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2014-10-15

    Highlights: • The micro hardness of weld metal in F82H/SUS316L joint partially decreases after PWHT by shifting beam position to SUS316L. • Charpy impact energy of F82H/SUS316L joint obviously increases after PWHT due to the release of residual stress. • The tensile strength of weld metal in F82H/SUS316L joint is higher than that of SUS316L. • The fiber laser welding seems to be one of the most candidate methods to join between F82H and SUS316L pipes practically. - Abstract: A dissimilar butt-joint between reduced activation ferritic/martensitic steel F82H and SUS316L austenitic stainless steel was made by 4 kW fiber laser and the influence of laser beam position on its mechanical properties before and after post-weld heat treatment (PWHT) was examined at room temperature. From the nano-indentation measurements and the microstructural observations, it is found that the micro hardness of weld metal partially decreases after PWHT by shifting beam position to SUS316L because its phase seems to move from only the martensitic phase to the mixture of austenitic and martensitic phases. In addition, Charpy impact test suggests that the impact energy slightly increases by shifting beam position before PWHT and obviously increases after PWHT due to the release of residual stress. Moreover, the tensile test indicates that the tensile strength of weld metal is higher than that of SUS316L and the fracture occurs at the base metal of SUS316L regardless of laser beam position.

  5. Characterization and Modeling of Microstructure Development in Nickel-base Superalloy Welds

    Energy Technology Data Exchange (ETDEWEB)

    Babu, S.S.; David, S.A.; Miller, M.K.; Vitek, J.M.

    1999-11-01

    Welding is important for economical reuse and reclamation of used and failed nickel-base superalloy blades, respectively [1]. Solidification and solid state decomposition of {gamma} (Face Centered Cubic, FCC) phase into {gamma}{prime} (L1{sub 2}-ordered) phase control the properties of these welds. In previous publications, the microstructure development in electron beam welds of PWA-1480 alloy [2] and laser beam welds of CMSX-4 alloy [3] were presented. These results showed that the weld cracking in these alloys were associated with low melting point eutectic at the dendrite boundaries [1,2]. The eutectic-{gamma}{prime} precipitation was reduced at rapid weld cooling rates and the partitioning between {gamma}-{gamma}{prime} phase was found to be far from equilibrium conditions [3,4]. This observation was related to diffusional growth of {gamma}{prime} precipitate into {gamma} phase. Subsequent to the above work, the precipitation characteristics of {gamma}{prime} phase from {gamma} phase were evaluated during continuous cooling conditions [5]. The results show that the number density of {gamma} precipitates increased with an increase in cooling rate. However, the details of this decomposition and also the fine-scale elemental partitioning characteristics between {gamma}-{gamma}{prime} were not investigated. In this paper, the precipitation characteristics of {gamma}{prime} from {gamma} during continuous cooling conditions were investigated with transmission electron microscopy, and atom probe field ion microscopy. In addition, thermodynamic and kinetic models were used to describe microstructure development in Ni-base superalloy welds.

  6. Process and installation for welding nuclear fuel assembly grids

    International Nuclear Information System (INIS)

    Vere, B.; Mathevon, P.

    1985-01-01

    The invention proposes a process to weld two sets of perpendicular plates of which the end parts are made integral with a belt piece; the grid is held in a support frame with access openings to the points to be welded on the two faces and on the grid sides; the frame is moved on a mobile table by means of an orientation system along the perpendicular direction of an electron beam welding equipment; each joint to be welded is presented, rotating the frame through 90 deg about an axis and repeating the operation, and rotating the frame about a perpendicular axis and repeating the operation until all the joints on each side of the grid have been welded [fr

  7. Electron beams and applications

    International Nuclear Information System (INIS)

    Haouat, G.; Couillaud, C.

    1998-01-01

    Studies of the physical properties of the ELSA-linac electron beam are presented. They include measurements of the characteristic beam parameter and analyzes of the beam transport using simulation codes. The aim of these studies is to determine the best conditions for production of intense and very short electron bunches and to optimize the transport of space-charge dominated beams. Precise knowledge of the transport dynamics allows to produce beams with the required characteristics for light production in Free-Electron Laser (FEL), and to give a good description of energy-transfer phenomena between electrons and photons in the wriggler. The particular features of ELSA authorize studies of high-intensity, high-brightness beam properties, especially the halo surrounding the dense core of the electron bunches, which is formed by the space charge effects. It is also shown that the ELSA facility is well suited for the fabrication of very short γ and X-rays sources for applied research in nuclear and plasma physics, or for time response studies of fast detectors. (author)

  8. Welding device for nuclear fuel rods

    International Nuclear Information System (INIS)

    Kurosawa, Satoru; Tsuboi, Hajime; Kidooka, Masayasu.

    1985-01-01

    Purpose: To enable high quality welding with no dropping of small tungsten particles to the weld portion. Constitution: An opening capable of inserting a cladding tube is disposed to the side wall of a welding chamber and a laser beam introducing window is disposed to another side wall in perpendicular to said side wall. Further, a laser beam generation device is disposed to the outside of the welding chamber for concentrating the laser beams by way of the laser beam introducing window to the weld portion between the cladding tube and an end plug. Upon welding the end plug, opening end of the cladding tube is inserted through the side wall opening into the chamber. Then, the inside of the chamber is evacuated and replaced with an inert gas through conduits to establish a super atmospheric pressure state. Then, the end plug is forced to the opening end of the cladding tube by means of an end plug enforcing mechanism and laser beams are concentrated to the joining portion between the end plug and cladding tube to conduct welding while rotating the cladding tube. (Kawakami, Y.)

  9. Laser beam welding of high strength aluminium-lithium alloys; Laserstrahlschweissen von hochfesten Aluminium-Lithium Legierungen

    Energy Technology Data Exchange (ETDEWEB)

    Enz, Josephin

    2012-07-01

    The present development in aircraft industry determined by the demand for a higher cost-effectiveness. Laser beam welding is one of the most promising joining technologies for the application in the aircraft industry through the considerable reduction of the production costs. Furthermore the weight of an aircraft structure can be reduced by the use of light and high strength aluminium alloys. This paper deals with the development of a process for the laser beam welding of a skin-stringer-joint where the Al-Li-alloy AA2196 is used as stringer material and the Al-Li-alloy AA2198 is used as skin and stringer material. By the use of design of experiments the optimal welding process parameters for different material combinations were determined which will be used for the welding of a 5-stringer panel. Therefore the weld seams of the joints were tested for irregularities and microstructural characteristics. In addition several mechanical tests were performed, which define the quality of the welded joint. Furthermore the influence of the oxide layer and the welding preparation on the welding performance was investigated. (orig.) [German] Die derzeitigen Entwicklungen im Flugzeugbau werden durch die allgemeine Forderung nach einer Steigerung der Wirtschaftlichkeit bestimmt. Das Laserstrahlschweissen ist dabei eines der vielversprechendsten Fuegeverfahren fuer die Anwendung im Flugzeugbau durch das die Herstellungskosten deutlich reduziert werden koennen. Zudem kann durch die Verwendung von leichten und hochfesten Aluminium-Legierungen das Gewicht einer Flugzeugstruktur zusaetzlich reduziert werden. Die vorliegende Arbeit befasst sich mit der Entwicklung eines Prozesses zum Laserstrahlschweissen einer Skin-Stringer-Verbindung aus den Aluminium-Lithium-Legierungen AA2196 (als Stringer-Werkstoff) und AA2198 (als Skin- und Stringer-Werkstoff). Unter Verwendung der statistischen Versuchsplanung wurden die optimalen Einstellungen der Schweissprozessparameter fuer die

  10. Electron-beam lithography

    International Nuclear Information System (INIS)

    Harriott, L.; Liddle, A.

    1997-01-01

    As part of a commemorative series of articles to mark the hundredth anniversary of the discovery of the electron, this article describes the use of electron beams to write features on silicon wafers. Recent advances in electron beam lithography, as it is known, could enable this technology to be used for the mass manufacture of silicon chips. The validation of space-charge optimization and evaluation of printing techniques is underway. (UK)

  11. Analyser of sweeping electron beam

    International Nuclear Information System (INIS)

    Strasser, A.

    1993-01-01

    The electron beam analyser has an array of conductors that can be positioned in the field of the sweeping beam, an electronic signal treatment system for the analysis of the signals generated in the conductors by the incident electrons and a display for the different characteristics of the electron beam

  12. Ion beam neutralization with ferroelectrically generated electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Herleb, U; Riege, H [European Organization for Nuclear Research, Geneva (Switzerland). LHC Division

    1997-12-31

    A technique for ion beam space-charge neutralization with pulsed electron beams is described. The intensity of multiply-charged ions produced with a laser ion source can be enhanced or decreased separately with electron beam trains of MHz repetition rate. These are generated with ferroelectric cathodes, which are pulsed in synchronization with the laser ion source. The pulsed electron beams guide the ion beam in a similar way to the alternating gradient focusing of charged particle beams in circular accelerators such as synchrotrons. This new neutralization technology overcomes the Langmuir-Child space-charge limit and may in future allow ion beam currents to be transported with intensities by orders of magnitude higher than those which can be accelerated today in a single vacuum tube. (author). 6 figs., 10 refs.

  13. Design of welding parameters for laser welding of thin-walled stainless steel tubes using numerical simulation

    Science.gov (United States)

    Nagy, M.; Behúlová, M.

    2017-11-01

    Nowadays, the laser technology is used in a wide spectrum of applications, especially in engineering, electronics, medicine, automotive, aeronautic or military industries. In the field of mechanical engineering, the laser technology reaches the biggest increase in the automotive industry, mainly due to the introduction of automation utilizing 5-axial movements. Modelling and numerical simulation of laser welding processes has been exploited with many advantages for the investigation of physical principles and complex phenomena connected with this joining technology. The paper is focused on the application of numerical simulation to the design of welding parameters for the circumferential laser welding of thin-walled exhaust pipes from theAISI 304 steel for automotive industry. Using the developed and experimentally verified simulation model for laser welding of tubes, the influence of welding parameters including the laser velocity from 30 mm.s-1 to 60 mm.s-1 and the laser power from 500 W to 1200 W on the temperature fields and dimensions of fusion zone was investigated using the program code ANSYS. Based on obtained results, the welding schedule for the laser beam welding of thin-walled tubes from the AISI 304 steel was suggested.

  14. Welding of Thin Steel Plates by Hybrid Welding Process Combined TIG Arc with YAG Laser

    Science.gov (United States)

    Kim, Taewon; Suga, Yasuo; Koike, Takashi

    TIG arc welding and laser welding are used widely in the world. However, these welding processes have some advantages and problems respectively. In order to improve problems and make use of advantages of the arc welding and the laser welding processes, hybrid welding process combined the TIG arc with the YAG laser was studied. Especially, the suitable welding conditions for thin steel plate welding were investigated to obtain sound weld with beautiful surface and back beads but without weld defects. As a result, it was confirmed that the shot position of the laser beam is very important to obtain sound welds in hybrid welding. Therefore, a new intelligent system to monitor the welding area using vision sensor is constructed. Furthermore, control system to shot the laser beam to a selected position in molten pool, which is formed by TIG arc, is constructed. As a result of welding experiments using these systems, it is confirmed that the hybrid welding process and the control system are effective on the stable welding of thin stainless steel plates.

  15. Electron beam lithography

    International Nuclear Information System (INIS)

    Harriott, L.; Liddle, A.

    1997-01-01

    As part of a commemorative series of articles to mark the hundredth anniversary of the discovery of the electron, this article describes the use of electron beams to write features on silicon wafers. Recent advances in electron beam lithography, as it is known, could enable this technology to be used for the mass manufacture of silicon chips. The validation of space-charge optimization and evaluation of printing techniques is underway. 5 figs

  16. Intense electron and ion beams

    CERN Document Server

    Molokovsky, Sergey Ivanovich

    2005-01-01

    Intense Ion and Electron Beams treats intense charged-particle beams used in vacuum tubes, particle beam technology and experimental installations such as free electron lasers and accelerators. It addresses, among other things, the physics and basic theory of intense charged-particle beams; computation and design of charged-particle guns and focusing systems; multiple-beam charged-particle systems; and experimental methods for investigating intense particle beams. The coverage is carefully balanced between the physics of intense charged-particle beams and the design of optical systems for their formation and focusing. It can be recommended to all scientists studying or applying vacuum electronics and charged-particle beam technology, including students, engineers and researchers.

  17. Absolute beam-charge measurement for single-bunch electron beams

    International Nuclear Information System (INIS)

    Suwada, Tsuyoshi; Ohsawa, Satoshi; Furukawa, Kazuro; Akasaka, Nobumasa

    2000-01-01

    The absolute beam charge of a single-bunch electron beam with a pulse width of 10 ps and that of a short-pulsed electron beam with a pulse width of 1 ns were measured with a Faraday cup in a beam test for the KEK B-Factory (KEKB) injector linac. It is strongly desired to obtain a precise beam-injection rate to the KEKB rings, and to estimate the amount of beam loss. A wall-current monitor was also recalibrated within an error of ±2%. This report describes the new results for an absolute beam-charge measurement for single-bunch and short-pulsed electron beams, and recalibration of the wall-current monitors in detail. (author)

  18. Vacuum Analysis of Scanning Horn of Electron Beam Machine

    International Nuclear Information System (INIS)

    Suprapto; Sukidi; Sukaryono; Setyo Atmojo; Djasiman

    2003-01-01

    Vacuum analysis of scanning horn of electron beam machine (EBM) has been carried out. In EBM, electron beam produced by the electron gun is accelerated by the accelerating tube toward the target via scanning horn and window. To avoid the disturbance of electron beam trajectory in side the EBM, it is necessary to evacuate the EBM. In designing and constructing the scanning horn, vacuum analysis must be carried out to find the ultimate vacuum grade based on the analysis as well as on the test resulted by the vacuum pump. The ultimate vacuum grade is important and affecting the electron trajectory from electron gun to the target. The yield of the vacuum analysis show that the load gas to be evacuated were the outgassing, permeation and leakages where each value were 5.96487x10 -6 Torr liter/sec, 6.32083x10 -7 Torr liter/sec, and 1.3116234x10 -4 Torr liter/sec respectively, so that the total gas load was 1.377587x10 -4 Torr liter/sec. The total conductivity according to test result was 15.769 liter/sec, while the effective pumping rate and maximum vacuum obtained by RD 150 pump were 14.269 Torr liter/sec and 9.65x10 -6 Torr respectively, The vacuum steady state indicated by the test result was 3.5x10 -5 Torr. The pressure of 3.5x10 -5 Torr showed by the test is close to the capability of vacuum pump that is 2x10 -5 Torr. The vacuum test indicated a good result and that there was no leakage along the welding joint. In the latter of installation it considered to be has a pressure of 5x10 -6 Torr, because the aluminum gasket will be used to seal the window flanges and will be evacuated by turbomolecular pump with pumping rate of 500 liter/sec and ultimate vacuum of -10 Torr. (author)

  19. The microstructure and mechanical properties of a welded molybdenum alloy

    International Nuclear Information System (INIS)

    Wadsworth, J.; Morse, G.R.; Chewey, P.M.

    1983-01-01

    Wrought Ti-Zr-Mo (TZM) alloy has been welded using electron beam, laser and tungsten-inert gas welding techniques. The microstructure, tensile properties and fracture surfaces of these welded samples have been examined. Although the welds have been found to be defect free, a disparity in grain size leading to large strength differences exists between the weld and parent metal. Tensile tests have revealed that fusion zone strengths are typical of those expected for the grain size in the weld metal. However, brittle behavior is also always observed, with fracture initiating at grain boundaries and propagating by intergranular and cleavage modes. Auger electron spectroscopy analysis has eliminated oxygen or other interstitial elements as sources of grain boundary embrittlement. It is proposed that brittle behavior is a result of local high strain rates in the weld zone. These local high strain rates arise from the strength difference between the wrought parent metal and the weld metal as a result of the strong grain size dependence of TZM. It is shown that, either by reducing the strain rate of testing or by removing the grain size difference between the parent and weld metals by heat treatment, significant ductility can in fact be achieved in tensile-tested butt-welded TZM. Thus, it is proposed that TZM welds are not inherently brittle as had commonly been believed. (Auth.)

  20. Compact electron beam focusing column

    Science.gov (United States)

    Persaud, Arun; Leung, Ka-Ngo; Reijonen, Jani

    2001-12-01

    A novel design for an electron beam focusing column has been developed at LBNL. The design is based on a low-energy spread multicusp plasma source which is used as a cathode for electron beam production. The focusing column is 10 mm in length. The electron beam is focused by means of electrostatic fields. The column is designed for a maximum voltage of 50 kV. Simulations of the electron trajectories have been performed by using the 2D simulation code IGUN and EGUN. The electron temperature has also been incorporated into the simulations. The electron beam simulations, column design and fabrication will be discussed in this presentation.

  1. Real-time monitoring of the laser hot-wire welding process

    Science.gov (United States)

    Liu, Wei; Liu, Shuang; Ma, Junjie; Kovacevic, Radovan

    2014-04-01

    The laser hot-wire welding process was investigated in this work. The dynamics of the molten pool during welding was visualized by using a high-speed charge-coupled device (CCD) camera assisted by a green laser as an illumination source. It was found that the molten pool is formed by the irradiation of the laser beam on the filler wire. The effect of the hot-wire voltage on the stability of the welding process was monitored by using a spectrometer that captured the emission spectrum of the laser-induced plasma plume. The spectroscopic study showed that when the hot-wire voltage is above 9 V a great deal of spatters occur, resulting in the instability of the plasma plume and the welding process. The effect of spatters on the plasma plume was shown by the identified spectral lines of the element Mn I. The correlation between the Fe I electron temperature and the weld-bead shape was studied. It was noted that the electron temperature of the plasma plume can be used to real-time monitor the variation of the weld-bead features and the formation of the weld defects.

  2. Solid state impact welding of BMG and copper by vaporizing foil actuator welding

    Energy Technology Data Exchange (ETDEWEB)

    Vivek, Anupam, E-mail: vivek.4@osu.edu [Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH 43210 (United States); Presley, Michael [Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH 43210 (United States); Flores, Katharine M. [Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH 43210 (United States); Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University, One Brookings Drive, St. Louis, MO 63130 (United States); Hutchinson, Nicholas H.; Daehn, Glenn S. [Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH 43210 (United States)

    2015-05-14

    The objective of this study was to create impact welds between a Zr-based Bulk Metallic Glass (BMG) and copper at a laboratory scale and subsequently investigate the relationship between interfacial structure and mechanical properties. Vaporizing Foil Actuator (VFA) has recently been demonstrated as a versatile tool for metalworking applications: impact welding of dissimilar materials being one of them. Its implementation for welding is termed as VFA Welding or VFAW. With 8 kJ input energy into an aluminum foil actuator, a 0.5 mm thick Cu110 alloy sheet was launched toward a BMG target resulting in an impact at a velocity of nearly 600 m/s. For this experiment, the welded interface was straight with a few BMG fragments embedded in the copper sheet in some regions. Hardness tests across the interface showed increase in strength on the copper side. Instrumented peel test resulted in failure in the parent copper sheet. A slower impact velocity during a separate experiment resulted in a weld, which had wavy regions along the interface and in peel failure again happened in the parent copper sheet. Some through-thickness cracks were observed in the BMG plate and there was some spall damage in the copper flyers. TEM electron diffraction on a sample, cut out from the wavy weld interface region using a focused ion beam, showed that devitrification of the BMG was completely avoided in this welding process.

  3. Laser welding engineering

    International Nuclear Information System (INIS)

    Bhieh, N. M.; El Eesawi, M. E.; Hashkel, A. E.

    2007-01-01

    Laser welding was in its early life used mainly for unusual applications where no other welding process would be suitable that was twenty five years ago. Today, laser welding is a fully developed part of the metal working industry, routinely producing welds for common items such as cigarette lighters, which springs, motor/transformer lamination, hermetic seals, battery and pacemaker cans and hybrid circuit packages. Yet very few manufacturing engineering have seriously considers employing lasers in their own operations. Why? There are many reasons, but a main one must be not acquainted with the operation and capabilities of a laser system. Other reasons, such as a relatively high initial cost and a concern about using lasers in the manufacturing environment, also are frequently cited, and the complexity of the component and flexibility of the light delivery system. Laser welding could be used in place of many different standard processes, such as resistance (spot or seam), submerged arc, RF induction, high-frequency resistance, ultrasonic and electronic and electron-beam. while each of these techniques has established an independent function in the manufacturing world, the flexible laser welding approach will operate efficiently and economically in many different applications. Its flexibility will even permit the welding system to be used for other machining function, such as drilling, scribing, sealing and serializing. In this article, we will look at how laser welding works and what benefits it can offer to manufacturing engineers. Some industry observers state that there are already 2,000 laser machine tools being used for cutting, welding and drilling and that the number could reach 30,000 over the next 15 years as manufacturing engineers become more aware of the capabilities of lasers [1). While most laser applications are dedicated to one product or process that involves high-volume, long-run manufacturing, the flexibility of a laser to supply energy to hard

  4. Applications of electron lenses: scraping of high-power beams, beam-beam compensation, and nonlinear optics

    Energy Technology Data Exchange (ETDEWEB)

    Stancari, Giulio

    2014-09-11

    Electron lenses are pulsed, magnetically confined electron beams whose current-density profile is shaped to obtain the desired effect on the circulating beam. Electron lenses were used in the Fermilab Tevatron collider for bunch-by-bunch compensation of long-range beam-beam tune shifts, for removal of uncaptured particles in the abort gap, for preliminary experiments on head-on beam-beam compensation, and for the demonstration of halo scraping with hollow electron beams. Electron lenses for beam-beam compensation are being commissioned in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL). Hollow electron beam collimation and halo control were studied as an option to complement the collimation system for the upgrades of the Large Hadron Collider (LHC) at CERN; a conceptual design was recently completed. Because of their electric charge and the absence of materials close to the proton beam, electron lenses may also provide an alternative to wires for long-range beam-beam compensation in LHC luminosity upgrade scenarios with small crossing angles. At Fermilab, we are planning to install an electron lens in the Integrable Optics Test Accelerator (IOTA, a 40-m ring for 150-MeV electrons) as one of the proof-of-principle implementations of nonlinear integrable optics to achieve large tune spreads and more stable beams without loss of dynamic aperture.

  5. Rippled beam free electron laser amplifier

    Science.gov (United States)

    Carlsten, Bruce E.

    1999-01-01

    A free electron laser amplifier provides a scalloping annular electron beam that interacts with the axial electric field of a TM.sub.0n mode. A waveguide defines an axial centerline and, a solenoid arranged about the waveguide produces an axial constant magnetic field within the waveguide. An electron beam source outputs a annular electron beam that interacts with the axial magnetic field to have an equilibrium radius and a ripple radius component having a variable radius with a ripple period along the axial centerline. An rf source outputs an axial electric field that propagates within the waveguide coaxial with the electron beam and has a radial mode that interacts at the electron beam at the equilibrium radius component of the electron beam.

  6. High quality, high efficiency welding technology for nuclear power plants

    International Nuclear Information System (INIS)

    Aoki, Shigeyuki; Nagura, Yasumi

    1996-01-01

    For nuclear power plants, it is required to ensure the safety under the high reliability and to attain the high rate of operation. In the manufacture and installation of the machinery and equipment, the welding techniques which become the basis exert large influence to them. For the purpose of improving joint performance and excluding human errors, welding heat input and the number of passes have been reduced, the automation of welding has been advanced, and at present, narrow gap arc welding and high energy density welding such as electron beam welding and laser welding have been put to practical use. Also in the welding of pipings, automatic gas metal arc welding is employed. As for the welding of main machinery and equipment, there are the welding of the joints that constitute pressure boundaries, the build-up welding on the internal surfaces of pressure vessels for separating primary water from them, and the sealing welding of heating tubes and tube plates in steam generators. These weldings are explained. The welding of pipings and the state of development and application of new welding methods are reported. (K.I.)

  7. Welding state of art for Eurofer 97 application to Tritium Blanket Module for ITER Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, P. [CEA Saclay, Dept. Modelisation de Systemes et Structures (DEN/DANS/DM2S/DIR), 91 - Gif sur Yvette (France); Janin, F. [CEA Saclay, Dept. Modelisation de Systemes et Structures (DEN/DANS/DPC/SCP/Gerailp), 91 - Gif sur Yvette (France)

    2007-07-01

    Full text of publication follows: Eurofer weldability must be established for data base assessment and TBM manufacturing support. Electron Beam, Hybrid (Laser combined with MIG/MAG), Laser and Narrow Gap TIG processes have been carried out on Eurofer samples from 0.5 mm to 40 mm. Electron Beam produces very narrow fusion zone width, in the range of 3 to 4 mm, that yields brittle joints with (5-ferrite. This process is considered only for low penetration depth (cooling plates). The other processes produce similar results, with attenuation or enhanced effects, depending on cooling rates and weld penetration depth. Pre- and post-heating have been applied on hybrid and laser welds. High hardness values, increasing brittleness and softening effects in the Heat Affected Zone are observed for each welding configuration that could signal creep problems. The Fusion Zones are typically composed of martensite laths, with small grain sizes. In the Heat Affected Zones, martensite grains are observed with M23C6 carbide precipitation. Delta ferrite has been observed only in Electron Beam welds, due to very high cooling rate during the solidification phase, related to strong enhanced weld shape. Eurofer filler wire with optimized chemical composition is developed for producing welds with good properties. To restore properties after welding, PWHT seems is necessary and several treatments including one at 750 deg. C for 2 hours have been performed. Also tries is a re-austenisation treatment of 10 h at 1050 deg. C. affecting order to improve results, pre- and post-heating has been applied. The heating produced by the resistive heater was too low, and new welding tests are planned at higher temperatures (400 deg. C). However, the pre- and post-heating at higher temperatures will complicate manufacturing of TBM clamping For penetration depths below 10 mm, laser process is the reference method and TIG second. Distortion level performed by laser process is acceptable for manufacturing

  8. Self-focusing of laser beams in magnetized relativistic electron beams

    International Nuclear Information System (INIS)

    Whang, M.H.; Ho, A.Y.; Kuo, S.P.

    1989-01-01

    Recently, there is considerable interest in radiation focusing and optical guiding using the resonant interaction between the radiation field and electron beam. The result of radiation focusing has been shown to play a central role in the practical utilization of the FEL. This result allows the device to use longer interaction length for achieving higher output power. Likewise, the possibility of self-focusing of the laser beam in cyclotron resonance with a relativistic electron beam is also an important issue in the laser acceleration concepts for achieving high-gradient electron acceleration. The effectiveness of the acceleration process relies strongly on whether the laser intensity can be maintained at the desired level throughout the interaction. In this work, the authors study the problem concerning the self-focusing of laser beam in the relativistic electron beams under the cyclotron auto-resonance interaction. They assume that there is no electron density perturbation prohibited from the background magnetic field for the time scale of interest. The nonlinearity responsible for self-focusing process is introduced by the energy dependence of the relativistic mass of electrons. The plasma frequency varies with the electron energy which is proportional to the radiation amplitude. They then examine such a relativistic nonlinear effect on the propagation of a Gaussian beam in the electron beam. A parametric study of the dependence of the laser beam width on the axial position for various electron beam density has been performed

  9. Manufacture and characterization of austenitic steel welded joints. Joint final report - Vol. 1

    International Nuclear Information System (INIS)

    Simoni, O.; Boerman, D.J.; Krischer, W.

    1990-07-01

    This report describes the results of the first phase of the project, i.e. manufacturing and characterization of welded austenitic steel and the test matrix adopted to test the mechanical resistance of the weldings. Five different welding methods have been produced and characterized in comparison to the parent material. The reference material was an AISI 316L type steel close to the French Superphenix composition. The results of the mechanical testing and the relative comparison of the five welding methods are described in a second volume. As a general conclusion, the vacuum electron-beam welding proved to have better properties than the other weld methods and to attain in most cases the properties of the parent material

  10. Apparatus for irradiation with electron beam

    International Nuclear Information System (INIS)

    Uehara, K.; Ito, A.; Nishimune, K.; Fujita, K.

    1976-01-01

    An irradiation apparatus with high energy electrons is disclosed in which a wire shaped or linear object to be irradiated is moved back and forth many times under an electron window so as to irradiate it with an electron beam. According to one feature of the invention, an electron beam, which leaks through gaps between the objects to be irradiated or which penetrates the objects to be irradiated, is reversed by a magnetic field approximately perpendicular to the scanning face of the electron beam by means of a magnet which is disposed under the objects to be irradiated, and the reversed electron beam is thereby again applied to the objects to be irradiated. A high utilization rate of the electron beam is accomplished, and the objects can be thereby uniformly irradiated with the electron beam. 4 claims, 6 drawing figures

  11. Evaluation of weld joints properties of 60mm thick AISI 316L for fusion reactor vacuum vessel by TIG and EB welding processes

    International Nuclear Information System (INIS)

    Buddu, Ramesh Kutner

    2016-01-01

    The present paper is focussed on the NDT examination procedures, evaluated mechanical properties; microstructure details investigated on the different welding process of Multipass TIG process (64 passes) and electron beam welding (two pass) of the AISI SS316LN plates. The characterization of mechanical properties (Tensile, Bend, Hardness and Impact) and detailed microstructure analysis have been discussed in this paper. Mechanical properties in both conditions shown higher joint efficiencies. Bend tests shown the good quality of weld and ductility behavior of the joining process. Hardening is observed in both the samples for welded zone and HAZ compared to base metal. Impact fracture results revealed the poor toughness properties for the WZ compared to HAZ and BM samples in both the cases

  12. Viewing Welds By Computer Tomography

    Science.gov (United States)

    Pascua, Antonio G.; Roy, Jagatjit

    1990-01-01

    Computer tomography system used to inspect welds for root penetration. Source illuminates rotating welded part with fan-shaped beam of x rays or gamma rays. Detectors in circular array on opposite side of part intercept beam and convert it into electrical signals. Computer processes signals into image of cross section of weld. Image displayed on video monitor. System offers only nondestructive way to check penetration from outside when inner surfaces inaccessible.

  13. Electron-beam welding of 21-6-9 (Cr--Ni--Mn) stainless steel: effect of machine parameters on weldability

    International Nuclear Information System (INIS)

    Casey, H.

    1975-04-01

    The high-manganese, nitrogen-strengthened 21-6-9 (Cr--Ni--Mn) austenitic stainless steel has a weldability rating similar to that of more common austenitic stainless steels in terms of cracking, porosity, etc. However, weld pool disruption problems may occur with this alloy that can be related to instability within the molten weld pool. Selection of machine parameters is critical to achieving weld pool quiescence as this report confirms from recent tests. Test samples came from heats of air-melted, vacuum-arc remelted, and electroslag remelted material. Low- and high-voltage machine parameters are discussed, and effects of parameter variation on weld pool behavior are given. Data relate weld pool behavior to weld fusion-zone geometry. Various weld parameters are recommended for the 21-6-9 alloy, regardless of its source or chemistry. (auth)

  14. Electron beam simulation applicators

    International Nuclear Information System (INIS)

    Purdy, J.A.

    1983-01-01

    A system for simulating electron beam treatment portals using low-temperature melting point alloy is described. Special frames having the same physical dimensions as the electron beam applicators used on the Varian Clinac 20 linear accelerator were designed and constructed

  15. Effect of Dynamic Reheating Induced by Weaving on the Microstructure of GTAW Weld Metal of 25% Cr Super Duplex Stainless Steel Weld Metal

    Directory of Open Access Journals (Sweden)

    Hee-Joon Sung

    2017-11-01

    Full Text Available The importance of the additional growth and/or transformation of the austenite phase that occurs in weld metals of super duplex stainless steel upon reheating is known. However, the effects have not been fully investigated, especially with respect to reheating induced by weaving during single-pass welding. In this work, bead-on-pipe gas tungsten arc welding (GTAW was conducted on super duplex stainless steel to understand the effect of weaving on the microstructure of weld metal. Microstructural analysis, electron backscatter diffraction (EBSD, and focused ion beam transmission electron microscopy (FIB-TEM were carried out to investigate the relationship between weaving and microstructural change. The weaving of GTAW produced a dynamic reheated area just before the weld bead during welding. It was revealed that extensive reheated weld existed even after one welding pass, and that the content of the austenite phase in the reheated area was higher than that in the non-reheated area, indicating the existence of a large quantity of intragranular austenite phase. In addition, the Cr2N content in the reheated area was lower than that in the non-reheated area. This reduction of Cr2N was closely related to the reheating resulting from weaving. TEM analysis revealed that Cr2N in the non-reheated area was dispersed following heating and transformed to secondary austenite.

  16. Generation of electron Airy beams.

    Science.gov (United States)

    Voloch-Bloch, Noa; Lereah, Yossi; Lilach, Yigal; Gover, Avraham; Arie, Ady

    2013-02-21

    Within the framework of quantum mechanics, a unique particle wave packet exists in the form of the Airy function. Its counterintuitive properties are revealed as it propagates in time or space: the quantum probability wave packet preserves its shape despite dispersion or diffraction and propagates along a parabolic caustic trajectory, even though no force is applied. This does not contradict Newton's laws of motion, because the wave packet centroid propagates along a straight line. Nearly 30 years later, this wave packet, known as an accelerating Airy beam, was realized in the optical domain; later it was generalized to an orthogonal and complete family of beams that propagate along parabolic trajectories, as well as to beams that propagate along arbitrary convex trajectories. Here we report the experimental generation and observation of the Airy beams of free electrons. These electron Airy beams were generated by diffraction of electrons through a nanoscale hologram, which imprinted on the electrons' wavefunction a cubic phase modulation in the transverse plane. The highest-intensity lobes of the generated beams indeed followed parabolic trajectories. We directly observed a non-spreading electron wavefunction that self-heals, restoring its original shape after passing an obstacle. This holographic generation of electron Airy beams opens up new avenues for steering electronic wave packets like their photonic counterparts, because the wave packets can be imprinted with arbitrary shapes or trajectories.

  17. Multispot fiber laser welding

    DEFF Research Database (Denmark)

    Schutt Hansen, Klaus

    This dissertation presents work and results achieved in the field of multi beam fiber laser welding. The project has had a practical approach, in which simulations and modelling have been kept at a minimum. Different methods to produce spot patterns with high power single mode fiber lasers have...... been examined and evaluated. It is found that both diamond turned DOE’s in zinc sulphide and multilevel etched DOE’s (Diffractive Optical Elements) in fused silica have a good performance. Welding with multiple beams in a butt joint configuration has been tested. Results are presented, showing it has...... been possible to control the welding width in incremental steps by adding more beams in a row. The laser power was used to independently control the keyhole and consequently the depth of fusion. An example of inline repair of a laser weld in butt joint configuration was examined. Zinc powder was placed...

  18. Introduction of experience of television information-control systems in welding

    International Nuclear Information System (INIS)

    Lifshits, M.L.; Lobanova, N.G.

    1988-01-01

    Consideration is given to peculiarities of using television measuring system for operative control of electron-beam welding of articles with minimum joint gap. It is shown that improvement of control accuracy requires mounting and tuning of television sensors and providing for process procedure

  19. Combined phenomena of beam-beam and beam-electron cloud interactionsin circular e^{+}e^{-} colliders

    Directory of Open Access Journals (Sweden)

    Kazuhito Ohmi

    2002-10-01

    Full Text Available An electron cloud causes various effects in high intensity positron storage rings. The positron beam and the electron cloud can be considered a typical two-stream system with a certain plasma frequency. Beam-beam interaction is another important effect for high luminosity circular colliders. Colliding two beams can be considered as a two-stream system with another plasma frequency. We study the combined phenomena of the beam-electron cloud and beam-beam interactions from a viewpoint of two complex two-stream effects with two plasma frequencies.

  20. Prediction of residual stresses and distortions due to laser beam welding of butt joints in pressure vessels

    International Nuclear Information System (INIS)

    Moraitis, G.A.; Labeas, G.N.

    2009-01-01

    A two-level three-dimensional Finite Element (FE) model has been developed to predict keyhole formation and thermo-mechanical response during Laser Beam Welding (LBW) of steel and aluminium pressure vessel or pipe butt-joints. A very detailed and localized (level-1) non-linear three-dimensional transient thermal model is initially developed, which simulates the mechanisms of keyhole formation, calculates the temperature distribution in the local weld area and predicts the keyhole size and shape. Subsequently, using a laser beam heat source model based on keyhole assumptions, a global (level-2) thermo-mechanical analysis of the LBW butt-joint is performed, from which the joint residual stresses and distortions are calculated. All the major physical phenomena associated to LBW, such as laser heat input via radiation, heat losses through convection and radiation, as well as latent heat are accounted for in the numerical model. Material properties and particularly enthalpy, which is very important due to significant material phase changes, are introduced as temperature-dependent functions. The main advantages of the developed model are its efficiency, flexibility and applicability to a wide range of LBW problems (e.g. welding for pressure vessel or pipework construction, welding of automotive, marine or aircraft components, etc). The model efficiency arises from the two-scale approach applied. Minimal or no experimental data are required for the keyhole size and shape computation by the level-1 model, while the thermo-mechanical response calculation by the level-2 model requires only process and material data. Therefore, it becomes possible to efficiently apply the developed simulation model to different material types and varying welding parameters (i.e. welding speed, heat source power, joint geometry, etc.) in order to control residual stresses and distortions within the welded structure

  1. Wear resistance increase of the modified coatings, deposited in the beam of relativistic electrons

    International Nuclear Information System (INIS)

    Poletika, I.M.; Perovskaya, M.V.; Balushkina, M.A.

    2015-01-01

    The 1.5-3 mm thickness coatings have been obtained by vacuum - free electron beam cladding of tungsten carbide on low - carbon steel sub state. The coatings have an increased hardness but low wear resistance. Adding both nickel and titanium carbide to the tungsten carbide results in essentially improving the wear resistance of the coatings due to austenite-promoting effect of nickel and precipitation of fine Tic particles resulting in the formation of the final and nano grain structure. In the layer of weld one can find 30-100 nm grain - size structures. (authors)

  2. Generation of Nondiffracting Electron Bessel Beams

    Directory of Open Access Journals (Sweden)

    Vincenzo Grillo

    2014-01-01

    Full Text Available Almost 30 years ago, Durnin discovered that an optical beam with a transverse intensity profile in the form of a Bessel function of the first order is immune to the effects of diffraction. Unlike most laser beams, which spread upon propagation, the transverse distribution of these Bessel beams remains constant. Electrons also obey a wave equation (the Schrödinger equation, and therefore Bessel beams also exist for electron waves. We generate an electron Bessel beam by diffracting electrons from a nanoscale phase hologram. The hologram imposes a conical phase structure on the electron wave-packet spectrum, thus transforming it into a conical superposition of infinite plane waves, that is, a Bessel beam. We verify experimentally that these beams can propagate for 0.6 m without measurable spreading and can also reconstruct their intensity distributions after being partially obstructed by an obstacle. Finally, we show by numerical calculations that the performance of an electron microscope can be increased dramatically through use of these beams.

  3. Characteristics of plasma in uranium atomic beam produced by electron-beam heating

    International Nuclear Information System (INIS)

    Ohba, Hironori; Shibata, Takemasa

    2000-08-01

    The electron temperature of plasma and the ion flux ratio in the uranium atomic beam produced by electron-beam heating were characterized with Langmuir probes. The electron temperature was 0.13 eV, which was lower than the evaporation surface temperature. The ion flux ratio to atomic beam flux was more than 3% at higher evaporation rates. The ion flux ratio has increased with decreasing acceleration energy of the electron-beam under constant electron-beam power. This is because of an increase of electron-beam current and a large ionization cross-section of uranium by electron-impact. It was confined that the plasma is produced by electron-impact ionization of the evaporated atoms at the evaporation source. (author)

  4. High-power laser and arc welding of thorium-doped iridium alloys

    International Nuclear Information System (INIS)

    David, S.A.; Liu, C.T.

    1980-05-01

    The arc and laser weldabilities of two Ir-0.3% W alloys containing 60 and 200 wt ppM Th have been investigated. The Ir-.03% W alloy containing 200 wt ppM Th is severely prone to hot cracking during gas tungsten-arc welding. Weld metal cracking results from the combined effects of heat-affected zone liquation cracking and solidification cracking. Scanning electron microscopic analysis of the fractured surface revealed patches of low-melting eutectic. The cracking is influenced to a great extent by the fusion zone microstructure and thorium content. The alloy has been welded with a continuous-wave high-power CO 2 laser system with beam power ranging from 5 to 10 kW and welding speeds of 8 to 25 mm/s. Successful laser welds without hot cracking have been obtained in this particular alloy. This is attributable to the highly concentrated heat source available in the laser beam and the refinement in fusion zone microstructure obtained during laser welding. Efforts to refine the fusion zone structure during gas tungsten-arc welding of Ir-0.3 % W alloy containing 60 wt ppM Th were partially successful. Here transverse arc oscillation during gas tungsten-arc welding refines the fusion zone structure to a certain extent. However, microstructural analysis of this alloy's laser welds indicates further refinement in the fusion zone microstructure than in that from the gas tungsten-arc process using arc oscillations. The fusion zone structure of the laser weld is a strong function of welding speed

  5. Hardness distribution and tensile properties in an electron-beam-welded F82H irradiated in HFIR

    International Nuclear Information System (INIS)

    Hashimoto, N.; Oka, H.; Muroga, T.; Kimura, A.; Sokolov, M.A.; Yamamoto, T.

    2014-01-01

    F82H-IEA and its EB-weld joint were irradiated at 573 and 773 K up to 9.6 dpa in the HFIR and the irradiation effect on its mechanical properties and microstructure were investigated. A hardness profile across the weld joint before irradiation showed the hardness in transformed region (TR) was high and especially that in the edge of TR was the highest (high hardness region: HHR) compared to base metal. This hardness distribution corresponds to grain size distribution. After irradiation, hardening in HHR was small compared to other region in the sample. In tensile test, the amount of hardening in yield strength and ultimate tensile strength of F82H EB-weld joint was almost similar to that of F82H-1EA but the fracture position of EB-weld joint was at the boundary of TR and BM. Therefore, the TR/BM boundary is the structural weak point in F82H EB-weld joint after irradiation. As the plastic instability was observed, the dislocation channeling deformation can be expected though the dislocation channel was not observed in this study. (author)

  6. Overview on the welding technologies of CLAM steel and the DFLL TBM fabrication

    Directory of Open Access Journals (Sweden)

    Junyu Zhang

    2016-12-01

    Full Text Available Dual Functional Lithium Lead (DFLL blanket was proposed for its advantages of high energy exchange efficiency and on-line tritium extraction, and it was selected as the candidate test blanket module (TBM for China Fusion Engineering Test Reactor (CFETR and the blanket for Fusion Design Study (FDS series fusion reactors. Considering the influence of high energy fusion neutron irradiation and high heat flux thermal load on the blanket, China Low Activation Martensitic (CLAM steel was selected as the structural material for DFLL blanket. The structure of the blanket and the cooling internal components were pretty complicated. Meanwhile, high precision and reliability were required in the blanket fabrication. Therefore, several welding techniques, such as hot isostatic pressing diffusion bonding, tungsten inner gas welding, electron beam welding and laser beam welding were developed for the fabrication of cooling internals and the assembly of the blanket. In this work, the weldability on CLAM steel by different welding methods and the properties of as-welded and post-weld heat-treated joints were investigated. Meanwhile, the welding schemes and the assembly strategy for TBM fabrication were raised. Many tests and research efforts on scheme feasibility, process standardization, component qualification and blanket assembly were reviewed.

  7. Advantages of fibre lasers in 3D metal cutting and welding applications supported by a 'beam in motion (BIM)' beam delivery system

    Science.gov (United States)

    Scheller, Torsten; Bastick, André; Griebel, Martin

    2012-03-01

    Modern laser technology is continuously opening up new fields of applications. Driven by the development of increasingly efficient laser sources, the new technology is successfully entering classical applications such as 3D cutting and welding of metals. Especially in light weight applications in the automotive industry laser manufacturing is key. Only by this technology the reduction of welding widths could be realised as well as the efficient machining of aluminium and the abrasion free machining of hardened steel. The paper compares the operation of different laser types in metal machining regarding wavelength, laser power, laser brilliance, process speed and welding depth to give an estimation for best use of single mode or multi mode lasers in this field of application. The experimental results will be presented by samples of applied parts. In addition a correlation between the process and the achieved mechanical properties will be made. For this application JENOPTIK Automatisierungstechnik GmbH is using the BIM beam control system in its machines, which is the first one to realize a fully integrated combination of beam control and robot. The wide performance and wavelength range of the laser radiation which can be transmitted opens up diverse possibilities of application and makes BIM a universal tool.

  8. Electron beam-plasma interaction and electron-acoustic solitary waves in a plasma with suprathermal electrons

    Science.gov (United States)

    Danehkar, A.

    2018-06-01

    Suprathermal electrons and inertial drifting electrons, so called electron beam, are crucial to the nonlinear dynamics of electrostatic solitary waves observed in several astrophysical plasmas. In this paper, the propagation of electron-acoustic solitary waves (EAWs) is investigated in a collisionless, unmagnetized plasma consisting of cool inertial background electrons, hot suprathermal electrons (modeled by a κ-type distribution), and stationary ions. The plasma is penetrated by a cool electron beam component. A linear dispersion relation is derived to describe small-amplitude wave structures that shows a weak dependence of the phase speed on the electron beam velocity and density. A (Sagdeev-type) pseudopotential approach is employed to obtain the existence domain of large-amplitude solitary waves, and investigate how their nonlinear structures depend on the kinematic and physical properties of the electron beam and the suprathermality (described by κ) of the hot electrons. The results indicate that the electron beam can largely alter the EAWs, but can only produce negative polarity solitary waves in this model. While the electron beam co-propagates with the solitary waves, the soliton existence domain (Mach number range) becomes narrower (nearly down to nil) with increasing the beam speed and the beam-to-hot electron temperature ratio, and decreasing the beam-to-cool electron density ratio in high suprathermality (low κ). It is found that the electric potential amplitude largely declines with increasing the beam speed and the beam-to-cool electron density ratio for co-propagating solitary waves, but is slightly decreased by raising the beam-to-hot electron temperature ratio.

  9. Application of electron beam irradiation. 4. Treatment of pollutants by electron beam irradiation

    International Nuclear Information System (INIS)

    Tokunaga, Okihiro; Arai, Hidehiko

    1994-01-01

    Electron beam irradiation is capable of dissolving and removing pollutants, such as sulfur oxides, nitrogen oxides, and organic compounds, by easy production of OH radicals in flue gas and water. This paper deals with current status in the search for techniques for treating flue gas and waste water, using electron beam irradiation. Pilot tests have been conducted during the period 1991-1994 for the treatment of flue gas caused by coal and garbage burning and road tunnels. Firstly, techniques for cleaning flue gas with electron beams are outlined, with special reference to their characteristics and process of research development. Secondly, the application of electron beam irradiation in the treatment of waste water is described in terms of the following: (1) disinfection of sewage, (2) cleaning of water polluted with toxic organic compounds, (3) treatment for eliminating sewage sludge, (4) promotion of sewage sludge sedimentation, (5) disinfection and composting of sewage sludge, and (6) regeneration of activated carbon used for the treatment of waste water. (N.K.)

  10. A Weld Position Recognition Method Based on Directional and Structured Light Information Fusion in Multi-Layer/Multi-Pass Welding

    Directory of Open Access Journals (Sweden)

    Jinle Zeng

    2018-01-01

    Full Text Available Multi-layer/multi-pass welding (MLMPW technology is widely used in the energy industry to join thick components. During automatic welding using robots or other actuators, it is very important to recognize the actual weld pass position using visual methods, which can then be used not only to perform reasonable path planning for actuators, but also to correct any deviations between the welding torch and the weld pass position in real time. However, due to the small geometrical differences between adjacent weld passes, existing weld position recognition technologies such as structured light methods are not suitable for weld position detection in MLMPW. This paper proposes a novel method for weld position detection, which fuses various kinds of information in MLMPW. First, a synchronous acquisition method is developed to obtain various kinds of visual information when directional light and structured light sources are on, respectively. Then, interferences are eliminated by fusing adjacent images. Finally, the information from directional and structured light images is fused to obtain the 3D positions of the weld passes. Experiment results show that each process can be done in 30 ms and the deviation is less than 0.6 mm. The proposed method can be used for automatic path planning and seam tracking in the robotic MLMPW process as well as electron beam freeform fabrication process.

  11. A Weld Position Recognition Method Based on Directional and Structured Light Information Fusion in Multi-Layer/Multi-Pass Welding.

    Science.gov (United States)

    Zeng, Jinle; Chang, Baohua; Du, Dong; Wang, Li; Chang, Shuhe; Peng, Guodong; Wang, Wenzhu

    2018-01-05

    Multi-layer/multi-pass welding (MLMPW) technology is widely used in the energy industry to join thick components. During automatic welding using robots or other actuators, it is very important to recognize the actual weld pass position using visual methods, which can then be used not only to perform reasonable path planning for actuators, but also to correct any deviations between the welding torch and the weld pass position in real time. However, due to the small geometrical differences between adjacent weld passes, existing weld position recognition technologies such as structured light methods are not suitable for weld position detection in MLMPW. This paper proposes a novel method for weld position detection, which fuses various kinds of information in MLMPW. First, a synchronous acquisition method is developed to obtain various kinds of visual information when directional light and structured light sources are on, respectively. Then, interferences are eliminated by fusing adjacent images. Finally, the information from directional and structured light images is fused to obtain the 3D positions of the weld passes. Experiment results show that each process can be done in 30 ms and the deviation is less than 0.6 mm. The proposed method can be used for automatic path planning and seam tracking in the robotic MLMPW process as well as electron beam freeform fabrication process.

  12. The Two-Beam Free Electron Laser Oscillator

    CERN Document Server

    Thompson, Neil R

    2004-01-01

    A one-dimensional model of a free-electron laser operating simultaneously with two electron beams of different energies [1] is extended to an oscillator configuration. The electron beam energies are chosen so that an harmonic of the lower energy beam is at the fundamental radiation wavelength of the higher energy beam. Potential benefits over a single-beam free-electron laser oscillator are discussed.

  13. Internal attachment of laser beam welded stainless steel sheathed thermocouples into stainless steel upper end caps in nuclear fuel rods for the LOFT Reactor

    International Nuclear Information System (INIS)

    Welty, R.K.; Reid, R.D.

    1980-01-01

    The Exxon Nuclear Company, Inc., acting as a subcontractor to EG and G Idaho Inc., Idaho National Engineering Laboratory, Idaho Falls, Idaho, conducted a laser beam welding study to attach internal stainless steel thermocouples into stainless steel upper end caps in nuclear fuel rods. The objective of this study was to determine the feasibility of laser welding a single 0.063 inch diameter stainless steel (304) sheathed thermocouple into a stainless steel (316) upper end cap for nuclear fuel rods. A laser beam was selected because of the extremely high energy input in unit volume that can be achieved allowing local fusion of a small area irrespective of the difference in material thickness to be joined. A special weld fixture was designed and fabricated to hold the end cap and the thermocouple with angular and rotational adjustment under the laser beam. A commercial pulsed laser and energy control system was used to make the welds

  14. Laser beam welding of NiTi-shape memory alloys; Laserstrahl-Schweissen von NiTi-Formgedaechtnislegierungen

    Energy Technology Data Exchange (ETDEWEB)

    Haas, T.

    1996-04-01

    Using a Nd:YAG laser, the weldability of binary nickel-titanium shape memory alloys containing 50.0 and 48.5 at.-% Ti respectively was investigated. By tensile tests within a temperature range of -80 C to +200 C the mechanical properties of the laser welded joints were examined. Changes in the transformation behaviour were detected by calorimetric measurements (DSC method). The stress-strain behaviour was attributed to the microstructure of the welds, revealed by optical microscopy and transmission electron microscopy (TEM). Using a scanning electron microscope (SEM), the mechanisms of failure were examined. Joints of the martensitic Ti-rich alloy were brittle, showing an ultimate tensile strength of 600 MPa, corresponding to half of the value of the base material. The reduction in strength was explained by the formation of Ti{sub 2}Ni precipitations along grain boundaries in the weld. Since the welds still exhibited twin deformation, pseudoplastic strains of 7% were achieved. Ultimate strength data showed a very low scatter. Therefore it was possible to use the shape memory effect up to a strain of 6% without failure. After a total elongation to 6% strain, the laser welded joints showed a free recovery with an amnesia of 0.3%. The shape memory effect was shown to be retained in the laser welded joints. 154 refs.

  15. High-brightness electron beam diagnostics at the ATF

    International Nuclear Information System (INIS)

    Wang, X.J.; Ben-Zvi, I.

    1996-01-01

    The Brookhaven Accelerator Test Facility (ATF) is a dedicated user facility for accelerator physicists. Its design is optimized to explore laser acceleration and coherent radiation production. To characterize the low-emittance, picoseconds long electron beam produced by the ATF's photocathode RF gun, we have installed electron beam profile monitors for transverse emittance measurement, and developed a new technique to measure electron beam pulse length by chirping the electron beam energy. We have also developed a new technique to measure the ps slice emittance of a 10 ps long electron beam. Stripline beam position monitors were installed along the beam to monitor the electron beam position and intensity. A stripline beam position monitor was also used to monitor the timing jitter between the RF system and laser pulses. Transition radiation was used to measure electron beam energy, beam profile and electron beam bunch length

  16. Industrial application of electron sources with plasma emitters

    CERN Document Server

    Belyuk, S I; Rempe, N G

    2001-01-01

    Paper contains a description, operation, design and parameters of electron sources with plasma emitters. One presents examples of application of these sources as part of automated electron-beam welding lines. Paper describes application of such sources for electron-beam deposition of composite powders. Electron-beam deposition is used to rebuild worn out part and to increase strength of new parts of machines and tools. Paper presents some examples of rebuilding part and the advantages gained in this case

  17. Electron beam treatment of industrial wastewater

    International Nuclear Information System (INIS)

    Han, Bumsoo; Kim, JinKyu; Kim, Yuri

    2004-01-01

    For industrial wastewater with low impurity levels such as contaminated ground water, cleaning water and etc., purification only with electron beam is possible, but it should be managed carefully with reducing required irradiation doses as low as possible. Also for industrial wastewater with high impurity levels such as dyeing wastewater, leachate and etc., purification only with electron beam requires high amount of doses and far beyond economies. Electron beam treatment combined with conventional purification methods such as coagulation, biological treatment, etc. is suitable for reduction of non-biodegradable impurities in wastewater and will extend the application area of electron beam. A pilot plant with electron beam for treating 1,000 m 3 /day of wastewater from dyeing industries has constructed and operated continuously since Oct 1998. Electron beam irradiation instead of chemical treatment shows much improvement in removing impurities and increases the efficiency of biological treatment. Actual plant is under consideration based upon the experimental results. (author)

  18. Experimental investigation and finite element simulation of laser beam welding induced residual stresses and distortions in thin sheets of AA 6056-T4

    International Nuclear Information System (INIS)

    Zain-ul-abdein, Muhammad; Nelias, Daniel; Jullien, Jean-Francois; Deloison, Dominique

    2010-01-01

    Laser beam welding has recently found its application in the fabrication of aircraft structures where fuselage panels, made of thin sheets of AA 6056-T4 (an aluminium alloy), are welded with stiffeners of the same material in a T-joint configuration. The present work simulates laser beam welding induced residual stresses and distortions using industrially employed thermal and mechanical boundary conditions. Various measurements performed on small-scale welded test specimens provide a database of experimental results that serves as a benchmark for qualification of the simulation results. The welding simulation is performed with the commercial finite element software Abaqus and a Fortran programme encoding a conical heat source with Gaussian volumetric distribution of flux. A sequentially coupled temperature-displacement analysis is undertaken to simulate the weld pool geometry, transient temperature and displacement fields. The material is assumed to follow an elasto-plastic law with isotropic hardening behaviour (von Mises plasticity model). A comparison between the experimental and simulation results shows a good agreement. Finally, the residual stress and strain states in a T-joint are predicted.

  19. 'Electron compression' of beam-beam footprint in the Tevatron

    International Nuclear Information System (INIS)

    Shiltsev, V.; Finley, D.A.

    1997-08-01

    The beam-beam interaction in the Tevatron collider sets some limits on bunch intensity and luminosity. These limits are caused by a tune spread in each bunch which is mostly due to head-on collisions, but there is also a bunch-to-bunch tune spread due to parasitic collisions in multibunch operation. We describe a counter-traveling electron beam which can be used to eliminate these effects, and present general considerations and physics limitations of such a device which provides 'electron compression' of the beam-beam footprint in the Tevatron

  20. Development of high current electron beam generator

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byeong Cheol; Lee, Jong Min; Kim, Sun Kook [and others

    1997-05-01

    A high-current electron beam generator has been developed. The energy and the average current of the electron beam are 2 MeV and 50 mA, respectively. The electron beam generator is composed of an electron gun, RF acceleration cavities, a 260-kW RF generator, electron beam optics components, and control system, etc. The electron beam generator will be used for the development of a millimeter-wave free-electron laser and a high average power infrared free-electron laser. The machine will also be used as a user facility in nuclear industry, environment industry, semiconductor industry, chemical industry, etc. (author). 15 tabs., 85 figs.

  1. Development of high current electron beam generator

    International Nuclear Information System (INIS)

    Lee, Byeong Cheol; Lee, Jong Min; Kim, Sun Kook

    1997-05-01

    A high-current electron beam generator has been developed. The energy and the average current of the electron beam are 2 MeV and 50 mA, respectively. The electron beam generator is composed of an electron gun, RF acceleration cavities, a 260-kW RF generator, electron beam optics components, and control system, etc. The electron beam generator will be used for the development of a millimeter-wave free-electron laser and a high average power infrared free-electron laser. The machine will also be used as a user facility in nuclear industry, environment industry, semiconductor industry, chemical industry, etc. (author). 15 tabs., 85 figs

  2. Cornell electron beam ion source

    International Nuclear Information System (INIS)

    Kostroun, V.O.; Ghanbari, E.; Beebe, E.N.; Janson, S.W.

    1981-01-01

    An electron beam ion source (EBIS) for the production of low energy, multiply charged ion beams to be used in atomic physics experiments has been designed and constructed. An external high perveance electron gun is used to launch the electron beam into a conventional solenoid. Novel features of the design include a distributed sputter ion pump to create the ultrahigh vacuum environment in the ionization region of the source and microprocessor control of the axial trap voltage supplies

  3. Electron beam based transversal profile measurements of intense ion beams

    International Nuclear Information System (INIS)

    El Moussati, Said

    2014-01-01

    A non-invasive diagnostic method for the experimental determination of the transverse profile of an intense ion beam has been developed and investigated theoretically as well as experimentally within the framework of the present work. The method is based on the deflection of electrons when passing the electromagnetic field of an ion beam. To achieve this an electron beam is employed with a specifically prepared transversal profile. This distinguish this method from similar ones which use thin electron beams for scanning the electromagnetic field [Roy et al. 2005; Blockland10]. The diagnostic method presented in this work will be subsequently called ''Electron-Beam-Imaging'' (EBI). First of all the influence of the electromagnetic field of the ion beam on the electrons has been theoretically analyzed. It was found that the magnetic field causes only a shift of the electrons along the ion beam axis, while the electric field only causes a shift in a plane transverse to the ion beam. Moreover, in the non-relativistic case the magnetic force is significantly smaller than the Coulomb one and the electrons suffer due to the magnetic field just a shift and continue to move parallel to their initial trajectory. Under the influence of the electric field, the electrons move away from the ion beam axis, their resulting trajectory shows a specific angle compared to the original direction. This deflection angle practically depends just on the electric field of the ion beam. Thus the magnetic field has been neglected when analysing the experimental data. The theoretical model provides a relationship between the deflection angle of the electrons and the charge distribution in the cross section of the ion beam. The model however only can be applied for small deflection angles. This implies a relationship between the line-charge density of the ion beam and the initial kinetic energy of the electrons. Numerical investigations have been carried out to clarify the

  4. Low voltage electron beam accelerators

    International Nuclear Information System (INIS)

    Ochi, Masafumi

    2003-01-01

    Widely used electron accelerators in industries are the electron beams with acceleration voltage at 300 kV or less. The typical examples are shown on manufactures in Japan, equipment configuration, operation, determination of process parameters, and basic maintenance requirement of the electron beam processors. New electron beam processors with acceleration voltage around 100 kV were introduced maintaining the relatively high dose speed capability of around 10,000 kGy x mpm at production by ESI (Energy Science Inc. USA, Iwasaki Electric Group). The application field like printing and coating for packaging requires treating thickness of 30 micron or less. It does not require high voltage over 110 kV. Also recently developed is a miniature bulb type electron beam tube with energy less than 60 kV. The new application area for this new electron beam tube is being searched. The drive force of this technology to spread in the industries would be further development of new application, process and market as well as the price reduction of the equipment, upon which further acknowledgement and acceptance of the technology to societies and industries would entirely depend. (Y. Tanaka)

  5. Low voltage electron beam accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Ochi, Masafumi [Iwasaki Electric Co., Ltd., Tokyo (Japan)

    2003-02-01

    Widely used electron accelerators in industries are the electron beams with acceleration voltage at 300 kV or less. The typical examples are shown on manufactures in Japan, equipment configuration, operation, determination of process parameters, and basic maintenance requirement of the electron beam processors. New electron beam processors with acceleration voltage around 100 kV were introduced maintaining the relatively high dose speed capability of around 10,000 kGy x mpm at production by ESI (Energy Science Inc. USA, Iwasaki Electric Group). The application field like printing and coating for packaging requires treating thickness of 30 micron or less. It does not require high voltage over 110 kV. Also recently developed is a miniature bulb type electron beam tube with energy less than 60 kV. The new application area for this new electron beam tube is being searched. The drive force of this technology to spread in the industries would be further development of new application, process and market as well as the price reduction of the equipment, upon which further acknowledgement and acceptance of the technology to societies and industries would entirely depend. (Y. Tanaka)

  6. Feasibility study for mega-electron-volt electron beam tomography.

    Science.gov (United States)

    Hampel, U; Bärtling, Y; Hoppe, D; Kuksanov, N; Fadeev, S; Salimov, R

    2012-09-01

    Electron beam tomography is a promising imaging modality for the study of fast technical processes. But for many technical objects of interest x rays of several hundreds of keV energy are required to achieve sufficient material penetration. In this article we report on a feasibility study for fast electron beam computed tomography with a 1 MeV electron beam. The experimental setup comprises an electrostatic accelerator with beam optics, transmission target, and a single x-ray detector. We employed an inverse fan-beam tomography approach with radiographic projections being generated from the linearly moving x-ray source. Angular projections were obtained by rotating the object.

  7. Weld characterization of RAFM steel. EBP structural materials milestone 3

    Energy Technology Data Exchange (ETDEWEB)

    Alamo, A. [Service de Recherches Metallurgiques Appliquees, CEA Centre d' Etudes Nucleaires de Saclay, Saclay (France); Fontes, A. [Service de Techniques Avancees, CEA Centre d' Etudes Nucleaires de Saclay, Saclay (France); Schaefer, L. [Forschungszentrum Karlsruhe, Karlsruhe (Germany); Gauthier, A.; Tavassoli, A.A. [CEA Centre d' Etudes Nucleaires de Saclay, Saclay (France); Van Osch, E.V.; Van der Schaaf [ed.] [ECN Netherlands Energy Research Foundation, Petten (Netherlands)

    1999-07-01

    In the long term part of the European Fusion technology programme welding of reduced activation ferritic martensitic (RAFM)steels takes a prominent place. The blanket structures are complex and welding is an important element in manufacturing procedures. In the 95-98 program several Structural Materials tasks of the European Blanket Project are devoted to welding of RAFM steels. In the milestone 3 defined for the program a review of the weld characterization was foreseen in 1998. The present report gives the status of tasks and the major conclusions and recommendations of the welding milestone meeting. The major conclusion is that defect free GTAW (Gas Tungsten Arc Welding), EBW (Electron Beam Welding) and diffusion welds can be accomplished, but further work is needed to assure quantitatively the service boundary conditions. Also for irradiated steel additional work is recommended for the 99-02 period. Development of filler wire material for the European reference RAFM: EUROFER97 is necessary. Establishment of weldability tests must be settled in the next period also. 14 refs.

  8. Attainment of Electron Beam Suitable for Medium Energy Electron Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Seletskiy, Sergei M. [Univ. of Rochester, NY (United States)

    2005-01-01

    Electron cooling of charged particle beams is a well-established technique at electron energies of up to 300 keV. However, up to the present time the advance of electron cooling to the MeV-range energies has remained a purely theoretical possibility. The electron cooling project at Fermilab has recently demonstrated the ¯rst cooling of 8.9 GeV/c antiprotons in the Recycler ring, and therefore, has proved the validity of the idea of relativistic electron cool- ing. The Recycler Electron Cooler (REC) is the key component of the Teva- tron Run II luminosity upgrade project. Its performance depends critically on the quality of electron beam. A stable electron beam of 4.3 MeV car- rying 0.5 A of DC current is required. The beam suitable for the Recycler Electron Cooler must have an angular spread not exceeding 200 ¹rad. The full-scale prototype of the REC was designed, built and tested at Fermilab in the Wideband laboratory to study the feasibility of attaining the high-quality electron beam. In this thesis I describe various aspects of development of the Fermilab electron cooling system, and the techniques used to obtain the electron beam suitable for the cooling process. In particular I emphasize those aspects of the work for which I was principally responsible.

  9. Two-dimensional modeling of conduction-mode laser welding

    International Nuclear Information System (INIS)

    Russo, A.J.

    1984-01-01

    WELD2D is a two-dimensional finite difference computer program suitable for modeling the conduction-mode welding process when the molten weld pool motion can be neglected. The code is currently structured to treat butt-welded geometries in a plane normal to the beam motion so that dissimilar materials may be considered. The surface heat transfer models used in the code include a Gaussian beam or uniform laser source, and a free electron theory reflectance calculation. Temperature-dependent material parameters are used in the reflectance calculation. Measured cold reflection data are used to include surface roughness or oxide effects until melt occurs, after which the surface is assumed to be smooth and clean. Blackbody reradiation and a simple natural convection model are also included in the upper surface boundary condition. Either an implicit or explicit finite-difference representation of the heat conduction equation in an enthalpy form is solved at each time step. This enables phase transition energies to be easily and accurately incorporated into the formulation. Temperature-dependent 9second-order polynominal dependence) thermal conductivities are used in the conduction calculations. Constant values of specific heat are used for each material phase. At present, material properties for six metals are included in the code. These are: aluminium, nickel, steel, molybdenum, copper and silicon

  10. Beam conditioner for free electron lasers and synchrotrons

    International Nuclear Information System (INIS)

    Liu, H.; Neil, G.R.

    1998-01-01

    A focused optical has been used to introduce an optical pulse, or electromagnetic wave, collinear with the electron beam in a free electron laser or synchrotron thereby adding an axial field component that accelerates the electrons on the radial outside of the distribution of electrons in the electron beam. This invention consists of using the axial electrical component of a TEM 10 mode Gaussian beam in vacuum to condition the electron beam and speed up the outer electrons in the beam. The conditioning beam should possess about the same diameter as the electron beam. The beam waist of the conditioning wave must be located around the entrance of the undulator longitudinally to have a net energy exchange between the electrons in the outer part of the distribution and the conditioning wave owing to the natural divergence of a Gaussian beam. By accelerating the outer electrons, the outer and core electrons are caused to stay in phase. This increases the fraction of the electron beam energy that is converted to light thereby improving the efficiency of conversion of energy to light and therefore boosting the power output of the free electron laser and synchrotron. 4 figs

  11. Welding of Zr-based bulk metallic glasses

    International Nuclear Information System (INIS)

    Elahi, M.

    2010-01-01

    Recently, many bulk metallic glass (BMG) materials with high specific strength, hardness and superior corrosion resistance have been developed and the maximum thickness of some Zr-based BMGs have reached several tenths of millimeters. Nevertheless, homogeneous glassy BMGs are not thick enough to be used for structural applications. In order to extend the engineering applications of BMG materials, BMG welding technologies needed to be developed. Specifically, the welding technologies of dissimilar materials such as BMG materials to crystalline alloys are to be developed. The functional use of the specific properties of each material in dissimilar material combination provides flexible design possibilities for products. In this project electron beam welding is employed to join BMG with BMG of different composition as well as with different crystalline materials (i.e. Hastealoy C-276, Inconel-625 and pure Ti metal). Defects free weld joint was achieved in BMG-BMG welding. Some cracks were produced in melt zone of BMG-Ti and BMG-Hastealoy C-276 welding while at joint they fuse properly with BMG. Inconel-625 could not properly weld with BMG. In all cases, hardness of melt zone was found to be higher than the base metals and the heat affected zone (HAZ). (author)

  12. Study of the effect of low-power pulse laser on arc plasma and magnesium alloy target in hybrid welding by spectral diagnosis technique

    Science.gov (United States)

    Liu, Liming; Hao, Xinfeng

    2008-10-01

    In order to study the effect of laser pulses on arc plasma and target metal in the hybrid welding process, the spectra of the plasmas in the welding process of magnesium alloys are analysed in this paper. The acquisition system of plasma spectra is set up and the spectral lines of welding plasma are acquired. Compared with tungsten-inert gas (TIG) welding, the intensities of the spectral lines of magnesium increase sharply while those of Ar decrease for strong evaporation and ionization of magnesium alloys in low-power laser/arc hybrid welding. The electron temperature and density are estimated by the Boltzmann plot method and the Stark broadening effect. The result shows that the electron temperature of arc plasma in the hybrid welding process is much lower than that in TIG welding, especially in the laser beam-affected zone. In contrast, the electron density of the plasma is enhanced. The influences of laser parameters on electron temperature are also studied. The changes in electron temperature and density indicate that the effect of laser pulse on the target metal is the dominant factor influencing the electron temperature and density in low-power laser/arc hybrid welding.

  13. Laser welding, cutting and surface treatment

    International Nuclear Information System (INIS)

    Crafer, R.C.

    1984-01-01

    Fourteen articles cover a wide range of laser applications in welding, cutting and surface treatment. Future trends are covered as well as specific applications in shipbuilding, the manufacture of heart pacemakers, in the electronics industry, in automobile production and in the aeroengine industry. Safety with industrial lasers and the measurement of laser beam parameters are also included. One article on 'Lasers in the Nuclear Industry' is indexed separately. (U.K.)

  14. Effects of Energy Density and Shielding Medium on Performance of Laser Beam Welding (LBW) Joints on SAF2205 Duplex Stainless Steel

    Science.gov (United States)

    Zhang, W. W.; Cong, S.; Luo, S. B.; Fang, J. H.

    2018-05-01

    The corrosion resistance performance of SAF2205 duplex stainless steel depends on the amount of ferrite to austenite transformation, but the ferrite content after power beam welding is always excessively high. To obtain laser beam welding joints with better mechanical and corrosion resistance performance, the effects of the energy density and shielding medium on the austenite content, hardness distribution, and shear strength were investigated. The results showed that ferrite to austenite transformation was realized with increase in the energy density. When the energy density was increased from 120 J/mm to 200 J/mm, the austenite content of the welding joint changed from 2.6% to 38.5%. Addition of nitrogen gas to the shielding medium could promote formation of austenite. When the shielding medium contained 50% and 100% nitrogen gas, the austenite content of the welding joint was 42.7% and 47.2%, respectively. The hardness and shear strength were significantly improved by increase in the energy density. However, the shielding medium had less effect on the mechanical performance. Use of the optimal welding process parameters resulted in peak hardness of 375 HV and average shear strength of 670 MPa.

  15. Angular-momentum-dominated electron beams and flat-beam generation

    International Nuclear Information System (INIS)

    Sun, Yin-e

    2005-01-01

    In the absence of external forces, if the dynamics within an electron beam is dominated by its angular momentum rather than other effects such as random thermal motion or self Coulomb-repulsive force (i.e., space-charge force), the beam is said to be angular-momentum-dominated. Such a beam can be directly applied to the field of electron-cooling of heavy ions; or it can be manipulated into an electron beam with large transverse emittance ratio, i.e., a flat beam. A flat beam is of interest for high-energy electron-positron colliders or accelerator-based light sources. An angular-momentum-dominated beam is generated at the Fermilab/NICADD photoinjector Laboratory (FNPL) and is accelerated to an energy of 16 MeV. The properties of such a beam is investigated systematically in experiment. The experimental results are in very good agreement with analytical expectations and simulation results. This lays a good foundation for the transformation of an angular-momentum-dominated beam into a flat beam. The round-to-flat beam transformer is composed of three skew quadrupoles. Based on a good knowledge of the angular-momentum-dominated beam, the quadrupoles are set to the proper strengths in order to apply a total torque which removes the angular momentum, resulting in a flat beam. For bunch charge around 0.5 nC, an emittance ratio of 100 ± 5 was measured, with the smaller normalized root-mean-square emittance around 0.4 mm-mrad. Effects limiting the flat-beam emittance ratio are investigated, such as the chromatic effects in the round-to-flat beam transformer, asymmetry in the initial angular-momentum-dominated beam, and space-charge effects. The most important limiting factor turns out to be the uncorrelated emittance growth caused by space charge when the beam energy is low, for example, in the rf gun area. As a result of such emittance growth prior to the round-to-flat beam transformer, the emittance ratio achievable in simulation decreases from orders of thousands to

  16. Angular-momentum-dominated electron beams and flat-beam generation

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yin-e [Univ. of Chicago, IL (United States)

    2005-06-01

    In the absence of external forces, if the dynamics within an electron beam is dominated by its angular momentum rather than other effects such as random thermal motion or self Coulomb-repulsive force (i.e., space-charge force), the beam is said to be angular-momentum-dominated. Such a beam can be directly applied to the field of electron-cooling of heavy ions; or it can be manipulated into an electron beam with large transverse emittance ratio, i.e., a flat beam. A flat beam is of interest for high-energy electron-positron colliders or accelerator-based light sources. An angular-momentum-dominated beam is generated at the Fermilab/NICADD photoinjector Laboratory (FNPL) and is accelerated to an energy of 16 MeV. The properties of such a beam is investigated systematically in experiment. The experimental results are in very good agreement with analytical expectations and simulation results. This lays a good foundation for the transformation of an angular-momentum-dominated beam into a flat beam. The round-to-flat beam transformer is composed of three skew quadrupoles. Based on a good knowledge of the angular-momentum-dominated beam, the quadrupoles are set to the proper strengths in order to apply a total torque which removes the angular momentum, resulting in a flat beam. For bunch charge around 0.5 nC, an emittance ratio of 100 ± 5 was measured, with the smaller normalized root-mean-square emittance around 0.4 mm-mrad. Effects limiting the flat-beam emittance ratio are investigated, such as the chromatic effects in the round-to-flat beam transformer, asymmetry in the initial angular-momentum-dominated beam, and space-charge effects. The most important limiting factor turns out to be the uncorrelated emittance growth caused by space charge when the beam energy is low, for example, in the rf gun area. As a result of such emittance growth prior to the round-to-flat beam transformer, the emittance ratio achievable in simulation decreases from orders of thousands to

  17. Electron beam emission and interaction of double-beam gyrotron

    International Nuclear Information System (INIS)

    Singh, Udaybir; Kumar, Anil; Kumar, Nitin; Kumar, Narendra; Pratap, Bhanu; Purohit, L.P.; Sinha, A.K.

    2012-01-01

    Highlights: ► The complete electrical design of electron gun and interaction structure of double-beam gyrotron. ► EGUN code is used for the simulation of electron gun of double-beam gyrotron. ► MAGIC code is used for the simulation of interaction structure of double-beam gyrotron. ► Design validations with other codes. - Abstract: This paper presents the numerical simulation of a double-beam magnetron injection gun (DB-MIG) and beam-wave interaction for 60 GHz, 500 kW gyrotron. The beam-wave interaction calculations, power and frequency growth estimation are performed by using PIC code MAGIC. The maximum output power of 510 kW at 41.5% efficiency, beam currents of 6 A and 12 A, electron beam velocity ratios of 1.41 and 1.25 and beam voltage of 69 kV are estimated. To obtain the design parameters, the DB-MIG with maximum transverse velocity spread less than 5% is designed. The computer simulations are performed by using the commercially available code EGUN and the in-house developed code MIGANS. The simulated results of DB-MIG design obtained by using the EGUN code are also validated with another trajectory code TRAK, which are in good agreement.

  18. Electron beam emission and interaction of double-beam gyrotron

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Udaybir, E-mail: uday.ceeri@gmail.com [Gyrotron Laboratory, Microwave Tube Area, Central Electronics Engineering Research Institute (CEERI), Council of Scientific and Industrial Research (CSIR), Pilani, Rajasthan 333031 (India); Department of Physics, Gurukul Kangri University, Haridwar 249404 (India); Kumar, Anil [Gyrotron Laboratory, Microwave Tube Area, Central Electronics Engineering Research Institute (CEERI), Council of Scientific and Industrial Research (CSIR), Pilani, Rajasthan 333031 (India); Kumar, Nitin, E-mail: nitin_physika@rediffmail.com [Gyrotron Laboratory, Microwave Tube Area, Central Electronics Engineering Research Institute (CEERI), Council of Scientific and Industrial Research (CSIR), Pilani, Rajasthan 333031 (India); Kumar, Narendra; Pratap, Bhanu [Gyrotron Laboratory, Microwave Tube Area, Central Electronics Engineering Research Institute (CEERI), Council of Scientific and Industrial Research (CSIR), Pilani, Rajasthan 333031 (India); Purohit, L.P. [Department of Physics, Gurukul Kangri University, Haridwar 249404 (India); Sinha, A.K., E-mail: aksinha@ceeri.ernet.in [Gyrotron Laboratory, Microwave Tube Area, Central Electronics Engineering Research Institute (CEERI), Council of Scientific and Industrial Research (CSIR), Pilani, Rajasthan 333031 (India)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer The complete electrical design of electron gun and interaction structure of double-beam gyrotron. Black-Right-Pointing-Pointer EGUN code is used for the simulation of electron gun of double-beam gyrotron. Black-Right-Pointing-Pointer MAGIC code is used for the simulation of interaction structure of double-beam gyrotron. Black-Right-Pointing-Pointer Design validations with other codes. - Abstract: This paper presents the numerical simulation of a double-beam magnetron injection gun (DB-MIG) and beam-wave interaction for 60 GHz, 500 kW gyrotron. The beam-wave interaction calculations, power and frequency growth estimation are performed by using PIC code MAGIC. The maximum output power of 510 kW at 41.5% efficiency, beam currents of 6 A and 12 A, electron beam velocity ratios of 1.41 and 1.25 and beam voltage of 69 kV are estimated. To obtain the design parameters, the DB-MIG with maximum transverse velocity spread less than 5% is designed. The computer simulations are performed by using the commercially available code EGUN and the in-house developed code MIGANS. The simulated results of DB-MIG design obtained by using the EGUN code are also validated with another trajectory code TRAK, which are in good agreement.

  19. Optics of Electron Beam in the Recycler

    International Nuclear Information System (INIS)

    Burov, A.; Kroc, T.; Lebedev, V.; Nagaitsev, S.; Prost, L.; Pruss, S.; Shemyakin, A.; Sutherland, M.; Warner, A.; Kazakevich, G.; Tiunov, M.

    2006-01-01

    Electron cooling of 8.9 GeV/c antiprotons in the Recycler ring (Fermilab) requires high current and good quality of the DC electron beam. Electron trajectories of ∼0.2 A or higher DC electron beam have to be parallel in the cooling section, within ∼ 0.2 mrad, making the beam envelope cylindrical. These requirements yielded a specific scheme of the electron transport from a gun to the cooling section, with electrostatic acceleration and deceleration in the Pelletron. Recuperation of the DC beam limits beam losses at as tiny level as ∼0.001%, setting strict requirements on the return electron line to the Pelletron and a collector. To smooth the beam envelope in the cooling section, it has to be linear and known at the transport start. Also, strength of the relevant optic elements has to be measured with good accuracy. Beam-based optic measurements are being carried out and analysed to get this information. They include beam simulations in the Pelletron, differential optic (beam response) measurements and simulation, beam profile measurements with optical transition radiation, envelope measurements and analysis with orifice scrapers. Current results for the first half-year of commissioning are presented. Although electron cooling is already routinely used for pbar stacking, its efficiency is expected to be improved

  20. Electron Beam Lithography for nano-patterning

    DEFF Research Database (Denmark)

    Greibe, Tine; Anhøj, Thomas Aarøe; Khomtchenko, Elena

    2014-01-01

    in a polymer. Electron beam lithography is a suitable method for nano-sized production, research, or development of semiconductor components on a low-volume level. Here, we present electron beam lithography available at DTU Danchip. We expertize a JEOL 9500FZ with electrons accelerated to an energy of 100ke......, the room temperature is controlled to an accuracy of 0.1 degrees in order to minimize the thermally induced drift of the beam during pattern writing. We present process results in a standard positive tone resist and pattern transfer through etch to a Silicon substrate. Even though the electron beam...... of electrons in the substrate will influence the patterning. We present solutions to overcome these obstacles....

  1. Electron beam curing of polymer matrix composites

    International Nuclear Information System (INIS)

    Janke, C.J.; Wheeler, D.; Saunders, C.

    1998-01-01

    The purpose of the CRADA was to conduct research and development activities to better understand and utilize the electron beam PMC curing technology. This technology will be used to replace or supplement existing PMC thermal curing processes in Department of Energy (DOE) Defense Programs (DP) projects and American aircraft and aerospace industries. This effort involved Lockheed Martin Energy Systems, Inc./Lockheed Martin Energy Research Corp. (Contractor), Sandia National Laboratories, and ten industrial Participants including four major aircraft and aerospace companies, three advanced materials companies, and three electron beam processing organizations. The technical objective of the CRADA was to synthesize and/or modify high performance, electron beam curable materials that meet specific end-use application requirements. There were six tasks in this CRADA including: Electron beam materials development; Electron beam database development; Economic analysis; Low-cost Electron Beam tooling development; Electron beam curing systems integration; and Demonstration articles/prototype structures development. The contractor managed, participated and integrated all the tasks, and optimized the project efforts through the coordination, exchange, and dissemination of information to the project participants. Members of the Contractor team were also the principal inventors on several electron beam related patents and a 1997 R and D 100 Award winner on Electron-Beam-Curable Cationic Epoxy Resins. The CRADA achieved a major breakthrough for the composites industry by having successfully developed high-performance electron beam curable cationic epoxy resins for use in composites, adhesives, tooling compounds, potting compounds, syntactic foams, etc. UCB Chemicals, the world's largest supplier of radiation-curable polymers, has acquired a license to produce and sell these resins worldwide

  2. Plasma channels for electron beam transport

    International Nuclear Information System (INIS)

    Schneider, R.F.; Smith, J.R.; Moffatt, M.E.; Nguyen, K.T.; Uhm, H.S.

    1988-01-01

    In recent years, there has been much interest in transport of intense relativistic electron beams using plasma channels. These channels are formed by either: ionization of an organic gas by UV photoionization or electron impact ionization of a low pressure gas utilizing a low energy (typically several hundred volts) electron gun. The second method is discussed here. As their electron gun, the authors used a 12 volt lightbulb filament which is biased to -400 volts with respect to the grounded 15 cm diameter drift tube. The electrons emitted from the filament are confined by an axial magnetic field of --100 Gauss to create a plasma channel which is less than 1 cm in radius. The channel density has been determined with Langmuir probes and the resulting line densities were found to be 10 11 to 10 12 per cm. When a multi-kiloamp electron beam is injected onto this channel, the beam space charge will eject the plasma electrons leaving the ions behind to charge neutralize the electron beam, hence allowing the beam to propagate. In this work, the authors performed experimental studies on the dynamics of the plasma channel. These include Langmuir probe measurements of a steady state (DC) channel, as well as time-resolved Langmuir probe studies of pulsed channels. In addition they performed experimental studies of beam propagation in these plasma channels. Specifically, they observed the behavior of current transport in these channels. Detailed results of beam transport and channel studies are presented

  3. Development of spin polarized electron beam

    International Nuclear Information System (INIS)

    Nakanishi, Tsutomu

    2001-01-01

    Physical structure of the polarized electron beam production is explained in this paper. Nagoya University group has been improving the quality of beam. The present state of quality and the development objects are described. The new results of the polarized electron reported in 'RES-2000 Workshop' in October 2000, are introduced. The established ground of GaAs type polarized electron beam source, observation of the negative electron affinity (NEA) surface, some problems of NEA surface of high energy polarized electron beam such as the life, time response, the surface charge limited phenomena of NEA surface are explained. The interested reports in the RES-2000 Workshop consisted of observation by SPLEEM (Spin Low Energy Electron Microscope), Spin-STM and Spin-resolved Photoelectron Spectroscopy. To increase the performance of the polarized electron source, we will develop low emittance and large current. (S.Y.)

  4. Correlation between corrosion resistance properties and thermal cycles experienced by gas tungsten arc welding and laser beam welding Alloy 690 butt weldments

    International Nuclear Information System (INIS)

    Lee, H T; Wu, J L

    2009-01-01

    This study investigates the correlation between the thermal cycles experienced by Alloy 690 weldments fabricated using gas tungsten arc welding (GTAW) and laser beam welding (LBW) processes, and their corresponding corrosion resistance properties. The corrosion resistance of the weldments is evaluated using a U-bend stress corrosion test in which the specimens are immersed in a boiling, acid solution for 240 h. The experimental results reveal that the LBW inputs significantly less heat to the weldment than the GTAW, and therefore yields a far faster cooling rate. Moreover, the corrosion tests show that in the GTAW specimen, intergranular corrosion (IGC) occurs in both the fusion zone (FZ) and the heat affected zone (HAZ). By contrast, the LBW specimen shows no obvious signs of IGC.

  5. Mechanical properties of TIG and EB weld joints of F82H

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, Takanori, E-mail: hirose.takanori@jaea.go.jp; Sakasegawa, Hideo; Nakajima, Motoki; Tanigawa, Hiroyasu

    2015-10-15

    Highlights: • Narrow groove TIG minimized volume of F82H weld. • Mechanical properties of TIG and EB welds of F82H have been characterized. • Post weld heat treatment successfully moderate the toughness of weld metal without softening the base metal. - Abstract: This work investigates mechanical properties of weld joints of a reduced activation ferritic/martensitic steel, F82H and effects of post weld heat treatment on the welds. Vickers hardness, tensile and Charpy impact tests were conducted on F82H weld joints prepared using tungsten-inert-gas and electron beam after various heat treatments. Although narrow groove tungsten-inert-gas welding reduced volume of weld bead, significant embrittlement was observed in a heat affected zone transformed due to heat input. Post weld heat treatment above 993 K successfully moderated the brittle transformed region. The hardness of the brittle region strongly depends on the heat treatment temperature. Meanwhile, strength of base metal was slightly reduced by the treatment at temperature ranging from 993 to 1053 K. Moreover, softening due to double welding was observed only in the weld metal, but negligible in base metal.

  6. Attainment of Electron Beam Suitable for Medium Energy Electron Cooling

    International Nuclear Information System (INIS)

    Seletskiy, Sergey M.; Rochester U.

    2005-01-01

    Electron cooling of charged particle beams is a well-established technique at electron energies of up to 300 keV. However, up to the present time the advance of electron cooling to the MeV-range energies has remained a purely theoretical possibility. The electron cooling project at Fermilab has recently demonstrated the first cooling of 8.9 GeV/c antiprotons in the Recycler ring, and therefore, has proved the validity of the idea of relativistic electron cooling. The Recycler Electron Cooler (REC) is the key component of the Tevatron Run II luminosity upgrade project. Its performance depends critically on the quality of electron beam. A stable electron beam of 4.3 MeV carrying 0.5 A of DC current is required. The beam suitable for the Recycler Electron Cooler must have an angular spread not exceeding 200 (micro)rad. The full-scale prototype of the REC was designed, built and tested at Fermilab in the Wideband laboratory to study the feasibility of attaining the high-quality electron beam. In this thesis I describe various aspects of development of the Fermilab electron cooling system, and the techniques used to obtain the electron beam suitable for the cooling process. In particular I emphasize those aspects of the work for which I was principally responsible. Chapter 1 is an introduction where I describe briefly the theory and the history of electron cooling, and derive the requirements to the quality of electron beam and requirements to the basic parameters of the Recycler Electron Cooler. Chapter 2 is devoted to the theoretical consideration of the motion of electrons in the cooling section, description of the cooling section and of the measurement of the magnetic fields. In Chapter 3 I consider different factors that increase the effective electron angle in the cooling section and suggest certain algorithms for the suppression of parasitic angles. Chapter 4 is devoted to the measurements of the energy of the electron beam. In the concluding Chapter 5 I review

  7. EIC Electron Beam Polarimetry Workshop Summary

    International Nuclear Information System (INIS)

    Lorenzon, W.

    2008-01-01

    A summary of the Precision Electron Beam Polarimetry Workshop for a future Electron Ion Collider (EIC) is presented. The workshop was hosted by the University of Michigan Physics Department in Ann Arbor on August 23-24, 2007 with the goal to explore and study the electron beam polarimetry issues associated with the EIC to achieve sub-1% precision in polarization determination. Ideas are being presented that were exchanged among experts in electron polarimetry and source and accelerator design to examine existing and novel electron beam polarization measurement schemes

  8. Electron Beam Ion Sources

    CERN Document Server

    Zschornacka, G.; Thorn, A.

    2013-12-16

    Electron beam ion sources (EBISs) are ion sources that work based on the principle of electron impact ionization, allowing the production of very highly charged ions. The ions produced can be extracted as a DC ion beam as well as ion pulses of different time structures. In comparison to most of the other known ion sources, EBISs feature ion beams with very good beam emittances and a low energy spread. Furthermore, EBISs are excellent sources of photons (X-rays, ultraviolet, extreme ultraviolet, visible light) from highly charged ions. This chapter gives an overview of EBIS physics, the principle of operation, and the known technical solutions. Using examples, the performance of EBISs as well as their applications in various fields of basic research, technology and medicine are discussed.

  9. Electron-beam flue-gas treatment system

    International Nuclear Information System (INIS)

    Aoki, Sinji; Suzuki, Ryoji

    1994-01-01

    The damage of forests in the world due to acid rain has become serious problems, and the development of high efficiency and economical desulfurization and denitration technologies for combustion exhaust gas has been desired. Japan leads the world in exhaust gas treatment technology. The conventional technologies have been the desulfurization by lime gypsum process and the denitration by ammonia catalytic reduction process. The solution by entirely new concept is the electron beam treatment technology for exhaust gas. This technology is a dry process without drain, and does not require catalyst. The byproduct from this technology was approved as a fertilizer. The electron beam treatment technology is called EBA (electron beam with ammonia). The exhaust gas treatment technology by electron beam process is constituted by the cooling of exhaust gas, ammonia addition, electron beam irradiation and the separation of byproduct. The features of the technology are the simultaneous removal of sulfur and nitrogen oxides, dry process, the facilities are simple and the operation is easy, easy following to load variation and the utilization of byproduct. The reaction mechanism of desulfurization and denitration, the course of development, the electron beam generator, and the verifying test are reported. (K.I.)

  10. Monitor tables for electron beams in radiotherapy

    International Nuclear Information System (INIS)

    Christ, G.; Dohm, O.S.

    2007-01-01

    The application of electron beams in radiotherapy is still based on tables of monitor units, although 3-D treatment planning systems for electron beams are available. This have several reasons: The need for 3-D treatment planning is not recognized; there is no confidence in the calculation algorithm; Monte-Carlo algorithms are too time-consuming; and the effort necessary to measure basic beam data for 3-D planning is considered disproportionate. However, the increasing clinical need for higher dosimetric precision and for more conformal electron beams leads to the requirement for more sophisticated tables of monitor units. The present paper summarizes and discusses the main aspects concerning the preparation of tables of monitor units for electron beams. The measurement equipment and procedures for measuring basic beam data needed for tables of monitor units for electron beams are described for a standard radiation therapy linac. The design of tables of monitor units for standard electron applicators is presented; this design can be extended for individual electron inserts, to variable applicator surface distances, to oblique beam incidence, and the use of bolus material. Typical data of an Elekta linac are presented in various tables. (orig.)

  11. Acceleration of laser-injected electron beams in an electron-beam driven plasma wakefield accelerator

    International Nuclear Information System (INIS)

    Knetsch, Alexander

    2018-03-01

    Plasma wakefields deliver accelerating fields that are approximately a 100 times higher than those in conventional radiofrequency or even superconducting radiofrequency cavities. This opens a transformative path towards novel, compact and potentially ubiquitous accelerators. These prospects, and the increasing demand for electron accelerator beamtime for various applications in natural, material and life sciences, motivate the research and development on novel plasma-based accelerator concepts. However, these electron beam sources need to be understood and controlled. The focus of this thesis is on electron beam-driven plasma wakefield acceleration (PWFA) and the controlled injection and acceleration of secondary electron bunches in the accelerating wake fields by means of a short-pulse near-infrared laser. Two laser-triggered injection methods are explored. The first one is the Trojan Horse Injection, which relies on very good alignment and timing control between electron beam and laser pulse and then promises electron bunches with hitherto unprecedented quality as regards emittance and brightness. The physics of electron injection in the Trojan Horse case is explored with a focus on the final longitudinal bunch length. Then a theoretical and numerical study is presented that examines the physics of Trojan Horse injection when performed in an expanding wake generated by a smooth density down-ramp. The benefits are radically decreased drive-electron bunch requirements and a unique bunch-length control that enables longitudinal electron-bunch shaping. The second laser-triggered injection method is the Plasma Torch Injection, which is a versatile, all-optical laser-plasma-based method capable to realize tunable density downramp injection. At the SLAC National Laboratory, the first proof-of-principle was achieved both for Trojan Horse and Plasma Torch injection. Setup details and results are reported in the experimental part of the thesis along with the commissioning

  12. Vacuum welding of metals; Soudage des metaux sous vide

    Energy Technology Data Exchange (ETDEWEB)

    Stohr, J A; Briola, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    This new welding process has been developed by the Commissariat a l'Energie Atomique (CEA) in France. The edges of the work-pieces are melted by the impact of an electron beam produced by an electron gun. Welding is carried out in a vacuum of 10{sup -4} to 10{sup -8} mm of mercury. The welding machine consists, diagrammatically, of: a) a metal enclosure in which a vacuum is produced; b) a cathode for electron emission, a high-voltage generator for accelerating these electrons, a focusing device; c) a mechanical device for moving (rotating) the work-piece. Advantages of the process: 1) possible welding of highly oxidizable metals (e.g. zirconium); 2) fabrication of high-vacuum-sealed metal containers; 3) production of very deeply penetrated welds. Therefore, this new process is particularly advantageous for atomic power applications, the fabrication of electron tubes and, more generally, for all industries in which very special metals are used. (author) [French] Ce procede de soudage a ete recemment mis au point au Commissariat a l'Energie Atomique en France (CEA). Il consiste a utiliser, pour fondre les levres des pieces a souder, l'impact d'un faisceau d'electrons produit par un canon a electrons. Le soudage s'effectue sous un vide de 10{sup -4} a 10{sup -8} mm de mercure. La machine a souder se compose schematiquement: a) d'une enceinte metallique ou l'on fait le vide; b) d'une cathode emettant des electrons, d'un generateur H.T. permettant d'accelerer ces electrons d'un dispositif de focalisation; c) d'un dispositif mecanique permettant le deplacement (rotation) de la piece a souder. Avantages de ce procede: 1) possibilite de souder les metaux tres oxydables (exemple: zirconium); 2) realisation de 'containers' metalliques fermes sous vide pousse; 3) obtention de profondeurs de soudures considerables. Ce nouveau procede est donc particulierement interessant pour l ' energie atomique, la fabrication des tubes electroniques et, en general, toutes les industries

  13. Simulation of the electron acoustic instability for a finite-size electron beam system

    International Nuclear Information System (INIS)

    Lin, C.S.; Winske, D.

    1987-01-01

    Satellite observations at midlatitudes (≅20,000 km) near the earth's dayside polar cusp boundary layer indicate that the upward electron beams have a narrow latitudinal width up to 0.1 0 . In the cusp boundary layer where the electron population consists of a finite-size electron beam in a background of uniform cold and hot electrons, the electron acoustic mode is unstable inside the electron beam but damped outside the electron beam. Simulations of the electron acoustic instability for a finite-size beam system are carried out with a particle-in-cell code to investigate the heating phenomena associated with the instability and the width of the heating region. The simulations show that the finite-size electron beam radiates electrostatic electron acoustic waves. The decay length of the electron acoustic waves outside the beam in the simulation agrees with the spatial decay length derived from the linear dispersion equation

  14. Field size and dose distribution of electron beam

    International Nuclear Information System (INIS)

    Kang, Wee Saing

    1980-01-01

    The author concerns some relations between the field size and dose distribution of electron beams. The doses of electron beams are measured by either an ion chamber with an electrometer or by film for dosimetry. We analyzes qualitatively some relations; the energy of incident electron beams and depths of maximum dose, field sizes of electron beams and depth of maximum dose, field size and scatter factor, electron energy and scatter factor, collimator shape and scatter factor, electron energy and surface dose, field size and surface dose, field size and central axis depth dose, and field size and practical range. He meets with some results. They are that the field size of electron beam has influence on the depth of maximum dose, scatter factor, surface dose and central axis depth dose, scatter factor depends on the field size and energy of electron beam, and the shape of the collimator, and the depth of maximum dose and the surface dose depend on the energy of electron beam, but the practical range of electron beam is independent of field size

  15. Corrosion behavior of welds in oxygen containing liquid lead

    Energy Technology Data Exchange (ETDEWEB)

    Heinzel, A.; Weisenburger, A.; Mueller, G. [Karlsruhe Institute of Technology (Germany). Inst. for Pulsed Power and Microwave Technology

    2012-11-01

    Liquid lead (Pb) and lead-bismuth eutectic (LBE) have been considered as coolant and/or spallation target in future accelerator driven systems (ADS). Therefore, in the recent years a lot of corrosion experiments on conventional steels were carried out in these heavy liquid metals. Beside these experiments, also tests on welded joints are required. Therefore ferritic/martensitic (F/M) steels (P91, P92) as well as an ODS steel were joint with TIG (Tungsten-Inert-Gas), EB (Electron Beam) and friction stir welding. After that, specimens were exposed to 10{sup -6} and 10{sup -8}wt% oxygen containing lead at 550 C for about 2000h. Weld regions having similar chemical composition and similar structure due to a heat treatment after the welding process show a corrosion behaviour under these conditions that is similar to that of the respective bulk material. (orig.)

  16. Investigations of the boundary conditions of acicular ferrite formation in fast-quenched welded materials. Final report; Untersuchungen der Randbedingungen fuer die Bildung von 'acicular ferrite' in Schweissguetern bei schneller Abkuehlung. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Dilthey, U.; Biesenbach, M.

    2000-06-19

    The authors investigated the boundary conditions in which a fine-grained ferritic needle structure with sufficient low-temperature toughness is obtained in conditions of extreme heating and cooling. Alloy compositions and welding boundary conditions were investigated for laser welding, electron beam welding in a vacuum and electron beam welding at atmospheric pressure. [German] Im Rahmen dieser Arbeit soll untersucht werden, welche Randbedingungen erfuellt sein muessen, damit sich unter extremen Aufheiz- und Abkuehlbedingungen, wie sie bei den Strahlschweissverfahren vorliegen, ein feinkoerniges nadelferritisches Gefuege mit ausreichend hoher Tieftemperaturzaehigkeit bildet. Diesbezueglich ist fuer die Strahlschweissverfahren Laserstrahlschweissen, Elektronenstrahlschweissen im Vakuum und Elektronenstrahlschweissen unter Atmosphaerendruck zu ermitteln, welche Legierungszusammensetzungen diese Voraussetzungen erfuellen und wie sie unter realen Schweissbedingungen verwirklicht werden koennen. (orig.)

  17. Industrial applications of electron beam technology

    International Nuclear Information System (INIS)

    Khairul Zaman Mohd Dahlan

    1997-01-01

    Electron beam technology was first introduced in Malaysia in 1989 with the conclusion of the bilateral cooperation between the Malaysian Institute for Nuclear Technology Research (MINT) and Japan International Co-operation Agency (JICA) on Radiation Application Projects. Two electron beam accelerators with energy of 3.0 MeV and 200 keV were installed at MINT. These two accelerators pave the way for R and D to be carried out in radiation processing of polymers for cross-linking and surface curing. In 1994, another electron beam accelerator was installed in the private sector for cross-linking of home appliance wires. Since then, two more accelerators were installed in the private sector for cross-linking of heat shrinkable plastic films. Recently, a local company has acquired a low energy electron beam machine for cross-linking of plastic film. Within a period of 7 years, industrial applications of electron beam technology in Malaysia have increased significantly

  18. Plasma lenses for focusing relativistic electron beams

    International Nuclear Information System (INIS)

    Govil, R.; Wheeler, S.; Leemans, W.

    1997-01-01

    The next generation of colliders require tightly focused beams with high luminosity. To focus charged particle beams for such applications, a plasma focusing scheme has been proposed. Plasma lenses can be overdense (plasma density, n p much greater than electron beam density, n b ) or underdense (n p less than 2 n b ). In overdense lenses the space-charge force of the electron beam is canceled by the plasma and the remaining magnetic force causes the electron beam to self-pinch. The focusing gradient is nonlinear, resulting in spherical aberrations. In underdense lenses, the self-forces of the electron beam cancel, allowing the plasma ions to focus the beam. Although for a given beam density, a uniform underdense lens produces smaller focusing gradients than an overdense lens, it produces better beam quality since the focusing is done by plasma ions. The underdense lens can be improved by tapering the density of the plasma for optimal focusing. The underdense lens performance can be enhanced further by producing adiabatic plasma lenses to avoid the Oide limit on spot size due to synchrotron radiation by the electron beam. The plasma lens experiment at the Beam Test Facility (BTF) is designed to study the properties of plasma lenses in both overdense and underdense regimes. In particular, important issues such as electron beam matching, time response of the lens, lens aberrations and shot-to-shot reproducibility are being investigated

  19. Compact two-beam push-pull free electron laser

    Science.gov (United States)

    Hutton, Andrew [Yorktown, VA

    2009-03-03

    An ultra-compact free electron laser comprising a pair of opposed superconducting cavities that produce identical electron beams moving in opposite directions such that each set of superconducting cavities accelerates one electron beam and decelerates the other electron beam. Such an arrangement, allows the energy used to accelerate one beam to be recovered and used again to accelerate the second beam, thus, each electron beam is decelerated by a different structure than that which accelerated it so that energy exchange rather than recovery is achieved resulting in a more compact and highly efficient apparatus.

  20. Electron Beam Polarization Measurement Using Touschek Lifetime Technique

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Changchun; /Duke U., DFELL; Li, Jingyi; /Duke U., DFELL; Mikhailov, Stepan; /Duke U., DFELL; Popov, Victor; /Duke U., DFELL; Wu, Wenzhong; /Duke U., DFELL; Wu, Ying; /Duke U., DFELL; Chao, Alex; /SLAC; Xu, Hong-liang; /Hefei, NSRL; Zhang, Jian-feng; /Hefei, NSRL

    2012-08-24

    Electron beam loss due to intra-beam scattering, the Touschek effect, in a storage ring depends on the electron beam polarization. The polarization of an electron beam can be determined from the difference in the Touschek lifetime compared with an unpolarized beam. In this paper, we report on a systematic experimental procedure recently developed at Duke FEL laboratory to study the radiative polarization of a stored electron beam. Using this technique, we have successfully observed the radiative polarization build-up of an electron beam in the Duke storage ring, and determined the equilibrium degree of polarization and the time constant of the polarization build-up process.

  1. Design of Laser Welding Parameters for Joining Ti Grade 2 and AW 5754 Aluminium Alloys Using Numerical Simulation

    Directory of Open Access Journals (Sweden)

    Mária Behúlová

    2017-01-01

    Full Text Available Joining of dissimilar Al-Ti alloys is very interesting from the point of view of weight reduction of components and structures in automotive or aerospace industries. In the dependence on cooling rate and chemical composition, rapid solidification of Al-Ti alloys during laser welding can lead to the formation of metastable phases and brittle intermetallic compounds that generally reduce the quality of produced weld joints. The paper deals with design and testing of welding parameters for preparation of weld joints of two sheets with different thicknesses from titanium Grade 2 and AW 5754 aluminium alloy. Temperature fields developed during the formation of Al-Ti butt joints were investigated by numerical simulation in ANSYS software. The influence of laser welding parameters including the laser power and laser beam offset on the temperature distribution and weld joint formation was studied. The results of numerical simulation were verified by experimental temperature measurement during laser beam welding applying the TruDisk 4002 disk laser. The microstructure of produced weld joints was assessed by light microscopy and scanning electron microscopy. EDX analysis was applied to determine the change in chemical composition across weld joints. Mechanical properties of weld joints were evaluated using tensile tests and Vickers microhardness measurements.

  2. Beam dosimetry in high-power electron accelerators

    International Nuclear Information System (INIS)

    Popov, V.N.; Zhitomirskii, B.M.; Ermakov, A.N.; Terebilin, A.V.; Stryukov, V.A.

    1987-01-01

    In order to evaluate beam utilization efficiency, measure the radiation yield, and determine the cost effectiveness of the new technologies, it is necessary to know the radiation power of the electron beam absorbed by the reacting medium. To measure the electron-beam power the authors designed, built, and tested a radiation detector combining a Faraday cylinder with a continuous-flow calorimeter. The construction of the detector is shown. The radiation detector was tested on a number of electron accelerators. The beam-power and mean-electron-energy measurement results for the LUE-8M accelerator with 8 MeV maximum electron energy are given

  3. Survey of welding processes for field fabrication of 2 1/4 Cr-1 Mo steel pressure vessels. [128 references

    Energy Technology Data Exchange (ETDEWEB)

    Grotke, G.E.

    1980-04-01

    Any evaluation of fabrication methods for massive pressure vessels must consider several welding processes with potential for heavy-section applications. These include submerged-arc and shielded metal-arc, narrow-joint modifications of inert-gas metal-arc and inert-gas tungsten-arc processes, electroslag, and electron beam. The advantage and disadvantages of each are discussed. Electroslag welding can be dropped from consideration for joining of 2 1/4 Cr-1 Mo steel because welds made with this method do not provide the required mechanical properties in the welded and stress relieved condition. The extension of electron-beam welding to sections as thick as 4 or 8 inches (100 or 200 mm) is too recent a development to permit full evaluation. The manual shielded metal-arc and submerged-arc welding processes have both been employed, often together, for field fabrication of large vessels. They have the historical advantage of successful application but present other disadvantages that make them otherwise less attractive. The manual shielded metal-arc process can be used for all-position welding. It is however, a slow and expensive technique for joining heavy sections, requires large amounts of skilled labor that is in critically short supply, and introduces a high incidence of weld repairs. Automatic submerged-arc welding has been employed in many critical applications and for welding in the flat position is free of most of the criticism that can be leveled at the shielded metal-arc process. Specialized techniques have been developed for horizontal and vertical position welding but, used in this manner, the applications are limited and the cost advantage of the process is lost.

  4. Q-switch Nd:YAG laser welding of AISI 304 stainless steel foils

    Energy Technology Data Exchange (ETDEWEB)

    P' ng, Danny [Laboratory for Lasers, MEMS and Nanotechnology, Department of Mechanical Engineering, Iowa State University, Ames, IA 50011-2161 (United States); Molian, Pal [Laboratory for Lasers, MEMS and Nanotechnology, Department of Mechanical Engineering, Iowa State University, Ames, IA 50011-2161 (United States)], E-mail: molian@iastate.edu

    2008-07-15

    Conventional fusion welding of stainless steel foils (<100 {mu}m thickness) used in computer disk, precision machinery and medical device applications suffer from excessive distortion, formation of discontinuities (pore, void and hot crack), uncontrolled melting (melt-drop through) and poor aesthetics. In this work, a 15 ns pulsed, 400 mJ Nd:YAG laser beam was utilized to overcome these barriers in seam welding of 60 {mu}m thin foil of AISI 304 stainless steel. Transmission electron microscopy was used to characterize the microstructures while hardness and tensile-shear tests were used to evaluate the strengths. Surface roughness was measured using a DekTak profilometer while porosity content was estimated using the light microscope. Results were compared against the data obtained from resistance seam welding. Laser welding, compared to resistance seam welding, required nearly three times less heat input and produced welds having 50% narrower seam, 15% less porosity, 25% stronger and improved surface aesthetics. In addition, there was no evidence of {delta}-ferrite in laser welds, supporting the absence of hot cracking unlike resistance welding.

  5. Electron beam extraction from a HVPES

    International Nuclear Information System (INIS)

    Marghitu, S.; Cramariuc, R.; Nicolescu, I.; Niculescu, M.

    1996-01-01

    The results of the research concerning the extraction system of the fast electrons from a cold cathode high voltage glow discharge plasma electron source (HVPES) are presented. For using the electron beam in a more flexible way, that is changing the shape of the minimum cross-section, (or beam cross-over), of the beam in a sample S frontal plane, without perturbing the discharge parameters, some modifications to a reference internal geometry were tested. Finally, a geometry was found in which the discharge volume may be separated in two parts, one, 'a discharge space', filled with plasma and fast electrons and another, 'working space', occupied specially by the fast electron beam. In this new geometry the electrical discharge parameters, I d - discharge current, U d - discharge voltage, were the same as for the reference geometry. (authors)

  6. Beam induced heat loads on the beam-screens of the twin-bore magnets in the IRs of the HL-LHC

    CERN Document Server

    Iadarola, Giovanni; Rumolo, Giovanni

    2016-01-01

    The expected heat load induced on the beam screens has been evaluated for all the twin-bore magnets in the Insertion Regions (IRs) of the HL-LHC. The contribution from the impedance of the beam screen has been evaluated taking into account the presence of a longitudinal weld in the beam screen and the impact of the temperature and of the magnetic field on the resistivity of the surface. The contribution coming from electron cloud effects has been evaluated for different values of the Secondary Electron Yield of the surface based PyECLOUD build-up simulations.

  7. Improvement in properties of welded joints of titanium alloy VT22 by thermocyclic treatment

    International Nuclear Information System (INIS)

    Lyasotskaya, V.S.; Kulikov, F.R.; Kirillov, Yu.G.; Ravdonikas, N.Yu.

    1983-01-01

    The results of investigations of the thermocyclic treatment (TCT) effect on the structure and properties of butt welded joints of tubes (with external diameter 180 mm and wall thickness 20-25 mm) of the VT22 alloy are presented. Welded joints have been obtained by means of multipassing automatic argon-arc (ARAW) and electron-beam (ELB) welding. It is shown that TCT of welded joints of the VT22 alloy results in formation in all zones of substructure with disperse precipitations of α-phase which is analogous to the structure of near welded seam zone metal immediately after welding. As a result of TCT and subsequent TT of welded joints poligonization and recrystallization processes of α- and #betta#-phases, changes in parameters of structural components and thin phase structure take place. TCT with strengthening TT or annealing leads to strength increase, while TCT with annealing besides that improves placticity and impact strength of the VT22 alloy welded joints

  8. Industrial applications or electron beams

    International Nuclear Information System (INIS)

    Martin, J. I.

    2001-01-01

    Industrial use of electron beams began in the 1950's with the crosslinking of polyethylene film and wire insulation. Today the number of electron beam Processing Systems installed for industrial applications throughout the world has grown to more than six hundred stations in over 35 countries. Total installed power is now approaching 40 megawatts (over 8 million tons of products per year). Electron beam is now utilized by many major industries including plastics, automotive, rubber goods, wire and cable, electrical insulation, semiconductor, medical, packaging, or pollution control. The principal effect of high-energy electrons is to produce ions in the materials treated, resulting in the liberation of orbital electrons. As a result, the original molecule is modified and the ree radicals combine to form new molecules with new chemical reactions or dis organisation od the DNA chains of living organisms (insects, fungus, microorganisms, etc.). (Author) 8 refs

  9. Electron beam interaction with space plasmas

    International Nuclear Information System (INIS)

    Krafft, C.; Volokitin, A.S.

    1999-01-01

    Active space experiments involving the controlled injection of electron beams and the formation of artificially generated currents can provide in many cases a calibration of natural phenomena connected with the dynamic interaction of charged particles with fields. They have a long history beginning from the launches of small rockets with electron guns in order to map magnetic fields lines in the Earth's magnetosphere or to excite artificial auroras. Moreover, natural beams of charged particles exist in many space and astrophysical plasmas and were identified in situ by several satellites; a few examples are beams connected with solar bursts, planetary foreshocks or suprathermal fluxes traveling in planetary magnetospheres. Many experimental and theoretical works have been performed in order to interpret or plan space experiments involving beam injection as well as to understand the physics of wave-particle interaction, as wave radiation, beam dynamics and background plasma modification. Recently, theoretical studies of the nonlinear evolution of a thin monoenergetic electron beam injected in a magnetized plasma and interacting with a whistler wave packet have led to new results. The influence of an effective dissipation process connected with whistler wave field leakage out of the beam volume to infinity (that is, effective radiation outside the beam) on the nonlinear evolution of beam electrons distribution in phase space has been studied under conditions relevant to active space experiments and related laboratory modelling. The beam-waves system's evolution reveals the formation of stable nonlinear structures continuously decelerated due to the effective friction imposed by the strongly dissipated waves. The nonlinear interaction between the electron bunches and the wave packet are discussed in terms of dynamic energy exchange, particle trapping, slowing down of the beam, wave dissipation and quasi-linear diffusion. (author)

  10. Introduction to electron beam processing

    Energy Technology Data Exchange (ETDEWEB)

    Kawakami, Waichiro [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1994-12-31

    The contents are general features in the irradiation of polymers, electron beam machines - low energy, medium energy, high energy; application of EB machine in industries, engineering of EB processing, dosimetry of EB (electron beam) safe operation of EB machine, recent topics on EB processing under development. 3 tabs., 4 figs., 17 refs.

  11. Introduction to electron beam processing

    International Nuclear Information System (INIS)

    Waichiro Kawakami

    1994-01-01

    The contents are general features in the irradiation of polymers, electron beam machines - low energy, medium energy, high energy; application of EB machine in industries, engineering of EB processing, dosimetry of EB (electron beam) safe operation of EB machine, recent topics on EB processing under development. 3 tabs., 4 figs., 17 refs

  12. Hollow Electron Beam Collimation for HL-LHC - Effects on the Beam Core

    Energy Technology Data Exchange (ETDEWEB)

    Fitterer, M. [Fermilab; Stancari, G. [Fermilab; Valishev, A. [Fermilab; Bruce, R. [CERN; Papotti, G [CERN; Redaelli, S. [CERN; Valentino, G. [Malta U.; Valentino, G. [CERN; Valuch, D. [CERN; Xu, C. [CERN

    2017-06-13

    Collimation with hollow electron beams is currently one of the most promising concepts for active halo control in the High Luminosity Large Hadron Collider (HL-LHC). To ensure the successful operation of the hollow beam collimator the unwanted effects on the beam core, which might arise from the operation with a pulsed electron beam, must be minimized. This paper gives a summary of the effect of hollow electron lenses on the beam core in terms of sources, provides estimates for HL-LHC and discusses the possible mitigation methods.

  13. Post-irradiation mechanical tests on F82H EB and TIG welds

    International Nuclear Information System (INIS)

    Rensman, J.; Osch, E.V. van; Horsten, M.G.; D'Hulst, D.S.

    2000-01-01

    The irradiation behaviour of electron beam (EB) and tungsten inert gas (TIG) welded joints of the reduced-activation martensitic steel IEA heat F82H-mod. was investigated by neutron irradiation experiments in the high flux reactor (HFR) in Petten. Mechanical test specimens, such as tensile specimens and KLST-type Charpy impact specimens, were neutron irradiated up to a dose level of 2-3 dpa at a temperature of 300 deg. C in the HFR reactor in Petten. The tensile results for TIG and EB welds are as expected with practically no strain hardening capacity left. Considering impact properties, there is a large variation in impact properties for the TIG weld. The irradiation tends to shift the DBTT of particularly the EB welds to very high values, some cases even above +250 deg. C. PWHT of EB-welded material gives a significant improvement of the DBTT and USE compared to the as-welded condition

  14. Thick-joint welding process. Chapter 5

    International Nuclear Information System (INIS)

    Wood, D.; Terry, P.; Dickinson, F.S.

    1980-01-01

    This chapter reviews the techniques currently employed in the welding of pressure vessels, ranging from traditional manual metal arc and submerged arc processes to the more recently introduced narrow-gap and high-energy processes, e.g. electron beam and laser. The effect on the properties of the base materials being joined and the relative economics of the various processes is examined, from which guidance on the balance between joint properties and economy can be gained. (author)

  15. Electron beam effects in auger electron spectroscopy and scanning electron microscopy

    International Nuclear Information System (INIS)

    Fontaine, J.M.; Duraud, J.P.; Le Gressus, C.

    1979-01-01

    Electron beam effects on Si(100) and 5% Fe/Cr alloy samples have been studied by measurements of the secondary electron yield delta, determination of the surface composition by Auger electron spectroscopy and imaging with scanning electron microscopy. Variations of delta as a function of the accelerating voltage Esub(p) (0.5 -9 Torr has no effect on technological samples covered with their reaction layers; the sensitivities to the beam depend rather on the earlier mechanical, thermal and chemical treatment of the surfaces. (author)

  16. Ductile fracture of two-phase welds under 77K. [Steel-EhP810, steel-EhP666, steel-08Kh18N10T, steel-EhP659-VI, steel-chP810

    Energy Technology Data Exchange (ETDEWEB)

    Yushchenko, K.A.; Voronin, S.A.; Pustovit, A.I.; Shavel' , A.V.

    The effect of the type of welding and fillers on crack resistance of welded joints high-strength steel EhP810 and its various compounds with steels EhP666, 08Kh18N10T has been studied. For the welding of steel EhP810 with steels EhP810, EhP666, 08Kh18N10T electron-beam, automatic, argon tungsten arc with non-consumable electrode with various fillers, as well as argon metal-arc welding with consumable electrode, were used. It is shown, that for a joint, made by electron-beam welding, parameters sigmasub(u), Ksub(IcJ), KCV are higher than for a joint of a similar phase structure made using filler wire EhP659-VI. It is explained by the fact, that during electron-beam welding joint metal refining takes place, which removes gases. In welded joints of chP810 steel, having joints with austenitic structure, characteristic of crack resistance Ssub(c) increases by more than 0.2 mm in contrast to two-phase joints, which conventional yield strength at 77 K exceeds 1000 MPa. It is worth mentioning, that for other classes of steels formation of two-phase structure of joint increases welded joint resistance to brittle fracture. It is possible to obtain the required structure of joint with assigned level of resistance to brittle fracture by means of the use of different fillers, optimum and welding procedure, regulating the part of the basic metal in joint content.

  17. Beam line design for a low energy electron beam

    International Nuclear Information System (INIS)

    Arvind Kumar; Mahadevan, S.

    2002-01-01

    The design of a beam line for transport of a 70 keV electron beam from a thermionic gun to the Plane Wave Transformer (PWT) linac incorporating two solenoid magnets, a beam profile monitor and drift sections is presented. We used beam dynamics codes EGUN, PARMELA and compare simulated results with analytical calculations. (author)

  18. Electron beam extraction from a HVPES

    Energy Technology Data Exchange (ETDEWEB)

    Marghitu, S; Cramariuc, R [Accelerators Laboratory, Institute of Physics and Technology for Radiation Devices, PO Box MG-06, R-76900 Bucharest (Romania); Nicolescu, I; Niculescu, M [Institute of Research and Design for Electrical Engineering, ICPE - Electrostatica, Splaiul Unirii 313, Sect. 3, R-74204 Bucharest (Romania)

    1997-12-31

    The results of the research concerning the extraction system of the fast electrons from a cold cathode high voltage glow discharge plasma electron source (HVPES) are presented. For using the electron beam in a more flexible way, that is changing the shape of the minimum cross-section, (or beam cross-over), of the beam in a sample S frontal plane, without perturbing the discharge parameters, some modifications to a reference internal geometry were tested. Finally, a geometry was found in which the discharge volume may be separated in two parts, one, `a discharge space`, filled with plasma and fast electrons and another, `working space`, occupied specially by the fast electron beam. In this new geometry the electrical discharge parameters, I{sub d} - discharge current, U{sub d} - discharge voltage, were the same as for the reference geometry. (authors) 5 refs., 4 figs., 3 tabs.

  19. Manufacturing prototypes for LIPAC beam dump

    Energy Technology Data Exchange (ETDEWEB)

    Arranz, F., E-mail: fernando.arranz@ciemat.es [CIEMAT, Madrid (Spain); Brañas, B.; Iglesias, D. [CIEMAT, Madrid (Spain); Nomen, O. [IREC, Barcelona (Spain); Rapisarda, D.; Lapeña, J.; Muñoz, A. [CIEMAT, Madrid (Spain); Szcepaniak, B. [GALVANO-T, Windeck (Germany); Manini, J. [CARMAN, Madrid (Spain); Gómez, J. [TRINOS VACUUM, Valencia (Spain)

    2014-10-15

    Highlights: •Electroforming of copper and electronbeam welding techniques are compared. •Mechanical properties of Cu–stainless steel joint by electroforming are presented. •Achieved manufacturing tolerances are shown. •The difficulties and solutions for the complicated manufacturing are explained. -- Abstract: The purpose of the research is to define the most adequate manufacturing process for the dump of a linear deuteron accelerator. The deuteron beam can be pulsed as well as continuous with energies up to 9 MeV. The maximum beam power is 1.12 MW corresponding to a beam current of 125 mA. The requirements on the surface on which the deuterons will be stopped are quite demanding and the length and slenderness of the cone poses a considerable difficulty in the manufacturing process. The design of the beam dump is based on a copper cone 2500 mm long, 300 mm aperture and 5 to 6.5 mm thickness. Basically only two technologies were found feasible for the manufacturing of the cone: Electroforming and Electron Beam Welding (EBW). The article shows the main results found when manufacturing different prototypes.

  20. Electron beam producing system for very high acceleration voltages and beam powers

    International Nuclear Information System (INIS)

    Andelfinger, C.; Dommaschk, W.; Ott, W.; Ulrich, M.; Weber, G.

    1975-01-01

    An electron beam producing system for acceleration voltages on the order of megavolts and beam powers on the order of gigawatts is described. A tubular housing of insulating material is used, and adjacent to its one closed end, a field emission cathode with a large surface area is arranged, while at its other end, from which the electron beam emerges, an annular anode is arranged. The device for collimating the electron beam consists of annular electrodes. (auth)

  1. Nature-Inspired Capillary-Driven Welding Process for Boosting Metal-Oxide Nanofiber Electronics.

    Science.gov (United States)

    Meng, You; Lou, Kaihua; Qi, Rui; Guo, Zidong; Shin, Byoungchul; Liu, Guoxia; Shan, Fukai

    2018-06-20

    Recently, semiconducting nanofiber networks (NFNs) have been considered as one of the most promising platforms for large-area and low-cost electronics applications. However, the high contact resistance among stacking nanofibers remained to be a major challenge, leading to poor device performance and parasitic energy consumption. In this report, a controllable welding technique for NFNs was successfully demonstrated via a bioinspired capillary-driven process. The interfiber connections were well-achieved via a cooperative concept, combining localized capillary condensation and curvature-induced surface diffusion. With the improvements of the interfiber connections, the welded NFNs exhibited enhanced mechanical property and high electrical performance. The field-effect transistors (FETs) based on the welded Hf-doped In 2 O 3 (InHfO) NFNs were demonstrated for the first time. Meanwhile, the mechanisms involved in the grain-boundary modulation for polycrystalline metal-oxide nanofibers were discussed. When the high-k ZrO x dielectric thin films were integrated into the FETs, the field-effect mobility and operating voltage were further improved to be 25 cm 2 V -1 s -1 and 3 V, respectively. This is one of the best device performances among the reported nanofibers-based FETs. These results demonstrated the potencies of the capillary-driven welding process and grain-boundary modulation mechanism for metal-oxide NFNs, which could be applicable for high-performance, large-scale, and low-power functional electronics.

  2. Joining technologies for the 1990s: Welding, brazing, soldering, mechanical, explosive, solid-state, adhesive

    Science.gov (United States)

    Buckley, John D. (Editor); Stein, Bland A. (Editor)

    1986-01-01

    A compilation of papers presented in a joint NASA, American Society for Metals, The George Washington University, American Welding Society, and Society of Manufacturing Engineers Conference on Welding, Bonding, and Fastening at Langley Research Center, Hampton, VA, on October 23 to 25, 1984 is given. Papers were presented on technology developed in current research programs relevant to welding, bonding, and fastening of structural materials required in fabricating structures and mechanical systems used in the aerospace, hydrospace, and automotive industries. Topics covered in the conference included equipment, hardware and materials used when welding, brazing, and soldering, mechanical fastening, explosive welding, use of unique selected joining techniques, adhesives bonding, and nondestructive evaluation. A concept of the factory of the future was presented, followed by advanced welding techniques, automated equipment for welding, welding in a cryogenic atmosphere, blind fastening, stress corrosion resistant fasteners, fastening equipment, explosive welding of different configurations and materials, solid-state bonding, electron beam welding, new adhesives, effects of cryogenics on adhesives, and new techniques and equipment for adhesive bonding.

  3. Characterization of lap joints laser beam welding of thin AA 2024 sheets with Yb:YAG disk-laser

    Science.gov (United States)

    Caiazzo, Fabrizia; Alfieri, Vittorio; Cardaropoli, Francesco; Sergi, Vincenzo

    2012-06-01

    Lap joints obtained by overlapping two plates are widely diffused in aerospace industry. Nevertheless, because of natural aging, adhesively bonded and riveted aircraft lap joints may be affected by cracks from rivets, voids or corrosion. Friction stir welding has been proposed as a valid alternative, although large heat affected zones are produced both in the top and the bottom plate due to the pin diameter. Interest has therefore been shown in studying laser lap welding as the laser beam has been proved to be competitive since it allows to concentrate the thermal input and increases productivity and quality. Some challenges arise as a consequence of aluminum low absorptance and high thermal conductivity; furthermore, issues are due to metallurgical challenges such as both micro and macro porosity formation and softening in the fused zone. Welding of AA 2024 thin sheets in a lap joint configuration is discussed in this paper: tests are carried out using a recently developed Trumpf TruDisk 2002 Yb:YAG disk-laser with high beam quality which allows to produce beads with low plates distortion and better penetration. The influence of the processing parameters is discussed considering the fused zone extent and the bead shape. The porosity content as well as the morphological features of the beads have been examined.

  4. Dynamic Tear test and its potential for evaluating the toughness of welds

    International Nuclear Information System (INIS)

    Mara, G.L.

    1975-01-01

    The Dynamic Tear (DT) test is used to evaluate the influence of electron beam welding on the mechanical properties of HP-9-4-20 and 250 maraging steel. Basic trade-offs in strength and toughness are identified thereby revealing the usefulness and degree of sensitivity of the test. (auth)

  5. Low activation steels welding with PWHT and coating for ITER Test Blanket Modules and DEMO

    International Nuclear Information System (INIS)

    Aubert, P.; Tavassoli, F.; Rieth, M.; Diegele, E.; Poitevin, Y.

    2009-01-01

    Eurofer weldability is established for data base assessment and TBM manufacturing support. Electron Beam, Hybrid (Laser combined with MIG/MAG), Laser and Narrow Gap TIG processes have been carried out on Eurofer Low activation steel. Electron Beam produces very narrow fusion zone width, in the range of 3 to 4 mm, and too strong enhanced weld shape with brittle joints with δ-ferrite and pores. This process is considered only for low penetration depth (cooling plates). The other processes produce 2 families of similar results: one for Hybrid (MIG + Laser) and Laser processes, and a second one for TIG and Narrow Gap TIG processes. The first one procures less distortion and coarsened fusion zone, due to higher cooling rate. For all the welding processes, high hardness values, increasing brittleness and softening effects in the Heat Affected Zone are observed for each welding configuration that could signal creep problems. The Fusion Zones are typically composed of martensite laths, with small grain sizes. In the Heat Affected Zones, martensite grains are observed with carbide precipitation. Eurofer filler wire with optimized chemical composition is developed for producing welds with good properties and high joint coefficient value. To restore mechanical properties after welding, PWHT have been developed: single step for the first family and 2 steps for the second one. Distortions of different mock-ups with and without PWHT have been managed to assess manufacturing rules and clamping devices. Welding data base has thus been established. W coating on the TBM structure has shown no strong effect on the TBM structure. (author)

  6. Proton-antiproton colliding beam electron cooling

    International Nuclear Information System (INIS)

    Derbenev, Ya.S.; Skrinskij, A.N.

    1981-01-01

    A possibility of effective cooling of high-energy pp tilde beams (E=10 2 -10 3 GeV) in the colliding mode by accompanying radiationally cooled electron beam circulating in an adjacent storage ring is studied. The cooling rate restrictions by the pp tilde beam interaction effects while colliding and the beam self-heating effect due to multiple internal scattering are considered. Some techniques permitting to avoid self-heating of a cooling electron beam or suppress its harmful effect on a heavy particle beam cooling are proposed. According to the estimations the cooling time of 10 2 -10 3 s order can be attained [ru

  7. Capabilities of infrared weld monitor

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, P.G.; Keske, J.S.; Leong, K.H.; Kornecki, G.

    1997-11-01

    A non-obtrusive pre-aligned, solid-state device has been developed to monitor the primary infrared emissions during laser welding. The weld monitor output is a 100-1000 mV signal that depends on the beam power and weld characteristics. The DC level of this signal is related to weld penetration, while AC portions of the output can be correlated with surface irregularities and part misalignment or contamination. Changes in DC behavior are also noted for both full and deep penetration welds. Full penetration welds are signified by an abrupt reduction in the weld monitor output. Bead on plate welds were made on steel, aluminum, and magnesium with both a CW CO{sub 2} laser and a pulsed Nd:YAG laser to explore the relationships between the weld characteristics and the weld monitor output.

  8. Shielding in electron beams used in radiotherapy

    International Nuclear Information System (INIS)

    Sentenac, Irenee.

    1979-01-01

    The interactions of electron beams with initial energies between 7 and 30 MeV have been studied in various materials including polystyrene, aluminium, copper and lead. The following experimental results have been found: estimation of measurement point displacement in a cylindrical chamber and of its variations with electron beam energy, empirical relations between the energy at the surface and the practical range of the electrons in various materials, an estimation of the relative ionisation due to the 'bremsstrahlung' measured behind different materials with beam complete shielding. Improvement of electron beam collimation is suggested after analysis of the dose distribution behind partial shielding [fr

  9. Electron-beam-excited gas laser research

    International Nuclear Information System (INIS)

    Johnson, A.W.; Gerardo, J.B.; Patterson, E.L.; Gerber, R.A.; Rice, J.K.; Bingham, F.W.

    1975-01-01

    Net energy gain in laser fusion places requirements on the laser that are not realized by any existing laser. Utilization of relativistic electron beams (REB's), a relatively new source for the excitation of gas laser media, may lead to new lasers that could satisfy these requirements. Already REB's have been utilized to excite gas laser media and produce gas lasers that have not been produced as successfully any other way. Electron-beam-excitation has produced electronic-transition dimer lasers that have not yet been produced by any other excitation scheme (for example, Xe 2 / sup *(1)/, Kr:O(2 1 S)/sup 2/, KrF/sup *(3)/). In addition, REB's have initiated chemical reactions to produce HF laser radiation with unique and promising results. Relativistic-electron-beam gas-laser research is continuing to lead to new lasers with unique properties. Results of work carried out at Sandia Laboratories in this pioneering effort of electron-beam-excited-gas lasers are reviewed. (U.S.)

  10. Qualification of final closure for disposal container I - applicability of TIG and EBW for overpack welding

    International Nuclear Information System (INIS)

    Asano, H.; Kawahara, K.; Ishii, J.; Shige, T.

    2002-01-01

    Regarding the final sealing technique of the overpack using carbon steel, one of the candidate materials for the disposal container in the geological disposal of high-level radioactive waste in Japan, welding tests were conducted using TIG (GTAW), a typical arc welding process, and electron beam welding (EBW), a high-energy beam welding process. The purpose of the tests was to evaluate the applicability, the scope of the applications and the conditions for the application of the existing techniques; while also examining the welding conditions and the weld quality. Regarding TIG, the optimum welding conditions (the conditions pertaining to the welding procedures and the groove geometry) were checked by using a specimen with a plate thickness of 50 mm, and then circumferential welding tests were conducted for cylindrical specimens with a groove depth of 100 mm and 150 mm. Radiographic testing showed that there was no significant weld defect in the weld and that the welding characteristics were satisfactory. The results of the test of the mechanical properties of the joint were also satisfactory. Measurement of the temperature distribution and the residual stress distribution at the time of the welding was conducted for an evaluation of the residual stress caused by the welding, and an appropriate residual stress analysis method was developed, which confirmed the generation of tensile stress along the circumferential direction of the weld. Then it was pointed out that a necessity of further consideration of how to reduce the stress and to examine the influence that residual stress has on corrosion property. The goal in the EBW test was to achieve a one-pass full penetration welding process for 190 mm while conducting a partial penetration welding test for a welding depth of 80 mm. Subsequent radiographic testing confirmed that there was no significant weld defect. (orig.)

  11. Electron-Beam Produced Air Plasma: Optical Measurement of Beam Current

    Science.gov (United States)

    Vidmar, Robert; Stalder, Kenneth; Seeley, Megan

    2006-10-01

    Experiments to quantify the electron beam current and distribution of beam current in air plasma are discussed. The air plasma is produced by a 100-keV 10-mA electron beam source that traverses a transmission window into a chamber with air as a target gas. Air pressure is between 1 mTorr and 760 Torr. Strong optical emissions due to electron impact ionization are observed for the N2 2^nd positive line at 337.1 nm and the N2^+ 1^st negative line at 391.4 nm. Calibration of optical emissions using signals from the isolated transmission window and a Faraday plate are discussed. The calibrated optical system is then used to quantify the electron distribution in the air plasma.

  12. Electron beam curable polymer thick film

    International Nuclear Information System (INIS)

    Nagata, Hidetoshi; Kobayashi, Takashi

    1988-01-01

    Currently, most printed circuit boards are produced by the selective etching of copper clads laminated on dielectric substrates such as paper/phenolic resion or nonwoven glass/epoxy resin composites. After the etchig, various components such as transistors and capacitors are mounted on the boards by soldering. But these are troublesome works, therefore, as an alternative, printing method has been investigated recently. In the printing method, conductor circuits and resistors can be made by printing and curing of the specially prepared paste on dielectric substrates. In the near future, also capacitors are made by same method. Usually, conductor paste, resistor paste and dielectric paste are employed, and in this case, the printing is screen printing, and the curing is done thermally. In order to avoid heating and the deterioration of substrates, attention was paid to electron beam curing, and electron beam curable polymer thick film system was developed. The electron beam curable paste is the milled mixture of a filler and an electron beam curable binder of oligomer/monomer. The major advantage of electron beam curable polymer thick film, the typical data of a printed resistor of this type and its trial are reported. (K.I.)

  13. Feedback control of laser welding based on frequency analysis of light emissions and adaptive beam shaping

    Czech Academy of Sciences Publication Activity Database

    Mrňa, Libor; Šarbort, Martin; Řeřucha, Šimon; Jedlička, Petr

    2012-01-01

    Roč. 39, NOV (2012), s. 784-791 ISSN 1875-3892. [LANE 2012. Laser Assisted Net Shape Engineering /7./ International Conference on Photonic Technologies. Fürth, 12.11.2012-15.12.2012] Institutional support: RVO:68081731 Keywords : laser welding * feedback control * frequency analysis * adaptive beam shaping Subject RIV: BH - Optics, Masers, Lasers

  14. Comparative Studies on Microstructure, Mechanical and Pitting Corrosion of Post Weld Heat Treated IN718 Superalloy GTA and EB Welds

    Science.gov (United States)

    Dilkush; Mohammed, Raffi; Madhusudhan Reddy, G.; Srinivasa Rao, K.

    2018-03-01

    In the present study, an attempt has been made to weld Inconel 718 nickel-base superalloy (IN718 alloy) using gas tungsten arc welding (GTAW) and electron beam welding (EBW) processes. Both the weldments were subjected to post-weld heat treatment condition as follows -980°C / 20 min followed by direct aging condition (DA) as 720°C/8 h/FC followed by 620°C/8 h/AC. The GTA and EB welds of IN718 alloy were compared in two conditions as-received and 980STA conditions. Welds were characterized to observe mechanical properties, pitting corrosion resistance by correlating with observed microstructures. The rate of higher cooling ranges, the fusion zone of EBW exhibited discrete and relative finer lave phases whereas the higher niobium existed laves with coarser structure were observed in GTAW. The significant dissolution of laves were observed at 980STA of EBW. Due to these effects, the EBW of IN718 alloy showed the higher mechanical properties than GTAW. The electrochemical potentiostatic etch test was carried out in 3.5wt% sodium chloride (NaCl) solution to study the pitting corrosion behaviour of the welds. Results of the present investigation established that mechanical properties and pitting corrosion behaviour are significantly better in post weld heat treated condition. The comparative studies showed that the better combination of mechanical properties and pitting corrosion resistance were obtained in 980STA condition of EBW than GTAW.

  15. Keyhole formation and thermal fluid flow-induced porosity during laser fusion welding in titanium alloys: Experimental and modelling

    International Nuclear Information System (INIS)

    Panwisawas, Chinnapat; Perumal, Bama; Ward, R. Mark; Turner, Nathanael; Turner, Richard P.; Brooks, Jeffery W.; Basoalto, Hector C.

    2017-01-01

    High energy-density beam welding, such as electron beam or laser welding, has found a number of industrial applications for clean, high-integrity welds. The deeply penetrating nature of the joints is enabled by the formation of metal vapour which creates a narrow fusion zone known as a “keyhole”. However the formation of the keyhole and the associated keyhole dynamics, when using a moving laser heat source, requires further research as they are not fully understood. Porosity, which is one of a number of process induced phenomena related to the thermal fluid dynamics, can form during beam welding processes. The presence of porosity within a welded structure, inherited from the fusion welding operation, degrades the mechanical properties of components during service such as fatigue life. In this study, a physics-based model for keyhole welding including heat transfer, fluid flow and interfacial interactions has been used to simulate keyhole and porosity formation during laser welding of Ti-6Al-4V titanium alloy. The modelling suggests that keyhole formation and the time taken to achieve keyhole penetration can be predicted, and it is important to consider the thermal fluid flow at the melting front as this dictates the evolution of the fusion zone. Processing induced porosity is significant when the fusion zone is only partially penetrating through the thickness of the material. The modelling results are compared with high speed camera imaging and measurements of porosity from welded samples using X-ray computed tomography, radiography and optical micrographs. These are used to provide a better understanding of the relationship between process parameters, component microstructure and weld integrity.

  16. Electron beam generation form a superemissive cathode

    International Nuclear Information System (INIS)

    Hsu, T.-Y.; Liou, R.-L.; Kirkman-Amemiya, G.; Gundersen, M.A.

    1991-01-01

    An experimental study of electron beams produced by a superemissive cathode in the Back-Lighted Thyratron (BLT) and the pseudospark is presented. This work is motivated by experiments demonstrating very high current densities (≥10 kA/cm 2 over an area of 1 cm 2 ) from the pseudospark and BLT cathode. This high-density current is produced by field-enhanced thermionic emission from the ion beam-heated surface of a molybdenum cathode. This work reports the use of this cathode as a beam source, and is to be distinguished from previous work reporting hollow cathode-produced electron beams. An electron beam of more than 260 A Peak current has been produced with 15 kV applied voltage. An efficiency of ∼10% is estimated. These experimental results encourage further investigation of the super-emissive cathode as an intense electron beam source for applications including accelerator technology

  17. Weldability and weld performance of a special grade Hastelloy-X modified for high-temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Shimizu, S.; Mutoh, Y.

    1984-01-01

    The characteristics of weld defects in the electron beam (EB) welding and the tungsten inert gas (TIG) arc welding for Hastelloy-XR, a modified version of Hastelloy-X, are clarified through the bead-on-plate test and the Trans-Varestraint test. Based on the results, weldabilities on EB and TIG weldings for Hastelloy-XR are discussed and found to be almost the same as Hastelloy-X. The creep rupture behaviors of the welded joints are evaluated by employing data on creep properties of the base and the weld metals. According to the evaluation, the creep rupture strength of the EB-welded joint may be superior to that of the TIG-welded joint. The corrosion test in helium containing certain impurities is conducted for the weld metals. There is no significant difference of such corrosion characteristics as weight gain, internal oxidation, depleted zone, and so on between the base and the weld metals. Those are superior to Hastelloy-X

  18. Optimal design for laser beam butt welding process parameter using artificial neural networks and genetic algorithm for super austenitic stainless steel

    Science.gov (United States)

    Sathiya, P.; Panneerselvam, K.; Soundararajan, R.

    2012-09-01

    Laser welding input parameters play a very significant role in determining the quality of a weld joint. The joint quality can be defined in terms of properties such as weld bead geometry, mechanical properties and distortion. Therefore, mechanical properties should be controlled to obtain good welded joints. In this study, the weld bead geometry such as depth of penetration (DP), bead width (BW) and tensile strength (TS) of the laser welded butt joints made of AISI 904L super austenitic stainless steel were investigated. Full factorial design was used to carry out the experimental design. Artificial Neural networks (ANN) program was developed in MatLab software to establish the relationships between the laser welding input parameters like beam power, travel speed and focal position and the three responses DP, BW and TS in three different shielding gases (Argon, Helium and Nitrogen). The established models were used for optimizing the process parameters using Genetic Algorithm (GA). Optimum solutions for the three different gases and their respective responses were obtained. Confirmation experiment has also been conducted to validate the optimized parameters obtained from GA.

  19. Physics with polarized electron beams

    International Nuclear Information System (INIS)

    Swartz, M.L.

    1988-01-01

    As a distinct field, elementary particle physics is now approximately forty years old. In all that time, only a few of the thousands of experiments that have been performed have made use of spin polarized particle beams (with apologies to those who have studied neutrino interactions, polarized beam are defined to refer to the case in which the experimenter has control over the polarization direction). If the discussion is restricted to spin polarized electron beams, the number of experiments becomes countable with the fingers of one hand (with several to spare). There are two reasons for this lack of interest. The first is that spin polarized beams are difficult to produce, accelerate, and transport. The second reason is that any physical process that can occur during the collision of a polarized particle with another (polarized or not) can also occur during the collision of unpolarized particles. One might ask then, why has any effort been expended on the subject. The answer, at least in the case of polarized electron beams, is that electron accelerators and storage rings have in recent years achieved sufficient energy to begin to probe the weak interaction directly. The weak interaction distinguishes between left- and right-handed fermionic currents. Left-handed particles interact in a fundamentally different way than their right-handed counterparts. If the experimenter wishes to explore or exploit this difference, he (or she) must either prepare the spin state of the incident particles or analyze the spin state of outgoing particles. For reasons of genearlity and improved statistical precision, the former is usually preferable to the latter. The first of these lectures will review some of the techniques necessary for the production, transport, and monitoring of polarized electron (or positron) beams. The second lecture will survey some of the physics possibilities of polarized electron-positron collisions

  20. Optical design and development of a fiber coupled high-power diode laser system for laser transmission welding of plastics

    Science.gov (United States)

    Rodríguez-Vidal, Eva; Quintana, Iban; Etxarri, Jon; Azkorbebeitia, Urko; Otaduy, Deitze; González, Francisco; Moreno, Fernando

    2012-12-01

    Laser transmission welding (LTW) of thermoplastics is a direct bonding technique already used in different industrial applications sectors such as automobiles, microfluidics, electronics, and biomedicine. LTW evolves localized heating at the interface of two pieces of plastic to be joined. One of the plastic pieces needs to be optically transparent to the laser radiation whereas the other part has to be absorbent, being that the radiation produced by high power diode lasers is a good alternative for this process. As consequence, a tailored laser system has been designed and developed to obtain high quality weld seams with weld widths between 0.7 and 1.4 mm. The developed laser system consists of two diode laser bars (50 W per bar) coupled into an optical fiber using a nonimaging solution: equalization of the beam parameter product (BPP) in the slow and fast axes by a pair of step-mirrors. The power scaling was carried out by means of a multiplexing polarization technique. The analysis of energy balance and beam quality was performed considering ray tracing simulation (ZEMAX) and experimental validation. The welding experiments were conducted on acrylonitrile/butadiene/styrene (ABS), a thermoplastic frequently used in automotive, electronics and aircraft applications, doped with two different concentrations of carbon nanotubes (0.01% and 0.05% CNTs). Quality of the weld seams on ABS was analyzed in terms of the process parameters (welding speed, laser power and clamping pressure) by visual and optical microscope inspections. Mechanical properties of weld seams were analyzed by mechanical shear tests. High quality weld seams were produced in ABS, revealing the potential of the laser developed in this work for a wide range of plastic welding applications.

  1. Electron beam collimation with a photon MLC for standard electron treatments

    Science.gov (United States)

    Mueller, S.; Fix, M. K.; Henzen, D.; Frei, D.; Frauchiger, D.; Loessl, K.; Stampanoni, M. F. M.; Manser, P.

    2018-01-01

    Standard electron treatments are currently still performed using standard or molded patient-specific cut-outs placed in the electron applicator. Replacing cut-outs and electron applicators with a photon multileaf collimator (pMLC) for electron beam collimation would make standard electron treatments more efficient and would facilitate advanced treatment techniques like modulated electron radiotherapy (MERT) and mixed beam radiotherapy (MBRT). In this work, a multiple source Monte Carlo beam model for pMLC shaped electron beams commissioned at a source-to-surface distance (SSD) of 70 cm is extended for SSDs of up to 100 cm and validated for several Varian treatment units with field sizes typically used for standard electron treatments. Measurements and dose calculations agree generally within 3% of the maximal dose or 2 mm distance to agreement. To evaluate the dosimetric consequences of using pMLC collimated electron beams for standard electron treatments, pMLC-based and cut-out-based treatment plans are created for a left and a right breast boost, a sternum, a testis and a parotid gland case. The treatment plans consist of a single electron field, either alone (1E) or in combination with two 3D conformal tangential photon fields (1E2X). For each case, a pMLC plan with similar treatment plan quality in terms of dose homogeneity to the target and absolute mean dose values to the organs at risk (OARs) compared to a cut-out plan is found. The absolute mean dose to an OAR is slightly increased for pMLC-based compared to cut-out-based 1E plans if the OAR is located laterally close to the target with respect to beam direction, or if a 6 MeV electron beam is used at an extended SSD. In conclusion, treatment plans using cut-out collimation can be replaced by plans of similar treatment plan quality using pMLC collimation with accurately calculated dose distributions.

  2. Evaluation of characterisation techniques for particulate weld fume morphology

    International Nuclear Information System (INIS)

    Sterjovski, Z.; Monaghan, B.J.; Norrish, J.

    2009-01-01

    An evaluation of three techniques: scanning electron microscopy (SEM); transmission electron microscopy (TEM); and laser diffraction (LD), was carried out to determine the most suitable technique for the particle-size measurement of particulate-welding fume collected during the robotic gas-metal-arc welding (GMAW) of plain-carbon steel. Particulate fume was deposited onto an Al stub positioned at a horizontal distance of 30 mm and a vertical height of 50 mm from the welding arc, and was then prepared for SEM, TEM and LD sizing. Results are presented for paniculate-welding fume collected for three welding voltages (20, 23 and 26 V) and two metal-transfer modes (dip and dip/globular). TEM imaging was found to be the most effective of the three sizing technique as it was able to resolve both fine nano-particles (5 ran diameter) and coarse nano-particles (>100 mn diameter). The TEM approach showed that results determined were reproducible and that the majority of fume particles produced at the welding voltages investigated were less than 40 nm in diameter. SEM (La B6 filament) images were shown to be inadequate for the quantitative-size analysis of paniculate-welding fume due to the limited resolution of the microscope (-40 nm). However. SEM images did confirm that at a welding voltage of 23 V the majority of particle sizes produced were less than 100 nm in diameter, and thus supported the conclusion that the individual fume particles are predominantly in the nanometre size range. LD gave unexpectedly large mean particle sizes and did not detect particles less than 180 run in diameter. It is concluded that the LD technique measures particle agglomerates and/or simultaneously monitors multiple particles in the beam path.

  3. Electron beam brightness with field immersed emission

    International Nuclear Information System (INIS)

    Boyd, J.K.; Neil, V.K.

    1985-01-01

    The beam quality or brightness of an electron beam produced with field immersed emission is studied with two models. First, an envelope formulation is used to determine the scaling of brightness with current, magnetic field and cathode radius, and examine the equilibrium beam radius. Second, the DPC computer code is used to calculate the brightness of two electron beam sources

  4. Characterization of the inhomogeneous constitutive properties of laser welding beams by the micro-Vickers hardness test and the rule of mixture

    International Nuclear Information System (INIS)

    Song, Yanli; Hua, Lin; Chu, Dongning; Lan, Jian

    2012-01-01

    Highlights: ► Relationship between Vickers hardness and material parameters was quantitatively built. ► Inhomogeneous weld properties were determined by hardness test combined the rule of mixture. ► Instrumented indentation tests verified these calculated properties of welds. ► Deviations between the calculated and experimental results were limited to 8.0%. -- Abstract: A novel approach has been proposed to characterize the inhomogeneous mechanical properties of weld materials by using the micro-Vickers hardness test combined with the rule of mixture. This proposed method has introduced the influences of the inhomogeneous properties of weld materials by considering the variations in plastic behaviour across the weld cross-section. The inhomogeneous properties of laser welding beams for tailor welded blanks (TWBs), which were three different types of combinations of DX56D and DP600 automotive steel sheets, were extracted by using this proposed method. The instrumented indentation tests were conducted to verify the measured inhomogeneous properties of weld materials. The fact that the calculated true stress–strain curves agreed well with the experimental ones has confirmed the reliability and accuracy of the proposed method.

  5. The effect of CO{sub 2} laser beam welded AISI 316L austenitic stainless steel on the viability of fibroblast cells, in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Köse, Ceyhun, E-mail: ceyhun.kose@gop.edu.tr [Faculty of Natural Sciences and Engineering, Department of Mechanical Engineering, Gaziosmanpaşa University, Tokat (Turkey); Kaçar, Ramazan, E-mail: rkacar@karabuk.edu.tr [Faculty of Technology Department of Manufacturing Engineering, Karabuk University, Karabuk 78050 (Turkey); Zorba, Aslı Pınar, E-mail: aslipinarzorba@gmail.com [Graduate School of Natural and Applied Sciences, Department of Bioengineering Cell Culture and Tissue Engineering, Yıldız Technical University, Istanbul (Turkey); Bağırova, Melahat, E-mail: mbagir@yildiz.edu.tr [Department of Bioengineering Cell Culture and Tissue Engineering, Yıldız Technical University, Istanbul (Turkey); Allahverdiyev, Adil M., E-mail: adil@yildiz.edu.tr [Department of Bioengineering Cell Culture and Tissue Engineering, Yıldız Technical University, Istanbul (Turkey)

    2016-03-01

    It has been determined by the literature research that there is no clinical study on the in vivo and in vitro interaction of the cells with the laser beam welded joints of AISI 316L biomaterial. It is used as a prosthesis and implant material and that has adequate mechanical properties and corrosion resistance characteristics. Therefore, the interaction of the CO{sub 2} laser beam welded samples and samples of the base metal of AISI 316L austenitic stainless steel with L929 fibroblast cells as an element of connective tissue under in vitro conditions has been studied. To study the effect of the base metal and the laser welded test specimens on the viability of the fibroblast cells that act as an element of connective tissues in the body, they were kept in DMEMF-12 medium for 7, 14, 28 days and 18 months. The viability study was experimentally studied using the MTT method for 7, 14, 28 days. In addition, the direct interaction of the fibroblast cells seeded on 6 different plates with the samples was examined with an inverted microscope. The MTT cell viability experiment was repeated on the cells that were in contact with the samples. The statistical relationship was analyzed using a Tukey test for the variance with the GraphPad statistics software. The data regarding metallic ion release were identified with the ICP-MS method after the laser welded and main material samples were kept in cell culture medium for 18 months. The cell viability of the laser welded sample has been detected to be higher than that of the base metal and the control based on 7th day data. However, the laser welded sample's viability of the fibroblast cells has diminished by time during the test period of 14 and 28 days and base metal shows better viability when compared to the laser welded samples. On the other hand, the base metal and the laser welded sample show better cell viability effect when compared to the control group. According to the ICP-MS results of the main material and

  6. Simulation of Electron Beam Trajectory of Thermionic Electron Gun Type with Pierce Electrode

    International Nuclear Information System (INIS)

    Suprapto; Djoko-SP; Djasiman

    2000-01-01

    The simulation of electron beam trajectory for electron gun of electron beam machine has been done. The simulation is carried out according to mechanical design of the electron gun. The simulation is carried out by using the software made by Andrzej Soltan Institute for Nuclear Studies, Swierk-Poland. The result obtained from simulation is approximately parallel electron beam trajectory of 20 mA beam current at 0.66 kV anode voltage, 15 mm cathode-anode distance and 67.5 o cathode angle. Arrangement of electron gun and accelerating tube with 15 kV voltage between anode and the first electrode of accelerating tube yields focus distance of 34 mm from the to cathode. To obtain the approximately parallel beam trajectory which has -0.03 o entrance angles to accelerating tube, the suitable cathode-anode voltage is 12.66 kV. With the entrance angle of -0.03 o it is expected that the electron beam can be accelerated and the beam profile has a small divergence after passing the accelerating tube. (author)

  7. Mechanical testing of austenitic steel welded joints. Joint final report - Vol. 2

    International Nuclear Information System (INIS)

    Boerman, D.J.; Krischer, W.

    1990-01-01

    In the field of material properties and structural behaviour of LMFBR reactor components under normal operation and accident conditions, the Commission of the European Communities has promoted an experimental study on the mechanical properties of welded austenitic steel type AISI 316L. The study was launched in the frame of the Shared Cost Action (SCA) programme 1985-1987 on reactor safety. The research was performed in four European laboratories and coordinated by JRC-Ispra. Five different welding methods have been examined. The manufacture and characterization of the welds has been described in a separate report. The present report gives the results of four different mechanical tests carried out on the weld material. The comparison of results proved that, at the present state of development, the vacuum electron beam method seems to have clear advantages as compared with the other methods investigated

  8. Electron beam curing of coatings

    International Nuclear Information System (INIS)

    Schmidt, J.; Mai, H.

    1986-01-01

    Modern low-energy electron beam processors offer the possibility for high-speed curing of coatings on paper, plastics, wood and metal. Today the electron beam curing gets more importance due to the increasing environmental problems and the rising cost of energy. For an effective curing process low-energy electron beam processors as well as very reactive binders are necessary. Generally such binders consist of acrylic-modified unsaturated polyester resins, polyacrylates, urethane acrylates or epoxy acrylates and vinyl monomers, mostly multifunctional acrylates. First results on the production of EBC binders on the base of polyester resins and vinyl monomers are presented. The aim of our investigations is to obtain binders with curing doses ≤ 50 kGy. In order to reduce the curing dose we studied mixtures of resins and acrylates. (author)

  9. Electron beam processing of wastewater in Malaysia

    International Nuclear Information System (INIS)

    Zulkafli Ghazali; Khairul Zaman Dahlan; Ting Teo Ming; Khomsaton A. Bakar

    2006-01-01

    Electron beam processing technology started in Malaysia in 1991 when two accelerators were installed through JICA cooperation to perform medical product sterilization project. Since then several private companies have installed electron accelerators to develop in removing volatile organic materials and to demonstrate flue gas treatment. In this country report, effort on electron beam processing of wastewater or contaminated groundwater is presented: After de-coloration tests using gamma rays as function of radiation doses, electron beam treatment of textile industry wastewater as function of beam energy and current intensity as well as with combined treatment such as aeration or biological treatment to examine the effectiveness in color and BOD or COD change has been carried out and the main results are reported. Furthermore, the present technique was examined to apply in river water treatment for use as drinking water. Techno-economic feasibility study for recycling of industrial waste water using electron beam technology is now underway. (S. Ohno)

  10. Electron beam diagnostic system using computed tomography and an annular sensor

    Science.gov (United States)

    Elmer, John W.; Teruya, Alan T.

    2014-07-29

    A system for analyzing an electron beam including a circular electron beam diagnostic sensor adapted to receive the electron beam, the circular electron beam diagnostic sensor having a central axis; an annular sensor structure operatively connected to the circular electron beam diagnostic sensor, wherein the sensor structure receives the electron beam; a system for sweeping the electron beam radially outward from the central axis of the circular electron beam diagnostic sensor to the annular sensor structure wherein the electron beam is intercepted by the annular sensor structure; and a device for measuring the electron beam that is intercepted by the annular sensor structure.

  11. Numerical Simulation Of The Laser Welding

    Directory of Open Access Journals (Sweden)

    Aleksander Siwek

    2008-01-01

    Full Text Available The model takes into consideration thermophysical and metallurgical properties of theremelting steel, laser beam parameters and boundary conditions of the process. As a resultof heating the material, in the area of laser beam operation a weld pool is being created,whose shape and size depends on convection caused by the Marangoni force. The directionof the liquid stream depends on the temperature gradient on the surface and on the chemicalcomposition as well. The model created allows to predict the weld pool shape depending onmaterial properties, beam parameters, and boundary conditions of the sample.

  12. Electron beam processing of polymers

    International Nuclear Information System (INIS)

    Silva, Leonardo G. Andrade e; Dias, Djalma B.; Calvo, Wilson A.P.; Miranda, Leila F. de

    2011-01-01

    The aim of this work is the use of electron beam produced by industrial electron accelerators to process polymers. There are several applications, such as, irradiation of wires and electric cables for automotive, aerospace, household appliance, naval and computing industries. The effect of different radiation doses in low density polyethylene (LDPE) was also studied. After irradiation and crosslinking it was thermally expanded forming LDPE foam. In addition, poly(N-vinyl-2-pyrrolidone) (PVP) hydrogels using electron beam processing were prepared. In all cases studied crosslinking percentages of the samples were determined. (author)

  13. Beam-ripple monitor with secondary electrons

    International Nuclear Information System (INIS)

    Sato, Shinji; Kanazawa, Mitsutaka; Noda, Koji; Takada, Eiichi; Komiyama, Akihito; Ichinohe, Ken-ichi; Sano, Yoshinobu

    1997-01-01

    To replace the scintillation-ripple monitor, we have developed a new monitor with a smaller destructive effect on the beam. In this monitor, we use secondary electrons emitted from an aluminum foil with a thickness of 2 μm. The signals of secondary electrons are amplified by an electron multiplier having a maximum gain of 10 6 . By using the new monitor, we could clearly observe the beam ripple with a beam intensity of 3.6x10 8 pps (particle per second). This monitor can also be used as an intensity monitor in the range of 10 4 - 10 9 pps. (author)

  14. Weldability of an iron meteorite by Friction Stir Spot Welding: A contribution to in-space manufacturing

    Science.gov (United States)

    Evans, William Todd; Neely, Kelsay E.; Strauss, Alvin M.; Cook, George E.

    2017-11-01

    Friction Stir Welding has been proposed as an efficient and appropriate method for in space welding. It has the potential to serve as a viable option for assembling large scale space structures. These large structures will require the use of natural in space materials such as those available from iron meteorites. Impurities present in most iron meteorites limit its ability to be welded by other space welding techniques such as electron beam laser welding. This study investigates the ability to weld pieces of in situ Campo del Cielo meteorites by Friction Stir Spot Welding. Due to the rarity of the material, low carbon steel was used as a model material to determine welding parameters. Welded samples of low carbon steel, invar, and Campo del Cielo meteorite were compared and found to behave in similar ways. This study shows that meteorites can be Friction Stir Spot Welded and that they exhibit properties analogous to that of FSSW low carbon steel welds. Thus, iron meteorites can be regarded as another viable option for in-space or Martian construction.

  15. Weldability of molybdenum and its alloy sheet, 1

    International Nuclear Information System (INIS)

    Matsuda, Fukuhisa; Ushio, Masao; Nakata, Kazuhiro; Edo, Yoshiaki

    1979-01-01

    Basic weldability of electron-beam melted pure molybdenum has been examined in electron-beam welding in high vacuum and GTA welding in pure and air mixed argon atmospheres by paying attention to weld defects such as hot cracking and porosity in weld metal and also mechanical properties of welded joint in comparison with conventional TZM alloys. The main conclusions obtained were as follows; (1) The weld metals of electron-beam melted pure molybdenum with electron-beam and GTA weldings in pure and air mixed argon atmosphere up to about 1% were almost porosity free. However, large amount of oxygen content of 200 ppm in powder-metallurgy TZM alloy made very porous weld bead in electron-beam welding in high vacuum. Therefore, oxygen content in base metal should be lowered to the minimum, that is, less than 10 ppm, especially in electron-beam welding in high vacuum. (2) Hot cracking occurred in the weld metal of GTA welding when air content in argon atmosphere exceeded about 0.6% for electron-beam melted pure molybdenum and powder metallurgy TZM alloy. In less than 0.26% air, no hot cracking were observed in this experiment. Moreover, in electron-beam welding, no hot cracking was observed in weld metals for both materials. In order to prevent the formation of hot cracking, the purity of welding atmosphere should be kept as high as possible. (3) Joint efficiency of the welded joint of electron-beam melted pure molybdenum with electron-beam welding was 50 to 60% to base metal at room temperature and 500 0 C and almost 100% at 1000 0 C. Those of GTA welds in pure and 0.13% air mixed argon atmospheres were fairly lower than those in electron-beam welding for each testing temperature. (author)

  16. Production of ion beam by conical pinched electron beam diode

    International Nuclear Information System (INIS)

    Matsukawa, Y.; Nakagawa, Y.

    1982-01-01

    Some properties of the ion beam produced by pinched electron beam diode having conical shape electrodes and organic insulator anode was studied. Ion energy is about 200keV and the peak diode current is about 30 kA. At 11cm from the diode apex, not the geometrical focus point, concentrated ion beam was obtained. Its density is more than 500A/cm 2 . The mean ion current density within the radius of 1.6cm around the axis from conical diode is two or three times that from an usual pinched electron beam diode with flat parallel electrodes of same dimension and impedance under the same conditions. (author)

  17. Effect of electron beam on the properties of electron-acoustic rogue waves

    Science.gov (United States)

    El-Shewy, E. K.; Elwakil, S. A.; El-Hanbaly, A. M.; Kassem, A. I.

    2015-04-01

    The properties of nonlinear electron-acoustic rogue waves have been investigated in an unmagnetized collisionless four-component plasma system consisting of a cold electron fluid, Maxwellian hot electrons, an electron beam and stationary ions. It is found that the basic set of fluid equations is reduced to a nonlinear Schrodinger equation. The dependence of rogue wave profiles and the associated electric field on the carrier wave number, normalized density of hot electron and electron beam, relative cold electron temperature and relative beam temperature are discussed. The results of the present investigation may be applicable in auroral zone plasma.

  18. The operational procedure of an electron beam accelerator

    International Nuclear Information System (INIS)

    Lee, Byung Cheol; Choi, Hwa Lim; Yang, Ki Ho; Han, Young Hwan; Kim, Sung Chan

    2008-12-01

    The KAERI(Korea Atomic Energy of Research Institute) high-power electron beam irradiation facility, operating at the energies between 0.3 MeV and 10 MeV, has provided irradiation services to users in industries, universities, and institute in various fields. This manual is for the operation of an electron beam which is established in KAERI, and describes elementary operation procedures of electron beam between 0.3 Mev and 10 MeV. KAERI Electron Accelerator facility(Daejeon, Korea) consists of two irradiators: one is a low-energy electron beam irradiator operated by normal conducting RF accelerator, the other is medium-energy irradiator operated by superconducting RF accelerator. We explain the check points of prior to operation, operation procedure of this facility and the essential parts of electron beam accelerator

  19. The operational procedure of an electron beam accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Cheol; Choi, Hwa Lim; Yang, Ki Ho; Han, Young Hwan; Kim, Sung Chan

    2008-12-15

    The KAERI(Korea Atomic Energy of Research Institute) high-power electron beam irradiation facility, operating at the energies between 0.3 MeV and 10 MeV, has provided irradiation services to users in industries, universities, and institute in various fields. This manual is for the operation of an electron beam which is established in KAERI, and describes elementary operation procedures of electron beam between 0.3 Mev and 10 MeV. KAERI Electron Accelerator facility(Daejeon, Korea) consists of two irradiators: one is a low-energy electron beam irradiator operated by normal conducting RF accelerator, the other is medium-energy irradiator operated by superconducting RF accelerator. We explain the check points of prior to operation, operation procedure of this facility and the essential parts of electron beam accelerator.

  20. Beam-beam interaction in high energy linear electron-positron colliders

    International Nuclear Information System (INIS)

    Ritter, S.

    1985-04-01

    The interaction of high energy electron and positron beams in a linear collider has been investigated using a macroparticle Monte Carlo method based on a Cloud-In-Cells plasma simulation scheme. Density evolutions, luminosities, energy and angular distributions for electrons (positrons) and synchrotron photons are calculated. Beside beams with a symmetric transverse profile also flat beams are considered. A reasonably good agreement to alternative computer calculations as well as to an analytical approximation for the energy spectrum of synchrotron photons has been obtained. (author)

  1. Ultrasonic inspection of austenitic welds

    International Nuclear Information System (INIS)

    Baikie, B.L.; Wagg, A.R.; Whittle, M.J.; Yapp, D.

    1976-01-01

    The ultrasonic examination of austenitic stainless steel weld metal has always been regarded as a difficult proposition because of the large and variable ultrasonic attenuations and back scattering obtained from apparently similar weld deposits. The work to be described shows how the existence of a fibre texture within each weld deposit (as a result of epitaxial growth through successive weld beads) produces a systematic variation in the ultrasonic attenuation coefficient and the velocity of sound, depending upon the angle between the ultrasonic beam and the fibre axis. Development work has shown that it is possible to adjust the welding parameters to ensure that the crystallographic texture within each weld is compatible with improved ultrasonic transmission. The application of the results to the inspection of a specific weld in type 316 weld metal is described

  2. Thermal Stir Welding Development at Marshall Space Flight Center

    Science.gov (United States)

    Ding, Robert J.

    2008-01-01

    Solid state welding processes have become the focus of welding process development at NASA's Marshall Space Flight Center. Unlike fusion weld processes such as tungsten inert gas (TIG), variable polarity plasma arc (VPPA), electron beam (EB), etc., solid state welding processes do not melt the material during welding. The resultant microstructure can be characterized as a dynamically recrystallized morphology much different than the casted, dentritic structure typical of fusion weld processes. The primary benefits of solid state processes over fusion weld processes include superior mechanic properties and the elimination of thermal distortion and residual stresses. These solid state processes attributes have profoundly influenced the direction of advanced welding research and development within the NASA agency. Thermal Stir Welding (TSW) is a new solid state welding process being developed at the Marshall Space Flight Center. Unlike friction stir welding, the heating, stirring and forging elements of the weld process can be decoupled for independent control. An induction coil induces energy into a workpiece to attain a desired plastic temperature. An independently controlled stir rod, captured within non-rotating containment plates, then stirs the plasticized material followed by forging plates/rollers that work the stirred weld joint. The independent control (decoupling) of heating, stirring and forging allows, theoretically, for the precision control of microstructure morphology. The TSW process is being used to evaluate the solid state joining of Haynes 230 for ARES J-2X applications. It is also being developed for 500-in (12.5 mm) thick commercially pure grade 2 titanium for navy applications. Other interests include Inconel 718 and stainless steel. This presentation will provide metallurgical and mechanical property data for these high melting temperature alloys.

  3. Buildup of electrons with hot electron beam injection into a homogeneous magnetic field

    International Nuclear Information System (INIS)

    Bashko, V.A.; Krivoruchko, A.M.; Tarasov, I.K.

    1989-01-01

    The injection of the monoenergetic beam of electrons into the vacuum drift channel under the conditions when the beam current exceeds a certain threshold value involves a virtual cathode creation. The process of virtual cathode creation leads to an exchange of one-fluid movement of beam particles to three-fluid one corresponding to incident, reflected and passed through anticathode beam particles. For the monoenergetic beam case when the velocity spread Δv dr (v dr is the beam drift velocity), the beam instability was predicted in theory and was observed in experiment. Meanwhile, the injection in the drift space of the 'hot' beam having finite spread in velocities may be accompanied not only by the reflection of particles if their velocity v 1/2 (where φ is the electrostatic potential dip value, e and m are the electron charge and mass, respectively), but also the mutual Coulomb scattering of incident and reflected electrons. The scattering process leads in its turn to appearance of viscosity forces and to trapping of a part of beam electrons into the effective potential well formed by electrostatic potential dip and the viscous force potential. The interaction of travelling and trapped particles may occur even at the stage preceding the virtual electrode formation and it may influence the process of its appearance and also the current flow through the drift space. In this report there are described the experimental results on accumulation of electrons when electron beam propagates in vacuum and has a large spread in particle velocities Δv dr in the homogeneous longitudinal magnetic field when ω pe He where ω pe is the electron Langmuir frequency of beam electrons, ω He is the electron cyclotron frequency. (author) 6 refs., 2 figs

  4. Nickel-base alloy overlay weld with improved ultrasonic flaw detection by magnetic stirring welding

    International Nuclear Information System (INIS)

    Takashi, Hirano; Kenji, Hirano; Masayuki, Watando; Takahiro, Arakawa; Minoru, Maeda

    2001-01-01

    Ultrasonic flaw detection is more difficult in Nickel-base alloy welds containing dendrites owing to the decrease ultrasonic transmissibility they cause. The present paper discusses application of magnetic stirring welding as a means for reducing dendrite growth with consequent improvement in ultrasonic transmissibility. Single pass and multi-pass welding tests were conducted to determine optimal welding conditions. By PT and macro observation subsequent to welding was carried out, optimal operation conditions were clarified. Overlay welding tests and UT clearly indicated ultrasonic beam transmissibility in overlay welds to be improved and detection capacity to be greater through application of magnetic stirring welding. Optimal operation conditions were determined based on examination of temper bead effects in the heat affected zone of low alloy steel by application of magnetic stirring welding to the butt welded joints between low alloy and stainless steel. Hardness in this zone of low alloy steel after the fourth layer was less than 350 HV. (author)

  5. Electron beam generation in z-pinch discharges

    Energy Technology Data Exchange (ETDEWEB)

    Vikhrev, V.V.; Baronova, E.O. [Kurchatov Inst., Moscow (Russian Federation). Russian Research Center

    1997-12-31

    Numerical modelling of the process of electron beam generation in z-pinch discharges are presented. The proposed model represents the electron beam generation under turbulent plasma conditions. Strong current distribution inhomogeneity in the plasma column and the zigzag drift current motion through the plasma have accounted for the adequate generation process investigation. Electron beam is generated near the maximum of compression and it is not related with the current break effect. (author)

  6. A simple electron-beam lithography system

    DEFF Research Database (Denmark)

    Mølhave, Kristian; Madsen, Dorte Nørgaard; Bøggild, Peter

    2005-01-01

    A large number of applications of electron-beam lithography (EBL) systems in nanotechnology have been demonstrated in recent years. In this paper we present a simple and general-purpose EBL system constructed by insertion of an electrostatic deflector plate system at the electron-beam exit...... of the column of a scanning electron microscope (SEM). The system can easily be mounted on most standard SEM systems. The tested setup allows an area of up to about 50 x 50 pm to be scanned, if the upper limit for acceptable reduction of the SEM resolution is set to 10 run. We demonstrate how the EBL system can...... be used to write three-dimensional nanostructures by electron-beam deposition. (C) 2004 Elsevier B.V. All rights reserved....

  7. Ion accumulation and space charge neutralization in intensive electron beams for ion sources and electron cooling

    International Nuclear Information System (INIS)

    Shirkov, G.D.

    1996-01-01

    The Electron Beam Ion Sources (EBIS), Electron Beam Ion Traps (EBIT) and electron beams for electron cooling application have the beam parameters in the same ranges of magnitudes. EBIS and EBIT produce and accumulate ions in the beam due to electron impact ionization. The cooling electron beam accumulates positive ions from the residual gas in the accelerator chamber during the cooling cycle. The space charge neutralization of cooling beam is also used to reduce the electron energy spread and enhance the cooling ability. The advanced results of experimental investigations and theoretical models of the EBIS electron beams are applied to analyze the problem of beam neutralization in the electron cooling techniques. The report presents the analysis of the most important processes connected with ion production, accumulation and losses in the intensive electron beams of ion sources and electron cooling systems for proton and ion colliders. The inelastic and elastic collision processes of charged particles in the electron beams are considered. The inelastic processes such as ionization, charge exchange and recombination change the charge states of ions and neutral atoms in the beam. The elastic Coulomb collisions change the energy of particles and cause the energy redistribution among components in the electron-ion beams. The characteristic times and specific features of ionization, beam neutralization, ion heating and loss in the ion sources and electron cooling beams are determined. The dependence of negative potential in the beam cross section on neutralization factor is studied. 17 refs., 5 figs., 1 tab

  8. Coulomb-Driven Relativistic Electron Beam Compression.

    Science.gov (United States)

    Lu, Chao; Jiang, Tao; Liu, Shengguang; Wang, Rui; Zhao, Lingrong; Zhu, Pengfei; Xiang, Dao; Zhang, Jie

    2018-01-26

    Coulomb interaction between charged particles is a well-known phenomenon in many areas of research. In general, the Coulomb repulsion force broadens the pulse width of an electron bunch and limits the temporal resolution of many scientific facilities such as ultrafast electron diffraction and x-ray free-electron lasers. Here we demonstrate a scheme that actually makes use of the Coulomb force to compress a relativistic electron beam. Furthermore, we show that the Coulomb-driven bunch compression process does not introduce additional timing jitter, which is in sharp contrast to the conventional radio-frequency buncher technique. Our work not only leads to enhanced temporal resolution in electron-beam-based ultrafast instruments that may provide new opportunities in probing material systems far from equilibrium, but also opens a promising direction for advanced beam manipulation through self-field interactions.

  9. Coulomb-Driven Relativistic Electron Beam Compression

    Science.gov (United States)

    Lu, Chao; Jiang, Tao; Liu, Shengguang; Wang, Rui; Zhao, Lingrong; Zhu, Pengfei; Xiang, Dao; Zhang, Jie

    2018-01-01

    Coulomb interaction between charged particles is a well-known phenomenon in many areas of research. In general, the Coulomb repulsion force broadens the pulse width of an electron bunch and limits the temporal resolution of many scientific facilities such as ultrafast electron diffraction and x-ray free-electron lasers. Here we demonstrate a scheme that actually makes use of the Coulomb force to compress a relativistic electron beam. Furthermore, we show that the Coulomb-driven bunch compression process does not introduce additional timing jitter, which is in sharp contrast to the conventional radio-frequency buncher technique. Our work not only leads to enhanced temporal resolution in electron-beam-based ultrafast instruments that may provide new opportunities in probing material systems far from equilibrium, but also opens a promising direction for advanced beam manipulation through self-field interactions.

  10. Measurement of electron beams profile of pierce type electron source using sensor of used Tv tube

    International Nuclear Information System (INIS)

    Darsono; Suhartono; Suprapto; Elin Nuraini

    2015-01-01

    The measurement of an electron beam profile has been performed using electron beam monitor based on method of phosphorescent materials. The main components of the electron beam monitor consists of a fluorescent sensor using a used Tv tube, CCTV camera to record images on a Tv screen, video adapter as interface between CCTV and laptop, and the laptop as a viewer and data processing. Two Pierce-type electron sources diode and triode was measured the shape of electron beam profile in real time. Results of the experiments showed that the triode electron source of Pierce type gave the shape of electron beam profiles better than that of the diode electron source .The anode voltage is not so influential on the beam profile shape. The focused voltage in the triode electron source is so influence to the shape of the electron beam profile, but above 5 kV no great effect. It can be concluded that the electron beam monitor can provide real time observations and drawings shape of the electron beam profile displayed on the used Tv tube glass screen which is the real picture of the shape of the electron beam profile. Triode electron source produces a better electron beam profile than that of the diode electron source. (author)

  11. Electron beam cladding of titanium on stainless steel plate

    International Nuclear Information System (INIS)

    Tomie, Michio; Abe, Nobuyuki; Yamada, Masanori; Noguchi, Shuichi.

    1990-01-01

    Fundamental characteristics of electron beam cladding was investigated. Titanium foil of 0.2mm thickness was cladded on stainless steel plate of 3mm thickness by scanning electron beam. Surface roughness and cladded layer were analyzed by surface roughness tester, microscope, scanning electron microscope and electron probe micro analyzer. Electron beam conditions were discussed for these fundamental characteristics. It is found that the energy density of the electron beam is one of the most important factor for cladding. (author)

  12. Electron beam halo monitor for a compact x-ray free-electron laser

    Directory of Open Access Journals (Sweden)

    Hideki Aoyagi

    2013-03-01

    Full Text Available An electron beam halo monitor using diamond-based detectors, which are operated in the ionization mode, has been developed for the SPring-8 Angstrom compact free-electron laser (SACLA to protect its undulator magnets from radiation damage. Diamond-based detectors are inserted in a beam duct to measure the intensity of the beam halo directly. To suppress the degradation of the electron beam due to the installation of the beam halo monitor, rf fingers with aluminum windows are newly employed. We evaluated the effect of radiation from the Al windows on the output signal both experimentally and by simulation. The operational results of the beam halo monitor employed in SACLA are presented.

  13. Friction welding of bulk metallic glasses to different ones

    International Nuclear Information System (INIS)

    Shoji, Takuo; Kawamura, Yoshihito; Ohno, Yasuhide

    2004-01-01

    For application of bulk metallic glasses (BMGs) as industrial materials, it is necessary to establish the metallurgical bonding technology. The BMGs exhibit high-strain-rate superplasticity in the supercooled liquid state. It has been reported that bulk metallic glasses were successfully welded together by friction, pulse-current, explosion and electron-beam methods. In this study, friction welding of the BMGs to different ones were tried for Pd 40 Ni 40 P 20 , Pd 40 Cu 30 P 20 Ni 10 , Zr 55 Cu 30 Al 10 Ni 5 and Zr 41 Be 23 Ti 14 Cu 12 Ni 10 BMGs. Successful welding was obtained in the combinations of the Pd 40 Ni 40 P 20 and Pd 40 Cu 30 P 20 Ni 10 BMGs, and the Zr 55 Cu 30 Al 10 Ni 5 and Zr 41 Be 23 Ti 14 Cu 12 Ni 10 ones. No crystallization was observed and no visible defect was recognized in the interface. The joining strength of the welded BMGs was the same as that of the parent BMG or more. BMGs seem to be successfully welded to the different ones with a difference below about 50 K in glass transition temperature

  14. Electron-beam and microwave treatment of some microbial strains

    International Nuclear Information System (INIS)

    Martin, D.; Ferdes, O.S.; Minea, R.; Tirlea, A.; Badea, M.; Plamadeala, S.; Ferdes, M.

    1998-01-01

    The experimental results concerning the combined effects of microwaves and accelerated electron beams on various microbial strains such as E. coli, Salmonella sp. and Monascus purpureus are presented. A special designed microwave applicator with a 2.45 GHz frequency CW magnetron of 850 maximum output power and with associate electronics that allow to control the microwave power, the current intensity, and the exposure time was used. The electron-beam irradiation was performed at different irradiation doses and at a dose rate of 1.5 - 2.0 kGy/min by using a linac at a mean electron energy about 6 MeV, mean bean current of 10 μA, pulse period of 3.5 μs and repetition frequency 100 Hz. The experiments were carried out in 5 variants: microwave treatment; electron-beam irradiation; microwaves followed by electron beam; electrons followed by microwaves; and simultaneous application of microwaves and electron beam. The microbiocidal effect was found to be enhanced by additional use of microwave energy to electron beam irradiation. Enhancement of inactivation rate is only remarkable for the microwave treatment or simultaneous electron beam and microwave irradiation at a temperature above the critical value at which microorganisms begin to perish by heat. Simultaneous irradiation with electron beam and microwaves results in a reduction of temperature and time as well as in the decrease of the upper limit of required electron beam absorbed dose for an assumed microbiological quality parameter. The results obtained indicate the occurrence of a synergistic effect of the two physical fields on a non-thermal basis. Hence, combined microwave-electron beam treatment may be applied as an effective method to reduce microbial load

  15. Generation of Low-Energy High-Current Electron Beams in Plasma-Anode Electron Guns

    Science.gov (United States)

    Ozur, G. E.; Proskurovsky, D. I.

    2018-01-01

    This paper is a review of studies on the generation of low-energy high-current electron beams in electron guns with a plasma anode and an explosive-emission cathode. The problems related to the initiation of explosive electron emission under plasma and the formation and transport of high-current electron beams in plasma-filled systems are discussed consecutively. Considerable attention is given to the nonstationary effects that occur in the space charge layers of plasma. Emphasis is also placed on the problem of providing a uniform energy density distribution over the beam cross section, which is of critical importance in using electron beams of this type for surface treatment of materials. Examples of facilities based on low-energy high-current electron beam sources are presented and their applications in materials science and practice are discussed.

  16. Achromatic and isochronous electron beam transport for tunable free electron lasers

    International Nuclear Information System (INIS)

    Bengtsson, J.; Kim, K.J.

    1991-09-01

    We have continued the study of a suitable electron beam transport line, which is both isochronous and achromatic, for the free electron laser being designed at Lawrence Berkeley Laboratory. A refined version of the beam transport optics is discussed that accommodates two different modes of FEL wavelength tuning. For the fine tuning involving a small change of the electron beam energy, sextupoles are added to cancel the leading nonlinear dispersion. For the main tuning involving the change of the undulator gap, a practical solution of maintaining the beam matching condition is presented. Calculation of the higher order aberrations is facilitated by a newly developed code. 11 refs., 4 figs., 3 tabs

  17. Electron beam depolarization in a damping ring

    International Nuclear Information System (INIS)

    Minty, M.

    1993-04-01

    Depolarization of a polarized electron beam injected into a damping ring is analyzed by extending calculations conventionally applied to proton synchrotrons. Synchrotron radiation in an electron ring gives rise to both polarizing and depolarizing effects. In a damping ring, the beam is stored for a time much less than the time for self polarization. Spin flip radiation may therefore be neglected. Synchrotron radiation without spin flips, however, must be considered as the resonance strength depends on the vertical betatron oscillation amplitude which changes as the electron beam is radiation damped. An expression for the beam polarization at extraction is derived which takes into account radiation damping. The results are applied to the electron ring at the Stanford Linear Collider and are compared with numerical matrix formalisms

  18. Modular low-voltage electron beams

    Science.gov (United States)

    Berejka, Anthony J.; Avnery, Tovi; Carlson, Carl

    2004-09-01

    Modular, low-voltage systems have simplified electron beam (EB) technology for industrial uses and for research and development. Modular EB units are produced in quantity as sealed systems that are evacuated at the factory eliminating the need for vacuum pumps at the point of use. A simple plug-out—plug-in method of replacement eliminates downtime for servicing. Use of ultra-thin beam windows (innovative design to extract and spread the beam (enabling systems to be placed adjacent to each other to extend beam width) and touch-screen computer controls, combine for ease of use and electrical transfer efficiency at voltages that can be varied between 80 and 150 kV and with high beam currents (up to 40 mA across the 25 cm window). These electron systems are available in three widths, the standard 25 cm and new 5 and 40 cm beams. Traditional uses in the graphic arts and coatings areas as well as uses in surface sterilization have found these compact, lightweight (approximately 15 kg) modular beams of interest. Units have been configured around complex shapes to enable three-dimensional surface curing (as for coatings on aluminum tubing) to be achieved at high production rates. Details of the beam construction and some industrial uses are discussed.

  19. Numerical simulation of heat transfer and fluid flow during double-sided laser beam welding of T-joints for aluminum aircraft fuselage panels

    Science.gov (United States)

    Yang, Zhibin; Tao, Wang; Li, Liqun; Chen, Yanbin; Shi, Chunyuan

    2017-06-01

    In comparison with conventional laser beam welding, double-sided laser beam welding has two laser heat sources simultaneously and symmetrically loaded from both sides makes it to be a more complicated coupled heat transport and fluid flow process. In this work, in order to understand the heat transfer and fluid flow, a three-dimensional model was developed and validated with the experimental results. The temperature field, fluid flow field, and keyhole characteristic were calculated using the developed model by FLUENT software. Calculated results indicated that the temperature and fluid flow fields were bilateral symmetry along the stringer center, and the molten pool maximum length was located near the keyhole intersection position. The skin side had higher temperature and faster cooling speed. Several characteristic flow patterns in the weld pool cross section, including the vortexes flows near the keyhole opening position, the convection flows above the keyhole intersection location, the regularity downward flows at the molten pool bottom. And in the lengthwise section, a distinct vortex flow below the keyhole, and the liquid metal behind the keyhole first flowed to near the molten pool maximum length location and then to the molten pool surface. Perpendicular to and along welding direction the keyhole liquid metal flowed to the weld molten pool surface and around the keyhole, respectively. The special temperature fields and fluid flow patterns were closely related to the effects of the double sides' laser energy coupling and enhancement. The calculated weld pool geometry basically in good agreement with the experimental results indicated that the developed model was validity and reasonable.

  20. Regenerative beam breakup in multi-pass electron accelerators

    International Nuclear Information System (INIS)

    Vetter, A.M. Jr.

    1980-01-01

    Important electron coincidence experiments in the 1 to 2 GeV range require electron beams of high intensity and high duty factor. To provide such beams, multi-pass electron accelerator systems are being developed at many laboratories. The beam current in multi-pass electron machines is limited by bean breakup which arises from interaction of the electron beam with deflection modes of the accelerator structure. Achieving high beam intensity (50 to 100 μA) will require detailed understanding and careful control of beam breakup phenomena, and is the subject of this thesis. The TM 11 -like traveling wave theory is applied to obtain a physical understanding of beam-mode interactions and the principles of focussing in simple two-pass systems, and is used as a basis for general studies of the dependence of starting current on accelerator parameters in systems of many passes. The concepts developed are applied in analyzing beam breakup in the superconducting recyclotron at Stanford. Measurements of beam interactions with selected breakup modes are incorporated in a simple model in order to estimate relative strengths of breakup modes and to predict starting currents in five-pass operation. The improvement over these predicted currents required in order to obtain 50 to 100 μA beams is shown to be achievable with a combination of increased breakup mode loading and improved beam optics

  1. Welding parameter optimization of alloy material by friction stir welding using Taguchi approach and design of experiments

    Science.gov (United States)

    Karwande, Amit H.; Rao, Seeram Srinivasa

    2018-04-01

    Friction stir welding (FSW) a welding process in which metals are joint by melting them at their solid state. In different engineering areas such as civil, mechanical, naval and aeronautical engineering beams are widely used of the magnesium alloys for different applications and that are joined by conventional inert gas welding process. Magnesium metal has less density and low melting point for that reason large heat generation in the common welding process so its necessity to adapt new welding process. FSW process increases the weld quality which observed under various mechanical testing by using different tool size.

  2. Innovative energy efficient low-voltage electron beam emitters

    International Nuclear Information System (INIS)

    Felis, Kenneth P.; Avnery, Tovi; Berejka, Anthony J.

    2002-01-01

    Advanced electron beams (AEB) has developed a modular, low voltage (80-125 keV), high beam current (up to 40 ma), electron emitter with typically 25 cm of beam width, that is housed in an evacuated, returnable chamber that is easy to plug in and connect. The latest in nanofabrication enables AEB to use an ultra-thin beam window. The power supply for AEB's emitter is based on solid-state electronics. This combination of features results in a remarkable electrical efficiency. AEB's electron emitter relies on a touch screen, computer control system. With 80 μm of unit density beam penetration, AEB's electron emitter has gained market acceptance in the curing of opaque, pigmented inks and coatings used on flexible substrates, metals and fiber composites and in the curing of adhesives in foil based laminates

  3. Innovative energy efficient low-voltage electron beam emitters

    Science.gov (United States)

    Felis, Kenneth P.; Avnery, Tovi; Berejka, Anthony J.

    2002-03-01

    Advanced electron beams (AEB) has developed a modular, low voltage (80-125 keV), high beam current (up to 40 ma), electron emitter with typically 25 cm of beam width, that is housed in an evacuated, returnable chamber that is easy to plug in and connect. The latest in nanofabrication enables AEB to use an ultra-thin beam window. The power supply for AEB's emitter is based on solid-state electronics. This combination of features results in a remarkable electrical efficiency. AEB's electron emitter relies on a touch screen, computer control system. With 80 μm of unit density beam penetration, AEB's electron emitter has gained market acceptance in the curing of opaque, pigmented inks and coatings used on flexible substrates, metals and fiber composites and in the curing of adhesives in foil based laminates.

  4. Free-electron laser beam

    International Nuclear Information System (INIS)

    Minehara, Eisuke

    2003-01-01

    The principle and history of free-electron laser (FEL), first evidenced in 1977, the relationship between FEL wavelength and output power, the high-power FEL driven by the superconducting linac, the X-ray FEL by the linac, and the medical use are described. FEL is the vacuum oscillator tube and essentially composed from the high-energy linac, undulator and light-resonator. It utilizes free electrons in the vacuum to generate the beam with wavelength ranging from microwave to gamma ray. The first high-power FEL developed in Japanese Atomic Energy Research Institute (JAERI) is based on the development of superconducting linac for oscillating the highest power beam. In the medical field, applications to excise brain tumors (in US) and to reconstruct experimentally blood vessels in the pig heart (in Gunma University) by lasing and laser coagulator are in progress with examinations to remove intra-vascular cholesterol mass by irradiation of 5.7μm FEL beam. Cancer cells are considered diagnosed by FEL beam of far-infrared-THz range. The FEL beam CT is expected to have a wide variety of application without the radiation exposure and its resolution is equal or superior to that of usual imaging techniques. (N.I.)

  5. Review of electron beam therapy physics

    International Nuclear Information System (INIS)

    Hogstrom, Kenneth R; Almond, Peter R

    2006-01-01

    For over 50 years, electron beams have been an important modality for providing an accurate dose of radiation to superficial cancers and disease and for limiting the dose to underlying normal tissues and structures. This review looks at many of the important contributions of physics and dosimetry to the development and utilization of electron beam therapy, including electron treatment machines, dose specification and calibration, dose measurement, electron transport calculations, treatment and treatment-planning tools, and clinical utilization, including special procedures. Also, future changes in the practice of electron therapy resulting from challenges to its utilization and from potential future technology are discussed. (review)

  6. Electron beam accelerator facilities at IPEN-CNEN/SP

    Energy Technology Data Exchange (ETDEWEB)

    Somessari, Samir L.; Silveira, Carlos G. da; Paes, Helio; Somessari, Elizabeth S.R. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)], E-mail: somessar@ipen.br

    2007-07-01

    Electron beam processing is a manufacturing technique, which applies a focused beam of high-energy electrons produced by an electron accelerator to promote chemical changes within a product. At IPEN-CNEN/SP there are two electron beam accelerators Type Dynamitron{sup R} (manufactured by RDI- Radiation Dynamics Inc.) Job 188 and Job 307 models. The technical specifications for the Job 188 energy 1.5 MeV, beam current 25 mA, scan 1.20 m, beam power 37.5 kW and for the Job 307 energy 1.5 MeV, beam current 65 mA, Scan 1.20 m, beam power 97.5 kW. Some applications of the electron beam accelerator for radiation processing are wire and cable insulation crosslinking, rubber vulcanization, sterilization and disinfection of medical products, food preservation, heat shrinkable products, polymer degradation, aseptic packaging, semiconductors and pollution control. For irradiating these materials at IPEN-CNEN/SP, there are some equipment such as, underbeam capstan with speed control from 10 to 700 m/min; a track; a system to roll up and unroll wires and electric cables, polyethylene blankets and other systems to improve the quality of the products. (author)

  7. Study on the compensation of electron beam space charge in facilittes with electron cooling

    International Nuclear Information System (INIS)

    Dikanskij, N.S.; Kudelajnen, V.I.; Parkhomchuk, V.V.; Pestrikov, D.V.

    1981-01-01

    The results of experimental investigations of a compensated electron beam on the NAP-M facility are presented. The electron beam is compensated by electrostatic plugs preventing ion leakage along the beam. Cut-off electrodes have the shape of cutted cylinders encircling the electron beam. To eliminate electron accumulation around the plugs one of the electrodes has a zero potential, which results in formation of an transverse electric field causing ionization electron drift in the transverse direction to the electric and magnetic fields. The effect of wave damping, in the compensated beam is observed, that demonstrates the possibility of gaining great current densities in long compensated beams necessary for antiproton storage. For the NAP-M at the 10 10 cm/s electron velocity, 300 cm length of ion column, and 1 kOe field intensity the threshold beam current density is 0.96 A/cm 2 [ru

  8. A quantitative evaluation of the L.B.W. efficiency on AISI 304 bead on plates welded under different focusing and tilted laser beam conditions

    Science.gov (United States)

    Daurelio, Giuseppe; Ludovico, Antonio D.; Lugara, M. P.; De Filippis, L. A. C.; Spera, A. M.; Rocco, S.

    2005-03-01

    The aim of this search is to evaluate the WE (Welding Efficiency) of each beads versus the different positions of the laser beam optical focus (positive or negative or zero values) respect to the work-piece surface and also versus different laser beam incidence angles (80° and 70°) by using two laser power levels (2 and 2.5 KW) and two welding speeds (3 and 6 m/min). The WE values have been reported on two DA.LU. method plots and the relate evaluations regarding the same ones as well as the recorded best parameters have been evidenced.

  9. Heat affected zone microfissuring in a laser beam welded directionally solidified Ni3Al-base alloy

    International Nuclear Information System (INIS)

    Ojo, O.A.; Ding, R.G.; Chaturvedi, M.C.

    2006-01-01

    The laser beam weld heat affected zone (HAZ) microstructure of a newly developed aerospace alloy, IC 6, was examined. HAZ microfissuring was observed and found to be associated with grain boundary liquation facilitated by subsolidus eutectic-type transformation of the alloy's major phase, γ' precipitates, and interfacial melting of M 6 C-type carbide and (Mo 2 Ni)B 2 -type boride particles

  10. Electron beam influence on the carbon contamination of electron irradiated hydroxyapatite thin films

    International Nuclear Information System (INIS)

    Hristu, Radu; Stanciu, Stefan G.; Tranca, Denis E.; Stanciu, George A.

    2015-01-01

    Highlights: • Carbon contamination mechanisms of electron-beam-irradiated hydroxyapatite. • Atomic force microscopy phase imaging used to detect carbon contamination. • Carbon contamination dependence on electron energy, irradiation time, beam current. • Simulation of backscattered electrons confirms the experimental results. - Abstract: Electron beam irradiation which is considered a reliable method for tailoring the surface charge of hydroxyapatite is hindered by carbon contamination. Separating the effects of the carbon contamination from those of irradiation-induced trapped charge is important for a wide range of biological applications. In this work we focus on the understanding of the electron-beam-induced carbon contamination with special emphasis on the influence of the electron irradiation parameters on this phenomenon. Phase imaging in atomic force microscopy is used to evaluate the influence of electron energy, beam current and irradiation time on the shape and size of the resulted contamination patterns. Different processes involved in the carbon contamination of hydroxyapatite are discussed

  11. Stability of electron-beam energy monitor for quality assurance of the electron-beam energy from radiotherapy accelerators

    International Nuclear Information System (INIS)

    Chida, Koichi; Zuguchi, Masayuki; Saito, Haruo; Takai, Yoshihiro; Mitsuya, Masatoshi; Sakakida, Hideharu; Yamada, Shogo; Kohzuki, Masahiro

    2002-01-01

    Information on electron energy is important in planning radiation therapy using electrons. The Geske 3405 electron beam energy monitor (Geske monitor, PTW Nuclear Associates, Carle Place, NY, USA) is a device containing nine ionization chambers for checking the energy of the electron beams produced by radiotherapy accelerators. We wondered whether this might increase the likelihood of ionization chamber trouble. In spite of the importance of the stability of such a quality assurance (QA) device, there are no reports on the stability of values measured with a Geske monitor. The purpose of this paper was therefore to describe the stability of a Geske monitor. It was found that the largest coefficient of variation (CV) of the Geske monitor measurements was approximately 0.96% over a 21-week period. In conclusion, the stability of Geske monitor measurements of the energy of electron beams from a linear accelerator was excellent. (author)

  12. Studies on functional polymer films utilizing low energy electron beam

    International Nuclear Information System (INIS)

    Ando, Masayuki

    1992-01-01

    Also in adhesives and tackifiers, with the expansion of the fields of application, the required characteristics have become high grade and complex. As one of them, the instantaneous hardening of adhesives can be taken up. In the field of lamination works, the low energy type electron beam accelerators having the linear filament of accelerating voltage below 300 kV were developed in 1970s, and the interest in the development of electron beam-handened adhesives has heightend. The authors have carried out research aiming at heightening the functions of the polymer films obtained by electron beam hardening reaction, and developed the adhesives. In this report, the features of electron beam hardening reaction, the structure and properties of electron beam-hardened polymer films and the molecular design of electron beam-hardened monomer oligomers are described. The feature of electron beam hardening reaction is the cross-linking of high degree as the structure of oligomers is maintained. By controlling the structure at the time of electron beam hardening, the heightening of the functions of electron beam-hardened polymer films is feasible. (K.I.)

  13. Microstructures and electrochemical behaviors of the friction stir welding dissimilar weld.

    Science.gov (United States)

    Shen, Changbin; Zhang, Jiayan; Ge, Jiping

    2011-06-01

    By using optical microscope, the microstructures of 5083/6082 friction stir welding (FSW) weld and parent materials were analyzed. Meanwhile, at ambient temperature and in 0.2 mol/L NaHS03 and 0.6 mol/L NaCl solutionby gravimetric test, potentiodynamic polarization curve test, electrochemical impedance spectra (EIS) and scanning electron microscope (SEM) observation, the electrochemical behavior of 5083/6082 friction stir welding weld and parent materials were comparatively investigated by gravimetric test, potentiodynamic polarization curve test, electrochemical impedance spectra (EIS) and scanning electron microscope (SEM) observation. The results indicated that at given processing parameters, the anti-corrosion property of the dissimilar weld was superior to those of the 5083 and 6082 parent materials. Copyright © 2011 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  14. Landau Damping of Beam Instabilities by Electron Lenses

    Energy Technology Data Exchange (ETDEWEB)

    Shiltsev, V. [Fermilab; Alexahin, Yuri; Burov, A. [Fermilab; Valishev, A. [Fermilab

    2017-06-26

    Modern and future particle accelerators employ increasingly higher intensity and brighter beams of charged particles and become operationally limited by coherent beam instabilities. Usual methods to control the instabilities, such as octupole magnets, beam feedback dampers and use of chromatic effects, become less effective and insufficient. We show that, in contrast, Lorentz forces of a low-energy, a magnetically stabilized electron beam, or "electron lens", easily introduces transverse nonlinear focusing sufficient for Landau damping of transverse beam instabilities in accelerators. It is also important that, unlike other nonlinear elements, the electron lens provides the frequency spread mainly at the beam core, thus allowing much higher frequency spread without lifetime degradation. For the parameters of the Future Circular Collider, a single conventional electron lens a few meters long would provide stabilization superior to tens of thousands of superconducting octupole magnets.

  15. Parametric study of transport beam lines for electron beams accelerated by laser-plasma interaction

    Science.gov (United States)

    Scisciò, M.; Lancia, L.; Migliorati, M.; Mostacci, A.; Palumbo, L.; Papaphilippou, Y.; Antici, P.

    2016-03-01

    In the last decade, laser-plasma acceleration of high-energy electrons has attracted strong attention in different fields. Electrons with maximum energies in the GeV range can be laser-accelerated within a few cm using multi-hundreds terawatt (TW) lasers, yielding to very high beam currents at the source (electron bunches with up to tens-hundreds of pC in a few fs). While initially the challenge was to increase the maximum achievable electron energy, today strong effort is put in the control and usability of these laser-generated beams that still lack of some features in order to be used for applications where currently conventional, radio-frequency (RF) based, electron beam lines represent the most common and efficient solution. Several improvements have been suggested for this purpose, some of them acting directly on the plasma source, some using beam shaping tools located downstream. Concerning the latter, several studies have suggested the use of conventional accelerator magnetic devices (such as quadrupoles and solenoids) as an easy implementable solution when the laser-plasma accelerated beam requires optimization. In this paper, we report on a parametric study related to the transport of electron beams accelerated by laser-plasma interaction, using conventional accelerator elements and tools. We focus on both, high energy electron beams in the GeV range, as produced on petawatt (PW) class laser systems, and on lower energy electron beams in the hundreds of MeV range, as nowadays routinely obtained on commercially available multi-hundred TW laser systems. For both scenarios, our study allows understanding what are the crucial parameters that enable laser-plasma accelerators to compete with conventional ones and allow for a beam transport. We show that suitable working points require a tradeoff-combination between low beam divergence and narrow energy spread.

  16. Operational experience with SLAC's beam containment electronics

    International Nuclear Information System (INIS)

    Constant, T.N.; Crook, K.; Heggie, D.

    1977-03-01

    Considerable operating experience was accumulated at SLAC with an extensive electronic system for the containment of high power accelerated beams. Average beam power at SLAC can approach 900 kilowatts with the potential for burning through beam stoppers, protection collimators, and other power absorbers within a few seconds. Fast, reliable, and redundant electronic monitoring circuits have been employed to provide some of the safeguards necessary for minimizing the risk to personnel. The electronic systems are described, and the design philosophy and operating experience are discussed

  17. Applications and technology of electron beam accelerators

    International Nuclear Information System (INIS)

    Sethi, R.C.

    2005-01-01

    Traditionally, accelerators have been employed for pursuing research in basic sciences. But over the last couple of decades their uses have proliferated into the applied fields as well. The major credit for which goes to the electron beams. Electron beams or the radiations generated by them are being extensively used in almost all the applied areas. This article is a brief account of the impact made by the accelerator based electron beams and the attempts initiated by DAE for building a base in this technology. (author)

  18. Recent developments in electron beam machine technology

    International Nuclear Information System (INIS)

    Sadat, T.; Ross, A.; Leveziel, H.

    1994-01-01

    Electron beam accelerator provides ionisation energy for industrial processing. Electron beam accelerators are increasingly used for decontamination, conservation and disinfestation of food, for sterilization of medical products, and for polymerisation of materials. These machines are easy to install into a production factory as the radiation stops as soon as the machine is switched off. This safety advantage, together with the flexibility of use of these highly automated machines, has allowed the electron beam accelerator to become an important production tool. (author). 23 refs., 6 figs., 2 tabs

  19. Renormalization theory of beam-beam interaction in electron-positron colliders

    International Nuclear Information System (INIS)

    Chin, Y.H.

    1989-07-01

    This note is devoted to explaining the essence of the renormalization theory of beam-beam interaction for carrying out analytical calculations of equilibrium particle distributions in electron-positron colliding beam storage rings. Some new numerical examples are presented such as for betatron tune dependence of the rms beam size. The theory shows reasonably good agreements with the results of computer simulations. 5 refs., 6 figs

  20. Vision and spectroscopic sensing for joint tracing in narrow gap laser butt welding

    Science.gov (United States)

    Nilsen, Morgan; Sikström, Fredrik; Christiansson, Anna-Karin; Ancona, Antonio

    2017-11-01

    The automated laser beam butt welding process is sensitive to positioning the laser beam with respect to the joint because a small offset may result in detrimental lack of sidewall fusion. This problem is even more pronounced in case of narrow gap butt welding, where most of the commercial automatic joint tracing systems fail to detect the exact position and size of the gap. In this work, a dual vision and spectroscopic sensing approach is proposed to trace narrow gap butt joints during laser welding. The system consists of a camera with suitable illumination and matched optical filters and a fast miniature spectrometer. An image processing algorithm of the camera recordings has been developed in order to estimate the laser spot position relative to the joint position. The spectral emissions from the laser induced plasma plume have been acquired by the spectrometer, and based on the measurements of the intensities of selected lines of the spectrum, the electron temperature signal has been calculated and correlated to variations of process conditions. The individual performances of these two systems have been experimentally investigated and evaluated offline by data from several welding experiments, where artificial abrupt as well as gradual deviations of the laser beam out of the joint were produced. Results indicate that a combination of the information provided by the vision and spectroscopic systems is beneficial for development of a hybrid sensing system for joint tracing.