Scattering of electromagnetic waves by obstacles
Kristensson, Gerhard
2016-01-01
The main purpose of Scattering of Electromagnetic Waves by Obstacles is to give a theoretical treatment of the scattering phenomena, and to illustrate numerical computations of some canonical scattering problems for different geometries and materials.
Scattering theory of stochastic electromagnetic light waves.
Wang, Tao; Zhao, Daomu
2010-07-15
We generalize scattering theory to stochastic electromagnetic light waves. It is shown that when a stochastic electromagnetic light wave is scattered from a medium, the properties of the scattered field can be characterized by a 3 x 3 cross-spectral density matrix. An example of scattering of a spatially coherent electromagnetic light wave from a deterministic medium is discussed. Some interesting phenomena emerge, including the changes of the spectral degree of coherence and of the spectral degree of polarization of the scattered field.
Scattering of electromagnetic wave by dielectric cylinder in eikonal approximation
Syshchenko, V. V.
2016-07-01
The scattering of the plane electromagnetic wave on a spatially extended, fiber lake target is considered. The formula for the scattering cross section is obtained using the approximation analogous to eikonal one in quantum mechanics.
This book is dedicated to various aspects of electromagnetic wave theory and its applications in science and technology. The covered topics include the fundamental physics of electromagnetic waves, theory of electromagnetic wave propagation and scattering, methods of computational analysis...
Scattering of electromagnetic light waves from a deterministic anisotropic medium
Li, Jia; Chang, Liping; Wu, Pinghui
2015-11-01
Based on the weak scattering theory of electromagnetic waves, analytical expressions are derived for the spectral densities and degrees of polarization of an electromagnetic plane wave scattered from a deterministic anisotropic medium. It is shown that the normalized spectral densities of scattered field is highly dependent of changes of the scattering angle and degrees of polarization of incident plane waves. The degrees of polarization of scattered field are also subjective to variations of these parameters. In addition, the anisotropic effective radii of the dielectric susceptibility can lead essential influences on both spectral densities and degrees of polarization of scattered field. They are highly dependent of the effective radii of the medium. The obtained results may be applicable to determine anisotropic parameters of medium by quantitatively measuring statistics of a far-zone scattered field.
This book is dedicated to various aspects of electromagnetic wave theory and its applications in science and technology. The covered topics include the fundamental physics of electromagnetic waves, theory of electromagnetic wave propagation and scattering, methods of computational analysis......, material characterization, electromagnetic properties of plasma, analysis and applications of periodic structures and waveguide components, etc....
Scattering of electromagnetic waves by a traversable wormhole
B. Nasr Esfahani
2005-09-01
Full Text Available Replacing the wormhole geometry with an equivalent medium using the perturbation theory of scattering and the Born approximation, we have calculated the differential scattering cross section of electromagnetic waves by a traversable wormhole. It is shown that scattering at long wavelenghts can essentially distinguish wormhole from ordinary scattering object. Some of the zeros of the scattering cross section are determined which can be used for estimating the radius of the throat of wormholes. The known result that in this kind of scattering the linear polarization remains unchanged is verified here.
Scattering and Depolarization of Electromagnetic Waves--Full Wave Solutions.
1984-01-01
Analysis," Proceedings of the International Union of Radio Science URSI Conference at Ciudad Universitaria , Madrid, August 1983, in press. . . 13...rough land and seat3 J. The full wave approach was also used to determine the scattering and depolarization of radio waves in irregular spheroidal struc...Full Wave Solutions," Radio Science, Vol. 17, No. 5, September-October 1982, pp. 1055-1066. 4. "Scattering and Depolarization by Rough Surfaces: Full
Scattering of Electromagnetic Waves by Drift Vortex in Plasma
WANG Dong; CHEN Yinhua; WANG Ge
2008-01-01
In a quasi-two-dimensional model, the scattering of incident ordinary electromag-netic waves by a dipole-electrostatic drift vortex is studied with first-order Born approximation. The distribution of the scattering cross-section and total cross-section are evaluated analytically in different approximate conditions, and the physical interpretations are discussed. When the wavelength of incident wave is much longer than the vortex radius (kia << 1), it is found that the angle at which the scattering cross-section reaches its maxim depends significantly on the approxi-mation of the parameters of the vortex used. It is also found that the total scattering cross-section has an affinitive relation with the parameters of the plasma, while it is irrelevant to the frequency of the incident wave in a wide range of parameters of the vortex. In a totally different range of parameters when incident wave is in the radar-frequency range (then ki<< 1, the wavelength of incident wave is much shorter than the vortex radius), the numerical procedure is conducted with computer in order to obtain the distribution and the total expression of the scattering cross-section. Then it is found that the total scattering cross-section in the low frequency range is much larger than that in high frequency range, so the scattering is more effective in the low frequency range than in high frequency range.
Depolarization and Scattering of Electromagnetic Waves. Appendices.
1986-06-30
flakes. The irregular shaped flake is characterized by its surface height spectral density function and its lateral dimension is assumed to be larger...parameter 0 - 1.0 several surfaces with different surface height spectral density functions W(k) were considered. (The surface height spectral density function W...scattering cross sections were found to be critically dependent upon the form of surface height spectral density function and the mean radius of the spheres
Electromagnetic wave scattering on nonspherical particles basic methodology and simulations
Rother, Tom
2014-01-01
This book gives a detailed overview of the theory of electromagnetic wave scattering on single, homogeneous, but nonspherical particles. Beside the systematically developed Green’s function formalism of the first edition this second and enlarged edition contains additional material regarding group theoretical considerations for nonspherical particles with boundary symmetries, an iterative T-matrix scheme for approximate solutions, and two additional but basic applications. Moreover, to demonstrate the advantages of the group theoretical approach and the iterative solution technique, the restriction to axisymmetric scatterers of the first edition was abandoned.
Electromagnetic Wave Scattering on Nonspherical Particles Basic Methodology and Simulations
Rother, Tom
2009-01-01
This book gives a detailed overview of the theory of electromagnetic wave scattering on single, homogeneous, but nonspherical particles. A related Green’s function formalism is systematically developed which provides a powerful mathematical basis not only for the development of numerical approaches but also to discuss those general aspects like symmetry, unitarity, and the validity of Rayleigh’s hypothesis. Example simulations are performed in order to demonstrate the usefulness of the developed formalism as well as to introduce the simulation software which is provided on a CD-ROM with the book.
Nearly non-scattering electromagnetic wave set and its application
Liu, Hongyu; Wang, Yuliang; Zhong, Shuhui
2017-04-01
For any inhomogeneous compactly supported electromagnetic (EM) medium, it is shown that there exists an infinite set of linearly independent EM waves which generate nearly vanishing scattered wave fields. If the inhomogeneous medium is coated with a layer of properly chosen conducting medium, then the wave set is generated from the Maxwell-Herglotz approximation to the interior perfectly electric conducting or perfectly magnetic conducting eigenfunctions and depends only on the shape of the inhomogeneous medium. If no such a conducting coating is used, then the wave set is generated from the Maxwell-Herglotz approximation to the generalised interior transmission eigenfunctions and depends on both the content and shape of the inhomogeneous medium. We characterise the nearly non-scattering wave sets in both cases with sharp estimates. The results can be used to give a conceptual design of a novel shadowless lamp. The crucial ingredient is to properly choose the source of the lamp so that nearly no shadow will be produced by surgeons operating under the lamp.
Multi-scattering of electromagnetic waves by nanoshell aggregates
Li, Ben Q., E-mail: benqli@umich.edu [University of Michigan, Department of Mechanical Engineering (United States); Liu Changhong, E-mail: liuch@sjtu.edu.cn [Shanghai Jiao Tong University, Department of Electrical Engineering (China)
2012-05-15
A general analytical expression is derived for calculating the total scattering cross-section of an aggregate of nanoparticles. The approach is based on the far zone approximation and repeated use of recursive relations for Bessel functions and Legendre polynomials. In comparison with the existing formula for total scattering cross-section, the expression converges faster and makes it easier to analyze the terms that characterize the interactive coupling between nanoparticles during multiple scattering of electromagnetic waves. The expressions are valid for particle aggregates in which no two particles are in direct contact. Calculated results compare well with measurements for a nanoshell dimer. For a linear chain of particles with the chain axis parallel to the polarization direction of the electric field, analysis shows that the red-shift of resonance peaks results primarily from electrons in metal shells of two adjacent particles oscillating out-of-phase to cancel each other's radiation effects. Multi-scattering in aggregates with more complex arrangements may be explained by combining the effects of linear particle chains.
Scattering of electromagnetic plane waves by a buried vertical dike
Batista Lurimar S.
2003-01-01
Full Text Available The complete and exact solution of the scattering of a TE mode frequency domain electromagnetic plane wave by a vertical dike under a conductive overburden has been established. An integral representation composed of one-sided Fourier transforms describes the scattered electric field components in each one of the five media: air, overburden, dike, and the country rocks on both sides of the dike. The determination of the terms of the series that represents the spectral components of the Fourier integrals requires the numerical inversion of a sparse matrix, and the method of successive approaches. The zero-order term of the series representation for the spectral components of the overburden, for given values of the electrical and geometrical parameters of the model, has been computed. This result allowed to determine an approximate value of the variation of the electric field on the top of the overburden in the direction perpendicular to the strike of the dike. The results demonstrate the efficiency of this forward electromagnetic modeling, and are fundamental for the interpretation of VLF and Magnetotelluric data.
Finite Element Modeling of scattered electromagnetic waves for stroke analysis.
Priyadarshini, N; Rajkumar, E R
2013-01-01
Stroke has become one of the leading causes of mortality worldwide and about 800 in every 100,000 people suffer from stroke each year. The occurrence of stroke is ranked third among the causes of acute death and first among the causes for neurological dysfunction. Currently, Neurological examinations followed by medical imaging with CT, MRI or Angiography are used to provide better identification of the location and the type of the stroke, however they are neither fast, cost-effective nor portable. Microwave technology has emerged to complement these modalities to diagnose stroke as it is sensitive to the differences between the distinct dielectric properties of the brain tissues and blood. This paper investigates the possibility of diagnosing the type of stroke using Finite Element Analysis (FEA). The object of interest is a simulated head phantom with stroke, created with its specifying material characteristics like electrical conductivity and relative permittivity. The phantom is then placed in an electromagnetic field generated by a dipole antenna radiating at 1 GHz. The FEM forward model solver computes the scattered electromagnetic field by finding the solution for the Maxwell's wave equation in the head volume. Subsequently the inverse scattering problem is solved using the Contrast Source Inversion (CSI) method to reconstruct the dielectric profile of the head phantom.
Chen, Ke; Feng, Yijun; Yang, Zhongjie; Cui, Li; Zhao, Junming; Zhu, Bo; Jiang, Tian
2016-10-24
Ultrathin metasurface compromising various sub-wavelength meta-particles offers promising advantages in controlling electromagnetic wave by spatially manipulating the wavefront characteristics across the interface. The recently proposed digital coding metasurface could even simplify the design and optimization procedures due to the digitalization of the meta-particle geometry. However, current attempts to implement the digital metasurface still utilize several structural meta-particles to obtain certain electromagnetic responses, and requiring time-consuming optimization especially in multi-bits coding designs. In this regard, we present herein utilizing geometric phase based single structured meta-particle with various orientations to achieve either 1-bit or multi-bits digital metasurface. Particular electromagnetic wave scattering patterns dependent on the incident polarizations can be tailored by the encoded metasurfaces with regular sequences. On the contrast, polarization insensitive diffusion-like scattering can also been successfully achieved by digital metasurface encoded with randomly distributed coding sequences leading to substantial suppression of backward scattering in a broadband microwave frequency. The proposed digital metasurfaces provide simple designs and reveal new opportunities for controlling electromagnetic wave scattering with or without polarization dependence.
Scattering of mid-IR-range surface electromagnetic waves by optically smooth metal surfaces
Bonch-Bruevich, A.M.; Libenson, M.N.; Makin, V.S.; Pudkov, S.D.; Trubaev, V.V.
1985-09-01
The paper reports the experimental observation of the intense scattering of surface electromagnetic waves with a wavelength of 10.6 microns excited on an optically smooth metal surface with a residual roughness having a mean square height of less than 25 A. A method for determining the attenuation of surface electromagnetic waves is proposed, and a test of the method is reported which involves the measurement of the relative intensity of the local scattering of the waves along their path. 9 references.
Modal Ring Method for the Scattering of Electromagnetic Waves
Baumeister, Kenneth J.; Kreider, Kevin L.
1993-01-01
The modal ring method for electromagnetic scattering from perfectly electric conducting (PEC) symmetrical bodies is presented. The scattering body is represented by a line of finite elements (triangular) on its outer surface. The infinite computational region surrounding the body is represented analytically by an eigenfunction expansion. The modal ring method effectively reduces the two dimensional scattering problem to a one-dimensional problem similar to the method of moments. The modal element method is capable of handling very high frequency scattering because it has a highly banded solution matrix.
Bogdanov, O V
2014-01-01
The relations among the components of the exit momenta of ultrarelativistic electrons scattered on a strong electromagnetic wave of a low (optical) frequency and linear polarization are established using the exact solutions to the equations of motion with radiation reaction included (the Landau-Lifshitz equation). It is found that the momentum components of the electrons traversed the electromagnetic wave depend weakly on the initial values of the momenta. These electrons are mostly scattered at the small angles to the direction of propagation of the electromagnetic wave. The maximum Lorentz factor of the electrons crossed the electromagnetic wave is proportional to the work done by the electromagnetic field and is independent of the initial momenta. The momentum component parallel to the electric field strength vector of the electromagnetic wave is determined only by the diameter of the laser beam measured in the units of the classical electron radius. As for the reflected electrons, they for the most part l...
Scattering of Electromagnetic Waves by Many Nano-Wires
Alexander G. Ramm
2013-07-01
Full Text Available Electromagnetic wave scattering by many parallel to the z−axis, thin, impedance, parallel, infinite cylinders is studied asymptotically as a → 0. Let Dm be the cross-section of the m−th cylinder, a be its radius and xˆm = (xm1, xm2 be its center, 1 ≤ m ≤ M , M = M (a. It is assumed that the points, xˆm, are distributed, so that N (∆ = (1 / 2πa * ∫∆ N (xˆdxˆ[1 + o(1], where N (∆ is the number of points, xˆm, in an arbitrary open subset, ∆, of the plane, xoy. The function, N (xˆ ≥ 0, is a continuous function, which an experimentalist can choose. An equation for the self-consistent (effective field is derived as a → 0. A formula is derived for the refraction coefficient in the medium in which many thin impedance cylinders are distributed. These cylinders may model nano-wires embedded in the medium. One can produce a desired refraction coefficient of the new medium by choosing a suitable boundary impedance of the thin cylinders and their distribution law.
Sourabh Bal; M Bose
2009-10-01
We have investigated analytically the stimulated Brillouin scattering (SBS) of an electromagnetic wave in non-dissipative weakly magnetized plasma in the presence of dust particles with variable charge.
Damping and scattering of electromagnetic waves by small ferrite spheres suspended in an insulator
Englert, Gerald W.
1992-01-01
The intentional degradation of electromagnetic waves by their penetration into a media comprised of somewhat sparsely distributed energy absorbing ferrite spheres suspended in an electrical insulator is investigated. Results are presented in terms of generalized parameters involving wave length and sphere size, sphere resistivity, permeability, and spacing; their influence on dissipation of wave power by eddy currents, magnetic hysteresis, and scattering is shown.
Bogdanov, O. V.; Kazinski, P. O.
2015-02-01
The problem of scattering of ultrarelativistic electrons by a strong plane electromagnetic wave of a low (optical) frequency and linear polarization is solved in the semiclassical approximation, when the electron wave packet size is much smaller than the wavelength of electromagnetic wave. The exit momenta of ultrarelativistic electrons scattered are found using the exact solutions to the equations of motion with radiation reaction included (the Landau-Lifshitz equation). It is found that the momentum components of electrons traversed the electromagnetic wave depend weakly on the initial values of momenta. These electrons are mostly scattered at small angles to the propagation direction of the electromagnetic wave. The maximum Lorentz factor of electrons crossed the electromagnetic wave is proportional to the work done by the electromagnetic field and is independent of the initial momentum. The momentum component parallel to the electric field vector of the electromagnetic wave is determined solely by the laser beam diameter measured in the units of the classical electron radius. As for the reflected electrons, they for the most part lose the energy, but remain relativistic. A reflection law that relates the incident and reflection angles and is independent of any parameters is found.
Characterization of Surface Electromagnetic Waves and Scattering on Infrared Metamaterial Absorbers
Chen, Wen-Chen; Liu, Xianliang; Tyler, Talmage; West, Kevin G; Bingham, Christopher M; Starr, Tatiana; Starr, Anthony F; Jokerst, Nan M; Padilla, Willie J
2012-01-01
We report, for the first time, a full experimental and computational investigation of all possible light matter interactions on the surface of an infrared metamaterial absorber (MMA). Two channels of energy dissipation - diffuse scattering and generation of surface electromagnetic waves - are quantified in terms of their impact on specular absorption. The diffuse scattering is found to play a negligible roll in the absorption process, at least for wavelengths greater than the periodicity of unit cell. In contrast, surface electromagnetic waves are found to be generated for transverse magnetic (TM) polarized light at the operational wavelength of the MMA, i.e. \\lambda_0, and shorter wavelengths. Our computational results indicate that the highly lossy surface electromagnetic wave generated at \\lambda_0 is responsible for the good angular dependence of absorption in TM polarization. Experimental results are supported by full wave three dimensional electromagnetic and eigenmode simulations.
Effects of charged sand on electromagnetic wave propagation and its scattering field
HE; Qinshu; ZHOU; Youhe; ZHENG; Xiaojing
2006-01-01
Based on the Rayleigh's scattering theory, the effects of sandstorms on the propagation of electromagnetic wave with different visibilities are presented by solving the scattering field of charged sand particles. Because of the electric charges on the sand surface, the theoretical attenuation will be large enough to match the measured value under certain conditions. And the results show that the effect of sand with electric charges all over its surface on electromagnetic wave attenuation is the same as that of sand without charge, which proves that electric charges distribute on partial surface of the sand in fact.
Li, Jia; Chen, Feinan; Chang, Liping
2016-10-17
Within the validity of the first-order Born approximation, expressions are derived for the correlation between intensity fluctuations (CIF) of an electromagnetic plane wave scattered from a spatially quasi-homogeneous (QH), anisotropic medium. Upon establishing the correlation matrix of the scattering potential of the medium, we show that the CIF is the summation of Fourier transforms of the strengths and normalized correlation coefficients (NCCs) of the scattering potential matrix. Numerical results reveal that the CIF is susceptible to the effective width and correlation length of the medium, and degree of polarization of the incident electromagnetic wave. Our study not only extends the current knowledge of the CIF of a scattered field but also provides an important reference to the study of high-order intensity correlations of light scattered from a spatially anisotropic medium.
A time domain energy theorem for scattering of plane electromagnetic waves
de Hoop, A. T.
1984-10-01
A time domain analysis of the scattering problem reveals the more general conditions under which the relevant theorems in the theory of the scattering of electromagnetic waves by an obstacle of bounded extent may also hold in the time domain. The present investigation is concerned with the energy theorem for plane wave scattering. Three different kinds of time behavior are considered, taking into account transient fields, time-periodic fields, and perpetuating fields. The derived energy theorem relates the energy which is both absorbed and scattered by the object to the spherical-wave amplitude of the scattered field in the far-field region, when observed in the direction of propagation of the incident plane wave.
Abramov, Arnold; Kostikov, Alexander
2017-03-01
We report the effect of scattering of electromagnetic plane waves by two cylinders on whispering gallery mode (WGM) formation in a cylinder. WGM can occur because of the presence of additional cylinder scatterers at specific location, while WGMs can only form in a single cylinder for specific cylinder radius and/or wavelength values, the matching accuracy required would be much greater than that required in our model for the additional cylinders locations. Analysis of the general solution to the problem showed that the effect can be explained by the interference of waves scattered by additional cylinders and incident on the main cylinder.
Song Falun; Cao Jinxiang; Wang Ge
2005-01-01
The purpose of the present work is to present a full-wave analysis of scattering from the weakly ionized plasma in the plane geometry. We have yielded an approximate solution in an analytic form to the electromagnetic wave scattering from the weakly ionizsd plasma. In the normal and oblique incidence, the analytic solution works well, as compared with the exact solution and the solution based on the Wenzell-Kramers-Brillouin-Jeffreys (WKBJ) approximation to the uniform density profile.
Wang, Tao; Jiang, Zhenfei; Ji, Xiaoling; Zhao, Daomu
2016-04-01
Spectral shifts and spectral switches of a polychromatic electromagnetic light wave on scattering from an anisotropic semisoft boundary medium are discussed. It is shown that both the property of the incident field and the character of the scattering medium play roles in the change of the spectrum of the far-zone scattered field. It is also shown that the distribution of the far-zone scattered spectrum, including the magnitude of the spectral shift and the direction at which the spectral switch occurs, is rotationally nonsymmetric.
Li, Jia; Wu, Pinghui; Chang, Liping
2015-08-24
Within the accuracy of the first-order Born approximation, sufficient conditions are derived for the invariance of spectrum of an electromagnetic wave, which is generated by the scattering of an electromagnetic plane wave from an anisotropic random media. We show that the following restrictions on properties of incident fields and the anisotropic media must be simultaneously satisfied: 1) the elements of the dielectric susceptibility matrix of the media must obey the scaling law; 2) the spectral components of the incident field are proportional to each other; 3) the second moments of the elements of the dielectric susceptibility matrix of the media are inversely proportional to the frequency.
Ding, Chaoliang; Cai, Yangjian; Zhang, Yongtao; Pan, Liuzhan
2012-06-01
The scattering of a stochastic electromagnetic plane-wave pulse on a deterministic spherical medium is investigated. An analytical formula for the degree of polarization (DOP) of the scattered field in the far zone is derived. Letting pulse duration T(0) → ∞, our formula can be applied to study the scattering of a stationary stochastic electromagnetic light wave. Numerical results show that the DOP of the far zone field is closely determined by the size of the spherical medium when the incident field is a stochastic electromagnetic plane-wave pulse. This is much different from the case when the incident field is a stationary stochastic electromagnetic light wave, where the DOP of the far zone field is independent of the size of the medium. One may obtain the information of the spherical medium by measuring the scattering-induced changes in the DOP of a stochastic electromagnetic plane-wave pulse.
Applied electromagnetic scattering theory
Osipov, Andrey A
2017-01-01
Besides classical applications (radar and stealth, antennas, microwave engineering), scattering and diffraction are enabling phenomena for some emerging research fields (artificial electromagnetic materials or metamaterials, terahertz technologies, electromagnetic aspects of nano-science). This book is a tutorial for advanced students who need to study diffraction theory. The textbook gives fundamental knowledge about scattering and diffraction of electromagnetic waves and provides some working examples of solutions for practical high-frequency scattering and diffraction problems. The book focuses on the most important diffraction effects and mechanisms influencing the scattering process and describes efficient and physically justified simulation methods - physical optics (PO) and the physical theory of diffraction (PTD) - applicable in typical remote sensing scenarios. The material is presented in a comprehensible and logical form, which relates the presented results to the basic principles of electromag...
Electromagnetic Wave Scattering by Small Impedance Particles of an Arbitrary Shape and Applications
Alexander G. Ramm
2014-02-01
Full Text Available The proposal deals with electromagnetic (EM wave scattering by one and many small impedance particles of an arbitrary shape. Analytic formula is derived for EM wave scattering by one small impedance particle of an arbitrary shape and an integral equation for the effective field in the medium where many such particles are embedded. These results are applied for creating a medium with a desired refraction coefficient. The proposed theory has no analogs in the literature. (Mathematical Subject Classiffication: 35J05, 35J25, 65N12, 78A25, 78A48.
Abramov, Arnold, E-mail: qulaser@gmail.com [Kuang-Chi Institute of Advanced Technology, Shenzhen, 518057 (China); Kostikov, Alexander [Donbass State Engineering Academy, 84303, Kramatorsk, Donetsk (Ukraine)
2017-03-26
We report the effect of scattering of electromagnetic plane waves by two cylinders on whispering gallery mode (WGM) formation in a cylinder. WGM can occur because of the presence of additional cylinder scatterers at specific location, while WGMs can only form in a single cylinder for specific cylinder radius and/or wavelength values, the matching accuracy required would be much greater than that required in our model for the additional cylinders locations. Analysis of the general solution to the problem showed that the effect can be explained by the interference of waves scattered by additional cylinders and incident on the main cylinder. - Highlights: • We consider scattering of electromagnetic plane waves by two cylinders. • WGMs occur because of the presence of additional cylinder at specific location. • The accuracy for the locations is much less than required for specific values of single cylinder. • The interference of waves scattered by additional cylinders and incident on the main is responsible for the effect.
Computer-aided design-based high-frequency electromagnetic wave scattering from complex bodies
Baldauf, John Eric
1991-02-01
This work investigates the use of high frequency electromagnetic scattering techniques, such as the physical theory of diffraction (PTD) and the geometrical theory of diffraction (GTD) and the shooting and bouncing rays (SBR) method combined with computer aided design (CAD) compatible geometries, to perform the electromagnetic scattering analysis of complex arbitrary bodies. The use of CAD formats such as solid modelled bodies and bodies modelled with triangular patch surface elements allows the scattering analysis of arbitrary bodies which can be constructed using CAD packages. The scattering analyses are applied to radar cross section (RCS) problems, cavity radiation problems, and antenna pattern predictions of complex electrically large structures, thereby showing that it is feasible to accurately approximate the electromagnetic wave scattering from general complex bodies using CAD techniques and high frequency scattering techniques. First, the RCS of large targets which involve multiple geometric optics (GO) interactions are investigated by comparing the RCS calculated using CAD designed radar targets and the SBR method and PTD for targets such as trihedral corner reflectors and an idealized military vehicle model with the experimentally obtained RCS. The comparisons between the calculated and measured results demonstrate that the SBR and PTD can provide accurate approximations of the RCS for targets which have complex multiple GO interactions. Second, the problem of interior cavity radiation for closed cavities is approached using a ray tracing and GO method based on the SBR method and triangular surface patch described geometries. Comparisons between the ray-based calculations and more exact techniques such as the method of moments (MM) for two-dimensional cavities demonstrate that ray-based methods can provide good approximations for the field behavior inside of nonresonant cavities. A three-dimensional case is shown to demonstrate that this technique can be
Uzbekov, Bogdan; Shprits, Yuri Y.; Orlova, Ksenia
2016-10-01
Electromagnetic Ion Cyclotron (EMIC) waves are transverse plasma waves that are generated in the Earth magnetosphere by ring current protons with temperature anisotropy in three different bands: below the H+, He+ and O+ ion gyrofrequencies. EMIC events are enhanced during the main phase of a geomagnetic storm when intensifications in the electric field result in enhanced injections of ions and are usually confined to high-density regions just inside the plasmapause or within drainage plumes. EMIC waves are capable of scattering radiation belt electrons and thus provide an important link between the intensification of the electric field, ion populations, and radiation belt electrons. Bounce-averaged diffusion coefficients computed with the assumption of parallel wave propagation are compared to the results of the code that uses the full cold plasma dispersion relation taking into account oblique propagation of waves and higher-order resonances. We study the sensitivity of the scattering rates to a number of included higher-order resonances, wave spectral distribution parameters, wave normal angle distribution parameters, ambient plasma density, and ion composition. Inaccuracies associated with the neglect of higher-order resonances and oblique propagation of waves are compared to potential errors introduced by uncertainties in the model input parameters.
Scattering of strong electromagnetic wave by relativistic electrons: Thomson and Compton regimes
Potylitsyn, A. P.; Kolchuzhkin, A. M.
2017-04-01
The processes of the nonlinear Compton and the nonlinear Thomson scattering in a field of intense plane electromagnetic wave in terms of photon yield have been considered. The quantum consideration of the Compton scattering process allows us to calculate the probability of a few successive collisions k of an electron with laser photons accompanied by the absorption of n photons (nonlinear regime) when the number of collisions and the number of absorbed photons are of random quantities. The photon spectrum of the nonlinear Thomson scattering process was obtained from the classical formula for intensity using the Planck's law. The conditions for which the difference between the classical and the quantum regimes is manifested was obtained. Such a condition is determined by a discrete quantum radiation mechanism, namely, by the mean number of photons k bar emitted by an electron passing through the laser pulse.
Stimulated scattering of electromagnetic waves carrying orbital angular momentum in quantum plasmas.
Shukla, P K; Eliasson, B; Stenflo, L
2012-07-01
We investigate stimulated scattering instabilities of coherent circularly polarized electromagnetic (CPEM) waves carrying orbital angular momentum (OAM) in dense quantum plasmas with degenerate electrons and nondegenerate ions. For this purpose, we employ the coupled equations for the CPEM wave vector potential and the driven (by the ponderomotive force of the CPEM waves) equations for the electron and ion plasma oscillations. The electrons are significantly affected by the quantum forces (viz., the quantum statistical pressure, the quantum Bohm potential, as well as the electron exchange and electron correlations due to electron spin), which are included in the framework of the quantum hydrodynamical description of the electrons. Furthermore, our investigation of the stimulated Brillouin instability of coherent CPEM waves uses the generalized ion momentum equation that includes strong ion coupling effects. The nonlinear equations for the coupled CPEM and quantum plasma waves are then analyzed to obtain nonlinear dispersion relations which exhibit stimulated Raman, stimulated Brillouin, and modulational instabilities of CPEM waves carrying OAM. The present results are useful for understanding the origin of scattered light off low-frequency density fluctuations in high-energy density plasmas where quantum effects are eminent.
Li, Jia; Chang, Liping; Chen, Feinan
2016-12-01
Based on the first-order Born approximation, the correlation between intensity fluctuations is derived for a partially coherent, electromagnetic plane wave scattering from a spatially quasi-homogeneous medium. Young's pinholes are utilized to control the degree of coherence of the incident field. For the electromagnetic scattering case, it is shown that the CIF of the scattered field strongly depends on the degree of polarization of the incident wave, Young's pinhole parameter, effective radius and correlation length of the medium. The influences of these parameters on the CIF distributions are revealed by numerical calculations.
Berginc, G.
2013-11-01
We have developed a general formalism based on Green's functions to calculate the coherent electromagnetic field scattered by a random medium with rough boundaries. The approximate expression derived makes it possible to determine the effective permittivity, which is generalised for a layer of an inhomogeneous random medium with different types of particles and bounded with randomly rough interfaces. This effective permittivity describes the coherent propagation of an electromagnetic wave in a random medium with randomly rough boundaries. We have obtained an expression, which contains the Maxwell - Garnett formula at the low-frequency limit, and the Keller formula; the latter has been proved to be in good agreement with experiments for particles whose dimensions are larger than a wavelength.
Kriegsmann, Gregory A.; Taflove, Allen; Umashankar, Koradar R.
1987-01-01
A new formulation of electromagnetic wave scattering by convex, two-dimensional conducting bodies is reported. This formulation, called the on-surface radiation condition (OSRC) approach, is based upon an expansion of the radiation condition applied directly on the surface of a scatterer. It is now shown that application of a suitable radiation condition directly on the surface of a convex conducting scatterer can lead to substantial simplification of the frequency-domain integral equation for the scattered field, which is reduced to just a line integral. For the transverse magnetic case, the integrand is known explicitly. For the transverse electric case, the integrand can be easily constructed by solving an ordinary differential equation around the scatterer surface contour. Examples are provided which show that OSRC yields computed near and far fields which approach the exact results for canonical shapes such as the circular cylinder, square cylinder, and strip. Electrical sizes for the examples are ka = 5 and ka = 10. The new OSRC formulation of scattering may present a useful alternative to present integral equation and uniform high-frequency approaches for convex cylinders larger than ka = 1. Structures with edges or corners can also be analyzed, although more work is needed to incorporate the physics of singular currents at these discontinuities. Convex dielectric structures can also be treated using OSRC.
Scattering of electromagnetic waves by many thin cylinders: theory and computational modeling
Ramm, A G
2015-01-01
Electromagnetic (EM) wave scattering by many parallel infinite cylinders is studied asymptotically as a tends to 0, where a is the radius of the cylinders. It is assumed that the centres of the cylinders are distributed so that their numbers is determined by some positive function N(x). The function N(x) >= 0 is a given continuous function. An equation for the self-consistent (limiting) field is derived as a tends to 0. The cylinders are assumed perfectly conducting. Formula for the effective refraction coefficient of the new medium, obtained by embedding many thin cylinders into a given region, is derived. The numerical results presented demonstrate the validity of the proposed approach and its efficiency for solving the many-body scattering problems, as well as the possibility to create media with negative refraction coefficients.
Karam, Mostafa A.; Amar, Faouzi; Fung, Adrian K.
1993-01-01
The Wave Scattering Research Center at the University of Texas at Arlington has developed a scattering model for forest or vegetation, based on the theory of electromagnetic-wave scattering in random media. The model generalizes the assumptions imposed by earlier models, and compares well with measurements from several forest canopies. This paper gives a description of the model. It also indicates how the model elements are integrated to obtain the scattering characteristics of different forest canopies. The scattering characteristics may be displayed in the form of polarimetric signatures, represented by like- and cross-polarized scattering coefficients, for an elliptically-polarized wave, or in the form of signal-distribution curves. Results illustrating both types of scattering characteristics are given.
Cylindrical-Wave Approach for Electromagnetic Scattering by Subsurface Targets in a Lossy Medium
Frezza, F.; Pajewski, L.; Ponti, C.; Schettini, G.; Tedeschi, N.
2012-04-01
The Cylindrical-Wave Approach (CWA) rigorously solves, in the spectral domain, the electromagnetic forward scattering by a finite set of buried two-dimensional perfectly-conducting or dielectric objects [1]-[3]. In this technique, the field scattered by underground objects is represented in terms of a superposition of cylindrical waves. Use is made of the plane-wave spectrum [1] to take into account the interaction of such waves with the planar interface between air and soil, and between different layers eventually present in the ground. In this work we present the progress we recently made to improve the method. In particular, we have faced the fundamental problem of losses in the ground: this is of significant importance in remote sensing applications, since real soils often have complex permittivity and conductivity, and sometimes also a complex permeability. First, a convergent closed-form representation of the cylindrical-wave angular spectrum in a generic lossy medium has been found [4]. To obtain this spectrum, the canonical Sommerfeld representation of the first-kind Hankel function of integer order has been used; its integration path has been modified to ensure the integral convergence for complex values of the wavenumber. Subsequently, the solution to the scattering problem of a plane-wave propagating in air, impinging on the interface with a dissipative medium, and interacting with a buried perfectly-conducting cylinder, has been derived. The developed method may return the field values in each point of the space, both in the near and far zones; moreover it may be applied for any polarization, and for arbitrary values of the cylinder size and of the distance between the cylinder and the air-soil interface. The theoretical solution has been implemented in a Fortran code. The numerical evaluation of the reflected and transmitted cylindrical wave functions in the presence of lossy media was a critical point: we extended the Gaussian adaptive quadrature
Li Ying-Le; Huang Ji-Ying; Wang Ming-Jun; Zhang Jia-Tian
2008-01-01
It is of great importance for enginsering applications to obtain the expression of scattering field for an ellipsoidal target irradiated by an electromagnetic wave from an arbitrary direction.Literature relevant to this problem is seldom found.In this paper,the scattering field for an ellipsoidal target is presented by utilizing the scale transformation of electromagnetic field and the rotation of coordinate system,with an electromagnetic wave projecting on the target from an arbitrary direction.The obtained result is in good agreement with the solution available from the literature if we consider the scale factors to be unity.Taking a conducting ellipsoidal target for sample,we perform the partial simulations of the ellipsoidat model and a plant leaf model by choosing different scale factors.The obtained results show that the distribution characteristic of scattering field is sensitively affected by the polarization of the incident wave and varies not much with the incident wave angle but changes with the observation point.At some points the scattering energy arrives at its maximum.
Advanced electromagnetics and scattering theory
2015-01-01
This book present the lecture notes used in two courses that the late Professor Kasra Barkeshli had offered at Sharif University of Technology, namely, Advanced Electromagnetics and Scattering Theory. The prerequisite for the sequence is vector calculus and electromagnetic fields and waves. Some familiarity with Green's functions and integral equations is desirable but not necessary. The book provides a brief but concise introduction to classical topics in the field. It is divided into three parts including annexes. Part I covers principle of electromagnetic theory. The discussion starts with a review of the Maxwell's equations in differential and integral forms and basic boundary conditions. The solution of inhomogeneous wave equation and various field representations including Lorentz's potential functions and the Green's function method are discussed next. The solution of Helmholtz equation and wave harmonics follow. Next, the book presents plane wave propagation in dielectric and lossy media and various...
Modeling of Electromagnetic Waves Scattering from Snow Covered First Year Sea Ice
Komarov, A. S.; Barber, D. G.; Isleifson, D. K.
2011-12-01
Modeling of electromagnetic wave interaction with sea ice is required for various remote sensing applications, such as an interpretation of Synthetic Aperture Radar (SAR) imagery over sea ice. In this study, we present numerical modeling of the Normalized Radar Cross Section (NRCS) at vertical and horizontal polarizations from snow covered First Year (FY) sea ice. We consider sea ice as a layered medium with an arbitrary profile of dielectric constant, and the snow cover as a homogeneous layer on the top of the sea ice. Surface scattering at the snow-sea ice interface was taken into account by the first-order approximation of the small perturbation method. We obtained an analytical formulation for radar cross-sections at vertical and horizontal polarizations and conducted numerical modeling of the backscattering characteristics. The solution derived for NRCSs includes reflection coefficients from snow and sea ice. The calculation of reflection coefficients from the stratified sea ice is considered separately as an auxiliary problem. In-situ geophysical properties of snow and sea ice collected during the Circumpolar Flow Lead (CFL) system study project were used to estimate the dielectric constants of snow and sea ice for several case studies. The dielectric constant of the sea ice was calculated using the Polder-van-Santen/de Loor (PVD) mixture model, while the dielectric constant of the snow was estimated using a Debye-like model. The calculated angular dependencies of the NRCSs (HH- and VV- polarizations) and co-polarization ratios were compared with in-situ C-band scatterometer measurements. These comparisons demonstrate a good agreement between simulated and observed scattering characteristics.
Li Ying-Le; Huang Ji-Ying
2006-01-01
The relation between corresponding trigonometric functions in two rotating coordinate systems is presented. The transformation formula for a vector in the two rotating spherical coordinate systems is obtained. The scattering fields for a spherical target irradiated by a plane electromagnetic wave in an arbitrary direction are derived. These fields in a particular case retrogress to those available in the literature. The obtained results have great potential in practical applications.
Abnormal absorption and scattering effect of human ear model for electromagnetic waves
NIE Min; PEI Changxing; LI Jiandong; MA Chen; YANG Zhen
2005-01-01
@@ To explore the effect of human ear outline structure for electromagnetic waves, two human ear's models, a big one (model 1) and a small one (model 2), were made in proportion as real human ears (Fig. 1). The installation picture is shown in Fig. 2, and its geometry structure and size are shown in Figs. 3 and 4, respectively.
Ulku, Huseyin Arda
2014-07-06
Effects of material nonlinearities on electromagnetic field interactions become dominant as field amplitudes increase. A typical example is observed in plasmonics, where highly localized fields “activate” Kerr nonlinearities. Naturally, time domain solvers are the method of choice when it comes simulating these nonlinear effects. Oftentimes, finite difference time domain (FDTD) method is used for this purpose. This is simply due to the fact that explicitness of the FDTD renders the implementation easier and the material nonlinearity can be easily accounted for using an auxiliary differential equation (J.H. Green and A. Taflove, Opt. Express, 14(18), 8305-8310, 2006). On the other hand, explicit marching on-in-time (MOT)-based time domain integral equation (TDIE) solvers have never been used for the same purpose even though they offer several advantages over FDTD (E. Michielssen, et al., ECCOMAS CFD, The Netherlands, Sep. 5-8, 2006). This is because explicit MOT solvers have never been stabilized until not so long ago. Recently an explicit but stable MOT scheme has been proposed for solving the time domain surface magnetic field integral equation (H.A. Ulku, et al., IEEE Trans. Antennas Propag., 61(8), 4120-4131, 2013) and later it has been extended for the time domain volume electric field integral equation (TDVEFIE) (S. B. Sayed, et al., Pr. Electromagn. Res. S., 378, Stockholm, 2013). This explicit MOT scheme uses predictor-corrector updates together with successive over relaxation during time marching to stabilize the solution even when time step is as large as in the implicit counterpart. In this work, an explicit MOT-TDVEFIE solver is proposed for analyzing electromagnetic wave interactions on scatterers exhibiting Kerr nonlinearity. Nonlinearity is accounted for using the constitutive relation between the electric field intensity and flux density. Then, this relation and the TDVEFIE are discretized together by expanding the intensity and flux - sing half
Li, Jia; Chen, Feinan
2016-11-01
Based on the first-order Born approximation, formulas are derived for the correlation between intensity fluctuations (CIF) of light generated by a Young’s diffractive electromagnetic wave scattered by a spatially quasi-homogeneous (QH), anisotropic medium. It is shown that the CIF of the scattered field can be written as the summation of the Fourier transforms of the strengths and normalized correlation coefficients (NCCs) of the scattering potentials. The differences between our results and those obtained in the previous literature are discussed. Our results might be important in investigating the high-order intensity correlation of an electromagnetic wave scattered from a 3D anisotropic object.
Gamayunov, K. V.; Khazanov, G. V.
2007-01-01
We consider the effect of oblique EMIC waves on relativistic electron scattering in the outer radiation belt using simultaneous observations of plasma and wave parameters from CRRES. The main findings can be s ummarized as follows: 1. In 1comparison with field-aligned waves, int ermediate and highly oblique distributions decrease the range of pitc h-angles subject to diffusion, and reduce the local scattering rate b y an order of magnitude at pitch-angles where the principle absolute value of n = 1 resonances operate. Oblique waves allow the absolute va lue of n > 1 resonances to operate, extending the range of local pitc h-angle diffusion down to the loss cone, and increasing the diffusion at lower pitch angles by orders of magnitude; 2. The local diffusion coefficients derived from CRRES data are qualitatively similar to the local results obtained for prescribed plasma/wave parameters. Conseq uently, it is likely that the bounce-averaged diffusion coefficients, if estimated from concurrent data, will exhibit the dependencies similar to those we found for model calculations; 3. In comparison with f ield-aligned waves, intermediate and highly oblique waves decrease th e bounce-averaged scattering rate near the edge of the equatorial lo ss cone by orders of magnitude if the electron energy does not excee d a threshold (approximately equal to 2 - 5 MeV) depending on specified plasma and/or wave parameters; 4. For greater electron energies_ ob lique waves operating the absolute value of n > 1 resonances are more effective and provide the same bounce_averaged diffusion rate near the loss cone as fiel_aligned waves do.
Propagation of a Scattered Electromagnetic Wave with P-Polarization (TE) Mode in Atmospheric Plasma
JIANG Zhong-He; HU Xi-Wei; LIU Ming-Hai; LAN Chao-Hui; HE Yong; ZHANG Shu; PAN Yuan
2006-01-01
@@ The finite-difference-time-domain method is applied to simulate the two-dimensional propagation ofa p-polarization mode electromagnetic wave in atmospheric plasma and metal layer for strong electron-neutral collisions. It is indicated that for a giving electron density profile, the p-polarization attenuation is very different from the spolarization attenuation and it depends even strongly on the incident angle. The mechanism of p-polarization attenuation is analysed by the interference of wave and the relationship between the attenuation property and the main parameters is given.
Sayed, Sadeed Bin
2014-07-01
A marching on-in-time (MOT)-based time domain volume electric field integral equation (TD-VEFIE) solver is proposed for accurate and stable analysis of electromagnetic wave interactions on high-contrast scatterers. The stability is achieved using band-limited but two-sided (non-causal) temporal interpolation functions and an extrapolation scheme to cast the time marching into a causal form. The extrapolation scheme is designed to be highly accurate for oscillating and exponentially decaying fields, hence it accurately captures the physical behavior of the resonant modes that are excited inside the dielectric scatterer. Numerical results demonstrate that the resulting MOT scheme maintains its stability as the number of resonant modes increases with the contrast of the scatterer.
Electromagnetic waves and photons
Hofmann, Ralf
2015-01-01
We explore how the thermal ground states of two mixing and pure SU(2) Yang-Mills theories, SU(2)$_{\\tiny\\mbox{CMB}}$ of scale $\\Lambda_{\\tiny\\mbox{CMB}}\\sim 10^{-4}\\,$eV and SU(2)$_{e}$ of scale $\\Lambda_{e}\\sim 5\\times 10^5\\,$eV, associate either wave or particle aspects to electromagnetic disturbances during thermalisation towards the photon gas of a blackbody, in realising the photoelectric effect, and through the frequency dependence of the monochromatic, nonthermal beam structure in Thomson/Compton scattering.
Zhu, P. Y.
1991-01-01
The effective-medium approximation is applied to investigate scattering from a half-space of randomly and densely distributed discrete scatterers. Starting from vector wave equations, an approximation, called effective-medium Born approximation, a particular way, treating Green's functions, and special coordinates, of which the origin is set at the field point, are used to calculate the bistatic- and back-scatterings. An analytic solution of backscattering with closed form is obtained and it shows a depolarization effect. The theoretical results are in good agreement with the experimental measurements in the cases of snow, multi- and first-year sea-ice. The root product ratio of polarization to depolarization in backscattering is equal to 8; this result constitutes a law about polarized scattering phenomena in the nature.
Scattering of electromagnetic waves by small impedance particles of an arbitrary shape
Ramm, Alexander G
2015-01-01
An explicit formula is derived for the electromagnetic (EM) field scattered by one small impedance particle $D$ of an arbitrary shape. If $a$ is the characteristic size of the particle, $\\lambda$ is the wavelength, $a> O(a^3)$ as $a\\to 0$ when $\\lambda$ is fixed and $\\zeta$ does not depend on $a$. Thus, $|E_{sc}|$ is much larger than the classical value $O(a^3)$ for the field scattered by a small particle. It is proved that the effective field in the medium, in which many small particles are embedded, has a limit as $a\\to 0$ and the number $M=M(a)$ of the particles tends to $\\infty$ at a suitable rate. Thislimit solves a linear integral equation. The refraction coefficient of the limiting medium is calculated analytically. This yields a recipe for creating materials with a desired refraction coefficient.
Electromagnetic ultrasonic guided waves
Huang, Songling; Li, Weibin; Wang, Qing
2016-01-01
This book introduces the fundamental theory of electromagnetic ultrasonic guided waves, together with its applications. It includes the dispersion characteristics and matching theory of guided waves; the mechanism of production and theoretical model of electromagnetic ultrasonic guided waves; the effect mechanism between guided waves and defects; the simulation method for the entire process of electromagnetic ultrasonic guided wave propagation; electromagnetic ultrasonic thickness measurement; pipeline axial guided wave defect detection; and electromagnetic ultrasonic guided wave detection of gas pipeline cracks. This theory and findings on applications draw on the author’s intensive research over the past eight years. The book can be used for nondestructive testing technology and as an engineering reference work. The specific implementation of the electromagnetic ultrasonic guided wave system presented here will also be of value for other nondestructive test developers.
SU Zhen-Peng; ZHENG Hui-Nan
2009-01-01
The bounce-averaged Fokker-Planck equation is solved to study the relativistic electron phase space density(PSD)evolution in the outer radiation belt due to resonant interactions with plasmaspheric plume electromagnetic ion cyclotron(EMIC)waves.It is found that the PSDs of relativistic electrons can be depleted by 1-3 orders of magnitude in 5h,supporting the previous finding that resonant interactions with EMIC waves may account for the frequently observed relativistic electron flux dropouts in the outer radiation belt during the main phase of a storm.The significant precipitation Joss of ～Me V electrons is primarily induced by the EMIC waves in H~+ and He~+ bands.The rapid remove of highly relativistic electrons(＞5 MeV)is mainly driven by the EMIC waves in O~+ band at lower pitch-angles,as well as the EMIC waves in H~+ and He~+ bands at larger pitch-angles.Moreover,a stronger depletion of relativistic electrons is found to occur over a wider pitch angle range when EMIC waves are centering relatively higher in the band.
Controlling electromagnetic scattering with wire metamaterial resonators
Filonov, Dmitry S; Iorsh, Ivan; Belov, Pavel A; Ginzburg, Pavel
2016-01-01
Manipulation of radiation is required for enabling a span of electromagnetic applications. Since properties of antennas and scatterers are very sensitive to a surrounding environment, macroscopic artificially created materials are good candidates for shaping their characteristics. In particular, metamaterials enable controlling both dispersion and density of electromagnetic states, available for scattering from an object. As the result, properly designed electromagnetic environment could govern waves' phenomena. Here electromagnetic properties of scattering dipoles, situated inside a wire medium (metamaterial) are analyzed both numerically and experimentally. Impact of the metamaterial geometry, dipole arrangement inside the medium, and frequency of the incident radiation on scattering phenomena was studied. It was shown that the resonance of the dipole hybridizes with Fabry-Perot modes of the metamaterial, giving rise to a complete reshaping of electromagnetic properties. Regimes of controlled scattering sup...
Fabrizio Consoli
2013-07-01
Full Text Available The Single Bunch Selector (SBS will be used on the Spiral2 linear accelerator to reduce the rate of high energy bunches reaching the target with, in principle, no residual particles from the suppressed bunches. For this purpose, a pulsed electromagnetic wave will travel along the 100 Ω microstrip meander line electrode of the SBS. In this work we describe the broadband accurate characterization of the electrode electromagnetic features. The method applied here leads to the analytical determination of complex characteristic impedance, propagation constant, and group velocity from a measurement of the 50 Ω scattering parameters on the meander transmission line. Particular care is given to the de-embedding phase of the transitions required to connect the meander electrode to the measurement device.
Gravitational scattering of electromagnetic radiation
Brooker, J. T.; Janis, A. I.
1980-01-01
The scattering of electromagnetic radiation by linearized gravitational fields is studied to second order in a perturbation expansion. The incoming electromagnetic radiation can be of arbitrary multipole structure, and the gravitational fields are also taken to be advanced fields of arbitrary multipole structure. All electromagnetic multipole radiation is found to be scattered by gravitational monopole and time-varying dipole fields. No case has been found, however, in which any electromagnetic multipole radiation is scattered by gravitational fields of quadrupole or higher-order multipole structure. This lack of scattering is established for infinite classes of special cases, and is conjectured to hold in general. The results of the scattering analysis are applied to the case of electromagnetic radiation scattered by a moving mass. It is shown how the mass and velocity may be determined by a knowledge of the incident and scattered radiation.
Extremely asymmetrical scattering of electromagnetic waves in gradually varying periodic arrays
Gramotnev, D K
1999-01-01
This paper analyses theoretically and numerically the effect of varying grating amplitude on the extremely asymmetrical scattering (EAS) of bulk and guided optical modes in non-uniform strip-like periodic Bragg arrays with stepwise and gradual variations in the grating amplitude across the array. A recently developed new approach based on allowance for the diffractional divergence of the scattered wave is used for this analysis. It is demonstrated that gradual variations in magnitude of the grating amplitude may change the pattern of EAS noticeably but not radically. On the other hand, phase variations in the grating may result in a radically new type of Bragg scattering - double-resonant EAS (DEAS). In this case, a combination of two strong simultaneous resonances (one with respect to frequency, and another with respect to the phase variation) is predicted to take place in non-uniform arrays with a step-like phase and gradual magnitude variations of the grating amplitude. The tolerances of EAS and DEAS to sm...
Electromagnetic Scattering by Spheres of Topological Insulators
Ge, Lixin; Zi, Jian
2015-01-01
The electromagnetic scattering properties of topological insulator (TI) spheres are systematically studied in this paper. Unconventional backward scattering caused by the topological magneto-electric (TME) effect of TIs are found in both Rayleigh and Mie scattering regimes. This enhanced backward scattering can be achieved by introducing an impedance-matched background which can suppress the bulk scattering. For the cross-polarized scattering coefficients, interesting antiresonances are found in the Mie scattering regime, wherein the cross-polarized electromagnetic fields induced by the TME effect are trapped inside TI spheres. In the Rayleigh limit, the quantized TME effect of TIs can be determined by measuring the electric-field components of scattered waves in the far field.
Electromagnetic Field Scattering on rf-SQUID Based Metasurfaces
Сaputo J.G; Gabitov I.R.; Kudyshev Zh.; Kupaev T.; Maimistov A.I.
2015-01-01
Electromagnetic field scattering on a 2D array of rf-SQUIDs is considered. We show that the scattering changes for large amplitudes of the incident electromagnetic wave; above a critical amplitude, two different refraction states occur (bistability). In particular, for these two states, the transmitted wave polarization and angle of refraction are different. One could then switch the direction of propagation of the electromagnetic wave and its polarization with a “thin film”, whose thickness ...
Electromagnetic Field Scattering on rf-SQUID Based Metasurfaces
Raputo, J. G.; Gabitov, I. R.; Kudyshev, Zh.; Kupaev, T.; Maimistov, A. I.
2015-09-01
Electromagnetic field scattering on a 2D array of rf-SQUIDs is considered. We show that the scattering changes for large amplitudes of the incident electromagnetic wave; above a critical amplitude, two different refraction states occur (bistability). In particular, for these two states, the transmitted wave polarization and angle of refraction are different. One could then switch the direction of propagation of the electromagnetic wave and its polarization with a "thin film", whose thickness is much smaller than the wavelength.
Controlling electromagnetic scattering with wire metamaterial resonators
Filonov, Dmitry S.; Shalin, Alexander S.; Iorsh, Ivan; Belov, Pavel A.; Ginzburg, Pavel
2016-10-01
Manipulation of radiation is required for enabling a span of electromagnetic applications. Since properties of antennas and scatterers are very sensitive to a surrounding environment, macroscopic artificially created materials are good candidates for shaping their characteristics. In particular, metamaterials enable controlling both dispersion and density of electromagnetic states, available for scattering from an object. As the result, properly designed electromagnetic environment could govern waves' phenomena. Here electromagnetic properties of scattering dipoles, situated inside a wire medium (metamaterial) are analyzed both numerically and experimentally. Impact of the metamaterial geometry, dipole arrangement inside the medium, and frequency of the incident radiation on scattering phenomena was studied. It was shown that the resonance of the dipole hybridizes with Fabry-Perot modes of the metamaterial, giving rise to a complete reshaping of electromagnetic properties. Regimes of controlled scattering suppression and super-scattering were observed. Numerical analysis is in an agreement with experiments, performed at the GHz spectral range. The reported approach to scattering control with metamaterials could be directly mapped into optical and infrared spectral ranges by employing scalability properties of Maxwell's equations.
Spheroidal Wave Functions in Electromagnetic Theory
Li, Le-Wei; Kang, Xiao-Kang; Leong, Mook-Seng
2001-11-01
The flagship monograph addressing the spheroidal wave function and its pertinence to computational electromagnetics Spheroidal Wave Functions in Electromagnetic Theory presents in detail the theory of spheroidal wave functions, its applications to the analysis of electromagnetic fields in various spheroidal structures, and provides comprehensive programming codes for those computations. The topics covered in this monograph include: Spheroidal coordinates and wave functions Dyadic Green's functions in spheroidal systems EM scattering by a conducting spheroid EM scattering by a coated dielectric spheroid Spheroid antennas SAR distributions in a spheroidal head model The programming codes and their applications are provided online and are written in Mathematica 3.0 or 4.0. Readers can also develop their own codes according to the theory or routine described in the book to find subsequent solutions of complicated structures. Spheroidal Wave Functions in Electromagnetic Theory is a fundamental reference for scientists, engineers, and graduate students practicing modern computational electromagnetics or applied physics.
Gasiewski, A. J.; Jackson, D. M.
1992-01-01
W-band measurements of the bistatic scattering function of some common microwave absorbing structures, including periodic wedge-type and pyramid-type iron-epoxy calibration loads and flat carbon-foam 'Echosorb' samples, were made using a network analyzer interface to a focused-lens scattering range. Swept frequency measurements over the 75-100 GHz band revealed specular and Bragg reflection characteristics in the measured data.
Ovidio Peña-Rodríguez
2011-01-01
Full Text Available In this paper, we present MieLab, a free computational package for simulating the scattering of electromagnetic radiation by multilayered spheres or an ensemble of particles with normal size distribution. It has been designed as a virtual laboratory, including a friendly graphical user interface (GUI, an optimization algorithm (to fit the simulations to experimental results and scripting capabilities. The paper is structured in five different sections: the introduction is a perspective on the importance of the software for the study of scattering of light scattering. In the second section, various approaches used for modeling the scattering of electromagnetic radiation by small particles are discussed. The third and fourth sections are devoted to provide an overview of MieLab and to describe the main features of its architectural model and functional behavior, respectively. Finally, several examples are provided to illustrate the main characteristics of the software.
Electromagnetic wave energy converter
Bailey, R. L. (Inventor)
1973-01-01
Electromagnetic wave energy is converted into electric power with an array of mutually insulated electromagnetic wave absorber elements each responsive to an electric field component of the wave as it impinges thereon. Each element includes a portion tapered in the direction of wave propagation to provide a relatively wideband response spectrum. Each element includes an output for deriving a voltage replica of the electric field variations intercepted by it. Adjacent elements are positioned relative to each other so that an electric field subsists between adjacent elements in response to the impinging wave. The electric field results in a voltage difference between adjacent elements that is fed to a rectifier to derive dc output power.
Plasma scattering of electromagnetic radiation
Sheffield, John
1975-01-01
Plasma Scattering of Electromagnetic Radiation covers the theory and experimental application of plasma scattering. The book discusses the basic properties of a plasma and of the interaction of radiation with a plasma; the relationship between the scattered power spectrum and the fluctuations in plasma density; and the incoherent scattering of low-temperature plasma. The text also describes the constraints and problems that arise in the application of scattering as a diagnostic technique; the characteristic performance of various dispersion elements, image dissectors, and detectors; and the ge
Singh, Keshev
In the country with limited resources, where the nutrition level of the population has to be maintained under inhospitable situation, the potato has a special value as food. Therefore efforts should be made for improvement and spreading the cultivation of this important crop. It demands an effective program that may provide information about potato growing areas and the growth conditions. Remote sensing has been acknowledged to be a valuable source of spatially comprehensive and temporally repeatable information of crop covered soil moisture, crop growth climatic information etc, which is useful and necessary for agriculture purposes. For this purpose, microwave remote sensing has evolved as an important tool. Since microwave are able to penetrate more deeply into vegetation and underneath ground surface. It is also preferred to the optical frequency band because microwave can work in all type of weather and have a wide signal dynamic range compared optical wavelengths. However interpretation of microwave scattering from agricultural crops requires an understanding the interaction among microwave, vegetative material and the soil. In order to develop useful forward and inverse models for retrieving the vegetation characteristic, it is necessary to know in detail the dielectric properties and plant structure of the vegetation over the range of expected growing conditions. In this paper, a theoretical model based on microwave interaction with potato crop along with examination of biomass of potato crop with the varying underlying soil moisture is studied. For this purpose, X-band (9.5GHz) scatterometer is used for studying the interaction of microwave with potato crop biomass and underlying soil moisture at various sensor parameters (i.e. angular variation and polarization, HH- and VV-). Although there may be a lot of crop parameters (i.e. crop height, leaf area index, etc) which also gives their effect on microwave. All this parameters are interlinked in the crop
Ni, B.; Thorne, R. M.; Horne, R. B.; Meredith, N. P.; Shprits, Y.; Chen, L.
2009-12-01
The diffuse aurora constitutes one of the most important loss processes of plasma sheet electrons, supplying the majority of ionizing energy input into the high-latitude region during conditions of both low and high solar wind driving. It is generally agreed that wave-particle interactions, including scattering losses by electrostatic electron cyclotron harmonic (ECH) waves and electromagnetic whistler-mode chorus waves, play an essential role in the occurrence of the diffuse aurora. However, the precise role of each wave mode has remained a source of controversy for many years. To quantify the scattering effects of these two wave modes, we have improved the methodology for computation of quasi-linear diffusion coefficients and adopted statistical wave models based on the survey of ECH waves and chorus using the entire CRRES database. Our results demonstrate that, whistler-mode chorus is the dominant mechanism for loss of injected plasma sheet electrons from the inner magnetosphere (4 1 keV, suggesting rather minor contributions from ECH waves to the diffuse auroral precipitation. Our results also show that the scattering effects on plasma sheet electrons by the waves are strongly dependent on the level of geomagnetic activity.
Low and high frequency asymptotics acoustic, electromagnetic and elastic wave scattering
Varadan, VK
2013-01-01
This volume focuses on asymptotic methods in the low and high frequency limits for the solution of scattering and propagation problems. Each chapter is pedagogical in nature, starting with the basic foundations and ending with practical applications. For example, using the Geometrical Theory of Diffraction, the canonical problem of edge diffraction is first solved and then used in solving the problem of diffraction by a finite crack. In recent times, the crack problem has been of much interest for its applications to Non-Destructive Evaluation (NDE) of flaws in structural materials.
"Hearing" Electromagnetic Waves
Rojo, Marta; Munoz, Juan
2014-01-01
In this work, an educational experience is described in which a microwave communication link is used to make students aware that all electromagnetic waves have the same physical nature and properties. Experimental demonstrations are linked to theoretical concepts to increase comprehension of the physical principles underlying electromagnetic…
"Hearing" Electromagnetic Waves
Rojo, Marta; Munoz, Juan
2014-01-01
In this work, an educational experience is described in which a microwave communication link is used to make students aware that all electromagnetic waves have the same physical nature and properties. Experimental demonstrations are linked to theoretical concepts to increase comprehension of the physical principles underlying electromagnetic…
Safari, S.; Jazi, B.
2017-07-01
The scattering phenomenon of plane waves from an unstable elliptical plasma antenna is investigated. The role of surface plasmon excitation in the scattering pattern is studied. In the antenna mentioned above, there is a metallic rod with dielectric cover embedded in a long plasma column with an elliptical cross section. The antenna is considered unstable because of the injection of an electron beam into the plasma layer. The effects of applied accelerating voltage and applied current intensity on the scattering pattern and resonance frequency are investigated. The geometrical structure and its effect on the scattering cross section and creation of new resonance frequency are studied.
Wu, Chao; Zhang, Xiaojuan; Fang, Guangyou; Shi, Jiancheng; Liu, Shiyin
2015-03-01
We develop an accurate and fast forward model for calculating the compact closed-form high-order perturbative solutions of the problem of three-dimensional (3-D) radiation and propagation electromagnetic fields in a layered structure with multilayer rough interfaces. The proposed method for the fast forward model is first demonstrated by strictly theoretical formulas derivation in the framework of classical small perturbation method (SPM) without other else approximation and equivalent process. The kernel functions of high order are proposed for calculating the radar cross sections with more efficiency and clear physical meanings for better use in practice. What is more, we give the clear physical interpretation of the first-order fully polarimetric electromagnetic wave scattering mechanism in the layered structure with multilayer rough interfaces. The proposed forward model is necessary to insure a successful inversion process. Furthermore, the high-order SPM solutions derived by employing the proposed method are validated with existing methods and numerical results. Finally, we study the performance of the high-order fully polarimetric electromagnetic wave scattering according to the numerical results and analyze the scattering enhancement phenomena.
Modeling fluctuations in scattered waves
Jakeman, E
2006-01-01
Fluctuations in scattered waves limit the performance of imaging and remote sensing systems that operate on all wavelengths of the electromagnetic spectrum. To better understand these fluctuations, Modeling Fluctuations in Scattered Waves provides a practical guide to the phenomenology, mathematics, and simulation of non-Gaussian noise models and discusses how they can be used to characterize the statistics of scattered waves.Through their discussion of mathematical models, the authors demonstrate the development of new sensing techniques as well as offer intelligent choices that can be made for system analysis. Using experimental results and numerical simulation, the book illustrates the properties and applications of these models. The first two chapters introduce statistical tools and the properties of Gaussian noise, including results on phase statistics. The following chapters describe Gaussian processes and the random walk model, address multiple scattering effects and propagation through an extended med...
Electromagnetic fields and waves
Iskander, Magdy F
2013-01-01
The latest edition of Electromagnetic Fields and Waves retains an authoritative, balanced approach, in-depth coverage, extensive analysis, and use of computational techniques to provide a complete understanding of electromagnetic—important to all electrical engineering students. An essential feature of this innovative text is the early introduction of Maxwell's equations, together with the quantifying experimental observations made by the pioneers who discovered electromagnetics. This approach directly links the mathematical relations in Maxwell's equations to real experiments and facilitates a fundamental understanding of wave propagation and use in modern practical applications, especially in today's wireless world. New and expanded topics include the conceptual relationship between Coulomb's law and Gauss's law for calculating electric fields, the relationship between Biot-Savart's and Ampere's laws and their use in calculating magnetic fields from current sources, the development of Faraday's law from e...
Fractional Electromagnetic Waves
Gómez, J F; Bernal, J J; Tkach, V I; Guía, M
2011-01-01
In the present work we consider the electromagnetic wave equation in terms of the fractional derivative of the Caputo type. The order of the derivative being considered is 0 <\\gamma<1. A new parameter \\sigma, is introduced which characterizes the existence of the fractional components in the system. We analyze the fractional derivative with respect to time and space, for \\gamma = 1 and \\gamma = 1/2 cases.
Modern Electromagnetic Scattering
2013-08-10
Section 4.3) of the cylindrical annulus is properly accounted for, and if the cylindrical void is sufficiently small . We refer to this approximation as...tempered distributions . . . . . . . . . . . . . 59 CHAPTER 4 MEASURING THE VOID: THEORETICAL STUDY OF SCATTERING BY A CYLINDRICAL ANNULUS ...and phase of the far-field pattern in the forward direction for a Teflon cylindrical annulus in vacuum, with an outer radius of 10 cm at 100 GHz, is
T. R. Robinson
Full Text Available A new theory of the propagation of low power electromagnetic test waves through the upper-hybrid resonance layer in the presence of magnetic field-aligned plasma density striations, which includes the effects of multiple scatter, is presented. The case of sinusoidal striations in a cold magnetoplasma is treated rigorously and then extended, in an approximate manner, to the broad-band striation spectrum and warm plasma cases. In contrast to previous, single scatter theories, it is found that the interaction layer is much broader than the wavelength of the test wave. This is due to the combined electric fields of the scattered waves becoming localised on the contour of a fixed plasma density, which corresponds to a constant value for the local upper-hybrid resonance frequency over the whole interaction region. The results are applied to the calculation of the refractive index of an ordinary mode test wave during modification experiments in the ionospheric F-region. Although strong anomalous absorption arises, no new cutoffs occur at the upper-hybrid resonance, so that in contrast to the predictions of previous single scatter theories, no additional reflections occur there. These results are consistent with observations made during ionospheric modification experiments at Tromsø, Norway.
Key words. Ionosphere (active experiments; ionospheric irregularities Radio science (ionospheric propagation
Electromagnetic Field Scattering on rf-SQUID Based Metasurfaces
Сaputo J.G
2015-01-01
Full Text Available Electromagnetic field scattering on a 2D array of rf-SQUIDs is considered. We show that the scattering changes for large amplitudes of the incident electromagnetic wave; above a critical amplitude, two different refraction states occur (bistability. In particular, for these two states, the transmitted wave polarization and angle of refraction are different. One could then switch the direction of propagation of the electromagnetic wave and its polarization with a “thin film”, whose thickness is much smaller than the wavelength.
Draine, B. T.; Goodman, Jeremy
1993-01-01
We derive the dispersion relation for electromagnetic waves propagating on a lattice of polarizable points. From this dispersion relation we obtain a prescription for choosing dipole polarizabilities so that an infinite lattice with finite lattice spacing will mimic a continuum with dielectric constant. The discrete dipole approximation is used to calculate scattering and absorption by a finite target by replacing the target with an array of point dipoles. We compare different prescriptions for determining the dipole polarizabilities. We show that the most accurate results are obtained when the lattice dispersion relation is used to set the polarizabilities.
Electromagnetic waves in stratified media
Wait, James R; Fock, V A; Wait, J R
2013-01-01
International Series of Monographs in Electromagnetic Waves, Volume 3: Electromagnetic Waves in Stratified Media provides information pertinent to the electromagnetic waves in media whose properties differ in one particular direction. This book discusses the important feature of the waves that enables communications at global distances. Organized into 13 chapters, this volume begins with an overview of the general analysis for the electromagnetic response of a plane stratified medium comprising of any number of parallel homogeneous layers. This text then explains the reflection of electromagne
Wave propagation in electromagnetic media
Davis, Julian L
1990-01-01
This is the second work of a set of two volumes on the phenomena of wave propagation in nonreacting and reacting media. The first, entitled Wave Propagation in Solids and Fluids (published by Springer-Verlag in 1988), deals with wave phenomena in nonreacting media (solids and fluids). This book is concerned with wave propagation in reacting media-specifically, in electro magnetic materials. Since these volumes were designed to be relatively self contained, we have taken the liberty of adapting some of the pertinent material, especially in the theory of hyperbolic partial differential equations (concerned with electromagnetic wave propagation), variational methods, and Hamilton-Jacobi theory, to the phenomena of electromagnetic waves. The purpose of this volume is similar to that of the first, except that here we are dealing with electromagnetic waves. We attempt to present a clear and systematic account of the mathematical methods of wave phenomena in electromagnetic materials that will be readily accessi...
Focusing of electromagnetic waves
Dhayalan, V.
1996-12-31
The focusing of electromagnetic waves inside a slab has been examined together with two special cases in which the slab is reduced to a single interface or a single medium. To that end the exact solutions for the fields inside a layered medium have been used, given in terms of the outside current source in order to obtain the solutions for the focused electric field inside a slab. Both exact and asymptotic solutions of the problem have been considered, and the validity of the latter has been discussed. The author has developed a numerical algorithm for evaluation of the diffraction integral with special emphasis on reducing the computing time. The numerical techniques in the paper can be readily applied to evaluate similar diffraction integrals occurring e.g. in microstrip antennas. 46 refs.
Electromagnetic Scattering at the Waveguide Step between Equilateral Triangular Waveguides
Ana Morán-López
2016-01-01
Full Text Available The analysis of the electromagnetic scattering at discontinuities between equilateral triangular waveguides is studied. The complete electromagnetic solution is derived using analytical closed form expressions for the mode spectrum of the equilateral waveguide. The mathematical formulation of the electromagnetic scattering problem is based on the quasi-analytical Mode-Matching method. This method benefits from the electromagnetic field division into symmetries as well as from the plane wave formulation presented for the expressions involved. The unification of the surface integrals used in the method thanks to the plane wave formulation is revealed, leading to expressions that are very well suited for its implementation in an electromagnetic analysis and design code. The obtained results for some cases of interest (building blocks for microwave components for communication systems are verified using other numerical methods included in a commercial software package, showing the potential of the presented approach based on quasi-analytic expressions.
Electromagnetic wave collapse in a radiation background.
Marklund, Mattias; Brodin, Gert; Stenflo, Lennart
2003-10-17
The nonlinear interaction, due to quantum electrodynamical (QED) effects between an electromagnetic pulse and a radiation background, is investigated by combining the methods of radiation hydrodynamics with the QED theory for photon-photon scattering. For the case of a single coherent electromagnetic pulse, we obtain a Zakharov-like system, where the radiation pressure of the pulse acts as a driver of acoustic waves in the photon gas. For a sufficiently intense pulse and/or background energy density, there is focusing and the subsequent collapse of the pulse. The relevance of our results for various astrophysical applications are discussed.
Electromagnetic fields and waves
Rojansky, Vladimir
2012-01-01
This comprehensive introduction to classical electromagnetic theory covers the major aspects, including scalar fields, vectors, laws of Ohm, Joule, Coulomb, Faraday, Maxwell's equation, and more. With numerous diagrams and illustrations.
Transition operators in electromagnetic-wave diffraction theory - General theory
Hahne, G. E.
1992-01-01
A formal theory is developed for the scattering of time-harmonic electromagnetic waves from impenetrable immobile obstacles with given linear, homogeneous, and generally nonlocal boundary conditions of Leontovich (impedance) type for the wave of the obstacle's surface. The theory is modeled on the complete Green's function and the transition (T) operator in time-independent formal scattering theory of nonrelativistic quantum mechanics. An expression for the differential scattering cross section for plane electromagnetic waves is derived in terms of certain matrix elements of the T operator for the obstacle.
Analytical solution for electromagnetic scattering from a sphere of uniaxial left-handed material
GENG You-lin; HE Sai-ling
2006-01-01
Based on the analytical solution of electromagnetic scattering by a uniaxial anisotropic sphere in the spectral domain,an analytical solution to the electromagnetic scattering by a uniaxial left-handed materials (LHMs) sphere is obtained in terms of spherical vector wave functions in a uniaxial anisotropic LHM medium. The expression of the analytical solution contains only some one-dimensional integral which can be calculated easily. Numerical results show that Mie series of plane wave scattering by an isotropic LHM sphere is a special case of the present method. Some numerical results of electromagnetic scattering ofa uniaxial anisotropic sphere by a plane wave are given.
Radiation and propagation of electromagnetic waves
Tyras, George; Declaris, Nicholas
1969-01-01
Radiation and Propagation of Electromagnetic Waves serves as a text in electrical engineering or electrophysics. The book discusses the electromagnetic theory; plane electromagnetic waves in homogenous isotropic and anisotropic media; and plane electromagnetic waves in inhomogenous stratified media. The text also describes the spectral representation of elementary electromagnetic sources; the field of a dipole in a stratified medium; and radiation in anisotropic plasma. The properties and the procedures of Green's function method of solution, axial currents, as well as cylindrical boundaries a
Proposed electromagnetic wave energy converter
Bailey, R. L.
1973-01-01
Device converts wave energy into electric power through array of insulated absorber elements responsive to field of impinging electromagnetic radiation. Device could also serve as solar energy converter that is potentially less expensive and fragile than solar cells, yet substantially more efficient.
Landau levels for electromagnetic wave
Zyuzin, Vladimir A
2016-01-01
In this paper we show that the frequencies of propagating electromagnetic wave (photon) in rotating dielectric media obey Landau quantization. We show that the degeneracy of right and left helicities of photons is broken on the lowest Landau level. In spatially homogeneous system this level is shown to be helical, i.e. left and right helical photons counter-propagate.
Electromagnetic van Kampen waves
Ignatov, A. M., E-mail: aign@fpl.gpi.ru [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation)
2017-01-15
The theory of van Kampen waves in plasma with an arbitrary anisotropic distribution function is developed. The obtained solutions are explicitly expressed in terms of the permittivity tensor. There are three types of perturbations, one of which is characterized by the frequency dependence on the wave vector, while for the other two, the dispersion relation is lacking. Solutions to the conjugate equations allowing one to solve the initial value problem are analyzed.
Visinelli, Luca
2014-01-01
We extend the duality symmetry between the electric and the magnetic fields to the case in which an additional axion-like term is present, and we derive the set of Maxwell's equations that preserves this symmetry. This new set of equations allows for a gauge symmetry extending the ordinary symmetry in the classical electrodynamics. We obtain explicit solutions for the new set of equations in the absence of external sources, and we discuss the implications of a new internal symmetry between the axion field and the electromagnetic gauge potential.
Shoukat, Sobia; Naqvi, Qaisar A.
2016-12-01
In this manuscript, scattering from a perfect electric conducting strip located at planar interface of topological insulator (TI)-chiral medium is investigated using the Kobayashi Potential method. Longitudinal components of electric and magnetic vector potential in terms of unknown weighting function are considered. Use of related set of boundary conditions yields two algebraic equations and four dual integral equations (DIEs). Integrand of two DIEs are expanded in terms of the characteristic functions with expansion coefficients which must satisfy, simultaneously, the discontinuous property of the Weber-Schafheitlin integrals, required edge and boundary conditions. The resulting expressions are then combined with algebraic equations to express the weighting function in terms of expansion coefficients, these expansion coefficients are then substituted in remaining DIEs. The projection is applied using the Jacobi polynomials. This treatment yields matrix equation for expansion coefficients which is solved numerically. These unknown expansion coefficients are used to find the scattered field. The far zone scattering width is investigated with respect to different parameters of the geometry, i.e, chirality of chiral medium, angle of incidence, size of the strip. Significant effects of different parameters including TI parameter on the scattering width are noted.
Roshchupkin, S. P.
2009-08-01
The amplification factor of the electromagnetic field is theoretically studied for the scattering of nonrelativistic electrons by ions in the presence of the field of the elliptically polarized electromagnetic wave. A simple analytical formula for the gain is derived for the medium-intensity range. The formula supplements and extends the domain of applicability of the known Marcuse formula for the linear polarization in the presence of a weak field. It is demonstrated that the maximum gain is reached when the initial electron velocities belong to the polarization plane of the electromagnetic wave. In the range of optical frequencies, the amplification factor of the laser radiation can be significant for relatively high powers of electron beams.
Electromagnetic wave theory for boundary-value problems an advanced course on analytical methods
Eom, Hyo J
2004-01-01
Electromagnetic wave theory is based on Maxwell's equations, and electromagnetic boundary-value problems must be solved to understand electromagnetic scattering, propagation, and radiation. Electromagnetic theory finds practical applications in wireless telecommunications and microwave engineering. This book is written as a text for a two-semester graduate course on electromagnetic wave theory. As such, Electromagnetic Wave Theory for Boundary-Value Problems is intended to help students enhance analytic skills by solving pertinent boundary-value problems. In particular, the techniques of Fourier transform, mode matching, and residue calculus are utilized to solve some canonical scattering and radiation problems.
Millimeter waves: acoustic and electromagnetic.
Ziskin, Marvin C
2013-01-01
This article is the presentation I gave at the D'Arsonval Award Ceremony on June 14, 2011 at the Bioelectromagnetics Society Annual Meeting in Halifax, Nova Scotia. It summarizes my research activities in acoustic and electromagnetic millimeter waves over the past 47 years. My earliest research involved acoustic millimeter waves, with a special interest in diagnostic ultrasound imaging and its safety. For the last 21 years my research expanded to include electromagnetic millimeter waves, with a special interest in the mechanisms underlying millimeter wave therapy. Millimeter wave therapy has been widely used in the former Soviet Union with great reported success for many diseases, but is virtually unknown to Western physicians. I and the very capable members of my laboratory were able to demonstrate that the local exposure of skin to low intensity millimeter waves caused the release of endogenous opioids, and the transport of these agents by blood flow to all parts of the body resulted in pain relief and other beneficial effects. Copyright © 2012 Wiley Periodicals, Inc.
1984-04-01
mwe iio if aOO0e807 OW dgmnttow or pfOC& rnmwu Moving Targets Electromagnetic Scattering Maxwell’s Equations Time dependent scattering 2L AUSTRAC ...interchanging the roles of and U in this estimate and supposing that [u-&I < c/2c*, it follows that !*( )-p(i)I < C. Thus, p is continuous. To prove that...P,¢-x(P;,&)Y31X(Q;9,)-X(Qr, 13 a similar inequality holding with the roles of & and C interchanged. Coupling these observations with the uniform
ISOGEOMETRIC SHAPE OPTIMIZATION FOR ELECTROMAGNETIC SCATTERING PROBLEMS
Nguyen, D. M.; Evgrafov, Anton; Gravesen, Jens
2012-01-01
We consider the benchmark problem of magnetic energy density enhancement in a small spatial region by varying the shape of two symmetric conducting scatterers. We view this problem as a prototype for a wide variety of geometric design problems in electromagnetic applications. Our approach...
Electromagnetic Scattering in Micro- and Nanostructured Materials
de Lasson, Jakob Rosenkrantz
and the electromagnetic Green’s tensor and uses an expansion of the field on spherical wavefunctions. Addition theorems for these are extensively used, and all parts of the formalism are expressed analytically. With the formalism, we show that the simpler approach of modeling the spherical scatterers as polarizable...
Faugeras, P.E. [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires. Groupe de recherches sur la fusion controlee
1967-07-01
The problem of the scattering of plane electromagnetic waves from a non-uniform, cylindrically symmetrical plasma is solved analytically, by a self-consistent field method, for a wave with the electric field parallel to the cylinder axis. Numerical results for the diffracted field are plotted for interesting ranges of the parameters involved: diameter, density on the axis, radial profile of the density, and collision frequencies. The case where the incident field is cylindric (waves surfaces parallel to the cylinder axis) is examined - this permits to connect theoretical calculations and experimental diffraction patterns, and also to explain the diffraction effects observed in a classical microwave interferometry experiment. These results, and the possibility of measuring exactly the diffracted field (showed by experiments with dielectric and metallic rods) lead to a new plasma diagnostic method, based on the diffraction, which has no theoretical limitations and it usable when the classical free-space wave methods are not (plasma diameter lower than 10 wave lengths). The feasibility of this method is tested with a plasma at atmospheric pressure and a 2 mm incident wavelength. The plasma is obtained by the laminar flow of a plasma torch, with a working gas (He or Ar) seeded by potassium (density continuously variable between 10{sup 11} and 10{sup 15} e/cm{sup 3}. Some diffraction patterns by this plasma and for various incident waves, are also given and explained with theoretical calculations. (author) [French] On etudie la diffusion coherente d'une onde electromagnetique par un cylindre de plasma inhomogene par une methode de champ self-consistant, et pour une onde de vecteur electrique parallele a l'axe du cylindre. On a calcule le champ diffracte en faisant varier le diametre du cylindre, la densite sur l'axe, le profil de densite et les frequences de collisions, et on donne ici les principaux resultats. On examine ensuite le cas d'une onde
Theoretical and Experimental Study of Scattering of a Plane Wave by an Inhomogeneous Plasma Sphere
SONG Fa-Lun; CAO Jin-Xiang; WANG Ge; WANG Yan; ZHU Ying; ZHU Jian; WANG Liang; NIU Tian-Ye
2006-01-01
@@ Scattering of electromagnetic waves by an inhomogeneous plasma sphere has been studied theoretically and experimentally. The offset angles of electromagnetic waves caused by the plasma sphere have been observed experimentally. The effects of the electromagnetic wave frequency and plasma density on the offset angle are discussed. The plasma density is estimated with the offset angle.
Topics in electromagnetic, acoustic, and potential scattering theory
Nuntaplook, Umaporn
With recent renewed interest in the classical topics of both acoustic and electromagnetic aspects for nano-technology, transformation optics, fiber optics, metamaterials with negative refractive indices, cloaking and invisibility, the topic of time-independent scattering theory in quantum mechanics is becoming a useful field to re-examine in the above contexts. One of the key areas of electromagnetic theory scattering of plane electromagnetic waves --- is based on the properties of the refractive indices in the various media. It transpires that the refractive index of a medium and the potential in quantum scattering theory are intimately related. In many cases, understanding such scattering in radially symmetric media is sufficient to gain insight into scattering in more complex media. Meeting the challenge of variable refractive indices and possibly complicated boundary conditions therefore requires accurate and efficient numerical methods, and where possible, analytic solutions to the radial equations from the governing scalar and vector wave equations (in acoustics and electromagnetic theory, respectively). Until relatively recently, researchers assumed a constant refractive index throughout the medium of interest. However, the most interesting and increasingly useful cases are those with non-constant refractive index profiles. In the majority of this dissertation the focus is on media with piecewise constant refractive indices in radially symmetric media. The method discussed is based on the solution of Maxwell's equations for scattering of plane electromagnetic waves from a dielectric (or "transparent") sphere in terms of the related Helmholtz equation. The main body of the dissertation (Chapters 2 and 3) is concerned with scattering from (i) a uniform spherical inhomogeneity embedded in an external medium with different properties, and (ii) a piecewise-uniform central inhomogeneity in the external medium. The latter results contain a natural generalization of
Electromagnetic waves in variable media
Brosa, Ulrich [Brosa GmbH, Amoeneburg (Germany); Marburg Univ. (Germany)
2012-03-15
Two methods are explained to exactly solve Maxwell's equations where permittivity, permeability, and conductivity may vary in space. In the constitutive relations, retardation is regarded. If the material properties depend but on one coordinate, general solutions are derived. If the properties depend on two coordinates, geometrically restricted solutions are obtained. Applications to graded reflectors, especially to dielectric mirrors, to filters, polarizers, and to waveguides, plain and cylindrical, are indicated. New foundations for the design of optical instruments, which are centered around an axis, and for the design of invisibility cloaks, plain and spherical, are proposed. The variability of material properties makes possible effects which cannot happen in constant media, e.g. stopping the flux of electromagnetic energy without loss. As a consequence, spherical devices can be constructed which bind electromagnetic waves. (orig.)
Spatial bandlimitedness of scattered electromagnetic fields
Khankhoje, Uday K
2015-01-01
In this tutorial paper, we consider the problem of electromagnetic scattering by a bounded dielectric object, and discuss certain interesting properties of the scattered field. Using the electric field integral equation, along with the techniques of Fourier theory and the properties of Bessel functions, we show analytically and numerically, that the scattered fields are spatially bandlimited. Further, we derive an upper bound on the number of incidence angles that are useful as constraints in an inverse problem setting (determining permittivity given measurements of the scattered field). We also show that the above results are independent of the dielectric properties of the scattering object and depend only on geometry. Though these results have previously been derived in the literature using the framework of functional analysis, our approach is conceptually far easier. Implications of these results on the inverse problem are also discussed.
FDTD Application of Targets Electromagnetic Scattering in Layered Space
Jiang Yan-nan
2013-07-01
Full Text Available Finite Difference Time Domain (FDTD was used to characterize the electromagnetic scattering (EMS for targets in layered space. A new set of 1D modified Maxwell equations and auxiliary equations with incident angle was derived from 2D Maxwell equations and was used to compute the electromagnetic field in vertical boundary in 2D total field-scattered field (TF/SF, and thus incidence of uniform plane wave in time domain can be directly realized. In order to avoid complex Somerfield integration, the reciprocity theorem was used to simplify an extrapolation algorithm. Then the proposed algorithm and program in this paper were validated by applying them to compute the electromagnetic scattered field for targets in half-space and the radiation field for line current in layered lossy space. Finally this algorithm was used to characterize EMS for a tunnel in multi-layered space, for a tunnel open to vehicle, and for a tunnel and vehicle in lossless layered space. The results show the vehicle has a great impact on the scattering field, and the layered media surrounded the target can shield the scattering field.
Electromagnetic wave energy conversion research
Bailey, R. L.; Callahan, P. S.
1975-01-01
Known electromagnetic wave absorbing structures found in nature were first studied for clues of how one might later design large area man-made radiant-electric converters. This led to the study of the electro-optics of insect dielectric antennae. Insights were achieved into how these antennae probably operate in the infrared 7-14um range. EWEC theoretical models and relevant cases were concisely formulated and justified for metal and dielectric absorber materials. Finding the electromagnetic field solutions to these models is a problem not yet solved. A rough estimate of losses in metal, solid dielectric, and hollow dielectric waveguides indicates future radiant-electric EWEC research should aim toward dielectric materials for maximum conversion efficiency. It was also found that the absorber bandwidth is a theoretical limitation on radiant-electric conversion efficiency. Ideally, the absorbers' wavelength would be centered on the irradiating spectrum and have the same bandwith as the irradiating wave. The EWEC concept appears to have a valid scientific basis, but considerable more research is needed before it is thoroughly understood, especially for the complex randomly polarized, wide band, phase incoherent spectrum of the sun. Specific recommended research areas are identified.
Wave chaotic experiments and models for complicated wave scattering systems
Yeh, Jen-Hao
Wave scattering in a complicated environment is a common challenge in many engineering fields because the complexity makes exact solutions impractical to find, and the sensitivity to detail in the short-wavelength limit makes a numerical solution relevant only to a specific realization. On the other hand, wave chaos offers a statistical approach to understand the properties of complicated wave systems through the use of random matrix theory (RMT). A bridge between the theory and practical applications is the random coupling model (RCM) which connects the universal features predicted by RMT and the specific details of a real wave scattering system. The RCM gives a complete model for many wave properties and is beneficial for many physical and engineering fields that involve complicated wave scattering systems. One major contribution of this dissertation is that I have utilized three microwave systems to thoroughly test the RCM in complicated wave systems with varied loss, including a cryogenic system with a superconducting microwave cavity for testing the extremely-low-loss case. I have also experimentally tested an extension of the RCM that includes short-orbit corrections. Another novel result is development of a complete model based on the RCM for the fading phenomenon extensively studied in the wireless communication fields. This fading model encompasses the traditional fading models as its high-loss limit case and further predicts the fading statistics in the low-loss limit. This model provides the first physical explanation for the fitting parameters used in fading models. I have also applied the RCM to additional experimental wave properties of a complicated wave system, such as the impedance matrix, the scattering matrix, the variance ratio, and the thermopower. These predictions are significant for nuclear scattering, atomic physics, quantum transport in condensed matter systems, electromagnetics, acoustics, geophysics, etc.
Solitary Waves in Relativistic Electromagnetic Plasma
XIE Bai-Song; HUA Cun-Cai
2005-01-01
Solitary waves in relativistic electromagnetic plasmas are obtained numerically. The longitudinal momentum of electrons has been taken into account in the problem. It is found that in the moving frame with electromagnetic field propagating the solitary waves can exist in both cases, where the vector potential frequency is larger or smaller than the plasma characteristic frequency.
Multiple scattering induced negative refraction of matter waves
Pinsker, Florian
2016-01-01
Starting from fundamental multiple scattering theory it is shown that negative refraction indices are feasible for matter waves passing a well-defined ensemble of scatterers. A simple approach to this topic is presented and explicit examples for systems of scatterers in 1D and 3D are stated that imply negative refraction for a generic incoming quantum wave packet. Essential features of the effective scattering field, densities and frequency spectrum of scatterers are considered. Additionally it is shown that negative refraction indices allow perfect transmission of the wave passing the ensemble of scatterers. Finally the concept of the superlens is discussed, since it is based on negative refraction and can be extended to matter waves utilizing the observations presented in this paper which thus paves the way to ‘untouchable’ quantum systems in analogy to cloaking devices for electromagnetic waves. PMID:26857266
Overview: Electromagnetic Scattering from Ocean Surface
ZHAO Zhi-qin
2006-01-01
Understanding the sea surface scattering process is very important in the development of models to detect the target above or under the surface. In this paper, both the analytical and the numerical methods applied in sea surface scattering are summarized. Some important problems concerned in this field are discussed. For numerical study, edge effect brings artificial nonrealistic scattering and therefore must be suppressed. Different edge treatment methods are compared in this paper. Scattering of breaking wave surface at very low grazing angle always needs more attentions than other scattering problems. Some numerical results show the existence of the special phenomena at very low grazing angle, for example, the "sea spikes" and the Doppler splitting.
Efficient transformer for electromagnetic waves
Miller, R.B.
A transformer structure for efficient transfer of electromagnetic energy from a transmission line to an unmatched load provides voltage multiplication and current division by a predetermined constant. Impedance levels are transformed by the square of that constant. The structure includes a wave splitter, connected to an input transmission device and to a plurality of output transmission devices. The output transmission devices are effectively connected in parallel to the input transmission device. The output transmission devices are effectively series connected to provide energy to a load. The transformer structure is particularly effective in increasing efficiency of energy transfer through an inverting convolute structure by capturing and transferring energy losses from the inverter to the load.
Li, Ming
material expressed by electric field dependent dielectric constant. Next, the concepts of spectrum interpolation (Chapter 3), higher-order incident (Chapter 4) and perfectly matched layer (Chapter 5) are introduced and applied to TMM, with detailed simulation for 1D, 2D, and 3D photonic crystal examples. Curvilinear coordinate transform is applied to the Maxwell's Equations to study waveguide bend (Chapter 6). By finding the phase difference along propagation direction at various XY plane locations, the behaviors of electromagnetic wave propagation (such as light bending, focusing etc) can be studied (Chapter 7), which can be applied to diffractive optics for new devices design. Numerical simulation tools for lasing devices are usually based on rate equations which are not accurate above the threshold and for small scale lasing cavities (such as nano-scale cavities). Recently, we extend the TMM package function to include the capacity of dealing active gain materials. Both lasing (above threshold) and spontaneous emission (below threshold) can be studied in the frame work of our Gain-TMM algorithm. Chapter 8 will illustrate the algorithm in detail and show the simulation results for 3D photonic crystal lasing devices. Then, microwave experiments (mainly resonant cavity embedded at layer-by-layer woodpile structures) are performed at Chapter 9 as an efficient practical way to study photonic crystal devices. The size of photonic crystal under microwave region is at the order of centimeter which makes the fabrication easier to realize. At the same time due to the scaling property, the result of microwave experiments can be applied directly to optical or infrared frequency regions. The systematic TMM simulations for various resonant cavities are performed and consistent results are obtained when compared with microwave experiments. Besides scaling the experimental results to much smaller wavelength, designing potential photonic crystal devices for application at microwave is
Gravitational scattering of zero-rest-mass plane waves
De Logi, W. K.; Kovacs, S. J., Jr.
1977-01-01
The Feyman-diagram technique is used to calculate the differential cross sections for the scattering of zero-rest-mass plane waves of spin 0, 1, and 2 by linearized Schwarzschild and Kerr geometries in the long-wavelength weak-field limit. It is found that the polarization of right (or left) circularly polarized electromagnetic waves is unaffected by the scattering process (i.e., helicity is conserved) and that the two helicity (polarization) states of the photon are scattered differently by the Kerr geometry. This coupling between the photon helicity and the angular momentum of the scatterer also leads to a partial polarization of unpolarized incident light. For gravitational waves, on the other hand, there is neither helicity conservation nor helicity-dependent scattering; the angular momentum of the scatterer has no polarizing effect on incident unpolarized gravitational waves.
Scattering engineering in continuously shaped metasurface: An approach for electromagnetic illusion
Guo, Yinghui; Yan, Lianshan; Pan, Wei; Shao, Liyang
2016-07-01
The control of electromagnetic waves scattering is critical in wireless communications and stealth technology. Discrete metasurfaces not only increase the design and fabrication complex but also cause difficulties in obtaining simultaneous electric and optical functionality. On the other hand, discontinuous phase profiles fostered by discrete systems inevitably introduce phase noises to the scattering fields. Here we propose the principle of a scattering-harness mechanism by utilizing continuous gradient phase stemming from the spin-orbit interaction via sinusoidal metallic strips. Furthermore, by adjusting the amplitude and period of the sinusoidal metallic strip, the scattering characteristics of the underneath object can be greatly changed and thus result in electromagnetic illusion. The proposal is validated by full-wave simulations and experiment characterization in microwave band. Our approach featured by continuous phase profile, polarization independent performance and facile implementation may find widespread applications in electromagnetic wave manipulation.
Robust multiscale field-only formulation of electromagnetic scattering
Sun, Qiang; Klaseboer, Evert; Chan, Derek Y. C.
2017-01-01
We present a boundary integral formulation of electromagnetic scattering by homogeneous bodies that are characterized by linear constitutive equations in the frequency domain. By working with the Cartesian components of the electric E and magnetic H fields and with the scalar functions (r .E ) and (r .H ) where r is a position vector, the problem can be cast as having to solve a set of scalar Helmholtz equations for the field components that are coupled by the usual electromagnetic boundary conditions at material boundaries. This facilitates a direct solution for the surface values of E and H rather than having to work with surface currents or surface charge densities as intermediate quantities in existing methods. Consequently, our formulation is free of the well-known numerical instability that occurs in the zero-frequency or long-wavelength limit in traditional surface integral solutions of Maxwell's equations and our numerical results converge uniformly to the static results in the long-wavelength limit. Furthermore, we use a formulation of the scalar Helmholtz equation that is expressed as classically convergent integrals and does not require the evaluation of principal value integrals or any knowledge of the solid angle. Therefore, standard quadrature and higher order surface elements can readily be used to improve numerical precision for the same number of degrees of freedom. In addition, near and far field values can be calculated with equal precision, and multiscale problems in which the scatterers possess characteristic length scales that are both large and small relative to the wavelength can be easily accommodated. From this we obtain results for the scattering and transmission of electromagnetic waves at dielectric boundaries that are valid for any ratio of the local surface curvature to the wave number. This is a generalization of the familiar Fresnel formula and Snell's law, valid at planar dielectric boundaries, for the scattering and transmission
Mandal, Birendra Nath
2015-01-01
The theory of water waves is most varied and is a fascinating topic. It includes a wide range of natural phenomena in oceans, rivers, and lakes. It is mostly concerned with elucidation of some general aspects of wave motion including the prediction of behaviour of waves in the presence of obstacles of some special configurations that are of interest to ocean engineers. Unfortunately, even the apparently simple problems appear to be difficult to tackle mathematically unless some simplified assumptions are made. Fortunately, one can assume water to be an incompressible, in viscid and homogeneous
Resonant response of electromagnetic scattering from ellipsoid
Gavriloaia, Mihai-Bogdan; Vizireanu, Constantin-Radu; Neamtu, Catalin; Preda, Radu; Achimescu, Emanuel; Halunga, Simona
2015-02-01
Modern radars must provide in a very short time: existence, mobility and shape of objects evolving in airspace. Evaluation of the object shapes through active research by using synthetic aperture radar is limited in time, resolution, and cost. A new way of processing non-stationary signals is presented in this article. Signals are obtained from the reflection of the electromagnetic field by objects with complex shape when they are irradiated with linear frequency modulated signals. The amplitude of reflected signal is variable on the radio-impulse duration depending on object shape, causing a certain electromagnetic signature. This phenomenon is caused by specific electromagnetic resonance. The reflected signal has maximum amplitude when the frequency of the incident wave is the same with the resonant frequency of the investigated object. The structure of an radar target can be decomposed into simple geometric shapes such as spheres, ellipsoids, prisms, and so on. Using resonant effect that ensures pattern recognition is exemplified by an object with an aerodynamic profile accepted in many component elements of the aircraft, namely - an ellipsoid. It is a geometric shape used extensively in aviation, because it has a very low aerodynamic resistance. The resonant response of ellipsoid is evaluated in a decade frequency band, but the pattern recognition of this shape is enough for an octave band. The resonant response is assessed for cross polarization of incident electromagnetic field, as well. As a result, the radio-impulse shape can be used in a data base for pattern recognition.
Liu, Zheng; Lin, Zhifang; Chui, S T
2004-01-01
The Mie scattering of electromagnetic waves of wave vector k by spherical negative-refractive-index particles of radius a exhibits an unusual resonance at ka-->0. The scattering enhancement from the ka-->0 resonance is insensitive to the size of scatterers, distinct from the Mie scattering resonances from positive-refractive-index particles. For media consisting of a collection of the negative-refractive-index particles, the unusual resonance results in a significant reduction of the localization parameter, providing a possibility to reach the light localization transition by reducing the wave vector k, in analogy to electronic systems.
Time reversal techniques in electromagnetic wave propagation
Yi, Jiang
The time reversal method is a novel scheme utilizing the scattering components in a highly cluttered environment to achieve super-resolution focusing beyond Rayleigh criteria. In acoustics, time reversal effects are comprehensively analyzed and utilized in underwater target detection and communication. Successful demonstrations of the time reversal method using low frequency waveform in acoustics have generated wide interest in utilizing time reversal method by radio frequency electromagnetic waves. However, applications of the time reversal method in electromagnetics are considered to be emerging research topics and lack extensive analyses and studies. In this thesis, we present a systematic study in which a series of novel time reversal techniques have been developed for target detection and imaging in highly cluttered environments where higher order scattering is substantial. This thesis also contributes to insightful understanding of basic time reversal properties in electromagnetic (EM) wave propagation in such environment. EM time reversal focusing and nulling effects using both single and multiple antennas are first demonstrated by FDTD simulations. Based on these properties, single antenna time reversal detection indicates significant enhancement in detection capability over traditional change detection scheme. A frequency selection scheme utilizing the frequencies with strong constructive interference between the target and background environment is developed to further improve the performance of the time reversal detector. Moreover, a novel time reversal adaptive interference cancellation (TRAIC) detection scheme developed based on TR properties can obtain null of the background through the time reversal nulling effect and achieve automatic focusing on the target through the time reversal focusing effect. Therefore, the detection ability, dynamic range and signal to noise ratio of a radar system can be significantly enhanced by the time reversal method
Radiation and scattering from imperfect cylindrical electromagnetic cloaks.
Isic, G; Gajic, R; Novakovic, B; Popovic, Z V; Hingerl, K
2008-02-04
The design of electromagnetic invisibility cloaks is based on singular mappings prescribing zero or infinite values for material parameters on the inner surface of the cloak. Since this is only approximately feasible, an asymptotic analysis is necessary for a sound description of cloaks. We adopt a simple and effective approach for analyzing electromagnetic cloaks - instead of the originally proposed singular mapping, nonsingular mappings asymptotically approaching the ideal one are considered. Scattering and radiation from this type of imperfect cylindrical cloaks is solved analytically and the results are confirmed by full-wave finite element simulations. Our analysis sheds more light on the influence of this kind of imperfection on the cloaking performance and further explores the physics of cloaking devices.
Electromagnetic wave analogue of electronic diode
Shadrivov, Ilya V.; Powell, David A.; Kivshar, Yuri S.; Fedotov, Vassili A.; Zheludev, Nikolay I.
2010-01-01
An electronic diode is a nonlinear semiconductor circuit component that allows conduction of electrical current in one direction only. A component with similar functionality for electromagnetic waves, an electromagnetic isolator, is based on the Faraday effect of the polarization state rotation and is also a key component of optical and microwave systems. Here we demonstrate a chiral electromagnetic diode, which is a direct analogue of an electronic diode: its functionality is underpinned by ...
Electromagnetic wave analogue of electronic diode
Shadrivov, Ilya V.; Powell, David A.; Kivshar, Yuri S.; Fedotov, Vassili A.; Zheludev, Nikolay I.
2010-01-01
An electronic diode is a nonlinear semiconductor circuit component that allows conduction of electrical current in one direction only. A component with similar functionality for electromagnetic waves, an electromagnetic isolator, is based on the Faraday effect of the polarization state rotation and is also a key component of optical and microwave systems. Here we demonstrate a chiral electromagnetic diode, which is a direct analogue of an electronic diode: its functionality is underpinned by ...
Linear electromagnetic wave equations in materials
Starke, R.; Schober, G. A. H.
2017-09-01
After a short review of microscopic electrodynamics in materials, we investigate the relation of the microscopic dielectric tensor to the current response tensor and to the full electromagnetic Green function. Subsequently, we give a systematic overview of microscopic electromagnetic wave equations in materials, which can be formulated in terms of the microscopic dielectric tensor.
LI, Ming [Iowa State Univ., Ames, IA (United States)
2007-01-01
In this dissertation, a set of numerical simulation tools are developed under previous work to efficiently and accurately study one-dimensional (1D), two-dimensional(2D), 2D slab and three-dimensional (3D) photonic crystal structures and their defects effects by means of spectrum (transmission, reflection, absorption), band structure (dispersion relation), and electric and/or magnetic fields distribution (mode profiles). Furthermore, the lasing property and spontaneous emission behaviors are studied when active gain materials are presented in the photonic crystal structures. Various physical properties such as resonant cavity quality factor, waveguide loss, propagation group velocity of electromagnetic wave and light-current curve (for lasing devices) can be obtained from the developed software package.
WEBSCAT: A web application for the analysis of electromagnetic scattering from small particles
Gogoi, Ankur; Rajkhowa, Pritom; P. Saikia, Gunjan; Ahmed, Gazi A.; Choudhury, Amarjyoti
2014-10-01
Development of an online web application to simulate and display plane wave scattering from small particles is presented. In particular, the computation of angular variation of the scattering properties (scattering matrix elements, scattering coefficients, single scattering albedo etc.) of particulate matter by using the Mie theory and the T-matrix method was incorporated in the application. Comparison of the results generated by using the web application with other reported benchmark results has shown that the web application is accurate and reliable for electromagnetic scattering computations.
Singular-value decomposition for electromagnetic-scattering analysis
Suryadharma, Radius N. S.; Fruhnert, Martin; Rockstuhl, Carsten; Fernandez-Corbaton, Ivan
2017-05-01
The study of electromagnetic waves scattering from arbitrary objects is a complex but essential problem in electrodynamics. A modal decomposition of the response is often valuable as it reduces complexity and provides sound language to discuss emerging features on physical grounds. Multiple approaches exist for this purpose, but they frequently suffer from the nonorthogonality of the modes. Here, we put forward the use of the singular-value decomposition of the transfer-matrix operator (T matrix) to expand the response of a scatterer into orthogonal modes where intermodal interference effects are absent. We compare the singular values to the eigenvalues of the T matrix for the example of a trimer structure of gold nanospheres. Different spectral features that emerge in light of the nonorthogonality of the eigenmodes of the T matrix are discussed. Based on that discussion, we show that Fano resonances can also be regarded as inherent properties of individual singular modes.
Updating Plasma Scattering of Electromagnetic Radiation
Sheffield, J.
2010-05-01
The monograph Plasma Scattering of Electromagnetic Radiation was published by Academic Press in 1975. A Russian edition, Atomidzat, came out in 1978. An updated version is being prepared by D. Froula, S. Glenzer. N Luhmann, and J. Sheffield for publication in 2010 by Elsevier. The new version will discuss the broader applications of Thomson scattering, which include the full range of plasmas used in research and industry. The expansion of the field has been made possible by the growing number of powerful radiation sources (from X-rays to microwaves), detectors, and innovative techniques. When the book was published, the highest temperatures in laboratory plasmas were around 2 keV for the electrons. Compare this to today's 25 keV where the relativistic effects are dramatic. The application to low temperature plasmas with Te in the range of 1 - 30+ eV, important in industry, has grown. Important capabilities have been developed in the areas of energetic particle, micro-instability, and high energy density plasma measurements. For the future, we look forward to the use of scattering as a diagnostic on the large new fusion facilities-NIF, LMJ, and ITER.
Mishchenko, Michael I; Yurkin, Maxim A; Bi, Lei; Cairns, Brian; Liu, Li; Panetta, R Lee; Travis, Larry D; Yang, Ping; Zakharova, Nadezhda T
2016-01-01
The main objective of this Report is to formulate the general theoretical framework of electromagnetic scattering by discrete random media rooted in the Maxwell-Lorentz electromagnetics and discuss its immediate analytical and numerical consequences. Starting from the microscopic Maxwell-Lorentz equations, we trace the development of the first-principles formalism enabling accurate calculations of monochromatic and quasi-monochromatic scattering by static and randomly varying multiparticle groups. We illustrate how this general framework can be coupled with state-of-the-art computer solvers of the Maxwell equations and applied to direct modeling of electromagnetic scattering by representative random multi-particle groups with arbitrary packing densities. This first-principles modeling yields general physical insights unavailable with phenomenological approaches. We discuss how the first-order-scattering approximation, the radiative transfer theory, and the theory of weak localization of electromagnetic waves ...
郝东山; 冯光辉
2016-01-01
By using the model of multi -photon nonlinear Compton scattering and the model of the effect between the electromagnetic wave and particle , the influence of Compton scattering on the characteristic of plasma planar reflect electromagnetic wave is studied , a mechanism of Compton scattering on the electromagnetic of plasma pla-nar reflect electromagnetic wave is produced , a revised equation of Compton scattering on the reflect rate of plas-ma planar reflect electromagnetic wave has been given out , and the equation is simulated by used the replica ex-perimentation.The results show that the plasma density in the low frequency part is quickly increased along with the increasing of the electric field intensity under the different frequencies , the time reached a parity is clearly cut, and the cause is that this field intensity is quickly increased by Compton scattering , the ionization probabili-ty of the particle in the plasma is increased.The reflect wave intensity is cut down at the most by the high fre-quency incident wave , the final intensity almost is 0, and the cause is that the high plasma frequency produced by Compton scattering than the incident light frequency.The reflect wave frequencies of the different frequencies incident waves are meagerly increased , the cause is that the gap of the time measure between the signal and the complex and diffusion of the plasma is decreased by Compton scattering , and the nonlinear effect of the reflect wave is progressively appeared.The density of the low density plasma is fastest increased along the collision fre-quency increasing , and the time to parity is the minimum , the cause is that the plasma collision frequency is in-creased by scattering , and the more particles are ionized.%应用多光子非线性Compton散射模型和电磁波与等离子体相互作用模型，研究了Compton散射对等离子体平面反射电磁波特性的影响，提出了将Compton散射作为影响等离子体
Propagation of SLF/ELF electromagnetic waves
Pan, Weiyan
2014-01-01
This book deals with the SLF/ELF wave propagation, an important branch of electromagnetic theory. The SLF/ELF wave propagation theory is well applied in earthquake electromagnetic radiation, submarine communication, thunderstorm detection, and geophysical prospecting and diagnostics. The propagation of SLF/ELF electromagnetic waves is introduced in various media like the earth-ionospheric waveguide, ionospheric plasma, sea water, earth, and the boundary between two different media or the stratified media. Applications in the earthquake electromagnetic radiation and the submarine communications are also addressed. This book is intended for scientists and engineers in the fields of radio propagation and EM theory and applications. Prof. Pan is a professor at China Research Institute of Radiowave Propagation in Qingdao (China). Dr. Li is a professor at Zhejiang University in Hangzhou (China).
Absorption of electromagnetic waves by the dust particles in a plasma
LI; Fang; LI; Lianlin; SUI; Qiang
2004-01-01
Absorption of electromagnetic waves by the dust particles in a plasma has been studied based on a Mie-Debye scattering mode. The longitudinal field of the Debye scattering has been derived and the wave energy loss from it has been calculated. It is shown that the lower the temperature of the plasma is and the higher the density of the plasma is, the larger the absorption cross section will be due to the longitudinal scattering.For the low frequency waves the electromagnetic waves scattered in a dusty plasma are mainly in the form of Debye scattering. In this case the energy loss due to the longitudinal scattering will affect the wave propagation seriously.
On the gravitational fields created by the electromagnetic waves
Loinger, A.; Marsico, T.
2011-01-01
We show that the Maxwell equations describing an electromagnetic wave are a mathematical consequence of the Einstein equations for the same wave. This fact is significant for the problem of the Einsteinian metrics corresponding to the electromagnetic waves.
Detecting electromagnetic cloaks using backward-propagating waves
Salem, Mohamed
2011-08-01
A novel approach for detecting transformation-optics invisibility cloaks is proposed. The detection method takes advantage of the unusual backward-propagation characteristics of recently reported beams and pulses to induce electromagnetic scattering from the cloak. Even though waves with backward-propagating energy flux cannot penetrate the cloaking shell and interact with the cloaked objects (i.e., they do not make the cloaked object visible), they provide a mechanism for detecting the presence of cloaks. © 2011 IEEE.
Spherically symmetric inhomogeneous bianisotropic media: Wave propagation and light scattering
Novitsky, Andrey; Shalin, Alexander S.; Lavrinenko, Andrei
2017-01-01
We develop a technique for finding closed-form expressions for electromagnetic fields in radially inhomogeneous bianisotropic media, both the solutions of the Maxwell equations and material tensors being defined by the set of auxiliary two-dimensional matrices. The approach is applied to determine...... the scattering cross-sections by spherical particles, the fields inside which correspond to the Airy-exponential waves....
Terrestrial propagation of long electromagnetic waves
Galejs, Janis; Fock, V A
2013-01-01
Terrestrial Propagation of Long Electromagnetic Waves deals with the propagation of long electromagnetic waves confined principally to the shell between the earth and the ionosphere, known as the terrestrial waveguide. The discussion is limited to steady-state solutions in a waveguide that is uniform in the direction of propagation. Wave propagation is characterized almost exclusively by mode theory. The mathematics are developed only for sources at the ground surface or within the waveguide, including artificial sources as well as lightning discharges. This volume is comprised of nine chapte
Exact plane gravitational waves and electromagnetic fields
Montanari, E; Montanari, Enrico; Calura, Mirco
2000-01-01
The behaviour of a "test" electromagnetic field in the background of an exactgravitational plane wave is investigated in the framework of Einstein's generalrelativity. We have expressed the general solution to the de Rham equations asa Fourier-like integral. In the general case we have reduced the problem to aset of ordinary differential equations and have explicitly written the solutionin the case of linear polarization of the gravitational wave. We have expressedour results by means of Fermi Normal Coordinates (FNC), which define the properreference frame of the laboratory. Moreover we have provided some "gedankenexperiments", showing that an external gravitational wave induces measurableeffects of non tidal nature via electromagnetic interaction. Consequently it isnot possible to eliminate gravitational effects on electromagnetic field, evenin an arbitrarily small spatial region around an observer freely falling in thefield of a gravitational wave. This is opposite to the case of mechanicalinteraction invo...
Electromagnetic and Gravitational Waves: the Third Dimension
Marsh, Gerald E
2011-01-01
Plane electromagnetic and gravitational waves interact with particles in such a way as to cause them to oscillate not only in the transverse direction but also along the direction of propagation. The electromagnetic case is usually shown by use of the Hamilton-Jacobi equation and the gravitational by a transformation to a local inertial frame. Here, the covariant Lorentz force equation and the second order equation of geodesic deviation followed by the introduction of a local inertial frame are respectively used. It is often said that there is an analogy between the motion of charged particles in the field of an electromagnetic wave and the motion of test particles in the field of a gravitational wave. This analogy is examined and found to be rather limited. It is also shown that a simple special relativistic relation leads to an integral of the motion, characteristic of plane waves, that is satisfied in both cases.
A theory for scattering by density fluctuations based on three-wave interaction
Harker, K. J.; Crawford, F. W.
1973-01-01
The theory of scattering by charged particle fluctuations of a plasma is developed for the case of zero magnetic field. The source current is derived on the basis of: (1) a three wave interaction between the incident and scattered electromagnetic waves and one electrostatic plasma wave (either Langmuir or ion acoustic), and (2) a synchronous interaction between the same two electromagnetic waves and the discrete components of the charged particle fluctuations. Previous work is generalized by no longer making the assumption that the frequency of the electromagnetic waves in large compared to the plasma frequency. The general result is then applied to incoherent scatter, and to scatter by strongly driven plasma waves. An expansion is carried out for each of those cases to determine the lower order corrections to the usual high frequency scattering formulas.
Electromagnetic wave analogue of electronic diode
Shadrivov, Ilya V; Kivshar, Yuri S; Fedotov, Vassili A; Zheludev, Nikolay I
2010-01-01
An electronic diode is a nonlinear semiconductor circuit component that allows conduction of electrical current in one direction only. A component with similar functionality for electromagnetic waves, an electromagnetic isolator, is based on the Faraday effect of the polarization state rotation and is also a key component of optical and microwave systems. Here we demonstrate a chiral electromagnetic diode, which is a direct analogue of an electronic diode: its functionality is underpinned by an extraordinary strong nonlinear wave propagation effect in the same way as electronic diode function is provided by a nonlinear current characteristic of a semiconductor junction. The effect exploited in this new electromagnetic diode is an intensity-dependent polarization change in an artificial chiral metamolecule. This microwave effect exceeds a similar optical effect previously observed in natural crystals by more than 12 orders of magnitude and a direction-dependent transmission that differing by a factor of 65.
Electromagnetic Generators and Detectors of Gravitational Waves
Grishchuk, L P
2003-01-01
The renewed serious interest to possible practical applications of gravitational waves is encouraging. Building on previous work, I am arguing that the strong variable electromagnetic fields are appropriate systems for the generation and detection of high-frequency gravitational waves (HFGW). The advantages of electromagnetic systems are clearly seen in the proposed complete laboratory experiment, where one has to ensure the efficiency of, both, the process of generation and the process of detection of HFGW. Within the family of electromagnetic systems, one still has a great variety of possible geometrical configurations, classical and quantum states of the electromagnetic field, detection strategies, etc. According to evaluations performed 30 years ago, the gap between the HFGW laboratory signal and its level of detectability is at least 4 orders of magnitude. Hopefully, new technologies of today can remove this gap and can make the laboratory experiment feasible. The laboratory experiment is bound to be exp...
Robust imaging with electromagnetic waves in noisy environments
Borcea, Liliana; Garnier, Josselin
2016-10-01
We study imaging with an array of sensors that probes a medium with single frequency electromagnetic waves and records the scattered electric field. The medium is known and homogenous except for some small and penetrable inclusions. The goal of inversion is to locate and characterize these inclusions from the data collected by the array, which are corrupted by additive noise. We use results from random matrix theory to obtain a robust inversion method. We assess its performance with numerical simulations and quantify the benefit of measuring more than one component of the scattered electric field.
Molding acoustic, electromagnetic and water waves with a single cloak
Xu, Jun
2015-06-09
We describe two experiments demonstrating that a cylindrical cloak formerly introduced for linear surface liquid waves works equally well for sound and electromagnetic waves. This structured cloak behaves like an acoustic cloak with an effective anisotropic density and an electromagnetic cloak with an effective anisotropic permittivity, respectively. Measured forward scattering for pressure and magnetic fields are in good agreement and provide first evidence of broadband cloaking. Microwave experiments and 3D electromagnetic wave simulations further confirm reduced forward and backscattering when a rectangular metallic obstacle is surrounded by the structured cloak for cloaking frequencies between 2.6 and 7.0 GHz. This suggests, as supported by 2D finite element simulations, sound waves are cloaked between 3 and 8 KHz and linear surface liquid waves between 5 and 16 Hz. Moreover, microwave experiments show the field is reduced by 10 to 30 dB inside the invisibility region, which suggests the multi-wave cloak could be used as a protection against water, sonic or microwaves. © 2015, Nature Publishing Group. All rights reserved.
Molding acoustic, electromagnetic and water waves with a single cloak.
Xu, Jun; Jiang, Xu; Fang, Nicholas; Georget, Elodie; Abdeddaim, Redha; Geffrin, Jean-Michel; Farhat, Mohamed; Sabouroux, Pierre; Enoch, Stefan; Guenneau, Sébastien
2015-06-09
We describe two experiments demonstrating that a cylindrical cloak formerly introduced for linear surface liquid waves works equally well for sound and electromagnetic waves. This structured cloak behaves like an acoustic cloak with an effective anisotropic density and an electromagnetic cloak with an effective anisotropic permittivity, respectively. Measured forward scattering for pressure and magnetic fields are in good agreement and provide first evidence of broadband cloaking. Microwave experiments and 3D electromagnetic wave simulations further confirm reduced forward and backscattering when a rectangular metallic obstacle is surrounded by the structured cloak for cloaking frequencies between 2.6 and 7.0 GHz. This suggests, as supported by 2D finite element simulations, sound waves are cloaked between 3 and 8 KHz and linear surface liquid waves between 5 and 16 Hz. Moreover, microwave experiments show the field is reduced by 10 to 30 dB inside the invisibility region, which suggests the multi-wave cloak could be used as a protection against water, sonic or microwaves.
Interference of electromagnetic waves in dynamic metabolism
黄卡玛; 唐敬贤; 刘永清; 徐兰
1995-01-01
Life is a continuous process of the dynamic metabolism.The influence of electromagneticwaves on the process of metabolism cannot be neglected.Here a new theory of electromagnetic interference inthe dynamic metabolism of life is proposed.The statistical dynamic equations of ion and free radical in thebiochemical reaction radiated by electromagnetic waves are given.The intensity of electromagnetic interferencecould be described with an interference factor.Good agreement can be seen between the calculated and meas-ured results for a famous experiment of radio-frequency radiation-induced calcium ion efflux enhancement.
Scattering by a perfect electromagnetic conductor (PEMC) plate embedded in lossy medium
Ahmed, Saeed; Khalid Khan, Muhammad; Rehman, Atta Ur
2016-07-01
In this article, we develop an analytic theory for a perfect electromagnetic conductor (PEMC) plate embedded in lossy medium. The duality transformation introduced by Lindell and Sihvola is applied to study the electromagnetic wave scattering by a PEMC plate. Perfect electric conductor and perfect magnetic conductor are the limiting cases of PEMC media. Here, we study monoscattering by PEMC plate embedded in four different soil models. Numerical results are discussed and compared with the available literature.
Gashi, A; Oades, G C; Rasche, G; Woolcock, W S
1999-01-01
We calculate for the s-, p(1/2)- and p(3/2)-waves the electromagnetic corrections which must be subtracted from the nuclear phase shifts obtained from the analysis of low energy pi+ p elastic scattering data, in order to obtain hadronic phase shifts. The calculation uses relativised Schroedinger equations containing the sum of an electromagnetic potential and an effective hadronic potential. We compare our results with those of previous calculations and qualitatively estimate the uncertainties in the corrections.
Full and Partial Cloaking in Electromagnetic Scattering
Deng, Youjun; Liu, Hongyu; Uhlmann, Gunther
2017-01-01
In this paper, we consider two regularized transformation-optics cloaking schemes for electromagnetic (EM) waves. Both schemes are based on the blowup construction with the generating sets being, respectively, a generic curve and a planar subset. We derive sharp asymptotic estimates in assessing the cloaking performances of the two constructions in terms of the regularization parameters and the geometries of the cloaking devices. The first construction yields an approximate full-cloak, whereas the second construction yields an approximate partial-cloak. Moreover, by incorporating properly chosen conducting layers, both cloaking constructions are capable of nearly cloaking arbitrary EM contents. This work complements the existing results in Ammari et al. (SIAM J Appl Math 73:2055-2076, 2013), Bao and Liu (SIAM J Appl Math 74:724-742, 2014), Bao et al. (J Math Pure Appl (9) 101:716-733, 2014) on approximate EM cloaks with the generating set being a singular point, and it also extends Deng et al. (On regularized full- and partial-cloaks in acoustic scat- tering. Preprint, arXiv:1502.01174, 2015), Li et al. (Commun Math Phys, 335:671-712, 2015) on regularized full and partial cloaks for acoustic waves governed by the Helmholtz system to the more challenging EM case governed by the full Maxwell system.
Fundamentals of electromagnetics 2 quasistatics and waves
Voltmer, David
2007-01-01
This book is the second of two volumes which have been created to provide an understanding of the basic principles and applications of electromagnetic fields for electrical engineering students. Fundamentals of Electromagnetics Vol 2: Quasistatics and Waves examines how the low-frequency models of lumped elements are modified to include parasitic elements. For even higher frequencies, wave behavior in space and on transmission lines is explained. Finally, the textbook concludes with details of transmission line properties and applications. Upon completion of this book and its companion Fundame
Line geometry and electromagnetism II: wave motion
Delphenich, D H
2013-01-01
The fundamental role of line geometry in the study of wave motion is first introduced in the general context by way of the tangent planes to the instantaneous wave surfaces, in which it is first observed that the possible frequency-wave number 1-forms are typically constrained by a dispersion law that is derived from a constitutive law by way of the field equations. After a general review of the basic concepts that relate to quadratic line complexes, these geometric notions are applied to the study of electromagnetic waves, in particular.
Gashi, A; Oades, G C; Rasche, G; Woolcock, W S
2001-01-01
We calculate the s and p-wave electromagnetic corrections which must be subtracted from the nuclear phase shifts obtained from the analysis of low energy pi+p elastic scattering data, in order to obtain hadronic phase shifts. We compare our results with earlier calculations and estimate the uncertainties in the corrections.
Microscopic distorted wave theory of inelastic scattering
Picklesimer, A.; Tandy, P. C.; Thaler, R. M.
1982-03-01
An exact microscopic distorted wave theory of inelastic scattering is formulated which contains the physical picture usually associated with distorted wave approximations without the usual redundancy. This formulation encompasses the inelastic scattering of two fragments, elementary or composite (both with or without the full complexity of interfragment Pauli symmetries). The fact that these considerations need not be based upon elementary potential interactions is an indication of the generality of the approach and supports its applicability to inelastic meson scattering. The theory also maintains a description of inelastic scattering which is a natural extension of the description of elastic scattering and it provides a general basis for obtaining truncation models with an explicit distorted wave structure. The distorted wave impulse approximation is presented as an example of a particular truncation/approximation encompassed by this theory and the nature of the distorted waves is explicated. NUCLEAR REACTIONS Distorted wave theory, inelastic scattering, multiple scattering, spectator expansion, Pauli exclusion principle, composite particles, unitarity structure.
Wave propagation and scattering in random media
Ishimaru, Akira
1978-01-01
Wave Propagation and Scattering in Random Media, Volume 2, presents the fundamental formulations of wave propagation and scattering in random media in a unified and systematic manner. The topics covered in this book may be grouped into three categories: waves in random scatterers, waves in random continua, and rough surface scattering. Random scatterers are random distributions of many particles. Examples are rain, fog, smog, hail, ocean particles, red blood cells, polymers, and other particles in a state of Brownian motion. Random continua are the media whose characteristics vary randomly an
Exact plane gravitational waves and electromagnetic fields
Enrico MontanariUniversity of Ferrara and INFN sezione di Ferrara, Italy; Mirco Calura(University of Ferrara and INFN sezione di Ferrara, Italy)
2000-01-01
The behaviour of a "test" electromagnetic field in the background of an exact gravitational plane wave is investigated in the framework of Einstein's general relativity. We have expressed the general solution to the de Rham equations as a Fourier-like integral. In the general case we have reduced the problem to a set of ordinary differential equations and have explicitly written the solution in the case of linear polarization of the gravitational wave. We have expressed our ...
Scalable, Finite Element Analysis of Electromagnetic Scattering and Radiation
Cwik, T.; Lou, J.; Katz, D.
1997-01-01
In this paper a method for simulating electromagnetic fields scattered from complex objects is reviewed; namely, an unstructured finite element code that does not use traditional mesh partitioning algorithms.
Coupled seismic and electromagnetic wave propagation
Schakel, M.D.
2011-01-01
Coupled seismic and electromagnetic wave propagation is studied theoretically and experimentally. This coupling arises because of the electrochemical double layer, which exists along the solid-grain/fluid-electrolyte boundaries of porous media. Within the double layer, charge is redistributed, creat
Electromagnetic Wave Propagation in Random Media
Pécseli, Hans
1984-01-01
The propagation of a narrow frequency band beam of electromagnetic waves in a medium with randomly varying index of refraction is considered. A novel formulation of the governing equation is proposed. An equation for the average Green function (or transition probability) can then be derived...
Electromagnetic wave propagations in conjugate metamaterials.
Xu, Yadong; Fu, Yangyang; Chen, Huanyang
2017-03-06
In this work, by employing field transformation optics, we deduce a special kind of materials called conjugate metamaterials, which can support intriguing electromagnetic wave propagations, such as negative refractions and lasing phenomena. These materials could also serve as substrates for making a subwavelength-resolution lens, and the so-called "perfect lens" is demonstrated to be a limiting case.
Hugonin, Jean-Paul; Ben-Abdallah, Philippe
2015-01-01
Absorption and scattering of electromagnetic waves by dielectric media are of fundamental importance in many branches of physics. In this Letter we analytically derived the ultimate upper limits for the absorbed and scattered powers by any system of optical resonators in mutual interaction. We show that these bounds depend only on the geometric configuration given an incident field. We give the conditions to fullfill to reach these limits paving so a way for a rational design of optimal metamaterials.
Simulation study of localization of electromagnetic waves in two-dimensional random dipolar systems.
Wang, Ken Kang-Hsin; Ye, Zhen
2003-12-01
We study the propagation and scattering of electromagnetic waves by random arrays of dipolar cylinders in a uniform medium. A set of self-consistent equations, incorporating all orders of multiple scattering of the electromagnetic waves, is derived from first principles and then solved numerically for electromagnetic fields. For certain ranges of frequencies, spatially localized electromagnetic waves appear in such a simple but realistic disordered system. Dependence of localization on the frequency, radiation damping, and filling factor is shown. The spatial behavior of the total, coherent, and diffusive waves is explored in detail, and found to comply with a physical intuitive picture. A phase diagram characterizing localization is presented, in agreement with previous investigations on other systems.
An Integral Equation Method for Electromagnetic Scattering by a Periodic Chiral Structure
张德悦; 马富明
2005-01-01
In this paper, we consider the electromagnetic scattering by a periodic chiral structure. The media is homogeneous and the structure is periodic in one direction and invariant in another direction. The electromagnetic fields inside the chiral medium are governed by Maxwell equations together with the Drude-BornFedorov equations. We simplify the problem to a two-dimensional scattering problem and discuss the existence and the uniqueness of solutions by an integral equation approach. We show that for all but possibly a discrete set of wave numbers, the integral equation has a unique solution.
Mishchenko, Michael I.; Dlugach, Janna M.; Yurkin, Maxim A.; Bi, Lei; Cairns, Brian; Liu, Li; Panetta, R. Lee; Travis, Larry D.; Yang, Ping; Zakharova, Nadezhda T.
2016-05-01
the first-principles formalism enabling accurate calculations of monochromatic and quasi-monochromatic scattering by static and randomly varying multiparticle groups. We illustrate how this general framework can be coupled with state-of-the-art computer solvers of the Maxwell equations and applied to direct modeling of electromagnetic scattering by representative random multi-particle groups with arbitrary packing densities. This first-principles modeling yields general physical insights unavailable with phenomenological approaches. We discuss how the first-order-scattering approximation, the radiative transfer theory, and the theory of weak localization of electromagnetic waves can be derived as immediate corollaries of the Maxwell equations for very specific and well-defined kinds of particulate medium. These recent developments confirm the mesoscopic origin of the radiative transfer, weak localization, and effective-medium regimes and help evaluate the numerical accuracy of widely used approximate modeling methodologies.
Mishchenko, Michael I., E-mail: michael.i.mishchenko@nasa.gov [NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025 (United States); Dlugach, Janna M. [Main Astronomical Observatory of the National Academy of Sciences of Ukraine, 27 Zabolotny Str., 03680, Kyiv (Ukraine); Yurkin, Maxim A. [Voevodsky Institute of Chemical Kinetics and Combustion, SB RAS, Institutskaya str. 3, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogova 2, 630090 Novosibirsk (Russian Federation); Bi, Lei [Department of Atmospheric Sciences, Texas A& M University, College Station, TX 77843 (United States); Cairns, Brian [NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025 (United States); Liu, Li [NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025 (United States); Columbia University, 2880 Broadway, New York, NY 10025 (United States); Panetta, R. Lee [Department of Atmospheric Sciences, Texas A& M University, College Station, TX 77843 (United States); Travis, Larry D. [NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025 (United States); Yang, Ping [Department of Atmospheric Sciences, Texas A& M University, College Station, TX 77843 (United States); Zakharova, Nadezhda T. [Trinnovim LLC, 2880 Broadway, New York, NY 10025 (United States)
2016-05-16
of the first-principles formalism enabling accurate calculations of monochromatic and quasi-monochromatic scattering by static and randomly varying multiparticle groups. We illustrate how this general framework can be coupled with state-of-the-art computer solvers of the Maxwell equations and applied to direct modeling of electromagnetic scattering by representative random multi-particle groups with arbitrary packing densities. This first-principles modeling yields general physical insights unavailable with phenomenological approaches. We discuss how the first-order-scattering approximation, the radiative transfer theory, and the theory of weak localization of electromagnetic waves can be derived as immediate corollaries of the Maxwell equations for very specific and well-defined kinds of particulate medium. These recent developments confirm the mesoscopic origin of the radiative transfer, weak localization, and effective-medium regimes and help evaluate the numerical accuracy of widely used approximate modeling methodologies.
Baryshevsky, V G
2013-01-01
This paper considers the refraction and diffraction of waves in three-dimensional crystals formed by anisotropically scattering centers. The partial wave expansion method is used to consider the effect of multiple rescattering of waves by centers composing a crystal. The expression for the refractive index of a crystal is derived. It is shown that instead of the diagonal elements of the scattering matrix $\\mathbf{T}$, appearing in the expression for the refractive index of a chaotic medium, the derived expression includes the diagonal elements of the reaction matrix $\\mathbf{K}$. This fact is taken into account in writing the equations describing the dynamical diffraction of waves in a crystal. The results can be of interest for research into, e.g., diffraction of cold neutrons and photons in crystals, nanocrystalline materials, as well as for the description of parametric and diffraction radiation in electromagnetic crystals formed by anisotropically scattering centers.
Calculation of Electromagnetic Scattering by a Perfect Conductor.
1980-06-05
AD-A091 027 NAVAL SURFACE WEAPONS CENTER SILVER SPRING NO0 F/G 20/3 CALCULATION OF ELECTROMAGNETIC SCATTERING BY A PERFECT CONDUCTO --ETCIU) JUN G0 A...let aO,r nonBr. We have 1E.2 - aHl.2 = V.(H I x E2) BE 1.E 2 _ * H H_ . 21. MUller , C., Foundations of the Mathematical Theory of Electromagnetic...20. Kellogg, R. B., "A Scattering Problem for Maxwell’s Equations," Ibid. 21. MUller , C., Foundations of the Mathematical Theory of Electromagnetic
Electromagnetic waves in complex systems selected theoretical and applied problems
Velychko, Lyudmyla
2016-01-01
This book gives guidance to solve problems in electromagnetics, providing both examples of solving serious research problems as well as the original results to encourage further investigations. The book contains seven chapters on various aspects of resonant wave scattering, each solving one original problem. All of them are unified by the authors’ desire to show advantages of rigorous approaches at all stages, from the formulation of a problem and the selection of a method to the interpretation of results. The book reveals a range of problems associated with wave propagation and scattering in natural and artificial environments or with the design of antennas elements. The authors invoke both theoretical (analytical and numerical) and experimental techniques for handling the problems. Attention is given to mathematical simulations, computational efficiency, and physical interpretation of the experimental results. The book is written for students, graduate students and young researchers. .
Quick finite elements for electromagnetic waves
Pelosi, Giuseppe; Selleri, Stefano
2009-01-01
This practical book and accompanying software enables you to quickly and easily work out challenging microwave engineering and high-frequency electromagnetic problems using the finite element method (FEM) Using clear, concise text and dozens of real-world application examples, the book provides a detailed description of FEM implementation, while the software provides the code and tools needed to solve the three major types of EM problems: guided propagation, scattering, and radiation.
Electromagnetic Corrections for the Analysis of Low-Energy $\\pi^{-}p$ Scattering Data
Gashi, A; Oades, G C; Rasche, G; Woolcock, W S
1999-01-01
We calculate the electromagnetic corrections to the isospin invariant mixing angle and to the two eigenphases for the $s$-, $p_{1/2}$- and $p_{3/2}$-partial waves for $\\pi^- p$ elastic and charge exchange scattering. These corrections have to be applied to the nuclear quantities in order to obtain the two hadronic phase shifts for each partial wave. The calculation uses relativised Schrödinger equations containing the sum of an electromagnetic potential and an effective hadronic potential. The mass differences between $\\pi^-$ and results with those of previous calculations and qualitatively estimate the uncertainties in the corrections.
Global Simulation of Electromagnetic Ion Cyclotron Waves
Khazanov, George V.; Gallagher, D. L.; Kozyra, J. U.
2007-01-01
It is very well known that the effects of electromagnetic ion cyclotron (EMIC) waves on ring current (RC) ion and radiation belt (RB) electron dynamics strongly depend on such particle/wave characteristics as the phase-space distribution function, frequency, wave-normal angle, wave energy, and the form of wave spectral energy density. The consequence is that accurate modeling of EMIC waves and RC particles requires robust inclusion of the interdependent dynamics of wave growth/damping, wave propagation, and particles. Such a self-consistent model is being progressively developed by Khazanov et al. This model is based on a system of coupled kinetic equations for the RC and EMIC wave power spectral density along with the ray tracing equations. We will discuss the recent progress in understanding EMIC waves formation mechanisms in the inner magnetosphere. This problem remains unsettled in spite of many years of experimental and theoretical studies. Modern satellite observations by CRRES, Polar and Cluster still do not reveal the whole picture experimentally since they do not stay long enough in the generation region to give a full account of all the spatio-temporal structure of EMIC waves. The complete self-consistent theory taking into account all factors significant for EMIC waves generation remains to be developed. Several mechanisms are discussed with respect to formation of EMIC waves, among them are nonlinear modification of the ionospheric reflection by precipitating energetic protons, modulation of ion-cyclotron instability by long-period (Pc3/4) pulsations, reflection of waves from layers of heavy-ion gyroresonances, and nonlinearities of wave generation process. We show that each of these mechanisms have their attractive features and explains certain part experimental data but any of them, if taken alone, meets some difficulties when compared to observations. We conclude that development of a refined nonlinear theory and further correlated analysis of modern
A direct sampling method for inverse electromagnetic medium scattering
Ito, Kazufumi
2013-09-01
In this paper, we study the inverse electromagnetic medium scattering problem of estimating the support and shape of medium scatterers from scattered electric/magnetic near-field data. We shall develop a novel direct sampling method based on an analysis of electromagnetic scattering and the behavior of the fundamental solution. It is applicable to a few incident fields and needs only to compute inner products of the measured scattered field with the fundamental solutions located at sampling points. Hence, it is strictly direct, computationally very efficient and highly robust to the presence of data noise. Two- and three-dimensional numerical experiments indicate that it can provide reliable support estimates for multiple scatterers in the case of both exact and highly noisy data. © 2013 IOP Publishing Ltd.
The Surface Wave Scattering-Microwave Scanner (SWS-MS)
Geffrin, Jean-Michel; Chamtouri, Maha; Merchiers, Olivier; Tortel, Hervé; Litman, Amélie; Bailly, Jean-Sébastien; Lacroix, Bernard; Francoeur, Mathieu; Vaillon, Rodolphe
2016-01-01
The Surface Wave Scattering-Microwave Scanner (SWS-MS) is a device that allows the measurement of the electromagnetic fields scattered by objects totally or partially submerged in surface waves. No probe is used to illuminate the sample, nor to guide or scatter the local evanescent waves. Surface waves are generated by total internal reflection and the amplitude and phase of the fields scattered by the samples are measured directly, both in the far-field and the near-field regions. The device's principles and their practical implementation are described in details. The surface wave generator is assessed by measuring the spatial distribution of the electric field above the surface. Drift correction and the calibration method for far-field measurements are explained. Comparison of both far-field and near-field measurements against simulation data shows that the device provides accurate results. This work suggests that the SWS-MS can be used for producing experimental reference data, for supporting a better understanding of surface wave scattering, for assisting in the design of near-field optical or infrared systems thanks to the scale invariance rule in electrodynamics, and for performing nondestructive control of defects in materials.
Effect of electromagnetic waves on human reproduction.
Wdowiak, Artur; Mazurek, Paweł A; Wdowiak, Anita; Bojar, Iwona
2017-03-31
Electromagnetic radiation (EMR) emitting from the natural environment, as well as from the use of industrial and everyday appliances, constantly influence the human body. The effect of this type of energy on living tissues may exert various effects on their functioning, although the mechanisms conditioning this phenomenon have not been fully explained. It may be expected that the interactions between electromagnetic radiation and the living organism would depend on the amount and parameters of the transmitted energy and type of tissue exposed. Electromagnetic waves exert an influence on human reproduction by affecting the male and female reproductive systems, the developing embryo, and subsequently, the foetus. Knowledge concerning this problem is still being expanded; however, all the conditionings of human reproduction still remain unknown. The study presents the current state of knowledge concerning the problem, based on the latest scientific reports.
Analytical Study of Electromagnetic Wave in Superlattice
LINChang; ZHANGXiu-Lian
2004-01-01
The theoretical description of soliton solutions and exact analytical solutions in the sine-Gordon equation is extended to superlattice physics. A family of interesting exact solutions and a new exact analytical solution have been obtained for the electromagnetic wave propagating through a superlattice. In more general cases, the vector potential along the propagating direction obeys the sine-Gordon equation. Some mathematical results of theoretical investigation are given for different cases in supedattices.
Analytical Study of Electromagnetic Wave in Superlattice
LIN Chang; ZHANG Xiu-Lian
2004-01-01
The theoretical description of soliton solutions and exact analytical solutions in the sine-Gordon equation is extended to superlattice physics. A family of interesting exact solutions and a new exact analytical solution have been obtained for the electromagnetic wave propagating through a superlattice. In more general cases, the vector potential along the propagating direction obeys the sine-Gordon equation. Some mathematical results of theoretical investigation are given for different cases in superlattices.
Electromagnetic waves in a strong Schwarzschild plasma
Daniel, J.; Tajima, T.
1996-11-01
The physics of high frequency electromagnetic waves in a general relativistic plasma with the Schwarzschild metric is studied. Based on the 3 + 1 formalism, we conformalize Maxwell`s equations. The derived dispersion relations for waves in the plasma contain the lapse function in the plasma parameters such as in the plasma frequency and cyclotron frequency, but otherwise look {open_quotes}flat.{close_quotes} Because of this property this formulation is ideal for nonlinear self-consistent particle (PIC) simulation. Some of the physical consequences arising from the general relativistic lapse function as well as from the effects specific to the plasma background distribution (such as density and magnetic field) give rise to nonuniform wave equations and their associated phenomena, such as wave resonance, cutoff, and mode-conversion. These phenomena are expected to characterize the spectroscopy of radiation emitted by the plasma around the black hole. PIC simulation results of electron-positron plasma are also presented.
Measurements Of High Frequency Electromagnetic Waves In Center Of Mus
etem, taha; ABBASOV, Teymuraz
2016-01-01
All electrically powered devices cause electromagnetic wave exposure onhuman body and we use them nearly every moment in a day. Mobile phones,computers, televisions, hair dryers, lighting systems, etc. they all useelectricity and naturally radiate electromagnetic waves. Effects ofelectromagnetic waves are not clear but international organizations definelimit values depending on epidemiological studies in this field. In this studywe measure high frequency electromagnetic waves in city center o...
Microscopic distorted wave theory of inelastic scattering
Picklesimer, A.; Tandy, P.C.; Thaler, R.M.
1982-03-01
An exact microscopic distorted wave theory of inelastic scattering is formulated which contains the physical picture usually associated with distorted wave approximations without the usual redundancy. This formulation encompasses the inelastic scattering of two fragments, elementary or composit (both with or without the full complexity of interfragment Pauli symmetries). The fact that these considerations need not be based upon elementary potential interactions is an indication of the generality of the approach and supports its applicability to inelastic meson scattering. This theory also maintains a description of inelastic scattering which is a natural extension of the description of elastic scattering and it provides a general basis for obtaining truncation models with an explicit distorted wave structure. This distorted wave impulse approximation is presented as an example of a particular truncation/approximation encompassed by this theory and the nature of the distorted waves is explicated.
Nakanishi, Toshihiro; Tamayama, Yasuhiro; Kitano, Masao
2013-01-01
We propose a method for dynamically controlling the properties of a metamaterial that mimics electromagnetically induced transparency (EIT) by introducing varactor diodes to manipulate the structural symmetry of the metamaterial. Dynamic modulation of the EIT property enables the storage and retrieval of electromagnetic waves. We confirmed that the electromagnetic waves were stored and released, while maintaining the phase distribution in the propagating direction.
Electromagnetic Scattering and Inverse Scattering of Layered Media with a Slightly Rough Surface
LIN Zhi-Wei; XU Xin ZHANG Xiao-Juan; FANG Guang-You
2011-01-01
An electromagnetic (EM) scattering model for layered media covered by a 3D infinite rough surface and the corresponding inversion technique are investigated. The work aims at remote sensing the surface roughness and dielectric constant for different depths of bear soil through radar measurement data. The forward problem is carried out by the wave decomposition method. The small perturbation method (SPM) and EM boundary conditions are employed to solve the integral equations introduced by the wave decomposition method. The second-order SPM solution of the scattering field is involved in the computation of the forward problem for the first time. The backscattering coefficients of multiple frequencies, multiple angles and multiple polarizations are employed to create a nonlinear optimization problem. A genetic algorithm is introduced to help the inversion procedure approach to the global minimum of the cost function. Examples are carried out to validate the inversion technique. The inversion results show good agreement with the forward problem with given parameters and pose good tolerance to the input data with the additive white Gaussian noise.
Research on the ElectromagneticScattering Near the Field
无
2002-01-01
We calculate and analyze the scattering near the field from some simple and complex targets using the method of picture elements (PEL), based upon the method of high-frequency approximation. It introduces the critical distance of the near field and the far field which is related with the dimension of the target. The problem of the EMS near field from large size objects can be transformed to the problem of the far field by parting it to many very small size elements. By calculating the EMS near fields of some simple and complex targets based on the SCTE (scattering from complex targets and environments) system, the results show that there are much difference between the near field and the far field. And the characteristics of the near field are more complicated. This work has practical engineering value in the area of the electromagnetic compatibility (EMC), electromagnetic interference (EMI) prediction and electromagnetic scattering (EMS).
Research in Antenna Technology, Radar Technology and Electromagnetic Scattering Phenomena
2015-04-06
AFRL-OSR-VA-TR-2015-0081 Research in Antenna Technology John Schindler ARCON CORP Final Report 04/06/2015 DISTRIBUTION A: Distribution approved for...a group of six researchers in the fields of electromagnetics, radar and antenna technology. Research was conducted during this reporting period in...Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39.18 Research in Antenna technology, Radar Technology and Electromagnetic Scattering Phenomena
Ring Current-Electromagnetic Ion Cyclotron Waves Coupling
Khazanov, G. V.
2005-01-01
The effect of Electromagnetic Ion Cyclotron (EMIC) waves, generated by ion temperature anisotropy in Earth s ring current (RC), is the best known example of wave- particle interaction in the magnetosphere. Also, there is much controversy over the importance of EMIC waves on RC depletion. Under certain conditions, relativistic electrons, with energies 21 MeV, can be removed from the outer radiation belt (RB) by EMIC wave scattering during a magnetic storm. That is why the calculation of EMIC waves must be a very critical part of the space weather studies. The new RC model that we have developed and present for the first time has several new features that we have combine together in a one single model: (a) several lower frequency cold plasma wave modes are taken into account; (b) wave tracing of these wave has been incorporated in the energy EMIC wave equation; (c) no assumptions regarding wave shape spectra have been made; (d) no assumptions regarding the shape of particle distribution have been made to calculate the growth rate; (e) pitch-angle, energy, and mix diffusions are taken into account together for the first time; (f) the exact loss-cone RC analytical solution has been found and coupled with bounce-averaged numerical solution of kinetic equation; (g) the EMIC waves saturation due to their modulation instability and LHW generation are included as an additional factor that contributes to this process; and (h) the hot ions were included in the real part of dielectric permittivity tensor. We compare our theoretical results with the different EMIC waves models as well as RC experimental data.
A Discrete Scatterer Technique for Evaluating Electromagnetic Scattering from Trees
2016-09-01
random seed and an input parameter file defining the physical characteristics of a tree (e.g., tree and trunk shape, number of branch levels, branch...elements. In most realistic scenarios, the individual scatterers of a trunk are not expected to be shadowed by other scatterers belonging to the same...trunk—in other words, a trunk cannot shadow itself. As such, in calculating the transmissivity matrices for the scatterers of a particular tree trunk
Fermi energy-dependence of electromagnetic wave absorption in graphene
Shoufie Ukhtary, M.; Hasdeo, Eddwi H.; Nugraha, Ahmad R. T.; Saito, Riichiro
2015-05-01
Undoped graphene is known to absorb 2.3% of visible light at a normal angle of incidence. In this paper, we theoretically demonstrate that the absorption of 10-100 GHz of an electromagnetic wave can be tuned from nearly 0 to 100% by varying the Fermi energy of graphene when the angle of incidence of the electromagnetic wave is kept within total internal reflection geometry. We calculate the absorption probability of the electromagnetic wave as a function of the Fermi energy of graphene and the angle of incidence of the wave. These results open up possibilities for the development of simple electromagnetic wave-switching devices operated by gate voltage.
Scattering of radio frequency waves by turbulence in fusion plasmas
Ram, Abhay K.
2016-10-01
In tokamak fusion plasmas, coherent fluctuations in the form of blobs or filaments and incoherent fluctuations due to turbulence are routinely observed in the scrape-off layer. Radio frequency (RF) electromagnetic waves, excited by antenna structures placed near the wall of a tokamak, have to propagate through the scrape-off layer before reaching the core of the plasma. While the effect of fluctuations on RF waves has not been quantified experimentally, there are telltale signs, arising from differences between results from simulations and from experiments, that fluctuations can modify the spectrum of RF waves. Any effect on RF waves in the scrape-off layer can have important experimental consequences. For example, electron cyclotron waves are expected to stabilize the deleterious neoclassical tearing mode (NTM) in ITER. Spectral and polarization changes due to scattering will modify the spatial location and profile of the current driven by the RF waves, thereby affecting the control of NTMs. Pioneering theoretical studies and complementary computer simulations have been pursued to elucidate the impact of fluctuations on RF waves. From the full complement of Maxwell's equations for cold, magnetized plasmas, it is shown that the Poynting flux in the wake of filaments develops spatial structure due to diffraction and shadowing. The uniformity of power flow into the plasma is affected by side-scattering, modifications to the wave spectrum, and coupling to plasma waves other than the incident RF wave. The Snell's law and the Fresnel equations have been reformulated within the context of magnetized plasmas. They are distinctly different from their counterparts in scalar dielectric media, and reveal new and important physical insight into the scattering of RF waves. The Snell's law and Fresnel equations are the basis for the Kirchhoff approximation necessary to determine properties of the scattered waves. Furthermore, this theory is also relevant for studying back-scattering
Finite element and finite difference methods in electromagnetic scattering
Morgan, MA
2013-01-01
This second volume in the Progress in Electromagnetic Research series examines recent advances in computational electromagnetics, with emphasis on scattering, as brought about by new formulations and algorithms which use finite element or finite difference techniques. Containing contributions by some of the world's leading experts, the papers thoroughly review and analyze this rapidly evolving area of computational electromagnetics. Covering topics ranging from the new finite-element based formulation for representing time-harmonic vector fields in 3-D inhomogeneous media using two coupled sca
Nonlinear single Compton scattering of an electron wave-packet
Angioi, A; Di Piazza, A
2016-01-01
In the presence of a sufficiently intense electromagnetic laser field, an electron can absorb on average a large number of photons from the laser and emit a high-energy one (nonlinear single Compton scattering). The case of nonlinear single Compton scattering by an electron with definite initial momentum has been thoroughly investigated in the literature. Here, we consider a more general initial state of the electron and use a wave-packet obtained as a superposition of Volkov wave functions. In particular, we investigate the energy spectrum of the emitted radiation at fixed observation direction and show that in typical experimental situations the sharply peaked structure of nonlinear single Compton scattering spectra of an electron with definite initial energy is almost completely washed out. Moreover, we show that at comparable uncertainties, the one in the momentum of the incoming electron has a larger impact on the photon spectra at a fixed observation direction than the one on the laser frequency, relate...
Electromagnetic Fields and Waves in Fractional Dimensional Space
Zubair, Muhammad; Naqvi, Qaisar Abbas
2012-01-01
This book presents the concept of fractional dimensional space applied to the use of electromagnetic fields and waves. It provides demonstrates the advantages in studying the behavior of electromagnetic fields and waves in fractal media. The book presents novel fractional space generalization of the differential electromagnetic equations is provided as well as a new form of vector differential operators is formulated in fractional space. Using these modified vector differential operators, the classical Maxwell's electromagnetic equations are worked out. The Laplace's, Poisson's and Helmholtz's
Arruda, Tiago José; Martinez, Alexandre Souto
2010-07-01
We analytically calculate the time-averaged electromagnetic energy stored inside a nondispersive magnetic isotropic cylinder that is obliquely irradiated by an electromagnetic plane wave. An expression for the optical-absorption efficiency in terms of the magnetic internal coefficients is also obtained. In the low absorption limit, we derive a relation between the normalized internal energy and the optical-absorption efficiency that is not affected by the magnetism and the incidence angle. This relation, indeed, seems to be independent of the shape of the scatterer. This universal aspect of the internal energy is connected to the transport velocity and consequently to the diffusion coefficient in the multiple scattering regime. Magnetism favors high internal energy for low size parameter cylinders, which leads to a low diffusion coefficient for electromagnetic propagation in 2D random media.
Electromagnetic Scattering in a Two-layered Medium
FENG LI-XIN; LI YUAN; Ma Fu-ming
2011-01-01
The object of this paper is to investigate the three-dimensional electro-magnetic scattering problems in a two-layered background medium.These problems have an important application in today's technology,such as to detect objects that are buried in soil.Here,we model both the exterior impedance problem and the inhomogeneous medium problem in R3.We establish uniqueness and existence for the solution of the two scattering problems,respectively.
Palenzuela, Carlos; Yoshida, Shin
2009-01-01
In addition to producing loud gravitational waves (GW), the dynamics of a binary black hole system could induce emission of electromagnetic (EM) radiation by affecting the behavior of plasmas and electromagnetic fields in their vicinity. We here study how the electromagnetic fields are affected by a pair of orbiting black holes through the merger. In particular, we show how the binary's dynamics induce a variability in possible electromagnetically induced emissions as well as an enhancement of electromagnetic fields during the late-merge and merger epochs. These time dependent features will likely leave their imprint in processes generating detectable emissions and can be exploited in the detection of electromagnetic counterparts of gravitational waves.
Do electromagnetic waves always propagate along null geodesics?
Asenjo, Felipe A
2016-01-01
We find exact solutions to Maxwell equations written in terms of four-vector potentials in non--rotating, as well as in G\\"odel and Kerr spacetimes. Exact electromagnetic waves solutions are written on given gravitational field backgrounds where they evolve. We find that in non--rotating spherical symmetric spacetimes, electromagnetic plane waves travel along null geodesics. However, electromagnetic plane waves on G\\"odel and Kerr spacetimes do not exhibit that behavior.
Stable Propagating Waves and Wake Fields in Relativistic Electromagnetic Plasma
DUAN Yi-Shi; XIE Bai-Song; TIAN Miao; YIN Xin-Tao; ZHANG Xin-Hui
2008-01-01
Stable propagating waves and wake fields in relativistic electromagnetic plasma are investigated. The incident electromagnetic field has a finite initial constant amplitude meanwhile the longitudinal momentum of electrons is taken into account in the problem. It is found that in the moving frame with transverse wave group velocity the stable propagating transverse electromagnetic waves and longitudinal plasma wake fields can exist in the appropriate regime of plasma.
Electromagnetic corrections to the hadronic phase shifts in low energy pi sup + p elastic scattering
Gashi, A; Oades, G C; Rasche, G; Woolcock, W S
2001-01-01
We calculate for the s-, p sub 1 sub / sub 2 - and p sub 3 sub / sub 2 -waves the electromagnetic corrections which must be subtracted from the nuclear phase shifts obtained from the analysis of low-energy pi sup + p elastic scattering data, in order to obtain hadronic phase shifts. The calculation uses relativised Schroedinger equations containing the sum of an electromagnetic potential and an effective hadronic potential. We compare our results with those of previous calculations and estimate the uncertainties in the corrections.
Scattering of a partially-coherent wave from a material circular cylinder.
Hyde, Milo W; Bogle, Andrew E; Havrilla, Michael J
2013-12-30
The case of a partially-coherent wave scattered from a material circular cylinder is investigated. Expressions for the TMz and TEz scattered-field cross-spectral density functions are derived by utilizing the plane-wave spectrum representation of electromagnetic fields and cylindrical wave transformations. From the analytical scattered-field cross-spectral density functions, the mean scattering widths are derived and subsequently validated via comparison with those computed from Method of Moments Monte Carlo simulations. The analytical relations as well as the simulation results are discussed and physically interpreted. Key insights are noted and subsequently analyzed.
Instantaneous polarization statistics of electromagnetic waves
WANG Xuesong; LI Yongzhen; DAI Dahai; XIAO Shunping; ZHUANG Zhaowen
2004-01-01
The problem of statistical description of instantaneous polarization of electromagnetic waves is studied. First, the physical meanings of instantaneous Stokes vectors' components are analyzed, which provide a short cut for solving statistical distribution functions of instantaneous Stokes vectors. Second, in the condition of Gaussian hypothesis, the analytical expressions of probability density function (PDF) of instantaneous Stokes vectors are presented. Finally, some computation results are presented in the condition of two independent polarization channels, which show the validity and simplicity of the statistical description method.
Electromagnetic corrections for the analysis of low energy $\\pi_{-}p$ scattering data
Gashi, A; Oades, G C; Rasche, G; Woolcock, W S
2001-01-01
We calculate the electromagnetic corrections to the isospin invariant mixing angle and to the two eigenphases for the s and p-waves for low energy pi-p elastic and charge exchange scattering. These corrections have to be applied to the nuclear quantities obtained from phase shift analyses of the experimental data in order to obtain the hadronic phases. We compare our results with earlier calculations and estimate the uncertainties in the corrections.
2016-01-01
Full Text Available A problem of electromagnetic wave backscattering on a chosen 3D object is solved. A differential equation which is linked change of polarization coefficient of reflected wave with variation of matrix elements of object scattering is ob- tained. Obtained relation enables to develop algorithms of fast numerical solution of inverse problem of scattering on this object that is determination of complex function of object surface scattering and restoration of unknown object shape on phase distribution of reflected wave. The method uses ray representation of scattering fields based on principle Huygens- Fresnel. The algorithm of object shape restoration on phase of reflected wave allows to restore not only smooth surfaces, but also object surfaces with smaller roughness than a wave length.
Electromagnetic scattering: applications to atmospheric sciences and beyond
Yang, P.
2015-12-01
Atmospheric particles (cloud droplets, ice crystals and aerosol particles) scatter and absorb solar radiation and thermal infrared emission, and play an important role in the radiation budget in the earth-atmosphere coupled system, and hence are essential to the earth's climate. In this talk I will briefly review electromagnetic scattering research with a focus on applications to atmospheric radiation parameterization and remote sensing. Specifically, I will review state-of-the-art modeling capabilities in computing the single-scattering properties of dielectric particles. Furthermore, I will illustrate some examples of relevant applications.
Simultaneous observation of gravitational and electromagnetic waves
Branchina, Vincenzo
2016-01-01
Assuming that the short gamma-ray burst detected by the Fermi Gamma-Ray Space Telescope about 0.4 seconds after the gravitational waves observed by the LIGO and VIRGO Collaborations originated from the same black hole merger event, we perform a model-independent analysis of different quantum gravity scenarios based on (modified) dispersion relations (typical of quantum gravity models) for the graviton and the photon. We find that only scenarios where at least one of the two particles is luminal (the other being sub- or super-luminal) are allowed, while scenarios where none of the two particles is luminal are ruled out. Moreover, the physical request of having acceptable values for the quantum gravity scale imposes stringent bounds on the difference between the velocities of electromagnetic and gravitational waves, much more stringent than any previously known bound.
Topographical scattering of waves: a spectral approach
Magne, R; Rey, V; Herbers, T H C; Magne, Rudy; Ardhuin, Fabrice; Rey, Vincent; Herbers, Thomas H. C.
2005-01-01
The topographical scattering of gravity waves is investigated using a spectral energy balance equation that accounts for first order wave-bottom Bragg scattering. This model represents the bottom topography and surface waves with spectra, and evaluates a Bragg scattering source term that is theoretically valid for small bottom and surface slopes and slowly varying spectral properties. The robustness of the model is tested for a variety of topographies uniform along one horizontal dimension including nearly sinusoidal, linear ramp and step profiles. Results are compared with reflections computed using an accurate method that applies integral matching along vertical boundaries of a series of steps. For small bottom amplitudes, the source term representation yields accurate reflection estimates even for a localized scatterer. This result is proved for small bottom amplitudes $h$ relative to the mean water depth $H$. Wave reflection by small amplitude bottom topography thus depends primarily on the bottom elevati...
Wave scattering from statistically rough surfaces
Bass, F G; ter Haar, D
2013-01-01
Wave Scattering from Statistically Rough Surfaces discusses the complications in radio physics and hydro-acoustics in relation to wave transmission under settings seen in nature. Some of the topics that are covered include radar and sonar, the effect of variations in topographic relief or ocean waves on the transmission of radio and sound waves, the reproduction of radio waves from the lower layers of the ionosphere, and the oscillations of signals within the earth-ionosphere waveguide. The book begins with some fundamental idea of wave transmission theory and the theory of random processes a
Through-the-Wall Imaging from Electromagnetic Scattered Field Measurements
2007-03-01
the transmission Greens function. This simplified model is then used in a Lippman- Schwinger integral equation to predict the scattered field associated...model is then used in a Lippman- Schwinger integral equation to predict the scattered field associated with interrogating THz waves. We investigate the...59 B. LIPPMAN- SCHWINGER EQUATION . . . . . . . . . . . . . . 59 C. BORN APPROXIMATION
Dispersion relation for electromagnetic wave propagation in a strongly magnetized plasma
Marklund, G B M; Shukla, P K
2006-01-01
A dispersion relation for electromagnetic wave propagation in a strongly magnetized cold plasma is deduced, taking photon-photon scattering into account. It is shown that the combined plasma and quantum electrodynamic effect is important for understanding the mode-structures in magnetar and pulsar atmospheres. The implications of our results are discussed.
Wave propagation, scattering and emission in complex media
Jin, Ya-Qiu
I. Polarimetric scattering and SAR imagery. EM wave propagation and scattering in polarimetric SAR interferometry / S. R. Cloude. Terrain topographic inversion from single-pass polarimetric SAR image data by using polarimetric stokes parameters and morphological algorithm / Y. Q. Jin, L. Luo. Road detection in forested area using polarimetric SAR / G. W. Dong ... [et al.]. Research on some problems about SAR radiometric resolution / G. Dong ... [et al.]. A fast image matching algorithm for remote sensing applications / Z. Q. Hou ... [et al.]. A new algorithm of noised remote sensing image fusion based on steerable filters / X. Kang ... [et al.]. Adaptive noise reduction of InSAR data based on anisotropic diffusion models and their applications to phase unwrapping / C. Wang, X. Gao, H. Zhang -- II. Scattering from randomly rough surfaces. Modeling tools for backscattering from rough surfaces / A. K. Fung, K. S. Chen. Pseudo-nondiffracting beams from rough surface scattering / E. R. Méndez, T. A. Leskova, A. A. Maradudin. Surface roughness clutter effects in GPR modeling and detection / C. Rappaport. Scattering from rough surfaces with small slopes / M. Saillard, G. Soriano. Polarization and spectral characteristics of radar signals reflected by sea-surface / V. A. Butko, V. A. Khlusov, L. I. Sharygina. Simulation of microwave scattering from wind-driven ocean surfaces / M. Y. Xia ... [et al.]. HF surface wave radar tests at the Eastern China Sea / X. B. Wu ... [et al.] -- III. Electromagnetics of complex materials. Wave propagation in plane-parallel metamaterial and constitutive relations / A. Ishimaru ... [et al.]. Two dimensional periodic approach for the study of left-handed metamaterials / T. M. Grzegorczyk ... [et al.]. Numerical analysis of the effective constitutive parameters of a random medium containing small chiral spheres / Y. Nanbu, T. Matsuoka, M. Tateiba. Wave propagation in inhomogeneous media: from the Helmholtz to the Ginzburg -Landau equation / M
``Bloch wave'' modification of stimulated Raman by stimulated Brillouin scattering
Dodd, E. S.; Vu, H. X.; DuBois, D. F.; Bezzerides, B.
2013-03-01
Using the reduced-description particle-in-cell (RPIC) method, we study the coupling of backward stimulated Raman scattering (BSRS) and backward stimulated Brillouin scattering (BSBS) in regimes where the reflectivity involves the nonlinear behavior of particles trapped in the daughter plasma waves. The temporal envelope of a Langmuir wave (LW) obeys a Schrödinger equation where the potential is the periodic electron density fluctuation resulting from an ion-acoustic wave (IAW). The BSRS-driven LWs in this case have a Bloch wave structure and a modified dispersion due to the BSBS-driven spatially periodic IAW, which includes frequency band gaps at kLW˜kIAW/2˜k0 (kLW, kIAW, and k0 are the wave number of the LW, IAW, and incident pump electromagnetic wave, respectively). This band structure and the associated Bloch wave harmonic components are distinctly observed in RPIC calculations of the electron density fluctuation spectra and this structure may be observable in Thomson scatter. Bloch wave components grow up in the LW spectrum, and are not the result of isolated BSRS. Self-Thomson scattered light from these Bloch wave components can have forward scattering components. The distortion of the LW dispersion curve implies that the usual relationship connecting the frequency shift of the BSRS-scattered light and the density of origin of this light may become inaccurate. The modified LW frequency results in a time-dependent frequency shift that increases as the IAW grows, detunes the BSRS frequency matching condition, and reduces BSRS growth. A dependence of the BSRS reflectivity on the IAW Landau damping results because this damping determines the levels of IAWs. The time-dependent reflectivity in our simulations is characterized by bursts of sub-picosecond pulses of BSRS alternating with multi-ps pulses of BSBS, and BSRS is observed to decline precipitously as soon as SBS begins to grow from low levels. In strong BSBS regimes, the Bloch wave effects in BSRS are
Electromagnetic field in matter. Surface enhanced Raman scattering
Marian Apostol
2013-07-01
Full Text Available The polarization and magnetization degrees of freedom are included in the general treatment of the electromagnetic field in matter, and their governing equations are given. Particular cases of solutions are discussed for polarizable, non-magnetic matter, including quasi-static fields, surface plasmons, propagation, zero-point fluctuations of the eigenmodes, especially for a semi-infinite homogeneous body (half-space. The van der Waals London-Casimir force acting between a neutral nano-particle and a half-space is computed and the response of this electromagnetically coupled system to an external field is given, with relevance for the surface enhanced Raman scattering.
Wave Scattering by Superluminal Spacetime Slab
Deck-Léger, Zoé-Lise
2016-01-01
Spacetime media offers new opportunities for wave manipulation. Here we study superluminal slabs, and show that the amplitudes of the reflected waves are controlled by the velocity of the medium. In addition, the backward wave continuously scans from the specular to the collinear angle. A diagrammatic method is provided for insight into the deflection angles. A fundamental symmetry between sub- and superluminal scattering is derived from this diagrammatic description.
Plane-wave scattering from half-wave dipole arrays
Jensen, Niels E.
1970-01-01
A matrix equation for determination of plane-wave scattering from arrays of thin short-circuited dipoles of lengths about half a wavelength is derived. Numerical and experimental results are presented for linear, circular, and concentric circular arrays.......A matrix equation for determination of plane-wave scattering from arrays of thin short-circuited dipoles of lengths about half a wavelength is derived. Numerical and experimental results are presented for linear, circular, and concentric circular arrays....
The SEM description of interaction of a transient electromagnetic wave with an object
Pearson, L. W.; Wilton, D. R.
1980-01-01
The singularity expansion method (SEM), proposed as a means for determining and representing the transient surface current density induced on a scatterer by a transient electromagnetic wave is described. The resulting mathematical description of the transient surface current on the object is discussed. The data required to represent the electromagnetic scattering properties of a given object are examined. Experimental methods which were developed for the determination of the SEM description are discussed. The feasibility of characterizing the surface current induced on aircraft flying in proximity to a lightning stroke by way of SEM is examined.
Li, Ping
2014-07-01
This paper presents an algorithm hybridizing discontinuous Galerkin time domain (DGTD) method and time domain boundary integral (BI) algorithm for 3-D open region electromagnetic scattering analysis. The computational domain of DGTD is rigorously truncated by analytically evaluating the incoming numerical flux from the outside of the truncation boundary through BI method based on the Huygens\\' principle. The advantages of the proposed method are that it allows the truncation boundary to be conformal to arbitrary (convex/ concave) scattering objects, well-separated scatters can be truncated by their local meshes without losing the physics (such as coupling/multiple scattering) of the problem, thus reducing the total mesh elements. Furthermore, low frequency waves can be efficiently absorbed, and the field outside the truncation domain can be conveniently calculated using the same BI formulation. Numerical examples are benchmarked to demonstrate the accuracy and versatility of the proposed method.
Phanord, Dieudonne D.; Koshak, William J.; Solakiewicz, Richard J.; Blakeslee, Richard J.
1998-01-01
A two-space scatterer formalism and equivalent medium approach of Twersky are used to obtain formulae for the bulk electromagnetic parameters of a thundercloud medium that is illuminated by lightning optical emissions. A modified WKB approximation is applied to derive the two-space scattering amplitude. Optical constants of dry air, moist atmosphere, and water,.are inserted into the formulae to generate numerical values via iteration. The two-space scatterer formalism results are close to those obtained from free- or sin-le-space formalisms for the dilute case. The numerical values of the bulk parameters are required to successfully transform the scattering problem to that of an equivalent obstacle excited by an incident wave traveling in K - space but radiating in k(sub 1) -space.
High latitude electromagnetic plasma wave emissions
Gurnett, D. A.
1983-01-01
The principal types of electromagnetic plasma wave emission produced in the high latitude auroral regions are reviewed. Three types of radiation are described: auroral kilometric radiation, auroral hiss, and Z mode radiation. Auroral kilometric radiation is a very intense radio emission generated in the free space R-X mode by electrons associated with the formation of discrete auroral arcs in the local evening. Theories suggest that this radiation is an electron cyclotron resonance instability driven by an enhanced loss cone in the auroral acceleration region at altitudes of about 1 to 2 R sub E. Auroral hiss is a somewhat weaker whistler mode emission generated by low energy (100 eV to 10 keV) auroral electrons. The auroral hiss usually has a V shaped frequency time spectrum caused by a freqency dependent beaming of the whistler mode into a conical beam directed upward or downward along the magnetic field.
The plane wave spectrum representation of electromagnetic fields
Clemmow, P C
1966-01-01
The Plane Wave Spectrum Representation of Electromagnetic Fields presents the theory of the electromagnetic field with emphasis to the plane wave. This book explains how fundamental electromagnetic fields can be represented by the superstition of plane waves traveling in different directions. Organized into two parts encompassing eight chapters, this book starts with an overview of the methods whereby plane wave spectrum representation can be used in attacking different characteristic problems belonging to the theories of radiation, diffraction, and propagation. This book then discusses the co
Electromagnetic Scattering from Randomly Rough Surfaces with Hybrid FEM/BIE
LI Jie; GUO Li-Xin; HE Qiong; WEI Bing
2011-01-01
The hybrid finite element method (FEM) together with the boundary integral equation (BIE) is firstly applied to scattering from a conducting rough surface.The BIE is used as the truncation boundary condition for the special unbounled half space,whereas the FEM is used to solve the governing equation in the region surrounded by a rough surface and artificial boundary.Tapered wave incidence is employed to cancel the so-called “edge effect”.A hybrid FEM/BIE form ulation for generalized one-dimensional conducting rough surface scattering is presented,as well as examples that evaluate its validity compared to the method of moments.The bistatic scattering coefficients of a Gaussian rough surface are calculated for transverse-magnetic wave incidence.Conclusions are reached after analyzing the scattering patterns of rough surfaces with different rms heights and correlation lengths Analysis of electromagnetic scattering from a rough surface[1-3] is a very important issue in various areas of electromagnetic wave theory.Methods used to study rough surface scattering can be categorized into two groups:(1) analytical and approximate methods[4,5] and (2) numerical methods.[6,7] including method of moment (MoM)[8-10] and the finite difference in time domain method (FDTD).%The hybrid finite element, method (FEM) together with the boundary integral equation (BIE) in firstly applied to scattering from a conducting rough surface. The BIE is used an the truncation boundary condition for the special unbounded half space, whereas the FEM is used to solve the governing equation in the region surrounded by a rough surface and artificial boundary. Tapered wave incidence is employed to cancel the so-called "edge effect". A hybrid FEM/BIE formulation for generalized one-dimensional conducting rough surface scattering is presented, as well as examples that evaluate its validity compared to the method of moments, The bistatic scattering coefficients of a Gaussian rough surface are
Setälä, Tero
2003-01-01
In this thesis, partial polarization and spatial correlation properties of electromagnetic optical fields are investigated. The emphasis is on near fields which exist only within the distance of the light wavelength from the emitting or scattering object. In the near-field region, the contribution of the evanescent (non-radiating) waves is overwhelming compared to the propagating waves that can be observed far from the source. Certain fundamental issues related to the optical near-fields ...
Ulku, Huseyin Arda
2015-02-01
An explicit marching on-in-time (MOT) based time domain electric field volume integral equation (TDVIE) solver for characterizing electromagnetic wave interactions on scatterers with nonlinear material properties is proposed. Discretization of the unknown electric field intensity and flux density is carried out by half and full Schaubert-Wilton-Glisson basis functions, respectively. Coupled system of spatially discretized TDVIE and the nonlinear constitutive relation between the field intensity and the flux density is integrated in time to compute the samples of the unknowns. An explicit PE(CE)m scheme is used for this purpose. Explicitness allows for \\'easy\\' incorporation of the nonlinearity as a function only to be evaluated on the right hand side of the coupled system of equations. A numerical example that demonstrates the applicability of the proposed MOT scheme to analyzing electromagnetic interactions on Kerr-nonlinear scatterers is presented. © 2015 IEEE.
张德悦; 马富明
2004-01-01
In this paper, we consider the electromagnetic scattering from periodic chiral structures. The structure is periodic in one direction and invariant in another direction. The electromagnetic fields in the chiral medium are governed by the Maxwell equations together with the Drude-Born-Fedorov equations. We simplify the problem to a two-dimensional scattering problem and we show that for all but possibly a discrete set of wave numbers, there is a unique quasi-periodic weak solution to the diffraction problem. The diffraction problem can be solved by finite element method. We also establish uniform error estimates for the finite element method and the error estimates when the truncation of the nonlocal transparent boundary operators takes place.
Ren Xin-Cheng; Guo Li-Xin
2008-01-01
Electromagnetic scattering from a rough surface of layered medium is investigated, and the formulae of the scattering coefficients for different polarizations are derived using the small perturbation method. A rough surface with exponential correlation function is presented for describing a rough soil surface of layered medium, the formula of its scattering coefficient is derived by considering the spectrum of the rough surface with exponential correlation function; the curves of the bistatic scattering coefficient of HH polarization with variation of the scattering angle are obtained by numerical calculation. The influence of the permittivity of layered medium, the mean layer thickness of intermediate medium, the roughness surface parameters and the frequency of the incident wave on the bistatic scattering coefficient is discussed. Numerical results show that the influence of the permittivity of layered medium, the mean layer thickness of intermediate medium, the rms and the correlation length of the rough surface, and the frequency of the incident wave on the bistatic scattering coefficient is very complex.
Wave scattering theory a series approach based on the Fourier transformation
Eom, Hyo J
2001-01-01
The book provides a unified technique of Fourier transform to solve the wave scattering, diffraction, penetration, and radiation problems where the technique of separation of variables is applicable. The book discusses wave scattering from waveguide discontinuities, various apertures, and coupling structures, often encountered in electromagnetic, electrostatic, magnetostatic, and acoustic problems. A system of simultaneous equations for the modal coefficients is formulated and the rapidly-convergent series solutions amenable to numerical computation are presented. The series solutions find practical applications in the design of microwave/acoustic transmission lines, waveguide filters, antennas, and electromagnetic interference/compatibilty-related problems.
Radiation and scattering of waves
Felsen, Leopold B
1994-01-01
This world-renowned classic by Professors Felsen and Marcuvitz continues to abound in timely and useful materialover 20 years after it was originally published. The book contains indispensable information that remains difficult to find anywhere else in the electromagnetics and acoustics literature, and it will be useful for many years to come. Of particular interest is Chapter 4, Asymptotic Evaluation of Integrals, which is appreciated and cited worldwide. It contains an in-depth description of asymptotic techniques and formulas useful to both engineers and physicists.
The equilibrium classical scatter spectrum of waves
Guruprasad, V
2016-01-01
Regardless of the unspecific notions of photons as light complexes, radiation bundles or wave packets, the radiation from a single state transition is at most a single continuous wave train that starts and ends with the transition. The radiation equilibrium spectrum must be the superposition sum of the spectra of such wave trains. A classical equipartition of wave trains cannot diverge since they would be finite in number, whereas standing wave modes are by definition infinite, which had doomed Rayleigh's theory, and concern only the total radiation. Wave trains are the microscopic entities of radiation interacting with matter, that correspond to molecules in kinetic theory. Their quantization came from matter transitions in Einstein's 1917 derivation of Planck's law. The spectral scatter of wave trains by Doppler shifts, which cause the wavelength displacements in Wien's law used for the frequency dependence in Einstein's derivation, is shown to yield the shape of the Planck spectrum. A Lorentz transform pro...
Electromagnetic corrections for the analysis of low energy pi sup - p scattering data
Gashi, A; Oades, G C; Rasche, G; Woolcock, W S
2001-01-01
We calculate the electromagnetic corrections to the isospin invariant mixing angle and to the two eigenphases for the s-, p sub 1 sub / sub 2 - and p sub 3 sub / sub 2 -partial waves for pi sup - p elastic and charge exchange scattering. These corrections have to be applied to the nuclear quantities in order to obtain the two hadronic phase shifts for each partial wave. The calculation uses relativised Schroedinger equations containing the sum of an electromagnetic potential and an effective hadronic potential. The mass differences between pi sup - and pi sup 0 and between p and n are taken into account. We compare our results with those of previous calculations and estimate the uncertainties in the corrections.
Expansion of Arbitrary Electromagnetic Fields in Terms of Vector Spherical Wave Functions
Moreira, W L; Garbos, M K; Euser, T G; Russell, P St J; Cesar, C L
2010-01-01
Since 1908, when Mie reported analytical expressions for the fields scattered by a spherical particle upon incidence of an electromagnetic plane-wave, generalizing his analysis to the case of an arbitrary incident wave has proved elusive. This is due to the presence of certain radially-dependent terms in the equation for the beam-shape coefficients of the expansion of the electromagnetic fields in terms of vector spherical wave functions. Here we show for the first time how these terms can be canceled out, allowing analytical expressions for the beam shape coefficients to be found for a completely arbitrary incident field. We give several examples of how this new method, which is well suited to numerical calculation, can be used. Analytical expressions are found for Bessel beams and the modes of rectangular and cylindrical metallic waveguides. The results are highly relevant for speeding up calculation of the radiation forces acting on small spherical particles placed in an arbitrary electromagnetic field, fo...
Tunneling properties of electromagnetic wave in slab superconducting material
Khem B. Thapa; Sanjay Srivastava; Alka Vishwakarma; S. P. Ojha
2011-01-01
When the electromagnetic wave propagates through a slab superconducting material in microwave ranges, tunneling properties of the electromagnetic wave at critical temperature are investigated theoretically. The transmittance and the reflectance of the slab superconducting material vary with the thickness of material as well as the refractive index of substrates.The high transmittance is found for thin superconductor at low wavelength region.However, optical properties are strongly dependent upon temperature and incidence wavelength. The electromagnetic wave is totally transmitted without loss for incidence wavelength (λ = 5000 nm) due to the zero refractive index and infinite penetration depth of the superconductor at the critical temperature.
Analytic descriptions of cylindrical electromagnetic waves in a nonlinear medium.
Xiong, Hao; Si, Liu-Gang; Yang, Xiaoxue; Wu, Ying
2015-06-15
A simple but highly efficient approach for dealing with the problem of cylindrical electromagnetic waves propagation in a nonlinear medium is proposed based on an exact solution proposed recently. We derive an analytical explicit formula, which exhibiting rich interesting nonlinear effects, to describe the propagation of any amount of cylindrical electromagnetic waves in a nonlinear medium. The results obtained by using the present method are accurately concordant with the results of using traditional coupled-wave equations. As an example of application, we discuss how a third wave affects the sum- and difference-frequency generation of two waves propagation in the nonlinear medium.
Analytic descriptions of cylindrical electromagnetic waves in a nonlinear medium
Xiong, Hao; Si, Liu-Gang; Yang, Xiaoxue; Wu, Ying
2015-01-01
A simple but highly efficient approach for dealing with the problem of cylindrical electromagnetic waves propagation in a nonlinear medium is proposed based on an exact solution proposed recently. We derive an analytical explicit formula, which exhibiting rich interesting nonlinear effects, to describe the propagation of any amount of cylindrical electromagnetic waves in a nonlinear medium. The results obtained by using the present method are accurately concordant with the results of using traditional coupled-wave equations. As an example of application, we discuss how a third wave affects the sum- and difference-frequency generation of two waves propagation in the nonlinear medium. PMID:26073066
Cross-polarization scattering from low-frequency waves in a tandem mirror plasma
Kogi, Yuichiro; Mase, Atsushi; Bruskin, L.G.; Oyama, Naoyuki; Tokuzawa, Tokihiko; Itakura, Akiyosi; Hojo, Hitoshi; Tamano, Teruo [Tsukuba Univ., Ibaraki (Japan). Plasma Research Center
1997-05-01
Cross-polarization scattering (CPS) diagnostic was applied to the central-cell plasma of the GAMMA 10 tandem mirror in order to study electromagnetic plasma waves with frequencies of less than 200 kHz. In the CPS process, an incident ordinary (extraordinary) wave is converted to an extraordinary (ordinary) wave by magnetic fluctuations in a plasma. The converted wave propagates through the cutoff layer and reaches the opposite diagnostic port. The experimental data suggest that the power spectral density of the CPS signal satisfies the Bragg condition, while the reflectometer detects the waves near the cutoff layer where the wave number cannot be resolved. (author)
Electromagnetic Model Reliably Predicts Radar Scattering Characteristics of Airborne Organisms
Mirkovic, Djordje; Stepanian, Phillip M.; Kelly, Jeffrey F.; Chilson, Phillip B.
2016-10-01
The radar scattering characteristics of aerial animals are typically obtained from controlled laboratory measurements of a freshly harvested specimen. These measurements are tedious to perform, difficult to replicate, and typically yield only a small subset of the full azimuthal, elevational, and polarimetric radio scattering data. As an alternative, biological applications of radar often assume that the radar cross sections of flying animals are isotropic, since sophisticated computer models are required to estimate the 3D scattering properties of objects having complex shapes. Using the method of moments implemented in the WIPL-D software package, we show for the first time that such electromagnetic modeling techniques (typically applied to man-made objects) can accurately predict organismal radio scattering characteristics from an anatomical model: here the Brazilian free-tailed bat (Tadarida brasiliensis). The simulated scattering properties of the bat agree with controlled measurements and radar observations made during a field study of bats in flight. This numerical technique can produce the full angular set of quantitative polarimetric scattering characteristics, while eliminating many practical difficulties associated with physical measurements. Such a modeling framework can be applied for bird, bat, and insect species, and will help drive a shift in radar biology from a largely qualitative and phenomenological science toward quantitative estimation of animal densities and taxonomic identification.
Polarization and spatial coherence of electromagnetic waves in uncorrelated disordered media
Vynck, Kevin; Carminati, Rémi
2014-01-01
Spatial field correlation functions represent a key quantity for the description of mesoscopic phenomena in disordered media and the optical characterization of complex materials. Yet many aspects related to the vector nature of light waves have not been investigated so far. We study theoretically the polarization and coherence properties of electromagnetic waves produced by a dipole source in a three-dimensional uncorrelated disordered medium. The spatial field correlation matrix is calculated analytically using a multiple scattering theory for polarized light. This allows us to provide a formal description of the light depolarization process in terms of "polarization eigenchannels" and to derive analytical formulas for the spatial coherence of multiply-scattered light.
Electromagnetic radiation accompanying gravitational waves from black hole binaries
Dolgov, A.; Postnov, K.
2017-09-01
The transition of powerful gravitational waves, created by the coalescence of massive black hole binaries, into electromagnetic radiation in external magnetic fields is considered. In contrast to the previous calculations of the similar effect we study the realistic case of the gravitational radiation frequency below the plasma frequency of the surrounding medium. The gravitational waves propagating in the plasma constantly create electromagnetic radiation dragging it with them, despite the low frequency. The plasma heating by the unattenuated electromagnetic wave may be significant in hot rarefied plasma with strong magnetic field and can lead to a noticeable burst of electromagnetic radiation with higher frequency. The graviton-to-photon conversion effect in plasma is discussed in the context of possible electromagnetic counterparts of GW150914 and GW170104.
Propagation of Electromagnetic Wave in Coaxial Conical Transverse Electromagnetic Wave Cell
LIU Xingxun; ZHANG Tao; QI Wangquan
2015-01-01
In order to solve the problem of broadband field probes calibration with only selected discrete frequencies above 1 GHz, a sweep-frequency calibration technology based on a coaxial conical(co-conical) cell is researched. Existing research is only qualitative because of the complexity of theoretical calculations. For designing a high performance cell, a mathematic model of high-order modes transmission is built according to the geometrical construction of co-conical. The associated Legendre control functions of high-order modes are calculated by using recursion methodology and the numerical calculation roots are presented with different half angles of inner and outer conductor. Relationship between roots and high-order modes transmission is analyzed, when the half angles of inner conductor and outer conductor areθ1=1.5136° andθ2=8° respectively, the co-conical cell has better performance for fewer transmitting high-order modes. The propagation process of the first three transmitting modes wave is simulated in CST-MWS software from the same structured co-conical. The simulation plots show that transmission of high-order modes appears with electromagnetic wave reflection, then different high-order mode transmission has different cut-off region and each cut-off region is determined by its cut-off wavelength. This paper presents numerical calculation data and theoretical analysis to design key structural parameters for the co-conical transverse electromagnetic wave cell(co-conical TEM cell).
Propagation of electromagnetic wave in coaxial conical transverse electromagnetic wave cell
Liu, Xingxun; Zhang, Tao; Qi, Wangquan
2015-11-01
In order to solve the problem of broadband field probes calibration with only selected discrete frequencies above 1 GHz, a sweep-frequency calibration technology based on a coaxial conical(co-conical) cell is researched. Existing research is only qualitative because of the complexity of theoretical calculations. For designing a high performance cell, a mathematic model of high-order modes transmission is built according to the geometrical construction of co-conical. The associated Legendre control functions of high-order modes are calculated by using recursion methodology and the numerical calculation roots are presented with different half angles of inner and outer conductor. Relationship between roots and high-order modes transmission is analyzed, when the half angles of inner conductor and outer conductor are θ 1=1.5136° and θ 2=8° respectively, the co-conical cell has better performance for fewer transmitting high-order modes. The propagation process of the first three transmitting modes wave is simulated in CST-MWS software from the same structured co-conical. The simulation plots show that transmission of high-order modes appears with electromagnetic wave reflection, then different high-order mode transmission has different cut-off region and each cut-off region is determined by its cut-off wavelength. This paper presents numerical calculation data and theoretical analysis to design key structural parameters for the co-conical transverse electromagnetic wave cell(co-conical TEM cell).
Macke, Andreas; Mishchenko, Michael I.
2016-07-01
The 15th Electromagnetic and Light Scattering Conference (ELS-XV) was held in Leipzig, Germany from 21 to 26 of June 2015 (Fig. 1). This conference built on the great success of the previous meetings held in Amsterdam (1995) [1], Helsinki (1997) [2], New York City (1998) [3], Vigo (1999), Halifax (2000) [4], Gainesville (2002) [5], Bremen (2003) [6], Salobreña (2005) [7], St. Petersburg (2006) [8], Bodrum (2007) [9], Hatfield (2008) [10], Helsinki (2010) [11], Taormina (2011) [12], and Lille [13] as well as the workshops held in Bremen (1996, 1998) and Moscow (1997). As usual, the main objective of this conference was to bring together scientists, engineers, and PhD students studying various aspects of electromagnetic scattering and to provide a relaxed atmosphere for in-depth discussion of theory, measurements, and applications. Furthermore, ELS-XV supported the United Nations "Year of Light" and celebrated the 150th anniversary of Maxwell's electromagnetics. Maxwell's paper on "A Dynamical Theory of the Electromagnetic Field" [14] was published in 1865 and has widely been acknowledged as one of the supreme achievements in the history of science.
Electromagnetic aquametry electromagnetic wave interaction with water and moist substances
Kupfer, Klaus
2006-01-01
This book covers all aspects of Electromagnetic Aquametry. It summarizes the wide area of metrology and its applications in electromagnetic sensing of moist materials. The physical properties of water in various degrees of binding interacting with electromagnetic fields is presented by model systems. The book describes measurement methods and sensors in the frequency domain, TDR-techniques for environmental problems, methods and sensors for quality assessment of biological substances, and nuclear magnetic resonance techniques. Environmental sciences, as well as civil and geoengineering, fossil fuels, food and pharmaceutical science are the main fields of application. A very wide frequency sprectrum is used for dielectric measurement methods, but the microwave range is clearly dominant. Multiparameter methods as well as methods of principal components and artificial neural networks for density independent measurements are described.
Rayleigh scattering of a spherical sound wave.
Godin, Oleg A
2013-02-01
Acoustic Green's functions for a homogeneous medium with an embedded spherical obstacle arise in analyses of scattering by objects on or near an interface, radiation by finite sources, sound attenuation in and scattering from clouds of suspended particles, etc. An exact solution of the problem of diffraction of a monochromatic spherical sound wave on a sphere is given by an infinite series involving products of Bessel functions and Legendre polynomials. In this paper, a simple, closed-form solution is obtained for scattering by a sphere with a radius that is small compared to the wavelength. Soft, hard, impedance, and fluid obstacles are considered. The solution is valid for arbitrary positions of the source and receiver relative to the scatterer. Low-frequency scattering is shown to be rather sensitive to boundary conditions on the surface of the obstacle. Low-frequency asymptotics of the scattered acoustic field are extended to transient incident waves. The asymptotic expansions admit an intuitive interpretation in terms of image sources and reduce to classical results in appropriate limiting cases.
Electromagnetic drift waves dispersion for arbitrarily collisional plasmas
Lee, Wonjae, E-mail: wol023@ucsd.edu; Krasheninnikov, Sergei I., E-mail: skrash@mae.ucsd.edu [Department of Mechanical and Aerospace Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093 (United States); Angus, J. R. [Naval Research Laboratory, 4555 Overlook Avenue, Washington, DC 20375 (United States)
2015-07-15
The impacts of the electromagnetic effects on resistive and collisionless drift waves are studied. A local linear analysis on an electromagnetic drift-kinetic equation with Bhatnagar-Gross-Krook-like collision operator demonstrates that the model is valid for describing linear growth rates of drift wave instabilities in a wide range of plasma parameters showing convergence to reference models for limiting cases. The wave-particle interactions drive collisionless drift-Alfvén wave instability in low collisionality and high beta plasma regime. The Landau resonance effects not only excite collisionless drift wave modes but also suppress high frequency electron inertia modes observed from an electromagnetic fluid model in collisionless and low beta regime. Considering ion temperature effects, it is found that the impact of finite Larmor radius effects significantly reduces the growth rate of the drift-Alfvén wave instability with synergistic effects of high beta stabilization and Landau resonance.
Electromagnetic waves in a magnetized plasma near the critical surface
Timofeev, Aleksandr V [Russian Research Centre ' Kurchatov Institute' , Moscow (Russian Federation)
2004-06-30
Electromagnetic waves in a plasma in a magnetic field give rise to enhanced refraction, produce a change in polarization, and cause electromagnetic energy to flow from one wave mode to another when propagating near the critical surface (CS), the one where the electron Langmuir frequency is equal to the wave frequency. A simple unified model of all phenomena taking place near the CS is proposed. These phenomena are due to electromagnetic waves linearly interacting with electron Langmuir oscillations which are localized at the CS in a cold plasma. This interaction manifests itself most strikingly in electron Langmuir oscillation energy escaping directly into a vacuum in the form of electromagnetic radiation. (reviews of topical problems)
Electromagnetic wave propagation in alternating material-metamaterial layered structures
Carrera-Escobedo, V H
2016-01-01
Using the transfer matrix method, we examine the parametric behavior of the transmittance of an electromagnetic plane wave propagating in the lossless regime through a periodic multilayered system as a function of the frequency and angle of incidence of the electromagnetic wave for the case in which the periodic structure comprises alternating material-metamaterial layers. A specific example of high transmittance at any angle of incidence in the visible region of the spectrum is identified
The triggering of electromagnetic observations by gravitational wave events
Sylvestre, Julien
2003-01-01
The prospects for the observation of electromagnetic emissions by gravitational wave sources first detected using a network of interferometers are discussed. Various emission mechanisms and detection techniques for compact binary inspirals are studied to show that the pointing ability of gravitational wave observatories and the efficacy of electromagnetic detectors can be combined to predict that counterpart detections are improbable for the Initial interferometers, possible with Advanced LIG...
Cloaking through cancellation of diffusive wave scattering
Farhat, Mohamed
2016-08-10
A new cloaking mechanism, which makes enclosed objects invisible to diffusive photon density waves, is proposed. First, diffusive scattering from a basic core-shell geometry, which represents the cloaked structure, is studied. The conditions of scattering cancellation in a quasi-static scattering regime are derived. These allow for tailoring the diffusivity constant of the shell enclosing the object so that the fields scattered from the shell and the object cancel each other. This means that the photon flow outside the cloak behaves as if the cloaked object were not present. Diffusive light invisibility may have potential applications in hiding hot spots in infrared thermography or tissue imaging. © 2016 The Author(s) Published by the Royal Society. All rights reserved.
Monte Carlo solution of the volume-integral equation of electromagnetic scattering
Peltoniemi, J.; Muinonen, K.
2014-07-01
Electromagnetic scattering is often the main physical process to be understood when interpreting the observations of asteroids, comets, and meteors. Modeling the scattering faces still many problems, and one needs to assess several different cases: multiple scattering and shadowing by the rough surface, multiple scattering inside a surface element, and single scattering by a small object. Our specific goal is to extend the electromagnetic techniques to larger and more complicated objects, and derive approximations taking into account the most important effects of waves. Here we experiment with Monte Carlo techniques: can they provide something new to solving the scattering problems? The electromagnetic wave equation in the presence of a scatterer of volume V and refractive index m, with an incident wave EE_0, including boundary conditions and the scattering condition at infinity, can be presented in the form of an integral equation EE(rr)(1+suski(rr) Q(ρ))-int_{V-V_ρ}ddrr' GG(rr-rr')suski(rr')EE(rr') =EE_0, where suski(rr)=m(rr)^2-1, Q(ρ)=-1/3+{cal O}(ρ^2)+{O'}(m^2ρ^2), {O}, and {O'} are some second- and higher-order corrections for the finite-size volume V_ρ of radius ρ around the singularity and GG is the dyadic Green's function of the form GG(RR)={exp(im kR)}/{4π R}[unittensor(1+{im}/{R}-{1}/{R^2})-RRRR(1+{3im}/{R}-{3}/{R^2})]. In general, this is solved by extending the internal field in terms of some simple basis functions, e.g., plane or spherical waves or a cubic grid, approximating the integrals in a clever way, and determining the goodness of the solution somehow, e.g., moments or least square. Whatever the choice, the solution usually converges nicely towards a correct enough solution when the scatterer is small and simple, and diverges when the scatterer becomes too complicated. With certain methods, one can reach larger scatterers faster, but the memory and CPU needs can be huge. Until today, all successful solutions are based on more or less
Design of Metamaterials for control of electromagnetic waves
Koschny, Thomas
2014-03-01
Metamaterials are artificial effective media supporting propagating waves that derive their properties form the average response of deliberately designed and arranged, usually resonant scatterers with structural length-scales much smaller than the wavelength inside the material. Electromagnetic metamaterials are the most important implementation of metamaterials, which are made from deeply sub-wavelength electric, magnetic and chiral resonators and can be designed to work from radio frequencies all the way to visible light. Metamaterials have been major new development in physics and materials science over the last decade and are still attracting more interest as they enable us to create materials with unique properties like negative refraction, flat and super lenses, impedance matching eliminating reflection, perfect absorbers, deeply sub-wavelength sized wave guides and cavities, tunability, enhanced non-linearity and gain, chirality and huge optical activity, control of Casimir forces, and spontaneous emission, etc. In this talk, I will discuss the design, numerical simulation, and mathematical modeling of metamaterials. I will survey the current state of the art and discuss challenges, possible solutions and perspectives. In particular, the problem of dissipative loss and their possible compensation by incorporating spatially distributed gain in metamaterials. If the gain sub-system is strongly coupled to the sub-wavelength resonators of the metamaterial loss compensation and undamping of the resonant response of the metamaterials can occur. I will explore new, alternative dielectric low loss resonators for metamaterials as well as the potential of new conducting materials such as Graphene to replace metals as the conducting material in resonant metamaterials. Two dimensional metamaterials or metasurfaces, implementations of effective electromagnetic current sheets in which both electric and magnetic sheet conductivities are controlled by the average response
Mittra, R.; Ko, W. L.; Rahmat-Samii, Y.
1979-01-01
This paper presents a brief review of some recent developments on the use of the spectral-domain approach for deriving high-frequency solutions to electromagnetics scattering and radiation problems. The spectral approach is not only useful for interpreting the well-known Keller formulas based on the geometrical theory of diffraction (GTD), it can also be employed for verifying the accuracy of GTD and other asymptotic solutions and systematically improving the results when such improvements are needed. The problem of plane wave diffraction by a finite screen or a strip is presented as an example of the application of the spectral-domain approach.
Bounce resonance scattering of radiation belt electrons by H+ band EMIC waves
Cao, Xing; Ni, Binbin; Summers, Danny; Bortnik, Jacob; Tao, Xin; Shprits, Yuri Y.; Lou, Yuequn; Gu, Xudong; Fu, Song; Shi, Run; Xiang, Zheng; Wang, Qi
2017-02-01
We perform a detailed analysis of bounce-resonant pitch angle scattering of radiation belt electrons due to electromagnetic ion cyclotron (EMIC) waves. It is found that EMIC waves can resonate with near-equatorially mirroring electrons over a wide range of L shells and energies. H+ band EMIC waves efficiently scatter radiation belt electrons of energy >100 keV from near 90° pitch angles to lower pitch angles where the cyclotron resonance mechanism can take over to further diffuse electrons into the loss cone. Bounce-resonant electron pitch angle scattering rates show a strong dependence on L shell, wave normal angle distribution, and wave spectral properties. We find distinct quantitative differences between EMIC wave-induced bounce-resonant and cyclotron-resonant diffusion coefficients. Cyclotron-resonant electron scattering by EMIC waves has been well studied and found to be a potentially crucial electron scattering mechanism. The new investigation here demonstrates that bounce-resonant electron scattering may also be very important. We conclude that bounce resonance scattering by EMIC waves should be incorporated into future modeling efforts of radiation belt electron dynamics.
Application of electromagnetic waves in damage detection of concrete structures
Feng, Maria Q.; De Flaviis, Franco; Kim, Yoo J.; Diaz, Rodolfo E.
2000-04-01
Jacketing technology using fiber reinforced polymer (FRP) composites is being applied for seismic retrofit of reinforced concrete (RC) columns designed and constructed under older specifications. In this study, the authors develop an electromagnetic (EM) imaging technology for detecting voids and debonding between the jacket and the column, which may significantly weaken the structural performance of the column otherwise attainable by jacketing. This technology is based on the reflection analysis of a continuous EM wave sent toward and reflected from layered FRP-adhesive-concrete medium: Poor bonding conditions including voids and debonding will generate air gaps which produce additional reflections of the EM wave. In this study, dielectric properties of various materials involved in the FRP-jacketed RC column were first measured. Second, the measured properties were used for a computer simulation of the proposed EM imaging technology. The simulation demonstrated the difficulty in detecting imperfect bonding conditions by using plane waves, as the scattering contribution from the voids and debonding is very small compared to that from the jacketed column. Third, in order to alleviate this difficulty, a special dielectric lens was designed and fabricated to focus the EM wave on the bonding interface. Furthermore, the time gating technique is used in order to reduce the noise resulting from various uncertainties associated with the jacketed columns. Finally, three concrete columns were constructed and wrapped with glass-FRP jackets with various voids and debonding condition artificially introduced in the bonding interface. Using the proposed EM imaging technology with the lens especially designed and installed, these voids and debonding condition were successfully detected.
Nonlinear ion acoustic waves scattered by vortexes
Ohno, Yuji; Yoshida, Zensho
2016-09-01
The Kadomtsev-Petviashvili (KP) hierarchy is the archetype of infinite-dimensional integrable systems, which describes nonlinear ion acoustic waves in two-dimensional space. This remarkably ordered system resides on a singular submanifold (leaf) embedded in a larger phase space of more general ion acoustic waves (low-frequency electrostatic perturbations). The KP hierarchy is characterized not only by small amplitudes but also by irrotational (zero-vorticity) velocity fields. In fact, the KP equation is derived by eliminating vorticity at every order of the reductive perturbation. Here, we modify the scaling of the velocity field so as to introduce a vortex term. The newly derived system of equations consists of a generalized three-dimensional KP equation and a two-dimensional vortex equation. The former describes 'scattering' of vortex-free waves by ambient vortexes that are determined by the latter. We say that the vortexes are 'ambient' because they do not receive reciprocal reactions from the waves (i.e., the vortex equation is independent of the wave fields). This model describes a minimal departure from the integrable KP system. By the Painlevé test, we delineate how the vorticity term violates integrability, bringing about an essential three-dimensionality to the solutions. By numerical simulation, we show how the solitons are scattered by vortexes and become chaotic.
Inverse obstacle scattering for elastic waves
Li, Peijun; Wang, Yuliang; Wang, Zewen; Zhao, Yue
2016-11-01
Consider the scattering of a time-harmonic plane wave by a rigid obstacle which is embedded in an open space filled with a homogeneous and isotropic elastic medium. An exact transparent boundary condition is introduced to reduce the scattering problem into a boundary value problem in a bounded domain. Given the incident field, the direct problem is to determine the displacement of the wave field from the known obstacle; the inverse problem is to determine the obstacle’s surface from the measurement of the displacement on an artificial boundary enclosing the obstacle. In this paper, we consider both the direct and inverse problems. The direct problem is shown to have a unique weak solution by examining its variational formulation. The domain derivative is derived for the displacement with respect to the variation of the surface. A continuation method with respect to the frequency is developed for the inverse problem. Numerical experiments are presented to demonstrate the effectiveness of the proposed method.
Determining polarizability tensors for an arbitrary small electromagnetic scatterer
Asadchy, Viktar S; Ra'di, Younes; Tretyakov, Sergei A
2014-01-01
In this paper, we present a method to retrieve tensor polarizabilities of general bi-anisotropic particles from their far-field responses to plane-wave illuminations. The necessary number of probing excitations and the directions where the scattered fields need to be calculated or measured have been found. When implemented numerically, the method does not require any spherical harmonic expansion nor direct calculation of dipole moments, but only calculations of co- and cross-polarized scattering cross sections for a number of plane-wave excitations. With this simple approach, the polarizabilities can be found also from experimentally measured cross sections. The method is exemplified considering two bi-anisotropic particles, a reciprocal omega particle and a non-reciprocal particle containing a ferrite inclusion coupled to metal strips.
Scattered surface wave energy in the seismic coda
Zeng, Y.
2006-01-01
One of the many important contributions that Aki has made to seismology pertains to the origin of coda waves (Aki, 1969; Aki and Chouet, 1975). In this paper, I revisit Aki's original idea of the role of scattered surface waves in the seismic coda. Based on the radiative transfer theory, I developed a new set of scattered wave energy equations by including scattered surface waves and body wave to surface wave scattering conversions. The work is an extended study of Zeng et al. (1991), Zeng (1993) and Sato (1994a) on multiple isotropic-scattering, and may shed new insight into the seismic coda wave interpretation. The scattering equations are solved numerically by first discretizing the model at regular grids and then solving the linear integral equations iteratively. The results show that scattered wave energy can be well approximated by body-wave to body wave scattering at earlier arrival times and short distances. At long distances from the source, scattered surface waves dominate scattered body waves at surface stations. Since surface waves are 2-D propagating waves, their scattered energies should in theory follow a common decay curve. The observed common decay trends on seismic coda of local earthquake recordings particular at long lapse times suggest that perhaps later seismic codas are dominated by scattered surface waves. When efficient body wave to surface wave conversion mechanisms are present in the shallow crustal layers, such as soft sediment layers, the scattered surface waves dominate the seismic coda at even early arrival times for shallow sources and at later arrival times for deeper events.
An Apparatus for Constructing an Electromagnetic Plane Wave Model
Kneubil, Fabiana Botelho; Loures, Marcus Vinicius Russo; Amado, William
2015-01-01
In this paper we report on an activity aimed at building an electromagnetic wave. This was part of a class on the concept of mass offered to a group of 20 pre-service Brazilian physics teachers. The activity consisted of building a plane wave using an apparatus in which it is possible to fit some rods representing electric and magnetic fields into…
Transmission of electromagnetic waves through sub-wavelength channels
Zhang, Jingjing; Luo, Yu; Mortensen, Asger
2010-01-01
We propose a method of tunneling electromagnetic (EM) waves through a channel with sub-wavelength cross section. By filling the channel with high-ε isotropic material and implementing two matching layers with uniaxial metamterial substrates, the guided waves can go through the narrow channel...
An Apparatus for Constructing an Electromagnetic Plane Wave Model
Kneubil, Fabiana Botelho; Loures, Marcus Vinicius Russo; Amado, William
2015-01-01
In this paper we report on an activity aimed at building an electromagnetic wave. This was part of a class on the concept of mass offered to a group of 20 pre-service Brazilian physics teachers. The activity consisted of building a plane wave using an apparatus in which it is possible to fit some rods representing electric and magnetic fields into…
On new electromagnetic waves in a multicomponent insulator
Dubovik, V. M.
The dispersion equation for additional transverse electromagnetic waves in a multicomponent amorphous insulator is analyzed in the vicinity of a narrow absorption line. Such waves can be excited due to spatial dispersion associated with fluctuation of the polarizability of insulator molecules. The
Statistical Characterization of Electromagnetic Wave Propagation in Mine Environments
Yucel, Abdulkadir C.
2013-01-01
A computational framework for statistically characterizing electromagnetic (EM) wave propagation through mine tunnels and galleries is presented. The framework combines a multi-element probabilistic collocation method with a full-wave fast Fourier transform and fast multipole method accelerated surface integral equation-based EM simulator to statistically characterize fields from wireless transmitters in complex mine environments. 1536-1225 © 2013 IEEE.
Electron acceleration in the ionosphere by obliquely propagating electromagnetic waves
Burke, William J.; Ginet, Gregory P.; Heinemann, Michael A.; Villalon, Elena
The paper presents an analysis of the relativistic equations of motion for electrons in magnetized plasma and externally imposed electromagnetic fields that propagate at arbitrary angles to the background magnetic field. The relativistic Lorentz equation for a test electron moving under the influence of an electromagnetic wave in a cold magnetized plasma and wave propagation through the ionospheric 'radio window' are examined. It is found that at wave energy fluxes greater than 10 to the 8th mW/sq m, initially cold electrons can be accelerated to energies of several MeV in less than a millisecond. Plans to test the theoretical results with rocket flights are discussed.
Cosmological Electromagnetic Fields due to Gravitational Wave Perturbations
Marklund, M; Brodin, G; Marklund, Mattias; Dunsby, Peter K. S.; Brodin, Gert
2000-01-01
We consider the dynamics of electromagnetic fields in an almost-Friedmann-Robertson-Walker universe using the covariant and gauge-invariant approach of Ellis and Bruni. Focusing on the situation where deviations from the background model are generated by tensor perturbations only, we demonstrate that the coupling between gravitational waves and a weak magnetic test field can generate electromagnetic waves. We show that this coupling leads to an initial pulse of electromagnetic waves whose width and amplitude is determined by the wavelengths of the magnetic field and gravitational waves. A number of implications for cosmology are discussed, in particular we calculate an upper bound of the magnitude of this effect using limits on the quadrapole anisotropy of the Cosmic Microwave Background.
Macke, Andreas; Mishchenko, Michael I.
2015-01-01
The 15th Electromagnetic and Light Scattering Conference (ELS-XV) was held in Leipzig, Germany from 21 to 26 of June 2015. This conference built on the great success of the previous meetings held in Amsterdam (1995), Helsinki(1997) [2], New York City(1998) [3], Vigo (1999),Halifax (2000), Gainesville (2002), Bremen (2003), Salobreña (2005), St. Petersburg (2006), Bodrum (2007), Hatfield (2008), Helsinki (2010), Taormina (2011), and Lille as well as the workshops held in Bremen (1996,1998) and Moscow (1997). As usual, the main objective of this conference was to bring together scientists, engineers, and PhD students studying various aspects of electromagnetic scattering and to provide a relaxed atmosphere for in-depth discussion of theory, measurements, and applications. Furthermore, ELS-XV supported the United Nations "Year of Light" and celebrated the150th anniversary of Maxwell's electromagnetics. Maxwell's paper on "A Dynamical Theory of the Electromagnetic Field" was published in1865 and has widely been acknowledged as one of the supreme achievements in the history of science. The conference was attended by136 scientists from 22 countries. The scientific program included two plenary lectures, 16 invited reviews, 88 contributed oral talks, and 70 poster presentations. The program and the abstracts of conference presentations are available at the conference website http://www.els-xv-2015.net/home.html. Following the well-established ELS practice and with Elsevier's encouragement, we solicited full-size papers for a topical issue of the Journal of Quantitative Spectroscopy and Radiative Transfer (JQSRT). The result of this collective effort is now in the reader's hands. As always, every invited review and regular paper included in this topical issue has undergone the same rigorous peer review process as any other manuscript published in the JQSRT.
Relativistic electromagnetic waves in an electron-ion plasma
Chian, Abraham C.-L.; Kennel, Charles F.
1987-01-01
High power laser beams can drive plasma particles to relativistic energies. An accurate description of strong waves requires the inclusion of ion dynamics in the analysis. The equations governing the propagation of relativistic electromagnetic waves in a cold electron-ion plasma can be reduced to two equations expressing conservation of energy-momentum of the system. The two conservation constants are functions of the plasma stream velocity, the wave velocity, the wave amplitude, and the electron-ion mass ratio. The dynamic parameter, expressing electron-ion momentum conversation in the laboratory frame, can be regarded as an adjustable quantity, a suitable choice of which will yield self-consistent solutions when other plasma parameters were specified. Circularly polarized electromagnetic waves and electrostatic plasma waves are used as illustrations.
Electromagnetic scattering by a uniaxial anisotropic sphere located in an off-axis Bessel beam.
Qu, Tan; Wu, Zhen-Sen; Shang, Qing-Chao; Li, Zheng-Jun; Bai, Lu
2013-08-01
Electromagnetic scattering of a zero-order Bessel beam by an anisotropic spherical particle in the off-axis configuration is investigated. Based on the spherical vector wave functions, the expansion expression of the zero-order Bessel beam is derived, and its convergence is numerically discussed in detail. Utilizing the tangential continuity of the electromagnetic fields, the expressions of scattering coefficients are given. The effects of the conical angle of the wave vector components of the zero-order Bessel beam, the ratio of the radius of the sphere to the central spot radius of the zero-order Bessel beam, the shift of the beam waist center position along both the x and y axes, the permittivity and permeability tensor elements, and the loss of the sphere on the radar cross section (RCS) are numerically analyzed. It is revealed that the maximum RCS appears in the conical direction or neighboring direction when the sphere is illuminated by a zero-order Bessel beam. Furthermore, the RCS will decrease and the symmetry is broken with the shift of the beam waist center.
IBC/FEM Analysis of Electromagnetic Scatter of Cavities Coated with Layered Medium
HE Xiao-xiang; XU Jin-ping
2006-01-01
The Leontovich impedance boundary condition (IBC) is combined with the edge-based finite element method (FEM) in this paper to analyze the electromagnetic (EM) scattering of cavities coated with a multilayered dielectric.The IBC on the surface of the medium and the boundary integral equation on the aperture of the cavity are transformed into the third boundary condition,and then the functional of the boundary value problem is obtained.The surface impedance of the layered dielectric is calculated by the generalized reflection coefficient; hence,the multi-reflection of the EM wave in the dielectric is involved.As a result,the IBC is improved.Numerical results are presented,which demonstrate that the presented IBC/FEM approach is accurate and convenient for the analysis of EM scattering of open-ended cavities coated with the dielectric.
Electromagnetic scattering of a vector Bessel beam in the presence of an impedance cone
Salem, Mohamed
2013-07-01
The electromagnetic field scattering of a vector Bessel beam in the presence of an infinite circular cone with an impedance boundary on its surface is considered. The impinging field is normal to the tip of the cone and is expanded in terms of vector spherical wave functions; a Kontorovich-Lebedev (KL) transform is employed to expand the scattered fields. The problem is reduced to a singular integral equation with a variable coefficient of the non-convolution type. The singularities of the spectral function are deduced and representations for the field at the tip of the cone as well as other regions are given together with the conditions of validity of these representations. © 2013 IEEE.
Scattering of sound waves by a compressible vortex
Colonius, Tim; Lele, Sanjiva K.; Moin, Parviz
1991-01-01
Scattering of plane sound waves by a compressible vortex is investigated by direct computation of the two-dimensional Navier-Stokes equations. Nonreflecting boundary conditions are utilized, and their accuracy is established by comparing results on different sized domains. Scattered waves are directly measured from the computations. The resulting amplitude and directivity pattern of the scattered waves is discussed, and compared to various theoretical predictions. For compact vortices (zero circulation), the scattered waves directly computed are in good agreement with predictions based on an acoustic analogy. Strong scattering at about + or - 30 degrees from the direction of incident wave propagation is observed. Back scattering is an order of magnitude smaller than forward scattering. For vortices with finite circulation refraction of the sound by the mean flow field outside the vortex core is found to be important in determining the amplitude and directivity of the scattered wave field.
PROPAGATION OF ELECTROMAGNETIC WAVE IN THE THREE PHASES SOIL MEDIA
陈云敏; 边学成; 陈仁朋; 梁志刚
2003-01-01
The fundamental parameters such as dielectric permittivity and magnetic permeability are required to solve the propagation of electromagnetic wave (EM Wave) in the soil. Based on Maxwell equations, the equivalent model is proposed to calculate the dielectric permittivity of mixed soil. The results of calculation fit. the test data well and will provide solid foundation for the application of EM wave in the soil moisture testing, CT analyzing of soil and the inspecting of geoenvironment.
Metamaterial Absorber for Electromagnetic Waves in Periodic Water Droplets
Yoo, Young Joon; Ju, Sanghyun; Park, Sang Yoon; Ju Kim, Young; Bong, Jihye; Lim, Taekyung; Kim, Ki Won; Rhee, Joo Yull; Lee, Youngpak
2015-09-01
Perfect metamaterial absorber (PMA) can intercept electromagnetic wave harmful for body in Wi-Fi, cell phones and home appliances that we are daily using and provide stealth function that military fighter, tank and warship can avoid radar detection. We reported new concept of water droplet-based PMA absorbing perfectly electromagnetic wave with water, an eco-friendly material which is very plentiful on the earth. If arranging water droplets with particular height and diameter on material surface through the wettability of material surface, meta-properties absorbing electromagnetic wave perfectly in GHz wide-band were shown. It was possible to control absorption ratio and absorption wavelength band of electromagnetic wave according to the shape of water droplet-height and diameter- and apply to various flexible and/or transparent substrates such as plastic, glass and paper. In addition, this research examined how electromagnetic wave can be well absorbed in water droplets with low electrical conductivity unlike metal-based metamaterials inquiring highly electrical conductivity. Those results are judged to lead broad applications to variously civilian and military products in the future by providing perfect absorber of broadband in all products including transparent and bendable materials.
Metamaterial Absorber for Electromagnetic Waves in Periodic Water Droplets.
Yoo, Young Joon; Ju, Sanghyun; Park, Sang Yoon; Ju Kim, Young; Bong, Jihye; Lim, Taekyung; Kim, Ki Won; Rhee, Joo Yull; Lee, YoungPak
2015-09-10
Perfect metamaterial absorber (PMA) can intercept electromagnetic wave harmful for body in Wi-Fi, cell phones and home appliances that we are daily using and provide stealth function that military fighter, tank and warship can avoid radar detection. We reported new concept of water droplet-based PMA absorbing perfectly electromagnetic wave with water, an eco-friendly material which is very plentiful on the earth. If arranging water droplets with particular height and diameter on material surface through the wettability of material surface, meta-properties absorbing electromagnetic wave perfectly in GHz wide-band were shown. It was possible to control absorption ratio and absorption wavelength band of electromagnetic wave according to the shape of water droplet-height and diameter- and apply to various flexible and/or transparent substrates such as plastic, glass and paper. In addition, this research examined how electromagnetic wave can be well absorbed in water droplets with low electrical conductivity unlike metal-based metamaterials inquiring highly electrical conductivity. Those results are judged to lead broad applications to variously civilian and military products in the future by providing perfect absorber of broadband in all products including transparent and bendable materials.
Metamaterial Absorber for Electromagnetic Waves in Periodic Water Droplets
Yoo, Young Joon; Ju, Sanghyun; Park, Sang Yoon; Ju Kim, Young; Bong, Jihye; Lim, Taekyung; Kim, Ki Won; Rhee, Joo Yull; Lee, YoungPak
2015-01-01
Perfect metamaterial absorber (PMA) can intercept electromagnetic wave harmful for body in Wi-Fi, cell phones and home appliances that we are daily using and provide stealth function that military fighter, tank and warship can avoid radar detection. We reported new concept of water droplet-based PMA absorbing perfectly electromagnetic wave with water, an eco-friendly material which is very plentiful on the earth. If arranging water droplets with particular height and diameter on material surface through the wettability of material surface, meta-properties absorbing electromagnetic wave perfectly in GHz wide-band were shown. It was possible to control absorption ratio and absorption wavelength band of electromagnetic wave according to the shape of water droplet–height and diameter– and apply to various flexible and/or transparent substrates such as plastic, glass and paper. In addition, this research examined how electromagnetic wave can be well absorbed in water droplets with low electrical conductivity unlike metal-based metamaterials inquiring highly electrical conductivity. Those results are judged to lead broad applications to variously civilian and military products in the future by providing perfect absorber of broadband in all products including transparent and bendable materials. PMID:26354891
Artemyev, A. V., E-mail: ante0226@gmail.com [Space Research Institute, RAS, Moscow (Russian Federation); Mourenas, D.; Krasnoselskikh, V. V. [LPC2E/CNRS - University of Orleans, Orleans (France); Agapitov, O. V. [Space Sciences Laboratory, University of California, Berkeley, California 94720 (United States)
2015-06-15
In this paper, we study relativistic electron scattering by fast magnetosonic waves. We compare results of test particle simulations and the quasi-linear theory for different spectra of waves to investigate how a fine structure of the wave emission can influence electron resonant scattering. We show that for a realistically wide distribution of wave normal angles θ (i.e., when the dispersion δθ≥0.5{sup °}), relativistic electron scattering is similar for a wide wave spectrum and for a spectrum consisting in well-separated ion cyclotron harmonics. Comparisons of test particle simulations with quasi-linear theory show that for δθ>0.5{sup °}, the quasi-linear approximation describes resonant scattering correctly for a large enough plasma frequency. For a very narrow θ distribution (when δθ∼0.05{sup °}), however, the effect of a fine structure in the wave spectrum becomes important. In this case, quasi-linear theory clearly fails in describing accurately electron scattering by fast magnetosonic waves. We also study the effect of high wave amplitudes on relativistic electron scattering. For typical conditions in the earth's radiation belts, the quasi-linear approximation cannot accurately describe electron scattering for waves with averaged amplitudes >300 pT. We discuss various applications of the obtained results for modeling electron dynamics in the radiation belts and in the Earth's magnetotail.
ON SOURCE ANALYSIS BY WAVE SPLITTING WITH APPLICATIONS IN INVERSE SCATTERING OF MULTIPLE OBSTACLES
Fahmi ben Hassen; Jijun Liu; Roland Potthast
2007-01-01
We study wave splitting procedures for acoustic or electromagnetic scattering problems. The idea of these procedures is to split some scattered field into a sum of fields coming from different spatial regions such that this information can be used either for inversion algorithms or for active noise control. Splitting algorithms can be based on general boundary layer potential representation or Green's representation formula. We will prove the unique decomposition of scattered wave outside the specified reference domain G and the unique decomposition of far-field pattern with respect to different reference domain G. Further, we employ the splitting technique for field reconstruction for a scatterer with two or more separate components, by combining it with the point source method for wave recovery. Using the decomposition of scattered wave as well as its far-field pattern, the wave splitting procedure proposed in this paper gives an efficient way to the computation of scattered wave near the obstacle, from which the multiple obstacles which cause the far-field pattern can be reconstructed separately. This considerably extends the range of the decomposition methods in the area of inverse scattering. Finally, we will provide numerical examples to demonstrate the feasibility of the splitting method.
A class of invisible inhomogeneous media and the control of electromagnetic waves
Vial, B.; Liu, Y.; Horsley, S. A. R.; Philbin, T. G.; Hao, Y.
2016-12-01
We propose a general method to arbitrarily manipulate an electromagnetic wave propagating in a two-dimensional medium, without introducing any scattering. This leads to a whole class of isotropic spatially varying permittivity and permeability profiles that are invisible while shaping the field magnitude and/or phase. In addition, we propose a metamaterial structure working in the infrared that demonstrates deep subwavelength control of the electric field amplitude and strong reduction of the scattering. This work offers an alternative strategy to achieve invisibility with isotropic materials and paves the way for tailoring the propagation of light at the nanoscale.
Solving Potential Scattering Equations without Partial Wave Decomposition
Caia, George; Pascalutsa, Vladimir; Wright, Louis E
2004-03-01
Considering two-body integral equations we show how they can be dimensionally reduced by integrating exactly over the azimuthal angle of the intermediate momentum. Numerical solution of the resulting equation is feasible without employing a partial-wave expansion. We illustrate this procedure for the Bethe-Salpeter equation for pion-nucleon scattering and give explicit details for the one-nucleon-exchange term in the potential. Finally, we show how this method can be applied to pion photoproduction from the nucleon with {pi}N rescattering being treated so as to maintain unitarity to first order in the electromagnetic coupling. The procedure for removing the azimuthal angle dependence becomes increasingly complex as the spin of the particles involved increases.
Aharonov-Bohm phase for an electromagnetic wave background
Bright, Max [California State University Fresno, Department of Physics, Fresno, CA (United States); Singleton, Douglas [California State University Fresno, Department of Physics, Fresno, CA (United States); UNESP-Univ. Estadual Paulista, ICTP South American Institute for Fundamental Research, Sao Paulo, SP (Brazil); Yoshida, Atsushi [University of Virginia, Department of Physics, Charlottesville, VA (United States); Hue University College of Education, Hue (Viet Nam)
2015-09-15
The canonical Aharonov-Bohm effect is usually studied with time-independent potentials. In this work, we investigate the Aharonov-Bohm phase acquired by a charged particle moving in time-dependent potentials. In particular, we focus on the case of a charged particle moving in the time-varying field of a plane electromagnetic wave. We work out the Aharonov-Bohm phase using both the potential (i.e. circular integral A{sub μ} dx{sup μ}) and the field (i.e. (1)/(2) ∫ F{sub μν}dσ{sup μν}) forms of the Aharonov-Bohm phase. We give conditions in terms of the parameters of the system (frequency of the electromagnetic wave, the size of the space-time loop, amplitude of the electromagnetic wave) under which the time-varying Aharonov-Bohm effect could be observed. (orig.)
Scattering of wave packets with phases
Karlovets, Dmitry V.
2017-03-01
A general problem of 2 → N f scattering is addressed with all the states being wave packets with arbitrary phases. Depending on these phases, one deals with coherent states in (3 + 1) D, vortex particles with orbital angular momentum, the Airy beams, and their generalizations. A method is developed in which a number of events represents a functional of the Wigner functions of such states. Using width of a packet σ p /p> as a small parameter, the Wigner functions, the number of events, and a cross section are represented as power series in this parameter, the first non-vanishing corrections to their plane-wave expressions are derived, and generalizations for beams are made. Although in this regime the Wigner functions turn out to be everywhere positive, the cross section develops new specifically quantum features, inaccessible in the plane-wave approximation. Among them is dependence on an impact parameter between the beams, on phases of the incoming states, and on a phase of the scattering amplitude. A model-independent analysis of these effects is made. Two ways of measuring how a Coulomb phase and a hadronic one change with a transferred momentum t are discussed.
Norin, L; Leyser, T B; Nordblad, E; Thidé, B; McCarrick, M
2009-02-13
Experimental results of secondary electromagnetic radiation, stimulated by high-frequency radio waves irradiating the ionosphere, are reported. We have observed emission peaks, shifted in frequency up to a few tens of Hertz from radio waves transmitted at several megahertz. These emission peaks are by far the strongest spectral features of secondary radiation that have been reported. The emissions are attributed to stimulated Brillouin scattering, long predicted but hitherto never unambiguously identified in high-frequency ionospheric interaction experiments. The experiments were performed at the High-Frequency Active Auroral Research Program (HAARP), Alaska, USA.
A metasurface carpet cloak for electromagnetic, acoustic and water waves.
Yang, Yihao; Wang, Huaping; Yu, Faxin; Xu, Zhiwei; Chen, Hongsheng
2016-01-29
We propose a single low-profile skin metasurface carpet cloak to hide objects with arbitrary shape and size under three different waves, i.e., electromagnetic (EM) waves, acoustic waves and water waves. We first present a metasurface which can control the local reflection phase of these three waves. By taking advantage of this metasurface, we then design a metasurface carpet cloak which provides an additional phase to compensate the phase distortion introduced by a bump, thus restoring the reflection waves as if the incident waves impinge onto a flat mirror. The finite element simulation results demonstrate that an object can be hidden under these three kinds of waves with a single metasurface cloak.
Electromagnetic resonance waves. Resonancias de ondas electromagneticas
Villaba, J.M.; Manjon, F.J.; Guirao, A.; Andres, M.V.
1994-01-01
We describe in this paper a set of experiments designed to make qualitative and quantitative measurements on electromagnetic resonances of several simple systems. The experiments are designed for the undergraduate laboratory of Electricity and Magnetism in Physics. These experiments can help the students understanding the concept of resonance, which appears in different fields of Physics. (Author) 8 refs.
Cell therapy for spinal cord injury informed by electromagnetic waves.
Finnegan, Jack; Ye, Hui
2016-10-01
Spinal cord injury devastates the CNS, besetting patients with symptoms including but not limited to: paralysis, autonomic nervous dysfunction, pain disorders and depression. Despite the identification of several molecular and genetic factors, a reliable regenerative therapy has yet to be produced for this terminal disease. Perhaps the missing piece of this puzzle will be discovered within endogenous electrotactic cellular behaviors. Neurons and stem cells both show mediated responses (growth rate, migration, differentiation) to electromagnetic waves, including direct current electric fields. This review analyzes the pathophysiology of spinal cord injury, the rationale for regenerative cell therapy and the evidence for directing cell therapy via electromagnetic waves shown by in vitro experiments.
Hoffmann, T.; Strawinska, J. [Politechnika Poznanska, Poznan (Poland)
1993-12-31
The present considerations are devoted to the description of an electromagnetic field in deformable body within the framework of the conceptional extended electrodynamics. The formal tool used is the classical field theory based on methods of analytical mechanics. The deformation is described by applying the relativistic kinematics of a medium which makes it possible to obtain, as a particular case, three dimensional laws with simple physical interpretation. The dynamics of bodies interacting with an electromagnetic field has been expressed by Lagrange`s equation of motion with a view to obtaining linear field equations. In the domain of wave problems one-dimensional volume waves have been analysed. (author). 19 refs.
Transmission of Information by Longitudinal Electromagnetic Waves
Barashenkov, V S; Yuriev, M Z
2001-01-01
In Maxwell electrodynamics longitudinal wave irradiation is strongly forbidden by the so-called gauge invariance. However, these waves are present in virtual quantum processes and they can be used to transfer information at macroscopic distances by the displacement of the interference picture due to the change of the phase of electron wave function. The transmission can be carried out so that it will be hidden for usual observation.
Scattering and Diffraction of Electromagnetic Radiation: An Effective Probe to Material Structure
Xu, Yu-Lin
2016-01-01
Scattered electromagnetic waves from material bodies of different forms contain, in an intricate way, precise information on the intrinsic, geometrical and physical properties of the objects. Scattering theories, ever deepening, aim to provide dependable interpretation and prediction to the complicated interaction of electromagnetic radiation with matter. There are well-established multiple-scattering formulations based on classical electromagnetic theories. An example is the Generalized Multi-particle Mie-solution (GMM), which has recently been extended to a special version ? the GMM-PA approach, applicable to finite periodic arrays consisting of a huge number (e.g., >>106) of identical scattering centers [1]. The framework of the GMM-PA is nearly complete. When the size of the constituent unit scatterers becomes considerably small in comparison with incident wavelength, an appropriate array of such small element volumes may well be a satisfactory representation of a material entity having an arbitrary structure. X-ray diffraction is a powerful characterization tool used in a variety of scientific and technical fields, including material science. A diffraction pattern is nothing more than the spatial distribution of scattered intensity, determined by the distribution of scattering matter by way of its Fourier transform [1]. Since all linear dimensions entered into Maxwell's equations are normalized by wavelength, an analogy exists between optical and X-ray diffraction patterns. A large set of optical diffraction patterns experimentally obtained can be found in the literature [e.g., 2,3]. Theoretical results from the GMM-PA have been scrutinized using a large collection of publically accessible, experimentally obtained Fraunhofer diffraction patterns. As far as characteristic structures of the patterns are concerned, theoretical and experimental results are in uniform agreement; no exception has been found so far. Closely connected with the spatial distribution of
Kalaee, Mohammad Javad; Katoh, Yuto
2016-07-01
One of the mechanisms for generating electromagnetic plasma waves (Z-mode and LO-mode) is mode conversion from electrostatic waves into electromagnetic waves in inhomogeneous plasma. Herein, we study a condition required for mode conversion of electrostatic waves propagating purely perpendicular to the ambient magnetic field, by numerically solving the full dispersion relation. An approximate model is derived describing the coupling between electrostatic waves (hot plasma Bernstein mode) and Z-mode waves at the upper hybrid frequency. The model is used to study conditions required for mode conversion from electrostatic waves (electrostatic electron cyclotron harmonic waves, including Bernstein mode) into electromagnetic plasma waves (LO-mode). It is shown that for mode conversion to occur in inhomogeneous plasma, the angle between the boundary surface and the magnetic field vector should be within a specific range. The range of the angle depends on the norm of the k vector of waves at the site of mode conversion in the inhomogeneous region. The present study reveals that inhomogeneity alone is not a sufficient condition for mode conversion from electrostatic waves to electromagnetic plasma waves and that the angle between the magnetic field and the density gradient plays an important role in the conversion process.
Nonlinear ion acoustic waves scattered by vortexes
Ohno, Yuji
2015-01-01
The Kadomtsev--Petviashvili (KP) hierarchy is the archetype of infinite-dimensional integrable systems, which describes nonlinear ion acoustic waves in two-dimensional space. This remarkably ordered system resides on a singular submanifold (leaf) embedded in a larger phase space of more general ion acoustic waves (low-frequency electrostatic perturbations). The KP hierarchy is characterized not only by small amplitudes but also by irrotational (zero-vorticity) velocity fields. In fact, the KP equation is derived by eliminating vorticity at every order of the reductive perturbation. Here we modify the scaling of the velocity field so as to introduce a vortex term. The newly derived system of equations consists of a generalized three-dimensional KP equation and a two-dimensional vortex equation. The former describes `scattering' of vortex-free waves by ambient vortexes that are determined by the latter. We say that the vortexes are `ambient' because they do not receive reciprocal reactions from the waves (i.e.,...
Propagation of Electromagnetic Waves in Extremely Dense Media
Masood, Samina
2016-01-01
We study the propagation of electromagnetic (EM) waves in extremely dense exotic systems with very unique properties. These EM waves develop a longitudinal component due to its interaction with the medium. Renormalization scheme of QED is used to understand the propagation of EM waves in both longitudinal and transverse directions. The propagation of EM waves in a quantum statistically treatable medium affects the properties of the medium itself. The electric permittivity and the magnetic permeability of the medium are modified and influence the related behavior of the medium. All the electromagnetic properties of a medium become a function of temperature and chemical potential of the medium. We study in detail the modifications of electric permittivity and magnetic permeability and other related properties of a medium in the superdense stellar objects.
On the interaction of electromagnetic waves with conductors
Paranjape, B V
2012-01-01
We study the interaction of electromagnetic waves with electrons. Our results can be applied to radio waves in the ionosphere or to lasers impinging on metals causing melting. We generalize the classical analysis of Zener to the case which includes the interactions of the electrons with lattice vibrations or the positive ions. We use the induced polarization to give a globally coherent and unifying analysis of the two cases, where collisions are important and where they are negligible.
Electronic Wave Packet in a Quantized Electromagnetic Field
程太旺; 薛艳丽; 李晓峰; 吴令安; 傅盘铭
2002-01-01
We study a non-stationary electronic wave packet in a quantized electromagnetic field. Generally, the electron and field become entangled as the electronic wave packet evolves. Here we find that, when the initial photon state is a coherent one, the wavefunction of the system can be factorized if we neglect the transferred photon number. In this case, the quantized-field calculation is equivalent to the semi-classical calculation.
Ivanyshyn Yaman, Olha; Le Louër, Frédérique
2016-09-01
This paper deals with the material derivative analysis of the boundary integral operators arising from the scattering theory of time-harmonic electromagnetic waves and its application to inverse problems. We present new results using the Piola transform of the boundary parametrisation to transport the integral operators on a fixed reference boundary. The transported integral operators are infinitely differentiable with respect to the parametrisations and simplified expressions of the material derivatives are obtained. Using these results, we extend a nonlinear integral equations approach developed for solving acoustic inverse obstacle scattering problems to electromagnetism. The inverse problem is formulated as a pair of nonlinear and ill-posed integral equations for the unknown boundary representing the boundary condition and the measurements, for which the iteratively regularized Gauss-Newton method can be applied. The algorithm has the interesting feature that it avoids the numerous numerical solution of boundary value problems at each iteration step. Numerical experiments are presented in the special case of star-shaped obstacles.
Response of thermal ions to electromagnetic ion cyclotron waves
Anderson, B. J.; Fuselier, S. A.
1994-01-01
Electromagnetic ion cyclotron waves generated by 10 - 50 keV protons in the Earth's equatorial magnetosphere will interact with the ambient low-energy ions also found in this region. We examine H(+) and He(+) distribution functions from approx. equals 1 to 160 eV using the Hot Plasma Composition Experiment instrument on AMPTE/CCE to investigate the thermal ion response to the waves. A total of 48 intervals were chosen on the basis of electromagnetic ion cyclotron (EMIC) wave activity: 24 with prevalent EMIC waves and 24 with no EMIC waves observed on the orbit. There is a close correlation between EMIC waves and perpendicular heated ion distributions. For protons the perpendicular temperature increase is modest, about 5 eV, and is always observed at 90 deg pitch angles. This is consistent with a nonresonant interaction near the equator. By contrast, He(+) temperatures during EMIC wave events averaged 35 eV and sometimes exceeded 100 eV, indicating stronger interaction with the waves. Furthermore, heated He(+) ions have X-type distributions with maximum fluxes occurring at pitch angles intermediate between field-aligned and perpendicular directions. The X-type He(+) distributions are consistent with a gyroresonant interaction off the equator. The concentration of He(+) relative to H(+) is found to correlate with EMIC wave activity, but it is suggested that the preferential heating of He(+) accounts for the apparent increase in relative He(+) concentration by increasing the proportion of He(+) detected by the ion instrument.
Response of thermal ions to electromagnetic ion cyclotron waves
Anderson, B. J.; Fuselier, S. A.
1994-10-01
Electromagnetic ion cyclotron waves generated by 10 - 50 keV protons in the Earth's equatorial magnetosphere will interact with the ambient low-energy ions also found in this region. We examine H(+) and He(+) distribution functions from approx. equals 1 to 160 eV using the Hot Plasma Composition Experiment instrument on AMPTE/CCE to investigate the thermal ion response to the waves. A total of 48 intervals were chosen on the basis of electromagnetic ion cyclotron (EMIC) wave activity: 24 with prevalent EMIC waves and 24 with no EMIC waves observed on the orbit. There is a close correlation between EMIC waves and perpendicular heated ion distributions. For protons the perpendicular temperature increase is modest, about 5 eV, and is always observed at 90 deg pitch angles. This is consistent with a nonresonant interaction near the equator. By contrast, He(+) temperatures during EMIC wave events averaged 35 eV and sometimes exceeded 100 eV, indicating stronger interaction with the waves. Furthermore, heated He(+) ions have X-type distributions with maximum fluxes occurring at pitch angles intermediate between field-aligned and perpendicular directions. The X-type He(+) distributions are consistent with a gyroresonant interaction off the equator. The concentration of He(+) relative to H(+) is found to correlate with EMIC wave activity, but it is suggested that the preferential heating of He(+) accounts for the apparent increase in relative He(+) concentration by increasing the proportion of He(+) detected by the ion instrument.
Electromagnetic-scattering by bi-sphere groups and coherent-beam scattering by homogeneous spheres
Linsheng LIU; Hengyu KE; Zhensen WU; Lu BAI
2008-01-01
By using Mie's theory, the boundary condi-tions, and some advanced mathematical knowledge, the scattering problem of a plane-wave by bi-sphere groups and of cores-traversed coherent Gauss-beams by one sphere was addressed. In each, the coefficients of the scattering-field expressions were deduced. Finally, the result was predigested and transfigured so that the available form for programming was achieved. On deducing, the former adopted the undetermined coeffi-cient method and the latter used the plane geometry method. Moreover, the complexity of the calculation was decreased here.
A possible mechanism of current in medium under electromagnetic wave
Zhang Tao
2006-01-01
In this paper a possible mechanism of current in medium is presented. Comparison between this current and the magnetization current was made. Expression for this current was derived. This work is helpful to understanding the interaction between medium and electromagnetic wave.
The Investigation of EM Scattering from the Time-Varying Overturning Wave Crest Model by the IEM
Xiao Meng
2016-01-01
Full Text Available Investigation of the electromagnetic (EM scattering of time-varying overturning wave crests is a worthwhile endeavor. Overturning wave crest is one of the reasons of sea spike generation, which increases the probability of false radar alarms and reduces the performance of multitarget detection in the environment. A three-dimensional (3D time-varying overturning wave crest model is presented in this paper; this 3D model is an improvement of the traditional two-dimensional (2D time-varying overturning wave crest model. The integral equation method (IEM was employed to investigate backward scattering radar cross sections (RCS at various incident angles of the 3D overturning wave crest model. The super phenomenon, where the intensity of horizontal polarization scattering is greater than that of vertical polarization scattering, is an important feature of sea spikes. Simulation results demonstrate that super phenomena may occur in some time samples as variations in the overturning wave crest.
Detection of leukemia using electromagnetic waves
Colton, David L.; Monk, Peter
1995-10-01
The presence of leukemia in bone marrow causes an increase in the electric permittivity and a decrease in the conductivity of the marrow. This suggests the possibility of detecting leukemia by electromagnetic imaging. We show how this can be done for the case of an absorbing host medium (i.e. water) and provide numerical experiments using synthetic data for detecting proliferated tissue at localized portions of the bone marrow. We do not assume that the refractive index of the fat, bone, and muscle are known but will instead recover these values as part of the imaging process.
Scattering of wave packets with phases
Karlovets, Dmitry
2016-01-01
A general problem of $2\\rightarrow N_f$ scattering is addressed with all the states being wave packets with arbitrary phases. Depending on these phases, one deals with coherent states in $(3+1)$ D, vortex particles with orbital angular momentum, the Airy beams, and their generalizations. A method is developed in which a number of events represents a functional of the Wigner functions of such states. Using width of a packet $\\sigma_p/\\langle p\\rangle$ as a small parameter, the Wigner functions, the number of events, and a cross section are represented as power series in this parameter, the first non-vanishing corrections to their plane-wave expressions are derived, and generalizations for beams are made. Although in this regime the Wigner functions turn out to be everywhere positive, the cross section develops new specifically quantum features, inaccessible in the plane-wave approximation. Among them is dependence on an impact parameter between the beams, on phases of the incoming states, and on a phase of the...
Making structured metals transparent for ultrabroadband electromagnetic waves and acoustic waves
Fan, Ren-Hao [National Laboratory of Solid State Microstructures and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); Peng, Ru-Wen, E-mail: rwpeng@nju.edu.cn [National Laboratory of Solid State Microstructures and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); Huang, Xian-Rong [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States); Wang, Mu [National Laboratory of Solid State Microstructures and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China)
2015-07-15
In this review, we present our recent work on making structured metals transparent for broadband electromagnetic waves and acoustic waves via excitation of surface waves. First, we theoretically show that one-dimensional metallic gratings can become transparent and completely antireflective for extremely broadband electromagnetic waves by relying on surface plasmons or spoof surface plasmons. Second, we experimentally demonstrate that metallic gratings with narrow slits are highly transparent for broadband terahertz waves at oblique incidence and high transmission efficiency is insensitive to the metal thickness. Further, we significantly develop oblique metal gratings transparent for broadband electromagnetic waves (including optical waves and terahertz ones) under normal incidence. In the third, we find the principles of broadband transparency for structured metals can be extended from one-dimensional metallic gratings to two-dimensional cases. Moreover, similar phenomena are found in sonic artificially metallic structures, which present the transparency for broadband acoustic waves. These investigations provide guidelines to develop many novel materials and devices, such as transparent conducting panels, antireflective solar cells, and other broadband metamaterials and stealth technologies. - Highlights: • Making structured metals transparent for ultrabroadband electromagnetic waves. • Non-resonant excitation of surface plasmons or spoof surface plasmons. • Sonic artificially metallic structures transparent for broadband acoustic waves.
On the Superposition and Elastic Recoil of Electromagnetic Waves
Schantz, Hans G
2014-01-01
Superposition demands that a linear combination of solutions to an electromagnetic problem also be a solution. This paper analyzes some very simple problems: the constructive and destructive interferences of short impulse voltage and current waves along an ideal free-space transmission line. When voltage waves constructively interfere, the superposition has twice the electrical energy of the individual waveforms because current goes to zero, converting magnetic to electrical energy. When voltage waves destructively interfere, the superposition has no electrical energy because it transforms to magnetic energy. Although the impedance of the individual waves is that of free space, a superposition of waves may exhibit arbitrary impedance. Further, interferences of identical waveforms allow no energy transfer between opposite ends of a transmission line. The waves appear to recoil elastically one from another. Although alternate interpretations are possible, these appear less likely. Similar phenomenology arises i...
Electromagnetic ion cyclotron waves in the plasma depletion layer
Denton, Richard E.; Hudson, Mary K.; Fuselier, Stephen A.; Anderson, Brian J.
1993-01-01
Results of a study of the theoretical properties of electromagnetic ion cyclotron (EMIC) waves which occur in the plasma depletion layer are presented. The analysis assumes a homogeneous plasma with the characteristics which were measured by the AMPTE/CCE satellite at 1450-1501 UT on October 5, 1984. Waves were observed in the Pc 1 frequency range below the hydrogen gyrofrequency, and these waves are identified as EMIC waves. The higher-frequency instability is driven by the temperature anisotropy of the H(+) ions, while the lower-frequency instability is driven by the temperature anisotropy of the He(2+) ions. It is argued that the higher-frequency waves will have k roughly parallel to B(0) and will be left-hand polarized, while the lower frequency wave band will have k oblique to B(0) and will be linearly polarized, in agreement with observations.
Tree-wave mixing of ordinary and backward electromagnetic waves: extraordinary transients
Slabko, Vitaly V; Tkachenko, Viktor A; Myslivets, Sergey A
2016-01-01
Three-wave mixing of ordinary and backward electromagnetic waves in pulsed regime is investigated in the metamaterials, which enable co-existence and phase matching of such waves. It is shown that opposite direction of phase velocity and energy flux in backward waves gives rise to extraordinary transient processes in greatly enhanced optical parametric amplification and in frequency up or down shifting nonlinear reflectivity. The discovered transients resemble slowed response of an oscillator on pulsed excitation in the vicinity of its resonance
Electron beam injection during active experiments. I - Electromagnetic wave emissions
Winglee, R. M.; Kellogg, P. J.
1990-01-01
The wave emissions produced in Echo 7 experiment by active injections of electron beams were investigated to determine the properties of the electromagnetic and electrostatic fields for both the field-aligned and cross-field injection in such experiments and to evaluate the sources of free energy and relative efficiencies for the generation of the VLF and HF emissions. It is shown that, for typical beam energies in active experiments, electromagnetic effects do not substantially change the bulk properties of the beam, spacecraft charging, and plasma particle acceleration. Through simulations, beam-generated whistlers; fundamental z-mode and harmonic x-mode radiation; and electrostatic electron-cyclotron, upper-hybrid, Langmuir, and lower-hybrid waves were identified. The characteristics of the observed wave spectra were found to be sensitive to both the ratio of the electron plasma frequency to the cyclotron frequency and the angle of injection relative to the magnetic field.
Scattered P'P' waves observed at short distances
Earle, Paul S.; Rost, Sebastian; Shearer, Peter M.; Thomas, Christine
2011-01-01
We detect previously unreported 1 Hz scattered waves at epicentral distances between 30° and 50° and at times between 2300 and 2450 s after the earthquake origin. These waves likely result from off-azimuth scattering of PKPbc to PKPbc in the upper mantle and crust and provide a new tool for mapping variations in fine-scale (10 km) mantle heterogeneity. Array beams from the Large Aperture Seismic Array (LASA) clearly image the scattered energy gradually emerging from the noise and reaching its peak amplitude about 80 s later, and returning to the noise level after 150 s. Stacks of transverse versus radial slowness (ρt, ρr) show two peaks at about (2, -2) and (-2,-2) s/°, indicating the waves arrive along the major arc path (180° to 360°) and significantly off azimuth. We propose a mantle and surface PKPbc to PKPbc scattering mechanism for these observations because (1) it agrees with the initiation time and distinctive slowness signature of the scattered waves and (2) it follows a scattering path analogous to previously observed deep-mantle PK•KP scattering (Chang and Cleary, 1981). The observed upper-mantle scattered waves and PK•KP waves fit into a broader set of scattered waves that we call P′•d•P′, which can scatter from any depth, d, in the mantle.
Source-model technique analysis of electromagnetic scattering by surface grooves and slits.
Trotskovsky, Konstantin; Leviatan, Yehuda
2011-04-01
A computational tool, based on the source-model technique (SMT), for analysis of electromagnetic wave scattering by surface grooves and slits is presented. The idea is to use a superposition of the solution of the unperturbed problem and local corrections in the groove/slit region (the grooves and slits are treated as perturbations). In this manner, the solution is obtained in a much faster way than solving the original problem. The proposed solution is applied to problems of grooves and slits in otherwise planar or periodic surfaces. Grooves and slits of various shapes, both smooth ones as well as ones with edges, empty or filled with dielectric material, are considered. The obtained results are verified against previously published data.
Electromagnetic scattering and absorption by a finite conducting thin fiber
Alyones, Sharhabeel Saleh
Scattering, absorption and extinction by a thin finite length conducting wire are computed numerically by solving the Generalized Pocklington integro-differential equation using two distinct approaches: the Method of Moments and the Galerkin method. The former employs discretization of the wire and the latter uses Legendre polynomials as basis functions with modifications to satisfy the boundary conditions of the problem. A new development included in the computations to be reported here involves a more accurate rendering of wires with lower aspect (length-to-diameter) ratios. Both methods converge to the same answer and satisfies the energy balance to within one percent for high aspect ratios. In spite of the improvement of the computational model, lower aspect ratios still satisfy the energy balance less precisely. A comparison is made with an existing analytical theory by Waterman and Pedersen. This theory solves a more approximate form of the Pocklington equation. The solutions of this study agree with the analytical theory for very thin wires and give a small but significant amplitude and resonance shift for lower aspect ratios. All three solutions are in agreement with the numerous available experimental results to within the experimental errors. The measurements of this study were used to examine the agreement with recently developed theory for long wavelength fibrous aerosol attenuative properties (extinction and components absorption, scattering). This was intended to be the final phase of a long and systematic examination of the theory's key features. In this case the parameters were high conductivities coupled with a broad range of fiber diameters. It is clear that there is a limit on the extinction efficiency or effective extinction cross section per unit fiber volume represented by the fiber diameter of translucency, that is, the diameter at which the fiber is not completely opaque to the electromagnetic energy. This is approximated by the classical
Stoja, Endri; Hoxha, Julian; Domnori, Elton; Pajewski, Lara; Frezza, Fabrizio
2017-04-01
In this study the electromagnetic field scattered by a buried object is obtained by use of a commercial full-wave frequency-domain solver which implements the Finite Element Method (FEM). The buried object is supposed to have different simple shapes and material composition such as a cylinder or cylindrical shell modelling for example a void in concrete or a poly-vinyl chloride (PVC) pipeline, respectively. Material properties available in literature are correctly modelled by data interpolation. The model is excited by a linearly-polarized plane wave impinging normally on the interface between air and soil/cement half-space. Comparison with simulation data provided by another simulator implementing the finite-difference time domain (FDTD) technique in the case of a simple buried perfect electric cylinder allows for FEM data validation. We further study the properties and the spatial variation of the scattered fields in different contexts by varying the geometrical and material properties of the model relative to the impinging wave characteristics. The aim is to clearly determine the conditions under which detection is possible. Moreover, by application of signal processing techniques to scattered field data, the position, shape, and object orientation recognition problems are considered. Results from different DSP algorithms are compared with the goal to find the best performing one relative to the context. Performance is evaluated in terms of detection success and resolving ability. The use of ground penetrating radar (GPR) techniques in the field of Civil Engineering offers inspection capabilities in the structure with no destructive intervention. Acknowledgement This abstract is a contribution to COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar", www.GPRadar.eu, www.cost.eu.
Impact of Fog on Electromagnetic Wave Propagation
Morris, Jonathon; Fleisch, Daniel
2002-04-01
This experiment was designed to explore the impact of fog on electromagnetic radiation, in particular microwaves and infrared light. For years law enforcement agencies have used microwave radiation (radar guns) to measure the speed of vehicles, and the last ten years has seen increased use of LIDAR, which uses 905-nm infrared radiation rather than microwaves. To evaulate the effect of fog on the operation of these devices, we have constructed a fog chamber with microwave and optical portals to allow light from a HeNe laser and 10.6-GHz microwaves to propagate through various densities of fog. Data is acquired using Vernier Logger Pro and analyzed using MATLAB and Mathematica. Using the attenuation of the laser light to determine fog density, the impact of fog on the signal-to-noise ratio of both microwave and IR devices may be quantified, and the maximum useful range may be calculated.
Electromagnetic Waves Broadcast by a VCR.
Brown, Michael H.
1996-01-01
Presents experiments that use a video cassette recorder (VCR) to demonstrate polarization of radio waves using two dipole antennas and a spark gap transmitter tuned to a frequency of either 60-66 MHz or 66-72 MHz with wavelengths of 5 or 4.3 meters, close to the wavelengths of the original work done by Heinrich Hertz. (JRH)
Electromagnetic Lead Screw for Potential Wave Energy Application
Lu, Kaiyuan; Wu, Weimin
2014-01-01
This paper presents a new type electromagnetic lead screw (EMLS) intended for wave energy application. Similar to the mechanical lead screw, this electromagnetic version can transfer slow linear motion to high-rotational motion, offering gearing effects. Compared with the existing pure magnetic...... lead screw (MLS) employing permanent magnets only, the new EMLS proposed uses dc current to provide the required helical-shape magnetic field, offering a much simpler, robust structure compared with the MLS. The working principle and the performances of this EMLS are analyzed in this paper. Comparison...
Scattering of ECRF waves by edge density fluctuations and blobs
Ram Abhay K.
2015-01-01
Full Text Available The scattering of electron cyclotron waves by density blobs embedded in the edge region of a fusion plasma is studied using a full-wave model. The full-wave theory is a generalization of the usual approach of geometric optics ray scattering by blobs. While the latter allows for only refraction of waves, the former, more general formulation, includes refraction, reflection, and diffraction of waves. Furthermore, the geometric optics, ray tracing, model is limited to blob densities that are slightly different from the background plasma density. Observations in tokamak experiments show that the fluctuating density differs from the background plasma density by 20% or more. Thus, the geometric optics model is not a physically realistic model of scattering of electron cyclotron waves by plasma blobs. The differences between the ray tracing approach and the full-wave approach to scattering are illustrated in this paper.
Particle-like wave packets in complex scattering systems
Gérardin, Benoît; Ambichl, Philipp; Prada, Claire; Rotter, Stefan; Aubry, Alexandre
2016-01-01
A wave packet undergoes a strong spatial and temporal dispersion while propagating through a complex medium. This wave scattering is often seen as a nightmare in wave physics whether it be for focusing, imaging or communication purposes. Controlling wave propagation through complex systems is thus of fundamental interest in many areas, ranging from optics or acoustics to medical imaging or telecommunications. Here, we study the propagation of elastic waves in a cavity and a disordered waveguide by means of laser interferometry. We demonstrate how the direct experimental access to the information stored in the scattering matrix of these systems allows us to selectively excite scattering states and wave packets that travel along individual classical trajectories. Due to their limited dispersion, these particle-like scattering states will be crucially relevant for all applications involving selective wave focusing and efficient information transfer through complex media.
Electromagnetic waves and electron anisotropies downstream of supercritical interplanetary shocks
Wilson, L B; Szabo, A; Breneman, A; Cattell, C A; Goetz, K; Kellogg, P J; Kersten, K; Kasper, J C; Maruca, B A; Pulupa, M
2012-01-01
We present waveform observations of electromagnetic lower hybrid and whistler waves with f_ci 1.01. Thus, the whistler mode waves appear to be driven by a heat flux instability and cause perpendicular heating of the halo electrons. The lower hybrid waves show a much weaker correlation between \\partialB and normalized heat flux magnitude and are often observed near magnetic field gradients. A third type of event shows fluctuations consistent with a mixture of both lower hybrid and whistler mode waves. These results suggest that whistler waves may indeed be regulating the electron heat flux and the halo temperature anisotropy, which is important for theories and simulations of electron distribution evolution from the sun to the earth.
Electromagnetic ion cyclotron waves stimulated by modest magnetospheric compressions
Anderson, B. J.; Hamilton, D. C.
1993-01-01
AMPTE/CCE magnetic field and particle data are used to test the suggestion that increased hot proton temperature anisotropy resulting from convection during magnetospheric compression is responsible for the enhancement in Pc 1 emission via generation of electromagnetic ion cyclotron (EMIC) waves in the dayside outer equatorial magnetosphere. The relative increase in magnetic field is used to gauge the strength of the compression, and an image dipole model is used to estimate the motion of the plasma during compression. Proton data are used to analyze the evolution of the proton distribution and the corresponding changes in EMIC wave activity expected during the compression. It is suggested that enhancements in dynamic pressure pump the energetic proton distributions in the outer magnetosphere, driving EMIC waves. Waves are expected to be generated most readily close to the magnetopause, and transient pressure pulses may be associated with bursts of EMIC waves, which would be observed on the ground in association with ionospheric transient signatures.
Theory and approach of information retrievals from electromagnetic scattering and remote sensing
Jin, Ya-Qiu
2006-01-01
Covers several hot topics in current research of electromagnetic scattering, and radiative transfer in complex and random media, polarimetric scattering and SAR imagery technology, data validation and information retrieval from space-borne remote sensing, computational electromagnetics, etc.Including both forward modelling and inverse problems, analytic theory and numerical approachesAn overall summary of the author's works during most recent yearsAlso presents some insight for future research topics.
Deyue Zhang; Fuming Ma
2006-01-01
The scattering of time-harmonic electromagnetic waves propagating in a homogeneous chiral environment by a chiral grating is studied. The problem is simplified to a two-dimensional scattering problem, and the existence and the uniqueness of solutions are discussed by a variational approach. The diffraction problem is solved by a finite element method with perfectly matched absorbing layers. Our computational experiments indicate that the method is efficient.
Reflection and Transmission of Plane Electromagnetic Waves by a Geologic Layer.
Aldridge, David F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2017-04-01
Electric field and magnetic field reflection and transmission responses generated by a plane wave normally incident onto a finite - thickness geologic layer are mathematically derived and numerically evaluated. A thin layer with enhanced electric current conductivity and/or magnetic permeability is a reasonable geophysical representation of a hydraulic fracture inject ed with a high - contrast proppant pack. Both theory and numerics indicate that backward - and forward - scattered electromagnetic wavefields are potentially observable in a field experiment, despite the extreme thinness of a fracture compared to a typical low - frequency electromagnetic wavelength. The First Born Approximation (FBA) representation of layer scattering, significant for inversion studies, is shown to be accurate for a thin layer with mild medium parameter (i.e., conductivity, permeability, and per mittivity) contrasts with the surrounding homogeneous wholespace. However, FBA scattering theory breaks down for thick layers and strong parameter contrasts. ACKNOWLEDGEMENTS Sandia National Laboratories is a multi - mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE - AC04 - 94AL85000. This research is conducted under the auspices of CRADA (Cooperative Research and Development Agreement) SC11/01780.00 between Carbo Ceramics Inc. and Sandia National Laboratories. The author acknowledges former Carbo R&D Vic e - President Mr. Chad Cannan and former SNL Geophysics Department manage r Ms. Amy Halloran for their interest i n and support of this work. Technical discussions with Project Manager and Principal Investigator Dr. Chester J. Weiss of the SNL Geophysics Department greatly benefited this work. Dr. Lewis C. Bartel, formerly with S NL and presently a consultant to Carbo Ceramics, provided many useful and intuitive insights, and
Without the electromagnetic force, you would not be solid. The atoms of your body are held together by electromagnetism: negatively charged electrons are held around the positively charged nucleus. Atoms share electrons to form molecules, so building up the structure of matter. As its name suggests, electromagnetism has a double nature: a moving electric charge creates a magnetic field. This intimate connection between electricity and magnetism was described by James Maxwell in 1864. The electromagnetic force can be both positive and negative : opposite charges attract, whereas like charges repel. Electromagnetic radiation, such as radio, microwaves, light and X-rays, is emitted by charges when they are made to move. For example, an oscillating current in a wire emits radio waves. Text for the interactive: Why do the needles move when you switch on the current ?
Detection of Two Buried Cross Pipelines by Observation of the Scattered Electromagnetic Field
Mangini, Fabio; Di Gregorio, Pietro Paolo; Frezza, Fabrizio; Muzi, Marco; Tedeschi, Nicola
2015-04-01
In this work we present a numerical study on the effects that can be observed in the electromagnetic scattering of a plane wave due to the presence of two crossed pipelines buried in a half-space occupied by cement. The pipeline, supposed to be used for water conveyance, is modeled as a cylindrical shell made of metallic or poly-vinyl chloride (PVC) material. In order to make the model simpler, the pipelines are supposed running parallel to the air-cement interface on two different parallel planes; moreover, initially we suppose that the two tubes make an angle of 90 degrees. We consider a circularly-polarized plane wave impinging normally to the interface between air and the previously-mentioned medium, which excites the structure in order to determine the most useful configuration in terms of scattered-field sensitivity. To perform the study, a commercially available simulator which implements the Finite Element Method was adopted. A preliminary frequency sweep allows us to choose the most suitable operating frequency depending on the dimensions of the commercial pipeline cross-section. We monitor the three components of the scattered electric field along a line just above the interface between the two media. The electromagnetic properties of the materials employed in this study are taken from the literature and, since a frequency-domain technique is adopted, no further approximation is needed. Once the ideal problem has been studied, i.e. having considered orthogonal and tangential scenario, we further complicate the model by considering different crossing angles and distances between the tubes, in two cases of PVC and metallic material. The results obtained in these cases are compared with those of the initial problem with the goal of determining the scattered field dependence on the geometrical characteristics of the cross between two pipelines. One of the practical applications in the field of Civil Engineering of this study may be the use of ground
Universal and nonuniversal properties of wave-chaotic scattering systems.
Yeh, Jen-Hao; Hart, James A; Bradshaw, Elliott; Antonsen, Thomas M; Ott, Edward; Anlage, Steven M
2010-02-01
Prediction of the statistics of scattering in typical wave-chaotic systems requires combining system-specific information with universal aspects of chaotic scattering as described by random matrix theory. This Rapid Communication shows that the average impedance matrix, which characterizes such system-specific properties, can be semiclassically calculated in terms of ray trajectories between ports. Theoretical predictions are compared with experimental results for a microwave billiard, demonstrating that the theory successfully uncovered universal statistics of wave-chaotic scattering systems.
Numerical simulations of electromagnetic scattering by Solar system objects
Dlugach, Janna M.
2016-11-01
Having been profoundly stimulated by the seminal work of Viktor V. Sobolev, I have been involved in multi-decadal research in the fields of radiative transfer, electromagnetic scattering by morphologically complex particles and particulate media, and planetary remote sensing. Much of this research has been done in close collaboration with other "descendants" of Academician Sobolev. This tutorial paper gives a representative overview of the results of extensive numerical simulations (in the vast majority carried out in collaboration with Michael Mishchenko) used to analyze remote-sensing observations of Solar system objects and based on highly accurate methods of the radiative transfer theory and direct computer solvers of the Maxwell equations. Using the atmosphere of Jupiter as a proving ground and performing T-matrix and radiative-transfer calculations helps demonstrate the strong effect of aerosol-particle shapes on the accuracy of remote-sensing retrievals. I then discuss the application of the T-matrix method, a numerically exact solution of the vector radiative transfer equation, and the theory of coherent backscattering to an analysis of polarimetric radar observations of Saturn's rings. Numerical modeling performed by using the superposition T-matrix method in application to cometary dust in the form of aggregates serves to reproduce the results of polarimetric observations of the distant comet C/2010 S1. On the basis of direct computer solutions of the Maxwell equations, it is demonstrated that all backscattering effects predicted by the low-density theories of radiative transfer and coherent backscattering can also be identified for media with volume packing densities typically encountered in natural and artificial environments. This result implies that spectacular opposition effects observed for some high-albedo atmoshereless Solar system bodies can be attributed to coherent backscattering of sunlight by regolith layers composed of microscopic particles.
Predicting Electromagnetic Signatures of Gravitational Wave Sources
D'Orazio, Daniel John
This dissertation investigates the signatures of electromagnetic radiation that may accompany two specific sources of gravitational radiation: the inspiral and merger of massive black hole binaries (MBHBs) in galactic nuclei, and the coalescence of black hole neutron star (BHNS) pairs. Part I considers the interaction of MBHBs, at sub-pc separations, with a circumbinary gas disk. Accretion rates onto the MBHB are calculated from two-dimensional hydrodynamical simulations as a function of the relative masses of the black holes. The results are applied to interpretation of the recent, sub-pc separation MBHB candidate in the nucleus of the periodically variable Quasar PG 1302-102. We advance an interpretation of the variability observed in PG 1302-102 as being caused by Doppler-boosted emission sourced by the orbital velocity of the smaller black hole in a MBHB with disparate relative masses. Part II considers BHNS binaries in which the black hole is large enough to swallow the neutron star whole before it is disrupted. As the pair nears merger, orbital motion of the black hole through the magnetosphere of the neutron star generates an electromotive force, a black-hole-battery, which, for the strongest neutron star magnetic field strengths, could power luminosities large enough to make the merging pair observable out to cosmic distances. Relativistic solutions for vacuum fields of a magnetic dipole near a horizon are given, and a mechanism for harnessing the power of the black-hole-battery is put forth in the form of a fireball emitting in hard X-rays to gamma-rays.
Perfect absorbers for electromagnetic wave, based on metamaterials
Yoo, Young Joon; Kim, Young Ju; Lee, YoungPak
2015-10-01
Metamaterials (MMs), which are not existing in nature, but artificially-engineered materials for controlling electromagnetic wave. MMs have attracted more and more research attentions, since they have shown greatly novel properties such as left-handed behavior, negative refractive index, classical analog of electromagnetically-induced transparency, and extraordinary transmission. Among MMs, MM perfect absorbers (MMPAs), which are useful to enhance the efficiency in capturing solar energy and applied to various application areas, have been rapidly developed. In general, the structure of MMPAs is very simple, which consist of three layers: patterned conductor layer, which is used for minimizing the reflection by impedance matching, dielectric layer and continuous conductor layer for blocking the transmission. In addition, the unit-cell size of general MM absorbers is only 1/3-1/5 of the working wavelength of incident electromagnetic wave. Nevertheless, the properties of general MMPAs are in problems of the absorption only at specific frequency, the narrow absorption band, the polarization sensitivity and so on. In this review paper, the introduction of recent researches in the field of MMPAs operating in different frequency ranges is presented. Moreover, the researches on the improved electromagnetic properties are discussed, which comprise multi-band, broadband, tunable, polarization-insensitive, and wide-incident-angle MMPAs. The perspectives and the future works for the further investigations and the various real applications of MMPAs are also presented.
Low Frequency Scattering Resonance Wave in Strong Heterogeneity
Liu, Yinbin
2015-01-01
Multiple scattering of wave in strong heterogeneity can cause resonance-like wave phenomenon where signal exhibits low frequency, high intensity, and slowly propagating velocity. For example, long period event in volcanic seismology and surface plasmon wave and quantum Hall effect in wave-particle interactions. Collective behaviour in a many-body system is usually thought to be the source for generating the anomaly. However, the detail physical mechanism is not fully understood. Here I show by wave field modeling for microscopic bubble cloud model and 1D heterogeneity that the anomaly is related to low frequency scattering resonance happened in transient regime. This low frequency resonance is a kind of wave coherent scattering enhancement phenomenon in strongly-scattered small-scale heterogeneity. Its resonance frequency is inversely proportional to heterogeneous scale and contrast and will further shift toward lower frequency with random heterogeneous scale and velocity fluctuations. Low frequency scatterin...
Rays, waves, and scattering topics in classical mathematical physics
Adam, John A
2017-01-01
This one-of-a-kind book presents many of the mathematical concepts, structures, and techniques used in the study of rays, waves, and scattering. Panoramic in scope, it includes discussions of how ocean waves are refracted around islands and underwater ridges, how seismic waves are refracted in the earth's interior, how atmospheric waves are scattered by mountains and ridges, how the scattering of light waves produces the blue sky, and meteorological phenomena such as rainbows and coronas. Rays, Waves, and Scattering is a valuable resource for practitioners, graduate students, and advanced undergraduates in applied mathematics, theoretical physics, and engineering. Bridging the gap between advanced treatments of the subject written for specialists and less mathematical books aimed at beginners, this unique mathematical compendium features problems and exercises throughout that are geared to various levels of sophistication, covering everything from Ptolemy's theorem to Airy integrals (as well as more technica...
Response of thermal ions to electromagnetic ion cyclotron waves
Anderson, B.J. [Johns Hopkins Univ., Laurel, MD (United States); Fuselier, S.A. [Lockheed Palo Alto Research Lab., CA (United States)
1994-10-01
Electromagnetic ion cyclotron waves generated by 10-50 keV protons in the Earth`s equatorial magnetosphere will interact with the ambient low-energy ions also found in this region. The authors examine H{sup +} and He{sup +} distribution functions from {approx} 1 to 160 eV using the Hot Plasma Composition Experiment instrument on AMPTE/CCE to investigate the thermal ion response to the waves. A total of 48 intervals were chosen on the basis of electromagnetic ion cyclotron (EMIC) wave activity: 24 with prevalent EMIC waves and 24 with no EMIC waves observed on the orbit. There is a close correlation between EMIC waves and perpendicularly heated ion distributions. For protons the perpendicular temperature increase is modest, about 5 eV, and is always observed at 90{degrees} pitch angles. This is consistent with a nonresonant interaction near the equator. By contrast, He{sup +} temperatures during EMIC wave events averaged 35 eV and sometimes exceeded 100 eV, indicating stronger interaction with the waves. Furthermore, heated He{sup +} ions have X-type distributions with maximum fluxes occurring at pitch angles intermediate between field-aligned and perpendicular directions. The X-type He{sup +} distributions are consistent with a gyroresonant interaction off the equator. The concentration of He{sup +} relative to H{sup +} is found to correlate with EMIC wave activity, but it is suggested that the preferential heating of He{sup +} accounts for the apparent increase in relative He{sup +} concentration by increasing the proportion of He{sup +} detected by the ion instrument. 35 refs., 8 figs., 1 tab.
Interaction between electromagnetic waves and energetic particles by a realistic density model
无
2010-01-01
Using a realistic density model,we present a first study on the interactions between electromagnetic waves and energetic particles in the inner magnetosphere.Numerical calculations show that as the latitude λ increases,the number density ne increases,and resonant frequency range moves to lower pitch angles.During L-mode/electron and L-mode/proton interactions,the pitch angle diffusion dominates over the momentum diffusion.This indicates that L-mode waves are primarily responsible for pitch angle scattering.For R-mode/electron interaction,the momentum diffusion is found to be comparable to the pitch angle diffusion,implying that R-mode waves can play an important role in both pitch angle scattering and stochastic acceleration of electrons.For R-mode/proton interaction,diffusion coefficients locate primarily below pitch angle 60° and increase as kinetic energy increases,suggesting that R-mode waves have potential for pitch angle scattering of highly energetic (~1 MeV) protons but cannot efficiently accelerate protons.
Electromagnetic Waves in a Uniform Gravitational Field and Planck's Postulate
Acedo, L
2015-01-01
The gravitational redshift forms the central part of the majority of the classical tests for the general theory of relativity. It could be successfully checked even in laboratory experiments on the earth's surface. The standard derivation of this effect is based on the distortion of the local structure of spacetime induced by large masses. The resulting gravitational time-dilation near these masses gives rise to a frequency change of any periodic process, including electromagnetic oscillations as the wave propagates across the gravitational field. This phenomenon can be tackled with classical electrodynamics assuming a curved spacetime background and Maxwell's equations in a generally covariant form. In the present paper, we show that in a classical field-theoretical context the gravitational redshift can be interpreted as the propagation of electromagnetic waves in a medium with corresponding conductivity $\\sigma=g/(\\mu_0 c^3)$, where $g$ is the gravitational acceleration and $\\mu_0$ is the vacuum magnetic p...
Evolution of Ring Current Protons Induced by Electromagnetic Ion Cyclotron Waves
XIAO Fu-Liang; TIAN Tian; CHEN Liang-Xu; SU Zhen-Peng; ZHENG Hui-Nan
2009-01-01
We investigate the evolution of the phase space density (PSD) of ring current protons induced by electromagnetic ion cyclotron (EMIC) waves at the location L=3.5, calculate the diffusion coefficients in pitch angle and momentum, and solve the standard two-dimensional Fokker-Planck diffusion equation. The pitch angle diffusion coefficient is found to be larger than the momentum diffusion coefficient by a factor of about 10~3 or above at lower pitch angles. We show that EMIC waves can produce efficient pitch angle scattering of energetic (～100 keV) protons, yielding a rapid decrement in PSD, typically by a factor of ～10 within a few hours, consistent with observational data. This result further supports previous findings that wave-particle interaction is responsible for the rapid ring current decay.
Attractors and chaos of electron dynamics in electromagnetic standing wave
Esirkepov, Timur Zh; Koga, James K; Kando, Masaki; Kondo, Kiminori; Rosanov, Nikolay N; Korn, Georg; Bulanov, Sergei V
2014-01-01
The radiation reaction radically influences the electron motion in an electromagnetic standing wave formed by two super-intense counter-propagating laser pulses. Depending on the laser intensity and wavelength, either classical or quantum mode of radiation reaction prevail, or both are strong. When radiation reaction dominates, electron motion evolves to limit cycles and strange attractors. This creates a new framework for high energy physics experiments on an interaction of energetic charged particle beams and colliding super-intense laser pulses.
Acoustic Wave Dispersion and Scattering in Complex Marine Sediment Structures
2015-09-30
Acoustic wave dispersion and scattering in complex marine sediment structures Charles W. Holland The Pennsylvania State University Applied...volume scattering and 2) the effects of shear waves in general layered media. These advances will provide the basis for measuring dispersion in in-situ...shear waves on dispersion in marine sediments. The first step will be development of the theory. WORK COMPLETED A brief summary of the work
Fromme, P.
2015-03-01
Fatigue damage can develop in aerospace structures at locations of stress concentration, such as fasteners. For the safe operation of the aircraft fatigue cracks need to be detected before reaching a critical length. Guided ultrasonic waves offer an efficient method for the detection and characterization of such defects in large aerospace structures. Noncontact excitation of guided waves was achieved using electromagnetic acoustic transducers (EMAT). The transducer development for the specific excitation of the A0 Lamb wave mode is explained. The radial and angular dependency of the excited guided wave pulses at different frequencies were measured using a noncontact laser interferometer. Based on the induced eddy currents in the plate a theoretical model was developed and reasonably good agreement with the measured transducer performance was achieved. The developed transducers were employed for defect detection in aluminum components using fully noncontact guided wave measurements. Excitation of the A0 Lamb wave mode was achieved using the developed EMAT transducer and the guided wave propagation and scattering was measured using a noncontact laser interferometer. These results provide the basis for the defect characterization in aerospace structures using noncontact guided wave sensors.
Particle Dynamics under Quasi-linear Interaction with Electromagnetic Waves
Castejon, F.; Eguilior, S.
2003-07-01
Langevin equations for quasi-linear wave particle interaction are obtained taking advantage of the unique vocal equivalence between Fokker-Plank equation and the former ones. Langevin equations are solved numerically and, hence, the evolution of a single particle embedded in an electromagnetic field in momentum space is obtained. The equations are relativistic and valid for any wave. It is also shown that the stochastic part of the equations is negligible in comparison with the deterministic term, except for the momentum to the resonance condition for the main parallel refractive index. (Author) 24 refs.
Influence of electromagnetic SHF-waves on motility of tubifex
I. K. Smolyarenko
2005-02-01
Full Text Available We investigated influence of electromagnetic superhigh frequency (SHF waves (10 hHz on mechanical parameters of motility of bunch tubifex (1300 - 1500 units at a different load and sequence of its mechanical stimulation. Is shown, that after a пот-thermal waveirradiation (1 MVt/sm2 latency and forward front of mechanograms is increased on 5 - 10 %, amplitude and duration of the answers simultaneously decreases. The maximal mass, which can lift single unit tubifex is decreased. The capacity of single unit is reduced on the average about 80 %. The authors make conclusion about temporary negative influence SHF-waves on simple biological systems.
Magnesiothermic reduction of rice husk ash for electromagnetic wave adsorption
Liu, Shu-Ting; Yan, Kang-kang; Zhang, Yuan hu; Jin, Shi-di; Ye, Ying; Chen, Xue-Gang, E-mail: chenxg83@zju.edu.cn
2015-11-15
The increase in electromagnetic pollution due to the extensive exploitation of electromagnetic (EM) waves in modern technology creates correspondingly urgent need for developing effective EM wave absorbers. In this study, we carried out the magnesiothermic reduced the rice husk ash under different temperatures (400–800 °C) and investigated the electromagnetic wave adsorption of the products. The EM absorbing for all samples are mainly depend on the dielectric loss, which is ascribed to the carbon and silicon carbide content. RA samples (raw rice husk ashed in air and was magesiothermic reduced in different temperatures) exhibit poor dielectric properties, whereas RN samples (raw rice husk ashed in nitrogen and was magesiothermic reduced in different temperatures) with higher content of carbon and silicon carbide display considerable higher dielectric loss values and broader bandwidth for RL<−5 dB and −10 dB. For RN samples, the maximum bandwidth for −5 dB and −10 dB decrease with carbon contents, while the optimum thickness decrease with increasing SiC content. The optimum thickness of RN400–800 for EM absorption is 1.5–2.0 mm, with maximum RL of between −28.9 and −68.4 dB, bandwidth of 6.7–13 GHz for RL<−5 dB and 3.2–6.2 GHz for RL<−10 dB. The magnesiothermic reduction will enhance the potential application of rice husk ash in EM wave absorption and the samples benefited from low bulk density and low thickness. With the advantages of light-weight, high EM wave absorption, low cost, RN400–800 could be promising candidates for light-weight EM wave absorption materials over many conventional EM wave absorbers. - Highlights: • RN400–800 samples are potential light-weight electromagnetic absorbers. • Carbon and SiC are considered as dominating contributions for the dielectric loss. • Magnesiumothermic reduction extends the EM wave absorption potential of RHN.
Proton acceleration by circularly polarized traveling electromagnetic wave
Amol Holkundkar
2012-09-01
Full Text Available The acceleration of charged particles, producing collimated monoenergetic beams, over short distances holds the promise to offer new tools in medicine and diagnostics. Here, we consider a possible mechanism for accelerating protons to high energies by using a phase modulated circularly polarized electromagnetic wave propagating along a constant magnetic field. It is observed that a plane wave with dimensionless amplitude of 0.1 is capable to accelerate a 1 keV proton to 386 MeV under optimum conditions. Finally, we discuss possible limitations of the acceleration scheme.
Proton acceleration by circularly polarized traveling electromagnetic wave
Holkundkar, A; Marklund, M
2012-01-01
The acceleration of charged particles, producing collimated mono-energetic beams, over short distances holds the promise to offer new tools in medicine and diagnostics. Here, we consider a possible mechanism for accelerating protons to high energies by using a phase-modulated circularly polarized electromagnetic wave propagating along a constant magnetic field. It is observed that a plane wave with dimensionless amplitude of 0.1 is capable to accelerate a 1 KeV proton to 386 MeV under optimum conditions. Finally we discuss possible limitations of the acceleration scheme.
Fouling detection in buried water pipelines by observation of the scattered electromagnetic field
Frezza, Fabrizio; Mangini, Fabio; Santini, Carlo; Stoja, Endri; Tedeschi, Nicola
2014-05-01
The electromagnetic scattered field by a buried pipeline is calculated by means of frequency-domain numerical simulations and by making use of the scattered-field formulation. The pipeline, supposed to be used for water conveyance, is modeled as a cylindrical shell made of poly-vinyl chloride (PVC) material buried in a wall or pavement composed of cement with very low losses and filled with water. In order to make the model simpler, the pipeline is supposed running parallel to the air-cement interface. To excite the model, a linearly-polarized plane wave impinging normally on the above-mentioned interface is adopted. We consider two different polarizations in order to determine the most useful in terms of scattered-field sensitivity. Moreover, a preliminary frequency sweep allows us to choose the most suitable operating frequency depending on the dimensions of the pipeline cross-section. All the three components of the scattered field are monitored along a line just above the interface. The electromagnetic properties of the materials employed in this study are present in the literature and, since a frequency-domain technique is adopted, no further approximation is needed. Once the ideal problem has been studied, we further complicate the model by introducing two fouling scenarios due to limestone formation on the pipeline walls. In the first case, the fouling is deposited at the bottom of the pipeline when the water pressure is low enough and the second one considers the fouling to deposit on the entire internal perimeter of the pipeline's cross-section by forming an additional limestone cylindrical layer. The results obtained in these cases are compared with those of the initial problem with the goal of determining the scattered field dependency on the fouling geometrical characteristics. One of the practical applications in the field of Civil Engineering of this study may be the use of ground penetrating radar (GPR) techniques to monitor the fouling conditions of
Electromagnetic ion cyclotron waves observed in the plasma depletion layer
Anderson, B. J.; Fuselier, S. A.; Murr, D.
1991-01-01
Observations from AMPTE/CCE in the earth's magnetosheath on October 5, 1984 are presented to illustrate 0.1 - 4.0 Hz magnetic field pulsations in the subsolar plasma depletion layer (PDL) for northward sheath field during a magnetospheric compression. The PDL is unambiguously identified by comparing CCE data with data from IRM in the upstream solar wind. Pulsations in the PDL are dominated by transverse waves with F/F(H+) 1.0 or less and a slot in spectral power at F/F(H+) = 0.5. The upper branch is left hand polarized while the lower branch is linearly polarized. In the sheath the proton temperature anisotropy is about 0.6 but it is about 1.7 in the PDL during wave occurrence. The properties and correlation of waves with increased anisotropy indicate that they are electromagnetic ion cyclotron waves.
Seomun, GyeongAe; Kim, YoungHwan; Lee, Jung-Ah; Jeong, KwangHoon; Park, Seon-A; Kim, Miran; Noh, Wonjung
2014-01-01
To better understand environmental electromagnetic wave exposure during the use of digital textbooks by elementary school students, we measured numeric values of the electromagnetic fields produced by tablet personal computers (TPCs). Specifically, we examined the distribution of the electromagnetic waves for various students' seating positions in…
Seomun, GyeongAe; Kim, YoungHwan; Lee, Jung-Ah; Jeong, KwangHoon; Park, Seon-A; Kim, Miran; Noh, Wonjung
2014-01-01
To better understand environmental electromagnetic wave exposure during the use of digital textbooks by elementary school students, we measured numeric values of the electromagnetic fields produced by tablet personal computers (TPCs). Specifically, we examined the distribution of the electromagnetic waves for various students' seating positions in…
Numerical simulation of azimuth electromagnetic wave tool response based on self-adaptive FEM
Li, Hui; Shen, Yi-Ze
2017-07-01
Azimuth electromagnetic wave is a new type of electromagnetic prospecting technology. It can detect weak electromagnetic wave signal and realize real-time formation conductivity imaging. For effectively optimizing measurement accuracy of azimuth electromagnetic wave imaging tool, the efficient numerical simulation algorithm is required. In this paper, self-adaptive finite element method (FEM) has been used to investigate the azimuth electromagnetic wave logging tool response by adjusting antenna array system in different geological conditions. Numerical simulation examples show the accuracy and efficiency of the method, and provide physical interpretation of amplitude attenuation and phase shift of electromagnetic wave signal. Meanwhile, the high-accuracy numerical simulation results have great value to azimuth electromagnetic wave imaging tool calibration and data interpretation.
Estimating the Location of Scatterers by Seismic Interferometry of Scattered Surface Waves
Harmankaya, U.; Kaslilar, A.; Thorbecke, J.W.; Wapenaar, C.P.A.; Draganov, D.S.
2012-01-01
In this study, non-physical (ghost) scattered surface waves are used to obtain the location of a near surface scatterer. The ghost is obtained from application of seismic interferometry to only one source at the surface. Different locations for virtual sources are chosen and ghost scattered surface
Estimating the Location of Scatterers by Seismic Interferometry of Scattered Surface Waves
Harmankaya, U.; Kaslilar, A.; Thorbecke, J.W.; Wapenaar, C.P.A.; Draganov, D.S.
2012-01-01
In this study, non-physical (ghost) scattered surface waves are used to obtain the location of a near surface scatterer. The ghost is obtained from application of seismic interferometry to only one source at the surface. Different locations for virtual sources are chosen and ghost scattered surface
Scalar wave scattering from Schwarzschild black holes in modified gravity
Sibandze, Dan B; Maharaj, Sunil D; Nzioki, Anne Marie; Dunsby, Peter K S
2016-01-01
We consider the scattering of gravitational waves off a Schwarzschild Black Hole in $f(R)$ gravity. We find that, while the reflection and transmission coefficients for tensor waves are the same as in General Relativity, a larger fraction of scalar waves are reflected compared to what one obtains for tensors. This may provide a novel observational signature for fourth order gravity.
On the relative scattering of P- and S-waves
Malin, P. E.; Phinney, R. A.
1985-01-01
Using a single-scattering approximation, equations for the scattering attenuation coefficients of P-body and S-body waves are derived. The results are discussed in the light of the energy-renormalization approaches of Wu (1980, 1982) and Sato (1982) to seismic wave scattering. Practical methods for calculating the scattering attenuation coefficients for various earth models are emphasized. The conversions of P-waves to S-waves and S-waves to P-waves are included in the theory. The earth models are assumed to be randomly inhomogeneous, with their properties known only through their average-wavenumber power spectra. The power spectra are approximated with piecewise constant functions, each segment of which contributes to the net frequency-dependent scattering attenuation coefficient. The smallest and largest wavenumbers of a segment can be plotted along with the wavevectors of the incident and scattered waves on a wavenumber diagram. This diagram gives a geometric interpretation for the frequency behavior associated with each spectral segment, including a transition peak that is due entirely to the wavenumber limits of the segment. For regions of the earth where the inhomogeneity spectra are concentrated in a band of wavenumbers, it should be possible to observe such a peak in the apparent attenuation of seismic waves. Both the frequency and distance limits on the accuracy of the theoretical results are given.
Detection of elastic photon-photon scattering through four-wave coupling
Lundstrom, E
2005-01-01
According to the theory of quantum electrodynamics, photon-photon scattering can take place via exchange of virtual electron-positron pairs. Effectively, the interaction can be formulated in terms of non-linear corrections to Maxwell's equations, and hence may be treated by classical non-linear electrodynamics. Due to the strong electromagnetic fields needed to reach any noticeable effect, photon-photon scattering has not yet been observed experimentally, but recent improvements in laser technology have increased the possibility of direct detection. A verification of the phenomena would be of great scientific value as a confirmation of quantum electrodynamics. In this thesis the possibility of direct detection of elastic photon-photon scattering through four-wave coupling is investigated, both for current and future systems. It is shown how three colliding laser pulses satisfying certain matching conditions, can generate scattered radiation in a fourth resonant direction. The interaction is modeled, and the n...
Fouda, Ahmed E.
Time-reversal (TR) was originated in acoustics as a technique for re-focusing waves around their source location. Under certain conditions, the wave equation is invariant under TR, therefore, waves emanated from a source or scattered from a passive target, and recorded by a transceivers array, will retrace their forward path and automatically focus at the source/target location if back propagated in a time-reversed (last-in first-out) fashion from that array. Focusing resolution of time-reversed back propagation in rich scattering environments beats that in free space, yielding what is known as 'superresolution'. Moreover, under ultrawideband (UWB) operation, TR exhibits the distinctive property of 'statistical stability', which makes it an attractive technique for imaging in disordered media whose characteristics are not known deterministically (random media). Over the past few years, TR has been exploited in a variety of electromagnetic sensing and imaging applications such as ground penetrating radar, breast cancer detection, nondestructive testing, and through-wall imaging. In addition, TR has been extensively applied in UWB wireless communication providing myriad of advantages including reduced receiver complexity, power saving, increased system capacity, and enhanced information secrecy. In this work, we introduce new TR-based signal processing techniques for imaging, tracking, and communicating with targets/users embedded in rich scattering environments. We start by demonstrating, both numerically and experimentally, the statistical stability of UWB TR imaging in inhomogeneous random media, under different combinations of random medium parameters and interrogating signal properties. We examine conditions under which frequency decorrelation in random media provides a more effective 'self-averaging' and therefore better statistical stability. Then, we devise a technique for detecting and tracking multiple moving targets in cluttered environments based on
The group theory for solving electromagnetic scattering problems with geometric symmetric structure
朱峰; 杨海川; 任朗
1997-01-01
It is a very important issue to reduce computer storage and calculation time for matrix in solving scattering field by making use of geometric and physical symmetric features of a scattering body. A general definition for the symmetric and anti-symmetric structure is given by applying the group theory in mathematics and a general method for treating the electromagnetic scattering problems with symmetry is proposed. An example for applying the theory mentioned above is also given.
Noncontact excitation of guided waves (A0 mode) using an electromagnetic acoustic transducer (EMAT)
Fromme, Paul
2016-02-01
Fatigue damage can develop in aircraft structures at locations of stress concentration, such as fasteners, and has to be detected before reaching a critical size to ensure safe aircraft operation. Guided ultrasonic waves offer an efficient method for the detection and characterization of such defects in large aerospace structures. Electromagnetic acoustic transducers (EMAT) for the noncontact excitation of guided ultrasonic waves were developed. The transducer development for the specific excitation of the A0 Lamb wave mode with an out-of-plane Lorentz force is explained. The achieved radial and angular dependency of the excited guided wave pulses were measured using a noncontact laser interferometer. Based on the induced eddy currents in the plate a theoretical model was developed. The application of the developed transducers for defect detection in aluminum components using fully noncontact guided wave measurements was demonstrated. Excitation of the A0 Lamb wave mode was achieved using the developed EMAT transducer and the guided wave propagation and scattering was measured using a noncontact laser interferometer.
A new strategy to conceal an object from electromagnetic wave
Luo, Yu; Chen, Hongsheng; Wu, Bae-Ian; Kong, Jin Au
2008-01-01
A new recipe for concealing objects from detection is suggested. Different with traditional cloak which deflects light around the core of the cloak to make the object inside invisible, our cloak guides the light to penetrate the core of the cloak but without striking some region of the cloak shell - the so called folded region. Full wave analytical calculation shows that this cloak will lead to a scattering enhancement instead of scattering reduction in contrast to the traditional cloak; the scattered field distribution can also be changed as if the scatterer is moved from its original position. Such interesting phenomenon indicates the proposed cloak can be used to disguise the true information of the object, e.g. the position, the size, etc, and further mislead the observer and avoid being detected.
Near-inertial-wave scattering by random flows
Danioux, Eric; Vanneste, Jacques
2016-07-01
The impact of a turbulent flow on wind-driven oceanic near-inertial waves is examined using a linearized shallow-water model of the mixed layer. Modeling the flow as a homogeneous and stationary random process with spatial scales comparable to the wavelengths, we derive a transport (or kinetic) equation governing wave-energy transfers in both physical and spectral spaces. This equation describes the scattering of the waves by the flow which results in a redistribution of energy between waves with the same frequency (or, equivalently, with the same wave number) and, for isotropic flows, in the isotropization of the wave field. The time scales for the scattering and isotropization are obtained explicitly and found to be of the order of tens of days for typical oceanic parameters. The predictions inferred from the transport equation are confirmed by a series of numerical simulations. Two situations in which near-inertial waves are strongly influenced by flow scattering are investigated through dedicated nonlinear shallow-water simulations. In the first, a wave packet propagating equatorward as a result from the β effect is shown to be slowed down and dispersed both zonally and meridionally by scattering. In the second, waves generated by moving cyclones are shown to be strongly disturbed by scattering, leading again to an increased dispersion.
Rayleigh wave scattering at the foot of a mountain
P. S. Deshwal
1987-01-01
Full Text Available A theoretical study of scattering of seismic waves at the foot of a mountain is discussed here. A mountain of an arbitrary shape and of width a (0≤x≤a, z=0 in the surface of an elastic solid medium (z≥0 is hit by a Rayleigh wave. The method of solution is the technique of Wiener and Hopf. The reflected, transmitted and scattered waves are obtained by inversion of Fourier transforms. The scattered waves behave as decaying cylindrical waves at distant points and have a large amplitude near the foot of the mountain. The transmitted wave decreases exponentially as its distance from the other end of the mountain increases.
王舸; 曹金祥; 宋法伦
2003-01-01
Based on the Born approximation, we reduce the approximate analysis solution to the normal and oblique incident electromagnetic wave scattering from the weakly ionized plasma layer shielded by a conducting surface. The solution is closely related to the density profile of the plasma layer. Employing the self-consistent base function, we yield the optimal density profile for the nonuniform plasma layer with the frequencies of incident electromagnetic waves ranging from 4-10 GHz. Numerical studies illustrate the optimal density profile can "survive" wide ranges of the plasma parameters. Different from the validity condition for the Wenzell-Kramers-Brillouin-Jeffreys (WKBJ) approximation, the Born approximation is feasible even if the scale length is smaller than the wavelength.Therefore, the Born approximation is universal against the scattering problem from the weakly ionized plasma.
The EMCC / DARPA Massively Parallel Electromagnetic Scattering Project
Woo, Alex C.; Hill, Kueichien C.
1996-01-01
The Electromagnetic Code Consortium (EMCC) was sponsored by the Advanced Research Program Agency (ARPA) to demonstrate the effectiveness of massively parallel computing in large scale radar signature predictions. The EMCC/ARPA project consisted of three parts.
Ring Current Ion Coupling with Electromagnetic Ion Cyclotron Waves
Khazanov, George V.
2002-01-01
A new ring current global model has been developed for the first time that couples the system of two kinetic equations: one equation describes the ring current (RC) ion dynamic, and another equation describes wave evolution of electromagnetic ion cyclotron waves (EMIC). The coupled model is able to simulate, for the first time self-consistently calculated RC ion kinetic and evolution of EMIC waves that propagate along geomagnetic field lines and reflect from the ionosphere. Ionospheric properties affect the reflection index through the integral Pedersen and Hall coductivities. The structure and dynamics of the ring current proton precipitating flux regions, intensities of EMIC, global RC energy balance, and some other parameters will be studied in detail for the selected geomagnetic storms. The space whether aspects of RC modelling and comparison with the data will also be discussed.
Nonlinear electromagnetic waves in a degenerate electron-positron plasma
El-Labany, S.K., E-mail: skellabany@hotmail.com [Department of Physics, Faculty of Science, Damietta University, New Damietta (Egypt); El-Taibany, W.F., E-mail: eltaibany@hotmail.com [Department of Physics, College of Science for Girls in Abha, King Khalid University, Abha (Saudi Arabia); El-Samahy, A.E.; Hafez, A.M.; Atteya, A., E-mail: ahmedsamahy@yahoo.com, E-mail: am.hafez@sci.alex.edu.eg, E-mail: ahmed_ateya2002@yahoo.com [Department of Physics, Faculty of Science, Alexandria University, Alexandria (Egypt)
2015-08-15
Using the reductive perturbation technique (RPT), the nonlinear propagation of magnetosonic solitary waves in an ultracold, degenerate (extremely dense) electron-positron (EP) plasma (containing ultracold, degenerate electron, and positron fluids) is investigated. The set of basic equations is reduced to a Korteweg-de Vries (KdV) equation for the lowest-order perturbed magnetic field and to a KdV type equation for the higher-order perturbed magnetic field. The solutions of these evolution equations are obtained. For better accuracy and searching on new features, the new solutions are analyzed numerically based on compact objects (white dwarf) parameters. It is found that including the higher-order corrections results as a reduction (increment) of the fast (slow) electromagnetic wave amplitude but the wave width is increased in both cases. The ranges where the RPT can describe adequately the total magnetic field including different conditions are discussed. (author)
Nonlinear Electromagnetic Waves in a Degenerate Electron-Positron Plasma
El-Labany, S. K.; El-Taibany, W. F.; El-Samahy, A. E.; Hafez, A. M.; Atteya, A.
2015-08-01
Using the reductive perturbation technique (RPT), the nonlinear propagation of magnetosonic solitary waves in an ultracold, degenerate (extremely dense) electron-positron (EP) plasma (containing ultracold, degenerate electron, and positron fluids) is investigated. The set of basic equations is reduced to a Korteweg-de Vries (KdV) equation for the lowest-order perturbed magnetic field and to a KdV type equation for the higher-order perturbed magnetic field. The solutions of these evolution equations are obtained. For better accuracy and searching on new features, the new solutions are analyzed numerically based on compact objects (white dwarf) parameters. It is found that including the higher-order corrections results as a reduction (increment) of the fast (slow) electromagnetic wave amplitude but the wave width is increased in both cases. The ranges where the RPT can describe adequately the total magnetic field including different conditions are discussed.
Berginc, G.
2016-08-01
In this paper, we consider the coherent component of the electromagnetic wave field inside random media. The subject of our interest concerns a random medium, consisting of a statistical ensemble of different scattering species and artificial material structures developed on base of dielectric or metallic resonant or non-resonant particles. The starting point of our theory is the multiple scattering theory, the averaged electric field satisfies a Dyson equation with a mass operator related to the effective dielectric permittivity of the homogenized structure. Quantum multiple scattering theory has been transposed into this electromagnetic case. We give a formal solution for the mass operator by introducing the T-matrix formalism. We show that the T-matrix satisfies a Lippman-Schwinger equation. Then, we introduce the Quasi-Crystalline Coherent Potential Approximation (QC-CPA), which takes into account the correlation between the particles with a pair-distribution function. The mass operator includes geometric effects, caused by resonant behavior due to the shape and size of particles, cluster effects because of correlations between particles. Significant modifications of particle scattering properties can be observed.
Multichannel analysis of forward scattered body waves
Neal, Scott Lawrence
We describe a series of innovations which are the basis for a multichannel approach to direct imaging of forward scattered body waves recorded on broadband seismic arrays. The foundation is a method through which the irregularly sampled observed seismograms are interpolated onto an arbitrarily fine grid by means of a convolution between a spatial window function and the actual station locations. The result is a weighted stack which employs all the data to compute a robust and stable multichannel estimate of the wavefield. Deconvolution of the stacked data is shown to be equivalent to a multichannel deconvolution, with spatially variable weights equal to those used in stacking. Application to data from the Lodore array in Colorado and Wyoming shows variations in crustal structure across the array and also images upper mantle discontinuities. A second innovation focuses on the design of deconvolution operators that account for the loss of high frequency components of P-to- S conversions. Two variants are presented, the first increases linearly with P-to-S lag time, the second is based on convolutional quelling and a t* attenuation model. Both methods account for the high attentuation of S waves in the upper mantle. The quelling approach however, has two advantages; it is physically based, and it provides a unified framework for the combination of stacking and deconvolution. We apply multichannel stacking to derive three quantities from the observed data and the associated receiver functions: (1) correlation between stacks of the entire array and local subarray stacks, (2) RMS amplitude of the receiver functions, and (3) Pms-to- P amplitude variations. Application of these attributes to data from recent broadband array deployments in southern Africa, Colorado and Wyoming, and the Tien Shan of central Asia shows these attributes to be highly correlated with the geology of the study areas and to be indicative of major lithospheric discontinuities beneath an array
Electromagnetic Cyclotron Waves in the Solar Wind: Wind Observation and Wave Dispersion Analysis
Jian, L. K.; Moya, P. S.; Vinas, A. F.; Stevens, M.
2016-01-01
Wind observed long-lasting electromagnetic cyclotron waves near the proton cyclotron frequency on 11 March 2005, in the descending part of a fast wind stream. Bi-Maxwellian velocity distributions are fitted for core protons, beam protons, and alpha-particles. Using the fitted plasma parameters we conduct kinetic linear dispersion analysis and find ion cyclotron and/or firehose instabilities grow in six of 10 wave intervals. After Doppler shift, some of the waves have frequency and polarization consistent with observation, thus may be correspondence to the cyclotron waves observed.
Inversion of an Atomic Wave Packet in a Circularly Polarized Electromagnetic Wave
ZENG Gao-Jian
2001-01-01
We study behavior of an atomic wave packet in a circularly polarized electromagnetic wave, and particularly calculate the atomic inversion of the wave packet. A general method of calculation is presented. The results are interesting. For example, if the wave packet is very narrow or/and the interaction is very strong, no matter the atom is initially in its ground state or excited state, the atomic inversion approaches zero as time approaches infinity. If the atom is initially in its ground state and excited state with the probability 1/2 respectively, and if the momentum density is an even function, then the atomic inversion equals zero at any time.``
Spectroscopy of candidate electromagnetic counterparts to gravitational wave sources
Steele, Iain A; Piascik, Andrzej S
2016-01-01
A programme of worldwide, multi-wavelength electromagnetic follow-up of sources detected by gravitational wave detectors is in place. Following the discovery of GW150914 and GW151226, wide field imaging of their sky localisations identified a number of candidate optical counterparts which were then spectrally classified. The majority of candidates were found to be supernovae at redshift ranges similar to the GW events and were thereby ruled out as a genuine counterpart. Other candidates ruled out include AGN and solar system objects. Given the GW sources were black hole binary mergers, the lack of an identified electromagnetic counterpart is not surprising. However the observations show that is it is possible to organise and execute a campaign that can eliminate the majority of potential counterparts. Finally we note the existence of a "classification gap" with a significant fraction of candidates going unclassified.
Electromagnetic Counterparts of Gravitational Wave Sources : Mergers of Compact Objects
Kamble, Atish
2016-01-01
Mergers of compact objects are considered prime sources of gravitational waves (GW) and will soon be targets of GW observatories such as the Advanced-LIGO, VIRGO etc. Finding electromagnetic counterparts of these GW sources will be important to understand their nature. We discuss possible electromagnetic signatures of the mergers. We show that the BH-BH mergers could have luminosities which exceed Eddington luminosity from unity to several orders of magnitude depending on the masses of the merging BHs. As a result these mergers could be explosive, release up to $10^{51}$ erg of energy and shine as radio transients. At any given time we expect about a few such transients in the sky at GHz frequencies which could be detected out to about 300 Mpc. It has also been argued that these radio transients would look alike radio supernovae with comparable detection rates. Multi-band follow up could, however, distinguish between the mergers and supernovae.
Rydberg Wave Packets and Half-Cycle Electromagnetic Pulses
Raman, Chandra S.
1998-05-01
This dissertation summarizes an examination of the dynamics of atomic Rydberg wave packets with coherent pulses of THz electromagnetic radiation consisting of less than a single cycle of the electric field. The bulk of the energy is contained in just a half-cycle. Previous work ( R. Jones, D. You, and P. Bucksbaum, ``Ionization of Rydberg atoms by subpicosecond half-cycle electromagnetic pulses,'' Phys. Rev. Lett.), vol. 70, 1993. had shown how these half-cycle pulses can be used to ionize the highly excited states of an atom, and that a classical view of electronic motion in the atom explains the ionization mechanism. To further probe the boundary between classical trajectories and quantum mechanics, in this work I investigate dynamical combinations of Rydberg states, or Rydberg wave packets, and how they ionize under the influence of a half-cycle electromagnetic pulse. With time-domain techniques I am able to extract the dynamics of the wave packet from the ionization rate, and to observe wave packet motion in both the electronic radial ( C. Raman, C. Conover, C. Sukenik, and P. Bucksbaum, ``Ionization of Rydberg wavepackets by sub-picosecond half-cycle electromagnetic pulses,'' Phys. Rev. Lett.), vol. 76, 1996.and angular ( C. Raman, T. Weinacht, and P. Bucksbaum, ``Stark wavepackets viewed with half cycle pulses.'' Phys. Rev. A), vol. 55, No. 6, 1997. coordinates. This is the first time a wavepacket technique has been used to view electron motion everywhere on its trajectory, and not just at the nucleus. This is the principal feature of half-cycle pulse ionization. Semiclassical ideas of ionization in conjunction with quantum descriptions of the wave packet, are capable of reproducing the main trends in the data, and in the absence of a rigorous model I rely on these. Experiments of this nature provide examples of the ongoing effort to use the coherent properties of radiation to control electronic motion in an atom, as well as to probe the boundaries between
Explaining Electromagnetic Plane Waves in a Vacuum at the Introductory Level
Allred, Clark L.; Della-Rose, Devin J.; Flusche, Brian M.; Kiziah, Rex R.; Lee, David J.
2010-01-01
A typical introduction to electromagnetic waves in vacuum is illustrated by the following quote from an introductory physics text: "Maxwell's equations predict that an electromagnetic wave consists of oscillating electric and magnetic fields. The changing fields induce each other, which maintains the propagation of the wave; a changing electric…
Surface waves in three-dimensional electromagnetic composites and their effect on homogenization.
Xiong, Xiaoyan Y Z; Jiang, Li Jun; Markel, Vadim A; Tsukerman, Igor
2013-05-06
Reflection and transmission of electromagnetic waves at the boundaries of periodic composites (electromagnetic/optical metamaterials) depends in general on both bulk and surface waves. We investigate the interplay of these two contributions using three-dimensional full-wave numerical simulations and a recently developed non-asymptotic homogenization theory.
Explaining Electromagnetic Plane Waves in a Vacuum at the Introductory Level
Allred, Clark L.; Della-Rose, Devin J.; Flusche, Brian M.; Kiziah, Rex R.; Lee, David J.
2010-01-01
A typical introduction to electromagnetic waves in vacuum is illustrated by the following quote from an introductory physics text: "Maxwell's equations predict that an electromagnetic wave consists of oscillating electric and magnetic fields. The changing fields induce each other, which maintains the propagation of the wave; a changing electric…
GUO Bin
2009-01-01
Based on the electromagnetic theory and by using an analytical technique-the transfer matrix method,the obliquely incident electromagnetic waves propagating in one-dimension plasma photonic crystals is studied.The dispersion relations for both the P-polarization waves and S-polarization waves,depending on the plasma density,plasma thickness and period,are discussed.
A Wave Scattering Theory of Solar Seismic Power Haloes
Hanasoge, Shravan M
2009-01-01
Spatial maps of the high-pass frequency filtered time-averaged root-mean-squared (RMS) Doppler velocities tend to show substantial decrements within regions of strong field and curiously, randomly distributed patches of enhancement in the vicinity. We propose that these haloes or enhancements are a consequence of magnetic-field-induced mode mixing (scattering), resulting in the preferential powering of waves that possess strong surface velocity signatures (i.e. scattering from low to high wavenumbers). Evidently, this process can occur in the reverse, and therefore in order to determine if the haloes are indeed caused by mode mixing, we must answer the question: {\\it how are acoustic waves scattered by magnetic fields?} Through simulations of the interactions between waves and sunspots and models of plage, we demonstrate that the high to low modal order scattering channels are favoured. With increasing frequency and consequently, decreasing wavelength, a growing number of modes are scattered by the sunspot, t...
Numerical simulation of scattering wave imaging in a goaf
Li Juanjuan; Pan Dongming; Liao Taiping; Hu Mingshun; Wang Linlin
2011-01-01
Goafs are threats to safe mining. Their imaging effects or those of other complex geological bodies are often poor in conventional reflected wave images. Hence, accurate detection of goals has become an important problem, to be solved with a sense of urgency. Based on scattering theory, we used an equivalent offset method to extract Common Scattering Point gathers, in order to analyze different scattering wave characteristics between Common Scattering Point and Common Mid Point gathers and to compare stack and migration imaging effects. Our research results show that the scattering wave imaging method is more efficient than the conventional imaging method and is therefore a more effective imaging method for detecting goats and other complex geological bodies. It has important implications for safe mining procedures and infrastructures.
Effect of EMIC Wave Normal Angle Distribution on Relativistic Electron Scattering
Gamayunov, K. V.; Khazanov, G. V.
2006-01-01
The flux level of outer-zone relativistic electrons (above 1 MeV) is extremely variable during geomagnetic storms, and controlled by a competition between acceleration and loss. Precipitation of these electrons due to resonant pitch-angle scattering by electromagnetic ion cyclotron (EMIC) waves is considered one of the major loss mechanisms. This mechanism was suggested in early theoretical studies more than three decades ago. However, direct experimental evidence of the wave role in relativistic electrons precipitation is difficult to obtain because of lack of concurrent measurements of precipitating electrons at low altitudes and the waves in a magnetically conjugate equatorial region. Recently, the data from balloon-borne X-ray instruments provided indirect but strong evidence on an efficiency of the EMIC wave induced loss for the outer-zone relativistic electrons. These observations stimulated theoretical studies that, particularly, demonstrated that EMIC wave induced pitch-angle diffusion of MeV electrons can operate in the strong diffusion limit and this mechanism can compete with relativistic electron depletion caused by the Dst effect during the initial and main phases of storm. Although an effectiveness of relativistic electron scattering by EMIC waves depends strongly on the wave spectral properties, the most favorable assumptions regarding wave characteristics has been made in all previous theoretical studies. Particularly, only quasi field-aligned EMIC waves have been considered as a driver for relativistic electron loss. At the same time, there is growing experimental and theoretical evidence that these waves can be highly oblique; EMIC wave energy can occupy not only the region of generation, i.e. the region of small wave normal angles, but also the entire wave normal angle region, and even only the region near 90 degrees. The latter can dramatically change he effectiveness of relativistic electron scattering by EMIC waves. In the present study, we
Infrared limit in external field scattering
Herdegen, Andrzej
2012-01-01
Scattering of electrons/positrons by external classical electromagnetic wave packet is considered in infrared limit. In this limit the scattering operator exists and produces physical effects, although the scattering cross-section is trivial.
Surface waves propagation on a turbulent flow forced electromagnetically
Gutiérrez, Pablo
2015-01-01
We study the propagation of monochromatic surface waves on a turbulent flow. The flow is generated in a layer of liquid metal by an electromagnetic forcing. This forcing creates a quasi two-dimensional (2D) turbulence with strong vertical vorticity. The turbulent flow contains much more energy than the surface waves. In order to focus on the surface wave, the deformations induced by the turbulent flow are removed. This is done by performing a coherent phase averaging. For wavelengths smaller than the forcing lengthscale, we observe a significant increase of the wavelength of the propagating wave that has not been reported before. We suggest that it can be explained by the random deflection of the wave induced by the velocity gradient of the turbulent flow. Under this assumption, the wavelength shift is an estimate of the fluctuations of deflection angle. The local measurements of the wave frequency far from the wavemaker do not reveal such systematic behavior, although a small shift is measured. Finally we qu...
Zhang, Yin; Liang, Lanju; Yang, Jing; Feng, Yijun; Zhu, Bo; Zhao, Junming; Jiang, Tian; Jin, Biaobing; Liu, Weiwei
2016-05-01
Suppressing specular electromagnetic wave reflection or backward radar cross section is important and of broad interests in practical electromagnetic engineering. Here, we present a scheme to achieve broadband backward scattering reduction through diffuse terahertz wave reflection by a flexible metasurface. The diffuse scattering of terahertz wave is caused by the randomized reflection phase distribution on the metasurface, which consists of meta-particles of differently sized metallic patches arranged on top of a grounded polyimide substrate simply through a certain computer generated pseudorandom sequence. Both numerical simulations and experimental results demonstrate the ultralow specular reflection over a broad frequency band and wide angle of incidence due to the re-distribution of the incident energy into various directions. The diffuse scattering property is also polarization insensitive and can be well preserved when the flexible metasurface is conformably wrapped on a curved reflective object. The proposed design opens up a new route for specular reflection suppression, and may be applicable in stealth and other technology in the terahertz spectrum.
Diffusive and localization behavior of electromagnetic waves in a two-dimensional random medium.
Wang, Ken Kang-Hsin; Ye, Zhen
2003-10-01
In this paper, we discuss the transport phenomena of electromagnetic waves in a two-dimensional random system which is composed of arrays of electrical dipoles, following the model presented earlier by Erdogan et al. [J. Opt. Soc. Am. B 10, 391 (1993)]. A set of self-consistent equations is presented, accounting for the multiple scattering in the system, and is then solved numerically. A strong localization regime is discovered in the frequency domain. The transport properties within, near the edge of, and nearly outside the localization regime are investigated for different parameters such as filling factor and system size. The results show that within the localization regime, waves are trapped near the transmitting source. Meanwhile, the diffusive waves follow an intuitive but expected picture. That is, they increase with traveling path as more and more random scattering incurs, followed by a saturation, then start to decay exponentially when the travelling path is large enough, signifying the localization effect. For the cases where the frequencies are near the boundary of or outside the localization regime, the results of diffusive waves are compared with the diffusion approximation, showing less encouraging agreement as in other systems [Asatryan et al., Phys. Rev. E 67, 036605 (2003)].
Guede, Jose Ricardo Abalde
1995-11-01
The aim of this work is to study the nonlinear dynamics of Langmuir and electromagnetic waves in space plasmas. Firstly, the generalized Zakharov equations are derived which are used to study the hybrid parametric instability involving the generation of daughter Langmuir, electromagnetic and ion-acoustic waves induced by two counter-propagating Langmuir pump waves with different amplitudes based on a coupled dispersion relation. Secondly, starting from the generalized Zakharov equations the linear and nonlinear coupled mode theories of three-wave and four-wave parametric interactions are developed, respectively. In three-waves processes, a Langmuir wave decays into another Langmuir wave and an ion-acoustic wave (electrostatic parametric decay) or into an electromagnetic wave and an ion-acoustic wave (electromagnetic parametric decay). In four-wave (modulational) processes, the interaction involves two wave triplets: in the decay triplet a pump wave couples with a low-frequency wave to generate a Stokes wave, and in the fusion triplets: in the decay triplet a pump wave couples with a low-frequency wave to generate a Stokes wave, and in the fusion triplet the coupling of a pump wave with a low-frequency wave generate an anti-Stokes wave. These modulational processes are convective and resonant processes wherein the low-frequency modes are Eigenmodes of plasma and are known as the stimulated modulational processes. Four such processes are investigated in this thesis: two with Langmuir pump waves (electrostatic and hybrid stimulated modulation processes) and the other two with electromagnetic pump waves (stimulated modulation Brillouin scattering and electromagnetic stimulated modulation process). Applications of the theoretical results in space plasmas are discussed. In particular, it is shown that the electrostatic and electromagnetic parametric decay processes of Langmuir waves can model the generation and modulation of radio emissions and Langmuir waves in the
Particle Scattering off of Right-Handed Dispersive Waves
Schreiner, Cedric; Spanier, Felix
2016-01-01
Resonant scattering of fast particles off low frequency plasma waves is a major process determining transport characteristics of energetic particles in the heliosphere and contributing to their acceleration. Usually, only Alfv\\'en waves are considered for this process, although dispersive waves are also present throughout the heliosphere. We investigate resonant interaction of energetic electrons with dispersive, right-handed waves. For the interaction of particles and a single wave a variable transformation into the rest frame of the wave can be performed. Here, wellestablished analytic models derived in the framework of magnetostatic quasi-linear theory (QLT) can be used as a reference to validate simulation results. However, this approach fails as soon as several dispersive waves are involved. Based on analytic solutions modeling the scattering amplitude in the magnetostatic limit, we present an approach to modify these equations for the use in the plasma frame. Thereby we aim at a description of particle ...
Vladimirov, S V
2015-01-01
The dielectric properties of complex plasma containing either metal or dielectric spherical inclusions (macroparticles, dust) are investigated. We focus on surface plasmon resonances on the macroparticle surfaces and their effect on electromagnetic wave propagation. It is demonstrated that the presence of surface plasmon oscillations significantly modifies plasma electromagnetic properties by resonances and cutoffs in the effective permittivity. This leads to related branches of electromagnetic waves and to the wave band gaps. The results are discussed in the context of dusty plasma experiments.
RF wave propagation and scattering in turbulent tokamak plasmas
Horton, W., E-mail: wendell.horton@gmail.com; Michoski, C. [Institute for Fusion Studies, The University of Texas at Austin, Austin, TX 78654 (United States); Peysson, Y.; Decker, J. [CEA, IRFM, 13108, Saint-Paul, Durance Cedex (France)
2015-12-10
Drift wave turbulence driven by the steep electron and ion temperature gradients in H-mode divertor tokamaks produce scattering of the RF waves used for heating and current drive. The X-ray emission spectra produced by the fast electrons require the turbulence broaden RF wave spectrum. Both the 5 GHz Lower Hybrid waves and the 170 GHz electron cyclotron [EC] RF waves experience scattering and diffraction by the electron density fluctuations. With strong LHCD there are bifurcations in the coupled turbulent transport dynamics giving improved steady-state confinement states. The stochastic scattering of the RF rays makes the prediction of the distribution of the rays and the associated particle heating a statistical problem. Thus, we introduce a Fokker-Planck equation for the probably density of the RF rays. The general frame work of the coupled system of coupled high frequency current driving rays with the low-frequency turbulent transport determines the profiles of the plasma density and temperatures.
Scattering of Lamb waves in a composite plate
Bratton, Robert; Datta, Subhendu; Shah, Arvind
1991-01-01
A combined analytical and finite element technique is developed to gain a better understanding of the scattering of elastic waves by defects. This hybrid method is capable of predicting scattered displacements from arbitrary shaped defects as well as inclusions of different material. The continuity of traction and displacements at the boundaries of the two areas provided the necessary equations to find the nodal displacements and expansion coefficients. Results clearly illustrate the influence of increasing crack depth on the scattered signal.
Scattering of a CW plane wave by a pulse
Trivett, D. H.; Rogers, P. H.
1982-05-01
A procedure similar to the CW crossed-beam calculation of Ingard and Pridmore-Brown (1956) is used to calculate the far field scattered sound pressure of a pulse interacting with a plane wave. The scattered sound is found to be at neither the sum nor the difference frequency. It is suggested that this type of interaction is ideal for investigating the scattering of sound by sound, and a numerical solution is used to discuss the general features of the nearfield waveform.
Integral Equation Methods for Electromagnetic and Elastic Waves
Chew, Weng; Hu, Bin
2008-01-01
Integral Equation Methods for Electromagnetic and Elastic Waves is an outgrowth of several years of work. There have been no recent books on integral equation methods. There are books written on integral equations, but either they have been around for a while, or they were written by mathematicians. Much of the knowledge in integral equation methods still resides in journal papers. With this book, important relevant knowledge for integral equations are consolidated in one place and researchers need only read the pertinent chapters in this book to gain important knowledge needed for integral eq
Plane-Wave Propagation in Electromagnetic PQ Medium
Lindell, Ismo V
2015-01-01
Two basic classes of electromagnetic media, recently defined and labeled as those of P media and Q media, are generalized to define the class of PQ media. Plane wave propagation in the general PQ medium is studied and the quartic dispersion equation is derived in analytic form applying four-dimensional dyadic formalism. The result is verified by considering various special cases of PQ media for which the dispersion equation is known to decompose to two quadratic equations or be identically satisfied (media with no dispersion equation). As a numerical example, the dispersion surface of a PQ medium with non-decomposable dispersion equation is considered.
Broadband unidirectional behavior of electromagnetic waves based on transformation optics
Zang, Xiaofei; Zhu, Yiming; Ji, Xuebin; Chen, Lin; Hu, Qing; Zhuang, Songlin
2017-01-01
High directive antennas are fundamental elements for microwave communication and information processing. Here, inspired by the method of transformation optics, we propose and demonstrate a transformation medium to control the transmission path of a point source, resulting in the unidirectional behavior of electromagnetic waves (directional emitter) without any reflectors. The network of inductor-capacitor transmission lines is designed to experimentally realize the transformation medium. Furthermore, the designed device can work in a broadband frequency range. The unidirectional-manner-based device demonstrated in this work will be an important step forward in developing a new type of directive antennas.
Spectrum of classes of point emitters of electromagnetic wave fields.
Castañeda, Román
2016-09-01
The spectrum of classes of point emitters has been introduced as a numerical tool suitable for the design, analysis, and synthesis of non-paraxial optical fields in arbitrary states of spatial coherence. In this paper, the polarization state of planar electromagnetic wave fields is included in the spectrum of classes, thus increasing its modeling capabilities. In this context, optical processing is realized as a filtering on the spectrum of classes of point emitters, performed by the complex degree of spatial coherence and the two-point correlation of polarization, which could be implemented dynamically by using programmable optical devices.
Electromagnetic form factors of the Δ with D-waves
Ramalho, Gilberto T.F. [CFTP, Institute Superior Tecnico, Lisbon (Portugal); Pena, Maria Teresa [CFTP, Institute Superior Tecnico, Lisbon (Portugal); Gross, Franz L. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2010-06-01
The electromagnetic form factors of the Δ baryon are evaluated within the framework of a covariant spectator quark model, where S and D-states are included in the Δ wave function. We predict all the four Δ multipole form factors: the electric charge G_{E0}, the magnetic dipole G_{M1}, the electric quadrupole G_{E2} and the magnetic octupole G_{M3}. We compare our predictions with other theoretical calculations. Our results are compatible with the available experimental data and recent lattice QCD data.
Attractors and chaos of electron dynamics in electromagnetic standing waves
Esirkepov, Timur Zh. [QuBS, Japan Atomic Energy Agency, Kizugawa, Kyoto 619-0215 (Japan); Bulanov, Stepan S. [University of California, Berkeley, CA 94720 (United States); Koga, James K.; Kando, Masaki; Kondo, Kiminori [QuBS, Japan Atomic Energy Agency, Kizugawa, Kyoto 619-0215 (Japan); Rosanov, Nikolay N. [Vavilov State Optical Institute, Saint-Petersburg 199034 (Russian Federation); Korn, Georg [ELI Beamline Facility, Institute of Physics, Czech Academy of Sciences, Prague 18221 (Czech Republic); Bulanov, Sergei V., E-mail: bulanov.sergei@jaea.go.jp [QuBS, Japan Atomic Energy Agency, Kizugawa, Kyoto 619-0215 (Japan)
2015-09-25
In an electromagnetic standing wave formed by two super-intense colliding laser pulses, radiation reaction totally modifies the electron motion. The quantum corrections to the electron motion and the radiation reaction force can be independently small or large, depending on the laser intensity and wavelength, thus dividing the parameter space into 4 domains. The electron motion evolves to limit cycles and strange attractors when radiation reaction dominates. This creates a new framework for high energy physics experiments on the interaction of energetic charged particle beams and colliding super-intense laser pulses.
Electromagnetic form factors of the Delta with D-waves
Ramalho, G; Gross, Franz
2010-01-01
The electromagnetic form factors of the Delta baryon are evaluated within the framework of a covariant spectator quark model, where S and D-states are included in the $\\Delta$ wave function. We predict all the four Delta multipole form factors: the electric charge GE0, the magnetic dipole GM1, the electric quadrupole GE2 and the magnetic octupole GM3. We compare our predictions with other theoretical calculations. Our results are compatible with the available experimental data and recent lattice QCD data.
Motion of a charge in a superstrong electromagnetic standing wave
Esirkepov, Timur Z.; Bulanov, Stepan S.; Koga, James K.; Kando, Masaki; Kondo, Kiminori; Rosanov, Nikolay N.; Korn, Georg; Bulanov, Sergei V.
2015-05-01
Radiation reaction radically influences the electron motion in an electromagnetic standing wave formed by two super-intense colliding laser pulses. Depending on the laser intensity and wavelength, the quantum corrections to the electron motion and the radiation reaction force can be independently small or large, thus dividing the parameter space into 4 regions. When radiation reaction dominates, the electron motion evolves to limit cycles and strange attractors. This creates a new framework for high energy physics experiments on the interaction of energetic charged particle beams and colliding super-intense laser pulses.
Attractors and chaos of electron dynamics in electromagnetic standing waves
Esirkepov, Timur Zh.; Bulanov, Stepan S.; Koga, James K.; Kando, Masaki; Kondo, Kiminori; Rosanov, Nikolay N.; Korn, Georg; Bulanov, Sergei V.
2015-09-01
In an electromagnetic standing wave formed by two super-intense colliding laser pulses, radiation reaction totally modifies the electron motion. The quantum corrections to the electron motion and the radiation reaction force can be independently small or large, depending on the laser intensity and wavelength, thus dividing the parameter space into 4 domains. The electron motion evolves to limit cycles and strange attractors when radiation reaction dominates. This creates a new framework for high energy physics experiments on the interaction of energetic charged particle beams and colliding super-intense laser pulses.
Electromagnetic Form Factors of the Nucleon and Compton Scattering
Charles Hyde-Wright; Cornelis De Jager
2004-12-01
We review the experimental and theoretical status of elastic electron scattering and elastic low-energy photon scattering (with both real and virtual photons) from the nucleon. As a consequence of new experimental facilities and new theoretical insights, these subjects are advancing with unprecedented precision. These reactions provide many important insights into the spatial distributions and correlations of quarks in the nucleon.
Collision of arbitrary strong gravitational and electromagnetic waves in the expanding universe
Alekseev, G A
2015-01-01
A completely analytical model of the process of collision and nonlinear interaction of gravitational and electromagnetic soliton wave pulses and strong electromagnetic travelling waves of arbitrary profiles propagating in the expanding universe (symmetric Kasner space-time) is presented. In contrast to intuitive expectations that rather strong travelling waves can destroy the soliton, it occurs that the soliton survives during its interaction with electromagnetic wave of arbitrary amplitude and profile, but its parameters begin to evolve under the influence of this interaction. If a travelling electromagnetic wave possesses a finite duration, the soliton parameters after interaction take constant values again, but these values in general are different from those before the interaction. Based on exact solutions of Einstein - Maxwell equations, our model demonstrates a series of nonlinear phenomena, such as (a) creation of gravitational waves in the collision of two electromagnetic waves, (b) creation of electr...
Selective generation of ultrasonic Lamb waves by electromagnetic acoustic transducers
Li, Ming-Liang; Deng, Ming-Xi; Gao, Guang-Jian
2016-12-01
In this paper, we describe a modal expansion approach for the analysis of the selective generation of ultrasonic Lamb waves by electromagnetic acoustic transducers (EMATs). With the modal expansion approach for waveguide excitation, an analytical expression of the Lamb wave’s mode expansion coefficient is deduced, which is related to the driving frequency and the geometrical parameters of the EMAT’s meander coil, and lays a theoretical foundation for exactly analyzing the selective generation of Lamb waves with EMATs. The influences of the driving frequency on the mode expansion coefficient of ultrasonic Lamb waves are analyzed when the EMAT’s geometrical parameters are given. The numerical simulations and experimental examinations show that the ultrasonic Lamb wave modes can be effectively regulated (strengthened or restrained) by choosing an appropriate driving frequency of EMAT, with the geometrical parameters given. This result provides a theoretical and experimental basis for selectively generating a single and pure Lamb wave mode with EMATs. Project supported by the National Natural Science Foundation of China (Grant Nos. 11474361 and 11274388).
Are Ring Current Ions Lost in Electromagnetic Ion Cyclotron Wave Dispersion Relation?
Khazanov, G. V.; Gamayunov, K. V.
2006-01-01
Electromagnetic ion cyclotron (EMIC) waves are widely observed in the inner and outer magnetosphere, at geostationary orbit, at high latitudes along the plasmapause, and at the ionospheric altitudes. Interaction of the Ring Current (RC) ions and EMIC waves causes ion scattering into the loss cone and leads to decay of the RC, especially during the main phase of storms when the RC decay times of about one hour or less are observed. The oblique EMIC waves damp due to Landau resonance with the thermal plasmaspheric electrons, and subsequent transport of the dissipating wave energy into the ionosphere below causes an ionosphere temperature enhancement. Induced scattering of these waves by the plasmaspheric thermal ions leads to ion temperature enhancement, and forms a so-called hot zone near the plasmapause where the temperature of core plasma ions can reach tens of thousands of degrees. Relativistic electrons in the outer radiation belt also interact well with the EMIC waves, and during the main and/or recovery phases of the storms these electrons can easily be scattered into the loss cone over a time scale from several hours to a day. The plasma density distribution in the magnetosphere and the ion content play a critical role in EMIC wave generation and propagation, but the wave dispersion relation in the known RC-EMIC wave interaction models is assumed to be determined by the thermal plasma distribution only. In these models, the modification of the EMIC wave dispersion relation caused by the RC ions is not taken into account, and the RC ions are only treated as a source of free energy in order to generate EMIC waves. At the same time, the RC ions can dominate the thermal magnetospheric content in the night MLT sector at great L shells during the main and/or recovery storm phase. In this study, using our self-consistent RC-EMIC wave model [Khazanov et al., 2006], we simulate the May 1998 storm in order to quantify the global EMIC wave redistribution caused by
Effect of Ring Current Ions on Electromagnetic Ion Cyclotron Wave Dispersion Relation
Gamayunov, K. V.; Khazanov, G. V.
2006-01-01
Electromagnetic ion cyclotron (EMIC) waves are widely observed in the inner and outer magnetosphere, at geostationary orbit, at high latitudes along the plasmapause, and at the ionospheric altitudes. Interaction of the Ring Current (RC) ions and EMIC waves causes ion scattering into the loss cone and leads to decay of the RC, especially during the main phase of storms when the RC decay times of about one hour or less are observed. The oblique EMIC waves damp due to Landau resonance with the thermal plasmaspheric electrons, and subsequent transport of the dissipating wave energy into the ionosphere below causes an ionosphere temperature enhancement. Induced scattering of these waves by the plasmaspheric thermal ions leads to ion temperature enhancement, and forms a so-called hot zone near the plasmapause where the temperature of core plasma ions can reach tens of thousands of degrees. Relativistic electrons in the outer radiation belt also interact well with the EMIC waves, and during the main and/or recovery phases of the storms these electrons can easily be scattered into the loss cone over a time scale from several hours to a day. The plasma density distribution in the magnetosphere and the ion content play a critical role in EMIC wave generation and propagation, but the wave dispersion relation in the known RC-EMIC wave interaction models is assumed to be determined by the thermal plasma distribution only. In these models, the modification of the EMIC wave dispersion relation caused by the RC ions is not taken into account, and the RC ions are only treated as a source of free energy in order to generate EMIC waves. At the same time, the RC ions can dominate the thermal magnetospheric content in the night MLT sector at great L shells during the main and/or recovery storm phase. In this study, using our self-consistent RC-EMIC wave model [Khazanov et al., 2006], we simulate the May 1998 storm in order to quantify the global EMIC wave redistribution caused by
Marchetti, Dedalo
2014-01-01
In this paper it is explained the construction and utility of a didactic exhibit about the effect of aerosol in atmosphere on electromagnetic wave propagation. The exhibit is composed by a lamp simulating the Sun, a Plexiglas case (the atmosphere), white or black panels (surface albedo), a combustion chamber to supply aerosol inside the case and other equipments. There are temperature and relative humidity of air sensors and 5 light sensors to measure direct and scattered light. It is possible to measure the cooling effect of aerosol inside the case and the increasing in scattered light.
Carcione, José M
2014-01-01
Authored by the internationally renowned José M. Carcione, Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media examines the differences between an ideal and a real description of wave propagation, starting with the introduction of relevant stress-strain relations. The combination of this relation and the equations of momentum conservation lead to the equation of motion. The differential formulation is written in terms of memory variables, and Biot's theory is used to describe wave propagation in porous media. For each rheology, a plane-wave analysis is performed in order to understand the physics of wave propagation. This book contains a review of the main direct numerical methods for solving the equation of motion in the time and space domains. The emphasis is on geophysical applications for seismic exploration, but researchers in the fields of earthquake seismology, rock acoustics, and material science - including many branches of acoustics of fluids and ...
Murakami, Ri Ichi; Yamamoto, Hidetoshi; Kim, Chan Kong; Yim, Cheol Mun; Kim, Yun Hae
The developments of electromagnetic wave shielding materials are strongly required because the malfunction of electronic equipment, mobile phone and wireless LAN avoids. In this study, it was investigated that the electromagnetic shielding effectiveness of carbon fiber sheets were enhanced by the ferrite which was coated by the microwave hydrothermal process. For coated carbon fiber sheet, the effects of ferrite and lamination of carbon fiber textile on the electromagnetic wave shielding effectiveness were discussed. In the range of frequency (100 1 GHz), the electromagnetic wave shielding effectiveness was measured by using TEM-Cell. The electromagnetic wave shielding effectiveness was greater for the coated carbon fiber sheets than for the uncoated carbon fiber sheets. When the insulation film was located between two carbon fiber sheets, the electromagnetic wave shielding effectiveness increased.
Scattering for wave equations with dissipative terms in layered media
Mitsuteru Kadowaki
2011-05-01
Full Text Available In this article, we show the existence of scattering solutions to wave equations with dissipative terms in layered media. To analyze the wave propagation in layered media, it is necessary to handle singular points called thresholds in the spectrum. Our main tools are Kato's smooth perturbation theory and some approximate operators.
A Numerical Method for Analyzing Electromagnetic Scattering Properties of a Moving Conducting Object
Lei Kuang
2014-01-01
Full Text Available A novel numerical approach is developed to analyze electromagnetic scattering properties of a moving conducting object based on the finite-difference time-domain (FDTD algorithm. Relativistic boundary conditions are implemented into the FDTD algorithm to calculate the electromagnetic field on the moving boundary. An improved technique is proposed to solve the scattered field in order to improve the computational efficiency and stability of solutions. The time-harmonic scattered field from a one-dimensional moving conducting surface is first simulated by the proposed approach. Numerical results show that the amplitude and frequency of the scattered field suffer a modulation shift. Then the transient scattered field is calculated, and broadband electromagnetic scattering properties of the moving conducting surface are obtained by the fast Fourier transform (FFT. Finally, the scattered field from a two-dimensional moving square cylinder is analyzed. The numerical results demonstrate the Doppler effect of a moving conducting object. The simulated results agree well with analytical results.
Ultra-fast multiple tunnelling of electromagnetic X-waves
Shaarawi, Amr M. [Physics Department, American University in Cairo, Cairo (Egypt); Besieris, Ioannis M. [Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA (United States)
2000-12-01
A study is provided of the transmission of a three-dimensional electromagnetic X-wave undergoing frustrated total internal reflection on the upper surface of a multi-layered structure. The stratified structure consists of successive layers alternately allowing the transmission of evanescent and free-propagation components. It is shown that the peak of an X-wave is transmitted through these successive layers at an ultra-fast speed. Under certain conditions, the total traversal time through all successive evanescent and free-propagation sections appears to be less than zero. The peak of the transmitted pulse emerges from the stack before the incident peak reaches the front surface of the stratified structure. Conditions for the materialization of this ultra-fast multiple tunnelling of pulses are pointed out and their consequences and limitations are discussed. (author)
Modeling of electromagnetic scattering by thin cylinders using Pattern Equation Method
Demin, D. B.; Kleev, A. I.; Kyurkchan, A. G.
2017-01-01
To solve the problem related to scattering by a perfectly conducting thin cylinder, approximate approach was developed based on use of Pattern Equation Method (PEM). Explicit formulas were obtained for total scattering cross-section applicable for cylindric scatterers of complex shape. It is shown that calculation accuracy controlled by calculating the balance of power flows for incident and scattered waves (checking the accomplishment of optical theorem) is quite sufficient for practice.
Plasma scattering of electromagnetic radiation theory and measurement techniques
Froula, Dustin H; Luhmann, Neville C Jr; Sheffield, John
2011-01-01
This work presents one of the most powerful methods of plasma diagnosis in exquisite detail to guide researchers in the theory and measurement techniques of light scattering in plasmas. Light scattering in plasmas is essential in the research and development of fusion energy, environmental solutions, and electronics.Referred to as the "Bible" by researchers the work encompasses fusion and industrial applications essential in plasma research. It is the only comprehensive resource specific to the plasma scattering technique. It provides a wide-range of experimental examples and discussion of the
Jiahua Li(李家华); Wenxing Yang(杨文星); Jucun Peng(彭菊村)
2004-01-01
Using Schrodinger-Maxwell formalism, we propose and analyze a continuous-wave four-wave mixing (FWM) scheme for the generation of coherent light in a six-level atomic system based on electromagnetically dual induced transparency. We derive the corresponding explicit analytical expressions for the generated mixing field. We find that the scheme greatly enhances FWM production efficiency and is also capable of inhibiting and delaying the onset of the detrimental three-photon destructive interference by choosing the proper decay rate in the second electromagnetically induced transparency (EIT) process.In addition, such an optical process also provides possibilities for producing short-wave-length coherent radiation at low pump intensities.
Nonreciprocal wave scattering on nonlinear string-coupled oscillators
Lepri, Stefano, E-mail: stefano.lepri@isc.cnr.it [Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, via Madonna del Piano 10, I-50019 Sesto Fiorentino (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino (Italy); Pikovsky, Arkady [Department of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str 24/25, Potsdam (Germany); Department of Control Theory, Nizhni Novgorod State University, Gagarin Av. 23, 606950, Nizhni Novgorod (Russian Federation)
2014-12-01
We study scattering of a periodic wave in a string on two lumped oscillators attached to it. The equations can be represented as a driven (by the incident wave) dissipative (due to radiation losses) system of delay differential equations of neutral type. Nonlinearity of oscillators makes the scattering non-reciprocal: The same wave is transmitted differently in two directions. Periodic regimes of scattering are analyzed approximately, using amplitude equation approach. We show that this setup can act as a nonreciprocal modulator via Hopf bifurcations of the steady solutions. Numerical simulations of the full system reveal nontrivial regimes of quasiperiodic and chaotic scattering. Moreover, a regime of a “chaotic diode,” where transmission is periodic in one direction and chaotic in the opposite one, is reported.
Platonic scattering cancellation for bending waves in a thin plate
Farhat, Mohamed
2014-04-10
We propose an ultra-thin elastic cloak to control the scattering of bending waves in isotropic heterogeneous thin plates. The cloak design makes use of the scattering cancellation technique applied, for the first time, to the biharmonic operator describing the propagation of bending waves in thin plates. We first analyze scattering from hard and soft cylindrical objects in the quasistatic limit, then we prove that the scattering of bending waves from an object in the near and far-field regions can be suppressed significantly by covering it with a suitably designed coating. Beyond camouflaging, these findings may have potential applications in protection of buildings from earthquakes and isolating structures from vibrations in the motor vehicle industry.
Frequency Domain Modelling of Electromagnetic Wave Propagation in Layered Media
Schmidt, Felix; Lünenschloss, Peter; Mai, Juliane; Wagner, Norman; Töpfer, Hannes; Bumberger, Jan
2016-04-01
The amount of water in porous media such as soils and rocks is a key parameter when water resources are under investigation. Especially the quantitative spatial distribution and temporal evolution of water contents in soil formations are needed. In high frequency electromagnetic applications soil water content is quantitatively derived from the propagation behavior of electromagnetic waves along waveguides embedded in soil formations. The spatial distribution of the dielectric material properties along the waveguide can be estimated by numerical solving of the inverse problem based on the full wave forward model in time or frequency domain. However, current approaches mostly neglect or approximate the frequency dependence of the electromagnetic material properties of transfer function of the waveguide. As a first prove of concept a full two port broadband frequency domain forward model for propagation of transverse electromagnetic (TEM) waves in coaxial waveguide has been implemented. It is based on the propagation matrix approach for layered transmission line sections. Depending on the complexity of the material different models for the frequency dependent complex permittivity were applied. For the validation of the model a broadband frequency domain measurement with network analyzer technique was used. The measurement is based on a 20 cm long 50 Ohm 20/46 coaxial transmission line cell considering inhomogeneous material distributions. This approach allows (i) an increase of the waveguide calibration accuracy in comparison to conventional TDR based technique and (ii) the consideration of the broadband permittivity spectrum of the porous material. In order to systematic analyze the model, theoretical results were compared with measurements as well as 3D broadband finite element modeling of homogeneous and layered media in the coaxial transmission line cell. Defined standards (Teflon, dry glass beads, de-ionized water) were placed inside the line as the dielectric
Di Gregorio, Pietro Paolo; Frezza, Fabrizio; Mangini, Fabio; Pajewski, Lara
2017-04-01
The electromagnetic scattered field by a reinforced concrete structure is calculated by means of frequency-domain numerical simulations and by making use of the scattered-field formulation. The concrete pillar, used as supporting architectural element, is modelled as a parallelepiped shell made of concrete material inside which are present steel bars. In order to make the model simpler, the steel bars are supposed running parallel to the air-pillar interface. To excite the model, a linearly-polarized plane wave impinging normally with respect to the pillars surface, is adopted. We consider two different polarizations in order to determine the most useful in terms of scattered-field sensitivity. Moreover, a preliminary frequency sweep allows us to choose the most suitable operating frequency depending on the dimensions of the pillar cross-section, the steel bars cross-section and the concrete cover. All the three components of the scattered field are monitored along a line just above the interface air-pillar. The electromagnetic properties of the materials employed in this study are present in the literature and, since a frequency-domain technique is adopted, no further approximation is needed. The results obtained for different values of the concrete cover are compared, with the goal of determining the scattered field dependence on the concrete cover thickness. Considering different concrete cover thicknesses, we want to provide an electromagnetic method to obtain this useful parameter by observation of the scattered electromagnetic field. One of the practical applications of this study in the field of Civil Engineering may be the use of ground penetrating radar (GPR) techniques to monitor the thickness of the concrete that separates the metal bars embedded in the pillar from the outer surface. A correct distance is useful because the concrete cover serves as a protection against external agents avoiding corrosion of the bars that might prejudice the reinforced
Electromagnetic wave propagation of wireless capsule endoscopy in human body
LIM; Eng-Gee; 王炤; 陈瑾慧; TILLO; Tammam; MAN; Ka-lok
2013-01-01
Wireless capsule endoscopy(WCE) is a promising technique which has overcome some limitations of traditional diagnosing tools, such as the comfortlessness of the cables and the inability of examining small intestine section. However, this technique is still far from mature and asks for the feasible improvements. For example, the relatively low transmission data rate and the absence of the real-time localization information of the capsule are all important issues. The studies of them rely on the understanding of the electromagnetic wave propagation in human body. Investigation of performance of WCE communication system was carried out by studying electromagnetic(EM) wave propagation of the wireless capsule endoscopy transmission channel. Starting with a pair of antennas working in a human body mimic environment, the signal transmissions and attenuations were examined. The relationship between the signal attenuation and the capsule(transmitter) position, and direction was also evaluated. These results provide important information for real-time localization of the capsule. Moreover, the pair of antennas and the human body were treated as a transmission channel, on which the binary amplitude shift keying(BASK) modulation scheme was used. The relationship between the modulation scheme, data rate and bit error rate was also determined in the case of BASK. With the obtained studies, it make possible to provide valuable information for further studies on the selection of the modulation scheme and the real-time localization of the capsules.
Shaping electromagnetic waves using software-automatically-designed metasurfaces.
Zhang, Qian; Wan, Xiang; Liu, Shuo; Yuan Yin, Jia; Zhang, Lei; Jun Cui, Tie
2017-06-15
We present a fully digital procedure of designing reflective coding metasurfaces to shape reflected electromagnetic waves. The design procedure is completely automatic, controlled by a personal computer. In details, the macro coding units of metasurface are automatically divided into several types (e.g. two types for 1-bit coding, four types for 2-bit coding, etc.), and each type of the macro coding units is formed by discretely random arrangement of micro coding units. By combining an optimization algorithm and commercial electromagnetic software, the digital patterns of the macro coding units are optimized to possess constant phase difference for the reflected waves. The apertures of the designed reflective metasurfaces are formed by arranging the macro coding units with certain coding sequence. To experimentally verify the performance, a coding metasurface is fabricated by automatically designing two digital 1-bit unit cells, which are arranged in array to constitute a periodic coding metasurface to generate the required four-beam radiations with specific directions. Two complicated functional metasurfaces with circularly- and elliptically-shaped radiation beams are realized by automatically designing 4-bit macro coding units, showing excellent performance of the automatic designs by software. The proposed method provides a smart tool to realize various functional devices and systems automatically.
Interface Polarization Strategy to Solve Electromagnetic Wave Interference Issue.
Lv, Hualiang; Guo, Yuhang; Wu, Guanglei; Ji, Guangbin; Zhao, Yue; Xu, Zhichuan J
2017-02-15
Design of an interface to arouse interface polarization is an efficient route to attenuate high-frequency electromagnetic waves. The attenuation intensity is highly related to the contact area. To achieve stronger interface polarization, growing metal oxide granular film on graphene with a larger surface area seems to be an efficient strategy due to the high charge carrier concentration of graphene. This study is devoted to fabricating the filmlike composite by a facile thermal decomposition method and investigating the relationship among contact area, polarization intensity, and the type of metal oxide. Because of the high-frequency polarization effect, the composites presented excellent electromagnetic wave attenuation ability. It is shown that the optimal effective frequency bandwidth of graphene/metal oxide was close to 7.0 GHz at a thin coating layer of 2.0 mm. The corresponding reflection loss value was nearly -22.1 dB. Considering the attenuation mechanism, interface polarization may play a key role in the microwave-absorbing ability.
Electromagnetic scattering by spheroidal volumes of discrete random medium
Mishchenko, Michael I.; Dlugach, Janna M.
2017-10-01
We use the superposition T-matrix method to compare the far-field scattering matrices generated by spheroidal and spherical volumes of discrete random medium having the same volume and populated by identical spherical particles. Our results fully confirm the robustness of the previously identified coherent and diffuse scattering regimes and associated optical phenomena exhibited by spherical particulate volumes and support their explanation in terms of the interference phenomenon coupled with the order-of-scattering expansion of the far-field Foldy equations. We also show that increasing nonsphericity of particulate volumes causes discernible (albeit less pronounced) optical effects in forward and backscattering directions and explain them in terms of the same interference/multiple-scattering phenomenon.
The electromagnetic calorimeter in JLab Real Compton Scattering Experiment
Albert Shahinyan; Eugene Chudakov; A. Danagoulian; P. Degtyarenko; K. Egiyan; V. Gorbenko; J. Hines; E. Hovhannisyan; Ch. Hyde; C.W. de Jager; A. Ketikyan; V. Mamyan; R. Michaels; A.M. Nathan; V. Nelyubin; I. Rachek; M. Roedelbrom; A. Petrosyan; R. Pomatsalyuk; V. Popov; J. Segal; Yu. Shestakov; J. Templon; H. Voskanyan; B. Wojtsekhowski
2007-04-16
A hodoscope calorimeter comprising of 704 lead-glass blocks is described. The calorimeter was constructed for use in the JLab Real Compton Scattering experiment. The detector provides a measurement of the coordinates and the energy of scattered photons in the GeV energy range with resolutions of 5 mm and 6\\%/$\\sqrt{E_\\gamma \\, [GeV]}$, respectively. Design features and performance parameters during the experiment are presented.
Wave-scattering from a gently curved surface
Bimonte, Giuseppe
2016-01-01
We study wave scattering from a gently curved surface. We show that the recursive relations, implied by shift invariance, among the coefficients of the perturbative series for the scattering amplitude allow to perform an infinite resummation of the perturbative series to all orders in the amplitude of the corrugation. The resummed series provides a derivative expansion of the scattering amplitude in powers of derivatives of the height profile, which is expected to become exact in the limit of quasi-specular scattering. We discuss the relation of our results with the so-called small-slope approximation introduced some time ago by Voronovich.
Khazanov, G. V.
2004-01-01
The excitation of lower hybrid waves (LHWs) is a widely discussed mechanism of interaction between plasma species in space, and is one of the unresolved questions of magnetospheric multi-ion plasmas. In this paper we present the morphology, dynamics, and level of LHW activity generated by electromagnetic ion cyclotron (EMIC) waves during the May 2-7, 1998 storm period on the global scale. The LHWs were calculated based on a newly developed self-consistent model (Khazanov et. al., 2002, 2003) that couples the system of two kinetic equations: one equation describes the ring current (RC) ion dynamic, and another equation describes the evolution of EMIC waves. It is found that the LHWs are excited by helium ions due to their mass dependent drift in the electric field of EMIC waves. The level of LHW activity is calculated assuming that the induced scattering process is the main saturation mechanism for these waves. The calculated LHWs electric fields are consistent with the observational data.
Determination of ocean surface wave shape from forward scattered sound.
Walstead, Sean P; Deane, Grant B
2016-08-01
Forward scattered sound from the ocean surface is inverted for wave shape during three periods: low wind, mix of wind and swell, and stormy. Derived wave profiles are spatially limited to a Fresnel region at or near the nominal surface specular reflection point. In some cases, the surface wave profiles exhibit unrealistic temporal and spatial properties. To remedy this, the spatial gradient of inverted waves is constrained to a maximum slope of 0.88. Under this global constraint, only surface waves during low wind conditions result in a modeled surface multipath that accurately matches data. The power spectral density of the inverted surface wave field saturates around a frequency of 8 Hz while upward looking SONAR saturates at 1 Hz. Each shows a high frequency spectral slope of -4 that is in agreement with various empirical ocean wave spectra. The improved high frequency resolution provided by the scattering inversion indicates that it is possible to remotely gain information about high frequency components of ocean waves. The inability of the inversion algorithm to determine physically realistic surface waves in periods of high wind indicates that bubbles and out of plane scattering become important in those operating scenarios.
Modulational instability of electromagnetic waves in a collisional quantum magnetoplasma
Niknam, A. R., E-mail: a-niknam@sbu.ac.ir [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Tehran (Iran, Islamic Republic of); Rastbood, E.; Bafandeh, F.; Khorashadizadeh, S. M., E-mail: smkhorashadi@birjand.ac.ir [Physics Department of Birjand University, Birjand (Iran, Islamic Republic of)
2014-04-15
The modulational instability of right-hand circularly polarized electromagnetic electron cyclotron (CPEM-EC) wave in a magnetized quantum plasma is studied taking into account the collisional effects. Employing quantum hydrodynamic and nonlinear Schrödinger equations, the dispersion relation of modulated CPEM-EC wave in a collisional plasma has been derived. It is found that this wave is unstable in such a plasma system and the growth rate of the associated instability depends on various parameters such as electron Fermi temperature, plasma number density, collision frequency, and modulation wavenumber. It is shown that while the increase of collision frequency leads to increase of the growth rate of instability, especially at large wavenumber limit, the increase of plasma number density results in more stable modulated CPEM-EC wave. It is also found that in contrast to collisionless plasma in which modulational instability is restricted to small wavenumbers, in collisional plasma, the interval of instability occurrence can be extended to a large domain.
Solving Electromagnetic Scattering and Radiation by FMM with Curvilinear RWG Basis
HUJun; NIEZaiping; GONGXiaodong
2003-01-01
In this paper, fast multipole method (FMM) with curvilinear RWG basis is used to realize fast,accurate solution of electromagnetic scattering and radia-tion from 3-D conducting object. This method needs much less unknowns than traditional RWG basis and conformal rooftop basis, so is especially appropriate for efficient so-lution of scattering and radiation from target with large electrical sizes. Some typical numerical results are shown to demonstrate the validity and efficiency of the presentmethod.
Use of distorted waves in the theory of inelastic scattering
Picklesimer, A.; Tandy, P. C.; Thaler, R. M.
1982-03-01
A distorted wave description of inelastic scattering of nucleons from nuclei is formulated so that the microscopic content of the various ingredients can be made explicit. Special care is taken to ensure that physical processes are not overcounted as a consequence of the use of distorted waves in both the initial and final channels. Two attitudes to applications of the theory are taken. In the first, it is assumed that phenomenological distorted waves are employed and attention is focused upon the microscopic transition potential and the final distorted wave. Theoretically based recommendations for practical calculations of both these quantities are given. Secondly, we present a completely microscopic treatment wherein the truncations of the microscopic distorting potentials and the transition potential, at the single scattering level, are consistent with the underlying theoretical framework which links them. Our approach is designed to embody the distorted wave impulse approximation as a suitable lowest order result. Again, recommendations for practical calculations are given. NUCLEAR REACTIONS Inelastic scattering, distorted wave Born approximation, distorted wave impulse approximation, multiple scattering.
Scattering of Acoustic Waves from Ocean Boundaries
2015-09-30
of Acoustic Waves from Ocean Boundaries Marcia...J. Isakson Applied Research Laboratories The University of Texas at Austin, TX 78713-8029 phone: (512)835-3790 fax: (512)835-3259 email...plane wave integral transform method which assumes invariance in one spatial dimension of the waveguide. In this case, the dimension is
Influence of electromagnetism field on the flame transmission and shock wave in gas explosion
Li Jing [Anhui University of Technology, Maanshan (China). College of Metallurgy and Resources
2008-01-15
The influence of electromagnetic field on flame transmission and explosion wave overpressure in gas explosions was investigated. The research results show that the velocity of flame propagation and the explosion wave overpressure in an electromagnetic field is much higher than that in plain tube, and the stronger the electromagnetic field, the greater the influence. Based on experimental results, the influence of electromagnetic field on gas explosion propagation was analyzed and a reasonable explanation was put forward. The influence of electromagnetic field is not equal to the sum of the electric field and the magnetic field. 7 refs., 4 figs., 2 tabs.
Particle Scattering off of Right-handed Dispersive Waves
Schreiner, C.; Kilian, P.; Spanier, F.
2017-01-01
Resonant scattering of fast particles off low frequency plasma waves is a major process determining transport characteristics of energetic particles in the heliosphere and contributing to their acceleration. Usually, only Alfvén waves are considered for this process, although dispersive waves are also present throughout the heliosphere. We investigate resonant interaction of energetic electrons with dispersive, right-handed waves. For the interaction of particles and a single wave a variable transformation into the rest frame of the wave can be performed. Here, well-established analytic models derived in the framework of magnetostatic quasi-linear theory can be used as a reference to validate simulation results. However, this approach fails as soon as several dispersive waves are involved. Based on analytic solutions modeling the scattering amplitude in the magnetostatic limit, we present an approach to modify these equations for use in the plasma frame. Thereby we aim at a description of particle scattering in the presence of several waves. A particle-in-cell code is employed to study wave–particle scattering on a micro-physically correct level and to test the modified model equations. We investigate the interactions of electrons at different energies (from 1 keV to 1 MeV) and right-handed waves with various amplitudes. Differences between model and simulation arise in the case of high amplitudes or several waves. Analyzing the trajectories of single particles we find no microscopic diffusion in the case of a single plasma wave, although a broadening of the particle distribution can be observed.
Weak localization of electromagnetic waves and radar polarimetry of Saturn's rings
Mishchenko, Michael I
2008-01-01
We use a state-of-the-art physics-based model of electromagnetic scattering to analyze average circular polarization ratios measured for the A and B rings of Saturn at a wavelength of 12.6 cm. This model is directly based on the Maxwell equations and accounts for the effects of polarization, multiple scattering, weak localization of electromagnetic waves, and ring particle nonsphericity. Our analysis is based on the assumption that the observed polarization ratios are accurate, mutually consistent, and show a quasi-linear dependence on the opening angle. Also, we assume that the ring system is not strongly stratified in the vertical direction. Our numerical simulations rule out the model of spherical ring particles, favor the model of ring bodies in the form of nearly spherical particles with small-scale surface roughness, and rule out nonspherical particles with aspect ratios significantly exceeding 1.2. They also favor particles with effective radii in the range 4-10 cm and definitely rule out effective rad...
Electromagnetic Scattering from Rough Sea Surface with PM Spectrum Covered by an Organic Film
WANG Rui; GUO Li-Xin; WANG An-Qi; WU Zhen-Sen
2011-01-01
The rough sea surface covered by an organic film will cause attenuation of capillarity waves, which implies that the organic films play an important role in rough sea surface processes. We focus on a one-dimensional(1D)rough sea surface with the Pierson-Moskowitz(PM)spectrum distributed to the homogeneous insoluble organic slicks. First, the impact of the organic film on the PM surface spectrum is presented, as well as that of the correlation length, the rms height and slope of the rough sea surface. The damping effect of the organic film changes the physical parameters of the rough sea surface. For example, the organic film will reduce the rms height and slopee of the rough sea surface, which results in the attenuation of the high-frequency components of the PM spectrum leading to modification of the surface PM spectrum. Then, the influence of the organic film on the electromagnetic(EM) scattering coefficients from PM rough sea surface covered by the organic film is investigated and discussed in detail, compared with the clean PM rough sea surface through the method of moments.
Electromagnetic Scattered Field Evaluation and Data Compression Using Imaging Techniques
Gupta, I. J.; Burnside, W. D.
1996-01-01
This is the final report on Project #727625 between The Ohio State University and NASA, Lewis Research Center, Cleveland, Ohio. Under this project, a data compression technique for scattered field data of electrically large targets is developed. The technique was applied to the scattered fields of two targets of interest. The backscattered fields of the scale models of these targets were measured in a ra compact range. For one of the targets, the backscattered fields were also calculated using XPATCH computer code. Using the technique all scattered field data sets were compressed successfully. A compression ratio of the order 40 was achieved. In this report, the technique is described briefly and some sample results are included.
Use of distorted waves in the theory of inelastic scattering
Picklesimer, A.; Tandy, P.C.; Thaler, R.M.
1982-03-01
A distorted wave description of inelastic scattering of nucleons from nuclei is formulated so that the microscopic content of the various ingredients can be made explicit. Special care is taken to ensure that physical processes are not overcounted as a consequence of the use of distorted waves in both the initial and final channels. Two attitudes to applications of the theory are taken. In the first, it is assumed that phenomenological distorted waves are employed and attention is focused upon the microscopic transition potential and the final distorted wave. Theoretically based recommendations for practical calculations of both these quantities are given. Secondly, we present a completely microscopic treatment wherein the truncations of the microscopic distorting potentials and the transition potential, at the single scattering level, are consistent with the underlying theoretical framework which links them. Our approach is designed to embody the distorted wave impulse approximation as a suitable lowest order result. Again, recommendations for practical calculations are given.
Adrian, Mark L.; Wendel, D. E.
2011-01-01
We investigate observations of intense bursts of electromagnetic waves in association with magnetic reconnection in the turbulent magnetosheath. These structured, broadband bursts occur above 80-Hz, often displaying features reminiscent of absorption bands and are observed at local minima in the magnetic field. We present detailed analyses of these intense bursts of electromagnetic waves and quantify their proximity to X- and O-nulls.
Ionospheric electron acceleration by electromagnetic waves near regions of plasma resonances
Villalon, Elena
1989-03-01
Electron acceleration by electromagnetic fields propagating in the inhomogeneous ionospheric plasma is investigated. It is found that high-amplitude short wavelength electrostatic waves are generated by the incident electromagnetic fields that penetrate the radio window. These waves can very efficiently transfer their energy to the electrons if the incident frequency is near the second harmonic of the cyclotron frequency.
Guddala, Sriram; Ramakrishna, S Anantha
2016-01-01
A tri-layer metamaterial perfect absorber of light, consisting of (Al/ZnS/Al) films with the top aluminium layer patterned as an array of circular disk nanoantennas, is investigated for resonantly enhancing Raman scattering from C-60 fullerene molecules deposited on the metamaterial. The metamaterial is designed to have resonant bands due to plasmonic and electromagnetic resonances at the Raman pump frequency (725 nm) as well as Stokes emission bands. The Raman scattering from C60 on the metamaterial with resonantly matched bands is measured to be enhanced by an order of magnitude more than from C60 on metamaterials with off-resonant absorption bands peaked at 1090 nm. The Raman pump is significantly enhanced due to the resonance with a propagating surface plasmon band, while the highly impedance matched electromagnetic resonance is expected to couple out the Raman emission efficiently. The nature and hybridization of the plasmonic and electromagnetic resonances to form compound resonances are investigated by...
Electromagnetic Components of Auroral Hiss and Lower Hybrid Waves in the Polar Magnetosphere
Wong, H. K.
1995-01-01
DE-1 has frequently observed waves in the whistler and lower hybrid frequencies range. Besides the electrostatic components, these waves also exhibit electromagnetic components. It is generally believed that these waves are excited by the electron acoustic instability and the electron-beam-driven lower hybrid instability. Because the electron acoustic and the lower hybrid waves are predominately electrostatic waves, they cannot account for the observed electromagnetic components. In this work, it is suggested that these electromagnetic components can be explained by waves that are generated near the resonance cone and that propagate away from the source. The role that these electromagnetic waves can play in particle acceleration processes at low altitude is discussed.
Localized Electromagnetic Waves: Interactions with Surfaces and Nanostructures
Anderson, Nicholas R.
The interaction of electromagnetic waves with nanostructures is an important area of research for signal processing devices, magnetic data storage, biosensors and a variety of other applications. In this work, we present analytic and numerical calculations for oscillating electric and magnetic fields coupling with excitations in magnetic materials as well as metallic and dielectric materials, near their resonance frequencies. One of the problems with the miniaturization of signal processing components is that there is a cutoff frequency associated with the transverse electric (TE) mode in waveguides. However, it is usually the TE mode which is used to achieve nonreciprocity for devices such as isolators. As a first step to circumvent this problem we looked at the absorption of electromagnetic waves in an antiferromagnet and a ferrite when the incident wave is at an arbitrary angle with respect to the magnetization direction. We calculated reflectivity and attenuated total reflectivity and found absorption and nonreciprocity, asymmetric behavior for waves traveling in opposite directions, for a broad range of propagation angles. Subsequently we also performed calculations for a transverse magnetic mode in a waveguide. The wave was allowed to propagate at an arbitrary angle with respect to the magnetization direction of the ferrite in the waveguide. We again found nonreciprocity for a wide range of angles. Our results show that this system could be used as an on-chip isolator with isolation values over 75 dB/cm in the 50 GHz range. We explored another signal processing device operating in the GHz range: a nonlinear phase shifter. Using Fe as the magnetic material allows the phase shifter to operate over a wide frequency and power range. We found a differential phase shift of greater than 50° over 3 cm for this device. The theoretical results compared well with experimental measurements. Finally, we study surface plasmon polaritons propagating along a metallic
Electromagnetic waves near the proton cyclotron frequency: Stereo observations
Jian, L. K. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Wei, H. Y.; Russell, C. T. [Institute of Geophysics and Planetary Physics, University of California, Los Angeles, CA 90095 (United States); Luhmann, J. G. [Space Science Laboratory, University of California, Berkeley, CA 94720 (United States); Klecker, B. [Max-Planck-Institut für Extraterrestrische Physik, D-85741 Garching (Germany); Omidi, N. [Solana Scientific Inc., Solana Beach, CA 92075 (United States); Isenberg, P. A. [Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH 03824 (United States); Goldstein, M. L.; Figueroa-Viñas, A. [Heliophysics Science Division, NASA Goddard Space Flight Center, MD 20771 (United States); Blanco-Cano, X., E-mail: lan.jian@nasa.gov [Instituto de Geofisica, Universidad Nacional Autónoma de México, Coyoacán D.F. (Mexico)
2014-05-10
Transverse, near-circularly polarized, parallel-propagating electromagnetic waves around the proton cyclotron frequency were found sporadically in the solar wind throughout the inner heliosphere. They could play an important role in heating and accelerating the solar wind. These low-frequency waves (LFWs) are intermittent but often occur in prolonged bursts lasting over 10 minutes, named 'LFW storms'. Through a comprehensive survey of them from Solar Terrestrial Relations Observatory A using dynamic spectral wave analysis, we have identified 241 LFW storms in 2008, present 0.9% of the time. They are left-hand (LH) or right-hand (RH) polarized in the spacecraft frame with similar characteristics, probably due to Doppler shift of the same type of waves or waves of intrinsically different polarities. In rare cases, the opposite polarities are observed closely in time or even simultaneously. Having ruled out interplanetary coronal mass ejections, shocks, energetic particles, comets, planets, and interstellar ions as LFW sources, we discuss the remaining generation scenarios: LH ion cyclotron instability driven by greater perpendicular temperature than parallel temperature or by ring-beam distribution, and RH ion fire hose instability driven by inverse temperature anisotropy or by cool ion beams. The investigation of solar wind conditions is compromised by the bias of the one-dimensional Maxwellian fit used for plasma data calibration. However, the LFW storms are preferentially detected in rarefaction regions following fast winds and when the magnetic field is radial. This preference may be related to the ion cyclotron anisotropy instability in fast wind and the minimum in damping along the radial field.
Spin wave vortex from the scattering on Bloch point solitons
Carvalho-Santos, V.L., E-mail: vagson.carvalho@usach.cl [Instituto Federal de Educação, Ciência e Tecnologia Baiano - Campus Senhor do Bonfim, Km 04 Estrada da Igara, 48970-000 Senhor do Bonfim, Bahia (Brazil); Departamento de Física, Universidad de Santiago de Chile and CEDENNA, Avda. Ecuador 3493, Santiago (Chile); Elías, R.G., E-mail: gabriel.elias@usach.cl [Departamento de Física, Universidad de Santiago de Chile and CEDENNA, Avda. Ecuador 3493, Santiago (Chile); Nunez, A.S., E-mail: alnunez@dfi.uchile.cl [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Casilla 487-3, Santiago (Chile)
2015-12-15
The interaction of a spin wave with a stationary Bloch point is studied. The topological non-trivial structure of the Bloch point manifests in the propagation of spin waves endowing them with a gauge potential that resembles the one associated with the interaction of a magnetic monopole and an electron. By pursuing this analogy, we are led to the conclusion that the scattering of spin waves and Bloch points is accompanied by the creation of a magnon vortex. Interference between such a vortex and a plane wave leads to dislocations in the interference pattern that can be measurable by means of magnon holography.
In-plane propagation of electromagnetic waves in planar metamaterials
Yi, Changhyun; Rhee, Joo Yull; Kim, Ki Won; Lee, YoungPak
2016-08-01
Some planar metamaterials (MMs) or subwavelength antenna/hole arrays have a considerable amount of in-plane propagation when certain conditions are met. In this paper, the in-plane propagation caused by a wave incident on a MM absorber was studied by using a finite-difference time-domain (FDTD) technique. By using a FDTD simulation, we were able to observe a nonnegligible amount of in-plane propagation after the incident wave had arrived at the surface of the planar structure and gradually decreased propagation of the electromagnetic wave in the planar direction gradually decreased. We performed the FDTD simulation carefully to reproduce valid results and to verify the existence of in-plane propagation. For verification of the in-plane propagation explicitly, Poynting vectors were calculated and visualized inside the dielectric substrate between the metallic back-plate and an array of square patches. We also investigated several different structures with resonators of various shapes and found that the amount of facing edges of adjacent metallic patches critically determined the strength of the in-plane propagation. Through this study, we could establish the basis for the existence of in-plane propagation in MMs.
Reactive Scattering Wave Functions by Linear Combination of Arrangement Channels
邓从豪; 冯大诚; 蔡政亭
1994-01-01
The similarity and dissimilarity of reactive scattering wave functions and molecular orbitalby linear combination of atomic orbitals(LCAOMO)are examined.Based on the similarity a method is pro-posed to construct the reactive scattering wave functions by linear combination of arrangement channel wavefunctions(LCACSW).Based on the dissimilarity,it is shown that the combination coefficients can be deter-mined by solving s set of simultaneous algebraic equations.The elements of the reactive scattering matrix areshown to be related to the combination coefficients of open arrangement channels.The differential and totalreactive scattering cross-section derived by this method agrees completely with that derived by other meth-ods.
He, Zhaoguo [Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zong, Qiugang, E-mail: qgzong@gmail.com; Wang, Yongfu [Institute of Space Physics and Applied Technology, Peking University, Beijing 100871 (China); Liu, Siqing; Lin, Ruilin; Shi, Liqin [Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190 (China)
2014-12-15
Resonant pitch angle scattering by electromagnetic ion cyclotron (EMIC) waves has been suggested to account for the rapid loss of ring current ions and radiation belt electrons. For the rising tone EMIC wave (classified as triggered EMIC emission), its frequency sweep rate strongly affects the efficiency of pitch-angle scattering. Based on the Cluster observations, we analyze three typical cases of rising tone EMIC waves. Two cases locate at the nightside (22.3 and 22.6 magnetic local time (MLT)) equatorial region and one case locates at the duskside (18MLT) higher magnetic latitude (λ = –9.3°) region. For the three cases, the time-dependent wave amplitude, cold electron density, and cold ion density ratio are derived from satellite data; while the ambient magnetic field, thermal proton perpendicular temperature, and the wave spectral can be directly provided by observation. These parameters are input into the nonlinear wave growth model to simulate the time-frequency evolutions of the rising tones. The simulated results show good agreements with the observations of the rising tones, providing further support for the previous finding that the rising tone EMIC wave is excited through the nonlinear wave growth process.
He, Zhaoguo; Zong, Qiugang; Liu, Siqing; Wang, Yongfu; Lin, Ruilin; Shi, Liqin
2014-12-01
Resonant pitch angle scattering by electromagnetic ion cyclotron (EMIC) waves has been suggested to account for the rapid loss of ring current ions and radiation belt electrons. For the rising tone EMIC wave (classified as triggered EMIC emission), its frequency sweep rate strongly affects the efficiency of pitch-angle scattering. Based on the Cluster observations, we analyze three typical cases of rising tone EMIC waves. Two cases locate at the nightside (22.3 and 22.6 magnetic local time (MLT)) equatorial region and one case locates at the duskside (18MLT) higher magnetic latitude (λ = -9.3°) region. For the three cases, the time-dependent wave amplitude, cold electron density, and cold ion density ratio are derived from satellite data; while the ambient magnetic field, thermal proton perpendicular temperature, and the wave spectral can be directly provided by observation. These parameters are input into the nonlinear wave growth model to simulate the time-frequency evolutions of the rising tones. The simulated results show good agreements with the observations of the rising tones, providing further support for the previous finding that the rising tone EMIC wave is excited through the nonlinear wave growth process.
Elastic wave scattering to characterize heterogeneities in the borehole environment
Tang, Xiao-Ming; Li, Zhen; Hei, Chuang; Su, Yuan-Da
2016-04-01
Scattering due to small-scale heterogeneities in the rock formation surrounding a wellbore can significantly change the acoustic waveform from a logging measurement which in turn can be used to characterize the formation heterogeneities. This study simulates the elastic heterogeneity scattering in monopole and dipole acoustic logging and analyse the resulting effects on the waveforms. The results show that significant coda waves are generated in both monopole and dipole waveforms and the dipole coda is dominated by S-to-S scattering, which can be effectively utilized to diagnose the heterogeneity in the rock formation. The coda wave modelling and analysis were used to characterize dipole acoustic data logged before and after fracturing a reservoir interval, with significant coda wave in the after-fracturing data indicating fracturing-induced heterogeneous property change in the rock volume surrounding the borehole.
Experimental challenges of Traveling-wave Thomson scattering
Debus, Alexander; Steiniger, Klaus; Siebold, Mathias; Jochmann, Axel; Irman, Arie; Bussmann, Michael; Schramm, Ulrich; Cowan, Thomas; Sauerbrey, Roland [Forschungzentrum Dresden-Rossendorf, Institute for Radiation Physics, 01328 Dresden (Germany)
2011-07-01
Traveling-wave Thomson scattering is a novel interaction design that allows circumventing the Rayleigh limit in optical undulators, which is interesting for possible realizations of Thomson scattering sources with photon yields per pulse that are 2-3 orders of magnitudes beyond current designs. Here we present details on how a Traveling-wave setup has to be implemented in experiment. An emphasis is put on the use of varied-line spacing (VLS) gratings for spatio-temporal beam shaping at large interaction angles to achieve optimal overlap. At the FZD we are using the high-power laser system DRACO (250TW) to realize a Thomson source with electrons from the linear accelerator ELBE or laser-plasma accelerated electrons. We present the current status and further progress towards a head-on Thomson source and a Traveling-Wave Thomson scattering source aiming for high photon yields per pulse.
Semiannual Status Report. [excitation of electromagnetic waves in the whistler frequency range
1994-01-01
During the last six months, we have continued our study of the excitation of electromagnetic waves in the whistler frequency range and the role that these waves will play in the acceleration of electrons and ions in the auroral region. A paper entitled 'Electron Beam Excitation of Upstream Waves in the Whistler Mode Frequency Range' was listed in the Journal of Geophysical Research. In this paper, we have shown that an anisotropic electron beam (or gyrating electron beam) is capable of generating both left-hand and right-hand polarized electromagnetic waves in the whistler frequency range. Since right-hand polarized electromagnetic waves can interact with background electrons and left-hand polarized waves can interact with background ions through cyclotron resonance, it is possible that these beam generated left-hand and right-hand polarized electromagnetic waves can accelerate either ions or electrons (or both), depending on the physical parameters under consideration. We are currently carrying out a comprehensive study of the electromagnetic whistler and lower hybrid like waves observed in the auroral zone using both wave and particle data. Our first task is to identify these wave modes and compare it with particle observations. Using both the DE-1 particle and wave measurements, we can positively identify those electromagnetics lower hybrid like waves as fast magnetosonic waves and the upper cutoff of these waves is the local lower hybrid frequency. From the upper cutoff of the frequency spectrum, one can infer the particle density and the result is in very good agreement with the particle data. Since these electromagnetic lower hybrid like waves can have frequencies extended down to the local ion cyclotron frequency, it practically confirms that they are not whistler waves.
Semiannual Status Report. [excitation of electromagnetic waves in the whistler frequency range
1994-01-01
During the last six months, we have continued our study of the excitation of electromagnetic waves in the whistler frequency range and the role that these waves will play in the acceleration of electrons and ions in the auroral region. A paper entitled 'Electron Beam Excitation of Upstream Waves in the Whistler Mode Frequency Range' was listed in the Journal of Geophysical Research. In this paper, we have shown that an anisotropic electron beam (or gyrating electron beam) is capable of generating both left-hand and right-hand polarized electromagnetic waves in the whistler frequency range. Since right-hand polarized electromagnetic waves can interact with background electrons and left-hand polarized waves can interact with background ions through cyclotron resonance, it is possible that these beam generated left-hand and right-hand polarized electromagnetic waves can accelerate either ions or electrons (or both), depending on the physical parameters under consideration. We are currently carrying out a comprehensive study of the electromagnetic whistler and lower hybrid like waves observed in the auroral zone using both wave and particle data. Our first task is to identify these wave modes and compare it with particle observations. Using both the DE-1 particle and wave measurements, we can positively identify those electromagnetics lower hybrid like waves as fast magnetosonic waves and the upper cutoff of these waves is the local lower hybrid frequency. From the upper cutoff of the frequency spectrum, one can infer the particle density and the result is in very good agreement with the particle data. Since these electromagnetic lower hybrid like waves can have frequencies extended down to the local ion cyclotron frequency, it practically confirms that they are not whistler waves.
Vasiljevic, Milos; Kundu, Tribikram; Grill, Wolfgang; Twerdowski, Evgeny
2008-05-01
Most investigators emphasize the importance of detecting the reflected signal from the defect to determine if the pipe wall has any damage and to predict the damage location. However, often the small signal from the defect is hidden behind the other arriving wave modes and signal noise. To overcome the difficulties associated with the identification of the small defect signal in the time history plots, in this paper the time history is analyzed well after the arrival of the first defect signal, and after different wave modes have propagated multiple times through the pipe. It is shown that the defective pipe can be clearly identified by analyzing these late arriving diffuse ultrasonic signals. Multiple reflections and scattering of the propagating wave modes by the defect and pipe ends do not hamper the defect detection capability; on the contrary, it apparently stabilizes the signal and makes it easier to distinguish the defective pipe from the defect-free pipe. This paper also highlights difficulties associated with the interpretation of the recorded time histories due to mode conversion by the defect. The design of electro-magnetic acoustic transducers used to generate and receive the guided waves in the pipe is briefly described in the paper.
Searching for electromagnetic counterparts of gravitational wave transients
Branchesi, M; Laas-Bourez, M
2011-01-01
A pioneering electromagnetic (EM) observation follow-up program of candidate gravitational wave (GW) triggers has been performed, Dec 17 2009 to Jan 8 2010 and Sep 4 to Oct 20 2010, during the recent LIGO/Virgo run. The follow-up program involved ground-based and space EM facilities observing the sky at optical, X-ray and radio wavelengths. The joint GW/EM observation study requires the development of specific image analysis procedures able to discriminate the possible EM counterpart of GW trigger from background events. The paper shows an overview of the EM follow-up program and the developing image analysis procedures as they are applied to data collected with TAROT and Zadko.
Atmospheric Refractive Electromagnetic Wave Bending and Propagation Delay
Mangum, Jeffrey G
2014-01-01
In this tutorial we summarize the physics and mathematics behind refractive electromagnetic wave bending and delay. Refractive bending and delay through the Earth's atmosphere at both radio/millimetric and optical/IR wavelengths are discussed, but with most emphasis on the former, and with Atacama Large Millimeter Array (ALMA) applications in mind. As modern astronomical measurements often require sub-arcsecond position accuracy, care is required when selecting refractive bending and delay algorithms. For the spherically-uniform model atmospheres generally used for all refractive bending and delay algorithms, positional accuracies $\\lesssim 1^{\\prime\\prime}$ are achievable when observing at zenith angles $\\lesssim 75^\\circ$. A number of computationally economical approximate methods for atmospheric refractive bending and delay calculation are presented, appropriate for astronomical observations under these conditions. For observations under more realistic atmospheric conditions, for zenith angles $\\gtrsim 75^...
Quantum metamaterials: Electromagnetic waves in Josephson qubit lines
Zagoskin, A.M. [Frontier Research System, Institute of Physical and Chemical Research (RIKEN),Wako-shi, Saitama (Japan); Department of Physics, Loughborough University, Loughborough (United Kingdom); Physics and Astronomy Department, University of British Columbia, Vancouver, B.C. (Canada); Rakhmanov, A.L. [Frontier Research System, Institute of Physical and Chemical Research (RIKEN),Wako-shi, Saitama (Japan); Institute for Theoretical and Applied Electrodynamics RAS, Moscow (Russian Federation); Savel' ev, Sergey [Frontier Research System, Institute of Physical and Chemical Research (RIKEN),Wako-shi, Saitama (Japan); Department of Physics, Loughborough University, Loughborough (United Kingdom); Nori, Franco [Frontier Research System, Institute of Physical and Chemical Research (RIKEN),Wako-shi, Saitama (Japan); Department of Physics, Center for Theoretical Physics, Applied Physics Program, Center for the Study of Complex Systems, University of Michigan, Ann Arbor, MI (United States)
2009-05-15
We consider the propagation of a classical electromagnetic wave through a transmission line, formed by identical superconducting charge qubits inside a superconducting resonator. Since the qubits can be in a coherent superposition of quantum states, we show that such a system demonstrates interesting new effects, such as a ''breathing'' photonic crystal with an oscillating bandgap. Similar behaviour is expected from a transmission line formed by flux qubits. The key ingredient of these effects is that the optical properties of the Josephson transmission line are controlled by the quantum coherent state of the qubits (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Diffraction of Electromagnetic Wave by Circular Disk and Circular Hole
Shahzad, Muhammad Adnan
2010-01-01
The problem of diffraction of an electromagnetic plane wave by a perfectly conducting circular disk and its complementary problem, diffraction by a circular hole in an infinite conducting plate, are rigorously solved using the method of the Kobayashi potential. The mathematical formulation involved dual integral equation derived from the potential integral and boundary condition on the plane where a disk or hole is located. The weighting function in the potential integral are determined by applying the properties of the Weber-Schafheitlin's discontinuous integral and the solution are obtained in the form of a matrix equation. The matrix elements of the equations for the expansion coefficients are given by three kinds of infinite integral and the series solution for these infinite integral are derived. For the verification of these series solution, the numerical integral are derived and the results are computed numerically using the method of Gaussian quadrature for conformation. The numerical results are give...
Electromagnetic wave propagation through a slab of a dispersive medium
Ismail, Mohamed
2016-01-01
A method is proposed for the analysis of the propagation of electromagnetic waves through a homogeneous slab of a medium with Drude-Lorentz dispersion behavior, and excited by a causal sinusoidal source. An expression of the time dependent field, free from branch-cuts in the plane of complex frequencies, is established. This method provides the complete temporal response in both the steady-state and transient regimes in terms of discrete poles contributions. The Sommerfeld and Brillouin precursors are retrieved and the corresponding set of poles are identified. In addition, the contribution in the transient field of the resonance frequency in the Drude-Lorentz model is exhybited, and the effect of reflections resulting from the refractive index mismatch at the interfaces of the slab are analyzed.
Artemyev, A. V., E-mail: ante0226@gmail.com; Vasiliev, A. A. [Space Research Institute, RAS, Moscow (Russian Federation); Mourenas, D.; Krasnoselskikh, V. V. [LPC2E/CNRS—University of Orleans, Orleans (France); Agapitov, O. V. [Space Sciences Laboratory, University of California, Berkeley, California 94720 (United States)
2014-10-15
In this paper, we consider high-energy electron scattering and nonlinear trapping by oblique whistler waves via the Landau resonance. We use recent spacecraft observations in the radiation belts to construct the whistler wave model. The main purpose of the paper is to provide an estimate of the critical wave amplitude for which the nonlinear wave-particle resonant interaction becomes more important than particle scattering. To this aim, we derive an analytical expression describing the particle scattering by large amplitude whistler waves and compare the corresponding effect with the nonlinear particle acceleration due to trapping. The latter is much more rare but the corresponding change of energy is substantially larger than energy jumps due to scattering. We show that for reasonable wave amplitudes ∼10–100 mV/m of strong whistlers, the nonlinear effects are more important than the linear and nonlinear scattering for electrons with energies ∼10–50 keV. We test the dependencies of the critical wave amplitude on system parameters (background plasma density, wave frequency, etc.). We discuss the role of obtained results for the theoretical description of the nonlinear wave amplification in radiation belts.
Scattering Cross Section of Sound Waves by the Modal Element Method
Baumeister, Kenneth J.; Kreider, Kevin L.
1994-01-01
#he modal element method has been employed to determine the scattered field from a plane acoustic wave impinging on a two dimensional body. In the modal element method, the scattering body is represented by finite elements, which are coupled to an eigenfunction expansion representing the acoustic pressure in the infinite computational domain surrounding the body. The present paper extends the previous work by developing the algorithm necessary to calculate the acoustics scattering cross section by the modal element method. The scattering cross section is the acoustical equivalent to the Radar Cross Section (RCS) in electromagnetic theory. Since the scattering cross section is evaluated at infinite distance from the body, an asymptotic approximation is used in conjunction with the standard modal element method. For validation, the scattering cross section of the rigid circular cylinder is computed for the frequency range 0.1 is less than or equal to ka is less than or equal to 100. Results show excellent agreement with the analytic solution.
Ultra wide band electromagnetic scattering of a fractal profile
Rouvier, S.; Borderies, P.; Chênerie, I.
1997-03-01
The relationship between the fractal dimension of a perfectly conducting bidimensionnal profile and the fractal dimension of the time domain scattered field is investigated. The first part of the paper is dedicated to the profile itself; implementation of the counting box method for fractal dimension estimation is described and improved by the adjunction of an iterative process involving a correlation criterion. The second part is about the field scattered by a fractal profile which is calculated by the method of moments; polarizations, directions of incidence and observation effects are studied. Influence of spectral window and of noise is also investigated. Results show that fractal dimensions of the field and of the profile are linked by a monotonous increasing function which weakly depends on the polarizations and on the directions of incidence and observation. Moreover, the fractal dimension shows robustness to noise.
许正文; 吴健; 霍文平; 吴振森
2003-01-01
Electromagnetic pulsed waves can be distorted in the propagation through random media, and their energy dis tributions change along the leading and trailing edge of the waveform, which can be presented by the temporal skewness. The skewness presents asymmetry and is treated by the third-order temporal moment, in which an analytic solution for the two-frequency mutual coherence function is obtained recently. Then, transionospheric pulses are discussed in details. Both theoretical analysis and numerical computation indicate that the contri butions from scattering and dispersion of irregularities dominate over those of background, so the latter can be neglected in most cases. Also, the temporal skewness of a transionospheric pulse is negative and energy is shifted to the leading edge.
Karamehmedovic, Mirza; Breinbjerg, Olav
2002-01-01
The Method of Auxiliary Sources (MAS) is applied to 3D scattering problems involving spherical impedance scatterers. The MAS results are compared with the reference spherical wave expansion (SWE) solution. It is demonstrated that good agreement is achieved between the MAS and SWE results....
Oades, G C; Matsinos, E; Rasche, G; Woolcock, W S
2007-01-01
We give the conversion equations which lead from experimental values of the 3p -> 1s transition energy in pionic hydrogen and the total width of the 1s level to values of the s-wave threshold scattering parameters for the processes pi- p -> pi- p and pi- p -> pi0 n respectively. Using a three-channel potential model, we then calculate the electromagnetic corrections to these quantities, which remove the effects of the Coulomb interaction, the external mass differences and the presence of the gamma n channel. We give the s-wave scattering parameters obtained from the present experimental data and these electromagnetic corrections. Finally we discuss the implications for isospin invariance.
Electromagnetic scattering of the carbon nanotubes excited by an electric line source
Wang Yue; Wu Qun; Wu Yu-Ming; He Xun-Jun; Li Le-Wei
2012-01-01
An analytical solution is presented for the electromagnetic scattering from an infinite-length metallic carbon nanotube and a carbon nanotube bundle.The scattering field and scattering cross section are predicted using a modal technique based on a Bessel and Hankel function for the electric line source and a quantum conductance function for the carbon nanotube.For the particular case of an isolated armchair (10,10) carbon nanotube,the scattered field predicted from this technique is in excellent agreement with the measured result.Furthermore,the analysis indicates that the scattering pattern of an isolated carbon nanotube differs from that of the carbon nanotube bundle of identical index (m,n) metallic carbon nanotubes.
Li, Ping
2014-05-01
A scheme hybridizing discontinuous Galerkin time-domain (DGTD) and time-domain boundary integral (TDBI) methods for accurately analyzing transient electromagnetic scattering is proposed. Radiation condition is enforced using the numerical flux on the truncation boundary. The fields required by the flux are computed using the TDBI from equivalent currents introduced on a Huygens\\' surface enclosing the scatterer. The hybrid DGTDBI ensures that the radiation condition is mathematically exact and the resulting computation domain is as small as possible since the truncation boundary conforms to scatterer\\'s shape and is located very close to its surface. Locally truncated domains can also be defined around each disconnected scatterer additionally reducing the size of the overall computation domain. Numerical examples demonstrating the accuracy and versatility of the proposed method are presented. © 2014 IEEE.
Millimeter Wave Scattering from Neutral and Charged Water Droplets
Heifetz, Alexander; Liao, Shaolin; Gopalsami, N Sami; Raptis, A C Paul
2010-01-01
We investigated 94GHz millimeter wave (MMW) scattering from neutral and charged water mist produced in the laboratory with an ultrasonic atomizer. Diffusion charging of the mist was accomplished with a negative ion generator (NIG). We observed increased forward and backscattering of MMW from charged mist, as compared to MMW scattering from an uncharged mist. In order to interpret the experimental results, we developed a model based on classical electrodynamics theory of scattering from a dielectric sphere with diffusion-deposited mobile surface charge. In this approach, scattering and extinction cross-sections are calculated for a charged Rayleigh particle with effective dielectric constant consisting of the volume dielectric function of the neutral sphere and surface dielectric function due to the oscillation of the surface charge in the presence of applied electric field. For small droplets with (radius smaller than 100nm), this model predicts increased MMW scattering from charged mist, which is qualitative...
Pitch angle scattering of energetic particles by oblique whistler waves
Inan, U. S.; Bell, T. F.
1991-01-01
First order cyclotron or Landau resonant pitch angle scattering of electrons by oblique whistler waves propagating at large angles to the ambient field are found to be at least as large as that due to parallel propagating waves. Commonly observed precipitation of more than 40 keV electrons in association with ducted whistlers may thus be accompanied by substantial fluxes of lower energy (10 eV-40 keV) electrons precipitated by the nonducted components.
Nondestructive Inspection by Using Scattering and Spectra in Terahertz Waves
Shibuya, Takayuki; Yamashita, Masahiro; Ogawa, Yuichi; Otani, Chiko; Kawase, Kodo; Inoue, Hiroyuki; Kanamori, Tatsuyuki
In this paper, we show that the nondestructive detection of chemicals hidden in envelopes can be achieved using terahertz waves in a simple two-step procedure: First, scattering of the terahertz waves is an indicator of the presence of powders in the envelope; second, the identification of the chemicals is done by spectral fingerprinting. In addition, we examined the possibility of measurement by diffuse reflection.
Super-virtual Interferometric Separation and Enhancement of Back-scattered Surface Waves
Guo, Bowen
2015-08-19
Back-scattered surface waves can be migrated to detect near-surface reflectors with steep dips. A robust surface-wave migration requires the prior separation of the back-scattered surface-wave events from the data. This separation is often difficult to implement because the back-scattered surface waves are masked by the incident surface waves. We mitigate this problem by using a super-virtual interferometric method to enhance and separate the back-scattered surface waves. The key idea is to calculate the virtual back-scattered surface waves by stacking the resulting virtual correlated and convolved traces associated with the incident and back-scattered waves. Stacking the virtual back-scattered surface waves improves their signal-to-noise ratio and separates the back-scattered surface-waves from the incident field. Both synthetic and field data results validate the robustness of this method.
Near-inertial wave scattering by random flows
Danioux, Eric
2016-01-01
The impact of a turbulent flow on wind-driven oceanic near-inertial waves is examined using a linearised shallow-water model of the mixed layer. Modelling the flow as a homogeneous and stationary random process with spatial scales comparable to the wavelengths, we derive a transport (or kinetic) equation governing wave-energy transfers in both physical and spectral spaces. This equation describes the scattering of the waves by the flow which results in a redistribution of energy between waves with the same frequency (or, equivalently, with the same wavenumber) and, for isotropic flows, in the isotropisation of the wave field. The time scales for the scattering and isotropisation are obtained explicitly and found to be of the order of tens of days for typical oceanic parameters. The predictions inferred from the transport equation are confirmed by a series of numerical simulations. Two situations in which near-inertial waves are strongly influenced by flow scattering are investigated through dedicated nonlinea...
Relativistic NN scattering without partial wave decomposition
Ramalho, G; Peña, M T
2004-01-01
We consider the covariant Spectator equation with an appropriate OBE kernel, and apply it to the NN system. We develop a method, based on the Pad\\'e method,to solve the Spectator equation without partial wave decomposition, which is essential for high energies. Relativistic effects such as retardation and negative energy state components are considered. The on- and off-mass-shell amplitudes are calculated. The differential cross section obtained agrees fairly well with data at low energies.
吴良超; 汪茂光
1995-01-01
Under the exact impedance boundary condition (EIBC), by using wave equations and the longitudinal field method, the electromagnetic scattenng by an impedance wedge has been analysed in detail, following the Maliuzhinets approach, and the uniform diffraction coefficient of the diffracted field has been presented.
Electromagnetic scattering calculations on the Intel Touchstone Delta
Cwik, Tom; Patterson, Jean; Scott, David
1992-01-01
During the first year's operation of the Intel Touchstone Delta system, software which solves the electric field integral equations for fields scattered from arbitrarily shaped objects has been transferred to the Delta. To fully realize the Delta's resources, an out-of-core dense matrix solution algorithm that utilizes some or all of the 90 Gbyte of concurrent file system (CFS) has been used. The largest calculation completed to date computes the fields scattered from a perfectly conducting sphere modeled by 48,672 unknown functions, resulting in a complex valued dense matrix needing 37.9 Gbyte of storage. The out-of-core LU matrix factorization algorithm was executed in 8.25 h at a rate of 10.35 Gflops. Total time to complete the calculation was 19.7 h-the additional time was used to compute the 48,672 x 48,672 matrix entries, solve the system for a given excitation, and compute observable quantities. The calculation was performed in 64-b precision.
Electromagnetic Waves and Bursty Electron Acceleration: Implications from Freja
Andersson, Laila; Ivchenko, N.; Wahlund, J.-E.; Clemmons, J.; Gustavsson, B.; Eliasson, L.
2000-01-01
Dispersive Alfven wave activity is identified in four dayside auroral oval events measured by the Freja satellite. The events are characterized by ion injection, bursty electron precipitation below about I keV, transverse ion heating and broadband extremely low frequency (ELF) emissions below the lower hybrid cutoff frequency (a few kHz). The broadband emissions are observed to become more electrostatic towards higher frequencies. Large-scale density depletions/cavities, as determined by the Langmuir probe measurements, and strong electrostatic emissions are often observed simultaneously. A correlation study has been carried out between the E- and B-field fluctuations below 64 Hz (the dc instrument's upper threshold) and the characteristics of the precipitating electrons. This study revealed that the energization of electrons is indeed related to the broadband ELF emissions and that the electrostatic component plays a predominant role during very active magnetospheric conditions. Furthermore, the effect of the ELF electromagnetic emissions on the larger scale field-aligned current systems has been investigated, and it is found that such an effect cannot be detected. Instead, the Alfvenic activity creates a local region of field-aligned currents. It is suggested that dispersive Alfven waves set up these local field-aligned current regions and in turn trigger more electrostatic emissions during certain conditions. In these regions ions are transversely heated, and large-scale density depletions/cavities may be created during especially active periods.
Electron acceleration in the ionosphere by obliquely propagating electromagnetic waves
Burke, W.J.; Ginet, G.P.; Heinemann, M.A.; Villalon, E.
1988-01-01
The relativistic equations of motion have been analyzed for electrons in magnetized plasmas and externally imposed electromagnetic fields that propagate at arbitrary angles to the background magnetic field. The electron energy is obtained from a set of non-linear differential equations as functions of time, initial conditions and cyclotron harmonic numbers. For a given cyclotron resonance the energy oscillates in time within the limits of a potential well. Stochastic acceleration occurs if the widths of hamiltonian potentials overlap. Numerical analyses suggest that, at wave energy fluxes in excess of 10/sup 8/ mW/m/sup 2/, initially cold electrons can be accelerated to energies of several MeV in less than a millisecond. Practical attempts to validate the theory with a series of planned rocket flights over the HIPAS facility in Alaska are discussed. The HIPAS antennas will be used to irradiate the magnetic mirror points of 10 - 40 keV electrons emitted from the ECHO 7 rocket in the early winter of 1988. Follow-on rocket experiments to exploit the wave amplification properties of the ionospheric 'radio window' are described.
Interaction of High Intensity Electromagnetic Waves with Plasmas
G. Shvets
2008-10-03
The focus of our work during the duration of this grant was on the following areas: (a) the fundamental plasma physics of intense laser-plasma interactions, including the nonlinear excitation of plasma waves for accelerator applications, as well as the recently discovered by us phenomenon of the relativistic bi-stability of relativistic plasma waves driven by a laser beatwave; (b) interaction of high power microwave beams with magnetized plasma, including some of the recently discovered by us phenomena such as the Undulator Induced Transparency (UIT) as well as the new approaches to dynamic manipulation of microwave pulses; (c) investigations of the multi-color laser pulse interactions in the plasma, including the recently discovered by us phenomenon of Electromagnetic Cascading (EC) and the effect of the EC of three-dimensional dynamics of laser pulses (enhanced/suppressed selffocusing etc.); (d) interaction of high-current electron beams with the ambient plasma in the context of Fast Ignitor (FI) physics, with the emphasis on the nonlinear dynamics of the Weibel instability and beam filamentation.
Frequency-domain electromagnetic sounding with combination wave in near-field zone
苏发; 何继善
1996-01-01
By analysing the propagation law of electromagnetic wave,the distribution pattern of the field and the theory of frequency electromagnetic sounding,the physical mechanisms that make the frequency electromagnetic sounding in near-field zone difficult are discussed.Based on the theory of near source field,a new method of dual-frequency electromagnetic sounding of combination wave in near-field zone is advanced.Meanwhile,the method of measurement of fields,the definition of apparent resistivity and the numerical algorithm are approached.
Wang Jiang
2014-03-01
Full Text Available When partial discharge occurs in Gas Insulated Switchgear (GIS with insulation defects, Ultrahigh-Frequency (UHF electromagnetic wave up to several MHz and GHz will be exited and propagate inside GIS cavity. This study, based on the propagation theory of electromagnetic waves in coaxial waveguide, performs simulation analysis of the relationship between PD pulse form and the exited UHF electromagnetic wave using Finite-Deferential Time-Domain (FDTD algorithm. First, we study the relationship of partial discharge magnitude and electric field strength of electromagnetic wave. It is found that the changes of partial discharge magnitude have little effect on electric field strength of electromagnetic wave at certain variation rate of PD pulse current. Next, we examine the relationship of variation rate of PD pulse current to electric field strength of electromagnetic wave. It is pointed out that, at a certain partial discharge magnitude, the two are approximately linearly related. Finally, we study the impact of variation rate of PD pulse current on higher mode components. Variation coefficient is used to analyze the proportion of higher mode components in electromagnetic wave. The proportion of higher mode components increases with increasing variation rate of PD pulse current.
Uniqueness in inverse elastic scattering with finitely many incident waves
Elschner, Johannes [Weierstrass-Institut fuer Angewandte Analysis und Stochastik (WIAS) im Forschungsverbund Berlin e.V. (Germany); Yamamoto, Masahiro [Tokyo Univ. (Japan). Dept. of Mathematical Sciences
2009-07-01
We consider the third and fourth exterior boundary value problems of linear isotropic elasticity and present uniqueness results for the corresponding inverse scattering problems with polyhedral-type obstacles and a finite number of incident plane elastic waves. Our approach is based on a reflection principle for the Navier equation. (orig.)
Spin-wave and critical neutron scattering from chromium
Als-Nielsen, Jens Aage; Axe, J.D.; Shirane, G.
1971-01-01
Chromium and its dilute alloys are unique examples of magnetism caused by itinerant electrons. The magnetic excitations have been studied by inelastic neutron scattering using a high-resolution triple-axis spectrometer. Spin-wave peaks in q scans at constant energy transfer ℏω could, in general, ...
Introduction to wave scattering, localization, and mesoscopic phenomena
Sheng, Ping
1995-01-01
This book gives readers a coherent picture of waves in disordered media, including multiple scattered waves. The book is intended to be self-contained, with illustrated problems and solutions at the end of each chapter to serve the double purpose of filling out the technical and mathematical details and giving the students exercises if used as a course textbook.The study of wave behavior in disordered media has applications in:Condensed matter physics (semi and superconductor nanostructures and mesoscopic phenomena)Materials science/analytical chemistry (analysis of composite and crystalline structures and properties)Optics and electronics (microelectronic and optoelectronic devices)Geology (seismic exploration of Earths subsurface)
Guided-wave Brillouin scattering in air
Renninger, William H; Rakich, Peter T
2016-01-01
Here we identify a new form of optomechanical coupling in gas-filled hollow-core fibers. Stimulated forward Brillouin scattering is observed in air in the core of a photonic bandgap fiber. A single resonance is observed at 35 MHz, which corresponds to the first excited axial-radial acoustic mode in the air-filled core. The linewidth and coupling strengths are determined by the acoustic loss and electrostrictive coupling in air, respectively. A simple analytical model, refined by numerical simulations, is developed that accurately predicts the Brillouin coupling strength and frequency from the gas and fiber parameters. Since this form of Brillouin coupling depends strongly on both the acoustic and dispersive optical properties of the gas within the fiber, this new type of optomechanical interaction is highly tailorable. These results allow for forward Brillouin spectroscopy in dilute gases, could be useful for sensing and will present a power and noise limitation for certain applications.
Risk perception and public concerns of electromagnetic waves from cellular phones in Korea.
Kim, Kyunghee; Kim, Hae-Joon; Song, Dae Jong; Cho, Yong Min; Choi, Jae Wook
2014-05-01
In this study, the difference between the risk perception of electromagnetic waves from cellular phones and the risk perception of other factors such as environment and food was analyzed. The cause of the difference in the psychological and social factors that affect the group with high risk perception of electromagnetic waves was also analyzed. A questionnaire survey on the risk perception of electromagnetic waves from cellular phones was carried out on 1001 subjects (men and women) over the age of 20. In the group with high risk perception of electromagnetic waves from cellular phones, women had higher risk perception than men. Logistic regression analysis, where the group with high risk perception of electromagnetic waves and the group with low risk perception were used as dependent variables, indicated that the risk perception of electromagnetic waves in women was 1.815 times statistically significantly higher than the risk perception of men (95% CI: 1.340-2.457). Also, high risk perception of electromagnetic waves from cellular phones was observed when the subjects considered that they had more personal knowledge (OR: 1.416, 95% CI: 1.216-1.648), that the seriousness of the risk to future generations was high (OR: 1.410, 95% CI: 1.234-1.611), and their outrage for the occurrence of accidents related to electromagnetic waves was high (OR: 1.460, 95% CI: 1.264-1.686). The results of this study need to be sufficiently considered and reflected in designing the risk communication strategies and communication methods for the preventive measures and advice on electromagnetic waves from cellular phones. © 2014 Wiley Periodicals, Inc.
Cao, Xing; Ni, Binbin; Liang, Jun; Xiang, Zheng; Wang, Qi; Shi, Run; Gu, Xudong; Zhou, Chen; Zhao, Zhengyu; Fu, Song; Liu, Jiang
2016-02-01
This is a companion study to Liang et al. (2014) which reported a "reversed" energy-latitude dispersion pattern of ion precipitation in that the lower energy ion precipitation extends to lower latitudes than the higher-energy ion precipitation. Electromagnetic ion cyclotron (EMIC) waves in the central plasma sheet (CPS) have been suggested to account for this reversed-type ion precipitation. To further investigate the association, we perform a comprehensive study of pitch angle diffusion rates induced by EMIC wave and the resultant proton loss timescales at L = 8-12 around the midnight. Comparing the proton scattering rates in the Earth's dipole field and a more realistic quiet time geomagnetic field constructed from the Tsyganenko 2001 (T01) model, we find that use of a realistic, nondipolar magnetic field model not only decreases the minimum resonant energies of CPS protons but also considerably decreases the limit of strong diffusion and changes the proton pitch angle diffusion rates. Adoption of the T01 model increases EMIC wave diffusion rates at > ~ 60° equatorial pitch angles but decreases them at small equatorial pitch angles. Pitch angle scattering coefficients of 1-10 keV protons due to H+ band EMIC waves can exceed the strong diffusion rate for both geomagnetic field models. While He+ and O+ band EMIC waves can only scatter tens of keV protons efficiently to cause a fully filled loss cone at L > 10, in the T01 magnetic field they can also cause efficient scattering of ~ keV protons in the strong diffusion limit at L > 10. The resultant proton loss timescales by EMIC waves with a nominal amplitude of 0.2 nT vary from a few hours to several days, depending on the wave band and L shell. Overall, the results demonstrate that H+ band EMIC waves, once present, can act as a major contributor to the scattering loss of a few keV protons at lower L shells in the CPS, accounting for the reversed energy-latitude dispersion pattern of proton precipitation at low
Statistical flaw characterization through Bayesian shape inversion from scattered wave observations
McMahan, Jerry A.; Criner, Amanda K.
2016-02-01
A method is discussed to characterize the shape of a flaw from noisy far-field measurements of a scattered wave. The scattering model employed is a two-dimensional Helmholtz equation which quantifies scattering due to interrogating signals from various physical phenomena such as acoustics or electromagnetics. The well-known inherent ill-posedness of the inverse scattering problem is addressed via Bayesian regularization. The method is loosely related to the approach described in [1] which uses the framework of [2] to prove the well-posedness of the infinite-dimensional problem and derive estimates of the error for a particular discretization approach. The method computes the posterior probability density for the flaw shape from the scattered field observations, taking into account prior assumptions which are used to describe any a priori knowledge of the flaw. We describe the computational approach to the forward problem as well as the Markov chain Monte Carlo (MCMC) based approach to approximating the posterior. We present simulation results for some hypothetical flaw shapes with varying levels of observation error and arrangement of observation points. The results show how the posterior probability density can be used to visualize the shape of the flaw taking into account the quantitative confidence in the quality of the estimation and how various arrangements of the measurements and interrogating signals affect the estimation
Rayleigh scattering and nonlinear inversion of elastic waves
Gritto, R.
1995-12-01
Rayleigh scattering of elastic waves by an inclusion is investigated and the limitations determined. In the near field of the inhomogeneity, the scattered waves are up to a factor of 300 stronger than in the far field, excluding the application of the far field Rayleigh approximation for this range. The investigation of the relative error as a function of parameter perturbation shows a range of applicability broader than previously assumed, with errors of 37% and 17% for perturbations of {minus}100% and +100%, respectively. The validity range for the Rayleigh limit is controlled by large inequalities, and therefore, the exact limit is determined as a function of various parameter configurations, resulting in surprisingly high values of up to k{sub p}R = 0.9. The nonlinear scattering problem can be solved by inverting for equivalent source terms (moments) of the scatterer, before the elastic parameters are determined. The nonlinear dependence between the moments and the elastic parameters reveals a strong asymmetry around the origin, which will produce different results for weak scattering approximations depending on the sign of the anomaly. Numerical modeling of cross hole situations shows that near field terms are important to yield correct estimates of the inhomogeneities in the vicinity of the receivers, while a few well positioned sources and receivers considerably increase the angular coverage, and thus the model resolution of the inversion parameters. The pattern of scattered energy by an inhomogeneity is complicated and varies depending on the object, the wavelength of the incident wave, and the elastic parameters involved. Therefore, it is necessary to investigate the direction of scattered amplitudes to determine the best survey geometry.
A review of nondestructive testing approaches using mechanical and electromagnetic waves
Lau, Denvid; Qiu, Qiwen
2016-04-01
Mechanical and electromagnetic waves are commonly used in nondestructive testing (NDT) techniques for evaluating the materials and structures in civil engineering industry, due to their good examination of defects inside the matter. However, the individual use of mechanical wave or electromagnetic wave in NDT methods sometimes does not fulfill the satisfactory detection in practice because of the operational inconvenience and low sensitivity. It has been demonstrated that the combination of using both types of waves can achieve a better performance for NDT application and would be the future direction for defect detection, as the advantages of each physical wave are picked out whereas the weaknesses are mitigated. This paper discusses the fundamental mechanisms and the current applications of using mechanical and electromagnetic waves for defect detection, with the goal of providing the physical knowledge and the perspectives of developing the NDT applications with these two types of waves. Typical mechanical-wave-based NDT methods such as acoustic emission, ultrasonic technique, and impact-echo method are reviewed. In addition, NDT methods using electromagnetic wave, which include optical fiber sensing technique, laser speckle interferometry and laser reflection technique are discussed. Advantages and disadvantages of these methods are outlined. In particular, we focus on a recent NDT method called acoustic-laser technique, which utilizes both the mechanical and electromagnetic waves. The basic principles and some important experimental data recorded by the acoustic-laser technique are described and its future development in the field of defect detection in civil infrastructure is presented.
Es’kin, V. A.; Ivoninsky, A. V.; Kudrin, A. V., E-mail: kud@rf.unn.ru; Popova, L. L. [Lobachevsky University (Russian Federation)
2017-02-15
Electromagnetic radiation from filamentary electric-dipole and magnetic-current sources of infinite length in the presence of gyrotropic cylindrical scatterers in the surrounding free space is studied. The scatterers are assumed to be infinitely long, axially magnetized circular plasma columns parallel to the axis of the filamentary source. The field and the radiation pattern of each source are calculated in the case where the source frequency is equal to one of the surface plasmon resonance frequencies of the cylindrical scatterers. It is shown that the presence of even a single resonant magnetized plasma scatterer of small electrical radius or a few such scatterers significantly affects the total fields of the filamentary sources, so that their radiation patterns become essentially different from those in the absence of scatterers or the presence of isotropic scatterers of the same shape and size. It is concluded that the radiation characteristics of the considered sources can efficiently be controlled using their resonance interaction with the neighboring gyrotropic scatterers.
Light fields in complex media: Mesoscopic scattering meets wave control
Rotter, Stefan; Gigan, Sylvain
2017-01-01
The newly emerging field of wave front shaping in complex media has recently seen enormous progress. The driving force behind these advances has been the experimental accessibility of the information stored in the scattering matrix of a disordered medium, which can nowadays routinely be exploited to focus light as well as to image or to transmit information even across highly turbid scattering samples. An overview of these new techniques, their experimental implementations, and the underlying theoretical concepts following from mesoscopic scattering theory is provided. In particular, the intimate connections between quantum transport phenomena and the scattering of light fields in disordered media, which can both be described by the same theoretical concepts, are highlighted. Particular emphasis is put on how these topics relate to application-oriented research fields such as optical imaging, sensing, and communication.
Nonlinear interactions of electromagnetic waves with the auroral ionosphere
Wong, Alfred Y.
1999-09-01
The ionosphere provides us with an opportunity to perform plasma experiments in an environment with long confinement times, very large-scale lengths, and no confining walls. The auroral ionosphere with its nearly vertical magnetic field geometry is uniquely endowed with large amount of free energy from electron and ion precipitation along the magnetic field and mega-ampere current across the magnetic field. To take advantage of this giant outdoor laboratory, two facilities HAARP and HIPAS, with frequencies ranging from the radio to optical bands, are now available for active probing of and interaction with this interesting region. The ponderomotive pressures from the self-consistent wave fields have produced significant local perturbations of density and particle distributions at heights where the incident EM frequency matches a plasma resonance. This paper will review theory and experiments covering the nonlinear phenomena of parametric decay instability to wave collapse processes. At HF frequencies plasma lenses can be created by preconditioning pulses to focus what is a normally divergent beam into a high-intensity spot to further enhance nonlinear phenomena. At optical wavelengths a large rotating liquid metal mirror is used to focus laser pulses up to a given height. Such laser pulses are tuned to the same wavelengths of selected atomic and molecular resonances, with resulting large scattering cross sections. Ongoing experiments on dual-site experiments and excitation of ELF waves will be presented. The connection of such basic studies to environmental applications will be discussed. Such applications include the global communication using ELF waves, the ozone depletion and remediation and the control of atmospheric CO2 through the use of ion cyclotron resonant heating.
Kaliteevski, M. A.; Gubaydullin, A. R.; Ivanov, K. A.; Mazlin, V. A.
2016-09-01
We have developed a rigorous self-consistent approach for the quantization of electromagnetic field in inhomogeneous structures. The approach is based on utilization of the scattering matrix of the system. Instead of the use of standard periodic Born-Karman boundary conditions, we use the quantization condition implying equating eigenvalues of the scattering matrix (S-matrix) of the system to unity (S-quantization). In the trivial case of uniform medium boundary condition for S-quantization is nothing but periodic boundary condition. S-quantization allows calculating modification of the spontaneous emission rate for arbitrary inhomogeneous structure and direction of the emitted radiation. S-quantization solves the long-standing problem coupled to normalization of the quasi-stationary electromagnetic modes. Examples of application of S-quantization for the calculation of spontaneous emission rate for the cases of Bragg reflector and microcavity are demonstrated.
Application of geometric algebra to electromagnetic scattering the Clifford-Cauchy-Dirac technique
Seagar, Andrew
2016-01-01
This work presents the Clifford-Cauchy-Dirac (CCD) technique for solving problems involving the scattering of electromagnetic radiation from materials of all kinds. It allows anyone who is interested to master techniques that lead to simpler and more efficient solutions to problems of electromagnetic scattering than are currently in use. The technique is formulated in terms of the Cauchy kernel, single integrals, Clifford algebra and a whole-field approach. This is in contrast to many conventional techniques that are formulated in terms of Green's functions, double integrals, vector calculus and the combined field integral equation (CFIE). Whereas these conventional techniques lead to an implementation using the method of moments (MoM), the CCD technique is implemented as alternating projections onto convex sets in a Banach space. The ultimate outcome is an integral formulation that lends itself to a more direct and efficient solution than conventionally is the case, and applies without exception to all types...
Robust integral formulations for electromagnetic scattering from three-dimensional cavities
Lai, Jun; Greengard, Leslie; O'Neil, Michael
2017-09-01
Scattering from large, open cavity structures is of importance in a variety of electromagnetic applications. In this paper, we propose a new well conditioned integral equation for scattering from general open cavities embedded in an infinite, perfectly conducting half-space. The integral representation permits the stable evaluation of both the electric and magnetic field, even in the low-frequency regime, using the continuity equation in a post-processing step. We establish existence and uniqueness results, and demonstrate the performance of the scheme in the cavity-of-revolution case. High-order accuracy is obtained using a Nyström discretization with generalized Gaussian quadratures.
Horne, Richard B.; Miyoshi, Yoshizumi
2016-10-01
Magnetosonic waves and electromagnetic ion cyclotron (EMIC) waves are important for electron acceleration and loss from the radiation belts. It is generally understood that these waves are generated by unstable ion distributions that form during geomagnetically disturbed times. Here we show that magnetosonic waves could be a source of EMIC waves as a result of propagation and a process of linear mode conversion. The converse is also possible. We present ray tracing to show how magnetosonic (EMIC) waves launched with large (small) wave normal angles can reach a location where the wave normal angle is zero and the wave frequency equals the so-called crossover frequency whereupon energy can be converted from one mode to another without attenuation. While EMIC waves could be a source of magnetosonic waves below the crossover frequency, magnetosonic waves could be a source of hydrogen band waves but not helium band waves.
Metamaterials, from electromagnetic waves to water waves, bending waves and beyond
Dupont, G.
2015-08-04
We will review our recent work on metamaterials for different types of waves. Transposition of transform optics to water waves and bending waves on plates will be considered with potential applications of cloaking to water waves protection and anti-vibrating systems.
The modulation of electromagnetic ion cyclotron waves by Pc 5 ULF waves
T. M. Loto'aniu
2009-01-01
Full Text Available The modulation of electromagnetic ion cyclotron (EMIC waves by longer-period ULF waves has been proposed as a method for producing pearl structured Pc 1–2 EMIC waves. This study examines frequency and phase relationship between Pc 1 EMIC wavepacket envelopes and simultaneously occurring Pc 5 ULF waves using magnetic data measured by the CRRES spacecraft. Intervals from three days in 1991 where CRRES observed pearls are presented along with simple statistics for 58 EMIC wavepackets. The observations were dominated by EMIC waves propagating away from the equatorial region. Comparisons between pearl wavepacket envelopes and Pc 5 waves show excellent agreement. The pearl wavepacket duration times, τ_{dur}, were statistically correlated with Pc 5 wave periods, T_{Pc5}, resulting in a correlation coefficient of R=0.7 and best fit equation τ_{dur}=0.8·T_{Pc5}+6 s. In general, phase differences varied although time intervals of constant in-phase or anti-phase correlation were observed. Anti-phase modulation may be explained by a decreasing background magnetic field due to the negative cycle of the ULF wave decreasing Alfvén velocity and minimum resonant energy. In-phase modulation could be the result of adiabatic modulation of temperature anisotropy in-phase with variations in the background field. Non-adiabatic processes may contribute to intervals that showed varying phase differences with time. Results suggest that future theoretical developments should take into account the full range of possible wave particle interactions inside the magnetosphere.
A wave guide model of lightning currents and their electromagnetic field
Volland, H.
1980-01-01
Lightning channels are considered as resonant wave guides in which only standing resonant wave modes can be excited. Two types of discharging currents develop. Type 1 is an aperiodic wave; type 2 is a damped oscillation. The electromagnetic radiation field of both types of currents is calculated and compared with the observation.
Photo-Ionization of Hydrogen Atom in a Circularly Polarized Standing Electromagnetic Wave
LIU Xiang-Tao; ZHANG Qi-Ren; WANG Wan-Zhang
2004-01-01
Applying time-independent non-perturbative formalism to the photo-ionization of hydrogen atom immersed in a strong circularly polarized standing electromagnetic wave, we calculate the shift of energy levels and the distortion of wave functions for the hydrogen atom, the ionization cross section induced by the standing wave, and the angular distribution of photoelectrons and obtain some interesting results.
Slabko, Vitaly V; Popov, Alexander K; Tkachenko, Viktor A; Myslivets, Sergey A
2016-09-01
Three-wave mixing of ordinary and backward electromagnetic waves in a pulsed regime is investigated in the metamaterials that enable the coexistence and phase-matching of such waves. It is shown that the opposite direction of phase velocity and energy flux in backward waves gives rise to extraordinary transient processes due to greatly enhanced optical parametric amplification and frequency up- and down-shifting nonlinear reflectivity. The differences are illustrated through comparison with the counterparts in ordinary, co-propagating settings.
Excitation of surface electromagnetic waves in a graphene-based Bragg grating.
Sreekanth, Kandammathe Valiyaveedu; Zeng, Shuwen; Shang, Jingzhi; Yong, Ken-Tye; Yu, Ting
2012-01-01
Here, we report the fabrication of a graphene-based Bragg grating (one-dimensional photonic crystal) and experimentally demonstrate the excitation of surface electromagnetic waves in the periodic structure using prism coupling technique. Surface electromagnetic waves are non-radiative electromagnetic modes that appear on the surface of semi-infinite 1D photonic crystal. In order to fabricate the graphene-based Bragg grating, alternating layers of high (graphene) and low (PMMA) refractive index materials have been used. The reflectivity plot shows a deepest, narrow dip after total internal reflection angle corresponds to the surface electromagnetic mode propagating at the Bragg grating/air boundary. The proposed graphene based Bragg grating can find a variety of potential surface electromagnetic wave applications such as sensors, fluorescence emission enhancement, modulators, etc.
Electromagnetic Wave Scattering By the Coated Impedance Cylinder
V.I. Vyunnik
2010-01-01
Full Text Available In this work the boundary conditions for the impedance circular cylinder coated by a low contrast dielectric thin layer are derived. Expression for the reduced impedance of the cylinder is obtained. Conditions and applicability limits of the proposed approach are defined. Influence of the coating impedance on the reduced impedance of the cylinder is investigated.
Descrovi, Emiliano; Giorgis, Fabrizio; Dominici, Lorenzo; Michelotti, Francesco
2008-02-01
Dispersion curves of surface electromagnetic waves (SEWs) in 1D silicon nitride photonic crystals having periodic surface corrugations are considered. We experimentally demonstrate that a bandgap for SEWs can be obtained by fabricating a polymeric grating on the multilayered structure. Close to the boundary of the first Brillouin zone connected to the grating, we observe the splitting of the SEW dispersion curve into two separate branches and identify two regions of very low group velocity. The proper design of the structure allows the two folded branches to lie beyond the light line in a wide spectral range, thus doubling the density of modes available for SEWs and avoiding light scattering.
Electromagnetic waves destabilized by runaway electrons in near-critical electric fields
Kómár, A; Fülöp, T
2013-01-01
Runaway electron distributions are strongly anisotropic in velocity space. This anisotropy is a source of free energy that may destabilize electromagnetic waves through a resonant interaction between the waves and the energetic electrons. In this work we investigate the high-frequency electromagnetic waves that are destabilized by runaway electron beams when the electric field is close to the critical field for runaway acceleration. Using a runaway electron distribution appropriate for the near-critical case we calculate the linear instability growth rate of these waves and conclude that the obliquely propagating whistler waves are most unstable. We show that the frequencies, wave numbers and propagation angles of the most unstable waves depend strongly on the magnetic field. Taking into account collisional and convective damping of the waves, we determine the number density of runaways that is required to destabilize the waves and show its parametric dependences.
GAO TIAN-LING; LIU QIANG; Ma Fu-ming
2012-01-01
This paper is concerned with the electromagnetic scattering by a nonperfectly conductor obstacle in chiral environment.A two-dimensional mathematical model is established.The existence and uniqueness of the problem are discussed by potential theory.
Anlauf, Harald; Dahmen, Hans D.; Manakos, Panagiotis; Mannel, Thomas; Ohl, Thorsten
1992-05-01
We present the Monte Carlo even generator KRONOS for deep inelastic lepton-hadron scattering at HERA. KRONOS focusses on the description of electromagnetic corrections beyond the existing fixed order calculations.
Radiation of planar electromagnetic waves by a line source in anisotropic metamaterials
Cheng Qiang; Jiang Weixiang; Cui Tiejun, E-mail: tjcui@seu.edu.c [State Key Laboratory of Millimeter Waves, Department of Radio Engineering, Southeast University, Nanjing 210096 (China)
2010-08-25
We show experimentally that a line source in an anisotropic metamaterial directly radiates planar electromagnetic waves instead of cylindrical waves, when one component of the permeability tensor approaches zero. The impedance of this material can be perfectly matched to that of free space, which can significantly reduce the reflections between the source and the superstrate, as in traditional highly directive antennas based on zero index metamaterials. Such a unique property determines the two-way propagation of electromagnetic waves excited by a line source, instead of all-way propagation. From this feature, a highly directive emission of electromagnetic waves is achieved using the anisotropic metamaterial with arbitrary shape. We have designed and fabricated the anisotropic metamaterial in the microwave region, and observed the generation of plane waves and their highly directive emission. The proposed plane-wave emission is independent of the shape variance of the anisotropic metamaterial, which can be utilized in the design of conformal antennas.