WorldWideScience

Sample records for electromagnetic spectrum ii

  1. Spectrum-generating SU(4) in particle physics. II. Electromagnetic decays of vector mesons

    International Nuclear Information System (INIS)

    Bohm, A.; Teese, R.B.

    1977-09-01

    The decay rates for the electromagnetic decays of vector mesons are derived within the spectrum-generating SU(4) approach. Radiative as well as leptonic decays of vector mesons can be derived from one theoretical assumption and given in terms of three reduced matrix elements. The implication of the experimental value GAMMA(rho → πγ) = (35 +- 10) keV for the form of the electromagnetic current operator is discussed

  2. Electromagnetic spectrum management system

    Science.gov (United States)

    Seastrand, Douglas R.

    2017-01-31

    A system for transmitting a wireless countermeasure signal to disrupt third party communications is disclosed that include an antenna configured to receive wireless signals and transmit wireless counter measure signals such that the wireless countermeasure signals are responsive to the received wireless signals. A receiver processes the received wireless signals to create processed received signal data while a spectrum control module subtracts known source signal data from the processed received signal data to generate unknown source signal data. The unknown source signal data is based on unknown wireless signals, such as enemy signals. A transmitter is configured to process the unknown source signal data to create countermeasure signals and transmit a wireless countermeasure signal over the first antenna or a second antenna to thereby interfere with the unknown wireless signals.

  3. Electromagnetic spectrum management system

    Energy Technology Data Exchange (ETDEWEB)

    Seastrand, Douglas R.

    2017-10-17

    A system for transmitting a wireless countermeasure signal to disrupt third party communications is disclosed that include an antenna configured to receive wireless signals and transmit wireless counter measure signals such that the wireless countermeasure signals are responsive to the received wireless signals. A receiver processes the received wireless signals to create processed received signal data while a spectrum control module subtracts known source signal data from the processed received signal data to generate unknown source signal data. The unknown source signal data is based on unknown wireless signals, such as enemy signals. A transmitter is configured to process the unknown source signal data to create countermeasure signals and transmit a wireless countermeasure signal over the first antenna or a second antenna to thereby interfere with the unknown wireless signals.

  4. Electromagnetic Spectrum from QGP Fluid

    OpenAIRE

    Tetsufumi, HIRANO; Shin, MUROYA; Mikio, NAMIKI; Department of Physics, Waseda University; Tokuyama Women's College, Tokuyama, Yamaguchi; Department of Physics, Waseda University

    1998-01-01

    We calculate thermal photon and electron pair distribution from hot QCD matter produced in high energy heavy-ion collisions, based on a hydrodynamical model which is so tuned as to reproduce the recent experimental data at CERN SPS, and compare these electromagnetic spectra with experimental data given by CERN WA80 and CERES. We investigate mainly the effects of the off-shell properties of the source particles on the electromagnetic spectra.

  5. Electromagnetic Spectrum from QGP Fluid

    OpenAIRE

    Hirano, T.; Muroya, S.; Namiki, M.

    1997-01-01

    We calculate thermal photon and electron pair distribution from hot QCD matter produced in high energy heavy-ion collisions, based on a hydrodynamical model which is so tuned as to reproduce the recent experimental data at CERN SPS, and compare these electromagnetic spectra with experimental data given by CERN WA80 and CERES. We investigate mainly the effects of the off-shell properties of the source particles on the electromagnetic spectra.

  6. Joint Electromagnetic Spectrum Management Operations

    Science.gov (United States)

    2012-03-20

    will coordinate through the United States liaison office (USLO) or US office of military cooperation ( OMC ) to obtain spectrum support and...coordination process, the USLO or OMC may authorize direct coordination between the combatant command (CCMD) JFMO or JTF JSME and the HN FM authorities...J-5). HNC may involve the spectrum authority of the HN(s) involved, the US embassy defense attaché OMC , friendly forces coordination cell, etc

  7. Was The Electromagnetic Spectrum A Blackbody Spectrum In The Early Universe?

    OpenAIRE

    Opher, Merav; Opher, Reuven

    1997-01-01

    It is assumed, in general, that the electromagnetic spectrum in the Primordial Universe was a blackbody spectrum in vacuum. We derive the electromagnetic spectrum, based on the Fluctuation-Dissipation Theorem that describes the electromagnetic fluctuations in a plasma. Our description includes thermal and collisional effects in a plasma. The electromagnetic spectrum obtained differs from the blackbody spectrum in vacuum at low frequencies. In particular, concentrating on the primordial nucleo...

  8. Was The Electromagnetic Spectrum A Blackbody Spectrum In The Early Universe?

    International Nuclear Information System (INIS)

    Opher, M.; Opher, R.

    1997-01-01

    It is generally assumed that the electromagnetic spectrum in the primordial universe was a blackbody spectrum in vacuum. We derive the electromagnetic spectrum based on the fluctuation-dissipation theorem that describes the electromagnetic fluctuations in a plasma. Our description includes thermal and collisional effects in a plasma. The electromagnetic spectrum obtained differs from a blackbody spectrum in vacuum at low frequencies. In particular, concentrating on the primordial nucleosynthesis era, it has more energy than the blackbody spectrum for frequencies less than 3ω pe to 6ω pe , where ω pe is the electron plasma frequency. copyright 1997 The American Physical Society

  9. Harvesting the electromagnetic spectrum: from communications to renewables

    OpenAIRE

    Gremont, Boris

    2011-01-01

    The talk will give a unified perspective on one of the most precious commodities underpinning the globalised world: the electromagnetic spectrum. In particular, we will describe how electromagnetic waves have been used over the years to create the global village and the modern world as we know it. How waves can be used to help fight global warming will be discussed along with how waves and remote sensing help in saving lives. Finally, how can the electromagnetic spectrum be used to create the...

  10. Width of electromagnetic wave instability spectrum in tungsten plate

    International Nuclear Information System (INIS)

    Rinkevich, A.B.

    1995-01-01

    Based on the study of high-frequency signal modulation and spectrum analysis of the envelope a measurement of spectrum width for electromagnetic wave instability was carried out under conditions of current pulse action on tungsten plate in magnetic field. The existence of amplitude-frequency wave modulation was revealed. The width of current disturbance spectrum in a specimen was evaluated. Current disturbances are shown to cause the instability of electromagnetic wave. 11 refs.; 6 figs

  11. What can we Learn from the Electromagnetic Spectrum?

    Indian Academy of Sciences (India)

    Keywords. Electromagnetic radiation; electromagnetic spectrum; atmospheric windows. Author Affiliations. A W Joshi1 Alok Kumar2. D-2 Ayodhyanagari Bhau Patil Road, Bopodi Pune 411 020, India. Department of Physics State University of New York Oswego, NY 13126, USA. Resonance – Journal of Science Education.

  12. The electromagnetic spectrum: current and future applications in oncology.

    Science.gov (United States)

    Allison, Ron R

    2013-05-01

    The electromagnetic spectrum is composed of waves of various energies that interact with matter. When focused upon and directed at tumors, these energy sources can be employed as a means of lesion ablation. While the use of x-rays is widely known in this regard, a growing body of evidence shows that other members of this family can also achieve oncologic success. This article will review therapeutic application of the electromagnetic spectrum in current interventions and potential future applications.

  13. Introduction to Eye-Opening Technology: The Electromagnetic Spectrum.

    Science.gov (United States)

    Smith, Denise; Eisenhamer, Bonnie; DeVore, Edna; Bianchi, Luciana

    2003-01-01

    Provides classroom activities centered around how the electromagnetic spectrum yields vital insights about the evolution of the universe. Activities targeted for grade levels 6-12 illustrate the importance of light and color in space exploration. Includes a poster. (Author/SOE)

  14. Spectrum of classes of point emitters of electromagnetic wave fields.

    Science.gov (United States)

    Castañeda, Román

    2016-09-01

    The spectrum of classes of point emitters has been introduced as a numerical tool suitable for the design, analysis, and synthesis of non-paraxial optical fields in arbitrary states of spatial coherence. In this paper, the polarization state of planar electromagnetic wave fields is included in the spectrum of classes, thus increasing its modeling capabilities. In this context, optical processing is realized as a filtering on the spectrum of classes of point emitters, performed by the complex degree of spatial coherence and the two-point correlation of polarization, which could be implemented dynamically by using programmable optical devices.

  15. Alien vision exploring the electromagnetic spectrum with imaging technology

    CERN Document Server

    Richards, Austin A

    2011-01-01

    Austin Richards takes readers on a visual tour of the electromagnetic spectrum beyond the range of human sight, using imaging technology as the means to ""see"" invisible light. Dozens of colorful images and clear, concise descriptions make this an intriguing, accessible technical book. Richards explains the light spectrum, including visible light, and describes the advanced imaging technologies that enable humans to synthesize our own version of ""alien"" vision at different wavelengths, with applications ranging from fire fighting and law enforcement to botany and medicine. The second editio

  16. Imaging with electromagnetic spectrum applications in food and agriculture

    CERN Document Server

    Jayasuriya, Hemantha

    2014-01-01

    This book demonstrates how imaging techniques, applying different frequency bands from the electromagnetic spectrum, are used in scientific research. Illustrated with numerous examples this book is structured according to the different radiation bands: From Gamma-rays over UV and IR to radio frequencies. In order to ensure a clear understanding of the processing methodologies, the text is enriched with descriptions of how digital images are formed, acquired, processed and how to extract information from them. A special emphasis is given to the application of imaging techniques in food and agriculture research.

  17. The Electromagnetic Spectrum: Using Light and Color To Search for Astronomical Origins.

    Science.gov (United States)

    Smith, Denise; Eisenhamer, Bonnie; DeVore, Edna

    2003-01-01

    Discusses various ways to use the National Aeronautics and Space Administration's (NASA) Origin's Education Forum's Electromagnetic Spectrum poster to teach earth science concepts. Includes the poster. (SOE)

  18. Space telescopes capturing the rays of the electromagnetic spectrum

    CERN Document Server

    English, Neil

    2017-01-01

    Space telescopes are among humankind’s greatest scientific achievements of the last fifty years. This book describes the instruments themselves and what they were designed to discover about the Solar System and distant stars. Exactly how these telescopes were built and launched and the data they provided is explored. Only certain kinds of radiation can penetrate our planet's atmosphere, which limits what we can observe. But with space telescopes all this changed. We now have the means to "see" beyond Earth using ultraviolet, microwave, and infrared rays, X-rays and gamma rays. In this book we meet the pioneers and the telescopes that were built around their ideas. This book looks at space telescopes not simply chronologically but also in order of the electromagnetic spectrum, making it possible to understand better why they were made.

  19. Nanogels as imaging agents for modalities spanning the electromagnetic spectrum.

    Science.gov (United States)

    Chan, Minnie; Almutairi, Adah

    2016-01-21

    In the past few decades, advances in imaging equipment and protocols have expanded the role of imaging in in vivo diagnosis and disease management, especially in cancer. Traditional imaging agents have rapid clearance and low specificity for disease detection. To improve accuracy in disease identification, localization and assessment, novel nanomaterials are frequently explored as imaging agents to achieve high detection specificity and sensitivity. A promising material for this purpose are hydrogel nanoparticles, whose high hydrophilicity, biocompatibility, and tunable size in the nanometer range make them ideal for imaging. These nanogels (10 to 200 nm) can circumvent uptake by the reticuloendothelial system, allowing longer circulation times than small molecules. In addition, their size/surface properties can be further tailored to optimize their pharmacokinetics for imaging of a particular disease. Herein, we provide a comprehensive review of nanogels as imaging agents in various modalities with sources of signal spanning the electromagnetic spectrum, including MRI, NIR, UV-vis, and PET. Many materials and formulation methods will be reviewed to highlight the versatility of nanogels as imaging agents.

  20. Large numbers hypothesis. II - Electromagnetic radiation

    Science.gov (United States)

    Adams, P. J.

    1983-01-01

    This paper develops the theory of electromagnetic radiation in the units covariant formalism incorporating Dirac's large numbers hypothesis (LNH). A direct field-to-particle technique is used to obtain the photon propagation equation which explicitly involves the photon replication rate. This replication rate is fixed uniquely by requiring that the form of a free-photon distribution function be preserved, as required by the 2.7 K cosmic radiation. One finds that with this particular photon replication rate the units covariant formalism developed in Paper I actually predicts that the ratio of photon number to proton number in the universe varies as t to the 1/4, precisely in accord with LNH. The cosmological red-shift law is also derived and it is shown to differ considerably from the standard form of (nu)(R) - const.

  1. An approach to electromagnetic spectrum evaluation and control for situational awareness

    CSIR Research Space (South Africa)

    Olivier, K

    2012-10-01

    Full Text Available In this presentation the author provides insight on the role of modern electronic warfare technology for the purposes of electromagnetic spectrum evaluation and control, which plays a crucial role in situational awareness required for peacekeeping...

  2. Rapid Prototyping across the Spectrum: RF to Optical 3D Electromagnetic Structures

    Science.gov (United States)

    2015-11-17

    34Miniaturized all- fibre probe for three-dimensional optical trapping and manipulation," Nat Photon, vol. 1, pp. 723-727, 2007. [95] S. Kawata, H.-B. Sun...AFRL-RW-EG-TP-2015-002 Rapid Prototyping across the Spectrum: RF to Optical 3D Electromagnetic Structures Jeffery W. Allen Monica S. Allen Brett...11-17-2015 Interim Report Feb. 2012 – Dec. 2015 4. TITLE AND SUBTITLE Rapid Prototyping across the Spectrum: RF to Optical 3D Electromagnetic

  3. Understanding the Planck blackbody spectrum and Landau diamagnetism within classical electromagnetism

    International Nuclear Information System (INIS)

    Boyer, Timothy H

    2016-01-01

    Electromagnetism is a relativistic theory, and one must exercise care in coupling this theory with nonrelativistic classical mechanics and with nonrelativistic classical statistical mechanics. Indeed historically, both the blackbody radiation spectrum and diamagnetism within classical theory have been misunderstood because of two crucial failures: (1) the neglect of classical electromagnetic zero-point radiation, and (2) the use of erroneous combinations of nonrelativistic mechanics with relativistic electrodynamics. Here we review the treatment of classical blackbody radiation, and show that the presence of Lorentz-invariant classical electromagnetic zero-point radiation can explain both the Planck blackbody spectrum and Landau diamagnetism at thermal equilibrium within classical electromagnetic theory. The analysis requires that relativistic electromagnetism is joined appropriately with simple nonrelativistic mechanical systems which can be regarded as the zero-velocity limits of relativistic systems, and that nonrelativistic classical statistical mechanics is applied only in the low-frequency limit when zero-point energy makes no contribution. (paper)

  4. Contribution of back-scattered electromagnetic rays to the Moessbauer conversion electron spectrum

    International Nuclear Information System (INIS)

    Ruskov, T.; Ruskov, R.; Paneva, D.; Lefterov, D.

    1999-01-01

    The contribution of back-scattered electromagnetic rays in a 57 Fe conversion electron Moessbauer spectrum is considered using proportional counter as a detector. A simplified method for measuring this contribution is described. The experimental results show that this contribution strongly depends on the construction of the counter and the selected fraction in the pulse-height spectrum

  5. Measurement of electromagnetic fields generated by air traffic control radar systems with spectrum analysers.

    Science.gov (United States)

    Barellini, A; Bogi, L; Licitra, G; Silvi, A M; Zari, A

    2009-12-01

    Air traffic control (ATC) primary radars are 'classical' radars that use echoes of radiofrequency (RF) pulses from aircraft to determine their position. High-power RF pulses radiated from radar antennas may produce high electromagnetic field levels in the surrounding area. Measurement of electromagnetic fields produced by RF-pulsed radar by means of a swept-tuned spectrum analyser are investigated here. Measurements have been carried out both in the laboratory and in situ on signals generated by an ATC primary radar.

  6. Concerning the electromagnetic radiation spectrum of a hot plasma with Langmuir turbulence in a magnetic field

    International Nuclear Information System (INIS)

    Tirsky, V.V.; Ledenev, V.G.; Tomozov, V.M.

    2001-01-01

    We consider the process of generation of electromagnetic waves as a consequence of the merging of two Langmuir plasmons. The case of a hot plasma in a magnetic field is investigated. It is shown that under such conditions the frequency of Langmuir plasmons can vary over the range from 0.8 to 1.1 of the Langmuir frequency of electrons. The spectrum and polarization of electromagnetic radiation are analyzed. It is shown that allowance for the thermal motion of plasma particles under the conditions involved permits electromagnetic waves in the range from 1.6 to 2.2 of the Langmuir frequency of electrons to be generated. The degree of circular polarization of the radiation can reach 50% even in the case of an isotropic spectrum of Langmuir turbulence. (orig.)

  7. Electromagnetic Spectrum. 7th and 8th Grade Agriculture Science Curriculum. Teacher Materials.

    Science.gov (United States)

    Southern Illinois Univ., Carbondale. Dept. of Agricultural Education and Mechanization.

    This curriculum guide, the second in a set of six, contains teacher and student materials for a unit on the electromagnetic spectrum prepared as part of a seventh- and eighth-grade agricultural science curriculum that is integrated with science instruction. The guide contains the state goals and sample learning objectives for each goal for…

  8. Electromagnetic forces on type-II superconducting rotating cylinders

    International Nuclear Information System (INIS)

    Saif, A.G.; Refai, T.F.; El-Sabagh, M.A.

    1995-01-01

    Analytical solutions of the electromagnetic fields are presented for a system composed of an infinitely long superconducting cylinder rotating about its axis and placed parallel to two infinitely long normal conducting wires. Both wires carry the same alternating current. From the obtained electromagnetic fields the electromagnetic power loss on the cylinder surface, electromagnetic forces due to induced currents, electromagnetic torque, and the work opposing the rotation of the cylinder are calculated. (orig.)

  9. Spread Spectrum Receiver Electromagnetic Interference (EMI) Test Guide

    Science.gov (United States)

    Wheeler, M. L.

    1998-01-01

    The objective of this test guide is to document appropriate unit level test methods and techniques for the performance of EMI testing of Direct Sequence (DS) spread spectrum receivers. Consideration of EMI test methods tailored for spread spectrum receivers utilizing frequency spreading, techniques other than direct sequence (such as frequency hopping, frequency chirping, and various hybrid methods) is beyond the scope of this test guide development program and is not addressed as part of this document EMI test requirements for NASA programs are primarily developed based on the requirements contained in MIL-STD-46 1 D (or earlier revisions of MIL-STD-46 1). The corresponding test method guidelines for the MIL-STD-461 D tests are provided in MIL-STD-462D. These test methods are well documented with the exception of the receiver antenna port susceptibility tests (intermodulation, cross modulation, and rejection of undesired signals) which must be tailored to the specific type of receiver that is being tested. Thus, test methods addressed in this guide consist only of antenna port tests designed to evaluate receiver susceptibility characteristics. MIL-STD-462D should be referred for guidance pertaining to test methods for EMI tests other than the antenna port tests. The scope of this test guide includes: (1) a discussion of generic DS receiver performance characteristics; (2) a summary of S-band TDRSS receiver operation; (3) a discussion of DS receiver EMI susceptibility mechanisms and characteristics; (4) a summary of military standard test guidelines; (5) recommended test approach and methods; and (6) general conclusions and recommendations for future studies in the area of spread spectrum receiver testing.

  10. Condition for invariant spectrum of an electromagnetic wave scattered from an anisotropic random media.

    Science.gov (United States)

    Li, Jia; Wu, Pinghui; Chang, Liping

    2015-08-24

    Within the accuracy of the first-order Born approximation, sufficient conditions are derived for the invariance of spectrum of an electromagnetic wave, which is generated by the scattering of an electromagnetic plane wave from an anisotropic random media. We show that the following restrictions on properties of incident fields and the anisotropic media must be simultaneously satisfied: 1) the elements of the dielectric susceptibility matrix of the media must obey the scaling law; 2) the spectral components of the incident field are proportional to each other; 3) the second moments of the elements of the dielectric susceptibility matrix of the media are inversely proportional to the frequency.

  11. Amplification of electromagnetic radiation in the exciton region of the spectrum of a semiconductor

    International Nuclear Information System (INIS)

    Nerkararyan, Kh.V.

    1989-01-01

    The problem of amplification of electromagnetic radiation in the exciton region of the spectrum of a semiconductor was first discussed by Haken. The possibility of amplification of an electromagnetic wave under conditions of Bose condensation of biexcitons was considered in Ref. 2. However, the difficulties encountered in the creation of a Bose condensed state of biexcitons complicate greatly the performance of an experiment of this kind. The authors shall show that amplification is possible also in a gaseous mixture of excitons and biexcitons which is in thermal equilibrium and can be described by the Maxwellian distribution function of the velocities

  12. Spectrum of harmonic emission by inhomogeneous plasma in intense electromagnetic wave

    International Nuclear Information System (INIS)

    Kovalev, V.F.; Pustovalov, V.V.

    1989-01-01

    The spectrum and angular distribution of the harmonics of arbitrary index emitted by a cold, inhomogeneous electron plasma subjected to a p-polarized electromagnetic wave have been studied analytically. The results are shown in graphical form. The intensity of the wave was varied over a wide range. At energy flux densities of the electromagnetic wave at which the inverse effect of the higher harmonics on the lower harmonics becomes appreciable, it becomes possible to observe a decay of the absolute value of the complex amplitude of a harmonic with increasing harmonic index in vacuum which is substantially slower than that predicted by the theory for a weak nonlinearity

  13. Measurement of electromagnetic fields generated by air traffic control radar systems with spectrum analysers

    International Nuclear Information System (INIS)

    Barellini, A.; Bogi, L.; Licitra, G.; Silvi, A. M.; Zari, A.

    2009-01-01

    Air traffic control (ATC) primary radars are 'classical' radars that use echoes of radiofrequency (RF) pulses from aircraft to determine their position. High-power RF pulses radiated from radar antennas may produce high electromagnetic field levels in the surrounding area. Measurement of electromagnetic fields produced by RF-pulsed radar by means of a swept-tuned spectrum analyser are investigated here. Measurements have been carried out both in the laboratory and in situ on signals generated by an ATC primary radar. (authors)

  14. Experimental and theoretical analysis of the spectrum of transient electromagnetic field created by linac electron beam

    International Nuclear Information System (INIS)

    Itoh, Hiroyasu; Tomioka, Satoshi; Enoto, Takeaki

    1994-01-01

    Wave information about micro-pulses of electron beams is required in order to control an electron beam precisely, and it may be possible to obtain such information by analyzing the spectrum of the electromagnetic field created by a linac electron beam. In order to derive the spectrum, we measured the spatial distribution generated by a standing wave. Furthermore we calculated the transient electromagnetic field excited by a bunched electron beam, using the finite-difference time-domain (FD-TD) method, and compared two spectra in the frequency domain, into which the calculated value in time variation and the measured values in spatial variation are transformed by using the fast Fourier transform (FFT) respectively. (author)

  15. Spectrum of an electromagnetic light wave on scattering from an anisotropic semisoft boundary medium.

    Science.gov (United States)

    Wang, Tao; Jiang, Zhenfei; Ji, Xiaoling; Zhao, Daomu

    2016-04-01

    Spectral shifts and spectral switches of a polychromatic electromagnetic light wave on scattering from an anisotropic semisoft boundary medium are discussed. It is shown that both the property of the incident field and the character of the scattering medium play roles in the change of the spectrum of the far-zone scattered field. It is also shown that the distribution of the far-zone scattered spectrum, including the magnitude of the spectral shift and the direction at which the spectral switch occurs, is rotationally nonsymmetric.

  16. On the continuous spectrum electromagnetic radiation in electron-fullerene collision

    International Nuclear Information System (INIS)

    Amusia, M.Y.

    1995-01-01

    It is demonstrated that the electromagnetic radiation spectrum in electron-fullerene collisions is dominated by a huge maximum of multielectron nature, similar to that already predicted and observed in photoabsorption. Due to coherence, the intensity of this radiation is much stronger than the sum of the intensities of isolated atoms. Experimental detection of such radiation would be of great importance for understanding the mechanism of its formation and for investigating fullerene structures. A paper describing these results was published

  17. The Spectrum of Electromagnetic Scatter from an Ensemble of Bodies with Angular Periodicity, as a Model for Jet Engine Modulation

    National Research Council Canada - National Science Library

    Cashman, John

    2001-01-01

    A rotating ensemble of bodies of arbitrary shape with angular periodicity scatters an electromagnetic wave to produce a spectrum of frequency components characteristic of the structure and its rotation...

  18. Trichorhinophalangeal syndrome II, expanding the clinical spectrum

    African Journals Online (AJOL)

    Rabah M. Shawky

    2014-06-17

    Jun 17, 2014 ... an autosomal dominant fashion, most cases of TRPS II are sporadic [1]. TRPS III, is a form of brachydactyly due to short metacarpals and severe .... and broad on both sides (black asterisk), the fifth metacarpal bone has similar yet less pronounced appearance (white asterisk). Langer–Giedion syndrome. 91 ...

  19. Electromagnetic spectrum survey of the environment in a locality in Kuala Lumpur, Malaysia

    International Nuclear Information System (INIS)

    Abood, Wafa Ali; Din, Norashidah Md; Ismail, Aiman; Mohamad, Hafizal

    2013-01-01

    The electromagnetic spectrum in the environment is becoming a scarce resource with the emergence of a high number of wireless communications services Cognitive radio (CR) is viewed as a possible solution to the spectrum bottleneck which work in a premise that at an any given time and spatial region there are frequency bands that has no signal occupancy. The CR technique utilizes a temporarily unoccupied licensed band by allowing secondary users to exploit opportunistically the underutilized spectrum licensed to primary users without any harmful interference. Before investigating the technical and political implications of CR, it is necessary to know to what extent the licensed bands are temporally unoccupied. In this paper a spectrum occupancy measurements is conducted to study the utilization of RF spectrum in an environment. The measurements are performed on UHF TV, GSM900 and GSM1800 frequency bands in an urban area in Kuala Lumpur, Malaysia. The evaluation made is based on the power detection principle. From the measurements, the spectrum holes are identified. The obtained results show that the spectral usage is 7.37% for UHF TV band, 12.8% for GSM900 and 5.3% for GSM1800 band leading to the conclusion that a significant amount of spectrum is available for deployment of cognitive radio.

  20. Linear Acceleration Emission. II. Power Spectrum

    Science.gov (United States)

    Melrose, D. B.; Luo, Q.

    2009-06-01

    The theory of linear acceleration emission (LAE) is developed for a large amplitude electrostatic wave in which all particles become highly relativistic in much less than a wave period. An Airy-integral approximation is shown to apply near the phases where the electric field passes through zero and the Lorentz factors of all particles have their maxima. The emissivity is derived for an individual particle and is integrated over frequency and solid angle to find the power radiated per particle. The result is different from that implied by the generalized Larmor formula which, we argue, is not valid in this case. We also discuss a mathematical inconsistency that arises when one evaluates the power spectrum by integrating the emissivity over solid angle. The correct power spectrum increases as the 4/3rd power of the frequency at low frequencies, and falls off exponentially above a characteristic frequency. We discuss application of LAE to the emission of high-frequency photons in an oscillating model for pulsars. We conclude that it cannot account for gamma-ray emission, but can play a role in secondary pair creation.

  1. LINEAR ACCELERATION EMISSION. II. POWER SPECTRUM

    International Nuclear Information System (INIS)

    Melrose, D. B.; Luo, Q.

    2009-01-01

    The theory of linear acceleration emission (LAE) is developed for a large amplitude electrostatic wave in which all particles become highly relativistic in much less than a wave period. An Airy-integral approximation is shown to apply near the phases where the electric field passes through zero and the Lorentz factors of all particles have their maxima. The emissivity is derived for an individual particle and is integrated over frequency and solid angle to find the power radiated per particle. The result is different from that implied by the generalized Larmor formula which, we argue, is not valid in this case. We also discuss a mathematical inconsistency that arises when one evaluates the power spectrum by integrating the emissivity over solid angle. The correct power spectrum increases as the 4/3rd power of the frequency at low frequencies, and falls off exponentially above a characteristic frequency. We discuss application of LAE to the emission of high-frequency photons in an oscillating model for pulsars. We conclude that it cannot account for gamma-ray emission, but can play a role in secondary pair creation.

  2. AC-driven bilayer graphene: quasienergy spectrum of electrons and generation of soliton-like electromagnetic pulse

    Science.gov (United States)

    Kukhar, Egor I.

    2018-01-01

    Quasienergy spectrum of electrons in biased bigraphene subjected to the linear polarized high-frequency electromagnetic radiation has been derived. Quasienergy bands of ac-driven bigraphene have been investigated. Dynamical appearing of the saddle points in band structure of biased bigraphene and energy gap modification have been predicted. Electromagnetic field equation has been written using obtained quasienergy spectrum. The solution corresponding to the soliton-like electromagnetic wave has been obtained. The conditions of soliton-like wave generation in ac-driven bigraphene have been discussed.

  3. Loophole to the universal photon spectrum in electromagnetic cascades and application to the cosmological lithium problem.

    Science.gov (United States)

    Poulin, Vivian; Serpico, Pasquale Dario

    2015-03-06

    The standard theory of electromagnetic cascades onto a photon background predicts a quasiuniversal shape for the resulting nonthermal photon spectrum. This has been applied to very disparate fields, including nonthermal big bang nucleosynthesis (BBN). However, once the energy of the injected photons falls below the pair-production threshold the spectral shape is much harder, a fact that has been overlooked in past literature. This loophole may have important phenomenological consequences, since it generically alters the BBN bounds on nonthermal relics; for instance, it allows us to reopen the possibility of purely electromagnetic solutions to the so-called "cosmological lithium problem," which were thought to be excluded by other cosmological constraints. We show this with a proof-of-principle example and a simple particle physics model, compared with previous literature.

  4. Electromagnetics

    CERN Document Server

    Rothwell, Edward J

    2009-01-01

    Introductory concepts Notation, conventions, and symbology The field concept of electromagneticsThe sources of the electromagnetic field Problems Maxwell's theory of electromagnetism The postulate Maxwell's equations in moving frames The Maxwell-Boffi equations Large-scale form of Maxwell's equationsThe nature of the four field quantities Maxwell's equations with magnetic sources Boundary (jump) conditions Fundamental theorems The wave nature of the electromagnetic field ProblemsThe static electromagnetic field Static fields and steady currents ElectrostaticsMagnetostatics Static field theorem

  5. The effect of electromagnetic interactions on the proton spectrum in free neutron β-decay

    International Nuclear Information System (INIS)

    Bunatyan, G.G.

    2000-01-01

    In the β decay of an unpolarized free neutron, the effect of electromagnetic interactions on the proton recoil spectrum is studied in the light of the experiments which are carried out and planned for now. The corrections to the energy distribution of protons prove to amount to the value of a few per cent. Nowadays, this is substantial for obtaining with a high accuracy, of ∼ 1% or better, the characteristics of weak interactions by processing the data of the experiments on the proton distribution in the free neutron β-decay

  6. Double atom ionization by multicharged ions and strong electromagnetic field: correlation effects in a continuous spectrum

    International Nuclear Information System (INIS)

    Presnyakov, L.P.; Uskov, D.B.

    1997-01-01

    The nonstationary theory of double ionization of two-electron atoms in collisions with multicharged ions or under the impact of intensive electromagnetic field is developed. The approach, making it possible to study both problems by uniform method, is formulated. The two-electron wave function of continuous spectrum, accounting for interaction of electrons with atomic nucleus, external ionizer and between themselves is obtained. The calculation results on the helium atoms double ionization by multicharged ions is a good quantitative agreement with available experimental data

  7. Real Time Control Software for Electromagnetic Formation Flight, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose the development of a maintainable and evolvable real-time control software system for Electromagnetic Formation Flight (EMFF). EMFF systems use...

  8. Low Mass Electromagnetic Plasmoid Thruster with Integrated PPU, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The Electromagnetic Plasmoid Thruster (EMPT) is a revolutionary electric propulsion thruster and power processing (PPU) system that will allow a dramatic decrease in...

  9. The energy spectrum of electromagnetic normal modes in dissipative media: modes between two metal half spaces

    International Nuclear Information System (INIS)

    Sernelius, Bo E

    2008-01-01

    The energy spectrum of electromagnetic normal modes plays a central role in the theory of the van der Waals and Casimir interaction. Here we study the modes in connection with the van der Waals interaction between two metal half spaces. Neglecting dissipation leads to distinct normal modes with real-valued frequencies. Including dissipation seems to have the effect that these distinct modes move away from the real axis into the complex frequency plane. The summation of the zero-point energies of these modes render a complex-valued result. Using the contour integration, resulting from the use of the generalized argument principle, gives a real-valued and different result. We resolve this contradiction and show that the spectrum of true normal modes forms a continuum with real frequencies

  10. Electromagnetic Spectrum Analysis and Its Influence on the Photoelectric Conversion Efficiency of Solar Cells.

    Science.gov (United States)

    Hu, Kexiang; Ding, Enjie; Wangyang, Peihua; Wang, Qingkang

    2016-06-01

    The electromagnetic spectrum and the photoelectric conversion efficiency of the silicon hexagonal nanoconical hole (SiHNH) arrays based solar cells is systematically analyzed according to Rigorous Coupled Wave Analysis (RCWA) and Modal Transmission Line (MTL) theory. An ultimate efficiency of the optimized SiHNH arrays based solar cell is up to 31.92% in consideration of the absorption spectrum, 4.52% higher than that of silicon hexagonal nanoconical frustum (SiHNF) arrays. The absorption enhancement of the SiHNH arrays is due to its lower reflectance and more supported guided-mode resonances, and the enhanced ultimate efficiency is insensitive to bottom diameter (D(bot)) of nanoconical hole and the incident angle. The result provides an additional guideline for the nanostructure surface texturing fabrication design for photovoltaic applications.

  11. Electromagnetic Scattering from Rough Sea Surface with PM Spectrum Covered by an Organic Film

    International Nuclear Information System (INIS)

    Wang Rui; Guo Li-Xin; Wang An-Qi; Wu Zhen-Sen

    2011-01-01

    The rough sea surface covered by an organic film will cause attenuation of capillarity waves, which implies that the organic films play an important role in rough sea surface processes. We focus on a one-dimensional (1D) rough sea surface with the Pierson—Moskowitz (PM) spectrum distributed to the homogeneous insoluble organic slicks. First, the impact of the organic film on the PM surface spectrum is presented, as well as that of the correlation length, the rms height and slope of the rough sea surface. The damping effect of the organic film changes the physical parameters of the rough sea surface. For example, the organic film will reduce the rms height and slopee of the rough sea surface, which results in the attenuation of the high-frequency components of the PM spectrum leading to modification of the surface PM spectrum. Then, the influence of the organic film on the electromagnetic (EM) scattering coefficients from PM rough sea surface covered by the organic film is investigated and discussed in detail, compared with the clean PM rough sea surface through the method of moments. (fundamental areas of phenomenology(including applications))

  12. Analgesic effect of the electromagnetic resonant frequencies derived from the NMR spectrum of morphine.

    Science.gov (United States)

    Verginadis, Ioannis I; Simos, Yannis V; Velalopoulou, Anastasia P; Vadalouca, Athina N; Kalfakakou, Vicky P; Karkabounas, Spyridon Ch; Evangelou, Angelos M

    2012-12-01

    Exposure to various types of electromagnetic fields (EMFs) affects pain specificity (nociception) and pain inhibition (analgesia). Previous study of ours has shown that exposure to the resonant spectra derived from biologically active substances' NMR may induce to live targets the same effects as the substances themselves. The purpose of this study is to investigate the potential analgesic effect of the resonant EMFs derived from the NMR spectrum of morphine. Twenty five Wistar rats were divided into five groups: control group; intraperitoneal administration of morphine 10 mg/kg body wt; exposure of rats to resonant EMFs of morphine; exposure of rats to randomly selected non resonant EMFs; and intraperitoneal administration of naloxone and simultaneous exposure of rats to the resonant EMFs of morphine. Tail Flick and Hot Plate tests were performed for estimation of the latency time. Results showed that rats exposed to NMR spectrum of morphine induced a significant increase in latency time at time points (p spectrum of morphine. Our results indicate that exposure of rats to the resonant EMFs derived from the NMR spectrum of morphine may exert on animals similar analgesic effects to morphine itself.

  13. Electromagnetic Radiation Influence With Molecular Spectrum Absorption and Nitric Oxide Radiation Frequency on Superoxide Dismutase Bacteria Activity

    Directory of Open Access Journals (Sweden)

    G.M. Shub

    2009-06-01

    Full Text Available The dynamics of superoxide dismutase activity level under the influence of electromagnetic radiation with spectrum absorption and nitric oxide radiation frequency in Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa has been described. The panoramic spectrometric measuring complex, developed in Saratov Central Scientific Research Institute of Measuring Equipment Public Corporation has been used while carrying out the research. Electromagnetic vibrations of extremely high frequencies stimulated in this complex imitate the structure of molecular spectrum absorption and nitric oxide radiation. The activity of superoxide dismutase has been detected. The most significant changes have been observed under 45 and 60-minute exposition.

  14. The Use and Management of the Electromagnetic Spectrum, Part I. President's Task Force on Communications Policy. Staff Paper Seven, Part I.

    Science.gov (United States)

    Rostow, Eugene V.

    A staff paper to the President's Task Force on Communications Policy analyses the use of the electromagnetic spectrum for communications and suggests improvements. The evolution of spectrum use and its present federal management are described together with the problem of achieving efficient use in the areas of electromagnetic congestion. Criticism…

  15. Electromagnetic field enhancement and spectrum shaping through plasmonically integrated optical vortices.

    Science.gov (United States)

    Ahn, Wonmi; Boriskina, Svetlana V; Hong, Yan; Reinhard, Björn M

    2012-01-11

    We introduce a new design approach for surface-enhanced Raman spectroscopy (SERS) substrates that is based on molding the optical powerflow through a sequence of coupled nanoscale optical vortices "pinned" to rationally designed plasmonic nanostructures, referred to as Vortex Nanogear Transmissions (VNTs). We fabricated VNTs composed of Au nanodiscs by electron beam lithography on quartz substrates and characterized their near- and far-field responses through combination of computational electromagnetism, and elastic and inelastic scattering spectroscopy. Pronounced dips in the far-field scattering spectra of VNTs provide experimental evidence for an efficient light trapping and circulation within the nanostructures. Furthermore, we demonstrate that VNT integration into periodic arrays of Au nanoparticles facilitates the generation of high E-field enhancements in the VNTs at multiple defined wavelengths. We show that spectrum shaping in nested VNT structures is achieved through an electromagnetic feed-mechanism driven by the coherent multiple scattering in the plasmonic arrays and that this process can be rationally controlled by tuning the array period. The ability to generate high E-field enhancements at predefined locations and frequencies makes nested VNTs interesting substrates for challenging SERS applications. © 2011 American Chemical Society

  16. Landau Quasi-energy Spectrum Destruction for an Electron in Both a Static Magnetic Field and a Resonant Electromagnetic Wave

    International Nuclear Information System (INIS)

    Skoblin, A.A.

    1994-01-01

    Free nonrelativistic electrons in both a static magnetic field and an electromagnetic wave are considered. A plane-polarized wave propagates along a magnetic field, its frequency is close to the electron rotation frequency in a magnetic field. Electron spin is taken into account. An electron quasi energy spectrum and steady states (quasi energy states) are constructed. 6 refs

  17. An Electromagnetic Spectrum for Millennial Students: Teaching Light, Color, Energy, and Frequency Using the Electronic Devices of Our Time

    Science.gov (United States)

    Murphy, Maureen Kendrick

    2010-01-01

    In this article, a comparison of student learning outcomes is made in sophomore-level physical science classes using a "traditional" pedagogical approach versus a "modern" approach. Specifically, when students were taught the electromagnetic spectrum using diagrams and examples that incorporate technological advances and electronic devices of our…

  18. What Are Electromagnetic Fields?

    Science.gov (United States)

    ... sources of electromagnetic fields Besides natural sources the electromagnetic spectrum also includes fields generated by human-made sources: ... ability to break bonds between molecules. In the electromagnetic spectrum, gamma rays given off by radioactive materials, cosmic ...

  19. Fundamentals of physics II electromagnetism, optics, and quantum mechanics

    CERN Document Server

    Shankar, R

    2016-01-01

    R. Shankar, a well-known physicist and contagiously enthusiastic educator, was among the first to offer a course through the innovative Open Yale Course program. His popular online video lectures on introductory physics have been viewed over a million times. In this second book based on his online Yale course, Shankar explains essential concepts, including electromagnetism, optics, and quantum mechanics. The book begins at the simplest level, develops the basics, and reinforces fundamentals, ensuring a solid foundation in the principles and methods of physics. It provides an ideal introduction for college-level students of physics, chemistry, and engineering; for motivated AP Physics students; and for general readers interested in advances in the sciences.

  20. Derivation of the blackbody radiation spectrum from the equivalence principle in classical physics with classical electromagnetic zero-point radiation

    International Nuclear Information System (INIS)

    Boyer, T.H.

    1984-01-01

    A derivation of Planck's spectrum including zero-point radiation is given within classical physics from recent results involving the thermal effects of acceleration through classical electromagnetic zero-point radiation. A harmonic electric-dipole oscillator undergoing a uniform acceleration a through classical electromagnetic zero-point radiation responds as would the same oscillator in an inertial frame when not in zero-point radiation but in a different spectrum of random classical radiation. Since the equivalence principle tells us that the oscillator supported in a gravitational field g = -a will respond in the same way, we see that in a gravitational field we can construct a perpetual-motion machine based on this different spectrum unless the different spectrum corresponds to that of thermal equilibrium at a finite temperature. Therefore, assuming the absence of perpetual-motion machines of the first kind in a gravitational field, we conclude that the response of an oscillator accelerating through classical zero-point radiation must be that of a thermal system. This then determines the blackbody radiation spectrum in an inertial frame which turns out to be exactly Planck's spectrum including zero-point radiation

  1. Underwater Electromagnetic Sensor Networks, Part II: Localization and Network Simulations

    Directory of Open Access Journals (Sweden)

    Javier Zazo

    2016-12-01

    Full Text Available In the first part of the paper, we modeled and characterized the underwater radio channel in shallowwaters. In the second part,we analyze the application requirements for an underwaterwireless sensor network (U-WSN operating in the same environment and perform detailed simulations. We consider two localization applications, namely self-localization and navigation aid, and propose algorithms that work well under the specific constraints associated with U-WSN, namely low connectivity, low data rates and high packet loss probability. We propose an algorithm where the sensor nodes collaboratively estimate their unknown positions in the network using a low number of anchor nodes and distance measurements from the underwater channel. Once the network has been self-located, we consider a node estimating its position for underwater navigation communicating with neighboring nodes. We also propose a communication system and simulate the whole electromagnetic U-WSN in the Castalia simulator to evaluate the network performance, including propagation impairments (e.g., noise, interference, radio parameters (e.g., modulation scheme, bandwidth, transmit power, hardware limitations (e.g., clock drift, transmission buffer and complete MAC and routing protocols. We also explain the changes that have to be done to Castalia in order to perform the simulations. In addition, we propose a parametric model of the communication channel that matches well with the results from the first part of this paper. Finally, we provide simulation results for some illustrative scenarios.

  2. Signal discrimination of ULF electromagnetic data with using singular spectrum analysis – an attempt to detect train noise

    Directory of Open Access Journals (Sweden)

    S. Saito

    2011-07-01

    Full Text Available Electromagnetic phenomena associated with crustal activities have been reported in a wide frequency range (DC-HF. In particular, ULF electromagnetic phenomena are the most promising among them because of the deeper skin depth. However, ULF geoelctromagnetic data are a superposition of signals of different origins. They originated from interactions between the geomagnetic field and the solar wind, leak current by a DC-driven train (train noise, precipitation, and so on. In general, the intensity of electromagnetic signals associated with crustal activity is smaller than the above variations. Therefore, in order to detect a smaller signal, signal discrimination such as noise reduction or identification of noises is very important. In this paper, the singular spectrum analysis (SSA has been performed to detect the DC-driven train noise in geoelectric potential difference data. The aim of this paper is to develop an effective algorithm for the DC-driven train noise detection.

  3. Beetle Exoskeleton May Facilitate Body Heat Acting Differentially across the Electromagnetic Spectrum.

    Science.gov (United States)

    Carrascal, Luis M; Ruiz, Yolanda Jiménez; Lobo, Jorge M

    Exoskeletons of beetles and their associated morphological characteristics can serve many different functions, including thermoregulation. We study the thermal role of the exoskeleton in 13 Geotrupidae dung beetle species using heating experiments under controlled conditions. The main purpose was to measure the influence of heating sources (solar radiance vs. infrared), animal position (dorsal exposure vs. ventral exposure), species identity, and phylogenetic relationships on internal asymptotic temperatures and heating rates. The thermal response was significantly influenced by phylogenetic relatedness, although it was not affected by the apterous condition. The asymptotic internal temperature of specimens was not affected by the thoracic volume but was significantly higher under simulated sunlight conditions than under infrared radiation and when exposed dorsally as opposed to ventrally. There was thus a significant interaction between heating source and body position. Heating rate was negatively and significantly influenced by thoracic volume, and, although insignificantly slower under simulated sunlight, it was significantly affected by body position, being faster under dorsal exposure. The results constitute the first evidence supporting the hypothesis that the beetle exoskeleton acts differentially across the electromagnetic spectrum determining internal body temperatures. This interesting finding suggests the existence of a kind of passive physiology imposed by the exoskeleton and body size, where interspecific relationships play a minor role.

  4. Electromagnetism

    CERN Document Server

    Grant, Ian S

    1990-01-01

    The Manchester Physics Series General Editors: D. J. Sandiford; F. Mandl; A. C. Phillips Department of Physics and Astronomy, University of Manchester Properties of Matter B. H. Flowers and E. Mendoza Optics Second Edition F. G. Smith and J. H. Thomson Statistical Physics Second Edition F. Mandl Electromagnetism Second Edition I. S. Grant and W. R. Phillips Statistics R. J. Barlow Solid State Physics Second Edition J. R. Hook and H. E. Hall Quantum Mechanics F. Mandl Particle Physics Second Edition B. R. Martin and G. Shaw the Physics of Stars Second Edition A. C. Phillips Computing for Scient

  5. Electrons in a relativistic-intensity laser field: generation of zeptosecond electromagnetic pulses and energy spectrum of the accelerated electrons

    International Nuclear Information System (INIS)

    Andreev, A A; Galkin, A L; Kalashnikov, M P; Korobkin, V V; Romanovsky, Mikhail Yu; Shiryaev, O B

    2011-01-01

    We study the motion of an electron and emission of electromagnetic waves by an electron in the field of a relativistically intense laser pulse. The dynamics of the electron is described by the Newton equation with the Lorentz force in the right-hand side. It is shown that the electrons may be ejected from the interaction region with high energy. The energy spectrum of these electrons and the technique of using the spectrum to assess the maximal intensity in the focus are analysed. It is found that electromagnetic radiation of an electron moving in an intense laser field occurs within a small angle around the direction of the electron trajectory tangent. The tangent quickly changes its direction in space; therefore, electromagnetic radiation of the electron in the far-field zone in a certain direction in the vicinity of the tangent is a short pulse with a duration as short as zeptoseconds. The calculation of the temporary and spectral distribution of the radiation field is carried out. (superintense laser fields)

  6. Plane-wave spectrum approach for the calculation of electromagnetic absorption under near-field exposure conditions

    International Nuclear Information System (INIS)

    Chatterjee, I.; Gandhi, O.P.; Hagmann, M.J.; Riazi, A.

    1980-01-01

    The exposure of humans to electromagnetic near fields has not been sufficiently emphasized by researcher. We have used the plane-wave-spectrum approach to evaluate the electromagnetic field and determine the energy deposited in a lossy, homogeneous, semi-infinite slab placed in the near field of a source leaking radiation. Values of the fields and absorbed energy in the target are obtained by vector summation of the contributions of all the plane waves into which the prescribed field is decomposed. Use of a fast Fourier transform algorithm contributes to the high efficiency of the computations. The numerical results show that, for field distributions that are nearly constant over a physical extent of at least a free-space wavelength, the energy coupled into the target is approximately equal to the resulting from plane-wave exposed

  7. Investigation of energy spectrum structure in a system atom + strong external electromagnetic field

    International Nuclear Information System (INIS)

    Volkova, E.A.; Popov, A.M.; Tikhonova, O.V.

    1996-01-01

    Method of direct numerical integration of nonstationary Schroedinger equation is used for investigation into dynamics of quantum system with short-range potential under the cooperative effect of high-frequency electromagnetic field with super atomic value of intensity and low-frequency field with low radiation intensity

  8. Changing of Bacteria Catalase Activity Under the Influence of Electro-Magnetic Radiation on a Frequency of Nitric Oxide Absorption and Radiation Molecular Spectrum

    Directory of Open Access Journals (Sweden)

    G.M. Shub

    2009-09-01

    Full Text Available The dynamics of catalase activity degree changing in Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa is described under the influence of electro-magnetic radiation on a frequency of nitric oxide absorption and radiation molecular spectrum. The panoramic spectrometric measuring complex, developed in Central Scientific Research Institute of measuring equipment Public corporation, Saratov, was used while carrying out the research. Electromagnetic vibrations of extremely high frequencies were stimulated in this complex imitating the structure of nitric oxide absorption and radiation molecular spectrum. The growth of activity of the mentioned enzyme of the strains under research was detected. The most significant changes were observed under 60-minutes exposure.

  9. Nonlinear evolution of f(R) cosmologies. II. Power spectrum

    International Nuclear Information System (INIS)

    Oyaizu, Hiroaki; Hu, Wayne; Lima, Marcos

    2008-01-01

    We carry out a suite of cosmological simulations of modified action f(R) models where cosmic acceleration arises from an alteration of gravity instead of dark energy. These models introduce an extra scalar degree of freedom which enhances the force of gravity below the inverse mass or Compton scale of the scalar. The simulations exhibit the so-called chameleon mechanism, necessary for satisfying local constraints on gravity, where this scale depends on environment, in particular, the depth of the local gravitational potential. We find that the chameleon mechanism can substantially suppress the enhancement of power spectrum in the nonlinear regime if the background field value is comparable to or smaller than the depth of the gravitational potentials of typical structures. Nonetheless power spectrum enhancements at intermediate scales remain at a measurable level for models even when the expansion history is indistinguishable from a cosmological constant, cold dark matter model. Simple scaling relations that take the linear power spectrum into a nonlinear spectrum fail to capture the modifications of f(R) due to the change in collapsed structures, the chameleon mechanism, and the time evolution of the modifications.

  10. Spatial frequency maps of power flow in metamaterials and photonic crystals: Investigating backward-wave modes across the electromagnetic spectrum

    Science.gov (United States)

    Aghanejad, Iman; Markley, Loïc

    2017-11-01

    We present spatial frequency maps of power flow in metamaterials and photonic crystals in order to provide insights into their electromagnetic responses and further our understanding of backward power in periodic structures. Since 2001, many different structures across the electromagnetic spectrum have been presented in the literature as exhibiting an isotropic negative effective index. Although these structures all exhibit circular or spherical equifrequency contours that resemble those of left-handed media, here we show through k -space diagrams that the distribution of power in the spatial frequency domain can vary considerably across these structures. In particular, we show that backward power arises from high-order right-handed harmonics in photonic crystals, magnetodielectric crystals, and across the layers of coupled-plasmonic-waveguide metamaterials, while arising from left-handed harmonic pairs in split-ring resonator and wire composites, plasmonic crystals, and along the layers of coupled-plasmonic-waveguide metamaterials. We also show that the fishnet structure exhibits the same left-handed harmonic pairs as the latter group. These observations allow us to categorize different metamaterials according to their spatial spectral source of backward power and identify the mechanism behind negative refraction at a given interface. Finally, we discuss how k -space maps of power flow can be used to explain the high or low transmittance of power into different metamaterial or photonic crystal structures.

  11. Electromagnetic resonance modes on a two-dimensional tandem grating and its application for broadband absorption in the visible spectrum.

    Science.gov (United States)

    Han, Sunwoo; Lee, Bong Jae

    2016-01-25

    In this work, we numerically investigate the electromagnetic resonances on two-dimensional tandem grating structures. The base of a tandem grating consists of an opaque Au substrate, a SiO(2) spacer, and a Au grating (concave type); that is, a well-known fishnet structure forming Au/SiO(2)/Au stack. A convex-type Au grating (i.e., topmost grating) is then attached on top of the base fishnet structure with or without additional SiO(2) spacer, resulting in two types of tandem grating structures. In order to calculate the spectral reflectance and local magnetic field distribution, the finite-difference time-domain method is employed. When the topmost Au grating is directly added onto the base fishnet structure, the surface plasmon and magnetic polariton in the base structure are branched out due to the geometric asymmetry with respect to the SiO(2) spacer. If additional SiO(2) spacer is added between the topmost Au grating and the base fishnet structure, new magnetic resonance modes appear due to coupling between two vertically aligned Au/SiO(2)/Au stacks. With the understanding of multiple electromagnetic resonance modes on the proposed tandem grating structures, we successfully design a broadband absorber made of Au and SiO(2) in the visible spectrum.

  12. Toward detailed prominence seismology - II. Charting the continuous magnetohydrodynamic spectrum

    OpenAIRE

    Blokland, J. W. S.; Keppens, R.

    2011-01-01

    Context. Starting from accurate magnetohydrodynamic flux rope equilibria containing prominence condensations, we initiate a systematic survey of their linear eigenoscillations. This paves the way for more detailed prominence seismology, which thus far has made dramatic simplifications about the prevailing magnetic field topologies. Aims. To quantify the full spectrum of linear MHD eigenmodes, we require knowledge of all flux-surface localized modes, charting out the continuous parts of the MH...

  13. The spectrum of singly ionized yttrium, Y II

    International Nuclear Information System (INIS)

    Nilsson, A.E.; Johansson, S.; Kurucz, R.L.

    1991-01-01

    Hollow-cathode spectra of yttrium have been registered in the wavelength region 1000-48800 A. Resonant charge transfer reactions in the light source favour the excitation of Y II, where 174 new levels have been established by means of 1284 newly classified lines. Altogether we report 1521 lines between 235 levels in Y II. The ground complex (4d+5s) 2 is now completely known and a number of Rydberg series have been extended. The new levels belong to the 4dnl (nl=7s, 8s, 9s, 6p, 7p, 4d, 5d, 6d, 7d, 8d, 4f, 5f, 6f, 7f, 5g) and 5snl (nl=7s, 8s, 6p, 6d, 4f, 5f) configurations. Eigenvector compositions, based on paramagnetic calculations including configuration interaction, are given for all levels. The ionization limit has been determined to 98590 ± 5 cm -1 . (orig.)

  14. Relativistic jet feedback - II. Relationship to gigahertz peak spectrum and compact steep spectrum radio galaxies

    Science.gov (United States)

    Bicknell, Geoffrey V.; Mukherjee, Dipanjan; Wagner, Alexander Y.; Sutherland, Ralph S.; Nesvadba, Nicole P. H.

    2018-04-01

    We propose that Gigahertz Peak Spectrum (GPS) and Compact Steep Spectrum (CSS) radio sources are the signposts of relativistic jet feedback in evolving galaxies. Our simulations of relativistic jets interacting with a warm, inhomogeneous medium, utilizing cloud densities and velocity dispersions in the range derived from optical observations, show that free-free absorption can account for the ˜ GHz peak frequencies and low-frequency power laws inferred from the radio observations. These new computational models replace a power-law model for the free-free optical depth a more fundamental model involving disrupted log-normal distributions of warm gas. One feature of our new models is that at early stages, the low-frequency spectrum is steep but progressively flattens as a result of a broader distribution of optical depths, suggesting that the steep low-frequency spectra discovered by Callingham et al. may possibly be attributed to young sources. We also investigate the inverse correlation between peak frequency and size and find that the initial location on this correlation is determined by the average density of the warm ISM. The simulated sources track this correlation initially but eventually fall below it, indicating the need for a more extended ISM than presently modelled. GPS and CSS sources can potentially provide new insights into the phenomenon of AGN feedback since their peak frequencies and spectra are indicative of the density, turbulent structure, and distribution of gas in the host galaxy.

  15. Enhancement of high-energy cosmic-ray spectrum by type-II supernovae

    Science.gov (United States)

    Takahashi, Y.; Miyaji, S.; Parnell, T. A.; Weisskopf, M. C.; Hayashi, T.

    1986-01-01

    The cosmic-ray spectrum has an intensity enhancement in the energy range 10 to the 14th to 10 to the 16th eV per nucleus. Recent observations of heavy cosmic rays in this energy range indicate that the Ca/Fe ratio may be as large as 10 times the solar value. It is suggested that pulsars in type-II supernova remnants are the origin of this component of the cosmic-ray spectrum.

  16. Detection of broad ultraviolet Fe II lines in the spectrum of NGC 1068

    International Nuclear Information System (INIS)

    Snijders, M.A.J.; Netzer, Hagai; Boksenberg, A.

    1986-01-01

    Ultraviolet observations of the nucleus of NGC 1068, obtained by the IUE over a period of 5 yr, are combined to give a high signal-to-noise spectrum of this source. The ultraviolet stellar continuum, obtained by comparison with ground-based data, is subtracted to show the nuclear non-stellar component. The resulting spectrum shows clearly the presence of strong broad FeII emission bands similar to those observed in many broad-line objects. Broad profiles are also seen in other strong emission lines. These observations confirm the recent discovery of an optical Seyfert type 1 spectrum in NGC 1068. (author)

  17. He II lines in the spectrum of zeta Puppis

    International Nuclear Information System (INIS)

    Snijders, M.A.J.; Underhill, A.B.

    1975-01-01

    Equivalents widths of He II lines in the series n=2,3,4 and 5 are compiled and compared with predictions from plane-parallel, static model atmospheres using a non-LTE theory of line formation. The agreement between observation and prediction for a (50,000,4.0) model atmosphere is good for the upper members of the n=3 and the n=5 series, but the two lines of the n=2 series which are observed and the upper members of the n=4 series (4→15,4→17, etc.) are stronger than predicted. Well-determined profiles of lines from the n=3 series indicate v sin i=200 km s -1 . Profiles of the higher members of the n=4 series, however, do not match the predictions, the observed line cores being deeper than predicted. The n=4 level appears to be more overpopulated at moderate depths in the atmosphere than the non-LTE calculations with plane-parallel layers indicate. This may be due to an overlap of the H and He II lines in the even-even series caused by macroturbulent velocities of the hydrogen atoms and helium atoms

  18. The Mira-Titan Universe. II. Matter Power Spectrum Emulation

    Science.gov (United States)

    Lawrence, Earl; Heitmann, Katrin; Kwan, Juliana; Upadhye, Amol; Bingham, Derek; Habib, Salman; Higdon, David; Pope, Adrian; Finkel, Hal; Frontiere, Nicholas

    2017-09-01

    We introduce a new cosmic emulator for the matter power spectrum covering eight cosmological parameters. Targeted at optical surveys, the emulator provides accurate predictions out to a wavenumber k˜ 5 Mpc-1 and redshift z≤slant 2. In addition to covering the standard set of ΛCDM parameters, massive neutrinos and a dynamical dark energy of state are included. The emulator is built on a sample set of 36 cosmological models, carefully chosen to provide accurate predictions over the wide and large parameter space. For each model, we have performed a high-resolution simulation, augmented with 16 medium-resolution simulations and TimeRG perturbation theory results to provide accurate coverage over a wide k-range; the data set generated as part of this project is more than 1.2Pbytes. With the current set of simulated models, we achieve an accuracy of approximately 4%. Because the sampling approach used here has established convergence and error-control properties, follow-up results with more than a hundred cosmological models will soon achieve ˜ 1 % accuracy. We compare our approach with other prediction schemes that are based on halo model ideas and remapping approaches. The new emulator code is publicly available.

  19. Applied Electromagnetics

    International Nuclear Information System (INIS)

    Yamashita, H.; Marinova, I.; Cingoski, V.

    2002-01-01

    These proceedings contain papers relating to the 3rd Japanese-Bulgarian-Macedonian Joint Seminar on Applied Electromagnetics. Included are the following groups: Numerical Methods I; Electrical and Mechanical System Analysis and Simulations; Inverse Problems and Optimizations; Software Methodology; Numerical Methods II; Applied Electromagnetics

  20. [A magnetic therapy apparatus with an adaptable electromagnetic spectrum for the treatment of prostatitis and gynecopathies].

    Science.gov (United States)

    Kuz'min, A A; Meshkovskiĭ, D V; Filist, S A

    2008-01-01

    Problems of engineering and algorithm development of magnetic therapy apparatuses with pseudo-random radiation spectrum within the audio range for treatment of prostatitis and gynecopathies are considered. A typical design based on a PIC 16F microcontroller is suggested. It includes a keyboard, LCD indicator, audio amplifier, inducer, and software units. The problem of pseudo-random signal generation within the audio range is considered. A series of rectangular pulses is generated on a random-length interval on the basis of a three-component random vector. This series provides the required spectral characteristics of the therapeutic magnetic field and their adaptation to the therapeutic conditions and individual features of the patient.

  1. Cosmic Electromagnetic Radiation: The sky shine covers an enormous spectrum of frequencies, revealing a cosmic picture in some detail.

    Science.gov (United States)

    Hafner, E M

    1964-09-18

    Within a few decades astronomy has extended the compass of its observations from the visible spectrum downward to radio waves and upward to the highest energies known to science. The major new accomplishments are in the radio and x-ray bands, and in the associated study of cosmic ray electrons. Synchrotron radiation is known to be a mechanism for radio signals; discrete x-ray sources have been found; the intensity and the charge ratio of galactic electrons are under study. Experimental results at energies above the x-ray region are less firm. The sun surely emits gamma rays at energies of about 1 Mev during flare activity, and instruments in deep space have probably recorded the general galactic glow of similar photons. Upper limits for fluxes have been set at 100 Mev and beyond. To some extent the physical processes which give rise to the extraterrestrial radiation are familiar to workers in the terrestrial laboratory. Synchrotron radiation is an example; the bremsstrahlung of electrons, the production of neutral pions in p-p collisions, and the annihilation of electron and nucleon pairs are others. Some proposed mechanisms are, and perhaps always will be, purely speculative in the sense that they are not directly observable in the laboratory. The inverse Compton effect, possibly one of the sources of a metagalactic sky glow of hard photons, is in this class. There is little chance that spontaneous creation of matter, even if it occurs in nature, can be observed on a terrestrial scale. And the extreme physical conditions proposed for neutron stars are beyond our ability to reproduce. Only through interpretation of astronomical data can we test the validity of these ideas. The many pictures of the universe given by the vast electromagnetic spectrum are essential to the synthesis of our concepts.

  2. Vineland Adaptive Behavior Scales: II Profile of Young Children with Autism Spectrum Disorder

    Science.gov (United States)

    Yang, Sabrina; Paynter, Jessica M.; Gilmore, Linda

    2016-01-01

    Adaptive behaviour is a crucial area of assessment for individuals with Autism Spectrum Disorder (ASD). This study examined the adaptive behaviour profile of 77 young children with ASD using the Vineland-II, and analysed factors associated with adaptive functioning. Consistent with previous research with the original Vineland a distinct autism…

  3. ELECTROMAGNETIC FIELD MEASUREMENT OF FUNDAMENTAL AND HIGHER-ORDER MODES FOR 7-CELL CAVITY OF PETRA-II

    Energy Technology Data Exchange (ETDEWEB)

    Kawashima, Y.; Blednykh, A.; Cupolo, J.; Davidsaver, M.; Holub, B.; Ma, H.; Oliva, J.; Rose, J.; Sikora, R.; Yeddulla, M.

    2011-03-28

    The booster synchrotron for NSLS-II will include a 7-cell PETRA cavity, which was manufactured for the PETRA-II project at DESY. The cavity fundamental frequency operates at 500 MHz. In order to verify the impedances of the fundamental and higher-order modes (HOM), which were calculated by computer code, we measured the magnitude of the electromagnetic field of the fundamental acceleration mode and HOM using the bead-pull method. To keep the cavity body temperature constant, we used a chiller system to supply cooling water at 20 degrees C. The bead-pull measurement was automated with a computer. We encountered some issues during the measurement process due to the difficulty in measuring the electromagnetic field magnitude in a multi-cell cavity. We describe the method and apparatus for the field measurement, and the obtained results.

  4. Spectrum

    DEFF Research Database (Denmark)

    Høgfeldt Hansen, Leif

    2016-01-01

    The publication functions as a proces description of the development and construction of an urban furniture SPECTRUM in the city of Gwangju, Republic of Korea. It is used as the cataloque for the exhibition of Spectrum.......The publication functions as a proces description of the development and construction of an urban furniture SPECTRUM in the city of Gwangju, Republic of Korea. It is used as the cataloque for the exhibition of Spectrum....

  5. Scattering of Electromagnetic Radiation by Apertures: II. Oblique Incidence on the Slotted Plane for Parallel Polarization,

    Science.gov (United States)

    The report is the second in a series of investigations into the diffraction of electromagnetic radiation by apertures in conducting screens. Herein...is presented a technique for obtaining the fields everywhere for plane electromagnetic radiation incident obliquely on a slotted conducting plane. The

  6. Performance of the CMS electromagnetic calorimeter in Run II and its role in the measurement of the Higgs boson properties

    CERN Document Server

    Organtini, Giovanni

    2017-01-01

    The characterisation of the Higgs boson discovered in 2012 around 125 GeV, and confirmed with the data collected in Run II, requires the precise determination of its mass, width and couplings. The electromagnetic calorimeter (ECAL) of the Compact Muon Solenoid Experiment (CMS) is crucial for measurements in the highest resolution channels, $H\\to \\gamma \\gamma$ and $H\\to 4$ leptons. In particular the energy resolution, the scale uncertainty and the position resolution for electrons and photons are required to be as good as possible.During Run II the LHC is continuously operating with 25 ns bunch spacing and increasing instantaneous luminosity. The calorimeter reconstruction algorithm has been adapted to cope with increasing levels of pile-up and the calibration and monitoring strategy have been optimised to maintain the excellent performance of the CMS ECAL throughout Run II. We show first performance results from the Run II data taking periods, achieved through energy calibrations using physics events, with...

  7. Electromagnetism, magnetic monopoles and matter-waves in space-time algebra (part II)

    International Nuclear Information System (INIS)

    Daviau, C.

    1989-01-01

    The formalism of space-time algebra of Hestenes is used: - in the first part to write the equations of electromagnetism of Maxwell and Louis de Broglie, when magnetic monopoles exist; - second to explain equivalence between the equations of Dirac and Hestenes, and to extend this equivalence to Lochak's theory of magnetic monopoles; - to establish that monopoles can exist with very small magnetic charge; - in this second part, to compare waves of fermions and electromagnetism, to associate an electromagnetic field to Dirac's waves and to join the equation of Maxwell - de Broglie to the equation of Dirac - Hestenes [fr

  8. Feasibility of non-linear simulation for Field II using an angular spectrum approach

    DEFF Research Database (Denmark)

    Du, Yigang; Jensen, Jørgen Arendt

    2008-01-01

    Simulation of non-linear fields is most often restricted to single element, circularly symmetric sources, which is not used in clinical scanning. To obtain a general and valuable simulation, array transducers of any geometry with any excitation, focusing, and apodization should be modeled. Field II...... to the transducer surface. This calculation is performed using Field II and, thus, includes modeling array transducers of any geometry with any excitation, focusing, and apodization. The propagation in the linear or non-linear medium is then performed using the angular spectrum approach. The first step in deriving...

  9. The Amazing COS FUV (1320 - 1460 A) Spectrum of (lambda) Vel (K4Ib-II)

    Science.gov (United States)

    Carpenter, Kenneth

    2010-01-01

    The FUV spectrum (1320-1460 A) of the K4 lb-11 supergiant (lambda) Vel was observed with the Cosmic Origins Spectrograph (COS) on HST, as part of the Ayres and Redfield Cycle 17 SNAP program "SNAPing Coronal Iron". This spectrum covers a region not previously recorded in (lambda) Vel at high resolution and, in a mere 20 minutes of exposure, reveals a treasure trove of information. It shows a wide variety of strong emission lines, superposed on a bright continuum, with contributions from both atomic and molecular species. Multiple absorptions, including numerous Ni II and Fe II lines, are visible over this continuum, which is likely generated in the chromosphere of the star. Evidence of the stellar wind is seen in the P Cygni profiles of the CII lines near 1335 A and the results of fluorescence processes are visible throughout the region. The spectrum has remarkable similarities to that of (alpha) Boo (K1.5 III), but significant differences as well, including substantial FUV continuum emission, reminiscent of the M2 Iab supergiant (alpha) Ori, but minus the CO fundamental absorption bands seen in the spectrum of the latter star. However, fluoresced CO emission is present, as in the K-giant stars (alpha) Boo and (alpha) Tau (K5 III). The presence of hot plasma in the atmosphere of the star, indicated by previous GHRS observations of Si III] and C III] lines near 1900 A and FUSE observations of O VI 1032 A, is further confirmed by the detection in this COS spectrum of the Si IV UV 1 lines near 1400 A, though both lines are contaminated by overlying fluorescent H2 emission. We present the details of this spectrum, in comparison with stars of similar temperature or luminosity and discuss the implications for the structure of, and the radiative processes active in, the outer atmospheres of these stars.

  10. Radiative parameters for some transitions in Cu(II) and Ag(II) spectrum

    International Nuclear Information System (INIS)

    Biemont, E.; Blagoev, K.; Campos, J.; Mayo, R.; Malcheva, G.; Ortiz, M.; Quinet, P.

    2005-01-01

    Radiative parameters for transitions depopulating the levels belonging to the 3d 8 4s 2 configuration of Cu(II) and 4d 9 6s and 4d 9 5d configurations of Ag(II) have been obtained both theoretically and experimentally. On the experimental side, a laser-produced plasma was used as a source of Cu(II) and Ag(II) spectra. The light emitted by the plasma was focused on the input slit of a grating monochromator coupled with a time-resolved optical multichannel analyzer system. Spectral response calibration of the experimental system was made using a deuterium lamp in the wavelength range extending from 200 to 400-bar nm, and a standard tungsten lamp in the range from 350 to 600-bar nm. The transition probabilities were obtained using measured branching fractions and available radiative lifetimes of the corresponding states. On the theoretical side, a relativistic Hartree-Fock (HFR) approach, including core-polarization effects, has been used for the calculations. A reasonable agreement theory-experiment has been observed

  11. 20070607 NATO Advanced Study Institute on the Electromagnetic Spectrum of Neutron Stars Marmaris, Turkey 07 - 18 Jun 2004 2004 marmaris20040607 TR 20040618

    CERN Document Server

    Baykal, Altan; Inam, Sitki C; Grebenev, Sergei

    2005-01-01

    Neutron stars hold a central place in astrophysics, not only because they are made up of the most extreme states of the condensed matter, but also because they are, along with white dwarfs and black holes, one of the stable configurations that stars reach at the end of stellar evolution. Neutron stars posses the highest rotation rates and strongest magnetic fields among all stars. They radiate prolifically, in high energy electromagnetic radiation and in the radio band. This book is devoted to the selected lectures presented in the 6th NATO-ASI series entitled "The Electromagnetic Spectrum of Neutron Stars" in Marmaris, Turkey, on 7-18 June 2004. This ASI is devoted to the spectral properties of neutron stars. Spectral observations of neutron stars help us to understand the magnetospheric emission processes of isolated radio pulsars and the emission processes of accreting neutron stars. This volume includes spectral information from the neutron stars in broadest sense, namely neutrino and gravitational radiat...

  12. The universal C*-algebra of the electromagnetic field II. Topological charges and spacelike linear fields

    Science.gov (United States)

    Buchholz, Detlev; Ciolli, Fabio; Ruzzi, Giuseppe; Vasselli, Ezio

    2017-02-01

    Conditions for the appearance of topological charges are studied in the framework of the universal C*-algebra of the electromagnetic field, which is represented in any theory describing electromagnetism. It is shown that non-trivial topological charges, described by pairs of fields localised in certain topologically non-trivial spacelike separated regions, can appear in regular representations of the algebra only if the fields depend non-linearly on the mollifying test functions. On the other hand, examples of regular vacuum representations with non-trivial topological charges are constructed, where the underlying field still satisfies a weakened form of "spacelike linearity". Such representations also appear in the presence of electric currents. The status of topological charges in theories with several types of electromagnetic fields, which appear in the short distance (scaling) limit of asymptotically free non-abelian gauge theories, is also briefly discussed.

  13. Electromagnetic environment measurements of PRT systems at "TRANSPO 72" : volume II, Dashaveyor System

    Science.gov (United States)

    1974-01-01

    An X-Y plot is made of the radiated electromagnetic signals and noise between 1 KHz and 50 KHz at each of the four Personalized Rapid Transit (PRT) sites at Dulles International Airport. The PRT systems were operated individually to establish the sig...

  14. Linear Optimization of Frequency Spectrum Assignments Across System

    Science.gov (United States)

    2016-03-01

    ELECTROMAGNETIC MANEUVER WARFARE .............................5  B.  THE SPECTRUM AS THE NEWEST DOMAIN ..................................6  C.  A FULL...environment EMI electromagnetic interference EMS electromagnetic spectrum EMW electromagnetic maneuver warfare EP electronic protect ES electronic...warships’ electromagnetic systems to operate dynamically across the spectrum (Carter 2013). Bureaucratic and administrative spectrum allocations

  15. An Electromagnetic Sensor for the Autonomous Running of Visually Impaired and Blind Athletes (Part II: The Wearable Device).

    Science.gov (United States)

    Pieralisi, Marco; Di Mattia, Valentina; Petrini, Valerio; De Leo, Alfredo; Manfredi, Giovanni; Russo, Paola; Scalise, Lorenzo; Cerri, Graziano

    2017-02-16

    Currently, the availability of technology developed to increase the autonomy of visually impaired athletes during sports is limited. The research proposed in this paper (Part I and Part II) focuses on the realization of an electromagnetic system that can guide a blind runner along a race track without the need for a sighted guide. In general, the system is composed of a transmitting unit (widely described in Part I) and a receiving unit, whose components and main features are described in this paper. Special attention is paid to the definition of an electromagnetic model able to faithfully represent the physical mechanisms of interaction between the two units, as well as between the receiving magnetic sensor and the body of the user wearing the device. This theoretical approach allows for an estimation of the signals to be detected, and guides the design of a suitable signal processing board. This technology has been realized, patented, and tested with a blind volunteer with successful results and this paper presents interesting suggestions for further improvements.

  16. Design studies for the Phase II upgrade of the CMS Barrel Electromagnetic Calorimeter

    Science.gov (United States)

    Bornheim, A.

    2017-03-01

    The High Luminosity LHC (HL-LHC) aims to reach the unprecedented integrated luminosity of 3 ab-1 with an instantaneous luminosity up to 5 × 1034 cm-2 s-1. This poses stringent requirements on the radiation resistance of detector components and on the latency of the trigger system. The barrel region of the CMS Electromagnetic Calorimeter will be able to retain the current lead tungstate crystals and avalanche photo diode detectors which will meet the performance requirements throughout the operational lifetime of the HL-LHC. The new front-end electronics and very front-end system required at high luminosities will be described.

  17. On the cosmic ray spectrum from type II Supernovae expanding in their red giant presupernova wind

    Science.gov (United States)

    Cardillo, Martina

    2015-12-01

    While from the energetic point of view SNRs are viable sources of Galactic CRs, the issue of whether they can accelerate protons up to PeV remains unsolved. Here we discuss particle acceleration at the forward shock of SN and discuss the possibility that the escaping particle current may excite a non-resonant instability that in turn leads to the formation of resonant modes confining particles close to the shock and increasing the maximum energy. This mechanism works throughout the expansion of the SN explosion, from the ejecta dominated (ED) to the Sedov-Taylor (ST) phase. Because of their higher explosion rate,we focus on type II SNae expanding in the slow, dense red supergiant wind. When the explosion occurs in such winds, the transition between the ED and the ST phase is likely to take place within a few tens of years. As a result, the spectrum of accelerated particles shows a break in the slope, at the maximum energy (EM) achieved at the beginning of the ST phase. Above this energy, the spectrum becomes steeper but remains a power law than developing an exponential cutoff. We show that for type II SNae typical parameters, proton EM can easily reach PeV energies, confirming that type II SNRs are the best candidate sources for CRs at the knee. We have tried to fit KASCADE-Grande, ARGO -YBJ and YAC1-Tibet Array data with our model but we could not find any parameter combination that could explain all data sets. Indeed the recent measurement of the proton and helium spectra in the knee region, with the ARGO-YBJ and YAC1-Tibet Array, has made the situation very confused. These measurements suggest that the knee in the light component is at 650 TeV, appreciably below the overall spectrum knee. This finding would resolve the problem of reaching very high energies in SNae, but, on the other hand, it would open a critical issue in the transition region between Galactic and extragalactic CRs.

  18. On the cosmic ray spectrum from type II Supernovae expanding in their red giant presupernova wind

    Directory of Open Access Journals (Sweden)

    Cardillo Martina

    2015-01-01

    Full Text Available While from the energetic point of view SNRs are viable sources of Galactic CRs, the issue of whether they can accelerate protons up to PeV remains unsolved. Here we discuss particle acceleration at the forward shock of SN and discuss the possibility that the escaping particle current may excite a non-resonant instability that in turn leads to the formation of resonant modes confining particles close to the shock and increasing the maximum energy. This mechanism works throughout the expansion of the SN explosion, from the ejecta dominated (ED to the Sedov-Taylor (ST phase. Because of their higher explosion rate,we focus on type II SNae expanding in the slow, dense red supergiant wind. When the explosion occurs in such winds, the transition between the ED and the ST phase is likely to take place within a few tens of years. As a result, the spectrum of accelerated particles shows a break in the slope, at the maximum energy (EM achieved at the beginning of the ST phase. Above this energy, the spectrum becomes steeper but remains a power law than developing an exponential cutoff. We show that for type II SNae typical parameters, proton EM can easily reach PeV energies, confirming that type II SNRs are the best candidate sources for CRs at the knee. We have tried to fit KASCADE-Grande, ARGO -YBJ and YAC1-Tibet Array data with our model but we could not find any parameter combination that could explain all data sets. Indeed the recent measurement of the proton and helium spectra in the knee region, with the ARGO-YBJ and YAC1-Tibet Array, has made the situation very confused. These measurements suggest that the knee in the light component is at 650 TeV, appreciably below the overall spectrum knee. This finding would resolve the problem of reaching very high energies in SNae, but, on the other hand, it would open a critical issue in the transition region between Galactic and extragalactic CRs.

  19. Battlefield Electromagnetic Environments Office (BEEO)

    Data.gov (United States)

    Federal Laboratory Consortium — The Battlefield Electromagnetic Environments Office (BEEO) develops, maintains, and operates the Army Materiel Command (AMC) databases for spectrum management, per...

  20. Progression along the Bipolar Spectrum: A Longitudinal Study of Predictors of Conversion from Bipolar Spectrum Conditions to Bipolar I and II Disorders

    Science.gov (United States)

    Alloy, Lauren B.; Urošević, Snežana; Abramson, Lyn Y.; Jager-Hyman, Shari; Nusslock, Robin; Whitehouse, Wayne G.; Hogan, Michael

    2011-01-01

    Little longitudinal research has examined progression to more severe bipolar disorders in individuals with “soft” bipolar spectrum conditions. We examine rates and predictors of progression to bipolar I and II diagnoses in a non-patient sample of college-age participants (n = 201) with high General Behavior Inventory scores and childhood or adolescent onset of “soft” bipolar spectrum disorders followed longitudinally for 4.5 years from the Longitudinal Investigation of Bipolar Spectrum (LIBS) project. Of 57 individuals with initial cyclothymia or bipolar disorder not otherwise specified (BiNOS) diagnoses, 42.1% progressed to a bipolar II diagnosis and 10.5% progressed to a bipolar I diagnosis. Of 144 individuals with initial bipolar II diagnoses, 17.4% progressed to a bipolar I diagnosis. Consistent with hypotheses derived from the clinical literature and the Behavioral Approach System (BAS) model of bipolar disorder, and controlling for relevant variables (length of follow-up, initial depressive and hypomanic symptoms, treatment-seeking, and family history), high BAS sensitivity (especially BAS Fun Seeking) predicted a greater likelihood of progression to bipolar II disorder, whereas early age of onset and high impulsivity predicted a greater likelihood of progression to bipolar I (high BAS sensitivity and Fun-Seeking also predicted progression to bipolar I when family history was not controlled). The interaction of high BAS and high Behavioral Inhibition System (BIS) sensitivities also predicted greater likelihood of progression to bipolar I. We discuss implications of the findings for the bipolar spectrum concept, the BAS model of bipolar disorder, and early intervention efforts. PMID:21668080

  1. Optical spectrum of HDE 226868 = Cygnus X-1. II. Spectrophotometry and mass estimates

    International Nuclear Information System (INIS)

    Gies, D.R.; Bolton, C.T.

    1986-01-01

    In part I of this series, Gies and Bolton (1982) have presented the results of radial velocity measures of 78 high-dispersion spectrograms of HDE 226868 = Cyg X-1. For the present study, 55 of the best plates considered by Gies and Bolton were selected to form 10 average spectra. An overall mean spectrum with S/N ratio = 300 was formed by coadding the 10 averaged spectra. There is no evidence for statistically significant variations of the spectral type about the mean value of 09.7 Iab, and all the absorption line strengths are normal for the spectral type. Evidence is presented that the He II lambda 4846 emission line is formed in the stellar wind above the substellar point on the visible star. Probable values regarding the mass for the visible star and its companion are 33 and 16 solar masses, respectively. Theoretical He II lambda 4686 emission line profiles are computed for the focused stellar wind model for the Cyg X-1 system considered by Friend and Castor (1982). 105 references

  2. Design studies for the Phase II upgrade of the CMS Barrel Electromagnetic Calorimeter

    CERN Document Server

    Orimoto, Toyoko Jennifer

    2016-01-01

    The High Luminosity LHC (HL-LHC) will provide unprecedented instantaneous and integrated luminosity. The lead tungstate crystals forming the barrel part of the Electromagnetic Calorimeter (ECAL) of the Compact Muon Solenoid (CMS) will still perform well, even after the expected integrated luminosity of 3000fb-1 at the end of HL-LHC. The avalanche photodiodes (APDs) used to detect the scintillation light will also continue to be operational, although there will be some increase in noise due to radiation-induced dark currents. This will be mitigated by reducing the barrel operating temperature during HL-LHC running.The front-end electronics of the ECAL barrel will be replaced, in order to remove existing constraints on trigger rate and latency and to provide additional capability to fully exploit the higher luminosity delivered by the HL-LHC. New developments in high-speed optical links will allow single-crystal readout at 40 MHz to upgraded off-detector processors, allowing maximum flexibility and enhanced tri...

  3. Random polyfluorene co-polymers designed for a better optical absorption coverage of the visible region of the electromagnetic spectrum

    Directory of Open Access Journals (Sweden)

    D. A. Gedefaw

    2014-01-01

    Full Text Available Two alternating polyfluorenes (APFO15-F8BT and APFO3-F8BT with full absorption of the visible region of the electromagnetic radiation were designed and synthesized for bulk-heterojunction solar cell devices. The optical and electrochemical properties of the two polymers were studied. The two polymers exhibited strong absorption in the visible region with no significant valley over the visible region extending up to 650 nm. Deep HOMO and ideally situated LUMO energy levels were the characteristics of the two polymers as revealed from the square wave voltammogram study: desired properties for extracting high open circuit voltage and for a facile charge transfer to the acceptor component in devices to take place, respectively. Photovoltaic devices were fabricated by blending the two polymers with PCBM[70] and up to ~2% power conversion efficiency were obtained. DOI: http://dx.doi.org/10.4314/bcse.v28i1.14

  4. Electromagnetic response of a thin type-II superconducting cylindrical shell

    International Nuclear Information System (INIS)

    Perez-Gonzalez, A.; Clem, J.R.

    1991-01-01

    The general critical-state model, which includes the effects of both flux-line cutting and flux pinning, is used for calculating the response of a type-II superconducting cylindrical shell subjected to applied magnetic fields that change in both magnitude and orientation. Analytic expressions for the ac losses are obtained for the case that the applied field has a small-amplitude oscillating component. For the regime of partial penetration of the changing B field, the ac-loss expression reduces, for large cylinder radius, to that in slab geometry. When full penetration occurs, the ac-loss expressions depend upon the cylinder outer radius

  5. Performance of the CMS precision electromagnetic calorimeter at LHC Run II and prospects for High-Luminosity LHC

    CERN Document Server

    Zhang, Zhicai

    2017-01-01

    Many physics analyses using the Compact Muon Solenoid (CMS) detector at the LHC require accurate, high-resolution electron and photon energy measurements. Following the excellent performance achieved during LHC Run I at center-of-mass energies of 7 and 8 TeV, the CMS electromagnetic calorimeter (ECAL) is operating at the LHC with proton-proton collisions at 13 TeV center-of-mass energy. The instantaneous luminosity delivered by the LHC during Run II has achieved unprecedented levels. The average number of concurrent proton-proton collisions per bunch-crossing (pileup) has reached up to 40 interactions in 2016 and may increase further in 2017. These high pileup levels necessitate a retuning of the ECAL readout and trigger thresholds and reconstruction algorithms. In addition, the energy response of the detector must be precisely calibrated and monitored. We present new reconstruction algorithms and calibration strategies that were implemented to maintain the excellent performance of the CMS ECAL throughout Run...

  6. Laboratory and field response of the emerald ash borer (Coleoptera: Buprestidae), to selected regions of the electromagnetic spectrum.

    Science.gov (United States)

    Crook, Damon J; Francese, Joseph A; Zylstra, Kelley E; Fraser, Ivich; Sawyer, Alan J; Bartels, David W; Lance, David R; Mastro, Victor C

    2009-12-01

    Retinal sensitivity of Agrilus planipennis Fairmaire (Coleoptera: Buprestidae) was examined with an aim to improve trap efficacy for the beetle. Electroretinogram (ERG) recordings from dark-adapted compound eyes of male and female were measured at different wavelengths across the spectrum ranging from 300 to 700 nm. The spectral sensitivity curves revealed peaks in the UV (340 nm), the violet/purple (420-430 nm), blue (460 nm), and green (540-560 nm) regions of the spectrum. Females were sensitive to red regions of the spectrum (640-670 nm), whereas males were not. A spectrophotometer was used to measure the wavelength and reflectance for ash foliage, purple corrugated plastic traps, as well as the elytra and abdomen of adult A. planipennis. Traps were painted using colors based on ERG and spectrophotometer measurements and compared with purple corrugated plastic traps currently used by the USDA-APHIS-PPQ-EAB National Survey. In a field assay conducted along the edges of several A. planipennis-infested ash stands, there were no significant differences in trap catch among green, red, or purple treatments. Dark blue traps caught significantly fewer A. planipennis than red, light green, or dark purple traps. In a second assay where purple and green treatments were placed in the mid canopy of ash trees (approximately 13 m in height), trap catch was significantly higher on green treatments. We hypothesize that when placed in the mid-canopy, green traps constitute a foliage-type stimulus that elicits food-seeking and/or host seeking behavior by A. planipennis.

  7. Noncardiac findings on cardiac CT. Part II: spectrum of imaging findings.

    LENUS (Irish Health Repository)

    Killeen, Ronan P

    2012-02-01

    Cardiac computed tomography (CT) has evolved into an effective imaging technique for the evaluation of coronary artery disease in selected patients. Two distinct advantages over other noninvasive cardiac imaging methods include its ability to directly evaluate the coronary arteries and to provide a unique opportunity to evaluate for alternative diagnoses by assessing the extracardiac structures, such as the lungs and mediastinum, particularly in patients presenting with the chief symptom of acute chest pain. Some centers reconstruct a small field of view (FOV) cropped around the heart but a full FOV (from skin to skin in the area irradiated) is obtainable in the raw data of every scan so that clinically relevant noncardiac findings are identifiable. Debate in the scientific community has centered on the necessity for this large FOV. A review of noncardiac structures provides the opportunity to make alternative diagnoses that may account for the patient\\'s presentation or to detect important but clinically silent problems such as lung cancer. Critics argue that the yield of biopsy-proven cancers is low and that the follow-up of incidental noncardiac findings is expensive, resulting in increased radiation exposure and possibly unnecessary further testing. In this 2-part review we outline the issues surrounding the concept of the noncardiac read, looking for noncardiac findings on cardiac CT. Part I focused on the pros and cons for and against the practice of identifying noncardiac findings on cardiac CT. Part II illustrates the imaging spectrum of cardiac CT appearances of benign and malignant noncardiac pathology.

  8. Effects of four kinds of electromagnetic fields (EMF) with different frequency spectrum bands on ovariectomized osteoporosis in mice.

    Science.gov (United States)

    Lei, Tao; Li, Feijiang; Liang, Zhuowen; Tang, Chi; Xie, Kangning; Wang, Pan; Dong, Xu; Shan, Shuai; Liu, Juan; Xu, Qiaoling; Luo, Erping; Shen, Guanghao

    2017-04-03

    Electromagnetic fields (EMF) was considered as a non-invasive modality for treatment of osteoporosis while the effects were diverse with EMF parameters in time domain. In present study, we extended analysis of EMF characteristics from time domain to frequency domain, aiming to investigate effects of four kinds of EMF (LP (1-100 Hz), BP (100-3,000 Hz), HP (3,000-50,000 Hz) and AP (1-50,000 Hz)) on ovariectomized (OVX) osteoporosis (OP) in mice. Forty-eight 3-month-old female BALB/c mice were equally assigned to Sham, OVX, OVX + LP, OVX + BP, OVX + HP and OVX + AP groups (n = 8). After 8-week exposure (3 h/day), LP and BP significantly increased serum bone formation markers and osteogenesis-related gene expressions compared with OVX. Bedsides, LP and BP also slightly increased bone resorption activity compared with OVX, evidenced by increased RANKL/OPG ratio. HP sharply decreased serum bone formation and resporption markers and osteogenesis and osteoclastogenesis related gene expressions compared with OVX. AP had accumulative effects of LP, BP and HP, which significantly increased bone formation and decreased bone resporption activity compared with OVX. As a result, LP, BP and HP exposure did not later deterioration of bone mass, microarchitecture and mechanical strength in OVX mice with OP. However, AP stimulation attenuated OVX-induced bone loss.

  9. Influence Of Terahertz Range Electromagnetic Radiation At Molecular Spectrum Frequency Of 150+0,75 Ghz Nitric Oxide On Microcirculation Morphofunctional Disturbances In White Rats In Condition Of Acute And Prolonged Stress

    Directory of Open Access Journals (Sweden)

    M.O. Kurtukova

    2009-12-01

    Full Text Available The effect of electromagnetic radiation of terahertz range at frequency of emission and absorption molecular spectrum of 150+0,75GHz nitric oxide on morphofunctional changes of microcirculation and tissue structure in animals in condition of acute and prolonged immobilization stress has been studied. It has shown that the influence of electromagnetic waves at these frequencies causes activity decrease of hypothalamic-pituitary-adrenal and tireoyd axis of stress reaction. It has been determined that terahertz range waves at frequency of nitric oxide are liable to restore disturbances of intravascular, vascular and extravascular components of microcirculation and also have histoprotective effect

  10. Emerging Telecommunications Technologies. Hearings on H.R. 707, A Bill To Establish Procedures To Improve the Allocation and Assignment of the Electromagnetic Spectrum, before the Subcommittee on Telecommunications and Finance of the Committee on Energy and Commerce. House of Representatives, One Hundred Third Congress, First Session (February 4 and April 22, 1993).

    Science.gov (United States)

    Congress of the U.S., Washington, DC. House Subcommittee on Telecommunications and Finance.

    The testimony responds to H.R. 707, a bill to identify 200 megahertz of electromagnetic spectrum for allocation to private and non-federal government users. The witnesses address how the spectrum can be used to deliver new products and services to all Americans; how additional radio spectrum is needed to keep America competitive; how wireless…

  11. EXTRAPOLATION TECHNIQUES EVALUATING 24 HOURS OF AVERAGE ELECTROMAGNETIC FIELD EMITTED BY RADIO BASE STATION INSTALLATIONS: SPECTRUM ANALYZER MEASUREMENTS OF LTE AND UMTS SIGNALS.

    Science.gov (United States)

    Mossetti, Stefano; de Bartolo, Daniela; Veronese, Ivan; Cantone, Marie Claire; Cosenza, Cristina; Nava, Elisa

    2017-04-01

    International and national organizations have formulated guidelines establishing limits for occupational and residential electromagnetic field (EMF) exposure at high-frequency fields. Italian legislation fixed 20 V/m as a limit for public protection from exposure to EMFs in the frequency range 0.1 MHz-3 GHz and 6 V/m as a reference level. Recently, the law was changed and the reference level must now be evaluated as the 24-hour average value, instead of the previous highest 6 minutes in a day. The law refers to a technical guide (CEI 211-7/E published in 2013) for the extrapolation techniques that public authorities have to use when assessing exposure for compliance with limits. In this work, we present measurements carried out with a vectorial spectrum analyzer to identify technical critical aspects in these extrapolation techniques, when applied to UMTS and LTE signals. We focused also on finding a good balance between statistically significant values and logistic managements in control activity, as the signal trend in situ is not known. Measurements were repeated several times over several months and for different mobile companies. The outcome presented in this article allowed us to evaluate the reliability of the extrapolation results obtained and to have a starting point for defining operating procedures. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Interaction between pancreatic β cell and electromagnetic fields: A systematic study toward finding the natural frequency spectrum of β cell system.

    Science.gov (United States)

    Farashi, Sajjad

    2017-01-01

    Interaction between biological systems and environmental electric or magnetic fields has gained attention during the past few decades. Although there are a lot of studies that have been conducted for investigating such interaction, the reported results are considerably inconsistent. Besides the complexity of biological systems, the important reason for such inconsistent results may arise due to different excitation protocols that have been applied in different experiments. In order to investigate carefully the way that external electric or magnetic fields interact with a biological system, the parameters of excitation, such as intensity or frequency, should be selected purposefully due to the influence of these parameters on the system response. In this study, pancreatic β cell, the main player of blood glucose regulating system, is considered and the study is focused on finding the natural frequency spectrum of the system using modeling approach. Natural frequencies of a system are important characteristics of the system when external excitation is applied. The result of this study can help researchers to select proper frequency parameter for electrical excitation of β cell system. The results show that there are two distinct frequency ranges for natural frequency of β cell system, which consist of extremely low (or near zero) and 100-750 kHz frequency ranges. There are experimental works on β cell exposure to electromagnetic fields that support such finding.

  13. The Binary Neutron Star Event LIGO/Virgo GW170817 160 Days after Merger: Synchrotron Emission across the Electromagnetic Spectrum

    Science.gov (United States)

    Margutti, R.; Alexander, K. D.; Xie, X.; Sironi, L.; Metzger, B. D.; Kathirgamaraju, A.; Fong, W.; Blanchard, P. K.; Berger, E.; MacFadyen, A.; Giannios, D.; Guidorzi, C.; Hajela, A.; Chornock, R.; Cowperthwaite, P. S.; Eftekhari, T.; Nicholl, M.; Villar, V. A.; Williams, P. K. G.; Zrake, J.

    2018-03-01

    We report deep Chandra X-ray Observatory (CXO), Hubble Space Telescope (HST), and Karl J. Jansky Very Large Array (VLA) observations of the binary neutron star event GW170817 at t spectrum extending for eight orders of magnitude in frequency enables the most precise measurement of the index p of the distribution of non-thermal relativistic electrons N(γ )\\propto {γ }-p accelerated by a shock launched by a neutron star (NS)–NS merger to date. We find p = 2.17 ± 0.01, which indicates that radiation from ejecta with Γ ∼ 3–10 dominates the observed emission. While constraining the nature of the emission process, these observations do not constrain the nature of the relativistic ejecta. We employ simulations of explosive outflows launched in NS ejecta clouds to show that the spectral and temporal evolution of the non-thermal emission from GW170817 is consistent with both emission from radially stratified quasi-spherical ejecta traveling at mildly relativistic speeds, and emission from off-axis collimated ejecta characterized by a narrow cone of ultra-relativistic material with slower wings extending to larger angles. In the latter scenario, GW170817 harbored a normal short gamma-ray burst (SGRB) directed away from our line of sight. Observations at t ≤ 200 days are unlikely to settle the debate, as in both scenarios the observed emission is effectively dominated by radiation from mildly relativistic material.

  14. Integrability for the full spectrum of planar AdS/CFT II

    Energy Technology Data Exchange (ETDEWEB)

    Gromov, Nikolay [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; St. Petersburg INP, Gatchina, St. Petersburg (Russian Federation); Kazakov, Vladimir [Ecole Normale Superieure, LPT, Paris (France); Kozak, Andrii [Paris-6 Univ., 75 (France); Vieira, Pedro [Max-Planck-Institut fuer Gravitationsphysik (Albert-Einstein-Institut), Potsdam (Germany)

    2009-03-15

    Using the thermodynamical Bethe ansatz method we derive an infinite set of integral nonlinear equations for the spectrum of states/operators in AdS/CFT. The Y-system conjectured in arXiv:0901.3753 [hep-th] for the spectrum of all operators in planar N=4 SYM theory follow from these equations. In particular, we present the integral equations for the spectrum of all operators within the sl(2) sector. (orig.)

  15. Radiofrequency identification and medical devices: the regulatory framework on electromagnetic compatibility. Part II: active implantable medical devices.

    Science.gov (United States)

    Mattei, Eugenio; Censi, Federica; Triventi, Michele; Bartolini, Pietro; Calcagnini, Giovanni

    2012-05-01

    The number and the types of electromagnetic emitters to which patients with active implantable medical devices (AIMD) are exposed to in their daily activities have proliferated over the last decade. Radiofrequency identification (RFID) is an example of wireless technology applied in many fields. The interaction between RFID emitters and AIMD is an important issue for patients, industry and regulators, because of the risks associated with such interactions. The different AIMDs refer to different standards that address the electromagnetic immunity issue in different ways. Indeed, different test setups, immunity levels and rationales are used to guarantee that AIMDs are immune to electromagnetic nonionizing radiation. In this article, the regulatory framework concerning electromagnetic compatibility between RFID systems and AIMDs is analyzed to understand whether and how the application of the current AIMD standards allows for the effective control of the possible risks associated with RFID technology.

  16. Electromagnetic modes in cold magnetized strongly coupled plasmas

    OpenAIRE

    Tkachenko, I. M.; Ortner, J.; Rylyuk, V. M.

    1999-01-01

    The spectrum of electromagnetic waves propagating in a strongly coupled magnetized fully ionized hydrogen plasma is found. The ion motion and damping being neglected, the influence of the Coulomb coupling on the electromagnetic spectrum is analyzed.

  17. Subwavelength atom localization via amplitude and phase control of the absorption spectrum-II

    OpenAIRE

    Kapale, Kishore T.; Zubairy, M. Suhail

    2005-01-01

    Interaction of the internal states of an atom with spatially dependent standing-wave cavity field can impart position information of the atom passing through it leading to subwavelength atom localization. We recently demonstrated a new regime of atom localization [Sahrai {\\it et al.}, Phys. Rev. A {\\bf 72}, 013820 (2005)], namely sub-half-wavelength localization through phase control of electromagnetically induced transparency. This regime corresponds to extreme localization of atoms within a...

  18. Electromagnetic Gowdy universe

    International Nuclear Information System (INIS)

    Charach, C.

    1979-01-01

    Following Gowdy and Berger we construct an inhomogeneous closed electromagnetic universe with three-torus topology. This model is obtained as a result of the homogeneity breaking in the electromagnetic Bianchi type-I universe and contains interacting gravitational and electromagnetic waves. This cosmological solution provides an exactly solvable model for the study of the nonlinear fully relativistic regime of coupled electromagnetic and gravitational fields in the early universe. The asymptotic behavior is considered (i) in the vicinity of the initial singularity and (ii) in the high-frequency limit. It is shown that the effects of coupling between electromagnetic and gravitational waves cause an evolution which is significantly different from that of the vacuum model. The influence of the primordial homogeneous electromagnetic field on the dynamics of the model is also discussed

  19. Lipophosphonoxins II: Design, Synthesis, and Properties of Novel Broad Spectrum Antibacterial Agents.

    Science.gov (United States)

    Seydlová, Gabriela; Pohl, Radek; Zborníková, Eva; Ehn, Marcel; Šimák, Ondřej; Panova, Natalya; Kolář, Milan; Bogdanová, Kateřina; Večeřová, Renata; Fišer, Radovan; Šanderová, Hana; Vítovská, Dragana; Sudzinová, Petra; Pospíšil, Jiří; Benada, Oldřich; Křížek, Tomáš; Sedlák, David; Bartůněk, Petr; Krásný, Libor; Rejman, Dominik

    2017-07-27

    The increase in the number of bacterial strains resistant to known antibiotics is alarming. In this study we report the synthesis of novel compounds termed Lipophosphonoxins II (LPPO II). We show that LPPO II display excellent activities against Gram-positive and -negative bacteria, including pathogens and multiresistant strains. We describe their mechanism of action-plasmatic membrane pore-forming activity selective for bacteria. Importantly, LPPO II neither damage nor cross the eukaryotic plasmatic membrane at their bactericidal concentrations. Further, we demonstrate LPPO II have low propensity for resistance development, likely due to their rapid membrane-targeting mode of action. Finally, we reveal that LPPO II are not toxic to either eukaryotic cells or model animals when administered orally or topically. Collectively, these results suggest that LPPO II are highly promising compounds for development into pharmaceuticals.

  20. The Coyote Universe II: Cosmological Models and Precision Emulation of the Nonlinear Matter Power Spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Heitmann, Katrin [Los Alamos National Laboratory; Habib, Salman [Los Alamos National Laboratory; Higdon, David [Los Alamos National Laboratory; Williams, Brian J [Los Alamos National Laboratory; White, Martin [Los Alamos National Laboratory; Wagner, Christian [Los Alamos National Laboratory

    2008-01-01

    The power spectrum of density fluctuations is a foundational source of cosmological information. Precision cosmological probes targeted primarily at investigations of dark energy require accurate theoretical determinations of the power spectrum in the nonlinear regime. To exploit the observational power of future cosmological surveys, accuracy demands on the theory are at the one percent level or better. Numerical simulations are currently the only way to produce sufficiently error-controlled predictions for the power spectrum. The very high computational cost of (precision) N-body simulations is a major obstacle to obtaining predictions in the nonlinear regime, while scanning over cosmological parameters. Near-future observations, however, are likely to provide a meaningful constraint only on constant dark energy equation of state 'wCDM' cosmologies. In this paper we demonstrate that a limited set of only 37 cosmological models -- the 'Coyote Universe' suite -- can be used to predict the nonlinear matter power spectrum at the required accuracy over a prior parameter range set by cosmic microwave background observations. This paper is the second in a series of three, with the final aim to provide a high-accuracy prediction scheme for the nonlinear matter power spectrum for wCDM cosmologies.

  1. Engineering Electromagnetics

    International Nuclear Information System (INIS)

    Kim, Se Yun

    2009-01-01

    This book deals with engineering electromagnetics. It contains seven chapters, which treats understanding of engineering electromagnetics such as magnet and electron spin, current and a magnetic field and an electromagnetic wave, Essential tool for engineering electromagnetics on rector and scalar, rectangular coordinate system and curl vector, electrostatic field with coulomb rule and method of electric images, Biot-Savart law, Ampere law and magnetic force, Maxwell equation and an electromagnetic wave and reflection and penetration of electromagnetic plane wave.

  2. Comunicação, vigilância e infraestrutura: tecnopolíticas do espectro eletromagnético | Communication, surveillance and infrastructure: techno-politics of the electromagnetic spectrum

    Directory of Open Access Journals (Sweden)

    Adriano Belisário

    2016-11-01

    Full Text Available RESUMO Este trabalho analisa algumas dinâmicas técnicas e políticas em torno dos usos e aplicações do espectro eletromagnético. Argumentando que a vigilância é parte intrínseca do desenvolvimento de certo modelo e arquitetura tecnológica em um nível infraestrutural, exploramos conceitos e práticas que buscam novas perspectivas de entendimento e ação dentro dessa camada essencial para os processos de comunicação que é o espectro. Iniciamos apresentando o espectro radioelétrico e seu gerenciamento para em seguida debater a noção de “espectro aberto” e seus usos mais recentes. Ao final, apresentamos exemplos que ilustram concepções alternativas técnicas e políticas por meio da noção de “espectro livre”. Palavras-Chave: Vigilância; Comunicação; Rádio; Espectro Eletromagnético; Tecnologia. ABSTRACT This paper examines technical and political dynamics around the uses and applications of the electromagnetic spectrum. Arguing that surveillance is an intrinsic part of the development of a certain technological model and architecture at an infrastructural level, we explore concepts and practices that seek new prospects for understanding and acting in this essential layer for communication processes that is the spectrum. We begin presenting the radio spectrum and its management to then discuss the notion of 'open spectrum' and its most recent uses. At the end, we present examples that illustrate alternative technical and political conceptions by means of the notion of a "free spectrum". Keywords: Surveillance; Communication; Radio, Electromagnetic Spectrum; Technology.

  3. Water Vapor in the Spectrum of the Extrasolar Planet HD 189733b. II. The Eclipse

    Science.gov (United States)

    Crouzet, Nicolas; McCullough, Peter R.; Deming, Drake; Madhusudhan, Nikku

    2014-11-01

    Spectroscopic observations of exoplanets are crucial to infer the composition and properties of their atmospheres. HD 189733b is one of the most extensively studied exoplanets and is a cornerstone for hot Jupiter models. In this paper, we report the dayside emission spectrum of HD 189733b in the wavelength range 1.1-1.7 μm obtained with the Hubble Space Telescope Wide Field Camera 3 (WFC3) in spatial scan mode. The quality of the data is such that even a straightforward analysis yields a high-precision Poisson noise-limited spectrum: the median 1σ uncertainty is 57 ppm per 0.02 μm bin. We also build a white-light curve correcting for systematic effects and derive an absolute eclipse depth of 96 ± 39 ppm. The resulting spectrum shows marginal evidence for water vapor absorption, but can also be well explained by a blackbody spectrum. However, the combination of these WFC3 data with previous Spitzer photometric observations is best explained by a dayside atmosphere of HD 189733b with no thermal inversion and a nearly solar or subsolar H2O abundance in a cloud-free atmosphere. Alternatively, this apparent subsolar abundance may be the result of clouds or hazes that future studies need to investigate.

  4. Radiation leakage from electromagnetic oven

    OpenAIRE

    Khalil, Abdurrahman; Ali, Runak Tahir; Fattah, Nabeel Abdulrazzaq

    2015-01-01

    Background: Microwaves are a form of electromagnetic energy, like light waves or radio waves, and occupy a part of the electromagnetic spectrum of power, or energy. Microwaves are very short waves of electromagnetic energy that travel at the speed of light (186,282 miles per second). In our modern technological age, microwaves are used to relay long distance telephone signals, television programs, and computer information across the earth or to a satellite in space. But the microwave is most ...

  5. Emerging Telecommunications Technologies (Part 2). Hearing before the Subcommittee on Telecommunications and Finance of the Committee on Energy and Commerce on H.R. 1407, a Bill To Establish Procedures To Improve the Allocation and Assignment to the Electromagnetic Spectrum. House of Representatives, One Hundred Second Congress, First Session.

    Science.gov (United States)

    Congress of the U.S., Washington, DC. House Committee on Energy and Commerce.

    A discussion of H.R. 1407, a bill to establish procedures to improve the allocation and assignment to the electromagnetic spectrum centered on the current policy of allocating portions of the spectrum through lotteries and auction. This report includes a copy of the bill, the text of testimony presented and materials submitted for the record, and…

  6. Electromagnetic Waves

    DEFF Research Database (Denmark)

    This book is dedicated to various aspects of electromagnetic wave theory and its applications in science and technology. The covered topics include the fundamental physics of electromagnetic waves, theory of electromagnetic wave propagation and scattering, methods of computational analysis......, material characterization, electromagnetic properties of plasma, analysis and applications of periodic structures and waveguide components, etc....

  7. Fast neutron spectrum in the exposure room of the TRIGA Mark II reactor in Ljubljana

    International Nuclear Information System (INIS)

    Kristof, E.S.

    2003-01-01

    In this paper a description of the high energy neutrons at a usual position in the dry cell of our reactor is given. Neutrons emerging from the graphite reflector enter the exposure room through the horizontal shaft. At the irradiation position samples of detection materials were irradiated. After irradiation γ-ray spectra were measured and from the saturation activities the spectrum was calculated. (author)

  8. Mobility spectrum analytical approach for the type-II Weyl semimetal Td-MoTe2

    Science.gov (United States)

    Pei, Q. L.; Luo, X.; Chen, F. C.; Lv, H. Y.; Sun, Y.; Lu, W. J.; Tong, P.; Sheng, Z. G.; Han, Y. Y.; Song, W. H.; Zhu, X. B.; Sun, Y. P.

    2018-02-01

    The extreme magnetoresistance (XMR) in orthorhombic W/MoTe2 arises from the combination of the perfect electron-hole (e-h) compensation effect and the unique orbital texture topology, which have comprised an intriguing research field in materials physics. Herein, we apply a special analytical approach as a function of mobility (μ-spectrum) without any hypothesis. Based on the interpretations of longitudinal and transverse electric transport of Td-MoTe2, the types and the numbers of carriers can be obtained. There are three observations: the large residual resistivity ratio can be observed in the MoTe2 single crystal sample, which indicates that the studied crystal is of high quality; we observed three electron-pockets and three hole-ones from the μ-spectrum and that the ratio of h/e is much less than 1, which shows that MoTe2 is more e-like; different from the separated peaks obtained from the hole-like μ-spectrum, those of the electron-like one are continuous, which may indicate the topological feature of electron-pockets in Td-MoTe2. The present results may provide an important clue to understanding the mechanism of the XMR effect in Td-MoTe2.

  9. The pedagogical value of the four-dimensional picture: II. Another way of looking at the electromagnetic field

    International Nuclear Information System (INIS)

    Kosyakov, B P

    2014-01-01

    A definition of the electromagnetic field can be neatly formulated by recognizing that the simplest form of the four-force is indeed feasible. We show that Maxwell’s equations almost entirely stem from the properties of spacetime, notably from the fact that our world has dimension d = 4. Their complete reconstruction requires three additional assumptions that are seemingly divorced from spacetime properties but which may, in fact, have much to do with their geometry. (paper)

  10. The Vineland-II in Preschool Children with Autism Spectrum Disorders: An Item Content Category Analysis

    Science.gov (United States)

    Balboni, Giulia; Tasso, Alessandra; Muratori, Filippo; Cubelli, Roberto

    2016-01-01

    We investigated which item subsets of the Vineland-II can discriminate low-functioning preschoolers with ASD from matched peers with other neurodevelopmental disorders, using a regression analysis derived from a normative sample to account for cognitive and linguistic competencies. At variance with the typical profile, a pattern with Communication…

  11. Induced mutations in chickpea (Cicer arietinum L.) II. frequency and spectrum of chlorophyll mutations

    International Nuclear Information System (INIS)

    Kharkwal, M.C.

    1998-01-01

    A comparative study of frequency and spectrum of chlorophyll mutations induced by two physical (gamma rays, fast neutrons) and two chemical mutagens (NMU, EMS) in relation to the effects in M1 plants and induction of mutations in M2 was made in four chickpea (Cicer arietinum L.) varieties, two desi (G 130 & H 214) one Kabuli (C 104) and one green seeded (L 345). The treatments included three doses each of gamma rays (400, 500 & 600 Gy) and fast neutrons (5, 10 & 15 Gy) and two concentrations with two different durations of two chemical mutagens, NMU [0.01% (20h), & 0.02% (8h)] and EMS [0.1% (20h) & 0.2% (8h)]. The frequencies and spectrum of three different kinds of induced chlorophyll mutations in the order albina (43.5%), chlorina (27.3%) and xantha (24.2%) were recorded. Chemical mutagens were found to be efficient in inducing chlorophyll mutations in chickpea. Highest frequency of mutations was observed in green seeded var. L 345 (83% of M1 families and 19.9/1000 M2 plants). Kabuli var. C 104 was least responsive for chlorophyll mutations

  12. Three-dimensional electromagnetic strong turbulence. II. Wave packet collapse and structure of wave packets during strong turbulence

    Science.gov (United States)

    Graham, D. B.; Robinson, P. A.; Cairns, Iver H.; Skjaeraasen, O.

    2011-07-01

    Large-scale simulations of wave packet collapse are performed by numerically solving the three-dimensional (3D) electromagnetic Zakharov equations, focusing on individual wave packet collapses and on wave packets that form in continuously driven strong turbulence. The collapse threshold is shown to decrease as the electron thermal speed νe/c increases and as the temperature ratio Ti/Te of ions to electrons decreases. Energy lost during wave packet collapse and dissipation is shown to depend on νe/c. The dynamics of density perturbations after collapse are studied in 3D electromagnetic strong turbulence for a range of Ti/Te. The structures of the Langmuir, transverse, and total electric field components of wave packets during strong turbulence are investigated over a range of νe/c. For νe/c ≲0.17, strong turbulence is approximately electrostatic and wave packets have very similar structure to purely electrostatic wave packets. For νe/c ≳0.17, transverse modes become trapped in density wells and contribute significantly to the structure of the total electric field. At all νe/c, the Langmuir energy density contours of wave packets are predominantly oblate (pancake shaped). The transverse energy density contours of wave packets are predominantly prolate (sausage shaped), with the major axis being perpendicular to the major axes of the Langmuir component. This results in the wave packet becoming more nearly spherical as νe/c increases, and in turn generates more spherical density wells during collapse. The results obtained are compared with previous 3D electrostatic results and 2D electromagnetic results.

  13. Performance of the CMS precision electromagnetic calorimeter at the LHC Run II and prospects for high-luminosity LHC

    CERN Document Server

    Negro, Giulia

    2017-01-01

    The Compact Muon Solenoid (CMS) electromagnetic calorimeter (ECAL) is a high-performance calorimeter wich will operate also at the High Luminosity Large Hadron Collider (HL-LHC). This talk will describe the strategies that have been employed to maintain the excellent performance of the CMS ECAL throughout Run 2. Performance results from the 2015-2016 data taking periods will be shown and an outlook on the expected Run 2 performance in the years to come will be provided. The status and plans for the upgraded ECAL barrel electronics for the HL-LHC will be presented, based on recent results from simulations, laboratory tests, and test beam measurements of prototype devices.

  14. The Mg II h and k interstellar lines in the spectrum of the G-type giant HD 156854

    International Nuclear Information System (INIS)

    Gurzadian, G.A.; Cholakian, V.G.; Kondo, Y.; Shore, S.N.; Terzian, Y.

    1990-01-01

    The results of the measurements and analysis of the IUE observations of the 2800 Mg II doublet in the spectrum of HD 156854, a G9 III star, are presented. The relative power of the magnesium chromosphere, R(Mg) = 0.00001, is in agreement with the known data for giants of the same class. The emission profiles of this doublet present absorption cores, which are of interstellar origin. Taking into account the interstellar depletion of Mg, the derived density of interstellar hydrogen is n(H) = 0.001/cu cm, which agrees with the conclusion (Paresce 1984) about the possibility of large hydrogen concentrations in some directions of the Galaxy far from the sun. 18 refs

  15. Triple focussing electron spectrum selector (TESS-II) with a pair of sector magnets

    International Nuclear Information System (INIS)

    Nagai, Y.; Ejiri, H.; Shibata, T.; Okada, K.; Nakayama, S.; Suzuki, H.; Ohsumi, H.; Adachi, Y.; Osaka Univ., Toyonaka; Sakai, H.

    1982-01-01

    An achromatic geminate nuclear electron selector (AGNES) has been constructed for in-beam electron spectroscopy. It is essentially a pair of triple-focussing electron spectrum selectors (TESS). It consists of a pair of sector magnets with a field index n = 0. Conversion electrons emitted at 90 0 and 180 0 with respect to the beam axis are transported achromatically through the pair of sector magnets to two focussing points. Electrons are triply focussed in radial, vertical and momentum axes, and their energies are analyzed by cooled Si(Li) detectors. It has a large solid angle of 50 msr x 2 and a large momentum range of 57%. It is quite useful not only for measuring conversion coefficients and electron anisotropy but also for nuclear electron pairs. (orig.)

  16. Energy-Efficient Spectrum Sensing for Cognitive Radio Networks

    NARCIS (Netherlands)

    Maleki, S.

    2013-01-01

    Dynamic spectrum access employing cognitive radios has been proposed, in order to opportunistically use underutilized spectrum portions of a heavily licensed electromagnetic spectrum. Cognitive radios opportunistically share the spectrum, while avoiding any harmful interference to the primary

  17. THE HYDROGEN EPOCH OF REIONIZATION ARRAY DISH. II. CHARACTERIZATION OF SPECTRAL STRUCTURE WITH ELECTROMAGNETIC SIMULATIONS AND ITS SCIENCE IMPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Ewall-Wice, Aaron; Hewitt, Jacqueline; Neben, Abraham R. [MIT Kavli Institute for Cosmological Physics, Cambridge, MA, 02139 (United States); Bradley, Richard; Dickenson, Roger; Doolittle, Phillip; Egan, Dennis; Hedrick, Mike; Klima, Patricia [National Radio Astronomy Observatory, Charlottesville, VA (United States); Deboer, David; Parsons, Aaron; Ali, Zaki S.; Cheng, Carina; Patra, Nipanjana; Dillon, Joshua S. [Department of Astronomy, University of California, Berkeley, CA (United States); Aguirre, James [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA (United States); Bowman, Judd; Thyagarajan, Nithyanandan [Arizona State University, School of Earth and Space Exploration, Tempe, AZ 85287 (United States); Venter, Mariet [Department of Electrical and Electronic Engineering, Stellenbosch University, Stellenbosch, SA (South Africa); Acedo, Eloy de Lera [Cavendish Laboratory, University of Cambridge, Cambridge (United Kingdom); and others

    2016-11-10

    We use time-domain electromagnetic simulations to determine the spectral characteristics of the Hydrogen Epoch of Reionization Arrays (HERA) antenna. These simulations are part of a multi-faceted campaign to determine the effectiveness of the dish’s design for obtaining a detection of redshifted 21 cm emission from the epoch of reionization. Our simulations show the existence of reflections between HERA’s suspended feed and its parabolic dish reflector that fall below -40 dB at 150 ns and, for reasonable impedance matches, have a negligible impact on HERA’s ability to constrain EoR parameters. It follows that despite the reflections they introduce, dishes are effective for increasing the sensitivity of EoR experiments at a relatively low cost. We find that electromagnetic resonances in the HERA feed’s cylindrical skirt, which is intended to reduce cross coupling and beam ellipticity, introduces significant power at large delays (-40 dB at 200 ns), which can lead to some loss of measurable Fourier modes and a modest reduction in sensitivity. Even in the presence of this structure, we find that the spectral response of the antenna is sufficiently smooth for delay filtering to contain foreground emission at line-of-sight wave numbers below k {sub ∥} ≲ 0.2 h Mpc{sup -1}, in the region where the current PAPER experiment operates. Incorporating these results into a Fisher Matrix analysis, we find that the spectral structure observed in our simulations has only a small effect on the tight constraints HERA can achieve on parameters associated with the astrophysics of reionization.

  18. Spectrum of Singly Charged Uranium (U II : Theoretical Interpretation of Energy Levels, Partition Function and Classified Ultraviolet Lines

    Directory of Open Access Journals (Sweden)

    Ali Meftah

    2017-06-01

    Full Text Available In an attempt to improve U II analysis, the lowest configurations of both parities have been interpreted by means of the Racah-Slater parametric method, using Cowan codes. In the odd parity, including the ground state, 253 levels of the interacting configurations 5 f 3 7 s 2 + 5 f 3 6 d 7 s + 5 f 3 6 d 2 + 5 f 4 7 p + 5 f 5 are interpreted by 24 free parameters and 64 constrained ones, with a root mean square (rms deviation of 60 cm − 1 . In the even parity, the four known configurations 5 f 4 7 s , 5 f 4 6 d , 5 f 2 6 d 2 7 s , 5 f 2 6 d 7 s 2 and the unknown 5 f 2 6 d 3 form a basis for interpreting 125 levels with a rms deviation of 84 cm − 1 . Due to perturbations, the theoretical description of the higher configurations 5 f 3 7 s 7 p + 5 f 3 6 d 7 p remains unsatisfactory. The known and predicted levels of U II are used for a determination of the partition function. The parametric study led us to a re-investigation of high resolution ultraviolet spectrum of uranium recorded at the Meudon Observatory in the late eighties, of which the analysis was unachieved. In the course of the present study, a number of 451 lines of U II has been classified in the region 2344 –2955 Å. One new level has been established as 5 f 3 6 d 7 p ( 4 I 6 K ( J = 5.5 at 39113.98 ± 0.1 cm − 1 .

  19. Electromagnetic cellular interactions.

    Science.gov (United States)

    Cifra, Michal; Fields, Jeremy Z; Farhadi, Ashkan

    2011-05-01

    Chemical and electrical interaction within and between cells is well established. Just the opposite is true about cellular interactions via other physical fields. The most probable candidate for an other form of cellular interaction is the electromagnetic field. We review theories and experiments on how cells can generate and detect electromagnetic fields generally, and if the cell-generated electromagnetic field can mediate cellular interactions. We do not limit here ourselves to specialized electro-excitable cells. Rather we describe physical processes that are of a more general nature and probably present in almost every type of living cell. The spectral range included is broad; from kHz to the visible part of the electromagnetic spectrum. We show that there is a rather large number of theories on how cells can generate and detect electromagnetic fields and discuss experimental evidence on electromagnetic cellular interactions in the modern scientific literature. Although small, it is continuously accumulating. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Comparison of the Bender Gestalt-II and VMI-V in Samples of Typical Children and Children with High-Functioning Autism Spectrum Disorders

    Science.gov (United States)

    Volker, Martin A.; Lopata, Christopher; Vujnovic, Rebecca K.; Smerbeck, Audrey M.; Toomey, Jennifer A.; Rodgers, Jonathan D.; Schiavo, Audrey; Thomeer, Marcus L.

    2010-01-01

    The visual-motor skills of 60 children with high-functioning autism spectrum disorders (HFASDs) and 46 typically developing children were assessed using the Bender Visual-Motor Gestalt Test-Second Edition (BG-II) and Beery-Buktenica Developmental Test of Visual-Motor Integration, Fifth Edition (VMI-V). Within-group comparisons yielded substantive…

  1. Regular-chaos transition of the energy spectrum and electromagnetic transition intensities in 44V nucleus using the framework of the nuclear shell model

    International Nuclear Information System (INIS)

    Hamoudi, A.K.; Abdul Majeed Al-Rahmani, A.

    2012-01-01

    The spectral fluctuations and the statistics of electromagnetic transition intensities and electromagnetic moments in 44 V nucleus are studied by the framework of the interacting shell model, using the FPD6 as a realistic effective interaction in the isospin formalism for 4 particles move in the fp-model space with a 40 Ca core. To look for a regular-chaos transition in 44 V nucleus, we perform shell model calculations using various interaction strengths β to the off-diagonal matrix elements of the FPD6. The nearest-neighbors level spacing distribution P(s) and the distribution of electromagnetic transition intensities [such as, B(M1) and B(E2) transitions] are found to have a regular dynamic at β=0, a chaotic dynamic at β⩾0.3 and an intermediate situation at 0 3 statistic we have found a regular dynamic at β=0, a chaotic dynamic at β⩾0.4 and an intermediate situation at 0<β<0.4. It is also found that the statistics of the squares of M1 and E2 moments, which are consistent with a Porter-Thomas distribution, have no dependence on the interaction strength β.

  2. Two-dimensional s-polarized solitary waves in plasmas. II. Stability, collisions, electromagnetic bursts, and post-soliton evolution

    International Nuclear Information System (INIS)

    Sanchez-Arriaga, G.; Lefebvre, E.

    2011-01-01

    The dynamics of two-dimensional s-polarized solitary waves is investigated with the aid of particle-in-cell (PIC) simulations. Instead of the usual excitation of the waves with a laser pulse, the PIC code was directly initialized with the numerical solutions from the fluid plasma model. This technique allows the analysis of different scenarios including the theoretical problems of the solitary wave stability and their collision as well as features already measured during laser-plasma experiments such as the emission of electromagnetic bursts when the waves reach the plasma-vacuum interface, or their expansion on the ion time scale, usually named post-soliton evolution. Waves with a single density depression are stable whereas multihump solutions decay to several waves. Contrary to solitons, two waves always interact through a force that depends on their relative phases, their amplitudes, and the distance between them. On the other hand, the radiation pattern at the plasma-vacuum interface was characterized, and the evolution of the diameter of different waves was computed and compared with the ''snow plow'' model.

  3. Metamaterial electromagnetic wave absorbers.

    Science.gov (United States)

    Watts, Claire M; Liu, Xianliang; Padilla, Willie J

    2012-06-19

    The advent of negative index materials has spawned extensive research into metamaterials over the past decade. Metamaterials are attractive not only for their exotic electromagnetic properties, but also their promise for applications. A particular branch-the metamaterial perfect absorber (MPA)-has garnered interest due to the fact that it can achieve unity absorptivity of electromagnetic waves. Since its first experimental demonstration in 2008, the MPA has progressed significantly with designs shown across the electromagnetic spectrum, from microwave to optical. In this Progress Report we give an overview of the field and discuss a selection of examples and related applications. The ability of the MPA to exhibit extreme performance flexibility will be discussed and the theory underlying their operation and limitations will be established. Insight is given into what we can expect from this rapidly expanding field and future challenges will be addressed. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Simulation of electron, positron and Bremsstrahlung spectrum generated due to electromagnetic cascade by 2.5 GeV electron hitting lead target using FLUKA code

    International Nuclear Information System (INIS)

    Sahani, P.K.; Dev, Vipin; Haridas, G.; Thakkar, K.K.; Singh, Gurnam; Sarkar, P.K.; Sharma, D.N.

    2009-01-01

    INDUS-2 is a high energy electron accelerator facility where electrons are accelerated in circular ring up to maximum energy 2.5 GeV, to generate synchrotron radiation. During normal operation of the machine a fraction of these electrons is lost, which interact with the accelerator structures and components like vacuum chamber and residual gases in the cavity and hence generates significant amount of Bremsstrahlung radiation. The Bremsstrahlung radiation is highly dependent on the incident electron energy, target material and its thickness. The Bremsstrahlung radiation dominates the radiation environment in such electron storage rings. Because of its broad spectrum extending up to incident electron energy and pulsed nature, it is very difficult to segregate the Bremsstrahlung component from the mixed field environment in accelerators. With the help of FLUKA Monte Carlo code, Bremsstrahlung spectrum generated from 2.5 GeV electron on bombardment of high Z lead target is simulated. To study the variation in Bremsstrahlung spectrum on target thickness, lead targets of 3, 6, 9, 12, 15, 18 mm thickness was used. The energy spectrum of emerging electron and positron is also simulated. The study suggests that as the target thickness increases, the emergent Bremsstrahlung photon fluence increases. With increase in the target thickness Bremsstrahlung photons in the spectrum dominate the low energy part and degrade in high energy part. The electron and positron spectra also extend up to incident electron energy. (author)

  5. Electromagnetic induction spectroscopy

    Science.gov (United States)

    Won, I. J.; Keiswetter, Dean A.

    1998-09-01

    An object, made partly or wholly of metals, has a distinct combination of electrical conductivity, magnetic permeability, and geometrical shape and size. When the object is exposed to a low-frequency electromagnetic field, it produces a secondary magnetic field. By measuring the secondary field in a broadband spectrum, we obtain a distinct spectral signature that may uniquely identify the object. Based on the response spectrum, we attempt to 'fingerprint' the object. This is the basic concept of Electromagnetic Induction Spectroscopy (EMIS). EMIS technology may be particularly useful for detecting buried landmines and unexploded ordnance. By fully characterizing and identifying an object without excavation. We should be able to reduce significantly the number of false targets. EMIS should be fully applicable to many other problems where target identification and recognition (without intrusive search) are important. For instance, an advanced EMIS device at an airport security gate may be able to recognize a particular weapon by its maker and type.

  6. Electromagnetic Attraction.

    Science.gov (United States)

    Milson, James L.

    1990-01-01

    Three activities involving electromagnetism are presented. Discussed are investigations involving the construction of an electromagnet, the effect of the number of turns of wire in the magnet, and the effect of the number of batteries in the circuit. Extension activities are suggested. (CW)

  7. Electromagnetic interactions

    CERN Document Server

    Bosanac, Slobodan Danko

    2016-01-01

    This book is devoted to theoretical methods used in the extreme circumstances of very strong electromagnetic fields. The development of high power lasers, ultrafast processes, manipulation of electromagnetic fields and the use of very fast charged particles interacting with other charges requires an adequate theoretical description. Because of the very strong electromagnetic field, traditional theoretical approaches, which have primarily a perturbative character, have to be replaced by descriptions going beyond them. In the book an extension of the semi-classical radiation theory and classical dynamics for particles is performed to analyze single charged atoms and dipoles submitted to electromagnetic pulses. Special attention is given to the important problem of field reaction and controlling dynamics of charges by an electromagnetic field.

  8. Theory and computation of the matrix elements of the full interaction of the electromagnetic field with an atomic state: Application to the Rydberg and the continuous spectrum

    International Nuclear Information System (INIS)

    Komninos, Yannis; Mercouris, Theodoros; Nicolaides, Cleanthes A.

    2002-01-01

    We develop practical formulas for the calculation of the matrix elements of the interaction of the electromagnetic field with an atomic state, beyond the long-wavelength approximation. The atom-plus-field Hamiltonian is chosen to have the multipolar form, containing the electric, paramagnetic, and diamagnetic operators. The final workable expressions include the interactions to all orders and are derived by first expanding the fields in partial waves. The electric-field operator reaches a constant value as the radial variable becomes large, contrary to the result of the electric-dipole approximation (EDA) where the value of the corresponding operator increases indefinitely. Applications are given for Rydberg states of hydrogen up to n=50 and for free-free transitions in a Coulomb potential. Such matrix elements are relevant to a number of real and virtual processes occurring during laser-atom interactions. The computation is done numerically, using a combination of analytic with numerical techniques. By comparing the results of the EDA with those of the exact treatment, it is shown that the former is inadequate in such cases. This finding has repercussions on the theory and understanding of the physics of quantum systems in high-lying Rydberg levels and wave packets or in scattering states

  9. Engineering electromagnetics

    CERN Document Server

    Thomas, David T; Hartnett, James P; Hughes, William F

    1973-01-01

    The applications involving electromagnetic fields are so pervasive that it is difficult to estimate their contribution to the industrial output: generation of electricity, power transmission lines, electric motors, actuators, relays, radio, TV and microwave transmission and reception, magnetic storage, and even the mundane little magnet used to hold a paper note on the refrigerator are all electromagnetic in nature. One would be hard pressed to find a device that works without relaying on any electromagnetic principle or effect. This text provides a good theoretical understanding of the electromagnetic field equations but also treats a large number of applications. In fact, no topic is presented unless it is directly applicable to engineering design or unless it is needed for the understanding of another topic. In electrostatics, for example, the text includes discussions of photocopying, ink-jet printing, electrostatic separation and deposition, sandpaper production, paint spraying, and powder coating. In ma...

  10. Electromagnetic Landscape

    DEFF Research Database (Denmark)

    Cermak, Daniel; Okutsu, Ayaka; Jørgensen, Stina Marie Hasse

    2015-01-01

    Daniel Cermak-Sassenrath, Ayaka Okutsu, Stina Hasse. Electromagnetic Landscape - In-between Signal, Noise and Environment. Installation and artist talk. 21th International Symposium on Electronic Art (ISEA) 2015, Vancouver, CAN, Aug 14-18, 2015.......Daniel Cermak-Sassenrath, Ayaka Okutsu, Stina Hasse. Electromagnetic Landscape - In-between Signal, Noise and Environment. Installation and artist talk. 21th International Symposium on Electronic Art (ISEA) 2015, Vancouver, CAN, Aug 14-18, 2015....

  11. Adsorption behavior of beryllium(II) on copper-oxide nanoparticles dispersed in water: A model for (7)Be colloid formation in the cooling water for electromagnets at high-energy accelerator facilities.

    Science.gov (United States)

    Bessho, Kotaro; Kanaya, Naoki; Shimada, Saki; Katsuta, Shoichi; Monjushiro, Hideaki

    2014-01-01

    The adsorption behavior of Be(II) on CuO nanoparticles dispersed in water was studied as a model for colloid formation of radioactive (7)Be nuclides in the cooling water used for electromagnets at high-energy proton accelerator facilities. An aqueous Be(II) solution and commercially available CuO nanoparticles were mixed, and the adsorption of Be(II) on CuO was quantitatively examined. From a detailed analysis of the adsorption data measured as a function of the pH, it was confirmed that Be(II) is adsorbed on the CuO nanoparticles by complex formation with the hydroxyl groups on the CuO surface (>S-OH) according to the following equation: n > S-OH + Be(2+) ⇔ (>S-O)n Be((2-n)+) + nH(+) (n = 2, 3) S : solid surface. The surface-complexation constants corresponding to the above equilibrium, β(s,2) and β(s,3), were determined for four types of CuO nanoparticles. The β(s,2) value was almost independent of the type of nanoparticle, whereas the β(s,3) values varied with the particle size. These complexation constants successfully explain (7)Be colloid formation in the cooling water used for electromagnets at the 12-GeV proton accelerator facility.

  12. New construction of the magnetohydrodynamic spectrum of stationary plasma flows. II. Rayleigh-Taylor and Kelvin-Helmholtz instability

    NARCIS (Netherlands)

    Goedbloed, J. P.

    2009-01-01

    In a preceding paper [J. P. Goedbloed, Phys. Plasmas 16, 122110 (2009)] a new method was developed to compute the magnetohydrodynamic spectrum of waves and instabilities of stationary plasma flows by means of the construction of the solution paths, P-s and P-u, of stable waves and instabilities in

  13. Full dimensional (15-dimensional) quantum-dynamical simulation of the protonated water dimer. II. Infrared spectrum and vibrational dynamics

    DEFF Research Database (Denmark)

    Vendrell, Oriol; Gatti, Fabien; Meyer, Hans-Dieter

    2007-01-01

    the fundamentals and several overtones of the vibrational motion are computed. The spectrum of H5O2+ is shaped to a large extent by couplings of the proton-transfer motion to large amplitude fluxional motions of the water molecules, water bending and water-water stretch motions. These couplings are identified...

  14. Computational Electromagnetics

    CERN Document Server

    Rylander, Thomas; Bondeson, Anders

    2013-01-01

    Computational Electromagnetics is a young and growing discipline, expanding as a result of the steadily increasing demand for software for the design and analysis of electrical devices. This book introduces three of the most popular numerical methods for simulating electromagnetic fields: the finite difference method, the finite element method and the method of moments. In particular it focuses on how these methods are used to obtain valid approximations to the solutions of Maxwell's equations, using, for example, "staggered grids" and "edge elements." The main goal of the book is to make the reader aware of different sources of errors in numerical computations, and also to provide the tools for assessing the accuracy of numerical methods and their solutions. To reach this goal, convergence analysis, extrapolation, von Neumann stability analysis, and dispersion analysis are introduced and used frequently throughout the book. Another major goal of the book is to provide students with enough practical understan...

  15. Electromagnetic shielding

    International Nuclear Information System (INIS)

    Tzeng, Wen-Shian V.

    1991-01-01

    Electromagnetic interference (EMI) shielding materials are well known in the art in forms such as gaskets, caulking compounds, adhesives, coatings and the like for a variety of EMI shielding purposes. In the past, where high shielding performance is necessary, EMI shielding has tended to use silver particles or silver coated copper particles dispersed in a resin binder. More recently, aluminum core silver coated particles have been used to reduce costs while maintaining good electrical and physical properties. (author). 8 figs

  16. Electromagnetic Reciprocity.

    Energy Technology Data Exchange (ETDEWEB)

    Aldridge, David F.

    2014-11-01

    A reciprocity theorem is an explicit mathematical relationship between two different wavefields that can exist within the same space - time configuration. Reciprocity theorems provi de the theoretical underpinning for mod ern full waveform inversion solutions, and also suggest practical strategies for speed ing up large - scale numerical modeling of geophysical datasets . In the present work, several previously - developed electromagnetic r eciprocity theorems are generalized to accommodate a broader range of medi um, source , and receiver types. Reciprocity relations enabling the interchange of various types of point sources and point receivers within a three - dimensional electromagnetic model are derived. Two numerical modeling algorithms in current use are successfully tested for adherence to reciprocity. Finally, the reciprocity theorem forms the point of departure for a lengthy derivation of electromagnetic Frechet derivatives. These mathe matical objects quantify the sensitivity of geophysical electromagnetic data to variatio ns in medium parameters, and thus constitute indispensable tools for solution of the full waveform inverse problem. ACKNOWLEDGEMENTS Sandia National Labor atories is a multi - program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE - AC04 - 94AL85000. Signif icant portions of the work reported herein were conducted under a Cooperative Research and Development Agreement (CRADA) between Sandia National Laboratories (SNL) and CARBO Ceramics Incorporated. The author acknowledges Mr. Chad Cannan and Mr. Terry Pa lisch of CARBO Ceramics, and Ms. Amy Halloran, manager of SNL's Geophysics and Atmospheric Sciences Department, for their interest in and encouragement of this work. Special thanks are due to Dr . Lewis C. Bartel ( recently retired from Sandia National Labo ratories

  17. Engineering electromagnetics

    CERN Document Server

    Ida, Nathan

    2015-01-01

    This book provides students with a thorough theoretical understanding of electromagnetic field equations and it also treats a large number of applications. The text is a comprehensive two-semester textbook. The work treats most topics in two steps – a short, introductory chapter followed by a second chapter with in-depth extensive treatment; between 10 to 30 applications per topic; examples and exercises throughout the book; experiments, problems  and summaries.   The new edition includes: updated end of chapter problems; a new introduction to electromagnetics based on behavior of charges; a new section on units; MATLAB tools for solution of problems and demonstration of subjects; most chapters include a summary. The book is an undergraduate textbook at the Junior level, intended for required classes in electromagnetics. It is written in simple terms with all details of derivations included and all steps in solutions listed. It requires little beyond basic calculus and can be used for self-study. The weal...

  18. Mutational spectrum in congenital dyserythropoietic anemia type II: Identification of 19 novel variants in SEC23B gene

    Science.gov (United States)

    Russo, Roberta; Esposito, Maria Rosaria; Asci, Roberta; Gambale, Antonella; Perrotta, Silverio; Ramenghi, Ugo; Forni, Gian Luca; Uygun, Vedat; Delaunay, Jean; Iolascon, Achille

    2010-01-01

    SEC23B gene encodes an essential component of the coat protein complex II (COPII)-coated vesicles. Mutations in this gene cause the vast majority the congenital dyserythropoietic anemia Type II (CDA II), a rare disorder resulting from impaired erythropoiesis. Here, we investigated 28 CDA II patients from 21 unrelated families enrolled in the CDA II International Registry. Overall, we found 19 novel variants [c.2270 A>C p.H757P; c.2149−2 A>G; c.1109+1 G>A; c.387(delG) p.L129LfsX26; c.1858 A>G p.M620V; c.1832 G>C p.R611P; c.1735 T>A p.Y579N; c.1254 T>G p.I418M; c.1015 C>T p.R339X; c.1603 C>T p.R535X; c.1654 C>T p.L552F; c.1307 C>T p.S436L; c.279+3 A>G; c. 2150(delC) p.A717VfsX7; c.1733 T>C p.L578P; c.1109+5 G>A; c.221+31 A>G; c.367 C>T p.R123X; c.1857_1859delCAT; p.I619del] in the homozygous or the compound heterozygous state. Homozygosity or compound heterozygosity for two nonsense mutations was never found. In four cases the sequencing analysis has failed to find two mutations. To discuss the putative functional consequences of missense mutations, computational analysis and sequence alignment were performed. Our data underscore the high allelic heterogeneity of CDA II, as the most of SEC23B variations are inherited as private mutations. In this mutation update, we also provided a tool to improve and facilitate the molecular diagnosis of CDA II by defining the frequency of mutations in each exon. Am. J. Hematol., 2010. © 2010 Wiley-Liss, Inc. PMID:20941788

  19. The hot-film anemometer--a method for blood velocity determination. II. In vivo comparison with the electromagnetic blood flowmeter.

    Science.gov (United States)

    Paulsen, P K

    1980-01-01

    Using a constant temperature hot-film anemometer and an electromagnetic blood flowmeter, volumetric flows and velocity profiles were registered in the pulmonary artery, ascending aorta, abdominal aorta and superior vena cava of mongrel dogs. The anemometer registered in 3 out of 4 dogs in the ascending aorta and in 4 out of 5 dogs in the pulmonary artery. The flow profile in these two vessels was flat with a slight deviation with the highest velocity nearer to the posterior wall. In the abdominal aorta the flow profile was sinusoid and in the superior vena cava irregular. In 22 simultaneous measurements anemometer mean results were 97 +/- 23% (+/- SD) of flowmeter results and peak results correspondingly 113 +/- 23%. None of these differences were significant. It is stressed that both qualitatively and quantitatively hot-film anemometer results are comparable to electromagnetic flowmeter results. However, certain differences have been demonstrated.

  20. Radical Software. Number Two. The Electromagnetic Spectrum.

    Science.gov (United States)

    Korot, Beryl, Ed.; Gershuny, Phyllis, Ed.

    1970-01-01

    In an effort to foster the innovative uses of television technology, this tabloid format periodical details social, educational, and artistic experiments with television and lists a large number of experimental videotapes available from various television-centered groups and individuals. The principal areas explored in this issue include cable…

  1. Optimization and inverse problems in electromagnetism

    CERN Document Server

    Wiak, Sławomir

    2003-01-01

    From 12 to 14 September 2002, the Academy of Humanities and Economics (AHE) hosted the workshop "Optimization and Inverse Problems in Electromagnetism". After this bi-annual event, a large number of papers were assembled and combined in this book. During the workshop recent developments and applications in optimization and inverse methodologies for electromagnetic fields were discussed. The contributions selected for the present volume cover a wide spectrum of inverse and optimal electromagnetic methodologies, ranging from theoretical to practical applications. A number of new optimal and inverse methodologies were proposed. There are contributions related to dedicated software. Optimization and Inverse Problems in Electromagnetism consists of three thematic chapters, covering: -General papers (survey of specific aspects of optimization and inverse problems in electromagnetism), -Methodologies, -Industrial Applications. The book can be useful to students of electrical and electronics engineering, computer sci...

  2. The pulse shape and the spectrum of PSR B0531+21 (Crab pulsar) in the low-energy gamma rays observed with FIGARO II

    Science.gov (United States)

    Massaro, E.; Feroci, M.; Costa, E.; Matt, G.; Agrinier, B.; Gouiffes, C.; Parlier, B.; Masnou, J. L.; Cusumano, G.; Mineo, T.; Sacco, B.; Scarsi, L.; Gerardi, G.; Salvati, M.; Mandrou, P.; Niel, M.; Olive, J. F.

    1998-10-01

    The FIGARO II experiment observed the Crab pulsar in the energy range 0.15-4 MeV during two transmediterranean flights, on 1990 July 9 and on 1986 July 11. A detailed analysis of the pulse profiles shows that the profile in the energy band 0.37-0.51 MeV is characterized, in addition to the main ones, by the presence in the Interpeak region of two other peaks, which could be associated with the 0.44 MeV line reported by Massaro et al. (1991). Spectral analysis confirms that the Ip spectrum, harder than those of P1 and P2, should progressively steepen with increasing energy. We conclude that the observed Crab emission can be due to the superposition of two components and that the one dominant in the Ip is associated with the pair production in the magnetosphere.

  3. Electromagnetic Landscape

    DEFF Research Database (Denmark)

    Cermak, Daniel; Okutsu, Ayaka; Hasse, Stina

    2015-01-01

    Electromagnetic Landscape demonstrates in direct, tangible and immediate ways effects of the disruption of the familiar. An ubiquitous technological medium, FM radio, is turned into an alien and unfamiliar one. Audience participation, the environment, radio signals and noise create a site......-specific, ragged sonic landscape. The work exhibits intrinsic, non-trivial, emerging behaviour, cyclic or wave-like, which converges and ebbs. It varies its sonic and visual display through a dynamic interaction of light sources, fog and light sensors. The system maintains a fluxing state of ambivalence between...

  4. Histories electromagnetism

    International Nuclear Information System (INIS)

    Burch, Aidan

    2004-01-01

    Working within the HPO (History Projection Operator) Consistent Histories formalism, we follow the work of Savvidou on (scalar) field theory [J. Math. Phys. 43, 3053 (2002)] and that of Savvidou and Anastopoulos on (first-class) constrained systems [Class. Quantum Gravt. 17, 2463 (2000)] to write a histories theory (both classical and quantum) of Electromagnetism. We focus particularly on the foliation-dependence of the histories phase space/Hilbert space and the action thereon of the two Poincare groups that arise in histories field theory. We quantize in the spirit of the Dirac scheme for constrained systems

  5. Contrasts between the vibronic contributions in the tris-(2,2'-bipyridyl)osmium(II) emission spectrum and the implications of resonance-Raman parameters.

    Science.gov (United States)

    Ondongo, Onduru S; Endicott, John F

    2009-04-06

    The emission spectrum of the tris-(2,2'-bipyridine)osmium(II) metal-to-ligand charge transfer (MLCT) excited-state frozen solution at 77 K differs qualitatively from that expected based on its reported resonance-Raman (rR) parameters in that (1) the dominant vibronic contributions to the emission spectrum are in the low frequency regime (corresponding to nuclear displacements in largely to metal-ligand vibrational modes) and these contributions are negligible in the rR; and (2) the amplitude of the emission sideband components that correspond to envelopes of largely bpy centered vibrational modes is about 40% of that expected (relative to the amplitude observed for the band origin) for a simple vibronic progression in these modes. The distortions in low frequency vibrational modes are attributable to configurational mixing between metal centered (LF) and MLCT excited states, and the small amplitudes of the bpy-mode vibronic components may be a consequence of some intrinsic differences of the distortions of the (3)MLCT and (1)MLCT excited states such as the zero-field splitting of the (3)MLCT excited state and the different distortions of these excited-state components.

  6. Electromagnet. Elektromagnet

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Amaya, N.; Weiss, F.; Schmitt, A.

    1991-04-18

    An electromagnet, particularly for use in switching valves for the direct control of a fuel injection quantity on fuel injection pumps, has a magnet pot (25) made of soft magnetic material, an annular excitation coil (30) and a magnet armature (29), which is situated with a working air gap in front of the magnet pot (25). To improve the dynamic behaviour of the electromagnet (20), ie: to achieve extremely low switching times with simple manufacture of the magnetic circuit, the magnet pot (25) and/or the magnet armature (29) made as a solid part is provided with an even number of at least four radial slots (41), which pass through the magnet pot (25) or the magnet armature (29) over their whole axial length. Successive radial slots (41a, 41b) extend alternately from the outside or from the inside jacket surface (311 or 321) to near the inside or the outside jacket surface (321 or 311) respectively and end there, always leaving a bar of material (42 or 43).

  7. Spectrum of excess partial molar absorptivity. Part II: a near infrared spectroscopic study of aqueous Na-halides.

    Science.gov (United States)

    Sebe, Fumie; Nishikawa, Keiko; Koga, Yoshikata

    2012-04-07

    Our earlier thermodynamic studies suggested that F(-) and Cl(-) form hydration shells with the hydration number 14 ± 2 and 2.3 ± 0.6, respectively, and leave the bulk H(2)O away from hydration shells unperturbed. Br(-) and I(-), on the other hand, form hydrogen bonds directly with the momentarily existing hydrogen bond network of H(2)O, and retard the degree of entropy-volume cross fluctuation inherent in liquid H(2)O. The effect of the latter is stronger for I(-) than Br(-). Here we seek additional information about this qualitative difference between Cl(-) and (Br(-) and I(-)) pair by near infrared (NIR) spectroscopy. We analyze the ν(2) + ν(3) band of H(2)O in the range 4600-5500 cm(-1) of aqueous solutions of NaCl, NaBr and NaI, by a new approach. From observed absorbance, we calculate excess molar absorptivity, ε(E), excess over the additive contributions of solute and solvent. ε(E) thus contains information about the effect of inter-molecular interactions in the ν(2) + ν(3) spectrum. The spectrum of ε(E) shows three bands; two negative ones at 5263 and 4873 cm(-1), and the positive band at 5123 cm(-1). We then define and calculate the excess partial molar absorptivity of each salt, ε(E)(salt). From the behaviour of ε(E)(salt) we suggest that the negative band at 5263 cm(-1) represents free H(2)O without much hydrogen bonding under the influence of local electric field of ions. Furthermore, from a sudden change in the x(salt) (mole fraction of salt) dependence of ε(E)(salt), we suggest that there is an ion-pairing in x(salt) > 0.032, 0.036, and 0.04 for NaCl, NaBr and NaI respectively. The positive band of ε(E) at 5123 cm(-1) is attributed to a modestly organized hydrogen bond network of H(2)O (or liquid-likeness), and the x(salt) dependence of ε indicated a qualitative difference in the effect of Cl(-) from those of Br(-) and I(-). Namely, the values of ε(E)(salt) stay constant for Cl(-) but those for Br(-) and I(-) decrease smoothly on

  8. Measurement of the W Boson Mass with the D0 Run II Detector using the Electron P(T) Spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Andeen, Jr., Timothy R. [Northwestern Univ., Evanston, IL (United States)

    2008-06-01

    This thesis is a description of the measurement of the W boson mass using the D0 Run II detector with 770 pb-1 of p$\\bar{p}$ collision data. These collisions were produced by the Tevatron at √s = 1.96 TeV between 2002 and 2006. We use a sample of W → ev and Z → ee decays to determine the W boson mass with the transverse momentum distribution of the electron and the transverse mass distribution of the boson. We measure MW = 80340 ± 37 (stat.) ± 26 (sys. theo.) ± 51 (sys. exp.) MeV = 80340 ± 68 MeV with the transverse momentum distribution of the electron and MW = 80361 ± 28 (stat.) ± 17 (sys. theo.) ± 51 (sys. exp.) MeV = 80361 ± 61 MeV with the transverse mass distribution.

  9. Electromagnetic fields and life

    CERN Document Server

    Presman, A S

    1970-01-01

    A broad region of the electromagnetic spectrum long assumed to have no influence on living systems under natural conditions has been critically re-examined over the past decade. This spectral region extends from the superhigh radio frequencies, through de­ creasing frequencies, to and including essentially static electric and magnetic fields. The author of this monograph, A. S. Presman, has reviewed not only the extensive Russian literatur!;"l, but also al­l most equally comprehensively the non-Russian literature, dealing with biological influences of these fields. Treated also is literature shedding some light on possible theoretical foundations for these phenomena. A substantial, rapidly increasing number of studies in many laboratories and countries has now clearly established bio­ logical influences which are independent of the theoretically predictable, simple thermal effects. Indeed many of the effects are produced by field strengths very close to those within the natural environment. The author has,...

  10. Electromagnetic Actuators.

    Science.gov (United States)

    1981-01-01

    CONSIDERATIONS The maximum allowable displacement is a function of the spring mec ).a- nism and the initial air qap between the base and the armature. For the...8217 U-) 10 II L jr-I 0 & ~ ~A2 0 . I w~L oc 0047 I ~ ~ ~ E~W-Ga7- 2075i--YYY-: oi a~ I I - LEI 2 :1; r- zf z3 l:2 ri ii48 fibi ism

  11. Narrow field electromagnetic sensor system and method

    International Nuclear Information System (INIS)

    McEwan, T.E.

    1996-01-01

    A narrow field electromagnetic sensor system and method of sensing a characteristic of an object provide the capability to realize a characteristic of an object such as density, thickness, or presence, for any desired coordinate position on the object. One application is imaging. The sensor can also be used as an obstruction detector or an electronic trip wire with a narrow field without the disadvantages of impaired performance when exposed to dirt, snow, rain, or sunlight. The sensor employs a transmitter for transmitting a sequence of electromagnetic signals in response to a transmit timing signal, a receiver for sampling only the initial direct RF path of the electromagnetic signal while excluding all other electromagnetic signals in response to a receive timing signal, and a signal processor for processing the sampled direct RF path electromagnetic signal and providing an indication of the characteristic of an object. Usually, the electromagnetic signal is a short RF burst and the obstruction must provide a substantially complete eclipse of the direct RF path. By employing time-of-flight techniques, a timing circuit controls the receiver to sample only the initial direct RF path of the electromagnetic signal while not sampling indirect path electromagnetic signals. The sensor system also incorporates circuitry for ultra-wideband spread spectrum operation that reduces interference to and from other RF services while allowing co-location of multiple electronic sensors without the need for frequency assignments. 12 figs

  12. Narrow field electromagnetic sensor system and method

    Science.gov (United States)

    McEwan, Thomas E.

    1996-01-01

    A narrow field electromagnetic sensor system and method of sensing a characteristic of an object provide the capability to realize a characteristic of an object such as density, thickness, or presence, for any desired coordinate position on the object. One application is imaging. The sensor can also be used as an obstruction detector or an electronic trip wire with a narrow field without the disadvantages of impaired performance when exposed to dirt, snow, rain, or sunlight. The sensor employs a transmitter for transmitting a sequence of electromagnetic signals in response to a transmit timing signal, a receiver for sampling only the initial direct RF path of the electromagnetic signal while excluding all other electromagnetic signals in response to a receive timing signal, and a signal processor for processing the sampled direct RF path electromagnetic signal and providing an indication of the characteristic of an object. Usually, the electromagnetic signal is a short RF burst and the obstruction must provide a substantially complete eclipse of the direct RF path. By employing time-of-flight techniques, a timing circuit controls the receiver to sample only the initial direct RF path of the electromagnetic signal while not sampling indirect path electromagnetic signals. The sensor system also incorporates circuitry for ultra-wideband spread spectrum operation that reduces interference to and from other RF services while allowing co-location of multiple electronic sensors without the need for frequency assignments.

  13. Electromagnetic topology: Characterization of internal electromagnetic coupling

    Science.gov (United States)

    Parmantier, J. P.; Aparicio, J. P.; Faure, F.

    1991-01-01

    The main principles are presented of a method dealing with the resolution of electromagnetic internal problems: Electromagnetic Topology. A very interesting way is to generalize the multiconductor transmission line network theory to the basic equation of the Electromagnetic Topology: the BLT equation. This generalization is illustrated by the treatment of an aperture as a four port junction. Analytical and experimental derivations of the scattering parameters are presented. These concepts are used to study the electromagnetic coupling in a scale model of an aircraft, and can be seen as a convenient means to test internal electromagnetic interference.

  14. Electromagnetically shielded building

    International Nuclear Information System (INIS)

    Takahashi, T.; Nakamura, M.; Yabana, Y.; Ishikawa, T.; Nagata, K.

    1992-01-01

    This invention relates to a building having an electromagnetic shield structure well-suited for application to an information network system utilizing electromagnetic waves, and more particularly to an electromagnetically shielded building for enhancing the electromagnetic shielding performance of an external wall. 6 figs

  15. Red shift in spectra of galaxies as a consequence of gravitational radiation of the same level as electromagnetic

    OpenAIRE

    Fisenko, S. I.; Fisenko, I. S.

    2010-01-01

    In elaboration of the results presented earlier the red shift is also regarded in this investigation as a widening of electromagnetic radiation spectra, determined by the existence of gravitational radiation of a banded spectrum of the same level as electromagnetic.

  16. Type II band alignment in Ge1-x-ySixSny/Ge1-α-βSiαSnβ heterojunctions

    Science.gov (United States)

    Dey, Swagata; Mukhopadhyay, Bratati; Sen, Gopa; Basu, P. K.

    2018-02-01

    We have examined type II band alignment in Ge1-x-ySixSny/Ge1-α-βSiαSβ heterojunctions grown on virtual substrates in Si platform. It is found that, for different values of x, y, α and β, direct band gap type II band line up can be achieved for both tensile and compressive strains. The calculated band gap energy corresponds to the mid infrared to far infrared regions in the electromagnetic spectrum.

  17. Calculating the geometry and Raman spectrum of physiological bis(L-histidinato)copper(II): an assessment of DFT functionals for aqueous and isolated systems.

    Science.gov (United States)

    Sabolović, Jasmina; Ramek, Michael; Marković, Marijana

    2017-09-26

    Reliable density functional theory (DFT) calculations can be performed in conjuction with spectroscopic measurements to elucidate the structural properties of physiologically important bis(amino acidato)copper(II) compounds in solutions. They can provide insight into the influence of intermolecular interactions on the molecular geometry in the crystal lattice or solution when compared with a DFT gas-phase minimum. Our previous paper [Marković et al. (2014) Eur J Inorg Chem 198] reported the DFT-determined geometries and Raman spectra for different conformers of physiological bis(L-histidinato)copper(II) with 20 explicit water molecules, as calculated using the B3LYP functional. The present study examined the reliability of those B3LYP results by applying the M06 functional instead, as it should better account for noncovalent interactions. The water molecules were positioned more compactly around the complex by M06 than by B3LYP. The accuracies of the two functionals when compared to relevant experimental data showed that M06 was better at reproducing in-plane Cu-N bond lengths but B3LYP gave more accurate axial Cu-O distances. Both functionals reproduced the experimental Raman spectrum at pH 8 to similar levels of accuracy and provided precise information on the Cu(II) coordination mode and conformation in aqueous solution. Additionally, we assessed several DFT and DFT-D functionals (BP86, B3LYP, B3LYP-D, M06, M06 L, wB97XD, mPW2PLYPD) by using them to model the geometries of experimental bis(L-histidinato)copper(II) crystalline conformations as isolated systems, and then benchmarking the results against those from high-level second-order pertubation Møller-Plesset (MP2) calculations. Although this assessment resulted in an equivocal conclusion because the MP2 results for the isolated complex were inconsistent with the corresponding DFT outcomes, it does provide new information on future benchmark options.

  18. Gravitational radiation from electromagnetic systems

    International Nuclear Information System (INIS)

    Nikishov, A.I.; Ritus, V.I.

    1989-01-01

    It is shown that the spectrum of gravitational radiation of a charge e with mass m, undergoing finite motion in an electromagnetic field, smoothly varying in the neighborhood of the orbit over a region of the order of the radius of curvature, differs in the ultrarelativistic limit from the spectrum of the charge's electromagnetic radiation. The difference consists of the frequency-independent coefficient 4πGm 2 Λ 2 /e 2 , where Λ is of the order of the Lorentz factor of the charge and depends on the direction of the wave vector and on the behavior of the field in the above-indicated region. For a plane-wave external field the gravitational and electromagnetic spectra are strictly proportional to each other for arbitrary velocities of the charge. Localization of the external forces near the orbit violates this proportionality of the spectra and weakens the gravitational radiation by an amount of the order of the square of the Lorentz factor

  19. Topological Foundations of Electromagnetism

    CERN Document Server

    Barrett, Terrence W

    2008-01-01

    Topological Foundations of Electromagnetism seeks a fundamental understanding of the dynamics of electromagnetism; and marshals the evidence that in certain precisely defined topological conditions, electromagnetic theory (Maxwell's theory) must be extended or generalized in order to provide an explanation and understanding of, until now, unusual electromagnetic phenomena. Key to this generalization is an understanding of the circumstances under which the so-called A potential fields have physical effects. Basic to the approach taken is that the topological composition of electromagnetic field

  20. Electromagnetic Wave Chaos in Gradient Refractive Index Optical Cavities

    International Nuclear Information System (INIS)

    Wilkinson, P. B.; Fromhold, T. M.; Taylor, R. P.; Micolich, A. P.

    2001-01-01

    Electromagnetic wave chaos is investigated using two-dimensional optical cavities formed in a cylindrical gradient refractive index lens with reflective surfaces. When the planar ends of the lens are cut at an angle to its axis, the geometrical ray paths are chaotic. In this regime, the electromagnetic mode spectrum of the cavity is modulated by both real and ghost periodic ray paths, which also 'scar' the electric field intensity distributions of many modes. When the cavity is coupled to waveguides, the eigenmodes generate complex series of resonant peaks in the electromagnetic transmission spectrum

  1. Electromagnetic shielding effectiveness of 3D printed polymer composites

    Science.gov (United States)

    Viskadourakis, Z.; Vasilopoulos, K. C.; Economou, E. N.; Soukoulis, C. M.; Kenanakis, G.

    2017-12-01

    We report on preliminary results regarding the electromagnetic shielding effectiveness of various 3D printed polymeric composite structures. All studied samples were fabricated using 3D printing technology, following the fused deposition modeling approach, using commercially available filaments as starting materials. The electromagnetic shielding performance of the fabricated 3D samples was investigated in the so called C-band of the electromagnetic spectrum (3.5-7.0 GHz), which is typically used for long-distance radio telecommunications. We provide evidence that 3D printing technology can be effectively utilized to prepare operational shields, making them promising candidates for electromagnetic shielding applications for electronic devices.

  2. Bathymetry, electromagnetic streamlines and the marine controlled source electromagnetic method

    Science.gov (United States)

    Pethick, Andrew; Harris, Brett

    2014-07-01

    Seafloor topography must influence the strength and direction of electromagnetic fields generated during deep ocean controlled source electromagnetic surveying. Neither mathematical equation nor rules of thumb provide a clear perspective of how changes in water column thickness alters electromagnetic fields that engulf hundreds of cubic kilometres of air, ocean, host and reservoir. We use streamline visualisation to provide a generalised representation of how electromagnetic fields propagate into a 2D geo-electrical setting that includes strong bathymetry. Of particular interest are: (i)' dead zones' where electric fields at the ocean floor are demonstrated to be weak and (ii) the 'airwave' that appears in the electric field streamlines as circulating vortices with a shape that is clearly influenced by changes in ocean depth. Our analysis of the distribution of electric fields for deep and shallow water examples alludes to potential benefits from placement of receivers and/or transmitters higher in the water column as is the case for towed receiver geometries. Real-time streamline representation probably holds the most value at the survey planning stage, especially for shallow water marine EM surveys where ocean bottom topography is likely to be consequential.

  3. Assessment of exposure to radio frequency electromagnetic fields from smart utility meters in GB; part II) numerical assessment of induced SAR within the human body.

    Science.gov (United States)

    Qureshi, Muhammad R A; Alfadhl, Yasir; Chen, Xiaodong; Peyman, Azadeh; Maslanyj, Myron; Mann, Simon

    2018-04-01

    Human body exposure to radiofrequency electromagnetic waves emitted from smart meters was assessed using various exposure configurations. Specific energy absorption rate distributions were determined using three anatomically realistic human models. Each model was assigned with age- and frequency-dependent dielectric properties representing a collection of age groups. Generalized exposure conditions involving standing and sleeping postures were assessed for a home area network operating at 868 and 2,450 MHz. The smart meter antenna was fed with 1 W power input which is an overestimation of what real devices typically emit (15 mW max limit). The highest observed whole body specific energy absorption rate value was 1.87 mW kg -1 , within the child model at a distance of 15 cm from a 2,450 MHz device. The higher values were attributed to differences in dimension and dielectric properties within the model. Specific absorption rate (SAR) values were also estimated based on power density levels derived from electric field strength measurements made at various distances from smart meter devices. All the calculated SAR values were found to be very small in comparison to International Commission on Non-Ionizing Radiation Protection limits for public exposure. Bioelectromagnetics. 39:200-216, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  4. Bianchi - I, II, VIII, IX and Kantowski-Sachs-like cosmological models with perfect fluid and electromagnetic fields with conductivity current

    International Nuclear Information System (INIS)

    Portugal, R.

    1984-01-01

    Three processes of solutions of the Einstein-Maxwell equations for Bianchi - I, II, VIII, IX and Kantowski-Sachs-like cosmological models with perfect fluid in magnetohydrolodynamical regimem are presented. Diagonal Bianchi-like models are considered with two anisotropy direction in the maximum. Solutions are found for Bianchi-II and IX-like models with energy conditions to be analyzed. Solutions are found for Bianchi-IX and Kantowski-Sachs-Like models with positive electric conductivity and satisfering to the predominant energy conditions. Solutions are formed for isotropic Kantowski-Sachs-Like models satisfering to the equation of state p=λρ, 0 0, admiting, in addition to the perfect fluid, electric field only. It is shown that a class of Bertotti-Robinson-like solutions is unstable by perturbations and it is carried in Kantowski-Sachs-like models with non-null electric conductivity. (L.C.) [pt

  5. Plasma scattering of electromagnetic radiation

    CERN Document Server

    Sheffield, John

    1975-01-01

    Plasma Scattering of Electromagnetic Radiation covers the theory and experimental application of plasma scattering. The book discusses the basic properties of a plasma and of the interaction of radiation with a plasma; the relationship between the scattered power spectrum and the fluctuations in plasma density; and the incoherent scattering of low-temperature plasma. The text also describes the constraints and problems that arise in the application of scattering as a diagnostic technique; the characteristic performance of various dispersion elements, image dissectors, and detectors; and the ge

  6. Electromagnetic wave matching device

    International Nuclear Information System (INIS)

    Hirata, Yosuke; Mitsunaka, Yoshika; Hayashi, Ken-ichi; Ito, Yasuyuki.

    1997-01-01

    The present invention provides an electromagnetic wave matching capable of reducing a cost for the transmission system in a system of using electromagnetic waves for plasma heating of a thermonuclear reactor. Namely, incident electromagnetic waves are reflected by using a plurality of phase correction mirrors. The reflected electromagnetic waves are connected to an external transmission system through an exit. The phase correction mirrors have such a shape to receive a plurality of beam-like electromagnetic waves and output electromagnetic waves by the number different from the number of the received electromagnetic wave beams having a predetermined distribution. Further, at least two of the phase correction mirrors have such a shape to change the phase of the electromagnetic waves beams incident to the reflection surface of the phase correction mirrors by a predetermined amount corresponding to the position of the reflection surface. Then, the cost for transmission system can greatly be reduced. (I.S.)

  7. COHERENCE PROPERTIES OF ELECTROMAGNETIC RADIATION,

    Science.gov (United States)

    ELECTROMAGNETIC RADIATION , COHERENT SCATTERING), (*COHERENT SCATTERING, ELECTROMAGNETIC RADIATION ), LIGHT, INTERFERENCE, INTENSITY, STATISTICAL FUNCTIONS, QUANTUM THEORY, BOSONS, INTERFEROMETERS, CHINA

  8. Electromagnetics and optics

    National Research Council Canada - National Science Library

    Kriezis, E. E; Chrissoulidis, D. P; Papagiannakis, A. G

    1992-01-01

    ..., since light is a high-frequency electromagnetic radiation. Although both electromagnetics and optics are their common origin is only superficially realised physics or electrical engineering. Deeper physical by treating electromagnetics and optics in parallel thus enlightening the natural link between them. By presenting principles, theory a...

  9. Electromagnetic Education in India

    Science.gov (United States)

    Bajpai, Shrish; Asif, Siddiqui Sajida; Akhtar, Syed Adnan

    2016-01-01

    Out of the four fundamental interactions in nature, electromagnetics is one of them along with gravitation, strong interaction and weak interaction. The field of electromagnetics has made much of the modern age possible. Electromagnets are common in day-to-day appliances and are becoming more conventional as the need for technology increases.…

  10. The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. II. UV, Optical, and Near-infrared Light Curves and Comparison to Kilonova Models

    Science.gov (United States)

    Cowperthwaite, P. S.; Berger, E.; Villar, V. A.; Metzger, B. D.; Nicholl, M.; Chornock, R.; Blanchard, P. K.; Fong, W.; Margutti, R.; Soares-Santos, M.; Alexander, K. D.; Allam, S.; Annis, J.; Brout, D.; Brown, D. A.; Butler, R. E.; Chen, H.-Y.; Diehl, H. T.; Doctor, Z.; Drout, M. R.; Eftekhari, T.; Farr, B.; Finley, D. A.; Foley, R. J.; Frieman, J. A.; Fryer, C. L.; García-Bellido, J.; Gill, M. S. S.; Guillochon, J.; Herner, K.; Holz, D. E.; Kasen, D.; Kessler, R.; Marriner, J.; Matheson, T.; Neilsen, E. H., Jr.; Quataert, E.; Palmese, A.; Rest, A.; Sako, M.; Scolnic, D. M.; Smith, N.; Tucker, D. L.; Williams, P. K. G.; Balbinot, E.; Carlin, J. L.; Cook, E. R.; Durret, F.; Li, T. S.; Lopes, P. A. A.; Lourenço, A. C. C.; Marshall, J. L.; Medina, G. E.; Muir, J.; Muñoz, R. R.; Sauseda, M.; Schlegel, D. J.; Secco, L. F.; Vivas, A. K.; Wester, W.; Zenteno, A.; Zhang, Y.; Abbott, T. M. C.; Banerji, M.; Bechtol, K.; Benoit-Lévy, A.; Bertin, E.; Buckley-Geer, E.; Burke, D. L.; Capozzi, D.; Carnero Rosell, A.; Carrasco Kind, M.; Castander, F. J.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Davis, C.; DePoy, D. L.; Desai, S.; Dietrich, J. P.; Drlica-Wagner, A.; Eifler, T. F.; Evrard, A. E.; Fernandez, E.; Flaugher, B.; Fosalba, P.; Gaztanaga, E.; Gerdes, D. W.; Giannantonio, T.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; Jain, B.; James, D. J.; Jeltema, T.; Johnson, M. W. G.; Johnson, M. D.; Kent, S.; Krause, E.; Kron, R.; Kuehn, K.; Nuropatkin, N.; Lahav, O.; Lima, M.; Lin, H.; Maia, M. A. G.; March, M.; Martini, P.; McMahon, R. G.; Menanteau, F.; Miller, C. J.; Miquel, R.; Mohr, J. J.; Neilsen, E.; Nichol, R. C.; Ogando, R. L. C.; Plazas, A. A.; Roe, N.; Romer, A. K.; Roodman, A.; Rykoff, E. S.; Sanchez, E.; Scarpine, V.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, M.; Smith, R. C.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Thomas, R. C.; Troxel, M. A.; Vikram, V.; Walker, A. R.; Wechsler, R. H.; Weller, J.; Yanny, B.; Zuntz, J.

    2017-10-01

    We present UV, optical, and near-infrared (NIR) photometry of the first electromagnetic counterpart to a gravitational wave source from Advanced Laser Interferometer Gravitational-wave Observatory (LIGO)/Virgo, the binary neutron star merger GW170817. Our data set extends from the discovery of the optical counterpart at 0.47-18.5 days post-merger, and includes observations with the Dark Energy Camera (DECam), Gemini-South/FLAMINGOS-2 (GS/F2), and the Hubble Space Telescope (HST). The spectral energy distribution (SED) inferred from this photometry at 0.6 days is well described by a blackbody model with T≈ 8300 K, a radius of R≈ 4.5× {10}14 cm (corresponding to an expansion velocity of v≈ 0.3c), and a bolometric luminosity of {L}{bol}≈ 5× {10}41 erg s-1. At 1.5 days we find a multi-component SED across the optical and NIR, and subsequently we observe rapid fading in the UV and blue optical bands and significant reddening of the optical/NIR colors. Modeling the entire data set, we find that models with heating from radioactive decay of 56Ni, or those with only a single component of opacity from r-process elements, fail to capture the rapid optical decline and red optical/NIR colors. Instead, models with two components consistent with lanthanide-poor and lanthanide-rich ejecta provide a good fit to the data; the resulting “blue” component has {M}{ej}{blue}≈ 0.01 {M}⊙ and {v}{ej}{blue}≈ 0.3 {{c}}, and the “red” component has {M}{ej}{red}≈ 0.04 {M}⊙ and {v}{ej}{red}≈ 0.1 {{c}}. These ejecta masses are broadly consistent with the estimated r-process production rate required to explain the Milky Way r-process abundances, providing the first evidence that binary neutron star (BNS) mergers can be a dominant site of r-process enrichment.

  11. The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. II. UV, Optical, and Near-infrared Light Curves and Comparison to Kilonova Models

    Energy Technology Data Exchange (ETDEWEB)

    Cowperthwaite, P. S.; Berger, E.; Villar, V. A.; Metzger, B. D.; Nicholl, M.; Chornock, R.; Blanchard, P. K.; Fong, W.; Margutti, R.; Soares-Santos, M.; Alexander, K. D.; Allam, S.; Annis, J.; Brout, D.; Brown, D. A.; Butler, R. E.; Chen, H. -Y.; Diehl, H. T.; Doctor, Z.; Drout, M. R.; Eftekhari, T.; Farr, B.; Finley, D. A.; Foley, R. J.; Frieman, J. A.; Fryer, C. L.; García-Bellido, J.; Gill, M. S. S.; Guillochon, J.; Herner, K.; Holz, D. E.; Kasen, D.; Kessler, R.; Marriner, J.; Matheson, T.; Neilsen, E. H.; Quataert, E.; Palmese, A.; Rest, A.; Sako, M.; Scolnic, D. M.; Smith, N.; Tucker, D. L.; Williams, P. K. G.; Balbinot, E.; Carlin, J. L.; Cook, E. R.; Durret, F.; Li, T. S.; Lopes, P. A. A.; Lourenço, A. C. C.; Marshall, J. L.; Medina, G. E.; Muir, J.; Muñoz, R. R.; Sauseda, M.; Schlegel, D. J.; Secco, L. F.; Vivas, A. K.; Wester, W.; Zenteno, A.; Zhang, Y.; Abbott, T. M. C.; Banerji, M.; Bechtol, K.; Benoit-Lévy, A.; Bertin, E.; Buckley-Geer, E.; Burke, D. L.; Capozzi, D.; Carnero Rosell, A.; Carrasco Kind, M.; Castander, F. J.; Crocce, M.; Cunha, C. E.; D’Andrea, C. B.; Costa, L. N. da; Davis, C.; DePoy, D. L.; Desai, S.; Dietrich, J. P.; Drlica-Wagner, A.; Eifler, T. F.; Evrard, A. E.; Fernandez, E.; Flaugher, B.; Fosalba, P.; Gaztanaga, E.; Gerdes, D. W.; Giannantonio, T.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; Jain, B.; James, D. J.; Jeltema, T.; Johnson, M. W. G.; Johnson, M. D.; Kent, S.; Krause, E.; Kron, R.; Kuehn, K.; Nuropatkin, N.; Lahav, O.; Lima, M.; Lin, H.; Maia, M. A. G.; March, M.; Martini, P.; McMahon, R. G.; Menanteau, F.; Miller, C. J.; Miquel, R.; Mohr, J. J.; Neilsen, E.; Nichol, R. C.; Ogando, R. L. C.; Plazas, A. A.; Roe, N.; Romer, A. K.; Roodman, A.; Rykoff, E. S.; Sanchez, E.; Scarpine, V.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, M.; Smith, R. C.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Thomas, R. C.; Troxel, M. A.; Vikram, V.; Walker, A. R.; Wechsler, R. H.; Weller, J.; Yanny, B.; Zuntz, J.

    2017-10-16

    We present UV, optical, and NIR photometry of the first electromagnetic counterpart to a gravitational wave source from Advanced LIGO/Virgo, the binary neutron star merger GW170817. Our data set extends from the discovery of the optical counterpart at $0.47$ days to $18.5$ days post-merger, and includes observations with the Dark Energy Camera (DECam), Gemini-South/FLAMINGOS-2 (GS/F2), and the {\\it Hubble Space Telescope} ({\\it HST}). The spectral energy distribution (SED) inferred from this photometry at $0.6$ days is well described by a blackbody model with $T\\approx 8300$ K, a radius of $R\\approx 4.5\\times 10^{14}$ cm (corresponding to an expansion velocity of $v\\approx 0.3c$), and a bolometric luminosity of $L_{\\rm bol}\\approx 5\\times10^{41}$ erg s$^{-1}$. At $1.5$ days we find a multi-component SED across the optical and NIR, and subsequently we observe rapid fading in the UV and blue optical bands and significant reddening of the optical/NIR colors. Modeling the entire data set we find that models with heating from radioactive decay of $^{56}$Ni, or those with only a single component of opacity from $r$-process elements, fail to capture the rapid optical decline and red optical/NIR colors. Instead, models with two components consistent with lanthanide-poor and lanthanide-rich ejecta provide a good fit to the data, the resulting "blue" component has $M_\\mathrm{ej}^\\mathrm{blue}\\approx 0.01$ M$_\\odot$ and $v_\\mathrm{ej}^\\mathrm{blue}\\approx 0.3$c, and the "red" component has $M_\\mathrm{ej}^\\mathrm{red}\\approx 0.04$ M$_\\odot$ and $v_\\mathrm{ej}^\\mathrm{red}\\approx 0.1$c. These ejecta masses are broadly consistent with the estimated $r$-process production rate required to explain the Milky Way $r$-process abundances, providing the first evidence that BNS mergers can be a dominant site of $r$-process enrichment.

  12. Electromagnetic sounding of the Earth's interior

    CERN Document Server

    Spichak, Viacheslav V

    2015-01-01

    Electromagnetic Sounding of the Earth's Interior 2nd edition provides a comprehensive up-to-date collection of contributions, covering methodological, computational and practical aspects of Electromagnetic sounding of the Earth by different techniques at global, regional and local scales. Moreover, it contains new developments such as the concept of self-consistent tasks of geophysics and , 3-D interpretation of the TEM sounding which, so far, have not all been covered by one book. Electromagnetic Sounding of the Earth's Interior 2nd edition consists of three parts: I- EM sounding methods, II- Forward modelling and inversion techniques, and III - Data processing, analysis, modelling and interpretation. The new edition includes brand new chapters on Pulse and frequency electromagnetic sounding for hydrocarbon offshore exploration. Additionally all other chapters have been extensively updated to include new developments. Presents recently developed methodological findings of the earth's study, including seism...

  13. Theory of electromagnetic fields

    CERN Document Server

    Wolski, Andrzej

    2011-01-01

    We discuss the theory of electromagnetic fields, with an emphasis on aspects relevant to radiofrequency systems in particle accelerators. We begin by reviewing Maxwell's equations and their physical significance. We show that in free space, there are solutions to Maxwell's equations representing the propagation of electromagnetic fields as waves. We introduce electromagnetic potentials, and show how they can be used to simplify the calculation of the fields in the presence of sources. We derive Poynting's theorem, which leads to expressions for the energy density and energy flux in an electromagnetic field. We discuss the properties of electromagnetic waves in cavities, waveguides and transmission lines.

  14. Electromagnetic radiation field of an electron avalanche

    Science.gov (United States)

    Cooray, Vernon; Cooray, Gerald

    2012-11-01

    Electron avalanches are the main constituent of electrical discharges in the atmosphere. However, the electromagnetic radiation field generated by a single electron avalanche growing in different field configurations has not yet been evaluated in the literature. In this paper, the electromagnetic radiation fields created by electron avalanches were evaluated for electric fields in pointed, co-axial and spherical geometries. The results show that the radiation field has a duration of approximately 1-2 ns, with a rise time in the range of 0.25 ns. The wave-shape takes the form of an initial peak followed by an overshoot in the opposite direction. The electromagnetic spectrum generated by the avalanches has a peak around 109 Hz.

  15. Electromagnetic ultrasonic guided waves

    CERN Document Server

    Huang, Songling; Li, Weibin; Wang, Qing

    2016-01-01

    This book introduces the fundamental theory of electromagnetic ultrasonic guided waves, together with its applications. It includes the dispersion characteristics and matching theory of guided waves; the mechanism of production and theoretical model of electromagnetic ultrasonic guided waves; the effect mechanism between guided waves and defects; the simulation method for the entire process of electromagnetic ultrasonic guided wave propagation; electromagnetic ultrasonic thickness measurement; pipeline axial guided wave defect detection; and electromagnetic ultrasonic guided wave detection of gas pipeline cracks. This theory and findings on applications draw on the author’s intensive research over the past eight years. The book can be used for nondestructive testing technology and as an engineering reference work. The specific implementation of the electromagnetic ultrasonic guided wave system presented here will also be of value for other nondestructive test developers.

  16. Electromagnetic wave matching device

    International Nuclear Information System (INIS)

    Hirata, Yosuke; Mitsunaka, Yoshika; Hayashi, Ken-ichi; Ito, Yasuyuki.

    1997-01-01

    The present invention provides a matching device capable of increasing an efficiency of combining beams of electromagnetic waves outputted from an output window of a gyrotron which is expected for plasma heating of a thermonuclear reactor and an electromagnetic wave transmission system as high as possible. Namely, an electromagnetic wave matching device reflects beams of electromagnetic waves incident from an inlet by a plurality of phase correction mirrors and combines them to an external transmission system through an exit. In this case, the phase correction mirrors change the phase of the beams of electromagnetic waves incident to the phase correction mirrors by a predetermined amount corresponding to the position of the reflection mirrors. Then, the beams of electromagnetic waves outputted, for example, from a gyrotron can properly be shaped as desired for the intensity and the phase. As a result, combination efficiency with the transmission system can be increased. (I.S.)

  17. Basic Electromagnetism and Materials

    CERN Document Server

    Moliton, André

    2007-01-01

    Basic Electromagnetism and Materials is the product of many years of teaching basic and applied electromagnetism. This textbook can be used to teach electromagnetism to a wide range of undergraduate science majors in physics, electrical engineering or materials science. However, by making lesser demands on mathematical knowledge than competing texts, and by emphasizing electromagnetic properties of materials and their applications, this textbook is uniquely suited to students of materials science. Many competing texts focus on the study of propagation waves either in the microwave or optical domain, whereas Basic Electromagnetism and Materials covers the entire electromagnetic domain and the physical response of materials to these waves. Professor André Moliton is Director of the Unité de Microélectronique, Optoélectronique et Polymères (Université de Limoges, France), which brings together three groups studying the optoelectronics of molecular and polymer layers, micro-optoelectronic systems for teleco...

  18. Ionization in a quantized electromagnetic field

    International Nuclear Information System (INIS)

    Gonoskov, I. A.; Vugalter, G. A.; Mironov, V. A.

    2007-01-01

    An analytical expression for a matrix element of the transition from a bound state of an electron in an atom to continuum states is obtained by solving the problem of interaction of the electron with a quantized electromagnetic field. This expression is used to derive formulas for the photoelectron spectrum and the rate of ionization of the simplest model atomic system upon absorption of an arbitrary number of photons. The expressions derived are analyzed and compared with the corresponding relationships obtained via other approaches. It is demonstrated that there are differences as compared to the case of the classical field. In particular, the photoelectron spectrum exhibits dips due to the destructive interference of the transition amplitudes in the quantized electromagnetic field

  19. The ultra low frequency electromagnetic radiation observed in the topside ionosphere above boundaries of tectonic plates

    Directory of Open Access Journals (Sweden)

    Michael A. Athanasiou

    2015-01-01

    Full Text Available In this paper we present results of a comparison between ultra low frequency (ULF electromagnetic (EM radiation, recorded by an electric field instrument onboard the satellite detection of electromagnetic emissions transmitted from earthquake regions in the topside ionosphere, and the seismicity of regions with high and low seismic activity. In particular, we evaluated the energy variations of the ULF Ezelectric field component during a period of four years (2006-2009, in order to examine the possible relation of ULF EM radiation with seismogenic regions located in Central America, Indonesia, the Eastern Mediterranean Basin and Greece. As a tool for evaluating the ULF Ez energy variations we used singular spectrum analysis techniques. The results of our analysis clearly show a significant increase of the ULF EM energy emitted from regions of highest seismic activity at the boundaries tectonic plates. Furthermore, we found that higher electromagnetic radiation was detected in a region above the northern- western Greek Arc (R1 than above the adjacent region including Athens and its urban area. We interpret these results of the present study as suggesting that: i the seismogenic regions at the boundary of tectonic plates radiate ULF EM emissions observed by satellites in the topside ionosphere; and ii that this EM radiation is not only related with the occurrence time of great (M≥5 earthquakes, but it is often present in intermediate times and it appears as a quasi-permanent phenomenon.

  20. Model for Electromagnetic Information Leakage

    OpenAIRE

    Mao Jian; Li Yongmei; Zhang Jiemin; Liu Jinming

    2013-01-01

    Electromagnetic leakage will happen in working information equipments; it could lead to information leakage. In order to discover the nature of information in electromagnetic leakage, this paper combined electromagnetic theory with information theory as an innovative research method. It outlines a systematic model of electromagnetic information leakage, which theoretically describes the process of information leakage, intercept and reproduction based on electromagnetic radiation, and ana...

  1. Electromagnetic Radiation Analysis

    Science.gov (United States)

    1978-04-10

    A methodology is given for determining whether electromagnetic radiation of sufficient strength to cause performance degradation to the test item...exists at the test item location. The results of an electromagnetic radiation effects test are used to identify the radio frequencies and electromagnetic ... radiation levels to which the test item is susceptible. Further, using a test bed, comparisons are made with the representative signal levels to

  2. Static electromagnetic frequency changers

    CERN Document Server

    Rozhanskii, L L

    1963-01-01

    Static Electromagnetic Frequency Changers is about the theory, design, construction, and applications of static electromagnetic frequency changers, devices that used for multiplication or division of alternating current frequency. It is originally published in the Russian language. This book is organized into five chapters. The first three chapters introduce the readers to the principles of operation, the construction, and the potential applications of static electromagnetic frequency changers and to the principles of their design. The two concluding chapters use some hitherto unpublished work

  3. Correlated Electromagnetic Levitation Actuator

    Data.gov (United States)

    National Aeronautics and Space Administration — Approach is to first characterize the capabilities of correlated electromagnets by developing a prototype with readily available materials and manufacturing...

  4. Electromagnetic Interface Testing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Electromagnetic Interface Testing facilitysupports such testing asEmissions, Field Strength, Mode Stirring, EMP Pulser, 4 Probe Monitoring/Leveling System, and...

  5. High-Altitude Electromagnetic Pulse (HEMP) Testing

    Science.gov (United States)

    2015-07-09

    all electromagnetic signals from a few seconds to several hours depending on weapon yield and height-of-burst ( HOB ). Radio communications depend on...spectrum. There are three basic mechanisms for EM coupling to a conducting structure: electrical induction , the basic mechanism for linear conductors...magnetic induction , the principal mechanism when the conducting structure forms a closed loop; and earth transfer impedance for buried conductors

  6. Electromagnetism, magnetic monopoles and matter-waves in space-time algebra (part II). Electromagnetisme, monopoles magnetiques et ondes de matiere dans l'algebre d'espace-temps (2eme partie)

    Energy Technology Data Exchange (ETDEWEB)

    Daviau, C. (La Lande, Pouille-les-Coteaux 44 - Mesanger (FR))

    1989-01-01

    The formalism of space-time algebra of Hestenes is used: - in the first part to write the equations of electromagnetism of Maxwell and Louis de Broglie, when magnetic monopoles exist; - second to explain equivalence between the equations of Dirac and Hestenes, and to extend this equivalence to Lochak's theory of magnetic monopoles; - to establish that monopoles can exist with very small magnetic charge; - in this second part, to compare waves of fermions and electromagnetism, to associate an electromagnetic field to Dirac's waves and to join the equation of Maxwell - de Broglie to the equation of Dirac - Hestenes.

  7. Dynamic viscoelasticity measurement under alternative torque using electromagnetically spinning method with quadruple electromagnets.

    Science.gov (United States)

    Matsuura, Yusuke; Hirano, Taichi; Sakai, Keiji

    2017-07-01

    In this study, we developed a novel type of rheological measurement system. Here, a spherical probe is driven to rotate periodically by applying torques using quadruple electromagnets in a noncontact manner. Moreover, this system is an enhancement of our electromagnetically spinning (EMS) viscometer, which is widely used for measuring rheological flow curves in various industrial fields. The quadruple EMS method provides the frequency spectrum of viscoelasticity, in addition to shear viscosity, in a steady flow by switching the operation modes of the driving torque. We show the results obtained for Newtonian fluids and viscoelastic materials and demonstrate the validity of the system.

  8. ON THE CLUSTER PHYSICS OF SUNYAEV-ZEL'DOVICH AND X-RAY SURVEYS. II. DECONSTRUCTING THE THERMAL SZ POWER SPECTRUM

    International Nuclear Information System (INIS)

    Battaglia, N.; Bond, J. R.; Pfrommer, C.; Sievers, J. L.

    2012-01-01

    Secondary anisotropies in the cosmic microwave background are a treasure-trove of cosmological information. Interpreting current experiments probing them are limited by theoretical uncertainties rather than by measurement errors. Here we focus on the secondary anisotropies resulting from the thermal Sunyaev-Zel'dovich (tSZ) effect; the amplitude of which depends critically on the average thermal pressure profile of galaxy groups and clusters. To this end, we use a suite of hydrodynamical TreePM-SPH simulations that include radiative cooling, star formation, supernova feedback, and energetic feedback from active galactic nuclei. We examine in detail how the pressure profile depends on cluster radius, mass, and redshift and provide an empirical fitting function. We employ three different approaches for calculating the tSZ power spectrum: an analytical approach that uses our pressure profile fit, a semianalytical method of pasting our pressure fit onto simulated clusters, and a direct numerical integration of our simulated volumes. We demonstrate that the detailed structure of the intracluster medium and cosmic web affect the tSZ power spectrum. In particular, the substructure and asphericity of clusters increase the tSZ power spectrum by 10%-20% at l ∼ 2000-8000, with most of the additional power being contributed by substructures. The contributions to the power spectrum from radii larger than R 500 is ∼20% at l = 3000, thus clusters interiors (r 500 ) dominate the power spectrum amplitude at these angular scales.

  9. ON THE CLUSTER PHYSICS OF SUNYAEV-ZEL'DOVICH AND X-RAY SURVEYS. II. DECONSTRUCTING THE THERMAL SZ POWER SPECTRUM

    Energy Technology Data Exchange (ETDEWEB)

    Battaglia, N. [Department of Astronomy and Astrophysics, University of Toronto, 50 St George, Toronto, ON M5S 3H4 (Canada); Bond, J. R.; Pfrommer, C.; Sievers, J. L. [Canadian Institute for Theoretical Astrophysics, 60 St George, Toronto, ON M5S 3H8 (Canada)

    2012-10-20

    Secondary anisotropies in the cosmic microwave background are a treasure-trove of cosmological information. Interpreting current experiments probing them are limited by theoretical uncertainties rather than by measurement errors. Here we focus on the secondary anisotropies resulting from the thermal Sunyaev-Zel'dovich (tSZ) effect; the amplitude of which depends critically on the average thermal pressure profile of galaxy groups and clusters. To this end, we use a suite of hydrodynamical TreePM-SPH simulations that include radiative cooling, star formation, supernova feedback, and energetic feedback from active galactic nuclei. We examine in detail how the pressure profile depends on cluster radius, mass, and redshift and provide an empirical fitting function. We employ three different approaches for calculating the tSZ power spectrum: an analytical approach that uses our pressure profile fit, a semianalytical method of pasting our pressure fit onto simulated clusters, and a direct numerical integration of our simulated volumes. We demonstrate that the detailed structure of the intracluster medium and cosmic web affect the tSZ power spectrum. In particular, the substructure and asphericity of clusters increase the tSZ power spectrum by 10%-20% at l {approx} 2000-8000, with most of the additional power being contributed by substructures. The contributions to the power spectrum from radii larger than R {sub 500} is {approx}20% at l = 3000, thus clusters interiors (r < R {sub 500}) dominate the power spectrum amplitude at these angular scales.

  10. Classical electromagnetic radiation

    CERN Document Server

    Heald, Mark A

    2012-01-01

    Newly corrected, this highly acclaimed text is suitable for advanced physics courses. The author presents a very accessible macroscopic view of classical electromagnetics that emphasizes integrating electromagnetic theory with physical optics. The survey follows the historical development of physics, culminating in the use of four-vector relativity to fully integrate electricity with magnetism.

  11. Electromagnetically Operated Counter

    Science.gov (United States)

    Goldberg, H D; Goldberg, M I

    1951-12-18

    An electromagnetically operated counter wherein signals to be counted are applied to cause stepwise rotation of a rotatable element which is connected to a suitable register. The mechanism involved consists of a rotatable armature having three spaced cores of magnetic material and a pair of diametrically opposed electromagnets with a suitable pulsing circuit to actuate the magnets.

  12. Tunability enhanced electromagnetic wiggler

    Science.gov (United States)

    Schlueter, R.D.; Deis, G.A.

    1992-03-24

    The invention discloses a wiggler used in synchrotron radiation sources and free electron lasers, where each pole is surrounded by at least two electromagnetic coils. The electromagnetic coils are energized with different amounts of current to provide a wide tunable range of the on-axis magnetic flux density, while preventing magnetic saturation of the poles. 14 figs.

  13. An Electromagnetic Beam Converter

    DEFF Research Database (Denmark)

    2009-01-01

    The present invention relates to an electromagnetic beam converter and a method for conversion of an input beam of electromagnetic radiation having a bell shaped intensity profile a(x,y) into an output beam having a prescribed target intensity profile l(x',y') based on a further development...

  14. High frequency electromagnetic dosimetry

    CERN Document Server

    Sánchez-Hernández, David A

    2009-01-01

    Along with the growth of RF and microwave technology applications, there is a mounting concern about the possible adverse effects over human health from electromagnetic radiation. Addressing this issue and putting it into perspective, this groundbreaking resource provides critical details on the latest advances in high frequency electromagnetic dosimetry.

  15. Introducing Electromagnetic Field Momentum

    Science.gov (United States)

    Hu, Ben Yu-Kuang

    2012-01-01

    I describe an elementary way of introducing electromagnetic field momentum. By considering a system of a long solenoid and line charge, the dependence of the field momentum on the electric and magnetic fields can be deduced. I obtain the electromagnetic angular momentum for a point charge and magnetic monopole pair partially through dimensional…

  16. Electromagnetic fields from mobile phone base station - variability analysis.

    Science.gov (United States)

    Bienkowski, Pawel; Zubrzak, Bartlomiej

    2015-09-01

    The article describes the character of electromagnetic field (EMF) in mobile phone base station (BS) surroundings and its variability in time with an emphasis on the measurement difficulties related to its pulse and multi-frequency nature. Work also presents long-term monitoring measurements performed recently in different locations in Poland - small city with dispersed building development and in major polish city - dense urban area. Authors tried to determine the trends in changing of EMF spectrum analyzing daily changes of measured EMF levels in those locations. Research was performed using selective electromagnetic meters and also EMF meter with spectrum analysis.

  17. Influence of gravitation on the propagation of electromagnetic radiation

    Science.gov (United States)

    Mashhoon, B.

    1975-01-01

    The existence of a general helicity-rotation coupling is demonstrated for electromagnetic waves propagating in the field of a slowly rotating body and in the Goedel universe. This coupling leads to differential focusing of circularly polarized radiation by a gravitational field which is detectable for a rapidly rotating collapsed body. The electromagnetic perturbations and their frequency spectrum are given for the Goedel universe. The spectrum of frequencies is bounded from below by the characteristic rotation frequency of the Goedel universe. If the universe were rotating, the differential focusing effect would be extremely small due to the present upper limit on the anisotropy of the microwave background radiation.

  18. CRIRES-POP: a library of high resolution spectra in the near-infrared. II. Data reduction and the spectrum of the K giant 10 Leonis

    Science.gov (United States)

    Nicholls, C. P.; Lebzelter, T.; Smette, A.; Wolff, B.; Hartman, H.; Käufl, H.-U.; Przybilla, N.; Ramsay, S.; Uttenthaler, S.; Wahlgren, G. M.; Bagnulo, S.; Hussain, G. A. J.; Nieva, M.-F.; Seemann, U.; Seifahrt, A.

    2017-02-01

    Context. High resolution stellar spectral atlases are valuable resources to astronomy. They are rare in the 1-5 μm region for historical reasons, but once available, high resolution atlases in this part of the spectrum will aid the study of a wide range of astrophysical phenomena. Aims: The aim of the CRIRES-POP project is to produce a high resolution near-infrared spectral library of stars across the H-R diagram. The aim of this paper is to present the fully reduced spectrum of the K giant 10 Leo that will form the basis of the first atlas within the CRIRES-POP library, to provide a full description of the data reduction processes involved, and to provide an update on the CRIRES-POP project. Methods: All CRIRES-POP targets were observed with almost 200 different observational settings of CRIRES on the ESO Very Large Telescope, resulting in a basically complete coverage of its spectral range as accessible from the ground. We reduced the spectra of 10 Leo with the CRIRES pipeline, corrected the wavelength solution and removed telluric absorption with Molecfit, then resampled the spectra to a common wavelength scale, shifted them to rest wavelengths, flux normalised, and median combined them into one final data product. Results: We present the fully reduced, high resolution, near-infrared spectrum of 10 Leo. This is also the first complete spectrum from the CRIRES instrument. The spectrum is available online. Conclusions: The first CRIRES-POP spectrum has exceeded our quality expectations and will form the centre of a state-of-the-art stellar atlas. This first CRIRES-POP atlas will soon be available, and further atlases will follow. All CRIRES-POP data products will be freely and publicly available online. The spectrum is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/598/A79

  19. Electromagnetic Fields and Public Health: Mobile Phones

    Science.gov (United States)

    ... sheets Fact files Questions & answers Features Multimedia Contacts Electromagnetic fields and public health: mobile phones Fact sheet N° ... Electromagnetic fields: base stations and wireless technologies Electromagnetic fields: electromagnetic ... research agenda for electromagnetic fields You ...

  20. Comparison of RF spectrum prediction methods for dynamic spectrum access

    Science.gov (United States)

    Kovarskiy, Jacob A.; Martone, Anthony F.; Gallagher, Kyle A.; Sherbondy, Kelly D.; Narayanan, Ram M.

    2017-05-01

    Dynamic spectrum access (DSA) refers to the adaptive utilization of today's busy electromagnetic spectrum. Cognitive radio/radar technologies require DSA to intelligently transmit and receive information in changing environments. Predicting radio frequency (RF) activity reduces sensing time and energy consumption for identifying usable spectrum. Typical spectrum prediction methods involve modeling spectral statistics with Hidden Markov Models (HMM) or various neural network structures. HMMs describe the time-varying state probabilities of Markov processes as a dynamic Bayesian network. Neural Networks model biological brain neuron connections to perform a wide range of complex and often non-linear computations. This work compares HMM, Multilayer Perceptron (MLP), and Recurrent Neural Network (RNN) algorithms and their ability to perform RF channel state prediction. Monte Carlo simulations on both measured and simulated spectrum data evaluate the performance of these algorithms. Generalizing spectrum occupancy as an alternating renewal process allows Poisson random variables to generate simulated data while energy detection determines the occupancy state of measured RF spectrum data for testing. The results suggest that neural networks achieve better prediction accuracy and prove more adaptable to changing spectral statistics than HMMs given sufficient training data.

  1. 77 FR 58473 - Minimum Technical Standards for Class II Gaming Systems and Equipment

    Science.gov (United States)

    2012-09-21

    ... Disk or Digital Versatile Disk. Electromagnetic interference. The disruption of operation of an electronic device when it is in the vicinity of an electromagnetic field in the radio frequency spectrum that...

  2. Electromagnetic shaft seal

    International Nuclear Information System (INIS)

    Takahashi, Kenji.

    1994-01-01

    As an electromagnetic shaft seal, there are disposed outwarding electromagnetic induction devices having generating power directing to an electroconductive fluid as an object of sealing, and inwarding electromagnetic induction device added coaxially. There are disposed elongate rectangular looped first coils having a predetermined inner diameter, second coils having the same shape and shifted by a predetermined pitch relative to the first coil and third coil having the same shape and shifted by a predetermined pitch relative to the second coil respectively each at a predetermined inner diameter of clearance to the outwarding electromagnetic induction devices and the inwarding electromagnetic induction device. If the inwarding electromagnetic induction device and the outwarding electromagnetic induction device are operated, they are stopped at a point that the generating power of the former is equal with the sum of the generating power of the latter and a differential pressure. When three-phase AC is charged to the first coil, the second coil and the third coil successively, a force is generated in the advancing direction of the magnetic field in the electroconductive fluid by the similar effect to that of a linear motor, and the seal is maintained at high reliability. Moreover, the limit for the rotational angle of the shaft is not caused. (N.H.)

  3. Computer techniques for electromagnetics

    CERN Document Server

    Mittra, R

    1973-01-01

    Computer Techniques for Electromagnetics discusses the ways in which computer techniques solve practical problems in electromagnetics. It discusses the impact of the emergence of high-speed computers in the study of electromagnetics. This text provides a brief background on the approaches used by mathematical analysts in solving integral equations. It also demonstrates how to use computer techniques in computing current distribution, radar scattering, and waveguide discontinuities, and inverse scattering. This book will be useful for students looking for a comprehensive text on computer techni

  4. Electromagnetic spatial coherence wavelets

    International Nuclear Information System (INIS)

    Castaneda, R.; Garcia-Sucerquia, J.

    2005-10-01

    The recently introduced concept of spatial coherence wavelets is generalized for describing the propagation of electromagnetic fields in the free space. For this aim, the spatial coherence wavelet tensor is introduced as an elementary amount, in terms of which the formerly known quantities for this domain can be expressed. It allows analyzing the relationship between the spatial coherence properties and the polarization state of the electromagnetic wave. This approach is completely consistent with the recently introduced unified theory of coherence and polarization for random electromagnetic beams, but it provides a further insight about the causal relationship between the polarization states at different planes along the propagation path. (author)

  5. Nonlinear surface electromagnetic phenomena

    CERN Document Server

    Ponath, H-E

    1991-01-01

    In recent years the physics of electromagnetic surface phenomena has developed rapidly, evolving into technologies for communications and industry, such as fiber and integrated optics. The variety of phenomena based on electromagnetism at surfaces is rich and this book was written with the aim of summarizing the available knowledge in selected areas of the field. The book contains reviews written by solid state and optical physicists on the nonlinear interaction of electromagnetic waves at and with surfaces and films. Both the physical phenomena and some potential applications are

  6. Discovery and development of kibdelomycin, a new class of broad-spectrum antibiotics targeting the clinically proven bacterial type II topoisomerase.

    Science.gov (United States)

    Singh, Sheo B

    2016-12-15

    Kibdelomycin is a complex novel antibiotic, discovered by applying a highly sophisticated chemical-genetic Staphylococcus aureus Fitness Test (SaFT) approach, that inhibits the clinically established bacterial targets, gyrase and topoisomerase IV. It exhibits broad-spectrum antibacterial activity against aerobic bacteria including MRSA and Acinetobacter baumannii. It is slowly bactericidal and has a low frequency of resistance. In an anaerobic environment, it exhibits narrow-spectrum activity and inhibits the growth of gut bacteria Clostridium difficile (MIC 0.125μg/mL) without affecting the growth of commensal Gram-negative organisms particularly, Bacteroides sp. It is highly efficacious in the hamster model of C. difficile infection providing 100% protection at >6mg/kg and 80% protection at 1.56mg/kg by oral dosing without systemic exposure. X-ray co-crystal structures of kibdelomycin bound to GyrB and ParE showed a unique dual arm 'U shaped' multisite binding never encountered with any other gyrase inhibitors. Kibdelomycin is poised for preclinical development for C. difficile treatment, and most importantly, the co-crystal structures of kibdelomycin provide unique insight for structure-guided structure modification, which could lead to better broader-spectrum systemic antibiotic potentially covering many ESKAPE pathogens. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Nuclear β decay with a massive neutrino in an external electromagnetic field

    International Nuclear Information System (INIS)

    Ternov, I.M.; Rodionov, V.N.; Zhulego, V.G.; Lobanov, A.E.; Pavlova, O.S.; Dorofeev, O.F.

    1986-01-01

    Beta decay in the presence of an external electromagnetic field is investigated, taking into account the non-zero neutrino rest mass. The spectrum of electrons and polarisation effects of different orientations of nuclear spin are considered. It is shown that the electromagnetic wave substantially modifies the boundaries of the spectrum of β electrons. The results, which include an analysis of the total decay probability in intense magnetic fields, may have various astrophysical implications. (author)

  8. Invariance and noninvariance of the spectra of stochastic electromagnetic beams on propogation.

    Science.gov (United States)

    Pu, Jixiong; Korotkova, Olga; Wolf, Emil

    2006-07-15

    It has been known for some time that the spectrum of light may change on propagation, even in free space. The theory of this phenomenon was developed within the framework of scalar theory. We generalize it to electromagnetic beams, generated by planar, secondary, stochastic sources. We also derive an electromagnetic analog of the so-called scaling law. When this law is satisfied the normalized spectrum of the beam is the same throughout the far zone and across the source.

  9. Broadband Electromagnetic Technology

    Science.gov (United States)

    2011-06-23

    The objectives of this project are to continue the enhancements to the combined Broadband Electromagnetic and Full Encirclement Unit (BEM-FEU) technologies and to evaluate the systems capability in the laboratory and the field. The BEM instrument ...

  10. Computational electromagnetic-aerodynamics

    CERN Document Server

    Shang, Joseph J S

    2016-01-01

    Presents numerical algorithms, procedures, and techniques required to solve engineering problems relating to the interactions between electromagnetic fields, fluid flow, and interdisciplinary technology for aerodynamics, electromagnetics, chemical-physics kinetics, and plasmadynamics This book addresses modeling and simulation science and technology for studying ionized gas phenomena in engineering applications. Computational Electromagnetic-Aerodynamics is organized into ten chapters. Chapter one to three introduce the fundamental concepts of plasmadynamics, chemical-physics of ionization, classical magnetohydrodynamics, and their extensions to plasma-based flow control actuators, high-speed flows of interplanetary re-entry, and ion thrusters in space exploration. Chapter four to six explain numerical algorithms and procedures for solving Maxwell’s equation in the time domain for computational electromagnetics, plasma wave propagation, and the time-dependent c mpressible Navier-Stokes equation for aerodyn...

  11. Electromagnetism in the Movies.

    Science.gov (United States)

    Everitt, Lori R.; Patterson, Evelyn T.

    1999-01-01

    Describes how the authors used portions of popular movies to help students review concepts related to electromagnetism. Movies used and concepts covered in the review are listed, and a sample activity is described. (WRM)

  12. Purely electromagnetic spacetimes

    OpenAIRE

    Ivanov, B. V.

    2007-01-01

    Electrovacuum solutions devoid of usual mass sources are classified in the case of one, two and three commuting Killing vectors. Three branches of solutions exist. Electromagnetically induced mass terms appear in some of them.

  13. The classical electromagnetic field

    CERN Document Server

    Eyges, Leonard

    2010-01-01

    This excellent text covers a year's course in advanced theoretical electromagnetism, first introducing theory, then its application. Topics include vectors D and H inside matter, conservation laws for energy, momentum, invariance, form invariance, covariance in special relativity, and more.

  14. Electromagnetic Manifestation of Earthquakes

    OpenAIRE

    Uvarov Vladimir

    2017-01-01

    In a joint analysis of the results of recording the electrical component of the natural electromagnetic field of the Earth and the catalog of earthquakes in Kamchatka in 2013, unipolar pulses of constant amplitude associated with earthquakes were identified, whose activity is closely correlated with the energy of the electromagnetic field. For the explanation, a hypothesis about the cooperative character of these impulses is proposed.

  15. Electromagnetic Manifestation of Earthquakes

    Directory of Open Access Journals (Sweden)

    Uvarov Vladimir

    2017-01-01

    Full Text Available In a joint analysis of the results of recording the electrical component of the natural electromagnetic field of the Earth and the catalog of earthquakes in Kamchatka in 2013, unipolar pulses of constant amplitude associated with earthquakes were identified, whose activity is closely correlated with the energy of the electromagnetic field. For the explanation, a hypothesis about the cooperative character of these impulses is proposed.

  16. The ATLAS electromagnetic calorimeter

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    Michel Mathieu, a technician for the ATLAS collaboration, is cabling the ATLAS electromagnetic calorimeter's first end-cap, before insertion into its cryostat. Millions of wires are connected to the electromagnetic calorimeter on this end-cap that must be carefully fed out from the detector so that data can be read out. Every element on the detector will be attached to one of these wires so that a full digital map of the end-cap can be recreated.

  17. Electromagnetic Education in India

    Directory of Open Access Journals (Sweden)

    Bajpai Shrish

    2016-06-01

    Full Text Available Out of the four fundamental interactions in nature, electromagnetics is one of them along with gravitation, strong interaction and weak interaction. The field of electromagnetics has made much of the modern age possible. Electromagnets are common in day-to-day appliances and are becoming more conventional as the need for technology increases. Electromagnetism has played a vital role in the progress of human kind ever since it has been understood. Electromagnets are found everywhere. One can find them in speakers, doorbells, home security systems, anti-shoplifting systems, hard drives, mobiles, microphones, Maglev trains, motors and many other everyday appliances and products. Before diving into the education system, it is necessary to reiterate its importance in various technologies that have evolved over time. Almost every domain of social life has electromagnetic playing its role. Be it the mobile vibrators you depend upon, a water pump, windshield wipers during rain and the power windows of your car or even the RFID tags that may ease your job during shopping. A flavor of electromagnetics is essential during primary level of schooling for the student to understand its future prospects and open his/her mind to a broad ocean of ideas. Due to such advancements this field can offer, study on such a field is highly beneficial for a developing country like India. The paper presents the scenario of electromagnetic education in India, its importance and numerous schemes taken by the government of India to uplift and acquaint the people about the importance of EM and its applications.

  18. Electromagnetic reverberation chambers

    CERN Document Server

    Besnier, Philippe

    2013-01-01

    Dedicated to a complete presentation on all aspects of reverberation chambers, this book provides the physical principles behind these test systems in a very progressive manner. The detailed panorama of parameters governing the operation of electromagnetic reverberation chambers details various applications such as radiated immunity, emissivity, and shielding efficiency experiments.In addition, the reader is provided with the elements of electromagnetic theory and statistics required to take full advantage of the basic operational rules of reverberation chambers, including calibration proc

  19. Electromagnetic rotational actuation.

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, Alexander Lee

    2010-08-01

    There are many applications that need a meso-scale rotational actuator. These applications have been left by the wayside because of the lack of actuation at this scale. Sandia National Laboratories has many unique fabrication technologies that could be used to create an electromagnetic actuator at this scale. There are also many designs to be explored. In this internship exploration of the designs and fabrications technologies to find an inexpensive design that can be used for prototyping the electromagnetic rotational actuator.

  20. Grid computing for electromagnetics

    CERN Document Server

    Tarricone, Luciano

    2004-01-01

    Today, more and more practitioners, researchers, and students are utilizing the power and efficiency of grid computing for their increasingly complex electromagnetics applications. This cutting-edge book offers you the practical and comprehensive guidance you need to use this new approach to supercomputing for your challenging projects. Supported with over 110 illustrations, the book clearly describes a high-performance, low-cost method to solving huge numerical electromagnetics problems.

  1. Electromagnetic processes and interactions

    International Nuclear Information System (INIS)

    Scheck, F.

    1983-01-01

    The electron and muon are important tools in testing the structure of the fundamental electromagnetic interactions. On the other hand, if these interactions are known, they serve as ideal probes for the internal structure of complex hadronic targets such as nucleons and nuclei. Purely electromagnetic interactions play a distinctive role, for obvious experimental reasons: At low and intermediate energies the effective electromagnetic coupling is larger by many orders of magnitude than the weak couplings, so that electromagnetic processes are measurable to much higher accuracy than purely weak processes. The present chapter deals primarily with applications of charged leptons to problems of nucleon and nuclear structure, and to selected precision tests of quantum electrodynamics (QED) at low momentum transfers. In most of these applications the electromagnetic interactions effectively appear in the form of external fields in the leptonic particle's Dirac equation. This is the domain where the physics of (electromagnetically) interacting leptons can still be described in the framework of an effective, though relativistic, single particle theory. (orig.)

  2. Covariant electromagnetic field lines

    Science.gov (United States)

    Hadad, Y.; Cohen, E.; Kaminer, I.; Elitzur, A. C.

    2017-08-01

    Faraday introduced electric field lines as a powerful tool for understanding the electric force, and these field lines are still used today in classrooms and textbooks teaching the basics of electromagnetism within the electrostatic limit. However, despite attempts at generalizing this concept beyond the electrostatic limit, such a fully relativistic field line theory still appears to be missing. In this work, we propose such a theory and define covariant electromagnetic field lines that naturally extend electric field lines to relativistic systems and general electromagnetic fields. We derive a closed-form formula for the field lines curvature in the vicinity of a charge, and show that it is related to the world line of the charge. This demonstrates how the kinematics of a charge can be derived from the geometry of the electromagnetic field lines. Such a theory may also provide new tools in modeling and analyzing electromagnetic phenomena, and may entail new insights regarding long-standing problems such as radiation-reaction and self-force. In particular, the electromagnetic field lines curvature has the attractive property of being non-singular everywhere, thus eliminating all self-field singularities without using renormalization techniques.

  3. Object Kinetic Monte Carlo Simulations of Radiation Damage in Bulk Tungsten Part-II: With a PKA Spectrum Corresponding to 14-MeV Neutrons

    OpenAIRE

    Nandipati, Giridhar; Setyawan, Wahyu; Heinisch, Howard L.; Roche, Kenneth J.; Kurtz, Richard J.; Wirth, Brian D.

    2016-01-01

    Object kinetic Monte Carlo was employed to study the effect of dose rate on the evolution of vacancy microstructure in polycrystalline tungsten under neutron bombardment. The evolution was followed up to 1.0 displacement per atom (dpa) with point defects generated in accordance with a primary knock-on atom (PKA) spectrum corresponding to 14-MeV neutrons. The present study includes the effect of grain size (2.0 and 4.0 $\\mu$m) but excludes the impact of transmutation or pre-existing defects be...

  4. Electromagnetic Evidence of Altered Visual Processing in Autism

    Science.gov (United States)

    Neumann, Nicola; Dubischar-Krivec, Anna M.; Poustka, Fritz; Birbaumer, Niels; Bolte, Sven; Braun, Christoph

    2011-01-01

    Individuals with autism spectrum disorder (ASD) demonstrate intact or superior local processing of visual-spatial tasks. We investigated the hypothesis that in a disembedding task, autistic individuals exhibit a more local processing style than controls, which is reflected by altered electromagnetic brain activity in response to embedded stimuli…

  5. Does electromagnetic radiation accelerate galactic cosmic rays

    Science.gov (United States)

    Eichler, D.

    1977-01-01

    The 'reactor' theories of Tsytovich and collaborators (1973) of cosmic-ray acceleration by electromagnetic radiation are examined in the context of galactic cosmic rays. It is shown that any isotropic synchrotron or Compton reactors with reasonable astrophysical parameters can yield particles with a maximum relativistic factor of only about 10,000. If they are to produce particles with higher relativistic factors, the losses due to inverse Compton scattering of the electromagnetic radiation in them outweigh the acceleration, and this violates the assumptions of the theory. This is a critical restriction in the context of galactic cosmic rays, which have a power-law spectrum extending up to a relativistic factor of 1 million.

  6. PEP-II RF cavity revisited

    International Nuclear Information System (INIS)

    Rimmer, R.A.; Koehler, G.; Li, D.; Hartman, N.; Folwell, N.; Hodgson, J.; Ko, K.; McCandless, B.

    1999-01-01

    This report describes the results of numerical simulations of the PEP-II RF cavity performed after the completion of the construction phase of the project and comparisons are made to previous calculations and measured results. These analyses were performed to evaluate new calculation techniques for the HOM distribution and RF surface heating that were not available at the time of the original design. These include the use of a high frequency electromagnetic element in ANSYS and the new Omega 3P code to study wall losses, and the development of broadband time domain simulation methods in MAFIA for the HOM loading. The computed HOM spectrum is compared with cavity measurements and observed beam-induced signals. The cavity fabrication method is reviewed, with the benefit of hindsight, and simplifications are discussed

  7. International Symposium on Electromagnetic Compatibility, 24th, Santa Clara, CA, September 8-10, 1982, Proceedings

    Science.gov (United States)

    The incorporation of electromagnetic compatibility (EMC), and the prevention of electromagnetic interference (EMI) in the design of electronic devices are considered in individual contributions. Topics covered include EMC regulation, spectrum management, equipment shielding, system analysis and modeling, computer-systems EMC, measurement techniques, composite materials in EMC design, personnel electrostatic discharge, EMC testing, electromagnetic environments, and coupling and shielding analysis. Discussion is also presented on EMI design, industrial and commercial EMC, lightning and electromagnetic pulses (including aircraft-design problems), and naval EMC applications. No individual items are abstracted in this volume

  8. Electromagnetic field induced biological effects in humans.

    Science.gov (United States)

    Kaszuba-Zwoińska, Jolanta; Gremba, Jerzy; Gałdzińska-Calik, Barbara; Wójcik-Piotrowicz, Karolina; Thor, Piotr J

    2015-01-01

    Exposure to artificial radio frequency electromagnetic fields (EMFs) has increased significantly in recent decades. Therefore, there is a growing scientific and social interest in its influence on health, even upon exposure significantly below the applicable standards. The intensity of electromagnetic radiation in human environment is increasing and currently reaches astronomical levels that had never before experienced on our planet. The most influential process of EMF impact on living organisms, is its direct tissue penetration. The current established standards of exposure to EMFs in Poland and in the rest of the world are based on the thermal effect. It is well known that weak EMF could cause all sorts of dramatic non-thermal effects in body cells, tissues and organs. The observed symptoms are hardly to assign to other environmental factors occurring simultaneously in the human environment. Although, there are still ongoing discussions on non-thermal effects of EMF influence, on May 31, 2011--International Agency for Research on Cancer (IARC)--Agenda of World Health Organization (WHO) has classified radio electromagnetic fields, to a category 2B as potentially carcinogenic. Electromagnetic fields can be dangerous not only because of the risk of cancer, but also other health problems, including electromagnetic hypersensitivity (EHS). Electromagnetic hypersensitivity (EHS) is a phenomenon characterized by the appearance of symptoms after exposure of people to electromagnetic fields, generated by EHS is characterized as a syndrome with a broad spectrum of non-specific multiple organ symptoms including both acute and chronic inflammatory processes located mainly in the skin and nervous systems, as well as in respiratory, cardiovascular systems, and musculoskeletal system. WHO does not consider the EHS as a disease-- defined on the basis of medical diagnosis and symptoms associated with any known syndrome. The symptoms may be associated with a single source of EMF

  9. An alternative to the plasma emission model: Particle-in-cell, self-consistent electromagnetic wave emission simulations of solar type III radio bursts

    International Nuclear Information System (INIS)

    Tsiklauri, David

    2011-01-01

    High-resolution (sub-Debye length grid size and 10 000 particle species per cell), 1.5D particle-in-cell, relativistic, fully electromagnetic simulations are used to model electromagnetic wave emission generation in the context of solar type III radio bursts. The model studies generation of electromagnetic waves by a super-thermal, hot beam of electrons injected into a plasma thread that contains uniform longitudinal magnetic field and a parabolic density gradient. In effect, a single magnetic line connecting Sun to Earth is considered, for which five cases are studied. (i) We find that the physical system without a beam is stable and only low amplitude level electromagnetic drift waves (noise) are excited. (ii) The beam injection direction is controlled by setting either longitudinal or oblique electron initial drift speed, i.e., by setting the beam pitch angle (the angle between the beam velocity vector and the direction of background magnetic field). In the case of zero pitch angle, i.e., when v-vector b ·E-vector perpendicular =0, the beam excites only electrostatic, standing waves, oscillating at local plasma frequency, in the beam injection spatial location, and only low level electromagnetic drift wave noise is also generated. (iii) In the case of oblique beam pitch angles, i.e., when v-vector b ·E-vector perpendicular =0, again electrostatic waves with same properties are excited. However, now the beam also generates the electromagnetic waves with the properties commensurate to type III radio bursts. The latter is evidenced by the wavelet analysis of transverse electric field component, which shows that as the beam moves to the regions of lower density and hence lower plasma frequency, frequency of the electromagnetic waves drops accordingly. (iv) When the density gradient is removed, an electron beam with an oblique pitch angle still generates the electromagnetic radiation. However, in the latter case no frequency decrease is seen. (v) Since in most of

  10. Electromagnetic fields and their impacts

    Science.gov (United States)

    Prša, M. A.; Kasaš-Lažetić, K. K.

    2018-01-01

    The main goal of this paper is to briefly recall some different electromagnetic field definitions, some macroscopic sources of electromagnetic fields, electromagnetic fields classification regarding time dependences, and the ways of field determination in concrete cases. After that, all the mechanisms of interaction between electromagnetic field and substance, on atomic level, are described in details. Interaction between substance and electric field is investigated separately from the substance and magnetic field interaction. It is demonstrated that, in all cases of the unique electromagnetic field, total interaction can be treated as a superposition of two separated interactions. Finally, the main electromagnetic fields surrounding us is cited and discussed.

  11. Electromagnetic radiation optimum neutralizer

    International Nuclear Information System (INIS)

    Smirnov, Igor

    2002-01-01

    This particular article relates to subtle electrical effects, and provides some evidence of a fundamental nature on how subtle low frequency electromagnetic fields might be utilized to protect human body against harmful effects of high frequencies electromagnetic radiation. I have focused my efforts on definite polar polymer compound named EMRON which is patented in the USA. This polar polymer compound can be excited by external high frequencies electromagnetic fields to generate subtle low frequency oscillations that are beneficial for cellular life structures. This concept is based on the possibility of existence of resonance phenomenon between polar polymers and biopolymers such as proteins, nucleic acids, lipids, etc. Low frequency patterns generated by defined polar polymer compound can interact with biostructures and transmit the signals that support and improve cellular functions in the body. The mechanism of this process was confirmed by number of studies. The animal (including human) brain is affected by electromagnetic waves to the extent that production of Alpha or Theta waves can be directly induced into brain by carrying an ELF (extremely low frequency, 5-12 Hz) signal on a microwave carrier frequency. EMRON does not reduce the power of electromagnetic fields. It 'shields' the cellular structures of the body against the harmful effects of EMR. The radiation is still entering the body but the neutralizing effect of EMRON renders the radiation harmless

  12. THE DUST CLOUD AROUND THE WHITE DWARF G 29-38. II. SPECTRUM FROM 5 TO 40 μm AND MID-INFRARED PHOTOMETRIC VARIABILITY

    International Nuclear Information System (INIS)

    Reach, William T.; Lisse, Carey; Von Hippel, Ted; Mullally, Fergal

    2009-01-01

    We model the mineralogy and distribution of dust around the white dwarf G29-39 using the infrared spectrum from 1 to 35 μm. The spectral model for G29-38 dust combines a wide range of materials based on spectral studies of comets and debris disks. In order of their contribution to the mid-infrared emission, the most abundant minerals around G29-38 are amorphous carbon (λ || = 5, and the radial density profile ∝r -2.7 ; the total mass of this model disk is 2 x 10 19 g. A physically thin (less than the white dwarf radius) and optically thick disk can contribute to the near-infrared continuum only; such a disk cannot explain the longer-wavelength continuum or strong emission features. The combination of a physically thin, optically thick inner disk and an outer, physically thick and moderately optically thin cloud or disk produces a reasonably good fit to the spectrum and requires only silicates in the outer cloud. We discuss the mineralogical results in comparison to planetary materials. The silicate composition contains minerals found from cometary spectra and meteorites, but Fe-rich pyroxene is more abundant than enstatite (Mg-rich pyroxene) or forsterite (Mg-rich olivine) in G29-38 dust, in contrast to what is found in most comet or meteorite mineralogies. Enstatite meteorites may be the most similar solar system materials to G29-38 dust. Finally, we suggest the surviving core of a h ot Jupiteras an alternative (neither cometary nor asteroidal) origin for the debris, though further theoretical work is needed to determine if this hypothesis is viable.

  13. Collective scattering of electromagnetic waves from a relativistic magnetized plasma

    International Nuclear Information System (INIS)

    Lu Quankang

    1998-01-01

    Recently, laser and microwave scattering has become one of the important diagnostic means for plasma. Laser and microwave correlative scattering spectrum is determined by particle-density fluctuations in a weak turbulent plasma. In a relativistic plasma, on the basis of complete electromagnetic-interaction between particles, a general expression for particle density fluctuations and spectrums of laser and microwave scattering from a magnetized plasma are derived. The laser and microwave scattering spectrums provide informations on electron density and temperature, ion temperature, resonance and nonresonance effects. (author)

  14. Generating a heated fluid using an electromagnetic radiation-absorbing complex

    Energy Technology Data Exchange (ETDEWEB)

    Halas, Nancy J.; Nordlander, Peter; Neumann, Oara

    2018-01-09

    A vessel including a concentrator configured to concentrate electromagnetic (EM) radiation received from an EM radiation source and a complex configured to absorb EM radiation to generate heat. The vessel is configured to receive a cool fluid from the cool fluid source, concentrate the EM radiation using the concentrator, apply the EM radiation to the complex, and transform, using the heat generated by the complex, the cool fluid to the heated fluid. The complex is at least one of consisting of copper nanoparticles, copper oxide nanoparticles, nanoshells, nanorods, carbon moieties, encapsulated nanoshells, encapsulated nanoparticles, and branched nanostructures. Further, the EM radiation is at least one of EM radiation in an ultraviolet region of an electromagnetic spectrum, in a visible region of the electromagnetic spectrum, and in an infrared region of the electromagnetic spectrum.

  15. Seismic electromagnetic study in China

    Science.gov (United States)

    Huang, Qinghua

    2016-04-01

    Seismo-electromagnetism is becoming a hot interdisciplinary study in both geosciences and electromagnetism. Numerous electromagnetic changes at a broad range of frequencies associated with earthquakes have been reported independently. There are some attempts of applying such electromagnetic data to short-term earthquake prediction. Although due to the complexity of seismogenic process and underground structure, the seismic electromagnetic phenomena cannot be fully understood, the seismic electromagnetic study plays a key role in the mitigation of seismic hazard. China is one of the countries which have the earliest reports on seismo-electromagnetic phenomena. The seismic electromagnetic study in China started in late 1960's. There are almost 50 years continuous observation data up to now, which provides a unique database for seismo-electromagnetic study not only in China, but also in the world. Therefore, seismo-electromagnetic study in China is interested broadly by international communities of geosciences and electromagnetism. I present here a brief review on seismic electromagnetic study in China, especially focusing on geo-electromagnetic observation and empirical prediction based on the observation data. After summarizing various electromagnetic observations such as apparent resistivity, geoelectric potential, geomagnetic field, electromagnetic disturbance, and so on, I show the cases of the empirical prediction based on the observed electromagnetic data associated with some earthquakes in China. Finally, based on the above review, I propose an integrated research scheme of earthquake-related electromagnetic phenomena, which includes the interaction between appropriate observations, robust methodology of data processing, and theoretical model analysis. This study is supported partially by the National Natural Science Foundation of China (41274075) and the National Basic Research Program of China (2014CB845903).

  16. Aircraft electromagnetic compatibility

    Science.gov (United States)

    Clarke, Clifton A.; Larsen, William E.

    1987-06-01

    Illustrated are aircraft architecture, electromagnetic interference environments, electromagnetic compatibility protection techniques, program specifications, tasks, and verification and validation procedures. The environment of 400 Hz power, electrical transients, and radio frequency fields are portrayed and related to thresholds of avionics electronics. Five layers of protection for avionics are defined. Recognition is given to some present day electromagnetic compatibility weaknesses and issues which serve to reemphasize the importance of EMC verification of equipment and parts, and their ultimate EMC validation on the aircraft. Proven standards of grounding, bonding, shielding, wiring, and packaging are laid out to help provide a foundation for a comprehensive approach to successful future aircraft design and an understanding of cost effective EMC in an aircraft setting.

  17. Applied electromagnetic scattering theory

    CERN Document Server

    Osipov, Andrey A

    2017-01-01

    Besides classical applications (radar and stealth, antennas, microwave engineering), scattering and diffraction are enabling phenomena for some emerging research fields (artificial electromagnetic materials or metamaterials, terahertz technologies, electromagnetic aspects of nano-science). This book is a tutorial for advanced students who need to study diffraction theory. The textbook gives fundamental knowledge about scattering and diffraction of electromagnetic waves and provides some working examples of solutions for practical high-frequency scattering and diffraction problems. The book focuses on the most important diffraction effects and mechanisms influencing the scattering process and describes efficient and physically justified simulation methods - physical optics (PO) and the physical theory of diffraction (PTD) - applicable in typical remote sensing scenarios. The material is presented in a comprehensible and logical form, which relates the presented results to the basic principles of electromag...

  18. Electromagnetic radiation influence on clinical course of experimental wound infection

    Directory of Open Access Journals (Sweden)

    Pronina Е.А.

    2010-09-01

    Full Text Available The article gives close attention to the study of electromagnetic radiation influence (EMR at the frequency of molecular spectrum absorption and radiation (MSAR of nitric oxide (150 GHz and atmospheric oxygen (129 GHz on the clinical course of experimental wound infection caused by antibiotic-sensitive and antibiotic-resistant strains of Pseudomonas aeruginosa. The panoramic spectrometric measuring complex, developed in Saratov Scientific Research Institute of Measuring Equipment was used while carrying out the research. Electromagnetic vibrations of extremely high frequencies were stimulated in this complex imitating the atmospheric oxygen and nitric oxide absorption and radiation molecular spectrum structure. The experiments proved the fact that exposure to radiation at the frequency of molecular spectrum absorption and radiation (MSAR of nitric oxide and atmospheric oxygen had positive impact on the course of traumatic process

  19. Electromagnetic Effices from Impacts on Spacecraft

    Science.gov (United States)

    Close, Sigrid

    2018-04-01

    Hypervelocity micro particles, including meteoroids and space debris with masses electromagnetic pulse (EMP) with a broad frequency spectrum. Subsequent plasma oscillations resulting from instabilities can also emit significant power and may be responsible for many reported satellite anomalies. We present theory and recent results from ground-based impact tests aimed at characterizing hypervelocity impact plasma and show that impact-produced radio frequency (RF) emissions occurred in frequencies ranging from VHF through L-band and that these emissions were highly correlated with fast (> 20 km/s) impacts that produced a fully ionized plasma.

  20. Collective electromagnetic mode in layered conductors

    International Nuclear Information System (INIS)

    Gokhfel'd, V.M.; Peschanskij, V.G.

    1999-01-01

    In the frames of the Landau theory we consider the transverse zero-sound wave in a single-component charged Fermi-liquid with the quasi-two-dimensional electron energy spectrum. In such media, unlike conventional metals, the electromagnetic wave propagation along the weak conductivity direction is possible even at low intensity of the Fermi-liquid interaction. We find the field distribution in a sample, calculate the wave impedance and discuss the possibility of observation of the effect under the pulse condition

  1. Electromagnetic compatibility engineering

    CERN Document Server

    Ott, Henry W

    2009-01-01

    Praise for Noise Reduction Techniques IN electronic systems ""Henry Ott has literally 'written the book' on the subject of EMC. . . . He not only knows the subject, but has the rare ability to communicate that knowledge to others.""-EE Times Electromagnetic Compatibility Engineering is a completely revised, expanded, and updated version of Henry Ott's popular book Noise Reduction Techniques in Electronic Systems. It reflects the most recent developments in the field of electromagnetic compatibility (EMC) and noise reduction¿and their practical applications t

  2. Improved Electromagnetic Brake

    Science.gov (United States)

    Martin, Toby B.

    2004-01-01

    A proposed design for an electromagnetic brake would increase the reliability while reducing the number of parts and the weight, relative to a prior commercially available electromagnetic brake. The reductions of weight and the number of parts could also lead to a reduction of cost. A description of the commercial brake is prerequisite to a description of the proposed electromagnetic brake. The commercial brake (see upper part of figure) includes (1) a permanent magnet and an electromagnet coil on a stator and (2) a rotor that includes a steel contact plate mounted, with tension spring loading, on an aluminum hub. The stator is mounted securely on a stationary object, which would ordinarily be the housing of a gear drive or a motor. The rotor is mounted on the shaft of the gear drive or motor. The commercial brake nominally operates in a fail-safe (in the sense of normally braking) mode: In the absence of current in the electromagnet coil, the permanent magnet pulls the contact plate, against the spring tension, into contact with the stator. To release the brake, one excites the electromagnet with a current of the magnitude and polarity chosen to cancel the magnetic flux of the permanent magnet, thereby enabling the spring tension to pull the contact plate out of contact with the stator. The fail-safe operation of the commercial brake depends on careful mounting of the rotor in relation to the stator. The rotor/stator gap must be set with a tolerance between 10 and 15 mils (between about 0.25 and about 0.38 mm). If the gap or the contact pad is thicker than the maximum allowable value, then the permanent magnetic field will not be strong enough to pull the steel plate across the gap. (For this reason, any contact pad between the contact plate and the stator must also be correspondingly thin.) If the gap exceeds the maximum allowable value because of shaft end play, it becomes impossible to set the brake by turning off the electromagnet current. Although it may

  3. Essentials of Computational Electromagnetics

    CERN Document Server

    Sheng, Xin-Qing

    2012-01-01

    Essentials of Computational Electromagnetics provides an in-depth introduction of the three main full-wave numerical methods in computational electromagnetics (CEM); namely, the method of moment (MoM), the finite element method (FEM), and the finite-difference time-domain (FDTD) method. Numerous monographs can be found addressing one of the above three methods. However, few give a broad general overview of essentials embodied in these methods, or were published too early to include recent advances. Furthermore, many existing monographs only present the final numerical results without specifyin

  4. Electromagnetic clutches and couplings

    CERN Document Server

    Vorob'Yeva, T M; Fry, D W; Higinbotham, W

    2013-01-01

    Electromagnetic Clutches and Couplings contains a detailed description of U.S.S.R. electromagnetic friction clutches, magnetic couplings, and magnetic particle couplings. This book is divided into four chapters. The first chapter discusses the design and construction of magnetic (solenoid-operated) couplings, which are very quick-acting devices and used in low power high-speed servo-systems. Chapter 2 describes the possible fields of application, design, construction, and utilization of magnetic particle couplings. The aspects of construction, design, and utilization of induction clutches (sli

  5. Lectures on electromagnetism

    CERN Document Server

    Das, Ashok

    2013-01-01

    These lecture notes on electromagnetism have evolved from graduate and undergraduate EM theory courses given by the author at the University of Rochester, with the basics presented with clarity and his characteristic attention to detail. The thirteen chapters cover, in logical sequence, topics ranging from electrostatics, magnetostatics and Maxwell's equations to plasmas and radiation. Boundary value problems are treated extensively, as are wave guides, electromagnetic interactions and fields. This second edition comprises many of the topics expanded with more details on the derivation of vari

  6. Electromagnetic interference: a radiant future!

    NARCIS (Netherlands)

    Leferink, Frank Bernardus Johannes

    2015-01-01

    Although Electromagnetic Interference and Electromagnetic Compatibility are well established domains, the introduction of new technologies results in new challenges. Changes in both measurement techniques, and technological trends resulting in new types of interference are described. These are the

  7. New perspectives on classical electromagnetism

    OpenAIRE

    Cote, Paul J.

    2009-01-01

    The fallacies associated with the gauge concept in electromagnetism are illustrated. A clearer and more valid formulation of the basics of classical electromagnetism is provided by recognizing existing physical constraints as well as the physical reality of the vector potential.

  8. Electromagnetic fields in stratified media

    CERN Document Server

    Li, Kai

    2009-01-01

    Dealing with an important branch of electromagnetic theory with many useful applications in subsurface communication, radar, and geophysical prospecting and diagnostics, this book introduces electromagnetic theory and wave propagation in complex media.

  9. On the mechanism of electromagnetic microwave absorption in superfluid helium

    International Nuclear Information System (INIS)

    Pashitskii, E. A.; Pentegov, V. I.

    2012-01-01

    In experiments on electromagnetic (EM) wave absorption in the microwave range in superfluid (SF) helium [1–3], a narrow EM field absorption line with a width on the order of (20–200) kHz was observed against the background of a wide absorption band with a width of 30–40 GHz at frequencies f 0 ≈ 110–180 GHz corresponding to the roton gap energy Δ r (T) in the temperature range 1.4–2.2 K. Using the so-called flexoelectric mechanism of polarization of helium atoms ( 4 He) in the presence of density gradients in SF helium (HeII), we show that nonresonance microwave absorption in the frequency range 170–200 GHz can be due to the existence of time-varying local density gradients produced by roton excitations in the bulk HeII. The absorption bandwidth is determined by the roton-roton scattering time in an equilibrium Boltzmann gas of rotons, which is t r-r ≈ 3.4 × 10 −11 s at T = 1.4 K and decreases upon heating. We propose that the anomalously narrow microwave resonance absorption line in HeII at the roton frequency f 0 (T) = Δr(T)/2πħ appears due to the following two factors: (i) the discrete structure of the spectrum of the surface EM resonator modes in the form of a periodic sequence of narrow peaks and (ii) the presence of a stationary dipole layer in HeII near the resonator surface, which forms due to polarization of 4 He atoms under the action of the density gradient associated with the vanishing of the density of the SF component at the solid wall. For this reason, the relaxation of nonequilibrium rotons generated in such a surface dipole layer is strongly suppressed, and the shape and width of the microwave resonance absorption line are determined by the roton density of states, which has a sharp peak at the edge of the roton gap in the case of weak dissipation. The effective dipole moments of rotons in the dipole layer can be directed either along or across the normal to the resonator surface, which explains the experimentally observed

  10. The Spectrum of the Universe.

    Science.gov (United States)

    Hill, Ryley; Masui, Kiyoshi W; Scott, Douglas

    2018-05-01

    Cosmic background (CB) radiation, encompassing the sum of emission from all sources outside our own Milky Way galaxy across the entire electromagnetic spectrum, is a fundamental phenomenon in observational cosmology. Many experiments have been conceived to measure it (or its constituents) since the extragalactic Universe was first discovered; in addition to estimating the bulk (cosmic monopole) spectrum, directional variations have also been detected over a wide range of wavelengths. Here we gather the most recent of these measurements and discuss the current status of our understanding of the CB from radio to γ-ray energies. Using available data in the literature, we piece together the sky-averaged intensity spectrum and discuss the emission processes responsible for what is observed. We examine the effect of perturbations to the continuum spectrum from atomic and molecular line processes and comment on the detectability of these signals. We also discuss how one could, in principle, obtain a complete census of the CB by measuring the full spectrum of each spherical harmonic expansion coefficient. This set of spectra of multipole moments effectively encodes the entire statistical history of nuclear, atomic, and molecular processes in the Universe.

  11. Low frequency electromagnetic field sensor

    International Nuclear Information System (INIS)

    Zhu Min; Zhou Yan; He Yicheng; Zheng Zhenxing; Liu Sunkun

    2000-01-01

    The measurement technique of low frequency electromagnetic field is reported. According to this principle, the authors have designed a sensor, which is used to measure the natural electromagnetic field, SLEMP and electromagnetic signals generated by some explosions. The frequency band of this sensor is from 0.08 Hz to 2 MHz

  12. Optical electromagnetic radiation detector

    International Nuclear Information System (INIS)

    Miceli, W. J.; Ludman, J. E.

    1985-01-01

    An optical electromagnetic radiation detector having a probe for receiving nearby electromagnetic radiation. The probe includes a loop antenna connected to a pair of transparent electrodes deposited on the end surfaces of an electro-optic Fabry-Perot interferometer. When the loop antenna picks up the presence of electromagnetic radiation, a voltage will be developed across the crystal of the electro-optic Fabry-Perot interferometer thereby changing the optical length of the interferometer. A beam of light from a remote location is transmitted through an optical fiber onto the Fabry-Perot interferometer. The change in optical length of the Fabry-Perot interferometer alters the intensity of the beam of light as it is reflected from the Fabry-Perot interferometer back through the optical fiber to the remote location. A beamsplitter directs this reflected beam of light onto an intensity detector in order to provide an output indicative of the variations in intensity. The variations in intensity are directly related to the strength of the electromagnetic radiation received by the loop antenna

  13. Electromagnetic structure of nuclei

    International Nuclear Information System (INIS)

    Arnold, R.G.

    1986-07-01

    A brief review is given of selected topics in the electromagnetic structure of nucleons and nuclei, including nucleon form factors from both quantum chromodynamics and electron scattering data, measurements of the deuteron and triton form factors, quasi-elastic scattering, and the EMC effect. 47 refs., 13 figs

  14. Introduction to electromagnetic compatibility

    Science.gov (United States)

    Paul, Clayton R.

    A formal and extensive treatment of electromagnetic compatibility (EMC) is presented. Basic principles are reviewed in detail, including reasons for EMC in electronic design. Also discussed are: nonideal behavior of components, signal spectra, radiated emission and susceptibility, conducted emissions and susceptibility, crosstalk, shielding, electrostatic discharge, and system design for EMC.

  15. Simple Superconducting "Permanent" Electromagnet

    Science.gov (United States)

    Israelson, Ulf E.; Strayer, Donald M.

    1992-01-01

    Proposed short tube of high-temperature-superconducting material like YBa2Cu3O7 acts as strong electromagnet that flows as long as magnetic field remains below critical value and temperature of cylinder maintained sufficiently below superconducting-transition temperature. Design exploits maximally anisotropy of high-temperature-superconducting material.

  16. Equivalence principles and electromagnetism

    Science.gov (United States)

    Ni, W.-T.

    1977-01-01

    The implications of the weak equivalence principles are investigated in detail for electromagnetic systems in a general framework. In particular, it is shown that the universality of free-fall trajectories (Galileo weak equivalence principle) does not imply the validity of the Einstein equivalence principle. However, the Galileo principle plus the universality of free-fall rotation states does imply the Einstein principle.

  17. Nanofocusing of electromagnetic radiation

    DEFF Research Database (Denmark)

    Gramotnev, D. K.; Bozhevolnyi, Sergey I.

    2014-01-01

    Nanofocusing of electromagnetic radiation, that is, reducing the cross sections of propagating optical modes far beyond the diffraction limit in dielectric media, can be achieved in tapered metal-dielectric waveguides that support surface plasmon-polariton modes. Although the main principles...

  18. Electromagnetism and Gravitation

    OpenAIRE

    Dalton, Kenneth

    1995-01-01

    The classical concept of "mass density" is not fundamental to the quantum theory of matter. Therefore, mass density cannot be the source of gravitation. Here, we treat electromagnetic energy, momentum, and stress as its source. The resulting theory predicts that the gravitational potential near any charged elementary particle is many orders of magnitude greater than the Newtonian value.

  19. Electromagnetic distance measurement

    CERN Document Server

    1967-01-01

    This book brings together the work of forty-eight geodesists from twenty-five countries. They discuss various new electromagnetic distance measurement (EDM) instruments - among them the Tellurometer, Geodimeter, and air- and satellite-borne systems - and investigate the complex sources of error.

  20. Faraday: Father of Electromagnetism

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 3. Faraday: Father of Electromagnetism. S V Bhat. General Article Volume 7 Issue 3 March 2002 pp 46-50. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/007/03/0046-0050. Keywords. Faraday ...

  1. Electromagnetic radiation detector

    Science.gov (United States)

    Benson, Jay L.; Hansen, Gordon J.

    1976-01-01

    An electromagnetic radiation detector including a collimating window, a cathode member having a photoelectric emissive material surface angularly disposed to said window whereby radiation is impinged thereon at acute angles, an anode, separated from the cathode member by an evacuated space, for collecting photoelectrons emitted from the emissive cathode surface, and a negatively biased, high transmissive grid disposed between the cathode member and anode.

  2. Gauge theory of weak, electromagnetic and dual electromagnetic interactions

    International Nuclear Information System (INIS)

    Soln, J.

    1980-01-01

    An SU 2 x U 1 algebra, in addition to the ordinary electric charge, also establishes the existence of the dual electric charge. This is taken as an indication of the existence of dual electromagnetic interactions in nature. Here, the unification of weak, electromagnetic and dual electromagnetic interactions is performed. The Yang-Mills-type group which contains the electromagnetic, dual electromagnetic and weak currents is SUsub(L,2) x U 1 x U' 1 . The masses of vector mesons are generated through the Higgs-Kibble mechanism. A simple consistency requirement suggests that dual electromagnetism and ordinary electromagnetism have the same strengths, leading the theory to a rather good agreement with experiments. (author)

  3. Electromagnetic effects on the self-modulation of nonlinear lower hybrid waves

    International Nuclear Information System (INIS)

    Hsu, P.; Kuehl, H.H.

    1983-01-01

    Electromagnetic effects on the self-modulation of nonlinear lower hybrid waves in an inhomogeneous plasma are studied for both broad and narrow spectrum excitations. For broad spectrum excitation, the complex modified Korteweg--de Vries equation is modified by two additional terms due to the electromagnetic correction and inhomogeneity. Numerical solutions of this equation for typical tokamak parameters show that these terms suppress soliton formation. For narrow spectrum excitation, the electromagnetic correction produces an additional dispersive term in the differential equation governing the wave envelope. This term opposes thermal dispersion, resulting in significant self-modulation. Numerical solutions show constriction and splitting of the envelope as well as spreading of the Fourier spectrum

  4. Therapeutic possibilities of electromagnetic radiation of very high frequency

    OpenAIRE

    Chwaleba, Augustyn; Jatsunenko, Anatoly; Kamkov, V.; Szczurko, Jan; Szmitkowski, Józef; Yatsunenko, Sergey; Wilczkowski, Stefan

    2012-01-01

    Virtually the entire spectrum of electromagnetic radiation is applied in medicine, with the fact tha t the radiation in the frequency band from 30 GHz to 300 GHz has been used recently. The authors developed (and continue to improve) the therapeutic method that uses electromagnetic fields of very high frequency (vhf) in the band from 40 GHz to 70 GHz and sublow intensity the power flux density does not exceed 1 μW / cm ². This field acts informationally on cells, causing the reactivation proc...

  5. Computational Electronics and Electromagnetics

    Energy Technology Data Exchange (ETDEWEB)

    DeFord, J.F.

    1993-03-01

    The Computational Electronics and Electromagnetics thrust area is a focal point for computer modeling activities in electronics and electromagnetics in the Electronics Engineering Department of Lawrence Livermore National Laboratory (LLNL). Traditionally, they have focused their efforts in technical areas of importance to existing and developing LLNL programs, and this continues to form the basis for much of their research. A relatively new and increasingly important emphasis for the thrust area is the formation of partnerships with industry and the application of their simulation technology and expertise to the solution of problems faced by industry. The activities of the thrust area fall into three broad categories: (1) the development of theoretical and computational models of electronic and electromagnetic phenomena, (2) the development of useful and robust software tools based on these models, and (3) the application of these tools to programmatic and industrial problems. In FY-92, they worked on projects in all of the areas outlined above. The object of their work on numerical electromagnetic algorithms continues to be the improvement of time-domain algorithms for electromagnetic simulation on unstructured conforming grids. The thrust area is also investigating various technologies for conforming-grid mesh generation to simplify the application of their advanced field solvers to design problems involving complicated geometries. They are developing a major code suite based on the three-dimensional (3-D), conforming-grid, time-domain code DSI3D. They continue to maintain and distribute the 3-D, finite-difference time-domain (FDTD) code TSAR, which is installed at several dozen university, government, and industry sites.

  6. Radio Frequency Electromagnetic Radiation From Streamer Collisions

    Science.gov (United States)

    Luque, Alejandro

    2017-10-01

    We present a full electromagnetic model of streamer propagation where the Maxwell equations are solved self-consistently together with electron transport and reactions including photoionization. We apply this model to the collision of counter-propagating streamers in gaps tens of centimeters wide and with large potential differences of hundreds of kilovolts. Our results show that streamer collisions emit electromagnetic pulses that, at atmospheric pressure, dominate the radio frequency spectrum of an extended corona in the range from about 100 MHz to a few gigahertz. We also investigate the fast penetration, after a collision, of electromagnetic fields into the streamer heads and show that these fields are capable of accelerating electrons up to about 100 keV. By substantiating the link between X-rays and high-frequency radio emissions and by describing a mechanism for the early acceleration of runaway electrons, our results support the hypothesis that streamer collisions are essential precursors of high-energy processes in electric discharges.

  7. Radio Frequency Electromagnetic Radiation From Streamer Collisions.

    Science.gov (United States)

    Luque, Alejandro

    2017-10-16

    We present a full electromagnetic model of streamer propagation where the Maxwell equations are solved self-consistently together with electron transport and reactions including photoionization. We apply this model to the collision of counter-propagating streamers in gaps tens of centimeters wide and with large potential differences of hundreds of kilovolts. Our results show that streamer collisions emit electromagnetic pulses that, at atmospheric pressure, dominate the radio frequency spectrum of an extended corona in the range from about 100 MHz to a few gigahertz. We also investigate the fast penetration, after a collision, of electromagnetic fields into the streamer heads and show that these fields are capable of accelerating electrons up to about 100 keV. By substantiating the link between X-rays and high-frequency radio emissions and by describing a mechanism for the early acceleration of runaway electrons, our results support the hypothesis that streamer collisions are essential precursors of high-energy processes in electric discharges.

  8. Wave propagation in electromagnetic media

    International Nuclear Information System (INIS)

    Davis, J.L.

    1990-01-01

    This book is concerned with wave propagation in reacting media, specifically in electromagnetic materials. An account is presented of the mathematical methods of wave phenomena in electromagnetic materials. The author presents the theory of time-varying electromagnetic fields, which involves a discussion of Faraday's laws, Maxwell's equations and their application to electromagnetic wave propagation under a variety of conditions. The author gives a discussion of magnetohydrodynamics and plasma physics. Chapters are included on quantum mechanics and the theory of relativity. The mathematical foundation of electromagnetic waves vis a vis partial differential equations is discussed

  9. Correction of stress-depended changes of glucoproteid platelet receptors activity by electromagnetic radiation of terahertz range

    Directory of Open Access Journals (Sweden)

    V.F. Kirichuk

    2010-09-01

    Full Text Available The research goal is correction of stress-depended changes of glucoproteid (Gp platelet receptors activity by electromagnetic radiation of terahertz range. Influence of electromagnetic waves of terahertz range at the frequency of molecular spectrum of radiation and absorption of nitrogen oxide on lectin-induced platelet aggregation of white rats in the stressed condition was investigated

  10. Electromagnetic scattering from large steady breaking waves

    Energy Technology Data Exchange (ETDEWEB)

    Coakley, D.B.; Haldeman, P.M.; Morgan, D.G.; Nicolas, K.R.; Penndorf, D.R.; Wetzel, L.B.; Weller, C.S. [David Taylor Model Basin, Naval Surface Warfare Center Carderock Div., West Bethesda, MD (United States)

    2001-05-01

    A submerged hydrofoil generated large steady breaking waves of 0.3 m and 0.4 m height in a circulating water channel. We measured water fraction in the breakers with conductivity probes. We observed the radar cross-section of the breakers at X-band with a pulsed step-frequency instrumentation radar with high spatial resolution in the downstream direction. The normalized radar cross-section increases with increasing elevation angle of observation for both vertical and horizontal polarization. This variation is consistent with a simple interpretation of the breaking wave as a diffuse (Lambertian) surface. However, the observed sizes and shapes of fluid elements in the breakers clearly show that construction of a theory for electromagnetic scattering from first principles will be challenging. We also obtained the velocity spectrum of the scattering features within the breakers. This spectrum indicates that slower moving small liquid elements rather than the faster moving large disturbances are responsible for most of the electromagnetic scattering. (orig.)

  11. Design, Modeling, and Measurement of a Metamaterial Electromagnetic Field Concentrator

    Science.gov (United States)

    2012-03-22

    9 II. Theory ...existence of positive and negative charges and showed that unlike charges attract while like charges repel. In 1820, Hans Christian Oersted showed that a...electromagnetics occurred when Scottish scientist James Maxwell synthesized a set of four vector equations by uniting the theories of his contemporaries [69

  12. 08 What can we Learn from the Electromagnetic Spectrum?

    Indian Academy of Sciences (India)

    How much Flour should you Pack in a 1 kg. Packet: Use of a Gaussian Model. T Krishnan and L Shankar Ram 57. Project Ufescape - 11: Hunter Plants. Dipanian Ghosh 64. Brownian Motion: Theory and Experiment. A Simple Classroom Measurement of the. Diffusion Coefficient. Kasluri Basu and Kopinio/ Baishya 71.

  13. Calibration of Star Formation Rates Across the Electromagnetic Spectrum

    Science.gov (United States)

    Cardiff, Ann H.

    2011-01-01

    Measuring and mapping star-forming activity in galaxies is a key element for our understanding of their broad- band spectra, and their structure and evolution in our local, as well as the high-redshift Universe. The main tool we use for these measurements is the observed luminosity in various spectral lines and/or continuum bands. However, the available star-formation rate (SFR) indicators are often discrepant and subject to physical biases and calibration uncertainties. We are organizing a special session at the 2012 IAU General Assembly in Beijing, China (August 20-31, 2012) in order to bring together theoreticians and observers working in different contexts of star-formation to discuss the status of current SFR indicators, to identify open issues and to define a strategic framework for their resolution. The is an ideal time to synthesize information from the current golden era of space astrophysics and still have influence on the upcoming missions that will broaden our view of star-formation. We will be including high-energy constraints on SFR in the program and encourage participation from the high energy astrophysics community.

  14. Archaeology of active galaxies across the electromagnetic spectrum

    NARCIS (Netherlands)

    Morganti, Raffaella

    2017-01-01

    Analytical and numerical galaxy-formation models indicate that active galactic nuclei (AGNs) likely play a prominent role in the formation and evolution of galaxies. However, quantifying this effect requires knowledge of how the nuclear activity proceeds throughout the life of a galaxy, whether it

  15. The Supercritical Pile Model: Prompt Emission Across the Electromagnetic Spectrum

    Science.gov (United States)

    Kazanas, Demos; Mastichiadis, A.

    2008-01-01

    The "Supercritical Pile" GRB model is an economical model that provides the dissipation necessary to convert explosively the energy stored in relativistic protons in the blast wave of a GRB into radiation; at the same time it produces spectra whose luminosity peaks at 1 MeV in the lab frame, the result of the kinematics of the proton-photon - pair production reaction that effects the conversion of proton energy to radiation. We outline the fundamental notions behind the "Supercritical Pile" model and discuss the resulting spectra of the prompt emission from optical to gamma-ray energies of order Gamma^2 m_ec^2, (Gamma is the Lorentz factor of the blast wave) present even in the absence of an accelerated particle distribution and compare our results to bursts that cover this entire energy range. Particular emphasis is given on the emission at the GLAST energy range both in the prompt and the afterglow stages of the burst.

  16. What can we Learn from the Electromagnetic Spectrum?

    Indian Academy of Sciences (India)

    sphere and the atmospheric windows, and celestial objects seen through optical and radio telescopes is also provided. ... Most objects scatter visible light that enters through the irises of our eyes, falls on our ... that was connected to a galvanometer (Figure 1). If the magnet was held stationary near the coil, no current in the ...

  17. The KLOE electromagnetic calorimeter

    International Nuclear Information System (INIS)

    Adinolfi, M.; Ambrosino, F.; Antonelli, A.; Antonelli, M.; Anulli, F.; Barbiellini, G.; Bencivenni, G.; Bertolucci, S.; Bini, C.; Bloise, C.; Bocci, V.; Bossi, F.; Branchini, P.; Cabibbo, G.; Caloi, R.; Campana, P.; Casarsa, M.; Cataldi, G.; Ceradini, F.; Cervelli, F.; Ciambrone, P.; De Lucia, E.; De Simone, P.; De Zorzi, G.; Dell'Agnello, S.; Denig, A.; Di Domenico, A.; Di Donato, C.; Di Falco, S.; Doria, A.; Erriquez, O.; Farilla, A.; Ferrari, A.; Ferrer, M.L.; Finocchiaro, G.; Forti, C.; Franceschi, A.; Franzini, P.; Gao, M.L.; Gatti, C.; Gauzzi, P.; Giannasi, A.; Giovannella, S.; Graziani, E.; Han, H.G.; Han, S.W.; Huang, X.; Incagli, M.; Ingrosso, L.; Keeble, L.; Kim, W.; Kuo, C.; Lanfranchi, G.; Lee-Franzini, J.; Lomtadze, T.; Mao, C.S.; Martemianov, M.; Mei, W.; Messi, R.; Miscetti, S.; Moccia, S.; Moulson, M.; Mueller, S.; Murtas, F.; Pacciani, L.; Palomba, M.; Palutan, M.; Pasqualucci, E.; Passalacqua, L.; Passeri, A.; Picca, D.; Pirozzi, G.; Pontecorvo, L.; Primavera, M.; Santangelo, P.; Santovetti, E.; Saracino, G.; Schamberger, R.D.; Sciascia, B.; Scuri, F.; Sfiligoi, I.; Silano, P.; Spadaro, T.; Spiriti, E.; Tortora, L.; Valente, P.; Valeriani, B.; Venanzoni, G.; Ventura, A.; Woelfle, S.; Wu, Y.; Xie, Y.G.; Zema, P.F.; Zhang, C.D.; Zhang, J.Q.; Zhao, P.P.

    2002-01-01

    The KLOE detector was designed primarily for the study of CP violation in neutral kaon decays at DAPHINE, the Frascati phi-factory. The detector consists of a tracker and an electromagnetic calorimeter. A lead-scintillating-fiber sampling calorimeter satisfies best the requirements of the experiment, providing adequate energy resolution and superior timing accuracy. We describe in the following the construction of the calorimeter, its calibration and how the calorimeter information is used to obtain energy, point of entry and time of the arrival of photons, electrons and charged particles. With e + e - collision data at DAPHINE for an integrated luminosity of some 2 pb -1 we find for electromagnetic showers, an energy resolution of 5.7%/√E(GeV) and a time resolution of 54/√E(GeV) ps. We also present a measurement of efficiency for low energy photons

  18. The KLOE electromagnetic calorimeter

    CERN Document Server

    Adinolfi, M; Antonelli, A; Antonelli, M; Anulli, F; Barbiellini, G; Bencivenni, G; Bertolucci, Sergio; Bini, C; Bloise, C; Bocci, V; Bossi, F; Branchini, P; Cabibbo, G; Caloi, R; Campana, P; Casarsa, M; Cataldi, G; Ceradini, F; Cervelli, F; Ciambrone, P; De Lucia, E; De Simone, P; De Zorzi, G; Dell'Agnello, S; Denig, A; Di Domenico, A; Di Donato, C; Di Falco, S; Doria, A; Erriquez, O; Farilla, A; Ferrari, A; Ferrer, M L; Finocchiaro, G; Forti, C; Franceschi, A; Franzini, P; Gao, M L; Gatti, C; Gauzzi, P; Giannasi, A; Giovannella, S; Graziani, E; Han, H G; Han, S W; Huang, X; Incagli, M; Ingrosso, L; Keeble, L; Kim, W; Kuo, C; Lanfranchi, G; Lee-Franzini, J; Lomtadze, T A; Mao Chen Sheng; Martemyanov, M; Mei, W; Messi, R; Miscetti, S; Moccia, S; Moulson, M; Murtas, F; Müller, S; Pacciani, L; Palomba, M; Palutan, M; Pasqualucci, E; Passalacqua, L; Passeri, A; Picca, D; Pirozzi, G; Pontecorvo, L; Primavera, M; Santangelo, P; Santovetti, E; Saracino, G; Schamberger, R D; Sciascia, B; Scuri, F; Sfiligoi, I; Silano, P; Spadaro, T; Spiriti, E; Tortora, L; Valente, P; Valeriani, B; Venanzoni, G; Ventura, A; Wu, Y; Wölfle, S; Xie, Y G; Zema, P F; Zhang, C D; Zhang, J Q; Zhao, P P

    2002-01-01

    The KLOE detector was designed primarily for the study of CP violation in neutral kaon decays at DAPHINE, the Frascati phi-factory. The detector consists of a tracker and an electromagnetic calorimeter. A lead-scintillating-fiber sampling calorimeter satisfies best the requirements of the experiment, providing adequate energy resolution and superior timing accuracy. We describe in the following the construction of the calorimeter, its calibration and how the calorimeter information is used to obtain energy, point of entry and time of the arrival of photons, electrons and charged particles. With e sup + e sup - collision data at DAPHINE for an integrated luminosity of some 2 pb sup - sup 1 we find for electromagnetic showers, an energy resolution of 5.7%/sq root E(GeV) and a time resolution of 54/sq root E(GeV) ps. We also present a measurement of efficiency for low energy photons.

  19. Computational electronics and electromagnetics

    International Nuclear Information System (INIS)

    Shang, C C

    1998-01-01

    The Computational Electronics and Electromagnetics thrust area serves as the focal point for Engineering R and D activities for developing computer-based design and analysis tools. Representative applications include design of particle accelerator cells and beamline components; design of transmission line components; engineering analysis and design of high-power (optical and microwave) components; photonics and optoelectronics circuit design; electromagnetic susceptibility analysis; and antenna synthesis. The FY-97 effort focuses on development and validation of (1) accelerator design codes; (2) 3-D massively parallel, time-dependent EM codes; (3) material models; (4) coupling and application of engineering tools for analysis and design of high-power components; and (5) development of beam control algorithms coupled to beam transport physics codes. These efforts are in association with technology development in the power conversion, nondestructive evaluation, and microtechnology areas. The efforts complement technology development in Lawrence Livermore National programs

  20. Electromagnetic fields and waves

    CERN Document Server

    Iskander, Magdy F

    2013-01-01

    The latest edition of Electromagnetic Fields and Waves retains an authoritative, balanced approach, in-depth coverage, extensive analysis, and use of computational techniques to provide a complete understanding of electromagnetic—important to all electrical engineering students. An essential feature of this innovative text is the early introduction of Maxwell's equations, together with the quantifying experimental observations made by the pioneers who discovered electromagnetics. This approach directly links the mathematical relations in Maxwell's equations to real experiments and facilitates a fundamental understanding of wave propagation and use in modern practical applications, especially in today's wireless world. New and expanded topics include the conceptual relationship between Coulomb's law and Gauss's law for calculating electric fields, the relationship between Biot-Savart's and Ampere's laws and their use in calculating magnetic fields from current sources, the development of Faraday's law from e...

  1. Classical Electromagnetic Theory

    CERN Document Server

    VanderLinde, Jack

    2004-01-01

    This book is a self contained course in electromagnetic theory suitable for senior physics and electrical engineering students as well as graduate students whose past has not prepared them well for books such as Jackson or Landau and Lifschitz. The text is liberally sprinkled with worked examples illustrating the application of the theory to various physical problems. In this new edition I have endeavored to improve the accuracy and readability, added and further clarified examples, added sections on Schwarz-Christoffel mappings, and to make the book more self sufficient added an appendix on orthogonal function expansions and added the derivation of Bessel functions and Legendre polynomials as well as derivation of their generating functions. The number of student exercises has been increased by 45 over the previous edition. This book stresses the unity of electromagnetic theory with electric and magnetic fields developed in parallel. SI units are used throughout and considerable use is made of tensor notatio...

  2. Introduction to electromagnetic theory

    CERN Document Server

    Owen, George E

    2003-01-01

    A direct, stimulating approach to electromagnetic theory, this text employs matrices and matrix methods for the simple development of broad theorems. The author uses vector representation throughout the book, with numerous applications of Poisson's equation and the Laplace equation (the latter occurring in both electronics and magnetic media). Contents include the electrostatics of point charges, distributions of charge, conductors and dielectrics, currents and circuits, and the Lorentz force and the magnetic field. Additional topics comprise the magnetic field of steady currents, induced ele

  3. Fractal Electromagnetic Showers

    OpenAIRE

    Anchordoqui, L. A.; Kirasirova, M.; McCauley, T. P.; Paul, T.; Reucroft, S.; Swain, J. D.

    2000-01-01

    We study the self-similar structure of electromagnetic showers and introduce the notion of the fractal dimension of a shower. Studies underway of showers in various materials and at various energies are presented, and the range over which the fractal scaling behaviour is observed is discussed. Applications to fast shower simulations and identification, particularly in the context of extensive air showers, are also discussed.

  4. The KLOE electromagnetic calorimeter

    International Nuclear Information System (INIS)

    Adinolfi, M.; Ambrosino, F.; Antonelli, A.; Antonelli, M.; Anulli, F.; Barbiellini, G.; Bencivenni, G.; Bertolucci, S.; Bini, C.; Bloise, C.; Bocci, V.; Bossi, F.; Branchini, P.; Cabibbo, G.; Caloi, R.; Campana, P.; Casarsa, M.; Cataldi, G.; Ceradini, F.; Cervelli, F.; Ciambrone, P.; De Lucia, E.; De Simone, P.; De Zorzi, G.; Dell'Agnello, S.; Denig, A.; Di Domenico, A.; Di Donato, C.; Di Falco, S.; Doria, A.; Erriquez, O.; Farilla, A.; Ferrari, A.; Ferrer, M.L.; Finocchiaro, G.; Forti, C.; Franceschi, A.; Franzini, P.; Gao, M.L.; Gatti, C.; Gauzzi, P.; Giannasi, A.; Giovannella, S.; Graziani, E.; Han, H.G.; Han, S.W.; Huang, X.; Incagli, M.; Ingrosso, L.; Keeble, L.; Kim, W.; Kuo, C.; Lanfranchi, G.; Lee-Franzini, J.; Lomtadze, T.; Mao, C.S.; Martemianov, M.; Mei, W.; Messi, R.; Miscetti, S.; Moccia, S.; Moulson, M.; Mueller, S.; Murtas, F.; Pacciani, L.; Palomba, M.; Palutan, M.; Pasqualucci, E.; Passalacqua, L.; Passeri, A.; Picca, D.; Pirozzi, G.; Pontecorvo, L.; Primavera, M.; Santangelo, P.; Santovetti, E.; Saracino, G.; Schamberger, R.D.; Sciascia, B.; Scuri, F.; Sfiligoi, I.; Silano, P.; Spadaro, T.; Spiriti, E.; Tortora, L.; Valente, P.; Valeriani, B.; Venanzoni, G.; Ventura, A.; Woelfle, S.; Wu, Y.; Xie, Y.G.; Zema, P.F.; Zhang, C.D.; Zhang, J.Q.; Zhao, P.P.

    2002-01-01

    The KLOE calorimeter is a fine lead-scintillating fiber sampling calorimeter. We describe in the following the calibration procedures and the calorimeter performances obtained after 3 years of data taking. We get an energy resolution for electromagnetic showers of 5.4%/√E(GeV) and a time resolution of 56 ps/√E(GeV). We also present a measurement of efficiency for low-energy photons

  5. Electromagnetic Hammer for Metalworking

    Science.gov (United States)

    Anderson, S. A.; Brunet, F.; Dowd, A.; Durham, R.; Ezell, J.; Gorr, G.; Hartley, D.; Jackson, F.; Marchand, J.; Macfarlane, W.; hide

    1986-01-01

    High eddy currents apply pressure for cold-forming. Coil housing constructed for mechanical strength to hold coil against magnetic force, to maintain electrical contact with coil ends, and to maintain insulation between coil turns. Drilled holes placed to facilitate release of bubbles during potting. In contrast with mechanical hammers, electromagnetic hammer requires no dynamic material contact with workpiece; consequently, produces almost no change in metal grain structure.

  6. Static electromagnetic field

    International Nuclear Information System (INIS)

    Accioly, A.J.; Vaidya, A.N.; Som, M.M.

    1983-01-01

    The problem of static electromagnetic field admitting a time-like and two space-like Killing vectors is completely solved. The solutions contain plane-symmetric solution as a special case. The solutions can be transformed into solutions describing the gravitational field of a charge line-mass by suitably introducing weyl's canonical coordinates. Further, these solutions are true generalizations of Kasner solutions. (Author) [pt

  7. Aircraft Electromagnetic Compatibility.

    Science.gov (United States)

    1987-06-01

    report) 20. Securty Clasif . (of this page) 21. No. of Pages 22. Price FORM 00 For ale by the National Technical Information Service, Springfield...34 the plane with the steering column having steel cable strung from the column to hydraulic actuators which then amplify the force and operate control...surfaces (figure 2.1-14). The engine throttle is operated by a steel cable. A steel cable does not recognize electromagnetic interference. Navigation

  8. Electromagnetic polarizabilities of hadrons

    International Nuclear Information System (INIS)

    Friar, J.L.

    1988-01-01

    Electromagnetic polarizabilities of hadrons are reviewed, after a discussion of classical analogues. Differences between relativistic and non-relativistic approaches can lead to conflicts with conventional nuclear physics sum rules and calculational techniques. The nucleon polarizabilities are discussed in the context of the non-relativistic valence quark model, which provides a good qualitative description. The recently measured pion polarizabilities are discussed in the context of chiral symmetry and quark-loop models. 58 refs., 5 figs

  9. Electromagnetism and interconnections

    CERN Document Server

    Charruau, S

    2009-01-01

    This book covers the theoretical problems of modeling electrical behavior of the interconnections encountered in everyday electronic products. The coverage shows the theoretical tools of waveform prediction at work in the design of a complex and high-speed digital electronic system. Scientists, research engineers, and postgraduate students interested in electromagnetism, microwave theory, electrical engineering, or the development of simulation tools software for high speed electronic system design automation will find this book an illuminating resource.

  10. Electromagnetic force on a brane

    International Nuclear Information System (INIS)

    Li, Li-Xin

    2016-01-01

    A fundamental assumption in the theory of brane world is that all matter and radiation are confined on the four-dimensional brane and only gravitons can propagate in the five-dimensional bulk spacetime. The brane world theory did not provide an explanation for the existence of electromagnetic fields and the origin of the electromagnetic field equation. In this paper, we propose a model for explaining the existence of electromagnetic fields on a brane and deriving the electromagnetic field equation. Similar to the case in Kaluza–Klein theory, we find that electromagnetic fields and the electromagnetic field equation can be derived from the five-dimensional Einstein field equation. However, the derived electromagnetic field equation differs from the Maxwell equation by containing a term with the electromagnetic potential vector coupled to the spacetime curvature tensor. So it can be considered as generalization of the Maxwell equation in a curved spacetime. The gravitational field equation on the brane is also derived with the stress–energy tensor for electromagnetic fields explicitly included and the Weyl tensor term explicitly expressed with matter fields and their derivatives in the direction of the extra-dimension. The model proposed in the paper can be regarded as unification of electromagnetic and gravitational interactions in the framework of brane world theory. (paper)

  11. Coherent hybrid electromagnetic field imaging

    Science.gov (United States)

    Cooke, Bradly J [Jemez Springs, NM; Guenther, David C [Los Alamos, NM

    2008-08-26

    An apparatus and corresponding method for coherent hybrid electromagnetic field imaging of a target, where an energy source is used to generate a propagating electromagnetic beam, an electromagnetic beam splitting means to split the beam into two or more coherently matched beams of about equal amplitude, and where the spatial and temporal self-coherence between each two or more coherently matched beams is preserved. Two or more differential modulation means are employed to modulate each two or more coherently matched beams with a time-varying polarization, frequency, phase, and amplitude signal. An electromagnetic beam combining means is used to coherently combine said two or more coherently matched beams into a coherent electromagnetic beam. One or more electromagnetic beam controlling means are used for collimating, guiding, or focusing the coherent electromagnetic beam. One or more apertures are used for transmitting and receiving the coherent electromagnetic beam to and from the target. A receiver is used that is capable of square-law detection of the coherent electromagnetic beam. A waveform generator is used that is capable of generation and control of time-varying polarization, frequency, phase, or amplitude modulation waveforms and sequences. A means of synchronizing time varying waveform is used between the energy source and the receiver. Finally, a means of displaying the images created by the interaction of the coherent electromagnetic beam with target is employed.

  12. Gray matter reduction in the vermis and CRUS-II is associated with social and interaction deficits in low-functioning children with autistic spectrum disorders: a VBM-DARTEL Study.

    Science.gov (United States)

    Riva, Daria; Annunziata, Silvia; Contarino, Valeria; Erbetta, Alessandra; Aquino, Domenico; Bulgheroni, Sara

    2013-10-01

    Voxel-based morphometry (VBM) studies have reported abnormalities in brain regions involved in functions that are commonly impaired in autism spectrum disorders (ASD). However, little is known about brain structure anomalies in low-functioning (LF) young children with ASD. A VBM analysis was carried out to assess brain regions involved in ASD LF children, and a multiple regression analysis was used to examine the relationship between regional volume changes and autism symptom measures. Twenty-six LF ASD children (2-10 years) were compared with 21 controls. A VBM-Diffeomorphic Anatomical Registration analysis using Exponentiated Lie algebra (DARTEL) was used to evaluate gray matter (GM) and white matter alterations, covaried with Intelligence Quotient, age, and total brain volume. The resulting altered regions were correlated with Autism Diagnostic Interview (ADI)-Revised and Autism Diagnostic Observation Schedule (ADOS)-Generic scores. GM bilateral reduction was noted in the cerebellum (Crus II and vermis) and in the hippocampi in ASD group. GM reduction was also detected in the inferior and superior frontal gyri, in the occipital medial and superior gyri, and in the inferior temporal gyrus of the left cerebral hemisphere. In the right hemisphere, GM reduction was found in the post-central cortex and in the occipital inferior gyrus. Multiple regression analysis showed a correlation between alterations in GM volume in the cerebellum (Crus II and vermis) and ADI-communication and ADOS-total (communication and interaction) scores. These findings seem to confirm that the cerebellum is involved in integrating and regulating emotional and cognitive functions which are impaired in ASD.

  13. The absence of distortion in the cosmic microwave background spectrum and superconducting cosmic strings

    International Nuclear Information System (INIS)

    Sanchez, N.; Signore, M.

    1990-01-01

    From the results of recent measurements we place new constraints on superconducting cosmic strings (SCS) and on their cosmological evolution, independently of numerical simulation results. The absence of distortion in the cosmic microwave background radiation (MBR) spectrum recently reported from the preliminary data of the COBE (Cosmic background explorer) satellite, together with the available MBR angular temperature ΔT/T measurements and the latest fast pulsar timings, allow us to obtain (i) the electromagnetic-to-gravitational radiation ratio released by SCS loops, f -2 , (ii) the chemical potential due to SCS, μ 0SCS -3 , (iii) constraints on the loop evolution parameters which we confront to those given by numerical simulations, and (iv) limits on the string parameter Gμ: those obtained from COBE's data (Gμ -6 ) converge to those given by the latest PSR 1937+21 timing. Both limits on Gμ are reduced by an order of magnitude when taking into account numerical simulation results. (orig.)

  14. Fast breeder reactor electromagnetic pump

    International Nuclear Information System (INIS)

    Araseki, Hideo; Murakami, Takahiro

    2008-01-01

    Main pumps circulating sodium in the FBR type reactor have been mechanical types, not electromagnetic pumps. Electromagnetic pump of 1-2 m 3 /min has been used as an auxiliary pump. Large sized electromagnetic pumps such as several hundred m 3 /min have not been commercialized due to technical difficulties with electromagnetic instability and pressure pulsations. This article explained electromagnetic and fluid equations and magnetic Reynolds number related with electromagnetic pumps and numerical analysis of instability characteristics and pressure pulsations and then described applications of the results to FBR system. Magnetic Reynolds number must be chosen less than one with appropriate operating frequency and optimum slip of 0.2-0.4. (T. Tanaka)

  15. Electrodynamics of a hydrogenlike atom in a strong electromagnetic field

    International Nuclear Information System (INIS)

    Kovarskij, V.A.; Perel'man, N.F.

    1974-01-01

    The quasienergy spectrum of the hydrogen atom in strong electromagnetic radiation is studied, the luminescence of the atom under these conditions is considered. It is shown that in a strong field the atom, being even in the ground state, radiates a spectrum of frequencies corresponding to transitions from the ground state into excited states, the strong field photons being involved. The intensity of such a luminescence is basically a non-linear function of the strong field. The exposure of the atom to two strong electromagnetic fields Ω and ω (Ω>>ω) is considered, the Ω coinciding with one of the natural frquencies of the atom. The effct of modulation of the resonance shift for an atomic level by the ω-field strength is predicted. The dependence of Ω-absorption in the ω-field on the statistic properties of the latter is investigated. (author)

  16. Electromagnetic Devices for Stopping Vehicles

    OpenAIRE

    Jan Valouch

    2016-01-01

    An effective way to stop a vehicle is to disrupt the operation of electronic systems using high power electromagnetic pulses, which can be generated using electromagnetic weapons. This article describes the design idea of a stationary generator of electromagnetic pulses that would be useful for stopping vehicles at the entrances to the object, at checkpoints, and in front of sensitive infrastructure. An important aspect of the proposal is the comparison of contemporary devices and systems use...

  17. Rotation invariance of electromagnetic radiation generated by relativistic particles in magnetic fields

    CERN Document Server

    Smolyakov, M N

    2000-01-01

    This paper deals with electromagnetic radiation generated by relativistic particles in arbitrary planar magnetic field (in undulator for example). Magnetic system producing this field is assumed to be planar consisting of permanent magnets. It is shown that there is a special class of magnetic moment rotations in such system while magnetic field is varying but spontaneous radiation spectrum generated by relativistic particles remains the same. This property of electromagnetic radiation can be used in designing new undulators.

  18. Analysis of the fields emitted by mobile communication systems in terms of electromagnetic security

    International Nuclear Information System (INIS)

    Kerimov, E.A.; Abdullayeva, T.M.; Bayramova, Sh.A.; Mardakhayev, A.V.; Khidirov, A.Sh.

    2009-01-01

    The main technical characteristics of digital communication systems of cellular bond are analyzed in this paper.The peculiarities of the electromagnetic fields near the antenna of digital communication systems of cellular bond with frequency, time and code interleaving of subscriber channels.It is shown that it is necessary to pay attention to relative broadbandness of digital signal spectrum on antenna radiation characteristics at carrying out of works on electromagnetic monitoring

  19. Novel Cooperative Spectrum Sensing Methods And Their Limitations

    DEFF Research Database (Denmark)

    Kiilerich Pratas, Nuno

    2012-01-01

    The rapid growth of services offered through wireless communication has as consequence an increase on the demand for electromagnetic radio frequency spectrum, which is a scarce resource, mainly assigned to license holders on a long-term basis for large geographical regions, causing a large portion...... of the spectrum to remain unused for a significant percentage of the time. A new paradigm -- to overcome this apparent spectrum shortage -- that consists of radio devices with the ability to adapt to their spectral environment and are therefore able to make use of the available spectrum in an opportunistic manner...... was put forward, i.e. the Cognitive Radio paradigm. Spectrum sensing is the key mechanism in enabling spectrum awareness in Cognitive Radio. The performance of the spectrum sensing depends on the local channel conditions, such as the multipath, shadowing and the receiver uncertainty issues...

  20. Electromagnetic Devices for Stopping Vehicles

    Directory of Open Access Journals (Sweden)

    Jan Valouch

    2016-10-01

    Full Text Available An effective way to stop a vehicle is to disrupt the operation of electronic systems using high power electromagnetic pulses, which can be generated using electromagnetic weapons. This article describes the design idea of a stationary generator of electromagnetic pulses that would be useful for stopping vehicles at the entrances to the object, at checkpoints, and in front of sensitive infrastructure. An important aspect of the proposal is the comparison of contemporary devices and systems used for stopping vehicles and analysis of the requirements of technical standards for electromagnetic immunity of vehicles.

  1. Electromagnetic fields in biological systems

    National Research Council Canada - National Science Library

    Lin, James C

    2012-01-01

    "Focusing on exposure, induced fields, and absorbed energy, this volume covers the interaction of electromagnetic fields and waves with biological systems, spanning static fields to terahertz waves...

  2. Electromagnetic waves in stratified media

    CERN Document Server

    Wait, James R; Fock, V A; Wait, J R

    2013-01-01

    International Series of Monographs in Electromagnetic Waves, Volume 3: Electromagnetic Waves in Stratified Media provides information pertinent to the electromagnetic waves in media whose properties differ in one particular direction. This book discusses the important feature of the waves that enables communications at global distances. Organized into 13 chapters, this volume begins with an overview of the general analysis for the electromagnetic response of a plane stratified medium comprising of any number of parallel homogeneous layers. This text then explains the reflection of electromagne

  3. Method of moments in electromagnetics

    CERN Document Server

    Gibson, Walton C

    2007-01-01

    Responding to the need for a clear, up-to-date introduction to the field, The Method of Moments in Electromagnetics explores surface integral equations in electromagnetics and presents their numerical solution using the method of moments (MOM) technique. It provides the numerical implementation aspects at a nuts-and-bolts level while discussing integral equations and electromagnetic theory at a higher level. The author covers a range of topics in this area, from the initial underpinnings of the MOM to its current applications. He first reviews the frequency-domain electromagnetic theory and t

  4. International Symposium on Electromagnetic Compatibility, 25th, Arlington, VA, August 23-25, 1983, Symposium Record

    Science.gov (United States)

    Subjects related to electromagnetic compatibility (EMC) analysis are discussed, taking into account forcing terms of line equations for externally excited transmission lines, E-fields over ground, electromagnetic near fields as a function of electrical size, a program for experimental verification of EMC analysis models, random susceptability of an IC 7400 TTL NAND gate, and a comparison of IEMCAP and SEMCAP. Other topics explored are concerned with EMC measurements, spectrum management, the electromagnetic pulse (EMP), a Navy EMC program, measurement systems, filters, EMC design, electromagnetic vulnerability (EMV) assessment of weapon systems, FCC rules and regulations, shielding, and electromagnetic interference (EMI) in communication systems. Attention is also given to nonsinusoidal functions in radar and communications, transients/electrostatic discharge, open field testing, cables and connectors, interference effects of induced and conducted earth current at dc and ELF, test cells, and cable coupling.

  5. Time-of-flight analysis of charge-exchange neutral particles from the TORTUR II plasma

    International Nuclear Information System (INIS)

    Brocken, H.J.B.M.

    1981-10-01

    A disc chopper for time-of-flight analysis of fast neutral particles was constructed for the determination of the ion energy spectrum at lower energies than can be obtained by conventional electro-magnetic analyzers. The method has been applied to the TORTUR II tokamak. The chopper and detection system are described and the measurements are presented. For the interpretation of the results of the measurements a data analysis procedure was developed. The influence of reflections of neutrals at the liner wall showed to be important in the calculations of the neutral density profile at the plasma edge. The neutral energy spectrum in the lower energy range is strongly pronounced by this effect

  6. Electromagnetic Fields Exposure Limits

    Science.gov (United States)

    2018-01-01

    Standard 5-2 Figure 5-3 Graphical Depiction of the IEEE C95.1TM-2005 Pulse RF Standard 5-3 with Thermally -Based Standard Extended Figure 5-4...Electromagnetic Ground Environment STO-TR-HFM-189 ix SLED Stanford Linear Energy Doubler SME Subject-Matter Expert SOH Safety and Occupational Health...as grasping versus touch. ICC will be a secondary project that will be addressed and scheduled as time permits and as laboratories are found to have

  7. Handbook of electromagnetic compatibility

    CERN Document Server

    1995-01-01

    This""know-how""book gives readers a concise understanding of the fundamentals of EMC, from basic mathematical and physical concepts through present, computer-age methods used in analysis, design, and tests. With contributions from leading experts in their fields, the text provides a comprehensive overview. Fortified with information on how to solve potential electromagnetic interference (EMI) problems that may arise in electronic design, practitioners will be betterable to grasp the latest techniques, trends, and applications of this increasingly important engineering discipline.Handbook of E

  8. Introduction to electromagnetic engineering

    CERN Document Server

    Harrington, Roger E

    2003-01-01

    This study of electromagnetic theory introduces students to a broad range of quantities and concepts, imparting the necessary vector analysis and associated mathematics and reinforcing its teachings with several elementary field problems. Based on circuit theory rather than on the classical force-relationship approach, the text uses the theory of electric circuits to provide a system of experiments already familiar to the electrical engineer; a series of field concepts are then introduced as a logical extension of circuit theory. Virtually unobtainable elsewhere, this text was written by a pr

  9. Branch companion modeling for diverse simulation of electromagnetic and electromechanical transients

    Energy Technology Data Exchange (ETDEWEB)

    Shintaku, Rachel; Strunz, Kai [SESAME Laboratory, Department of Electrical Engineering, University of Washington, Seattle (United States)

    2007-09-15

    Simulators of the Electromagnetic Transients Program (EMTP) type are widely used for the study of high-frequency transients in power electric systems. For the study of electromechanical transients, where the main interest is to focus only on deviations from the ac waveform, the EMTP approach is not efficient. In this paper, a branch companion model that is suitable for both electromagnetic and electromechanical transients simulation is proposed. It processes analytic signals whose Fourier spectrum can be shifted in accordance with the objective of the study. The proposed method opens the way for a unified description of electromagnetic and electromechanical transients simulation. (author)

  10. Comparison of neutron spectrum unfolding codes

    International Nuclear Information System (INIS)

    Zijp, W.

    1979-02-01

    This final report contains a set of four ECN-reports. The first is dealing with the comparison of the neutron spectrum unfolding codes CRYSTAL BALL, RFSP-JUL, SAND II and STAY'SL. The other three present the results of calculations about the influence of statistical weights in CRYSTAL BALL, SAND II and RFSP-JUL

  11. Boeing Delta II rocket for FUSE launch arrives at CCAS

    Science.gov (United States)

    1999-01-01

    At Launch Pad 17A, Cape Canaveral Air Station (CCAS), the first stage of a Boeing Delta II rocket is raised for its journey up the launch tower. The rocket is targeted to launch NASA's Far Ultraviolet Spectroscopic Explorer (FUSE), developed by The Johns Hopkins University under contract to Goddard Space Flight Center, Greenbelt, Md. FUSE will investigate the origin and evolution of the lightest elements in the universe, hydrogen and deuterium. In addition, the FUSE satellite will examine the forces and process involved in the evolution of the galaxies, stars and planetary systems by investigating light in the far ultraviolet portion of the electromagnetic spectrum. FUSE is scheduled to be launched June 23 at CCAS.

  12. Metamaterials beyond electromagnetism

    Science.gov (United States)

    Kadic, Muamer; Bückmann, Tiemo; Schittny, Robert; Wegener, Martin

    2013-12-01

    Metamaterials are rationally designed man-made structures composed of functional building blocks that are densely packed into an effective (crystalline) material. While metamaterials are mostly associated with negative refractive indices and invisibility cloaking in electromagnetism or optics, the deceptively simple metamaterial concept also applies to rather different areas such as thermodynamics, classical mechanics (including elastostatics, acoustics, fluid dynamics and elastodynamics), and, in principle, also to quantum mechanics. We review the basic concepts, analogies and differences to electromagnetism, and give an overview on the current state of the art regarding theory and experiment—all from the viewpoint of an experimentalist. This review includes homogeneous metamaterials as well as intentionally inhomogeneous metamaterial architectures designed by coordinate-transformation-based approaches analogous to transformation optics. Examples are laminates, transient thermal cloaks, thermal concentrators and inverters, ‘space-coiling’ metamaterials, anisotropic acoustic metamaterials, acoustic free-space and carpet cloaks, cloaks for gravitational surface waves, auxetic mechanical metamaterials, pentamode metamaterials (‘meta-liquids’), mechanical metamaterials with negative dynamic mass density, negative dynamic bulk modulus, or negative phase velocity, seismic metamaterials, cloaks for flexural waves in thin plates and three-dimensional elastostatic cloaks.

  13. Electromagnetic Field Penetration Studies

    Science.gov (United States)

    Deshpande, M.D.

    2000-01-01

    A numerical method is presented to determine electromagnetic shielding effectiveness of rectangular enclosure with apertures on its wall used for input and output connections, control panels, visual-access windows, ventilation panels, etc. Expressing EM fields in terms of cavity Green's function inside the enclosure and the free space Green's function outside the enclosure, integral equations with aperture tangential electric fields as unknown variables are obtained by enforcing the continuity of tangential electric and magnetic fields across the apertures. Using the Method of Moments, the integral equations are solved for unknown aperture fields. From these aperture fields, the EM field inside a rectangular enclosure due to external electromagnetic sources are determined. Numerical results on electric field shielding of a rectangular cavity with a thin rectangular slot obtained using the present method are compared with the results obtained using simple transmission line technique for code validation. The present technique is applied to determine field penetration inside a Boeing-757 by approximating its passenger cabin as a rectangular cavity filled with a homogeneous medium and its passenger windows by rectangular apertures. Preliminary results for, two windows, one on each side of fuselage were considered. Numerical results for Boeing-757 at frequencies 26 MHz, 171-175 MHz, and 428-432 MHz are presented.

  14. Electro-magnetic flowmeters

    International Nuclear Information System (INIS)

    Dean, S.A.

    1980-01-01

    Full details of the invention are given. A sensing unit assembly for an electromagnetic flux distortion flowmeter for use in liquid metal coolant of a nuclear reactor is described. The assembly comprises coils of electrically insulated conductors each wound on an individual former. The formers and coils are mounted coaxially on a spine to form at least three spaced groups arranged end to end. Each group comprises two secondary coils and an intermediate primary coil. Leads extend along a duct formed in the spine, each lead terminating at a common end. Alternative versions of the assembly are also described. The primary coil leads are connected to an alternating power supply; those for the secondary coils connected to suitable display instrumentation. When liquid metal flows along the conductor the electromagnetic field is disturbed and the induced voltage in the secondary coils is disturbed-(set at zero for no flow); the distortion depends on the rate of flow. When the induced voltage differential of at least two of the groups falls or rises outside a pre-set level a trip signal is initiated to shut down the reactor. (UK)

  15. Metamaterials beyond electromagnetism.

    Science.gov (United States)

    Kadic, Muamer; Bückmann, Tiemo; Schittny, Robert; Wegener, Martin

    2013-12-01

    Metamaterials are rationally designed man-made structures composed of functional building blocks that are densely packed into an effective (crystalline) material. While metamaterials are mostly associated with negative refractive indices and invisibility cloaking in electromagnetism or optics, the deceptively simple metamaterial concept also applies to rather different areas such as thermodynamics, classical mechanics (including elastostatics, acoustics, fluid dynamics and elastodynamics), and, in principle, also to quantum mechanics. We review the basic concepts, analogies and differences to electromagnetism, and give an overview on the current state of the art regarding theory and experiment-all from the viewpoint of an experimentalist. This review includes homogeneous metamaterials as well as intentionally inhomogeneous metamaterial architectures designed by coordinate-transformation-based approaches analogous to transformation optics. Examples are laminates, transient thermal cloaks, thermal concentrators and inverters, 'space-coiling' metamaterials, anisotropic acoustic metamaterials, acoustic free-space and carpet cloaks, cloaks for gravitational surface waves, auxetic mechanical metamaterials, pentamode metamaterials ('meta-liquids'), mechanical metamaterials with negative dynamic mass density, negative dynamic bulk modulus, or negative phase velocity, seismic metamaterials, cloaks for flexural waves in thin plates and three-dimensional elastostatic cloaks.

  16. Knots in electromagnetism

    Science.gov (United States)

    Arrayás, M.; Bouwmeester, D.; Trueba, J. L.

    2017-01-01

    Maxwell equations in vacuum allow for solutions with a non-trivial topology in the electric and magnetic field line configurations at any given moment in time. One example is a space filling congruence of electric and magnetic field lines forming circles lying on the surfaces of nested tori. In this example the electric, magnetic and Poynting vector fields are orthogonal everywhere. As time evolves the electric and magnetic fields expand and deform without changing the topology and energy, while the Poynting vector structure remains unchanged while propagating with the speed of light. The topology is characterized by the concept of helicity of the field configuration. Helicity is an important fundamental concept and for massless fields it is a conserved quantity under conformal transformations. We will review several methods by which linked and knotted electromagnetic (spin-1) fields can be derived. A first method, introduced by A. Rañada, uses the formulation of the Maxwell equations in terms of differential forms combined with the Hopf map from the three-sphere S3 to the two-sphere S2. A second method is based on spinor and twistor theory developed by R. Penrose in which elementary twistor functions correspond to the family of electromagnetic torus knots. A third method uses the Bateman construction of generating null solutions from complex Euler potentials. And a fourth method uses special conformal transformations, in particular conformal inversion, to generate new linked and knotted field configurations from existing ones. This fourth method is often accompanied by shifting singularities in the field to complex space-time points. Of course the various methods must be closely related to one another although they have been developed largely independently and they suggest different directions in which to expand the study of topologically non-trivial field configurations. It will be shown how the twistor formulation allows for a direct extension to massless

  17. Exploration of the Electromagnetic Environment

    Science.gov (United States)

    Fullekrug, M.

    2009-01-01

    The electromagnetic environment is composed of electric and magnetic fields which result from man-made and natural sources. An elementary experiment is described to explore the electromagnetic environment by measuring electric fields in the frequency range from approximately equal to 10 to 24 000 Hz. The equipment required to conduct the…

  18. Electromagnetic compatibility in power electronics

    CERN Document Server

    Costa , François; Revol , Bertrand

    2014-01-01

    Scientists largely attribute the recent deterioration of the electromagnetic environment to power electronics. This realization has spurred the study of methodical approaches to electromagnetic compatibility designs as explored in this text. The book addresses major challenges, such as handling numerous parameters vital to predicting electro magnetic effects and achieving compliance with line-harmonics norms, while proposing potential solutions.

  19. Electromagnetic actuation in MEMS switches

    DEFF Research Database (Denmark)

    Oliveira Hansen, Roana Melina de; Mátéfi-Tempfli, Mária; Chemnitz, Steffen

    . Electromagnetic actuation is a very promising approach to operate such MEMS and Power MEMS devices, due to the long range, reproducible and strong forces generated by this method, among other advantages. However, the use of electromagnetic actuation in such devices requires the use of thick magnetic films, which...

  20. Canonical quantization of macroscopic electromagnetism

    OpenAIRE

    Philbin, Thomas Gerard

    2010-01-01

    Application of the standard canonical quantization rules of quantum field theory to macroscopic electromagnetism has encountered obstacles due to material dispersion and absorption. This has led to a phenomenological approach to macroscopic quantum electrodynamics where no canonical formulation is attempted. In this paper macroscopic electromagnetism is canonically quantized. The results apply to any linear, inhomogeneous, magnetodielectric medium with dielectric functions that obey the Krame...

  1. Spontaneous electromagnetic radiation caused by binary ion-atom collisions in the quasiresonant case

    International Nuclear Information System (INIS)

    Mihajlov, A.A.; Popovic, M.M.

    1981-01-01

    The process of spontaneous electromagnetic radiation in the reaction A + + B → A + B + + hω is studied. Here A and B are the same kind of atoms or atoms with small differences in ionization potentials (quasiresonant case). Differential cross section, energy spectrum of the emitted photons, and total intensity of electromagnetic radiation are determined for thermal velocities of relative motion. Results are applicable in a wide range of temperatures: 500< or = T< or = 50,000 K. It is shown that the radiation spectrum is very broad and the radiation intensity is considerable

  2. Hybrid synchronous motor electromagnetic torque research

    Directory of Open Access Journals (Sweden)

    Suvorkova Elena E.

    2014-01-01

    Full Text Available Electromagnetic field distribution models in reluctance and permanent magnet parts were made by means of Elcut. Dependences of electromagnetic torque on torque angle were obtained.

  3. Electromagnetic Interference (EMI) and TEMPEST Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Electromagnetic Interference (EMI), Electromagnetic Compatibility (EMC) and TEMPEST testing are conducted at EPG's Blacktail Canyon Test Facility in one of its two...

  4. Electromagnetic current in weak interactions

    International Nuclear Information System (INIS)

    Ma, E.

    1983-01-01

    In gauge models which unify weak and electromagnetic interactions, the weak neutral-current interaction also involves the electromagnetic current. The exact nature of such a component can be explored using e + e - experimental data. In recent years, the existence of a new component of the weak interaction has become firmly established, i.e., the neutral-current interaction. As such, it competes with the electromagnetic interaction whenever the particles involved are also charged, but at a very much lower rate because its effective strength is so small. Hence neutrino processes are best for the detection of the neutral-current interaction. However, in any gauge model which unifies weak and electromagnetic interactions, the weak neutral-current interaction also involves the electromagnetic current

  5. Gravitational scattering of electromagnetic radiation

    Science.gov (United States)

    Brooker, J. T.; Janis, A. I.

    1980-01-01

    The scattering of electromagnetic radiation by linearized gravitational fields is studied to second order in a perturbation expansion. The incoming electromagnetic radiation can be of arbitrary multipole structure, and the gravitational fields are also taken to be advanced fields of arbitrary multipole structure. All electromagnetic multipole radiation is found to be scattered by gravitational monopole and time-varying dipole fields. No case has been found, however, in which any electromagnetic multipole radiation is scattered by gravitational fields of quadrupole or higher-order multipole structure. This lack of scattering is established for infinite classes of special cases, and is conjectured to hold in general. The results of the scattering analysis are applied to the case of electromagnetic radiation scattered by a moving mass. It is shown how the mass and velocity may be determined by a knowledge of the incident and scattered radiation.

  6. Electro- and chromomagnetism in the charm meson spectrum

    CERN Document Server

    Fritzsch, Harald

    1977-01-01

    How the D and F meson spectrum is influenced by the chromomagnetic and electromagnetic hyperfine interaction is discussed. In particular a relation between the hyperfine splitting of charmed mesons and the magnetic moments of the baryons is derived. It is found that M(F/sub + /*)-M(F/sub +/) approximately=100+or-8 MeV. (12 refs).

  7. Eyes on the sky a spectrum of telescopes

    CERN Document Server

    Graham-Smith, Francis

    2016-01-01

    Astronomy is experiencing a golden age, with a new generation of innovative telescopes yielding a flood of information on the Universe. This book traces the development of telescopes from Galileo to the present day, and explains the basic principles of telescopes that operate in different parts of electromagnetic spectrum.

  8. Decay energy of Fe from its inner Bremsstrahlung spectrum

    Indian Academy of Sciences (India)

    The inner Bremsstrahlung (IB) with reference to electron capture radioactive decay is a higher order process in which the orbital electron capture process will be accompanied by the emission of a continuous spectrum of electromagnetic radiation. This process is also called as 'radiative electron capture'. The energy ...

  9. The regulatory framework of the radio frequency spectrum under ...

    African Journals Online (AJOL)

    The Radio Frequency Spectrum (R.F.S) is the entire range of wavelengths of electromagnetic radiation in the frequency range of 3 kilohertz (KHZ) to 40,000 megahertz (MHZ). The RFS is arbitrarily divided into a number of wavebands, from very low frequencies (long wavelengths) to ultra-high and microwave frequencies ...

  10. Electromagnetic dissociation of relativistic [sup 28]Si by nucleon emission

    Energy Technology Data Exchange (ETDEWEB)

    Sonnadara, U.J.

    1992-12-01

    A detailed study of the electromagnetic dissociation of [sup 28]Si by nucleon emission at E[sub lab]/A = 14.6 (GeV/nucleon was carried out with [sup 28]Si beams interacting on [sup 208]Pb). [sup 120]Sn. [sup 64]C targets. The measurements apparatus consists of detectors in the target area which measure the energy and charged multiplicity, and a forward spectrometer which measures the position, momentum and energy of the reaction fragments. The exclusive electromagnetic dissociation cross sections for decay channels having multiple nucleons in the final state have been measured which enables the selection of events produced in pure electromagnetic interactions. The measured cross sections agree well with previous measurements obtained for the removal of a few nucleons as well as with measurements on total charge removal cross sections from other experiments. The dependence of the integrated cross sections on the target charge Z[sub T] and the target mass AT confirms that for higher Z targets the excitation is largely electromagnetic. Direct measurements of the excitation energy for the electromagnetic dissociation of [sup 28]Si [yields] p+[sup 27]Al and [sup 28]Si [yields] n+[sup 27]Si have been obtained through a calculation of the invariant mass in kinematically, reconstructed events. The excitation energy spectrum for all targets peak near the isovector giant dipole resonance in [sup 28]Si. These distributions are well reproduced by combining the photon spectrum calculated using the Weizsaecker-Williams approximation with the experimental data on the photonuclear [sup 28]Si([sub [gamma],p])[sup 27]Al and [sup 28]Si([sub [gamma],n])[sup 27]Si. The possibilities of observing double giant dipole resonance excitations in [sup 28]Si have been investigated with cross section measurements as well as with excitation energy reconstruction.

  11. US develops electromagnetic weapons

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    The principles of electromagnetic weapons (EMWs) which accumulate and switch energy have been known for over 50 years, but the US has made significant progress in recent years in the development of single-pole generators. A design which eliminates the breaker and pulse generator and increases reliability of the EMWs is undergoing tests in the US. There will be significant advantages for the EMW used for air and antimissile defense. In addition to weapons of varying purpose and basing, the EMW can be effective as launchers, as an alternative to rocket engines. The EMW is an area in which the US is trying to achieve superiority, and is a violation of the 1972 Antimissile Defense Treaty. 4 figures.

  12. Focusing of electromagnetic waves

    International Nuclear Information System (INIS)

    Dhayalan, V.

    1996-01-01

    The focusing of electromagnetic waves inside a slab has been examined together with two special cases in which the slab is reduced to a single interface or a single medium. To that end the exact solutions for the fields inside a layered medium have been used, given in terms of the outside current source in order to obtain the solutions for the focused electric field inside a slab. Both exact and asymptotic solutions of the problem have been considered, and the validity of the latter has been discussed. The author has developed a numerical algorithm for evaluation of the diffraction integral with special emphasis on reducing the computing time. The numerical techniques in the paper can be readily applied to evaluate similar diffraction integrals occurring e.g. in microstrip antennas. 46 refs

  13. Solved problems in electromagnetics

    CERN Document Server

    Salazar Bloise, Félix; Bayón Rojo, Ana; Gascón Latasa, Francisco

    2017-01-01

    This book presents the fundamental concepts of electromagnetism through problems with a brief theoretical introduction at the beginning of each chapter. The present book has a strong  didactic character. It explains all the mathematical steps and the theoretical concepts connected with the development of the problem. It guides the reader to understand the employed procedures to learn to solve the exercises independently. The exercises are structured in a similar way: The chapters begin with easy problems increasing progressively in the level of difficulty. This book is written for students of physics and engineering in the framework of the new European Plans of Study for Bachelor and Master and also for tutors and lecturers. .

  14. Electromagnetically revolving sphere viscometer

    Science.gov (United States)

    Hosoda, Maiko; Sakai, Keiji

    2014-12-01

    In this paper, we propose a new method of low viscosity measurement, in which the rolling of a probe sphere on the flat solid bottom of a sample cell is driven remotely and the revolution speed of the probe in a sample liquid gives the viscosity measurements. The principle of this method is based on the electromagnetically spinning technique that we developed, and the method is effective especially for viscosity measurements at levels below 100 mPa·s with an accuracy higher than 1%. The probe motion is similar to that in the well-known rolling sphere (ball) method. However, our system enables a steady and continuous measurement of viscosity, which is problematic using the conventional method. We also discuss the limits of the measurable viscosity range common to rolling-sphere-type viscometers by considering the accelerating motion of a probe sphere due to gravity, and we demonstrate the performance of our methods.

  15. Electromagnetic scattering theory

    Science.gov (United States)

    Bird, J. F.; Farrell, R. A.

    1986-01-01

    Electromagnetic scattering theory is discussed with emphasis on the general stochastic variational principle (SVP) and its applications. The stochastic version of the Schwinger-type variational principle is presented, and explicit expressions for its integrals are considered. Results are summarized for scalar wave scattering from a classic rough-surface model and for vector wave scattering from a random dielectric-body model. Also considered are the selection of trial functions and the variational improvement of the Kirchhoff short-wave approximation appropriate to large size-parameters. Other applications of vector field theory discussed include a general vision theory and the analysis of hydromagnetism induced by ocean motion across the geomagnetic field. Levitational force-torque in the magnetic suspension of the disturbance compensation system (DISCOS), now deployed in NOVA satellites, is also analyzed using the developed theory.

  16. Electromagnetically Clean Solar Arrays

    Science.gov (United States)

    Stem, Theodore G.; Kenniston, Anthony E.

    2008-01-01

    The term 'electromagnetically clean solar array' ('EMCSA') refers to a panel that contains a planar array of solar photovoltaic cells and that, in comparison with a functionally equivalent solar-array panel of a type heretofore used on spacecraft, (1) exhibits less electromagnetic interferences to and from other nearby electrical and electronic equipment and (2) can be manufactured at lower cost. The reduction of electromagnetic interferences is effected through a combination of (1) electrically conductive, electrically grounded shielding and (2) reduction of areas of current loops (in order to reduce magnetic moments). The reduction of cost is effected by designing the array to be fabricated as a more nearly unitary structure, using fewer components and fewer process steps. Although EMCSAs were conceived primarily for use on spacecraft they are also potentially advantageous for terrestrial applications in which there are requirements to limit electromagnetic interference. In a conventional solar panel of the type meant to be supplanted by an EMCSA panel, the wiring is normally located on the back side, separated from the cells, thereby giving rise to current loops having significant areas and, consequently, significant magnetic moments. Current-loop geometries are chosen in an effort to balance opposing magnetic moments to limit far-0field magnetic interactions, but the relatively large distances separating current loops makes full cancellation of magnetic fields problematic. The panel is assembled from bare photovoltaic cells by means of multiple sensitive process steps that contribute significantly to cost, especially if electomagnetic cleanliness is desired. The steps include applying a cover glass and electrical-interconnect-cell (CIC) sub-assemble, connecting the CIC subassemblies into strings of series-connected cells, laying down and adhesively bonding the strings onto a panel structure that has been made in a separate multi-step process, and mounting the

  17. PANDA electromagnetic calorimeters

    International Nuclear Information System (INIS)

    Semenov, P.A.; Kharlov, Yu.V.; Uzunian, A.V.; Chernichenko, S.K.; Derevschikov, A.A.; Davidenko, A.M.; Goncharenko, Y.M.; Kachanov, V.A.; Konstantinov, A.S.; Kormilitsin, V.A.; Matulenko, Yu.A.; Meschanin, A.P.; Melnick, Y.M.; Minaev, N.G.; Mochalov, V.V.; Morozov, D.A.; Novotny, R.W.; Ryazantsev, A.A.; Soldatov, A.P.; Soloviev, L.F.

    2009-01-01

    PANDA is a challenging experimental setup to be implemented at the high-energy storage ring (HESR) at the international facility FAIR, GSI (Germany). PANDA physics program relies heavily on the capability to measure photons with excellent energy, position and timing resolution. For this purpose PANDA proposed to employ electromagnetic calorimeters using two different technologies: compact crystal calorimeter cooled to -25 deg. C around target and lead-scintillator sandwich calorimeter with optical fibers light collection (so-called shashlyk calorimeter) in the forward region. Institute for High Energy Physics (IHEP) PANDA group reports on two types of measurements performed at IHEP, Protvino: radiation hardness of the PWO crystals at -25 deg. C and testbeam studies of the energy and position resolution of the shashlyk calorimeter prototype in the energy range up to 19 GeV.

  18. Nucleon Electromagnetic Form Factors

    Energy Technology Data Exchange (ETDEWEB)

    Marc Vanderhaeghen; Charles Perdrisat; Vina Punjabi

    2007-10-01

    There has been much activity in the measurement of the elastic electromagnetic proton and neutron form factors in the last decade, and the quality of the data has greatly improved by performing double polarization experiments, in comparison with previous unpolarized data. Here we review the experimental data base in view of the new results for the proton, and neutron, obtained at JLab, MAMI, and MIT-Bates. The rapid evolution of phenomenological models triggered by these high-precision experiments will be discussed, including the recent progress in the determination of the valence quark generalized parton distributions of the nucleon, as well as the steady rate of improvements made in the lattice QCD calculations.

  19. Influence of electromagnetic interference on the analog part of hybrid Pixel detectors

    International Nuclear Information System (INIS)

    Holik, M; Kraus, V; Granja, C; Jakubek, J; Georgiev, V; Hromadka, M; Skala, J; Kubik, Z

    2011-01-01

    The analog signal from the sensor of hybrid semiconductor pixel detectors is prone to electro-magnetic interference. The study and diagnosis of induced and common electro-magnetic coupling between the analog part and digital part of these devices is required. The influence of electro-magnetic interference was tested on the setup with a pixel detector Timepix or Medipix and a FITPix read-out interface. Measurements were carried out of external as well as internal interference. We evaluated the influence of both sources of electro-magnetic interference to the noise recorded by pixels. We measured the local spatial intensity distribution and frequency spectrum of the electro-magnetic field originating inside the readout chip during its own operation. In context of this test we exposed the detector chip to a locally generated artificial electro-magnetic field evaluating its sensitivity to induced interference. Consequently, the whole setup of the detector and read-out interface was exposed to a distant source of electro-magnetic radiation, during which we tested efficiency of the electro-magnetic shielding of various arrangements. Further, tests measured the coupling over power supply lines. In particular, the noise generated by the operation of the detector itself was determined. In addition, the detector sensitivity to deliberately induced noise was evaluated. By means of these tests weak points of the setup sensitive to the intrusion of electro-magnetic interference are revealed. When locations of susceptible places are identified proper methods can be applied to increase immunity of the detector setup against the electro-magnetic interference. Experiences gained are planned to be used in development of the EMI shielded version of the FITPIX interface shielded to electro-magnetic interference.

  20. Concise expression of a classical radiation spectrum

    International Nuclear Information System (INIS)

    Wang, C.

    1993-01-01

    In this paper we present a concise expression of the classical electromagnetic radiation spectrum of a moving charge. It is shown to be equivalent to the often used and much more complicated form derived from the Lienard-Wiechert potentials when the observation distance R satisfies the condition R much-gt γλ. The expression reveals a relationship between the radiation spectrum and the motion of the radiation source. It also forms the basis of an efficient computing approach, which is of practical value in numerical calculations of the spectral output of accelerated charges. The advantages of this approach for analytical and numerical applications are discussed and the bending-magnet synchrotron radiation spectrum is calculated according to the approach

  1. KEKB electromagnet power supply

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Masato; Kubo, Tadashi [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan)

    2000-01-01

    Numbers of electromagnet power supply for KEKB are 2,243 except BT. To satisfy stability, DAC in the current control circuit, current detector, R and D of small thermostatic bath and a calibration method of current using CPU were introduced. They satisfied needs. With producing R and D apparatus of switching source, problems of ripple, stability and noise were solved, so that we began mass production. In this paper, many kinds of R and D and performance and troubles after operation of KEKB power source are described. A plan of design of power supply consisted of seven items such as high accuracy, serial communication of interface, small type, high affectivity, easy maintenance, independence of current setting and current detector for monitor and control of radiation and conduction noise of switching power supply. These items were satisfied by development of interface board of ARCNET communication, introduction of double buffer method for interface through CPU, power supply unit by air-cooled method using a switching method and small thermostatic oven for bending and quadrupole electromagnet. R and D of DCCT, burden and shunt resistance, DAC, thermostatic bath, power supply, offset and gain calibration by double buffer method, specification of power supply, various kinds of measurements of mass production apparatus at rising, after long operation and problems before and after operation are reported. The results of R and D made satisfy the specification of stability and ripple of power supply. Although many switching power supply were operated, there was no noise and troubles at the initial period decreased. However, in order to use many power supply, the performance measurement and maintenance are very important at long shut down. (S.Y.)

  2. Electromagnetic properties of neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Ould-Saada, F. [Zurich Univ. (Switzerland). Inst. fuer Physik

    1996-11-01

    Electromagnetic properties of neutrinos and their implications are discussed, and the experimental situation summarised. Spin precession in solar magnetic fields presents a solution of the solar neutrino problem. A magnetic moment, {mu}{sub {nu}}, of the order of 10{sup -11} {mu}{sub B} would be needed. In the simplest extension of the standard model, with no-vanishing neutrino masses, dipole moment interactions are allowed through higher order processes. A neutrino mass of {approx_equal}10 eV would give {mu}{sub {nu}}{approx_equal}10{sup -18} {mu}{sub B}, much smaller than the present experimental upper limit of 2x10{sup -10} {mu}{sub B}. Although model-dependent, upper bounds on dipole moments from astrophysics and cosmology are 10 to 100 times more stringent. Any values of {mu}{sub {nu}}, larger than the SM predictions, would then signal the onset of new physics. Among the processes sensitive to the magnetic moment, {nu}e{sup -} scattering presents two advantages: it is a pure weak, theoretically well understood process, and the recoil electron can be easily measured. A hypothetical electromagnetic contribution to the cross-section would dominate at low energies. A low background detector, MUNU, being built at the Bugey nuclear reactor is presented.It is based on a gas TPC, surrounded by a scintillator. The threshold on the electron recoil energy can be set very low, around 500 keV, giving the experiment a good sensitivity to the magnetic moment of the {nu}{sub e}, extending down to 2x10{sup -11} {mu}{sub B}. (author) 15 figs., 5 tabs., 96 refs.

  3. Electromagnetic semi-implantable hearing device: phase I. Clinical trials.

    Science.gov (United States)

    McGee, T M; Kartush, J M; Heide, J C; Bojrab, D I; Clemis, J D; Kulick, K C

    1991-04-01

    Conventional hearing aids have improved significantly in recent years; however, amplification of sound within the external auditory canal creates a number of intrinsic problems, including acoustic feedback and the need for a tight ear mold to increase usable gain. Nonacoustic alternatives which could obviate these encumbrances have not become practical due to inefficient coupling (piezoelectric techniques) or unfeasible power requirements (electromagnetic techniques). Recent technical advances, however, prompted a major clinical investigation of a new electromagnetic, semi-implantable hearing device. This study presents the details of clinical phase I, in which an electromagnetic driver was coupled with a target magnet temporarily affixed onto the lateral surface of the malleus of six hearing aid users with sensorineural losses. The results indicate that the electromagnetic hearing device provides sufficient gain and output characteristics to benefit individuals with sensorineural hearing loss. Significant improvements compared to conventional hearing aids were noted in pure-tone testing and, to a lesser degree, in speech discrimination. Subjective responses were quite favorable, indicating that the electromagnetic hearing device 1. produces no acoustic feedback; 2. works well in noisy environments; and 3. provides a more quiet, natural sound than patients' conventional hearing aids. These favorable results led to phase II of the project, in which patients with surgically amendable mixed hearing losses were implanted with the target magnet incorporated within a hydroxyapatite ossicular prosthesis. The results of this second-stage investigation were also encouraging and will be reported separately.

  4. Scalar, electromagnetic, and gravitational fields interaction: Particlelike solutions

    International Nuclear Information System (INIS)

    Bronnikov, K.A.; Melnikov, V.N.; Shikin, G.N.; Staniukovich, K.P.

    1979-01-01

    Particlelike static spherically symmetric solutions to massless scalar and electromagnetic field equations combined with gravitational field equations are considered. Two criteria for particlelike solutions are formulated: the strong one (solutions are required to be singularity free) and the weak one (singularities are admitted but the total energy and material field energy should be finite). Exact solutions for the following physical systems are considered with their own gravitational field: (i) linear scalar (minimally coupled or conformal) plus electromagnetic field; (ii) the same fields with a bare mass source in the form of charged incoherent matter distributions; (iii) nonlinear electromagnetic field with an abritrary dependence on the invariant F/sub alphabeta/F/sup alphabeta/; and (iv) directly interacting scalar and electromagnetic fields. Case (i) solutions are not particlelike (except those with horizons, in which static regions formally satisfy the weak criterion). For systems (ii), examples of nonsingular models are constructed, in particular, a model for a particle--antiparticle pair of a Wheeler-handle type, without scalar field and explict electric charges. Besides, a number of limitations upon nonsingular model parameters is indicated. Systems (iii) are proved to violate the strong criterion for any type of nonlinearity but can satisfy the weak criterion (e.g., the Born--Infeld nonlinearity). For systems (iv) some particlelike solutions by the weak criterion are constructed and a regularizing role of gravitation is demonstrated. Finally, an example of a field system satisfying the strong criterion is given

  5. Electromagnetic environment and telecommunications: towards a cognitive electromagnetic compatibility

    Science.gov (United States)

    Zeddam, Ahmed; Avril, Gautier; Tlich, Mohamed

    2009-01-01

    This article deals with the electromagnetic environment management problem within the context of high speed digital transmissions deployed in wired telecommunication networks. Traditionally, Electromagnetic Compatibility (EMC) is assured by filtering for better electromagnetic immunity, and by cable shielding for emission limitation. However, like cognitive radio, we can also, for high speed wired transmissions, treat the EMC as an intelligent and autonomous system capable of perceiving its environment, interpreting it, making suited decisions, and reacting according to the constraints related to the electromagnetic environment. In this context, some application examples are here given in order to illustrate this evolution towards a cognitive EMC in wired networks. To cite this article: A. Zeddam et al., C. R. Physique 10 (2009).

  6. Differential forms on electromagnetic networks

    CERN Document Server

    Balasubramanian, N V; Sen Gupta, D P

    2013-01-01

    Differential Forms on Electromagnetic Networks deals with the use of combinatorial techniques in electrical circuit, machine analysis, and the relationship between circuit quantities and electromagnetic fields. The monograph is also an introduction to the organization of field equations by the methods of differential forms. The book covers topics such as algebraic structural relations in an electric circuit; mesh and node-pair analysis; exterior differential structures; generalized Stoke's theorem and tensor analysis; and Maxwell's electromagnetic equation. Also covered in the book are the app

  7. Electromagnetic transients in power cables

    CERN Document Server

    da Silva, Filipe Faria

    2013-01-01

    From the more basic concepts to the most advanced ones where long and laborious simulation models are required, Electromagnetic Transients in Power Cables provides a thorough insight into the study of electromagnetic transients and underground power cables. Explanations and demonstrations of different electromagnetic transient phenomena are provided, from simple lumped-parameter circuits to complex cable-based high voltage networks, as well as instructions on how to model the cables.Supported throughout by illustrations, circuit diagrams and simulation results, each chapter contains exercises,

  8. Electromagnetic foundations of electrical engineering

    CERN Document Server

    Faria, J A Brandao

    2008-01-01

    The applications of electromagnetic phenomena within electrical engineering have been evolving and progressing at a fast pace. In contrast, the underlying principles have been stable for a long time and are not expected to undergo any changes. It is these electromagnetic field fundamentals that are the subject of discussion in this book with an emphasis on basic principles, concepts and governing laws that apply across the electrical engineering discipline. Electromagnetic Foundations of Electrical Engineering begins with an explanation of Maxwell's equations, from which the fundament

  9. A primer on electromagnetic fields

    CERN Document Server

    Frezza, Fabrizio

    2015-01-01

    This book is a concise introduction to electromagnetics and electromagnetic fields that covers the aspects of most significance for engineering applications by means of a rigorous, analytical treatment. After an introduction to equations and basic theorems, topics of fundamental theoretical and applicative importance, including plane waves, transmission lines, waveguides, and Green's functions, are discussed in a deliberately general way. Care has been taken to ensure that the text is readily accessible and self-consistent, with conservation of the intermediate steps in the analytical derivations. The book offers the reader a clear, succinct course in basic electromagnetic theory. It will also be a useful lookup tool for students and designers.

  10. Nonlinear electromagnetic fields and symmetries

    Science.gov (United States)

    Barjašić, Irena; Gulin, Luka; Smolić, Ivica

    2017-06-01

    We extend the classical results on the symmetry inheritance of the canonical electromagnetic fields, described by the Maxwell's Lagrangian, to a much wider class of models, which include those of the Born-Infeld, power Maxwell and the Euler-Heisenberg type. Symmetry inheriting fields allow the introduction of electromagnetic scalar potentials and these are proven to be constant on the Killing horizons. Finally, using the relations obtained along the analysis, we generalize and simplify the recent proof for the symmetry inheritance of the 3-dimensional case, as well as give the first constraint for the higher dimensional electromagnetic fields.

  11. Essentials of Electromagnetics for Engineering

    Science.gov (United States)

    de Wolf, David A.

    2000-11-01

    Essentials of Electromagnetics for Engineering introduces the key physical and engineering principles of electromagnetics. Throughout the book, David de Wolf describes the intermediate steps in mathematical derivations that many other textbooks leave out. He covers in depth the concepts of fields and potentials and then progresses to magnetostatics, Maxwell's equations, electrodynamics and wave propagation, waveguides, transmission lines, and antennas. At each stage, de Wolf stresses the physical principles underlying the mathematical results. He also includes homework exercises, a separate chapter on numerical methods in electromagnetics, and a broad range of worked examples to illustrate important concepts. Solutions manual available.

  12. Role of scattering processes in spectrum formation of multi-quantum resonant fluorescence of a hydrogen-like system

    International Nuclear Information System (INIS)

    Prepelitsa, O.B.

    1996-01-01

    The two-level system with degenerated excitation state, interacting with a coherent electromagnetic field, is considered. It is shown that the fluorescence spectrum consists of the multitude of Mollow triplets. The intensities of components of each triplet are the nonlinear functions of the electromagnetic field intensity. 11 refs

  13. cobalt (ii), nickel (ii)

    African Journals Online (AJOL)

    DR. AMINU

    ABSTRACT. The manganese (II), cobalt (II), nickel (II) and copper (II) complexes of N, N' – bis(benzoin)ethylenediiminato have been prepared and characterized by infrared, elemental analysis, conductivity measurements and solubility. The potentiometric, and elemental analyses studies of the complexes revealed 1:1 ...

  14. Experimental Validation of the Reverberation Effect in Room Electromagnetics

    DEFF Research Database (Denmark)

    Steinböck, Gerhard; Pedersen, Troels; Fleury, Bernard Henri

    2015-01-01

    The delay power spectrum is widely used in both communication and localization communities for characterizing the temporal dispersion of the radio channel. Experimental investigations of in-room radio environments indicate that the delay power spectrum exhibits an exponentially decaying tail....... This tail can be characterized with Sabine's or Eyring's reverberation models, which were initially developed in acoustics. So far, these models were only fitted to data collected from radio measurements, but no thorough validation of their prediction ability in electromagnetics has been performed yet...... accurate prediction of the parameters characterizing the decaying tail, like the reverberation time, than Sabine's model. We further use the reverberation models to predict the parameters of a recently proposed model of a distance-dependent delay power spectrum. This model enables us to predict the path...

  15. Low frequency electromagnetic fields and health problems

    International Nuclear Information System (INIS)

    Zahedi, A.; Cosic, I.

    1996-01-01

    Full text: Electromagnetic fields developed around the electric circuits are considered as magnetic pollution and these fields are produced wherever electric appliances or machinery are used at home as well as at workplace. Electric fields and magnetic fields around the home are produced by anything with electric current flowing through it including: the street power lines, the home wiring system, electric ovens, refrigerators, washing machines, electric clothes dryers, vacuum cleaners, television sets, video cassette recorders, toasters, light bulbs, clock radios, electric blankets, mobile phones, etc. In the workplace they would be produced by: nearby power lines, factory machinery, computers/video display units, lights, photocopiers, electrical cabling etc. As one can see, human life is strongly dependent on using-electric appliance. A large number of studies have been undertaken to find out the correlation between electromagnetic fields and health problems. The following significant results have been reported [Lerner E.J., IEEE Spectrum, 57-67, May 1984]: (a) Induction of chromosomal defects in mice spermatogenetic cells following microwave radiation in the Ghz range; (b) Changes in the calcium balance of living cats' brains exposed to microwaves modulated at extremely low frequencies; (c) Alternation of nerve and bone cells exposed to extremely low frequency fields; (d) Decreased activity of the immune cells of mice exposed to modulated microwaves; (e) Apparent increase in deformed foetuses among miniature swine exposed to intense power-line frequency fields. The mostly investigated effect is the effect of electromagnetic irradiation in particular one produced by power lines, and cancer. More than 100 epidemiological studies have been reported but no conclusive result was achieved. A number of studies with laboratory animals were also inconclusive. However, some of these experiments have shown improvements in immune system and tumour suppression when

  16. Reduction in electromagnetic interference of switching converters using self-excitation-chaos

    DEFF Research Database (Denmark)

    Li, Qingnan; Xiong, Rui; He, Ou

    2008-01-01

    operating in chaos, the simulation results demonstrate that a reduction of spectral peak and consequent spreading of the spectrum can be shown, any desirable amount of reduction and consequent spreading of the spectrum can be obtained simply by varying the control parameter of the circuit and a optimization...... of system bifurcation parameters is designed to obtain better performances of the converter on electromagnetic compatibility (EMC). Moreover this will hardly influence to output voltage ripples....

  17. Analysis of electromagnetic pulse (EMP measurements in the National Ignition Facility's target bay and chamber

    Directory of Open Access Journals (Sweden)

    Brown C.G.

    2013-11-01

    Full Text Available From May 2009 to the present we have recorded electromagnetic pulse (EMP strength and spectrum (100 MHz – 5 GHz in the target bay and chamber of the National Ignition Facility (NIF. The dependence of EMP strength and frequency spectrum on target type and laser energy is discussed. The largest EMP measured was for relatively low-energy, short-pulse (100 ps flat targets.

  18. Gallilei covariant quantum mechanics in electromagnetic fields

    Directory of Open Access Journals (Sweden)

    H. E. Wilhelm

    1985-01-01

    Full Text Available A formulation of the quantum mechanics of charged particles in time-dependent electromagnetic fields is presented, in which both the Schroedinger equation and wave equations for the electromagnetic potentials are Galilei covariant, it is shown that the Galilean relativity principle leads to the introduction of the electromagnetic substratum in which the matter and electromagnetic waves propagate. The electromagnetic substratum effects are quantitatively significant for quantum mechanics in reference frames, in which the substratum velocity w is in magnitude comparable with the velocity of light c. The electromagnetic substratum velocity w occurs explicitly in the wave equations for the electromagnetic potentials but not in the Schroedinger equation.

  19. Digital command and control (C2) in electromagnetic battlespace

    Science.gov (United States)

    Kurt, Ekrem

    2013-06-01

    Military operations are executed in an increasingly complex electromagnetic environment. Over the last decade, All nations focused on improving their signal intelligence capabilities which has significantly improved intelligence support to EW. Today, there are many evolving facets of electromagnetic battlespace that include not only Electronic Attack (EA) but also improved situational awareness via information sharing and optimal positioning of Electronic Support (ES) systems.The aim is to use EW resources more intelligently in the battlespace and, by extension, improve their effectiveness. Another benefit is to provide tactical commanders with a timelier and accurate Common Operational Picture (COP) of the electromagnetic battlespace. In this study, the importance of controlling EM spectrum will be explained. The platforms and weapon systems which are used and being planned to use in the future for EM environment will be expressed. The main purpose is to help the planners who will execute the EW plan regarding to EM spectrum. The alghoritma can give planners to dynamic COP with effected sectors from enemy's EA platforms and systems. So that, planners can transmit it to friendly platforms at the same time. In addition, they can get the all needed informations related to enemy. In this way planners can easily send a message to friendly EA platforms to change the sector in order to affect the enemy. For all these reasons, it should have authority to give an order to friendly platforms about changing sector and frequency as well.

  20. Classical electromagnetism in a nutshell

    CERN Document Server

    Garg, Anupam

    2012-01-01

    This graduate-level physics textbook provides a comprehensive treatment of the basic principles and phenomena of classical electromagnetism. While many electromagnetism texts use the subject to teach mathematical methods of physics, here the emphasis is on the physical ideas themselves. Anupam Garg distinguishes between electromagnetism in vacuum and that in material media, stressing that the core physical questions are different for each. In vacuum, the focus is on the fundamental content of electromagnetic laws, symmetries, conservation laws, and the implications for phenomena such as radiation and light. In material media, the focus is on understanding the response of the media to imposed fields, the attendant constitutive relations, and the phenomena encountered in different types of media such as dielectrics, ferromagnets, and conductors. The text includes applications to many topical subjects, such as magnetic levitation, plasmas, laser beams, and synchrotrons.

  1. Electromagnetic shower detector-calorimeters

    International Nuclear Information System (INIS)

    Appel, J.A.

    1975-01-01

    A brief review of the state-of-the-art of electromagnetic calorimeters is presented. The choice of detector based on the experimental requirements in cost, spatial resolution, energy resolution, and hadron rejection is discussed

  2. Electromagnetic field theories for engineering

    CERN Document Server

    Salam, Md Abdus

    2014-01-01

    A four year Electrical and Electronic engineering curriculum normally contains two modules of electromagnetic field theories during the first two years. However, some curricula do not have enough slots to accommodate the two modules. This book, Electromagnetic Field Theories, is designed for Electrical and Electronic engineering undergraduate students to provide fundamental knowledge of electromagnetic fields and waves in a structured manner. A comprehensive fundamental knowledge of electric and magnetic fields is required to understand the working principles of generators, motors and transformers. This knowledge is also necessary to analyze transmission lines, substations, insulator flashover mechanism, transient phenomena, etc. Recently, academics and researches are working for sending electrical power to a remote area by designing a suitable antenna. In this case, the knowledge of electromagnetic fields is considered as important tool.

  3. Conical electromagnetic radiation flux concentrator

    Science.gov (United States)

    Miller, E. R.

    1972-01-01

    Concentrator provides method of concentrating a beam of electromagnetic radiation into a smaller beam, presenting a higher flux density. Smaller beam may be made larger by sending radiation through the device in the reverse direction.

  4. Wave propagation in electromagnetic media

    CERN Document Server

    Davis, Julian L

    1990-01-01

    This is the second work of a set of two volumes on the phenomena of wave propagation in nonreacting and reacting media. The first, entitled Wave Propagation in Solids and Fluids (published by Springer-Verlag in 1988), deals with wave phenomena in nonreacting media (solids and fluids). This book is concerned with wave propagation in reacting media-specifically, in electro­ magnetic materials. Since these volumes were designed to be relatively self­ contained, we have taken the liberty of adapting some of the pertinent material, especially in the theory of hyperbolic partial differential equations (concerned with electromagnetic wave propagation), variational methods, and Hamilton-Jacobi theory, to the phenomena of electromagnetic waves. The purpose of this volume is similar to that of the first, except that here we are dealing with electromagnetic waves. We attempt to present a clear and systematic account of the mathematical methods of wave phenomena in electromagnetic materials that will be readily accessi...

  5. Radiation and propagation of electromagnetic waves

    CERN Document Server

    Tyras, George; Declaris, Nicholas

    1969-01-01

    Radiation and Propagation of Electromagnetic Waves serves as a text in electrical engineering or electrophysics. The book discusses the electromagnetic theory; plane electromagnetic waves in homogenous isotropic and anisotropic media; and plane electromagnetic waves in inhomogenous stratified media. The text also describes the spectral representation of elementary electromagnetic sources; the field of a dipole in a stratified medium; and radiation in anisotropic plasma. The properties and the procedures of Green's function method of solution, axial currents, as well as cylindrical boundaries a

  6. General Geometry and Geometry of Electromagnetism

    OpenAIRE

    Shahverdiyev, Shervgi S.

    2002-01-01

    It is shown that Electromagnetism creates geometry different from Riemannian geometry. General geometry including Riemannian geometry as a special case is constructed. It is proven that the most simplest special case of General Geometry is geometry underlying Electromagnetism. Action for electromagnetic field and Maxwell equations are derived from curvature function of geometry underlying Electromagnetism. And it is shown that equation of motion for a particle interacting with electromagnetic...

  7. Self-dual electromagnetic fields

    Science.gov (United States)

    Chubykalo, Andrew E.; Espinoza, Augusto; Kosyakov, B. P.

    2010-08-01

    We demonstrate the utility of self-dual fields in electrodynamics. Stable configurations of free electromagnetic fields can be represented as superpositions of standing waves, each possessing zero Poynting vector and zero orbital angular momentum. The standing waves are themselves superpositions of self-dual and anti-self-dual solutions. The idea of self-duality provides additional insights into the geometrical and spectral properties of stable electromagnetic configurations, such as those responsible for the formation of ball lightning.

  8. Biological Effects of Electromagnetic Fields

    Science.gov (United States)

    2006-11-27

    of 5.5 mT (Bmax) were generated by a doughnut -shaped annular electromagnet device. A rabbit in a holder was placed into the annular electromagnets...powerful tools to stimulate a range of benefits for society, in addition to economic development. However, technological progress in the broadest sense...disease is one of the biggest, if not the biggest problem and challenge, economically as well as in terms of animal welfare and environmental pressure

  9. The law of electromagnetic force

    Directory of Open Access Journals (Sweden)

    V.J. Kutkovetskyy

    2014-06-01

    Full Text Available Calculation peculiarities for Lorentz force, Ampere force, interaction of parallel electric currents, and the moment of electrical machines are analyzed. They have exceptions on application, and they are the rules which result from the law of electromagnetic force as coordinate derivative of the operating magnetic flow. An addition to the direction of electromagnetic force action is proposed. Standards of salient-pole electrical machine designing are considered.

  10. Multiforms, dyadics, and electromagnetic media

    CERN Document Server

    Lindell, Ismo V

    2015-01-01

    This book applies the four-dimensional formalism with an extended toolbox of operation rules, allowing readers to define more general classes of electromagnetic media and to analyze EM waves that can exist in them. End-of-chapter exercises. Formalism allows readers to find novel classes of media. Covers various properties of electromagnetic media in terms of which they can be set in different classes.

  11. A Plane-Symmetric Inhomogeneous Cosmological Model of Perfect Fluid Distribution with Electromagnetic Field I

    OpenAIRE

    Pradhan, Anirudh; Singh, P. K.; Yadav, A. K.

    2007-01-01

    A plane-symmetric inhomogeneous cosmological model of perfect fluid distribution with electro-magnetic field is obtained. The source of the magnetic field is due to an electric current produced along the z-axis. $F_{12}$ is the non-vanishing component of electromagnetic field tensor. To get a deterministic solution, we assume the free gravitational field is Petrov type-II non-degenerate. The behaviour of the electro-magnetic field tensor together with some physical aspects of the model are al...

  12. Electromagnetic corrections in hadronic processes

    International Nuclear Information System (INIS)

    Gasser, J.; Scimemi, I.; Rusetsky, A.

    2003-01-01

    In many applications of chiral perturbation theory, one has to purify physical matrix elements from electromagnetic effects. On the other hand, the splitting of the Hamiltonian into a strong and an electromagnetic part cannot be performed in a unique manner, because photon loops generate ultraviolet divergences. In the present article, we propose a convention for disentangling the two effects: one matches the parameters of two theories - with and without electromagnetic interactions - at a given scale μ 1 , referred to as the matching scale. This method enables one to analyse the separation of strong and electromagnetic contributions in a transparent manner. We first study in a Yukawa-type model the dependence of strong and electromagnetic contributions on the matching scale. In a second step, we investigate this splitting in the linear sigma model at one-loop order, and consider in some detail the construction of the corresponding low-energy effective Lagrangian, which exactly implements the splitting of electromagnetic and strong interactions carried out in the underlying theory. We expect these model studies to be useful in the interpretation of the standard low-energy effective theory of hadrons, leptons and photons. (orig.)

  13. ELECTROMAGNET CALORIMETER (ECAL)

    CERN Multimedia

    R. Rusack

    Installation is under way of the last piece of the electromagnetic calorimeter. This is the preshower (ES) that sits in front of the two endcap calorimeters. The construction of the ES was completed in December and went through a detailed set of tests in December and January. The two preshower detectors have a total of 4300 silicon sensors with 137,000 strips. After final assembly and system testing in January, only two of the strips were found to be defective. Once CMS was fully opened a new support structure (‘Gazprom’) was put into place underneath the beam pipe, to support the Surkov platform, on which the preshower installation takes place. In the early hours of 26th February the first two Dees, which form the ‘ES+’ endcap,  were transported to P5 , a journey that took two and a half hours. The Dees, still inside environmental protection boxes, were then lowered  underground and moved to the ‘+’ end of CMS. Installation start...

  14. Mapping Earth's electromagnetic dimensionality

    Science.gov (United States)

    Love, J. J.; Kelbert, A.; Bedrosian, P.

    2017-12-01

    The form of a magnetotelluric impedance tensor, obtained for a given geographic site through simultaneous measurement of geomagnetic and geoelectric field variation, is affected by electrical conductivity structure beneath the measurement site. Building on existing methods for characterizing the symmetry of magnetotelluric impedance tensors, a simple scalar measure is developed for measuring the (frequency dependent) proportion of the impedance tensor that is not just a one-dimensional (1D) function of depth ("non-1D-ness"). These measures are applied to nearly 1000 impedance tensors obtained during magnetotelluric surveys, those for the continental United States and obtained principally through the National Science Foundation's EarthScope project. Across geomagnetic/geoelectric variational periods ranging from 30 s to 3,000 s, corresponding to crustal and upper mantle depths, it is shown that local Earth structure is very often not simply 1D-depth-dependent - often less than 50% of magnetotelluric impedance is 1D. For selected variational frequencies, non-1D-ness is mapped and the relationship between electromagnetic dimensionality and known geological and tectonic structures is discussed. The importance of using realistic surface impedances to accurately evaluate magnetic-storm geoelectric hazards is emphasized.

  15. Electromagnetism of Bacterial Growth

    Science.gov (United States)

    Ainiwaer, Ailiyasi

    2011-10-01

    There has been increasing concern from the public about personal health due to the significant rise in the daily use of electrical devices such as cell phones, radios, computers, GPS, video games and television. All of these devices create electromagnetic (EM) fields, which are simply magnetic and electric fields surrounding the appliances that simultaneously affect the human bio-system. Although these can affect the human system, obstacles can easily shield or weaken the electrical fields; however, magnetic fields cannot be weakened and can pass through walls, human bodies and most other objects. The present study was conducted to examine the possible effects of bacteria when exposed to magnetic fields. The results indicate that a strong causal relationship is not clear, since different magnetic fields affect the bacteria differently, with some causing an increase in bacterial cells, and others causing a decrease in the same cells. This phenomenon has yet to be explained, but the current study attempts to offer a mathematical explanation for this occurrence. The researchers added cultures to the magnetic fields to examine any effects to ion transportation. Researchers discovered ions such as potassium and sodium are affected by the magnetic field. A formula is presented in the analysis section to explain this effect.

  16. Electromagnetic fields and cancer

    International Nuclear Information System (INIS)

    Singh, Neeta; Mathur, R.; Behari, J.

    1997-01-01

    Several studies in recent years have raised the possibility that exposure to electromagnetic fields (EMFs) may be hazardous to human health, in particular by promotion or initiation of cancer. Recent reports have indicated increased cancer risk from industrial and domestic exposure to environmental ELF fields and to RF fields that are amplitude modulated at ELF. EMF fields have been reported to affect biological systems in various ways, affecting changes in the morphology and or functional behavior of cells, which have been observed in a variety of tissues. Although the mechanism of interaction of EMFs with living cells are not known, it has been proposed that they have multiple effects and can affect cell signalling, including modification of plasma membrane permeability and ion transport. Our findings suggest that EMFs can affect post translational modification of proteins such as poly ADP-ribosylation by epigenetic mechanism and that the effect of EMFs are highly specific regarding both the cell type and the frequency and amplification of the applied field. (author)

  17. The CPLEAR Electromagnetic Calorimeter

    CERN Document Server

    Adler, R; Bal, F; Behnke, O; Bloch, P; Damianoglou, D; Dechelette, Paul; Dröge, M; Eckart, B; Felder, C; Fetscher, W; Fidecaro, Maria; Garreta, D; Gerber, H J; Gumplinger, P; Guyon, D; Johner, H U; Löfstedt, B; Kern, J; Kokkas, P; Krause, H; Mall, U; Marin, C P; Nanni, F; Pagels, B; Pavlopoulos, P; Petit, P; Polivka, G; Rheme, C; Ruf, T; Santoni, C; Schaller, L A; Schopper, A; Tauscher, Ludwig; Tschopp, H; Weber, P; Wendler, H; Witzig, C; Wolter, M

    1997-01-01

    A large-acceptance lead/gas sampling electromagnetic calorimeter (ECAL) was constructed for the CPLEAR experiment to detect photons from decays of $\\pi^0$s with momentum $p_{\\pi^0} \\le 800$ MeV$/c$. The main purpose of the ECAL is to determine the decay vertex of neutral-kaon decays $\\ko \\rightarrow \\pi^0\\pi^0 \\rightarrow 4 \\gamma$ and $\\ko \\rightarrow \\pi^0\\pi^0\\pi^0 \\rightarrow 6 \\gamma$. This requires a position-sensitive photon detector with high spatial granularity in $r$-, $\\varphi$-, and $z$-coordinates. The ECAL --- a barrel without end-caps located inside a magnetic field of 0.44 T --- consists of 18 identical concentric layers. Each layer of $1/3$ radiation length (X${_0}$) contains a converter plate followed by small cross-section high-gain tubes of 2640 mm active length which are sandwiched by passive pick-up strip plates. The ECAL, with a total of $6$ X${_0}$, has an energy resolution of $\\sigma (E)/E \\approx 13\\% / \\sqrt{E(\\mathrm{GeV})}$ and a position resolution of 4.5 mm for the shower foot. ...

  18. Emission spectrum of a harmonically trapped Λ-type three-level atom

    International Nuclear Information System (INIS)

    Guo Hong; Tang Pei

    2013-01-01

    We theoretically investigate the emission spectrum for a Λ-type three-level atom trapped in the node of a standing wave. We show that the atomic center-of-mass motion not only directly affects the peak number, peak position, and peak height in the atomic emission spectrum, but also influences the effects of the cavity field and the atomic initial state on atomic emission spectrum. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  19. Sound absorption in a field of a strong electromagnetic wave in a quantizied magnetic field

    International Nuclear Information System (INIS)

    Chajkovskij, I.A.

    1974-01-01

    A coefficient of sound absorption GAMMA in a semiconductor and semi-metal in the quantized magnetic field is calculated for a system exposed to a field of strong electromagnetic radiation. The cases E parallel H and E orthogonal H are considered. Along with the already known strong oscillations of sound absorption in magnetic fields, the absorption spectrum GAMMAsub(par) and GAMMAsub(orth) shows new oscillations representing a manifestation of the quasi-energetic electron spectrum in the field of a strong electromagnetic wave. The oscillation height at E parallel H is modulated by the electromagnetic field. It is shown that the ratio GAMMAsub(par)/GAMMAsub(orth) allows the determination of the effective mass of the carriers

  20. Electromagnetic radiation and nonlinear energy flow in an electron beam-plasma system

    Science.gov (United States)

    Whelan, D. A.; Stenzel, R. L.

    1985-01-01

    It is shown that the unstable electron-plasma waves of a beam-plasma system can generate electromagnetic radiation in a uniform plasma. The generation mechanism is a scattering of the unstable electron plasma waves off ion-acoustic waves, producing electromagnetic waves whose frequency is near the local plasma frequency. The wave vector and frequency matching conditions of the three-wave mode coupling are experimentally verified. The electromagnetic radiation is observed to be polarized with the electric field parallel to the beam direction, and its source region is shown to be localized to the unstable plasma wave region. The frequency spectrum shows negligible intensity near the second harmonic of the plasma frequency. These results suggest that the observed electromagnetic radiation of type III solar bursts may be generated near the local plasma frequency and observed downstream where the wave frequency is near the harmonic of the plasma frequency.

  1. A physically motivated quantization of the electromagnetic field

    International Nuclear Information System (INIS)

    Bennett, Robert; Barlow, Thomas M; Beige, Almut

    2016-01-01

    The notion that the electromagnetic field is quantized is usually inferred from observations such as the photoelectric effect and the black-body spectrum. However accounts of the quantization of this field are usually mathematically motivated and begin by introducing a vector potential, followed by the imposition of a gauge that allows the manipulation of the solutions of Maxwell’s equations into a form that is amenable for the machinery of canonical quantization. By contrast, here we quantize the electromagnetic field in a less mathematically and more physically motivated way. Starting from a direct description of what one sees in experiments, we show that the usual expressions of the electric and magnetic field observables follow from Heisenberg’s equation of motion. In our treatment, there is no need to invoke the vector potential in a specific gauge and we avoid the commonly used notion of a fictitious cavity that applies boundary conditions to the field. (paper)

  2. On the generation mechanism of ULF seismogenic electromagnetic emissions

    Science.gov (United States)

    Molchanov, O. A.; Hayakawa, M.

    Microfracturing electrification is suggested as a possible mechanism for explaining ULF electromagnetic emissions observed before and after the earthquakes. This effect appears as fast fluctuation of microcracks and leads to the origination of wideband electromagnetic noise. This noise dissipates outside the source region and produces ULF emissions on the ground surface with an upper cutoff frequency ˜1 Hz due to the skin depth attenuation. Each microcurrent results from charge relaxation during microcrack opening and depends on the time of opening and conductivity of the rock medium. The normal size distribution of microcracks, their fast opening and healing (intermittence), and average size progression due to stress corrosion are assumed. Using this model, it is possible to compare these theoretical explanations with the observational results with reference to the intensity, frequency spectrum and temporal development of ULF magnetic field variations.

  3. Electromagnetic and nuclear radiation detector using micromechanical sensors

    Science.gov (United States)

    Thundat, Thomas G.; Warmack, Robert J.; Wachter, Eric A.

    2000-01-01

    Electromagnetic and nuclear radiation is detected by micromechanical sensors that can be coated with various interactive materials. As the micromechanical sensors absorb radiation, the sensors bend and/or undergo a shift in resonance characteristics. The bending and resonance changes are detected with high sensitivity by any of several detection methods including optical, capacitive, and piezoresistive methods. Wide bands of the electromagnetic spectrum can be imaged with picoJoule sensitivity, and specific absorptive coatings can be used for selective sensitivity in specific wavelength bands. Microcantilevers coated with optical cross-linking polymers are useful as integrating optical radiation dosimeters. Nuclear radiation dosimetry is possible by fabricating cantilevers from materials that are sensitive to various nuclear particles or radiation. Upon exposure to radiation, the cantilever bends due to stress and its resonance frequency shifts due to changes in elastic properties, based on cantilever shape and properties of the coating.

  4. Electromagnetic fields of Nanometer electromagnetic waves and X-ray. New frontiers of electromagnetic wave engineering

    International Nuclear Information System (INIS)

    2009-01-01

    The investigating committee aimed at research on electromagnetic fields in functional devices and X-ray fibers for efficient coherent X-ray generation and their material science, high-precision manufacturing, X-ray microscope, application to medical and information communication technologies, such as interaction between material and nanometer electromagnetic waves of radiated light and X-ray, interaction between microwaves and particle beams, theory and design of high-frequency waveguides for resonator and accelerator, from January 2003 to December 2005. In this report, we describe our research results, in particular, on the topics of synchrotron radiation and Cherenkov radiation, Kyushu synchrotron light source and its technology, nanometer electromagnetic fields in optical region, process of interaction between evanescent waves and near-field light, orthogonal relation of electromagnetic fields including evanescent waves in dispersive dielectrics, optical amplification using electron beam, nanometer electromagnetic fields in focusing waveguide lens device with curved facets, electromagnetic fields in nanometer photonic crystal waveguide consisting of atoms, X-ray scattering and absorption I bio-material for image diagnosis. (author)

  5. Spatial transformation-enabled electromagnetic devices: from radio frequencies to optical wavelengths.

    Science.gov (United States)

    Jiang, Zhi Hao; Turpin, Jeremy P; Morgan, Kennith; Lu, Bingqian; Werner, Douglas H

    2015-08-28

    Transformation optics provides scientists and engineers with a new powerful design paradigm to manipulate the flow of electromagnetic waves in a user-defined manner and with unprecedented flexibility, by controlling the spatial distribution of the electromagnetic properties of a medium. Using this approach, over the past decade, various previously undiscovered physical wave phenomena have been revealed and novel electromagnetic devices have been demonstrated throughout the electromagnetic spectrum. In this paper, we present versatile theoretical and experimental investigations on designing transformation optics-enabled devices for shaping electromagnetic wave radiation and guidance, at both radio frequencies and optical wavelengths. Different from conventional coordinate transformations, more advanced and versatile coordinate transformations are exploited here to benefit diverse applications, thereby providing expanded design flexibility, enhanced device performance, as well as reduced implementation complexity. These design examples demonstrate the comprehensive capability of transformation optics in controlling electromagnetic waves, while the associated novel devices will open up new paths towards future integrated electromagnetic component synthesis and design, from microwave to optical spectral regimes. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  6. Licensing open spectrum systems

    OpenAIRE

    Vázquez, Miguel Angel; Pérez Neira, Ana Isabel; Lagunas Hernandez, Miguel A.

    2012-01-01

    This paper studies how the spectrum regulation could change in the future open spectrum communication systems. Due to their huge success in short-range communication systems (WiFi, Zigbee, ...), broader area telecommunication providers might mimic the open spectrum philosophy to their systems. Nevertheless, current wireless open spectrum systems are not designed for wide areas and they do not provide QoS to their users. This work proposes an alternative to the nowadays open spectrum systems i...

  7. THE GENERATION OF THERMOELASTIC STRESS WAVES BY IMPULSIVE ELECTROMAGNETIC RADIATION.

    Science.gov (United States)

    ELECTROMAGNETIC RADIATION , ABSORPTION), (*STRESSES, ELECTROMAGNETIC RADIATION ), SURFACE PROPERTIES, INTERACTIONS, HEAT TRANSFER, ELASTIC PROPERTIES, ELECTROMAGNETIC PULSES, LASERS, MATHEMATICAL ANALYSIS, BOUNDARY VALUE PROBLEMS, SOLIDS

  8. Novel electromagnetic micropump

    Science.gov (United States)

    Feldmann, M.; Demming, S.; Lesche, C.; Büttgenbach, S.

    2007-12-01

    The mergence of partial aspects and functional components of micro actuators and micro fluidic technology allows the development of complex micro systems, which are more and more interesting for MEMS application, especially for BioMEMS. This enormous potential is shown in this article showing the realization of an electro magnetic micro pump. The basic build-up consists of a polymer magnet integrated into a pump chamber of a fluidic PDMS device, which is located above a double layer micro coil. By applying a current, the polymer magnet performs a bidirectional movement, which results in a pumping effect by the two arranged passive check valves being perpendicularly arranged to the flow channels. The valve membrane is flexible and opens the channel towards the flow direction. The advantage of this configuration is that leakage can be avoided by the special geometrical configuration of the fluid chamber and the valves. The fabrication process includes UV depth lithography using AZ9260, electroforming of copper for the double layer spiral coil and Epon SU-8 for insulation, embedding and manufacturing of the valve seat. Furthermore, the fluidic devices are realized by replica molding of PDMS using a multilayer SU-8 master. Furthermore, a new technology for realizing micro polymer magnets was optimized and deployed. Using these fabrication processes, a magnetic micro actuator has already been developed based on the movable plunger principle, which forms the basic set-up of the micro pump. This actuator is monolithically fabricated and successfully tested. In addition, the fluidic system of the micro pump was successfully fabricated and tested. In order to connect the valve seats based on SU-8 to the PDMS fluidic chamber and the valve lips, a special bonding process was developed. The combination of the fluidic system with the electromagnetic part is currently under investigation. The dimension of the micro pump is about 10 × 6 × 3 mm.

  9. Interactions of electromagnetic radiations and reactive oxygen species on skin

    International Nuclear Information System (INIS)

    Ferramola de Sancovich, A.M.; Sancovich, H.A. . E- mail: ferramol@qb.fcen.uba.ar

    2006-01-01

    The energy of electromagnetic radiation is derived from the fusion in the sun of four hydrogen nuclei to form a helium nucleus. The sun radiates energy representing the entire electromagnetic spectrum. Light is a form of electromagnetic radiation: all electromagnetic radiation has wave characteristics and travels at the same speed (c: speed of light). But radiations differ in wavelength (λ). Light energy is transmitted not in a continuum stream but only in individual units or photons: E = h c / λ. Short wave light is more energetic than photons of light of longer wavelength. Ultraviolet radiations (UV) (λ s 200- 400 nm) can be classified in UV A (λ s 315 - 400 nm.); UV B (λ s 280 - 315 nm) and UV C (λ s 2 content in biological systems promotes ROS synthesis. If ROS are not controlled by endogenous antioxidants, cell redox status is affected and tissue damage is produced ('oxidative stress'). ROS induce lipid peroxidation, protein cross-linking, enzyme inhibition, loss of integrity and function of plasmatic and mitochondrial membranes conducing to inflammation, aging, carcinogenesis and cell death. While infra-red radiations lead to noticeable tissue temperature conducing to severe burns, UV A and UV B undercover react with skin chromophores producing photochemical alterations involved in cellular aging and cancer induction. As UV radiations can reach cellular nucleus, DNA can be damage. Human beings need protection from the damaging sunbeams. This is a very important concern of public health. While humans need to protect their skin with appropriate clothing and/or by use of skin sun blocks of broad spectrum, some bacteria that are extensively exposed to sunlight have developed genomic evolution (plasmid-encoded DNA repair system) which confers protection from the damaging effect of UV radiation. (author) [es

  10. Robust computation of dipole electromagnetic fields in arbitrarily anisotropic, planar-stratified environments.

    Science.gov (United States)

    Sainath, Kamalesh; Teixeira, Fernando L; Donderici, Burkay

    2014-01-01

    We develop a general-purpose formulation, based on two-dimensional spectral integrals, for computing electromagnetic fields produced by arbitrarily oriented dipoles in planar-stratified environments, where each layer may exhibit arbitrary and independent anisotropy in both its (complex) permittivity and permeability tensors. Among the salient features of our formulation are (i) computation of eigenmodes (characteristic plane waves) supported in arbitrarily anisotropic media in a numerically robust fashion, (ii) implementation of an hp-adaptive refinement for the numerical integration to evaluate the radiation and weakly evanescent spectra contributions, and (iii) development of an adaptive extension of an integral convergence acceleration technique to compute the strongly evanescent spectrum contribution. While other semianalytic techniques exist to solve this problem, none have full applicability to media exhibiting arbitrary double anisotropies in each layer, where one must account for the whole range of possible phenomena (e.g., mode coupling at interfaces and nonreciprocal mode propagation). Brute-force numerical methods can tackle this problem but only at a much higher computational cost. The present formulation provides an efficient and robust technique for field computation in arbitrary planar-stratified environments. We demonstrate the formulation for a number of problems related to geophysical exploration.

  11. The RF spectrum: managing community health concerns

    International Nuclear Information System (INIS)

    Maclean, I.

    2001-01-01

    In this presentation I would like to share with you the way in which the Australian Communications Authority (ACA) goes about 'managing' community issues relating to the RF spectrum. In particular, I would like to refer to community issues associated with concerns about health. I will refer only briefly to the siting of mobile phone base stations as that will be covered elsewhere. Before getting into the community issues, I would like to provide some context about the ACA and the arrangements it has for regulating radiofrequency electromagnetic radiation (RF EMR). Copyright (2001) Australasian Radiation Protection Society Inc

  12. Electromagnetic aquametry electromagnetic wave interaction with water and moist substances

    CERN Document Server

    Kupfer, Klaus

    2006-01-01

    This book covers all aspects of Electromagnetic Aquametry. It summarizes the wide area of metrology and its applications in electromagnetic sensing of moist materials. The physical properties of water in various degrees of binding interacting with electromagnetic fields is presented by model systems. The book describes measurement methods and sensors in the frequency domain, TDR-techniques for environmental problems, methods and sensors for quality assessment of biological substances, and nuclear magnetic resonance techniques. Environmental sciences, as well as civil and geoengineering, fossil fuels, food and pharmaceutical science are the main fields of application. A very wide frequency sprectrum is used for dielectric measurement methods, but the microwave range is clearly dominant. Multiparameter methods as well as methods of principal components and artificial neural networks for density independent measurements are described.

  13. High performance electromagnetic simulation tools

    Science.gov (United States)

    Gedney, Stephen D.; Whites, Keith W.

    1994-10-01

    Army Research Office Grant #DAAH04-93-G-0453 has supported the purchase of 24 additional compute nodes that were installed in the Intel iPsC/860 hypercube at the Univesity Of Kentucky (UK), rendering a 32-node multiprocessor. This facility has allowed the investigators to explore and extend the boundaries of electromagnetic simulation for important areas of defense concerns including microwave monolithic integrated circuit (MMIC) design/analysis and electromagnetic materials research and development. The iPSC/860 has also provided an ideal platform for MMIC circuit simulations. A number of parallel methods based on direct time-domain solutions of Maxwell's equations have been developed on the iPSC/860, including a parallel finite-difference time-domain (FDTD) algorithm, and a parallel planar generalized Yee-algorithm (PGY). The iPSC/860 has also provided an ideal platform on which to develop a 'virtual laboratory' to numerically analyze, scientifically study and develop new types of materials with beneficial electromagnetic properties. These materials simulations are capable of assembling hundreds of microscopic inclusions from which an electromagnetic full-wave solution will be obtained in toto. This powerful simulation tool has enabled research of the full-wave analysis of complex multicomponent MMIC devices and the electromagnetic properties of many types of materials to be performed numerically rather than strictly in the laboratory.

  14. Attracting electromagnet for control rod

    International Nuclear Information System (INIS)

    Kato, Kazuo; Sasaki, Kotaro.

    1989-01-01

    Non-magnetic material plates with inherent resistivity of greater than 20 μΩ-cm and thickness of less than 3 mm are used for the end plates of attracting electromagnets for closed type control rods. By using such control rod attracting electromagnets, the scram releasing time can be shortened than usual. Since the armature attracting side of the electromagnet has to be sealed by a non-magnetic plate, a bronze plate of about 5 mm thickness has been used so far. Accordingly, non-magnetic plate is inserted to the electromagnet attracting face to increase air source length for improving to shorten the scram releasing time. This method, however, worsens the attracting property on one hand to require a great magnetomotive force. For overcoming these drawbacks, in the present invention, the material for tightly closing end plates in an electromagnet is changed from bronze plate to non-magnetic stainless steel SUS 303 or non-magnetic Monel metal and, in addition, the plate thickness is reduced to less than 5 mm thereby maintaining the attracting property and shortening the scram releasing time. (K.M.)

  15. Broadband electromagnetic environments simulator (EMES)

    International Nuclear Information System (INIS)

    Pollard, N.

    1977-01-01

    A new test facility has been developed by Sandia Laboratories for determining the effects of electromagnetic environments on systems and components. The facility is capable of producing uniform, vertically polarized, continuous wave (CW) and pulsed fields over the frequency range of dc to 10 GHz. This broadband capability addresses the electromagnetic radiation (EMR) threat and is ideally suited to computer controlled sweeping and data acquisition. EMES is also capable of producing uniform transient fields having the wave shape and magnitude characteristic of a nuclear electromagnetic pulse (EMP) and near lightning. The design consists of a truncated, triplate, rectangular coaxial transmission line. The spacing between the flat center conductor and the ground planes is 4 meters. The line is terminated in its characteristic impedance of 50 ohms. At frequencies below the first resonance of the facility it behaves as a typical coaxial system. Above resonance, a wall of electromagnetic absorbing material provides a nonreflecting termination. Thus, EMES essentially combines the elements of a transmission line and an anechoic chamber. It will not radiate electromagnetic energy into the surrounding area because it is a shielded transmission line

  16. Electromagnetic coupling of high-altitude, nuclear electromagnetic pulses

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    We have used scale models to measure the predicted coupling of electromagnetic fields simulating the effects of high-altitude nuclear electromagnetic pulses (HEMP) on the interior surfaces of electronic components. Predictive tools for exterior coupling are adequate. For interior coupling, however, such tools are in their infancy. Our methodological approach combines analytical, computational, and laboratory techniques in a complementary way to take advantage of their separate strengths. Computer models are a promising tool, as they can be used to treat complex objects with arbitrary shapes, dielectrics, and cables, and multiple apertures. Laboratory tests can expand the domain of investigation even further

  17. Bio-soliton model that predicts non-thermal electromagnetic frequency bands, that either stabilize or destabilize living cells.

    Science.gov (United States)

    Geesink, J H; Meijer, D K F

    2017-01-01

    Solitons, as self-reinforcing solitary waves, interact with complex biological phenomena such as cellular self-organization. A soliton model is able to describe a spectrum of electromagnetism modalities that can be applied to understand the physical principles of biological effects in living cells, as caused by endogenous and exogenous electromagnetic fields and is compatible with quantum coherence. A bio-soliton model is proposed, that enables to predict which eigen-frequencies of non-thermal electromagnetic waves are life-sustaining and which are, in contrast, detrimental for living cells. The particular effects are exerted by a range of electromagnetic wave eigen-frequencies of one-tenth of a Hertz till Peta Hertz that show a pattern of 12 bands, and can be positioned on an acoustic reference frequency scale. The model was substantiated by a meta-analysis of 240 published articles of biological electromagnetic experiments, in which a spectrum of non-thermal electromagnetic waves were exposed to living cells and intact organisms. These data support the concept of coherent quantized electromagnetic states in living organisms and the theories of Fröhlich, Davydov and Pang. It is envisioned that a rational control of shape by soliton-waves and related to a morphogenetic field and parametric resonance provides positional information and cues to regulate organism-wide systems properties like anatomy, control of reproduction and repair.

  18. CIME School on "Computational Electromagnetism"

    CERN Document Server

    Valli, Alberto

    2015-01-01

    Presenting topics that have not previously been contained in a single volume, this book offers an up-to-date review of computational methods in electromagnetism, with a focus on recent results in the numerical simulation of real-life electromagnetic problems and on theoretical results that are useful in devising and analyzing approximation algorithms. Based on four courses delivered in Cetraro in June 2014, the material covered includes the spatial discretization of Maxwell’s equations in a bounded domain, the numerical approximation of the eddy current model in harmonic regime, the time domain integral equation method (with an emphasis on the electric-field integral equation) and an overview of qualitative methods for inverse electromagnetic scattering problems. Assuming some knowledge of the variational formulation of PDEs and of finite element/boundary element methods, the book is suitable for PhD students and researchers interested in numerical approximation of partial differential equations and scienti...

  19. Electromagnetic compatibility and interference metrology

    Science.gov (United States)

    Ma, M. T.; Kanda, M.

    1986-07-01

    The material included in the report is intended for a short course on electromagnetic compatibility/interference (EMC/EM) metrology. The entire course is presented in nine chapters with the introductory part given as Chapter 1. The particular measurement topics to be covered are: (1) open sites (Chapters 2 and 6), (2) transverse electromagnetic cells (Chapter 3), (3) techniques for measuring the electromagnetic shielding of materials (Chapter 4), (4) anechoic chambers (Chapter 5), and (5) reverberating chambers (Chapter 8). In addition, since small probe antennas play an important role in some of the EMC/EMI measurements discussed, a separate chapter on various probe systems developed at NBS is given in Chapter 7. Selected contemporary EMI topics such as the characterization and measurement of a complex EM environment, interferences in the form of out-of-band receptions to an antenna, and some conducted EMI problems are also briefly discussed (Chapter 9).

  20. Moving Manifolds in Electromagnetic Fields

    Directory of Open Access Journals (Sweden)

    David V. Svintradze

    2017-08-01

    Full Text Available We propose dynamic non-linear equations for moving surfaces in an electromagnetic field. The field is induced by a material body with a boundary of the surface. Correspondingly the potential energy, set by the field at the boundary can be written as an addition of four-potential times four-current to a contraction of the electromagnetic tensor. Proper application of the minimal action principle to the system Lagrangian yields dynamic non-linear equations for moving three dimensional manifolds in electromagnetic fields. The equations in different conditions simplify to Maxwell equations for massless three surfaces, to Euler equations for a dynamic fluid, to magneto-hydrodynamic equations and to the Poisson-Boltzmann equation.

  1. Electromagnetic fields in biological systems

    CERN Document Server

    Lin, James C

    2016-01-01

    As wireless technology becomes more sophisticated and accessible to more users, the interactions of electromagnetic fields with biological systems have captured the interest not only of the scientific community but also the general public. Unintended or deleterious biological effects of electromagnetic fields and radiation may indicate grounds for health and safety precautions in their use. Spanning static fields to terahertz waves, Electromagnetic Fields in Biological Systems explores the range of consequences these fields have on the human body. With contributions by an array of experts, topics discussed include: Essential interactions and field coupling phenomena, highlighting their importance in research on biological effects and in scientific, industrial, and medical applications Electric field interactions in cells, focusing on ultrashort, pulsed high-intensity fields The effect of exposure to naturally occurring and human-made static, low-frequency, and pulsed magnetic fields in biological systems Dosi...

  2. Traditional beliefs and electromagnetic fields

    Directory of Open Access Journals (Sweden)

    Colin A. Ross

    2011-09-01

    Full Text Available The author proposes that a wide range of traditional beliefs and practices may provide clues to real electromagnetic field interactions in the biosphere. For instance, evil eye beliefs may be a cultural elaboration of the sense of being stared at, which in turn may have a basis in real electromagnetic emissions through the eye. Data to support this hypothesis are presented. Other traditional beliefs such as remote sensing of game and the importance of connection to the Earth Mother may also contain a kernel of truth. A series of testable scientific hypotheses concerning traditional beliefs and electromagnetic fields is presented. At this stage, the theory does not have sufficient evidence to be accepted as proven; its purpose is to stimulate thought and research

  3. Electromagnetic corrections to baryon masses

    International Nuclear Information System (INIS)

    Durand, Loyal; Ha, Phuoc

    2005-01-01

    We analyze the electromagnetic contributions to the octet and decuplet baryon masses using the heavy-baryon approximation in chiral effective field theory and methods we developed in earlier analyses of the baryon masses and magnetic moments. Our methods connect simply to Morpurgo's general parametrization of the electromagnetic contributions and to semirelativistic quark models. Our calculations are carried out including the one-loop mesonic corrections to the basic electromagnetic interactions, so to two loops overall. We find that to this order in the chiral loop expansion there are no three-body contributions. The Coleman-Glashow relation and other sum rules derived in quark models with only two-body terms therefore continue to hold, and violations involve at least three-loop processes and can be expected to be quite small. We present the complete formal results and some estimates of the matrix elements here. Numerical calculations will be presented separately

  4. Heliborne time domain electromagnetic system

    International Nuclear Information System (INIS)

    Bhattacharya, S.

    2009-01-01

    Atomic Minerals Directorate (AMD), are using heliborne and ground time domain electromagnetic (TDEM) system for the exploration of deep seated unconformity type uranium deposits. Uranium has been explored in various parts of the world like Athabasca basin using time domain electromagnetic system. AMD has identified some areas in India where such deposits are available. Apart from uranium exploration, the TDEM systems are used for the exploration of deep seated minerals like diamonds. Bhabha Atomic Research Centre (BARC) is involved in the indigenous design of the heliborne time domain system since this system is useful for DAE and also it has a scope of wide application. In this paper we discuss about the principle of time domain electromagnetic systems, their capabilities and the development and problems of such system for various other mineral exploration. (author)

  5. Gauge invariant fractional electromagnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Lazo, Matheus Jatkoske, E-mail: matheuslazo@furg.br [Instituto de Matematica, Estatistica e Fisica - FURG, Rio Grande, RS (Brazil)

    2011-09-26

    Fractional derivatives and integrations of non-integers orders was introduced more than three centuries ago but only recently gained more attention due to its application on nonlocal phenomenas. In this context, several formulations of fractional electromagnetic fields was proposed, but all these theories suffer from the absence of an effective fractional vector calculus, and in general are non-causal or spatially asymmetric. In order to deal with these difficulties, we propose a spatially symmetric and causal gauge invariant fractional electromagnetic field from a Lagrangian formulation. From our fractional Maxwell's fields arose a definition for the fractional gradient, divergent and curl operators. -- Highlights: → We propose a fractional Lagrangian formulation for fractional Maxwell's fields. → We obtain gauge invariant fractional electromagnetic fields. → Our generalized fractional Maxwell's field is spatially symmetrical. → We discuss the non-causality of the theory.

  6. Clinical importance of electromagnetic fields

    International Nuclear Information System (INIS)

    Ruppe, I.

    1993-01-01

    The clinical importance of most of the electromagnetic fields is not highly. Mostly they only have thermal effects, produced by energy-absorption. About 1 C increase of whole-body-temperature is valid for tolerable limit. For measuring is used the SAR-Value (Specific Absorption Rate) in W/kg body mass. SAR = 0,8W/kg for the whole body is valid to be safety. For the evaluation of possible other effects of electromagnetic fields the scientific knowledges are till now not sufficient to allow a final statement. That could be impacts of electromagnetic fields to conduction or switch processes in the nerves or brains, in the framwork of cellular regulations, in the genetic reactions are occurig is little, but if is necessary to find it out in scinentific investigations. (orig.) [de

  7. IEEE 1988 International Symposium on Electromagnetic Compatibility, Seattle, WA, Aug. 2-4, 1988, Record

    Science.gov (United States)

    Various papers on electromagnetic compatibility are presented. Some of the optics considered include: field-to-wire coupling 1 to 18 GHz, SHF/EHF field-to-wire coupling model, numerical method for the analysis of coupling to thin wire structures, spread-spectrum system with an adaptive array for combating interference, technique to select the optimum modulation indices for suppression of undesired signals for simultaneous range and data operations, development of a MHz RF leak detector technique for aircraft harness surveillance, and performance of standard aperture shielding techniques at microwave frequncies. Also discussed are: spectrum efficiency of spread-spectrum systems, control of power supply ripple produced sidebands in microwave transistor amplifiers, an intership SATCOM versus radar electromagnetic interference prediction model, considerations in the design of a broadband E-field sensing system, unique bonding methods for spacecraft, and review of EMC practice for launch vehicle systems.

  8. Electromagnetic radiation due to nonlinear oscillations of a charged drop

    Science.gov (United States)

    Shiryaeva, S. O.; Grigor'ev, A. N.; Kolbneva, N. Yu.

    2016-03-01

    The nonlinear oscillations of a spherical charged drop are asymptotically analyzed under the conditions of a multimode initial deformation of its equilibrium shape. It is found that if the spectrum of initially excited modes contains two adjacent modes, the translation mode of oscillations is excited among others. In this case, the center of the drop's charge oscillates about the equilibrium position, generating a dipole electromagnetic radiation. It is shown that the intensity of this radiation is many orders of magnitude higher than the intensity of the drop's radiation, which arises in calculations of the first order of smallness and is related to the drop's charged surface oscillations.

  9. Breathers in Josephson junction ladders: Resonances and electromagnetic wave spectroscopy

    DEFF Research Database (Denmark)

    Miroshnichenko, A. E.; Flach, S.; Fistul, M.

    2001-01-01

    We present a theoretical study of the resonant interaction between dynamical localized states (discrete breathers) and linear electromagnetic excitations (EE's) in Josephson junction ladders. By making use of direct numerical simulations we find that such an interaction manifests itself by resonant...... steps and various sharp switchings (voltage jumps) in the current-voltage characteristics. Moreover, the power of ac oscillations away from the breather center (the breather tail) displays singularities as the externally applied dc bias decreases. All these features may be mapped to the spectrum of EE...

  10. Faraday tarotion: new parameter for electromagnetic pulse propagation in magnetoplasma

    International Nuclear Information System (INIS)

    Bloch, S.C.; Lyons, P.W.

    1976-01-01

    Extreme distortion and time-dependent Faraday rotation occur for propagation of short electromagnetic pulses in magnetoplasma, for some ranges of plasma parameters. In order to relate pulse and monochromatic waves for propagation-path diagnostic purposes, a new parameter is introduced for the transmitted pulse train which has properties that correspond very accurately to results that would be expected for Faraday rotation of a continuous wave having the central frequency of the incident pulse spectrum. Results for 5-ns pulses (10 GHz) are presented for varying propagating length, static magnetic field, electron density, and collisional absorption

  11. Monitoring Engine Vibrations And Spectrum Of Exhaust

    Science.gov (United States)

    Martinez, Carol L.; Randall, Michael R.; Reinert, John W.

    1991-01-01

    Real-time computation of intensities of peaks in visible-light emission spectrum of exhaust combined with real-time spectrum analysis of vibrations into developmental monitoring technique providing up-to-the-second information on conditions of critical bearings in engine. Conceived to monitor conditions of bearings in turbopump suppling oxygen to Space Shuttle main engine, based on observations that both vibrations in bearings and intensities of visible light emitted at specific wavelengths by exhaust plume of engine indicate wear and incipient failure of bearings. Applicable to monitoring "health" of other machinery via spectra of vibrations and electromagnetic emissions from exhausts. Concept related to one described in "Monitoring Bearing Vibrations For Signs Of Damage", (MFS-29734).

  12. Some direct methods in electromagnetics

    International Nuclear Information System (INIS)

    Gay, J.; Scheurer, B.

    1991-01-01

    At the CEA/DAM, various studies including ones aimed at researching for low observability have stimulated the development of electromagnetics computer codes. For this purpose both mathematical and numerical methods have been devised. Two of them are described in this paper. The first approach consists of enlarging to electromagnetics problems some ideas and methods issued from mechanics and structural design. A flexible computer code covering a wide range of applications has been developed. The second approach is explicitly concerned with axisymmetric bodies and low observability problems. Boundary element methods, as well as mixed boundary element and finite element methods are briefly described and exemplified. (author). 21 refs., 13 figs., 3 insets

  13. Mathematical methods of electromagnetic theory

    CERN Document Server

    Friedrichs, Kurt O

    2014-01-01

    This text provides a mathematically precise but intuitive introduction to classical electromagnetic theory and wave propagation, with a brief introduction to special relativity. While written in a distinctive, modern style, Friedrichs manages to convey the physical intuition and 19th century basis of the equations, with an emphasis on conservation laws. Particularly striking features of the book include: (a) a mathematically rigorous derivation of the interaction of electromagnetic waves with matter, (b) a straightforward explanation of how to use variational principles to solve problems in el

  14. Electromagnetic computations for fusion devices

    International Nuclear Information System (INIS)

    Turner, L.R.

    1989-09-01

    Among the difficulties in making nuclear fusion a useful energy source, two important ones are producing the magnetic fields needed to drive and confine the plasma, and controlling the eddy currents induced in electrically conducting components by changing fields. All over the world, researchers are developing electromagnetic codes and employing them to compute electromagnetic effects. Ferromagnetic components of a fusion reactor introduce field distortions. Eddy currents are induced in the vacuum vessel, blanket and other torus components of a tokamak when the plasma current disrupts. These eddy currents lead to large forces, and 3-D codes are being developed to study the currents and forces. 35 refs., 6 figs

  15. Integral equation methods for electromagnetics

    CERN Document Server

    Volakis, John

    2012-01-01

    This text/reference is a detailed look at the development and use of integral equation methods for electromagnetic analysis, specifically for antennas and radar scattering. Developers and practitioners will appreciate the broad-based approach to understanding and utilizing integral equation methods and the unique coverage of historical developments that led to the current state-of-the-art. In contrast to existing books, Integral Equation Methods for Electromagnetics lays the groundwork in the initial chapters so students and basic users can solve simple problems and work their way up to the mo

  16. Electromagnetic geothermometry theory, modeling, practice

    CERN Document Server

    Spichak, Viacheslav V

    2015-01-01

    Electromagnetic Geothermometry explores, presents and explains the new technique of temperature estimation within the Earth's interior; the Electromagnetic technique will identify zones of geothermal anomalies and thus provides locations for deep drilling. This book includes many case studies from geothermal areas such as Travale (Italy), Soultz-sous-Forêts (France) and Hengill (Iceland), allowing the author and reader to draw conclusions regarding the dominating heat transfer mechanisms, location of its sources and to constrain the locations for drilling of the new boreholes. Covering a to

  17. Electromagnetic reciprocity in antenna theory

    CERN Document Server

    Stumpf, Martin

    2018-01-01

    The reciprocity theorem is among the most intriguing concepts in wave field theory and has become an integral part of almost all standard textbooks on electromagnetic (EM) theory. This book makes use of the theorem to quantitatively describe EM interactions concerning general multiport antenna systems. It covers a general reciprocity-based description of antenna systems, their EM scattering properties, and further related aspects. Beginning with an introduction to the subject, Electromagnetic Reciprocity in Antenna Theory provides readers first with the basic prerequisites before offering coverage of the equivalent multiport circuit antenna representations, EM coupling between multiport antenna systems and their EM interactions with scatterers, accompanied with the corresponding EM compensation theorems.

  18. Measurement of advanced electromagnetic radiation

    OpenAIRE

    Bajlo, Darko

    2017-01-01

    For the purpose of detecting advanced electromagnetic radiation predicted by Wheeler-Feynman absorber theory for the case of incomplete absorption of retarded electromagnetic radiation, pulses in duration of 6 ns to 24 ns, wavelength from 91 cm to 200 cm where supplied to three different transmitting antennas. Detection was done with a λ/20 monopole antenna in the advanced time window at a time 2r/c before the arrival of the center of the retarded pulse. At distances ranging from 430 cm to 18...

  19. Electromagnetic compatibility principles and applications

    CERN Document Server

    Weston, David A

    2001-01-01

    This totally revised and expanded reference/text provides comprehensive, single-source coverage of the design, problem solving, and specifications of electromagnetic compatibility (EMC) into electrical equipment/systems-including new information on basic theories, applications, evaluations, prediction techniques, and practical diagnostic options for preventing EMI through cost-effective solutions. Offers the most recent guidelines, safety limits, and standards for human exposure to electromagnetic fields! Containing updated data on EMI diagnostic verification measurements, as well as over 900 drawings, photographs, tables, and equations-500 more than the previous edition

  20. Electromagnetic Compatibility of Devices on Hybrid Electromagnetic Components

    Science.gov (United States)

    Konesev, S. G.; Khazieva, R. T.; Kirillov, R. V.; Gainutdinov, I. Z.; Kondratyev, E. Y.

    2018-01-01

    There is a general tendency to reduce the weight and dimensions, the consumption of conductive and electrical insulating materials, increase the reliability and energy efficiency of electrical devices. In recent years, designers have been actively developing devices based on hybrid electromagnetic components (HEMC) such as inductive-capacitive converters (ICC), voltages pulse generators (VPG), secondary power supplies (SPS), capacitive storage devices (CSD), induction heating systems (IHS). Sources of power supplies of similar electrical devices contain, as a rule, links of increased frequency and function in key (pulse) modes, which leads to an increase in electromagnetic interference (EMI). Nonlinear and periodic (impulse) loads, non-sinusoidal (pulsation) of the electromotive force and nonlinearity of the internal parameters of the source and input circuits of consumers distort the shape of the input voltage lead to an increase in thermal losses from the higher harmonic currents, aging of the insulation, increase in the weight of the power supply filter units, resonance at higher harmonics. The most important task is to analyze the operation of electrotechnical devices based on HEMC from the point of view of creating EMIs and assessing their electromagnetic compatibility (EMC) with power supply systems (PSS). The article presents the results of research on the operation of an IHS, the operation principle of a secondary power supply source of which is based on the operation of a half-bridge autonomous inverter, the switching circuit of which is made in the form of a HEMC, called the «multifunctional integrated electromagnetic component»" (MIEC).

  1. Electromagnetic Compatibility Design of the Computer Circuits

    Science.gov (United States)

    Zitai, Hong

    2018-02-01

    Computers and the Internet have gradually penetrated into every aspect of people’s daily work. But with the improvement of electronic equipment as well as electrical system, the electromagnetic environment becomes much more complex. Electromagnetic interference has become an important factor to hinder the normal operation of electronic equipment. In order to analyse the computer circuit compatible with the electromagnetic compatibility, this paper starts from the computer electromagnetic and the conception of electromagnetic compatibility. And then, through the analysis of the main circuit and system of computer electromagnetic compatibility problems, we can design the computer circuits in term of electromagnetic compatibility. Finally, the basic contents and methods of EMC test are expounded in order to ensure the electromagnetic compatibility of equipment.

  2. Electromagnetic problems in nuclear waste disposal

    International Nuclear Information System (INIS)

    Eloranta, E.H.

    1998-01-01

    The paper reviews the electromagnetic characterization of fractured rock during various phases of radioactive waste disposal investigations and construction, and also discusses the methods of the electromagnetic safeguards monitoring

  3. Higher-order techniques in computational electromagnetics

    CERN Document Server

    Graglia, Roberto D

    2016-01-01

    Higher-Order Techniques in Computational Electromagnetics explains 'high-order' techniques that can significantly improve the accuracy, computational cost, and reliability of computational techniques for high-frequency electromagnetics, such as antennas, microwave devices and radar scattering applications.

  4. Nuclear structure investigations with electromagnetic probes

    International Nuclear Information System (INIS)

    Drechsel, D.

    1987-01-01

    This paper is related to the study of electromagnetic interactions, current of hadronic systems, deep inelastic scattering, quasifree scattering, low energy theorems and electromagnetic reactions above pion threshold. (A.C.A.S.) [pt

  5. PINS Spectrum Identification Guide

    Energy Technology Data Exchange (ETDEWEB)

    A.J. Caffrey

    2012-03-01

    The Portable Isotopic Neutron Spectroscopy—PINS, for short—system identifies the chemicals inside munitions and containers without opening them, a decided safety advantage if the fill chemical is a hazardous substance like a chemical warfare agent or an explosive. The PINS Spectrum Identification Guide is intended as a reference for technical professionals responsible for the interpretation of PINS gamma-ray spectra. The guide is divided into two parts. The three chapters that constitute Part I cover the science and technology of PINS. Neutron activation analysis is the focus of Chapter 1. Chapter 2 explores PINS hardware, software, and related operational issues. Gamma-ray spectral analysis basics are introduced in Chapter 3. The six chapters of Part II cover the identification of PINS spectra in detail. Like the PINS decision tree logic, these chapters are organized by chemical element: phosphorus-based chemicals, chlorine-based chemicals, etc. These descriptions of hazardous, toxic, and/or explosive chemicals conclude with a chapter on the identification of the inert chemicals, e.g. sand, used to fill practice munitions.

  6. ORDNANCE CORPS VIEWS ELECTROMAGNETIC RADIATION HAZARDS TO WEAPONS SYSTEMS,

    Science.gov (United States)

    EXPLOSIVES INITIATORS, * ELECTROMAGNETIC RADIATION ), HAZARDS, ELECTROMAGNETIC SHIELDING, RADIOFREQUENCY POWER, ANTENNAS, ATTENUATORS, IMPEDANCE MATCHING, SENSITIVITY, WEAPON SYSTEMS, MODULATION, CIRCUITS, BROADBAND

  7. Strategic Vision for Spectrum

    Science.gov (United States)

    2010-01-01

    that defines spectrum requirements consistent with emerging tech- proactive spectrum nologies, commercial trends , and increasing market demands...Integration, Capital Planning, Competency Management, Computing and Communications Infrastructure, Critical Infrastructure Protection, eBusiness

  8. Pulsar Emission Spectrum

    OpenAIRE

    Gruzinov, Andrei

    2013-01-01

    Emission spectrum is calculated for a weak axisymmetric pulsar. Also calculated are the observed spectrum, efficiency, and the observed efficiency. The underlying flow of electrons and positrons turns out to be curiously intricate.

  9. Electromagnetic waves in irregular multilayered spheroidal structures of finite conductivity: full wave solutions

    International Nuclear Information System (INIS)

    Bahar, E.

    1976-01-01

    The propagation of electromagnetic waves excited by electric dipoles oriented along the axis of multilayered spheroidal structures of finite conductivity is investigated. The electromagnetic parameters and the thickness of the layers of the structure are assumed to be functions of the latitude. In the analysis, electric and magnetic field transforms that constitute a discrete and a continuous spectrum of spherical waves are used to provide a suitable basis for the expansion of the electromagnetic fields at any point in the irregular spheroidal structure. For spheroidal structures with good conducting cores, the terms in the solutions associated with the continuous part of the wave spectrum vanish. In general, however, when the skin depth for the core is large compared to its dimensions or when the sources are located in the core of the structure and propagation in the core is of special interest, the contribution from the continuous part of the wave spectrum cannot be neglected. At each interface between the layers of the irregular spheroidal structure, exact boundary conditions are imposed. Since the terms of the field expansions in the irregular structure do not individually satisfy the boundary conditions, Maxwell's equations are reduced to sets of coupled ordinary first-order differential equations for the wave amplitudes. The solutions are shown to satisfy the reciprocity relationships in electromagnetic theory. The analysis may be applied to problems of radio wave propagation in a nonuniform model of the earth-ionosphere waveguide, particularly when focusing effects at the antipodes are important

  10. Generalized eigenvalue based spectrum sensing

    KAUST Repository

    Shakir, Muhammad

    2012-01-01

    Spectrum sensing is one of the fundamental components in cognitive radio networks. In this chapter, a generalized spectrum sensing framework which is referred to as Generalized Mean Detector (GMD) has been introduced. In this context, we generalize the detectors based on the eigenvalues of the received signal covariance matrix and transform the eigenvalue based spectrum sensing detectors namely: (i) the Eigenvalue Ratio Detector (ERD) and two newly proposed detectors which are referred to as (ii) the GEometric Mean Detector (GEMD) and (iii) the ARithmetic Mean Detector (ARMD) into an unified framework of generalize spectrum sensing. The foundation of the proposed framework is based on the calculation of exact analytical moments of the random variables of the decision threshold of the respective detectors. The decision threshold has been calculated in a closed form which is based on the approximation of Cumulative Distribution Functions (CDFs) of the respective test statistics. In this context, we exchange the analytical moments of the two random variables of the respective test statistics with the moments of the Gaussian (or Gamma) distribution function. The performance of the eigenvalue based detectors is compared with the several traditional detectors including the energy detector (ED) to validate the importance of the eigenvalue based detectors and the performance of the GEMD and the ARMD particularly in realistic wireless cognitive radio network. Analytical and simulation results show that the newly proposed detectors yields considerable performance advantage in realistic spectrum sensing scenarios. Moreover, the presented results based on proposed approximation approaches are in perfect agreement with the empirical results. © 2012 Springer Science+Business Media Dordrecht.

  11. Biologic effects of electromagnetic radiation and microwave

    International Nuclear Information System (INIS)

    Deng Hua

    2002-01-01

    Electromagnetic radiation and microwave exist mankind's environment widely. People realize they disserve authors' health when authors make use of them. Electromagnetic radiation is one of the major physic factors which injure people's health. A review of the biologic mechanism about electromagnetic radiation and microwave, their harmful effects to human body, problems in authors' research and the prospect

  12. Electromagnetic Pulse Coupling Analysis of Electronic Equipment

    OpenAIRE

    Hong Lei; Qingying LI

    2017-01-01

    High-intensity nuclear explosion caused by high-altitude nuclear electromagnetic pulse through the antenna, metal cables, holes and other channels, coupled with very high energy into the electronic device, and cause serious threats. In this paper, the mechanism, waveform, coupling path and damage effect of nuclear electromagnetic pulse is analyzed, and the coupling mechanism of nuclear electromagnetic pulse is studied.

  13. Particle acceleration by electromagnetic pulses

    International Nuclear Information System (INIS)

    Lai, H.M.

    1982-01-01

    Particle interaction with plane electromagnetic pulses is studied. It is shown that particle acceleration by a wavy pulse, depending on the shape of the pulse, may not be small. Further, a diffusive-type particle acceleration by multiple weak pulses is described and discussed. (author)

  14. Synthetic aperture controlled source electromagnetics

    NARCIS (Netherlands)

    Fan, Y.; Snieder, R.; Slob, E.; Hunziker, J.W.; Singer, J.; Sheiman, J.; Rosenquist, M.

    2010-01-01

    Controlled?source electromagnetics (CSEM) has been used as a de?risking tool in the hydrocarbon exploration industry. Although there have been successful applications of CSEM, this technique is still not widely used in the industry because the limited types of hydrocarbon reservoirs CSEM can detect.

  15. Solved problems in classical electromagnetism

    CERN Document Server

    Franklin, Jerrold

    2018-01-01

    This original Dover publication is the companion to a new edition of the author's Classical Electromagnetism: Second Edition. The latter volume will feature only basic answers; this book will contain some problems from the reissue as well as many other new ones. All feature complete, worked-out solutions and form a valuable source of problem-solving material for students.

  16. Electromagnetic Levitation of a Disc

    Science.gov (United States)

    Valle, R.; Neves, F.; de Andrade, R., Jr.; Stephan, R. M.

    2012-01-01

    This paper presents a teaching experiment that explores the levitation of a disc of ferromagnetic material in the presence of the magnetic field produced by a single electromagnet. In comparison to the classical experiment of the levitation of a sphere, the main advantage of the proposed laboratory bench is that the uniform magnetic field…

  17. Contributions of Maxwell to Electromagnetism

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 8; Issue 5. Contributions of Maxwell to Electromagnetism. P V Panat. General Article Volume 8 Issue 5 May 2003 pp 17-29. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/008/05/0017-0029. Keywords.

  18. Radiation leakage from electromagnetic oven

    Directory of Open Access Journals (Sweden)

    Abdurrahman Khalil

    2015-10-01

    Results & Discussions: The measurements have been done at some houses in Erbil city, according to the source of background radiation exist before measuring data. Our data compared with standard safe range of radiation data. Results showed that there is radiation leak form all type of electromagnetic oven and all at the order of safety compared with standard value.

  19. Electromagnetic hypersensitivity: Fact or fiction?

    International Nuclear Information System (INIS)

    Genuis, Stephen J.; Lipp, Christopher T.

    2012-01-01

    As the prevalence of wireless telecommunication escalates throughout the world, health professionals are faced with the challenge of patients who report symptoms they claim are connected with exposure to some frequencies of electromagnetic radiation (EMR). Some scientists and clinicians acknowledge the phenomenon of hypersensitivity to EMR resulting from common exposures such as wireless systems and electrical devices in the home or workplace; others suggest that electromagnetic hypersensitivity (EHS) is psychosomatic or fictitious. Various organizations including the World Health Organization as well as some nation states are carefully exploring this clinical phenomenon in order to better explain the rising prevalence of non-specific, multi-system, often debilitating symptoms associated with non-ionizing EMR exposure. As well as an assortment of physiological complaints, patients diagnosed with EHS also report profound social and personal challenges, impairing their ability to function normally in society. This paper offers a review of the sparse literature on this perplexing condition and a discussion of the controversy surrounding the legitimacy of the EHS diagnosis. Recommendations are provided to assist health professionals in caring for individuals complaining of EHS. - Highlights: ► Many people report symptoms when near devices emanating electromagnetic fields(EMF). ► Electromagnetic hypersensitivity (EHS) research has generated conflicting outcomes. ► Recent evidence suggests pathophysiological change in some individuals with EHS. ► EHS patients consistently report profound social and personal challenges. ► Clinicians need to be apprised of the EHS condition and potential interventions.

  20. Fast electromagnetic field strength probes

    NARCIS (Netherlands)

    Leferink, Frank Bernardus Johannes; Serra, Ramiro

    2013-01-01

    Diode detectors and thermocouple detectors are conventionally used to measure electromagnetic field strength. Both detectors have some disadvantages for applications where a fast response and a high dynamic range is required. The diode detector is limited in dynamic range. The dynamic range is

  1. Explanations, Education, and Electromagnetic Fields.

    Science.gov (United States)

    Friedman, Sharon M.

    Explaining complex scientific and environmental subjects in the mass media is difficult to do, particularly under such constraints as short deadlines and lack of space or time. When a scientific controversy and human health risk are involved, this becomes an even harder task to accomplish. The subject of electromagnetic fields (EMF) involves…

  2. Biological effects of electromagnetic fields

    International Nuclear Information System (INIS)

    David, E.

    1993-01-01

    In this generally intelligible article, the author describes at first the physical fundamentals of electromagnetic fields and their basic biological significance and effects for animals and human beings before dealing with the discussion regarding limiting values and dangers. The article treats possible connections with leukaemia as well as ith melatonine production more detailed. (vhe) [de

  3. Electromagnetic acoustic transducers noncontacting ultrasonic measurements using EMATS

    CERN Document Server

    Hirao, Masahiko

    2017-01-01

    This second edition provides comprehensive information on electromagnetic acoustic transducers (EMATs), from the theory and physical principles of EMATs to the construction of systems and their applications to scientific and industrial ultrasonic measurements on materials. The original version has been complemented with selected ideas on ultrasonic measurement that have emerged since the first edition was released. The book is divided into four parts: PART I offers a self-contained description of the basic elements of coupling mechanisms along with the practical designing of EMATs for various purposes. Several implementations to compensate for EMATs’ low transfer efficiency are provided, along with useful tips on how to make an EMAT. PART II describes the principle of electromagnetic acoustic resonance (EMAR), which makes the most of EMATs’ contactless nature and is the most successful amplification mechanism for precise measurements of velocity and attenuation. PART III applies EMAR to studying physical ...

  4. Energy-momentum tensor of the electromagnetic field

    International Nuclear Information System (INIS)

    Horndeski, G.W.; Wainwright, J.

    1977-01-01

    In this paper we investigate the energy-momentum tensor of the most general second-order vector-tensor theory of gravitation and electromagnetism which has field equations which are (i) derivable from a variational principle, (ii) consistent with the notion of conservation of charge, and (iii) compatible with Maxwell's equations in a flat space. This energy-momentum tensor turns out to be quadratic in the first partial derivatives of the electromagnetic field tensor and depends upon the curvature tensor. The asymptotic behavior of this energy-momentum tensor is examined for solutions to Maxwell's equations in Minkowski space, and it is demonstrated that this energy-momentum tensor predicts regions of negative energy density in the vicinity of point sources

  5. Uniform electromagnetic field as viscous medium for moving particles

    International Nuclear Information System (INIS)

    Amusia, M.Ya.; Baltenkov, A.S.; Felfli, Z.; Msezane, A.Z.; Voitkiv, A.B.

    2002-01-01

    The mechanism of transverse radiation viscosity acting on free charges, atomic, and small macroscopic particles in uniform electromagnetic fields is analyzed. It is shown that in the process of light scattering by these particles, besides the force accelerating them in the direction of propagation of the radiation, there is a force in the transverse direction slowing them down. The general expression for this force is obtained. It is considered how this force can influence: (i) the motion of ultrarelativistic electrons in transverse photon fluxes; (ii) the behavior of a beam of nonrelativistic electrons moving in a copropagating uniform electromagnetic field; (iii) the transverse motion of atoms under the action of resonant radiation and (iv) the motion of small macroscopic particles

  6. Electromagnetic microwaves in metal films with electron-phonon interaction and a dc magnetic field

    DEFF Research Database (Denmark)

    Hasselberg, L.E.

    1976-01-01

    A quantum-mechanical treatment of electromagnetic microwaves is performed for a metal film. The directions of the exterior ac and dc fields are taken to be arbitrary and boundary conditions for the electrons are assumed to be specular. The relation between the current and the electromagnetic field...... in the transmission spectrum can perhaps be obtained by assuming a finite Debye temperature and specular reflections of the electrons at the boundary surfaces. A sharp peak entirely caused by the finite electron-phonon interaction is also discussed....

  7. Response on the earth surface due to illumination by electromagnetic pulse of nuclear explosion

    International Nuclear Information System (INIS)

    Nesic, R.

    1983-01-01

    Electromagnetic pulse is one of environment responses to extitation by nuclear explosion, its influence on the surface of the earth is most expressed in case of a nuclear explosion in ionosphere. For electromagnetic pulse of ionospheric explosion the time response, spectrum, spectral distribution and integral flux of energy on the earth surface were analysed, responses to them in shape of conductive voltage and currents were defined. Obtained shapes of responses and their range of variation are the base to define requirements for needed and justified protections. (author)

  8. Nonlinear simulation of electromagnetic current diffusive interchange mode turbulence

    International Nuclear Information System (INIS)

    Yagi, M.; Itoh, S.I.; Fukuyama, A.

    1998-01-01

    The anomalous transport in toroidal plasmas has been investigated extensively. It is pointed out that the nonlinear instability is important in driving the microturbulence[1], i.e., the self-sustained plasma turbulence. This concept is explained as follows; when the electron motion along the magnetic field line is resisted by the background turbulence, it gives rise to the effective resistivity and enhances the level of the turbulence. The nonlinear simulation of the electrostatic current diffusive interchange mode (CDIM) in the two dimensional sheared slab geometry has been performed as an example. The occurrence of the nonlinear instability and the self-sustainment of the plasma turbulence were confirmed by this simulation[2]. On the other hand, the electromagnetic turbulence is sustained in the high pressure limit. The possibility of the self-organization with more variety has been pointed out[3]. It is important to study the electromagnetic turbulence based on the nonlinear simulation. In this paper, the model equation for the electrostatic CDIM turbulence[2] is extended for both electrostatic and electromagnetic turbulence. (1) Not only E x B convective nonlinearity but also the electromagnetic nonlinearity which is related to the parallel flow are incorporated into the model equation. (2) The electron and ion pressure evolution equations are solved separately, making it possible to distinguish the electron and ion thermal diffusivities. The two dimensional nonlinear simulation of the electromagnetic CDIM is performed based on the extended fluid model. This paper is organized as follows. The model equation is explained in section II. The result of simulation is shown in section III. The conclusion and discussion are given in section IV. (author)

  9. Health hazards and electromagnetic fields.

    Science.gov (United States)

    Saunders, T

    2003-11-01

    Biological rhythms, physical wellbeing and mental states are dependent on our electrical brainwave system interacting with the extremely weak electromagnetic fields generated by the Earth's telluric and Cosmic radiations. In a single generation, since the evolution of humankind over millions of years, we are exposed to a wide range of powerful, artificially generated electromagnetic radiation which adversely affects the subtle balance in nature's energy fields and has become the source of so-called 'diseases of civilization'. This also includes electromagnetic sensitivity. Generally, there is a lack of awareness and understanding of the impact electromagnetic fields can have upon health and wellbeing.Our ancestors were acutely aware that certain locations, were perceived to have a positive energy field which was beneficial to health and vitality. Over time, these areas are now referred to as sacred sites for spiritual ceremony and as healing centres. In contrast, there are other geographical locations that can have a negative effect upon health and these are known as geopathic stress zones. It is believed that such zones can interfere with the brain's normal function that inhibits the release of melatonin and other endocrine secretions needed to replenish the immune system. Geopathic stress can affect animals and plant life as well as human beings and significantly contributes to sick building syndrome (SBS). Whilst there is an increasing body of opinion amongst eminent researchers and scientists who are addressing these issues, the establishment professions are slow to change. However, very gradually, modern allopathic medicine and attitudes are beginning to recognise the extraordinary wisdom and efficacy of ancient traditions such as acupuncture, light, colour and other therapies based on the understanding and treatment of the interaction of a person's electromagnetic subtle body and the immediate environment. These and many other 'complementary' therapies may

  10. Extracting preseismic electromagnetic signatures in terms of symbolic dynamics

    Directory of Open Access Journals (Sweden)

    K. Karamanos

    2005-01-01

    Full Text Available When a heterogeneous material is strained, its evolution toward breaking is characterized by the nucleation and the coalescence of micro-cracks before the final break-up. Electromagnetic (EM emission in a wide frequency spectrum ranging from very low frequencies (VLF to very high frequencies (VHF is produced by micro-cracks, which can be considered as the so-called precursors of general fracture. Herein we consider earthquakes (EQs as large-scale fracture phenomena. We study the capability of nonlinear time series analysis to extract features from pre-seismic electromagnetic (EM activity possibly indicating the nucleation of the impending EQ. In particular, we want to quantify and to visualize temporal changes of the complexity into consecutive time-windows of the time series. In this direction the original continuous time EM data is projected to a linguistic symbolic sequence and then we calculate the block entropies of the optimal partition. This analysis reveals a significant reduction of complexity of the underlying fracto-electromagnetic mechanism as the catastrophic events is approaching. We verify this result in terms of correlation dimension analysis. We point out that these findings are compatible with results from an independent linear method which uses a wavelet based approach for the estimation of fractal spectral characteristics. Field and laboratory experiments associate the epoch of low complexity in the tail of the precursory emission with the nucleation phase of the impending earthquake.

  11. Electromagnetic Field Redistribution in Metal Nanoparticle on Graphene.

    Science.gov (United States)

    Li, Keke; Liu, Anping; Wei, Dapeng; Yu, Keke; Sun, Xiaonan; Yan, Sheng; Huang, Yingzhou

    2018-04-25

    Benefiting from the induced image charge on metal film, the light energy is confined on a film surface under metal nanoparticle dimer, which is called electromagnetic field redistribution. In this work, electromagnetic field distribution of metal nanoparticle monomer or dimer on graphene is investigated through finite-difference time-domain method. The results point out that the electromagnetic field (EM) redistribution occurs in this nanoparticle/graphene hybrid system at infrared region where light energy could also be confined on a monolayer graphene surface. Surface charge distribution was analyzed using finite element analysis, and surface-enhanced Raman spectrum (SERS) was utilized to verify this phenomenon. Furthermore, the data about dielectric nanoparticle on monolayer graphene demonstrate this EM redistribution is attributed to strong coupling between light-excited surface charge on monolayer graphene and graphene plasmon-induced image charge on dielectric nanoparticle surface. Our work extends the knowledge of monolayer graphene plasmon, which has a wide range of applications in monolayer graphene-related film.

  12. Strong permanent magnet-assisted electromagnetic undulator

    Science.gov (United States)

    Halbach, Klaus

    1988-01-01

    This invention discloses an improved undulator comprising a plurality of electromagnet poles located along opposite sides of a particle beam axis with alternate north and south poles on each side of the beam to cause the beam to wiggle or undulate as it travels generally along the beam axis and permanent magnets spaced adjacent the electromagnetic poles on each side of the axis of said particle beam in an orientation sufficient to reduce the saturation of the electromagnet poles whereby the field strength of the electromagnet poles can be increased beyond the normal saturation levels of the electromagnetic poles.

  13. A System for Electromagnetic Field Conversion

    DEFF Research Database (Denmark)

    2003-01-01

    A system is provided for conversion of a first electromagnetic field into a desired second electromagnetic field, for example for coupling modes between waveguides or into microstructured waveguides. The system comprises a complex spatial electromagnetic field converter that is positioned...... for reception of at least a part of the first electromagnetic field and that is adapted for conversion of the received field into the desired electromagnetic field, and wherein at least one of the first and second fields matches a mode of a microstructured waveguide. It is an important advantage of the present...

  14. Particle physics in intense electromagnetic fields

    International Nuclear Information System (INIS)

    Kurilin, A.V.

    1999-01-01

    The quantum field theory in the presence of classical background electromagnetic field is reviewed giving a pedagogical introduction to the Feynman-Furry method of describing non-perturbative interactions with very strong electromagnetic fields. A particular emphasis is given to the case of the plane-wave electromagnetic field for which the charged particles' wave functions and propagators are presented. Some general features of quantum processes proceeding in the intense electromagnetic background are argued. The possibilities of searching new physics through the investigations of quantum phenomena induced by a strong electromagnetic environment are also discussed

  15. Electromagnetic engineering - from dc to light

    International Nuclear Information System (INIS)

    Austin, B.A.

    1984-01-01

    Electromagnetic engineering is of great importance to modern world. Some of its various applications can be found in communications science. There is little agreement between the East and West about electromagnetic radiation effects. Although the West believes that there is no danger in power frequency fields, standards for the maximum power densities to which humans may be exposed were laid down by various national and international bodies. Two other effects of electromagnetic energy include: a) The possible ignition of flammable vapours and gases by electromagnetic radiation and; b) the electromagnetic pulse. The application of radar is also discussed

  16. Velocity measurement of conductor using electromagnetic induction

    International Nuclear Information System (INIS)

    Kim, Gu Hwa; Kim, Ho Young; Park, Joon Po; Jeong, Hee Tae; Lee, Eui Wan

    2002-01-01

    A basic technology was investigated to measure the speed of conductor by non-contact electromagnetic method. The principle of the velocity sensor was electromagnetic induction. To design electromagnet for velocity sensor, 2D electromagnetic analysis was performed using FEM software. The sensor output was analyzed according to the parameters of velocity sensor, such as the type of magnetizing currents and the lift-off. Output of magnetic sensor was linearly depended on the conductor speed and magnetizing current. To compensate the lift-off changes during measurement of velocity, the other magnetic sensor was put at the pole of electromagnet.

  17. Open bosonic string in background electromagnetic field

    International Nuclear Information System (INIS)

    Nesterenko, V.V.

    1987-01-01

    The classical and quantum dynamics of an open string propagating in the D-dimensional space-time in the presence of a background electromagnetic field is investigated. An important point in this consideration is the use of the generalized light-like gauge. There are considered the strings of two types; the neutral strings with charges at their ends obeying the condition q 1 +q 2 =0 and the charged strings having a net charge q 1 +q 2 ≠ 0. The consistency of theory demands that the background electric field does not exceed its critical value. The distance between the mass levels of the neutral open string decreases (1-e 2 ) times in comparison with the free string, where e is the dimensionless strength of the electric field. The magnetic field does not affect this distance. It is shown that at a classical level the squared mass of the neutral open string has a tachyonic contribution due to the motion of the string as a whole in transverse directions. The tachyonic term disappears if one considers, instead of M 2 , the string energy in a special reference frame where the projection of the total canonical momentum of the string onto the electric field vanishes. The contributions due to zero point fluctuations to the energy spectrum of the neutral string and to the Virasoro operators in the theory of charged string are found

  18. Supersymmetric relations among electromagnetic dipole operators

    International Nuclear Information System (INIS)

    Graesser, Michael; Thomas, Scott

    2002-01-01

    Supersymmetric contributions to all leptonic electromagnetic dipole operators have essentially identical diagrammatic structure. With approximate slepton universality this allows the muon anomalous magnetic moment to be related to the electron electric dipole moment in terms of supersymmetric phases, and to radiative flavor changing lepton decays in terms of small violations of slepton universality. If the current discrepancy between the measured and standard model values of the muon anomalous magnetic moment is due to supersymmetry, the current bound on the electron electric dipole moment then implies that the phase of the electric dipole operator is less than 2x10 -3 . Likewise the current bound on μ→eγ decay implies that the fractional selectron-smuon mixing in the left-left mass squared matrix, δm μ-tildee-tilde) 2 /m l-tilde) 2 , is less than 10 -4 . These relations and constraints are fairly insensitive to details of the superpartner spectrum for moderate to large tan β

  19. Wavenumber spectrum of whistler turbulence: Particle-in-cell simulation

    International Nuclear Information System (INIS)

    Saito, S.; Gary, S. Peter; Narita, Y.

    2010-01-01

    The forward cascade of decaying whistler turbulence is studied in low beta plasma to understand essential properties of the energy spectrum at electron scales, by using a two-dimensional electromagnetic particle-in-cell (PIC) simulation. This simulation demonstrates turbulence in which the energy cascade rate is greater than the dissipation rate at the electron inertial length. The PIC simulation shows that the magnetic energy spectrum of forward-cascaded whistler turbulence at electron inertial scales is anisotropic and develops a very steep power-law spectrum which is consistent with recent solar wind observations. A comparison of the simulated spectrum with that predicted by a phenomenological turbulence scaling model suggests that the energy cascade at the electron inertial scale depends on both magnetic fluctuations and electron velocity fluctuations, as well as on the whistler dispersion relation. Thus, not only kinetic Alfven turbulence but also whistler turbulence may explain recent solar wind observations of very steep magnetic spectra at short scales.

  20. Characteristic parameters of electromagnetic signals from a human heart system

    International Nuclear Information System (INIS)

    Liu Xin-Yuan; Wang Yin; Zhang Su-Ming; Gao Hong-Lei; Pei Liu-Qing; Dai Yuan-Dong

    2011-01-01

    The electromagnetic field of a human heart system is a bioelectromagnetic field. Electrocardiography (ECG) and magnetocardiography (MCG) are both carriers of electromagnetic information about the cardiac system, and they are nonstationary signals. In this study, ECG and MCG data from healthy subjects are acquired; the MCG data are captured using a high-T c radio frequency superconducting quantum interference device (HTc rf SQUIDs) and the QRS complexes in these data are analysed by the evolutionary spectrum analysis method. The results show that the quality factor Q and the central frequency f z of the QRS complex evolutionary spectrum are the characteristic parameters (CHPs) of ECG and MCG in the time—frequency domain. The confidence intervals of the mean values of the CHPs are estimated by the Student t distribution method in mathematical statistics. We believe that there are threshold ranges of the mean values of Q and f z for healthy subjects. We have postulated the following criterion: if the mean values of CHPs are in the proper ranges, the cardiac system is in a normal condition and it possesses the capability of homeostasis. In contrast, if the mean values of the CHPs do not lie in the proper ranges, the homeostasis of the cardiac system is lacking and some cardiac disease may follow. The results and procedure of MCG CHPs in the study afford a technological route for the application of HTc rf SQUIDs in cardiology. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  1. Electromagnetic-gravitational conversion cross sections in external electromagnetic fields

    International Nuclear Information System (INIS)

    Hoang Ngoc Long; Dang Van Soa; Tuan Tran, A.

    1994-09-01

    The classical processes: the conversion of photons into gravitons in the static electromagnetic fields are considered by using Feynman perturbation techniques. The differential cross sections are presented for the conversion in the electric field of the flat condenser and the magnetic field of the solenoid. A numerical evaluation shows that the cross sections may have the observable value in the present technical scenario. (author). 11 refs

  2. Anisotropic power spectrum of refractive-index fluctuation in hypersonic turbulence.

    Science.gov (United States)

    Li, Jiangting; Yang, Shaofei; Guo, Lixin; Cheng, Mingjian

    2016-11-10

    An anisotropic power spectrum of the refractive-index fluctuation in hypersonic turbulence was obtained by processing the experimental image of the hypersonic plasma sheath and transforming the generalized anisotropic von Kármán spectrum. The power spectrum suggested here can provide as good a fit to measured spectrum data for hypersonic turbulence as that recorded from the nano-planar laser scattering image. Based on the newfound anisotropic hypersonic turbulence power spectrum, Rytov approximation was employed to establish the wave structure function and the spatial coherence radius model of electromagnetic beam propagation in hypersonic turbulence. Enhancing the anisotropy characteristics of the hypersonic turbulence led to a significant improvement in the propagation performance of electromagnetic beams in hypersonic plasma sheath. The influence of hypersonic turbulence on electromagnetic beams increases with the increase of variance of the refractive-index fluctuation and the decrease of turbulence outer scale and anisotropy parameters. The spatial coherence radius was much smaller than that in atmospheric turbulence. These results are fundamental to understanding electromagnetic wave propagation in hypersonic turbulence.

  3. Electron diffusion in tokamaks due to electromagnetic fluctuations

    International Nuclear Information System (INIS)

    Horton, W.; Choi, D.-I.; Yushmanov, P.N.; Parail, V.V.

    1987-01-01

    Calculations for the stochastic diffusion of electrons in Tokamaks due to a spectrum of electromagnetic drift fluctuations are presented. The parametric dependence of the diffusion coefficient on the amplitude and phase velocity of the spectrum, and the bounce frequency for the electrons is studied. The wavenumber spectrum is taken to be a low order (5 x 5) randomly-phased, isotropic, monotonic spectrum extending from k sub(perpendicular to min) ≅ ωsub(ci)/Csub(s) to k sub(perpendicular to max) ≅ 3ωsub(pe)/C with different power laws of decrease φsub(k) ≅ φ 1 /ksup(m), 1 ≤ m ≤ 3. A nonlinear Ohm's law is derived for the self-consistent relation between the electrostatic and parallel vector potentials. The parallel structure of the fluctuations is taken to be such that ksup(nl)sub(parallel to)Vsub(e) < ωsub(k) due to the nonlinear perpendicular motion of the electrons described in the nonlinear Ohm's law. The diffusion coefficient scales approximately as the neo-Alcator and Merezhkin-Mukhovatov empirical formulas for plasma densities below a critical density. (author)

  4. Electron diffusion in tokamaks due to electromagnetic fluctuations

    International Nuclear Information System (INIS)

    Horton, W.; Choi, D.I.; Yushmanov, P.N.; Parail, V.V.

    1986-05-01

    Calculations for the stochastic diffusion of electrons in tokamaks due to a spectrum of electromagnetic drift fluctuations are presented. The parametric dependence of the diffusion coefficient on the amplitude and phase velocity of the spectrum, and the bounce frequency for the electrons is studied. The wavenumber spectrum is taken to be a low order (5 x 5) randomly-phased, isotropic, Monotonic spectrum extending from k /sub perpendicular min/ approx. = ω/sub ci//c/sub s/ to k/sub perpendicular max/ approx. = 3ω/sub pe//c with different power laws of decrease phi k approx. = phi 1/k/sup m/, 1 less than or equal to m less than or equal to 3. A nonlinear Ohm's law is derived for the self-consistent relation between the electrostatic and parallel vector potentials. The parallel structure of the fluctuations is taken to be such that k parallel/sup nl/upsilon/sub e/ < w/sub k/ due to the nonlinear perpendicular motion of the electrons described in the nonlinear Ohm's law. The diffusion coefficient scales approximately as the neo-Alcator and Merezhkin-Mukhovatoc empirical formulas for plasma densities above a critical density

  5. Sparse Reconstruction Schemes for Nonlinear Electromagnetic Imaging

    KAUST Repository

    Desmal, Abdulla

    2016-03-01

    Electromagnetic imaging is the problem of determining material properties from scattered fields measured away from the domain under investigation. Solving this inverse problem is a challenging task because (i) it is ill-posed due to the presence of (smoothing) integral operators used in the representation of scattered fields in terms of material properties, and scattered fields are obtained at a finite set of points through noisy measurements; and (ii) it is nonlinear simply due the fact that scattered fields are nonlinear functions of the material properties. The work described in this thesis tackles the ill-posedness of the electromagnetic imaging problem using sparsity-based regularization techniques, which assume that the scatterer(s) occupy only a small fraction of the investigation domain. More specifically, four novel imaging methods are formulated and implemented. (i) Sparsity-regularized Born iterative method iteratively linearizes the nonlinear inverse scattering problem and each linear problem is regularized using an improved iterative shrinkage algorithm enforcing the sparsity constraint. (ii) Sparsity-regularized nonlinear inexact Newton method calls for the solution of a linear system involving the Frechet derivative matrix of the forward scattering operator at every iteration step. For faster convergence, the solution of this matrix system is regularized under the sparsity constraint and preconditioned by leveling the matrix singular values. (iii) Sparsity-regularized nonlinear Tikhonov method directly solves the nonlinear minimization problem using Landweber iterations, where a thresholding function is applied at every iteration step to enforce the sparsity constraint. (iv) This last scheme is accelerated using a projected steepest descent method when it is applied to three-dimensional investigation domains. Projection replaces the thresholding operation and enforces the sparsity constraint. Numerical experiments, which are carried out using

  6. Thermal Management of Superconducting Electromagnets in VASIMR Thrusters, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The Variable Specific Impulse Magnetoplasma Rocket (VASIMR) engine currently being developed at NASA Johnson is an attractive technology for minimizing transit time...

  7. Electromagnetic radiation from vortex flow in Type-II superconductors.

    Science.gov (United States)

    Bulaevskii, L N; Chudnovsky, E M

    2006-11-10

    We show that a moving vortex lattice, as it comes to a crystal edge, radiates into a free space the harmonics of the washboard frequency, omega(0)=2pi v/a, up to a superconducting gap, Delta/variant Planck's over 2pi. Here v is the velocity of the vortex lattice and a is the intervortex spacing. We compute radiation power and show that this effect can be used for the generation of terahertz radiation and for characterization of moving vortex lattices.

  8. Electromagnetic Radiation from Vortex Flow in Type-II Superconductors

    International Nuclear Information System (INIS)

    Bulaevskii, L. N.; Chudnovsky, E. M.

    2006-01-01

    We show that a moving vortex lattice, as it comes to a crystal edge, radiates into a free space the harmonics of the washboard frequency, ω 0 =2πv/a, up to a superconducting gap, Δ/(ℎ/2π). Here v is the velocity of the vortex lattice and a is the intervortex spacing. We compute radiation power and show that this effect can be used for the generation of terahertz radiation and for characterization of moving vortex lattices

  9. Electromagnetic radiation from vortex flow in type-II superconductors

    OpenAIRE

    Bulaevskii, L. N.; Chudnovsky, E. M.

    2006-01-01

    We show that a moving vortex lattice, as it comes to a crystal edge, radiates into a free space the harmonics of the washboard frequency, $\\omega_0=2\\pi v/a$, up to a superconducting gap, $\\Delta/\\hbar$. Here $v$ is the velocity of the vortex lattice and $a$ is the intervortex spacing. We compute radiation power and show that this effect can be used for generation of terahertz radiation and for characterization of moving vortex lattices.

  10. Biological Effects of Electromagnetic Radiation. Volume II, Number 4.

    Science.gov (United States)

    1975-12-01

    absorption due to discrete sources and sinks of EMR in the body. In a pilot study an X—band MW radio— ~~ GNETIC MODEL . (K.) Heppner, F. H. (Dep...bipolar elec trodes in the caudate nucleus , cen trum A light sen’sing diode matrix was constructed on the medianum , hippocampus , and presylvian

  11. Electromagnetic transitions in the atom

    International Nuclear Information System (INIS)

    Ulehla, I.; Suk, M.; Trka, Z.

    1990-01-01

    Methods to achieve excitation of atoms are outlined and conditions necessary for the occurrence of electromagnetic transitions in the atomic shell are given. Radiative transitions between the energy states of the atom include stimulated absorption, spontaneous emission, and stimulated emission. Selection rules applying to the majority of observed transitions are given. The parity concept is explained. It is shown how the electromagnetic field and its interaction with the magnetic moment of the atom lead to a disturbance of the energy states of the atom and the occurrence of various electro-optical and magneto-optical phenomena. The Stark effect and electron spin resonance are described. X-rays and X-ray spectra, the Auger effect and the internal photoeffect are also dealt with. The principle of the laser is explained. (M.D.). 22 figs., 1 tab

  12. Electromagnetic trapping of cold atoms

    International Nuclear Information System (INIS)

    Balykin, V.I.; Minogin, V.G.; Letokhov, V.S.

    2000-01-01

    This review describes the methods of trapping cold atoms in electromagnetic fields and in the combined electromagnetic and gravity fields. We discuss first the basic types of the dipole radiation forces used for cooling and trapping atoms in the laser fields. We outline next the fundamentals of the laser cooling of atoms and classify the temperature limits for basic laser cooling processes. The main body of the review is devoted to discussion of atom traps based on the dipole radiation forces, dipole magnetic forces, combined dipole radiation-magnetic forces, and the forces combined of the dipole radiation-magnetic and gravity forces. Physical fundamentals of atom traps operating as waveguides and cavities for cold atoms are also considered. The review ends with the applications of cold and trapped atoms in atomic, molecular and optical physics. (author)

  13. Simple Electromagnetic Analysis in Cryptography

    Directory of Open Access Journals (Sweden)

    Zdenek Martinasek

    2012-07-01

    Full Text Available The article describes the main principle and methods of simple electromagnetic analysis and thus provides an overview of simple electromagnetic analysis.The introductions chapters describe specific SPA attack used visual inspection of EM traces, template based attack and collision attack.After reading the article, the reader is sufficiently informed of any context of SEMA.Another aim of the article is the practical realization of SEMA which is focused on AES implementation.The visual inspection of EM trace of AES is performed step by step and the result is the determination of secret key Hamming weight.On the resulting EM trace, the Hamming weight of the secret key 1 to 8 was clearly visible.This method allows reduction from the number of possible keys for following brute force attack.

  14. Magnetic correlates in electromagnetic consciousness.

    Science.gov (United States)

    Liboff, A R

    2016-01-01

    We examine the hypothesis that consciousness is a manifestation of the electromagnetic field, finding supportive factors not previously considered. It is not likely that traditional electrophysiological signaling modes can be readily transmitted throughout the brain to properly enable this field because of electric field screening arising from the ubiquitous distribution of high dielectric lipid membranes, a problem that vanishes for low-frequency magnetic fields. Many reports over the last few decades have provided evidence that living tissue is robustly sensitive to ultrasmall (1-100 nT) ELF magnetic fields overlapping the γ-frequency range often associated with awareness. An example taken from animal behavior (coherent bird flocking) lends support to the possibility of a disembodied electromagnetic consciousness. In contrast to quantum consciousness hypotheses, the present approach is open to experimental trial.

  15. Falling Magnets and Electromagnetic Braking

    Science.gov (United States)

    Culbreath, Christopher; Palffy-Muhoray, Peter

    2009-03-01

    The slow fall of a rare earth magnet through a copper pipe is a striking example of electromagnetic braking; this remarkable phenomenon has been the subject of a number of scientific paper s [1, 2]. In a pipe having radius R and wall thickness D, the terminal velocity of the falling magnet is proportional to (R̂4)/D. It is interesting to ask what happens in the limit as D becomes very large. We report our experimental observations and theoretical predictions of the dependence of the terminal velocity on pipe radius R for large D. [1] Y. Levin, F.L. da Silveira, and F.B. Rizzato, ``Electromagnetic braking: A simple quantitative model''. American Journal of Physics, 74(9): p. 815-817 (2006). [2] J.A. Pelesko, M. Cesky, and S. Huertas, Lenz's law and dimensional analysis. American Journal of Physics, 3(1): p. 37-39. 2005.

  16. Time domain electromagnetic metal detectors

    International Nuclear Information System (INIS)

    Hoekstra, P.

    1996-01-01

    This presentation focuses on illustrating by case histories the range of applications and limitations of time domain electromagnetic (TDEM) systems for buried metal detection. Advantages claimed for TDEM metal detectors are: independent of instrument response (Geonics EM61) to surrounding soil and rock type; simple anomaly shape; mitigation of interference by ambient electromagnetic noise; and responsive to both ferrous and non-ferrous metallic targets. The data in all case histories to be presented were acquired with the Geonics EM61 TDEM system. Case histories are a test bed site on Molokai, Hawaii; Fort Monroe, Virginia; and USDOE, Rocky Flats Plant. The present limitations of this technology are: discrimination capabilities in terms of type of ordnance, and depth of burial is limited, and ability of resolving targets with small metallic ambient needs to be improved

  17. The KLOE fiber electromagnetic calorimeter

    International Nuclear Information System (INIS)

    Incagli, Marco

    1998-01-01

    The construction and equipment of the KLOE electromagnetic calorimeter has ended in March 1997. In parallel to the construction, all modules have been tested at the Cosmic Ray Test Stand (CRTS) facility, in Frascati National Laboratories (Rome). The construction technique, based on scintillating fibers alternated to very thin (0.5 mm) grooved lead planes, is described and the main results both from the CRTS and from a preliminary Test Beam with low energy electrons and muons are reported in this note

  18. Electromagnetic Calorimeter for HADES Experiment

    Directory of Open Access Journals (Sweden)

    Rodríguez-Ramos P.

    2014-01-01

    Full Text Available Electromagnetic calorimeter (ECAL is being developed to complement dilepton spectrometer HADES. ECAL will enable the HADES@FAIR experiment to measure data on neutral meson production in heavy ion collisions at the energy range of 2-10 AGeV on the beam of future accelerator SIS100@FAIR. We will report results of the last beam test with quasi-monoenergetic photons carried out in MAMI facility at Johannes Gutenberg Universität Mainz.

  19. Electromagnetic Environmental Effects System Testing

    Science.gov (United States)

    2013-11-20

    includes such items as machine tools, micromanipulators, sheet metal fabricating tools, TOP 01-2-511A 20 November 2013 4 microscopes, Hazards of...Electromagnetic Radiation to Ordnance (HERO) sensors, pneumatic switching, and those equipments associated with fiber optic technology. c. Test...and current flow. These effects include puncture, tearing, bending , burning, vaporization, or blasting of hardware. TOP 01-2-511A 20

  20. Next Generation CALICE Electromagnetic Calorimeter

    OpenAIRE

    Grondin, Denis; Jeans, Daniel

    2010-01-01

    This paper presents mechanical R&D for the CALICE Silicon-tungsten electromagnetic calorimeter. After the physics ECAL prototype, tested in 2006 (DESY-CERN), 2007 (CERN), 2008 (FNAL) and before the design of different 'modules 0' (barrel and endcap) for a final detector, a technological ECAL prototype, called the EUDET module, is under design in order to have a close to full scale technological solution which could be used for the final detector, taking into account future industrialisation o...