WorldWideScience

Sample records for electromagnetic borehole flowmeter

  1. A newly developed borehole flowmeter technology for heterogeneous aquifers

    International Nuclear Information System (INIS)

    Young, S.C.

    1990-01-01

    Extensive borehole flowmeter tests were performed at 37 fully-screened wells on a one-hectare test site to characterize the three-dimensional hydraulic conductivity field of an alluvial aquifer with a σ lnK of 4.7. During the site investigations, several major advancements with respect to borehole flowmeter technology were developed. The milestones included: (1) the development of a field-durable electromagnetic borehole flowmeter with a lower detection limit of 0.1 l/min; (2) the realization of the importance of the pumping rate with respect to the calculated value for the depth-averaged hydraulic conductivity; and (3) an evaluation of alternative methods for calculating the depth-averaged hydraulic conductivity. The predicted three-dimensional hydraulic conductivity field was compared to the results of 10 small-scale (3 to 7 m) tracer tests, information about the depositional history of the aquifer, and the results of three large-scale aquifer tests. The hydraulic conductivity data predict the major features of the tracer breakthrough curves, maps the outline of a former river meander in an aerial photograph, and leads to a geometric mean consistent with the average hydraulic conductivity of the aquifer. (Author) (14 refs., 15 figs., 2 tabs.)

  2. Borehole geophysical and flowmeter data for eight boreholes in the vicinity of Jim Woodruff Lock and Dam, Lake Seminole, Jackson County, Florida

    Science.gov (United States)

    Clarke, John S.; Hamrick, Michael D.; Holloway, O. Gary

    2011-01-01

    Borehole geophysical logs and flowmeter data were collected in April 2011 from eight boreholes to identify the depth and orientation of cavernous zones within the Miocene Tampa Limestone in the vicinity of Jim Woodruff Lock and Dam in Jackson County, Florida. These data are used to assess leakage near the dam. Each of the eight boreholes was terminated in limestone at depths ranging from 84 to 104 feet. Large cavernous zones were encountered in most of the borings, with several exceeding 20-inches in diameter. The cavernous zones generally were between 1 and 5 feet in height, but a cavern in one of the borings reached a height of about 6 feet. The resistivity of limestone layers penetrated by the boreholes generally was less than 1,000 ohm-meters. Formation resistivity near the cavernous zones did not show an appreciable contrast from surrounding bedrock, probably because the bedrock is saturated, owing to its primary permeability. Measured flow rates in the eight boreholes determined using an electromagnetic flowmeter were all less than ±0.1 liter per second. These low flow rates suggest that vertical hydraulic gradients in the boreholes are negligible and that hydraulic head in the various cavernous zones shows only minor, if any, variation.

  3. E.M.I Effects of Cathodic Protection on Electromagnetic Flowmeters

    Directory of Open Access Journals (Sweden)

    Ozge Sahin

    2007-01-01

    Full Text Available Electromagnetic flowmeters are used to measure the speed of water flow in water distribution systems. Corrosion problem in metal pipelines can be solved by cathodic protection methods. This paper presents a research on corruptive effects of the cathodic protection system on electromagnetic flowmeter depending on its measuring principle. Experimental measurements are realized on the water distribution pipelines of the Izmir Municipality, Department of Water and Drainage Administration (IZSU in Turkey and measurement results are given. Experimental results proved that the values measured by the electromagnetic flowmeter (EMF are affected by cathodic protection system current. Comments on the measurement results are made and precautions to be taken are proposed.

  4. A Circuit Design and its Experimental Analysis for Electromagnetic Flowmeter in Measurement of Sewage

    Directory of Open Access Journals (Sweden)

    Huang Yu-Hang

    2014-02-01

    Full Text Available There are many problems in the traditional electromagnetic flowmeter. The problems involve three aspects. The first one is that the measurement precision is low. The second one is that the measurement range is narrow. The third one is that the test results are susceptible to interference. For the problems a new electromagnetic flowmeter controlled by single-chip microcomputer has been proposed. The medium/large-sized electromagnetic flowmeter is suitable for measurement of sewage. The software and hardware circuit of the electromagnetic flowmeter has been designed and tested. The tested data have been analyzed by the least square method and the error is 0.8 %. The result shown that the electromagnetic flowmeter controlled by single-chip microcomputer for measurement of sewage has reached the advanced level of similar products at home and abroad.

  5. A Circuit Design and its Experimental Analysis for Electromagnetic Flowmeter in Measurement of Sewage

    OpenAIRE

    Huang Yu-Hang; Zhu Wei-Hua; Jiang Xingfang

    2014-01-01

    There are many problems in the traditional electromagnetic flowmeter. The problems involve three aspects. The first one is that the measurement precision is low. The second one is that the measurement range is narrow. The third one is that the test results are susceptible to interference. For the problems a new electromagnetic flowmeter controlled by single-chip microcomputer has been proposed. The medium/large-sized electromagnetic flowmeter is suitable for measurement of sewage. The softwar...

  6. Application of the electromagnetic borehole flowmeter and evaluation of previous pumping tests at Paducah Gaseous Diffusion Plant. Final report, June 15, 1992--August 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Young, S.C.; Julian, S.C.; Neton, M.J.

    1993-01-01

    Multi-well pumping tests have been concluded at wells MW79, MW108, and PW1 at the Paducah Gaseous Diffusion Plant (PGDP) to determine the hydraulic properties of the Regional Gravel Aquifer (RGA). Soil cores suggest that the RGA consists of a thin sandy facies (2 to 6 feet) at the top of a thicker (> 10 feet) gravelly facies. Previous analyses have not considered any permeability contrast between the two facies. To assess the accuracy of this assumption, TVA personnel conducted borehole flowmeter tests at wells MW108 and PW1. Well MW79 could not be tested. The high K sand unit is probably 10 times more permeable than comparable zone in the gravelly portion of the RGA. Previous analyses of the three multi-well aquifer tests do not use the same conceptual aquifer model. Data analysis for one pumping test assumed that leakance was significant. Data analysis for another pumping test assumed that a geologic boundary was significant. By collectively analyzing all three tests with the borehole flowmeter results, the inconsistency among the three pumping tests can be explained. Disparity exists because each pumping test had a different placement of observation wells relative to the high K zone delineating by flowmeter testing.

  7. TVO-Flowmeter

    International Nuclear Information System (INIS)

    Rouhiainen, P.

    1993-01-01

    TVO-flowmeter has been field tested in boreholes in the crystalline bedrock. It is possible to measure the groundwater flow both across and along a borehole. Sensitivity is better than 1 ml/h (milliliter per hour) for the flow across the hole. This corresponds the flux value (Darcy velocity) of about 2*10 -9 m/s. The system makes it possible to determine roughly the direction of the flow across the hole. The boreholes in the bedrock change flow conditions. The effects of the borehole and flowmeter-borehole combination are studied by theoretical models. Field examples are presented from flows along and across the hole. The sensitivity of the instrument is demonstrated. Several repeated measurements are presented. Examples are shown of the variation of the flow with time

  8. Electro-magnetic flowmeters

    International Nuclear Information System (INIS)

    Dean, S.A.

    1980-01-01

    Full details of the invention are given. A sensing unit assembly for an electromagnetic flux distortion flowmeter for use in liquid metal coolant of a nuclear reactor is described. The assembly comprises coils of electrically insulated conductors each wound on an individual former. The formers and coils are mounted coaxially on a spine to form at least three spaced groups arranged end to end. Each group comprises two secondary coils and an intermediate primary coil. Leads extend along a duct formed in the spine, each lead terminating at a common end. Alternative versions of the assembly are also described. The primary coil leads are connected to an alternating power supply; those for the secondary coils connected to suitable display instrumentation. When liquid metal flows along the conductor the electromagnetic field is disturbed and the induced voltage in the secondary coils is disturbed-(set at zero for no flow); the distortion depends on the rate of flow. When the induced voltage differential of at least two of the groups falls or rises outside a pre-set level a trip signal is initiated to shut down the reactor. (UK)

  9. Flow measurement in bubbly and slug flow regimes using the electromagnetic flowmeter developed

    International Nuclear Information System (INIS)

    Cha, Jae Eun; Ahn, Yeh Chan; Seo, Kyung Woo; Kim, Moo Hwan

    2002-01-01

    In order to investigate the characteristics of electromagnetic flowmeter in two-phase flow, an AC electromagnetic flowmeter was designed and manufactured. In various flow conditions, the signals and noises from the flowmeter were obtained and analyzed by comparison with the observed flow patterns with a high speed CCD camera. The experiment with the void simulators in which rod shaped non-conducting material was used was carried out to investigate the effect of the bubble position and the void fraction on the flowmeter. Based on the results from the void simulator, two-phase flow experiments encompassed from bubbly to slug flow regime were conducted. The simple relation ΔU TP = ΔU SP /(1-α) was verified with measurements of the potential difference and the void fraction. Due to the lack of homogeneity in a real two-phase flow, the discrepancy between the relation and the present measurement was slightly increased with void fraction and also liquid volumetric flux j f . Whereas there is no difference in the shape of the raw signal between single-phase flow and bubbly flow, the signal amplitude for bubbly flow is higher than that for single-phase flow at the same water flow rate, since the passage area of the water flow is reduced. In the case of slug flow, the phase and the amplitude of the flowmeter output show dramatically the flow characteristics around each slug bubble and the position of a slug bubble itself. Therefore, the electromagnetic flowmeter shows a good possibility of being useful for identifying the flow regimes

  10. A Self-diagnostic Method for the Electrode Adhesion of an Electromagnetic Flow-meter

    Directory of Open Access Journals (Sweden)

    Wen-Hua Cui

    2014-07-01

    Full Text Available Electrodes of electromagnetic flow-meter are subject to contamination in sewage measurement. In this paper, the relationship between the internal resistance of the flow-induced voltage and the electrode contamination is analyzed on the basis of numerical analysis. A new self- diagnostic method for electrode adhesion with additional excitation based on photovoltaic cell is proposed, in which magnetic excitation for flow-rate measurement and electric excitation for electrode self-diagnosis is divided in both time domain and frequency domain. A dual-excited electromagnetic flow-meter with electrode self-diagnosis was designed and validated. Simulation experiments based on the change of the internal resistance of the flow-induced voltage were carried out. And the experimental results fully show that this new method is feasible and promising.

  11. Dynamic Synchronous Capture Algorithm for an Electromagnetic Flowmeter.

    Science.gov (United States)

    Fanjiang, Yong-Yi; Lu, Shih-Wei

    2017-04-10

    This paper proposes a dynamic synchronous capture (DSC) algorithm to calculate the flow rate for an electromagnetic flowmeter. The characteristics of the DSC algorithm can accurately calculate the flow rate signal and efficiently convert an analog signal to upgrade the execution performance of a microcontroller unit (MCU). Furthermore, it can reduce interference from abnormal noise. It is extremely steady and independent of fluctuations in the flow measurement. Moreover, it can calculate the current flow rate signal immediately (m/s). The DSC algorithm can be applied to the current general MCU firmware platform without using DSP (Digital Signal Processing) or a high-speed and high-end MCU platform, and signal amplification by hardware reduces the demand for ADC accuracy, which reduces the cost.

  12. Investigated conductive fracture in the granitic rocks by flow-meter logging

    International Nuclear Information System (INIS)

    Ogata, Nobuhisa; Koide, Kaoru; Takeichi, Atsushi

    1997-01-01

    Test of the use of a measurement technique for the hydraulic conductivity of geological structures which act as flow paths or are impermeable to groundwater flow. In order to prove the value of flow-meter logging as an in-situ technique for detecting conductive fractures in granitic rocks, the method has been applied to a borehole near the Tono uranium mine, Gifu, Japan. This study in involved with detecting a conductive fracture and calculating the hydraulic conductivities. The results were as follows: (1) In a zone of groundwater inflow into the borehole, the hydraulic conductivity was calculated to be of the order of the 10 -3 - 10 -4 (cm/sec) from flow-meter logging. This value agreed with the results of a in-situ borehole permeability test carried out with a similar depth interval. (2) The study showed that flow-meter logging is effective for detecting the distribution of high conductivity fractures and calculating the hydraulic conductivity. (author)

  13. Synthesis of the evaluations of electromagnetic flowmeters based on vortex, Coriolis and thermal effects in the framework of SIREP-WIB-EXERA associations

    International Nuclear Information System (INIS)

    Fortin, T.; Jacq, F.

    1997-01-01

    Electronic flowmeters such as electromagnetic flowmeters based on vortex, mass (Coriolis) and thermal effects are being used more and more in industry (water distribution, petrochemicals, food processing). Some of them are used by EDF. A study has been therefore conducted on the main types of flowmeters which in the last years (1988-1995) were the object of an evaluation within the framework of the SIREP-WIB-EXERA users. This document synthesizes the tests conducted, and highlights the generic weaknesses linked with different methods of measurement, equipment and test methods. It meets a triple objective: 1 - up dating the EDF's knowledge on these different products; 2 -better knowledge of the diversity of problems connected with measuring flows (type and characteristics of fluids, flow ranges, environmental constraints etc.); 3 - showing the advantages and disadvantages associated with these methods and lining up different technologies with one another. As a whole from the metrological standpoint the equipment tested complies with the manufacturers' specifications. Most of this equipment highly sensitive to electromagnetic perturbations. When the European CEM directives are applied this defect should disappear. Other environmental tests do not reveal generic faults. For all the technologies evaluated it may be stated that the ranges of tests are very standardized. Unfortunately, a certain number of well thought out tests (according to the technology) are not, or rarely conducted. For instance, one can quote the vibration influence tests for vortex effect flowmeters. Advanced research has been carried out. It mainly concerns cavitation phenomena (Coriolis effect flowmeters) and the influence of viscosity and conductivity of fluids (electromagnetic and Coriolis effect flowmeters). (author)

  14. On the concept of virtual current as a means to enhance verification of electromagnetic flowmeters

    International Nuclear Information System (INIS)

    Baker, Roger C

    2011-01-01

    Electromagnetic flowmeters are becoming increasingly widely used in the water industry and other industries which handle electrically conducting liquids. When installed they are often difficult to remove for calibration without disturbing the liquid flow. Interest has therefore increased in the possibility of in situ calibration. The result has been the development of verification which attempts to approach calibration. However, while it checks on magnetic field and amplification circuits, it does not check adequately on the internals of the flowmeter pipe. This paper considers the use of the virtual voltage, a key element of the weight function theory of the flowmeter, to identify changes which have occurred in the flow tube and its liner. These could include a deformed insulating liner to the flow tube, or a deposit in the tube resulting from solids in the flow. The equation for virtual voltage is solved using a finite difference approach and the results are checked using a tank to simulate the flow tube, and tests on a flow rig. The concept is shown to be promising as a means of approaching verification of calibration

  15. Applicability estimation of flowmeter logging for detecting hydraulic pass

    International Nuclear Information System (INIS)

    Miyakawa, Kimio; Tanaka, Yasuji; Tanaka, Kazuhiro

    1997-01-01

    Estimation of the hydraulic pass governing hydrogeological structure contributes significantly to the siting HLW repository. Flowmeter logging can detect hydraulic passes by measuring vertical flow velocity of groundwater in the borehole. We reviewed application of this logging in situ. The hydraulic pass was detected with combination of ambient flow logging, with pumping and/or injecting induced flow logging. This application showed that the flowmeter logging detected hydraulic passes conveniently and accurately compared with other hydraulic tests. Hydraulic conductivity by using flowmeter logging was assessed above 10 -6 m/sec and within one order from comparison with injection packer tests. We suggest that appropriate application of the flowmeter logging for the siting is conducted before hydraulic tests because test sections and monitoring sections are decided rationally for procurement of quantitative hydraulic data. (author)

  16. Double-transmitting and Sextuple-receiving Borehole Transient Electromagnetic Method and Experimental Study

    Directory of Open Access Journals (Sweden)

    Bo Wang

    2017-04-01

    Full Text Available With the continuous improvement of precision requirements for borehole geophysical exploration, the application of transient electromagnetic method (from now on referred to as TEM in a borehole has become a hot spot. The conventional borehole TEM can only determine the longitudinal depth of the geological anomaly, the radial azimuth and depth cannot be resolved. A double-transmitting and sextuple-receiving borehole TEM is proposed, through which the radial anomaly is excited by the electromagnetic field generated by the double-emitting loops, and the azimuth and depth of the anomaly will be identified by the difference characteristics of the six receiving loops signals. In this paper, the response equations of the transmitting-receiving mode of double-transmitting and sextuple-receiving borehole TEM are deduced, and the response characteristics of the induction segment and the attenuation segment of the receiving loops are obtained based on the response equations under ramp function turn-off condition, providing the basis for theoretical analysis. Due to the negative value of the double-transmitting and sextuple-receiving transient electromagnetic response signals, a negative transformation algorithm under the double logarithmic coordinate system is proposed to provide the essential method for the analysis of two kinds of physical simulation experimental data of the radial azimuth and radial depth detection of the anomaly. The results show that the double-transmitting and sextuple-receiving borehole TEM has decent resolution ability in detecting the radial azimuth of the anomaly, and the effective resolution is 30°. The geometric difference among induced voltages of different measuring points can be used to evaluate the radial depth of the anomaly qualitatively. It is expected that the double-transmitting and sextuple-receiving borehole TEM can provide technical guidance for little borehole geophysical exploration in the fields of oil, natural

  17. Electromagnetic fields in cased borehole

    International Nuclear Information System (INIS)

    Lee, Ki Ha; Kim, Hee Joon; Uchida, Toshihiro

    2001-01-01

    Borehole electromagnetic (EM) measurements, using fiberglass-cased boreholes, have proven useful in oil field reservoir characterization and process monitoring (Wilt et al., 1995). It has been presumed that these measurements would be impossible in steel-cased wells due to the very large EM attenuation and phase shifts. Recent laboratory and field studies have indicated that detection of EM signals through steel casing should be possible at low frequencies, and that these data provide a reasonable conductivity image at a useful scale. Thus, we see an increased application of this technique to mature oilfields, and an immediate extension to geothermal industry as well. Along with the field experiments numerical model studies have been carried out for analyzing the effect of steel casing to the EM fields. The model used to be an infinitely long uniform casing embedded in a homogeneous whole space. Nevertheless, the results indicated that the formation signal could be accurately recovered if the casing characteristics were independently known (Becker et al., 1998; Lee el al., 1998). Real steel-cased wells are much more complex than the simple laboratory models used in work to date. The purpose of this study is to develop efficient numerical methods for analyzing EM fields in realistic settings, and to evaluate the potential application of EM technologies to cross-borehole and single-hole environment for reservoir characterization and monitoring

  18. Point Estimation Method of Electromagnetic Flowmeters Life Based on Randomly Censored Failure Data

    Directory of Open Access Journals (Sweden)

    Zhen Zhou

    2014-08-01

    Full Text Available This paper analyzes the characteristics of the enterprise after-sale service records for field failure data, and summarizes the types of field data. Maximum likelihood estimation method and the least squares method are presented for the complexity and difficulty of field failure data processing, and Monte Carlo simulation method is proposed. Monte Carlo simulation, the relatively simple calculation method, is an effective method, whose result is closed to that of the other two methods. Through the after-sale service records analysis of a specific electromagnetic flowmeter enterprises, this paper illustrates the effectiveness of field failure data processing methods.

  19. Real-time measurement of gas and liquid flow rates in two-phase slug flow by an advanced electromagnetic flowmeter and conductance probes

    International Nuclear Information System (INIS)

    Kim Jongrok; Ahn Yeh-Chan; Oh Byung Do; Kang Deok-Hong; Kim Moo Hwan

    2005-01-01

    Full text of publication follows: In order to measure the liquid mean velocity (cross-sectional average) in two-phase flow with an electromagnetic flowmeter, each flow pattern must be considered separately because of their different flow characteristics. Since bubbly flow can be approximated as a homogeneous mixture of gas and liquid at the same velocity, there are no additional measurement difficulties compared to single-phase flow. Cha et al. (2002) and Knoll (1991) reported that this approximation gives rise to no more than a 5% error in the liquid flow rate when the void fraction is less than 0.25. Annular flow measurements are also similar to those of single-phase flow if the film is assumed to be uniform and smooth, and the gas core is located at the center of the flow tube. Slug flow, however, is the most complicated, since the liquid axial velocity over a slug unit experiences considerable acceleration or deceleration. Therefore an electromagnetic flowmeter with high temporal resolution is needed. In slug flow, film velocity measurements are also difficult to perform because the liquid film is very thin and can be easily disturbed, thus altering the flow field. Only two experimental results for liquid film velocity measurement could be found. They were performed using photo-chromic dye method (DeJesus, 1997) and PIV technique (Polonsky et al., 1999). In this study, an advanced electromagnetic flow-metry was developed to measure liquid mean velocity with high transients. In addition, two ring-type conductance meters were manufactured to measure void fraction and its propagation speed in slug flow. The signal of conductance meter with two rings depends on liquid temperature. Therefore a conductance meter with three rings designed by Coney (1973), which is independent of liquid temperature, was used and experimentally proved. The manufactured conductance meters showed a good repeatability and agreement with the analytical solution by Coney (1973). From the

  20. Statistical analysis on experimental calibration data for flowmeters in pressure pipes

    Science.gov (United States)

    Lazzarin, Alessandro; Orsi, Enrico; Sanfilippo, Umberto

    2017-08-01

    This paper shows a statistical analysis on experimental calibration data for flowmeters (i.e.: electromagnetic, ultrasonic, turbine flowmeters) in pressure pipes. The experimental calibration data set consists of the whole archive of the calibration tests carried out on 246 flowmeters from January 2001 to October 2015 at Settore Portate of Laboratorio di Idraulica “G. Fantoli” of Politecnico di Milano, that is accredited as LAT 104 for a flow range between 3 l/s and 80 l/s, with a certified Calibration and Measurement Capability (CMC) - formerly known as Best Measurement Capability (BMC) - equal to 0.2%. The data set is split into three subsets, respectively consisting in: 94 electromagnetic, 83 ultrasonic and 69 turbine flowmeters; each subset is analysed separately from the others, but then a final comparison is carried out. In particular, the main focus of the statistical analysis is the correction C, that is the difference between the flow rate Q measured by the calibration facility (through the accredited procedures and the certified reference specimen) minus the flow rate QM contemporarily recorded by the flowmeter under calibration, expressed as a percentage of the same QM .

  1. Geostatistical analysis of the relationship between airborne electromagnetic data and borehole lithological data

    DEFF Research Database (Denmark)

    Barfod, Adrian; Møller, Ingelise; Christiansen, Anders Vest

    2015-01-01

    resistivity values, revealing different distribution functions for lithological categories. A very large and extensive dataset is available in Denmark through the national geophysical and borehole databases. These databases contain all geophysical and borehole data in Denmark and covers a large part of its......We present a large-scale study of the relationship between dense airborne SkyTEM resistivity data and sparse lithological borehole data. Airborne electromagnetic (AEM) data contains information about subsurface geology and hydrologic properties; however extracting this information is not trivial....... Today, geophysical data is used in combination with borehole data to create detailed geological models of the subsurface. The overall statistical relationship is, however, not widely known. The objective of this study is to develop a method for understanding the relationship between petrophysical...

  2. Dry calibration of electromagnetic flowmeters based on numerical models combining multiple physical phenomena (multiphysics)

    Science.gov (United States)

    Fu, X.; Hu, L.; Lee, K. M.; Zou, J.; Ruan, X. D.; Yang, H. Y.

    2010-10-01

    This paper presents a method for dry calibration of an electromagnetic flowmeter (EMF). This method, which determines the voltage induced in the EMF as conductive liquid flows through a magnetic field, numerically solves a coupled set of multiphysical equations with measured boundary conditions for the magnetic, electric, and flow fields in the measuring pipe of the flowmeter. Specifically, this paper details the formulation of dry calibration and an efficient algorithm (that adaptively minimizes the number of measurements and requires only the normal component of the magnetic flux density as boundary conditions on the pipe surface to reconstruct the magnetic field involved) for computing the sensitivity of EMF. Along with an in-depth discussion on factors that could significantly affect the final precision of a dry calibrated EMF, the effects of flow disturbance on measuring errors have been experimentally studied by installing a baffle at the inflow port of the EMF. Results of the dry calibration on an actual EMF were compared against flow-rig calibration; excellent agreements (within 0.3%) between dry calibration and flow-rig tests verify the multiphysical computation of the fields and the robustness of the method. As requiring no actual flow, the dry calibration is particularly useful for calibrating large-diameter EMFs where conventional flow-rig methods are often costly and difficult to implement.

  3. Synthesis of the evaluations of electromagnetic flowmeters based on vortex, Coriolis and thermal effects in the framework of SIREP-WIB-EXERA associations; Syntese des evaluations de debitmetres electromagnetiques a effet vortex, Coriolis, et thermique, realisees dans le cadre des associations SIREP-WIP-EXERA

    Energy Technology Data Exchange (ETDEWEB)

    Fortin, T.; Jacq, F. [Electricite de France (EDF), Direction des Etudes et Recherches, 92 - Clamart (France)

    1997-12-31

    Electronic flowmeters such as electromagnetic flowmeters based on vortex, mass (Coriolis) and thermal effects are being used more and more in industry (water distribution, petrochemicals, food processing). Some of them are used by EDF. A study has been therefore conducted on the main types of flowmeters which in the last years (1988-1995) were the object of an evaluation within the framework of the SIREP-WIB-EXERA users. This document synthesizes the tests conducted, and highlights the generic weaknesses linked with different methods of measurement, equipment and test methods. It meets a triple objective: 1 - up dating the EDF`s knowledge on these different products; 2 -better knowledge of the diversity of problems connected with measuring flows (type and characteristics of fluids, flow ranges, environmental constraints etc.); 3 - showing the advantages and disadvantages associated with these methods and lining up different technologies with one another. As a whole from the metrological standpoint the equipment tested complies with the manufacturers` specifications. Most of this equipment highly sensitive to electromagnetic perturbations. When the European CEM directives are applied this defect should disappear. Other environmental tests do not reveal generic faults. For all the technologies evaluated it may be stated that the ranges of tests are very standardized. Unfortunately, a certain number of well thought out tests (according to the technology) are not, or rarely conducted. For instance, one can quote the vibration influence tests for vortex effect flowmeters. Advanced research has been carried out. It mainly concerns cavitation phenomena (Coriolis effect flowmeters) and the influence of viscosity and conductivity of fluids (electromagnetic and Coriolis effect flowmeters). (author). 16 refs.

  4. Integrating surface and borehole geophysics in ground water studies - an example using electromagnetic soundings in south Florida

    Science.gov (United States)

    Paillet, Frederick; Hite, Laura; Carlson, Matthew

    1999-01-01

    Time domain surface electromagnetic soundings, borehole induction logs, and other borehole logging techniques are used to construct a realistic model for the shallow subsurface hydraulic properties of unconsolidated sediments in south Florida. Induction logs are used to calibrate surface induction soundings in units of pore water salinity by correlating water sample specific electrical conductivity with the electrical conductivity of the formation over the sampled interval for a two‐layered aquifer model. Geophysical logs are also used to show that a constant conductivity layer model is appropriate for the south Florida study. Several physically independent log measurements are used to quantify the dependence of formation electrical conductivity on such parameters as salinity, permeability, and clay mineral fraction. The combined interpretation of electromagnetic soundings and induction logs was verified by logging three validation boreholes, confirming quantitative estimates of formation conductivity and thickness in the upper model layer, and qualitative estimates of conductivity in the lower model layer.

  5. The Device for Communication in the Tool for Measurement in Boreholes

    Directory of Open Access Journals (Sweden)

    Miloš Slankamenac

    2005-10-01

    Full Text Available In this paper an implementation and test of the device for communication between Telemetry system and Surface unit with the tool for measurement of pipe diameter, fluid velocity and direction of flow in the borehole (Calliper-Fullbore Flowmeter - CFF are presented. This communication is done according to SIPLOS (Simultaneous Production Logging String protocol and it is used by Hotwell company [1] as a part of a larger system for borehole investigations.

  6. Redatuming borehole-to-surface electromagnetic data using Stratton-Chu integral transforms

    DEFF Research Database (Denmark)

    Zhdanov, Michael; Cai, Hongzhu

    2012-01-01

    We present a new method of analyzing borehole-to-surface electromagnetic (BSEM) survey data based on redatuming of the observed data from receivers distributed over the surface of the earth onto virtual receivers located within the subsurface. The virtual receivers can be placed close to the target...... of interest, such as just above a hydrocarbon reservoir, which increases the sensitivity of the EM data to the target. The method is based on the principles of downward analytical continuation of EM fields. We use Stratton-Chu type integral transforms to calculate the EM fields at the virtual receivers. Model...

  7. Preliminary Modeling of Permanent Magnet Probe Flowmeter for Voltage Signal Estimation

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Uiju; Kim, Sung Joong [Hanyang Univ., Seoul (Korea, Republic of); Jeong, Ji Young; Kim, Tae Joon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    An experimental study on performance analysis of the flowmeter has been performed. The study shows that sodium flow rate is linearly proportional to the induced voltage signal from the flowmeter under the turbulent flow condition. The experimental results support its availability in the PDRC system. But, the flowmeter should be able to measure sodium flow at low Reynolds number as well. That is because the PDRC system uses sodium natural convection for its operation. Thus, calibration of the flowmeter should be done at very low sodium flow rates. However, Von Weissenfluh et al. showed that the relationship between flow rate and measured voltage signal from the flowmeter may become non-linear at very low flow rates. The nonlinearity restricts the utilization of level sensor which provide reference flow rate in the calibration experiment. The primary objective of this study is to predict the sodium flow rate range where the induced voltage signals are linearly proportional to flow rates by estimating the induced voltage signals against sodium flow rates for a wide range of flows numerically. A commercial code FLUENT is adopted for the analysis of flow field. And MAXWELL which is an electromagnetic analysis software using a finite volume method has been used to analyze the magnetic field generated by permanent magnet of the flowmeter. The induced voltage signals have been estimated by coupling the sodium flow field and the magnetic field using FLUENT MHD module. It is expected that the PMPF voltage signals are linearly proportional to flow rates range of 0.0059 to 1.96 lps. This suggests that simple calibration technique using the linearity between flow rate and the voltage signal can be adopted in calibration of the PMPF.

  8. Auxiliary Sensor-Based Borehole Transient Electromagnetic System for the Nondestructive Inspection of Multipipe Strings

    Directory of Open Access Journals (Sweden)

    Bo Dang

    2017-08-01

    Full Text Available Transient electromagnetic (TEM techniques are widely used in the field of geophysical prospecting. In borehole detection, the nondestructive inspection (NDI of a metal pipe can be performed efficiently using the properties of eddy currents. However, with increasing concern for safety in oil and gas production, more than one string of pipe is used to protect wellbores, which complicates data interpretation. In this paper, an auxiliary sensor-based borehole TEM system for the NDI of multipipe strings is presented. On the basis of the characteristics of the borehole TEM model, we investigate the principle behind the NDI of multipipe strings using multiple time slices of induced electromotive force (EMF in a single sensor. The results show that the detection performance of NDI is strongly influenced by eddy-current diffusion in the longitudinal direction. To solve this problem, we used time slices of the induced EMF in both the main and auxiliary sensors. The performance of the proposed system was verified by applying it to an oil well with a production casing and liner. Moreover, field experiments were conducted, and the results demonstrate the effectiveness of the proposed method.

  9. Novel Downhole Electromagnetic Flowmeter for Oil-Water Two-Phase Flow in High-Water-Cut Oil-Producing Wells.

    Science.gov (United States)

    Wang, Yanjun; Li, Haoyu; Liu, Xingbin; Zhang, Yuhui; Xie, Ronghua; Huang, Chunhui; Hu, Jinhai; Deng, Gang

    2016-10-14

    First, the measuring principle, the weight function, and the magnetic field of the novel downhole inserted electromagnetic flowmeter (EMF) are described. Second, the basic design of the EMF is described. Third, the dynamic experiments of two EMFs in oil-water two-phase flow are carried out. The experimental errors are analyzed in detail. The experimental results show that the maximum absolute value of the full-scale errors is better than 5%, the total flowrate is 5-60 m³/d, and the water-cut is higher than 60%. The maximum absolute value of the full-scale errors is better than 7%, the total flowrate is 2-60 m³/d, and the water-cut is higher than 70%. Finally, onsite experiments in high-water-cut oil-producing wells are conducted, and the possible reasons for the errors in the onsite experiments are analyzed. It is found that the EMF can provide an effective technology for measuring downhole oil-water two-phase flow.

  10. Novel Downhole Electromagnetic Flowmeter for Oil-Water Two-Phase Flow in High-Water-Cut Oil-Producing Wells

    Directory of Open Access Journals (Sweden)

    Yanjun Wang

    2016-10-01

    Full Text Available First, the measuring principle, the weight function, and the magnetic field of the novel downhole inserted electromagnetic flowmeter (EMF are described. Second, the basic design of the EMF is described. Third, the dynamic experiments of two EMFs in oil-water two-phase flow are carried out. The experimental errors are analyzed in detail. The experimental results show that the maximum absolute value of the full-scale errors is better than 5%, the total flowrate is 5–60 m3/d, and the water-cut is higher than 60%. The maximum absolute value of the full-scale errors is better than 7%, the total flowrate is 2–60 m3/d, and the water-cut is higher than 70%. Finally, onsite experiments in high-water-cut oil-producing wells are conducted, and the possible reasons for the errors in the onsite experiments are analyzed. It is found that the EMF can provide an effective technology for measuring downhole oil-water two-phase flow.

  11. Redatuming of borehole-to-surface electromagnetic data at the Kevin Dome exploration site

    DEFF Research Database (Denmark)

    Cai, Hongzhu; Zhdanov, Michael

    2013-01-01

    The method of redatuming the controlled-source electromagnetic data was introduced in Zhdanov and Cai (2012). The approach is based on a Stratton-Chu type integral and the Lorentz lemma to relate observed EM data on the earth’s surface to EM data on some horizontal plane P located underground....... By applying this methodology, we are able to calculate the EM scattering field at some depth from the observed data on the earth’s surface. Once the EM field at some underground plane P is found, we can use these data for upward continuation and recomputing of the EM scattering data on the earth’s surface...... the physics of the EM field, which makes the redatuming more accurate than simple mathematical transformation. In this paper, we illustrate this method by redatuming of borehole-to-surface electromagnetic data at the Kevin Dome exploration site....

  12. Ultrasonic flowmeters

    International Nuclear Information System (INIS)

    Wittekind, W.D.

    1979-01-01

    A prototype ultrasonic flowmeter was assembled and tested. The theoretical basis of this prototype ultrasonic flowmeter is reviewed; the equipment requirements for a portable unit are discussed; the individual electronic modules contained in the prototype are described; the operating procedures and configuration are explained; and the data from preliminary calibrations are presented. The calibration data confirm that the prototype operates according to theoretical predictions and can indeed provide nonintrusive flow measurements to predicted accuracies for pipes larger than two inches, under single phase stable flow conditions

  13. FD_BH: a program for simulating electromagnetic waves from a borehole antenna

    Science.gov (United States)

    Ellefsen, Karl J.

    2002-01-01

    Program FD_BH is used to simulate the electromagnetic waves generated by an antenna in a borehole. The model representing the antenna may include metallic parts, a coaxial cable as a feed to the driving point, and resistive loading. The program is written in the C programming language, and the program has been tested on both the Windows and the UNIX operating systems. This Open-File Report describes • The contents and organization of the Zip file (section 2). • The program files, the installation of the program, the input files, and the execution of the program (section 3). • Address to which suggestions for improving the program may be sent (section 4).

  14. Oman Drilling Project Phase I Borehole Geophysical Survey

    Science.gov (United States)

    Matter, J. M.; Pezard, P. A.; Henry, G.; Brun, L.; Célérier, B.; Lods, G.; Robert, P.; Benchikh, A. M.; Al Shukaili, M.; Al Qassabi, A.

    2017-12-01

    The Oman Drilling Project (OmanDP) drilled six holes at six sites in the Samail ophiolite in the southern Samail and Tayin massifs. 1500-m of igneous and metamorphic rocks were recovered at four sites (GT1, GT2, GT3 and BT1) using wireline diamond core drilling and drill cuttings at two sites (BA1, BA2) using air rotary drilling, respectively. OmanDP is an international collaboration supported by the International Continental Scientific Drilling Program, the Deep Carbon Observatory, NSF, NASA, IODP, JAMSTEC, and the European, Japanese, German and Swiss Science Foundations, and with in-kind support in Oman from Ministry of Regional Municipalities and Water Resources, Public Authority of Mining, Sultan Qaboos University and the German University of Technology. A comprehensive borehole geophysical survey was conducted in all the OmanDP Phase I boreholes shortly after drilling in April 2017. Following geophysical wireline logs, using slim-hole borehole logging equipment provided and run by the Centre National De La Recherche Scientifique (CNRS) and the Université de Montpellier/ Géosciences Montpellier, and logging trucks from the Ministry of Regional Municipalities and Water Resources, were collected in most of the holes: electrical resistivity (dual laterolog resistivity, LLd and LLs), spectral gamma ray (K, U, and Th contents), magnetic susceptibility, total natural gamma ray, full waveform sonic (Vp and Vs), acoustic borehole wall imaging, optical borehole wall imaging, borehole fluid parameters (pressure, temperature, electrical conductivity, dissolved oxygen, pH, redox potential, non-polarized spontaneous electrical potential), and caliper (borehole diameter). In addition, spinner flowmeter (downhole fluid flow rate along borehole axis) and heatpulse flow meter logs (dowhole fluid flow rate along borehole axis) were collected in BA1 to characterize downhole fluid flow rates along borehole axis. Unfortuantely, only incomplete wireline logs are available for

  15. Development and Application of an Ultrasonic Gas Flowmeter

    International Nuclear Information System (INIS)

    Hwang, Won Ho; Jeong, Hee Don; Park, Sang Gug; Jhang, Kyung Young

    2002-01-01

    This paper describes the development and the field application of the ultrasonic gas flowmeter for accurate measurement of the volumetric flow rate of gases in a harsh environmental conditions in iron and steel making company. This ultrasonic flowmeter is especially suited for measuring LDG, COG, BFG gases produced in iron and steel making process. This is a transit time type ultrasonic flowmeter. We have developed the transmitting and receiving algorithm of ultrasonic wave and the ultrasonic signal processing algorithm to develope a transit time type ultrasonic flowmeter. We have evaluated the performance of ultrasonic flowmeter by the calibration system with Venturi type standard flowmeter. We has confirmed its reliability by extensive field tests for a year in POSCO, iron and steel making company. Now we have developed the commercial model of ultrasonic flowmeter and applied to the POSCO gas line

  16. Borehole induction coil transmitter

    Science.gov (United States)

    Holladay, Gale; Wilt, Michael J.

    2002-01-01

    A borehole induction coil transmitter which is a part of a cross-borehole electromagnetic field system that is used for underground imaging applications. The transmitter consists of four major parts: 1) a wound ferrite or mu-metal core, 2) an array of tuning capacitors, 3) a current driver circuit board, and 4) a flux monitor. The core is wound with several hundred turns of wire and connected in series with the capacitor array, to produce a tuned coil. This tuned coil uses internal circuitry to generate sinusoidal signals that are transmitted through the earth to a receiver coil in another borehole. The transmitter can operate at frequencies from 1-200 kHz and supplies sufficient power to permit the field system to operate in boreholes separated by up to 400 meters.

  17. Development of the immersed sodium flowmeter

    International Nuclear Information System (INIS)

    Chen Daolong

    1994-09-01

    An immersed sodium flowmeter of the range 3 m 3 /h is developed. It is a flowmeter of entire-sealed construction, it can be operated in sodium. Its construction, the theoretical calculation of the calibration characteristic and the pressure loss, the test facility and the calibration test are presented in detail. It analytical expression of the calibration characteristic in the temperature limit 200∼600 degree C and the error analysis are given. The basic error of this immersed sodium flowmeter is below +-2.3% of the measuring range. The immersed sodium flowmeter can be used to resolve the sodium flowrate measuring problems of the in-reactor component of LMFBR, for example, the flowrate measuring of the in-reactor sodium purification loop, the flowrate measuring of the immersed sodium pump and the flowrate measuring of the in-reactor test component

  18. Evaluation of the performance of an ultrasonic cross-correlation flowmeter

    International Nuclear Information System (INIS)

    Bazerghi, H.; Serdula, K.J.

    1977-09-01

    An ultrasonic cross-correlation flowmeter, developed to assist in improving performance of heavy water plants, was evaluated. Overall performance of the flowmeter is satisfactory. The flowmeter is ideally suited to industrial applications and has an accuracy and repeatability comparable to many laboratory instruments. An accuracy of 3% is readily obtainable. This new 'clamp-on' portable flowmeter should prove useful in applications which provide flow measurements in systems where pipe penetration is too costly or not practical, verify or replace existing flowmeters, and measure flows in lines not previously instrumented to provide better control or to verify performance of systems

  19. Extrinsic factors affecting accuracy of ultrasonic flowmeters for LMFBRs

    International Nuclear Information System (INIS)

    Managan, W.W.

    1976-08-01

    Assuming that ultrasonic flowmeters of suitable intrinsic accuracy are feasible, this report explores factors extrinsic to the flowmeter which affect the accuracy such as asymmetric flow profile, regions of high turbulence and thermal stratification. By integrating isovelocity flow profile maps, the predicted performance of various flowmeter configurations may be compared to experimental data. For the two pipe arrangements analyzed, the single diametral path flowmeter results were within 5 percent of true flow rate. Theoretical correction factors could reduce the error for the straight pipe but increased the error for asymmetrical flow. On the same pipe arrangements a four path ultrasonic flowmeter spaced for Gaussian integration gave less than 1 percent error. For more general conclusions a range of flow profiles produced by typical LMFBR piping arrangements must be analyzed

  20. On the feasibility of borehole-to-surface electromagnetics for monitoring CO2 sequestration

    Science.gov (United States)

    Wilson, G. A.; Zhdanov, M. S.; Hibbs, A. D.; Black, N.; Gribenko, A. V.; Cuma, M.; Agundes, A.; Eiskamp, G.

    2012-12-01

    Carbon capture and storage (CCS) projects rely on storing supercritical CO2 in deep saline reservoirs where buoyancy forces drive the injected CO2 upward into the aquifer until a seal is reached. The permanence of the sequestration depends entirely on the long-term geological integrity of the seal. Active geophysical monitoring of the sequestration is critical for informing CO2 monitoring, accounting and verification (MVA) decisions. During injection, there exists a correlation between the changes in CO2 and water saturations in a saline reservoir. Dissolved salts react with the CO2 to precipitate out as carbonates, thereby generally decreasing the electrical resistivity. As a result, there is a correlation between the change in fluid saturation and measured electromagnetic (EM) fields. The challenge is to design an EM survey appropriate for monitoring large, deep reservoirs. Borehole-to-surface electromagnetic (BSEM) surveys consist of borehole-deployed galvanic transmitters and a surface-based array of electric and magnetic field sensors. During a recent field trial, it was demonstrated that BSEM could successfully identify the oil-water contact in the water-injection zone of a carbonate reservoir. We review the BSEM methodology, and perform full-field BSEM modeling. The 3D resistivity models used in this study are based on dynamic reservoir simulations of CO2 injection into a saline reservoir. Although the electric field response at the earth's surface is low, we demonstrate that it can be accurately measured and processed with novel methods of noise cancellation and sufficient stacking over the period of monitoring to increase the signal-to-noise ratio for subsequent seismic- and well-constrained 3D inversion. For long-term or permanent monitoring, we discuss the deployment of novel electric field sensors with chemically inert electrodes that couple to earth in a capacitive manner. This capacitive coupling is a purely EM phenomenon, which, to first order, has

  1. Borehole temperature variability at Hoher Sonnblick, Austria

    Science.gov (United States)

    Heinrich, Georg; Schöner, Wolfgang; Prinz, Rainer; Pfeiler, Stefan; Reisenhofer, Stefan; Riedl, Claudia

    2016-04-01

    The overarching aim of the project 'Atmosphere - permafrost relationship in the Austrian Alps - atmospheric extreme events and their relevance for the mean state of the active layer (ATMOperm)' is to improve the understanding of the impacts of atmospheric extreme events on the thermal state of the active layer using a combined measurement and modeling approach as the basis for a long-term monitoring strategy. For this purpose, the Sonnblick Observatory at the summit of Hoher Sonnblick (3106 m.a.s.l) is particularly well-suited due to its comprehensive long-term atmospheric and permafrost monitoring network (i.a. three 20 m deep boreholes since 2007). In ATMOperm, a robust and accurate permanent monitoring of active layer thickness at Hoher Sonnblick will be set up using innovative monitoring approaches by automated electrical resistivity tomography (ERT). The ERT monitoring is further supplemented by additional geophysical measurements such as ground penetrating radar, refraction seismic, electromagnetic induction and transient electromagnetics in order to optimally complement the gained ERT information. On the other hand, atmospheric energy fluxes over permafrost ground and their impact on the thermal state of permafrost and active layer thickness with a particular focus on atmospheric extreme events will be investigated based on physically-based permafrost modeling. For model evaluation, the borehole temperature records will play a key role and, therefore, an in-depth quality control of the borehole temperatures is an important prerequisite. In this study we will show preliminary results regarding the borehole temperature variability at Hoher Sonnblick with focus on the active layer. The borehole temperatures will be related to specific atmospheric conditions using the rich data set of atmospheric measurements of the site in order to detect potential errors in the borehole temperature measurements. Furthermore, we will evaluate the potential of filling gaps in

  2. A Mathematical Model of the Thermo-Anemometric Flowmeter.

    Science.gov (United States)

    Korobiichuk, Igor; Bezvesilna, Olena; Ilchenko, Andriі; Shadura, Valentina; Nowicki, Michał; Szewczyk, Roman

    2015-09-11

    A thermo-anemometric flowmeter design and the principles of its work are presented in the article. A mathematical model of the temperature field in a stream of biofuel is proposed. This model allows one to determine the fuel consumption with high accuracy. Numerical modeling of the heater heat balance in the fuel flow of a thermo-anemometric flowmeter is conducted and the results are analyzed. Methods for increasing the measurement speed and accuracy of a thermo-anemometric flowmeter are proposed.

  3. 3-D modeling of surface, borehole, and airborne EM methods; Chijo konai kuchu denjiho no sanjigen modeling

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Y [Kyushu University, Fukuoka (Japan). Faculty of Engineering

    1997-10-22

    Three-dimensional modelling methods using the difference method and finite element method are applied to the simulations respectively of the surface electromagnetic method, borehole electromagnetic method, and airborne electromagnetic method, and they are compared with each other in point of accuracy and practicality. The object of calculation in this study is a 3-D model which is a semi-finite medium 100 ohm/m in resistivity that contains a rectangular parallelopiped 1 ohm/m in resistivity. A vertical magnetic dipole is installed on the surface in the surface electromagnetic method, providing a vertical magnetic field on the surface. In the borehole electromagnetic method, a vertical magnetic dipole is placed in a borehole and the resultant vertical magnetic field is measured at a station in another borehole. In the airborne electromagnetic method, the flight level is 20m high and the distance between the source and the receiving point is 10m. The results of calculation all agree well with the results of calculation previously made known. When the difference method and finite element method are compared, it is found that the finite element method requires calculation time and memory capacity two to three times more than the difference method. 5 refs., 9 figs.

  4. Effect of asymmetric actuator and detector position on Coriolis flowmeter and measured phase shift

    DEFF Research Database (Denmark)

    Enz, Stephanie

    2010-01-01

    Coriolis flowmeters (CFM) are forced to vibrate by a periodic excitation usually applied midpipe through an electromagnetic actuator. From hands-on experience with industrial CFMs it appears, that the electromagnetic actuator has to be located as symmetric as possible. For CFM design and trouble...... perturbation analysis. The result is a simple analytical expression for the approximated phase shift, which offers a direct insight into how the location of the actuator influences the phase shift. It appears, that asymmetrical forcing combined with fluctuating pipe damping could be a factor contributing...... zero-point stability. The validity of the hypotheses, which are assumed to be basically similar for more complicated geometries, e.g. bended and/or dual pipe CFMs, with or without multiple actuators, is suggested to be tested using laboratory experiments with purpose built non-ideal CFMs....

  5. Synthesis of borehole geophysical data at the Underground Research Laboratory, Manitoba, Canada

    International Nuclear Information System (INIS)

    Keys, W.S.

    1984-07-01

    A suite of borehole-geophysical logs, supported by core data, was used to describe the rock matrix and fractures in a granitic pluton near Lac du Bonnet, Manitoba, Canada. The site is being developed by Atomic Energy of Canada Limited, as an underground research laboratory to conduct geotechnical research and to validate predictive models as part of Canada's nuclear-fuel, waste-management program. However, the site is not planned to be used for waste disposal. Geophysical well logs were used to distinguish and correlate rock types and fractures between drill holes. Two significant fracture zones that are two of the major zones of ground-water movement at the site were identified by acoustic-televiewer logs. A new heat-pulse flowmeter provided repeatable measurements of very low-velocity, vertical flow in drill holes which enabled the identification of specific fractures that were transmitting water. Borehole gamma spectra showed that some fractures are enriched in uranium, and others may be depleted. This study demonstrates some of the advantages of synthesizing available borehole-geophysical logs at a site in fractured plutonic rocks and indicates how this information can contribute to an understanding of the geophysical conditions at the site

  6. An integrated geophysical and hydraulic investigation to characterize a fractured-rock aquifer, Norwalk, Connecticut

    Science.gov (United States)

    Lane, J.W.; Williams, J.H.; Johnson, C.D.; Savino, D.M.; Haeni, F.P.

    2002-01-01

    The U.S. Geological Survey conducted an integrated geophysical and hydraulic investigation at the Norden Systems, Inc. site in Norwalk, Connecticut, where chlorinated solvents have contaminated a fractured-rock aquifer. Borehole, borehole-to-borehole, surface-geophysical, and hydraulic methods were used to characterize the site bedrock lithology and structure, fractures, and transmissive zone hydraulic properties. The geophysical and hydraulic methods included conventional logs, borehole imagery, borehole radar, flowmeter under ambient and stressed hydraulic conditions, and azimuthal square-array direct-current resistivity soundings. Integrated interpretation of geophysical logs at borehole and borehole-to-borehole scales indicates that the bedrock foliation strikes northwest and dips northeast, and strikes north-northeast to northeast and dips both southeast and northwest. Although steeply dipping fractures that cross-cut foliation are observed, most fractures are parallel or sub-parallel to foliation. Steeply dipping reflectors observed in the radar reflection data from three boreholes near the main building delineate a north-northeast trending feature interpreted as a fracture zone. Results of radar tomography conducted close to a suspected contaminant source area indicate that a zone of low electromagnetic (EM) velocity and high EM attenuation is present above 50 ft in depth - the region containing the highest density of fractures. Flowmeter logging was used to estimate hydraulic properties in the boreholes. Thirty-three transmissive fracture zones were identified in 11 of the boreholes. The vertical separation between transmissive zones typically is 10 to 20 ft. Open-hole and discrete-zone transmissivity was estimated from heat-pulse flowmeter data acquired under ambient and stressed conditions. The open-hole transmissivity ranges from 2 to 86 ft2/d. The estimated transmissivity of individual transmissive zones ranges from 0.4 to 68 ft2/d. Drawdown monitoring

  7. Strong, Ductile Rotor For Cryogenic Flowmeters

    Science.gov (United States)

    Royals, W. T.

    1993-01-01

    Improved magnetic flowmeter rotor resists cracking at cryogenic temperatures, yet provides adequate signal to magnetic pickup outside flowmeter housing. Consists mostly of stainless-steel alloy 347, which is ductile and strong at low temperatures. Small bead of stainless-steel alloy 410 welded in groove around circumference of round bar of stainless-steel alloy 347; then rotor machined from bar. Tips of rotor blades contain small amounts of magnetic alloy, and passage of tips detected.

  8. Pitot-tube flowmeter for quantification of airflow during sleep

    International Nuclear Information System (INIS)

    Kirkness, J P; McGinley, B M; Schwartz, A R; Smith, P L; Patil, S P; Schneider, H; Verma, M; Wheatley, J R; Amis, T C; Erlacher, M

    2011-01-01

    The gold-standard pneumotachograph is not routinely used to quantify airflow during overnight polysomnography due to the size, weight, bulkiness and discomfort of the equipment that must be worn. To overcome these deficiencies that have precluded the use of a pneumotachograph in routine sleep studies, our group developed a lightweight, low dead space 'pitot flowmeter' (based on pitot-tube principle) for use during sleep. We aimed to examine the characteristics and validate the flowmeter for quantifying airflow and detecting hypopneas during polysomnography by performing a head-to-head comparison with a pneumotachograph. Four experimental paradigms were utilized to determine the technical performance characteristics and the clinical usefulness of the pitot flowmeter in a head-to-head comparison with a pneumotachograph. In each study (1–4), the pitot flowmeter was connected in series with a pneumotachograph under either static flow (flow generator inline or on a face model) or dynamic flow (subject breathing via a polyester face model or on a nasal mask) conditions. The technical characteristics of the pitot flowmeter showed that, (1) the airflow resistance ranged from 0.065 ± 0.002 to 0.279 ± 0.004 cm H 2 O L –1 s –1 over the airflow rates of 10 to 50 L min −1 . (2) On the polyester face model there was a linear relationship between airflow as measured by the pitot flowmeter output voltage and the calibrated pneumtachograph signal a (β 1 = 1.08 V L −1 s −1 ; β 0 = 2.45 V). The clinically relevant performance characteristics (hypopnea detection) showed that (3) when the pitot flowmeter was connected via a mask to the human face model, both the sensitivity and specificity for detecting a 50% decrease in peak-to-peak airflow amplitude was 99.2%. When tested in sleeping human subjects, (4) the pitot flowmeter signal displayed 94.5% sensitivity and 91.5% specificity for the detection of 50% peak-to-peak reductions in pneumotachograph

  9. Pitot-tube flowmeter for quantification of airflow during sleep.

    Science.gov (United States)

    Kirkness, J P; Verma, M; McGinley, B M; Erlacher, M; Schwartz, A R; Smith, P L; Wheatley, J R; Patil, S P; Amis, T C; Schneider, H

    2011-02-01

    The gold-standard pneumotachograph is not routinely used to quantify airflow during overnight polysomnography due to the size, weight, bulkiness and discomfort of the equipment that must be worn. To overcome these deficiencies that have precluded the use of a pneumotachograph in routine sleep studies, our group developed a lightweight, low dead space 'pitot flowmeter' (based on pitot-tube principle) for use during sleep. We aimed to examine the characteristics and validate the flowmeter for quantifying airflow and detecting hypopneas during polysomnography by performing a head-to-head comparison with a pneumotachograph. Four experimental paradigms were utilized to determine the technical performance characteristics and the clinical usefulness of the pitot flowmeter in a head-to-head comparison with a pneumotachograph. In each study (1-4), the pitot flowmeter was connected in series with a pneumotachograph under either static flow (flow generator inline or on a face model) or dynamic flow (subject breathing via a polyester face model or on a nasal mask) conditions. The technical characteristics of the pitot flowmeter showed that, (1) the airflow resistance ranged from 0.065 ± 0.002 to 0.279 ± 0.004 cm H(2)O L(-1) s(-1) over the airflow rates of 10 to 50 L min(-1). (2) On the polyester face model there was a linear relationship between airflow as measured by the pitot flowmeter output voltage and the calibrated pneumotachograph signal a (β(1) = 1.08 V L(-1) s(-1); β(0) = 2.45 V). The clinically relevant performance characteristics (hypopnea detection) showed that (3) when the pitot flowmeter was connected via a mask to the human face model, both the sensitivity and specificity for detecting a 50% decrease in peak-to-peak airflow amplitude was 99.2%. When tested in sleeping human subjects, (4) the pitot flowmeter signal displayed 94.5% sensitivity and 91.5% specificity for the detection of 50% peak-to-peak reductions in pneumotachograph-measured airflow. Our data

  10. Design and Optimization of Annular Flow Electromagnetic Measurement System for Drilling Engineering

    Directory of Open Access Journals (Sweden)

    Liang Ge

    2018-01-01

    Full Text Available Using the downhole annular flow measurement system to get real-time information of downhole annular flow is the core and foundation of downhole microflux control drilling technology. The research work of electromagnetic flowmeter in recent years creates a challenge to the design of downhole annular flow measurement. This paper proposes a design and optimization of annular flow electromagnetic measurement system for drilling engineering based on the finite element method. Firstly, the annular flow measuring and optimization principle are described. Secondly, a simulation model of an annular flow electromagnetic measurement system with two pairs of coil is built based on the fundamental equation of electromagnetic flowmeter by COMSOL. Thirdly, simulations of the structure of excitation system of the measurement system are carried out, and simulations of the size of the electrode’s radius are also carried out based on the optimized structure, and then all the simulation results are analyzed to evaluate the optimization effect based on the evaluation indexes. The simulation results show that optimized shapes of the excitation system and electrode size can yield a better performance in the annular flow measurement.

  11. Development of a geophysical methodology from boreholes for the study of granitic formation storage site

    International Nuclear Information System (INIS)

    Le Masne, D.

    1983-01-01

    The aim of this work is the characterization of the fracturation of a granitic formation by the examination of borehole environment. Two types of methods are used. Methods using one borehole only: well logging (electrical and nuclear). Didier logs (electric dipole-dipole), Eric probes (electromagnetic dipole-dipole) and methods between boreholes (grounding). These methods were applied to two boreholes of 500m and 1000 meters drilled into granite at Auriat (France)

  12. Basalt features observed in outcrops, cores, borehole video imagery and geophysical logs, and basalt hydrogeologic study at the Idaho National Engineering Laboratory, Eastern Idaho

    International Nuclear Information System (INIS)

    Bennecke, W.M.

    1996-10-01

    A study was undertaken to examine permeable zones identified in boreholes open to the underlying basalt and to describe the vertical cross flows present in the boreholes. To understand the permeable zones in the boreholes detailed descriptions and measurements of three outcrops in the Snake River Plain, three cores at the Idaho Chemical Processing Plant (ICPP) at the INEL, and over fifty borehole TV logs from the INEL were carried out. Based on the observations made on the three outcrops an idealized basalt lava flow model was generated that used a set of nomenclature that would be standard for the basalt lava flows studied. An upper vesicular zone, a sometimes absent columnar zone, central zone, and lower vesicular zone make up the basalt lava flow model. The overall distinction between the different zones are based on the vesicle shape size, vesicularity, and fractures present. The results of the studies also indicated that the basalt lava flows at the INEL are distal to medial facies pahoehoe lava flows with close fitting contacts. The most permeable zones identified in these basalts are fractured vesiculated portions of the top of the lava flow, the columnar areas, and basalt-flow contacts in order of importance. This was determined from impeller flowmeter logging at the INEL. Having this information a detailed stratigraphy of individual basalt lava flows and the corresponding permeable units were generated. From this it was concluded that groundwater flow at the ICPP prefers to travel along thin basalt lava flows or flow-units. Flow direction and velocity of intrawell flows detected by flowmeter is controlled by a nearby pumping well

  13. Combined Borehole Seismic and Electromagnetic Inversion For High-Resolution Petrophysical Assessment Of Hydocarbon Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Carlos Torres-Verdin; G. Michael Hoversten; Ki Ha Lee; Gregory Newman; Kurt Nihei

    2008-12-31

    This report summarizes the work performed between January 2005 and December 2007, under DOE research contract DE-FC26-04NT15507. The project is was performed by the Center for Petroleum and Geosystems Engineering of The University of Texas at Austin and Lawrence Berkeley National Laboratory under the auspices of the National Energy Technology Office (NETL) and the Strategic Center for Natural Gas and Oil (SCNGO). During the three-year project, we developed new methods to combine borehole sonic and electromagnetic (EM) measurements for the improved assessment of elastic and petrophysical properties of rock formations penetrated by a well. Sonic measurements consisted of full waveform acoustic amplitudes acquired with monopole and dipole sources, whereas EM measurements consisted of frequency-domain voltages acquired with multi-coil induction systems. The combination of sonic and EM measurements permitted the joint estimation of elastic and petrophysical properties in the presence of mud-filtrate invasion. It was conclusively shown that the combined interpretation of sonic and EM measurements reduced non-uniqueness in the estimation of elastic and petrophysical properties and improved the spatial resolution of the estimations compared to estimations yielded separately from the two types of measurements. Moreover, this approach enabled the assessment of dynamic petrophysical properties such as permeability, as it incorporated the physics of mud-filtrate invasion in the interpretation of the measurements. The first part of the project considered the development of fast and reliable numerical algorithms to simulate borehole sonic waveforms in 2D, 3D, and radial 1D media. Such algorithms were subsequently used in the quantitative estimation of elastic properties jointly from borehole sonic and EM measurements. In the second part of the project we developed a new algorithm to estimate water saturation, porosity, and dry-rock elastic moduli jointly from borehole sonic and

  14. Phase correction of electromagnetic coupling effects in cross-borehole EIT measurements

    International Nuclear Information System (INIS)

    Zhao, Y; Zimmermann, E; Wolters, B; Van Waasen, S; Huisman, J A; Treichel, A; Kemna, A

    2015-01-01

    Borehole EIT measurements in a broad frequency range (mHz to kHz) are used to study subsurface geophysical properties. However, accurate measurements have long been difficult because the required long electric cables introduce undesired inductive and capacitive coupling effects. Recently, it has been shown that such effects can successfully be corrected in the case of single-borehole measurements. The aim of this paper is to extend the previously developed correction procedure for inductive coupling during EIT measurements in a single borehole to cross-borehole EIT measurements with multiple borehole electrode chains. In order to accelerate and simplify the previously developed correction procedure for inductive coupling, a pole–pole matrix of mutual inductances is defined. This consists of the inductances of each individual chain obtained from calibration measurements and the inductances between two chains calculated from the known cable positions using numerical modelling. The new correction procedure is successfully verified with measurements in a water-filled pool under controlled conditions where the errors introduced by capacitive coupling were well-defined and could be estimated by FEM forward modelling. In addition, EIT field measurements demonstrate that the correction methods increase the phase accuracy considerably. Overall, the phase accuracy of cross-hole EIT measurements after correction of inductive and capacitive coupling is improved to better than 1 mrad up to a frequency of 1 kHz, which substantially improves our ability to characterize the frequency-dependent complex electrical resistivity of weakly polarizable soils and sediments in situ. (paper)

  15. Design of a Geothermal Downhole Magnetic Flowmeter

    Energy Technology Data Exchange (ETDEWEB)

    Glowka, Dave A.; Normann, Randy A.

    2015-06-15

    This paper covers the development of a 300°C geothermal solid-state magnetic flowmeter (or magmeter) to support in situ monitoring of future EGS (enhanced geothermal system) production wells. Existing flowmeters are simple mechanical spinner sensors. These mechanical sensors fail within as little as 10 hrs, while a solid-state magmeter has the potential for months/years of operation. The design and testing of a magnetic flow sensor for use with existing high-temperature electronics is presented.

  16. ''Terek-3'' a well flowmeter for hot water

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, A; Bar-sliva, V

    1979-01-01

    For studying ther applicability of an injection well with injection of hot water (with temperature to 150-200/sup 0/C) it is necessary to have well flowmeters which have high sensitivity and performance capacity at this temperature. In developing the well remote flowmeter ''Terek-3'' the All-Union Scientific research and Planning-Design Institute for comprehensive automation of oil and gas industry made a decision to use a drive-less packer developed by the authors of the article for the well flowmeter ''Terek-1'' designed to study high-output wells. Because of the use of the drive-less packer, the sensitivity of the flowmeter was considerably improved and the lower limit of measurements were decreased to 60 m/sup 3//day. In order to reduce friction in the supports of the turbines, agate step bearings and cores were used made of steel 40KKhNM. The upper step bearing was installed in the instrument housing, and the lower in the body of the turbines. This reduces the possibility of its contamination in the measurement process. One should also bear in mind that with an increase in temperature, the viscosity of water diminshes (roughly 5-fold with temperature of 150/sup 0/C). Therefore, with a decrease in the influence of viscosity on the readings of the flowmeter in the instrument, a turbine was used suggested by V. I. Bar-Sliva. In this turbine the blades are separated from the step which guarantees not only the obtaining of the maximum moving momentum but also reduces the influence of the change in viscosity on the operation of the turbine. The impulse output signal obtained with rotation of the turbine with magnet is transmitted on a single-strand cable to a surface apparatus consisting of a condensator frequency meter and universal logging recorder N-381 which guarantees recording of the changed consumption on a diagram tape as a function of depth or time. Experimental samples of the well flowmeter ''Terek-3'' passed state inspection tests.

  17. Study on the development of ultrasonic gas flowmeter

    International Nuclear Information System (INIS)

    Hwang, Won Ho; Park, Sang Gug; Yang, Kyu Hong; Jhang, Kyung Young

    2001-01-01

    Ultrasonic flowmeters have more advantages than the conventional method using pressure-difference. In these reasons, many advanced nations are already selling the commercial model. In RIST, we have been developed ultrasonic gas flow meter for the localization since a project was been contracted with POSCO in 1997. This paper describes a new ultrasonic gas flowmeter. This ultrasonic gas flowmeter is developed for accurate measurement of gases in a harsh environmental conditions. It is especially suited for measuring LDG, COG, BFG gases produced in iron and steel making process. In this study, we had developed the commercial model about the first tested model and applied a completed system to the POSCO gas line. Its performance has already well been proven by extensive field tests for several months in POSCO, iron and steel making company

  18. Single-magnet rotary flowmeter for liquid metals

    OpenAIRE

    Priede, Jānis; Buchenau, Dominique; Gerbeth, Gunter

    2010-01-01

    We present a theory of single-magnet flowmeter for liquid metals and compare it with experimental results. The flowmeter consists of a freely rotating permanent magnet, which is magnetized perpendicularly to the axle it is mounted on. When such a magnet is placed close to a tube carrying liquid metal flow, it rotates so that the driving torque due to the eddy currents induced by the flow is balanced by the braking torque induced by the rotation itself. The equilibrium rotation rate, which var...

  19. Pulsatility index variations using two different transit-time flowmeters in coronary artery bypass surgery.

    Science.gov (United States)

    Nordgaard, Håvard B; Vitale, Nicola; Astudillo, Rafael; Renzulli, Attilio; Romundstad, Pål; Haaverstad, Rune

    2010-05-01

    Transit-time flow measurement is widely accepted as an intra-operative assessment in coronary artery bypass grafting (CABG). However, the two most commonly applied flowmeters, manufactured by MediStim ASA and Transonic Inc., have different default filter settings of 20 and 10 Hz, respectively. This may cause different flow measurements, which will influence the reported results. The aim was to compare pulsatility index (PI) values recorded by the MediStim and Transonic flowmeters in two different clinical settings: (1) analysis of the flow patterns recorded simultaneously by both flowmeters in the same CABGs; and (2) evaluation of flow patterns under different levels of filter settings in the same grafts. Graft flow and PI were measured using the two different flowmeters simultaneously in 19 bypass grafts. Finally, eight grafts were assessed under different digital filter settings at 5, 10, 20, 30, 50 and 100 Hz. The Transonic flowmeter provided substantially lower PI as compared with the MediStim flowmeter. By increasing the filter setting in the flowmeter, PI increased considerably. The Transonic flowmeter displayed a lower PI than the MediStim, due to a lower filter setting. In the Transonic,flow signals are filtered at a lower level, rendering a 'smoother' pattern of flow curves. Because different filter settings determine different PIs, caution must be taken when flow values and flowmeters are compared. The type of flowmeter should be indicated whenever graft flow measurements and derived indexes are provided [corrected]. Copyright 2009 European Association for Cardio-Thoracic Surgery. All rights reserved.

  20. The suitability of Doppler flowmeters for use in the minerals-processing industry

    International Nuclear Information System (INIS)

    Ormrod, G.T.W.

    1983-01-01

    In this report, six commercially available Doppler flowmeters, which were operated under conditions likely to be encountered in the minerals-processing industry, are evaluated. The effects of the density and particle-size distribution of a flowing slurry and the optimum siting of the flowmeter probe are considered, and the results of tests on the response and linearity of the flowmeters are reported

  1. API testing program - calibration of microprocessor based flowmeters for integrated metering systems

    Energy Technology Data Exchange (ETDEWEB)

    Elliot, Kenneth D. [Omni Flow Computers, Inc., Stafford, TX (United States)

    2005-07-01

    Microprocessor based flowmeter technologies for liquids, such as Coriolis mass meters, and Ultrasonic flowmeters hold great promise. These technologies offer many advantages, such as no rotating parts, self-diagnostic checks, which can help anticipate and warn of impending failures before they have a major impact on the measurement. These meters are substantially different though than other primary devices due to their heavy reliance on the accompanying secondary electronics. One method to prove that they are accurate would be proving the flowmeter, using a pipe prover or small volume prover (SVP), but these proving methods are designed to count 'real time' pulses from a turbine or PD meter between a known volume, they are not designed to count 'time delayed' 'manufactured pulses' from a microprocessor. There are limitations of the manufactured pulse train and it affects the ability of the flowmeter to be proved using current proving technology. The author of this paper, a chairman of an American Petroleum Institute working group, investigated how the 'microprocessor generated pulses' produced by these types of flowmeters, interacted with the existing measurement technologies in use today. Several microprocessor based flowmeter technologies have been tested, including; Ultrasonic, Coriolis, and Helical Turbine with pulse multiplying preamplifier. Wherever possible, flowmeters of various sizes, and from several vendors have been tested. A significant amount of data has been collected which sheds light into why these types of flowmeters are sometimes difficult to prove. This paper describes the API testing program, and the methodology behind it. It presents results and findings, and offers specific recommendations that may eventually be incorporated into API documents and/or standards in the future. (author)

  2. Flowmeters for use in the nuclear industry: How to select the appropriate instrument

    International Nuclear Information System (INIS)

    Hardy, J.E.

    1991-01-01

    Because flow is one of the most common process variables measured, numerous types of flowmeters based on a variety of measurement principles are available. Although these numerous flowmeter types allow one to measure almost any flow, the wide variety also makes selecting an appropriate flowmeter a complex and potentially difficult task. This paper reviews the definition and importance of basic hydraulic principles and the design parameters critical to an accurate flow measurement, the principles used in flow monitoring and their advantages and disadvantages, and a method for selecting an appropriate flowmeter. 6 refs

  3. Development of a wide range vortex shedding flowmeter for high temperature helium gas

    Energy Technology Data Exchange (ETDEWEB)

    Baker, S.P.; Ennis, R.M. Jr.; Herndon, P.G.

    1981-07-01

    A flowmeter was required to measure recirculating helium gas flow over a wide range of conditions in a gas-cooled fast reactor (GCFR) core flow simulator, the ORNL Core Flow Test Loop (CFTL). The flow measurement requirements of the CFTL exceeded the proven performance of any single conventional flowmeter. Therefore, a special purpose vortex shedding flowmeter (VSFM) was developed. A single flowmeter capable of meeting all the CFTL requirements would provide significant economic and performance advantages in the operation of the loop. The development, conceptual design, and final design of a modified VSFM are described. The results of extensive flow calibration of the flowmeter at the Colorado Engineering Experiment Station (CEES) are presented. The report closes with recommendations for application of the VSFM to the CFTL and for future development work.

  4. Surface and borehole electromagnetic imaging of conducting contaminant plumes. 1997 annual progress report

    International Nuclear Information System (INIS)

    Berryman, J.G.

    1997-01-01

    'Electromagnetic induction tomography is a promising new tool for imaging electrical conductivity variations in the earth. The EM source field is produced by induction coil (magnetic dipole) transmitters deployed at the surface or in boreholes. Vertical and horizontal component magnetic field detectors are deployed in other boreholes or on the surface. Sources and receivers are typically deployed in a configuration surrounding the region of interest. The goal of this procedure is to image electrical conductivity variations in the earth, much as x-ray tomography is used to image density variations through cross-sections of the body. Although such EM field techniques have been developed and applied, the algorithms for inverting the magnetic data to produce the desired images of electrical conductivity have not kept pace. One of the main reasons for the lag in the algorithm development has been the fact that the magnetic induction problem is inherently three dimensional: other imaging methods such as x-ray and seismic can make use of two-dimensional approximations that are not too far from reality, but the author does not have this luxury in EM induction tomography. In addition, previous field experiments were conducted at controlled test sites that typically do not have much external noise or extensive surface clutter problems often associated with environmental sites. To use the same field techniques in environments more typical of cleanup sites requires a new set of data processing tools to remove the effects of both noise and clutter. The goal of this project is to join theory and experiment to produce enhanced images of electrically conducting fluids underground, allowing better localization of contaminants and improved planning strategies for the subsequent remediation efforts. After explaining the physical context in more detail, this report will summarize the progress made in the first year of this project: (1) on code development and (2) on field tests of

  5. Mapping fracture flow paths with a nanoscale zero-valent iron tracer test and a flowmeter test

    Science.gov (United States)

    Chuang, Po-Yu; Chia, Yeeping; Chiu, Yung-Chia; Teng, Mao-Hua; Liou, Sofia Ya Hsuan

    2018-02-01

    The detection of preferential flow paths and the characterization of their hydraulic properties are important for the development of hydrogeological conceptual models in fractured-rock aquifers. In this study, nanoscale zero-valent iron (nZVI) particles were used as tracers to characterize fracture connectivity between two boreholes in fractured rock. A magnet array was installed vertically in the observation well to attract arriving nZVI particles and identify the location of the incoming tracer. Heat-pulse flowmeter tests were conducted to delineate the permeable fractures in the two wells for the design of the tracer test. The nZVI slurry was released in the screened injection well. The arrival of the slurry in the observation well was detected by an increase in electrical conductivity, while the depth of the connected fracture was identified by the distribution of nZVI particles attracted to the magnet array. The position where the maximum weight of attracted nZVI particles was observed coincides with the depth of a permeable fracture zone delineated by the heat-pulse flowmeter. In addition, a saline tracer test produced comparable results with the nZVI tracer test. Numerical simulation was performed using MODFLOW with MT3DMS to estimate the hydraulic properties of the connected fracture zones between the two wells. The study results indicate that the nZVI particle could be a promising tracer for the characterization of flow paths in fractured rock.

  6. Experimental validation of an ultrasonic flowmeter for unsteady flows

    Science.gov (United States)

    Leontidis, V.; Cuvier, C.; Caignaert, G.; Dupont, P.; Roussette, O.; Fammery, S.; Nivet, P.; Dazin, A.

    2018-04-01

    An ultrasonic flowmeter was developed for further applications in cryogenic conditions and for measuring flow rate fluctuations in the range of 0 to 70 Hz. The prototype was installed in a flow test rig, and was validated experimentally both in steady and unsteady water flow conditions. A Coriolis flowmeter was used for the calibration under steady state conditions, whereas in the unsteady case the validation was done simultaneously against two methods: particle image velocimetry (PIV), and with pressure transducers installed flush on the wall of the pipe. The results show that the developed flowmeter and the proposed methodology can accurately measure the frequency and amplitude of unsteady fluctuations in the experimental range of 0-9 l s-1 of the mean main flow rate and 0-70 Hz of the imposed disturbances.

  7. A High-Pressure Bi-Directional Cycloid Rotor Flowmeter

    Directory of Open Access Journals (Sweden)

    Shuo Liu

    2014-08-01

    Full Text Available The measurement of the flow rate of various liquids and gases is critical in industrial automation. Rotary positive displacement meters (rotary PD meters are highly accurate flowmeters that are widely employed in engineering applications, especially in custody transfer operations and hydraulic control systems. This paper presents a high pressure rotary PD meter containing a pair of internal cycloid rotors. It has the advantages of concise structure, low pressure loss, high accuracy and low noise. The curve of the internal rotor is designed as an equidistant curtate epicycloid curve with the external rotor curve as its conjugate. The calculation method used to determine the displacement of the cycloid rotor flowmeter is discussed. A prototype was fabricated, and experiments were performed to confirm measurements over a flow range of 1–100 L/min with relative errors of less than ±0.5%. The pressure loss through the flowmeter was about 3 bar at a flow rate of 100 L/min.

  8. Basin Characterisation by Means of Joint Inversion of Electromagnetic Geophysical Data, Borehole Data and Multivariate Statistical Methods: The Loop Head Peninsula, Western Ireland, Case Study

    Science.gov (United States)

    Campanya, J. L.; Ogaya, X.; Jones, A. G.; Rath, V.; McConnell, B.; Haughton, P.; Prada, M.

    2016-12-01

    The Science Foundation Ireland funded project IRECCSEM project (www.ireccsem.ie) aims to evaluate Ireland's potential for onshore carbon sequestration in saline aquifers by integrating new electromagnetic geophysical data with existing geophysical and geological data. One of the objectives of this component of IRECCSEM is to characterise the subsurface beneath the Loop Head Peninsula (part of Clare Basin, Co. Clare, Ireland), and identify major electrical resistivity structures that can guide an interpretation of the carbon sequestration potential of this area. During the summer of 2014, a magnetotelluric (MT) survey was carried out on the Loop Head Peninsula, and data from a total of 140 sites were acquired, including audio-magnetotelluric (AMT), and broadband magnetotelluric (BBMT). The dataset was used to generate shallow three-dimensional (3-D) electrical resistivity models constraining the subsurface to depths of up to 3.5 km. The three-dimensional (3-D) joint inversions were performed using three different types of electromagnetic data: MT impedance tensor (Z), geomagnetic transfer functions (T), and inter-station horizontal magnetic transfer-functions (H). The interpretation of the results was complemented with second-derivative models of the resulting electrical resistivity models, and a quantitative comparison with borehole data using multivariate statistical methods. Second-derivative models were used to define the main interfaces between the geoelectrical structures, facilitating superior comparison with geological and seismic results, and also reducing the influence of the colour scale when interpreting the results. Specific analysis was performed to compare the extant borehole data with the electrical resistivity model, identifying those structures that are better characterised by the resistivity model. Finally, the electrical resistivity model was also used to propagate some of the physical properties measured in the borehole, when a good relation was

  9. A vortex-shedding flowmeter based on IPMCs

    International Nuclear Information System (INIS)

    Pasquale, Giovanna Di; Pollicino, Antonino; Graziani, Salvatore; Strazzeri, Salvatore

    2016-01-01

    Ionic polymer–metal composites (IPMCs) are electroactive polymers that can be used both as sensors and actuators. They have been demonstrated for many potential applications, in wet and underwater environments. Applications in fields such as biomimetics, robotics, and aerospace, just to mention a few, have been proposed. In this paper, the sensing nature of IPMCs is used to develop a flowmeter based on the vortex shedding phenomenon. The system is described, and a model is proposed and verified. A setup has been realized, and data have been acquired for many working conditions. The performance of the sensing system has been investigated by using acquired experimental data. Water flux velocities in the range [0.38, 2.83] m s −1 have been investigated. This working range is comparable with ranges claimed for established technologies. Results show the suitability of the proposed system to work as a flowmeter. The proposed transducer is suitable for envisaged post-silicon applications, where the use of IPMCs gives the opportunity to realize a new generating polymeric flowmeter. This has potential applications in fields where properties of IPMCs such as low cost, usability, and disposability are relevant. (paper)

  10. A Hydraulic Stress Measurement System for Deep Borehole Investigations

    Science.gov (United States)

    Ask, Maria; Ask, Daniel; Cornet, Francois; Nilsson, Tommy

    2017-04-01

    Luleå University of Technology (LTU) is developing and building a wire-line system for hydraulic rock stress measurements, with funding from the Swedish Research Council and Luleå University of Technology. In this project, LTU is collaborating with University of Strasbourg and Geosigma AB. The stress state influences drilling and drillability, as well as rock mass stability and permeability. Therefore, knowledge about the state of in-situ stress (stress magnitudes, and orientations) and its spatial variation with depth is essential for many underground rock engineering projects, for example for underground storage of hazardous material (e.g. nuclear waste, carbon dioxide), deep geothermal exploration, and underground infrastructure (e.g. tunneling, hydropower dams). The system is designed to conduct hydraulic stress testing in slim boreholes. There are three types of test methods: (1) hydraulic fracturing, (2) sleeve fracturing and (3) hydraulic testing of pre-existing fractures. These are robust methods for determining in situ stresses from boreholes. Integration of the three methods allows determination of the three-dimensional stress tensor and its spatial variation with depth in a scientific unambiguously way. The stress system is composed of a downhole and a surface unit. The downhole unit consists of hydraulic fracturing equipment (straddle packers and downhole imaging tool) and their associated data acquisition systems. The testing system is state of the art in several aspects including: (1) Large depth range (3 km), (2) Ability to test three borehole dimensions (N=76 mm, H=96 mm, and P=122 mm), (3) Resistivity imager maps the orientation of tested fracture; (4) Highly stiff and resistive to corrosion downhole testing equipment; and (5) Very detailed control on the injection flow rate and cumulative volume is obtained by a hydraulic injection pump with variable piston rate, and a highly sensitive flow-meter. At EGU General Assembly 2017, we would like to

  11. Broadband EIT borehole measurements with high phase accuracy using numerical corrections of electromagnetic coupling effects

    International Nuclear Information System (INIS)

    Zhao, Y; Zimmermann, E; Wolters, B; Van Waasen, S; Huisman, J A; Treichel, A; Kemna, A

    2013-01-01

    Electrical impedance tomography (EIT) is gaining importance in the field of geophysics and there is increasing interest for accurate borehole EIT measurements in a broad frequency range (mHz to kHz) in order to study subsurface properties. To characterize weakly polarizable soils and sediments with EIT, high phase accuracy is required. Typically, long electrode cables are used for borehole measurements. However, this may lead to undesired electromagnetic coupling effects associated with the inductive coupling between the double wire pairs for current injection and potential measurement and the capacitive coupling between the electrically conductive shield of the cable and the electrically conductive environment surrounding the electrode cables. Depending on the electrical properties of the subsurface and the measured transfer impedances, both coupling effects can cause large phase errors that have typically limited the frequency bandwidth of field EIT measurements to the mHz to Hz range. The aim of this paper is to develop numerical corrections for these phase errors. To this end, the inductive coupling effect was modeled using electronic circuit models, and the capacitive coupling effect was modeled by integrating discrete capacitances in the electrical forward model describing the EIT measurement process. The correction methods were successfully verified with measurements under controlled conditions in a water-filled rain barrel, where a high phase accuracy of 0.8 mrad in the frequency range up to 10 kHz was achieved. The corrections were also applied to field EIT measurements made using a 25 m long EIT borehole chain with eight electrodes and an electrode separation of 1 m. The results of a 1D inversion of these measurements showed that the correction methods increased the measurement accuracy considerably. It was concluded that the proposed correction methods enlarge the bandwidth of the field EIT measurement system, and that accurate EIT measurements can now

  12. Measurement of transitional flow in pipes using ultrasonic flowmeters

    Energy Technology Data Exchange (ETDEWEB)

    Zheng-Gang, Liu; Guang-Sheng, Du; Zhu-Feng, Shao; Qian-Ran, He; Chun-Li, Zhou, E-mail: lzhenggang@sdu.edu.cn [School of Energy and Power Engineering, Qian-Fo-shan campus, Shandong University, Jinan City 250061, Shandong Province (China)

    2014-10-01

    The accuracy of an ultrasonic flowmeter depends on the ratio k of average profile velocity of pipe and average velocity of an ultrasonic propagation path. But there is no appropriate method of calculating k for transition flow. In this paper, the velocity field of the transition flow in a pipe is measured by particle image velocimetry. On this basis, the k of U-shaped and V-shaped ultrasonic flowmeter is obtained when Reynolds number is between 2000 and 20 000. It is shown that the k is constant when the Reynolds number is in the range of 2000–2400 and 5400–20 000, and the k decreases with the increasing of Re when the Reynolds number is 2400–5400. The results of study can be used to improve the measurement accuracy of ultrasonic flowmeters when flow is transition flow and can provide help for the study of pipe flow. (paper)

  13. Ultrasonic flowmeters. Progress report II

    International Nuclear Information System (INIS)

    Wittekind, W.D.

    1980-01-01

    This progress report presents results of in-plant testing of the prototype ultrasonic flowmeter and describes modifications to the prototype as a result of these tests. The modified prototype, designated MOD-I, is described in detail including the principle of operation, equipment used and the results of both laboratory and in-plant demonstrations

  14. Wide-range vortex shedding flowmeter for high-temperature helium gas

    Energy Technology Data Exchange (ETDEWEB)

    Baker, S.P.; Herndon, P.G.; Ennis, R.M. Jr.

    1983-01-01

    The existing design of a commercially available vortex shedding flowmeter (VSFM) was modified and optimized to produce three 4-in. and one 6-in. high-performance VSFMs for measuring helium flow in a gas-cooled fast reactor (GCFR) test loop. The project was undertaken because of the significant economic and performance advantages to be realized by using a single flowmeter capable of covering the 166:1 flow range (at 350/sup 0/C and 45:1 pressure range) of the tests. A detailed calibration in air and helium at the Colorado Engineering Experiment Station showed an accuracy of +-1% of reading for a 100:1 helium flow range and +-1.75% of reading for a 288:1 flow range in both helium and air. At an extended gas temperature of 450/sup 0/C, water cooling was necessary for reliable flowmeter operation.

  15. Flowmeter with silicon flow tube

    NARCIS (Netherlands)

    Lammerink, Theodorus S.J.; Dijkstra, Marcel; Haneveld, J.; Lötters, Joost Conrad

    2009-01-01

    A flowmeter comprising a system chip with a silicon substrate provided on a carrier, in an opening whereof at least one silicon flow tube is provided for transporting a medium whose flow rate is to be measured, said tube having two ends that issue via a wall of the opening into channels coated with

  16. Novel annular flow electromagnetic measurement system for drilling engineering.

    OpenAIRE

    Ge, L.; Wei, G. H.; Wang, Q.; Hu, Z.; Li, J. L.

    2017-01-01

    Downhole micro-flux control drilling technology can effectively solve drilling accidents, such as kick and loss in narrow density window drilling scenarios. Using a downhole annular flow measurement system to obtain real-time information of downhole annular flow is the core and foundation of downhole micro-flux control drilling technology. The research work of electromagnetic flowmeters in recent years creates a challenge for downhole annular flow measurement. This paper proposes a new method...

  17. Multipath ultrasonic gas flow-meter based on multiple reference waves.

    Science.gov (United States)

    Zhou, Hongliang; Ji, Tao; Wang, Ruichen; Ge, Xiaocheng; Tang, Xiaoyu; Tang, Shizhen

    2018-01-01

    Several technologies can be used in ultrasonic gas flow-meters, such as transit-time, Doppler, cross-correlation and etc. In applications, the approach based on measuring transit-time has demonstrated its advantages and become more popular. Among those techniques which can be applied to determine time-of-flight (TOF) of ultrasonic waves, including threshold detection, cross correlation algorithm and other digital signal processing algorithms, cross correlation algorithm has more advantages when the received ultrasonic signal is severely disturbed by the noise. However, the reference wave for cross correlation computation has great influence on the precise measurement of TOF. In the applications of the multipath flow-meters, selection of the reference wave becomes even more complicated. Based on the analysis of the impact factors that will introduce noise and waveform distortion of ultrasonic waves, an averaging method is proposed to determine the reference wave in this paper. In the multipath ultrasonic gas flow-meter, the analysis of each path of ultrasound needs its own reference wave. In case study, a six-path ultrasonic gas flow-meter has been designed and tested with air flow through the pipeline. The results demonstrate that the flow rate accuracy and the repeatability of the TOF are significantly improved by using averaging reference wave, compared with that using random reference wave. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Borehole geophysical investigations of Lavia deep testhole, Finland

    International Nuclear Information System (INIS)

    Saksa, Pauli

    1985-02-01

    According to the Goverment's decision in principle in 1983 Industrial Power Company Ltd (TVO) is making preparations for all the steps of final disposal of the spent fuel produced by its power plants. Before the actual site investigation phase, TVO drilled a deep borehole in Lavia, Western Finland. The borehole is used during 1984-85 for testing investigation techniques and methods used for bedrock characterization. Borehole geophysical loggings performed in Lavia consisted of galvanic electrical, transient electromagnetic, radiometric, temperature, seismic and magnetic msurements. This composite survey provided both lithological and structural information of rock mass. The neutron-neutron, density, natural gamma radiation and susceptibility methods characterized rock type. Fracturing and its type could be interpreted most effectively with resistivity, acoustic P-wave velocity and density logs. Temperature and tube-wave measurements revealed several fractured zones related to possible water flow in rock. Lavia investigations indicated that a high quality of instrumentation and careful calibration are necessary for site investigations. The large amount of log data also requires efficient data collection and processing systems both in the field and laboratory. (author)

  19. Improvement of a measurement method of purified flows in a reflector of HANARO by an ultra-sonic flowmeter

    International Nuclear Information System (INIS)

    Choi, Young-San; Bae, Sang-Hoon; Kang, In-Hyuk; Lee, Yong-Sub; Jung, Hoan-Sung

    2007-01-01

    Heavy water is used in the reflector system in HANARO and the flow in the system is measured by a flowmeter and indicated in a control room. The Turbine Flowmeter to measure the purified flow, which had been used from the start up of reactor was broken down in the end of 2001. In order to avoid the exposure of tritium generated from heavy water leaked during a replacement, instead of fixing the flowmeter, an ultrasonic flowmeter was selected and installed and has been used to measure the flow. This paper describes the measurement principles, issues and calibration errors of the turbine flowmeter that was broken down. Also, it explains in detail the measurement principles of the ultrasonic flowmeter, the results of its field test and the results of its periodic tests for five years after the installation

  20. Heat-pulse flowmeter for a liquid breeder blanket

    International Nuclear Information System (INIS)

    Kondo, Masatoshi; Shibano, Kyohei; Tanaka, Teruya; Muroga, Takeo

    2013-01-01

    Liquid metals Li, Pb-17Li and Sn-20Li are candidate liquid breeders in fusion reactors. The development of a flowmeter that can be applied to high-temperature liquid metals is an important issue. A heat-pulse flowmeter is proposed in the present study. Its basic performance was investigated by means of a loop experiment with Pb-17Li and a numerical simulation. The temperature distribution in flowing Pb-17Li was obtained by local transient heating of the outer surface of a loop tube. The temperature distribution gradually changed and resembled the movement of a hot spot, which had a higher temperature than its surroundings. This hot spot moved along the flow and passed through the tips of the thermocouples. The change in temperature distribution with the movement of the hot spot was monitored by three thermocouples exposed to the Pb-17Li flow. The results of the loop experiments were numerically simulated by assuming a certain flow rate, and the temperature profile obtained in the loop experiment was in agreement with the simulation results. The time taken by the hot spot to pass through the tips of the thermocouples was measured and simulated, and the correlation between this time and the average flow velocity was evaluated. The results indicated the average flow velocity can be obtained using the heat-pulse flowmeter proposed in this study. (author)

  1. A New Approach to Laminar Flowmeters

    Directory of Open Access Journals (Sweden)

    Alvaro Deibe

    2010-11-01

    Full Text Available After studying the performance and characteristics of actual laminar flowmeters a new disposition for this type of sensors is proposed in such a way that the measurement errors introduced by the intrinsic nature of the device can be minimized. The preliminary study shows that the developing entry region introduces non-linearity effects in all these devices. These effects bring about not only errors, but also a change in the slope of the linear calibration respect of the Poiseuille relation. After a subsequent analysis on how these non-linearity errors can be reduced, a new disposition of this type of flowmeters is introduced. This device makes used of flow elements having pressure taps at three locations along its length and connected to three isolated chambers. In this way, the static pressure can be measured at three locations and contributed to by the pressure taps at the level of each chamber. Thus the linearization error is reduced with an additional advantage of producing a reduced pressure drop.

  2. Electromagnetic geothermometry theory, modeling, practice

    CERN Document Server

    Spichak, Viacheslav V

    2015-01-01

    Electromagnetic Geothermometry explores, presents and explains the new technique of temperature estimation within the Earth's interior; the Electromagnetic technique will identify zones of geothermal anomalies and thus provides locations for deep drilling. This book includes many case studies from geothermal areas such as Travale (Italy), Soultz-sous-Forêts (France) and Hengill (Iceland), allowing the author and reader to draw conclusions regarding the dominating heat transfer mechanisms, location of its sources and to constrain the locations for drilling of the new boreholes. Covering a to

  3. Doppler radar flowmeter

    Science.gov (United States)

    Petlevich, Walter J.; Sverdrup, Edward F.

    1978-01-01

    A Doppler radar flowmeter comprises a transceiver which produces an audio frequency output related to the Doppler shift in frequency between radio waves backscattered from particulate matter carried in a fluid and the radiated radio waves. A variable gain amplifier and low pass filter are provided for amplifying and filtering the transceiver output. A frequency counter having a variable triggering level is also provided to determine the magnitude of the Doppler shift. A calibration method is disclosed wherein the amplifier gain and frequency counter trigger level are adjusted to achieve plateaus in the output of the frequency counter and thereby allow calibration without the necessity of being able to visually observe the flow.

  4. Experimental Research of Crosscorrelation-Based Virtual Dynamic Flowmeter

    International Nuclear Information System (INIS)

    Jiang, W L; Sun, H M; Niu, H F; Gao, M

    2006-01-01

    An innovated method for measuring dynamic flow is put forward, and a virtual dynamic flowmeter is established. Basing on the principle of pressure pulse containing the flow information, for the dynamic laminar flow, by means of collecting the pressure signals at two points at interval of L and processing them with crosscorrelation calculation, then the transit time is gained, consequently the average flow rate can be got. This calculation is prosecuted repeatedly according to a certain time step length, thus the average flow rates in each time slice can be acquired. If the step length is decreased to zero, the piecewise average flow rate is approximate to the instant dynamic flow. In order to calibrate the virtual dynamic flowmeter, the unloaded servo cylinder was used for the contrasting experiment. The accuracy and validity of this approach has been proved

  5. Ultrasonic flow-meter test in sodium

    International Nuclear Information System (INIS)

    Ishii, Y.; Uno, O.; Kamei, M.

    1978-01-01

    As a part of the R and D programme for the prototype fast breeder reactor MONJU, an ultrasonic flow-meter (USFM) test is being carried out in sodium in the O-Arai Engineering Center of PNC. Prior to the present test, an in-water test was done at the manufacturer's as a preliminary investigation. The results reported here are the results up to the present. Calibration tests using the actual fluid were conducted on a 12-inch ultrasonic flow-meter with guide rods fabricated for sodium flow measurement. The test conditions in sodium were a temperature of 200 approximately 400 0 C and flow-rates of 0 approximately 6m/s. The main results are: (1) The linearity of output signal was good and accuracy was within 1%; (2) The alternating type of the USFM was much better than the fixed type in temperature change; (3) 2MHz of transducer frequency was better than 3MHz in sodium; (4) The S/N ratio of the ultrasonic signal and the length/diameter effect in a wide range in sodium surpassed the in-water test. (author)

  6. A COMPARISON BETWEEN ZERO-OFFSET AND VERTICAL RADAR PROFILING GPR TECHNIQUES WITH EMPHASIS ON PROBLEMATIC BOREHOLE EFFECTS

    DEFF Research Database (Denmark)

    Rossi, Matteo; Vignoli, Giulio; Cassiani, Giorgio

    that the dielectric relative permittivity profiles recovered from ZOP and VRP first-break inversions are in strong disagreement, providing very different permittivity profiles. The analysis of synthetic radargrams shows the presence of an electromagnetic (EM) wave established by the joint presence of the air...... of the first recorded event depends on the ratio between the wave length in air and the finite dimension of the borehole. Once these arrivals in the simulated VRP radargrams are recognized, their contribution can be removed by picking the “direct”ù arrivals, that correspond to the waves that directly...... characterizations. Thus, VRP surveys in vadose zone must be accurately interpreted, as the electromagnetic waves may propagate via guided modes along the borehole. Neglecting this phenomenon might generate misleading estimations of geophysical properties and the subsequently translation in hydrological quantities...

  7. Design and development of drag-disc flowmeter for measurement of transient two-phase flow

    International Nuclear Information System (INIS)

    Sreenivas Rao, G.; Kukreja, V.; Dolas, P.K.; Venkat Raj, V.

    1990-01-01

    Experiments have been carried out to test the suitability of drag-disc flowmeter for measuring two-phase flow. Calibration tests carried out under single-phase and two-phase flow conditions have confirmed the suitability of the drag-disc flowmeter. The experimental work and the results obtained are presented and discussed in the paper. (author). 3 refs., 6 figs

  8. Smart ultrasonic flowmeter used for the operation support of water resource management in the agricultural areas

    Science.gov (United States)

    Elmostafa, Ziani; Mustapha, Bennouna; Boissier, Raymond

    2008-10-01

    Ultrasonic sensors transmit acoustic waves and receive them later. This is done by ultrasonic transducers, which transform an ultrasonic wave into an electrical signal and vice versa. Often, it is possible to use the same transducer for both transmitting and receiving. The most important parts of any ultrasonic sensor are the transducers. The spectral and spatial radiation characteristics of these components are the prime determinants of sensor performance. Such transducers must have a robust design, stable radiation pattern (high directivity) and good receiving sensitivity. Intelligent ultrasonic sensors have the possibility to extract the information about the variables to be measured, carried by the ultrasonic signals efficiently and with accuracy. To achieve this performance, the signals are processed by dedicated hardware (accurate electronic measuring devices). Ultrasound has the property, that its velocity is strongly affected by the flow velocity of the fluids in which it propagates. The ultrasonic flowmeters have gained a lot of attention over the past few years; they have several advantages over the differential pressure flowmeter, turbine meters, coriolis meters and vortex meters. They are widely used to measure the flow of liquids, first, they are either less intrusive (wetted flowmeter) or non-intrusive (clamp-on flowmeter), depending on the model. Also, they don't have moving parts that are subject to wear over time, and with minimum obstruction of the flow. Ultrasonic flowmeter are not limited to clean liquids (Transit time flowmeter), a special type of ultrasonic flowmeter can also accurately measure the flow of slurries and liquids with many impurities (Doppler flowmeter). This part of paper describes the intelligent ultrasonic sensor. The conception or the realization of intelligent ultrasonic sensor requires the synthesis of several technologies, a knowledge in the fields of sensor, digital ultrasonic signal processing, distributed system and

  9. Thermocouple correlation transit time flowmeter tests at WCL

    International Nuclear Information System (INIS)

    Lassahn, G.D.

    1976-11-01

    Scoping tests indicate the feasibility for using transit time flowmeters with thermocouple sensors in steam-water steady state flow. Conclusive results were not obtained. More conclusive results are expected from tests to be conducted in the semiscale facility with a redesigned transit time thermocouple sensor

  10. Observations from borehole dilution logging experiments in fractured crystalline rock under variable hydraulic conditions

    Science.gov (United States)

    Harte, Philip T.; Anderson, Alton; Williams, John H.

    2014-01-01

    Identifying hydraulically active fractures in low permeability, crystalline-bedrock aquifers requires a variety of geophysical and hydrogeophysical borehole tools and approaches. One such approach is Single Borehole Dilution Tests (SBDT), which in some low flow cases have been shown to provide greater resolution of borehole flow than other logging procedures, such as vertical differential Heat Pulse Flowmeter (HPFM) logging. Because the tools used in SBDT collect continuous profiles of water quality or dye changes, they can identify horizontal flow zones and vertical flow. We used SBDT with a food grade blue dye as a tracer and dual photometer-nephelometer measurements to identify low flow zones.SBDT were conducted at seven wells with open boreholes (exceeding 300 ft). At most of the wells HPFM logs were also collected. The seven wells are set in low-permeability, fractured granite and gneiss rocks underlying a former tetrachloroeythylene (PCE) source area at the Savage Municipal Well Superfund site in Milford, NH. Time series SBDT logs were collected at each of the seven wells under three distinct hydraulic conditions: (1) ambient conditions prior to a pump test at an adjacent well, (2) mid test, after 2-3 days of the start of the pump test, and (3) at the end of the test, after 8-9 days of the pump test. None of the SBDT were conducted under pumping conditions in the logged well. For each condition, wells were initially passively spiked with blue dye once and subsequent time series measurements were made.Measurement accuracy and precision of the photometer tool is important in SBDT when attempting to detect low rates of borehole flow. Tests indicate that under ambient conditions, none of the wells had detectable flow as measured with HPFM logging. With SBDT, 4 of the 7 showed the presence of some very low flow. None of 5 (2 of the 7 wells initially logged with HPFM under ambient conditions were not re-logged) wells logged with the HPFM during the pump test had

  11. Deep Borehole Field Test Laboratory and Borehole Testing Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Kuhlman, Kristopher L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brady, Patrick V. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); MacKinnon, Robert J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Heath, Jason E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Herrick, Courtney G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jensen, Richard P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gardner, W. Payton [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sevougian, S. David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bryan, Charles R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jang, Je-Hun [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stein, Emily R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bauer, Stephen J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Daley, Tom [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Freifeld, Barry M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Birkholzer, Jens [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Spane, Frank A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-09-19

    Deep Borehole Disposal (DBD) of high-level radioactive wastes has been considered an option for geological isolation for many years (Hess et al. 1957). Recent advances in drilling technology have decreased costs and increased reliability for large-diameter (i.e., ≥50 cm [19.7”]) boreholes to depths of several kilometers (Beswick 2008; Beswick et al. 2014). These advances have therefore also increased the feasibility of the DBD concept (Brady et al. 2009; Cornwall 2015), and the current field test design will demonstrate the DBD concept and these advances. The US Department of Energy (DOE) Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste (DOE 2013) specifically recommended developing a research and development plan for DBD. DOE sought input or expression of interest from States, local communities, individuals, private groups, academia, or any other stakeholders willing to host a Deep Borehole Field Test (DBFT). The DBFT includes drilling two boreholes nominally 200m [656’] apart to approximately 5 km [16,400’] total depth, in a region where crystalline basement is expected to begin at less than 2 km depth [6,560’]. The characterization borehole (CB) is the smaller-diameter borehole (i.e., 21.6 cm [8.5”] diameter at total depth), and will be drilled first. The geologic, hydrogeologic, geochemical, geomechanical and thermal testing will take place in the CB. The field test borehole (FTB) is the larger-diameter borehole (i.e., 43.2 cm [17”] diameter at total depth). Surface handling and borehole emplacement of test package will be demonstrated using the FTB to evaluate engineering feasibility and safety of disposal operations (SNL 2016).

  12. Stabilization of magnet assemblies of permanent magnet sodium flowmeters used in fast breeder reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rajan, K.K., E-mail: kkrajan@igcar.gov.in; Vijayakumar, G.

    2014-08-15

    Highlights: • Stabilization procedure for ALNICO-5 permanent magnet material is evolved. • Effect of time and temperature on ALNICO-5 assembly is determined. • Suitability of ALNICO-5 flowmeters at high temperatures is established. • Temperature coefficient of flux density is determined. - Abstract: Permanent magnet flow meters (PMFMs) are used to measure the sodium flow in sodium cooled Fast Breeder Reactor Circuits. Prototype fast breeder reactor (PFBR) which is under construction at Kalpakkam is a 500 MWe, sodium cooled, pool type reactor. Sodium flow measurement in various loops of the reactor is of prime importance from operational and safety point of view. To measure the flow of electrically conducting liquid sodium, in primary and secondary circuit pipe lines of PFBR, permanent magnet flow meters are used. PMFM is a non-invasive device, which works on the principle of generation of motional EMF by magnetic forces exerted on the charges in a moving conductor. Flowmeters of different pipe sizes ranging from 10 mm to 200 mm pipe diameter are required for PFBR. Long term performance of the flowmeters mainly depends on stability of permanent magnets used in flowmeters to generate constant magnetic field in stainless steel (SS) pipes. This paper describes the effects of time and temperature on permanent magnet assemblies made of ALNICO-V used in PFBR flowmeters. The stabilization methodology for ALNICO-V permanent magnet assemblies is evolved and established. Loss of magnetic field strength with respect to time and temperatures is determined by experiments and found negligible.

  13. Use of borehole and surface geophysics to investigate ground-water quality near a road-deicing salt-storage facility, Valparaiso, Indiana

    Science.gov (United States)

    Risch, M.R.; Robinson, B.A.

    2001-01-01

    Borehole and surface geophysics were used to investigate ground-water quality affected by a road-deicing salt-storage facility located near a public water-supply well field. From 1994 through 1998, borehole geophysical logs were made in an existing network of monitoring wells completed near the bottom of a thick sand aquifer. Logs of natural gamma activity indicated a uniform and negligible contribution of clay to the electromagnetic conductivity of the aquifer so that the logs of electromagnetic conductivity primarily measured the amount of dissolved solids in the ground water near the wells. Electromagneticconductivity data indicated the presence of a saltwater plume near the bottom of the aquifer. Increases in electromagnetic conductivity, observed from sequential logging of wells, indicated the saltwater plume had moved north about 60 to 100 feet per year between 1994 and 1998. These rates were consistent with estimates of horizontal ground-water flow based on velocity calculations made with hydrologic data from the study area.

  14. Geophysical survey for proposed borehole 199-K-107A, 100-K Area

    International Nuclear Information System (INIS)

    Mitchell, T.H.

    1994-01-01

    The objective of the survey was to locate subsurface obstructions that may affect the drilling of proposed borehole, 199-K-107A, located about 100 ft northwest of the 105 KW Building, 100-K Area. Based upon the results of the survey, possible drill sites within the zone, with the least likelihood of encountering identified obstructions, were identified. The ground-penetrating radar (GPR) system used for this work utilized a 300-megahertz antenna to transmit the electromagnetic (EM) energy into the ground. The transmitted energy is reflected back to a receiving antenna where variations in the return signal are recorded. Common reflectors include natural geologic conditions such as bedding, cementation, moisture, and clay, or man-made objects such as pipes, barrels, foundations, and buried wires. Several isolated anomalies, at various depths, are observed in the data. Additionally, two areas that appear disturbed, with perplexing character, are plotted. Because of the uncertain nature of these two areas, they were avoided when recommending a borehole location. Initially, the proposed borehole was staked at N130/E122. The new proposed borehole location is N139/E176. This location appears free of anomalies and is over 10 ft from interpreted linear anomalies/pipe-like features

  15. A Hydraulic Stress Measurement System for Investigations at Depth in Slim Boreholes

    Science.gov (United States)

    Ask, M. V. S.; Ask, D.; Cornet, F. H.; Nilsson, T.; Talib, M.; Sundberg, J.

    2017-12-01

    Knowledge of the state of stress is essential to most underground work in rock mechanics as it provides means to analyze the mechanical behavior of a rock mass, serve as boundary condition in rock engineering problems, and help understand rock mass stability and groundwater flow. Luleå University of Technology (LTU) has developed and built a wire-line system for hydraulic rock stress measurements in slim boreholes together with the University of Strasbourg and Geosigma AB. The system consists of a downhole- and a surface unit. The downhole unit consists of hydraulic fracturing equipment (straddle packers and downhole imaging tool) and their associated data acquisition systems. The surface unit comprises of a 40-foot container permanently mounted on a trailer, which is equipped with a tripod, wire-line winches, water hydraulics, and a generator. The surface unit serves as a climate-independent on-site operations center, as well as a self-supporting transport vessel for the entire system. Three hydraulic stress testing methods can be applied: hydraulic fracturing, sleeve fracturing and hydraulic testing of pre-existing fractures. The three-dimensional stress tensor and its variation with depth within a continuous rock mass can be determined in a scientific unambiguously way by integrating results from the three test methods. The testing system is state of the art in several aspects including: (1) Large depth range (3 km), (2) Ability to test three borehole dimensions, (3) Resistivity imager maps the orientation of tested fracture (which is highlighted); (4) Highly stiff and resistive to corrosion downhole testing equipment; and (5) Very detailed control on the injection flow rate and cumulative volume is obtained by a hydraulic injection pump with variable piston rate, and a highly sensitive flow-meter. These aspects highly reduce measurement-related uncertainties of stress determination. Commissioning testing and initial field tests are scheduled to occur in a 1200

  16. Effects of the deviation characteristics of nuclear waste emplacement boreholes on borehole liner stresses

    International Nuclear Information System (INIS)

    Glowka, D.A.

    1990-09-01

    This report investigates the effects of borehole deviation on the useability of lined boreholes for the disposal of high-level nuclear waste at the proposed Yucca Mountain Repository in Nevada. Items that lead to constraints on borehole deviation include excessive stresses that could cause liner failure and possible binding of a waste container inside the liner during waste emplacement and retrieval operations. Liner stress models are developed for two general borehole configurations, one for boreholes drilled with a steerable bit and one for boreholes drilled with a non-steerable bit. Procedures are developed for calculating liner stresses that arise both during insertion of the liner into a borehole and during the thermal expansion process that follows waste emplacement. The effects of borehole curvature on the ability of the waste container to pass freely inside the liner without binding are also examined. Based on the results, specifications on borehole deviation allowances are developed for specific vertical and horizontal borehole configurations of current interest. 11 refs., 22 figs., 4 tabs

  17. Borehole logging

    International Nuclear Information System (INIS)

    Olsen, H.

    1995-01-01

    Numerous ground water investigations have been accomplished by means of borehole logging. Borehole logging can be applied to establish new water recovery wells, to control the existing water producing wells and source areas and to estimate ground water quality. (EG)

  18. Calibrationless rotating Lorentz-force flowmeters for low flow rate applications

    Science.gov (United States)

    Hvasta, M. G.; Dudt, D.; Fisher, A. E.; Kolemen, E.

    2018-07-01

    A ‘weighted magnetic bearing’ has been developed to improve the performance of rotating Lorentz-force flowmeters (RLFFs). Experiments have shown that the new bearing reduces frictional losses within a double-sided, disc-style RLFF to negligible levels. Operating such an RLFF under ‘frictionless’ conditions provides two major benefits. First, the steady-state velocity of the RLFF magnets matches the average velocity of the flowing liquid at low flow rates. This enables an RLFF to make accurate volumetric flow measurements without any calibration or prior knowledge of the fluid properties. Second, due to minimized frictional losses, an RLFF is able to measure low flow rates that cannot be detected when conventional, high-friction bearings are used. This paper provides a brief background on RLFFs, gives a detailed description of weighted magnetic bearings, and compares experimental RLFF data to measurements taken with a commercially available flowmeter.

  19. Additional borehole geophysical logging at Waste Area Grouping 1 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1994-07-01

    This technical memorandum describes the borehole geophysical logging performed at selected coreholes at Waste Area Grouping 1 between March and November 1991 in support of the remedial investigation. The primary objectives of the borehole geophysical logging program were to (1) identify fractured bedrock zones and identify those fractured bedrock zones participating in active groundwater flow, (2) correlate the fractured intervals with the regional stratigraphy described, and (3) further characterize local bedrock geology and hydrogeology and gain insight about the bedrock aquifer flow system. A secondary objective was to provide stratigraphic correlations with existing logs for coreholes CH001 through CH005. Fractured bedrock zones and active or open fractures were identified in all coreholes logged. The fracture identification and analysis process was intended to distinguish between open or active fractures participating in active groundwater flow and closed or inactive fractures that are partially or completely filled (such as with calcite mineralization) and do not support groundwater circulation. Most of the fractures identified are bedding plane. Fracture occurrence varies with the different units of the Chickamauga Group; the greatest density of fractures and active fractures occurs in the upper 150 ft of stratum cored. Fractures actively contributing to groundwater flow were also identified, and direction of fluid movement within fractures was identified for those coreholes with flowmeter data

  20. Impeller flow-meter logging of vertical cross flow between basalt aquifers through wells at the Idaho National Engineering Laboratory, Eastern Snake River Plain, Idaho

    International Nuclear Information System (INIS)

    Bennecke, W.M.; Wood, S.H.

    1992-01-01

    An impeller flowmeter was used with a COLOG digital acquisition system to determine existing borehole flows, to compare with previous logging results, and to acquire flow measurements of vertical cross-flow of water in the wells between permeable zones in the open-hole intervals. The direction of flow found was predominantly downward with velocities ranging from 0-30 ft/min. Some flow reversals were noted and attributed to nearby pumping wells. USGS wells 44 and 46 were studied in September, 1991 near the Idaho Chemical Processing Plant (ICPP). The results showed a usual overall flow direction downward with flow entering the wells at around 510 to 600 ft. below the land surface. Water exited these wells at lower levels around 550 to 580 ft. Flow velocities ranged up to 24 ft/min. Using published aquifer parameters, the rate of propagation of a pressure change in an aquifer was calculated for the well CPP-2 turning on and off, at 3100 gpm

  1. The Self-Calibration Test of flowmeter installed in STELLA(Sodium Integral Effect Test Loop for Safety Simulation and Assessment) facility

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Minhwan; Jeong, Ji-Young [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The objective of this study is to describe the procedure of the self-calibration test for the flowmeters and to analyze the result of the test. In this work, the test procedure of the self-calibration of two flowmeters (FT-101, FT-102) installed in STELLA facility was described and the test result was analyzed. In regard to the long-term SFR development plan, a large-scale sodium thermal-hydraulic test project is being progressed by KAERI. This project is called STELLA (Sodium Integral Effect Test Loop for Safety Simulation and Assessment), and it is proceeding by adopting the QA (Quality Assurance) program. Due to the specificity of an experiment using sodium(Na) categorized as Class 3(pyrophoric material and water-prohibiting substance) by the Safety Control of Dangerous Substances Act, it is necessary to apply QA in consideration of the sodium experiment environment in certain parts. The one of them is about calibration of measuring instrument such as a flowmeter, thermocouple and pressure gauge. It is described in the QAP (Quality Assurance Procedures) of KAERI that calibration work should be conducted in accordance with self-calibration procedures in a special case where conventional calibration is not practicable. The calibration of two flowmeters (FT-101, FT-102) installed in STELLA facility is the typical example. As a result of test, it was confirmed that the flowmeters meet the pass criterion. Therefore, it was concluded that the flowmeters maintain instrument capacity a year ago.

  2. Estimation of amputation level with a laser Doppler flowmeter

    DEFF Research Database (Denmark)

    Gebuhr, Peter Henrik; Jørgensen, J P; Vollmer-Larsen, B

    1989-01-01

    Leg amputation levels were decided in 24 patients suffering from atherosclerosis, using the conventional techniques of segmental blood pressure and radioisotope skin clearance. The skin microcirculation was measured and recorded before operation with a laser doppler flowmeter. A high correlation...... was found between the successful amputation levels and the maximal blood perfusion of the skin measured in this way....

  3. Borehole radar and BIPS investigations in boreholes at the Boda area

    Energy Technology Data Exchange (ETDEWEB)

    Carlsten, S.; Straahle, A. [GEOSIGMA AB, Uppsala (Sweden)

    2000-12-01

    As part of the studies conducted in the Boda area, measurements with borehole radar, borehole TV (BIPS) and deviation measurements were performed during May 2000. The investigations were carried out in four percussion-drilled boreholes with a total length of 514 m. Two boreholes are vertical and two are directed into and below the cave area. The BIPS measurement showed the presence of 14 open fractures. Largest apparent aperture width of open fractures was 133 mm. In the lowest part in boreholes 2, 3, and 4, particles in suspension deteriorated the visibility. BIPS has revealed a dominating subhorizontal fracture set and another striking NW to N-S with a dip close to vertical. Possible but very uncertain is a third fracture set striking NE and dipping steeply towards S. The open and partly open fractures forms an average block size 11 m wide and 6 m high, while the length of the block is uncertain. Of 98 borehole radar reflectors interpreted to intersect within BIPS-mapped sections, 90 were possible to combine with BIPS-mapped structures, i.e. 92% of the radar reflectors. The fractured rock around Boda is a shallow feature, since borehole radar and BIPS measurements shows no evidence of increased fracturing or the presence of caves at larger depth in the Boda area. The result indicates that the formation of the superficial fracture system (with caves included) at Boda in all probability is connected to glacial action, such as banking.

  4. Borehole radar and BIPS investigations in boreholes at the Boda area

    International Nuclear Information System (INIS)

    Carlsten, S.; Straahle, A.

    2000-12-01

    As part of the studies conducted in the Boda area, measurements with borehole radar, borehole TV (BIPS) and deviation measurements were performed during May 2000. The investigations were carried out in four percussion-drilled boreholes with a total length of 514 m. Two boreholes are vertical and two are directed into and below the cave area. The BIPS measurement showed the presence of 14 open fractures. Largest apparent aperture width of open fractures was 133 mm. In the lowest part in boreholes 2, 3, and 4, particles in suspension deteriorated the visibility. BIPS has revealed a dominating subhorizontal fracture set and another striking NW to N-S with a dip close to vertical. Possible but very uncertain is a third fracture set striking NE and dipping steeply towards S. The open and partly open fractures forms an average block size 11 m wide and 6 m high, while the length of the block is uncertain. Of 98 borehole radar reflectors interpreted to intersect within BIPS-mapped sections, 90 were possible to combine with BIPS-mapped structures, i.e. 92% of the radar reflectors. The fractured rock around Boda is a shallow feature, since borehole radar and BIPS measurements shows no evidence of increased fracturing or the presence of caves at larger depth in the Boda area. The result indicates that the formation of the superficial fracture system (with caves included) at Boda in all probability is connected to glacial action, such as banking

  5. Borehole sealing method and apparatus

    International Nuclear Information System (INIS)

    Hartley, J.N.; Jansen, G. Jr.

    1977-01-01

    A method and apparatus is described for sealing boreholes in the earth. The borehole is blocked at the sealing level, and a sealing apparatus capable of melting rock and earth is positioned in the borehole just above seal level. The apparatus is heated to rock-melting temperature and powdered rock or other sealing material is transported down the borehole to the apparatus where it is melted, pooling on the mechanical block and allowed to cool and solidify, sealing the hole. Any length of the borehole can be sealed by slowly raising the apparatus in the borehole while continuously supplying powdered rock to the apparatus to be melted and added to the top of the column of molten and cooling rock, forming a continuous borehole seal. The sealing apparatus consists of a heater capable of melting rock, including means for supplying power to the heater, means for transporting powdered rock down the borehole to the heater, means for cooling the apparatus and means for positioning the apparatus in the borehole. 5 claims, 1 figure

  6. NUMERICAL STUDY OF ELECTROMAGNETIC WAVES GENERATED BY A PROTOTYPE DIELECTRIC LOGGING TOOL

    Science.gov (United States)

    To understand the electromagnetic waves generated by a prototype dielectric logging tool, a numerical study was conducted using both the finite-difference, time-domain method and a frequency- wavenumber method. When the propagation velocity in the borehole was greater than th...

  7. Development of a wet gas flowmeter

    Energy Technology Data Exchange (ETDEWEB)

    Andreussi, P.; Ciandri, P.; Faluomi, V. [TRA Sistemi, Pisa (Italy)

    2000-07-01

    A new multiphase flowmeter, particularly suited for wet gas metering, has been developed. The meter working principle is the isokinetic sampling of the gas-liquid mixture, followed by separation and individual metering of the gas and the liquid phase. The liquid flowrate is derived from the value of the sampled liquid flowrate. The gas flowrate is measured with a multiphase nozzle. Preliminary tests have shown that both the gas and the liquid flowrates can be determined with an error less than 5%. The meter can be autocalibrated and allows the water-cut to be measured with any prescribed precision. (author)

  8. Using a thermistor flowmeter with attached video camera for monitoring sponge excurrent speed and oscular behaviour

    DEFF Research Database (Denmark)

    Strehlow, Brian W.; Jorgensen, Damien; Webster, Nicole S.

    2016-01-01

    A digital, four-channel thermistor flowmeter integrated with time-lapse cameras was developed as an experimental tool for measuring pumping rates in marine sponges, particularly those with small excurrent openings (oscula). Combining flowmeters with time-lapse imagery yielded valuable insights...... in pumping activity and osculum contraction were also observed, with sponges increasing their pumping activity to peak at midday and decreasing pumping and contracting oscula at night. Short-term elevation of the suspended sediment concentration (SSC) within the seawater initially decreased pumping rates...

  9. Waste Isolation Pilot Plant borehole data

    International Nuclear Information System (INIS)

    1995-04-01

    Data pertaining to all the surface boreholes used at the WIPP site for site characterization hydrological testing and resource evaluation exist in numerous source documents. This project was initiated to develop a comprehensive data base that would include the data on all WIPP related surface boreholes from the Atomic Energy Commission, Waste Isolation Pilot Plant Energy Research and Development Administration, Department of Energy, and Hydrologic Test Borehole Programs. The data compiled from each borehole includes: operator, permit number, location, total depth, type of well, driller, drilling record, casing record, plugging schedule, and stratigraphic summary. There are six groups of boreholes contained in this data base, they are as follows: Commercially Drilled Potash Boreholes, Energy Department Wells, Geologic Exploration Boreholes, Hydrologic Test Boreholes, Potash Boreholes, and Subsurface Exploration Boreholes. There were numerous references which contained borehole data. In some cases the data found in one document was inconsistent with data in another document. In order to ensure consistency and accuracy in the data base, the same references were used for as many of the boreholes as possible. For example, all elevations and locations were taken from Compilation and Comparison of Test-Hole Location Surveys in the Vicinity of the WIPP Site. SAND 88-1065, Table 3-5. There are some sections where a data field is left blank. In this case, the information was either not applicable or was unavailable

  10. Waste Isolation Pilot Plant borehole data

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    Data pertaining to all the surface boreholes used at the WIPP site for site characterization hydrological testing and resource evaluation exist in numerous source documents. This project was initiated to develop a comprehensive data base that would include the data on all WIPP related surface boreholes from the Atomic Energy Commission, Waste Isolation Pilot Plant Energy Research and Development Administration, Department of Energy, and Hydrologic Test Borehole Programs. The data compiled from each borehole includes: operator, permit number, location, total depth, type of well, driller, drilling record, casing record, plugging schedule, and stratigraphic summary. There are six groups of boreholes contained in this data base, they are as follows: Commercially Drilled Potash Boreholes, Energy Department Wells, Geologic Exploration Boreholes, Hydrologic Test Boreholes, Potash Boreholes, and Subsurface Exploration Boreholes. There were numerous references which contained borehole data. In some cases the data found in one document was inconsistent with data in another document. In order to ensure consistency and accuracy in the data base, the same references were used for as many of the boreholes as possible. For example, all elevations and locations were taken from Compilation and Comparison of Test-Hole Location Surveys in the Vicinity of the WIPP Site. SAND 88-1065, Table 3-5. There are some sections where a data field is left blank. In this case, the information was either not applicable or was unavailable.

  11. Effects of the deviation characteristics of nuclear waste emplacement boreholes on borehole liner stresses; Yucca Mountain Project

    Energy Technology Data Exchange (ETDEWEB)

    Glowka, D.A.

    1990-09-01

    This report investigates the effects of borehole deviation on the useability of lined boreholes for the disposal of high-level nuclear waste at the proposed Yucca Mountain Repository in Nevada. Items that lead to constraints on borehole deviation include excessive stresses that could cause liner failure and possible binding of a waste container inside the liner during waste emplacement and retrieval operations. Liner stress models are developed for two general borehole configurations, one for boreholes drilled with a steerable bit and one for boreholes drilled with a non-steerable bit. Procedures are developed for calculating liner stresses that arise both during insertion of the liner into a borehole and during the thermal expansion process that follows waste emplacement. The effects of borehole curvature on the ability of the waste container to pass freely inside the liner without binding are also examined. Based on the results, specifications on borehole deviation allowances are developed for specific vertical and horizontal borehole configurations of current interest. 11 refs., 22 figs., 4 tabs.

  12. Metrological analysis of a virtual flowmeter-based transducer for cryogenic helium

    Energy Technology Data Exchange (ETDEWEB)

    Arpaia, P., E-mail: pasquale.arpaia@unina.it [Department of Electrical Engineering and Information Technology, University of Napoli Federico II, Naples (Italy); Technology Department, European Organization for Nuclear Research (CERN), Geneva (Switzerland); Girone, M., E-mail: mario.girone@cern.ch [Technology Department, European Organization for Nuclear Research (CERN), Geneva (Switzerland); Department of Engineering, University of Sannio, Benevento (Italy); Liccardo, A., E-mail: annalisa.liccardo@unina.it [Department of Electrical Engineering and Information Technology, University of Napoli Federico II, Naples (Italy); Pezzetti, M., E-mail: marco.pezzetti@cern.ch [Technology Department, European Organization for Nuclear Research (CERN), Geneva (Switzerland); Piccinelli, F., E-mail: fabio.piccinelli@cern.ch [Department of Mechanical Engineering, University of Brescia, Brescia (Italy)

    2015-12-15

    The metrological performance of a virtual flowmeter-based transducer for monitoring helium under cryogenic conditions is assessed. At this aim, an uncertainty model of the transducer, mainly based on a valve model, exploiting finite-element approach, and a virtual flowmeter model, based on the Sereg-Schlumberger method, are presented. The models are validated experimentally on a case study for helium monitoring in cryogenic systems at the European Organization for Nuclear Research (CERN). The impact of uncertainty sources on the transducer metrological performance is assessed by a sensitivity analysis, based on statistical experiment design and analysis of variance. In this way, the uncertainty sources most influencing metrological performance of the transducer are singled out over the input range as a whole, at varying operating and setting conditions. This analysis turns out to be important for CERN cryogenics operation because the metrological design of the transducer is validated, and its components and working conditions with critical specifications for future improvements are identified.

  13. Study on dry-calibration method of ultrasonic flowmeter

    International Nuclear Information System (INIS)

    Ozaki, Yoshihiko; Yasuda, Hidenori.

    1988-01-01

    This paper describes a study on a dry-calibration method for application of an ultrasonic flowmeter to the fields such as nuclear or thermal power plants where high temperature and pressurized fluids are used in coolant or feedwater systems. For the measurement of the flow quantity using the ultrasonic flowmeter, it is important to obtain a correction coefficient of the rate of line averaged axial velocity to plane averaged axial velocity. We have developed analytical method to predict the turbulent flow profiles in the cross sections of piping including bends. The method is based on parabolic flow model and k-ε model with wall functions for the near-wall regions. The axial velocity profiles and the correction coefficients predicted by the analytical method were compared with the experimental results for water and liquid sodium in various L/D conditions. The both results were shown to be in approximate agreement within about 5% accuracy for the flow profiles and about 2% accuracy for the correction coefficients, though the piping had the 90degC bend with a very small redius of curvature. In the case of small L/D conditions, it was also shown that the reverse flow effects could not be disregarded in the predominant direction. However, the accuracy of the dry-calibration by using the analytical method was confirmed to be within about 2% as things were. (author)

  14. Radiation borehole logging method

    International Nuclear Information System (INIS)

    Wylie, A.; Mathew, P.J.

    1977-01-01

    A method of obtaining an indication of the diameter of a borehole is described. The method comprises subjecting the walls of the borehole to monoenergetic gamma radiation and making measurements of the intensity of gamma radiation backscattered from the walls. The energy of the radiation is sufficiently high for the shape to be substantially independent of the density and composition of the borehole walls

  15. High-Resolution Wellbore Temperature Logging Combined with a Borehole-Scale Heat Budget: Conceptual and Analytical Approaches to Characterize Hydraulically Active Fractures and Groundwater Origin

    Directory of Open Access Journals (Sweden)

    Guillaume Meyzonnat

    2018-01-01

    Full Text Available This work aims to provide an overview of the thermal processes that shape wellbore temperature profiles under static and dynamic conditions. Understanding of the respective influences of advection and conduction heat fluxes is improved through the use of a new heat budget at the borehole scale. Keeping in mind the thermal processes involved, a qualitative interpretation of the temperature profiles allows the occurrence, the position, and the origin of groundwater flowing into wellbores from hydraulically active fractures to be constrained. With the use of a heat budget developed at the borehole scale, temperature logging efficiency has been quantitatively enhanced and allows inflow temperatures to be calculated through the simultaneous use of a flowmeter. Under certain hydraulic or pumping conditions, both inflow intensities and associated temperatures can also be directly modelled from temperature data and the use of the heat budget. Theoretical and applied examples of the heat budget application are provided. Applied examples are shown using high-resolution temperature logging, spinner flow metering, and televiewing for three wells installed in fractured bedrock aquifers in the St-Lawrence Lowlands, Quebec, Canada. Through relatively rapid manipulations, thermal measurements in such cases can be used to detect the intervals or discrete positions of hydraulically active fractures in wellbores, as well as the existence of ambient flows with a high degree of sensitivity, even at very low flows. Heat budget calculations at the borehole scale during pumping indicate that heat advection fluxes rapidly dominate over heat conduction fluxes with the borehole wall. The full characterization of inflow intensities provides information about the distribution of hydraulic properties with depth. The full knowledge of inflow temperatures indicates horizons that are drained from within the aquifer, providing advantageous information on the depth from which

  16. Neutron borehole logging correction technique

    International Nuclear Information System (INIS)

    Goldman, L.H.

    1978-01-01

    In accordance with an illustrative embodiment of the present invention, a method and apparatus is disclosed for logging earth formations traversed by a borehole in which an earth formation is irradiated with neutrons and gamma radiation produced thereby in the formation and in the borehole is detected. A sleeve or shield for capturing neutrons from the borehole and producing gamma radiation characteristic of that capture is provided to give an indication of the contribution of borehole capture events to the total detected gamma radiation. It is then possible to correct from those borehole effects the total detected gamma radiation and any earth formation parameters determined therefrom

  17. Long term monitoring of water production flow rates in boreholes in the Callovo-Oxfordian argillaceous rock

    International Nuclear Information System (INIS)

    Vinsot, A.; Delay, J.; La Vaissiere, R. de; Cruchaudet, M.

    2010-01-01

    the control unit located in the drift. The water was circulated from the borehole interval through the control unit in the circulation module, which included a reservoir placed on a weighing scale, a circulation pump and a flowmeter. Water flowed out from the reservoir to a dead end line at a flow rate controlled and monitored by a mass flow controller. The water inflow from the formation was deduced from the reservoir mass measurement. Moreover the reservoir contained a rubber bladder filled with gas. This bladder made it possible to fix the total water pressure in the interval by injecting or removing gas. This type of experiment was performed in two boreholes. In both experimental concepts, the surface of the rock in the borehole intervals was close to 1 m2. The 5-meter-long intervals of the 4 boreholes, in which the experiments were performed, were located at more than 10 m from the drift walls. As a result, the intervals were located outside the Excavation Damaged Zone (EDZ), in a zone with a hydraulic pressure close to the initial one. Absolute pressure measurements in neighboring boreholes indicated that the water pressure varied between 41 and 35 bars over 4 years. In the seepage water collection experiments, the interval's absolute pressure varied between 1 and 1.5 bars. The water production flow rate evolved from 15-25 mL/day down to 10-15 mL/day over 4 years. In the water circulation experiments, pressure steps ranging from 6 to 17 bars were imposed. The water pressure in the rock surrounding this borehole was monitored in neighboring boreholes. Transient purely hydraulic simulations were performed with the numerical tool PORFLOW in a radial 1D configuration. They aimed to evaluate the specific storage, the hydraulic gradient and the hydraulic influence radius around the boreholes due to the 'pumping tests'. The long term hydrogeological characterization described above at the borehole scale may be compared with the same type of description

  18. Cleaning of boreholes

    International Nuclear Information System (INIS)

    Rautio, T.; Alaverronen, M.; Lohva, K.; Teivaala, V.

    2004-09-01

    In terms of long-term safety it is a risk that the boreholes can eventually function as short-circuits between the repository and ground surface. Therefore sealing of investigation boreholes is an important issue for the long- term safety of high-level nuclear waste repositories. In order to seal a borehole properly, the conditions of the borehole have to meet certain predetermined requirements. One of the requirements is that no instruments or materials endangering the plugging operation or the long-term function of the sealing materials, are allowed to be left in the borehole. Sometimes drilling equipment will be left in the hole or it cannot be recovered from the hole with the given constraints of time, cost and resources in spite of attempts. Additionally various measurements may be carried out in the holes after the drilling has been completed and measuring devices may get stuck in holes. Consequently cleaning of the borehole is carried out as an essential activity before sealing can be implemented. There are two common reasons identified for the drill strings to get stuck in holes. First the drill string may get stuck due to acute drilling problems. The second case is where rods are left as casing in a hole either based on the structure of the upper part of the hole or in order to support the hole. To remove the drilling or measuring equipment lost in a borehole, special techniques and professional skill must be applied. Removing measuring equipment from a hole is often demanding and time consuming work. A vital part of the cleaning operation is planning the work in advance. In order to make the plan and to select the suitable methods it is important to know the condition of the stuck material. It is also important to know the exact depth where the equipment are stuck and to have an estimate of the reasons why they have got stuck. It is also very important to know the correct dimensions of the equipment or drill string before commencing the cleaning work

  19. Hydrogeology and water quality of the Floridan aquifer system and effect of Lower Floridan aquifer withdrawals on the Upper Floridan aquifer at Barbour Pointe Community, Chatham County, Georgia, 2013

    Science.gov (United States)

    Gonthier, Gerard; Clarke, John S.

    2016-06-02

    Two test wells were completed at the Barbour Pointe community in western Chatham County, near Savannah, Georgia, in 2013 to investigate the potential of using the Lower Floridan aquifer as a source of municipal water supply. One well was completed in the Lower Floridan aquifer at a depth of 1,080 feet (ft) below land surface; the other well was completed in the Upper Floridan aquifer at a depth of 440 ft below land surface. At the Barbour Pointe test site, the U.S. Geological Survey completed electromagnetic (EM) flowmeter surveys, collected and analyzed water samples from discrete depths, and completed a 72-hour aquifer test of the Floridan aquifer system withdrawing from the Lower Floridan aquifer.Based on drill cuttings, geophysical logs, and borehole EM flowmeter surveys collected at the Barbour Pointe test site, the Upper Floridan aquifer extends 369 to 567 ft below land surface, the middle semiconfining unit, separating the two aquifers, extends 567 to 714 ft below land surface, and the Lower Floridan aquifer extends 714 to 1,056 ft below land surface.A borehole EM flowmeter survey indicates that the Upper Floridan and Lower Floridan aquifers each contain four water-bearing zones. The EM flowmeter logs of the test hole open to the entire Floridan aquifer system indicated that the Upper Floridan aquifer contributed 91 percent of the total flow rate of 1,000 gallons per minute; the Lower Floridan aquifer contributed about 8 percent. Based on the transmissivity of the middle semiconfining unit and the Floridan aquifer system, the middle semiconfining unit probably contributed on the order of 1 percent of the total flow.Hydraulic properties of the Upper Floridan and Lower Floridan aquifers were estimated based on results of the EM flowmeter survey and a 72-hour aquifer test completed in Lower Floridan aquifer well 36Q398. The EM flowmeter data were analyzed using an AnalyzeHOLE-generated model to simulate upward borehole flow and determine the transmissivity of

  20. Borehole television survey

    International Nuclear Information System (INIS)

    Lau, J.S.O.

    1980-01-01

    The borehole television survey can provide a measure of the orientation, depth, width and aperture of any planar discontinuity intersected by a borehole and a technique is in an advanced stage of development by the Geological Survey of Canada (GSC) to make such measurements. Much of its practical application to date has been in crystalline rocks (plutons) at research areas pertaining to the Nuclear Waste Disposal Program in Canada. It also has many other engineering applications where bedrock stability is of particular concern. The equipment required to carry out the survey can be readily transported by two panel trucks with trailers. The components consist of a camera probe, control unit, cable storage reel, cable drive, video-tape recorder, TV monitor and two electrical generators. An inclined planar structure intersected by a borehole appears as an elliptical trace on the wall of the borehole. Such an intersection line shows on the TV monitor as a sinusoidal curve with a high point and a low point as the camera rotates through an angle of 360 degrees. The azimuth of the low point, measured by a compass in the camera probe, represents the direction of the dip of the planar structure. The angle of dip is measured midway between the high and low points or is computed from the maximum-to-minimum distance of the sinusoid and the hole diameter. These observations provide the true orientation of the planar structure if the borehole is vertical. However, if the borehole is inclined, direct observations will only provide the apparent orientation. The true orientation must thus be obtained either by means of stereographic projection or spherical trigonometry. A computer program has been written to calculate the true orientation from the apparent orientation. In the field, observation data are recorded directly on a data record sheet for keypunching and input into the computer

  1. Geophysical borehole logging

    International Nuclear Information System (INIS)

    McCann, D.; Barton, K.J.; Hearn, K.

    1981-08-01

    Most of the available literature on geophysical borehole logging refers to studies carried out in sedimentary rocks. It is only in recent years that any great interest has been shown in geophysical logging in boreholes in metamorphic and igneous rocks following the development of research programmes associated with geothermal energy and nuclear waste disposal. This report is concerned with the programme of geophysical logging carried out on the three deep boreholes at Altnabreac, Caithness, to examine the effectiveness of these methods in crystalline rock. Of particular importance is the assessment of the performance of the various geophysical sondes run in the boreholes in relation to the rock mass properties. The geophysical data can be used to provide additional in-situ information on the geological, hydrogeological and engineering properties of the rock mass. Fracturing and weathering in the rock mass have a considerable effect on both the design parameters for an engineering structure and the flow of water through the rock mass; hence, the relation between the geophysical properties and the degree of fracturing and weathering is examined in some detail. (author)

  2. Key Factors to Determine the Borehole Spacing in a Deep Borehole Disposal for HLW

    International Nuclear Information System (INIS)

    Lee, Jongyoul; Choi, Heuijoo; Lee, Minsoo; Kim, Geonyoung; Kim, Kyeongsoo

    2015-01-01

    Deep fluids also resist vertical movement because they are density stratified and reducing conditions will sharply limit solubility of most dose critical radionuclides at the depth. Finally, high ionic strengths of deep fluids will prevent colloidal transport. Therefore, as an alternative disposal concept, i.e., deep borehole disposal technology is under consideration in number of countries in terms of its outstanding safety and cost effectiveness. In this paper, the general concept for deep borehole disposal of spent fuels or high level radioactive wastes which has been developed by some countries according to the rapid advance in the development of drilling technology, as an alternative method to the deep geological disposal method, was reviewed. After then an analysis on key factors for the distance between boreholes for the disposal of HLW was carried out. In this paper, the general concept for deep borehole disposal of spent fuels or HLW wastes, as an alternative method to the deep geological disposal method, were reviewed. After then an analysis on key factors for the determining the distance between boreholes for the disposal of HLW was carried out. These results can be used for the development of the HLW deep borehole disposal system

  3. Key Factors to Determine the Borehole Spacing in a Deep Borehole Disposal for HLW

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jongyoul; Choi, Heuijoo; Lee, Minsoo; Kim, Geonyoung; Kim, Kyeongsoo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Deep fluids also resist vertical movement because they are density stratified and reducing conditions will sharply limit solubility of most dose critical radionuclides at the depth. Finally, high ionic strengths of deep fluids will prevent colloidal transport. Therefore, as an alternative disposal concept, i.e., deep borehole disposal technology is under consideration in number of countries in terms of its outstanding safety and cost effectiveness. In this paper, the general concept for deep borehole disposal of spent fuels or high level radioactive wastes which has been developed by some countries according to the rapid advance in the development of drilling technology, as an alternative method to the deep geological disposal method, was reviewed. After then an analysis on key factors for the distance between boreholes for the disposal of HLW was carried out. In this paper, the general concept for deep borehole disposal of spent fuels or HLW wastes, as an alternative method to the deep geological disposal method, were reviewed. After then an analysis on key factors for the determining the distance between boreholes for the disposal of HLW was carried out. These results can be used for the development of the HLW deep borehole disposal system.

  4. BoreholeAR: A mobile tablet application for effective borehole database visualization using an augmented reality technology

    Science.gov (United States)

    Lee, Sangho; Suh, Jangwon; Park, Hyeong-Dong

    2015-03-01

    Boring logs are widely used in geological field studies since the data describes various attributes of underground and surface environments. However, it is difficult to manage multiple boring logs in the field as the conventional management and visualization methods are not suitable for integrating and combining large data sets. We developed an iPad application to enable its user to search the boring log rapidly and visualize them using the augmented reality (AR) technique. For the development of the application, a standard borehole database appropriate for a mobile-based borehole database management system was designed. The application consists of three modules: an AR module, a map module, and a database module. The AR module superimposes borehole data on camera imagery as viewed by the user and provides intuitive visualization of borehole locations. The map module shows the locations of corresponding borehole data on a 2D map with additional map layers. The database module provides data management functions for large borehole databases for other modules. Field survey was also carried out using more than 100,000 borehole data.

  5. Modelling and simulation of the dynamic performance of a natural-gas turbine flowmeter

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Gonzalez, L.M. [Escuela Tecnica Superior de Ingenieria Industrial, Universidad de La Rioja, C/Luis de Ulloa, 20, E-26004 Logrono (La Rioja) (Spain); Sala, J.M.; Gonzalez-Bustamante, J.A. [Escuela Superior de Ingenieros Industriales de Bilbao, Universidad del Pais Vasco, Alameda de Urquijo, s/n 48013 Bilbao (Bizkaia) (Spain); Miguez, J.L. [Universidad de Vigo, Escuela Tecnica Superior de Ingenieros Industriales, C/Lagoas-Marcosende, s/n 36200 Vigo (Pontevedra) (Spain)

    2006-11-15

    Installations involving fluids often present problems in terms of the dynamic performances of their different parts. These problems can be analysed and dealt with at the design stage. This means that both the technologists who design the thermohydraulic process and those who carry out the regulation and control must be involved in the process from the early stages of the design. In this study, a dynamic model of the behaviour of a gas flowmeter has been developed, based on the laws of conservation of mass, linear momentum, energy and angular momentum. The model has been computerised via a software module. As there is no information available with which to compare the model's behaviour, a continuous rating validation has been carried out, using a comparison with the actual calibration curve of the flowmeter. The results obtained are satisfactory. (author)

  6. Analyses of the deep borehole drilling status for a deep borehole disposal system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Youl; Choi, Heui Joo; Lee, Min Soo; Kim, Geon Young; Kim, Kyung Su [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The purpose of disposal for radioactive wastes is not only to isolate them from humans, but also to inhibit leakage of any radioactive materials into the accessible environment. Because of the extremely high level and long-time scale radioactivity of HLW(High-level radioactive waste), a mined deep geological disposal concept, the disposal depth is about 500 m below ground, is considered as the safest method to isolate the spent fuels or high-level radioactive waste from the human environment with the best available technology at present time. Therefore, as an alternative disposal concept, i.e., deep borehole disposal technology is under consideration in number of countries in terms of its outstanding safety and cost effectiveness. In this paper, the general status of deep drilling technologies was reviewed for deep borehole disposal of high level radioactive wastes. Based on the results of these review, very preliminary applicability of deep drilling technology for deep borehole disposal analyzed. In this paper, as one of key technologies of deep borehole disposal system, the general status of deep drilling technologies in oil industry, geothermal industry and geo scientific field was reviewed for deep borehole disposal of high level radioactive wastes. Based on the results of these review, the very preliminary applicability of deep drilling technology for deep borehole disposal such as relation between depth and diameter, drilling time and feasibility classification was analyzed.

  7. Characterization of crystalline rocks in deep boreholes. The Kola, Krivoy Rog and Tyrnauz boreholes

    International Nuclear Information System (INIS)

    1992-12-01

    SKB studies, as one alternative, the feasibility of disposing of spent nuclear fuel in very deep boreholes. As a part of this work NEDRA has compiled geoscientific data from three superdeep boreholes within the former Soviet Union. The holes considered were: the Kola borehole, 12261 m deep and located on the Kola Peninsula, the Krivoy Rog borehole, 5000 m deep and located in Ukraine, and the Tyrnauz borehole, 4001 m deep and located between the Black Sea and the Caspian Sea. These boreholes all penetrate crystalline formations, but major differences are found when their tectonic environments are compared. Excluding the uppermost horizon affected by surface phenomena, data do not indicate any general correlation between depth and the state of rock fracturing, which is instead governed by site specific, lithological and tectonical factors. This applies also to fracture zones, which are found at similar frequencies at all depths. As opposed to the structural data, the hydrogeological and hydrochemical information reveals a vertical zonation, with clear similarities between the three boreholes. An upper zone with active circulation and fresh or slightly mineralized groundwaters reaches down 1000-2000 m. The interval from 1000-2000 m down to 4000-5000 m can be characterized as a transition zone with lower circulation rates and gradually increasing mineralisation. Below 4000-5000 m, strongly mineralized, stagnant, juvenile or metamorphogenic waters are found. Geothermal data verify the existence of this zonation. 28 figs, 30 tabs

  8. Borehole Stability in High-Temperature Formations

    Science.gov (United States)

    Yan, Chuanliang; Deng, Jingen; Yu, Baohua; Li, Wenliang; Chen, Zijian; Hu, Lianbo; Li, Yang

    2014-11-01

    In oil and gas drilling or geothermal well drilling, the temperature difference between the drilling fluid and formation will lead to an apparent temperature change around the borehole, which will influence the stress state around the borehole and tend to cause borehole instability in high geothermal gradient formations. The thermal effect is usually not considered as a factor in most of the conventional borehole stability models. In this research, in order to solve the borehole instability in high-temperature formations, a calculation model of the temperature field around the borehole during drilling is established. The effects of drilling fluid circulation, drilling fluid density, and mud displacement on the temperature field are analyzed. Besides these effects, the effect of temperature change on the stress around the borehole is analyzed based on thermoelasticity theory. In addition, the relationships between temperature and strength of four types of rocks are respectively established based on experimental results, and thermal expansion coefficients are also tested. On this basis, a borehole stability model is established considering thermal effects and the effect of temperature change on borehole stability is also analyzed. The results show that the fracture pressure and collapse pressure will both increase as the temperature of borehole rises, and vice versa. The fracture pressure is more sensitive to temperature. Temperature has different effects on collapse pressures due to different lithological characters; however, the variation of fracture pressure is unrelated to lithology. The research results can provide a reference for the design of drilling fluid density in high-temperature wells.

  9. PhaseWatcher Vx subsea for HPHT - a new deepwater multiphase and wet gas flowmeter for HPHT

    Energy Technology Data Exchange (ETDEWEB)

    Rustad, Rolf

    2010-07-01

    A new deepwater multiphase and wet gas flowmeter for HPHT applications has been developed. The flowmeter covers all multiphase and wet gas applications from heavy oil to lean and dry gas. Key features include a pressure rating of 15,000psi, a maximum process temperature of 205 C (400F) and a maximum water depth of 3500m (11500feet). This paper will discuss the design, the qualification program and the application of industry standards and codes in the qualification program. The qualification philosophy and the selected standards and codes may be applied in qualification of most types of equipment for the deepwater HPHT oil and gas industry. (Author)

  10. Three dimensional numerical modeling for investigation of fracture zone filled with water by borehole radar; Borehole radar ni yoru gansui hasaitai kenshutsu no sanjigen suchi modeling

    Energy Technology Data Exchange (ETDEWEB)

    Sanada, Y; Watanabe, T; Ashida, Y [Kyoto University, Kyoto (Japan); Hasegawa, K; Yabuuchi, S [Power Reactor and Nuclear Fuel Development Corp., Tokyo (Japan)

    1997-05-27

    Water bearing fracture zones existing in rock mass largely influence the underground water flow and dynamic property of rock mass. The detailed survey of the location and size of water bearing fracture zones is an important task in the fields such as civil engineering, environment and disaster prevention. Electromagnetic waves of high frequency zones can be grasped as a wave phenomenon, and the record obtained in the actual measurement is wave forms of time series. In the exploration using borehole radar, this water bearing fracture zone becomes the reflection surface, and also becomes a factor of damping in the transmitted wave. By examining changes which these give to the observed wave forms, therefore, water bearing fracture zones can be detected. This study made three dimensional numerical modeling using the time domain finite difference method, and obtained the same output as the observed wave form obtained using borehole radar. By using this program and changing each of the parameters such as frequency and resistivity in the homogeneous medium, changes of the wave forms were observed. Further, examples were shown of modeling of detection of water bearing fracture zones. 5 refs., 16 figs., 1 tab.

  11. New experiences in borehole dilution techniques

    International Nuclear Information System (INIS)

    Umesh Chandra

    1977-01-01

    A study of filtration rate and direction of groundwater flow was made at various depths in borehole using bromine-82 as groundwater tracer. The filtration rates were found to vary along the depth of borehole. Vertical flow in the borehole was observed in an alluvial aquifer even after sealing the borehole by rubber packers. The filtration rates, obtained without the packer at various depths, were much less than those obtained with packer. Microscopic hydrological information was obtained around the borehole which was useful in planning a drainage system in the area. A depth was located in the borehole where vertical flow was in opposite directions. At another depth a zone of horizontal flow was observed where vertical flow was in opposite directions. The improved instrumentation used rendered the field work extremely easy quick and readily reproducible. (author)

  12. Borehole Summary Report for Core Hole C4998 – Waste Treatment Plant Seismic Boreholes Project

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, D. BRENT; Garcia, Benjamin J.

    2006-12-15

    Seismic borehole C4998 was cored through the upper portion of the Columbia River Basalt Group and Ellensburg Formation to provide detailed lithologic information and intact rock samples that represent the geology at the Waste Treatment Plant. This report describes the drilling of borehole C4998 and documents the geologic data collected during the drilling of the cored portion of the borehole.

  13. SHORT-PULSE ELECTROMAGNETIC TRANSPONDER FOR HOLE-TO-HOLE USE.

    Science.gov (United States)

    Wright, David L.; Watts, Raymond D.; Bramsoe, Erik

    1983-01-01

    Hole-to-hole observations were made through nearly 20 m of granite using an electromagnetic transponder (an active reflector) in one borehole and a single-hole short-pulse radar in another. The transponder is inexpensive, operationally simple, and effective in extending the capability of a short-pulse borehole radar system to allow hole-to-hole operation without requiring timing cables. A detector in the transponder senses the arrival of each pulse from the radar. Each pulse detection triggers a kilovolt-amplitude pulse for retransmission. The transponder 'echo' may be stronger than that of a passive reflector by a factor of as much as 120 db. The result is an increase in range capability by a factor which depends on attenuation in the medium and hole-to-hole wavepath geometry.

  14. Comparing flowmeter, aquifer test, and surface nuclear magnetic resonance data in Central Nebraska

    Science.gov (United States)

    Irons, T.; Abraham, J. D.; Cannia, J. C.; Steele, G.; Hobza, C. M.; Li, Y.; McKenna, J. R.

    2011-12-01

    Traditionally the only means of estimating the hydraulic properties of aquifers has involved drilling boreholes. The logistical and economic requirements of aquifer tests has limited the ability of hydrologists to construct the detailed groundwater models needed for resource management. As such, water policy decisions are often based on sparse aquifer tests combined with geologic interpretation and extrapolation. When dealing with complicated groundwater systems these extrapolations are often not accurate at the scale required to characterize the groundwater system, and additional information is needed to make better informed resource decisions. Surface nuclear magnetic resonance (SNMR) is a geophysical technique which allows for non-invasive estimates of hydraulic permeability and transmissivity. Protons in a volume of liquid water form a weak bulk magnetic moment as they align and precess about the earth's magnetic field. This moment is too small to be measured directly but may be observed by tipping it away from equilibrium using radio-frequency pulses oscillating at the same frequency as its precession (the Larmor frequency). After a short tipping pulse, the moment continues to precess around the static field, although at a tipped angle, slowly returning to its equilibrium state. The decay of these spinning magnetic moments can be observed inductively using loops of wire on the surface of the earth. In the simplest experiment a time series is recorded after a single tipping pulse. By varying the strength of the tipping pulse, different regions of the subsurface can be probed. The amplitude of the signal is directly proportional to the amount of water in the investigated volume. The decay rate of the signal is related to pore geometry and interconnectivity and can be used to estimate hydraulic conductivity. However, this relationship cannot be universally defined as it is affected by additional factors including the mineralogy of the host rock and homogeneity of

  15. Intraoperative coronary grafts flow measurement using the TTFM flowmeter: results from a domestic sample.

    Science.gov (United States)

    Succi, José Ernesto; Gerola, Luis Roberto; Succi, Guilherme de Menezes; Kim, Hyong Chun; Paredes, Jorge Edwin Morocho; Bufollo, Enio

    2012-01-01

    To evaluate intraoperative graft patency and identify grafts under risk of early occlusion. Fifty four patients were submitted to coronary artery bypass surgery and the graft flow was assessed by the Flowmeter (Medtronic Medistim), which utilizes the TTFM method. Three patients had left main disease and 48 had normal or mildly reduced left ventricular function. In hospital mortality was 3.7% (two patients), one for mesenteric thrombosis and one due to cardiogenic chock. Seventeen patients (34%) were submitted to off pump CABG. Arterial Graft flow measures ranged from 8 to 106 ml/min (average 31.14 ml/min), and venous grafts flow ranged from 9 to 149 ml/min (average 50.42 ml/min). Flowmeter use represents higher safety both for patients and surgeons. Even under legal aspects, the documentation provided by the device can avoid future questionings.

  16. Characterization of fractures and flow zones in a contaminated crystalline-rock aquifer in the Tylerville section of Haddam, Connecticut

    Science.gov (United States)

    Johnson, Carole D.; Kiel, Kristal F.; Joesten, Peter K.; Pappas, Katherine L.

    2016-10-04

    The U.S. Geological Survey, in cooperation with the Connecticut Department of Energy and Environmental Protection, investigated the characteristics of the bedrock aquifer in the Tylerville section of Haddam, Connecticut, from June to August 2014. As part of this investigation, geophysical logs were collected from six water-supply wells and were analyzed to (1) identify well construction, (2) determine the rock type and orientation of the foliation and layering of the rock, (3) characterize the depth and orientation of fractures, (4) evaluate fluid properties of the water in the well, and (5) determine the relative transmissivity and head of discrete fractures or fracture zones. The logs included the following: caliper, electromagnetic induction, gamma, acoustic and (or) optical televiewer, heat-pulse flowmeter under ambient and pumped conditions, hydraulic head data, fluid electrical conductivity and temperature under postpumping conditions, and borehole-radar reflection collected in single-hole mode. In a seventh borehole, a former water-supply well, only caliper, fluid electrical conductivty, and temperature logs were collected, because of a constriction in the borehole.This report includes a description of the methods used to collect and process the borehole geophysical data, the description of the data collected in each of the wells, and a comparison of the results collected in all of the wells. The data are presented in plots of the borehole geophysical logs, tables, and figures. Collectively these data provide valuable characterizations that can be used to improve or inform site conceptual models of groundwater flow in the study area.

  17. Deep Borehole Field Test Research Activities at LBNL

    Energy Technology Data Exchange (ETDEWEB)

    Dobson, Patrick [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Tsang, Chin-Fu [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kneafsey, Timothy [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Borglin, Sharon [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Piceno, Yvette [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Andersen, Gary [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Nakagawa, Seiji [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Nihei, Kurt [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rutqvist, Jonny [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Doughty, Christine [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Reagan, Matthew [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-08-19

    The goal of the U.S. Department of Energy Used Fuel Disposition’s (UFD) Deep Borehole Field Test is to drill two 5 km large-diameter boreholes: a characterization borehole with a bottom-hole diameter of 8.5 inches and a field test borehole with a bottom-hole diameter of 17 inches. These boreholes will be used to demonstrate the ability to drill such holes in crystalline rocks, effectively characterize the bedrock repository system using geophysical, geochemical, and hydrological techniques, and emplace and retrieve test waste packages. These studies will be used to test the deep borehole disposal concept, which requires a hydrologically isolated environment characterized by low permeability, stable fluid density, reducing fluid chemistry conditions, and an effective borehole seal. During FY16, Lawrence Berkeley National Laboratory scientists conducted a number of research studies to support the UFD Deep Borehole Field Test effort. This work included providing supporting data for the Los Alamos National Laboratory geologic framework model for the proposed deep borehole site, conducting an analog study using an extensive suite of geoscience data and samples from a deep (2.5 km) research borehole in Sweden, conducting laboratory experiments and coupled process modeling related to borehole seals, and developing a suite of potential techniques that could be applied to the characterization and monitoring of the deep borehole environment. The results of these studies are presented in this report.

  18. Deep Borehole Field Test Research Activities at LBNL

    International Nuclear Information System (INIS)

    Dobson, Patrick; Tsang, Chin-Fu; Kneafsey, Timothy; Borglin, Sharon; Piceno, Yvette; Andersen, Gary; Nakagawa, Seiji; Nihei, Kurt; Rutqvist, Jonny; Doughty, Christine; Reagan, Matthew

    2016-01-01

    The goal of the U.S. Department of Energy Used Fuel Disposition's (UFD) Deep Borehole Field Test is to drill two 5 km large-diameter boreholes: a characterization borehole with a bottom-hole diameter of 8.5 inches and a field test borehole with a bottom-hole diameter of 17 inches. These boreholes will be used to demonstrate the ability to drill such holes in crystalline rocks, effectively characterize the bedrock repository system using geophysical, geochemical, and hydrological techniques, and emplace and retrieve test waste packages. These studies will be used to test the deep borehole disposal concept, which requires a hydrologically isolated environment characterized by low permeability, stable fluid density, reducing fluid chemistry conditions, and an effective borehole seal. During FY16, Lawrence Berkeley National Laboratory scientists conducted a number of research studies to support the UFD Deep Borehole Field Test effort. This work included providing supporting data for the Los Alamos National Laboratory geologic framework model for the proposed deep borehole site, conducting an analog study using an extensive suite of geoscience data and samples from a deep (2.5 km) research borehole in Sweden, conducting laboratory experiments and coupled process modeling related to borehole seals, and developing a suite of potential techniques that could be applied to the characterization and monitoring of the deep borehole environment. The results of these studies are presented in this report.

  19. Cement thickness measurements in cased boreholes

    International Nuclear Information System (INIS)

    Wahl, J.S.; Schuster, N.A.

    1978-01-01

    Methods and apparatus are provided for logging a borehole having solid matter along at least a portion of the wall thereof. Gamma radiation is emitted from the borehole into the surrounding media, and the amount of radiation which returns to the borehole is measured by three detectors located at different distances from the source of radiation, so as to be primarily sensitive to radiation which has respectively penetrated to three different depths in the surrounding media. The thickness of the solid matter on the borehole wall is then determined from the three gamma radiation measurements

  20. Borehole logging in uranium exploration

    International Nuclear Information System (INIS)

    Kulkarni, N.H.

    1992-01-01

    The ultimate objective of exploration by drilling as far as Atomic Minerals Division is concerned is to locate the ore zone in the subsurface, draw samples and analyze them for their metal content. The presence of the ore zone is also indicated by gamma-ray logging of the borehole. A gamma-ray detector is lowered in the borehole and precise depth and grade of the ore zone is established. This helps the geologist in correlating the ore horizon with the surface outcrop or the ore zone intercepted in adjoining boreholes and in deciding about further drilling and location of boreholes. Most commonly, total gamma measurements are made although some units capable of measuring the gamma-ray spectrum are also in use. It is possible to know if the mineralization is due to uranium without waiting for the laboratory results. The present write up gives a brief account of the principles, equipment and methods of borehole gamma-ray logging including density and self-potential logging. (author). 8 refs., 5 figs

  1. An optimization procedure for borehole emplacement in fractured media

    International Nuclear Information System (INIS)

    Billaux, D.; Guerin, F.

    1998-01-01

    Specifying the position and orientation of the 'next borehole(s)' in a fractured medium, from prior incomplete knowledge of the fracture field and depending on the objectives assigned to this new borehole(s), is a crucial point in the iterative process of site characterization. The work described here explicitly includes site knowledge and specific objectives in a tractable procedure that checks possible borehole characteristics, and rates all trial boreholes according to their compliance with objectives. The procedure is based on the following ideas : Firstly, the optimization problem is strongly constrained, since feasible borehole head locations and borehole dips are generally limited. Secondly, a borehole is an 'access point' to the fracture network. Finally, when performing a flow or tracer test, the information obtained through the monitoring system will be best if this system detects the largest possible share of the flow induced by the test, and if it cuts the most 'interesting' flow paths. The optimization is carried out in four steps. 1) All possible borehole configurations are defined and stored. Typically, several hundred possible boreholes are created. Existing boreholes are also specified. 2) Stochastic fracture networks reproducing known site characteristics are generated. 3) A purely geometrical rating of all boreholes is used to select the 'geometrically best' boreholes or groups of boreholes. 4) Among the boreholes selected by the geometrical rating, the best one(s) is chosen by simulating the experiment for which it will be used and checking flowrates through possible boreholes. This method is applied to study the emplacement of a set of five monitoring boreholes prior to the sinking of a shaft for a planned underground laboratory in a granite massif in France (Vienne site). Twelve geometrical parameters are considered for each possible borehole. A detailed statistical study helps decide on the shape of a minimization function. This is then used

  2. Three-dimensional mapping of salt load in the Murray-Darling Basin, 1 Steps in calibration of airborne electromagnetic surveys

    NARCIS (Netherlands)

    Cresswell, R.G.; Dent, D.L.; Jones, G.; Galloway, D.

    2004-01-01

    An airborne electromagnetic survey yields a three-dimensional map of ground electrical conductivity. The remotely sensed data are translated into salt load by field and laboratory calibration: drilling, measurement of borehole conductivity, electrical conductivity of 1 : 5 soil¿water extracts

  3. Fourier Collocation Approach With Mesh Refinement Method for Simulating Transit-Time Ultrasonic Flowmeters Under Multiphase Flow Conditions.

    Science.gov (United States)

    Simurda, Matej; Duggen, Lars; Basse, Nils T; Lassen, Benny

    2018-02-01

    A numerical model for transit-time ultrasonic flowmeters operating under multiphase flow conditions previously presented by us is extended by mesh refinement and grid point redistribution. The method solves modified first-order stress-velocity equations of elastodynamics with additional terms to account for the effect of the background flow. Spatial derivatives are calculated by a Fourier collocation scheme allowing the use of the fast Fourier transform, while the time integration is realized by the explicit third-order Runge-Kutta finite-difference scheme. The method is compared against analytical solutions and experimental measurements to verify the benefit of using mapped grids. Additionally, a study of clamp-on and in-line ultrasonic flowmeters operating under multiphase flow conditions is carried out.

  4. Informing groundwater model hydrostratigraphy with airborne time-domain electromagnetic data and borehole logs

    DEFF Research Database (Denmark)

    Marker, Pernille Aabye; Bauer-Gottwein, Peter; Mosegaard, Klaus

    lithological information directly into groundwater models is proposed. The approach builds on a clay-fraction inversion which is a spatially variable translation of resistivity values from EM data into clay-fraction values using borehole lithological information. Hydrostratigraphical units are obtained through...... a k-means cluster analysis of the principal components of resistivity and clay-fraction values. Under the assumption that the units have uniform hydrological properties, the units constitute the hydrostratigraphy for a groundwater model. Only aquifer structures are obtained from geophysical...... and lithological data, while the estimation of the hydrological properties of the units is inversely derived from the groundwater model and hydrological data. A synthetic analysis was performed to investigate the principles underlying the clustering approach using three petrophysical relationships between...

  5. Borehole DC-12 hydrostratigraphic chart

    International Nuclear Information System (INIS)

    Gephart, R.E.

    1981-09-01

    This hydrostratigraphic chart identifies the basic stratigraphy and preliminary hydrologic testing results for Borehole DC-12. This borehole was cored through the Saddle Mountains and Wanapum basalt formations and into the Grande Ronde. Selected zones were hydrologically tested during coring

  6. Borehole DC-14 hydrostratigraphic chart

    International Nuclear Information System (INIS)

    Gephart, R.E.

    1981-09-01

    This hydrostratigraphic chart identifies the basic stratigraphy and preliminary hydrologic testing results for Borehole DC-14. This borehole was cored through the Saddle Mountains and Wanapum basalt formations and into the Grande Ronde. Selected zones were hydrologically tested during coring

  7. Borehole DC-15 hydrostratigraphic chart

    International Nuclear Information System (INIS)

    Gephart, R.E.

    1981-09-01

    This hydrostratigraphic chart identifies the basic stratigraphy and preliminary hydrologic testing results for Borehole DC-15. This borehole was cored through the Saddle Mountains and Wanapum basalt formations and into the Grande Ronde. Selected zones were hydrologically tested during coring

  8. Ultrasound propagation in steel piping at electric power plant using clamp-on ultrasonic pulse doppler velocity-profile flowmeter

    International Nuclear Information System (INIS)

    Tezuka, Kenichi; Mori, Michitsugu; Wada, Sanehiro; Aritomi, Masanori; Kikura, Hiroshige

    2008-01-01

    Venturi nozzles are widely used to measure the flow rates of reactor feedwater. This flow rate of nuclear reactor feedwater is an important factor in the operation of nuclear power reactors. Some other types of flowmeters have been proposed to improve measurement accuracy. The ultrasonic pulse Doppler velocity-profile flowmeter is expected to be a candidate method because it can measure the flow profiles across the pipe cross sections. For the accurate estimation of the flow velocity, the incidence angle of ultrasonic entering the fluid should be carefully estimated by the theoretical approach. However, the evaluation of the ultrasound propagation is not straightforward for the several reasons such as temperature gradient in the wedge or mode conversion at the interface between the wedge and pipe. In recent years, the simulation code for ultrasound propagation has come into use in the nuclear field for nondestructive testing. This article analyzes and discusses ultrasound propagation in steel piping and water, using the 3D-FEM simulation code and the Kirchhoff method, as it relates to the flow profile measurements in power plants with the ultrasonic pulse Doppler velocity-profile flowmeter. (author)

  9. Measurement of liquid film thickness by optical fluorescence and its application to an oscillating piston positive displacement flowmeter

    International Nuclear Information System (INIS)

    Morton, Charlotte E; Baker, Roger C; Hutchings, Ian M

    2011-01-01

    The movement of the circular piston in an oscillating piston positive displacement flowmeter is important in understanding the operation of the flowmeter, and the leakage of liquid past the piston plays a key role in the performance of the meter. The clearances between the piston and the chamber are small, typically less than 60 µm. In order to measure this film thickness a fluorescent dye was added to the water passing through the meter, which was illuminated with UV light. Visible light images were captured with a digital camera and analysed to give a measure of the film thickness with an uncertainty of less than 7%. It is known that this method lacks precision unless careful calibration is undertaken. Methods to achieve this are discussed in the paper. The grey level values for a range of film thicknesses were calibrated in situ with six dye concentrations to select the most appropriate one for the range of liquid film thickness. Data obtained for the oscillating piston flowmeter demonstrate the value of the fluorescence technique. The method is useful, inexpensive and straightforward and can be extended to other applications where measurement of liquid film thickness is required

  10. Borehole Breakout Growth and In-Situ Stress Orientation in the Central Scandinavian Caledonides: Results from the Cosc-1 Borehole

    Science.gov (United States)

    Wenning, Q.; Zappone, A.; Berthet, T.; Ask, M. V. S.; Rosberg, J. E.; Almqvist, B. S. G.

    2017-12-01

    Borehole breakouts are often assumed to form near instantaneously due to stress perturbations around boreholes after the rock mass was removed. Recent observations in sediments [e.g., Moore et al., 2011] and crystalline rocks [e.g., Berard and Cornet, 2003], as well as numerical modelling results [e.g., Schoenball et al., 2014], suggest that there are cases in which borehole breakout grows radially over time, forcing us to reconsider subsurface stress estimation. These observations are rare due to drilling difficulties (i.e., cementing and casing the borehole after drilling), often only allowing a single image logging campaign. In 2014, the Collisional Orogeny in the Scandinavian Caledonides deep scientific borehole (COSC-1) was drilled to a depth of 2.5 km. To date the borehole is open and uncased, allowing two acoustic televiewer logging campaigns, with more than one year between campaigns. The borehole is still available for supplementary data collactions. These logs provide detailed images along the full length of the 2.5 km deep borehole with 1.6 km of overlapping logs for breakout and drilling induced tensile fracture analysis. The results show from the sparse occurrence of breakouts and drilling induced tensile fractures a NW-SE average maximum horizontal stress direction, consistent with the general trend in Scandinavia. The unique acquisition of image logs in two successions allows for analysis of time-dependent borehole deformation, indicating that six breakout zones have crept, both along the borehole axis and radially (up to 20° growth) around the borehole. While some breakouts have grown, the formation of new breakouts has not occurred. The occurrence of breakouts and their growth appear to be independent of lithology. The observed growth after the second logging campaign suggests that under conditions where the stress exceeded the strength of the rock, the resulting breakout causes perturbations in the stresses around the borehole in the near

  11. A new laser Doppler flowmeter prototype for depth dependent monitoring of skin microcirculation

    Science.gov (United States)

    Figueiras, E.; Campos, R.; Semedo, S.; Oliveira, R.; Requicha Ferreira, L. F.; Humeau-Heurtier, A.

    2012-03-01

    Laser Doppler flowmetry (LDF) is now commonly used in clinical research to monitor microvascular blood flow. However, the dependence of the LDF signal on the microvascular architecture is still unknown. That is why we propose a new laser Doppler flowmeter for depth dependent monitoring of skin microvascular perfusion. This new laser Doppler flowmeter combines for the first time, in a device, several wavelengths and different spaced detection optical fibres. The calibration of the new apparatus is herein presented together with in vivo validation. Two in vivo validation tests are performed. In the first test, signals collected in the ventral side of the forearm are analyzed; in the second test, signals collected in the ventral side of the forearm are compared with signals collected in the hand palm. There are good indicators that show that different wavelengths and fibre distances probe different skin perfusion layers. However, multiple scattering may affect the results, namely the ones obtained with the larger fibre distance. To clearly understand the wavelength effect in LDF measurements, other tests have to be performed.

  12. Performance of MarSite Multi parameter Borehole Instrumentation

    Science.gov (United States)

    Guralp, Cansun; Tunc, Suleyman; Ozel, Oguz; Meral Ozel, Nurcan; Necmioglu, Ocal

    2017-04-01

    In this paper we present two year results obtained from the integrated multiparameter borehole system at Marsite. The very broad band (VBB) system have been operating since installation in November 2014; one year in a water filled borehole and one year in a dry Borehole. from January 2016. The real time data has been available to the community. The two Borehole environments are compared showing the superior performance of dry borehole environ- ment compared to water filled for a very broad band (VBB) seismometer. The practical considerations applied in both borehole installations are compared and the best borehole practical installation techniques are presented and discussed. The data is also compared with a surface 120 second broad band sensor and the seismic arrays with in MarSite region. The very long term performance, (one year data in a dry hole) of the VBB Borehole seismometer and the Dilatometer will be presented The high frequency performance of the VBB seismometer which extends to 150 Hz and the dilatometer are compared characterizing the results from the dilatometer.

  13. Geomechanical Considerations for the Deep Borehole Field Test

    Science.gov (United States)

    Park, B. Y.

    2015-12-01

    Deep borehole disposal of high-level radioactive waste is under consideration as a potential alternative to shallower mined repositories. The disposal concept consists of drilling a borehole into crystalline basement rocks to a depth of 5 km, emplacement of canisters containing solid waste in the lower 2 km, and plugging and sealing the upper 3 km of the borehole. Crystalline rocks such as granites are particularly attractive for borehole emplacement because of their low permeability and porosity at depth, and high mechanical strength to resist borehole deformation. In addition, high overburden pressures contribute to sealing of some of the fractures that provide transport pathways. We present geomechanical considerations during construction (e.g., borehole breakouts, disturbed rock zone development, and creep closure), relevant to both the smaller-diameter characterization borehole (8.5") and the larger-diameter field test borehole (17"). Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  14. Borehole Seismology: Fundamentals and Applications

    International Nuclear Information System (INIS)

    Bohnhoff, Marco

    2014-01-01

    Because boring in itself is very expensive and instrumentation is required to endure high temperatures and pressures, deep borehole observation was accompanied by an economic risk. However, it has great advantages with respect to micro-earthquake observation, which is enriched with a short period vibration signal, because deep borehole observation greatly reduces short period noise. These kind advantages were explained by referring to the relationship between earthquake size and frequency range. Examples of seismic observation in a borehole in a geothermal field in El Salvador and a CO 2 confinement project in the western part of Canada were introduced. (authors)

  15. Effect of plate shapes in orifice plate type flowmeters

    International Nuclear Information System (INIS)

    Moeller, S.V.

    1984-01-01

    The study of unusual plate shapes in orifice plate type flowmeters is presented, with a view to providing data for the substitution of the plate with one centered circular orifice in those applications where its use is not possible. For this purpose, six pairs of plates with different forms, with and without chamfered edges, were made and tested in a closed water loop. Results show that, generally, the use of chamfers improves the results and, in the case of perforated and slotlike orificed plates, the narrow-ness of the fluid passage tends to make unnecessary its use. (Author) [pt

  16. A comparison of helicopter-borne electromagnetic systems for hydrogeologic studies

    Science.gov (United States)

    Bedrosian, Paul A.; Schamper, Cyril; Auken, Esben

    2016-01-01

    The increased application of airborne electromagnetic surveys to hydrogeological studies is driving a demand for data that can consistently be inverted for accurate subsurface resistivity structure from the near surface to depths of several hundred metres. We present an evaluation of three commercial airborne electromagnetic systems over two test blocks in western Nebraska, USA. The selected test blocks are representative of shallow and deep alluvial aquifer systems with low groundwater salinity and an electrically conductive base of aquifer. The aquifer units show significant lithologic heterogeneity and include both modern and ancient river systems. We compared the various data sets to one another and inverted resistivity models to borehole lithology and to ground geophysical models. We find distinct differences among the airborne electromagnetic systems as regards the spatial resolution of models, the depth of investigation, and the ability to recover near-surface resistivity variations. We further identify systematic biases in some data sets, which we attribute to incomplete or inexact calibration or compensation procedures.

  17. Borehole imaging tool detects well bore fractures

    International Nuclear Information System (INIS)

    Ma, T.A.; Bigelow, E.L.

    1993-01-01

    This paper reports on borehole imaging data which can provide high quality geological and petrophysical information to improve fracture identification, dip computations, and lithology determinations in a well bore. The ability to visually quantify the area of a borehole wall occupied by fractures and vugs enhances reservoir characterization and well completion operations. The circumferential borehole imaging log (CBIL) instrument is an acoustic logging device designed to produce a map of the entire borehole wall. The visual images can confirm computed dips and the geological features related to dip. Borehole geometry, including breakout, are accurately described by complete circumferential caliper measurements, which is important information for drilling and completion engineers. In may reservoirs, the images can identify porosity type, bedding characteristics, and petrophysical parameters

  18. Borehole DC-6 hydrostratigraphic chart

    International Nuclear Information System (INIS)

    Gephart, R.E.

    1981-09-01

    This hydrostratigraphic chart for Borehole DC-6 identifies the basic stratigraphy and preliminary hydrologic test results. This borehole was cored for obtaining stratigraphic data and only that portion within the Grande Ronde formation remains open for hydrologic testing. The upper two formations were cased and cemented off

  19. Fiscal 2000 achievement report on the research and development of transfer standard gage for oil flowmeter (final assessment); 2000 nendo sekiyu ryuryokei no iten hyojunki no kenkyu kaihatsu seika hokokusho (saishu hyoka hokokusho)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    In a servo PD (positive displacement) flowmeter for oil, a differential pressure transmitter detects difference in pressure between the PD flowmeter input and output ports and a rotor is driven by a servo motor so that the pressure difference between before and after the PD flowmeter rotor will be zero. The design enables high-accuracy measurement across a wide range of flow rates and is not easily affected by the surrounding physical conditions such as viscosity and density. For the development of such a flowmeter, it is necessary to develop a rotor that rotates smoothly free of locking in a steady and uniform flow, to build a visualized model that enables the analysis of flow inside the flowmeter which in turn will enable the determination of optimum differential pressure detecting ports, and to connect a newly developed servo mechanism to the thus determined ports. As the result of the research, a servo PD flowmeter is developed, which is a 50mm diameter prototype employing the Invoflex tooth form which is the waveform for a rotor suitable for a high performance flowmeter. Placed in a generally used oil flow calibration liquid, which is gasoline, kerosene, or the like, it covers a flow rate range of 1:10 and reads with an accuracy of {+-}0.1%. It remains stable in performance and suffers but a little change with the passage of time. (NEDO)

  20. Achievement report for fiscal 1999 on international research cooperation project. Research and development of transfer standard for oil flowmeter; 1999 nendo sekiyu ryuryokei no iten hyojunki no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Research was conducted for the development of a highly reliable flowmeter which enables the efficient calibration of flowmeters at oil plant working sites and the international comparison of oil flow standards, and is also usable as the standard of oil flow at private businesses. In this connection, international research cooperation was carried out with Physical Engineering Research Institute, Germany. In the study of rotors, tooth profiles were contrived and various analyses were conducted for each screw type. In the study of flow inside flowmeters and of structures, screw-type volumetric flowmeters of K Co. were subjected to various tests for structural analysis, and visible models were fabricated for the clarification of flow characteristics. In the study of servo systems and instrumentation, several types of pressure difference detecting mechanisms were newly contrived, and servo control systems were investigated. In the study of trial manufacture and evaluation, the UF-VI080{alpha} cast iron (FC250) rotor flowmeter and the UF-VI080{alpha} aluminum (A7075BE) rotor flowmeter were examined. Both failed to achieve the target precision of {+-}0.2% in the case of gasoline but, in the case of kerosene and heavy oil, the target levels were sufficiently met. (NEDO)

  1. Borehole Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Records of past temperature derived from boreholes drilled into the Earth crust. Parameter keywords describe what was measured in this data set. Additional summary...

  2. Evaluation of geophysical borehole studies

    International Nuclear Information System (INIS)

    Brotzen, O.; Duran, O.; Magnusson, K.Aa.

    Four studies concerning geophysical investigations and TV inspection in boreholes in connection with KBS studies at Finnsjoe, Karlshamn, Kraakemaala and Stripa and PRAV's studies at Studsvik have been evaluated. This has led to proposals concerning the choice of instruments and methods for future studies and a review of future work required. The evaluation has shown that the following borehole measurements are of primary interest in the continued work: Determinations of temperature and resistivity of the borehole liquid, resistance and resistivity measurements, SP, Sonic, Caliper and VLF. TV inspection, IP and gamma-gamma should also be included in the arsenal of available test methods.(author)

  3. Borehole project - Final report of phase 3

    International Nuclear Information System (INIS)

    Pusch, R.; Ramqvist, G.

    2008-03-01

    The report describes borehole plugging techniques for use in deep boreholes extending from the ground surface, and construction and placement of plugs in holes of different lengths and orientations bored from the repository rooms. The principle employed is the one proposed in earlier phases of the project, i.e. to tightly seal those parts of boreholes where the rock has few fractures and a low hydraulic conductivity, and filling of those parts that intersect water-bearing fracture zones with physically stable material that does not need to be low-permeable. Four methods for tight plugging have been identified and tested and a technique has been found for filling boreholes that are intersected by fracture zones. The upper end of boreholes extending from the ground surface needs a 'mechanical' seal for which copper metal and concrete work well. The experience from plugging of a 550 m deep borehole at Olkiluoto (OL-KR24) has been compiled and plans worked out for sampling and testing of contacting clay and concrete in this hole and in short holes in the Aespoe URL. (orig.)

  4. Borehole disposal design concept in Madagascar

    International Nuclear Information System (INIS)

    Randriamarolahy, J.N.; Randriantseheno, H.F.; Andriambololona, Raoelina

    2008-01-01

    Full text: In Madagascar, sealed radioactive sources are used in several socio-economic sectors such as medicine, industry, research and agriculture. At the end of their useful lives, these radioactive sources become ionizing radiations waste and can be still dangerous because they can cause harmful effects to the public and the environment. 'Borehole disposal design concept' is needed for sitting up a safe site for storage of radioactive waste, in particular, sealed radioactive sources. Borehole disposal is an option for long-term management of small quantities of radioactive waste in compliance with the internationally accepted principles for radioactive waste management. Several technical aspects must be respected to carry out such a site like the geological, geomorphologic, hydrogeology, geochemical, meteorological and demographic conditions. Two sites are most acceptable in Madagascar such as Ankazobe and Fanjakana. A Borehole will be drilled and constructed using standard techniques developed for water abstraction, oil exploration. At the Borehole, the sealed radioactive sources are encapsulated. The capsule is inserted in a container. This type of storage is benefit for the developing countries because it is technologically simple and economic. The construction cost depends on the volume of waste to store and the Borehole depth. The borehole disposal concept provides a good level of safety to avoid human intrusion. The future protection of the generations against the propagation of the ionizing radiations is then assured. (author)

  5. Acoustic and Optical Televiewer Borehole Logging

    International Nuclear Information System (INIS)

    Ahmad Hasnulhadi Che Kamaruddin; Nik Marzukee Nik Ibrahim; Zaidi Ibrahim; Nurul Wahida Ahmad Khairuddin; Azmi Ibrahim

    2016-01-01

    This review paper is focused on Borehole Televiewer. Borehole Televiewer or (BHTV) was used to obtain high-resolution acoustical images from the borehole wall. A probe with a high resolution downward looking camera is used. The camera has specific optics (a conical mirror with a ring of bulbs) with just one shot needed to capture the entire borehole circumference as a 360 panoramic view. Settings similar to traditional cameras (exposure, quality, light, frame rate and resolution) make it effective in almost any type of borehole fluid. After each shot, a series of horizontal pixel strings are acquired, giving a rasterized RGB picture in real-time which is transmitted to the console and finally to a monitor. The orientation device embedded in the tool, which is made of 3 inclinometers and 3 magnetometers, allows the inclination and azimuth of the probe to be computed in real-time, correctly orienting the borehole images. Besides, Acoustic and Optical Televiewer has been introduced as its advanced in technological research. Its logging has been successfully applied to geotechnical investigations and mineral exploration (Schepers et al., 2001) due to advances in beam focusing, increased dynamic range, digital recording techniques, and digital data processing (Schepers, 1991). Thus, this paper will go through to the basic principle of (BHTV) as one type of data collection today. (author)

  6. Thermal modelling of borehole heat exchangers and borehole thermal energy stores; Zur thermischen Modellierung von Erdwaermesonden und Erdsonden-Waermespeichern

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Dan

    2011-07-15

    The thermal use of the underground for heating and cooling applications can be done with borehole heat exchangers. This work deals with the further development of the modelling of thermal transport processes inside and outside the borehole as well as with the application of the further developed models. The combination of high accuracy and short computation time is achieved by the development of three-dimensional thermal resistance and capacity models for borehole heat exchangers. Short transient transport processes can be calculated by the developed model with a considerable higher dynamic and accuracy than with known models from literature. The model is used to evaluate measurement data of a thermal response test by parameter estimation technique with a transient three-dimensional model for the first time. Clear advantages like shortening of the test duration are shown. The developed borehole heat exchanger model is combined with a three-dimensional description of the underground in the Finite-Element-Program FEFLOW. The influence of moving groundwater on borehole heat exchangers and borehole thermal energy stores is then quantified.

  7. Research borehole drilling activity for boreholes DH-18, DH-19, DC-12, DC-13, DC-14, DC-15, and deepening of existing borehole DC-7

    International Nuclear Information System (INIS)

    1979-09-01

    This report is an environmental evaluation of the impacts of proposed borehole drilling activities at the Hanford Site, northwest of Richland, Washington. The proposed action is to drill six research boreholes ranging in depth from 137 to 1372 meters (m) [250 to 4500 +- feet (ft)]. In addition, an existing borehole (DC-7) will be extended from 1249 to 1524 m (4099 to 5000 +- ft). The purpose of the US Department of Energy's (DOE) borehole drilling activities is to collect data on in situ rock formations that are considered potentialy suitable for nuclear waste repositories. The technical program efforts necessary to identify and qualify specific underground waste facility sites in candidate rock formations include geologic and hydrologic studies (seismicity and tectonics, rock structure and stratigraphy, lithology, etc.). Borehole drilling is an integral part of the geological studies and is essential to a thorough understanding of potentially suitable geologic formations. The purpose of the proposed drilling activities is to obtain data for evaluating Columbia River basalts that are being evaluated by the National Waste Terminal Storage (NWTS) Program to determine their suitability potential for nuclear waste repositories. Unavoidable impact to the environment is limited primarily to the clearing of land needed for access and drilling operations. Considerations exercised during site preparation, drilling, and subsequent site restoration will limit modification of the natural environment to the minimum required for accomplishment of test objectives

  8. A strategy to seal exploratory boreholes in unsaturated tuff

    International Nuclear Information System (INIS)

    Fernandez, J.A.; Case, J.B.; Givens, C.A.; Carney, B.C.

    1994-04-01

    This report presents a strategy for sealing exploratory boreholes associated with the Yucca Mountain Site Characterization Project. Over 500 existing and proposed boreholes have been considered in the development of this strategy, ranging from shallow (penetrating into alluvium only) to deep (penetrating into the groundwater table). Among the comprehensive list of recommendations are the following: Those boreholes within the potential repository boundary and penetrating through the potential repository horizon are the most significant boreholes from a performance standpoint and should be sealed. Shallow boreholes are comparatively insignificant and require only nominal sealing. The primary areas in which to place seals are away from high-temperature zones at a distance from the potential repository horizon in the Paintbrush nonwelded tuff and the upper portion of the Topopah Spring Member and in the tuffaceous beds of the Calico Hills Unit. Seals should be placed prior to waste emplacement. Performance goals for borehole seals both above and below the potential repository are proposed. Detailed construction information on the boreholes that could be used for future design specifications is provided along with a description of the environmental setting, i.e., the geology, hydrology, and the in situ and thermal stress states. A borehole classification scheme based on the condition of the borehole wall in different tuffaceous units is also proposed. In addition, calculations are presented to assess the significance of the boreholes acting as preferential pathways for the release of radionuclides. Design calculations are presented to answer the concerns of when, where, and how to seal. As part of the strategy development, available technologies to seal exploratory boreholes (including casing removal, borehole wall reconditioning, and seal emplacement) are reviewed

  9. Single-borehole techniques

    International Nuclear Information System (INIS)

    Klotz, D.; Moser, H.; Trimborn, P.

    1978-01-01

    Proceeding on the theoretical considerations and on the experience and practice derived from laboratory and field testing, a system consisting of tracer injection units, detector units, measuring probe units and packers is presented, from which the different borehole probes required can be combined. A couple of examples of recent applications shows the position of the Single-Borehole Techniques with respect to the traditional methods used for the measurement of the ground-water flow. A confrontation of the permeabilities of different aquifers consents, both on the basis of the Single-Borehole Techniques as by pumping experiments, the determination of the reliability of the Point-Dilution-Method. The Point-Dilution-Method is giving information about the vertical and horizontal distribution of the permeabilities in an aquifer. By measuring the vertical current in two karst wells, the tributary horizons of a well have been determined, which gave valuable information for the subsequent well construction. Local leakages could be detected by measuring the vertical flow rate through observation wells arranged along a grout curtain erected on both sides of the retaining barrage of the Keban dam. (orig.) [de

  10. Using boreholes as windows into groundwater ecosystems.

    Directory of Open Access Journals (Sweden)

    James P R Sorensen

    Full Text Available Groundwater ecosystems remain poorly understood yet may provide ecosystem services, make a unique contribution to biodiversity and contain useful bio-indicators of water quality. Little is known about ecosystem variability, the distribution of invertebrates within aquifers, or how representative boreholes are of aquifers. We addressed these issues using borehole imaging and single borehole dilution tests to identify three potential aquifer habitats (fractures, fissures or conduits intercepted by two Chalk boreholes at different depths beneath the surface (34 to 98 m. These habitats were characterised by sampling the invertebrates, microbiology and hydrochemistry using a packer system to isolate them. Samples were taken with progressively increasing pumped volume to assess differences between borehole and aquifer communities. The study provides a new conceptual framework to infer the origin of water, invertebrates and microbes sampled from boreholes. It demonstrates that pumping 5 m(3 at 0.4-1.8 l/sec was sufficient to entrain invertebrates from five to tens of metres into the aquifer during these packer tests. Invertebrates and bacteria were more abundant in the boreholes than in the aquifer, with associated water chemistry variations indicating that boreholes act as sites of enhanced biogeochemical cycling. There was some variability in invertebrate abundance and bacterial community structure between habitats, indicating ecological heterogeneity within the aquifer. However, invertebrates were captured in all aquifer samples, and bacterial abundance, major ion chemistry and dissolved oxygen remained similar. Therefore the study demonstrates that in the Chalk, ecosystems comprising bacteria and invertebrates extend from around the water table to 70 m below it. Hydrogeological techniques provide excellent scope for tackling outstanding questions in groundwater ecology, provided an appropriate conceptual hydrogeological understanding is applied.

  11. Borehole stability in densely welded tuffs

    International Nuclear Information System (INIS)

    Fuenkajorn, K.; Daemen, J.J.K.

    1992-07-01

    The stability of boreholes, or more generally of underground openings (i.e. including shafts, ramps, drifts, tunnels, etc.) at locations where seals or plugs are to be placed is an important consideration in seal design for a repository (Juhlin and Sandstedt, 1989). Borehole instability or borehole breakouts induced by stress redistribution could negate the effectiveness of seals or plugs. Breakout fractures along the wall of repository excavations or exploratory holes could provide a preferential flowpath for groundwater or gaseous radionuclides to bypass the plugs. After plug installation, swelling pressures exerted by a plug could induce radial cracks or could open or widen preexisting cracks in the rock at the bottom of the breakouts where the tangential compressive stresses have been released by the breakout process. The purpose of the work reported here is to determine experimentally the stability of a circular hole in a welded tuff sample subjected to various external boundary loads. Triaxial and biaxial borehole stability tests have been performed on densely welded Apache Leap tuff samples and Topopah Spring tuff samples. The nominal diameter of the test hole is 13.3 or 14.4 mm for triaxial testing, and 25.4 mm for biaxial testing. The borehole axis is parallel to one of the principal stress axes. The boreholes are drilled through the samples prior to applying external boundary loads. The boundary loads are progressively increased until breakouts occur or until the maximum load capacity of the loading system has been reached. 74 refs

  12. Experiments on stress dependent borehole acoustic waves.

    Science.gov (United States)

    Hsu, Chaur-Jian; Kane, Michael R; Winkler, Kenneth; Wang, Canyun; Johnson, David Linton

    2011-10-01

    In the laboratory setup, a borehole traverses a dry sandstone formation, which is subjected to a controlled uniaxial stress in the direction perpendicular to the borehole axis. Measurements are made in a single loading-unloading stress cycle from zero to 10 MPa and then back down to zero stress. The applied stress and the presence of the borehole induce anisotropy in the bulk of the material and stress concentration around the borehole, both azimuthally and radially. Acoustic waves are generated and detected in the water-filled borehole, including compressional and shear headwaves, as well as modes of monopole, dipole, quadrupole, and higher order azimuthal symmetries. The linear and non-linear elastic parameters of the formation material are independently quantified, and utilized in conjunction with elastic theories to predict the characteristics of various borehole waves at zero and finite stress conditions. For example, an analytic theory is developed which is successfully used to estimate the changes of monopole tube mode at low frequency resulted from uniaxial stress, utilizing the measured material third order elasticity parameters. Comparisons between various measurements as well as that between experiments and theories are also presented. © 2011 Acoustical Society of America

  13. Borehole plugging experiment in OL-KR24 at Olkiluoto, Finland

    International Nuclear Information System (INIS)

    Rautio, T.

    2006-04-01

    Sealing of investigation boreholes has been studied by Svensk Koernbroenslehantering AB (SKB) and Posiva Oy (Posiva) as a part of final disposal research. The proposed principle is that investigation boreholes drilled at a site must not act as a continuous flow path for groundwater but be sealed to become as tight as the surrounding rock. As a part of the investigations SKB and Posiva started the third phase of the joint project 'Cleaning and sealing of investigation boreholes' in 2005. One of the sub-projects was the plugging experiment in borehole OL-KR24 at Olkiluoto. The aim of the experiment was to test all main procedures of borehole sealing concept in practise in a deep borehole. Borehole KR24 was drilled to the depth of 551.11 metres in 2003 and it was located inside the shaft profile in Onkalo. From the surface to the depth of about 120 m the borehole diameter is 98 mm. The rest of the borehole is 75.7 mm in diameter. The borehole is vertical and the inclination is quite accurately 90 degrees. The plugging experiment in borehole OL-KR24 consisted of four main activities: (1) cleaning of the borehole, (2) characterization of the borehole (3) selective stabilisation of the borehole, and (4) emplacement of plugs. The comprehensive cleaning of the borehole was to be done in the first stage to provide the basis for other activities. The aim of characterization was to study the borehole in order to determine the sections for selective stabilisation and the locations for plugs. The characterization phase consisted of caliper measurements, dummy probing and optical borehole imaging (OBI). The aim of selective stabilisation was to show that selected borehole sections can be stabilised using new techniques and methods. One borehole section was reamed from Ω 76 mm to Ω 98 mm. The reamed borehole section should have been filled with sufficient amount of cement-based material to achieve a stable 'concrete tube' after redrilling, but due to encountered problems and

  14. The assessment of the geophysical investigations of boreholes

    International Nuclear Information System (INIS)

    Brotzen, O.; Duran, O.; Magnusson, K.-Aa.

    1980-02-01

    Four geophysical investigations and a televiewer inspection of boreholes have been evaluated in connection with the examinations at Finnsjoen, Karlshamn, Kraakemaala, Stripa and Studsvik. A cooperative assessment of the systems for the measurement of boreholes by Lawrence Berkeley Laboratories and the Geological Survey of Sweden has been made at Stripa. The following methods should be selected for future measurements: determination of the resistivity and temperature of the fluid in the borehole, determination of the resistivity and temperature of the fluid in the borehole, determination of the self-potential, resistivity and resistance of the rock as well as the measurement of sonar waves, the diameter of the borehole and the very low frequency effects. (G.B.)

  15. Performance evaluation of groundwater model hydrostratigraphy from airborne electromagnetic data and lithological borehole logs

    DEFF Research Database (Denmark)

    Marker, Pernille Aabye; Foged, N.; He, X.

    2015-01-01

    resistivity and clay fraction are classified into hydrostratigraphic zones using k-means clustering. Hydraulic conductivity values of the zones are estimated by hydrological calibration using hydraulic head and stream discharge observations. The method is applied to a Danish case study. Benchmarking......Large-scale hydrological models are important decision support tools in water resources management. The largest source of uncertainty in such models is the hydrostratigraphic model. Geometry and configuration of hydrogeological units are often poorly determined from hydrogeological data alone. Due...... present a novel method to automatically integrate large AEM data sets and lithological information into large-scale hydrological models. Clay-fraction maps are produced by translating geophysical resistivity into clay-fraction values using lithological borehole information. Voxel models of electrical...

  16. Borehole disposal design concept

    International Nuclear Information System (INIS)

    RANDRIAMAROLAHY, J.N.

    2007-01-01

    In Madagascar, the sealed radioactive sources are used in several socioeconomic sectors such as medicine, industry, research and agriculture. At the end of their useful lives, these radioactive sources become radioactive waste and can be still dangerous because they can cause harmful effects to the public and the environment. This work entitled 'Borehole disposal design concept' consists in putting in place a site of sure storage of the radioactive waste, in particular, sealed radioactive sources. Several technical aspects must be respected to carry out such a site like the geological, geomorphologic, hydrogeologic, geochemical, meteorological and demographic conditions. This type of storage is favorable for the developing countries because it is technologically simple and economic. The cost of construction depends on the volume of waste to store and the depth of the Borehole. The Borehole disposal concept provides a good level of safety to avoid the human intrusion. The future protection of the generations against the propagation of the radiations ionizing is then assured. [fr

  17. Deep boreholes; Tiefe Bohrloecher

    Energy Technology Data Exchange (ETDEWEB)

    Bracke, Guido [Gesellschaft fuer Anlagen- und Reaktorsicherheit gGmbH Koeln (Germany); Charlier, Frank [NSE international nuclear safety engineering gmbh, Aachen (Germany); Geckeis, Horst [Karlsruher Institut fuer Technologie (Germany). Inst. fuer Nukleare Entsorgung; and others

    2016-02-15

    The report on deep boreholes covers the following subject areas: methods for safe enclosure of radioactive wastes, requirements concerning the geological conditions of possible boreholes, reversibility of decisions and retrievability, status of drilling technology. The introduction covers national and international activities. Further chapters deal with the following issues: basic concept of the storage in deep bore holes, status of the drilling technology, safe enclosure, geomechanics and stability, reversibility of decisions, risk scenarios, compliancy with safe4ty requirements and site selection criteria, research and development demand.

  18. Certification of flow measurement methods and calibration of flowmeters in oil and gas industry using radioactive tracers

    Energy Technology Data Exchange (ETDEWEB)

    Brandao, L. E. E.; Kenup, H.O. [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Nóbrega, Armi W.; Gonçalves, E.R.; Dualibi Filho, J.C.; Malheiro, R.L., E-mail: brandaos@ien.gov.br, E-mail: atomum@atomum.com.br [ATOMUM Serviços Tecnológicos Ltda, Rio de Janeiro, RJ (Brazil)

    2017-07-01

    Oil and gas, mineral and water supply plants are the typical example of industrial facilities where they need accuracy in fluid flow measurement's procedures. In these installations, large quantities of materials are moving daily inside pipes, and one of the major problems of these industries is the safety of operations in transport of these materials. In order to monitor the transference processes many flowmeters are installed in the pipes to measure constantly the condition of the transported fluid. These flowmeters must be periodically calibrated, and one of the problems in this standardization is that these instruments need to be removed from the pipelines where they are operating and transported to the accredited laboratories to be calibrated. To remove a flowmeter from a pipe is not an easy operation, and in most of the cases, it is a very expensive operation, and in addition, any changes in the pipeline configuration can provoke leaks and when a leak occurs, it is impossible to operate the whole line and provokes accidents. Radiotracer technique is noninvasive fluid flow measure and using proper radiotracers is possible to measure organic, aqueous and gaseous flows without any disturbance in the normal operation of the pipeline. In this work, we present the ATOMUM{sub T}RACER, a software used to determine geometrical and technical procedures to calculate the Residence Time Curves using radiotracer techniques to accurately measure flow of fluids in pipelines with uncertainties around 0.7%. (author)

  19. Certification of flow measurement methods and calibration of flowmeters in oil and gas industry using radioactive tracers

    International Nuclear Information System (INIS)

    Brandao, L. E. E.; Kenup, H.O.; Nóbrega, Armi W.; Gonçalves, E.R.; Dualibi Filho, J.C.; Malheiro, R.L.

    2017-01-01

    Oil and gas, mineral and water supply plants are the typical example of industrial facilities where they need accuracy in fluid flow measurement's procedures. In these installations, large quantities of materials are moving daily inside pipes, and one of the major problems of these industries is the safety of operations in transport of these materials. In order to monitor the transference processes many flowmeters are installed in the pipes to measure constantly the condition of the transported fluid. These flowmeters must be periodically calibrated, and one of the problems in this standardization is that these instruments need to be removed from the pipelines where they are operating and transported to the accredited laboratories to be calibrated. To remove a flowmeter from a pipe is not an easy operation, and in most of the cases, it is a very expensive operation, and in addition, any changes in the pipeline configuration can provoke leaks and when a leak occurs, it is impossible to operate the whole line and provokes accidents. Radiotracer technique is noninvasive fluid flow measure and using proper radiotracers is possible to measure organic, aqueous and gaseous flows without any disturbance in the normal operation of the pipeline. In this work, we present the ATOMUM T RACER, a software used to determine geometrical and technical procedures to calculate the Residence Time Curves using radiotracer techniques to accurately measure flow of fluids in pipelines with uncertainties around 0.7%. (author)

  20. Description of hydrogeological data in SKB's database GEOTAB. Version 2

    International Nuclear Information System (INIS)

    Gerlach, M.

    1991-12-01

    During the research and development program performed by SKB for the final disposal of spent nuclear fuel, a large quantity of geoscientific data was collected. Most of this data was stored in a database called GEOTAB. The data is organized into eight groups (subjects) as follows: - Background information. - Geological data. - Borehole geophysical measurements. - Ground surface geophysical measurements. - Hydrogeological and meteorological data. - Hydrochemical data. - Petrophysical measurements. - Tracer tests. Except for the case of borehole geophysical data, ground surface geophysical data and petrophysical data, described in the same report, the data in each group is described in a separate SKB report. The present report described data within the hydrogeological data group. The hydrogeological data groups (subject), called HYDRO, is divided into several subgroups (methods). BHEQUIPE: equipments in borehole. CONDINT: electrical conductivity in pumped water. FLOWMETE: flowmeter tests. GRWB: groundwater level registrations in boreholes. HUFZ: hydraulic unit fracture zones. HURM: hydraulic unit rock mass. HYCHEM: hydraulic test during chemical Sampling. INTER: interference tests. METEOR: meteorological and hydrological measurements. PIEZO: piezometric measurements at depths in boreholes. RECTES: recovery tests. ROCKRM: hydraulic unit rock types in the rock mass. SFHEAD: single hole falling head test. SHBUP: single hole build up test. SHSINJ: single hole steady state tests. SHTINJ: single hole transient injection tests. SHTOLD: single hole transient injections tests - old data. A method consists of one or several data tables. In each chapter a method and its data tables are described. (au)

  1. Long-term pumping test in borehole KR24 flow measurements

    Energy Technology Data Exchange (ETDEWEB)

    Rouhiainen, P.; Poellaenen, J. [PRG-Tec Oy, Espoo (Finland)

    2005-09-15

    The Difference Flow method can be used for the relatively fast determination of transmissivity and hydraulic head in fractures or fractured zones in cored boreholes. In this study, the Difference Flow method was used for hydraulic crosshole interference tests. The tests were performed in boreholes KR24 (pumped borehole) KR4, KR7, KR8, KRlO, KR14, KR22, KR22B, KR26, KR27, KR27B, KR28 and KR28B at Olkiluoto during the first and second quarters of 2004. The distance between the boreholes varies from approximately tens of meters to hundreds of meters. All the measurements were carried out in open boreholes, i.e. no packers were used. For interpretation, a normal single hole test was first performed in each borehole. Flow rates and drawdown were first measured both without pumping and with pumping the borehole under test. For practical reasons, the data set is neither complete nor similar in all tested boreholes. Connected flow to borehole KR24 was detected in all these boreholes. These flow responses were concentrated on a few zones. (orig.)

  2. Laboratory studies of fluid flow through borehole seals

    International Nuclear Information System (INIS)

    South, D.L.

    1983-01-01

    Boreholes in the vicinity of a nuclear waste repository must be reliably sealed to prevent rapid migration of radionuclide contaminated water from the vicinity of the repository to the accessible environment. Few data currently exist regarding the effectiveness of borehole sealing. The objective of this research was to assess the performance of borehole seals under laboratory conditions, particularly with regard to varying stress fields. The approach used to evaluate borehole seals was to compare flow through a sealed borehole with flow through intact rock. Granite, basalt, and tuff were tested, using either cement or bentonite as the seal material. The main conclusions reached as a result of the experiments is that currently existing materials are capable of forming high quality seals when placed under laboratory conditions. Variation of triaxial stress state about a borehole does not significantly affect seal performance if the rock is stiffer than the seal material. Temperature/moisture variations (drying) degraded the quality of cement seals significantly. Performance partially recovered upon resaturation. Significant remaining questions include field emplacement techniques; field vertification of plug quality; plug performance over long time periods, particularly with respect to temperature/moisture variations and chemical stability; and radionuclide sorption capabilities. Scale effects are also important, as shafts and drifts must be sealed as well as larger diameter boreholes

  3. Stratigraphy of the Harwell boreholes

    International Nuclear Information System (INIS)

    Gallois, R.W.; Worssam, B.C.

    1983-12-01

    Seven boreholes, five of them partially cored, were drilled at the Atomic Energy Research Establishment at Harwell as part of a general investigation to assess the feasibility of storing low- and intermediate-level radioactive waste in underground cavities. Two of the deeper boreholes were almost wholly cored to provide samples for hydrogeological, hydrochemical, mineralogical, geochemical, geotechnical, sedimentological and stratigraphical studies to enable variations in lithology and rock properties to be assessed, both vertically and laterally, and related to their regional geological setting. This report describes the lithologies, main faunal elements and stratigraphy of the Cretaceous, Jurassic, Triassic and Carboniferous sequences proved in the boreholes. More detailed stratigraphical accounts of the late Jurassic and Cretaceous sequences will be prepared when current studies of the faunal assemblages are complete. (author)

  4. Hydrological and hydrogeochemical investigations in boreholes

    International Nuclear Information System (INIS)

    Carlsson, L.; Olsson, T.

    1985-07-01

    Underground investigations in boreholes are presumed to be an important investigation technique for the detailed design of a final repository for nuclear waste. The siting of the repository will be based on surface investigations, but for detailed investigations when the access shafts are sunk, investigations in underground boreholes from the initial shafts and tunnels will be of importance. The hydrogeological investigations in boreholes aimed at testing and developing of hydrogeological techniques and instruments for use in an underground environment in order to reflect actual working and testing conditions. This report is the final report from the hydrogeological investigations in boreholes, and it summarizes the different activities carried out during the course of the program. Most of the included activities are reported in separate internal reports, and therefore only the most important results are included, together with the experiences and conclusions gained during the investigations. The hydrogeochemical part of the program is in a separate final report, consequently no hydrogeochemical information is in the current report. (Author)

  5. Geophysical borehole logging in Lavia borehole - results and interpretation of sonic and tube wave measurements

    International Nuclear Information System (INIS)

    Andersson, P.; Stenberg, L.

    1985-02-01

    Swedish Nuclear Fuel and Waste Management Co, SKB has been contracted by Industrial Power Company LTD, TVO to perform geophysical logging in a borehole at Lavia in Western Finland. The logging has been conducted by Swedish Geological Co, SGAB in accordance with an agreement for cooperation with SKB. The depth of the borehole is 1001 m, diameter 56 mm and inclination 10-20 degrees to the vertical. The aim of the logging was to determine the various geophysical parameters in the borehole in order to interpret and understand the rock mass properties in the vicinity of the borehole. According to the contract the report covers the following main objectives: a technical description of the field work and the equipment used; a review of the theoretical base for the sonic and tube wave methods; an interpretation and presentation of the results obtained by sonic and tube wave mesurements. The evaluation of the sonic and tube wave measurements shows good correlation. On a qualitative basis there seems to be a correlation between tube wave generating points, the relative tube wave amplitudes and the hydraulic conductivity measurements performed as hydraulical tests between packers in the borehole. The low velocity anamalies in the sonic log are mainly caused by tectonic features like fractures and fracture zones but to some extent also by contacts between granite and diorite. The estimation of elastic properties of the rock mass from observation of tube wave velocity are in accordance with laboratory determinations made on core samples. (author)

  6. Analysis of borehole-radar reflection logs from selected HC boreholes at the Project Shoal area, Churchill County, Nevada

    Science.gov (United States)

    Lane, J.W.; Joesten, P.K.; Pohll, G.M.; Mihevic, Todd

    2001-01-01

    Single-hole borehole-radar reflection logs were collected and interpreted in support of a study to characterize ground-water flow and transport at the Project Shoal Area (PSA) in Churchill County, Nevada. Radar logging was conducted in six boreholes using 60-MHz omni-directional electric-dipole antennas and a 60-MHz magnetic-dipole directional receiving antenna.Radar data from five boreholes were interpreted to identify the location, orientation, estimated length, and spatial continuity of planar reflectors present in the logs. The overall quality of the radar data is marginal and ranges from very poor to good. Twenty-seven reflectors were interpreted from the directional radar reflection logs. Although the range of orientation interpreted for the reflectors is large, a significant number of reflectors strike northeast-southwest and east-west to slightly northwest-southeast. Reflectors are moderate to steeply dipping and reflector length ranged from less than 7 m to more than 133 m.Qualitative scores were assigned to each reflector to provide a sense of the spatial continuity of the reflector and the characteristics of the field data relative to an ideal planar reflector (orientation score). The overall orientation scores are low, which reflects the general data quality, but also indicates that the properties of most reflectors depart from the ideal planar case. The low scores are consistent with reflections from fracture zones that contain numerous, closely spaced, sub-parallel fractures.Interpretation of borehole-radar direct-wave velocity and amplitude logs identified several characteristics of the logged boreholes: (1) low-velocity zones correlate with decreased direct-wave amplitude, indicating the presence of fracture zones; (2) direct-wave amplitude increases with depth in three of the boreholes, suggesting an increase in electrical resistivity with depth resulting from changes in mineral assemblage or from a decrease in the specific conductance of ground

  7. Working program for deep borehole investigations. HDB-6,7,8, borehole

    International Nuclear Information System (INIS)

    Hama, Katsuhiro; Takahashi, Kazuharu; Ishii, Eiichi; Takeuchi, Ryuji; Sasaki, Manabu; Kunimaru, Takanori; Eki, Nobuhiro; Matsui, Hiroya

    2003-08-01

    In the Horonobe Underground Research Laboratory project, a wide range of geoscientific research and development activities are planned to be performed in three phases, Surface-based Investigations (Phase I), Construction (Phase II) and Operations (Phase III), over period of 20 years. Surface-based investigations have been conducted since 2000. Main goals of the Horonobe project are; To establish comprehensive techniques for investigating the geological environment, and To develop a range of engineering techniques for deep underground applications. The specific goals of the surface-based investigations are, To construct geological models of the geological environment based on the surface-based investigations and develop an understanding of the deep geological environment (undisturbed, initial conditions) before excavation of the shaft and experimental drifts To formulate detailed design and plans for the construction of the shaft and experimental drifts, and To plan scientific investigations during the construction phase. Field investigations during the surface-based investigations phase are planned for completion by the end of 2005, with excavation of the main shaft, Phase 2 construction, planned to start in 2005. The diameter of the main shafts has provisionally been set at 6.5 meters and the proposed depth is 500 meters. Details of the geometry and depth of specific underground facilities, including the main shaft, the ventilation shaft and the drifts, will be defined using data on the geological environment obtained during the surface-based investigation phase. As part of the surface-based investigations, geological, geophysical, hydrogeological, hydrochemical and rock mechanical investigations were carried out. Deep borehole investigations started in 2000 in order to characterize the sedimentary rocks. Taking into account the status of the investigations as of April 2003 and the remaining time (i.e., three year) for the surface-based investigations, an

  8. Exploratory boreholes Juchlistock-Grimsel

    International Nuclear Information System (INIS)

    Mueller, W.; Keusen, H.R.

    1981-11-01

    The aim of the investigation was the completion of missing geological, hydrogeological and rock-mechanical data about a suitable site for the intended Nagra rock laboratory at Grimsel. To this aim, 6 horizontal boreholes of 100 m length and 86 mm diameter were drilled. The cores, extracted practically without loss, and mechanical data for the main investigation was an extensive evaluation of the lithographic discontinuities and anisotropies, because they are the main determinant of the hydrogeological conditions of the locality. The area is dominated by granites and granodiorite which are of variable biotite content, lamprophyres and aplites. The largest part of the investigated mountain region consists of compact unclefted rock. 478 of the 600 bore meters, i.e. about 80 % of the drilled mountain, have no open clefts. Only 22 of the 600 bore meters (3.6 %0 contain more than five clefts per meter, at which the open clefts in the boreholes SB1 and SB5 appear more frequently. At the remaining exploratory boreholes in 90 % of the mountain ther are no open clefts. 15 refs., 52 figs., 15 tabs

  9. Final storage of radioactive waste in deep boreholes

    International Nuclear Information System (INIS)

    Eichmeyer, H.; Wolff, H.

    1985-01-01

    The plans of the Danish Atomic Energy Authority expect the storage of 4500 containers with high activity waste each weighing 15 tonnes in deep boreholes in rock salt over a period of 30 years. The Danish plans are concerned with the storage medium salt in one of the many salt mines in North Germany and Denmark with a depth of 1200 metres, because of the high plasticity, good thermal conductivity and non-permeability to liquids and gases. Eight deep boreholes with a diameter of 750 mm are provided in a circle of radius r=250 metres. With a deviation of 0 , the boreholes will be piped down to 1000 metres and after completion, will be filled with clay slurry and barium sulphate. At the start of storage of the waste in containers 6.8 metres long, the clay slurry is replaced by cement slurry with saturated NaCl solution. Another possibility is to fill the borehole volume with saturated NaCl solution, in order to let the convergence act on the annular space between the container and the borehole wall. After filling the borehole, the open borehole should be sealed over a distance of 200 metres with rock salt and over 50 metres with a concrete stopper. It is planned to provide a dense and corrosion-proof seal with bitumen above the concrete. (orig./GB) [de

  10. Crosshole investigations - results from borehole radar investigations

    International Nuclear Information System (INIS)

    Olsson, O.; Falk, L.; Sandberg, E.; Forslund, O.; Lundmark, L.

    1987-05-01

    A new borehole radar system has been designed, built and tested. The system consists of borehole transmitter and receiver probes, a signal control unit for communication with the borehole probes, and a computer unit for storage and display of data. The system can be used both in singlehole and crosshole modes and probing ranges of 115 m and 300 m, respectively, have been obtained at Stripa. The borehole radar is a short pulse system which uses center frequencies in the range 20 to 60 MHz. Single hole reflection measurements have been used to identify fracture zones and to determine their position and orientation. The travel time and amplitude of the first arrival measured in a crosshole experiment can be used as input data in a tomographic analysis. (orig./DG)

  11. 30 CFR 75.1318 - Loading boreholes.

    Science.gov (United States)

    2010-07-01

    ... protect persons shall be done in the working place or other area where blasting is to be performed. (c) When loading boreholes drilled at an angle of 45 degrees or greater from the horizontal in solid rock... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1318 Loading boreholes. (a...

  12. Integrating geophysical and hydrochemical borehole-log measurements to characterize the Chalk aquifer, Berkshire, United Kingdom

    Science.gov (United States)

    Schürch, Marc; Buckley, David

    2002-09-01

    Geophysical and hydrochemical borehole-logging techniques were integrated to characterize hydraulic and hydrogeochemical properties of the Chalk aquifer at boreholes in Berkshire, UK. The down-hole measurements were made to locate fissures in the chalk, their spatial extent between boreholes, and to determine the groundwater chemical quality of the water-bearing layers. The geophysical borehole logging methods used were caliper, focused resistivity, induction resistivity, gamma ray, fluid temperature, fluid electrical conductivity, impeller and heat-pulse flowmeter, together with borehole wall optical-imaging. A multiparameter data transmitter was used to measure groundwater temperature, electrical conductivity, dissolved oxygen, pH, and redox potential of the borehole fluid down-hole. High permeability developed at the Chalk Rock by groundwater circulation provides the major flow horizon at the Banterwick Barn study site and represents a conduit system that serves as an effective local hydraulic connection between the boreholes. The Chalk Rock includes several lithified solution-ridden layers, hardgrounds, which imply a gap in sedimentation possibly representing an unconformity. Lower groundwater temperature, high dissolved-oxygen content, and flowmeter evidence of preferential groundwater flow in the Chalk Rock indicated rapid groundwater circulation along this horizon. By repeating the logging at different times of the year under changing hydraulic conditions, other water-inflow horizons within the Chalk aquifer were recognized. Résumé. Des techniques géophysiques et hydrochimiques de diagraphies en forage ont été mises en oeuvre pour caractériser les propriétés hydrauliques et hydrogéochimiques de l'aquifère de la craie dans des forages du Berkshire (Grande-Bretagne). Les mesures en descente ont été faites pour localiser les fissures dans la craie et leur développement spatial entre forages, et pour déterminer la qualité de l'eau souterraine des

  13. Geophysical borehole logging and optical imaging of the boreholes KR34, KR35 and KR36, at Olkiluoto 2005

    International Nuclear Information System (INIS)

    Majapuro, J.

    2005-09-01

    Suomen Malmi Oy conducted geophysical borehole logging and optical imaging surveys of the boreholes KR34, KR35 and KR36 at the Olkiluoto site in Eurajoki during May - June 2005. The survey is a part of Posiva Oy's detailed investigation program for the final disposal of spent nuclear fuel. The methods applied are magnetic susceptibility, natural gamma radiation, gamma-gamma density, single point resistance, Wenner-resistivity, borehole radar, full waveform sonic and optical imaging. The assignment included the field work of all surveys, interpretation and processing of the acoustic and borehole radar data. The report describes the field operation, equipment as well as processing procedures and shows the obtained results and their quality in the appendices. The raw and processed data are delivered digitally in WellCAD and Excel format. (orig.)

  14. Geophysical borehole logging and optical imaging of the boreholes KR34, KR35 and KR36, at Olkiluoto 2005

    Energy Technology Data Exchange (ETDEWEB)

    Majapuro, J. [Suomen Malmi Oy, Espoo (Finland)

    2005-09-15

    Suomen Malmi Oy conducted geophysical borehole logging and optical imaging surveys of the boreholes KR34, KR35 and KR36 at the Olkiluoto site in Eurajoki during May - June 2005. The survey is a part of Posiva Oy's detailed investigation program for the final disposal of spent nuclear fuel. The methods applied are magnetic susceptibility, natural gamma radiation, gamma-gamma density, single point resistance, Wenner-resistivity, borehole radar, full waveform sonic and optical imaging. The assignment included the field work of all surveys, interpretation and processing of the acoustic and borehole radar data. The report describes the field operation, equipment as well as processing procedures and shows the obtained results and their quality in the appendices. The raw and processed data are delivered digitally in WellCAD and Excel format. (orig.)

  15. Two-Dimensional Magnetotelluric Modelling of Ore Deposits: Improvements in Model Constraints by Inclusion of Borehole Measurements

    Science.gov (United States)

    Kalscheuer, Thomas; Juhojuntti, Niklas; Vaittinen, Katri

    2017-12-01

    A combination of magnetotelluric (MT) measurements on the surface and in boreholes (without metal casing) can be expected to enhance resolution and reduce the ambiguity in models of electrical resistivity derived from MT surface measurements alone. In order to quantify potential improvement in inversion models and to aid design of electromagnetic (EM) borehole sensors, we considered two synthetic 2D models containing ore bodies down to 3000 m depth (the first with two dipping conductors in resistive crystalline host rock and the second with three mineralisation zones in a sedimentary succession exhibiting only moderate resistivity contrasts). We computed 2D inversion models from the forward responses based on combinations of surface impedance measurements and borehole measurements such as (1) skin-effect transfer functions relating horizontal magnetic fields at depth to those on the surface, (2) vertical magnetic transfer functions relating vertical magnetic fields at depth to horizontal magnetic fields on the surface and (3) vertical electric transfer functions relating vertical electric fields at depth to horizontal magnetic fields on the surface. Whereas skin-effect transfer functions are sensitive to the resistivity of the background medium and 2D anomalies, the vertical magnetic and electric field transfer functions have the disadvantage that they are comparatively insensitive to the resistivity of the layered background medium. This insensitivity introduces convergence problems in the inversion of data from structures with strong 2D resistivity contrasts. Hence, we adjusted the inversion approach to a three-step procedure, where (1) an initial inversion model is computed from surface impedance measurements, (2) this inversion model from surface impedances is used as the initial model for a joint inversion of surface impedances and skin-effect transfer functions and (3) the joint inversion model derived from the surface impedances and skin-effect transfer

  16. Utilization of test boreholes in prospecting and mining operations

    International Nuclear Information System (INIS)

    Sierak, J.P.

    1987-01-01

    Test boreholes are of fundamental importance for mining and prospecting operations. The drilling techniques are suited to the geological conditions and to the nature of the information desired. At Cogema, non-coring test boreholes, mainly drilled by a rotary percussive method, represent over 90% of the footage drilled; they achieve impressive performances at a cost which is by far less than that of coring test boreholes. The geological exploitation of these test boreholes is effected by a combined investigation of well logging and of cuttings. These investigations lead to an assessment for certain substances like uranium or coal or they mark the limits for favourable zones which alone will form the object of coring boreholes. In mining operations, boreholes indicate the definition for workable panels; they ensure at less cost the distribution of fluids, the forwarding of stowing material and the mine ventilation [fr

  17. Variations in geoacoustic emissions in a deep borehole and its correlation with seismicity

    Directory of Open Access Journals (Sweden)

    A. Storcheus

    2008-06-01

    Full Text Available Continuous geoacoustic emission (GAE measurements were acquired using a three-component geophone placed in a borehole at a depth of near 1000 m at Petropavlovsk-Kamchatsky starting in August 2000. Using geophones consisting of magneto-elastic crystal ferromagnetic sensors, and installed at such a depth allows measurement of natural geoacoustic background with signal amplitude less than 1×10-4 m/s3 in frequency band from 3 to 1500 Hz. According to the data from a 4-year survey period the characteristics of diurnal geoacoustic variations change before every earthquake with MLH? 5.0 that occurs at a distance of less than 300 km from the observation point or before each earthquake with MLH?5.5 occurring at distance R?550 km from the observation point. The changes in GAE regime correlate with the strongest earthquakes that occurred during survey period. Measurements of the natural electromagnetic field of the Earth were carried out simultaneously with the help of an underground electric antenna. The behavior of GAE in aseismic periods appears to be related to the effect of diurnal variations of the natural electromagnetic field.

  18. Borehole Logging for Uranium by Gamma-Ray Spectrometry

    DEFF Research Database (Denmark)

    Løvborg, Leif; Nyegaard, P.; Christiansen, E. M.

    1980-01-01

    The resources in a large syngenetic deposit of low-grade uranium (U) ore with thorium at Kvanefjeld, South Greenland, were evaluated by spectrometric gamma-ray logging of 23 boreholes, 46 mm in diameter and 200 m deep. The borehole probe's detector contained 22 cm3 of sodium-iodide, and the photo......The resources in a large syngenetic deposit of low-grade uranium (U) ore with thorium at Kvanefjeld, South Greenland, were evaluated by spectrometric gamma-ray logging of 23 boreholes, 46 mm in diameter and 200 m deep. The borehole probe's detector contained 22 cm3 of sodium...... of the spectrometer system were determined by calculating the average number of U and thorium (Th) counts per meter of borehole and comparing these with the U-Th concentrations in 1-m sections of analyzed drill core. The sensitivity and the background count rate in the uranium window varied appreciably from one hole...

  19. Optimal experimental design for placement of boreholes

    Science.gov (United States)

    Padalkina, Kateryna; Bücker, H. Martin; Seidler, Ralf; Rath, Volker; Marquart, Gabriele; Niederau, Jan; Herty, Michael

    2014-05-01

    Drilling for deep resources is an expensive endeavor. Among the many problems finding the optimal drilling location for boreholes is one of the challenging questions. We contribute to this discussion by using a simulation based assessment of possible future borehole locations. We study the problem of finding a new borehole location in a given geothermal reservoir in terms of a numerical optimization problem. In a geothermal reservoir the temporal and spatial distribution of temperature and hydraulic pressure may be simulated using the coupled differential equations for heat transport and mass and momentum conservation for Darcy flow. Within this model the permeability and thermal conductivity are dependent on the geological layers present in the subsurface model of the reservoir. In general, those values involve some uncertainty making it difficult to predict actual heat source in the ground. Within optimal experimental the question is which location and to which depth to drill the borehole in order to estimate conductivity and permeability with minimal uncertainty. We introduce a measure for computing the uncertainty based on simulations of the coupled differential equations. The measure is based on the Fisher information matrix of temperature data obtained through the simulations. We assume that the temperature data is available within the full borehole. A minimization of the measure representing the uncertainty in the unknown permeability and conductivity parameters is performed to determine the optimal borehole location. We present the theoretical framework as well as numerical results for several 2d subsurface models including up to six geological layers. Also, the effect of unknown layers on the introduced measure is studied. Finally, to obtain a more realistic estimate of optimal borehole locations, we couple the optimization to a cost model for deep drilling problems.

  20. Proposal to negotiate, without competitive tendering, a contract for the manufacture, testing and delivery of 320 cryogenic helium mass flowmeters for the LHC

    CERN Document Server

    2001-01-01

    This document concerns the manufacture, testing and delivery of 320 cryogenic helium mass flowmeters for the LHC. Following a market survey (MS-2602/LHC/LHC) carried out amoung 37 firms in twelve Member States and six firms in two non-Member States, a price enquiry for qualifying prototypes was sent on 20 November 1998 to nine selected firms and the received prototypes were evaluated. As a result of this process a request for quotation was sent to one firm The Finance Committee is invited to agree to the negotiation of a contract with the firm EMERSON PROCESS MANAGEMENT/FISHER-ROSEMOUNT (CH), without competitive tendering, for the manufacture, testing and delivery of 320 cryogenic helium mass flowmeters for an amount of 1 804 840 Swiss francs, not subject to revision, with options for up to 10 additional cryogenic helium mass flowmeters and an extension of the guarantee period to five years for all units for an amount of 219 090 Swiss francs, not subject to revision, bringing the total amount to 2 023 930 Swi...

  1. 30 CFR 75.1322 - Stemming boreholes

    Science.gov (United States)

    2010-07-01

    ... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1322 Stemming boreholes (a... deep shall be stemmed for at least half the depth of the borehole. (f) When blasting off the solid in... water stemming bag shall be within 1/4 of an inch of the diameter of the drill bit used to drill the...

  2. Geophysical borehole logging test procedure: Final draft

    International Nuclear Information System (INIS)

    1986-09-01

    The purpose of geophysical borehole logging from the At-Depth Facility (ADF) is to provide information which will assist in characterizing the site geologic conditions and in classifying the engineering characteristics of the rock mass in the vicinity of the ADF. The direct goals of borehole logging include identification of lithologic units and their correlation from hole to hole, identification of fractured or otherwise porous or permeable zones, quantitative or semi-quantitative estimation of various formation properties, and evaluation of factors such as the borehole diameter and orientation. 11 figs., 4 tabs

  3. Analysis of borehole-radar reflection logs from selected HC boreholes at the Project Shoal area, Churchill County, Nevada; TOPICAL

    International Nuclear Information System (INIS)

    Lane, J.W. Jr.; Joesten, P.K.; Pohll, Greg; Mihevic, Todd

    2001-01-01

    Single-hole borehole-radar reflection logs were collected and interpreted in support of a study to characterize ground-water flow and transport at the Project Shoal Area (PSA) in Churchill County, Nevada. Radar logging was conducted in six boreholes using 60-MHz omni-directional electric-dipole antennas and a 60-MHz magnetic-dipole directional receiving antenna. Radar data from five boreholes were interpreted to identify the location, orientation, estimated length, and spatial continuity of planar reflectors present in the logs. The overall quality of the radar data is marginal and ranges from very poor to good. Twenty-seven reflectors were interpreted from the directional radar reflection logs. Although the range of orientation interpreted for the reflectors is large, a significant number of reflectors strike northeast-southwest and east-west to slightly northwest-southeast. Reflectors are moderate to steeply dipping and reflector length ranged from less than 7 m to more than 133 m. Qualitative scores were assigned to each reflector to provide a sense of the spatial continuity of the reflector and the characteristics of the field data relative to an ideal planar reflector (orientation score). The overall orientation scores are low, which reflects the general data quality, but also indicates that the properties of most reflectors depart from the ideal planar case. The low scores are consistent with reflections from fracture zones that contain numerous, closely spaced, sub-parallel fractures. Interpretation of borehole-radar direct-wave velocity and amplitude logs identified several characteristics of the logged boreholes: (1) low-velocity zones correlate with decreased direct-wave amplitude, indicating the presence of fracture zones; (2) direct-wave amplitude increases with depth in three of the boreholes, suggesting an increase in electrical resistivity with depth resulting from changes in mineral assemblage or from a decrease in the specific conductance of ground

  4. Effects of nonlinear error correction of measurements obtained by peak flowmeter using the Wright scale to assess asthma attack severity in children

    Directory of Open Access Journals (Sweden)

    Stamatović Dragana

    2007-01-01

    Full Text Available Introduction: Monitoring of peak expiratory flow (PEF is recommended in numerous guidelines for management of asthma. Improvements in calibration methods have demonstrated the inaccuracy of original Wright scale of peak flowmeter. A new standard, EN 13826 that was applied to peak flowmeter was adopted on 1st September 2004 by some European countries. Correction of PEF readings obtained with old type devices for measurement is possible by Dr M. Miller’s original predictive equation. Objective. Assessment of PEF correction effect on the interpretation of measurement results and management decisions. Method. In children with intermittent (35 or stable persistent asthma (75 aged 6-16 years, there were performed 8393 measurements of PEF by Vitalograph normal-range peak flowmeter with traditional Wright scale. Readings were expressed as percentage of individual best values (PB before and after correction. The effect of correction was analyzed based on The British Thoracic Society guidelines for asthma attack treatment. Results. In general, correction reduced the values of PEF (p<0.01. The highest mean percentage error (20.70% in the measured values was found in the subgroup in which PB ranged between 250 and 350 l/min. Nevertheless, the interpretation of PEF after the correction in this subgroup changed in only 2.41% of measurements. The lowest mean percentage error (15.72%, and, at the same time, the highest effect of correction on measurement results interpretation (in 22.65% readings were in children with PB above 450 l/min. In 73 (66.37% subjects, the correction changed the clinical interpretation of some values of PEF after correction. In 13 (11.8% patients, some corrected values indicated the absence or a milder degree of airflow obstruction. In 27 (24.54% children, more than 10%, and in 12 (10.93%, more than 20% of the corrected readings indicated a severe degree of asthma exacerbation that needed more aggressive treatment. Conclusion

  5. BASIMO - Borehole Heat Exchanger Array Simulation and Optimization Tool

    Science.gov (United States)

    Schulte, Daniel O.; Bastian, Welsch; Wolfram, Rühaak; Kristian, Bär; Ingo, Sass

    2017-04-01

    Arrays of borehole heat exchangers are an increasingly popular source for renewable energy. Furthermore, they can serve as borehole thermal energy storage (BTES) systems for seasonally fluctuating heat sources like solar thermal energy or district heating grids. The high temperature level of these heat sources prohibits the use of the shallow subsurface for environmental reasons. Therefore, deeper reservoirs have to be accessed instead. The increased depth of the systems results in high investment costs and has hindered the implementation of this technology until now. Therefore, research of medium deep BTES systems relies on numerical simulation models. Current simulation tools cannot - or only to some extent - describe key features like partly insulated boreholes unless they run fully discretized models of the borehole heat exchangers. However, fully discretized models often come at a high computational cost, especially for large arrays of borehole heat exchangers. We give an update on the development of BASIMO: a tool, which uses one dimensional thermal resistance and capacity models for the borehole heat exchangers coupled with a numerical finite element model for the subsurface heat transport in a dual-continuum approach. An unstructured tetrahedral mesh bypasses the limitations of structured grids for borehole path geometries, while the thermal resistance and capacity model is improved to account for borehole heat exchanger properties changing with depth. Thereby, partly insulated boreholes can be considered in the model. Furthermore, BASIMO can be used to improve the design of BTES systems: the tool allows for automated parameter variations and is readily coupled to other code like mathematical optimization algorithms. Optimization can be used to determine the required minimum system size or to increase the system performance.

  6. Conceptual Design and Requirements for Characterization and Field Test Boreholes: Deep Borehole Field Test

    Energy Technology Data Exchange (ETDEWEB)

    Kuhlman, Kristopher L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brady, Patrick Vane [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); MacKinnon, Robert J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Heath, Jason E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Herrick, Courtney G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jensen, Richard P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rigali, Mark J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hadgu, Teklu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sevougian, S. David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Birkholzer, Jens [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Freifeld, Barry M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Daley, Tom [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-09-24

    Deep Borehole Disposal (DBD) of high-level radioactive wastes has been considered an option for geological isolation for many years (Hess et al. 1957). Recent advances in drilling technology have decreased costs and increased reliability for large-diameter (i.e., ≥50 cm [19.7”]) boreholes to depths of several kilometers (Beswick 2008; Beswick et al. 2014). These advances have therefore also increased the feasibility of the DBD concept (Brady et al. 2009; Cornwall 2015), and the current field test, introduced herein, is a demonstration of the DBD concept and these advances.

  7. Radiometric calipers for borehole logging

    International Nuclear Information System (INIS)

    Charbucinski, J.; Wylie, A.W.; Jarrett, R.G.

    1976-01-01

    Two versions of a radiometric-type caliper for measuring borehole diameter are described. One, based on the bow-spring principle, is suitable for percussion (exploration) drill holes. The other, which utilizes hemispherical wall contactors actuated by springs, is suitable for blast holes. Both utilize low-power radioactive sources and employ a scintillation detector to measure the 'inverse-square law' response of the device to changes in borehole radius. The performance of the device is examined and examples of its use are illustrated. (author)

  8. Measuring depth in boreholes

    International Nuclear Information System (INIS)

    Hodson, G.M.

    1979-01-01

    This invention relates to a method of determining the depth of rock strata and other features of a borehole. It may be employed with particular advantage when access to the top of the borehole is difficult, for example in underwater operations. A radioactive marker, such as a source of gamma rays, is positioned near the top of the riser of a sub-sea wellhead structure. A radiation detector is lowered between the marker and a radioactive stratum and the length of line supplied is measured on the floating platform. This enables the depth of the stratum to be measured irrespective of tidal variations of the height of the platform. (U.K.)

  9. Flow measurements in boreholes PHO1 and PHO2 in ONKALO

    International Nuclear Information System (INIS)

    Rouhiainen, P.; Pollanen, J.

    2005-10-01

    Posiva Flow Log/Difference Flow method can be used for relatively fast determination of hydraulic properties of fractures or fractured zones in boreholes. The flow sensor for flow along a borehole and a special flow guide are used for this measurement. This report presents the principles of the method as well as the results of the measurements carried out in the underground facilities of the ONKALO. Pilot boreholes PH01 and PH02 were measured. Borehole PH01 was measured on February 2004 and borehole PH02 on December 2004. Borehole PH01 was measured using 2 m section when it was in natural sate (without pumping it) and when water was pumped out from it. The upper part of the borehole was also measured when water was injected into the borehole. In addition to this, a detailed flow log was performed with 0.1 m point intervals using 0.5 m section length when water was pumped out from the borehole. Borehole PH02 was measured only with 0.5 m section length. The borehole was open during measurements and there was a natural outflow from the borehole during measurements. The flow guide encloses an electrode for single point resistance measurement, which was also carried out with 0.01 m point intervals during the flow measurements. Flow measurement and single point resistance measurement were used to locate flowing fractures and to evaluate their transmissivity. Electric conductivity (EC) and temperature of water was registered during flow logging. The conductivity values are temperature corrected to 25 deg C. (orig.)

  10. Detection of buried pipes by polarimetric borehole radar; Polarimetric borehole radar ni yoru maisetsukan no kenshutsu jikken

    Energy Technology Data Exchange (ETDEWEB)

    Sato, M.; Niitsuma, H. [Tohoku University, Sendai (Japan); Nakauchi, T. [Osaka Gas Co. Ltd., Osaka (Japan)

    1997-05-27

    If the borehole radar is utilized for detection of buried pipes, the underground radar measurement becomes possible even in the situation where the mesurement on the earth surface is difficult, for example, such a place as under the road where there is much traffic. However, since buried pipes are horizontally installed and the existing borehole radar can send/receive only vertical polarization, the measurement conducted comes to be poor in efficiency from a viewpoint of the polarization utilization. Therefore, by introducing the polarimetric borehole radar to the detection of buried pipes, a basic experiment was conducted for the effective detection of horizontal buried pipes. Proposing the use of a slot antenna which can send/receive horizontal polarization in borehole in addition to a dipole antenna which sends/receives vertical polarization, developed was a step frequency type continuous wave radar of a network analyzer basis. As a result of the experiment, it was confirmed that reflection from buried pipes is largely dependent on polarization. Especially, it was found that in the slot dipole cross polarization mesurement, reflection from buried pipes can be emphasized. 4 refs., 5 figs.

  11. Directional borehole antenna - Theory

    International Nuclear Information System (INIS)

    Falk, L.

    1992-02-01

    A directional antenna has been developed for the borehole radar constructed during phase 2 of the Stripa project. The new antenna can determine the azimuth of a strong reflector with an accuracy of about 3 degrees as confirmed during experiments in Stripa, although the ratio of borehole diameter to wavelength is small, about 0.03. The antenna synthesizes the effect of a loop antenna rotating in the borehole from four signals measured in turn by a stationary antenna. These signals are also used to calculate an electric dipole signal and a check sum which is used to examine the function of the system. The theory of directional antennas is reviewed and used to design an antenna consisting of four parallel wires. The radiation pattern of this antenna is calculated using transmission line theory with due regard to polarization, which is of fundamental importance for the analysis of directional data. In particular the multipole expansion of the field is calculated to describe the antenna radiation pattern. Various sources of error, e.g. the effect of the borehole, are discussed and the methods of calibrating the antenna are reviewed. The ambiguity inherent in a loop antenna can be removed by taking the phase of the signal into account. Typical reflectors in rock, e.g. fracture zones an tunnels, may be modelled as simple geometrical structures. The corresponding analysis is described and exemplified on measurements from Stripa. Radar data is nowadays usually analyzed directly on the computer screen using the program RADINTER developed within the Stripa project. An algorithm for automatic estimation of the parameters of a reflector have been tested with some success. The relation between measured radar data and external coordinates as determined by rotational indicators is finally expressed in terms of Euler angles. (au)

  12. Site response assessment using borehole seismic records

    Energy Technology Data Exchange (ETDEWEB)

    Park, Donghee; Chang, Chunjoong; Choi, Weonhack [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    In regions with high seismic activity, such as Japan, the Western United States and Taiwan, borehole seismometers installed deep underground are used to monitor seismic activity during the course of seismic wave propagation at various depths and to study the stress changes due to earthquakes and analyze the connection to fault movements. The Korea Meteorological Administration (KMA) and the Korea Institute of Geology and Mining (KIGAM) have installed and are operating borehole seismometers at a depth of 70∼100 meters for the precise determination of epicenters. Also, Korea Hydro and Nuclear Power Co., Ltd. (KHNP) has installed and is operating 2 borehole seismic stations near Weolseong area to observe at a depth of 140 meters seismic activities connected to fault activity. KHNP plans to operate in the second half of 2014 a borehole seismic station for depths less than 300 and 600 meters in order to study the seismic response characteristics in deep strata. As a basic study for analyzing ground motion response characteristics at depths of about 300 to 600 meters in connection with the deep geological disposal of spent nuclear fuel, the present study examined the background noise response characteristics of the borehole seismic station operated by KHNP. In order to analyze the depth-dependent impact of seismic waves at deeper depths than in Korea, seismic data collected by Japan's KIK-net seismic stations were used and the seismic wave characteristics analyzed by size and depth. In order to analyze the borehole seismic observation data from the seismic station operated by KHNP, this study analyzed the background noise characteristics by using a probability density function.

  13. Site response assessment using borehole seismic records

    International Nuclear Information System (INIS)

    Park, Donghee; Chang, Chunjoong; Choi, Weonhack

    2014-01-01

    In regions with high seismic activity, such as Japan, the Western United States and Taiwan, borehole seismometers installed deep underground are used to monitor seismic activity during the course of seismic wave propagation at various depths and to study the stress changes due to earthquakes and analyze the connection to fault movements. The Korea Meteorological Administration (KMA) and the Korea Institute of Geology and Mining (KIGAM) have installed and are operating borehole seismometers at a depth of 70∼100 meters for the precise determination of epicenters. Also, Korea Hydro and Nuclear Power Co., Ltd. (KHNP) has installed and is operating 2 borehole seismic stations near Weolseong area to observe at a depth of 140 meters seismic activities connected to fault activity. KHNP plans to operate in the second half of 2014 a borehole seismic station for depths less than 300 and 600 meters in order to study the seismic response characteristics in deep strata. As a basic study for analyzing ground motion response characteristics at depths of about 300 to 600 meters in connection with the deep geological disposal of spent nuclear fuel, the present study examined the background noise response characteristics of the borehole seismic station operated by KHNP. In order to analyze the depth-dependent impact of seismic waves at deeper depths than in Korea, seismic data collected by Japan's KIK-net seismic stations were used and the seismic wave characteristics analyzed by size and depth. In order to analyze the borehole seismic observation data from the seismic station operated by KHNP, this study analyzed the background noise characteristics by using a probability density function

  14. Difference flow measurements in borehole KOV01 at Oskarshamn

    International Nuclear Information System (INIS)

    Poellaenen, J.; Rouhiainen, P.

    2001-09-01

    Posiva Flow Log/Difference Flow method can be used for relatively fast determination of hydraulic conductivity and hydraulic head in fractures or fractured zones in cored boreholes. This report presents the principles of the method as well as the results of the measurements carried out in borehole KOV01 at Oskarshamn in February and March 2001. The aim of the measurements presented in this report was to determine the depth and flow rate of flowing fractures in borehole KOV01 prior to groundwater sampling. The measurements in borehole KOV01 were carried out between 100-1000 m depth using the so called detailed flow logging mode; the flow rate into a 5 m long test section was measured. Detailed flow logging was repeated at the location of the detected flow anomalies using 0.5 m section length and 0.1 m point intervals. The borehole was pumped during these measurements. The occurrence of saline water in the borehole was studied by electric conductivity measurements. The flow guide encloses also an electrode for measuring of single point resistance of the bedrock. It was measured with 0.01 m point intervals during the detailed flow logging. Depth calibration was made on the basis of the known depth marks in the borehole. The depth marks were detected by caliper measurements and by single point resistance measurements

  15. Geophysical logging of the Harwell boreholes

    International Nuclear Information System (INIS)

    Brightman, M.A.

    1983-08-01

    A comprehensive geophysical borehole logging survey was carried out on each of three deep boreholes drilled at the Harwell research site. KOALA and PETRA computer programs were used to analyse and interpret the logs to obtain continuous quantitative estimates of the geological and hydrogeological properties of the sequences penetrated at the Harwell site. Quantitative estimates of the mineral composition and porosity of the cores samples were made. (UK)

  16. Low-frequency electromagnetic measurements as a zero-time discriminant of nuclear and chemical explosions - OSI research final report

    International Nuclear Information System (INIS)

    Sweeney, J.J.

    1996-12-01

    This is the final report on a series of investigations of low frequency (1-40 Hz) electromagnetic signals produced by above ground and underground chemical explosions and their use for confidence building under the Comprehensive Test-Ban Treaty. I conclude that low frequency electromagnetic measurements can be a very powerful tool for zero-time discrimination of chemical and nuclear explosions for yields of 1 Kt or greater, provided that sensors can be placed within 1-2 km of the suspected detonation point in a tamper-proof, low noise environment. The report includes descriptions and analyses of low frequency electromagnetic measurements associated with chemical explosions carried out in a variety of settings (shallow borehole, open pit mining, underground mining). I examine cavity pressure data from the Non-Proliferation Experiment (underground chemical explosion) and present the hypothesis that electromagnetic signals produced by underground chemical explosions could be produced during rock fracturing. I also review low frequency electromagnetic data from underground nuclear explosions acquired by Lawrence Livermore National Laboratory during the late 1980s. (author)

  17. comparison of performance of public and private boreholes

    African Journals Online (AJOL)

    User

    comparison of the performance of three categories of boreholes namely: public operated boreholes ... Port Harcourt in River State of Nigeria is a fast developing state. ..... World. Bank. Dujam, Consultants (1988). Nation-wide water. Supply and.

  18. Immobilized low-activity waste site borehole 299-E17-21

    International Nuclear Information System (INIS)

    Reidel, S.P.; Reynolds, K.D.; Horton, D.G.

    1998-08-01

    The Tank Waste Remediation System (TWRS) is the group at the Hanford Site responsible for the safe underground storage of liquid waste from previous Hanford Site operations, the storage and disposal of immobilized tank waste, and closure of underground tanks. The current plan is to dispose of immobilized low-activity tank waste (ILAW) in new facilities in the southcentral part of 200-East Area and in four existing vaults along the east side of 200-East Area. Boreholes 299-E17-21, B8501, and B8502 were drilled at the southwest corner of the ILAW site in support of the Performance Assessment activities for the disposal options. This report summarizes the initial geologic findings, field tests conducted on those boreholes, and ongoing studies. One deep (480 feet) borehole and two shallow (50 feet) boreholes were drilled at the southwest corner of the ILAW site. The primary factor dictating the location of the boreholes was their characterization function with respect to developing the geohydrologic model for the site and satisfying associated Data Quality Objectives. The deep borehole was drilled to characterize subsurface conditions beneath the ILAW site, and two shallow boreholes were drilled to support an ongoing environmental tracer study. The tracer study will supply information to the Performance Assessment. All the boreholes provide data on the vadose zone and saturated zone in a previously uncharacterized area

  19. A study on improvement of measurement capability for gravimetric flowmeter calibrator

    International Nuclear Information System (INIS)

    Lee, Dong Keun; Park, Jong Ho

    2009-01-01

    The calibration of flowmeter is a very important procedure to set up traceability from the national or international standards. The uncertainty of flow measurement defines reliability for measurement results. The uncertainty of gravimetric method combines uncertainties of each independent variable, including mass, time, water density, air density and the density of dead weight. In this study, it has been found that the uncertainties of mass and time measurement in the gravimetric method have dominant influence on the total measurement uncertainty. After improvements of a constant head tank and a diverter, the best measurement capability for K-water's calibration facility has been reached less than 0.1%.

  20. Site Characterization Of Borehole Disposal Facility (BOSS)

    International Nuclear Information System (INIS)

    Kamarudin Samuding; Mohd Abd Wahab Yusof; Mohd Muzamil; Nazran Harun; Nurul Fairuz Diyana Bahrudin; Ismail, C. Mohamad; Kalam

    2014-01-01

    Site characterization study is one of the major components in assessing the potential site for borehole disposal facility. The main objectives of this study are to obtain the geology, geomorphology, hydrogeology and geochemistry information in order to understand the regional geological setting, its past evolution and likely future natural evolution over the assessment time frame. This study was focused on the geological information, borehole log and hydrogeological information. Geological information involve general geology, lineament, topography, structure geology, geological terrain. Whereas Borehole log information consists of lithology, soil and rock formation, gamma logging data and physical properties of soil and rock. Hydrogeological information was emphasized on the groundwater flow, physical parameter as well as geochemical data. Geological mapping shows the study area is underlain by metamorphic rock of the Kenny Hill Formation. Lithologically, it composed of psammitic schist of sandstone origin and phyllite. Based on the borehole log profile, the study area is covered by thick layer of residual soil and estimated not less than 10 m. Those foliated rocks tend to break or split along the foliation planes. The foliation or schistosity may also serve as conduit for groundwater migration. Main structural geology features in the study area trend predominantly in North to Northeast directions. Major fault, the UKM Fault trends in NE-SW direction about 0.5 km located to the east of the proposed borehole site. The groundwater flow direction is influenced by the structure and bedding of the rock formation. Whereas the groundwater flow velocity in the borehole ranges 2.15 - 5.24 x 10 -4 m/ sec. All the data that are obtained in this study is used to support the Safety Assessment and Safety Case report. (author)

  1. Developments of borehole strain observation outside China

    Institute of Scientific and Technical Information of China (English)

    邱泽华; 石耀霖

    2004-01-01

    Borehole strain observation is playing an increasingly important role in the study on the crustal movements. It hasbeen used by many countries such as China, USA, Japan, Peru, Australia, South Africa, Iceland and Italy, in research fields of plate tectonics, earthquake, volcanic eruption, dam safety, oil field subsidence, mining collapse andso on. Borehole strainmeter has been improved rapidly and tends to get more and more components included inone probe. Based on observations by this kind of instruments, studies on seismic strain step, slow earthquake,earthquake precursor and volcanic eruption forecasting have made remarkable achievements. In the coming years,borehole strain observation is going to become one major geodetic means, together with GPS and InSAR.

  2. Amplification Factors for Spectral Acceleration Using Borehole Seismic Array in Taiwan

    Science.gov (United States)

    Lai, T. S.; Yih-Min, W.; Chao, W. A.; Chang, C. H.

    2017-12-01

    In order to reduce the noise from surface to get the high-quality seismic recordings, there are 54 borehole seismic arrays have been installed in Taiwan deployed by Central Weather Bureau (CWB) until the end of 2016. Each array includes two force balance accelerometers, one at the surface and other inside the borehole, as well as one broadband seismometer inside the borehole. The downhole instruments are placed at a depth between 120 and 400 m. The background noise level are lower at the borehole stations, but the amplitudes recorded by borehole stations are smaller than surface stations for the same earthquake due to the different geology conditions. Therefore, the earthquake magnitude estimated by borehole station is smaller than surface station. So far, CWB only use the surface stations in the magnitude determination due to this situation. In this study, we investigate the site effects between surface and downhole for borehole seismic arrays. Using the spectral ratio derived by the two-station spectral method as the transfer function, simulated the waveform recorded by borehole stations to the surface stations. In the future, through the transfer function, the borehole stations will be included in the estimation of earthquake magnitude and the results of amplification factors can provide the information of near-surface site effects for the ground motion simulation applications.

  3. Borehole camera technology and its application in the Three Gorges Project

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C.Y.; Sheng, Q.; Ge, X.R. [Chinese Academy of Sciences, Inst. of Rock and Soil Mechanics, Wuhan (China); Law, K.T. [Carleton Univ., Ottawa, ON (Canada)

    2002-07-01

    The China's Three Gorges Project is the world's largest hydropower project, consisting of a 1,983-meter long and 185-meter high dam and 26 power generating units. Borehole examination has been conducted at the site to ensure stability of the slope of the ship lock used for navigation. This paper describes 2 systems for borehole inspection and viewing. Both methods of camera borehole technology provide a unique way for geologic engineers to observe the condition inside a borehole. The Axial-View Borehole Television (AVBTV) provides real-time frontal view of the borehole ahead of the probe, making it possible to detect where holes are blocked and to see cracks and other distinctive features in the strata. The Digital Panoramic Borehole Camera System (DPBCS) can collect, measure, save, analyze, manage and displace geological information about a borehole. It can also be used to determine the orientation of discontinuity, generate unrolled image and virtual core graph and conduct statistical analysis. Both camera systems have been demonstrated successfully at the Three Gorges Project for qualitative description of the borehole as well as for quantitative analysis of cracks existing in the rock. It has been determined that most of the cracks dip in the same general direction as the northern slope of the permanent ship lock of the Three Gorges Project. 12 refs., 1 tab., 9 figs.

  4. Bond strength of cementitious borehole plugs in welded tuff

    International Nuclear Information System (INIS)

    Akgun, H.; Daemen, J.J.K.

    1991-02-01

    Axial loads on plugs or seals in an underground repository due to gas, water pressures and temperature changes induced subsequent to waste and plug emplacement lead to shear stresses at the plug/rock contact. Therefore, the bond between the plug and rock is a critical element for the design and effectiveness of plugs in boreholes, shafts or tunnels. This study includes a systematic investigation of the bond strength of cementitious borehole plugs in welded tuff. Analytical and numerical analysis of borehole plug-rock stress transfer mechanics is performed. The interface strength and deformation are studied as a function of Young's modulus ratio of plug and rock, plug length and rock cylinder outside-to-inside radius ratio. The tensile stresses in and near an axially loaded plug are analyzed. The frictional interface strength of an axially loaded borehole plug, the effect of axial stress and lateral external stress, and thermal effects are also analyzed. Implications for plug design are discussed. The main conclusion is a strong recommendation to design friction plugs in shafts, drifts, tunnels or boreholes with a minimum length to diameter ratio of four. Such a geometrical design will reduce tensile stresses in the plug and in the host rock to a level which should minimize the risk of long-term deterioration caused by excessive tensile stresses. Push-out tests have been used to determine the bond strength by applying an axial load to cement plugs emplaced in boreholes in welded tuff cylinders. A total of 130 push-out tests have been performed as a function of borehole size, plug length, temperature, and degree of saturation of the host tuff. The use of four different borehole radii enables evaluation of size effects. 119 refs., 42 figs., 20 tabs

  5. Utility service entrance in boreholes

    International Nuclear Information System (INIS)

    1987-08-01

    This study evaluates alternatives for utility service entrances to the repository. We determined the requirements for a repository utility supply. These requirements were defined as safety, maintainability, flexibility, reliability, cost efficiency, voltage regulation, and simplicity of operation. The study showed that repository shafts can best satisfy all requirements for location of the utility supply without the use of borehole penetrations into the repository. It is recommended that the shafts be utilized for utility distribution to the repository, and that the current NWTS program position to minimize the number of boreholes penetrating the repository horizon be maintained. 42 refs., 2 figs., 3 tabs

  6. Borehole sealing literature review of performance requirements and materials

    International Nuclear Information System (INIS)

    Piccinin, D.; Hooton, R.D.

    1985-02-01

    To ensure the safe disposal of nuclear wastes, all potential pathways for radionuclide release to the biosphere must be effectively sealed. This report presents a summary of the literature up to August 1982 and outlines the placement, mechanical property and durability-stability requirements for borehole sealing. An outline of the materials that have been considered for possible use in borehole sealing is also included. Cement grouts are recommended for further study since it is indicated in the literature that cement grouts offer the best opportunity of effectively sealing boreholes employing present technology. However, new and less well known materials should also be researched to ensure that the best possible borehole plugging system is developed. 78 refs

  7. Characterization of a clay-rich rock through development and installation of specific hydrogeological and diffusion test equipment in deep boreholes

    Science.gov (United States)

    Delay, Jacques; Distinguin, Marc; Dewonck, Sarah

    Andra (Agence Nationale pour la Gestion des Déchets Radioactifs - National Radioactive Waste Management Agency) has developed specific tools and methodologies to evaluate and understand the main transport mechanisms of solute species in an argillaceous rock in the framework of the scientific program of the Meuse/Haute-Marne Underground Research Laboratory. This paper focuses on three specific equipments already installed in boreholes for the determination of convection and diffusion parameters in a very low permeability environment. The first one is a specific borehole completion for head and permeability measurements with an integrated wireless telemetry device. In 1995, Andra devised a probe equipped with a pressure sensor to monitor the long-term evolution of electro-magnetically transmitted pore pressures. The data gathered by this first device, and a second one installed in 2001, have shown the occurrence of overpressures in very low permeability formations. The second device is derived from the multipacker system used for monitoring the drainage of the Oxfordian limestone due to the sinking of the shaft above the Callovo-Oxfordian. It is used for obtaining from a single borehole, a pressure profile of the argillaceous formation and its encasing units. To date, the major information obtained with these two borehole equipments is the existence of a 25-35 m anomalous excess hydraulic head in the 130 m thick Callovo-Oxfordian argillaceous formation. Head values in the argillaceous rock exceed those in the overlying Oxfordian limestone by 25-35 m, and those in the underlying Dogger by over 45 m. The third equipment described in the paper, is derived from the experiment carried out at the Mont Terri rock laboratory since 1996 for the characterization of diffusion and retention processes. The system is adapted for a borehole drilled from the surface. The objectives of this experiment are as follows: Verification of the predominant role played by molecular diffusion

  8. Rock stress orientation measurements using induced thermal spalling in slim boreholes

    International Nuclear Information System (INIS)

    Hakami, Eva

    2011-05-01

    In the planning and design of a future underground storage for nuclear waste based on the KBS-3 method, one of the aims is to optimize the layout of deposition tunnels such that the rock stresses on the boundaries of deposition holes are minimized. Previous experiences from heating of larger scale boreholes at the Aespoe Hard Rock Laboratory (AHRL) gave rise to the idea that induced borehole breakouts using thermal loading in smaller diameter boreholes, could be a possible way of determining the stress orientation. Two pilot experiments were performed, one at the Aespoe Hard Rock Laboratory and one at ONKALO research site in Finland. An acoustic televiewer logger was used to measure the detailed geometrical condition of the borehole before and after heating periods. The acoustic televiewer gives a value for each 0.7 mm large pixel size around the borehole periphery. The results from the loggers are presented as images of the borehole wall, and as curves for the maximum, mean and minimum values at each depth. Any changes in the borehole wall geometry may thus be easily detected by comparisons of the logging result images. In addition, using an optical borehole televiewer a good and detailed realistic colour picture of the borehole wall is obtained. From these images the character of the spalls identified may be evaluated further. The heating was performed in a 4 m long section, using a heating cable centred in an 8 m deep vertical borehole, drilled from the floor of the tunnels. For the borehole in the Q-tunnel of AHRL the results from the loggings of the borehole before the heating revealed that breakouts existed even before this pilot test due to previous heating experiments at the site (CAPS). Quite consistent orientation and the typical shape of small breakouts were observed. After the heating the spalling increased slightly at the same locations and a new spalling location also developed at a deeper location in the borehole. At ONKALO three very small changes

  9. Rock stress orientation measurements using induced thermal spalling in slim boreholes

    Energy Technology Data Exchange (ETDEWEB)

    Hakami, Eva [Geosigma AB, Uppsala (Sweden)

    2011-05-15

    In the planning and design of a future underground storage for nuclear waste based on the KBS-3 method, one of the aims is to optimize the layout of deposition tunnels such that the rock stresses on the boundaries of deposition holes are minimized. Previous experiences from heating of larger scale boreholes at the Aespoe Hard Rock Laboratory (AHRL) gave rise to the idea that induced borehole breakouts using thermal loading in smaller diameter boreholes, could be a possible way of determining the stress orientation. Two pilot experiments were performed, one at the Aespoe Hard Rock Laboratory and one at ONKALO research site in Finland. An acoustic televiewer logger was used to measure the detailed geometrical condition of the borehole before and after heating periods. The acoustic televiewer gives a value for each 0.7 mm large pixel size around the borehole periphery. The results from the loggers are presented as images of the borehole wall, and as curves for the maximum, mean and minimum values at each depth. Any changes in the borehole wall geometry may thus be easily detected by comparisons of the logging result images. In addition, using an optical borehole televiewer a good and detailed realistic colour picture of the borehole wall is obtained. From these images the character of the spalls identified may be evaluated further. The heating was performed in a 4 m long section, using a heating cable centred in an 8 m deep vertical borehole, drilled from the floor of the tunnels. For the borehole in the Q-tunnel of AHRL the results from the loggings of the borehole before the heating revealed that breakouts existed even before this pilot test due to previous heating experiments at the site (CAPS). Quite consistent orientation and the typical shape of small breakouts were observed. After the heating the spalling increased slightly at the same locations and a new spalling location also developed at a deeper location in the borehole. At ONKALO three very small changes

  10. Design and numerical simulation on an auto-cumulative flowmeter in horizontal oil-water two-phase flow.

    Science.gov (United States)

    Xie, Beibei; Kong, Lingfu; Kong, Deming; Kong, Weihang; Li, Lei; Liu, Xingbin; Chen, Jiliang

    2017-11-01

    In order to accurately measure the flow rate under the low yield horizontal well conditions, an auto-cumulative flowmeter (ACF) was proposed. Using the proposed flowmeter, the oil flow rate in horizontal oil-water two-phase segregated flow can be finely extracted. The computational fluid dynamics software Fluent was used to simulate the fluid of the ACF in oil-water two-phase flow. In order to calibrate the simulation measurement of the ACF, a novel oil flow rate measurement method was further proposed. The models of the ACF were simulated to obtain and calibrate the oil flow rate under different total flow rates and oil cuts. Using the finite-element method, the structure of the seven conductance probes in the ACF was simulated. The response values for the probes of the ACF under the conditions of oil-water segregated flow were obtained. The experiments for oil-water segregated flow under different heights of the oil accumulation in horizontal oil-water two-phase flow were carried out to calibrate the ACF. The validity of the oil flow rate measurement in horizontal oil-water two-phase flow was verified by simulation and experimental results.

  11. An automated method to build groundwater model hydrostratigraphy from airborne electromagnetic data and lithological borehole logs

    DEFF Research Database (Denmark)

    Marker, Pernille Aabye; Foged, N.; He, X.

    2015-01-01

    of electrical resistivity and clay fraction are classified into hydrostratigraphic zones using k-means clustering. Hydraulic conductivity values of the zones are estimated by hydrological calibration using hydraulic head and stream discharge observations. The method is applied to a Danish case study......Large-scale integrated hydrological models are important decision support tools in water resources management. The largest source of uncertainty in such models is the hydrostratigraphic model. Geometry and configuration of hydrogeological units are often poorly determined from hydrogeological data......-scale groundwater models. We present a novel method to automatically integrate large AEM data-sets and lithological information into large-scale hydrological models. Clay-fraction maps are produced by translating geophysical resistivity into clay-fraction values using lithological borehole information. Voxel models...

  12. Method for orienting a borehole core

    International Nuclear Information System (INIS)

    Henry, W.

    1980-01-01

    A method is described for longitudinally orienting a borehold core with respect to the longitudinal axis of the drill string which drilled said borehold core in such a manner that the original longitudinal attitude of said borehold core within the earth may be determined. At least a portion of said borehold core is partialy demagnetized in steps to thereby at least partially remove in steps the artificial remanent magnetism imparted to said borehole core by said drill string. The artifical remanent magnetism is oriented substantially parallel to the longitudinal axis of said drill string. The direction and intensity of the total magnetism of said borehold core is measured at desired intervals during the partial demagnetizing procedure. An artificial remanent magnetism vector is established which extends from the final measurement of the direction and intensity of the total magnetism of said borehole core taken during said partial demagnetizing procedure towards the initial measurement of the direction and intensity of the total magnetism of said borehold core taken during said partial demagnetizing procedure. The borehold core is oriented in such a manner that said artificial remanent magnetism vector points at least substantially downwardly towards the bottom of said borehold core for a borehold in the northern hemisphere and points at least substantailly upwardly towards the top of said borehole core for a borehole in the southern hemisphere

  13. Evaluation of cutaneous blood flow responses by 133Xe washout and a laser-Doppler flowmeter

    International Nuclear Information System (INIS)

    Engelhart, M.; Kristensen, J.K.

    1983-01-01

    A new method for noninvasive measurement of cutaneous blood flow is laser-Doppler flowmetry. The technique is based on the fact that laser light is back-scattered from the moving red blood cells, with Doppler-shifted frequencies; these impulses lead to photodetectors and are converted to flow signals. In this work we used a new system with a low noise level. Comparison was made between this technique and the atraumatic epicutaneous 133 Xe technique for measurement of cutaneous blood flow during reactive hyperemia and orthostatic pressure changes. The laser-Doppler flowmeter seems to measure blood flow in capillaries as well as in arteriovenous anastomoses, while the 133 Xe method probably measures only capillary flow. A calibration of the laser-Doppler method against the 133 Xe method would appear to be impossible in skin areas where arteriovenous anastomoses are present. The changes in blood flow during reactive hyperemia, orthostatic pressure changes, and venous stasis were found to be parallel as measured by the two methods in skin areas without shunt vessels. The laser-Doppler flowmeter would appear to be a useful supplement to the 133Xe washout method in cutaneous vascular physiology, but it is important to keep in mind that different parameters may be measured

  14. Deep Borehole Field Test Requirements and Controlled Assumptions.

    Energy Technology Data Exchange (ETDEWEB)

    Hardin, Ernest [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-07-01

    This document presents design requirements and controlled assumptions intended for use in the engineering development and testing of: 1) prototype packages for radioactive waste disposal in deep boreholes; 2) a waste package surface handling system; and 3) a subsurface system for emplacing and retrieving packages in deep boreholes. Engineering development and testing is being performed as part of the Deep Borehole Field Test (DBFT; SNL 2014a). This document presents parallel sets of requirements for a waste disposal system and for the DBFT, showing the close relationship. In addition to design, it will also inform planning for drilling, construction, and scientific characterization activities for the DBFT. The information presented here follows typical preparations for engineering design. It includes functional and operating requirements for handling and emplacement/retrieval equipment, waste package design and emplacement requirements, borehole construction requirements, sealing requirements, and performance criteria. Assumptions are included where they could impact engineering design. Design solutions are avoided in the requirements discussion. Deep Borehole Field Test Requirements and Controlled Assumptions July 21, 2015 iv ACKNOWLEDGEMENTS This set of requirements and assumptions has benefited greatly from reviews by Gordon Appel, Geoff Freeze, Kris Kuhlman, Bob MacKinnon, Steve Pye, David Sassani, Dave Sevougian, and Jiann Su.

  15. 30 CFR 57.22241 - Advance face boreholes (I-C mines).

    Science.gov (United States)

    2010-07-01

    ...) Boreholes shall be drilled in such a manner to insure that the advancing face will not accidently break into... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Advance face boreholes (I-C mines). 57.22241... Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22241 Advance face boreholes (I-C mines...

  16. Core-logs of borehole VI down to 505 m

    International Nuclear Information System (INIS)

    Carlsson, L.; Olsson, T.; Stejskal, V.

    1981-01-01

    In the hydrogeological program of the Stripa project the vertical borehole V1 has been drilled 505.5 m. The drillcore has been logged with regard to rock characteristic, fracture frequency, dipping and filling. The results presented as cumulative fracture diagram have formed the base for subdivision of the borehole according to fracture frequency. The variation in the fracture dipping was also taken into account. Chlorite is the most common of the infilling material in the fractures. For the borehole 0-466 m the average fracture frequency is 1.46 fractures/m. Below 466 m the core is highly fractured and crushed indicating that the borehole has entered a crushed zone. Because of this the drilling is temporarily stopped. (Auth.)

  17. Comparative study of coliform contamination of public boreholes ...

    African Journals Online (AJOL)

    This study was carried out to determine the coliform contamination of public boreholes and pipe borne water supplies within Bosso town. Twenty (20) water samples comprising of 10 each of borehole and pipe borne samples were aseptically collected from Bosso Town and analyzed using membrane filtration technique.

  18. VTT test borehole for bedrock investigations

    International Nuclear Information System (INIS)

    Okko, O.; Hassinen, P.; Front, K.

    1994-02-01

    A borehole of depth 150 m and diameter 56 mm has been drilled in the area adjacent to the premises of the Technical Research Centre of Finland (VTT) at Otaniemi, Espoo, for the purposes of calibrating geophysical measurements devices. This report presents the test results obtained so far and illustrates the processing of these, in which the various measurements are plotted as curves and combinations of curves. The interpretations provided so far consists of analyses of lithological variations, bedrock fracturing, the nature and occurrence of fracture zones and groundwater flow patterns. Samples were taken from those parts of the core shown by the borehole measurements to be homogenous and thin sections made from these for mineralogical determinations. The rock mechanical and petrophysical properties of the same points were examined. The core is in the possession of VTT, and the hole itself is available to outsiders for the calibration and testing of borehole measurement equipment. (orig.). (21 refs., 13 figs., 5 tabs.)

  19. Field study of macrodispersion in a heterogeneous aquifer. 2

    International Nuclear Information System (INIS)

    Boggs, J.M.; Rehfeldt, K.R.

    1990-01-01

    Observations of the spatial variability of the hydraulic conductivity field at the site of a large-scale natural gradient tracer experiment located at Columbus Air Force Base in Mississippi are presented. Direct measurements of hydraulic conductivity of the heterogeneous alluvial aquifer at the site were made using a variety of methods including aquifer tests, borehole flowmeter logging, double-packer tests, slug tests, and a newly developed laboratory permeameter to test undisturbed soil cores. The borehole flowmeter method was shown to be the most effective method for measuring conductivity variability. Estimates of the log hydraulic conductivity variance (σ 2 lnL ) and the horizontal and vertical correlation sales, (λ h and λ v ) of 4.5, 12 m, and 1.5 m, respectively, were calculated assuming second order stationarity of the conductivity field. Large-scale spatial variations in the mean groundwater velocity indicated by the natural gradient tracer experiment, which were shown to be a direct result of contrasts in the mean hydraulic conductivity along the plume pathway, strongly suggested the presence of a conductivity trend. The measured hydraulic conductivity data were subsequently detrended using least-squares regression to remove three-dimensional polynomials. The third-order polynomial was judged the best representation of the conductivity drift based on its overall compatibility with the groundwater flow field inferred from the tracer plume observations. Significantly lower estimates for σ 2 lnK , λ h , and λ v of 2.8, 5.3 m, and 0.7 m, respectively, were obtained from the third-order log conductivity residuals. The experience with the borehole flowmeter technique shows the feasibility of observing the statistical parameters of the hydraulic conductivity variability required for stochastic models of macrodispersion. (Author) (20 refs., 3 figs., 10 tabs.)

  20. Geology of the Waste Treatment Plant Seismic Boreholes

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, D. Brent; Fecht, Karl R.; Reidel, Stephen P.; Bjornstad, Bruce N.; Lanigan, David C.; Rust, Colleen F.

    2007-05-11

    In 2006, the U.S. Department of Energy initiated the Seismic Boreholes Project (SBP) to emplace boreholes at the Waste Treatment Plant (WTP) site in order to obtain direct shear wave velocity (Vs) measurements and other physical property measurements in Columbia River basalt and interbedded sediments of the Ellensburg Formation. The goal was to reduce the uncertainty in the response spectra and seismic design basis, and potentially recover design margin for the WTP. The characterization effort within the deep boreholes included 1) downhole measurements of the velocity properties of the suprabasalt, basalt, and sedimentary interbed sequences, 2) downhole measurements of the density of the subsurface basalt and sediments, and 3) geologic studies to confirm the geometry of the contact between the various basalt and interbedded sediments through examination of retrieved core from the core hole and data collected through geophysical logging of each borehole. This report describes the results of the geologic studies from three mud-rotary boreholes and one cored borehole at the WTP. All four boreholes penetrated the entire Saddle Mountains Basalt and the upper part of the Wanapum Basalt where thick sedimentary interbeds occur between the lava flows. The basalt flows penetrated in Saddle Mountains Basalt included the Umatilla Member, Esquatzel Member, Pomona Member, and the Elephant Mountain Member. The underlying Priest Rapids Member of the Wanapum Basalt also was penetrated. The Ellensburg Formation sediments consist of the Mabton Interbed, the Cold Creek Interbed, the Selah Interbed, and the Rattlesnake Ridge Interbed; the Byron Interbed occurs between two flows of the Priest Rapids Member. The Mabton Interbed marks the contact between the Wanapum and Saddle Mountains Basalts. The thicknesses of the basalts and interbedded sediments were within expected limits. However, a small reverse fault was found in the Pomona Member flow top. This fault has three periods of

  1. Geology of the Waste Treatment Plant Seismic Boreholes

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, D. BRENT; Bjornstad, Bruce N.; Fecht, Karl R.; Lanigan, David C.; Reidel, Steve; Rust, Colleen F.

    2007-02-28

    In 2006, DOE-ORP initiated the Seismic Boreholes Project (SBP) to emplace boreholes at the Waste Treatment Plant (WTP) site in order to obtain direct Vs measurements and other physical property measurements in Columbia River basalt and interbedded sediments of the Ellensburg Formation. The goal was to reduce the uncertainty in the response spectra and seismic design basis, and potentially recover design margin for the WTP. The characterization effort within the deep boreholes included 1) downhole measurements of the velocity properties of the suprabasalt, basalt, and sedimentary interbed sequences, 2) downhole measurements of the density of the subsurface basalt and sediments, and 3) confirmation of the geometry of the contact between the various basalt and interbedded sediments through examination of retrieved core from the corehole and data collected through geophysical logging of each borehole. This report describes the results of the geologic studies from three mud-rotary boreholes and one cored borehole at the WTP. All four boreholes penetrated the entire Saddle Mountains Basalt and the upper part of the Wanapum Basalt where thick sedimentary interbeds occur between the lava flows. The basalt flows penetrated in Saddle Mountains Basalt included the Umatilla Member, Esquatzel Member, Pomona Member and the Elephant Mountain Member. The underlying Priest Rapids Member of the Wanapum Basalt was also penetrated. The Ellensburg Formation sediments consist of the Mabton Interbed, the Cold Creek Interbed, the Selah Interbed and the Rattlesnake Ridge Interbed; the Byron Interbed occurs between two flows of the Priest Rapids Member. The Mabton Interbed marks the contact between the Wanapum and Saddle Mountains Basalts. The thicknesses of the basalts and interbedded sediments were within expected limits. However, a small reverse fault was found in the Pomona Member flow top. This fault has three periods of movement and less than 15 feet of repeated section. Most of the

  2. Novel Emplacement Device for a Very Deep Borehole Disposal

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Min Soo; Choi, Heui-joo; Lee, Jong Yul [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    There is a worldwide attempt of HLW disposal into a very deep borehole of around 3-5 km depth with the advancement of an underground excavation technology recently. As it goes into deeper underground, the rock becomes more uniform and flawless. And then the underground water circulation system at 3-5 km depth is almost disconnected with near groundwater circulation system. The canister integrity is less important in this very deep borehole disposal system unlike a general geologic disposal system at 500 m. In the deep borehole disposal procedures, one SNF (Spent Nuclear Fuel) assembly is stored in one disposal canister (D30-40cm, H4.7-5.0m), and approximately 10-40 disposal canisters are connected axially, which parade length can leach to around 200m in maximum. The connected canister parade is lowered through a very deep borehole (D40-50cm) by emplacement devices. Therefore the connections between canisters and canister to lowering joint are very important for the safe operation of it. The well-known connection method between canisters is Threaded Coupled Connection method, in which releasing of the connection is almost impossible after thread fastening in the borehole. The novel joint device suggested in this paper can accommodate a canister emplacement and retrieval in the borehole disposal process. The joint can be lowered by bound to a drilling pipe, or high tension cable along 3-5 km distance. This novel device can cope with an accidental event easily without any joint head change. When canisters are damaged or stuck on the borehole wall during their descending, the canisters in trouble can be retrieved simply by the control of a lifting speed.

  3. Deep Borehole Disposal Concept: Development of Universal Canister Concept of Operations

    Energy Technology Data Exchange (ETDEWEB)

    Rigali, Mark J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Applied Systems Analysis and Research; Price, Laura L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Applied Systems Analysis and Research

    2016-08-01

    This report documents key elements of the conceptual design for deep borehole disposal of radioactive waste to support the development of a universal canister concept of operations. A universal canister is a canister that is designed to be able to store, transport, and dispose of radioactive waste without the canister having to be reopened to treat or repackage the waste. This report focuses on the conceptual design for disposal of radioactive waste contained in a universal canister in a deep borehole. The general deep borehole disposal concept consists of drilling a borehole into crystalline basement rock to a depth of about 5 km, emplacing WPs in the lower 2 km of the borehole, and sealing and plugging the upper 3 km. Research and development programs for deep borehole disposal have been ongoing for several years in the United States and the United Kingdom; these studies have shown that deep borehole disposal of radioactive waste could be safe, cost effective, and technically feasible. The design concepts described in this report are workable solutions based on expert judgment, and are intended to guide follow-on design activities. Both preclosure and postclosure safety were considered in the development of the reference design concept. The requirements and assumptions that form the basis for the deep borehole disposal concept include WP performance requirements, radiological protection requirements, surface handling and transport requirements, and emplacement requirements. The key features of the reference disposal concept include borehole drilling and construction concepts, WP designs, and waste handling and emplacement concepts. These features are supported by engineering analyses.

  4. ASSESSMENT OF HEAVY METAL STATUS OF BOREHOLES IN ...

    African Journals Online (AJOL)

    Osondu

    2012-02-13

    Feb 13, 2012 ... monitoring and assessment of boreholes mostly the indiscriminate sinking of boreholes in the ... Ethiopian Journal of Environmental Studies and Management Vol. 5 No.1 2012 ... may enter a water supply by industrial and ... issues of present day research on risk .... and pigments for paints, cement, paper,.

  5. Deep borehole disposal of high-level radioactive waste.

    Energy Technology Data Exchange (ETDEWEB)

    Stein, Joshua S.; Freeze, Geoffrey A.; Brady, Patrick Vane; Swift, Peter N.; Rechard, Robert Paul; Arnold, Bill Walter; Kanney, Joseph F.; Bauer, Stephen J.

    2009-07-01

    Preliminary evaluation of deep borehole disposal of high-level radioactive waste and spent nuclear fuel indicates the potential for excellent long-term safety performance at costs competitive with mined repositories. Significant fluid flow through basement rock is prevented, in part, by low permeabilities, poorly connected transport pathways, and overburden self-sealing. Deep fluids also resist vertical movement because they are density stratified. Thermal hydrologic calculations estimate the thermal pulse from emplaced waste to be small (less than 20 C at 10 meters from the borehole, for less than a few hundred years), and to result in maximum total vertical fluid movement of {approx}100 m. Reducing conditions will sharply limit solubilities of most dose-critical radionuclides at depth, and high ionic strengths of deep fluids will prevent colloidal transport. For the bounding analysis of this report, waste is envisioned to be emplaced as fuel assemblies stacked inside drill casing that are lowered, and emplaced using off-the-shelf oilfield and geothermal drilling techniques, into the lower 1-2 km portion of a vertical borehole {approx}45 cm in diameter and 3-5 km deep, followed by borehole sealing. Deep borehole disposal of radioactive waste in the United States would require modifications to the Nuclear Waste Policy Act and to applicable regulatory standards for long-term performance set by the US Environmental Protection Agency (40 CFR part 191) and US Nuclear Regulatory Commission (10 CFR part 60). The performance analysis described here is based on the assumption that long-term standards for deep borehole disposal would be identical in the key regards to those prescribed for existing repositories (40 CFR part 197 and 10 CFR part 63).

  6. The experimental results and analysis of a borehole radar prototype

    International Nuclear Information System (INIS)

    Liu, Sixin; Wu, Junjun; Dong, Hang; Fu, Lei; Wang, Fei

    2012-01-01

    A prototype of borehole radar has been successfully tested in three sites for different purposes under a field condition. The objective of the prototype is providing an effective down-hole tool for detecting targets in deep boreholes situated in a relatively high conductivity area such as the metal ores. The first testing site is at a geothermal field. The fractures extending more than 20 m from the borehole are delineated by the borehole radar in the single-hole reflection mode. The second testing site is located in a jade mine for basement evaluation. The cross-hole measurement mode was used to detect the cavities made by previous unorganized mining activities. Several high-velocity anomalies were found in the velocity profile and presumably the targets of the mine shafts and tunnels. The third test site is located in a mineralized belt characterized by low resistivity less than 1000 Ohm m, the surface-borehole measurement was carried out and the data were processed with velocity tomography. The low-velocity zone corresponds to a mineralized zone from geological records. The three testing results proved the readiness of this borehole radar prototype for further deployment in more complicated and realistic field situations. (paper)

  7. Polarimetric borehole radar measurement near Nojima fault and its application to subsurface crack characterization; Polarimetric borehole radar ni yoru Nojima danso shuhen no chika kiretsu keisoku jikken

    Energy Technology Data Exchange (ETDEWEB)

    Sato, M.; Taniguchi, Y.; Miwa, T.; Niitsuma, H. [Tohoku University, Sendai (Japan); Ikeda, R. [National Research Institute for Disaster Prevention, Tsukuba (Japan); Makino, K. [Geophysical Surveying and Consulting Co. Ltd., Tokyo (Japan)

    1997-05-27

    Practical application of subsurface crack characterization by the borehole radar measurement to which the radar polarimetric method was introduced was attempted to measuring objects for which the borehole radar has not been much used, for example, the inside of low loss rock mass or fracture zone where cracks tightly exist. A system was trially manufactured which makes the radar polarimetric measurement possible in the borehole at a 1000m depth and with a about 10cm diameter, and a field experiment was conducted for realizing the subsurface crack characterization near the Nojima fault. For the measuring experiment by the polarimetric borehole radar, used were Iwaya borehole and Hirabayashi borehole drilled in the north of Awaji-shima, Hyogo-ken. In a comparison of both polarization systems of Hirabayashi borehole, reflected waves at depths of 1038m and 1047m are relatively stronger in both polarization systems than those with the same polarization form and at different depths, whereas reflected waves around a 1017m depth are strong only as to the parallel polarization system. Characteristics of the polarization in this experiment indirectly reflect crack structures. 6 refs., 6 figs., 1 tab.

  8. Completion summary for boreholes TAN-2271 and TAN‑2272 at Test Area North, Idaho National Laboratory, Idaho

    Science.gov (United States)

    Twining, Brian V.; Bartholomay, Roy C.; Hodges, Mary K.V.

    2016-06-30

    255 ft BLS and the second between 272 and 282 ft BLS. Basalt texture for borehole TAN-2271 generally was described as aphanitic, phaneritic, and porphyritic. Sediment layers, starting near 122 ft BLS, generally were composed of fine-grained sand and silt with a lesser amount of clay. Basalt flows generally ranged in thickness from 2 to 78 ft and varied from highly fractured to dense with high to low vesiculation. Geophysical data and limited core material collected from TAN-2272 show similar lithologic sequences to those reported for TAN-2271.Geophysical and borehole video logs were collected during certain stages of the drilling and construction process at boreholes TAN-2271 and TAN-2272. Geophysical logs were examined synergistically with available core material to confirm geologic and hydrologic similarities and suggest possible fractured network interconnection between boreholes TAN-2271 and TAN-2272. Natural gamma log measurements were used to assess the completeness of the vapor port lines behind 10-in. diameter well casing. Electromagnetic flow meter results were used to identify downward flow conditions that exist for boreholes TAN-2271 and TAN-2272. Furthermore, gyroscopic deviation measurements were used to measure horizontal and vertical displacement at all depths in boreholes TAN-2271 and TAN-2272.After borehole construction was completed, single‑well aquifer tests were done within wells TAN-2271 and TAN‑2272 to provide estimates of transmissivity and hydraulic conductivity. The transmissivity and hydraulic conductivity were estimated for the pumping well and observation well during the aquifer tests conducted on August 25 and August 27, 2015. Estimates for transmissivity range from 4.1 . 103 feet squared per day (ft2/d) to 8.1 . 103 ft2/d; estimates for hydraulic conductivity range from 5.8 to 11.5 feet per day (ft/d). Both TAN-2271 and TAN‑2272 show sustained pumping rates of about 30 gallons per minute (gal/min) with measured drawdown in the

  9. Comparison of Performance of Public and Private Boreholes ...

    African Journals Online (AJOL)

    In the last fifteen years, a remarkable increase in the number of privately owned. There has been an increase in the individually owned and operated boreholes within the state because it is claimed that government owned boreholes breakdown too often. Hence, this study is aimed at comparison of the performance of three ...

  10. Borehole logging system

    International Nuclear Information System (INIS)

    Allen, L.S.

    1988-01-01

    A radioactive borehole logging tool employs an epithermal neutron detector having a neutron counter surrounded by an inner thermal neutron filter and an outer thermal neutron filter. Located between the inner and outer filters is a neutron moderating material for extending the lifetime of epithermal neutrons to enhance the counting rate of such epithermal neutrons by the neutron counter

  11. Aespoe Hard Rock Laboratory. BIPS logging in borehole KAS09

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, Jaana; Gustafsson, Christer (Malaa Geoscience AB (Sweden))

    2010-01-15

    This report includes the data gained in BIPS logging performed at the Aespoe Hard Rock Laboratory. The logging operation presented here includes BIPS logging in the core drilled borehole KAS09. The objective for the BIPS logging was to observe the condition of KAS09 in order to restore the borehole in the hydrogeological monitoring programme.All measurements were conducted by Malaa Geoscience AB on October 9th 2009. The objective of the BIPS logging is to achieve information of the borehole including occurrence of rock types as well as determination of fracture distribution and orientation. This report describes the equipment used as well as the measurement procedures and data gained. For the BIPS survey, the result is presented as images. The basic conditions of the BIPS logging for geological mapping and orientation of structures are satisfying for borehole KAS09, although induced affects from the drilling on the borehole walls limit the visibility

  12. Geostatistical Borehole Image-Based Mapping of Karst-Carbonate Aquifer Pores.

    Science.gov (United States)

    Sukop, Michael C; Cunningham, Kevin J

    2016-03-01

    Quantification of the character and spatial distribution of porosity in carbonate aquifers is important as input into computer models used in the calculation of intrinsic permeability and for next-generation, high-resolution groundwater flow simulations. Digital, optical, borehole-wall image data from three closely spaced boreholes in the karst-carbonate Biscayne aquifer in southeastern Florida are used in geostatistical experiments to assess the capabilities of various methods to create realistic two-dimensional models of vuggy megaporosity and matrix-porosity distribution in the limestone that composes the aquifer. When the borehole image data alone were used as the model training image, multiple-point geostatistics failed to detect the known spatial autocorrelation of vuggy megaporosity and matrix porosity among the three boreholes, which were only 10 m apart. Variogram analysis and subsequent Gaussian simulation produced results that showed a realistic conceptualization of horizontal continuity of strata dominated by vuggy megaporosity and matrix porosity among the three boreholes. © 2015, National Ground Water Association.

  13. Aespoe Hard Rock Laboratory. BIPS logging in borehole KAS09

    International Nuclear Information System (INIS)

    Gustafsson, Jaana; Gustafsson, Christer

    2010-01-01

    This report includes the data gained in BIPS logging performed at the Aespoe Hard Rock Laboratory. The logging operation presented here includes BIPS logging in the core drilled borehole KAS09. The objective for the BIPS logging was to observe the condition of KAS09 in order to restore the borehole in the hydrogeological monitoring programme.All measurements were conducted by Malaa Geoscience AB on October 9th 2009. The objective of the BIPS logging is to achieve information of the borehole including occurrence of rock types as well as determination of fracture distribution and orientation. This report describes the equipment used as well as the measurement procedures and data gained. For the BIPS survey, the result is presented as images. The basic conditions of the BIPS logging for geological mapping and orientation of structures are satisfying for borehole KAS09, although induced affects from the drilling on the borehole walls limit the visibility

  14. Summary of the Lavia borehole investications in 1984

    International Nuclear Information System (INIS)

    Aeikaes, T.; Oehberg, A.; Ryhaenen, V.

    1985-02-01

    Industrial Power Company Ltd (TVO) drilled in the spring 1984 a 1001 m deep borehole, diameter 56 mm, in Lavia. The borehole is used during the years 1984-85 for developing and testing research methods and equipment needed in site investigations of spent fuel final disposal in the future. In 1984 hydraulical and geophysical tests were made and groundwater samples were taken. The drilling site is a wide outcropped area in the northern part of the porphyritic granite formation of Lavia. Geological and fracture mapping as well as geophysical measurements on the surface were made in the area surrounding the drilling site. The bedrock consists of homonous porphyritic granite, in which quartzdiorite occurs in thin incalations. Magnetic or electric anomalies were not observed. Fracture frequency is low and the fractures appear mainly in two sets. The rock types vary in the borehole from porphyritic granite to diorite. Due to slight mineralogical variations, the diorite is either granodiorite, quartzdiorite or tonalite. Granite occurs as veins. Hydraulic conductivity was measured systematically with a packer separation of 30 m between the depths 73-973 m. Hydraulic conductivity is generally 10 -10 -10 -11 m/s. Electric, radiometric, magnetic and acoustic measurements were made in the borehole. In addition, the caliper and the temperature of the borehole were measured. The results of these geophysical measurements indicate the properties of rock types and fracturing in the borehole. On the basis of the results e.g. fracture porosity was interpreted. The results of acoustic tube wave measurement correlate well with hydraulic conductivity. Water samples were taken from four depths. The deepest level was 910 m. The samples were taken with a packer separation of 5 m. In the water analyses it was observed that at several depths remarkable amounts of flushing water from drilling were still remaining in the rock

  15. A novel, microscope based, non invasive Laser Doppler flowmeter for choroidal blood flow assessment

    Science.gov (United States)

    Strohmaier, C; Werkmeister, RM; Bogner, B; Runge, C; Schroedl, F; Brandtner, H; Radner, W; Schmetterer, L; Kiel, JW; Grabnerand, G; Reitsamer, HA

    2015-01-01

    Impaired ocular blood flow is involved in the pathogenesis of numerous ocular diseases like glaucoma or AMD. The purpose of the present study was to introduce and validate a novel, microscope based, non invasive laser Doppler flowmeter (NILDF) for measurement of blood flow in the choroid. The custom made NI-LDF was compared with a commercial fiber optic based laser Doppler flowmeter (Perimed PF4000). Linearity and stability of the NI-LDF were assessed in a silastic tubing model (i.d. 0.3 mm) at different flow rates (range 0.4 – 3 ml/h). In a rabbit model continuous choroidal blood flow measurements were performed with both instruments simultaneously. During blood flow measurements ocular perfusion pressure was changed by manipulations of intraocular pressure via intravitreal saline infusions. The NILDF measurement correlated linearly to intraluminal flow rates in the perfused tubing model (r = 0.99, p<0.05) and remained stable during a 1 hour measurement at a constant flow rate. Rabbit choroidal blood flow measured by the PF4000 and the NI-LDF linearly correlated with each other over the entire measurement range (r = 0.99, y = x* 1,01 – 12,35 P.U., p < 0,001). In conclusion, the NI-LDF provides valid, semi quantitative measurements of capillary blood flow in comparison to an established LDF instrument and is suitable for measurements at the posterior pole of the eye. PMID:21443871

  16. Application of a vortex shedding flowmeter to the wide range measurement of high temperature gas flow

    International Nuclear Information System (INIS)

    Baker, S.P.; Ennis, R.M. Jr.; Herndon, P.G.

    1981-01-01

    A single flowmeter was required for helium gas measurement in a Gas Cooled Fast Breeder Reactor loss of coolant simulator. Volumetric flow accuracy of +-1.0% of reading was required over the Reynolds Number range 6 x 10 3 to 1 x 10 6 at flowing pressures from 0.2 to 9 MPa (29 to 1305 psia) at 350 0 C (660 0 F) flowing temperature. Because of its inherent accuracy and rangeability, a vortex shedding flowmeter was selected and specially modified to provide for a remoted thermal sensor. Experiments were conducted to determine the relationship between signal attenuation and sensor remoting geometry, as well as the relationship between gas flow parameters and remoted thermal sensor signal for both compressed air and helium gas. Based upon the results of these experiments, the sensor remoting geometry was optimized for this application. The resultant volumetric flow rangeability was 155:1. The associated temperature increase at the sensor position was 9 0 C above ambient (25 0 F) at a flowing temperature of 350 0 C. The volumetric flow accuracy was measured over the entire 155:1 flow range at parametric values of flowing density. A volumetric flow accuracy of +- % of reading was demonstrated

  17. Multi-year monitoring of radon in boreholes at the Modra geophysical observatory, Slovakia

    International Nuclear Information System (INIS)

    Smetanova, I.; Steinitz, G.; Holy, K.

    2017-01-01

    Long-term radon monitoring was performed in two boreholes, at a depth of 13 m in the 40 m deep V-2 borehole (August 2003 September 2005), and at 3 m depth in the 10 m deep V-3 borehole (August 2003 April 2008). Diurnal, multi-day and annual variations in radon time-series were observed. Daily average of radon activity in V-2 borehole was significantly higher and ranged from 6.5 to 383.7 kBq/m 3 , while in V-3 borehole only between 1.2 and 139.4 kBq/m 3 . The seasonal pattern was more pronounced in V-3 time series, with the maximum occurring from October to March. Multi-day variations (2-10 days) were registered in V-2 and V-3 mostly simultaneously, with higher discrepancy in spring and summer periods, when radon activity in V-3 borehole was low. Diurnal radon variations with two maxima and two minima per day were registered in both boreholes. The influence of meteorological parameters on radon concentrations was investigated. The overall impression is that seasonal variation in radon in V-3 borehole seems to be connected with the temperature variation. Multi-day variations of radon in both boreholes coincided with the atmospheric pressure changes. An increase in radon activity was observed in V-3 borehole after the rainfall in spring and summer seasons. (authors)

  18. Regional-scale airborne electromagnetic surveying of the Yucatan karst aquifer (Mexico): geological and hydrogeological interpretation

    DEFF Research Database (Denmark)

    Gondwe, Bibi Ruth Neuman; Ottowitz, David; Supper, Robert

    2012-01-01

    -spectral remote sensing imagery, shuttle radar topography data and frequency-domain airborne electromagnetic (AEM) survey data were used to map karst-aquifer structure on the Yucatan Peninsula, Mexico. Anomalous AEM responses correlated with topographic features and anomalous spectral reflectance of the terrain...... as ejecta from the Chicxulub impact (Cretaceous/Paleogene boundary), based on similar resistivity signatures found in borehole logs. Due to limited sensitivity of the AEM survey, the subsurface configuration beneath the low-resistivity layer could not be unambiguously determined. AEM measurements combined...

  19. Drilling-induced borehole-wall damage at spent fuel test-climax

    International Nuclear Information System (INIS)

    Weed, H.C.; Durham, W.B.

    1982-12-01

    Microcracks in a sample of quartz monzonite from the Spent Fuel Test-Climax were measured by means of a scanning electron microscope in order to estimate the background level of damage near the borehole-wall. It appears that the hammer-drilling operation used to create the borehole has caused some microfracturing in a region 10 to 30 mm wide around the borehole. Beyond 30 mm, the level of microfracturing cannot be distinguished from background

  20. Theory of errors in Coriolis flowmeter readings due to compressibility of the fluid being metered

    OpenAIRE

    Kutin, Jože; Hemp, John

    2015-01-01

    The compressibility of fluids in a Coriolis mass flowmeter can cause errors in the meter's measurements of density and mass flow rate. These errors may be better described as errors due to the finite speed of sound in the fluid being metered, or due to the finite wavelength of sound at the operating frequency of the meter. In this paper, they are investigated theoretically and calculated to a first approximation (small degree of compressibility). The investigation is limited to straight beam-...

  1. Flow Measurement of Wet CO2 Using an Averaging Pitot Tube and Coriolis Mass Flowmeters

    OpenAIRE

    Adefila, K.; Yan, Yong; Sun, Lijun; Wang, Tao

    2017-01-01

    The flow measurement of wet-gas is an active field with extensive research background that remains a modern-day challenge. The implication of wet-gas flow conditions is no different in Carbon Capture and Storage (CCS) pipelines. The associated complex flow regime with wet-gas flow makes it difficult to accurately meter the flow rate of the gas phase. Some conventional single-phase flowmeters like the Coriolis, Orifice plate, Ultrasonic, V-Cone, Venturi and Vortex have been tested for this app...

  2. Dimensioning of Boreholes for Geothermal Heat Pumps

    Directory of Open Access Journals (Sweden)

    Ryška Jiøí

    2004-09-01

    Full Text Available The paper deals with determination of borehole depths for geothermal heat pumps. Basic formulae are stated for heat convection in rocks. Software EED 2.0 was used for calculation of borehole depth depending on different entering parameters. The crucial parameter is thermal conductivity of rocks. The thermal conductivity could be very variable for the same kind of rock. Therefore its in-situ determination by means of formation thermal conductivity testing is briefly described.

  3. Digital signal processing of data from borehole creep closure

    International Nuclear Information System (INIS)

    Chakrabarti, S.; Patrick, W.C.; Duplancic, N.

    1987-01-01

    Digital signal processing, a technique commonly used in the fields of electrical engineering and communication technology, has been successfully used to analyze creep closure data obtained from a 0.91 m diameter by 5.13 deep borehole in bedded salt. By filtering the ''noise'' component of the closure data from a test borehole, important data trends were made more evident and average creep closure rates were able to be calculated. This process provided accurate estimates of closure rates that are used in the design of lined boreholes in which heat-generating transuranic nuclear wastes are emplaced at the Waste Isolation Pilot Plant

  4. Monitoring of traumatic process after hernioplasty by allografts using laser doppler flowmeter

    International Nuclear Information System (INIS)

    Bobrov, O.E.; Aleshchenko, I.E.; Dynnik, O.B.; Zinchenko, V.G.; Babenko, I.B.

    2008-01-01

    Full text: This is a comparative analysis of correlation between pathological phenomena of hemomicrom circulation at local trophic level of healing postoperative wounds by primary and secondary intention after hernioplasty by biomembranes (allografts) and by artificial reticular endoprosthesis. In this study two groups of patients were formed: I group (77 patients) underwent hernioplasty by implantation of biomembranes (Tutoplast allografts Fascia temporalis, Dermis); II group (81 patients) had hernioplasty using artificial reticular endoprosthesis. Comparative complex investigation of healing postoperative wounds was done by laser Doppler flowmeter, which allows fairly evaluating staging of traumatic process in 158 patients aging from 20 to 73 years, male, that underwent surgical treatments of inguinal hernia. In all patients traditional surgical technique using non-tension plasty methods for anterior abdominal wall was applied using above-mentioned materials. In first group wound healing took place by primary intention in all 77 patients and on amplitude-frequency spectrum of LDF charts happened by 4 phases: 1) reaction to trauma; 2) initial regeneration; 3) wound consolidation; 4) scar organization. In the second group - in 75 cases wound healing also took place by primary intention, but in 6 cases a secondary intention happened, which consisted on amplitude-frequency spectrum of LDF charts of 6 phases: 1) inflammation, 2) wound clearance from necrotic suppurative masses; 3) initial regeneration; 4) forming of granulations; 5) wound consolidation; 6) scar reorganization. To improve results of surgical treatment in patients with hernia it is needed to approach the choice of material for hernioplasty differentially depending hemodynamic type of microcirculation. Characteristics of vascular tissue system of future operative area directly influence the course of traumatic process in postoperative follow-up. Monitoring of traumatic process following hernioplasty by

  5. Transient electromagnetic detecting technique for water hazard to the roof of fully mechanized sub-level caving face

    Energy Technology Data Exchange (ETDEWEB)

    Yu Jing-cun; Liu Zhi-xin; Tang Jin-yun; Wang Yang-zhou [China University of Mining & Technology, Xuzhou (China). School of Resources and Geoscience Science

    2007-07-01

    In coal mining, with the popularization of fully mechanized equipment, the roof control becomes more and more important. The development of water body in roofs may seriously affect the efficiency of the fully mechanized mining, quite possible to cause an accident in working face. Therefore, to make clear the position of a water body located in roofs so as to provide a basis for water drainage borehole layout is an urgent problem to be solved by geophysical exploration. Based on the transient electromagnetic theory and the technique used on ground surface and on the actual situation in underground coal mines, a square superimposed loop device (2 m in side length) which is non-contact and multi-turns was developed to detect the water bodies in coal seam roofs. Based on the 'smoke ring effect' theory and the physical simulation criterion, the mathematical model for calculating the apparent resistivity of full space transient electromagnetism is deduced. In addition, the water detection technology for the roof of fully mechanized sub-level caving face was researched and applied in several coal mines, which has been verified by boreholes and mining practice, indicating that this method is very effective in detecting the water source in the roof of fully mechanized sub-level caving face. 11 refs., 5 figs.

  6. Geophysical borehole logging of the boreholes KR37, KR37B and KR38, at Olkiluoto 2005

    International Nuclear Information System (INIS)

    Majapuro, J.

    2006-03-01

    Suomen Malmi Oy conducted geophysical borehole logging of the boreholes KR37, KR37b and KR38 at the Olkiluoto site in Eurajoki during September and October 2005. The survey is a part of Posiva Oy's detailed investigation program for the final disposal of spent nuclear fuel. The assignment included the field work and processing of the acoustic data. The report describes the field operation, equipment as well as processing procedures and shows the obtained results and their quality in the appendices. The raw and processed data are delivered digitally in WellCAD and Excel format. (orig.)

  7. Re-sampling of the KLX02 deep borehole at Laxemar

    International Nuclear Information System (INIS)

    Laaksoharju, M.; Andersson, Cecilia; Tullborg, E.L.; Wallin, B.; Ekwall, K.; Pedersen, K.

    1999-01-01

    The project focuses on the origin and changes of deep groundwaters, which are important for understanding the stability of the groundwater surrounding the final repository. The results from the sampling campaign in 1997 down to a depth of 1500m are compared with the results from 1993 sampled in the same borehole. The analytical results and some preliminary calculations are presented. The changes since the last sampling campaign 4 years ago indicate a high degree of mixing and dynamics in the system. The following conclusions are drawn: More changes in the water composition than expected compared with the results from the sampling campaign in 1993; Larger portions of meteoric water in the upper part of the borehole; Less glacial water in the intermediate part of the borehole; More brine water in the lower part of the borehole. The conclusion is that there has been a relatively large change in the groundwater system during the last 4 years in the Laxemar deep borehole. The disturbance removed the effect from the last glaciation and pulled in groundwater, which resulted in a mixture mainly consisting of meteoric and brine waters. The most probable reason is that the annual fluctuation and flow in the open borehole play an important role as a modificator especially for the isotopes. The results show the sensitivity of deep groundwater to changes in the prevailing hydrogeological situation

  8. Determination of subsurface geological structure with borehole gravimetry

    International Nuclear Information System (INIS)

    Clark, S.R.; Hearst, J.R.

    1983-07-01

    Conventional gamma-gamma and gravimetric density measurements are routinely gathered for most holes used for underground nuclear tests. The logs serve to determine the subsurface structural geology near the borehole. The gamma-gamma density log measures density of the rock within about 15 cm of the borehole wall. The difference in gravity measured at two depths in a borehole can be interpreted in terms of the density of an infinite, homogeneous, horizontal bed between those depths. When the gravimetric density matches the gamma-gamma density over a given interval it is assumed that the bed actualy exists, and that rocks far from the hole must be the same as those encountered adjacent to the borehole. Conversely, when the gravimetric density differs from the gamma-gamma density it is apparent that the gravimeter is being influenced by a rock mass of different density than that at the hole wall. This mismatch can be a powerful tool to deduce the local structural geology. The geology deduced from gravity mesurements in emplacement hole, U4al, and the associated exploratory hole, UE4al, is an excellent example of the power of the method

  9. Method and apparatus for logging a borehole employing dual radiation detectors

    International Nuclear Information System (INIS)

    Arnold, D.M.

    1986-01-01

    An apparatus is described for logging a characteristic of a borehole in an earth formation employing nuclear count rate data selectively compensated for non-standard borehole conditions, comprising: a sonde, movable in a borehole, having: a radiation source for emitting radiation into earth formations adjacent the wellbore; first detector, spaced longitudinally from the radiation source, for detecting radiation scattered back to the detector and generating a first signal representative of a first count rate value, C/sub SS/; and second detector spaced a different longitudinal distance from the radiation source, for detecting radiation scattered back to the detector and generating a second signal representative of a count rate value, C/sub LS/; memory means for storing a predetermined threshold value, first predetermined relationships between the borehole characteristic and count rate values C/sub LS/, C/sub SS/; and second predetermined relationships between the borehole characteristic and ratios of C/sub LS/ to C/sub SS/; electronic means for producing a signal related in value to the borehole characteristic, which electronic means compares at least one of the first and second count rate value signals with the predetermined threshold value; means for recording the signal generated by the electronic means

  10. The Effect of Acoustic Disturbances on the Operation of the Space Shuttle Main Engine Fuel Flowmeter

    Science.gov (United States)

    Marcu, Bogdan; Szabo, Roland; Dorney, Dan; Zoladz, Tom

    2007-01-01

    The Space Shuttle Main Engine (SSME) uses a turbine fuel flowmeter (FFM) in its Low Pressure Fuel Duct (LPFD) to measure liquid hydrogen flowrates during engine operation. The flowmeter is required to provide accurate and robust measurements of flow rates ranging from 10000 to 18000 GPM in an environment contaminated by duct vibration and duct internal acoustic disturbances. Errors exceeding 0.5% can have a significant impact on engine operation and mission completion. The accuracy of each sensor is monitored during hot-fire engine tests on the ground. Flow meters which do not meet requirements are not flown. Among other parameters, the device is screened for a specific behavior in which a small shift in the flow rate reading is registered during a period in which the actual fuel flow as measured by a facility meter does not change. Such behavior has been observed over the years for specific builds of the FFM and must be avoided or limited in magnitude in flight. Various analyses of the recorded data have been made prior to this report in an effort to understand the cause of the phenomenon; however, no conclusive cause for the shift in the instrument behavior has been found. The present report proposes an explanation of the phenomenon based on interactions between acoustic pressure disturbances in the duct and the wakes produced by the FFM flow straightener. Physical insight into the effects of acoustic plane wave disturbances was obtained using a simple analytical model. Based on that model, a series of three-dimensional unsteady viscous flow computational fluid dynamics (CFD) simulations were performed using the MSFC PHANTOM turbomachinery code. The code was customized to allow the FFM rotor speed to change at every time step according to the instantaneous fluid forces on the rotor, that, in turn, are affected by acoustic plane pressure waves propagating through the device. The results of the simulations show the variation in the rotation rate of the flowmeter

  11. Methods for use in detecting seismic waves in a borehole

    Science.gov (United States)

    West, Phillip B.; Fincke, James R.; Reed, Teddy R.

    2007-02-20

    The invention provides methods and apparatus for detecting seismic waves propagating through a subterranean formation surrounding a borehole. In a first embodiment, a sensor module uses the rotation of bogey wheels to extend and retract a sensor package for selective contact and magnetic coupling to casing lining the borehole. In a second embodiment, a sensor module is magnetically coupled to the casing wall during its travel and dragged therealong while maintaining contact therewith. In a third embodiment, a sensor module is interfaced with the borehole environment to detect seismic waves using coupling through liquid in the borehole. Two or more of the above embodiments may be combined within a single sensor array to provide a resulting seismic survey combining the optimum of the outputs of each embodiment into a single data set.

  12. Excess plutonium disposition: The deep borehole option

    International Nuclear Information System (INIS)

    Ferguson, K.L.

    1994-01-01

    This report reviews the current status of technologies required for the disposition of plutonium in Very Deep Holes (VDH). It is in response to a recent National Academy of Sciences (NAS) report which addressed the management of excess weapons plutonium and recommended three approaches to the ultimate disposition of excess plutonium: (1) fabrication and use as a fuel in existing or modified reactors in a once-through cycle, (2) vitrification with high-level radioactive waste for repository disposition, (3) burial in deep boreholes. As indicated in the NAS report, substantial effort would be required to address the broad range of issues related to deep bore-hole emplacement. Subjects reviewed in this report include geology and hydrology, design and engineering, safety and licensing, policy decisions that can impact the viability of the concept, and applicable international programs. Key technical areas that would require attention should decisions be made to further develop the borehole emplacement option are identified

  13. Sealing of investigation boreholes, Phase 4 - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Pusch, Roland [Drawrite AB, Luleaa Technical University, Luleaa (Sweden); Ramqvist, Gunnar [El-Tekno AB, Figeholm (Sweden); Bockgaard, Niclas [Golder Associates, Goeteborg (Sweden); Ekman, Lennart [LE Geokonsult AB, Baelinge (Sweden)

    2011-09-15

    The report describes the outcome of Phase 4 of the project 'Sealing of investigation boreholes', which deals with 1) characterization and planning of borehole sealing, 2) performance and quality assessment, 3) sealing of large diameter holes, and 4) interaction of clay and concrete plugs. A specific goal was to find ways to characterize, plan and seal of boreholes so that their impact on the overall hydraulic performance of the repository rock can predicted and controlled. The work comprised selection of representative 'reference holes' at the Laxemar and Forsmark sites for development of a general programme for planning and simulating implementation of borehole plugging campaigns, considering also cost issues. A second aim was to define and quantify the role of seals in the reference holes for finding out how important sealing really is. A third was to test a practical way to seal large diameter boreholes and a fourth to find out how concrete matures and performs in contact with smectite clay. The study demonstrated, in conclusion, the need for developing techniques for preparing deep boreholes before lasting seals are installed in them, since poor sealing can short-circuit hydraulically important fracture zones intersected by the holes. The practically oriented sealing activities showed that the technique developed for tight sealing of large-diameter boreholes is practical and feasible. The issue of chemical stability was investigated by testing the performance and constitution of a plug consisting of CBI concrete in contact with smectite-rich seals for almost three years. This study showed that none of them underwent substantial degradation in this period of time, but chemical reactions and thereby generated changes in physical behaviour of the plug components had taken place, particularly in the clay. The rate of degradation is, however, not yet known. It was concluded from this study that it is suitable to carry out a corresponding

  14. Sealing of investigation boreholes, Phase 4 - Final report

    International Nuclear Information System (INIS)

    Pusch, Roland; Ramqvist, Gunnar; Bockgaard, Niclas; Ekman, Lennart

    2011-09-01

    The report describes the outcome of Phase 4 of the project 'Sealing of investigation boreholes', which deals with 1) characterization and planning of borehole sealing, 2) performance and quality assessment, 3) sealing of large diameter holes, and 4) interaction of clay and concrete plugs. A specific goal was to find ways to characterize, plan and seal of boreholes so that their impact on the overall hydraulic performance of the repository rock can predicted and controlled. The work comprised selection of representative 'reference holes' at the Laxemar and Forsmark sites for development of a general programme for planning and simulating implementation of borehole plugging campaigns, considering also cost issues. A second aim was to define and quantify the role of seals in the reference holes for finding out how important sealing really is. A third was to test a practical way to seal large diameter boreholes and a fourth to find out how concrete matures and performs in contact with smectite clay. The study demonstrated, in conclusion, the need for developing techniques for preparing deep boreholes before lasting seals are installed in them, since poor sealing can short-circuit hydraulically important fracture zones intersected by the holes. The practically oriented sealing activities showed that the technique developed for tight sealing of large-diameter boreholes is practical and feasible. The issue of chemical stability was investigated by testing the performance and constitution of a plug consisting of CBI concrete in contact with smectite-rich seals for almost three years. This study showed that none of them underwent substantial degradation in this period of time, but chemical reactions and thereby generated changes in physical behaviour of the plug components had taken place, particularly in the clay. The rate of degradation is, however, not yet known. It was concluded from this study that it is suitable to carry out a corresponding investigation of the plugs

  15. Automated borehole gravity meter system

    International Nuclear Information System (INIS)

    Lautzenhiser, Th.V.; Wirtz, J.D.

    1984-01-01

    An automated borehole gravity meter system for measuring gravity within a wellbore. The gravity meter includes leveling devices for leveling the borehole gravity meter, displacement devices for applying forces to a gravity sensing device within the gravity meter to bring the gravity sensing device to a predetermined or null position. Electronic sensing and control devices are provided for (i) activating the displacement devices, (ii) sensing the forces applied to the gravity sensing device, (iii) electronically converting the values of the forces into a representation of the gravity at the location in the wellbore, and (iv) outputting such representation. The system further includes electronic control devices with the capability of correcting the representation of gravity for tidal effects, as well as, calculating and outputting the formation bulk density and/or porosity

  16. Borehole instrument for scintillation gamma spectrometer

    International Nuclear Information System (INIS)

    Sinitsyn, A.Ya.; Gabitov, R.M.

    1979-01-01

    Described are a schematic diagram and main specifications of a borehole instrument with autostabilization of energy scale measure by gamma bench-mark of 137 Cs, intended for the application in a logging gamma spectrometer to determine separately the concentrations of nature radioactive elements. The instrument may be connected to the KOBDFM-2 cable of 600 m length. It contains a scintillation counter for gamma quanta consisting of 30x70 mm NaI(Tl) crystal and a FEU-85 photoamplifier, an input conforming stage, a diagram of threshold pulse formation and regulating high-voltage generator. The borehole instrument has been proved under laboratory and field conditions at 10-40 deg C

  17. 30 CFR 75.388 - Boreholes in advance of mining.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Boreholes in advance of mining. 75.388 Section... of mining. (a) Boreholes shall be drilled in each advancing working place when the working place... cannot be examined, and before mining continues, a certified person shall, if possible, determine— (1...

  18. Geophysical borehole logging. Final disposal of spent fuel

    International Nuclear Information System (INIS)

    Rouhiainen, P.

    1984-01-01

    Teollisuuden Voima Oy (Industrial Power Company Ltd.) will take precautions for final disposal of spent fuel in the Finnish bedrock. The first stage of the site selection studies includes drilling of a deep borehole down to approximately 1000 meters in the year 1984. The report deals with geophysical borehole logging methods, which could be used for the studies. The aim of geophysical borehole logging methods is to descripe specially hydrogeological and structural features. Only the most essential methods are dealt with in this report. Attention is paid to the information produced with the methods, derscription of the methods, interpretation and limitations. The feasibility and possibilities for the aims are evaluated. The evaluations are based mainly on the results from Sweden, England, Canada and USA as well as experiencies gained in Finland

  19. Design of a slimline directional borehole radar antenna using FDTD

    CSIR Research Space (South Africa)

    Vogt, D

    2008-06-01

    Full Text Available , dielectric. I. INTRODUCTION Borehole radar is the application of Ground Penetrating Radar (GPR) within a borehole [11]. GPR is a technique used to delineate structures and features of a subsurface. The borehole radar technique has been used successfully..., the direction of the incoming EM wave can be determined [6]. III. FILLER MATERIAL INSIDE ANTENNA ARRAY Ideally, there is no material between the antenna body and the rock surrounding it. In that case, the filler material would be matched to the dielectric...

  20. A strategy to seal exploratory boreholes in unsaturated tuff; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, J.A. [Sandia National Labs., Albuquerque, NM (United States); Case, J.B.; Givens, C.A.; Carney, B.C. [IT Corp., Albuquerque, NM (United States)

    1994-04-01

    This report presents a strategy for sealing exploratory boreholes associated with the Yucca Mountain Site Characterization Project. Over 500 existing and proposed boreholes have been considered in the development of this strategy, ranging from shallow (penetrating into alluvium only) to deep (penetrating into the groundwater table). Among the comprehensive list of recommendations are the following: Those boreholes within the potential repository boundary and penetrating through the potential repository horizon are the most significant boreholes from a performance standpoint and should be sealed. Shallow boreholes are comparatively insignificant and require only nominal sealing. The primary areas in which to place seals are away from high-temperature zones at a distance from the potential repository horizon in the Paintbrush nonwelded tuff and the upper portion of the Topopah Spring Member and in the tuffaceous beds of the Calico Hills Unit. Seals should be placed prior to waste emplacement. Performance goals for borehole seals both above and below the potential repository are proposed. Detailed construction information on the boreholes that could be used for future design specifications is provided along with a description of the environmental setting, i.e., the geology, hydrology, and the in situ and thermal stress states. A borehole classification scheme based on the condition of the borehole wall in different tuffaceous units is also proposed. In addition, calculations are presented to assess the significance of the boreholes acting as preferential pathways for the release of radionuclides. Design calculations are presented to answer the concerns of when, where, and how to seal. As part of the strategy development, available technologies to seal exploratory boreholes (including casing removal, borehole wall reconditioning, and seal emplacement) are reviewed.

  1. Study of borehole probing methods to improve the ground characterization

    Science.gov (United States)

    Naeimipour, Ali

    Collecting geological information allows for optimizing ground control measures in underground structures. This includes understanding of the joints and discontinuities and rock strength to develop rock mass classifications. An ideal approach to collect such information is through correlating the drilling data from the roofbolters to assess rock strength and void location and properties. The current instrumented roofbolters are capable of providing some information on these properties but not fully developed for accurate ground characterization. To enhance existing systems additional instrumentation and testing was conducted in laboratory and field conditions. However, to define the geology along the boreholes, the use of probing was deemed to be most efficient approach for locating joints and structures in the ground and evaluation of rock strength. Therefore, this research focuses on selection and evaluation of proper borehole probes that can offer a reliable assessment of rock mass structure and rock strength. In particular, attention was paid to borehole televiewer to characterize rock mass structures and joints and development of mechanical rock scratcher for determination of rock strength. Rock bolt boreholes are commonly drilled in the ribs and the roof of underground environments. They are often small (about 1.5 inches) and short (mostly 2-3 meter). Most of them are oriented upward and thus, mostly dry or perhaps wet but not filled with water. No suitable system is available for probing in such conditions to identify the voids/joints and specifically to measure rock strength for evaluation of rock mass and related optimization of ground support design. A preliminary scan of available borehole probes proved that the best options for evaluation of rock structure is through analysis of borehole images, captured by optical televiewers. Laboratory and field trials with showed that these systems can be used to facilitate measurement of the location, frequency and

  2. FE-study for lithostatic pressure measurement in the 600 m borehole experiment

    International Nuclear Information System (INIS)

    Hamilton, L.F.M.; Benneker, P.B.J.M.

    1990-05-01

    In the Asse-2 salt mine an experiment is set up by ECN in the 600 m borehole to perform in-situ convergence measurements which can be used to validate or to determine the constitutive relations between stresses and deformations of the rocksalt. An experiment is planned in which the convergence of the borehole can be measured with different pressures created in the borehole. For this experiment a device has been developed at ECN which also will be used to measure the in-situ elasticity of the salt. This measuring device is designed in such a way that a pressure can be realized in the borehole and the deformation of the hole can be measured at the same time. In this report analyses are presented that are used to adjust the design of the pressure unit to the specific needs induced by the fact that the depth of the borehole is only 300 m due to drilling problems instead of the intended 600 m. Since the lithostatic pressure at this depth is smaller the convergence rate of the borehole is reduced. From the results presented in this report it can be concluded that it is not necessary to change the basic concept of the measurement as it was planned in the 600 m deep borehole. After the device has been placed into the borehole at a distance of 3 m from the bottom the empty space must be filled up with salt concrete up to 3 m above the pressure unit. In this way the interaction with the borehole bottom and the transition between the open and the filled borehole can be neglected. Some changes in the design are necessary to be able to measure the deformations of the borehole with enough accuracy. Based on these changes a measuring program has been defined in such a way that the experimental period is optimally used and the expected evolution of the volume change and pressure can be measured with enough accuracy. For three different constitutive models a prediction is made for the evolution of the pressure and the volume change resulting from the defined measuring program

  3. Impact of postglacial warming on borehole reconstructions of last millennium temperatures

    Directory of Open Access Journals (Sweden)

    V. Rath

    2012-06-01

    Full Text Available The investigation of observed borehole temperatures has proved to be a valuable tool for the reconstruction of ground surface temperature histories. However, there are still many open questions concerning the significance and accuracy of the reconstructions from these data. In particular, the temperature signal of the warming after the Last Glacial Maximum is still present in borehole temperature profiles. It is shown here that this signal also influences the relatively shallow boreholes used in current paleoclimate inversions to estimate temperature changes in the last centuries by producing errors in the determination of the steady state geothermal gradient. However, the impact on estimates of past temperature changes is weaker. For deeper boreholes, the curvature of the long-term signal is significant. A correction based on simple assumptions about glacial–interglacial temperature changes shows promising results, improving the extraction of millennial scale signals. The same procedure may help when comparing observed borehole temperature profiles with the results from numerical climate models.

  4. Geophysical borehole logging in the unsaturated zone, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Schimschal, U.; Nelson, P.H.

    1991-01-01

    Borehole geophysical logging for site characterization in the volcanic rocks at the proposed nuclear waste repository at Yucca Mountain, Nevada, requires data collection under rather unusual conditions. Logging tools must operate in rugose, dry holes above the water table in the unsaturated zone. Not all logging tools will operate in this environment, therefore; careful consideration must be given to selection and calibration. A sample suite of logs is presented that demonstrates correlation of geological formations from borehole to borehole, the definition of zones of altered mineralogy, and the quantitative estimates of rock properties. The authors show the results of an exploratory calculation of porosity and water saturation based upon density and epithermal neutron logs. Comparison of the results with a few core samples is encouraging, particularly because the logs can provide continuous data in boreholes where core samples are not available

  5. Method for simultaneous measurement of borehole and formation neutron decay-times

    International Nuclear Information System (INIS)

    Smith, H.D.; Arnold, D.M.

    1982-01-01

    A method is described of making in situ measurements of the thermal neutron decay time of earth formations in the vicinity of a wellbore. The borehole and earth formations are irradiated, with pulsed fast neutrons and, during the interval between neutron pulses, capture gamma radiation is measured in at least four, non-overlapping, contiguous time intervals. Count-rates representative of thermal neutron populations in the borehole and the formations are made during each of the time intervals. A background radiation measurement for correcting the count-rates is preferably also periodically made. The count-rates are combined to derive simultaneously the formation and borehole neutron lifetime components which are recorded as a function of borehole depth. (author)

  6. New Analysis Scheme of Flow-Acoustic Coupling for Gas Ultrasonic Flowmeter with Vortex near the Transducer.

    Science.gov (United States)

    Sun, Yanzhao; Zhang, Tao; Zheng, Dandan

    2018-04-10

    Ultrasonic flowmeters with a small or medium diameter are widely used in process industries. The flow field disturbance on acoustic propagation caused by a vortex near the transducer inside the sensor as well as the mechanism and details of flow-acoustic interaction are needed to strengthen research. For that reason, a new hybrid scheme is proposed; the theories of computational fluid dynamics (CFD), wave acoustics, and ray acoustics are used comprehensively by a new step-by-step method. The flow field with a vortex near the transducer, and its influence on sound propagation, receiving, and flowmeter performance are analyzed in depth. It was found that, firstly, the velocity and vortex intensity distribution were asymmetric on the sensor cross-section and acoustic path. Secondly, when passing through the vortex zone, the central ray trajectory was deflected significantly. The sound pressure on the central line of the sound path also changed. Thirdly, the pressure deviation becomes larger with as the flow velocity increases. The deviation was up to 17% for different velocity profiles in a range of 0.6 m/s to 53 m/s. Lastly, in comparison to the theoretical value, the relative deviation of the instrument coefficient for the velocity profile with a vortex near the transducer reached up to -17%. In addition, the rationality of the simulation was proved by experiments.

  7. New Analysis Scheme of Flow-Acoustic Coupling for Gas Ultrasonic Flowmeter with Vortex near the Transducer

    Science.gov (United States)

    Zhang, Tao; Zheng, Dandan

    2018-01-01

    Ultrasonic flowmeters with a small or medium diameter are widely used in process industries. The flow field disturbance on acoustic propagation caused by a vortex near the transducer inside the sensor as well as the mechanism and details of flow-acoustic interaction are needed to strengthen research. For that reason, a new hybrid scheme is proposed; the theories of computational fluid dynamics (CFD), wave acoustics, and ray acoustics are used comprehensively by a new step-by-step method. The flow field with a vortex near the transducer, and its influence on sound propagation, receiving, and flowmeter performance are analyzed in depth. It was found that, firstly, the velocity and vortex intensity distribution were asymmetric on the sensor cross-section and acoustic path. Secondly, when passing through the vortex zone, the central ray trajectory was deflected significantly. The sound pressure on the central line of the sound path also changed. Thirdly, the pressure deviation becomes larger with as the flow velocity increases. The deviation was up to 17% for different velocity profiles in a range of 0.6 m/s to 53 m/s. Lastly, in comparison to the theoretical value, the relative deviation of the instrument coefficient for the velocity profile with a vortex near the transducer reached up to −17%. In addition, the rationality of the simulation was proved by experiments. PMID:29642577

  8. New Analysis Scheme of Flow-Acoustic Coupling for Gas Ultrasonic Flowmeter with Vortex near the Transducer

    Directory of Open Access Journals (Sweden)

    Yanzhao Sun

    2018-04-01

    Full Text Available Ultrasonic flowmeters with a small or medium diameter are widely used in process industries. The flow field disturbance on acoustic propagation caused by a vortex near the transducer inside the sensor as well as the mechanism and details of flow-acoustic interaction are needed to strengthen research. For that reason, a new hybrid scheme is proposed; the theories of computational fluid dynamics (CFD, wave acoustics, and ray acoustics are used comprehensively by a new step-by-step method. The flow field with a vortex near the transducer, and its influence on sound propagation, receiving, and flowmeter performance are analyzed in depth. It was found that, firstly, the velocity and vortex intensity distribution were asymmetric on the sensor cross-section and acoustic path. Secondly, when passing through the vortex zone, the central ray trajectory was deflected significantly. The sound pressure on the central line of the sound path also changed. Thirdly, the pressure deviation becomes larger with as the flow velocity increases. The deviation was up to 17% for different velocity profiles in a range of 0.6 m/s to 53 m/s. Lastly, in comparison to the theoretical value, the relative deviation of the instrument coefficient for the velocity profile with a vortex near the transducer reached up to −17%. In addition, the rationality of the simulation was proved by experiments.

  9. Concentration of trace metals in boreholes in the Ankobra Basin, Ghana

    International Nuclear Information System (INIS)

    Kortasi, B. K.

    2006-01-01

    Analysis of trace metals in ground water from the Ankobra basin revealed high levels of iron, manganese and aluminium. Approximately 40% of boreholes had total iron concentration exceeding 1000 μ 1 -1 (maximum WHO permissible limit). Aluminium concentration varied from 0.1 μ to 2510 μ 1 -1 with a median value of 10.0 μ 1 -1 . Approximately 20% of the boreholes had aluminium concentration exceeding the WHO maximum acceptable limit (200 μ 1 -1 ) for drinking water. Manganese concentration was in the range 6-2510 μ 1 -1 with a median of 356 μ 1 -1 . Roughly 25% of the boreholes had manganese concentrations higher that 500 μ 1 -1 , which is the WHO maximum acceptable limit for drinking water. The concentrations of mercury was higher than 1.0 μ 1 -1 (WHO maximum acceptable limit) in 60% of the boreholes during the rainy season but below detection limit in the dry season, suggesting anthropogenic origin for mercury in the groundwater. Other trace metals that occurred, but in insignificant concentration in the boreholes, include lead, arsenic, nickel and selenium. Most of the boreholes with high trace metal concentrations were located in and around the Bawdie-Bogoso-Prestea area. (au)

  10. Numerical Simulation of Hydraulic Fracture Propagation Guided by Single Radial Boreholes

    Directory of Open Access Journals (Sweden)

    Tiankui Guo

    2017-10-01

    Full Text Available Conventional hydraulic fracturing is not effective in target oil development zones with available wellbores located in the azimuth of the non-maximum horizontal in-situ stress. To some extent, we think that the radial hydraulic jet drilling has the function of guiding hydraulic fracture propagation direction and promoting deep penetration, but this notion currently lacks an effective theoretical support for fracture propagation. In order to verify the technology, a 3D extended finite element numerical model of hydraulic fracturing promoted by the single radial borehole was established, and the influences of nine factors on propagation of hydraulic fracture guided by the single radial borehole were comprehensively analyzed. Moreover, the term ‘Guidance factor (Gf’ was introduced for the first time to effectively quantify the radial borehole guidance. The guidance of nine factors was evaluated through gray correlation analysis. The experimental results were consistent with the numerical simulation results to a certain extent. The study provides theoretical evidence for the artificial control technology of directional propagation of hydraulic fracture promoted by the single radial borehole, and it predicts the guidance effect of a single radial borehole on hydraulic fracture to a certain extent, which is helpful for planning well-completion and fracturing operation parameters in radial borehole-promoted hydraulic fracturing technology.

  11. Geophysical borehole logging of the boreholes KR23 extension, KR29 and KR29b at Olkiluoto 2004

    International Nuclear Information System (INIS)

    Lahti, M.; Heikkinen, E.

    2005-04-01

    Suomen Malmi Oy conducted geophysical borehole logging of the boreholes KR23 extension, KR25b, KR29 and KR29b at the Olkiluoto site in Eurajoki during October 2004. The survey is a part of Posiva Oy's detailed investigation program for the final disposal of spent nuclear fuel. The assignment included the field work and processing of the acoustic data. The report describes the field operation, equipment as well as processing procedures and shows the obtained results and their quality in the appendices. The raw and processed data are delivered digitally in WellCAD and Excel format. (orig.)

  12. Geophysical borehole logging of the boreholes KR23 extension, KR29 and KR29b at Olkiluoto 2004

    Energy Technology Data Exchange (ETDEWEB)

    Lahti, M. [Suomen Malmi Oy, Espoo (Finland); Heikkinen, E. [JP-Fintact Oy, Vantaa (Finland)

    2005-04-15

    Suomen Malmi Oy conducted geophysical borehole logging of the boreholes KR23 extension, KR25b, KR29 and KR29b at the Olkiluoto site in Eurajoki during October 2004. The survey is a part of Posiva Oy's detailed investigation program for the final disposal of spent nuclear fuel. The assignment included the field work and processing of the acoustic data. The report describes the field operation, equipment as well as processing procedures and shows the obtained results and their quality in the appendices. The raw and processed data are delivered digitally in WellCAD and Excel format. (orig.)

  13. Deep Borehole Disposal as an Alternative Concept to Deep Geological Disposal

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jongyoul; Lee, Minsoo; Choi, Heuijoo; Kim, Kyungsu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In this paper, the general concept and key technologies for deep borehole disposal of spent fuels or HLW, as an alternative method to the mined geological disposal method, were reviewed. After then an analysis on the distance between boreholes for the disposal of HLW was carried out. Based on the results, a disposal area were calculated approximately and compared with that of mined geological disposal. These results will be used as an input for the analyses of applicability for DBD in Korea. The disposal safety of this system has been demonstrated with underground research laboratory and some advanced countries such as Finland and Sweden are implementing their disposal project on commercial stage. However, if the spent fuels or the high-level radioactive wastes can be disposed of in the depth of 3-5 km and more stable rock formation, it has several advantages. Therefore, as an alternative disposal concept to the mined deep geological disposal concept (DGD), very deep borehole disposal (DBD) technology is under consideration in number of countries in terms of its outstanding safety and cost effectiveness. In this paper, the general concept of deep borehole disposal for spent fuels or high level radioactive wastes was reviewed. And the key technologies, such as drilling technology of large diameter borehole, packaging and emplacement technology, sealing technology and performance/safety analyses technologies, and their challenges in development of deep borehole disposal system were analyzed. Also, very preliminary deep borehole disposal concept including disposal canister concept was developed according to the nuclear environment in Korea.

  14. Deep Borehole Disposal as an Alternative Concept to Deep Geological Disposal

    International Nuclear Information System (INIS)

    Lee, Jongyoul; Lee, Minsoo; Choi, Heuijoo; Kim, Kyungsu

    2016-01-01

    In this paper, the general concept and key technologies for deep borehole disposal of spent fuels or HLW, as an alternative method to the mined geological disposal method, were reviewed. After then an analysis on the distance between boreholes for the disposal of HLW was carried out. Based on the results, a disposal area were calculated approximately and compared with that of mined geological disposal. These results will be used as an input for the analyses of applicability for DBD in Korea. The disposal safety of this system has been demonstrated with underground research laboratory and some advanced countries such as Finland and Sweden are implementing their disposal project on commercial stage. However, if the spent fuels or the high-level radioactive wastes can be disposed of in the depth of 3-5 km and more stable rock formation, it has several advantages. Therefore, as an alternative disposal concept to the mined deep geological disposal concept (DGD), very deep borehole disposal (DBD) technology is under consideration in number of countries in terms of its outstanding safety and cost effectiveness. In this paper, the general concept of deep borehole disposal for spent fuels or high level radioactive wastes was reviewed. And the key technologies, such as drilling technology of large diameter borehole, packaging and emplacement technology, sealing technology and performance/safety analyses technologies, and their challenges in development of deep borehole disposal system were analyzed. Also, very preliminary deep borehole disposal concept including disposal canister concept was developed according to the nuclear environment in Korea

  15. Drilling a borehole for LEP

    CERN Multimedia

    1981-01-01

    Boreholes were drilled along the earlier proposed line of the LEP tunnel under the Jura to find out the conditions likely to be encountered during the construction of the LEP tunnel (Annual Report 1981 p. 106, Fig. 10).

  16. Handling and Emplacement Options for Deep Borehole Disposal Conceptual Design.

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, John R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hardin, Ernest [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-07-01

    This report presents conceptual design information for a system to handle and emplace packages containing radioactive waste, in boreholes 16,400 ft deep or possibly deeper. Its intended use is for a design selection study that compares the costs and risks associated with two emplacement methods: drill-string and wireline emplacement. The deep borehole disposal (DBD) concept calls for siting a borehole (or array of boreholes) that penetrate crystalline basement rock to a depth below surface of about 16,400 ft (5 km). Waste packages would be emplaced in the lower 6,560 ft (2 km) of the borehole, with sealing of appropriate portions of the upper 9,840 ft (3 km). A deep borehole field test (DBFT) is planned to test and refine the DBD concept. The DBFT is a scientific and engineering experiment, conducted at full-scale, in-situ, without radioactive waste. Waste handling operations are conceptualized to begin with the onsite receipt of a purpose-built Type B shipping cask, that contains a waste package. Emplacement operations begin when the cask is upended over the borehole, locked to a receiving flange or collar. The scope of emplacement includes activities to lower waste packages to total depth, and to retrieve them back to the surface when necessary for any reason. This report describes three concepts for the handling and emplacement of the waste packages: 1) a concept proposed by Woodward-Clyde Consultants in 1983; 2) an updated version of the 1983 concept developed for the DBFT; and 3) a new concept in which individual waste packages would be lowered to depth using a wireline. The systems described here could be adapted to different waste forms, but for design of waste packaging, handling, and emplacement systems the reference waste forms are DOE-owned high- level waste including Cs/Sr capsules and bulk granular HLW from fuel processing. Handling and Emplacement Options for Deep Borehole Disposal Conceptual Design July 23, 2015 iv ACKNOWLEDGEMENTS This report has

  17. Occurrence of a Severe Acute Livestock Poisoning by Borehole ...

    African Journals Online (AJOL)

    This article reports on an outbreak of acute livestock poisoning by borehole water that occurred at Kargi in Marsabit District, Kenya in 2000. The borehole had been out of use for 3 years and after its rehabilitation, 7,000 animals died within a day after drinking the water. The most affected were shoats, cattle, camels and dogs ...

  18. Observations of joint persistence and connectivity across boreholes

    Energy Technology Data Exchange (ETDEWEB)

    Thapa, B.B.; Karasaki, K.

    1996-01-01

    Observations of joint persistence and connectivity are made by comparison of digital borehole wall images of fractures, fluid conductivity logs and hydraulic injections test results. The fractures were found to be generally impersistent across vertical boreholes about 8 m apart. Many hydraulic connections were found in the same volume of rock. Direct connections through single fractures seem to be rare and connectivity appears to be controlled by fracture networks, even over small volumes.

  19. Does deep borehole disposal of HLRW has a chance in Germany?

    Energy Technology Data Exchange (ETDEWEB)

    Bracke, Guido [GRS gGmbH, Koeln (Germany); Charlier, Frank [RWTH Aachen (Germany). Nukleare Entsorgung und Techniktransfer; Liebscher, Axel [Helmholtz Centre Potsdam (Germany). GFZ German Research Centre for Geosciences; Schilling, Frank [KIT - Technical Univ. Karlsruhe (Germany). Inst. for Applied Geosciences; Roeckel, Thomas [Piewak und Partner, Bayreuth (Germany)

    2017-01-15

    Using deep boreholes for disposal of high-level radioactive waste (HLRW) can take advantage of multiple geologic barriers as safety features. The great depth efficiently prolongs or hinders radionuclide transport and also impedes proliferation. The number of boreholes could be less than 100 for the volume of HLRW in Germany. Using a simplified, generic safety concept minimum requirements for the diameter of boreholes and containers are derived. Furthermore the operational safety of emplacement, retrieval of waste and sealing of the boreholes is considered. This concept is assessed for its compliance with the safety requirements of the BMUB and the requirements and criteria for site selection defined by the commission ''Storage of high-level radio active waste''.

  20. Room Q data report: Test borehole data from April 1989 through November 1991

    International Nuclear Information System (INIS)

    Jensen, A.L.; Howard, C.L.; Jones, R.L.; Peterson, T.P.

    1993-03-01

    Pore-pressure and fluid-flow tests were performed in 15 boreholes drilled into the bedded evaporites of the Salado Formation from within the Waste Isolation Pilot Plant (WIPP). The tests measured fluid flow and pore pressure within the Salado. The boreholes were drilled into the previously undisturbed host rock around a proposed cylindrical test room, Room Q, located on the west side of the facility about 655 m below ground surface. The boreholes were about 23 m deep and ranged over 27.5 m of stratigraphy. They were completed and instrumented before excavation of Room Q. Tests were conducted in isolated zones at the end of each borehole. Three groups of 5 isolated zones extend above, below, and to the north of Room Q at increasing distances from the room axis. Measurements recorded before, during, and after the mining of the circular test room provided data about borehole closure, pressure, temperature, and brine seepage into the isolated zones. The effects of the circular excavation were recorded. This data report presents the data collected from the borehole test zones between April 25, 1989 and November 25, 1991. The report also describes test development, test equipment, and borehole drilling operations

  1. Geophysical borehole logging, dummy-sonding and optical imaging of the borehole OL-KR24 at Olkiluoto 2005

    International Nuclear Information System (INIS)

    Majapuro, J.

    2006-03-01

    Suomen Malmi Oy conducted geophysical borehole logging, dummy-sonding and optical imaging surveys of the borehole OL-KR24 at the Olkiluoto site in Eurajoki during 1.10.2005 - 4.10.2005. The survey is a part of Posiva Oy's detailed investigation program for the final disposal of spent nuclear fuel. The methods applied are caliper survey and optical imaging. The assignment included the field work of surveys, interpretation and processing of the data. The report describes the field operation, equipment as well as processing procedures and shows the obtained results and their quality in the appendices. The raw and processed data are delivered digitally in WellCAD and Excel format. (orig.)

  2. Airborne electromagnetic data and processing within Leach Lake Basin, Fort Irwin, California: Chapter G in Geology and geophysics applied to groundwater hydrology at Fort Irwin, California

    Science.gov (United States)

    Bedrosian, Paul A.; Ball, Lyndsay B.; Bloss, Benjamin R.; Buesch, David C.

    2014-01-01

    From December 2010 to January 2011, the U.S. Geological Survey conducted airborne electromagnetic and magnetic surveys of Leach Lake Basin within the National Training Center, Fort Irwin, California. These data were collected to characterize the subsurface and provide information needed to understand and manage groundwater resources within Fort Irwin. A resistivity stratigraphy was developed using ground-based time-domain electromagnetic soundings together with laboratory resistivity measurements on hand samples and borehole geophysical logs from nearby basins. This report releases data associated with the airborne surveys, as well as resistivity cross-sections and depth slices derived from inversion of the airborne electromagnetic data. The resulting resistivity models confirm and add to the geologic framework, constrain the hydrostratigraphy and the depth to basement, and reveal the distribution of faults and folds within the basin.

  3. Hydraulic effects of unsealed boreholes. Numerical groundwater flow modelling of the Forsmark and Laxemar sites

    International Nuclear Information System (INIS)

    Bockgaard, Niclas

    2011-06-01

    The objective of the work was to investigate hydraulic effects of open and poorly sealed boreholes on groundwater flow conditions through simulations using a numerical groundwater model. Specifically, the boreholes KFM07A, KFM09A, and KFM09B in Forsmark and the boreholes KLX04, KLX06, and KLX10 in Laxemar were studied. The criteria for the selection of these boreholes were that the boreholes should represent typical conditions of the site, the borehole length should exceed 500 m, and that several major fractured zones should be intersected. The boreholes KFM07A and KLX06, respectively, were selected as reference boreholes for more detailed studies of different sealing schemes. The model setup of the Forsmark model followed the Forsmark 2.2 regional-scale conceptual hydrogeological model. The model domain was approximately 15 km (north-south) x 10 km (west- east) x 1.2 km (depth). The 131 deformation zones and three layers of superficial horizontal sheet joint were modelled deterministically. A stochastic discrete fracture network (DFN) representing fractures and minor deformation zones were also generated between the deterministic deformation zones inside central model volume. The side lengths of the square fractures were from 1,000 m down to 10 m. In order to resolve the details of flow in to and out from the borehole, a more detailed DFN was generated in a zone around the borehole KFM07A, where fractures down to a side length of 0.5 m were considered. The model setup of the Laxemar model followed the SDM-Site Laxemar (Laxemar 2.3) regional scale conceptual hydrogeological model. The model domain was approximately 12 km (north-south) x 20 km (west-east) x 2.1 km (depth). A number of 71 deformation zones were modelled deterministically, and one realization of a stochastic DFN, the so-called hydrogeological DFN model base case, was imported to the model. Similar to the Forsmark case, a more detailed DFN was also generated around the reference borehole KLX06. The

  4. Hydraulic effects of unsealed boreholes. Numerical groundwater flow modelling of the Forsmark and Laxemar sites

    Energy Technology Data Exchange (ETDEWEB)

    Bockgaard, Niclas [Golder Associates AB, Stockholm (Sweden)

    2011-06-15

    The objective of the work was to investigate hydraulic effects of open and poorly sealed boreholes on groundwater flow conditions through simulations using a numerical groundwater model. Specifically, the boreholes KFM07A, KFM09A, and KFM09B in Forsmark and the boreholes KLX04, KLX06, and KLX10 in Laxemar were studied. The criteria for the selection of these boreholes were that the boreholes should represent typical conditions of the site, the borehole length should exceed 500 m, and that several major fractured zones should be intersected. The boreholes KFM07A and KLX06, respectively, were selected as reference boreholes for more detailed studies of different sealing schemes. The model setup of the Forsmark model followed the Forsmark 2.2 regional-scale conceptual hydrogeological model. The model domain was approximately 15 km (north-south) x 10 km (west- east) x 1.2 km (depth). The 131 deformation zones and three layers of superficial horizontal sheet joint were modelled deterministically. A stochastic discrete fracture network (DFN) representing fractures and minor deformation zones were also generated between the deterministic deformation zones inside central model volume. The side lengths of the square fractures were from 1,000 m down to 10 m. In order to resolve the details of flow in to and out from the borehole, a more detailed DFN was generated in a zone around the borehole KFM07A, where fractures down to a side length of 0.5 m were considered. The model setup of the Laxemar model followed the SDM-Site Laxemar (Laxemar 2.3) regional scale conceptual hydrogeological model. The model domain was approximately 12 km (north-south) x 20 km (west-east) x 2.1 km (depth). A number of 71 deformation zones were modelled deterministically, and one realization of a stochastic DFN, the so-called hydrogeological DFN model base case, was imported to the model. Similar to the Forsmark case, a more detailed DFN was also generated around the reference borehole KLX06. The

  5. Method and apparatus for logging inclined earth boreholes

    International Nuclear Information System (INIS)

    Youmans, A.H.

    1981-01-01

    An improved technique is provided for comparing the velocity of an elongated well logging instrument traversing an inclined earth borehole with the playout velocity of the well logging cable at the earth's surface to control both the cable hoist drum rotation and the rate of movement of the subsurface instrument and thus insure cable playout is in equilibrium with the logging instrument movement. Method and apparatus are described for detecting any reduction in movement of the logging instrument through the borehole and for reducing the velocity of the logging cable playout in response thereto by reducing drum rotation. Further, when the velocity of cable playout slows to a preselected value, a monitoring circuit generates control signals which actuate a means of power attached to or integral with the logging instrument which, upon initiation, apply a force to move the logging instrument upward or downward within the borehole

  6. Development of the electromagnetic tomography system. Field test results using existing equipment; EM tomography system no kaihatsu. Kison sochi ni yoru test sokutei kekka

    Energy Technology Data Exchange (ETDEWEB)

    Kumekawa, Y; Miura, Y; Takasugi, S [Geothermal Energy Research and Development Co. Ltd., Tokyo (Japan); Arai, E [Metal Mining Agency of Japan, Tokyo (Japan)

    1996-05-01

    With the purpose of developing an electromagnetic tomography system, an observation was carried out with existing equipment combined, and the data was analyzed. The measuring equipment consisted of existing borehole vertical magnetic field sensors as the sensor part, MT method receivers as the receiving device, and existing CSMT method transmitters as the transmitting device. The measuring was performed at the Richmond Field Station which was abundant in existing data and which had a comparatively simple resistivity structure. The borehole vertical magnetic field sensors were lowered inside the borehole, and signal sources were arranged at 10m apart on the traverse line in the direction from northeast to southwest with the borehole as the center. The analysis of the data was made with the use of EM1D by three models, namely, 10 ohm{center_dot}m homogeneous earth model, 100 ohm{center_dot}m homogeneous earth model, and horizontal 7 layer model prepared on the basis of electric logging results; and a comparative examination was made against the measured data. As a result, it was demonstrated that the test measurement agreed very well with the model from the electric logging results and that it was the data reflecting a resistivity structure. 8 refs., 6 figs.

  7. Predicting Seawater Intrusion in Coastal Groundwater Boreholes Using Self-Potential Data

    Science.gov (United States)

    Graham, M.; MacAllister, D. J.; Jackson, M.; Vinogradov, J.; Butler, A. P.

    2017-12-01

    Many coastal groundwater abstraction wells are under threat from seawater intrusion: this is exacerbated in summer by low water tables and increased abstraction. Existing hydrochemistry or geophysical techniques often fail to predict the timing of intrusion events. We investigate whether the presence and transport of seawater can influence self-potentials (SPs) measured within groundwater boreholes, with the aim of using SP monitoring to provide early warning of saline intrusion. SP data collection: SP data were collected from a coastal groundwater borehole and an inland borehole (> 60 km from the coast) in the Seaford Chalk of southern England. The SP gradient in the inland borehole was approximately 0.05 mV/m, while that in the coastal borehole varied from 0.16-0.26 mV/m throughout the monitoring period. Spectral analysis showed that semi-diurnal fluctuations in the SP gradient were several orders of magnitude higher at the coast than inland, indicating a strong influence from oceanic tides. A characteristic decrease in the gradient, or precursor, was observed in the coastal borehole several days prior to seawater intrusion. Modelling results: Hydrodynamic transport and geoelectric modelling suggest that observed pressure changes (associated with the streaming potential) are insufficient to explain either the magnitude of the coastal SP gradient or the semi-diurnal SP fluctuations. By contrast, a model of the exclusion-diffusion potential closely matches these observations and produces a precursor similar to that observed in the field. Sensitivity analysis suggests that both a sharp saline front and spatial variations in the exclusion efficiency arising from aquifer heterogeneities are necessary to explain the SP gradient observed in the coastal borehole. The presence of the precursor in the model depends also on the presence and depth of fractures near the base of the borehole. Conclusions: Our results indicate that SP monitoring, combined with hydrodynamic

  8. Hydrogeological investigations in two boreholes in the Stripa test station

    International Nuclear Information System (INIS)

    Hansson, K.; Almen, K.-E.; Ekman, L.

    1978-01-01

    The investigations included the following: water injection tests in a horizontal core-borehole, Dbh 2; hydrostatic pressure tests in Dbh2; determination of permeability in a vertical core-borehole, Dbh VI. The results of the water injection tests gave very little information due to the fact, that an air cushion was trapped in the borehole. The hydrostatic pressure tests in Dbh 2 were made in that part of the borehole, which is situated beyond the drift (45 - 97 m). Most of the pressure curves were difficult to interpret. The hydrostatic pressure in the section 89 - 97 m (end of the hole) was calculated to 1,67 Mpa. Near the end of the drift (46.00 - 49.71 m) the pressure was 0.22 Mpa. The permeability tests in Dbh VI were performed by measuring the water-flow and hydrostatic pressure in different levels. The calculated average permeability was 6.5x10 -10 m/s

  9. Borehole tool outrigger arm displacement control mechanism

    International Nuclear Information System (INIS)

    Lee, A.G.

    1985-01-01

    As the outrigger arms of a borehole logging tool are flexed inwardly and outwardly according to the diameter of the borehole opening through which they pass, the corresponding axial displacements of the ends of the arms are controlled to determine the axial positions of the arms relative to the tool. Specifically, as the arm ends move, they are caused to rotate by a cam mechanism. The stiffness of the arms causes the arm ends to rotate in unison, and the exact positions of the arms on the tool are then controlled by the differential movements of the arm ends in the cams

  10. Bench top and portable mineral analysers, borehole core analysers and in situ borehole logging

    International Nuclear Information System (INIS)

    Howarth, W.J.; Watt, J.S.

    1982-01-01

    Bench top and portable mineral analysers are usually based on balanced filter techniques using scintillation detectors or on low resolution proportional detectors. The application of radioisotope x-ray techniques to in situ borehole logging is increasing, and is particularly suited for logging for tin and higher atomic number elements

  11. Rock-welding materials for deep borehole nuclear waste disposal.

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Pin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wang, Yifeng [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rodriguez, Mark A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brady, Patrick Vane [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Swift, Peter N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-11-01

    The concept of deep borehole nuclear waste disposal has recently been proposed. Effective sealing of a borehole after waste emplacement is generally required. In a high temperature disposal mode, the sealing function will be fulfilled by melting the ambient granitic rock with waste decay heat or an external heating source, creating a melt that will encapsulate waste containers or plug a portion of the borehole above a stack of the containers. However, there are certain drawbacks associated with natural materials, such as high melting temperatures, slow crystallization kinetics, the resulting sealing materials generally being porous with low mechanical strength, insufficient adhesion to waste container surface, and lack of flexibility for engineering controls. Here we show that natural granitic materials can be purposefully engineered through chemical modifications to enhance the sealing capability of the materials for deep borehole disposal. This work systematically explores the effect of chemical modification and crystallinity (amorphous vs. crystalline) on the melting and crystallization processes of a granitic rock system. A number of engineered granitic materials have been obtained that have decreased melting points, enhanced viscous densification, and accelerated recrystallization rates without compromising the mechanical integrity of the materials.

  12. The boreholes and geology of the Down Ampney fault research site

    International Nuclear Information System (INIS)

    Brightman, M.A.; Hallam, J.R.; Ambrose, K.; Horton, A.

    1991-01-01

    An exploratory programme of core drilling confirmed the location of a major fault with a 50-m throw and 70 0 dip and provided geological reference sections. These data enabled a measurement array of boreholes to be planned and constructed for the geophysical and hydrogeological characterization of the fault. Full details are given of the design, drilling, coring, completion and surveying of the 22 boreholes. The geological sequence is described, together with the structure of the fault zone, which was penetrated by eight boreholes

  13. Borehole drilling for sewage disposal at Asuka Station, East Antarctica

    OpenAIRE

    Ishizawa,Kenji; Takahashi,Akiyoshi

    1994-01-01

    A borehole for sewage disposal was drilled at Asuka Station (71°31′34″S, 24°08′17″E, 930m a. s. l.) in January 1987. The borehole, 400mm in diameter and 27.5m in depth, was drilled 50m distant from the main hut using a steam drilling system. The drilling speed was 4m/h between the snow surface and 20m depth. The total amount of kerosene used for melting snow and steam generation was 110/. Sewage stored in the tank was directed to the borehole through a heated pipe. The cumulative amount of se...

  14. Study on the Geological Structure around KURT Using a Deep Borehole Investigation

    International Nuclear Information System (INIS)

    Park, Kyung Woo; Kim, Kyung Su; Koh, Yong Kwon; Choi, Jong Won

    2010-01-01

    To characterize geological features in study area for high-level radioactive waste disposal research, KAERI (Korea Atomic Energy Research Institute) has been performing the several geological investigations such as geophysical surveys and borehole drilling since 1997. Especially, the KURT (KAERI Underground Research Tunnel) constructed to understand the deep geological environments in 2006. Recently, the deep borehole of 500 m depths was drilled to confirm and validate the geological model at the left research module of the KURT. The objective of this research was to identify the geological structures around KURT using the data obtained from the deep borehole investigation. To achieve the purpose, several geological investigations such as geophysical and borehole fracture surveys were carried out simultaneously. As a result, 7 fracture zones were identified in deep borehole located in the KURT. As one of important parts of site characterization on KURT area, the results will be used to revise the geological model of the study area

  15. Core-logs of the vertical borehole V2

    International Nuclear Information System (INIS)

    Carlsson, L.; Egerth, T.; Westlund, B.; Olsson, T.

    1982-08-01

    In the hydrogeological programme of the Stripa Project, borehole V2 was prolonged to a final depth of 822 m. The previous core from 0-471.4 m was relogged. The drill core was logged with regard to rock characteristics, fracture frequency, dipping and filling. The results are presented as core-logs and fracture diagrams. Borehole V2 shows similar characteristics as found in other drillings in the Stripa Mine. It penetrates Stripa granite to its full depth. recorded fractures shows a clear predominance of medium-steep fractures, while flat-lying fractures are more sparsly occuring, a fact which is even more pronounced below 400 m depth. Due to the vertical direction of the borehole, steeply dipping fractures are underestimated in the core. The mean fracture frequency, related to the total length of the core, is 2.1 fractures/m. Chlorite, calcite and epidote are the dominating coating minerals in the fractures, each making up about 25-30 percent of all coated fractures. (Authors)

  16. Experimental evaluation of permanent magnet probe flowmeter measuring high temperature liquid sodium flow in the ITSL

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Uiju; Kim, Yun Ho [Nuclear engineering Department, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Kim, Jong-Man; Kim, Tae-Joon [Korea Atomic Energy Research Institute, 1045 Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Kim, Sung Joong, E-mail: sungjkim@mit.edu [Nuclear engineering Department, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of)

    2013-12-15

    Highlights: • An Instrument Test Sodium Loop (ITSL) has been built and tested in various conditions at KAERI. • Free fall of liquid sodium was conducted experimentally and numerically. • A Permanent Magnet Probe Flowmeter (PMPF) was experimented in the ITSL. • Excellent linearity of the PMPF was achieved under high temperature condition. - Abstract: The Instrument Test Sodium Loop (ITSL) installed at Korea Atomic Energy Research Institute (KAERI) is a medium-size experimental facility dedicated to obtaining relevant experimental data of liquid sodium flow characteristics under various thermal hydraulic conditions and sodium purification. The ITSL has been utilized to perform thermal flow measurement of the liquid sodium and to calibrate a Permanent Magnet Probe Flowmeter (PMPF). The primary objective of this study is to obtain liquid sodium flow rate given a wide temperature range using the PMPF. Non-stationary method was adopted for the calibration of the probe given the liquid sodium temperature range of 150–415 °C. A relationship between the measured voltage signal and flow rate was obtained successfully. It is observed that the calibration experiments result in excellent linear relationships between measured voltage and volumetric flow rate at various temperature conditions. Also a computational analysis using FlowMaster, is employed to facilitate the calibration process by predicting the liquid sodium flow rate. Finally the effect of the fluid temperature on thermal flow measurements is discussed in light of the obtained experimental data.

  17. Experimental research on coalbed gas drainage effect and economy of long directional borehole in roof

    Science.gov (United States)

    Yang, Huiming; Hu, Liangping

    2017-05-01

    In order to study the coalbed gas drainage effect and economy of long directional roof borehole, 2 boreholes were laid out in Xinji No. 2 mine to analyze its gas drainage and investment costs comparing with high position roof borehole and high position roof roadway. The result indicates that the long directional roof borehole save investment by 44.8% and shorten the construction period by 30%, comparing with high position roof roadway for controlling gas in the working face. Investment slightly less and shorten the construction period by 47.5%, comparing with the roof high position borehole. Therefore, the method of the long directional roof borehole to drain coalbed gas in working face is the most cost-effective.

  18. Installation of borehole seismometer for earthquake characteristics in deep geological environment

    Energy Technology Data Exchange (ETDEWEB)

    Park, Dong Hee; Choi, Weon Hack; Cho, Sung Il; Chang, Chun Joong [KHNP CRI, Seoul (Korea, Republic of)

    2014-10-15

    Deep geological disposal is currently accepted as the most appropriate method for permanently removing spent nuclear fuel from the living sphere of humans. For implementation of deep geological disposal, we need to understand the geological changes that have taken place over the past 100,000 years, encompassing active faults, volcanic activity, elevation, ubsidence, which as yet have not been considered in assessing the site characteristics for general facilities, as well as to investigate and analyze the geological structures, fracture systems and seismic responses regarding deep geological environment about 500 meters or more underground. In regions with high seismic activity, such as Japan, the Western United States and Taiwan, borehole seismometers installed deep underground are used to monitor seismic activity during the course of seismic wave propagation at various depths and to study the stress changes due to earthquakes and analyze the connection to fault movements. Korea Hydro and Nuclear Power Co., Ltd. (KHNP) have installed the deep borehole earthquake observatory at depths of about 300 to 600 meters in order to study the seismic response characteristics in deep geological environment on June, 2014 in Andong area. This paper will show the status of deep borehole earthquake observatory and the results of background noise response characteristics of these deep borehole seismic data as a basic data analysis. We present here the status of deep borehole seismometer installation by KHNP. In order to basic data analysis for the borehole seismic observation data, this study shows the results of the orientation of seismometer and background noise characteristics by using a probability density function. Together with the ground motion data recorded by the borehole seismometers can be utilized as basic data for seismic response characteristics studies with regard to spent nuclear fuel disposal depth and as the input data for seismic hazard assessment that

  19. Analysis and interpretation of borehole hydraulic tests in deep boreholes: principles, model development, and applications

    International Nuclear Information System (INIS)

    Pickens, J.F.; Grisak, G.E.; Avis, J.D.; Belanger, D.W.

    1987-01-01

    A review of the literature on hydraulic testing and interpretive methods, particularly in low-permeability media, indicates a need for a comprehensive hydraulic testing interpretive capability. Physical limitations on boreholes, such as caving and erosion during continued drilling, as well as the high costs associated with deep-hole rigs and testing equipment, often necessitate testing under nonideal conditions with respect to antecedent pressures and temperatures. In these situations, which are common in the high-level nuclear waste programs throughout the world, the interpretive requirements include the ability to quantitatively account for thermally induced pressure responses and borehole pressure history (resulting in a time-dependent pressure profile around the borehole) as well as equipment compliance effects in low-permeability intervals. A numerical model was developed to provide the capability to handle these antecedent conditions. Sensitivity studies and practical applications are provided to illustrate the importance of thermal effects and antecedent pressure history. It is demonstrated theoretically and with examples from the Swiss (National Genossenschaft fuer die Lagerung radioaktiver Abfaelle) regional hydrogeologic characterization program that pressure changes (expressed as hydraulic head) of the order of tens to hundreds of meters can results from 1 0 to 2 0 C temperature variations during shut-in (packer isolated) tests in low-permeability formations. Misinterpreted formation pressures and hydraulic conductivity can also result from inaccurate antecedent pressure history. Interpretation of representative formation properties and pressures requires that antecedent pressure information and test period temperature data be included as an integral part of the hydraulic test analyses

  20. Characterization of Vadose Zone Sediments Below the C Tank Farm: Borehole C4297 and RCRA Borehole 299-E27-22

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Christopher F.; Serne, R. JEFFREY; Bjornstad, Bruce N.; Horton, Duane G.; Lanigan, David C.; Clayton, Ray E.; Valenta, Michelle M.; Vickerman, Tanya S.; Kutnyakov, Igor V.; Geiszler, Keith N.; Baum, Steven R.; Parker, Kent E.; Lindberg, Michael J.

    2006-10-18

    The overall goal of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities at Hanford. To meet this goal, CH2M HILL Hanford Group, Inc. tasked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediments from within Waste Management Area (WMA) C. This report is the first of two reports written to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from borehole C4297, installed adjacent to Tank C-105, and from borehole 299-E27-22, installed directly north of the C Tank Farm. Sediments from borehole 299-E27-22 were considered to be background uncontaminated sediments against which to compare contaminated sediments for the C Tank Farm characterization effort. This report also presents our interpretation of the data in the context of sediment types, the vertical extent of contamination, the migration potential of the contaminants, and the likely source of the contamination in the vadose zone and groundwater below the C Tank Farm. The information presented in this report supports the A-AX, C and U Waste Management Area field investigation report(a) in preparation by CH2M HILL Hanford Group, Inc. A core log was generated for both boreholes and a geologic evaluation of all core samples was performed at the time of opening. Aliquots of sediment from the borehole core samples were analyzed and characterized in the laboratory for the following parameters: moisture content, gamma-emitting radionuclides, one-to-one water extracts (which provide soil pH, electrical conductivity, cation, trace metal, and anion data), total carbon and inorganic carbon content, and 8 M nitric acid extracts (which provide a measure of the total leachable sediment content of contaminants). Two key radiocontaminants

  1. The Experimental Characterization of the Magnetic Field Effect on a Liquid Sodium Flow

    International Nuclear Information System (INIS)

    Kim, Hee Reyoung; Kim, Jong Man; Cha, Jae Eun; Choi, Jong Hyun; Nam, Ho Yoon

    2006-01-01

    A liquid sodium coolant is used for a LMR such as KALIMER and a magnetic field is generated in the electromagnetic pump or flowmeter. The magnetic field has an effect on the electrically conducting metal flow by a generation of an electromagnetic pressure drop. Therefore, in the present study, a theoretical calculation is carried out for the effect of an external magnetic field and the magnetic field is measured over the electromagnet system manufactured for the magnetohydrodynamic experiments

  2. The Theoretical Investigation of the Magnetic Field Effect on a Liquid Sodium Flow

    International Nuclear Information System (INIS)

    Kim, Hee Reyoung; Kim, Jong Man; Cha, Jae Eun; Choi, Jong Hyun; Nam, Ho Yoon

    2005-01-01

    The liquid sodium coolant is used for LMR such as KALIMER and magnetic field is generated in the electromagnetic pump or flowmeter. The magnetic field takes an effect on the electrically conducting metal flow by the generation of the electromagnetic pressure drop. Therefore, in the present study, the theoretical calculation is carried out for an effect from the external magnetic field and the magnetic field is firstly measured over the electromagnet system manufactured for the magnetohydrodynamic experiments

  3. Continuous monitoring of volcanoes with borehole strainmeters

    Science.gov (United States)

    Linde, Alan T.; Sacks, Selwyn

    Monitoring of volcanoes using various physical techniques has the potential to provide important information about the shape, size and location of the underlying magma bodies. Volcanoes erupt when the pressure in a magma chamber some kilometers below the surface overcomes the strength of the intervening rock, resulting in detectable deformations of the surrounding crust. Seismic activity may accompany and precede eruptions and, from the patterns of earthquake locations, inferences may be made about the location of magma and its movement. Ground deformation near volcanoes provides more direct evidence on these, but continuous monitoring of such deformation is necessary for all the important aspects of an eruption to be recorded. Sacks-Evertson borehole strainmeters have recorded strain changes associated with eruptions of Hekla, Iceland and Izu-Oshima, Japan. Those data have made possible well-constrained models of the geometry of the magma reservoirs and of the changes in their geometry during the eruption. The Hekla eruption produced clear changes in strain at the nearest instrument (15 km from the volcano) starting about 30 minutes before the surface breakout. The borehole instrument on Oshima showed an unequivocal increase in the amplitude of the solid earth tides beginning some years before the eruption. Deformational changes, detected by a borehole strainmeter and a very long baseline tiltmeter, and corresponding to the remote triggered seismicity at Long Valley, California in the several days immediately following the Landers earthquake are indicative of pressure changes in the magma body under Long Valley, raising the question of whether such transients are of more general importance in the eruption process. We extrapolate the experience with borehole strainmeters to estimate what could be learned from an installation of a small network of such instruments on Mauna Loa. Since the process of conduit formation from the magma sources in Mauna Loa and other

  4. Catalog of borehole lithologic logs from the 600 Area, Hanford Site

    International Nuclear Information System (INIS)

    Fecht, K.R.; Lillie, J.T.

    1982-03-01

    Rockwell Hanford Operations (Rockwell) geoscientists are studying the Hanford Site subsurface environment to assure safe management operations, disposal, and storage of radioactive waste. As part of this effort, geoscientists have collected geotechnical data from about 3000 boreholes drilled on the Hanford Site since the early 1900s. These boreholes have been used for subsurface geologic, hydrologic, and engineering investigation, water supply, ground-water monitoring, and natural gas production. This report is a catalog of all obtainable (about 800) lithologic logs from boreholes in a portion of the Hanford Site known as the 600 Area

  5. Downhole television (DHTV) applications in borehole plugging

    International Nuclear Information System (INIS)

    Christensen, C.L.; Statler, R.D.; Peterson, E.W.

    1980-05-01

    The Borehole Plugging (BHP) Program is a part of the Sandia experimental program to support the Waste Isolation Pilot Plant (WIPP). The Sandia BHP program is an Office of Nuclear Waste Isolation (ONWI)-funded program designed to provide inputs to the generic plugging program while simultaneously acquiring WIPP-specific data. For this reason a close liaison is maintained between the Sandia WIPP project and the ONWI generic program. Useful technology developed within the Sandia BHP to support WIPP is made available and considered for further development and application to the generic Borehole Plugging and Repository Sealing Program at ONWI. The purpose of this report is to illustrate the usefulness of downhole television (DHTV) observations of a borehole to plan plugging operations. An indication of the wellbore conditions observed is provided. The equipment and setup procedure used in the evaluation of AEC-7 for the Bell Canyon test series are illustrated. A sequence of pictures at various depths as the DHTV rig is lowered through the wellbore is presented. Sample photographs taken with both dry and underwater lamps for illumination are included. The caliper logs for the same depth are included for comparison. General comments are provided on the illustrations

  6. Evaluation of technology for large- and small-diameter boreholes to characterize crystalline rock

    International Nuclear Information System (INIS)

    1985-05-01

    Testing methods that have been used in large- and small-diameter boreholes (152 and 76 mm [6 and 3 in.]) were evaluated on their ability to characterize crystalline rocks. The methods evaluated included in-hole geomechanical, geophysical, and geohydrologic techniques and associated laboratory core tests; specific emphasis was on techniques that might be used in a field characterization program involving a small number of deep (up to 1500 m [5000 ft]) boreholes. Each technique was evaluated with regard to its effectiveness and limitations, applicability to the acquisition of data for anticipated rock conditions, and adequacy for assessing the required rock/hydrologic characteristics. Many pertinent case histories that helped to assess applicability were reviewed. A principal objective of the evaluations was to assess whether the techniques would be equally useful in both large- and small-diameter boreholes. Of the techniques evaluated, most are suitable for use in both large- and small-diameter boreholes. Borehole logging, hydrologic testing, and core-testing techniques provide suitable results in both borehole diameters. Geomechanical testing techniques provide suitable data in smaller diameter boreholes and have been designed for application at primarily shallow depths. The results of this study will be of use to the Office of Crystalline Repository Development (OCRD) in determining to what degree it is appropriate to use drilling, sampling, and testing techniques in small-diameter boreholes as opposed to large-diameter methods, while at the same time collecting adequate data for characterizing crystalline rock environments for potential use as a high-level radioactive waste repository. Additionally, further developmental work and specific testing techniques are recommended

  7. Experimental and Numerical Comparison of Two Borehole Heat Exchangers

    DEFF Research Database (Denmark)

    Alberdi Pagola, Maria; Poulsen, Søren Erbs

    2014-01-01

    This report outlines key results from a comparative study of two different pipe borehole heat exchanger (BHE) configurations. The work was carried out by VIA University College and in collaboration with GM Plast A/S.......This report outlines key results from a comparative study of two different pipe borehole heat exchanger (BHE) configurations. The work was carried out by VIA University College and in collaboration with GM Plast A/S....

  8. Can deep boreholes solve America's nuclear waste problem?

    International Nuclear Information System (INIS)

    Bates, E.A.; Driscoll, M.J.; Lester, R.K.; Arnold, B.W.

    2014-01-01

    The United States is in need of a new and more adaptive long-term strategy for spent nuclear fuel. In this communication, we outline the fundamental reasons why deep borehole disposal should receive more detailed investigation, alongside traditional shallow mined repositories. This potential solution is supported by advancing drilling technologies and an improving understanding of extremely long fluid residence times in deep bedrock. Radionuclide isolation is supported by verifiable and stable geologic barriers such as long transport distances to aquifers, low permeability, and reducing chemical conditions. The modular nature of implementing deep borehole disposal could offer unique programmatic and economic advantages. Experience with a pilot borehole program will be required to confirm the feasibility of drilling and emplacement operations, and key chemical and hydraulic conditions. - Highlights: • To meet obligations, the U.S. should diversify used nuclear fuel disposal options. • Hydraulic and chemical systems isolated for ≥10 My can be found in deep bedrock. • Robust concepts in nuclear fuel disposal are enabled by maturing drilling technology. • Disposal in deep boreholes could ease siting, provide modularity, and lower costs

  9. Determination of correction factors for borehole natural gamma-ray measurements by Monte Carlo simulations

    NARCIS (Netherlands)

    Maucec, M.; Hendriks, Peter; Limburg, J.; de Meijer, R. J.

    2009-01-01

    The analysis of natural gamma-ray spectra measured in boreholes has to take into account borehole parameters such as the presence of casings and borehole diameter. For large, high-efficiency gamma-ray detectors, such as BGO-based systems, which employ full-spectrum data analysis, corresponding

  10. Metrology of two-phase flow: different methods

    International Nuclear Information System (INIS)

    Delhaye, J.M.; Galaup, J.P.; Reocreux, M.; Ricque, R.

    Nine papers are presented concerning different methods of measuring two-phase flow. Some of the methods and equipment discussed include: radiation absorption, electromagnetic flowmeter, anemometry, resistance probes, phase indicating microthermocouples, optical probes, sampling methods, and pitot tubes

  11. Hydrogeological characterisation using cross-borehole ground penetration radar and electrical resistivity tomography

    DEFF Research Database (Denmark)

    Zibar, Majken Caroline Looms

    2007-01-01

    was characterized by ~30 m thick unsaturated zone consisting mainly of sands of varying coarseness. Following an instrumentation of 16 boreholes two geophysical methods (cross-borehole ground penetrating radar and electrical resistivity tomography) were applied during natural precipitation and forced infiltration...... properties of the subsurface. On the other hand, volumetric moisture content variations of up to 5% were observed during a 20-day long forced infiltration experiment. The cross-borehole electrical resistance tomography and ground penetrating radar data collected during this experiment were subsequently....... The methods provided estimates of soil moisture content and electrical resistivity variations among 12 m deep boreholes located 5 – 7 m apart. The moisture content change following natural precipitation was observed to be practically negligible, providing minimal information to constrain the dynamic...

  12. Design of a borehole data-acquisition/transmission system. Final report, Volume I

    International Nuclear Information System (INIS)

    Hancock, R.L.; Bowden, J.C.

    1981-06-01

    Objective of the BDATS program was to design, construct, and demonstrate a borehole probe and associated uphole modules that would allow downhole collection of data from any of several borehole probes and would allow digital transmission of that data uphole to a computer. Specifically, the system was electrically and mechanically configured to interface to six separate borehole probes and a computer in a R and D logging vehicle. However, the system can be used with other types of probes

  13. Elastic waves along a cylindrical borehole in a poroelastic medium ...

    Indian Academy of Sciences (India)

    In the oil industry, acoustic borehole logging is commonly practiced. A borehole is drilled in a potential hydro-carbon reservoir and then probed with an acoustic ...... The non-dimensional phase velocity c/Vmin, Vmin = min(V1,V2,V3,V4) is computed at different values of non-dimensional wavenumber ka varying from 0 to 85.

  14. Method for detecting cement voids or borehole washouts

    International Nuclear Information System (INIS)

    Smith, M.P.

    1978-01-01

    A fast neutron source is used to irradiate earth formations in the vicinity of a well borehole. Dual spaced epithermal neutron detectors are used to sample the epithermal neutron population at two different spaced distances from the source. A compensated formation porosity is obtained from the ratio of counting rates at the dual spaced detectors. An uncompensated porosity value is obtained from the count rate at the short spaced detector. Borehole washout or cement void regions are located by comparing the compensated and uncompensated values of formation porosity obtained in this manner

  15. Empirical analysis of electromagnetic profiles for groundwater prospecting in rural areas of Ibadan, southwestern Nigeria

    Science.gov (United States)

    Ehinola, O. A.; Opoola, A. O.; Adesokan, H. A.

    2006-04-01

    The Slingram electromagnetic (EM) survey using a coil separation of 60 and 100 m was carried out in ten villages in the Akinyele area of Ibadan, southwestern Nigeria to aid in the development of groundwater. Five main rock types including an undifferentiated gneiss complex (Su), biotite-garnet schist/gneiss (Bs), quartzite and quartz schist (Q), migmatized undifferentiated biotite/hornblende gneiss (M) and pegmatite/quartz vein (P) underlie the study area. A total of 31 EM profiles was made to accurately locate prospective borehole sites in the field. Four main groups with different behavioural patterns were categorized from the EM profiles. Group 1 is characterized by a high density of positive (HDP) or a high density of negative (HDN) real and imaginary curves, Group 2 by parallel real and imaginary curves intersecting with negligible amplitude (PNA), Group 3 by frequent intersection of a high density of negative minima (FHN) real and imaginary curves, and Group 4 by separate and approximately parallel (SAP) real and imaginary curves. Qualitative pictures of the overburden thickness and the extent of fracturing have been proposed from these behavioural patterns. A comparison of the borehole yield with the overburden thickness and the level of fracturing shows that the borehole yield depends more on the fracture density than on the overburden thickness. The asymmetry of the anomaly was also found to be useful in the determination of the inclination of the conductor/fracture.

  16. The State of the Art of the Borehole Disposal Concept for High Level Radioactive Waste

    International Nuclear Information System (INIS)

    Ji, Sung Hoon; Koh, Yong Kwon; Choi, Jong Won

    2012-01-01

    As an alternative of the high-level radioactive waste disposal in the subsurface repository, a deep borehole disposal is reviewed by several nuclear advanced countries. In this study, the state of the art on the borehole disposal researches was reviewed, and the possibility of borehole disposal in Korean peninsula was discussed. In the deep borehole disposal concept radioactive waste is disposed at the section of 3 - 5 km depth in a deep borehole, and it has known that it has advantages in performance and cost due to the layered structure of deep groundwater and small surface disposal facility. The results show that it is necessary to acquisite data on deep geologic conditions of Korean peninsula, and to research the engineering barrier system, numerical modeling tools and disposal techniques for deep borehole disposal.

  17. Optimization of Deep Borehole Systems for HLW Disposal

    International Nuclear Information System (INIS)

    Driscoll, Michael; Baglietto, Emilio; Buongiorno, Jacopo; Lester, Richard; Brady, Patrick; Arnold, B. W.

    2015-01-01

    This is the final report on a project to update and improve the conceptual design of deep boreholes for high level nuclear waste disposal. The effort was concentrated on application to intact US legacy LWR fuel assemblies, but conducted in a way in which straightforward extension to other waste forms, host rock types and countries was preserved. The reference fuel design version consists of a vertical borehole drilled into granitic bedrock, with the uppermost kilometer serving as a caprock zone containing a diverse and redundant series of plugs. There follows a one to two kilometer waste canister emplacement zone having a hole diameter of approximately 40-50 cm. Individual holes are spaced 200-300 m apart to form a repository field. The choice of verticality and the use of a graphite based mud as filler between the waste canisters and the borehole wall liner was strongly influenced by the expectation that retrievability would continue to be emphasized in US and worldwide repository regulatory criteria. An advanced version was scoped out using zinc alloy cast in place to fill void space inside a disposal canister and its encapsulated fuel assembly. This excludes water and greatly improves both crush resistance and thermal conductivity. However the simpler option of using a sand fill was found adequate and is recommended for near-term use. Thermal-hydraulic modeling of the low permeability and porosity host rock and its small (@@@ 1%) saline water content showed that vertical convection induced by the waste's decay heat should not transport nuclides from the emplacement zone up to the biosphere atop the caprock. First order economic analysis indicated that borehole repositories should be cost-competitive with shallower mined repositories. It is concluded that proceeding with plans to drill a demonstration borehole to confirm expectations, and to carry out priority experiments, such as retention and replenishment of in-hole water is in order.

  18. Optimization of Deep Borehole Systems for HLW Disposal

    Energy Technology Data Exchange (ETDEWEB)

    Driscoll, Michael [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Baglietto, Emilio [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Buongiorno, Jacopo [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Lester, Richard [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Brady, Patrick [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Arnold, B. W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-09

    This is the final report on a project to update and improve the conceptual design of deep boreholes for high level nuclear waste disposal. The effort was concentrated on application to intact US legacy LWR fuel assemblies, but conducted in a way in which straightforward extension to other waste forms, host rock types and countries was preserved. The reference fuel design version consists of a vertical borehole drilled into granitic bedrock, with the uppermost kilometer serving as a caprock zone containing a diverse and redundant series of plugs. There follows a one to two kilometer waste canister emplacement zone having a hole diameter of approximately 40-50 cm. Individual holes are spaced 200-300 m apart to form a repository field. The choice of verticality and the use of a graphite based mud as filler between the waste canisters and the borehole wall liner was strongly influenced by the expectation that retrievability would continue to be emphasized in US and worldwide repository regulatory criteria. An advanced version was scoped out using zinc alloy cast in place to fill void space inside a disposal canister and its encapsulated fuel assembly. This excludes water and greatly improves both crush resistance and thermal conductivity. However the simpler option of using a sand fill was found adequate and is recommended for near-term use. Thermal-hydraulic modeling of the low permeability and porosity host rock and its small (≤ 1%) saline water content showed that vertical convection induced by the waste’s decay heat should not transport nuclides from the emplacement zone up to the biosphere atop the caprock. First order economic analysis indicated that borehole repositories should be cost-competitive with shallower mined repositories. It is concluded that proceeding with plans to drill a demonstration borehole to confirm expectations, and to carry out priority experiments, such as retention and replenishment of in-hole water is in order.

  19. Deep Drilling Into the Chicxulub Impact Crater: Pemex Oil Exploration Boreholes Revisited

    Science.gov (United States)

    Fucugauchi, J. U.; Perez-Cruz, L.

    2007-05-01

    The Chicxulub structure was recognized in the 1940´s from gravity anomalies in oil exploration surveys by Pemex. Geophysical anomalies occur over the carbonate platform in NW Yucatan, where density and magnetic susceptibility contrasts with the carbonates suggested a buried igneous complex or basement uplift. The exploration program developed afterwards included several boreholes, starting with the Chicxulub-1 in 1952 and eventually comprising eight deep boreholes completed through the 1970s. The investigations showing Chicxulub as a large impact crater formed at the K/T boundary have relayed on the Pemex decades-long exploration program. Despite frequent reference to Pemex information, original data have not been openly available for detailed evaluation and incorporation with results from recent efforts. Logging data and core samples remain to be analyzed, reevaluated and integrated in the context of recent marine, aerial and terrestrial geophysical surveys and the drilling/coring projects of UNAM and ICDP. In this presentation we discuss the paleontological data, stratigraphic columns and geophysical logs for the Chicxulub-1 (1582m), Sacapuc-1 (1530m), Yucatan-6 (1631m) and Ticul-1 (3575m) boreholes. These boreholes remain the deepest ones drilled in Chicxulub and the only ones providing samples of the melt-rich breccias and melt sheet. Other boreholes include the Y1 (3221m), Y2 (3474m), Y4 (2398m) and Y5A (3003m), which give information on pre-impact stratigraphy and crystalline basement. We concentrate on log and microfossil data, stratigraphic columns, lateral correlation, integration with UNAM and ICDP borehole data, and analyses of sections of melt, impact breccias and basal Paleocene carbonates. Current plans for deep drilling in Chicxulub crater focus in the peak ring zone and central sector, with proposed marine and on-land boreholes to the IODP and ICDP programs. Future ICDP borehole will be located close to Chicxulub-1 and Sacapuc-1, which intersected

  20. Analysis of ultrasound propagation in high-temperature nuclear reactor feedwater to investigate a clamp-on ultrasonic pulse doppler flowmeter

    International Nuclear Information System (INIS)

    Tezuka, Kenichi; Mori, Michitsugu; Wada, Sanehiro; Aritomi, Masanori; Kikura, Hiroshige; Sakai, Yukihiro

    2008-01-01

    The flow rate of nuclear reactor feedwater is an important factor in the operation of a nuclear power reactor. Venturi nozzles are widely used to measure the flow rate. Other types of flowmeters have been proposed to improve measurement accuracy and permit the flow rate and reactor power to be increased. The ultrasonic pulse Doppler system is expected to be a candidate method because it can measure the flow profile across the pipe cross section, which changes with time. For accurate estimation of the flow velocity, the incidence angle of ultrasound entering the fluid should be estimated using Snell's law. However, evaluation of the ultrasound propagation is not straightforward, especially for a high-temperature pipe with a clamp-on ultrasonic Doppler flowmeter. The ultrasound beam path may differ from what is expected from Snell's law due to the temperature gradient in the wedge and variation in the acoustic impedance between interfaces. Recently, simulation code for ultrasound propagation has come into use in the nuclear field for nondestructive testing. This article analyzes and discusses ultrasound propagation, using 3D-FEM simulation code plus the Kirchhoff method, as it relates to flow profile measurement in nuclear reactor feedwater with the ultrasonic pulse Doppler system. (author)

  1. Fingerprints of zones in boreholes. An approach to identify the characteristics of structures

    Energy Technology Data Exchange (ETDEWEB)

    Straeng, Thomas; Waenstedt, Stefan; Tiren, Sven (GEOSIGMA AB (Sweden))

    2010-11-15

    The classification of geophysical borehole data in order to identify and characterize structures, which intercepts the borehole, is an important part of 3D modelling of the structural pattern of the bedrock. The objective of this study is to test a statistical approach, cluster analysis, on site data in order to see if it is possible to classify complex data set, geological and geophysical borehole data, in order to identify borehole intersects with increased brittle deformation, i.e. brittle deformation zones. The base data used in the study have been provided and delivered by SKB and consist of borehole logging data from the cored borehole KFM03A. The statistical method chosen for this study, cluster analysis using K-means method, groups data into a pre-defined number of clusters with the goal to minimize the variance of data within the group and to maximize the variance between the clusters. The idea is that data can and should be grouped into two categories, two clusters -corresponding to homogeneous bedrock (matrix) in one cluster and open fractures in the other cluster. The analysis also includes a repetition of the cluster analysis, with a stepwise refined data set to see whether strongly accentuated features could be identified. The results show that the use of K-mean Cluster analysis will present clusters that could represent the spatial distribution of bedrock matrix and the location of fractures respectively down the borehole. The results were compared with fracture frequency data (from core mapping) and also with the geological Single Hole Interpretation of KFM03A performed by SKB. The fracture zones identified in the Single Hole Interpretation process are all indicated in the cluster analysis results. The cluster analysis revealed eight additional possible zones. A majority of these are smaller than 5 metres (section width in the borehole) but they are still pronounced in the analysis. Based on the geophysical data, these sections should be taken into

  2. Methods and apparatus for use in detecting seismic waves in a borehole

    Science.gov (United States)

    West, Phillip B.; Fincke, James R.; Reed, Teddy R.

    2006-05-23

    The invention provides methods and apparatus for detecting seismic waves propagating through a subterranean formation surrounding a borehole. In a first embodiment, a sensor module uses the rotation of bogey wheels to extend and retract a sensor package for selective contact and magnetic coupling to casing lining the borehole. In a second embodiment, a sensor module is magnetically coupled to the casing wall during its travel and dragged therealong while maintaining contact therewith. In a third embodiment, a sensor module is interfaced with the borehole environment to detect seismic waves using coupling through liquid in the borehole. Two or more of the above embodiments may be combined within a single sensor array to provide a resulting seismic survey combining the optimum of the outputs of each embodiment into a single data set.

  3. Analysis of groundwater from deep boreholes in Gideaa

    International Nuclear Information System (INIS)

    Laurent, S.

    1983-03-01

    Groundwaters from two boreholes in granitic rock at an ivestigation site in Gideaa has been sampled and analysed. This is part of a larger program of geological, geophysical and hydrogeological investigations aimed at finding a suitable site for a high level radioactive waste respository. Five water-bearing levels in each borehole down to the deepest at about 500 m in the first and about 600 m in the second borehole were selected. Prior to sampling, the waterbearing level is isolated between packer sleeves. The water is then pumped to the surface where sensitive parameters such as redox potential, pH, sulphide and oxygen content are measured electrochemically on the flowing water in a system isolated from the air. Water, filter and gas samples are sent to several laboratories for further analysis. The present report is a presentation of the groundwater analysis. The reliability of the results is discussed but there is no evaluation relation to geology and hydrogeology. This report presents the basic results from the groundwater analyses to be further evaluated by experts in different fields. (Forf)

  4. Boreholes on three bivalve species found on the sand beach at Sagot Cape, Baengnyeongdo, Korea

    Directory of Open Access Journals (Sweden)

    Dal-Yong Kong

    2017-12-01

    Full Text Available Circular to subcircular boreholes were found on the surfaces of three different bivalve shells (Mactra chinensis, Felaniella usta, and Nuttallia japonica that were pushed onto the sand beach at Sagot Cape, Baengnyeongdo, Korea. The boreholes are characterized by beveled holes that are parabolic in cross section. The boreholes are classified into the ichnospecies Oichnus paraboloides, probably drilled by a naticid gastropod Glossaulax didyma didyma living in the Baengnyeong tidal flat. In the case of Mactrashells, boreholes are observed more or less evenly on left and right valves, and 96% of boreholes are located on the umbo. This may suggest that the life position of the Baengnyeong bivalves did not dictate the preference of G. didyma didyma in the Baengnyeong tidal flat ecosystem. The clustered distribution of the boreholes in the umbo area indicates a strong site selectivity for boreholes that is quite a common phenomenon in many naticid gastropods. Keywords: Baengnyeongdo, Mactra chinensis, Naticid gastropods, Oichnus paraboloides, Prey–predator interactions

  5. Deep Borehole Field Test Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Hardin, Ernest L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-09-30

    This report documents conceptual design development for the Deep Borehole Field Test (DBFT), including test packages (simulated waste packages, not containing waste) and a system for demonstrating emplacement and retrieval of those packages in the planned Field Test Borehole (FTB). For the DBFT to have demonstration value, it must be based on conceptualization of a deep borehole disposal (DBD) system. This document therefore identifies key options for a DBD system, describes an updated reference DBD concept, and derives a recommended concept for the DBFT demonstration. The objective of the DBFT is to confirm the safety and feasibility of the DBD concept for long-term isolation of radioactive waste. The conceptual design described in this report will demonstrate equipment and operations for safe waste handling and downhole emplacement of test packages, while contributing to an evaluation of the overall safety and practicality of the DBD concept. The DBFT also includes drilling and downhole characterization investigations that are described elsewhere (see Section 1). Importantly, no radioactive waste will be used in the DBFT, nor will the DBFT site be used for disposal of any type of waste. The foremost performance objective for conduct of the DBFT is to demonstrate safe operations in all aspects of the test.

  6. Climate reconstruction from borehole temperatures influenced by groundwater flow

    Science.gov (United States)

    Kurylyk, B.; Irvine, D. J.; Tang, W.; Carey, S. K.; Ferguson, G. A. G.; Beltrami, H.; Bense, V.; McKenzie, J. M.; Taniguchi, M.

    2017-12-01

    Borehole climatology offers advantages over other climate reconstruction methods because further calibration steps are not required and heat is a ubiquitous subsurface property that can be measured from terrestrial boreholes. The basic theory underlying borehole climatology is that past surface air temperature signals are reflected in the ground surface temperature history and archived in subsurface temperature-depth profiles. High frequency surface temperature signals are attenuated in the shallow subsurface, whereas low frequency signals can be propagated to great depths. A limitation of analytical techniques to reconstruct climate signals from temperature profiles is that they generally require that heat flow be limited to conduction. Advection due to groundwater flow can thermally `contaminate' boreholes and result in temperature profiles being rejected for regional climate reconstructions. Although groundwater flow and climate change can result in contrasting or superimposed thermal disturbances, groundwater flow will not typically remove climate change signals in a subsurface thermal profile. Thus, climate reconstruction is still possible in the presence of groundwater flow if heat advection is accommodated in the conceptual and mathematical models. In this study, we derive a new analytical solution for reconstructing surface temperature history from borehole thermal profiles influenced by vertical groundwater flow. The boundary condition for the solution is composed of any number of sequential `ramps', i.e. periods with linear warming or cooling rates, during the instrumented and pre-observational periods. The boundary condition generation and analytical temperature modeling is conducted in a simple computer program. The method is applied to reconstruct climate in Winnipeg, Canada and Tokyo, Japan using temperature profiles recorded in hydrogeologically active environments. The results demonstrate that thermal disturbances due to groundwater flow and climate

  7. Methods and apparatus for field blasting of earth formations using inflatable devices for suspending explosives in boreholes

    International Nuclear Information System (INIS)

    Fitzgibbon, D.F. Jr.

    1991-01-01

    This patent describes an inflatable device for supporting a mass of stemming material or explosive material within an uncased borehole formed vertically or essentially vertically in the earth prior to initiation of blasting within the borehole, walls of the borehole being irregular due to drilling of the borehole into the earth. It comprises body means comprising flexible portions of the inflatable device for extending into contact with walls of the borehole and for transferring pressure from an inflating fluid introduced into the inflatable device to the irregular walls of the borehole, the pressure being adequate to provide an essentially vertical force component directed against the stemming material or explosive material supporting the material at a desired location within the borehole, the inflatable device being capable of inflation within the borehole; and means carried by the inflatable device for connection to a source of inflating fluid and through which the inflatable device is filled with the fluid to expand the flexible portions into engagement with the irregular walls of the borehole

  8. A Proposed Borehole Scientific Laboratory in Quay County, New Mexico, USA

    Science.gov (United States)

    Nielson, Dennis; Eckels, Marc; Mast, Peter; Zellman, Mark; Creed, Robert

    2017-04-01

    Our team has received funding from the US Department of Energy to initiate a Deep Borehole Field Test that will develop a subsurface test site to evaluate the drilling and scientific aspects of deep borehole disposal of nuclear waste in crystalline rock. Phase 1 of the project will focus on Public Outreach and land acquisition whereas Phase 2 will generate a drilling and testing plan and secure regulatory approvals. Phase 3 will complete the Drilling and Testing Plan and Phase 4 will include the drilling and testing. Phase 5 will be devoted to borehole science and experiments with emplacement technology. Although we are specifically considering issues associated with the disposal of waste, this project is a proof of concept, and no waste will be emplaced at our site. In brief, the concept envisions an 8-1/2 inch open-hole completion at a depth of 5000 m in crystalline rock. There will be an extensive program of sample collection (including core) and analysis as well as geophysical logging and borehole testing. Critical issues will be low permeability in the crystalline rock as well as the ability to manage borehole quality. Our team has proposed a site in Quay County, New Mexico that has an 850 meter thick Paleozoic section overlying homogeneous Precambrian granite. A subsequent phase of the project may drill a second hole with a 17-1/2 inch completion located about 200 m from the first. Our long-term plan is that this site will be managed as a deep scientific observatory that also provides a facility for scientific experiments and testing of borehole infrastructure and drilling equipment.

  9. Development of a mobile borehole investigation software using augmented reality

    Science.gov (United States)

    Son, J.; Lee, S.; Oh, M.; Yun, D. E.; Kim, S.; Park, H. D.

    2015-12-01

    Augmented reality (AR) is one of the most developing technologies in smartphone and IT areas. While various applications have been developed using the AR, there are a few geological applications which adopt its advantages. In this study, a smartphone application to manage boreholes using AR has been developed. The application is consisted of three major modules, an AR module, a map module and a data management module. The AR module calculates the orientation of the device and displays nearby boreholes distributed in three dimensions using the orientation. This module shows the boreholes in a transparent layer on a live camera screen so the user can find and understand the overall characteristics of the underground geology. The map module displays the boreholes on a 2D map to show their distribution and the location of the user. The database module uses SQLite library which has proper characteristics for mobile platforms, and Binary XML is adopted to enable containing additional customized data. The application is able to provide underground information in an intuitive and refined forms and to decrease time and general equipment required for geological field investigations.

  10. Initial Borehole Accelerometer Array Observations Near the North Portal of the ESF

    International Nuclear Information System (INIS)

    David von Seggern

    2005-01-01

    This report addresses observed ground motions at the site of the proposed surface facilities associated with the designated repository for high-level nuclear waste at Yucca Mountain, Nevada. In 2003 an accelerometer array was installed at three boreholes on the pad of the north portal of the ESF (Exploratory Studies Facility) at Yucca Mountain, Nevada, by the Nevada Seismological Laboratory (NSL). These boreholes, roughly 150 m apart and initially used for extensive geological and geophysical surveys, were ideal locations to measure the subsurface ground motions at the proposed site of surface facilities such as the Waste Handling Building. Such measurements will impact the design of the facilities. Accelerometer emplacement depths of approximately 15 m from the surface and then at the bottom of the boreholes, roughly 100 m, were chosen. Accelerometers were also placed at the surface next to the boreholes, for a total of nine accelerometers, all three-component. Data recording was accomplished with onsite recorders, with the onsite data transmitted to a central computer at a trailer on the pad. All requirements were met to qualify these data as ''Q''. Due to the lack of significant recordings during 2003, several low signal-to-noise (S/N) quality events were chosen for processing. The maximum horizontal peak ground acceleration (PGA) recorded at the pad was approximately 1 cm/s2 in 2003; the corresponding peak ground velocity (PGV) was approximately 0.01 cm/s. PGA and PGV were obtained at all nine accelerometers for most of these events, and spectra were computed. Ground motion amplitudes varied significantly across the boreholes. Higher ground amplifications were observed at the surface for the two boreholes that penetrated a thick amount (∼ 30 m) of fill and Quaternary alluvium compared to the one that had less than 2 m of such. Additionally, surface-to-deep recordings showed as much as a factor of five amplification at these two boreholes. Signal correlation

  11. Exploratory borehole Leuggern. Working program

    International Nuclear Information System (INIS)

    1984-07-01

    An extensive geophysical borehole logging programme will serve to verify the results of the core analysis and complement the core data. Numerous borehole logs are to be registered with different types of tools. These allow one to determine various parameters essential for the full description of the rock sequences penetrated. A first category of logs enables the petrographical identification of the different rock types and indicates porous zones that are either water- or hydrocarbon-bearing. A second category provides data e.g. on the degree of pore and fracture fill, rock density and rock temperature, natural gamma radiation and rock-mechanical properties. Other logs measure strike and dip of the sedimentary layers and the position of rock fractures. A fourth category provides information on the diameter and the deviation of the borehole, the quality of casing cementations and the position of casing joints. In addition, well shooting surveys will supply exact values of seismic velocities for the various rock units; data that are needed for the depth correction of the reflection profiles from Nagra's regional seismic network. With numerous hydrological tests ranging from a production tests of the Muschelkalk and Buntsandstein aquifers to labelled slug-tests in low-permeability crystalline sections, the hydraulic conditions of deep groundwater flow will be investigated. The recovered water samples will undergo full physical and geochemical analysis. Furthermore, their isotope content is to be measured in order to estimate the age of the various formation waters and their time of residence in the subsurface. To round off the scientific investigations, a series of rock-mechanical and geotechnical laboratory tests will provide characteristic values to be applied eventually in the design and construction of shafts and caverns for an underground repository

  12. 10 CFR 60.134 - Design of seals for shafts and boreholes.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Design of seals for shafts and boreholes. 60.134 Section....134 Design of seals for shafts and boreholes. (a) General design criterion. Seals for shafts and... closure. (b) Selection of materials and placement methods. Materials and placement methods for seals shall...

  13. Uemachi flexure zone investigated by borehole database and numeical simulation

    Science.gov (United States)

    Inoue, N.; Kitada, N.; Takemura, K.

    2014-12-01

    The Uemachi fault zone extending north and south, locates in the center of the Osaka City, in Japan. The Uemachi fault is a blind reverse fault and forms the flexure zone. The effects of the Uemachi flexure zone are considered in constructing of lifelines and buildings. In this region, the geomorphological survey is difficult because of the regression of transgression. Many organizations have carried out investigations of fault structures. Various surveys have been conducted, such as seismic reflection survey in and around Osaka. Many borehole data for construction conformations have been collected and the geotechnical borehole database has been constructed. The investigation with several geological borehole data provides the subsurface geological information to the geotechnical borehole database. Various numerical simulations have been carried out to investigate the growth of a blind reverse fault in unconsolidated sediments. The displacement of the basement was given in two ways. One is based on the fault movement, such as dislocation model, the other is a movement of basement block of hanging wall. The Drucker-Prager and elastic model were used for the sediment and basement, respectively. The simulation with low and high angle fault movements, show the good agree with the actual distribution of the marine clay inferred from borehole data in the northern and southern Uemachi fault flexure zone, respectively. This research is partly funded by the Comprehensive Research on the Uemachi Fault Zone (from FY2010 to FY2012) by The Ministry of Education, Culture, Sports, Science and Technology (MEXT).

  14. Quantitative and qualitative applications of the neutron-gamma borehole logging

    International Nuclear Information System (INIS)

    Charbucinski, J.; Aylmer, J.A.; Eisler, P.L.; Borsaru, M.

    1989-01-01

    Two neutron-γ borehole logging applications are described. In a quantitative application of the prompt-gamma neutron-activation analysis (PGNAA) technique, research was carried out both in the laboratory and at a mine to establish a suitable borehole logging technology for manganese-grade predictions. As an example of the qualitative application of PGNAA, the use of this method has been demonstrated for the determination of lithology. (author)

  15. Quantitative and qualitative applications of the neutron-gamma borehole logging

    International Nuclear Information System (INIS)

    Charbucinski, J.; Eisler, P.L.; Borsaru, M.; Aylmer, J.A.

    1990-01-01

    Two examples of neutron-gamma borehole logging application are described. In the quantitative application of the PGNAA technique, research was carried out both in the laboratory and at a mine to establish a suitable borehole logging technology for Mn-grade predictions. As an example of qualitative application of PGNAA, use of this method has been demonstrated for determination of lithology. (author). 4 refs, 10 figs, 7 tabs

  16. A portable borehole temperature logging system using the four-wire resistance method

    Science.gov (United States)

    Erkan, Kamil; Akkoyunlu, Bülent; Balkan, Elif; Tayanç, Mete

    2017-12-01

    High-quality temperature-depth information from boreholes with a depth of 100 m or more is used in geothermal studies and in studies of climate change. Electrical wireline tools with thermistor sensors are capable of measuring borehole temperatures with millikelvin resolution. The use of a surface readout mode allows analysis of the thermally conductive state of a borehole, which is especially important for climatic and regional heat flow studies. In this study we describe the design of a portable temperature logging tool that uses the four-wire resistance measurement method. The four-wire method enables the elimination of cable resistance effects, thus allowing millikelvin resolution of temperature data at depth. A preliminary two-wire model of the system is also described. The portability of the tool enables one to collect data from boreholes down to 300 m, even in locations with limited accessibility.

  17. Mathematical modeling of radionuclide release through a borehole in a radioactive waste repository

    International Nuclear Information System (INIS)

    Choi, Heui Joo

    1996-02-01

    The effects of inadvertent human intrusion as a form of direct drilling into a radioactive waste repository are discussed in this thesis. It has been mentioned that the inadvertent direct drilling into the repository could provide a release pathway for radionuclides even with its low occurrence probability. The following analyses are carried out regarding the problem. The maximum concentration in a water-filled borehole penetrating a repository is computed with a simple geometry. The modeling is based upon the assumption of the diffusive mass transfer in the waste forms and the complete mixing in the borehole. It is shown that the maximum concentrations of six radionuclides in the borehole could exceed the Maximum Permissible Concentration. Also, the diffusive mass transport in a water-filled borehole is investigated with a solubility-limited boundary condition. An analytic solution is derived for this case. Results show that the diffusive mass transport is fast enough to justify the assumption of the complete mixing compared with the considered time span. The axial diffusive mass transport along a water-filled borehole is modeled to compute the release rate taking account of the rock matrix diffusion. The results show that the release of short-lived radionuclides are negligible due to the low concentration gradient in early time and the rock matrix diffusion. The release rates of four long-lived radionuclides are computed. It is also shown that the model developed could be applied to a borehole at a non-cylindrically shaped repository and the off-center drilling of a cylindrical repository. The release rates of long-lived nuclides through a porous material-filled borehole are computed. The results show that the release of all the long-lived nuclides is negligible up to half million years in the case that the borehole is filled with the porous material. The radiological effects of the nuclides released through the borehole penetrating the repository are computed

  18. Core drilling of deep borehole OL-KR46 at Olkiluoto in Eurajoki 2007

    International Nuclear Information System (INIS)

    Toropainen, V.

    2007-09-01

    Posiva Oy submitted an application to the Finnish Government in May 1999 for the Decision in Principle to choose Olkiluoto in the municipality of Eurajoki as the site of the final disposal facility for spent nuclear fuel. A positive decision was made at the end of 2000 by the Government. The Finnish Parliament ratified the decision in May 2001. The decision makes it possible for Posiva to focus the confirming bedrock investigations at Olkiluoto, where in the next few years an underground rock characterisation facility, ONKALO, will be constructed. As a part of the investigations Suomen Malmi Oy (Smoy) core drilled 600.10 m and 45.16 m deep boreholes with a diameter of 75.7 mm at Olkiluoto in May - June 2007. The identification numbers of the boreholes are OL-KR46 and OL-KR46B, respectively. A set of monitoring measurements and samplings from the drilling and returning water was carried out during the drilling. Both the volume and the electric conductivity of the returning water, and the volume of drilling water were recorded. The drill rig was computer controlled and during drilling the computer recorded drilling parameters. The objective of all these measurements was to obtain more information about bedrock and groundwater properties. Sodium fluorescein was used as a label agent in the drilling water. The total volumes of the used drilling and flushing water were 466 m 3 and 20 m 3 in boreholes OL-KR46 and OL-KR46B, respectively. Measured volumes of the returning water were 407 m 3 in borehole OL-KR46 and 12 m 3 in borehole OL-KR46B. The deviation of the boreholes was measured with the deviation measuring instruments EMS and Maxibor. Uniaxial compressive strength, Young's Modulus and Poisson's ratio were measured from the core samples. The average uniaxial compressive strength is 116.5 MPa, the average Young's Modulus is 31.5 GPa and the average Poisson's ratio is 0.20. The main rock types are veined gneiss, tonalitic-granodioritic-granitic gneiss and pegmatite

  19. Drilling, logging, and testing information from borehole UE-25 UZ number-sign 16, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Thamir, F.; Thordarson, W.; Kume, J.; Rousseau, J.; Cunningham, D.M. Jr.

    1998-01-01

    Borehole UE-25 UZ number-sign 16 is the first of two boreholes that may be used to determine the subsurface structure at Yucca Mountain by using vertical seismic profiling. This report contains information collected while this borehole was being drilled, logged, and tested from May 27, 1992, to April 22, 1994. It does not contain the vertical seismic profiling data. This report is intended to be used as: (1) a reference for drilling similar boreholes in the same area, (2) a data source on this borehole, and (3) a reference for other information that is available from this borehole. The reference information includes drilling chronology, equipment, parameters, coring methods, penetration rates, completion information, drilling problems, and corrective actions. The data sources include lithology, fracture logs, a list of available borehole logs, and depths at which water was recorded. Other information is listed in an appendix that includes studies done after April 22, 1994

  20. Exploratory borehole Schafisheim: constructional- and environmental aspects, drilling technique

    International Nuclear Information System (INIS)

    1991-04-01

    The Schafisheim borehole was the fourth borehole in the Nagra deep drilling programme in Northern Switzerland. The drilling work began on the 26th of November 1983. The final depth of 2000.6 m was reached on June 29th, 1984 and this was followed by a transition to a test phase which lasted until 25th February 1985. To reach the final depth, the borehole passed through around 1500 m of sediments and 500 m of crystalline rock. More than 50% of the drilled section, including more or less all of the crystalline rock, was cored. This report describes the drilling activities, the construction work relating to the Schafisheim site and the measures taken to ensure environmental protection. The report closes with a chapter dealing with the supervisory commission consisting of members of the federal, cantonal and local authorities and with the report series on the drilling work. (author) figs., tabs

  1. On Thermally Interacting Multiple Boreholes with Variable Heating Strength: Comparison between Analytical and Numerical Approaches

    Directory of Open Access Journals (Sweden)

    Marc A. Rosen

    2012-08-01

    Full Text Available The temperature response in the soil surrounding multiple boreholes is evaluated analytically and numerically. The assumption of constant heat flux along the borehole wall is examined by coupling the problem to the heat transfer problem inside the borehole and presenting a model with variable heat flux along the borehole length. In the analytical approach, a line source of heat with a finite length is used to model the conduction of heat in the soil surrounding the boreholes. In the numerical method, a finite volume method in a three dimensional meshed domain is used. In order to determine the heat flux boundary condition, the analytical quasi-three-dimensional solution to the heat transfer problem of the U-tube configuration inside the borehole is used. This solution takes into account the variation in heating strength along the borehole length due to the temperature variation of the fluid running in the U-tube. Thus, critical depths at which thermal interaction occurs can be determined. Finally, in order to examine the validity of the numerical method, a comparison is made with the results of line source method.

  2. Characterization of deep-seated rock masses by means of borehole investigation

    International Nuclear Information System (INIS)

    1982-04-01

    Swedish State Power Board. The main objective of the programme was to test a method of measuring in-situ rock stresses in the deep, water-filled boreholes and to correlate measured rock stresses with the hydraulic and geological properties of the rock mass. The investigations consist of the following activities: - Coredrillin of two main boreholes with a depth of 500 m and 250 m respectively. - Rock stress measurements at 11 and 9 main levels in the boreholes respectively. At each level at least 3 complete measurements were made. - Logging of the cores with respect to rock type, fractures and fracture characteristics. - Water injection tests in the boreholes. The rock mass investigated is composed of a gneiss granite of Svecocarelian age (1500 Ma), with inclusions of younger pegmatites and greenstones of variable ages. The fracture density is as a mean 2 fractures per meter with a marked decrease in frequency with increased depth. The fractures are generally coated with calcite and chlorite as the dominating coating minerals. For the rock stress measurements, the method of Leeman and Hayes was chosen. The result show that there is a very high stress level in the rock mass, recordings of about 70 MPa were taken below a horizontal fracture zone at 320 m depth. In this lower rock masses the high stresses were also illustrated by intense disking of the hollow core which made measurements impossible in large sections of the boreholes. Water injection tests were performed, mainly as double-packer tests alon the entire boreholes. For the evaluation, both stationary and transient calculation theories were used and the results show a good agreement. The hyddraulic conductivities of the rock mass vary from below 10 -10 m/s up to 10 -7 m/s. The conductivity decreases with depth, though there are zones even at great depth with high conductivity. (Author)

  3. Nuclear borehole probes - theory and experiments

    International Nuclear Information System (INIS)

    Joergensen, J.L.; Korsbech, U.; Gynther Nielsen, K.; Oelgaard, P.L.

    1985-06-01

    The report gives a summary of the theoretical and expeimental work on borehole probes that has been performed since 1971 at The Department of Electrophysics, The Technical University of Denmark. The first part of the report concerns the use of a spectral natural gamma-ray probe (SNG-probe), which is used for measurements of the spectral distribution of the gamma-rays of the geological strata around a borehole. In general the spectrum is divided into three parts - the gamma-rays from potassium-40, from thorium-232 and daughters, and from uranium-238 and daughters. A set of curves showing the intensities of the gamm-radiation from K, Th, and U versus depth is called a SNG-log. If proper calibrated, the SNG-log gives the concentration of Th, U, and K in the formation surrounding the borehole. Initially the basis for an interpretation of SNG-logs is discussed. Then follows a description og some SNG-problems designed and built by The Department of Electrophysics, and a discussion of the calibration of SNG-probes. Some examples of SNG-logs are presented, and some general comments on the use of SNG-logs are given. The second part of the report concerns mainly the development of theoretical models for neutron-neutron probes, gamma-gamma probes, and pulsed-neutron probes. The purpose of this work has been to examine how well the models correlate with measured results and - where reasonable agreement is found - to use the models in studies of the factors that affect the probe responses in interpretation of experimental results and in probe design. (author)

  4. Data Communication PC/NaI-borehole probe (Hardware & Software)

    DEFF Research Database (Denmark)

    Madsen, Peter Buch

    Development of new hard- & software to a NaI borehole probe on a PC. Save data from the probe each 10'th sec, handle the data from the probe and make calculations every 10'th sec and show the results on the monitor.......Development of new hard- & software to a NaI borehole probe on a PC. Save data from the probe each 10'th sec, handle the data from the probe and make calculations every 10'th sec and show the results on the monitor....

  5. Practical borehole logging procedures for mineral exploration, with emphasis on uranium

    International Nuclear Information System (INIS)

    1986-01-01

    Borehole logging is a basic tool in the exploration for and delineation of uranium deposits. This manual describes recommended procedures for carrying out borehole logging, concentrating on practical aspects of the operation of interest to those actually involved in day-to-day field work. The book begins with a discussion of boreholes and then deals with gamma ray logging as the main method of interest. Information is also provided on other techniques including resistance, spontaneous potential, density and neutron logging. Field procedures are described, and examples of logs and interpretations are given. The appendices provide information on calibration procedures and correction factors, a glossary of useful terms and some relevant basic data regarding drill holes and drilling

  6. Core drilling of deep borehole OL-KR33 at Olkiluoto in Eurajoki 2004

    Energy Technology Data Exchange (ETDEWEB)

    Rautio, T. [Suomen Malmi Oy, Espoo (Finland)

    2005-01-15

    Posiva Oy submitted an application for the Decision in Principle to the Finnish Government in May 1999. A positive decision was made at the end of 2000 by the Government. The Finnish Parliament ratified the Decision in Principle on the final disposal facility for spent nuclear fuel at Olkiluoto, Eurajoki in May 2001. The decision makes it possible for Posiva to focus the confirming bedrock investigations at Olkiluoto, where in the next few years an underground rock characterisation facility, the ONKALO, will be constructed. As a part of the investigations Suomen Malmi Oy (Smoy) core drilled 311.02 m and 45.53 m deep boreholes with a diameter of 75.7 mm at Olkiluoto in November-December 2004. These boreholes were aimed to get additional information of the quality of bedrock and the quality and the location of the fractured zones R2, RH9 and R72. The identification numbers of the boreholes are OL-KR33 and OL-KR33B, respectively. A set of monitoring measurements and samplings from the drilling and returning water was carried out during the drilling. Both the volume and the electric conductivity of the drilling water and the returning water were recorded as well as the pressure of the drilling water. The objective of these measurements was to obtain more information about bedrock and groundwater properties. Sodium fluorescein was used as a label agent in the drilling water. The volumes of the used drilling water were about 195m{sup 3} and 14m{sup 3} and the measured volumes of the returning water were about 100 m{sup 3} and 9 m{sup 3} in boreholes OL-KR33 and OL-KR33B, respectively. The deviations of the boreholes were measured with the deviation measuring instruments EMS and Maxibor. The results of the Maxibor measurements indicate that borehole OL-KR33 deviates 15.97 m right and 31.04 m up at the borehole depth of 309 m. Uniaxial compressive strength, Young's Modulus and Poisson's ratio were measured from the core samples. The average uniaxial compressive

  7. About the Possibility of Disposal of HLRW in Deep Boreholes in Germany

    Directory of Open Access Journals (Sweden)

    Guido Bracke

    2017-07-01

    Full Text Available Using deep boreholes for the final disposal of high-level radioactive waste (HLRW can take advantage of multiple geologic barriers as safety features and aims for the safe containment of radionuclides by containment-providing rock zones (CPRZ. The great depth efficiently prolongs or hinders radionuclide transport and also impedes proliferation. Finally, there may be a time benefit with regard to technical implementation and costs. Due to the phase-out from nuclear energy in Germany the number of boreholes could be less than 100. A simplified, generic safety concept, and the requirements for the diameter of boreholes and containers are derived in this paper. Furthermore, the operational safety of emplacement, the retrieval of waste and sealing of the boreholes is discussed. It is outlined that boreholes can be sealed quickly and over long distances with proven technologies, for example, using the creep properties of salt rock formations. This concept is assessed for its compliance with the safety requirements of the German Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety (BMUB, and the requirements and criteria for site selection defined by the German commission on “Storage of high-level radioactive waste”. The retrievability of HLRW is assessed to be technically feasible based on today´s knowledge, but recoverability after closure cannot be guaranteed for long time spans. Further developments in details of the concept of deep borehole disposal (DBD, a demonstration of its technical feasibility and an assessment of operational and long-term safety are still necessary to make DBD an approved option.

  8. Water flow in bedrock; estimation of influence of transmissive shaft and borehole

    International Nuclear Information System (INIS)

    Andersson, L.; Neretnieks, J.; Rasmuson, A.

    1983-01-01

    The bedrock, a system of large and small fractures that permit water transport through the rock mass. The water content of the bedrock can, under varying hydrostatic pressure conditions, give rise to different flow patterns via boreholes or shafts drilled through the rock. A case is dealt with where a borehole connects a low point in the terrain with a point in the repository where the hydrostatic pressure is higher than at the mouth of the borehole. The situation may be conceived as having arisen when the area was investigated and a hole was drilled at an angle down from the valley to a point below the high point in the area. If the borehole is not sealed, an artesian well may be created. The conductivity used, 2 times 10- 9 m/s, presumes that the repository has been emplaced in average quality rock at this depth. In reality, the repository site will be selected where the rock is better than average. In reality, a shaft - even if it is imperfectly backfilled - or a borehole exerts a flow resistance that reduces the available pressure difference at a depth of 500 m. Taken together, these factors indicate that approx. 5 m 3 /(year, 5 m) is the water flow that can be expected to emerge from the repository through a shaft or a borehole. Only this flow can have been contaminated with escaping substances from the repository area. Water that flows in from other parts of the hole dilutes this flow considerably. (G.B.)

  9. 200-ZP-1 operable unit borehole summary report for FY 1995 and FY 1996

    International Nuclear Information System (INIS)

    Darrach, M.E.

    1996-10-01

    This document details the well construction, sampling, analyses, and geologic character of the Ringold Formation fluvial unit E gravels as encountered in 16 boreholes in the 200-ZP-1 Operable Unit. These boreholes were drilled by Water Development Hanford Corporation during fiscal years 1995 and 1996. Two of the sixteen boreholes were abandoned; the remaining 14 boreholes were completed as functioning production and compliance wells. The borehole logs and well summary sheets included as Appendices A and B of this document, respectively, depict and describe the vadose zone stratigraphic units encountered during the course of drilling. Appendix C contains the results of sieve analyses conducted on samples obtained via resonant sonic coring and standard split-spoon methods. The sieve analyses were the driver behind the majority of the well designs. Also, for completeness, Appendices D and E contain the well design calculations and the well development process

  10. Concentration of trace metals in boreholes in the Ankobra Basin, Ghan

    African Journals Online (AJOL)

    Roughly 25% of the boreholes had manganese concentration higher than 500 mg l-1, which is the WHO maximum acceptable limit for drinking water. The concentration of mercury was higher than 1.0 mg l-1 (WHO maximum acceptable limit) in 60% of the boreholes during the rainy season but below detection limit in the dry ...

  11. Strategic decision analysis applied to borehole seismology

    International Nuclear Information System (INIS)

    Menke, M.M.; Paulsson, B.N.P.

    1994-01-01

    Strategic Decision Analysis (SDA) is the evolving body of knowledge on how to achieve high quality in the decision that shapes an organization's future. SDA comprises philosophy, process concepts, methodology, and tools for making good decisions. It specifically incorporates many concepts and tools from economic evaluation and risk analysis. Chevron Petroleum Technology Company (CPTC) has applied SDA to evaluate and prioritize a number of its most important and most uncertain R and D projects, including borehole seismology. Before SDA, there were significant issues and concerns about the value to CPTC of continuing to work on borehole seismology. The SDA process created a cross-functional team of experts to structure and evaluate this project. A credible economic model was developed, discrete risks and continuous uncertainties were assessed, and an extensive sensitivity analysis was performed. The results, even applied to a very restricted drilling program for a few years, were good enough to demonstrate the value of continuing the project. This paper explains the SDA philosophy concepts, and process and demonstrates the methodology and tools using the borehole seismology project example. SDA is useful in the upstream industry not just in the R and D/technology decisions, but also in major exploration and production decisions. Since a major challenge for upstream companies today is to create and realize value, the SDA approach should have a very broad applicability

  12. Subsurface fracture surveys using a borehole television camera and an acoustic televiewer

    International Nuclear Information System (INIS)

    Lau, J.S.O.; Auger, L.F.

    1987-01-01

    Borehole television survey and acoustic televiewer logging provide rapid, cost-effective, and accurate methods of surveying fractures and their characteristics within boreholes varying in diameter from 7.6 to 15.3 cm. In the television survey, a camera probe is used to inspect the borehole walls. Measurements of location, orientation, infilling width, and aperture of fractures are made on the television screen and recorded on computer data record sheets. All observations are recorded on video cassette tapes. With the acoustic televiewer, oriented images of fractures in the borehole walls are recorded on a strip-chart log and also on video cassette tapes. The images are displayed as if the walls were split vertically along magnetic north and spread out horizontally. Measurements of fracture characteristics are made on the strip-chart log, using a digitizing table and a microcomputer, and the data recorded on floppy diskettes. In both surveys, an inclined fracture is displayed as a sinusoidal curve, from which the apparent orientation of the fracture can be measured. Once the borehole orientation is known, the true orientation of the fracture can be computed from its apparent orientation. Computer analysis of the fracture data, provides a rapid assessment of fracture occurrence, fracture aperture, and statisically significant concentrations of fracture orientations

  13. Combination of surface and borehole seismic data for robust target-oriented imaging

    Science.gov (United States)

    Liu, Yi; van der Neut, Joost; Arntsen, Børge; Wapenaar, Kees

    2016-05-01

    A novel application of seismic interferometry (SI) and Marchenko imaging using both surface and borehole data is presented. A series of redatuming schemes is proposed to combine both data sets for robust deep local imaging in the presence of velocity uncertainties. The redatuming schemes create a virtual acquisition geometry where both sources and receivers lie at the horizontal borehole level, thus only a local velocity model near the borehole is needed for imaging, and erroneous velocities in the shallow area have no effect on imaging around the borehole level. By joining the advantages of SI and Marchenko imaging, a macrovelocity model is no longer required and the proposed schemes use only single-component data. Furthermore, the schemes result in a set of virtual data that have fewer spurious events and internal multiples than previous virtual source redatuming methods. Two numerical examples are shown to illustrate the workflow and to demonstrate the benefits of the method. One is a synthetic model and the other is a realistic model of a field in the North Sea. In both tests, improved local images near the boreholes are obtained using the redatumed data without accurate velocities, because the redatumed data are close to the target.

  14. Application of borehole radar to South Africa’s Ultra-Deep gold mining environment

    CSIR Research Space (South Africa)

    Trickett, JC

    2000-05-01

    Full Text Available ), the collar of which is located at a depth of 3.3 km below datum1. LIB boreholes are used to probe totally undeveloped blocks of ground and, being semi-parallel to reef, are ideal for the application of Borehole Radar. By applying Borehole Radar from... the target reef; viz. 1 For the Witwatersrand Basin Gold Mines, the datum is ? 1829 m above sea level. Ventersdorp Contact Reef (VCR), twice. It was drilled at 45? downwards into the hangingwall...

  15. Site characterization and validation - drift and borehole fracture data. Stage 1

    International Nuclear Information System (INIS)

    Gale, J.; Straahle, A.

    1988-09-01

    This report describes the procedures used in mapping fractures intersecting seven scanlines along the southern and eastern boundaries of the Site Characterization and Validation (SCV) site and the procedures used in logging and orienting the fractures intersecting the core from six 'boundary boreholes' that were drilled as part of the site characterization program for the SCV site at the 360 m level in the Stripa mine. Scanline mapping along the mine drifts provided a detailed description of the fracture geomentry on the boundaries of the SCV site. The cores from the boundary boreholes have been logged, reconstructed and oriented using a borehole Televiewer and a borehole TV camera and the true fracture orientations calcilated. This has provide additional data on the fracture geometry within the SCV site. The fractire data from both the scanlines and the core logging are presented in the appendices. In addition, an initial analysis has been completed of the fracture orientations, trace lengths and spacings. Based on the variation in fracture orientations over the SCV site, there are two strong subvertical fracture sets or or clusters and a poorly represented sub-horizontal fracture set. An empirical approach, based on the 'blind zone' concept has been used to correct for orientation bias and to predict the orientations of the fracture system that will be intersected by the C and D boreholes in stage III. (33 figs., 6 tabl., 19 refs.)

  16. Conductive fracture mapping. A study on the correlation between borehole TV- and radar images and difference flow logging results in borehole KLX02

    International Nuclear Information System (INIS)

    Carlsten, S.; Straahle, A.; Ludvigson, Jan-Erik

    2001-10-01

    This study presents an attempt to correlate images from borehole-TV (BIPS) and borehole radar with interpreted flow anomalies from Difference Flow Meter logging (DIFF). The measurements were performed in the interval 200-400 m in borehole KLX02 at Laxemar. In total, 59 flow anomalies were interpreted by the DIFF-log in this borehole interval. However, 14 flow anomalies were below the rigorous measurement limit for the actual flow meter and are thus regarded as uncertain. In total, 261 features were primarily interpreted by the BIPS-characterization in the borehole interval 200-400 m but only 12 radar reflectors. The low number of interpreted radar reflectors most likely depends on the low frequency of the antenna used in this case which gave a poor depth resolution. The total number of fractures recorded by the core mapping in this interval was 374 (279 in the rock together with 95 fractures in interpreted crush zones). Prior to the correlation analysis it was necessary to adjust the length scales of the BIPS-measurements relative to the length scale of the Difference Flow logging due to non-linear stretching of logging cables etc to achieve the necessary resolution of the depth scale.This adjustment was done by comparing the distances between clearly identified single features in the BIPS-images with the corresponding distances between clearly identified flow anomalies. The BIPS-measurements consist of 5 independent logging sequences in the studied borehole interval, which resulted in 'jumps' when comparing the non-conform length scales of the different sequences. All of the 59 flow anomalies could be correlated (matched) with BIPS-features with varying degree of certainty. A majority of the correlated BIPS-features was classified as open fractures or fractures with cavities. Most of the flow anomalies below the measurement limit were correlated to veins in the rock. In the correlation between borehole radar reflectors and BIPS-features, the calculated angle and

  17. The Antartic Ice Borehole Probe

    Science.gov (United States)

    Behar, A.; Carsey, F.; Lane, A.; Engelhardt, H.

    2000-01-01

    The Antartic Ice Borehole Probe mission is a glaciological investigation, scheduled for November 2000-2001, that will place a probe in a hot-water drilled hole in the West Antartic ice sheet. The objectives of the probe are to observe ice-bed interactions with a downward looking camera, and ice inclusions and structure, including hypothesized ice accretion, with a side-looking camera.

  18. Core drilling of deep borehole OL-KR43 at Olkiluoto in Eurajoki 2006

    Energy Technology Data Exchange (ETDEWEB)

    Niinimaeki, R. [Suomen Malmi Oy, Espoo (Finland)

    2006-12-15

    Posiva Oy submitted an application to the Finnish Government in May 1999 for the Decision in Principle to choose Olkiluoto in the municipality of Eurajoki as the site of the final disposal facility for spent nuclear fuel. A positive decision was made at the end of 2000 by the Government. The Finnish Parliament ratified the decision in May 2001. The decision makes it possible for Posiva to focus the confirming bedrock investigations at Olkiluoto, where in the next few years an underground rock characterisation facility, ONKALO, will be constructed. As a part of the investigations Suomen Malmi Oy (Smoy) core drilled 1000.26 m and 45.01 m deep boreholes with a diameter of 75.7 mm at Olkiluoto in July - October 2006. The identification numbers of the boreholes are OL-KR43 and OL-KR43B, respectively. A set of monitoring measurements and samplings from the drilling and returning water was carried out during the drilling. Both the volume and the electric conductivity of the drilling water and the returning water were recorded. The drill rig was computer controlled and during drilling the computer recorded drilling parameters. The objective of all these measurements was to obtain more information about bedrock and groundwater properties. Sodium fluorescein was used as a label agent in the drilling water. The total volumes of the used drilling and flushing water were 1103 m{sup 3} and 16 m{sup 3} in boreholes OL-KR43 and OL-KR43B, respectively. Measured volumes of the returning water were 916m{sup 3} in borehole OL-KR43 and 13m{sup 3} in borehole OL-KR43B. The deviation of the boreholes was measured with the deviation measuring instruments EMS and Maxibor. Uniaxial compressive strength, Young's Modulus and Poisson's ratio were measured from the core samples. The average uniaxial compressive strength is about 131 MPa, the average Young's Modulus is 37 GPa and the average Poisson's ratio is 0.19. The main rock types are veined gneiss, diatexitic gneiss

  19. Second ILAW Site Borehole Characterization Plan

    International Nuclear Information System (INIS)

    Reidel, S.P.

    2000-01-01

    The US Department of Energy's Hanford Site has the most diverse and largest amounts of radioactive tank waste in the US. High-level radioactive waste has been stored at Hanford since 1944. Approximately 209,000 m 3 (54 Mgal) of waste are currently stored in 177 tanks. Vitrification and onsite disposal of low-activity tank waste (LAW) are embodied in the strategy described in the Tri-Party Agreement. The tank waste is to be retrieved, separated into low- and high-level fractions, and then immobilized. The low-activity vitrified waste will be disposed of in the 200 East Area of the Hanford Site. This report is a plan to drill and characterize the second borehole for the Performance Assessment. The first characterization borehole was drilled in 1998. The plan describes data collection activities for determining physical and chemical properties of the vadose zone and saturated zone on the northeast side of the proposed disposal site. These data will then be used in the 2005 Performance Assessment

  20. Disposal Of Spent Fuel In Salt Using Borehole Technology: BSK 3 Concept

    Energy Technology Data Exchange (ETDEWEB)

    Fopp, Stefan; Graf, Reinhold [GNS Gesellschaft fuer Nuklear-Service mbH, Hollestrasse 7A, D-45127 Essen (Germany); Filbert, Wolfgang [DBE TECHNOLOGY GmbH, Eschenstrasse 55, D-31224 Peine (Germany)

    2008-07-01

    The BSK 3 concept was developed for the direct disposal of spent fuel in rock salt. It is based on the conditioning of fuel assemblies and inserting fuel rods into a steel canister which can be placed in vertical boreholes. The BSK 3 canister is suitable for spent fuel rods from 3 PWR or 9 BWR fuel assemblies. The emplacement system developed for the handling and disposal of BSK 3 canisters comprises a transfer cask which provides appropriate shielding during the transport and emplacement process, a transport cart, and an emplacement device. Using the emplacement device the transfer cask will be positioned onto the top of the borehole lock. The presentation describes the development and the design of the transfer cask and the borehole lock. A technically feasible and safe design for the transfer cask and the borehole lock was found regarding the existing safety requirements for radiation shielding, heat dissipation and handling procedure. (authors)

  1. An experimental study of the mechanism of failure of rocks under borehole jack loading

    Science.gov (United States)

    Van, T. K.; Goodman, R. E.

    1971-01-01

    Laboratory and field tests with an experimental jack and an NX-borehole jack are reported. The following conclusions were made: Under borehole jack loading, a circular opening in a brittle solid fails by tensile fracturing when the bearing plate width is not too small. Two proposed contact stress distributions can explain the mechanism of tensile fracturing. The contact stress distribution factor is a material property which can be determined experimentally. The borehole tensile strength is larger than the rupture flexural strength. Knowing the magnitude and orientation of the in situ stress field, borehole jack test results can be used to determine the borehole tensile strength. Knowing the orientation of the in situ stress field and the flexural strength of the rock substance, the magnitude of the in situ stress components can be calculated. The detection of very small cracks is essential for the accurate determination of the failure loads which are used in the calculation of strengths and stress components.

  2. Volume and mass measurements of liquids

    International Nuclear Information System (INIS)

    Zander, M.

    1987-12-01

    The report comprises the 10 lectures given at the 74th PTB seminar, which represent the state of the art in the field of liquid flow measurement. The lectures deal with the overflow-pipette as the primary volume standard of PTB, gas elimination devices (compulsory in measuring assemblies with volume meters), measuring assemblies for the reception of milk, electromagnetic flowmeters, vortex-shedding meters, indirect mass measurement from volume and density, direct mass measurement (coriolis flowmeters), pipeline-measurements, level measurement at storage tanks with conventional and optical methods and a development aid project for the set up of test rigs in India. (orig.) [de

  3. Radiological consequences of accidents during disposal of spent nuclear fuel in a deep borehole

    Energy Technology Data Exchange (ETDEWEB)

    Grundfelt, Bertil [Kemakta Konsult AB, Stockholm (Sweden)

    2013-07-15

    In this report, an analysis of the radiological consequences of potential accidents during disposal of spent nuclear fuel in deep boreholes is presented. The results presented should be seen as coarse estimates of possible radiological consequences of a canister being stuck in a borehole during disposal rather than being the results of a full safety analysis. In the concept for deep borehole disposal of spent nuclear fuel developed by Sandia National Laboratories, the fuel is assumed to be encapsulated in mild steel canisters and stacked between 3 and 5 km depth in boreholes that are cased with perforated mild steel casing tubes. The canisters are joined together by couplings to form strings of 40 canisters and lowered into the borehole. When a canister string has been emplaced in the borehole, a bridge plug is installed above the string and a 10 metres long concrete plug is cast on top of the bridge plug creating a floor for the disposal of the next sting. In total 10 canister strings, in all 400 canisters, are assumed to be disposed of at between 3 and 5 kilometres depth in one borehole. An analysis of potential accidents during the disposal operations shows that the potentially worst accident would be that a canister string is stuck above the disposal zone of a borehole and cannot be retrieved. In such a case, the borehole may have to be sealed in the best possible way and abandoned. The consequences of this could be that one or more leaking canisters are stuck in a borehole section with mobile groundwater. In the case of a leaking canister being stuck in a borehole section with mobile groundwater, the potential radiological consequences are likely to be dominated by the release of the so-called Instant Release Fraction (IRF) of the radionuclide inventory, i.e. the fraction of the radionuclides that as a consequence of the in-core conditions are present in the annulus between the fuel pellets and the cladding or on the grain boundaries of the UO{sub 2} matrix

  4. Radiological consequences of accidents during disposal of spent nuclear fuel in a deep borehole

    International Nuclear Information System (INIS)

    Grundfelt, Bertil

    2013-07-01

    In this report, an analysis of the radiological consequences of potential accidents during disposal of spent nuclear fuel in deep boreholes is presented. The results presented should be seen as coarse estimates of possible radiological consequences of a canister being stuck in a borehole during disposal rather than being the results of a full safety analysis. In the concept for deep borehole disposal of spent nuclear fuel developed by Sandia National Laboratories, the fuel is assumed to be encapsulated in mild steel canisters and stacked between 3 and 5 km depth in boreholes that are cased with perforated mild steel casing tubes. The canisters are joined together by couplings to form strings of 40 canisters and lowered into the borehole. When a canister string has been emplaced in the borehole, a bridge plug is installed above the string and a 10 metres long concrete plug is cast on top of the bridge plug creating a floor for the disposal of the next sting. In total 10 canister strings, in all 400 canisters, are assumed to be disposed of at between 3 and 5 kilometres depth in one borehole. An analysis of potential accidents during the disposal operations shows that the potentially worst accident would be that a canister string is stuck above the disposal zone of a borehole and cannot be retrieved. In such a case, the borehole may have to be sealed in the best possible way and abandoned. The consequences of this could be that one or more leaking canisters are stuck in a borehole section with mobile groundwater. In the case of a leaking canister being stuck in a borehole section with mobile groundwater, the potential radiological consequences are likely to be dominated by the release of the so-called Instant Release Fraction (IRF) of the radionuclide inventory, i.e. the fraction of the radionuclides that as a consequence of the in-core conditions are present in the annulus between the fuel pellets and the cladding or on the grain boundaries of the UO 2 matrix. The

  5. Study on structural plane characteristics of deep rock mass based on acoustic borehole TV

    International Nuclear Information System (INIS)

    Wang Xiyong; Su Rui; Chen Liang; Tian Xiao

    2014-01-01

    Deep rock mass structural plane characteristics are one of the basic data for evaluating the quality of rock mass. Based on acoustic borehole TV, the structural plane quantity, density, attitude, dominant set, structural plane aperture of deep rock mass in boreholes BS15 # and BS16 # located in Beishan granite rock mass of Gansu Province have been calculated and compared with the results of geological documentation of drill core. The results indicate that acoustic borehole TV has the effect in study on characteristics of structural plane. But as a kind of technique of geophysical logging, the acoustic borehole TV has certain defect, and need to combine with the analysis of the other geological materials in applications. (authors)

  6. Model structural uncertainty quantification and hydrogeophysical data integration using airborne electromagnetic data (Invited)

    DEFF Research Database (Denmark)

    Minsley, Burke; Christensen, Nikolaj Kruse; Christensen, Steen

    of airborne electromagnetic (AEM) data to estimate large-scale model structural geometry, i.e. the spatial distribution of different lithological units based on assumed or estimated resistivity-lithology relationships, and the uncertainty in those structures given imperfect measurements. Geophysically derived...... estimates of model structural uncertainty are then combined with hydrologic observations to assess the impact of model structural error on hydrologic calibration and prediction errors. Using a synthetic numerical model, we describe a sequential hydrogeophysical approach that: (1) uses Bayesian Markov chain...... Monte Carlo (McMC) methods to produce a robust estimate of uncertainty in electrical resistivity parameter values, (2) combines geophysical parameter uncertainty estimates with borehole observations of lithology to produce probabilistic estimates of model structural uncertainty over the entire AEM...

  7. The ICDP Snake River Geothermal Drilling Project: preliminary overview of borehole geophysics

    Science.gov (United States)

    Schmitt, Douglas R.; Liberty, Lee M.; Kessler, James E.; Kuck, Jochem; Kofman, Randolph; Bishop, Ross; Shervais, John W.; Evans, James P.; Champion, Duane E.

    2012-01-01

    Hotspot: The Snake River Geothermal Drilling Project was undertaken to better understand the geothermal systems in three locations across the Snake River Plain with varying geological and hydrological structure. An extensive series of standard and specialized geophysical logs were obtained in each of the wells. Hydrogen-index neutron and γ-γ density logs employing active sources were deployed through the drill string, and although not fully calibrated for such a situation do provide semi-quantitative information related to the ‘stratigraphy’ of the basalt flows and on the existence of alteration minerals. Electrical resistivity logs highlight the existence of some fracture and mineralized zones. Magnetic susceptibility together with the vector magnetic field measurements display substantial variations that, in combination with laboratory measurements, may provide a tool for tracking magnetic field reversals along the borehole. Full waveform sonic logs highlight the variations in compressional and shear velocity along the borehole. These, together with the high resolution borehole seismic measurements display changes with depth that are not yet understood. The borehole seismic measurements indicate that seismic arrivals are obtained at depth in the formations and that strong seismic reflections are produced at lithological contacts seen in the corresponding core logging. Finally, oriented ultrasonic borehole televiewer images were obtained over most of the wells and these correlate well with the nearly 6 km of core obtained. This good image log to core correlations, particularly with regards to drilling induced breakouts and tensile borehole and core fractures will allow for confident estimates of stress directions and or placing constraints on stress magnitudes. Such correlations will be used to orient in core orientation giving information useful in hydrological assessments, paleomagnetic dating, and structural volcanology.

  8. Classification of lithological units based on geophysical borehole logging - data from the Stripa mine

    International Nuclear Information System (INIS)

    Triumf, C.A.

    1992-06-01

    At the Crosshole site, located at the 360 m level in the Stripa mine, six boreholes F1-F6 have been drilled in a fanlike fashion. To achieve further knowledge of the geological conditions in the rock volumes outside the major tectonized zones, a classification of the pseudo-lithology has been carried out using data from boreholes F3-F6. The analysis has been supported by determination of density and magnetic susceptibility on core samples from boreholes F1-F5. This study demonstrates that the bulk of the tectonically less disturbed rock, forming the matrix in a network of dominant tectonical features, can be considered as homogeneous according to the silicate density. Three volumes with deviating lithology have however been identified in more than one borehole. Furthermore narrow sections are encountered, showing mineralogical, and probably also, micro-structural deviations from the normal granite. These narrow sections are irregularly spread along the boreholes. Their irregular distribution and narrowness, prevents correlation between boreholes. The result of the lithology identification is displayed using a modified Briggs cube. The method used in this project is applicable in many stages of an investigation programme where different disciplines are co-operating and partly complex information must be passed between individuals. (au)

  9. Pretest 3D finite element analysis of the WIPP Intermediate Scale Borehole Test

    International Nuclear Information System (INIS)

    Arguello, J.G.

    1991-11-01

    A three dimensional pretest finite element analysis of the Intermediate Scale Borehole Test has been performed. In the analysis, the 7.7 years simulation period includes the mining of Rooms C1 and C2, and the N1420 cross drift, at time zero; drilling of the borehole between the two rooms at 5.7 years; and 2 years of post-drilling response. An all salt configuration was used in the calculation. The 1984 Waste Isolation Pilot Plant (WIPP) reference elastic-secondary creep law, with reduced elastic moduli, was used to model the creeping response of the salt. Results show that after mining of the rooms and cross drift a relatively high von Mises stress state exists around the perimeter of the pillar. However, by 5.7 years, or immediately prior to drilling of the borehole, the pillar has relaxed to an almost uniform von Mises stress of about 7--8 MPa. After the borehole is drilled, a relatively high von Mises stress field is once again set up in the immediate vicinity of the hole. This drives the creep closure of the borehole. The hole closes more in the vertical direction than in the horizontal direction, resulting in ovalling of the hole. At the end of the simulation, the von Mises stress around the borehole is still higher than that in the remained of the pillar. Thus, the closure rates are relatively high at the end of the simulation time

  10. Electrical resistivity borehole measurements: application to an urban tunnel site

    Science.gov (United States)

    Denis, A.; Marache, A.; Obellianne, T.; Breysse, D.

    2002-06-01

    This paper shows how it is possible to use wells drilled during geotechnical pre-investigation of a tunneling site to obtain a 2-D image of the resistivity close to a tunnel boring machine. An experimental apparatus is presented which makes it possible to perform single and borehole-to-borehole electrical measurements independent of the geological and hydrogeological context, which can be activated at any moment during the building of the tunnel. This apparatus is first demonstrated through its use on a test site. Numerical simulations and data inversion are used to analyse the experimental results. Finally, electrical resistivity tomography and single-borehole measurements on a tunneling site are presented. Experimental results show the viability of the apparatus and the efficiency of the inverse algorithm, and also highlight the limitations of the electrical resistivity tomography as a tool for geotechnical investigation in urban areas.

  11. Experimental research on sealing of boreholes, shafts and ramps in welded tuff

    International Nuclear Information System (INIS)

    Fuenkajorn, K.

    1996-01-01

    Laboratory and in-situ experiments have been conducted to determine the mechanical and hydraulic performance of cement borehole seals in densely welded Apache Leap tuff. Test results indicate that under saturated conditions, commercial expansive cement can provide good bond strength and adequate hydraulic performance for borehole seal under changing stress conditions. The cement seal should be installed at the intact portion of the opening, and should have a length-to-diameter ratio greater than four. Drying increases borehole plug permeability and decreases mechanical and hydraulic bonds at the plug-rock interface. In-situ testing indicates that installation procedure may significantly affect the cement plug performance

  12. 210Po measurement of borehole core and its significance for uranium exploration

    International Nuclear Information System (INIS)

    Chao Xiaolin

    2007-01-01

    210 Po survey is a tradition method in uranium exploration and has been widely applied to ground reconnaissance survey and detailed survey of uranium. However, it is seldom applied to drilling work. 210 Po measurements of borehole core for granite-type uranium deposit in Miaoershan area indicate that there are high and large range anomaly which greatly exceeds uranium orebody in uranium mineralization area. The investigation suggests that 210 Po measurements of borehole core can judge whether or not exist buried uranium orebody under the borehole depth and its surrounding in the final exploration stage. The method may be used to the exploration of granite-type uranium deposit. (authors)

  13. Assessment of geophysical logs from borehole USW G-2, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Nelson, P.H.; Schimschal, U.

    1993-01-01

    Commercial logging contractors, Western Atlas, Schlumberger, and Edcon obtained borehole geophysical logs at the site of a potential high level nuclear waste repository at Yucca Mountain, Nevada. Drill hole USW-G2 was picked for this test of suitable logging tools and logging technology, both representing state-of-the-art technology by these commercial companies. Experience gained by analysis of existing core data and a variety of logs obtained earlier by Birdwell and Dresser Atlas served as a guide to a choice of logs to be obtained. Logs were obtained in water-filled borehole in zeolitized tuff (saturated zone) and in air-filled borehole largely in unaltered welded tuff (unsaturated zone)

  14. Focused modelling. Fracture identification in Olkiluoto borehole OL-KR04

    International Nuclear Information System (INIS)

    Jokinen, J.; Jakobsson, K.

    2004-10-01

    An extensive set of measured borehole data has been obtained from geological repository investigations in the bedrock of Olkiluoto. Our hypothesis is that geophysical data may be used more efficiently to identify and classify fracture zones. It is known that several geophysical logging methods yield useful information outside the borehole walls that cannot be reached otherwise. At present, this data is used for additional fracture characterization but not for identification purposes. The study focuses on the application of 14 different geophysical data measured in the borehole OL-KR04. The whole data set is divided into main groups using the Principal Component Analysis (PCA). Each group is composed mainly of sensitive methods detecting specific physical characteristics. The main groups from the geophysical point of view are open fractures, reduced density, increased electrical conductivity, and increased natural radiation. The Varimax optimization method is used to maximize the importance of supporting data as well as to emphasize differences between the discovered principal components. In fracture zone analysis, drilling core samples and the hydrological measurement results form an indispensable data set. For practical reasons, and in order to fulfill the requirements of the PCA analysis, S-wave velocity and electrical resistivity measurements are also performed. A combination of these methods, simultaneously applied using suitable 'trigger limits', identifies penetrated extensive fracture sections in a borehole cost-effectively and unambiguously. (orig.)

  15. Borehole disposal of spent radiation sources: 1. Principles

    International Nuclear Information System (INIS)

    Blerk, J.J. van; Kozak, M.W.

    2000-01-01

    Large numbers of spent radiation sources from the medical and other technical professions exist in many countries, even countries that do not possess facilities related to the nuclear fuel cycle, that have to be disposed. This is particularly the case in Africa, South America and some members of the Russian Federation. Since these sources need to be handled separately from the other types of radioactive waste, mainly because of their activity to volume ratio, countries (even those with access to operational repositories) find it difficult to manage and dispose this waste. This has led to the use of boreholes as disposal units for these spent sources by some members of the Russian Federation and in South Africa. However, the relatively shallow boreholes used by these countries are not suitable for the disposal of isotopes with long half-lifes, such as 226 Ra and 241 Am. With this in mind the Atomic Energy Corporation of South Africa initiated the development of the BOSS disposal concept - an acronym for Borehole disposal Of Spent Sources - as part of an International Atomic Energy Agency (IAEA) AFRA I-14 Technical Corporation (TC) project. In this paper, the principles of this disposal concept, which is still under development, will be discussed. (author)

  16. Electromagnetic topology: Characterization of internal electromagnetic coupling

    Science.gov (United States)

    Parmantier, J. P.; Aparicio, J. P.; Faure, F.

    1991-01-01

    The main principles are presented of a method dealing with the resolution of electromagnetic internal problems: Electromagnetic Topology. A very interesting way is to generalize the multiconductor transmission line network theory to the basic equation of the Electromagnetic Topology: the BLT equation. This generalization is illustrated by the treatment of an aperture as a four port junction. Analytical and experimental derivations of the scattering parameters are presented. These concepts are used to study the electromagnetic coupling in a scale model of an aircraft, and can be seen as a convenient means to test internal electromagnetic interference.

  17. Numerical simulation on reasonable hole-sealing depth of boreholes for gas extraction

    Science.gov (United States)

    Zhao, Dan; Pan, Jingtao

    2018-04-01

    To overcome the low efficiency of extracting gas in coal reservoirs with a low gas permeability, some boreholes were drilled for gas extraction in No. 2 coal reservoir of Wangjialing Coalmine in Shanxi Province, China and reasonably sealed. Aiming at shortfalls such as rapid attenuation of volume for extracted gas as well as low gas permeability when using boreholes in the No. 2 coal reservoir, the traditional COMSOL MultiphysicsMT Earth Science Module was used to couple the three governing equations (Darcy-Brinkman-Navier-Stokes) for fluids. On this basis, numerical simulation on the seepage law along the directions of roadways and boreholes was carried out. The simulation results indicated that when the hole-sealing length was within the width range of fractures in roadways, the negative pressure not only led the gas in surrounding rock masses to flow to the boreholes, but also made the air flow in roadways to permeate into coal walls. As a result, gas and air flows both entered into the boreholes through the loosening zone containing fractures, resulting in seepage of air in roadway to the boreholes. The seepage velocity along the roadway direction under condition with a hole-sealing length of 12 m was obviously slower than that when the hole-sealing length was 8 m. While, the method by simply increasing the length of the hole-sealing section for boreholes failed to effectively stop the air flow in roadways from permeating into the coal wall and then entering the boreholes. Moreover, the increase in the hole-sealing length brought about much more difficulties to the hole-sealing construction. So, the method is not operable in practical condition of the coal mine. Therefore, it is necessary to improve the traditional hole-sealing technology based on foamed macromolecular materials which are mainly made of polyurethane (PU) and use the fluid wall-type hole-sealing technology based on solid-liquid coupling. Then, the effects of gas extraction before and after using

  18. Numerical simulation on reasonable hole-sealing depth of boreholes for gas extraction

    Directory of Open Access Journals (Sweden)

    Dan Zhao

    2018-04-01

    Full Text Available To overcome the low efficiency of extracting gas in coal reservoirs with a low gas permeability, some boreholes were drilled for gas extraction in No. 2 coal reservoir of Wangjialing Coalmine in Shanxi Province, China and reasonably sealed. Aiming at shortfalls such as rapid attenuation of volume for extracted gas as well as low gas permeability when using boreholes in the No. 2 coal reservoir, the traditional COMSOL MultiphysicsMT Earth Science Module was used to couple the three governing equations (Darcy-Brinkman–Navier-Stokes for fluids. On this basis, numerical simulation on the seepage law along the directions of roadways and boreholes was carried out. The simulation results indicated that when the hole-sealing length was within the width range of fractures in roadways, the negative pressure not only led the gas in surrounding rock masses to flow to the boreholes, but also made the air flow in roadways to permeate into coal walls. As a result, gas and air flows both entered into the boreholes through the loosening zone containing fractures, resulting in seepage of air in roadway to the boreholes. The seepage velocity along the roadway direction under condition with a hole-sealing length of 12 m was obviously slower than that when the hole-sealing length was 8 m. While, the method by simply increasing the length of the hole-sealing section for boreholes failed to effectively stop the air flow in roadways from permeating into the coal wall and then entering the boreholes. Moreover, the increase in the hole-sealing length brought about much more difficulties to the hole-sealing construction. So, the method is not operable in practical condition of the coal mine. Therefore, it is necessary to improve the traditional hole-sealing technology based on foamed macromolecular materials which are mainly made of polyurethane (PU and use the fluid wall-type hole-sealing technology based on solid-liquid coupling. Then, the effects of gas extraction

  19. Borehole stoneley waves and permeability: Laboratory results

    International Nuclear Information System (INIS)

    Winkler, K.W.; Plona, T.J.; Froelich, B.; Liu, H.L.

    1987-01-01

    Recent interest in full waveform sonic logging has created the need for full waveform laboratory experiments on model boreholes. Of particular interest is the investigation of Stoneley waves and their interaction with permeable formations. The authors describe experimental results that show how Stoneley wave slowness and attenuation are affected by formation permeability. Both slowness and attenuation (1/Q) are observed to increase with formation permeability. This increase is frequency dependent, being greatest at low frequencies. The presence of simulated mudcakes on the borehole wall reduces the permeability effect on Stoneley waves, but does not eliminate it. The mudcake effect is frequency dependent, being greatest at low frequencies. In our experiments on rocks, the laboratory data is in qualitative agreement with theoretical predictions. In a very well characterized synthetic porous material, theory and experiment are in good quantitative agreement

  20. Characterization of Vadose Zone Sediments Below the T Tank Farm: Boreholes C4104, C4105, 299-W10-196, and RCRA Borehole 299-W11-39

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R. Jeffrey; Bjornstad, Bruce N.; Horton, Duane G.; Lanigan, David C.; Schaef, Herbert T.; Lindenmeier, Clark W.; Lindberg, Michael J.; Clayton, Ray E.; Legore, Virginia L.; Geiszler, Keith N.; Baum, Steven R.; Valenta, Michelle M.; Kutnyakov, Igor V.; Vickerman, Tanya S.; Orr, Robert D.; Brown, Christopher F.

    2008-09-11

    This report was revised in September 2008 to remove acid-extractable sodium data from Tables 4.8, 4.28, and 4.52. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in September 2004. The overall goal of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities at Hanford. To meet this goal, CH2M HILL Hanford Group, Inc. tasked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediments from within Waste Management Area (WMA) T-TX-TY. This report is the second of two reports written to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from boreholes C4104 and C4105 in the T Tank Farm, and from borehole 299-W-11-39 installed northeast of the T Tank Farm. Finally, the measurements on sediments from borehole C4104 are compared with a nearby borehole drilled in 1993, 299- W10-196, through the tank T-106 leak plume.

  1. Engineering Electromagnetics

    International Nuclear Information System (INIS)

    Kim, Se Yun

    2009-01-01

    This book deals with engineering electromagnetics. It contains seven chapters, which treats understanding of engineering electromagnetics such as magnet and electron spin, current and a magnetic field and an electromagnetic wave, Essential tool for engineering electromagnetics on rector and scalar, rectangular coordinate system and curl vector, electrostatic field with coulomb rule and method of electric images, Biot-Savart law, Ampere law and magnetic force, Maxwell equation and an electromagnetic wave and reflection and penetration of electromagnetic plane wave.

  2. A Gas–Solid–Liquid Coupling Model of Coal Seams and the Optimization of Gas Drainage Boreholes

    Directory of Open Access Journals (Sweden)

    Yuexia Chen

    2018-03-01

    Full Text Available For a gas–solid–liquid coupling model of coal seams, previous permeability models basically supposed uniaxial strains as the boundary condition for coal reservoirs without considering the deformation caused by changes in humidity. The permeability model varies under different boundary conditions. According to the true triaxial stress state of coal reservoirs, a permeability model considering the effective stress, sorption and desorption, and wet strain was established. Based on the permeability model, the continuity equation of gas and water and the stress field equation were coupled. Then, the model was incorporated in the COMSOL suite to simulate gas drainage from boreholes in floor roadways passing through seams in a coal mine. By comparing with the measured gas flow on site, the model was verified as being reliable. Moreover, the spacing and layout shape of boreholes in floor roadways were simulated. To achieve the aim of eliminating regional outburst within 180 days and decreasing the number of boreholes so as to reduce the cost, the spacing and shape of boreholes were optimized. When the superimposed effect of the boreholes was not considered, the optimal spacing of boreholes was 3 r; if the superimposed effect was taken into account, the spacing could be set to within 3 r ≤ L ≤ R, where r and R represent the effective gas drainage radius and the influence radius of gas drainage, respectively. The borehole spacing could be appropriately increased when the boreholes were arranged in rhomboidal form. To achieve the same range of outburst elimination, the rhomboidal layout can decrease the number of boreholes to reduce cost, thus realizing the objective of this optimization process.

  3. Determination of water saturation in subsurface earth formations adjacent well boreholes

    International Nuclear Information System (INIS)

    Scott, Hubert D.

    1982-01-01

    There is provided a method of determining the water saturation of an earth formation surrounding a well borehole, comprising the steps of: (a) bombarding the earth formation with repetitive pulses of fast neutrons which are slowed down and thereafter engage in neutron capture reactions with materials in the vicinity of the borehole; (b) obtaining by use of a germanium gamma ray detector gamma ray spectra of the materials in the vicinity of the borehole; (c) obtaining from the gamma ray spectra a measure of the relative presence of chlorine to that of hydrogen in the formation; (d) obtaining a measure of apparent formation water salinity from the measure of relative presence of chlorine to hydrogen in the formation; and (e) obtaining the water saturation of the formation utilizing the apparent formation water salinity

  4. An analysis of the lithology to resistivity relationships using airborne EM and boreholes

    DEFF Research Database (Denmark)

    Barfod, Adrian A.S.; Christiansen, Anders Vest; Møller, Ingelise

    2014-01-01

    We present a study of the relationship between dense airborne skyTEM resistivity data and sparse lithological borehole data. Understanding the resistivity structure of the subsurface is of great importance to hydrogeological surveys and to ensure a high standard for groundwater quality. Borehole ...

  5. A Fourier Collocation Approach for Transit-Time Ultrasonic Flowmeter Under Multi-Phase Flow Conditions

    DEFF Research Database (Denmark)

    Simurda, Matej; Lassen, Benny; Duggen, Lars

    2017-01-01

    A numerical model for a clamp-on transit-time ultrasonic flowmeter (TTUF) under multi-phase flow conditions is presented. The method solves equations of linear elasticity for isotropic heterogeneous materials with background flow where acoustic media are modeled by setting shear modulus to zero....... Spatial derivatives are calculated by a Fourier collocation method allowing the use of the fast Fourier transform (FFT) and time derivatives are approximated by a finite difference (FD) scheme. This approach is sometimes referred to as a pseudospectral time-domain method. Perfectly matched layers (PML......) are used to avoid wave-wrapping and staggered grids are implemented to improve stability and efficiency. The method is verified against exact analytical solutions and the effect of the time-staggering and associated lowest number of points per minimum wavelengths value is discussed. The method...

  6. Site Characterization Data from the U3ax/bl Exploratory Boreholes at the Nevada Test Site

    International Nuclear Information System (INIS)

    2005-01-01

    This report provides qualitative analyses and preliminary interpretations of hydrogeologic data obtained from two 45-degree, slanted exploratory boreholes drilled within the Area 3 Radioactive Waste Management Site (RWMS) at the Nevada Test Site. Borehole UE-3bl-D1 was drilled beneath the U3ax/bl mixed waste disposal unit, and Borehole UE-3bl-U1 was drilled in undisturbed alluvium adjacent to the disposal unit. The U3ax/bl disposal unit is located within two conjoined subsidence craters, U3ax and U3bl, which were created by underground nuclear testing. Data from these boreholes were collected to support site characterization activities for the U3ax/bl disposal unit and the entire Area 3 RWMS. Site characterization at disposal units within the Area 3 RWMS must address the possibility that subsidence craters and associated disturbed alluvium of the chimneys beneath the craters might serve as pathways for contaminant migration. The two boreholes were drilled and sampled to compare hydrogeologic properties of alluvium below the waste disposal unit with those of adjacent undisturbed alluvium. Whether Borehole UE-3bl-D1 actually penetrated the chimney of the U3bl crater is uncertain. Analyses of core samples showed little difference in hydrogeologic properties between the two boreholes. Important findings of this study include the following: No hazardous or radioactive constituents of waste disposal concern were found in the samples obtained from either borehole. No significant differences in physical and hydrogeologic properties between boreholes is evident, and no evidence of significant trends with depth for any of these properties was observed. The values observed are typical of sandy materials. The alluvium is dry, with volumetric water content ranging from 5.6 to 16.2 percent. Both boreholes exhibit a slight increase in water content with depth, the only such trend observed. Water potential measurements on core samples from both boreholes show a large positive

  7. Site Characterization Data from the U3ax/bl Exploratory Boreholes at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Bechtel Nevada; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2005-08-01

    This report provides qualitative analyses and preliminary interpretations of hydrogeologic data obtained from two 45-degree, slanted exploratory boreholes drilled within the Area 3 Radioactive Waste Management Site (RWMS) at the Nevada Test Site. Borehole UE-3bl-D1 was drilled beneath the U3ax/bl mixed waste disposal unit, and Borehole UE-3bl-U1 was drilled in undisturbed alluvium adjacent to the disposal unit. The U3ax/bl disposal unit is located within two conjoined subsidence craters, U3ax and U3bl, which were created by underground nuclear testing. Data from these boreholes were collected to support site characterization activities for the U3ax/bl disposal unit and the entire Area 3 RWMS. Site characterization at disposal units within the Area 3 RWMS must address the possibility that subsidence craters and associated disturbed alluvium of the chimneys beneath the craters might serve as pathways for contaminant migration. The two boreholes were drilled and sampled to compare hydrogeologic properties of alluvium below the waste disposal unit with those of adjacent undisturbed alluvium. Whether Borehole UE-3bl-D1 actually penetrated the chimney of the U3bl crater is uncertain. Analyses of core samples showed little difference in hydrogeologic properties between the two boreholes. Important findings of this study include the following: No hazardous or radioactive constituents of waste disposal concern were found in the samples obtained from either borehole. No significant differences in physical and hydrogeologic properties between boreholes is evident, and no evidence of significant trends with depth for any of these properties was observed. The values observed are typical of sandy materials. The alluvium is dry, with volumetric water content ranging from 5.6 to 16.2 percent. Both boreholes exhibit a slight increase in water content with depth, the only such trend observed. Water potential measurements on core samples from both boreholes show a large positive

  8. Repeated temperature logs from Czech, Slovenian and Portuguese borehole climate observatories

    Czech Academy of Sciences Publication Activity Database

    Šafanda, Jan; Rajver, D.; Correia, A.; Dědeček, Petr

    2007-01-01

    Roč. 3, č. 3 (2007), s. 453-462 ISSN 1814-9324 R&D Projects: GA AV ČR(CZ) IAA300120603 Grant - others:NATO(US) PDD(CP)-(EST.CLG 980 152) Institutional research plan: CEZ:AV0Z30120515 Source of funding: V - iné verejné zdroje Keywords : borehole temperatures * temperature logs * borehole climate observatories Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.450, year: 2007

  9. MODELING OF THE GROUNDWATER TRANSPORT AROUND A DEEP BOREHOLE NUCLEAR WASTE REPOSITORY

    Energy Technology Data Exchange (ETDEWEB)

    N. Lubchenko; M. Rodríguez-Buño; E.A. Bates; R. Podgorney; E. Baglietto; J. Buongiorno; M.J. Driscoll

    2015-04-01

    The concept of disposal of high-level nuclear waste in deep boreholes drilled into crystalline bedrock is gaining renewed interest and consideration as a viable mined repository alternative. A large amount of work on conceptual borehole design and preliminary performance assessment has been performed by researchers at MIT, Sandia National Laboratories, SKB (Sweden), and others. Much of this work relied on analytical derivations or, in a few cases, on weakly coupled models of heat, water, and radionuclide transport in the rock. Detailed numerical models are necessary to account for the large heterogeneity of properties (e.g., permeability and salinity vs. depth, diffusion coefficients, etc.) that would be observed at potential borehole disposal sites. A derivation of the FALCON code (Fracturing And Liquid CONvection) was used for the thermal-hydrologic modeling. This code solves the transport equations in porous media in a fully coupled way. The application leverages the flexibility and strengths of the MOOSE framework, developed by Idaho National Laboratory. The current version simulates heat, fluid, and chemical species transport in a fully coupled way allowing the rigorous evaluation of candidate repository site performance. This paper mostly focuses on the modeling of a deep borehole repository under realistic conditions, including modeling of a finite array of boreholes surrounded by undisturbed rock. The decay heat generated by the canisters diffuses into the host rock. Water heating can potentially lead to convection on the scale of thousands of years after the emplacement of the fuel. This convection is tightly coupled to the transport of the dissolved salt, which can suppress convection and reduce the release of the radioactive materials to the aquifer. The purpose of this work has been to evaluate the importance of the borehole array spacing and find the conditions under which convective transport can be ruled out as a radionuclide transport mechanism

  10. Conductive fracture mapping. A study on the correlation between borehole TV- and radar images and difference flow logging results in borehole KLX02

    Energy Technology Data Exchange (ETDEWEB)

    Carlsten, S.; Straahle, A.; Ludvigson, Jan-Erik [GEOSIGMA AB, Uppsala (Sweden)

    2001-10-01

    This study presents an attempt to correlate images from borehole-TV (BIPS) and borehole radar with interpreted flow anomalies from Difference Flow Meter logging (DIFF). The measurements were performed in the interval 200-400 m in borehole KLX02 at Laxemar. In total, 59 flow anomalies were interpreted by the DIFF-log in this borehole interval. However, 14 flow anomalies were below the rigorous measurement limit for the actual flow meter and are thus regarded as uncertain. In total, 261 features were primarily interpreted by the BIPS-characterization in the borehole interval 200-400 m but only 12 radar reflectors. The low number of interpreted radar reflectors most likely depends on the low frequency of the antenna used in this case which gave a poor depth resolution. The total number of fractures recorded by the core mapping in this interval was 374 (279 in the rock together with 95 fractures in interpreted crush zones). Prior to the correlation analysis it was necessary to adjust the length scales of the BIPS-measurements relative to the length scale of the Difference Flow logging due to non-linear stretching of logging cables etc to achieve the necessary resolution of the depth scale.This adjustment was done by comparing the distances between clearly identified single features in the BIPS-images with the corresponding distances between clearly identified flow anomalies. The BIPS-measurements consist of 5 independent logging sequences in the studied borehole interval, which resulted in 'jumps' when comparing the non-conform length scales of the different sequences. All of the 59 flow anomalies could be correlated (matched) with BIPS-features with varying degree of certainty. A majority of the correlated BIPS-features was classified as open fractures or fractures with cavities. Most of the flow anomalies below the measurement limit were correlated to veins in the rock. In the correlation between borehole radar reflectors and BIPS-features, the calculated

  11. Model of the final borehole geometry for helical laser drilling

    Science.gov (United States)

    Kroschel, Alexander; Michalowski, Andreas; Graf, Thomas

    2018-05-01

    A model for predicting the borehole geometry for laser drilling is presented based on the calculation of a surface of constant absorbed fluence. It is applicable to helical drilling of through-holes with ultrashort laser pulses. The threshold fluence describing the borehole surface is fitted for best agreement with experimental data in the form of cross-sections of through-holes of different shapes and sizes in stainless steel samples. The fitted value is similar to ablation threshold fluence values reported for laser ablation models.

  12. A review of methods to evaluate borehole thermal resistances in geothermal heat-pump systems

    Energy Technology Data Exchange (ETDEWEB)

    Lamarche, Louis; Kajl, Stanislaw; Beauchamp, Benoit [Ecole de Technologie Superieure, 1100 Notre-Dame Ouest, Montreal (Canada)

    2010-06-15

    In the design of a ground-source heat pump (GSHP) system, the heat transfer from the fluid to the ground is influenced by the thermal borehole resistance between the fluid and the borehole surface and also by the interference resistance between the two (or four) pipes inside the borehole. Several authors have proposed empirical and theoretical relations to evaluate these resistances as well as methods to evaluate them experimentally. The paper compares the different approaches and proposes good practice to evaluate the resistances. The impact of the different approaches on the design of heat exchanger is also examined. Two-dimensional and fully three-dimensional numerical simulations are used to evaluate the different methods. A new method is also proposed to evaluate the borehole resistances from in situ tests. (author)

  13. Observations of borehole deformation modulus values before and after extensive heating of a granitic rock mass

    International Nuclear Information System (INIS)

    Patrick, W.C.; Yow, J.L.; Caxelrod, M.C.

    1985-01-01

    An extensive campaign of in situ deformation modulus measurements was recently completed using a standard NX borehole jack. These results were obtained in a granite intrusive where spent nuclear-fuel assemblies and electrical heaters had raised the rock temperatures 10 0 C to 40 0 C above ambient. We present an analysis of temperature effects based on 41 preheat and 63 post-heat measurements in three boreholes. Using analysis of covariance statistical techniques, we found that the deformation modulus is affected by heat, loading direction, and position within the borehole. The analysis also uncovered a significant interaction between the effects of heating and loading direction. We used 123 measurements from the same boreholes to evaluate the ''Draft Standard Guide for Estimating the In Situ Modulus of Rock Masses Using the NX-Borehole Jack'' which was recently proposed by Heuze. In particular, we examined the criterion for screening measurements in those cases where contact between the jack platen and the borehole wall was incomplete. We found that the proposed screen appears to operate randomly on the data and is therefore ineffective

  14. The Influence of Ice Properties on Borehole Deformation at the West Antarctic Ice Sheet Divide

    Science.gov (United States)

    Sinkler, E.; Pettit, E. C.; Obbard, R. W.

    2017-12-01

    It is widely known that ice flow is affected by many properties, including crystal fabric and impurities, though these relationships are not fully understood. This study uses data from the West Antarctic Ice Sheet (WAIS) Divide borehole to better determine the influence of such properties on ice flow. The WAIS Divide borehole, the byproduct of the 2006-2012 coring project, offers a unique opportunity to study deep Antarctic Ice. Thanks to the work of many researchers, extensive data on ice properties are available from both coring and borehole logging at this site. The borehole, kept open with a density-approximating fluid, closes and tilts due to ice flow. We have tracked this deformation over two years using a set of repeat measurements with an Acoustic Televiewer. This tool acts as an acoustic caliper allowing us to view cross-sections of the borehole shape and size with up to 1.25 degree azimuthal resolution and a depth resolution as high as 1.4 mm. In addition, the tool collects tilt and azimuth data. These measurements are compared to a 1D Glen's Flow Law model for borehole closure that uses density differences between the ice and borehole fluid as its driving force and incorporates temperature effects. This is then compared to ice properties like crystal fabric and impurities in order to determine the influence of these properties on ice deformation at this site. Crystal fabric has appeared as an important factor in this study.This work builds on that of others who have studied in-situ deep ice through borehole deformation (e.g. Paterson, 1977 and Dahl-Jensen and Gundestrup, 1987). Our results have implications for ice flow modeling and therefore interpretation of depth-age relationships in deep ice cores.

  15. Preliminary report on geophysical and mechanical borehole measurements at Stripa

    International Nuclear Information System (INIS)

    Nelson, P.; Paulsson, B.; Rachiele, R.; Andersson, L.; Schrauf, T.; Hustrulid, W.; Duran, O.; Magnusson, K.A.

    1979-05-01

    A suite of seven logs--neutron, gamma--gamma, resistivity, gamma ray, sonic, caliper, and temperature--operated in a borehole of 380-m depth located eleven zones where the rock permeability is expected to be enhanced due to the presence of open fractures. The sonic waveform record proved especially useful in this regard. Borehole measurements were also acquired in a large number of boreholes from 5- to 14-m length located in experimental drifts some 340-m underground. Here several physical properties, including the porosity, density, sonic velocity, and borehole rugosity, are generally quite uniform, with the exception of a few local chloritic zones and a few minor fractures. However, in situ determinations of the mechanical modulus with the CSM cell indicate substantial variability, with some apparent fracture control. Uranium and thorium concentrations are quite high in the Stripa granite, with local fluctuations associated with mineralogical changes as revealed by the gamma-ray log. A differential resistance probe appears promising as a sensitive detector of fine fracturing. A cross-hole ultrasonic system indicates variations of a few percent in compressional- and shear-wave velocities, reflecting the presence of fractures and changes in fracture characteristics as the rock is heated in a simulated storage test. The geophysical and mechanical data are being compared with the results from core and television logging, with hydrological test data on static pressure and injection permeability, and with displacements induced by thermal loading

  16. Reference design and operations for deep borehole disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    Herrick, Courtney Grant; Brady, Patrick Vane; Pye, Steven; Arnold, Bill Walter; Finger, John Travis; Bauer, Stephen J.

    2011-01-01

    A reference design and operational procedures for the disposal of high-level radioactive waste in deep boreholes have been developed and documented. The design and operations are feasible with currently available technology and meet existing safety and anticipated regulatory requirements. Objectives of the reference design include providing a baseline for more detailed technical analyses of system performance and serving as a basis for comparing design alternatives. Numerous factors suggest that deep borehole disposal of high-level radioactive waste is inherently safe. Several lines of evidence indicate that groundwater at depths of several kilometers in continental crystalline basement rocks has long residence times and low velocity. High salinity fluids have limited potential for vertical flow because of density stratification and prevent colloidal transport of radionuclides. Geochemically reducing conditions in the deep subsurface limit the solubility and enhance the retardation of key radionuclides. A non-technical advantage that the deep borehole concept may offer over a repository concept is that of facilitating incremental construction and loading at multiple perhaps regional locations. The disposal borehole would be drilled to a depth of 5,000 m using a telescoping design and would be logged and tested prior to waste emplacement. Waste canisters would be constructed of carbon steel, sealed by welds, and connected into canister strings with high-strength connections. Waste canister strings of about 200 m length would be emplaced in the lower 2,000 m of the fully cased borehole and be separated by bridge and cement plugs. Sealing of the upper part of the borehole would be done with a series of compacted bentonite seals, cement plugs, cement seals, cement plus crushed rock backfill, and bridge plugs. Elements of the reference design meet technical requirements defined in the study. Testing and operational safety assurance requirements are also defined. Overall

  17. Reference design and operations for deep borehole disposal of high-level radioactive waste.

    Energy Technology Data Exchange (ETDEWEB)

    Herrick, Courtney Grant; Brady, Patrick Vane; Pye, Steven; Arnold, Bill Walter; Finger, John Travis; Bauer, Stephen J.

    2011-10-01

    A reference design and operational procedures for the disposal of high-level radioactive waste in deep boreholes have been developed and documented. The design and operations are feasible with currently available technology and meet existing safety and anticipated regulatory requirements. Objectives of the reference design include providing a baseline for more detailed technical analyses of system performance and serving as a basis for comparing design alternatives. Numerous factors suggest that deep borehole disposal of high-level radioactive waste is inherently safe. Several lines of evidence indicate that groundwater at depths of several kilometers in continental crystalline basement rocks has long residence times and low velocity. High salinity fluids have limited potential for vertical flow because of density stratification and prevent colloidal transport of radionuclides. Geochemically reducing conditions in the deep subsurface limit the solubility and enhance the retardation of key radionuclides. A non-technical advantage that the deep borehole concept may offer over a repository concept is that of facilitating incremental construction and loading at multiple perhaps regional locations. The disposal borehole would be drilled to a depth of 5,000 m using a telescoping design and would be logged and tested prior to waste emplacement. Waste canisters would be constructed of carbon steel, sealed by welds, and connected into canister strings with high-strength connections. Waste canister strings of about 200 m length would be emplaced in the lower 2,000 m of the fully cased borehole and be separated by bridge and cement plugs. Sealing of the upper part of the borehole would be done with a series of compacted bentonite seals, cement plugs, cement seals, cement plus crushed rock backfill, and bridge plugs. Elements of the reference design meet technical requirements defined in the study. Testing and operational safety assurance requirements are also defined. Overall

  18. Moving to Google Cloud: Renovation of Global Borehole Temperature Database for Climate Research

    Science.gov (United States)

    Xiong, Y.; Huang, S.

    2013-12-01

    Borehole temperature comprises an independent archive of information on climate change which is complementary to the instrumental and other proxy climate records. With support from the international geothermal community, a global database of borehole temperatures has been constructed for the specific purpose of the study on climate change. Although this database has become an important data source in climate research, there are certain limitations partially because the framework of the existing borehole temperature database was hand-coded some twenty years ago. A database renovation work is now underway to take the advantages of the contemporary online database technologies. The major intended improvements include 1) dynamically linking a borehole site to Google Earth to allow for inspection of site specific geographical information; 2) dynamically linking an original key reference of a given borehole site to Google Scholar to allow for a complete list of related publications; and 3) enabling site selection and data download based on country, coordinate range, and contributor. There appears to be a good match between the enhancement requirements for this database and the functionalities of the newly released Google Fusion Tables application. Google Fusion Tables is a cloud-based service for data management, integration, and visualization. This experimental application can consolidate related online resources such as Google Earth, Google Scholar, and Google Drive for sharing and enriching an online database. It is user friendly, allowing users to apply filters and to further explore the internet for additional information regarding the selected data. The users also have ways to map, to chart, and to calculate on the selected data, and to download just the subset needed. The figure below is a snapshot of the database currently under Google Fusion Tables renovation. We invite contribution and feedback from the geothermal and climate research community to make the

  19. Use of polyurethane resins for sealing test boreholes at Cogema Vendee

    International Nuclear Information System (INIS)

    Tourscher, M.

    1989-01-01

    The mining division is briefly described. The main problem for mining development is an important flow rate of water at a pressure of 0 to 10 bars through exploratory boreholes. Use of polyurethane resin reacting with water was retained but taking account of flow rate and pressure a new method was developed using a polyamide sleeve, allowing reaction and expansion before dilution by flowing water. Cost is estimated at 4683 FF/borehole [fr

  20. Gauge theory of weak, electromagnetic and dual electromagnetic interactions

    International Nuclear Information System (INIS)

    Soln, J.

    1980-01-01

    An SU 2 x U 1 algebra, in addition to the ordinary electric charge, also establishes the existence of the dual electric charge. This is taken as an indication of the existence of dual electromagnetic interactions in nature. Here, the unification of weak, electromagnetic and dual electromagnetic interactions is performed. The Yang-Mills-type group which contains the electromagnetic, dual electromagnetic and weak currents is SUsub(L,2) x U 1 x U' 1 . The masses of vector mesons are generated through the Higgs-Kibble mechanism. A simple consistency requirement suggests that dual electromagnetism and ordinary electromagnetism have the same strengths, leading the theory to a rather good agreement with experiments. (author)

  1. Development of a Digital and Battery-Free Smart Flowmeter

    Directory of Open Access Journals (Sweden)

    Wang Song Hao

    2014-06-01

    Full Text Available To effectively manage and save energy and natural resources, the measurement and monitoring of gas/fluid flows play extremely important roles. The objective of this study was to incorporate an efficient power generation and a power management system for a commercial water flow meter thus eliminating the usage of batteries. Three major technologies have made this possible: a low power consumption metering unit, a cog-resistance-free generator with high efficiency; and an effective methodology to extract/store energy. In this system, a new attempt and simple approach was developed to successfully extract a portion of the kinetic energy from the fluid/air, store it in a capacitor and used it efficiently. The resistance to the flow was negligible because of the very low power consumption as well as the application of the coreless generator technology. Feasibility was demonstrated through repeated experiments: for air flowing in an 11 mm diameter pipe, 18 s of energy harvesting at 10 revolution-per-second (RPS turbine speeds generated enough power for the flowmeter to operate for 720 s with a flowrate of 20 RPS, without battery or any external power. The pipeline monitoring in remote areas such as deep sea oil drilling; geothermal power plants and even nuclear power plants could benefit greatly from this self-power metering system design.

  2. Borehole guided waves in a non-Newtonian (Maxwell) fluid-saturated porous medium

    International Nuclear Information System (INIS)

    Zhi-Wen, Cui; Jin-Xia, Liu; Ke-Xie, Wang; Gui-Jin, Yao

    2010-01-01

    The property of acoustic guided waves generated in a fluid-filled borehole surrounded by a non-Newtonian (Maxwell) fluid-saturated porous formation with a permeable wall is investigated. The influence of non-Newtonian effects on acoustic guided waves such as Stoneley waves, pseudo-Rayleigh waves, flexural waves, and screw waves propagations in a fluid-filled borehole is demonstrated based on the generalized Biot–Tsiklauri model by calculating their velocity dispersion and attenuation coefficients. The corresponding acoustic waveforms illustrate their properties in time domain. The results are also compared with those based on generalized Biot's theory. The results show that the influence of non-Newtonian effect on acoustic guided wave, especially on the attenuation coefficient of guided wave propagation in borehole is noticeable. (classical areas of phenomenology)

  3. Analysis of aquifer tests conducted in borehole USW G-2, 1996, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    O'Brien, G.M.

    1998-01-01

    Borehole USW G-2 is located north of Yucca Mountain in a large-hydraulic-gradient area. Two single-borehole aquifer tests were conducted in the borehole during 1996. A 54.9-hour pumping period was conducted February 6--8, 1996, and a 408-hour pumping period was conducted April 8--25, 1996. The purpose of testing was to obtain estimates of the aquifer-system transmissivity and to determine if perched water was affecting the observed water level in borehole USW G-2. This report presents and analyzes data collected between February 6 and December 17, 1996. Analysis of the aquifer-test data indicated that fracture flow, dual-porosity flow, and boundary-affected flow conditions were observed in the drawdown and recovery data. Transmissivity estimates ranged from 2.3 to 12 meters squared per day. The most representative transmissivity estimate for the interval tested is the early-time mean transmissivity of 9.4 meters squared per day. The Calico Hills Formation was the primary formation tested, but the top 3 meters of the nonpumping water column was within the overlying Topopah Spring Tuff. Persistent residual drawdown following pumping more than 6 million liters of water during aquifer testing may indicate that the bore-hole intersected a perched water body. After 236 days of recovery, residual drawdown was 0.5 meter. The quantitative effect of the perched water on the observed water level in borehole USW G-2, however, cannot be determined with the available data

  4. A borehole stability study by newly designed laboratory tests on thick-walled hollow cylinders

    Directory of Open Access Journals (Sweden)

    S.S. Hashemi

    2015-10-01

    Full Text Available At several mineral exploration drilling sites in Australia, weakly consolidated formations mainly consist of sand particles that are poorly bonded by cementing agents such as clay, iron oxide cement or calcite. These formations are being encountered when drilling boreholes to the depth of up to 200 m. To study the behaviour of these materials, thick-walled hollow cylinder (TWHC and solid cylindrical synthetic specimens were designed and prepared by adding Portland cement and water to sand grains. The effects of different parameters such as water and cement contents, grain size distribution and mixture curing time on the characteristics of the samples were studied to identify the mixture closely resembling the formation at the drilling site. The Hoek triaxial cell was modified to allow the visual monitoring of grain debonding and borehole breakout processes during the laboratory tests. The results showed the significance of real-time visual monitoring in determining the initiation of the borehole breakout. The size-scale effect study on TWHC specimens revealed that with the increasing borehole size, the ductility of the specimen decreases, however, the axial and lateral stiffnesses of the TWHC specimen remain unchanged. Under different confining pressures the lateral strain at the initiation point of borehole breakout is considerably lower in a larger size borehole (20 mm compared to that in a smaller one (10 mm. Also, it was observed that the level of peak strength increment in TWHC specimens decreases with the increasing confining pressure.

  5. Generation of 3-D hydrostratigraphic zones from dense airborne electromagnetic data to assess groundwater model prediction error

    Science.gov (United States)

    Christensen, N. K.; Minsley, B. J.; Christensen, S.

    2017-02-01

    We present a new methodology to combine spatially dense high-resolution airborne electromagnetic (AEM) data and sparse borehole information to construct multiple plausible geological structures using a stochastic approach. The method developed allows for quantification of the performance of groundwater models built from different geological realizations of structure. Multiple structural realizations are generated using geostatistical Monte Carlo simulations that treat sparse borehole lithological observations as hard data and dense geophysically derived structural probabilities as soft data. Each structural model is used to define 3-D hydrostratigraphical zones of a groundwater model, and the hydraulic parameter values of the zones are estimated by using nonlinear regression to fit hydrological data (hydraulic head and river discharge measurements). Use of the methodology is demonstrated for a synthetic domain having structures of categorical deposits consisting of sand, silt, or clay. It is shown that using dense AEM data with the methodology can significantly improve the estimated accuracy of the sediment distribution as compared to when borehole data are used alone. It is also shown that this use of AEM data can improve the predictive capability of a calibrated groundwater model that uses the geological structures as zones. However, such structural models will always contain errors because even with dense AEM data it is not possible to perfectly resolve the structures of a groundwater system. It is shown that when using such erroneous structures in a groundwater model, they can lead to biased parameter estimates and biased model predictions, therefore impairing the model's predictive capability.

  6. Generation of 3-D hydrostratigraphic zones from dense airborne electromagnetic data to assess groundwater model prediction error

    Science.gov (United States)

    Christensen, Nikolaj K; Minsley, Burke J.; Christensen, Steen

    2017-01-01

    We present a new methodology to combine spatially dense high-resolution airborne electromagnetic (AEM) data and sparse borehole information to construct multiple plausible geological structures using a stochastic approach. The method developed allows for quantification of the performance of groundwater models built from different geological realizations of structure. Multiple structural realizations are generated using geostatistical Monte Carlo simulations that treat sparse borehole lithological observations as hard data and dense geophysically derived structural probabilities as soft data. Each structural model is used to define 3-D hydrostratigraphical zones of a groundwater model, and the hydraulic parameter values of the zones are estimated by using nonlinear regression to fit hydrological data (hydraulic head and river discharge measurements). Use of the methodology is demonstrated for a synthetic domain having structures of categorical deposits consisting of sand, silt, or clay. It is shown that using dense AEM data with the methodology can significantly improve the estimated accuracy of the sediment distribution as compared to when borehole data are used alone. It is also shown that this use of AEM data can improve the predictive capability of a calibrated groundwater model that uses the geological structures as zones. However, such structural models will always contain errors because even with dense AEM data it is not possible to perfectly resolve the structures of a groundwater system. It is shown that when using such erroneous structures in a groundwater model, they can lead to biased parameter estimates and biased model predictions, therefore impairing the model's predictive capability.

  7. Comparative Study of Coliform Contamination of Public Boreholes ...

    African Journals Online (AJOL)

    PROF HORSFALL

    boreholes and pipe borne water supplies within Bosso town. Twenty (20) water ... result from inadequately treated sewage discharged from various septic tanks, and .... enforce proper hygienic practices, especially around public water supply ...

  8. Method for simultaneous measurement of borehole and formation neutron decay-times employing iterative fitting

    International Nuclear Information System (INIS)

    Schultz, W.E.

    1982-01-01

    A method is described of making in situ measurements of the thermal neutron decay time of earth formations in the vicinity of a wellbore. The borehole and earth formations in its vicinity are repetitively irradiated with pulsed fast neutrons and, during the intervals between pulses, capture gamma radiation is measured in at least four, non-overlapping, contiguous time intervals. A background radiation measurement is made between successive pulses and used to correct count-rates representative of thermal neutron populations in the borehole and the formations, the count-rates being generated during each of the time intervals. The background-corrected count-rate measurements are iteratively fitted to exponential curves using a least squares technique to simultaneously derive signals representing borehole component and formation component of the thermal neutron decay time. The signals are recorded as a function of borehole depth. (author)

  9. Geophysical logging studies in the Snake River Plain Aquifer at the Idaho National Engineering Laboratory: Wells 44, 45, and 46

    International Nuclear Information System (INIS)

    Morin, R.H.; Paillet, F.L.; Taylor, T.A.; Barrash, W.

    1993-01-01

    A geophysical logging program was undertaken to vertically profile changes in the hydrology and hydrochemistry of the Snake River Plain aquifer underlies the Idaho National Engineering Laboratory (INEL). Field investigations were concentrated within an area west of the Idaho Chemical Processing Plant (ICPP) in three wells that penetrated the upper 190 feet of the aquifer. The logs obtained in these wells consisted of temperature, caliper, nuclear (neutron porosity and gamma-gama density), natural gamma, borehole televiewer, gamma spectral, and thermal flowmeter (with and without pumping). The nuclear, caliper, and televiewer logs are used to delineate individual basalt flows or flow units and to recognize breaks between flows or flow units at interflow contact zones and sedimentary interbeds. The temperature logs and flowmeter measurements obtained under ambient hydraulic head conditions identified upward fluid-circulation patterns in the three wells. Gamma-spectral analyses performed at several depths in each well showed that the predominant source of gamma radiation in the formation at this site originates mainly from potassium ( 40 K). However, 137 Cesium was detected at 32 feet below land surface in well 45. An empirical investigation of the effect of source-receiver spacing on the response of the neutron-porosity logging tool was attempted in an effort to understand the conditions under which this tool might be applied to large-diameter boreholes in-unsaturated formations

  10. Core drilling of deep borehole OL-KR39 at Olkiluoto in Eurajoki 2005

    Energy Technology Data Exchange (ETDEWEB)

    Niinimaeki, R. [Suomen Malmi Oy, Espoo (Finland)

    2005-11-15

    Posiva Oy submitted an application to the Finnish Government in May 1999 for the Decision in Principle to choose Olkiluoto in the municipality of Eurajoki as the site of the final disposal facility for spent nuclear fuel. A positive decision was made at the end of 2000 by the Government. The Finnish Parliament ratified the decision in May 2001. The decision makes it possible for Posiva to focus the confirming bedrock investigations at Olkiluoto, where in the next few years an underground rock characterisation facility, ONKALO, will be constructed. As a part of the investigations Suomen Malmi Oy (Smoy) core drilled 502.97 m and 45.11 m deep boreholes with a diameter of 75.7 mm at Olkiluoto in August- October 2005. The identification numbers of the boreholes are OL-KR39 and OL-KR39B, respectively. A set of monitoring measurements and samplings from the drilling and returning water was carried out during the drilling. Both the volume and the electric conductivity of the drilling water and the returning water were recorded. The drill rig was computer controlled and during drilling the computer recorded drilling parameters. The objective of all these measurements was to obtain more information about bedrock and groundwater properties. Sodium fluorescein was used as a label agent in the drilling water. The total volumes of the used drilling and flushing water were 415m{sup 3} and 25 m{sup 3} and the measured volumes of the returning water were 175 m{sup 3} and 7 m{sup 3} in boreholes OLKR39 and OL-KR39B, respectively. The deviation of the borehole was measured with the deviation measuring instruments EMS and Maxibor. Uniaxial compressive strength, Young's Modulus and Poisson' s ratio were measured from the core samples. The average uniaxial compressive strength is about 110 MPa, the average Young's Modulus is 49 GP a and the average Poisson' s ratio is 0.25. The main rock types are migmatitic mica gneiss and granite. Filled fracture is the most common

  11. Core drilling of deep borehole OL-KR34 at Olkiluoto in Eurajoki 2005

    Energy Technology Data Exchange (ETDEWEB)

    Rautio, T. [Suomen Malmi Oy, Espoo (Finland)

    2005-07-15

    Posiva Oy submitted an application for the Decision in Principle to the Finnish Government in May 1999. A positive decision was made at the end of 2000 by the Government. The Finnish Parliament ratified the Decision in Principle on the final disposal facility for spent nuclear fuel at Olkiluoto, Eurajoki in May 2001. The decision makes it possible for Posiva to focus the confirming bedrock investigations at Olkiluoto, where in the next few years an underground rock characterisation facility, ONKALO, will be constructed. As a part of the investigations Suomen Malmi Oy (Smoy) core drilled 100.07 m deep borehole with a diameter of 75.7 mm at Olkiluoto in April 2005. This borehole was aimed to get additional information of the quality of bedrock and the anomalous part of the bedrock and quality and the location of the fractured zones R19A and R19B. The identification number of the borehole is OL-KR34. A set of monitoring measurements and samplings from the drilling and returning water was carried out during the drilling. Both the volume and the electric conductivity of the drilling water and the returning water were recorded. The drill rig was computer controlled and during drilling the computer recorded information about drilling parameters. The objective of all measurements was to obtain more information about bedrock and groundwater properties. Sodium fluorescein was used as a label agent in the drilling water. The volume of the used drilling water was about 37m{sup 3} and the measured volume of the returning water was about 18m{sup 3} in borehole OL-KR34. The deviation of the borehole was measured with the deviation measuring instruments EMS and Maxibor. The results of the Maxibor measurements indicate that borehole OLKR34 deviates 0.84 m right and 0.15 m up at the borehole depth of 99 m. Uniaxial compressive strength, Young's Modulus and Poisson' s ratio were measured from the core samples. The average uniaxial compressive strength is about 142 MPa, the

  12. Core drilling of deep borehole OL-KR36 at Olkiluoto in Eurajoki 2005

    Energy Technology Data Exchange (ETDEWEB)

    Niinimaeki, R.; Rautio, T. [Suomen Malmi Oy, Espoo (Finland)

    2005-07-15

    Posiva Oy submitted an application for the Decision in Principle to the Finnish Government in May 1999. A positive decision was made at the end of 2000 by the Government. The Finnish Parliament ratified the Decision in Principle on the final disposal facility for spent nuclear fuel at Olkiluoto, Eurajoki in May 2001. The decision makes it possible for Posiva to focus the confirming bedrock investigations at Olkiluoto, where in the next few years an underground rock characterisation facility, ONKALO, will be constructed. As a part of the investigations Suomen Malmi Oy (Smoy) core drilled 205.17 m deep borehole with a diameter of 75.7 mm at Olkiluoto in May 2005. This borehole was aimed to get additional information of the quality of bedrock and the anomalous part of the bedrock and quality and the location of the fractured zones R19A and R19B. The identification number of the borehole is OL-KR36. A set of monitoring measurements and samplings from the drilling and returning water was carried out during the drilling. Both the volume and the electric conductivity of the drilling water and the returning water were recorded. The drill rig was computer controlled and during drilling the computer recorded information about drilling measurements. The objective of all these measurements was to obtain more information about bedrock and groundwater properties. Sodium fluorescein was used as a label agent in the drilling water. The volume of the used drilling water was about 117 m{sup 3} and the measured volume of the returning water was about 51m{sup 3} in borehole OL-KR36. The deviation of the borehole was measured with the deviation measuring instruments EMS and Maxibor. The results of the Maxibor measurements indicate that borehole OL-KR36 deviates 10.34 m left and 7.11 m up at the borehole depth of 204 m. Uniaxial compressive strength, Young's Modulus and Poisson' s ratio were measured from the core samples. The average uniaxial compressive strength is about 126

  13. Core drilling of deep borehole OL-KR35 at Olkiluoto in Eurajoki 2005

    Energy Technology Data Exchange (ETDEWEB)

    Rautio, T. [Suomen Malmi Oy, Espoo (Finland)

    2005-07-15

    Posiva Oy submitted an application for the Decision in Principle to the Finnish Government in May 1999. A positive decision was made at the end of 2000 by the Government. The Finnish Parliament ratified the Decision in Principle on the final disposal facility for spent nuclear fuel at Olkiluoto, Eurajoki in May 2001. The decision makes it possible for Posiva to focus the confirming bedrock investigations at Olkiluoto, where in the next few years an underground rock characterisation facility, ONKALO, will be constructed. As a part of the investigations Suomen Malmi Oy (Smoy) core drilled 100.87 m deep borehole with a diameter of 75.7 mm at Olkiluoto in May 2005. This borehole was aimed to get additional information of the quality of bedrock and the anomalous part of the bedrock and quality and the location of the fractured zones R19A and R19B. The identification number of the borehole is OL-KR35. A set of monitoring measurements and samplings from the drilling and returning water was carried out during the drilling. Both the volume and the electric conductivity of the drilling water and the returning water were recorded. The drill rig was computer controlled and during drilling the computer recorded information about drilling parameters. The objective of all measurements was to obtain more information about bedrock and groundwater properties. Sodium fluorescein was used as a label agent in the drilling water. The volume of the used drilling water was about 53 m{sup 3} and the measured volume of the returning water was about 25 m{sup 3} in borehole OL-KR35. The deviation of the borehole was measured with the deviation measuring instruments EMS and Maxibor. The results of the Maxibor measurements indicate that borehole OL-KR35 deviates 0.49 m right and 0.30 m up at the borehole depth of 99 m. Uniaxial compressive strength, Young's Modulus and Poisson' s ratio were measured from the core samples. The average uniaxial compressive strength is about 90 MPa, the

  14. Core drilling of deep borehole OL-KR39 at Olkiluoto in Eurajoki 2005

    International Nuclear Information System (INIS)

    Niinimaeki, R.

    2005-11-01

    Posiva Oy submitted an application to the Finnish Government in May 1999 for the Decision in Principle to choose Olkiluoto in the municipality of Eurajoki as the site of the final disposal facility for spent nuclear fuel. A positive decision was made at the end of 2000 by the Government. The Finnish Parliament ratified the decision in May 2001. The decision makes it possible for Posiva to focus the confirming bedrock investigations at Olkiluoto, where in the next few years an underground rock characterisation facility, ONKALO, will be constructed. As a part of the investigations Suomen Malmi Oy (Smoy) core drilled 502.97 m and 45.11 m deep boreholes with a diameter of 75.7 mm at Olkiluoto in August- October 2005. The identification numbers of the boreholes are OL-KR39 and OL-KR39B, respectively. A set of monitoring measurements and samplings from the drilling and returning water was carried out during the drilling. Both the volume and the electric conductivity of the drilling water and the returning water were recorded. The drill rig was computer controlled and during drilling the computer recorded drilling parameters. The objective of all these measurements was to obtain more information about bedrock and groundwater properties. Sodium fluorescein was used as a label agent in the drilling water. The total volumes of the used drilling and flushing water were 415m 3 and 25 m 3 and the measured volumes of the returning water were 175 m 3 and 7 m 3 in boreholes OLKR39 and OL-KR39B, respectively. The deviation of the borehole was measured with the deviation measuring instruments EMS and Maxibor. Uniaxial compressive strength, Young's Modulus and Poisson' s ratio were measured from the core samples. The average uniaxial compressive strength is about 110 MPa, the average Young's Modulus is 49 GP a and the average Poisson' s ratio is 0.25. The main rock types are migmatitic mica gneiss and granite. Filled fracture is the most common fracture type. The average fracture

  15. Core drilling of deep borehole OL-KR32 at Olkiluoto in Eurajoki 2004

    International Nuclear Information System (INIS)

    Rautio, T.

    2005-01-01

    Posiva Oy submitted an application for the Decision in Principle to the Finnish Government in May 1999. A positive decision was made at the end of 2000 by the Government. The Finnish Parliament ratified the Decision in Principle on the final disposal facility for spent nuclear fuel at Olkiluoto, Eurajoki in May 2001. The decision makes it possible for Posiva to focus the confirming bedrock investigations at Olkiluoto, where in the next few years an underground rock characterisation facility, the ONKALO, will be constructed. As a part of the investigations Suomen Malmi Oy (Smoy) core drilled a 191.81 m deep borehole with a diameter of 75.7 mm at Olkiluoto in November 2004. This borehole was aimed to get additional information of the quality and the location of the fractured zones R20A and R20B and the fractured zones near rock surface noticed in investigation trench TK8. The identification number of the borehole is OL-KR32. A set of monitoring measurements and samplings from the drilling and returning water was carried out during the drilling. Both the volume and the electric conductivity of the drilling water and the returning water were recorded as well as the pressure of the drilling water. The objective of these measurements was to obtain more information about bedrock and groundwater properties. Sodium fluorescein was used as a label agent in the drilling water. The volume of the used drilling water was about 93 m 3 and the measured volume of the returning water was about 6 m 3 in borehole OL-KR32. The deviation of the borehole was measured with the deviation measuring instruments EMS and Maxibor. The results of the Maxibor measurements indicate that borehole OL-KR32 deviates 4.42 m right and 4.66 m up at the borehole depth of 189 m. Uniaxial compressive strength, Young's Modulus and Poisson's ratio were measured from the core samples. The average uniaxial compressive strength is about 130 MPa, the average Young's modulus is 47 GPa and the average Poisson

  16. Excavation damage and organic growth in a 1.2m diameter borehole

    International Nuclear Information System (INIS)

    Everitt, R.A.; Gann, P.; Brown, D.A.; Boychuk, D.M.

    1994-01-01

    A 1.24m diameter borehole was drilled 5m into the floor of a typical drill-and-blast tunnel in unfractured granite, at AECL's Underground Research Laboratory. Three generations of excavation damage, characteristic of what may be encountered in boreholes excavated for in-hole emplacement of used fuel wastes was observed. These include: (1) damage related to the initial excavation of the room, (2) damage caused by the drilling of the borehole itself, and (3) damage due to subsequent stress-induced spalling of the borehole walls. A biofilm containing a variety of microorganisms has developed where seepage issues from the concrete-granite interface. The biota were introduced from surface water used for mining and drilling. Their growth has been stimulated by residues from blasting and drilling, which have concentrated iron and silicon by passive sorption and energy metabolism. Ferrous iron has been oxidized and precipitated as ferrihydrite/hematite to give an orange/brown colouration on the biofilm interface black. These observations, significant to the understanding and monitoring of excavation damage, highlight the importance of thorough, in situ, multi-disciplinary characterization for vault design

  17. An overview of a highly versatile forward and stable inverse algorithm for airborne, ground-based and borehole electromagnetic and electric data

    DEFF Research Database (Denmark)

    Auken, Esben; Christiansen, Anders Vest; Kirkegaard, Casper

    2015-01-01

    . This engine includes support for mixed data types, arbitrary model parameter constraints, integration of prior information and calculation of both model parameter sensitivity analysis and depth of investigation. We present a review of our implementation and methodology and show four different examples......We present an overview of a mature, robust and general algorithm providing a single framework for the inversion of most electromagnetic and electrical data types and instrument geometries. The implementation mainly uses a 1D earth formulation for electromagnetics and magnetic resonance sounding...... types of data. Our implementation is modular, meaning that the bulk of the algorithm is independent of data type, making it easy to add support for new types. Having implemented forward response routines and file I/O for a given data type provides access to a robust and general inversion engine...

  18. Borehole Gravity Meter Surveys at the Waste Treatment Plant, Hanford, Washington.

    Energy Technology Data Exchange (ETDEWEB)

    MacQueen, Jeffrey D.; Mann, Ethan

    2007-04-06

    Microg-LaCoste (MGL) was contracted by Pacfic Northwest National Laboratories (PNNL) to record borehole gravity density data in 3 wells at the HanfordWaste Treatment Plant (WTP) site. The survey was designed to provide highly accurate density information for use in seismic modeling. The borehole gravity meter (BHGM) tool has a very large depth of investigation (hundreds of feet) compared to other density tools so it is not influenced by casing or near welbore effects, such as washouts.

  19. Borehole radar as a tool to optimise mine layouts and production

    CSIR Research Space (South Africa)

    Mafiri, MT

    2008-11-01

    Full Text Available (from exploration drilling and geological mapping) used to build the reef topography (red dots). The black dashed lines represent the positions of the raises 6 4.3 Financial benefits of using borehole radar The financial benefits... by drilling would require more drill holes (assuming the holes are at an angle to the reef). Overall borehole radar greatly outweighed the high costs of drilling and directional surveying, and much improved the knowledge about the geological model...

  20. Sedimentary and faunal sequence of the Wadhurst clay Wealden in boreholes at Wadhurst Park, Sussex

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, F W; Bazley, R A.B.; Shephard-Thorn, E R

    1967-01-01

    Three boreholes sunk at Wadhurst Park, Sussex, provide a virtually complete section through the Wadhurst Clay (Wealden, Lower Cretaceous) in its type area. Full lithological logs of the boreholes with discussions of rock types, sedimentary features and depositional environments are given. It is suggested the sediments were deposited under shallow-water lagoonal conditions which varied from fresh-water to brackish and possibly marine. The succession of ostracod assemblages as found in the boreholes is recorded and compared with that found in the Warlingham (Surrey), Chilcombe Down No. 1 (Hampshire) and Kingsclere No. 1 (Hampshire) boreholes. Ostracods including a number of new species and subspecies, all belonging to the genus Cypridea, are described together with notes on the morphology of that genus. (22 refs.)

  1. Borehole locations on seven interior salt domes

    International Nuclear Information System (INIS)

    Simcox, A.C.; Wampler, S.L.

    1982-08-01

    This report is designed as an inventory of all wells known to have been drilled within a five-mile radius of each of seven salt domes within the Interior Salt Basin in east Texas, northern Louisiana and Mississippi. There are 72 boreholes that entered salt above an elevation of -3000 feet mean sea level. For these, details of location, drilling dates, depth of casing and cement, elevation of top of caprock and salt, etc., are given on tables in the appendix. Of the seven domes, Oakwood has the largest number of boreholes, thirty-eight (including two sidetracked wells) that enter the salt stock above -3000 feet mean sea level; another dome in northeast Texas, Keechi, has eight; in northern Louisiana, Rayburn's has four and Vacherie has five; in southern Mississippi, Cypress Creek has seven, Lampton has one, and Richton has nine. In addition, all wells known outside the supra-domal area, but within a five-mile radius of the center of the 7 domes are separately catalogued

  2. Borehole geophysics in nuclear power plant siting

    International Nuclear Information System (INIS)

    Crosby, J.W.; Scott, J.D.

    1979-01-01

    Miniaturized borehole geophysical equipment designed for use in ground-water investigations can be adapted to investigations of nuclear power plant sites. This equipment has proved to be of value in preliminary and comprehensive studies of interior basins where thick sequences of Quaternary clastic sediment, occasionally with associated volcanic rocks, pose problems of stratigraphic correlation. The unconsolidated nature of the deposits generally requires that exploratory holes be cased, which ordinarily restricts the borehole geophysical studies to the radiation functions--natural gamma, gamma-gamma, neutron-gamma, and neutron-epithermal neutron logs. Although a single log response may be dominant in a given area, correlations derive from consideration of all log responses as a composite group. Because major correlations usually are based upon subtle differences in the physical properties of the penetrated sediment, high-resolution logging procedures are employed with some sacrifice of the quantitative perameters important to petroleum technology. All geophysical field data are recorded as hard copy and as digital information on punched paper tape

  3. Condensed listing of surface boreholes at the Waste Isolation Pilot Plant Project through 31 December 1995

    International Nuclear Information System (INIS)

    Hill, L.R.; Aguilar, R.; Mercer, J.W.; Newman, G.

    1997-01-01

    This report contains a condensed listing of Waste Isolation Pilot Plant (WIPP) project surface boreholes drilled for the purpose of site selection and characterization through 31 December 1995. The US Department of Energy (DOE) sponsored the drilling activities, which were conducted primarily by Sandia National Laboratories. The listing provides physical attributes such as location (township, range, section, and state-plane coordinates), elevation, and total borehole depth, as well as the purpose for the borehole, drilling dates, and information about extracted cores. The report also presents the hole status (plugged, testing, monitoring, etc.) and includes salient findings and references. Maps with borehole locations and times-of-drilling charts are included

  4. Influence of the stack length on the stresses and temperatures at the location of a borehole seal

    International Nuclear Information System (INIS)

    Beemsterboer, C.J.J.; Prij, J.

    1993-02-01

    This report deals with a numerical analysis to determine the sensitivity of the thermomechanical loading of the borehole seal with respect to the length of the stack of canisters. The analysis deals with the mechanical loads (stresses, deformation and temperature) caused by the rock pressure at the location of the borehole seal and by the heat producing canisters in the borehole. The aim of the analysis is to obtain insight in the temperature and stress load on the borehole seal and to define the distance above which these loads can be neglected

  5. Electromagnetic Waves

    DEFF Research Database (Denmark)

    This book is dedicated to various aspects of electromagnetic wave theory and its applications in science and technology. The covered topics include the fundamental physics of electromagnetic waves, theory of electromagnetic wave propagation and scattering, methods of computational analysis......, material characterization, electromagnetic properties of plasma, analysis and applications of periodic structures and waveguide components, etc....

  6. A novel contra propagating ultrasonic flowmeter using glad buffer rods for high temperature measurement. Application to the oil and gas industries

    Energy Technology Data Exchange (ETDEWEB)

    Franca, Demartonne R. [Brasilia Univ., DF (Brazil). Dept. de Engenharia Eletrica; Cheng-Kuei Jen; Yuu Ono [National Research Council (NRC), Quebec (Canada). Industrial Materials Institute

    2005-07-01

    Ultrasonic techniques are attractive for process monitoring and control because they are non-intrusive, robust and inexpensive. Two common concerns limiting the high temperature performance of conventional ultrasonic systems for flow measurement are related to transducers and couplants. A suitable approach to overcoming this drawback is to insert a thermal isolating buffer rod with good ultrasonic performance (e.g., high signal-to-noise ratio). This requirement is important because, a priori, the noises generated in the buffer rod may bury the desired signals, so that no meaningful information is extracted. Besides protecting the ultrasonic transducers from overheating in applications such as high temperature flow measurements, buffer rods are also a solution for the couplant between the probe and tested sample, since their probing end can be directly wetted by fluids. Here, we propose clad buffer rods driven by shear transducers as the main building block of contra propagating ultrasonic flowmeters for high temperature application. It is demonstrated that the superior signal-to-noise ratio exhibit by clad buffer rods compared to the reported non-clad counterparts improve precision in transit-time measurement, leading to more accurate flow speed determination. In addition, it is shown that clad buffer rods generate specific ultrasonic signals for temperature calibration of flowmeters, allowing temperature variation while still measuring accurately the flow speed. These results are of interest for the oil and gas industries. (author)

  7. Borehole Plugging-Materials Development Program

    International Nuclear Information System (INIS)

    Gulick, C.W. Jr.

    1978-06-01

    This report discusses the background and first year's results of the grouting materials development program for plugging boreholes associated with the Nuclear Waste Isolation Pilot Plant. The grouts are to be pumpable, impermeable, and durable for many thousands of years. The work was done at the Concrete Laboratory of the U.S. Army Engineer Waterways Experiment Station (WES), Vicksburg, Mississippi. The workability, strength, porosity, bonding, expansion, and permeability data are summarized and discussed. The work is continuing at WES

  8. Model structural uncertainty quantification and hydrologic parameter and prediction error analysis using airborne electromagnetic data

    DEFF Research Database (Denmark)

    Minsley, B. J.; Christensen, Nikolaj Kruse; Christensen, Steen

    Model structure, or the spatial arrangement of subsurface lithological units, is fundamental to the hydrological behavior of Earth systems. Knowledge of geological model structure is critically important in order to make informed hydrological predictions and management decisions. Model structure...... is never perfectly known, however, and incorrect assumptions can be a significant source of error when making model predictions. We describe a systematic approach for quantifying model structural uncertainty that is based on the integration of sparse borehole observations and large-scale airborne...... electromagnetic (AEM) data. Our estimates of model structural uncertainty follow a Bayesian framework that accounts for both the uncertainties in geophysical parameter estimates given AEM data, and the uncertainties in the relationship between lithology and geophysical parameters. Using geostatistical sequential...

  9. Determination of Groundwater Velocity and Dispersion Parameters by Borehole Wall Multielectrode Geoelectrics

    Science.gov (United States)

    Kessels, W.; Wuttke, M. W.

    2007-05-01

    A single well technique to determine groundwater flow values and transport parameters is presented. Multielectrode arrays are placed at the filtered casing depth by an inflatable packer or are installed on the borehole wall behind the casing.Tracer water with a higher or lower specific electrical conductivity (salinity) which is injected between the electrodes. This tracer plume then moves into the natural groundwater flow field. The observation of this movement by geoelectric logging enables the determination of the groundwater velocity and salinity. The transport parameters "effective porosity" and "dispersion length" can also be derived. The geoelectric logging uses n borehole electrodes and two grounding electrodes. Thus, either n independent two point measurements or n*(n-1)/2 pole-to-pole measurements can be conducted to obtain a full set of geoelectric measurements. This set is used to derive all electrode combinations by applying the law of superposition and reciprocity. The tracer distribution around the borehole during and after injection depends on the hydraulic and transport parameters of the aquifer and the filter sand. The transport parameter "porosity" plus the total injected tracer volume determines the tracer distribution around the borehole. The transport parameter "dispersivity" determines the abruptness of the tracer front. The method was tested by undertaking measurements in a lab aquifer filled with sand. The results are discussed and the limitations of the method are shown. Multielectrode installations behind casing were tested in situ in the two scientific boreholes CAT-LUD-1 and CAT- LUD-1A drilled in the northern part of Germany. A multielectrode packer system was designed, built and tested in these boreholes. The results are compared with colloid observations in the borehole and hydraulic triangulation in surrounded observation wells. Here, the interpretation of these in situ measurements is mainly restricted to two point geoelectric

  10. Origin of elevated water levels encountered in Pahute Mesa emplacement boreholes: Preliminary investigations

    International Nuclear Information System (INIS)

    Brikowski, T.; Chapman, J.; Lyles, B.; Hokett, S.

    1993-11-01

    The presence of standing water well above the predicted water table in emplacement boreholes on Pahute Mesa has been a recurring phenomenon at the Nevada Test Site (NTS). If these levels represent naturally perched aquifers, they may indicate a radionuclide migration hazard. In any case, they can pose engineering problems in the performance of underground nuclear tests. The origin of these elevated waters is uncertain. Large volumes of water are introduced during emplacement drilling, providing ample source for artificially perched water, yet elevated water levels can remain constant for years, suggesting a natural origin instead. In an effort to address the issue of unexpected standing water in emplacement boreholes, three different sites were investigated in Area 19 on Pahute Mesa by Desert Research Institute (DRI) staff from 1990-93. These sites were U-19az, U-19ba, and U-19bh. As of this writing, U-19bh remains available for access; however, nuclear tests were conducted at the former two locations subsequent to this investigations. The experiments are discussed in chronological order. Taken together, the experiments indicate that standing water in Pahute Mesa emplacement holes originates from the drainage of small-volume naturally perched zones. In the final study, the fluids used during drilling of the bottom 100 m of emplacement borehole U-19bh were labeled with a chemical tracer. After hole completion, water level rose in the borehole, while tracer concentration decreased. In fact, total mass of tracer in the borehole remained constant, while water levels rose. After water levels stabilized in this hole, no change in tracer mass was observed over two years, indicating that no movement of water out of the borehole is taking place (as at U- 19ba). Continued labeling tests of standing water are recommended to confirm the conclusions made here, and to establish their validity throughout Pahute Mesa

  11. Shock-induced borehole waves and fracture effects

    NARCIS (Netherlands)

    Fan, H.; Smeulders, D.M.J.

    2012-01-01

    We perform wave experiments using a vertical shock tube setup. Shock waves are generated by the rupture of a thin membrane. In the test section the incident pressure waves generate borehole-guided waves along water-saturated samples. The tube is equipped with side wall gages and a mobile pressure

  12. Research on Deep Joints and Lode Extension Based on Digital Borehole Camera Technology

    Directory of Open Access Journals (Sweden)

    Han Zengqiang

    2015-09-01

    Full Text Available Structure characteristics of rock and orebody in deep borehole are obtained by borehole camera technology. By investigating on the joints and fissures in Shapinggou molybdenum mine, the dominant orientation of joint fissure in surrounding rock and orebody were statistically analyzed. Applying the theory of metallogeny and geostatistics, the relationship between joint fissure and lode’s extension direction is explored. The results indicate that joints in the orebody of ZK61borehole have only one dominant orientation SE126° ∠68°, however, the dominant orientations of joints in surrounding rock were SE118° ∠73°, SW225° ∠70° and SE122° ∠65°, NE79° ∠63°. Then a preliminary conclusion showed that the lode’s extension direction is specific and it is influenced by joints of surrounding rock. Results of other boreholes are generally agree well with the ZK61, suggesting the analysis reliably reflects the lode’s extension properties and the conclusion presents important references for deep ore prospecting.

  13. Comparison between results of detailed tectonic studies on borehole core vs microresistivity images of borehole wall from gas-bearing shale complexes, Baltic Basin, Poland.

    Science.gov (United States)

    Bobek, Kinga; Jarosiński, Marek; Pachytel, Radomir

    2017-04-01

    Structural analysis of borehole core and microresistivity images yield an information about geometry of natural fracture network and their potential importance for reservoir stimulation. Density of natural fractures and their orientation in respect to the maximum horizontal stress has crucial meaning for hydraulic fractures propagation in unconventional reservoirs. We have investigated several hundred meters of continuous borehole core and corresponding microresistivity images (mostly XRMI) from six boreholes in the Pomeranian part of the Early Paleozoic Baltic Basin. In general, our results challenge the question about representatives of statistics based on structural analyses on a small shale volume represented by borehole core or borehole wall images and credibility of different sets of data. Most frequently, fractures observed in both XRMI and cores are steep, small strata-bound fractures and veins with minor mechanical aperture (0,1 mm in average). These veins create an orthogonal joint system, locally disturbed by fractures associated with normal or by gently dipping thrust faults. Mean fractures' height keeps in a range between 30-50 cm. Fracture density differs significantly among boreholes and Consistent Lithological Units (CLUs) but the most frequent means falls in a range 2-4 m-1. We have also payed an attention to bedding planes due to their expected coupling with natural fractures and their role as structural barriers for vertical fracture propagation. We aimed in construction for each CLU the so-called "mean brick", which size is limited by an average distance between two principal joint sets and between bedding fractures. In our study we have found out a discrepancy between structural profiles based on XRMI and core interpretation. For some CLUs joint fractures densities, are higher in cores than in XRMI. In this case, numerous small fractures were not recorded due to the limits of XRMI resolution. However, the most veins with aperture 0,1 mm

  14. Borehole radar measurements performed on preliminary investigation areas in Finland for final disposal of spent nuclear fuel

    International Nuclear Information System (INIS)

    Carlsten, S.

    1991-05-01

    Borehole radar measurements with the RAMAC system have been performed in 24 boreholes distributed between the investigation areas Kuhmo Romuvaara, Hyrynsalmi Veitsivaara, Konginkangas Kivetty, Sievi Syyry, and Eurajoki Olkiluoto. The purpose of the borehole radar measurement program has been to investigate the bedrock in the vicinity of the boreholes in order to obtain information about geometry and extent of fracture zones, lithological contacts and other structures. The measurements have been performed as singlehole radar reflection measurements and Vertical Radar Profiling (VRP) measurements, using antennas with 22 MHz frequency range in both configurations. The total measured length in the singlehole radar reflection mode is 13304 meter and in the VRP mode 9200 meter. The VRP measurements are not presented in the report. Radar data from the singlehole reflection measurements are presented as grey scale radar maps after digital filtering with a bandpass filter and a moving average filter. Interpreted zones from the singlehole radar measurements are presented in tables for each borehole. It has been possible to study structures at distances of more than 110 meter from the borehole

  15. New developments in high resolution borehole seismology and their applications to reservoir development and management

    Energy Technology Data Exchange (ETDEWEB)

    Paulsson, B.N.P. [Chevron Petroleum Technology Company, La Habra, CA (United States)

    1997-08-01

    Single-well seismology, Reverse Vertical Seismic Profiles (VSP`s) and Crosswell seismology are three new seismic techniques that we jointly refer to as borehole seismology. Borehole seismic techniques are of great interest because they can obtain much higher resolution images of oil and gas reservoirs than what is obtainable with currently used seismic techniques. The quality of oil and gas reservoir management decisions depend on the knowledge of both the large and the fine scale features in the reservoirs. Borehole seismology is capable of mapping reservoirs with an order of magnitude improvement in resolution compared with currently used technology. In borehole seismology we use a high frequency seismic source in an oil or gas well and record the signal in the same well, in other wells, or on the surface of the earth.

  16. Cement technology for borehole plugging: an interim report on permeability measurements of cementitious solids

    International Nuclear Information System (INIS)

    McDaniel, E.W.

    1980-01-01

    The permeability of borehole plug solids and plug-wall rock junctions is a property of major interest in the Borehole Plugging Program. This report describes the equipment and techniques used to determine the permeabilities of possible borehole plugging materials and presents results from tests on various cementitious solids and plug-rock combinations. The cementitious solids were made from mixtures of cement, sand, salt, fly ash, and water. Three different types of cement and four different fly ashes were used. Permeabilities ranged from a high value of 3 x 10 -4 darcy for a neat cement paste to a low of 5 x 10 -8 darcy for a saltcrete containing 30 wt % sodium chloride. Miniature boreholes were made in the following four different types of rock: Westerly granite, Dresser basalt, Sioux quartzite, and St. Cloud granodiorite. These small holes were plugged with a mix consisting of 23 wt % Type I Portland cement, 20 wt % bituminous fy ash, 43.2 wt % sand, and 13.8 wt % water. After curing for 91 days at ambient temperature, the permeability of the plug-wall rock junctions ranged from 3 x 10 -5 to -8 darcy. Three of the four miniature plugged boreholes exhibited permeabilities of < 10 microdarcys

  17. Bhtv looks right down the borehole

    Energy Technology Data Exchange (ETDEWEB)

    1969-04-01

    A borehole televiewer uses acoustic pulses to produce a camera-like picture of downhole conditions. A block diagram shows the borehole televiewer logging system. The diameter of the tool is 3-3/8 in., but slimmer tools can be built. The nominal logging speed is 15 ft per min. Vertical fractures will show on the log as double vertical lines, horizontal fractures as single horizontal lines, and dipping fractures as curves that are roughly symmetrical. The orientation of the minimum of the curve is the dip direction of the fracture. The original idea was to find a tool to give guidance in fracturing jobs, and so far the tool has been primarily used for that purpose. It will also be a tremendous help for geologists and engineers on wildcate wells who have to make the agonizing decision to complete or abandon. It will show fracture porosity that no other currently available tool will show. It also will be a very useful supplement for the dipmeter. It can accurately locate vugs and washouts, and show changes in porosity and lithology. Mobil Oil is now using the tool as a standard log on all its wildcat wells.

  18. A Fiber-Optic Borehole Seismic Vector Sensor System for Geothermal Site Characterization and Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Paulsson, Bjorn N.P. [Paulsson, Inc., Van Nuys, CA (United States); Thornburg, Jon A. [Paulsson, Inc., Van Nuys, CA (United States); He, Ruiqing [Paulsson, Inc., Van Nuys, CA (United States)

    2015-04-21

    Seismic techniques are the dominant geophysical techniques for the characterization of subsurface structures and stratigraphy. The seismic techniques also dominate the monitoring and mapping of reservoir injection and production processes. Borehole seismology, of all the seismic techniques, despite its current shortcomings, has been shown to provide the highest resolution characterization and most precise monitoring results because it generates higher signal to noise ratio and higher frequency data than surface seismic techniques. The operational environments for borehole seismic instruments are however much more demanding than for surface seismic instruments making both the instruments and the installation much more expensive. The current state-of-the-art borehole seismic instruments have not been robust enough for long term monitoring compounding the problems with expensive instruments and installations. Furthermore, they have also not been able to record the large bandwidth data available in boreholes or having the sensitivity allowing them to record small high frequency micro seismic events with high vector fidelity. To reliably achieve high resolution characterization and long term monitoring of Enhanced Geothermal Systems (EGS) sites a new generation of borehole seismic instruments must therefore be developed and deployed. To address the critical site characterization and monitoring needs for EGS programs, US Department of Energy (DOE) funded Paulsson, Inc. in 2010 to develop a fiber optic based ultra-large bandwidth clamped borehole seismic vector array capable of deploying up to one thousand 3C sensor pods suitable for deployment into ultra-high temperature and high pressure boreholes. Tests of the fiber optic seismic vector sensors developed on the DOE funding have shown that the new borehole seismic sensor technology is capable of generating outstanding high vector fidelity data with extremely large bandwidth: 0.01 – 6,000 Hz. Field tests have shown

  19. Simulations of a spectral gamma-ray logging tool response to a surface source distribution on the borehole wall

    International Nuclear Information System (INIS)

    Wilson, R.D.; Conaway, J.G.

    1991-01-01

    We have developed Monte Carlo and discrete ordinates simulation models for the large-detector spectral gamma-ray (SGR) logging tool in use at the Nevada Test Site. Application of the simulation models produced spectra for source layers on the borehole wall, either from potassium-bearing mudcakes or from plate-out of radon daughter products. Simulations show that the shape and magnitude of gamma-ray spectra from sources distributed on the borehole wall depend on radial position with in the air-filled borehole as well as on hole diameter. No such dependence is observed for sources uniformly distributed in the formation. In addition, sources on the borehole wall produce anisotropic angular fluxes at the higher scattered energies and at the source energy. These differences in borehole effects and in angular flux are important to the process of correcting SGR logs for the presence of potassium mudcakes; they also suggest a technique for distinguishing between spectral contributions from formation sources and sources on the borehole wall. These results imply the existence of a standoff effect not present for spectra measured in air-filled boreholes from formation sources. 5 refs., 11 figs

  20. Borehole depth and regolith aquifer hydraulic characteristics of ...

    African Journals Online (AJOL)

    EJIRO

    composition tend to exhibit similar hydraulic characteristics. But the poor performance of ... mum borehole depth in the regolith aquifer for the area and also reveals that ..... most important end products of chemical weathering of rocks of granitic ...

  1. Metamorphic rocks in the deep boreholes near Maribor

    Directory of Open Access Journals (Sweden)

    Mirka Trajanova

    2002-12-01

    Full Text Available Six research-captive boreholes for thermal water passed through a pile of metamorphic rocks near Maribor (Eastern Slovenia that is on average about 1000 m thick. The succession of metamorphic rocks is characteristic for the Pohorje Mt. and eastern Kobansko region. In the area of the boreholes two tectonic zones are more pronounced: the upper one, at a depth of about 510 to 550 m at the contact of the Štelenska Gora and Phyllite formations and the deeper one at a depth of about 460 to 590 m, indicating the reverse fault junction of the Phyllite and Kobansko formations. They belong to the second andthe third thrust unit of the accretionary wedge formed at the collision of the European and African plates. Four Alpine nappe units are proven in the Slovenian part of the Eastern Alps.

  2. 30 CFR 75.1315 - Boreholes for explosives.

    Science.gov (United States)

    2010-07-01

    .... (e) When blasting slab rounds off the solid, opener holes shall not be drilled beyond the rib line... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1315 Boreholes for...; and (2) Shots fired in anthracite mines for battery starting or for blasting coal overhangs. No person...

  3. Site characterization and validation - monitoring of saline tracer transport by borehole radar measurements

    International Nuclear Information System (INIS)

    Olsson, O.; Andersson, P.; Gustafsson, E.

    1991-08-01

    The objective of this experiment was to map tracer transport in fractured crystalline rock through a combination of radar difference tomography and measurements of tracer concentration in boreholes and the validation drift. The experiment was performed twice, first the D-boreholes were used as a sink and then they were replaced by the validation drift and the experiment repeated. In both experiments saline tracer (200 ml/min, 2% salinity) was injected into fracture zone H about 25 m from the validation drift. The experiment revealed an inhomogeneous transmissivity distribution in Zone H. A significant portion of the tracer is transported upwards along Zone H and towards boreholes T1, T2, and W1. The breakthrough data from both experiments indicate that there are two major transport paths from borehole C2 to the D-boreholes/validation drift. One slow and diluted path to the bottom of the drift which carries the bulk of the mass and one fast path to the crown of the drift with high tracer concentration. The radar difference tomograms show that some tracer is lost through Zone S which intersects Zone H and is nearly perpendicular to it. The intersection between the two zones seems to constitute a preferred flow path. The breakthrough data and the radar difference tomograms have also been used to estimate flow porosity. The estimate obtained area of the same order approximately 10 -4 . (au) (28 refs.)

  4. Core drilling of deep borehole OL-KR32 at Olkiluoto in Eurajoki 2004

    Energy Technology Data Exchange (ETDEWEB)

    Rautio, T. [Suomen Malmi Oy, Espoo (Finland)

    2005-01-15

    Posiva Oy submitted an application for the Decision in Principle to the Finnish Government in May 1999. A positive decision was made at the end of 2000 by the Government. The Finnish Parliament ratified the Decision in Principle on the final disposal facility for spent nuclear fuel at Olkiluoto, Eurajoki in May 2001. The decision makes it possible for Posiva to focus the confirming bedrock investigations at Olkiluoto, where in the next few years an underground rock characterisation facility, the ONKALO, will be constructed. As a part of the investigations Suomen Malmi Oy (Smoy) core drilled a 191.81 m deep borehole with a diameter of 75.7 mm at Olkiluoto in November 2004. This borehole was aimed to get additional information of the quality and the location of the fractured zones R20A and R20B and the fractured zones near rock surface noticed in investigation trench TK8. The identification number of the borehole is OL-KR32. A set of monitoring measurements and samplings from the drilling and returning water was carried out during the drilling. Both the volume and the electric conductivity of the drilling water and the returning water were recorded as well as the pressure of the drilling water. The objective of these measurements was to obtain more information about bedrock and groundwater properties. Sodium fluorescein was used as a label agent in the drilling water. The volume of the used drilling water was about 93 m{sup 3} and the measured volume of the returning water was about 6 m{sup 3} in borehole OL-KR32. The deviation of the borehole was measured with the deviation measuring instruments EMS and Maxibor. The results of the Maxibor measurements indicate that borehole OL-KR32 deviates 4.42 m right and 4.66 m up at the borehole depth of 189 m. Uniaxial compressive strength, Young's Modulus and Poisson's ratio were measured from the core samples. The average uniaxial compressive strength is about 130 MPa, the average Young's modulus is 47 GPa and

  5. Numerical Borehole Breakdown Investigations using XFEM

    Science.gov (United States)

    Beckhuis, Sven; Leonhart, Dirk; Meschke, Günther

    2016-04-01

    During pressurization of a wellbore a typical downhole pressure record shows the following regimes: first the applied wellbore pressure balances the reservoir pressure, then after the compressive circumferential hole stresses are overcome, tensile stresses are induced on the inside surface of the hole. When the magnitude of these stresses reach the tensile failure stress of the surrounding rock medium, a fracture is initiated and propagates into the reservoir. [1] In standard theories this pressure, the so called breakdown pressure, is the peak pressure in the down-hole pressure record. However experimental investigations [2] show that the breakdown did not occur even if a fracture was initiated at the borehole wall. Drilling muds had the tendency to seal and stabilize fractures and prevent fracture propagation. Also fracture mechanics analysis of breakdown process in mini-frac or leak off tests [3] show that the breakdown pressure could be either equal or larger than the fracture initiation pressure. In order to gain a deeper understanding of the breakdown process in reservoir rock, numerical investigations using the extended finite element method (XFEM) for hydraulic fracturing of porous materials [4] are discussed. The reservoir rock is assumed to be pre-fractured. During pressurization of the borehole, the injection pressure, the pressure distribution and the position of the highest flux along the fracture for different fracturing fluid viscosities are recorded and the influence of the aforementioned values on the stability of fracture propagation is discussed. [1] YEW, C. H. (1997), "Mechanics of Hydraulic Fracturing", Gulf Publishing Company [2] MORITA, N.; BLACK, A. D.; FUH, G.-F. (1996), "Borehole Breakdown Pressure with Drilling Fluids". International Journal of Rock Mechanics and Mining Sciences 33, pp. 39-51 [3] DETOURNAY, E.; CARBONELL, R. (1996), "Fracture Mechanics Analysis of the Breakdown Process in Minifrac or Leakoff Test", Society of Petroleum

  6. RAPID COMMUNICATION Time-resolved measurements with a vortex flowmeter in a pulsating turbulent flow using wavelet analysis

    Science.gov (United States)

    Laurantzon, F.; Örlü, R.; Segalini, A.; Alfredsson, P. H.

    2010-12-01

    Vortex flowmeters are commonly employed in technical applications and are obtainable in a variety of commercially available types. However their robustness and accuracy can easily be impaired by environmental conditions, such as inflow disturbances and/or pulsating conditions. Various post-processing techniques of the vortex signal have been used, but all of these methods are so far targeted on obtaining an improved estimate of the time-averaged bulk velocity. Here, on the other hand, we propose, based on wavelet analysis, a straightforward way to utilize the signal from a vortex shedder to extract the time-resolved and thereby the phase-averaged velocity under pulsatile flow conditions. The method was verified with hot-wire and laser Doppler velocimetry measurements.

  7. Protecting coastal abstraction boreholes from seawater intrusion using self-potential data

    Science.gov (United States)

    Graham, Malcolm; Butler, Adrian; MacAllister, Donald John; Vinogradov, Jan; Ijioma, Amadi; Jackson, Matthew

    2016-04-01

    We investigate whether the presence and transport of seawater can influence self-potentials (SPs) measured within coastal groundwater boreholes, with a view to using SP monitoring as part of an early warning system for saline intrusion. SP data were collected over a period of 18 months from a coastal groundwater borehole in the fractured Chalk of England. Spectral analysis of the results shows semi-diurnal fluctuations that are several orders of magnitude higher than those observed from monitoring of the Chalk more than 60 km inland, indicating a strong influence from oceanic tides. Hydrodynamic and geoelectric modelling of the coastal aquifer suggests that observed pressure changes (giving rise to the streaming potential) are not sufficient to explain the magnitude of the observed SP fluctuations. Simulation of the exclusion-diffusion potential, produced by changes in concentration across the saline front, is required to match the SP data from the borehole, despite the front being located some distance away. In late summer of 2013 and 2014, seawater intrusion occurred in the coastal monitoring borehole. When referenced to the shallowest borehole electrode, there was a characteristic increase in SP within the array, several days before any measurable increase in salinity. The size of this precursor increased steadily with depth, typically reaching values close to 0.3 mV in the deepest electrode. Numerical modelling suggests that the exclusion-diffusion potential can explain the magnitude of the precursor, but that the polarity of the change in SP cannot be replicated assuming a homogeneous aquifer. Small-scale models of idealised Chalk blocks were used to simulate the effects of discrete fractures on the distribution of SP. Initial results suggest that comparatively large reductions in voltage can develop in the matrix ahead of the front, in conjunction with a reduced or absent precursor in the vicinity of a fracture. Geophysical logging indicates the presence of a

  8. Uranium borehole logging using delayed or prompt fission neutrons

    International Nuclear Information System (INIS)

    Schulze, G.; Wuerz, H.

    1977-04-01

    The measurement of induced fission neutrons using Cf 252 and 14 MeV neutrons is a sensitive method for an in situ determination of Uranium. Applying this methods requires a unique relation between concentration of Uranium and intensity of induced fission neutrons. A discussion of parameters influencing the determination of concentration is given. A simple method is developed allowing an elemination of the geochemistry of the deposit and of the borehole configuration. Borehole probes using the methods described are of considerable help during the phase of detailed exploration of uranium ore deposits. These on-line tools allow an immediate determination of concentration. Thus avoiding the expensive and time consuming step of core drilling and subsequent chemical analysis. (orig./HP) [de

  9. Deep Boreholes Seals Subjected to High P, T conditions – Preliminary Experimental Studies

    Energy Technology Data Exchange (ETDEWEB)

    Caporuscio, Florie Andre [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Norskog, Katherine Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Maner, James Lavada [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-18

    The objective of this planned experimental work is to evaluate physio-chemical processes for ‘seal’ components and materials relevant to deep borehole disposal. These evaluations will encompass multi-laboratory efforts for the development of seals concepts and application of Thermal-Mechanical-Chemical (TMC) modeling work to assess barrier material interactions with subsurface fluids, their stability at high temperatures, and the implications of these processes to the evaluation of thermal limits. Deep borehole experimental work will constrain the Pressure, Temperature (P, T) conditions which “seal” material will experience in deep borehole crystalline rock repositories. The rocks of interest to this study include the silicic (granitic gneiss) end members. The experiments will systematically add components to capture discrete changes in both water and EBS component chemistries.

  10. Determination of in-situ fracture apertures from digital borehole images

    International Nuclear Information System (INIS)

    Johansson, Maria C.; Stephansson, O.

    1998-01-01

    Imaging methods applied to borehole investigations have become common for mapping and characterisation of the rock mass. Today we have access to detailed information about the rock, but we lack some methods for analysis. In this study we develop a methodology for measurements of in-situ fracture geometry, from optical borehole images (BIP-system). We focus on the detailed information about fracture geometry, available thanks to the high image resolution. We have decided to perform the measurements using digital image processing, to avoid bias from the human analyst, and we present on-going work on the image processing methodology. Our method is based on iterative intensity thresholding. We work on grey-scale images, of open fractures that fully intersect the borehole. The fracture trace comes out as a dark sinusoidal in the borehole image. First, the darkest pixels in the image are extracted. Then the pixels, which are immediate neighbours to the first set, are included, under the condition that they are darker than a somewhat lower threshold. The including of neighbours is repeated until the fracture trace is filled. The resulting sinusoidal fracture trace is then used for finding an approximation of the fracture plane. The fracture plane orientation is used for determination of true aperture from the apparent aperture seen in the image. After this, fracture aperture statistics can be determined. The method works well for images of open fractures of simple geometry (sine wave). It needs to be improved to handle more complex geometry, e.g. crossing fracture traces. Today, some minor interaction from the analyst is needed, but slight modifications will minimise this

  11. The U-tube: A new paradigm in borehole fluid sampling

    Energy Technology Data Exchange (ETDEWEB)

    Freifeld, B. M.

    2009-10-01

    Fluid samples from deep boreholes can provide insights into subsurface physical, chemical, and biological conditions. Recovery of intact, minimally altered aliquots of subsurface fluids is required for analysis of aqueous chemistry, isotopic composition, and dissolved gases, and for microbial community characterization. Unfortunately, for many reasons, collecting geofluids poses a number of challenges, from formation contamination by drilling to maintaining integrity during recovery from depths. Not only are there substantial engineering issues in retrieval of a representative sample, but there is often the practical reality that fluid sampling is just one of many activities planned for deep boreholes. The U-tube geochemical sampling system presents a new paradigm for deep borehole fluid sampling. Because the system is small, its ability to integrate with other measurement systems and technologies opens up numerous possibilities for multifunctional integrated wellbore completions. To date, the U-tube has been successfully deployed at four different field sites, each with a different deployment modality, at depths from 260 m to 2 km. While the U-tube has proven to be highly versatile, these installations have resulted in data that provide additional insights for improving future U-tube deployments.

  12. Core drilling of deep borehole OL-KR3B at Olkiluoto in Eurajoki 2005

    Energy Technology Data Exchange (ETDEWEB)

    Rautio, T. [Suomen Malmi Oy, Espoo (Finland)

    2005-10-15

    Posiva Oy submitted an application for the Decision in Principle to the Finnish Government in May 1999. A positive decision was made at the end of 2000 by the Government. The Finnish Parliament ratified the Decision in Principle on the final disposal facility for spent nuclear fuel at Olkiluoto, Eurajoki in May 2001. The decision makes it possible for Posiva to focus the confirming bedrock investigations at Olkiluoto, where in the next few years an underground rock characterisation facility, ONKALO, will be constructed. As a part of the investigations Suomen Malmi Oy (Smoy) core drilled 530.60 m deep borehole with a diameter of 75.7 mm at Olkiluoto in summer 2005. This borehole was aimed to get additional information of the quality of bedrock in the area, where a new shaft with a diameter of 3 m is planned to be located. The identification number of the borehole is OL-KR38. A set of monitoring measurements and samplings from the drilling and returning water was carried out during the drilling. Both the volume and the electric conductivity of the drilling water and the returning water were recorded. The drill rig was computer controlled and during drilling the computer recorded information about drilling parameters. The objective of these measurements was to obtain more information about bedrock and groundwater properties. Sodium fluorescein was used as a label agent in the drilling water. The volume of the used drilling water was about 473m{sup 3} and the measured volume of the returning water was about 38m{sup 3} in borehole OL-KR38. The deviation of the borehole was measured with the deviation measuring instruments EMS and Devitool Peewee. The results of the EMS measurements indicate that borehole OL-KR38 deviates 1.02 m south and 0.58 m west from the target point at the borehole depth of 525 m. Uniaxial compressive strength, Young's Modulus and Poisson's ratio were measured from the core samples. The average uniaxial compressive strength is about 106

  13. Borehole Muon Detector Development

    Science.gov (United States)

    Bonneville, A.; Flygare, J.; Kouzes, R.; Lintereur, A.; Yamaoka, J. A. K.; Varner, G. S.

    2015-12-01

    Increasing atmospheric CO2 concentrations have spurred investigation into carbon sequestration methods. One of the possibilities being considered, storing super-critical CO2 in underground reservoirs, has drawn more attention and pilot projects are being supported worldwide. Monitoring of the post-injection fate of CO2 is of utmost importance. Generally, monitoring options are active methods, such as 4D seismic reflection or pressure measurements in monitoring wells. We propose here to develop a 4-D density tomography of subsurface CO2 reservoirs using cosmic-ray muon detectors deployed in a borehole. Muon detection is a relatively mature field of particle physics and there are many muon detector designs, though most are quite large and not designed for subsurface measurements. The primary technical challenge preventing deployment of this technology in the subsurface is the lack of miniaturized muon-tracking detectors capable of fitting in standard boreholes and that will resist the harsh underground conditions. A detector with these capabilities is being developed by a collaboration supported by the U.S. Department of Energy. Current simulations based on a Monte Carlo modeling code predict that the incoming muon angle can be resolved with an error of approximately two degrees, using either underground or sea level spectra. The robustness of the design comes primarily from the use of scintillating rods as opposed to drift tubes. The rods are arrayed in alternating layers to provide a coordinate scheme. Preliminary testing and measurements are currently being performed to test and enhance the performance of the scintillating rods, in both a laboratory and a shallow underground facility. The simulation predictions and data from the experiments will be presented.

  14. Simpevarp site investigation. Geophysical, radar and BIPS logging in borehole KSH01A, HSH01, HSH02 and HSH03

    International Nuclear Information System (INIS)

    Nilsson, Per; Gustafsson, Christer

    2003-04-01

    The objective of the surveys is to both receive information of the borehole itself, and from the rock mass around the borehole. Bore hole radar was used to investigate the nature and the structure of the rock mass located around the boreholes, and BIPS for geological surveying and fracture mapping and orientation. Geophysical logging was used to measure changes in physical properties in the borehole fluid and the bedrock surrounding the boreholes. This field report describes the equipment used as well the measurement procedures. For the BIPS survey, the result is presented as images. Radar data is presented in radargrams and identified reflectors in each borehole are listed in tables. Geophysical logging data is presented in graphs as a function of depth

  15. Simpevarp site investigation. Geophysical, radar and BIPS logging in borehole KSH01A, HSH01, HSH02 and HSH03

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Per; Gustafsson, Christer [RAYCON, Malaa (Sweden)

    2003-04-01

    The objective of the surveys is to both receive information of the borehole itself, and from the rock mass around the borehole. Bore hole radar was used to investigate the nature and the structure of the rock mass located around the boreholes, and BIPS for geological surveying and fracture mapping and orientation. Geophysical logging was used to measure changes in physical properties in the borehole fluid and the bedrock surrounding the boreholes. This field report describes the equipment used as well the measurement procedures. For the BIPS survey, the result is presented as images. Radar data is presented in radargrams and identified reflectors in each borehole are listed in tables. Geophysical logging data is presented in graphs as a function of depth.

  16. Application of EM holographic methods to borehole vertical electric source data to map a fuel oil spill

    International Nuclear Information System (INIS)

    Bartel, L.C.

    1993-01-01

    The multifrequency, multisource holographic method used in the analysis of seismic data is to extended electromagnetic (EM) data within the audio frequency range. The method is applied to the secondary magnetic fields produced by a borehole, vertical electric source (VES). The holographic method is a numerical reconstruction procedure based on the double focusing principle for both the source array and the receiver array. The approach used here is to Fourier transform the constructed image from frequency space to time space and set time equal to zero. The image is formed when the in-phase part (real part) is a maximum or the out-of-phase (imaginary part) is a minimum; i.e., the EM wave is phase coherent at its origination. In the application here the secondary magnetic fields are treated as scattered fields. In the numerical reconstruction, the seismic analog of the wave vector is used; i.e., the imaginary part of the actual wave vector is ignored. The multifrequency, multisource holographic method is applied to calculated model data and to actual field data acquired to map a diesel fuel oil spill

  17. Applications of EM holographic methods to borehole vertical electric source data to map a fuel oil spill

    International Nuclear Information System (INIS)

    Bartel, L.C.

    1993-01-01

    The multifrequency, multisource holographic method used in the analysis of seismic data is to extended electromagnetic (EM) data within the audio frequency range. The method is applied to the secondary magnetic fields produced by a borehole, vertical electric source (VES). The holographic method is a numerical reconstruction procedure based on the double focusing principle for both the source array and the receiver array. The approach used here is to Fourier transform the constructed image from frequency space to time space and set time equal to zero. The image is formed when the in-phase part (real part) is a maximum or the out-of-phase (imaginary part) is a minimum; i.e., the EM wave is phase coherent at its origination. In the application here the secondary magnetic fields are treated as scattered fields. In the numerical reconstruction, the seismic analog of the wave vector is used; i.e., the imaginary part of the actual wave vector is ignore. The multifrequency, multisource holographic method is applied to calculated model data and to actual field data acquired to map a diesel fuel oil spill

  18. Background subtraction system for pulsed neutron logging of earth boreholes

    International Nuclear Information System (INIS)

    Hertzog, R.C.

    1983-01-01

    The invention provides a method for determining the characteristics of earth formations surrounding a well borehole comprising the steps of: repetitively irradiating the earth formations surrounding the well bore with relatively short duration pulses of high energy neutrons; detecting during each pulse of high energy neutrons, gamma radiation due to the inelastic scattering of neutrons by materials comprising the earth formations surrounding the borehole and providing information representative thereof; detecting immediately following each such pulse of high energy neutrons, background gamma radiation due to thermal neutron capture and providing information representative thereof; and correcting the inelastic gamma representative information to compensate for said background representative information

  19. Measurements and Design Calculations for a Deep Coaxial Borehole Heat Exchanger in Aachen, Germany

    Directory of Open Access Journals (Sweden)

    Lydia Dijkshoorn

    2013-01-01

    Full Text Available This study aims at evaluating the feasibility of an installation for space heating and cooling the building of the university in the center of the city Aachen, Germany, with a 2500 m deep coaxial borehole heat exchanger (BHE. Direct heating the building in winter requires temperatures of 40°C. In summer, cooling the university building uses a climatic control adsorption unit, which requires a temperature of minimum 55°C. The drilled rocks of the 2500 m deep borehole have extremely low permeabilities and porosities less than 1%. Their thermal conductivity varies between 2.2 W/(m·K and 8.9 W/(m·K. The high values are related to the quartzite sandstones. The maximum temperature in the borehole is 85°C at 2500 m depth, which corresponds to a mean specific heat flow of 85 mW/m2–90 mW/m2. Results indicate that for a short period, the borehole may deliver the required temperature. But after a 20-year period of operation, temperatures are too low to drive the adsorption unit for cooling. In winter, however, the borehole heat exchanger may still supply the building with sufficient heat, with temperatures varying between 25 and 55°C and a circulation flow rate of 10 m3/h at maximum.

  20. DISTRIBUTION OF BOREHOLES IN RESIDENTIAL LAYOUTS AND ...

    African Journals Online (AJOL)

    IPPIS NAU

    2017-07-01

    Jul 1, 2017 ... Lack of adequate public water supply to the inhabitants of Awka urban area since the urban water supply scheme at Imo ... investigate the distribution pattern of boreholes in some new settlements within the urban area to see whether their ..... The urban sprawl has resulted in the conversion of hitherto rural ...

  1. Optimization of geothermal well trajectory in order to minimize borehole failure

    Science.gov (United States)

    Dahrabou, A.; Valley, B.; Ladner, F.; Guinot, F.; Meier, P.

    2017-12-01

    In projects based on Enhanced Geothermal System (EGS) principle, deep boreholes are drilled to low permeability rock masses. As part of the completion operations, the permeability of existing fractures in the rock mass is enhanced by injecting large volumes of water. These stimulation treatments aim at achieving enough water circulation for heat extraction at commercial rates which makes the stimulation operations critical to the project success. The accurate placement of the stimulation treatments requires well completion with effective zonal isolation, and wellbore stability is a prerequisite to all zonal isolation techniques, be it packer sealing or cement placement. In this project, a workflow allowing a fast decision-making process for selecting an optimal well trajectory for EGS projects is developed. In fact, the well is first drilled vertically then based on logging data which are costly (100 KCHF/day), the direction in which the strongly deviated borehole section will be drilled needs to be determined in order to optimize borehole stability and to intersect the highest number of fractures that are oriented favorably for stimulation. The workflow applies to crystalline rock and includes an uncertainty and risk assessment framework. An initial sensitivity study was performed to identify the most influential parameters on borehole stability. The main challenge in these analyses is that the strength and stress profiles are unknown independently. Calibration of a geomechanical model on the observed borehole failure has been performed using data from the Basel Geothermal well BS-1. In a first approximation, a purely elastic-static analytical solution in combination with a purely cohesive failure criterion were used as it provides the most consistent prediction across failure indicators. A systematic analysis of the uncertainty on all parameters was performed to assess the reliability of the optimal trajectory selection. To each drilling scenario, failure

  2. Site investigation SFR. Boremap mapping of percussion drilled borehole HFR106

    Energy Technology Data Exchange (ETDEWEB)

    Winell, Sofia (Geosigma AB (Sweden))

    2010-06-15

    This report presents the result from the Boremap mapping of the percussion drilled borehole HFR106, which is drilled from an islet located ca 220 m southeast of the pier above SFR. The purpose of the location and orientation of the borehole is to investigate the possible occurrence of gently dipping, water-bearing structures in the area. HFR106 has a length of 190.4 m and oriented 269.4 deg/-60.9 deg. The mapping is based on the borehole image (BIPS), investigation of drill cuttings and generalized, as well as more detailed geophysical logs. The dominating rock type, which occupies 68% of HFR106, is fine- to medium-grained, pinkish grey metagranite-granodiorite (rock code 101057) mapped as foliated with a medium to strong intensity. Pegmatite to pegmatitic granite (rock code 101061) occupies 29% of the borehole. Subordinate rock types are felsic to intermediate meta volcanic rock (rock code 103076) and fine- to medium-grained granite (rock code 111058). Rock occurrences (rock types < 1 m in length) occupy about 16% of the mapped interval, of which half is veins, dykes and unspecified occurrences of pegmatite and pegmatitic granite. Only 5.5% of HFR106 is inferred to be altered, mainly oxidation in two intervals with an increased fracture frequency. A total number of 845 fractures are registered in HFR106. Of these are 64 interpreted as open with a certain aperture, 230 open with a possible aperture, and 551 sealed. This result in the following fracture frequencies: 1.6 open fractures/m and 3.0 sealed fractures/m. Three fracture sets of open and sealed fractures with the orientations 290 deg/70 deg, 150 deg/85 deg and 200 deg/85 deg can be distinguished in HFR106. The fracture frequency is generally higher in the second half of the borehole, and particularly in the interval 176-187.4 m.

  3. Borehole radar survey at the granite quarry mine, Pocheon, Kyounggi province

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Ho; Cho, Seong Jun; Yi, Myeong Jong; Chung, Seung Hwan; Lee, Hee Il; Shin, In Chul [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1997-12-01

    Borehole radar survey in combination with the reflection and tomography methods was conducted at the Donga granite quarry mine of Pocheon area in Kyounggi province. The purpose of radar survey in quarry mine is to delineate the inhomogeneities including fractures and to estimate the freshness of rock. 20 MHz was adopted as the central frequency for the radar reflection and tomography surveys for the longer distance of penetration. The reflection survey using the direction finding antenna was also conducted to get the information on the spatial orientation of reflectors. Besides the various kinds of radar borehole survey, two surface geophysical methods, dipole-dipole resistivity survey and ground penetrating radar, were also applied to delineate the hidden parts of geological structures which was confirmed by geological mapping. The reflection data processing package, RADPRO ver. 2.2, developed continuously through in this study, was used to process the borehole reflection radar data. The new programs to process radar reflection data using directional antenna were devised and used to calculate and image the orientation of reflectors. The major dip angle of fractured zones were determined from the radar reflection images. With the aid of direction finding antenna and the newly developed algorithm to image the orientation of reflectors, it was possible to get the three dimensional attitudes of reflectors. Detailed interpretation results of the surveyed area are included in this report. Through the interpretation of borehole reflection data using dipole and direction finding antenna, we could determine the orientation of the major fractured zone, the boundary of two mining areas. Many of hidden inhomogeneities were found by borehole radar methods. By the image of direction finding antenna, it was confirmed that nearly all of them were located at the outside of the planned mining area or were situated very deeply. Therefore, the surveyed area consists of very fresh and

  4. Site investigation SFR. Boremap mapping of percussion drilled borehole HFR106

    International Nuclear Information System (INIS)

    Winell, Sofia

    2010-06-01

    This report presents the result from the Boremap mapping of the percussion drilled borehole HFR106, which is drilled from an islet located ca 220 m southeast of the pier above SFR. The purpose of the location and orientation of the borehole is to investigate the possible occurrence of gently dipping, water-bearing structures in the area. HFR106 has a length of 190.4 m and oriented 269.4 deg/-60.9 deg. The mapping is based on the borehole image (BIPS), investigation of drill cuttings and generalized, as well as more detailed geophysical logs. The dominating rock type, which occupies 68% of HFR106, is fine- to medium-grained, pinkish grey metagranite-granodiorite (rock code 101057) mapped as foliated with a medium to strong intensity. Pegmatite to pegmatitic granite (rock code 101061) occupies 29% of the borehole. Subordinate rock types are felsic to intermediate meta volcanic rock (rock code 103076) and fine- to medium-grained granite (rock code 111058). Rock occurrences (rock types < 1 m in length) occupy about 16% of the mapped interval, of which half is veins, dykes and unspecified occurrences of pegmatite and pegmatitic granite. Only 5.5% of HFR106 is inferred to be altered, mainly oxidation in two intervals with an increased fracture frequency. A total number of 845 fractures are registered in HFR106. Of these are 64 interpreted as open with a certain aperture, 230 open with a possible aperture, and 551 sealed. This result in the following fracture frequencies: 1.6 open fractures/m and 3.0 sealed fractures/m. Three fracture sets of open and sealed fractures with the orientations 290 deg/70 deg, 150 deg/85 deg and 200 deg/85 deg can be distinguished in HFR106. The fracture frequency is generally higher in the second half of the borehole, and particularly in the interval 176-187.4 m

  5. Numerical simulation of MHD flows in inhomogeneous and instationary magnetic fields; Numerische Simulation von MHD-Stroemungen in inhomogenen und instationaeren Magnetfeldern

    Energy Technology Data Exchange (ETDEWEB)

    Ehrhard, Sebastian

    2016-07-01

    In this work, I develop a numerical model for magnetohydrodynamic flows in unsteady an inhomogeneous flow. The model is implemented in the finite-volume based CFD-code OpenFOAM. Some verification and validation tests are made on several standard problems of magnetohydrodynamics. Finally I successful modelled an electromagnetic flowmeter with the code.

  6. Numerical simulation of MHD flows in inhomogeneous and instationary magnetic fields

    International Nuclear Information System (INIS)

    Ehrhard, Sebastian

    2016-01-01

    In this work, I develop a numerical model for magnetohydrodynamic flows in unsteady an inhomogeneous flow. The model is implemented in the finite-volume based CFD-code OpenFOAM. Some verification and validation tests are made on several standard problems of magnetohydrodynamics. Finally I successful modelled an electromagnetic flowmeter with the code.

  7. Nuclear borehole logging for oil exploration

    International Nuclear Information System (INIS)

    Oelgaard, P.L.

    1989-01-01

    Reactor physics can be applied to the logging of boreholes for the exploration of oil and gas and the results obtained can be interpreted more correctly by use of reactor physics models, e.g. one-dimensional multi-group diffusion theory adapted for gamma quanta. The standard nuclear logging tools are: natural gamma, gamma density, neutron porosity and the pulsed-neutron tool. The models and interpretation procedures are discussed. 1 fig

  8. Measuring in-situ stress in deep boreholes

    International Nuclear Information System (INIS)

    1985-08-01

    The hydrofracturing method of in-situ stress measurement is the only technique which has been proven to be reliable in boreholes below depths of 300 m. The method has been used in a variety of applications at depths of up to 5000m, and in a range of borehole diameters. The equipment used is composed of standard components from proven and long-established oil industry well-logging tools and is simple to operate. This is preferable to the delicate electrical devices used in the overcoring stress measurement method. Electrical components are difficult to waterproof, very small strains are monitored and the tendency of electrical circuits to drift, due to a variety of effects, makes interpretation of the results difficult. However, the interpretation of hydrofracturing test results is often not easy. Many factors can prevent ideal fracturing behaviour from occurring, in which case conventional analyses will yield incorrect answers. The complete state of stress can often not be determined and sweeping assumptions are commonly made about principal stress direction, which cannot always be subsequently verified. (author)

  9. Pulsed neutron uranium borehole logging with prompt fission neutrons

    International Nuclear Information System (INIS)

    Bivens, H.M.; Smith, G.W.; Jensen, D.H.

    1976-01-01

    The gross count natural gamma log normally used for uranium borehole logging is seriously affected by disequilibrium. Methods for the direct measurement of uranium, such as neutron logging, which are not affected by disequilibrium have been the object of considerable effort in recent years. This paper describes a logging system for uranium which uses a small accelerator to generate pulses of 14 MeV neutrons to detect and assay uranium by the measurement of prompt fission neutrons in the epithermal energy range. After an initial feasibility study, a prototype logging probe was built for field evaluation which began in January 1976. Physical and operational characteristics of the prototype probe, the neutron tube-transformer assembly, and the neutron tube are described. In logging operations, only the epithermal prompt fission neutrons detected between 250 microseconds to 2500 microseconds following the excitation neutron pulse are counted. Comparison of corrected neutron logs with the conventional gross count natural gamma logs and the chemical assays of cores from boreholes are shown. The results obtained with this neutron probe clearly demonstrate its advantages over the gross count natural gamma log, although at this time the accuracy of the neutron log assay is not satisfactory under some conditions. The necessary correction factors for various borehole and formation parameters are being determined and, when applied, should improve the assay accuracy

  10. Effect of Stresses and Strains of Roadway Surrounding Rocks on Borehole Airtightness

    Directory of Open Access Journals (Sweden)

    WU Wei

    2016-02-01

    Full Text Available At present, many high gas and outburst mines have poor gas drainage effects. An important reason influencing the gas drainage effect is a poor hole-sealing effect. Most studies on gas drainage borehole sealing focus on local and foreign borehole sealing methods, borehole sealing equipment, and borehole sealing materials. Numerical simulations of initial drilling sealing depth are insufficient because studies on this subject are few. However, when the initial sealing depth of the borehole is not chosen reasonably, air can enter the gas drainage drill hole through the circumferential crack of roadway surrounding rocks under the influence of suction pressure of the drainage system. This phenomenon ultimately affects the hole-sealing effect. To improve the drilling hole sealing of gas drainage boring, we deduced the expression formulas of the crushing zone, plastic zone, and elastic zone around the coal-seam floor stone drift and conducted a stress–strain analysis of the coal-seam floor stone drift of the 2145 working surfaces of the Sixth Coal Mine of Hebi Coal Mine Group Company by using theoretical analysis, numerical simulation, and on-scene verification. Finally, we obtain the initial drilling sealing depth, which is a main contribution of this study. The results prove the following. The performed hole-sealing process with an initial drilling sealing depth of 8 m has a gas drainage efficiency of 55%. Compared with the previous 6.8 m initial drilling sealing depth with a gas drainage efficiency of less than 30%, which was adopted by the mine, the initial sealing depth of 8 m chosen in the numerical simulation is reasonable and conforms to the actual situation on the spot. Therefore, the initial drilling sealing depth chosen in the numerical simulation will produce practical and effective guidance to study the field hole-sealing depth.

  11. Calculation of electromagnetic force in electromagnetic forming process of metal sheet

    International Nuclear Information System (INIS)

    Xu Da; Liu Xuesong; Fang Kun; Fang Hongyuan

    2010-01-01

    Electromagnetic forming (EMF) is a forming process that relies on the inductive electromagnetic force to deform metallic workpiece at high speed. Calculation of the electromagnetic force is essential to understand the EMF process. However, accurate calculation requires complex numerical solution, in which the coupling between the electromagnetic process and the deformation of workpiece needs be considered. In this paper, an appropriate formula has been developed to calculate the electromagnetic force in metal work-piece in the sheet EMF process. The effects of the geometric size of coil, the material properties, and the parameters of discharge circuit on electromagnetic force are taken into consideration. Through the formula, the electromagnetic force at different time and in different positions of the workpiece can be predicted. The calculated electromagnetic force and magnetic field are in good agreement with the numerical and experimental results. The accurate prediction of the electromagnetic force provides an insight into the physical process of the EMF and a powerful tool to design optimum EMF systems.

  12. Ground source energy in crystalline bedrock - increased energy extraction by using hydraulic fracturing in boreholes

    Energy Technology Data Exchange (ETDEWEB)

    Ramstad, Randi Kalstad

    2004-11-01

    The use of improved equipment and methodology can result in considerable reductions in the drilling costs for medium- to large sized ground source heat pump system in crystalline bedrock. The main point has been to use special techniques within hydraulic fracturing to create a larger heat exchange area in the bedrock, and thus a greater energy extraction per borehole. The energy extraction is based on circulating groundwater. Stimulation with hydraulic fracturing is a well known technique in order to improve borehole yields for drinking water-, oil-, and geothermal purposes. A procedure for injection of propping agents in selected borehole sections, and custom-made equipment for hydraulic fracturing in crystalline bedrock, a double packer, have been developed in this study. The propping agents are likely to ensure a permanent improvement of the hydraulic conductivity in a long-run perspective. In addition to a pre-test, a comprehensive test programme has been performed at each of the two pilot plants at Bryn and at the former property of Energiselskapet Asker og Baerum (EAB) in Baerum municipality outside Oslo, Norway. A total of 125 stimulations with hydraulic fracturing using water-only and hydraulic fracturing with injection of sand have been performed in 9 boreholes. Test pumping and geophysical logging (temperature, electrical conductivity, gamma radiation, optical televiewer and flow measurements) have been carried out in order to document the effect of the hydraulic fracturing. The pilot plants at Bryn and EAB, where the ground source heat pump systems are based on circulating groundwater, have demonstrated the short-period energy extraction, limitations and opportunities of the concept for hydraulic fracturing and increased energy extraction in different geological and hydrogeological areas. The bedrock at Bryn and EAB is characterized as a low-metamorphic sandstone and a nodular limestone, respectively. At Bryn, the five boreholes were organised with a

  13. System and method to estimate compressional to shear velocity (VP/VS) ratio in a region remote from a borehole

    Science.gov (United States)

    Vu, Cung; Nihei, Kurt T; Schmitt, Denis P; Skelt, Christopher; Johnson, Paul A; Guyer, Robert; TenCate, James A; Le Bas, Pierre-Yves

    2012-10-16

    In some aspects of the disclosure, a method for creating three-dimensional images of non-linear properties and the compressional to shear velocity ratio in a region remote from a borehole using a conveyed logging tool is disclosed. In some aspects, the method includes arranging a first source in the borehole and generating a steered beam of elastic energy at a first frequency; arranging a second source in the borehole and generating a steerable beam of elastic energy at a second frequency, such that the steerable beam at the first frequency and the steerable beam at the second frequency intercept at a location away from the borehole; receiving at the borehole by a sensor a third elastic wave, created by a three wave mixing process, with a frequency equal to a difference between the first and second frequencies and a direction of propagation towards the borehole; determining a location of a three wave mixing region based on the arrangement of the first and second sources and on properties of the third wave signal; and creating three-dimensional images of the non-linear properties using data recorded by repeating the generating, receiving and determining at a plurality of azimuths, inclinations and longitudinal locations within the borehole. The method is additionally used to generate three dimensional images of the ratio of compressional to shear acoustic velocity of the same volume surrounding the borehole.

  14. Core drilling of deep borehole OL-KR37 at Olkiluoto in Eurajoki 2005

    Energy Technology Data Exchange (ETDEWEB)

    Niinimaeki, R. [Suomen Malmi Oy, Espoo (Finland)

    2005-11-15

    Posiva Oy submitted an application to the Finnish Government in May 1999 for the Decision in Principle to choose Olkiluoto in the municipality of Eurajoki as the site of the final disposal facility for spent nuclear fuel. A positive decision was made at the end of 2000 by the Government. The Finnish Parliament ratified the decision in May 2001. The decision makes it possible for Posiva to focus the confirming bedrock investigations at Olkiluoto, where in the next few years an underground rock characterisation facility, ONKALO, will be constructed. As a part of the investigations Suomen Malmi Oy (Smoy) core drilled 350.00 m and 45.10 m deep boreholes with a diameter of 75.7 mm at Olkiluoto in June- August 2005. The identification numbers of the boreholes are OL-KR37 and OL-KR37B, respectively. A set of monitoring measurements and samplings from the drilling and returning water was carried out during the drilling. Both the volume and the electric conductivity of the drilling water and the returning water were recorded. The drill rig was computer controlled and during drilling the computer recorded information about drilling parameters. The objective of all these measurements was to obtain more information about bedrock and groundwater properties. Sodium fluorescein was used as a label agent in the drilling water. The total volumes of the used drilling and flushing water were 273 m{sup 3} and 21m{sup 3} and the measured volumes of the returning water were 221m{sup 3} and 16m{sup 3} in boreholes OL-KR37 and OL-KR37B, respectively. The deviation of the borehole was measured with the deviation measuring instruments EMS and Maxibor. Uniaxial compressive strength, Young's Modulus and Poisson' s ratio were measured from the core samples. The average uniaxial compressive strength is about 106 MPa, the average Young's modulus is 40 GPa and the average Poisson's ratio is 0.20. The main rock types are migmatitic mica gneiss, granite and tonalite. Filled

  15. Novel Wireless Sensor System for Dynamic Characterization of Borehole Heat Exchangers

    Directory of Open Access Journals (Sweden)

    Raimundo García-Olcina

    2011-07-01

    Full Text Available The design and field test of a novel sensor system based in autonomous wireless sensors to measure the temperature of the heat transfer fluid along a borehole heat exchanger (BHE is presented. The system, by means of two specials valves, inserts and extracts miniaturized wireless sensors inside the pipes of the borehole, which are carried by the thermal fluid. Each sensor is embedded in a small sphere of just 25 mm diameter and 8 gr weight, containing a transceiver, a microcontroller, a temperature sensor and a power supply. A wireless data processing unit transmits to the sensors the acquisition configuration before the measurements, and also downloads the temperature data measured by the sensor along its way through the BHE U-tube. This sensor system is intended to improve the conventional thermal response test (TRT and it allows the collection of information about the thermal characteristics of the geological structure of subsurface and its influence in borehole thermal behaviour, which in turn, facilitates the implementation of TRTs in a more cost-effective and reliable way.

  16. Novel wireless sensor system for dynamic characterization of borehole heat exchangers.

    Science.gov (United States)

    Martos, Julio; Montero, Álvaro; Torres, José; Soret, Jesús; Martínez, Guillermo; García-Olcina, Raimundo

    2011-01-01

    The design and field test of a novel sensor system based in autonomous wireless sensors to measure the temperature of the heat transfer fluid along a borehole heat exchanger (BHE) is presented. The system, by means of two special valves, inserts and extracts miniaturized wireless sensors inside the pipes of the borehole, which are carried by the thermal fluid. Each sensor is embedded in a small sphere of just 25 mm diameter and 8 gr weight, containing a transceiver, a microcontroller, a temperature sensor and a power supply. A wireless data processing unit transmits to the sensors the acquisition configuration before the measurements, and also downloads the temperature data measured by the sensor along its way through the BHE U-tube. This sensor system is intended to improve the conventional thermal response test (TRT) and it allows the collection of information about the thermal characteristics of the geological structure of subsurface and its influence in borehole thermal behaviour, which in turn, facilitates the implementation of TRTs in a more cost-effective and reliable way.

  17. Fiber-optic data-transmission system for borehole logging. Final report. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    Gould, G.

    1981-01-01

    The purpose of the system is to provide signal transmission media for transmission of digital data from a borehole logging probe (and associated processor-electronics) to a borehole logging truck at the surface. This fiber optic transmission system is specifically designed for use on the Bendix Field Engineering Corp. (BFEC) R and D logging truck

  18. Electromagnetically shielded building

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, T; Nakamura, M; Yabana, Y; Ishikawa, T; Nagata, K

    1992-04-21

    This invention relates to a building having an electromagnetic shield structure well-suited for application to an information network system utilizing electromagnetic waves, and more particularly to an electromagnetically shielded building for enhancing the electromagnetic shielding performance of an external wall. 6 figs.

  19. Electromagnetically shielded building

    International Nuclear Information System (INIS)

    Takahashi, T.; Nakamura, M.; Yabana, Y.; Ishikawa, T.; Nagata, K.

    1992-01-01

    This invention relates to a building having an electromagnetic shield structure well-suited for application to an information network system utilizing electromagnetic waves, and more particularly to an electromagnetically shielded building for enhancing the electromagnetic shielding performance of an external wall. 6 figs

  20. Surface and Subsurface Geodesy Combined with Active Borehole Experimentation for the Advanced Characterization of EGS Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Elsworth, Derek [Pennsylvania State Univ., University Park, PA (United States); Im, Kyungjae [Pennsylvania State Univ., University Park, PA (United States); Guglielmi, Yves [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mattioli, Glen [Univ. of Texas, Arlington, TX (United States). UNAVCO

    2016-11-14

    We explore the utility of combining active downhole experimentation with borehole and surface geodesy to determine both the characteristics and evolving state of EGS reservoirs during stimulation through production. The study is divided into two parts. We demonstrate the feasibility of determining in situ reservoir characteristics of reservoir size, strain and fracture permeability and their dependence on feedbacks of stress and temperature using surface and borehole geodetic measurements (Part I). We then define the opportunity to apply the unique hydraulic pulse protocol (HPP) borehole tool to evaluate reservoir state. This can be accomplished by monitoring and co-inverting measured reservoir characteristics (from the HPP tool) with surface geodetic measurements of deformation, tilt and strain with continuous measurements of borehole-wall strain (via optical fiber and fiber Bragg gratings) and measured flow rates (Part II).