WorldWideScience

Sample records for electrolyte composition potential

  1. Composite solid polymer electrolyte membranes

    Science.gov (United States)

    Formato, Richard M.; Kovar, Robert F.; Osenar, Paul; Landrau, Nelson; Rubin, Leslie S.

    2006-05-30

    The present invention relates to composite solid polymer electrolyte membranes (SPEMs) which include a porous polymer substrate interpenetrated with an ion-conducting material. SPEMs of the present invention are useful in electrochemical applications, including fuel cells and electrodialysis.

  2. Composite solid polymer electrolyte membranes

    Science.gov (United States)

    Formato, Richard M.; Kovar, Robert F.; Osenar, Paul; Landrau, Nelson; Rubin, Leslie S.

    2001-06-19

    The present invention relates to composite solid polymer electrolyte membranes (SPEMs) which include a porous polymer substrate interpenetrated with an ion-conducting material. SPEMs of the present invention are useful in electrochemical applications, including fuel cells and electrodialysis.

  3. Anti-perovskite solid electrolyte compositions

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yusheng; Daemen, Luc Louis

    2015-12-26

    Solid electrolyte antiperovskite compositions for batteries, capacitors, and other electrochemical devices have chemical formula Li.sub.3OA, Li.sub.(3-x)M.sub.x/2OA, Li.sub.(3-x)N.sub.x/3OA, or LiCOX.sub.zY.sub.(1-z), wherein M and N are divalent and trivalent metals respectively and wherein A is a halide or mixture of halides, and X and Y are halides.

  4. Solid polymer electrolyte composite membrane comprising laser micromachined porous support

    Science.gov (United States)

    Liu, Han [Waltham, MA; LaConti, Anthony B [Lynnfield, MA; Mittelsteadt, Cortney K [Natick, MA; McCallum, Thomas J [Ashland, MA

    2011-01-11

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a rigid, non-electrically-conducting support, the support preferably being a sheet of polyimide having a thickness of about 7.5 to 15 microns. The support has a plurality of cylindrical pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores, which preferably have a diameter of about 5 microns, are made by laser micromachining and preferably are arranged in a defined pattern, for example, with fewer pores located in areas of high membrane stress and more pores located in areas of low membrane stress. The pores are filled with a first solid polymer electrolyte, such as a perfluorosulfonic acid (PFSA) polymer. A second solid polymer electrolyte, which may be the same as or different than the first solid polymer electrolyte, may be deposited over the top and/or bottom of the first solid polymer electrolyte.

  5. Composition and particle size of electrolytic copper powders prepared in water-containing dimethyl sulfoxide electrolytes

    Science.gov (United States)

    Mamyrbekova, Aigul'; Abzhalov, B. S.; Mamyrbekova, Aizhan

    2017-07-01

    The possibility of the electroprecipitation of copper powder via the cathodic reduction of an electrolyte solution containing copper(II) nitrate trihydrate and dimethyl sulfoxide (DMSO) is shown. The effect electrolysis conditions (current density, concentration and temperature of electrolyte) have on the dimensional characteristics of copper powder is studied. The size and shape of the particles of the powders were determined by means of electron microscopy; the qualitative composition of the powders, with X-ray diffraction.

  6. EFFECT OF MULTIPARITY ON ELECTROLYTE COMPOSITION ...

    African Journals Online (AJOL)

    Daniel Owu

    Summary: Pregnancy affects the physiology of the pregnant woman particularly the endocrine, cardiovascular and the renal systems. This work was therefore set to ascertain the state of electrolytes in pregnancy and how it affects blood pressure using multiparity as a factor. One hundred and twenty (120) women were used ...

  7. Solid polymer electrolyte composite membrane comprising plasma etched porous support

    Science.gov (United States)

    Liu, Han; LaConti, Anthony B.

    2010-10-05

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a rigid, non-electrically-conducting support, the support preferably being a sheet of polyimide having a thickness of about 7.5 to 15 microns. The support has a plurality of cylindrical pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores, which preferably have a diameter of about 0.1 to 5 microns, are made by plasma etching and preferably are arranged in a defined pattern, for example, with fewer pores located in areas of high membrane stress and more pores located in areas of low membrane stress. The pores are filled with a first solid polymer electrolyte, such as a perfluorosulfonic acid (PFSA) polymer. A second solid polymer electrolyte, which may be the same as or different than the first solid polymer electrolyte, may be deposited over the top and/or bottom of the first solid polymer electrolyte.

  8. Alkoxide-based magnesium electrolyte compositions for magnesium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Sheng; Sun, Xiao-Guang; Liao, Chen; Guo, Bingkun

    2018-01-30

    Alkoxide magnesium halide compounds having the formula: RO--Mg--X (1) wherein R is a saturated or unsaturated hydrocarbon group that is unsubstituted, or alternatively, substituted with one or more heteroatom linkers and/or one or more heteroatom-containing groups comprising at least one heteroatom selected from fluorine, nitrogen, oxygen, sulfur, and silicon; and X is a halide atom. Also described are electrolyte compositions containing a compound of Formula (1) in a suitable polar aprotic or ionic solvent, as well as magnesium batteries in which such electrolytes are incorporated.

  9. Phase composition of perlite steel modified by electrolyte plasma nitriding

    Science.gov (United States)

    Popova, Natalya; Erygina, Lyudmila; Nikonenko, Elena; Skakov, Mazhin

    2017-11-01

    The paper presents the transmission electron microscopy (TEM) investigations of phase composition of the type 0.34C-1Cr-1Ni-1Mo-Fe steel after the modification by electrolyte plasma nitriding performed in a nitrogen aqueous solution for 5 min and under voltage of 600 V. Two states of the steel specimens are investigated: 1) before nitriding (original state) and 2) after nitriding the specimen surface layer. TEM investigations show that electrolyte plasma nitriding results in substantial structural modifications such as phase composition and the number of phases involved. In the original state, the specimen structure represents lamellar perlite, ferritic-carbide mix, and fragmented ferrite. After electrolyte plasma nitriding, the structure is lamellar non-fragmented perlite and fragmented ferrite. The former is present in three states, namely: ideal lamellar perlite, lamellar perlite with fractured cementite laminae, and defect lamellar perlite. The particles of alloyed cementite M3C and nitride Fe3Mo3N are observed in each state. The structure of fragmented ferrite contains the particles of nitride Fe3Mo3N, carbonitride Cr2C0.61N0.39 and alloyed cementite M3C. The investigation also determines that electrolyte plasma nitriding leads to the increase in scalar density of dislocations in α-matrix and long-range (internal) plastic stresses.

  10. Impact resistant electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Veith, Gabriel M.; Armstrong, Beth L.; Tenhaeff, Wyatt E.; Dudney, Nancy J.

    2017-03-07

    A passively impact resistant composite electrolyte composition includes an electrolyte solvent, up to 2M of an electrolyte salt, and shear thickening ceramic particles having a polydispersity index of no greater than 0.1, an average particle size of in a range of 50 nm to 1 .mu.m, and an absolute zeta potential of greater than .+-.40 mV.

  11. Nanoporous Polymer-Ceramic Composite Electrolytes for Lithium Metal Batteries

    KAUST Repository

    Tu, Zhengyuan

    2013-09-16

    A nanoporous composite material that offers the unique combination of high room-temperature ionic conductivity and high mechanical modulus is reported. When used as the separator/electrolyte in lithium batteries employing metallic lithium as anode, the material displays unprecedented cycling stability and excellent ability to prevent premature cell failure by dendrite-induced short circuits © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Composite Polymer Electrolytes: Nanoparticles Affect Structure and Properties

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2016-11-01

    Full Text Available Composite polymer electrolytes (CPEs can significantly improve the performance in electrochemical devices such as lithium-ion batteries. This review summarizes property/performance relationships in the case where nanoparticles are introduced to polymer electrolytes. It is the aim of this review to provide a knowledge network that elucidates the role of nano-additives in the CPEs. Central to the discussion is the impact on the CPE performance of properties such as crystalline/amorphous structure, dielectric behavior, and interactions within the CPE. The amorphous domains of semi-crystalline polymer facilitate the ion transport, while an enhanced mobility of polymer chains contributes to high ionic conductivity. Dielectric properties reflect the relaxation behavior of polymer chains as an important factor in ion conduction. Further, the dielectric constant (ε determines the capability of the polymer to dissolve salt. The atom/ion/nanoparticle interactions within CPEs suggest ways to enhance the CPE conductivity by generating more free lithium ions. Certain properties can be improved simultaneously by nanoparticle addition in order to optimize the overall performance of the electrolyte. The effects of nano-additives on thermal and mechanical properties of CPEs are also presented in order to evaluate the electrolyte competence for lithium-ion battery applications.

  13. Geometry and Composition of Interstitial Fluids in Frozen Electrolyte Solutions

    Science.gov (United States)

    Cheng, J.; Colussi, A. J.; Hoffmann, M. R.

    2009-12-01

    The composition and morphology of the fluid microchannels threading polycrystaline ice affects the integrity of ice core records and the strength of ice-atmosphere interactions. These fluids owe their existence to impurities and curvature depression. Electrolyte impurities induce bulk colligative effects, but also charge ice surfaces, while screening the resulting electrostatic repulsion. A non-monotonic rather than positive dependence of channel width δ on electrolyte concentration has thus been predicted. Herein we report the first time-resolved, confocal microscopy study of freezing water and electrolyte solutions doped with 10 μM of C-SNARF-1, a fluorescent pH probe. The freezing of doped water concentrates the probe into discrete δ = (12 ± 2) μm channels embedded in pristine ice, whereas ice fronts advancing (at < 5 μm/s) into 1 mM electrolytes destabilize and engulf them into < 1 μm fluid occlusions distributed over the sample. These findings are consistent with a non-monotonic dependence of δ on ion concentration. pH increases by less than 0.4 unit within the occlusions formed in freezing NaCl solutions, and by over 1 unit upon subsequent thawing, revealing that hydroxide ion slowly produced via the dissociation of water molecule in ice seeps from ice to relieve the excess charge generated by chloride inclusion. In contrast, the preferential incorporation of the ammonium ions over the acetate anions into ice leads to the acidification of partially frozen ammonium acetate solutions.

  14. Electrohydrodynamics of binary electrolytes driven by modulated surface potentials

    DEFF Research Database (Denmark)

    Mortensen, Asger; Olesen, Laurits Højgaard; Belmon, L.

    2005-01-01

    problem and obtain analytic solutions in the bulk for the pressure and velocity fields of the electrolyte and for the electric potential. We find good agreement between the numerics of the full problem and the analytics of the linear theory. Our work provides the theoretical foundations of circuit models...

  15. Potential-specific structure at the hematite-electrolyte interface

    Energy Technology Data Exchange (ETDEWEB)

    McBriarty, Martin E.; Stubbs, Joanne; Eng, Peter; Rosso, Kevin M.

    2018-02-21

    The atomic-scale structure of interfaces between metal oxides and aqueous electrolytes controls their catalytic, geochemical, and corrosion behavior. Measurements that probe these interfaces in situ provide important details of ion and solvent arrangements, but atomically precise structural models do not exist for common oxide-electrolyte interfaces far from equilibrium. Using a novel cell, we measured the structure of the hematite (a-Fe2O3) (110$\\bar{2}$)-electrolyte interface under controlled electrochemical bias using synchrotron crystal truncation rod X ray scattering. At increasingly cathodic potentials, charge-compensating protonation of surface oxygen groups increases the coverage of specifically bound water while adjacent water layers displace outwardly and became disordered. Returning to open circuit potential leaves the surface in a persistent metastable protonation state. The flux of current and ions at applied potential is thus regulated by a unique interfacial electrolyte environment, suggesting that electrical double layer models should be adapted to the dynamically changing interfacial structure far from equilibrium.

  16. Electrolyte Composition for Distinguishing Corrosion Mechanisms in Steel Alloy Screening

    Directory of Open Access Journals (Sweden)

    Ingmar Bösing

    2017-01-01

    Full Text Available The formation and breakdown of passive layers due to pitting corrosion are a major cause of failure of metal structures. The investigation of passivation and pitting corrosion requires two different electrochemical measurements and is therefore a time consuming process. To reduce time in material characterization and to study the interactions of both mechanisms, here, a combined experiment addressing both phenomena is introduced. In the presented electrolyte the different corrosion mechanisms are distinguished and investigated by cyclic voltammograms and polarization scans. The measurements show a passive area, metastable pit growth, and pitting corrosion as well as repassivation. The pitting corrosion is separated from additional dissolution processes and the standard deviation of the corrosion potential is smaller than in other electrolytes. Both passivation and pitting corrosion can be observed in one measurement without additional corrosion attacks. The deviation between different measurements of the same steel is small; this is helpful for the screening of similar materials.

  17. An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes.

    Science.gov (United States)

    Zhao, Chen-Zi; Zhang, Xue-Qiang; Cheng, Xin-Bing; Zhang, Rui; Xu, Rui; Chen, Peng-Yu; Peng, Hong-Jie; Huang, Jia-Qi; Zhang, Qiang

    2017-10-17

    Lithium metal is strongly regarded as a promising electrode material in next-generation rechargeable batteries due to its extremely high theoretical specific capacity and lowest reduction potential. However, the safety issue and short lifespan induced by uncontrolled dendrite growth have hindered the practical applications of lithium metal anodes. Hence, we propose a flexible anion-immobilized ceramic-polymer composite electrolyte to inhibit lithium dendrites and construct safe batteries. Anions in the composite electrolyte are tethered by a polymer matrix and ceramic fillers, inducing a uniform distribution of space charges and lithium ions that contributes to a dendrite-free lithium deposition. The dissociation of anions and lithium ions also helps to reduce the polymer crystallinity, rendering stable and fast transportation of lithium ions. Ceramic fillers in the electrolyte extend the electrochemically stable window to as wide as 5.5 V and provide a barrier to short circuiting for realizing safe batteries at elevated temperature. The anion-immobilized electrolyte can be applied in all-solid-state batteries and exhibits a small polarization of 15 mV. Cooperated with LiFePO 4 and LiNi 0.5 Co 0.2 Mn 0.3 O 2 cathodes, the all-solid-state lithium metal batteries render excellent specific capacities of above 150 mAh⋅g -1 and well withstand mechanical bending. These results reveal a promising opportunity for safe and flexible next-generation lithium metal batteries.

  18. Compositional effect investigation by addition PEG, PEO plasticiser of LiBOB based solid polymer electrolyte for lithium ion batteries

    Science.gov (United States)

    Sabrina, Qolby; Ratri, Christin Rina

    2017-08-01

    Development polymer electrolyte with high ionic conductivity is main of object in solid state electrolyte will be potential application as electrolyte batteries. Casting method have been used to prepared solid polymer electrolyte. Adding polyethylene(glycol) PEG and Poly(ethylene oxide) PEO as polymer matrix be made of poly(vinylidene fluoride) (PVdF) and lithium bis(oxalato) borate (LiBOB) to improve structure morphology and impedance characterization of solid electrolyte. The ratio of PEG and PEO is varied to study effect on the conductivity. Electro impedance spectroscopy (EIS) studies are carried out on the prepared samples. The impedance measurement show that the conductivity with composition PVdF- PEG- LiBOB 10% better than the other varieties to applied as solid electrolyte batteries. SEM morphology PVdF- PEG- LiBOB 10% sample showed the low crystallinity was caused by interaction between lithium salt and polymer. With their properties the solid polymer electrolyte are considered as promising candidates of applications for lithium ion batteries.

  19. High efficiency solid state dye sensitized solar cells with graphene-polyethylene oxide composite electrolytes.

    Science.gov (United States)

    Akhtar, M Shaheer; Kwon, Soonji; Stadler, Florian J; Yang, O Bong

    2013-06-21

    Novel and highly effective composite electrolytes were prepared by combining the two dimensional graphene (Gra) and polyethylene oxide (PEO) for the solid electrolyte of dye sensitized solar cells (DSSCs). Gra sheets were uniformly coated by the polymer layer through the ester carboxylate bonding between oxygenated species on Gra sheets and PEO. The Gra-PEO composite electrolyte showed the large scale generation of iodide ions in a redox couple. From rheological analysis, the decrease in viscosity after the addition of LiI and I2 in the Gra-PEO electrolyte might be explained by the dipolar interactions being severely disrupted by the ionic interactions of Li(+), I(-), and I3(-) ions. A composite electrolyte with 0.5 wt% Gra presented a higher ionic conductivity (3.32 mS cm(-1)) than those of PEO and other composite electrolytes at room temperature. A high overall conversion efficiency (∼5.23%) with a very high short circuit current (JSC) of 18.32 mA cm(-2), open circuit voltage (VOC) of 0.592 V and fill factor (FF) of 0.48 was achieved in DSSCs fabricated with the 0.5 wt% Gra-PEO composite electrolyte. This enhanced photovoltaic performance might be attributed to the large scale formation of iodide ions in the redox electrolyte and the relatively high ionic conductivity.

  20. Zinc-based electrolyte compositions, and related electrochemical processes and articles

    Energy Technology Data Exchange (ETDEWEB)

    Kniajanski, Sergei; Soloveichik, Grigorii Lev

    2018-02-20

    An aqueous electrolyte composition is described, including a zinc salt based on zinc acetate or zinc glocolate. The saturation concentration of zinc in the electrolyte composition is in the range of about 2.5M to about 3.5M. The composition also contains at least one salt of a monovalent cation. The molar ratio of zinc to the monovalent cation is about 1:2. An aqueous zinc electroplating bath, containing the aqueous electrolyte composition, is also disclosed, along with a method for the electrochemical deposition of zinc onto a substrate surface, using the electroplating bath. Related flow batteries are also described, including a catholyte, as well as an anolyte based on the aqueous electrolyte composition, with a membrane between the catholyte and the anolyte.

  1. Electrochemical energy storage in montmorillonite K10 clay based composite as supercapacitor using ionic liquid electrolyte.

    Science.gov (United States)

    Maiti, Sandipan; Pramanik, Atin; Chattopadhyay, Shreyasi; De, Goutam; Mahanty, Sourindra

    2016-02-15

    Exploring new electrode materials is the key to realize high performance energy storage devices for effective utilization of renewable energy. Natural clays with layered structure and high surface area are prospective materials for electrical double layer capacitors (EDLC). In this work, a novel hybrid composite based on acid-leached montmorillonite (K10), multi-walled carbon nanotube (MWCNT) and manganese dioxide (MnO2) was prepared and its electrochemical properties were investigated by fabricating two-electrode asymmetric supercapacitor cells against activated carbon (AC) using 1.0M tetraethylammonium tetrafluroborate (Et4NBF4) in acetonitrile (AN) as electrolyte. The asymmetric supercapacitors, capable of operating in a wide potential window of 0.0-2.7V, showed a high energy density of 171Whkg(-1) at a power density of ∼1.98kWkg(-1). Such high EDLC performance could possibly be linked to the acid-base interaction of K10 through its surface hydroxyl groups with the tetraethylammonium cation [(C2H5)4N(+) or TEA(+)] of the ionic liquid electrolyte. Even at a very high power density of 96.4kWkg(-1), the cells could still deliver an energy density of 91.1Whkg(-1) exhibiting an outstanding rate capability. The present study demonstrates for the first time, the excellent potential of clay-based composites for high power energy storage device applications. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. New Class of LAGP-Based Solid Polymer Composite Electrolyte for Efficient and Safe Solid-State Lithium Batteries.

    Science.gov (United States)

    Guo, Qingpeng; Han, Yu; Wang, Hui; Xiong, Shizhao; Li, Yujie; Liu, Shuangke; Xie, Kai

    2017-12-06

    Inorganic solid electrolytes (SEs) possess substantial safety and electrochemical stability, which make them as key components of safe rechargeable solid-state Li batteries with high energy density. However, complicated integrally molding process and poor wettability between SEs and active materials are the most challenging barriers for the application of SEs. In this regard, we explore composite SEs of the active ceramic Li1+xAlxGe2-x(PO4)3 (LAGP) as the main medium for ion conduction and the polymer P(VDF-HFP) as a matrix. Meanwhile, for the first time, we choice high chemical, thermal, and electrochemical stability of ionic liquid swelled in polymer, which significantly ameliorate the interface in the cell. In addition, a reduced crystallinity degree of the polymer in the electrolyte can also be achieved. All of these lead to good ionic conductivity of the composite electrolyte (LPELCE), at the same time, good compatibility with the lithium electrode. Especially, high mechanical strength and stable solid electrolyte interphase which suppressed the growth of lithium dendrites and high thermal safety stability can also be observed. For further illustration, the solid-state lithium battery of LiFePO4/LPELCE/Li shows relatively satisfactory performance, indicating the promising potentials of using this type of electrolyte to develop high safety and high energy density solid-state lithium batteries.

  3. Doped ceria-chloride composite electrolyte for intermediate temperature ceramic membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Q.X.; Zhang, W.; Peng, R.R.; Peng, D.K.; Meng, G.Y.; Zhu, B. [Department of Materials Science and Engineering, University of Science and Technology of China, 230026 Hefei (China)

    2002-03-01

    A kind of oxide-salt composite electrolyte, gadolinium-doped ceria (GDC)-LiCl-SrCl{sub 2}, prepared with hot-press technique, shows superior ionic conductivity, which is 2-10 times higher than that of GDC itself at the temperature range of 400-600C. More interestingly, not like the GDC electrolyte, which has some extent of electronic conduction under reducing atmosphere, the composite electrolyte is almost a pure ionic conductor, evidenced by the fuel cell's (FC) open circuit voltage (OCV) close to the theoretical one. The fuel cells based on this composite electrolyte show excellent power density output even at temperature as low as 500C (240 mW cm{sup -2} ) in spite of the relatively thick electrolyte (0.4 mm). Such high performance, in combination with its low cost in both raw materials and fabrication process, make this kind of composite electrolyte a good candidate electrolyte material for future ultra-low-cost intermediate temperature ceramic membrane fuel cells (IT-CMFCs)

  4. Dielectric and electrical behaviours of polymeric (PEO/PVP):NaIO4 composite for solid electrolytes

    Science.gov (United States)

    Marinov, Y. G.; Hadjichristov, G. B.; Petrov, A. G.; Koduru, H. K.; Marino, L.; Scaramuzza, N.

    2017-01-01

    Composite material prepared from polyethylene oxide (PEO) and polyvinylpyrrolidone (PVP) doped with Sodium (meta)periodate (NaIO4) salt was studied by complex impedance spectroscopy at room temperature. The polymers PEO and PVP were mixed in a weight ratio 70:30 %, and the concentration of the embedded NaIO4 compound was 7.5 wt.%. The effect from NaIO4 filler on the dielectric permittivity of the three-component mixed system was analyzed in the frequency range 0.1 Hz - 1 MHz. As compared with the two-component polymer host PEO/PVP, a distinctly enhanced electrical and dielectrical response and an increase of the value of dielectric constant of the polymeric (PEO/PVP):NaIO4 composite were present. This suggests the potential of this material for soft electronics and applications such as solid electrolytes.

  5. Lithium sulfide compositions for battery electrolyte and battery electrode coatings

    Science.gov (United States)

    Liang, Chengdu; Liu, Zengcai; Fu, Wunjun; Lin, Zhan; Dudney, Nancy J; Howe, Jane Y; Rondinone, Adam J

    2013-12-03

    Methods of forming lithium-containing electrolytes are provided using wet chemical synthesis. In some examples, the lithium containing electroytes are composed of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7. The solid electrolyte may be a core shell material. In one embodiment, the core shell material includes a core of lithium sulfide (Li.sub.2S), a first shell of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7, and a second shell including one or .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7 and carbon. The lithium containing electrolytes may be incorporated into wet cell batteries or solid state batteries.

  6. Carbon nanotubes-polyethylene oxide composite electrolyte for solid-state dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Shaheer Akhtar, M. [School of Semiconductor and Chemical Engineering and Solar Energy Research Center, Chonbuk National University, Dukjin dong, Dukjin Gu, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Department of Semiconductor Science and Technology, SPRC, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Park, Jung-Geun; Lee, Hyun-Cheol [School of Semiconductor and Chemical Engineering and Solar Energy Research Center, Chonbuk National University, Dukjin dong, Dukjin Gu, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Lee, S.-K. [Department of Semiconductor Science and Technology, SPRC, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Yang, O-Bong, E-mail: obyang@chonbuk.ac.k [School of Semiconductor and Chemical Engineering and Solar Energy Research Center, Chonbuk National University, Dukjin dong, Dukjin Gu, Jeonju, Jeonbuk 561-756 (Korea, Republic of)

    2010-02-28

    Novel carbon nanotubes (CNTs)-polyethylene oxide (PEO) composite electrolyte for dye-sensitized solar cell (DSSC) was prepared and characterized for the first time. The strong bonding and interaction between CNTs and PEO in CNTs-PEO composites was observed by the characterization of X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and Raman spectra. The introduction of CNTs into PEO matrix significantly improved the electrolyte properties of DSSC such as roughness, amorphicity and ionic conductivity. The solid-state DSSC fabricated with the optimum composite electrolyte (added 1% CNTs in PEO matrix, 1%CNT-PEO) achieved maximum conversion efficiency of 3.5%, an open circuit voltage (V{sub OC}) of 0.589 V, short circuit current density (J{sub SC}) of 10.64 mA/cm{sup 2} and fill factor (FF) of 56%. The highest IPCE in the DSSC fabricated with 1%CNT-PEO electrolyte is ascribed to the improved ionic conductivity of composite electrolytes and enhanced interfacial contact between electrode and electrolyte.

  7. Jet Electrochemical Machining of Particle Reinforced Aluminum Matrix Composites with Different Neutral Electrolytes

    Science.gov (United States)

    Hackert-Oschätzchen, M.; Lehnert, N.; Martin, A.; Schubert, A.

    2016-03-01

    Conventional mechanical machining of particle reinforced aluminum matrix composites (AMCs) is challenging because the hard ceramic particles in the soft aluminum matrix lead to an increased tool wear. Furthermore, the mechanical and thermal impact during conventional machining affects the microstructure of the AMCs. Electrochemical machining (ECM) is an alternative method to machine AMCs. Based on anodic dissolution, ECM has a slight influence on the work piece material structure and is independent of material strength and hardness. So the microstructure of the work piece remains unaffected. One method of ECM is electrochemical machining with continuous electrolytic free jet (Jet-ECM). Hereby the electrochemical removal is localized by the geometry of the electrolyte jet. By moving the electrolyte jet micro-structures and microgeometries can be generated quickly and flexibly in metallic parts [1]. Another advantage of Jet-ECM is the low consumption of electrolyte which allows an easy and inexpensive change of electrolyte for investigations with different types of electrolyte. In this study AMCs reinforced with different amounts of SiC-particles are machined with two pH-neutral electrolytes using Jet-ECM. The results provide information about the suitability of the selected electrolytes for the machining of AMCs. In addition, the influence of the particle content on the electrochemical removal result will be evaluated.

  8. Proton-conductive nano zeolite-PVA composite film as a new water-absorbing electrolyte for water electrolysis

    Directory of Open Access Journals (Sweden)

    M. Nishihara

    2018-03-01

    Full Text Available In this study, organic-inorganic composite electrolyte membranes are developed for a novel water-absorbing porous electrolyte water electrolysis cell. As the materials of the composite electrolyte membrane, 80 wt% of a proton-conducting nano zeolite (H-MFI as an electrolyte and 20 wt% of poly(vinyl alcohol (PVA as a cross-linkable matrix are used. The nano zeolite is prepared by a milling process. The nano zeolite-PVA composite membrane precursors are prepared by spraying onto a substrate, followed by cross-linking. The resulting nano zeolite-cross-linked PVA composite films are then evaluated for their properties such as proton conductivity as electrolyte membranes for the water-absorbing porous electrolyte water electrolysis cell. It is confirmed that conventional materials such as zeolites and PVA can be used for the water electrolysis as an electrolyte.

  9. Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires

    Science.gov (United States)

    Liu, Wei; Lee, Seok Woo; Lin, Dingchang; Shi, Feifei; Wang, Shuang; Sendek, Austin D.; Cui, Yi

    2017-04-01

    In contrast to conventional organic liquid electrolytes that have leakage, flammability and chemical stability issues, solid electrolytes are widely considered as a promising candidate for the development of next-generation safe lithium-ion batteries. In solid polymer electrolytes that contain polymers and lithium salts, inorganic nanoparticles are often used as fillers to improve electrochemical performance, structure stability, and mechanical strength. However, such composite polymer electrolytes generally have low ionic conductivity. Here we report that a composite polymer electrolyte with well-aligned inorganic Li+-conductive nanowires exhibits an ionic conductivity of 6.05 × 10-5 S cm-1 at 30 ∘C, which is one order of magnitude higher than previous polymer electrolytes with randomly aligned nanowires. The large conductivity enhancement is ascribed to a fast ion-conducting pathway without crossing junctions on the surfaces of the aligned nanowires. Moreover, the long-term structural stability of the polymer electrolyte is also improved by the use of nanowires.

  10. Corrosion behavior of Mg/graphene composite in aqueous electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Selvam, M. [Centre for Nano Science and Technology, KS Rangasamy College of Technology, Tiruchengode, 637215, Tamil Nadu (India); Saminathan, K., E-mail: ksaminath@gmail.com [Centre for Nano Science and Technology, KS Rangasamy College of Technology, Tiruchengode, 637215, Tamil Nadu (India); Siva, P. [Centre for Nano Science and Technology, KS Rangasamy College of Technology, Tiruchengode, 637215, Tamil Nadu (India); Saha, P. [Department of Ceramic Engineering, National Institute of Technology, Rourkela, India-769008 (India); Rajendran, V. [Centre for Nano Science and Technology, KS Rangasamy College of Technology, Tiruchengode, 637215, Tamil Nadu (India)

    2016-04-01

    In the present work, the electrochemical corrosion behavior of magnesium (Mg) and thin layer graphene coated Mg (Mg/graphene) are studied in different salt electrolyte such as NaCl, KCl and Na{sub 2}SO{sub 4}. The phase structure, crystallinity, and surface morphology of the samples are investigated using X-ray diffraction (XRD) analysis, scanning electron microscopy coupled with energy dispersive X-ray analysis (SEM/EDAX), and Raman spectroscopy techniques. The electrochemical corrosion behavior of the Mg and graphene coated Mg are also investigated using Electrochemical Impedance Spectroscopy (EIS) analysis. The tafel plot reveals that the corrosion of Mg drastically drops when coated with thin layer graphene (Mg/graphene) compared to Mg in KCl electrolyte. Moreover, the EIS confirms that Mg/graphene sample shows improve corrosion resistance and lower corrosion rate in KCl solution compare to all other electrolytes studied in the present system. - Highlights: • The corrosion behavior of magnesium alloy (AZ91) was investigated in three different electrolyte solution. • To study the anti-corrosion behavior of graphene coated with magnesium alloy. • To improve the corrosion resistance for magnesium alloy. • Nyquist plots confirms that MgG shows better corrosion resistance and lower corrosion rate in KCl solution.

  11. Effect of multiparity on electrolyte composition and blood pressure ...

    African Journals Online (AJOL)

    Pregnancy affects the physiology of the pregnant woman particularly the endocrine, cardiovascular and the renal systems. This work was therefore set to ascertain the state of electrolytes in pregnancy and how it affects blood pressure using multiparity as a factor. One hundred and twenty (120) women were used in this ...

  12. Sweating, thirst perception and plasma electrolyte composition in ...

    African Journals Online (AJOL)

    Thirst is a perception, the subjective experience evoked by fluid deficits. Exercise induces sweating and subsequently electrolyte loss and thirst but there is little documented on post exercise thirst perception in women of varying body mass indices. 40 apparently healthy young women (19-25years) in the follicular phase of ...

  13. Fermi Potential across Working Solid Oxide Cells with Zirconia or Ceria Electrolytes

    DEFF Research Database (Denmark)

    Jacobsen, Torben; Chatzichristodoulou, Christodoulos; Mogensen, Mogens Bjerg

    2014-01-01

    Two kinds of electrochemical relevant potentials are important in order to describe several observed phenomena in operating electrochemical cells with solid electrolytes. This paper gives illustrative examples of how the profiles of the two potential types, the Galvani potential, φ, and the elect...... stabilized zirconia (YSZ) electrolytes. The nature of the two potential types and the importance of each of them for the cell operation are explained....

  14. Electric-double-layer potential distribution in multiple-layer immiscible electrolytes

    NARCIS (Netherlands)

    Das, S.; Hardt, Steffen

    2011-01-01

    In this Brief Report, we calculate the electric-double-layer (EDL) electrostatic potential in a system of several layers of immiscible electrolytes. Verwey-Niessen theory predicts that at the interface between two immiscible electrolytes back-to-back EDLs are formed. The present analysis extends

  15. Luminescent Polymer Electrolyte Composites Using Silica Coated-Y2O3:Eu as Fillers

    Directory of Open Access Journals (Sweden)

    Mikrajuddin Abdullah

    2003-05-01

    Full Text Available Luminescent polymer electrolyte composites composed of silica coated Y2O3:Eu in polyethylene glycol (PEG matrix has been produced by initially synthesizing silica coated Y2O3:Eu and mixing with polyethylene glycol in a lithium salt solution. High luminescence intensity at round 600 nm contributed by electron transitions in Eu3+ (5D0 -> 7F0, 5D0 -> 7F1, and 5D0 -> 7F3 transitions were observed. The measured electrical conductivity was comparable to that reported for polymer electrolyte composites prepared using passive fillers (non luminescent. This approach is therefore promising for production of high intensity luminescent polymer electrolyte composites for use in development of hybrid battery/display.

  16. Electrochemical behavior of nanostructured MnO2/C (Vulcan® composite in aqueous electrolyte LiNO3

    Directory of Open Access Journals (Sweden)

    Vujković Milica

    2011-01-01

    Full Text Available The electrolytic solutions of contemporary Li-ion batteries are made exclusively with the organic solvents since anodic materials of these batteries have potentials with greater negativity than the potential of the water reduction, thus the organic electrolytes can withstand the voltages of 3-5 V that are characteristic for these batteries. Ever since it was discovered that some materials can electrochemically intercalate and deintercalate Li+ ions in aqueous solutions, numerous studies have been conducted with the aim of extending operational time of the aqueous Li-ion batteries. Manganese oxide has been studied as the electrode material in rechargeable lithium-ion batteries with organic electrolytes. In this paper its electrochemical behavior as an anode material in aqueous electrolyte solutions was examined. MnO2 as a component of nanodispersed MnO2/C (Vulcan® composite was successfully synthesized hydrothermally. Electrochemical properties of this material were investigated in aqueous saturated LiNO3 solution by both cyclic voltammetry and galvanostatic charging/discharging (LiMn2O4 as cathode material techniques. The obtained composite shows a relatively good initial discharge capacity of 96.5 mAh/g which, after 50th charging/discharging cycles, drops to the value of 57mAh/g. MnO2/C (Vulcan® composite, in combination with LiMn2O4 as a cathode material, shows better discharge capacity compared to other anodic materials used in aqueous Li-ion batteries according to certain studies that have been conducted. Its good reversibility and cyclability, and the fact that hydrothermal method is simple and effective, makes MnO2/C(Vulcan® composite a promising anodic material for aqueous Li-ion batteries.

  17. Synthesis and characterization of ion transport behavior in Cu2+-conducting nano composite polymer electrolyte membranes

    Science.gov (United States)

    Bala Sahu, Tripti; Sahu, Manju; Karan, Shrabani; Mahipal, Y. K.; Sahu, D. K.; Agrawal, R. C.

    2017-07-01

    Synthesis and characterization of ion transport behavior in Cu2+-conducting nano composite polymer electrolyte (NCPE) films: [90PEO: 10Cu(CF3SO3)2]  +  x CuO have been reported. NCPE films have been formed by hot-press casting technique using solid polymer electrolyte (SPE) film composition: [90PEO: 10Cu(CF3SO3)2] as 1st-phase host and nanoparticles of CuO in varying wt.(%) as 2nd-phase active filler. SPE: [90PEO: 10Cu(CF3SO3)2] was identified earlier as highest conducting film with room temperature conductivity (σ rt) ~ 3.0 x 10-6 S cm-1, which is three orders of magnitude higher than that of pure polymer host PEO with σ rt ~ 3.2  ×  10-9 S cm-1. Filler particle concentration dependent conductivity study revealed NCPE film: [90PEO: 10Cu(CF3SO3)2]  +  3%CuO as optimum conducting composition (OCC) exhibiting σ rt ~ 1.14  ×  10-5 S cm-1. Hence, by the fractional dispersal of 2nd-phase active filler into 1st-phase SPE host, σ-enhancement of approximately an order of magnitude has further been obtained. Ion transport behavior in NCPE OCC film has been characterized in terms of basic ionic parameters viz. ionic conductivity (σ), total ionic transference (t ion)/cationic (t +) numbers. Temperature dependent conductivity measurement has also been done to explain the mechanism of ion transport and to compute activation energy (E a). Materials characterization and hence, confirmation of complexation of salt in polymeric host and/or dispersal of filler particles in SPE host have been done by scanning electron microscopy (SEM), energy dispersive x-ray spectrometer (EDS), x-ray diffraction (XRD), Fourier transform infra-red (FTIR), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). All-solid-state battery in the cell configuration: Cu (Anode) || SPE host/NCPE OCC film || C  +  I2  +  Electrolyte) (Cathode) has been fabricated and cell performance has been studied under two load resistances viz

  18. Sweat rate and sweat electrolyte composition in international female soccer players during game specific training.

    Science.gov (United States)

    Kilding, A E; Tunstall, H; Wraith, E; Good, M; Gammon, C; Smith, C

    2009-06-01

    The purpose of this study was to determine the sweat rate and sweat electrolyte composition in female international level soccer players. Thirteen soccer players performed two 90 min soccer-specific training sessions (T1 and T2) on separate days. Hydration status was determined prior to each session and sweat loss, sweat rate and sweat composition (Na (+), K (+), Mg (++) and Ca (+)) were determined from patches worn during training. The mean sweat rate during T1 and T2 was 0.50+/-0.20 and 0.43+/-0.18 L.h (-1) respectively (P>0.05). The mean sweat electrolyte composition during T1 and T2 was: [Na (+)]: 43.9+/-15.0 and 46.2+/-7.9 mmol.L (-1); [K (+)]: 6.1+/-1.1 and 5.2+/-1.1 mmol.L (-1); [Mg (++)]: 0.1+/-0.0 and 0.1+/-0.0 mmol.L (-1); [Ca (+)]: 1.2+/-0.5 and 0.7+/-0.1 mmol.L (-1), respectively. When data from T1 and T2 were combined, there were no relationships between sweat rate and sweat concentration of any electrolyte. In conclusion, the sweat rate and sweat electrolyte losses in this cohort of international female soccer players, during soccer-specific training in cool conditions, were small. Electrolyte losses of this magnitude are unlikely to require special consideration in terms of optimising player hydration.

  19. The conductivity and stability of polymer composite solid electrolyte upon addition of graphene

    Science.gov (United States)

    Hamid, Farzana Abd.; Salleh, Fauzani Md.; Mohamed, Nor Sabirin

    2017-12-01

    The effect of graphene composition on the conductivity and stability of polymer composite solid electrolyte was studied. These polymer composite solid electrolytes were synthesized by sol gel method and prepared via the solution-casting technique. The compositions of graphene were varied between 10 wt% to 70 wt%. The changes in the functional group of polymer composite after the addition of graphene were characterized by Fourier Transform InfraRed spectroscopy. Electrochemical impedance spectroscopy was conducted at ambient temperature in the frequency range of 10 Hz to 1 MHz to study the conductivity of the polymer composite. The highest conductivity was obtained at 60 wt% graphene with the value of 2.85×10-4 Scm-1. Sample without the addition of graphene showed the lowest conductivity value of 1.77×10-7 Scm-1 and acts as an insulator. The high conductivity at 60 wt% graphene loading is related to dehydration of cellulose. This is supported by the FTIR spectrum where the absorption peaks of C-O stretching vibrations of polymer composite is weakened and the hydroxyl group is slightly shifted compared to the FTIR spectrum without the addition of graphene. Linear sweep voltammetry results demonstrated that the polymer composite solid electrolyte exhibited electrochemical stability up to 3.2 V.

  20. Solid polymer electrolyte composite membrane comprising a porous support and a solid polymer electrolyte including a dispersed reduced noble metal or noble metal oxide

    Science.gov (United States)

    Liu, Han; Mittelsteadt, Cortney K; Norman, Timothy J; Griffith, Arthur E; LaConti, Anthony B

    2015-02-24

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a thin, rigid, dimensionally-stable, non-electrically-conducting support, the support having a plurality of cylindrical, straight-through pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores are unevenly distributed, with some or no pores located along the periphery and more pores located centrally. The pores are completely filled with a solid polymer electrolyte, the solid polymer electrolyte including a dispersed reduced noble metal or noble metal oxide. The solid polymer electrolyte may also be deposited over the top and/or bottom surfaces of the support.

  1. Experimental investigation into the transmembrane electrical potential of the forward osmosis membrane process in electrolyte solutions.

    Science.gov (United States)

    Bian, Lixia; Fang, Yanyan; Wang, Xiaolin

    2014-06-19

    The transmembrane electrical potential (TMEP) in a forward osmosis membrane process with a single electrolyte solution as the draw and feed solutions was investigated by experiments. The effects of membrane orientation, the electrolyte species (KCl, NaCl, MgCl2, and CaCl2), concentration and concentration ratio of solutions at both sides of membrane on water flux and TMEP were investigated. The results showed that the TMEPs at different membrane orientation cannot completely coincide, which confirmed the effect of membrane asymmetry. The ion diffusion coefficients significantly affected the TMEP across the membrane, with different patterns for different electrolytes and concentrations.

  2. Experimental Investigation into the Transmembrane Electrical Potential of the Forward Osmosis Membrane Process in Electrolyte Solutions

    Directory of Open Access Journals (Sweden)

    Lixia Bian

    2014-06-01

    Full Text Available The transmembrane electrical potential (TMEP in a forward osmosis membrane process with a single electrolyte solution as the draw and feed solutions was investigated by experiments. The effects of membrane orientation, the electrolyte species (KCl, NaCl, MgCl2, and CaCl2, concentration and concentration ratio of solutions at both sides of membrane on water flux and TMEP were investigated. The results showed that the TMEPs at different membrane orientation cannot completely coincide, which confirmed the effect of membrane asymmetry. The ion diffusion coefficients significantly affected the TMEP across the membrane, with different patterns for different electrolytes and concentrations.

  3. Polybenzimidazole and sulfonated polyhedral oligosilsesquioxane composite membranes for high temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    Aili, David; Allward, Todd; Alfaro, Silvia Martinez

    2014-01-01

    Composite membranes based on poly(2,2′(m-phenylene)-5,5́bibenzimidazole) (PBI) and sulfonated polyhedral oligosilsesquioxane (S-POSS) with S-POSS contents of 5 and 10wt.% were prepared by solution casting as base materials for high temperature polymer electrolyte membrane fuel cells. With membranes...

  4. Polymer Electrolytes

    Science.gov (United States)

    Hallinan, Daniel T.; Balsara, Nitash P.

    2013-07-01

    This review article covers applications in which polymer electrolytes are used: lithium batteries, fuel cells, and water desalination. The ideas of electrochemical potential, salt activity, and ion transport are presented in the context of these applications. Potential is defined, and we show how a cell potential measurement can be used to ascertain salt activity. The transport parameters needed to fully specify a binary electrolyte (salt + solvent) are presented. We define five fundamentally different types of homogeneous electrolytes: type I (classical liquid electrolytes), type II (gel electrolytes), type III (dry polymer electrolytes), type IV (dry single-ion-conducting polymer electrolytes), and type V (solvated single-ion-conducting polymer electrolytes). Typical values of transport parameters are provided for all types of electrolytes. Comparison among the values provides insight into the transport mechanisms occurring in polymer electrolytes. It is desirable to decouple the mechanical properties of polymer electrolyte membranes from the ionic conductivity. One way to accomplish this is through the development of microphase-separated polymers, wherein one of the microphases conducts ions while the other enhances the mechanical rigidity of the heterogeneous polymer electrolyte. We cover all three types of conducting polymer electrolyte phases (types III, IV, and V). We present a simple framework that relates the transport parameters of heterogeneous electrolytes to homogeneous analogs. We conclude by discussing electrochemical stability of electrolytes and the effects of water contamination because of their relevance to applications such as lithium ion batteries.

  5. Random-network simulation of an ultracapacitor based on metal-solid-electrolyte composite

    Science.gov (United States)

    Abel, J.; Kornyshev, A. A.

    1996-09-01

    A random-network model of a dense (pore-free) metal-solid-electrolyte composite is developed. Real and imaginary parts of admittance are simulated as a function of frequency and composition by means of the transfer matrix algorithm on a cubic lattice. For a composite without a solid-electrolyte membrane in the middle (insulating with respect to electronic current) the results predict the capacity maximum at the percolation threshold in three dimensions and two maxima in two dimensions as a function of composition; they are compared with the predictions of the effective medium theory. For a composite with an insulating membrane in the middle, typical for ultracapacitors, the maximum of capacitance in three dimensions is at equal portion of metal and solid-electrolyte particles. In contrast to metal dielectric mixtures there are no giant enhancement effects in static capacitance as a function of composition: the upper estimates of the enhancement factor are proportional to the ratio of the size of the sample to the size of the grains.

  6. The choice of the conditions to receive the electrolytic zinc powders for metal-rich compositions

    Directory of Open Access Journals (Sweden)

    A. V. Patrushev

    2015-03-01

    Full Text Available In the work a method of obtaining highly dispersed zinc powders by electrolysis and comparison of the properties of zinc-rich compositions prepared using as a pigment zinc powders obtained by different methods is provided. Conducted measurements have shown that the electrical conductivity of zinc-rich coatings comprising electrolytic zinc powder does not inferior to the conductivity of the film with PZHD-0 powder obtained by the  evaporation-condensation method, despite the significant difference in the amount of zinc pigment. On the basis of the received data one can conclude that the use of electrolytic zinc powder as a pigment will significantly save zinc.

  7. Effect of electrolyte composition and deposition current for Fe/Fe-P electroformed bilayers for biodegradable metallic medical applications.

    Science.gov (United States)

    Mostavan, Afghany; Paternoster, Carlo; Tolouei, Ranna; Ghali, Edward; Dubé, Dominique; Mantovani, Diego

    2017-01-01

    With its proven biocompatibility and excellent mechanical properties, iron is an excellent source material for clinical cardiac and vascular applications. However, its relatively low degradation rate limits its use for the healing and remodeling of diseased blood vessels. To address these issues, a multi-purpose fabrication process to develop a bilayer alloy composed of electroformed iron (E-Fe) and iron-phosphorus (Fe-P) was employed. Bilayers of Fe/Fe-P were produced in an electrolytic bath. The effects of electrolyte chemical composition and deposition current density (idep) on layer structure and chemical composition were assessed by scanning electron microscopy, electron probe microanalysis, X-ray diffraction and X-ray photoelectron spectroscopy. The corrosion rate was determined by potentiodynamic polarization tests. The bilayers showed an increasing amount of P with increasing NaH2PO4·H2O in the electrolyte. Fe-P structure became finer for higher P amounts. Potentiodynamic polarization tests revealed that the corrosion rate was strongly influenced by deposition conditions. For a P amount of ~2 wt.%, the corrosion rate was 1.46mm/year, which confirms the potential of this material to demonstrate high mechanical properties and a suitable corrosion rate for biomedical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Composite electrolyte with proton conductivity for low-temperature solid oxide fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Raza, Rizwan, E-mail: razahussaini786@gmail.com [Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Department of Energy Technology, Royal Institute of Technology, KTH, Stockholm 10044 (Sweden); Ahmed, Akhlaq; Akram, Nadeem; Saleem, Muhammad; Niaz Akhtar, Majid; Ajmal Khan, M.; Abbas, Ghazanfar; Alvi, Farah; Yasir Rafique, M. [Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Sherazi, Tauqir A. [Department of Chemistry, COMSATS Institute of Information Technology, Abbotabad 22060 (Pakistan); Shakir, Imran [Sustainable Energy Technologies (SET) center, College of Engineering, King Saud University, PO-BOX 800, Riyadh 11421 (Saudi Arabia); Mohsin, Munazza [Department of Physics, Lahore College for Women University, Lahore, 54000 (Pakistan); Javed, Muhammad Sufyan [Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Department of Applied Physics, Chongqing University, Chongqing 400044 (China); Zhu, Bin, E-mail: binzhu@kth.se, E-mail: zhubin@hubu.edu.cn [Department of Energy Technology, Royal Institute of Technology, KTH, Stockholm 10044 (Sweden); Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Faculty of Physics and Electronic Science/Faculty of Computer and Information, Hubei University, Wuhan, Hubei 430062 (China)

    2015-11-02

    In the present work, cost-effective nanocomposite electrolyte (Ba-SDC) oxide is developed for efficient low-temperature solid oxide fuel cells (LTSOFCs). Analysis has shown that dual phase conduction of O{sup −2} (oxygen ions) and H{sup +} (protons) plays a significant role in the development of advanced LTSOFCs. Comparatively high proton ion conductivity (0.19 s/cm) for LTSOFCs was achieved at low temperature (460 °C). In this article, the ionic conduction behaviour of LTSOFCs is explained by carrying out electrochemical impedance spectroscopy measurements. Further, the phase and structure analysis are investigated by X-ray diffraction and scanning electron microscopy techniques. Finally, we achieved an ionic transport number of the composite electrolyte for LTSOFCs as high as 0.95 and energy and power density of 90% and 550 mW/cm{sup 2}, respectively, after sintering the composite electrolyte at 800 °C for 4 h, which is promising. Our current effort toward the development of an efficient, green, low-temperature solid oxide fuel cell with the incorporation of high proton conductivity composite electrolyte may open frontiers in the fields of energy and fuel cell technology.

  9. Composite materials for polymer electrolyte membrane microbial fuel cells.

    Science.gov (United States)

    Antolini, Ermete

    2015-07-15

    Recently, the feasibility of using composite metal-carbon, metal-polymer, polymer-carbon, polymer-polymer and carbon-carbon materials in microbial fuel cells (MFCs) has been investigated. These materials have been tested as MFC anode catalyst (microorganism) supports, cathode catalysts and membranes. These hybrid materials, possessing the properties of each component, or even with a synergistic effect, would present improved characteristics with respect to the bare components. In this paper we present an overview of the use of these composite materials in microbial fuel cells. The characteristics of the composite materials as well as their effect on MFC performance were compared with those of the individual component and/or the conventionally used materials. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Magnetoelectric effect of polymer electrolyte composites with Terfenol-D and lead zirconate titanate inclusions

    Science.gov (United States)

    Chau, K. H.; Wong, Y. W.; Shin, F. G.

    2009-05-01

    The magnetoelectric effects of three-phase composites in 0-0-3 connectivity were investigated. The composites consist of particulate Terfenol-D and lead zirconate titanate blended in different polymer matrices. The magnetoelectric coefficient αq, which is the charge density change in response to a change in the applied magnetic field, of the samples was measured under short circuit condition. The results show that the αq of the samples with an electrolytic polymer matrix is larger than that of the samples with an insulating matrix, while samples with an ion-doped electrolytic polymer matrix exhibit the largest αq. These results conform with the expectation that higher matrix conductivity has an effect of enhancing the magnetoelectric signals.

  11. Structural, Thermal, and Electrical Properties of PVA-Sodium Salicylate Solid Composite Polymer Electrolyte

    Directory of Open Access Journals (Sweden)

    Noorhanim Ahad

    2012-01-01

    Full Text Available Structural, thermal, and electrical properties of solid composite polymer electrolytes based on poly (vinyl alcohol complexed with sodium salicylate were studied. The polymer electrolytes at different weight percent ratios were prepared by solution casting technique. The changes in the structures of the electrolytes were characterized by XRD, which revealed the amorphous domains of the polymer which increased with increase of sodium salicylate concentration. The complexion of the polymer electrolytes were confirmed by FTIR studies. Thermal gravimetric analysis (TGA was used to study the thermal stability of the polymer below 523 K. The decomposition decreases with increasing sodium salicylate concentration. The conductivity and dielectric properties were measured using an impedance analyzer in frequency range of 20 Hz to 1 MHz and narrow temperature range of 303 to 343 K. The conductivity increased with increase of sodium salicylate concentration and temperature. The dielectric constant and dielectric loss increased with the increase in temperature and decreased with the increase in sodium salicylate concentration.

  12. Fermi Potential across Working Solid Oxide Cells with Zirconia or Ceria Electrolytes

    DEFF Research Database (Denmark)

    Jacobsen, Torben; Chatzichristodoulou, Christodoulos; Mogensen, Mogens Bjerg

    2014-01-01

    observed for ceria based electrolytes, but also in case of solid oxide electrolyser cells (SOEC) with yttria stabilized zirconia (YSZ) big electronic leak currents have been observed for very high overvoltages on one or both electrodes. Furthermore, it is important to realize that the potential gradient...

  13. Composite polymer electrolyte based on PEO/Pvdf-HFP with MWCNT for lithium battery applications

    Energy Technology Data Exchange (ETDEWEB)

    Pradeepa, P.; Edwinraj, S.; Sowmya, G.; Kalaiselvimary, J.; Selvakumar, K.; Prabhu, M. Ramesh, E-mail: email-mkram83@gmail.com [Department of Physics, Alagappa University, Karaikudi – 630 004 (India)

    2016-05-06

    In the present study PEO and PVdF-HFP blend based composite polymer electrolytes (CPEs) has been prepared by using Multi Walled Carbon Nanotube (MWCNT), in order to examine the filler addition effect on the electrochemical properties. The complexed nanocomposite polymer electrolytes were obtained in the form of dimensionally stable and free standing films by using solution casting technique. The electrochemical properties of CPEs were measured by the AC impedance method. From the ionic conductivity results, the CPE containing MWCNT 2wt% showed the highest ionic conductivity with an excellent thermal stability at room temperature. The dielectric loss curve s for the sample 6.25wt% PEO: 18.75 wt% PVdF-HFP: 2wt% MWCNT reveal the low frequency β relaxation peak pronounced at high temperature, and it may caused by side group dipoles.

  14. Producing Gas-selective Electrochemical Microsensors by Tuning Solid Electrolyte Composition

    Directory of Open Access Journals (Sweden)

    1Erika SHOEMAKER ELLIS

    2008-10-01

    Full Text Available Abstract: Monolithic gas sensors, developed at Argonne National Laboratory, employed cyclic voltammetry measurement techniques, YSZ solid electrolyte electrochemical cells and K-nearest neighbor (neural chemometrics techniques to sense multiple components in a gas mixture. These voltammetry-based devices detected most hydrocarbons, displayed no saturation effects and were functional from < 1 ppm to 100 % oxygen concentrations, but were not sensitive to carbon dioxide due to the lack of reactivity within the Pt electrodes. Investigations revealed that specific CO2 sensitivity could be introduced by adding tungsten stabilized bismuth oxide (WBO to the solid electrolyte composition while maintaining the same basic sensor geometry and electrode configuration. The YSZ/WBO sensors are functional in a range of CO2 concentrations from low ppm to 100 %.

  15. On the surface tension and Zeta potential of electrolyte solutions.

    Science.gov (United States)

    Manciu, Marian; Manciu, Felicia S; Ruckenstein, Eli

    2017-06-01

    The distribution of ions in the vicinity of the air/water interface is still a matter of strong debate, with numerous calculations and experiments providing contradictory results, even regarding the preference of simple ions (such as H + and OH - ) for interfacial or bulk water. When short range interactions between ions and the interface are assumed independent of bulk concentrations, if they are compatible with the surface tension data, they underpredict the experimental Zeta potentials by orders of magnitude. If they are compatible with Zeta potential data, they are in strong disagreement with surface tension experiments. It is suggested that these observations might be a result of the relatively low number of interfacial water molecules available to hydrate the ions and the competition between various ions for adsorption sites. Therefore, whereas at low bulk concentrations, the Structure-Breaking ions prefer the interface, at sufficiently large bulk concentrations the surface adsorptions of these ions become saturated, and their interfacial concentrations may become lower than in the bulk. Consequently, the total interactions of ions with the interface can be strongly attractive at low bulk concentrations, and less attractive (or even repulsive), at high concentrations. To model this effect, the interactions between ions and interface are taken into account via modified Langmuir adsorption expressions for OH - and Cl - , while the H + ions are considered to be attached to any interfacial water molecule, even if the latter participate in the hydration of anions. The simple model of adsorption employed here is in agreement with both experiments on Zeta potential and on surface tension, and might reveal the conditions under which a given ion exhibits propensity for either the air/water interface, or for bulk water. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. A new percolation model for composite solid electrolytes and dispersed ionic conductors

    Science.gov (United States)

    Risyad Hasyim, Muhammad; Lanagan, Michael T.

    2018-02-01

    Composite solid electrolytes (CSEs) including conductor/insulator composites known as dispersed ionic conductors (DICs) have motivated the development of novel percolation models that describe their conductivity. Despite the long history, existing models lack in one or more key areas: (1) rigorous foundation for their physical theory, (2) explanation for non-universal conductor–insulator transition, (3) classification of DICs, and (4) extension to frequency-domain. This work describes a frequency-domain effective medium approximation (EMA) of a bond percolation model for CSEs. The EMA is derived entirely from Maxwell’s equations and contains basic microstructure parameters. The model was applied successfully to several composite systems from literature. Simulations and fitting of literature data address these key areas and illustrate the interplay between space charge layer properties and bulk microstructure.

  17. The effect of salt on the morphologies of compositionally asymmetric block copolymer electrolytes

    Science.gov (United States)

    Loo, Whitney; Maslyn, Jacqueline; Oh, Hee Jeung; Balsara, Nitash

    Block copolymer electrolytes are promising for applications in lithium metal solid-state batteries. Due to their ability to microphase separate into distinct morphologies, their ion transport and mechanical properties can be decoupled. The addition of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt to poly(styrene)-block-poly(ethylene oxide) (SEO) has been shown to increase microphase separation in symmetric block copolymer systems due to an increase in the effective interaction parameter (χeff) ; however the effect of block copolymer compositional asymmetry is not well-understood. The effect of compositional asymmetry on polymer morphology was investigated through small and wide angle X-ray scattering (SAXS/WAXS). The effective Flory-Huggins interaction parameter was extracted from the scattering profiles in order to construct a phase diagram to demonstrate the effect of salt and compositional asymmetry on block copolymer morphology.

  18. Polyvinylpyrrolidone/polyvinyl butyral composite as a stable binder for castable supercapacitor electrodes in aqueous electrolytes

    Science.gov (United States)

    Aslan, M.; Weingarth, D.; Herbeck-Engel, P.; Grobelsek, I.; Presser, V.

    2015-04-01

    Mixtures of polyvinylpyrrolidone/polyvinyl butyral (PVP/PVB) are attractive binders for the preparation of carbon electrodes for aqueous electrolyte supercapacitors. The use of PVP/PVB offers several key advantages: They are soluble in ethanol and can be used to spray coat or drain cast activated carbon (AC) electrodes directly on a current collector. Infrared spectroscopy and contact angle measurements show that the PVP-to-PVB ratio determines the degree of binder hydrophilicity. Within our study, the most favorable performance was obtained for AC electrodes with a composition of AC + 1.5 mass% PVP + 6.0 mass% PVB; such electrodes were mechanically stabile and water resistant with a PVP release of less than 5% of total PVP while PVB itself is water insoluble. Compared to when using PVDF, the specific surface area (SSA) of the assembled electrodes was 10% higher, indicating a reduced pore blocking tendency. A good electrochemical performance was observed in different aqueous electrolytes for composite electrodes with the optimized binder composition: 160 F g-1 at 1 A g-1 for 1 M H2SO4 and 6 M KOH and 120 F g-1 for 1 M NaCl. The capacitance was slightly reduced by 2.5% after cycling to 1.2 V with 1.28 A g-1 in 1 M NaCl for 10,000 times.

  19. Potential of polymethacrylate pseudo crown ethers as solid state polymer electrolytes.

    Science.gov (United States)

    Moins, S; Martins, J C; Krumpmann, A; Lemaur, V; Cornil, J; Delbosc, N; Decroly, A; Dubois, Ph; Lazzaroni, R; Gohy, J-F; Coulembier, O

    2017-06-22

    The association of kinetic studies, DFT calculations and 1 H- 7 Li NMR analyses allowed the control of the cyclo-ATRP of PEG 9 DMA and the production of polymethacrylate pseudo crown-ethers of various molar masses. Their potential to act as a solid-state polymer electrolyte in Li-ion batteries has been highlighted and may come from the supramolecular organization of the cyclo-PEG forming a Li + diffusion channel.

  20. Polystyrene-Al2O3 composite solid polymer electrolyte for lithium secondary battery.

    Science.gov (United States)

    Lim, Yu-Jeong; An, Yu-Ha; Jo, Nam-Ju

    2012-01-05

    In a common salt-in-polymer electrolyte, a polymer which has polar groups in the molecular chain is necessary because the polar groups dissolve lithium salt and coordinate cations. Based on the above point of view, polystyrene [PS] that has nonpolar groups is not suitable for the polymer matrix. However, in this PS-based composite polymer-in-salt system, the transport of cations is not by segmental motion but by ion-hopping through a lithium percolation path made of high content lithium salt. Moreover, Al2O3 can dissolve salt, instead of polar groups of polymer matrix, by the Lewis acid-base interactions between the surface group of Al2O3 and salt. Notably, the maximum enhancement of ionic conductivity is found in acidic Al2O3 compared with neutral and basic Al2O3 arising from the increase of free ion fraction by dissociation of salt. It was revealed that PS-Al2O3 composite solid polymer electrolyte containing 70 wt.% salt and 10 wt.% acidic Al2O3 showed the highest ionic conductivity of 9.78 × 10-5 Scm-1 at room temperature.

  1. A direct borohydride fuel cell based on poly(vinyl alcohol)/hydroxyapatite composite polymer electrolyte membrane

    Science.gov (United States)

    Yang, Chun-Chen; Li, Yingjeng James; Chiu, Shwu-Jer; Lee, Kuo-Tong; Chien, Wen-Chen; Huang, Ching-An

    A new poly(vinyl alcohol)/hydroxyapatite (PVA/HAP) composite polymer membrane was synthesized using a solution casting method. Alkaline direct borohydride fuel cells (DBFCs), consisting of an air cathode based on MnO 2/C inks on Ni-foam, anodes based on PtRu black and Au catalysts on Ni-foam, and the PVA/HAP composite polymer membrane, were assembled and investigated for the first time. It was demonstrated that the alkaline direct borohydride fuel cell comprised of this low-cost PVA/HAP composite polymer membrane showed good electrochemical performance. As a result, the maximum power density of the alkaline DBFC based on the PtRu anode (45 mW cm -2) proved higher than that of the DBFC based on the Au anode (33 mW cm -2) in a 4 M KOH + 1 M KBH 4 solution at ambient conditions. This novel PVA/HAP composite polymer electrolyte membrane with high ionic conductivity at the order of 10 -2 S cm -1 has great potential for alkaline DBFC applications.

  2. Mixed solid device based on conducting polymer composite and polymer electrolyte

    Directory of Open Access Journals (Sweden)

    Neves Silmara

    2004-01-01

    Full Text Available Tetraethyl orthosilicate (TEOS derived sol-gel porous films have been utilized as template for the electrochemical polymerization of aniline. Polyaniline-silica composites were obtained and the redox behavior and charge/discharge capacities of a lithium polymeric battery using poly (dimethylsiloxane- co-ethylene oxide as gel polymeric electrolyte, were investigated. The composite presented a high initial capacity (140 mA h g-1 and a reversible capacity of 75 mA h g-1 after 100 charge/discharge cycles. The decrease in the specific capacity was attributed to an increase in charge transfer resistance and a decrease in the diffusion coefficient measured by electrochemical impedance spectroscopy.

  3. Synthesis and characterization of polyvinyl alcohol copolymer/phosphomolybdic acid-based crosslinked composite polymer electrolyte membranes

    Science.gov (United States)

    Anis, Arfat; Banthia, A. K.; Bandyopadhyay, S.

    Polymer electrolyte membrane fuel cells (PEMFCs) are very promising as future energy source due to their high-energy conversion efficiency and will help to solve the environmental concerns of energy production. Polymer electrolyte membrane (PEM) is recognised as the key element for an efficient PEMFC. Chemically crosslinked composite membranes consisting of a poly(vinyl alcohol-co-vinyl acetate-co-itaconic acid) (PVACO) and phosphomolybdic acid (PMA) have been prepared by solution casting and evaluated as proton conducting polymer electrolytes. The proton conductivity of the membranes is investigated as a function of PMA composition, crosslinking density and temperature. The membranes have also been characterized by FTIR spectroscopy, TGA, AFM and TEM. The proton conductivity of the composite membranes is of the order of 10 -3 S cm -1 and shows better resistance to methanol permeability than Nafion 117 under similar measurement conditions.

  4. Shutdown potential adjustment of modified carbene adducts as additives for lithium ion battery electrolytes

    Science.gov (United States)

    Janssen, Pia; Streipert, Benjamin; Krafft, Roman; Murmann, Patrick; Wagner, Ralf; Lewis-Alleyne, Lesley; Röschenthaler, Gerd-Volker; Winter, Martin; Cekic-Laskovic, Isidora

    2017-11-01

    To improve the intrinsic safety of lithium ion batteries (LIBs) by preventing cells from a thermal runaway, we studied two carbene adduct electrolyte additives. The recently synthesized compounds (1,3-dimethylimidazolidin-2-μm-trifluoroborate (NHC-BF3) and 1,3-dimethylimidazolidin-2-μm-tetrafluorotrifluoromethylphosphate (NHC-PF4CF3)) were investigated on LiNi1/3Co1/3Mn1/3O2 (NMC111) electrodes in Li metal and Li-ion cell setups as overcharge protection shutdown additives in 1M LiPF6 in EC:DEC (3:7, by wt.) electrolyte. By varying the NHC-ligand (-BF3, -PF5, -PF4CF3) in the molecule, the shutdown potential of the investigated carbene adduct electrolyte additives can be tailored for specific applications with different cut-off potentials. NHC-BF3 was identified as a promising candidate for the application with NMC111 electrodes up to 4.4 V vs. Li/Li+, whereas the carbene adduct NHC-PF4CF3 is ideal for the high-voltage application with the NMC-based electrode up to 4.6 V vs. Li/Li+. Next to electrochemical investigations in NMC111/Li and NMC111/graphite cells, Atomic Force Microscopy (AFM) and X-Ray Photoelectron Spectroscopy (XPS) were performed to verify the presence of a decomposition layer on the cathode, responsible for the shutdown effect. Furthermore, it has been proven that the investigated electrolyte additives have no influence on the cell performance under normal conditions in both, Li metal and Li-ion cell setups.

  5. A graphite-coated carbon fiber epoxy composite bipolar plate for polymer electrolyte membrane fuel cell

    Science.gov (United States)

    Yu, Ha Na; Lim, Jun Woo; Suh, Jung Do; Lee, Dai Gil

    A PEMFC (polymer electrolyte membrane fuel cell or proton exchange membrane fuel cell) stack is composed of GDLs (gas diffusion layers), MEAs (membrane electrode assemblies), and bipolar plates. One of the important functions of bipolar plates is to collect and conduct the current from cell to cell, which requires low electrical bulk and interfacial resistances. For a carbon fiber epoxy composite bipolar plate, the interfacial resistance is usually much larger than the bulk resistance due to the resin-rich layer on the composite surface. In this study, a thin graphite layer is coated on the carbon/epoxy composite bipolar plate to decrease the interfacial contact resistance between the bipolar plate and the GDL. The total electrical resistance in the through-thickness direction of the bipolar plate is measured with respect to the thickness of the graphite coating layer, and the ratio of the bulk resistance to the interfacial contact resistance is estimated using the measured data. From the experiment, it is found that the graphite coating on the carbon/epoxy composite bipolar plate has 10% and 4% of the total electrical and interfacial contact resistances of the conventional carbon/epoxy composite bipolar plate, respectively, when the graphite coating thickness is 50 μm.

  6. Correction: Ambient temperature deposition of gallium nitride/gallium oxynitride from a deep eutectic electrolyte, under potential control.

    Science.gov (United States)

    Sarkar, Sujoy; Sampath, S

    2016-05-28

    Correction for 'Ambient temperature deposition of gallium nitride/gallium oxynitride from a deep eutectic electrolyte, under potential control' by Sujoy Sarkar et al., Chem. Commun., 2016, 52, 6407-6410.

  7. Composite electrolytes of polyethylene oxides/garnets interfacially wetted by ionic liquid for room-temperature solid-state lithium battery

    Science.gov (United States)

    Huo, Hanyu; Zhao, Ning; Sun, Jiyang; Du, Fuming; Li, Yiqiu; Guo, Xiangxin

    2017-12-01

    Paramount attention has been paid on solid polymer electrolytes due to their potential in enhancement of energy density as well as improvement of safety. Herein, the composite electrolytes consisting of Li-salt-free polyethylene oxides and 200 nm-sized Li6.4La3Zr1.4Ta0.6O12 particles interfacially wetted by [BMIM]TF2N of 1.8 μL cm-2 have been prepared. Such wetted ionic liquid remains the solid state of membrane electrolytes and decreases the interface impedance between the electrodes and the electrolytes. There is no release of the liquid phase from the PEO matrix when the pressure of 5.0 × 104 Pa being applied for 24 h. The interfacially wetted membrane electrolytes show the conductivity of 2.2 × 10-4 S cm-1 at 20 °C, which is one order of magnitude greater than that of the membranes without the wetted ionic liquids. The conduction mechanism is related to a large number of lithium ions releasing from Li6.4La3Zr1.4Ta0.6O12 particles and the improved conductive paths along the ion-liquid-wetted interfaces between the polymer matrix and ceramic grains. When the membranes being used in the solid-state LiFePO4/Li and LiFe0.15Mn0.85PO4/Li cells at 25 °C, the excellent rate capability and superior cycle stability has been shown. The results provide a new prospect for solid polymer electrolytes used for room-temperature solid-state lithium batteries.

  8. All-solid-state lithium organic battery with composite polymer electrolyte and pillar[5]quinone cathode.

    Science.gov (United States)

    Zhu, Zhiqiang; Hong, Meiling; Guo, Dongsheng; Shi, Jifu; Tao, Zhanliang; Chen, Jun

    2014-11-26

    The cathode capacity of common lithium ion batteries (LIBs) using inorganic electrodes and liquid electrolytes must be further improved. Alternatively, all-solid-state lithium batteries comprising the electrode of organic compounds can offer much higher capacity. Herein, we successfully fabricated an all-solid-state lithium battery based on organic pillar[5]quinone (C35H20O10) cathode and composite polymer electrolyte (CPE). The poly(methacrylate) (PMA)/poly(ethylene glycol) (PEG)-LiClO4-3 wt % SiO2 CPE has an optimum ionic conductivity of 0.26 mS cm(-1) at room temperature. Furthermore, pillar[5]quinine cathode in all-solid-state battery rendered an average operation voltage of ∼2.6 V and a high initial capacity of 418 mAh g(-1) with a stable cyclability (94.7% capacity retention after 50 cycles at 0.2C rate) through the reversible redox reactions of enolate/quinonid carbonyl groups, showing favorable prospect for the device application with high capacity.

  9. Composite Gel Polymer Electrolyte for Improved Cyclability in Lithium-Oxygen Batteries.

    Science.gov (United States)

    Chamaani, Amir; Safa, Meer; Chawla, Neha; El-Zahab, Bilal

    2017-10-04

    Gel polymer electrolytes (GPE) and composite GPE (cGPE) using one-dimensional glass microfillers have been developed for their use in lithium-oxygen batteries. Using glass microfillers, tetraglyme solvent, UV-curable polymer, and lithium salt at various concentrations, the preparation of cGPE yielded free-standing films. These cGPEs, with 1 wt % of microfillers, demonstrated increased ionic conductivity and lithium transference number over GPEs at various concentrations of lithium salt. Improvements as high as 50% and 28% in lithium transference number were observed for 0.1 and 1.0 mol kg-1 salt concentrations, respectively. Lithium-oxygen batteries containing cGPE similarly showed superior charge/discharge cycling for 500 mAh g-1 cycle capacity with as high as 86% and 400% increase in cycles for cGPE with 1.0 and 0.1 mol kg-1 over GPE. Results using electrochemical impedance spectroscopy, Raman spectroscopy, and scanning electron microscopy revealed that the source of the improvement was the reduction of the rate of lithium carbonates formation on the surface of the cathode. This reduction in formation rate afforded by cGPE-containing batteries was possible due to the reduction of the rate of electrolyte decomposition. The increase in solvated to paired Li+ ratio at the cathode, afforded by increased lithium transference number, helped reduce the probability of superoxide radicals reacting with the tetraglyme solvent. This stabilization during cycling helped prolong the cycling life of the batteries.

  10. Electrolyte for batteries with regenerative solid electrolyte interface

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Jie; Lu, Dongping; Shao, Yuyan; Bennett, Wendy D.; Graff, Gordon L.; Liu, Jun; Zhang, Ji-Guang

    2017-08-01

    An energy storage device comprising: an anode; and a solute-containing electrolyte composition wherein the solute concentration in the electrolyte composition is sufficiently high to form a regenerative solid electrolyte interface layer on a surface of the anode only during charging of the energy storage device, wherein the regenerative layer comprises at least one solute or solvated solute from the electrolyte composition.

  11. Robust High-performance Dye-sensitized Solar Cells Based on Ionic Liquid-sulfolane Composite Electrolytes

    Science.gov (United States)

    Lau, Genevieve P. S.; Décoppet, Jean-David; Moehl, Thomas; Zakeeruddin, Shaik M.; Grätzel, Michael; Dyson, Paul J.

    2015-01-01

    Novel ionic liquid-sulfolane composite electrolytes based on the 1,2,3-triazolium family of ionic liquids were developed for dye-sensitized solar cells. The best performing device exhibited a short-circuit current density of 13.4 mA cm−2, an open-circuit voltage of 713 mV and a fill factor of 0.65, corresponding to an overall power conversion efficiency (PCE) of 6.3%. In addition, these devices are highly stable, retaining more than 95% of the initial device PCE after 1000 hours of light- and heat-stress. These composite electrolytes show great promise for industrial application as they allow for a 14.5% improvement in PCE, compared to the solvent-free eutectic ionic liquid electrolyte system, without compromising device stability. PMID:26670595

  12. Fe-doped 8YSZ at different composition for solid electrolyte in solid oxide fuel cell

    Directory of Open Access Journals (Sweden)

    Johar B.

    2016-01-01

    Full Text Available Pure 8 mol% yttria stabilized zirconia (YSZ and Fe-doped (1 mol%, 2 mol% and 3 mol% YSZ electrolyte were prepared and sintered at 1550°C. Transition metal oxide is added into YSZ as sintering aided has a function to reduce the sintering temperature. The microstructure, crystal structure and ionic conductivity of pure YSZ and Fe-doped YSZ at different composition were investigated. The amount of cubic phase decreased as the amount of Fe increased. Fe-doped 8YSZ had higher conductivity than pure 8YSZ. The ionic conductivity of 3FeYSZ is 9.35×10−8 S/cm higher than 1FeYSZ which is 4.72×10−9 S/cm when operated at 300°C.

  13. THE INVESTIGATION OF INFLUENCE OF LASER RADIATION ON THE STRUCTURE AND MECHANICAL PROPERTIES OF COMPOSITE ELECTROLYTIC NICKEL COATING

    Directory of Open Access Journals (Sweden)

    V. A. Zabludovsky

    2013-09-01

    Full Text Available Purpose. Investigation of laser radiation effect on the structure and mechanical properties of electrodeposited nickel composite coatings containing ultrafine diamonds. Methodology. Electrodeposition of nickel films was carried out with the addition of a standard solution of ultrafine diamonds (UFD on laser-electrolytic installation, built on the basis of the gas-discharge CO2 laser. Mechanical testing the durability of coatings were performed on a machine with reciprocating samples in conditions of dry friction against steel. The spectral microanalysis of the elemental composition of the film - substrate was performed on REMMA-102-02. Findings. Research of nickel coatings and modified ultrafine diamond electrodeposited under external stimulation laser demonstrated the dependence of the structure and mechanical properties of composite electrolytic coating (CEC, and the qualitative and quantitative distribution of nanodiamond coprecipitated from an electrodeposition method. Originality. The effect of laser light on the process of co-precipitation of the UFD, which increases the micro-hardness and wear resistance of electrolytic nickel coatings was determined. Practical value. The test method of laser-stimulated composite electrolytic nickel electrodeposition coating is an effective method of local increase in wear resistance of metal coatings, which provides durability save performance (functional properties of the surface.

  14. High temperature operation of a composite membrane-based solid polymer electrolyte water electrolyser

    Energy Technology Data Exchange (ETDEWEB)

    Antonucci, V.; Di Blasi, A.; Baglio, V.; Arico, A.S. [CNR-ITAE, Via Salita S. Lucia sopra Contesse 5, 98126 Messina (Italy); Ornelas, R.; Matteucci, F. [Tozzi Apparecchiature Elettriche SpA, Via Zuccherificio, 10-48010 Mezzano (RA) (Italy); Ledesma-Garcia, J.; Arriaga, L.G. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, Parque Tecnologico Queretaro, Sanfandila, Pedro Escobedo, C.P. 76703 Queretaro (Mexico)

    2008-10-15

    The high temperature behaviour of a solid polymer electrolyte (SPE) water electrolyser based on a composite Nafion-SiO{sub 2} membrane was investigated and compared to that of a commercial Nafion membrane. The SPE water electrolyser performance was studied from 80 to 120{sup o}C with an operating pressure varying between 1 and 3 bar abs. IrO{sub 2} and Pt were used as oxygen and hydrogen evolution catalysts, respectively. The assemblies were manufactured by using a catalyst-coated membrane (CCM) technique. The performance was significantly better for the composite Nafion-SiO{sub 2} membrane than commercial Nafion 115. Furthermore, the composite membrane allowed suitable water electrolysis at high temperature under atmospheric pressure. The current densities were 2 and 1.2 A cm{sup -2} at a terminal voltage of 1.9 V for Nafion-SiO{sub 2} and Nafion 115, respectively, at 100{sup o}C and atmospheric pressure. By increasing the temperature up to 120{sup o}C, the performance of Nafion 115 drastically decreased; whereas, the cell based on Nafion-SiO{sub 2} membrane showed a further increase of performance, especially when the pressure was increased to 3 bar abs (2.1 A cm{sup -2} at 1.9 V). (author)

  15. Improved Composite Gel Electrolyte by Layered Vermiculite for Quasi-Solid-State Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Hongcai He

    2014-01-01

    Full Text Available A composite quasisolid electrolyte is prepared by adding a layered vermiculite (VMT into the iodide/triiodide electrolyte including 4-tert-butylpyridine, which obviously improves the photovoltaic properties of quasisolid dye-sensitized solar cells (DSSCs. When adding 6 wt% VMT, the maximum photovoltaic conversion efficiency of 3.89% is obtained, which reaches more than two times greater than that without VMT. This enhancement effect is primarily explained by studying the Nyquist spectra, dark currents, and photovoltaic conversion efficiency.

  16. Modelling of the thermodynamic and solvation properties of electrolyte solutions with the statistical associating fluid theory for potentials of variable range

    Science.gov (United States)

    Schreckenberg, Jens M. A.; Dufal, Simon; Haslam, Andrew J.; Adjiman, Claire S.; Jackson, George; Galindo, Amparo

    2014-09-01

    An improved formulation of the extension of the statistical associating fluid theory for potentials of variable range to electrolytes (SAFT-VRE) is presented, incorporating a representation for the dielectric constant of the solution that takes into account the temperature, density and composition of the solvent. The proposed approach provides an excellent correlation of the dielectric-constant data available for a number of solvents including water, representative alcohols and carbon dioxide, and it is shown that the methodology can be used to treat mixed-solvent electrolyte solutions. Models for strong electrolytes of the metal-halide family are considered here. The salts are treated as fully dissociated and ion-specific interaction parameters are presented. Vapour pressure, density, and mean ionic activity coefficient data are used to determine the ion-ion and solvent-ion parameters, and mixed-salt electrolyte solutions (brines) are then treated predictively. We find that the resulting intermolecular potential models follow physical trends in terms of energies and ion sizes with a close relationship observed with well-established ionic diameters. A good description is obtained for the densities, mean ionic activity coefficients, and vapour pressures of the electrolyte solutions studied. The theory is also seen to provide excellent predictions of the osmotic coefficient and of the depression of the freezing temperature, and provides a qualitative estimate of the solvation free energy. The vapour pressure of aqueous brines is predicted accurately, as is the density of these solutions, although not at the highest pressures considered. Calculations for the vapour-liquid and liquid-liquid equilibria of salts in water+methanol and water+n-butan-1-ol are presented. In addition, it is shown that the salting-out of carbon dioxide in sodium chloride solutions is captured well using a predictive model.

  17. Composite plasma electrolytic oxidation to improve the thermal radiation performance and corrosion resistance on an Al substrate

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Donghyun [Department of Materials Science and Engineering, Pusan National University, Busan 46241 (Korea, Republic of); Sung, Dahye [Department of Materials Science and Engineering, Pusan National University, Busan 46241 (Korea, Republic of); Korea Institute of Industrial Technology (KITECH), Busan 46742 (Korea, Republic of); Lee, Junghoon [Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030 (United States); Kim, Yonghwan [Korea Institute of Industrial Technology (KITECH), Busan 46742 (Korea, Republic of); Chung, Wonsub, E-mail: wschung1@pusan.ac.kr [Department of Materials Science and Engineering, Pusan National University, Busan 46241 (Korea, Republic of)

    2015-12-01

    Highlights: • Composite plasma electrolytic oxidation was performed using dispersed CuO particles in convectional PEO electrolyte. • Thermal radiation performance and corrosion resistance were examined by FT-IR spectroscopy and electrochemical methods, respectively. • Deposited copper oxide on the surface of the Al substrate was enhanced the corrosion resistance and the emissivity compared with the conventional PEO. - Abstract: A composite plasma electrolytic oxidation (PEO) was performed for enhancing the thermal radiation performance and corrosion resistance on an Al alloy by dispersing cupric oxide (CuO) particles in a conventional PEO electrolyte. Cu-based oxides (CuO and Cu{sub 2}O) formed by composite PEO increased the emissivity of the substrate to 0.892, and made the surface being dark color, similar to a black body, i.e., an ideal radiator. In addition, the corrosion resistance was analyzed using potentio-dynamic polarization and electrochemical impedance spectroscopy tests in 3.5 wt.% NaCl aqueous solution. An optimum condition of 10 ampere per square decimeter (ASD) current density and 30 min processing time produced appropriate surface morphologies and coating thicknesses, as well as dense Cu- and Al-based oxides that constituted the coating layers.

  18. Semi-Interpenetrating Polymer Network Composite Gel Electrolytes Employing Vinyl-Functionalized Silica for Lithium-Oxygen Batteries with Enhanced Cycling Stability.

    Science.gov (United States)

    Woo, Hyun-Sik; Moon, Yong-Bok; Seo, Samuel; Lee, Ho-Taek; Kim, Dong-Won

    2018-01-10

    A major challenge of lithium-oxygen batteries is to develop a stable electrolyte not only to suppress solvent evaporation and lithium dendrite growth, but also to resist the attack by superoxide anion radical formed at the positive electrode. The present study demonstrates the enhancement of cycling stability by addressing the above challenges through the use of three-dimensional semi-interpenetrating polymer network (semi-IPN) composite gel polymer electrolyte when fabricating the lithium-oxygen cell. The semi-IPN composite gel electrolyte synthesized from poly(methyl methacrylate), divinylbenzene, and vinyl-functionalized silica effectively encapsulated electrolyte solution and exhibited stable interfacial characteristics toward lithium electrodes. Matrix polymers in the semi-IPN composite gel electrolyte also retained high stability without any decomposition by superoxide anion radicals during cycling. The lithium-oxygen cell employing semi-IPN composite gel polymer electrolyte was shown to cycle with good capacity retention at 0.25 mAh cm-2. The semi-IPN composite gel electrolyte is one of the promising electrolytes for the stable lithium-oxygen battery with high energy density.

  19. Electrolyte Composition of Mink (Mustela vison Erythrocytes and Active Cation Transporters of the Cell Membrane

    Directory of Open Access Journals (Sweden)

    Clausen TN

    2001-06-01

    Full Text Available Red blood cells from mink (Mustela vison were characterized with respect to their electrolyte content and their cell membranes with respect to enzymatic activity for cation transport. The intra- and extracellular concentrations of Na+, K+, Cl-, Ca2+ and Mg2+ were determined in erythrocytes and plasma, respectively. Plasma and red cell water content was determined, and molal electrolyte concentrations were calculated. Red cells from male adult mink appeared to be of the low-K+, high-Na+ type as seen in other carnivorous species. The intracellular K+ concentration is slightly higher than the extracellular one and the plasma-to-cell chemical gradient for Na+ is weak, though even the molal concentrations may differ significantly. Consistent with the high intracellular Na+ and low K+ concentrations, a very low or no ouabain-sensitive Na+,K+-ATPase activity and no K+-activated pNPPase activity were found in the plasma membrane fraction from red cells. The Cl- and Mg2+ concentrations expressed per liter cell water were significantly higher in red cells than in plasma whereas the opposite was the case with Ca2+. The distribution of Cl- thus does not seem compatible with an inside-negative membrane potential in mink erythrocytes. In spite of a steep calcium gradient across the red cell membrane, neither a calmodulin-activated Ca2+-ATPase activity nor an ATP-activated Ca2+-pNPPase activity were detectable in the plasma membrane fraction. The origin of a supposed primary Ca2+ gradient for sustaining of osmotic balance thus seems uncertain.

  20. UV-Vis spectrophotometry of quinone flow battery electrolyte for in situ monitoring and improved electrochemical modeling of potential and quinhydrone formation.

    Science.gov (United States)

    Tong, Liuchuan; Chen, Qing; Wong, Andrew A; Gómez-Bombarelli, Rafael; Aspuru-Guzik, Alán; Gordon, Roy G; Aziz, Michael J

    2017-12-06

    Quinone-based aqueous flow batteries provide a potential opportunity for large-scale, low-cost energy storage due to their composition from earth abundant elements, high aqueous solubility, reversible redox kinetics and their chemical tunability such as reduction potential. In an operating flow battery utilizing 9,10-anthraquinone-2,7-disulfonic acid, the aggregation of an oxidized quinone and a reduced hydroquinone to form a quinhydrone dimer causes significant variations from ideal solution behavior and of optical absorption from the Beer-Lambert law. We utilize in situ UV-Vis spectrophotometry to establish (a), quinone, hydroquinone and quinhydrone molar attenuation profiles and (b), an equilibrium constant for formation of the quinhydrone dimer (KQHQ) ∼ 80 M-1. We use the molar optical attenuation profiles to identify the total molecular concentration and state of charge at arbitrary mixtures of quinone and hydroquinone. We report density functional theory calculations to support the quinhydrone UV-Vis measurements and to provide insight into the dimerization conformations. We instrument a quinone-bromine flow battery with a Pd-H reference electrode in order to demonstrate how complexation in both the negative (quinone) and positive (bromine) electrolytes directly impacts measured half-cell and full-cell voltages. This work shows how accounting for electrolyte complexation improves the accuracy of electrochemical modeling of flow battery electrolytes.

  1. Electrolytic Production of Ti5Si3/TiC Composites by Solid Oxide Membrane Technology

    Science.gov (United States)

    Zheng, Kai; Zou, Xingli; Xie, Xueliang; Lu, Changyuan; Chen, Chaoyi; Xu, Qian; Lu, Xionggang

    2018-02-01

    This paper investigated the electrolytic production of Ti5Si3/TiC composites from TiO2/SiO2/C in molten CaCl2. The solid-oxide oxygen-ion-conducting membrane tube filled with carbon-saturated liquid tin was served as the anode, and the pressed spherical TiO2/SiO2/C pellet was used as the cathode. The electrochemical reduction process was carried out at 1273 K and 3.8 V. The characteristics of the obtained cathode products and the reaction mechanism of the electroreduction process were studied by a series of time-dependent electroreduction experiments. It was found that the electroreduction process generally proceeds through the following steps: TiO2/SiO2/C → Ti2O3, CaTiO3, Ca2SiO4, SiC → Ti5Si3, TiC. The morphology observation and the elemental distribution analysis indicate that the reaction routes for Ti5Si3 and TiC products are independent during the electroreduction process.

  2. [Morphological characteristics and intracellular electrolytic composition of blood cells at surgeries on lower extremities arteries].

    Science.gov (United States)

    Katel'nitskiĭ, I I; Dudarev, I V; Matsionis, A E; Povilaĭtite, P E; Kvitko, I A

    2007-01-01

    Morphological characteristics and trace and macroelement composition of blood cells flowing out of ischemic lower limb before, during and after reconstructive surgeries under different type of anesthesia. A total of 102 male patients aged 45 to 60 years with atherosclerotic occlusions of the arteries of the femoral-popliteal zone were included into the study. According to anesthesia type all the patients were divided into 3 groups: group 1 consisted of 34 patients operated under spinal anesthesia, 37 patients of group 2 underwent surgery under combined anesthesia (spinal anesthesia with intravenous sedation), 31 patients of group 3 - under total intravenous anesthesia with myoplegia and artificial pulmonary ventilation. All the blood examinations were carried out with scanning electron microscope XL-30 ("Philips") and X-ray spectrum microanalyzer Edax ( "Edax International", USA). It is demonstrated that in spinal and combined anesthesia morphological characteristics of blood cells normalized due to optimization of intraerythrocytic and intrathrombocytic electrolytic homeostasis unlike total intravenous anesthesia, when intracellular imbalance of trace and macroelements progresses and ultrastructural cellular alterations persist.

  3. Polybenzimidazole/Mxene composite membranes for intermediate temperature polymer electrolyte membrane fuel cells

    Science.gov (United States)

    Fei, Mingming; Lin, Ruizhi; Deng, Yuming; Xian, Hongxi; Bian, Renji; Zhang, Xiaole; Cheng, Jigui; Xu, Chenxi; Cai, Dongyu

    2018-01-01

    This report demonstrated the first study on the use of a new 2D nanomaterial (Mxene) for enhancing membrane performance of intermediate temperature (>100 °C) polymer electrolyte membrane fuel cells (ITPEMFCs). In this study, a typical Ti3C2T x -MXene was synthesized and incorporated into polybenzimidazole (PBI)-based membranes by using a solution blending method. The composite membrane with 3 wt% Ti3C2T x -MXene showed the proton conductivity more than 2 times higher than that of pristine PBI membrane at the temperature range of 100 °C–170 °C, and led to substantial increase in maximum power density of fuel cells by ∼30% tested at 150 °C. The addition of Ti3C2T x -MXene also improved the mechanical properties and thermal stability of PBI membranes. At 3 wt% Ti3C2T x -MXene, the elongation at break of phosphoric acid doped PBI remained unaffected at 150 °C, and the tensile strength and Young’s modulus was increased by ∼150% and ∼160%, respectively. This study pointed out promising application of MXene in ITPEMFCs.

  4. High-energy-density, all-solid-state microsupercapacitors with three-dimensional interdigital electrodes of carbon/polymer electrolyte composite

    Science.gov (United States)

    Pu, Juan; Wang, Xiaohong; Zhang, Tianyi; Li, Siwei; Liu, Jinghe; Komvopoulos, Kyriakos

    2016-01-01

    Novel all-solid-state microsupercapacitors (MSCs) with three-dimensional (3D) electrodes consisting of active materials (i.e., graphene or activated carbon (AC) particles) and polymer electrolyte (PE) designed for high-energy-density storage applications were fabricated and tested in this work. The incorporation of PE in the electrode material enhances the accessibility of electrolyte ions to the surface of active materials and decreases the ion diffusion path during electrochemical charge/discharge. For a scan rate of 5 mV s-1, the MSCs with graphene/PE and AC/PE composite electrodes demonstrate a very high areal capacitance of 95 and 134 mF cm-2, respectively, comparable to that of 3D MSCs with liquid electrolyte. In addition, the graphene/PE MSCs show a ˜70% increase in specific capacitance after 10 000 charge/discharge cycles, attributed to an electro-activation process resulting from ion intercalation between the graphene nanosheets. The AC/PE MSCs also demonstrate excellent stability. The results of this study illustrate the potential of the present 3D MSCs for various high-density solid-state energy storage applications.

  5. Materials space of solid-state electrolytes: unraveling chemical composition-structure-ionic conductivity relationships in garnet-type metal oxides using cheminformatics virtual screening approaches.

    Science.gov (United States)

    Kireeva, Natalia; Pervov, Vladislav S

    2017-08-09

    The organic electrolytes of most current commercial rechargeable Li-ion batteries (LiBs) are flammable, toxic, and have limited electrochemical energy windows. All-solid-state battery technology promises improved safety, cycling performance, electrochemical stability, and possibility of device miniaturization and enables a number of breakthrough technologies towards the development of new high power and energy density microbatteries for electronics with low processing cost, solid oxide fuel cells, electrochromic devices, etc. Currently, rational materials design is attracting significant attention, which has resulted in a strong demand for methodologies that can accelerate the design of materials with tailored properties; cheminformatics can be considered as an efficient tool in this respect. This study was focused on several aspects: (i) identification of the parameters responsible for high Li-ion conductivity in garnet structured oxides; (ii) development of quantitative models to elucidate composition-structure-Li ionic conductivity relationships, taking into account the experimental details of sample preparation; (iii) circumscription of the materials space of solid garnet-type electrolytes, which is attractive for virtual screening. Several candidate compounds have been recommended for synthesis as potential solid state electrolyte materials.

  6. Electrochemical behaviour of aluminium in non-aqueous electrolytes over a wide potential range

    Science.gov (United States)

    Suresh, P.; Shukla, A. K.; Shivashankar, S. A.; Munichandraiah, N.

    The electrochemical behaviour of aluminium in LiClO 4-propylene carbonate electrolyte is studied by cyclic voltammetry, steady-state polarisation, and ac impedance spectroscopy in the potential range -0.4-4.2 V versus Li/Li +. The open-circuit potential of Al is 1.57 V versus Li/Li +, which is about 0.2 V above the thermodynamic value of Al due to the presence of a surface passive film. In the positive potential region, Al is fairly stable between 1.57 and 3.5 V versus Li/Li + owing to the presence of the surface film. Nevertheless, the oxidation of Al occurs at potentials >3.5 V versus Li/Li +. The ac impedance data are analysed by using a non-linear least-squares fitting procedure, and the surface film resistance is found to be between 498 and 1032 kΩ cm -2. In the potential range 3.6-4.2 V versus Li/Li +, there is a breakdown of the passive film as demonstrated by a decrease in its resistance to 1.2-4.8 kΩ cm -2. This breakdown accompanies anodic oxidation of Al. Thus, there is a possibility of anodic degradation of the Al substrate that is usually used as the current-collector of positive electrodes of Li-ion batteries, if Al is exposed to the electrolyte. In the negative potential region, the deposition of uniform and non-dendritic Li occurs, which can be anodically stripped in a quasi-reversible process with high coulombic efficiency. Diffusion of Li into Al results in the formation of a surface layer of Li-Al alloy, as suggested by X-ray diffraction patterns. The quasi-reversible cathodic deposition and anodic stripping of Li with an exchange current density of 0.16 mA cm -2 indicates that Al is useful as a negative electrode in Li-batteries.

  7. A convenient electrolytic assembly of graphene-MOF composite thin film and its photoanodic application

    Science.gov (United States)

    Kaur, Rajnish; Kim, Ki-Hyun; Deep, Akash

    2017-02-01

    In the recent past, the metal organic frameworks (MOFs) have been recognized as attractive photosensitizer materials due to their hierarchically ordered structures and attractive light-harvesting characteristics. In this work, we report the application of a graphene-MOF composite as a potential photosensitizer material in dye-sensitized solar cells (DSSCs). A thin film of graphene-MOF hybrid composite was electrochemically assembled on a TiO2/FTO substrate and the different characteristics of the prepared film were investigated. This novel photoanode material hybrid structure demonstrated the potency of an alternative solid-state DSSC configuration. The 2.2% observed power conversion efficiency of the above graphene-MOF composite is a good basis for the further development of graphene-MOF composite-based photoanodes.

  8. Group 15 quaternary alkyl bistriflimides: Ionic liquids with potential application in electropositive metal deposition and as supporting electrolytes

    OpenAIRE

    Bhatt, Anand I.; May, Iain; Volkovich, Vladimir A.; Hetherington, Melissa E.; Lewin, Bob G.; Thied, Robert C.; Ertok, Nigar

    2002-01-01

    The eletrochemical properties of Group 15 quaternary alkyl bistriflimides salts were reported. The ionic liquids with potential application in electropositive metal deposition when used as supporting electrolytes in MeCN was also discussed. It was found that the three Group 15 based ionic liquids that were prepared have extremely large electrochemical windows.

  9. Nano-sponge ionic liquid-polymer composite electrolytes for solid-state lithium power sources

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Kang-Shyang; Andreoli, Enrico; Curran, Seamus A. [Department of Physics, University of Houston, Houston, TX 77004 (United States); Sutto, Thomas E. [Naval Research Labs-DC, Materials Science and Technology Division, Washington, DC 20375 (United States); Ajayan, Pulickel [Department of Materials Engineering, Rice University, Houston, TX 77005 (United States); McGrady, Karen A. [Marine Corps System Command, 50 Tech Parkway, Garrisonville, VA 22463 (United States)

    2010-02-01

    Solid polymer gel electrolytes composed of 75 wt.% of the ionic liquid, 1-n-butyl-2,3-dimethylimidazolium bis-trifluoromethanesulfonylimide with 1.0 M lithium bis-trifluoromethanesulfonylimide and 25 wt.% poly(vinylidenedifluoro-hexafluoropropene) are characterized as the electrolyte/separator in solid-state lithium batteries. The ionic conductivity of these gels ranges from 1.5 to 2.0 mS cm{sup -1}, which is several orders of magnitude more conductive than any of the more commonly used solid polymers, and comparable to the best solid gel electrolytes currently used in industry. TGA indicates that these polymer gel electrolytes are thermally stable to over 280 C, and do not begin to thermally decompose until over 300 C; exhibiting a significant advancement in the safety of lithium batteries. Atomic force microscopy images of these solid thin films indicate that these polymer gel electrolytes have the structure of nano-sponges, with a sub-micron pore size. For these thin film batteries, 150 charge-discharge cycles are run for Li{sub x}CoO{sub 2} where x is cycled between 0.95 down to 0.55. Minimal internal resistance effects are observed over the charging cycles, indicating the high ionic conductivity of the ionic liquid solid polymer gel electrolyte. The overall cell efficiency is approximately 98%, and no significant loss in battery efficiency is observed over the 150 cycles. (author)

  10. [The mineral composition of the carbohydrate-electrolyte drinks, vitamin-mineral complexes and dietary supplements for athletes].

    Science.gov (United States)

    Nikitiuk, D B; Novokshanova, A L; Abrosimova, S V; Gapparova, K M; Pozdniakov, A L

    2012-01-01

    In the article analyzes the macro- and trace element composition of sports drinks, vitamin-mineral complexes and biologically active additives (BAA). The estimation of the mineral collection of these products compared with the recommended standards. Established mineral composition many of the carbohydrate-electrolyte solutions, vitamin-mineral complexes and biologically active additives corresponds the physiology standards. However in some vitamin-mineral complexes and especially biologically active additives a number of minerals can be either unreasonably low or unreasonably high. Furthermore during labeling, mainly in the category D, a number of errors were revealed. Particularly there were lack of instructions about the number of declared ingredients, inaccuracies in the calculations of the daily requirement of mineral elements etc. Providing of an athlete organism with minerals should be carried out not only by carbohydrate-electrolyte solutions, vitamin-mineral complexes and specialized BAA, but mainly through basal ration. Utilising of carbohydrate-electrolyte solutions, vitamin-mineral complexes and biologically active additives can be justified only by the recommendations of experts. This is true not only in pro sports, but for the mass sports, as well as for individual physical training, in order to maintain physically fit.

  11. Charged body potential monitoring of an electrolyte plume emanating from a dripping source.

    Science.gov (United States)

    Nimmer, Robin E; Osiensky, James L

    2003-05-01

    Hole-surface charged body potential (CBP) measurements were taken over a 173-day period during a drip-injection, tracer experiment in partially saturated, fractured basalt. A continuous, enhanced conductivity, potassium chloride (KCl) solution was dripped into the fractured basalt and energized directly through a current electrode placed in the conductive solution. The constant concentration, KCl solution was introduced above a perched water table at an average rate of 10.07 L/day under a constant hydraulic head for 76 days. The KCl drip period was followed by a 34-day tap water drip period and a 62-day drainage period. Hole-surface CBP measurements were taken over time to delineate the evolution of the asymmetrical, vadose zone, plume. A 15 by 15 grid of land surface based, porous pot electrodes (copper sulfate), located symmetrically about the centrally located injection borehole, was used for the hole-surface CBP experiment. Ratios of electrical potentials measured at the land surface over time were contoured and profiled to delineate the evolution of the electrolyte plume.

  12. Determination of Surface Potential and Electrical Double-Layer Structure at the Aqueous Electrolyte-Nanoparticle Interface

    Directory of Open Access Journals (Sweden)

    Matthew A. Brown

    2016-01-01

    Full Text Available The structure of the electrical double layer has been debated for well over a century, since it mediates colloidal interactions, regulates surface structure, controls reactivity, sets capacitance, and represents the central element of electrochemical supercapacitors. The surface potential of such surfaces generally exceeds the electrokinetic potential, often substantially. Traditionally, a Stern layer of nonspecifically adsorbed ions has been invoked to rationalize the difference between these two potentials; however, the inability to directly measure the surface potential of dispersed systems has rendered quantitative measurements of the Stern layer potential, and other quantities associated with the outer Helmholtz plane, impossible. Here, we use x-ray photoelectron spectroscopy from a liquid microjet to measure the absolute surface potentials of silica nanoparticles dispersed in aqueous electrolytes. We quantitatively determine the impact of specific cations (Li^{+}, Na^{+}, K^{+}, and Cs^{+} in chloride electrolytes on the surface potential, the location of the shear plane, and the capacitance of the Stern layer. We find that the magnitude of the surface potential increases linearly with the hydrated-cation radius. Interpreting our data using the simplest assumptions and most straightforward understanding of Gouy-Chapman-Stern theory reveals a Stern layer whose thickness corresponds to a single layer of water molecules hydrating the silica surface, plus the radius of the hydrated cation. These results subject electrical double-layer theories to direct and falsifiable tests to reveal a physically intuitive and quantitatively verified picture of the Stern layer that is consistent across multiple electrolytes and solution conditions.

  13. A Newly Designed Composite Gel Polymer Electrolyte Based on Poly(Vinylidene Fluoride-Hexafluoropropylene) (PVDF-HFP) for Enhanced Solid-State Lithium-Sulfur Batteries.

    Science.gov (United States)

    Xia, Yan; Wang, Xiuli; Xia, Xinhui; Xu, Ruochen; Zhang, Shengzhao; Wu, Jianbo; Liang, Yanfei; Gu, Changdong; Tu, Jiangping

    2017-10-26

    Developing high-performance solid-state electrolytes is crucial for the innovation of next-generation lithium-sulfur batteries. Herein, a facile method for preparation of a novel gel polymer electrolyte (GPE) based on poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) is reported. Furthermore, Li1.5 Al0.5 Ti1.5 (PO4 )3 (LATP) nanoparticles as the active fillers are uniformly embedded into the GPE to form the final PVDF-HFP/LATP composite gel polymer electrolyte (CPE). Impressively, the obtained CPE demonstrates a high lithium ion transference number of 0.51 and improved electrochemical stability as compared to commercial liquid electrolyte. In addition, the assembled solid-sate Li-S battery with the composite gel polymer electrolyte membrane presents a high initial capacity of 918 mAh g-1 at 0.05 C, and better cycle performance than the counterparts with liquid electrolyte. Our designed PVDF-HFP/LATP composite can be a promising electrolyte for next-generation solid-state batteries with high cycling stability. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Cross-linked Composite Gel Polymer Electrolyte using Mesoporous Methacrylate-Functionalized SiO2 Nanoparticles for Lithium-Ion Polymer Batteries.

    Science.gov (United States)

    Shin, Won-Kyung; Cho, Jinhyun; Kannan, Aravindaraj G; Lee, Yoon-Sung; Kim, Dong-Won

    2016-05-18

    Liquid electrolytes composed of lithium salt in a mixture of organic solvents have been widely used for lithium-ion batteries. However, the high flammability of the organic solvents can lead to thermal runaway and explosions if the system is accidentally subjected to a short circuit or experiences local overheating. In this work, a cross-linked composite gel polymer electrolyte was prepared and applied to lithium-ion polymer cells as a safer and more reliable electrolyte. Mesoporous SiO2 nanoparticles containing reactive methacrylate groups as cross-linking sites were synthesized and dispersed into the fibrous polyacrylonitrile membrane. They directly reacted with gel electrolyte precursors containing tri(ethylene glycol) diacrylate, resulting in the formation of a cross-linked composite gel polymer electrolyte with high ionic conductivity and favorable interfacial characteristics. The mesoporous SiO2 particles also served as HF scavengers to reduce the HF content in the electrolyte at high temperature. As a result, the cycling performance of the lithium-ion polymer cells with cross-linked composite gel polymer electrolytes employing methacrylate-functionalized mesoporous SiO2 nanoparticles was remarkably improved at elevated temperatures.

  15. Suppression of Lithium Dendrite Formation by Using LAGP-PEO (LiTFSI) Composite Solid Electrolyte and Lithium Metal Anode Modified by PEO (LiTFSI) in All-Solid-State Lithium Batteries.

    Science.gov (United States)

    Wang, Chunhua; Yang, Yifu; Liu, Xingjiang; Zhong, Hai; Xu, Han; Xu, Zhibin; Shao, Huixia; Ding, Fei

    2017-04-19

    The formation of lithium dendrites is suppressed using a Li1.5Al0.5Ge1.5(PO4)3-poly(ethylene oxide) (LAGP-PEO) composite solid electrolyte and a PEO (lithium bis(trifluoromethane)sulfonimide) [PEO (LiTFSI)]-modified lithium metal anode in all-solid-state lithium batteries. The effects on the anode performance based on the PEO content in the composite solid electrolyte and the molecular weight of PEO used to modify the Li anode are studied. The structure, surface morphology, and stability of the composite solid electrolyte are examined by X-ray diffraction spectroscopy, scanning electron microscopy, and electrochemical tests. Results show that the presence of a PEO-500000(LiTFSI) film on a Li anode results in good mechanical properties and satisfactory interface contact features. The film can also prevent Li from reacting with LAGP. Furthermore, the formation of lithium dendrites can be effectively inhibited as the composite solid electrolyte is combined with the PEO film on the Li anode. The ratio of PEO in the composite solid electrolyte can be reduced to a low level of 1 wt %. PEO remains stable even at a high potential of 5.12 V (vs Li/Li(+)). The assembled Li-PEO (LiTFSI)/LAGP-PEO/LiMn0.8Fe0.2PO4 all-solid-state cell can deliver an initial discharge capacity of 160.8 mAh g(-1) and exhibit good cycling stability and rate performance at 50 °C.

  16. Hypertension potentiates cataractogenesis in rat eye through modulation of oxidative stress and electrolyte homeostasis

    Directory of Open Access Journals (Sweden)

    Samsroz Ahmad Khan

    2016-09-01

    Conclusion: Based on our findings, it can be concluded that systemic hypertension significantly increases the risk of cataract formation in the rat eyes via modulation of the antioxidant defense mechanism and electrolyte homeostasis.

  17. Comparing the rehydration potential of different milk-based drinks to a carbohydrate-electrolyte beverage.

    Science.gov (United States)

    Desbrow, Ben; Jansen, Sarah; Barrett, Abby; Leveritt, Michael D; Irwin, Christopher

    2014-12-01

    The aim of this study was to compare the rehydration potential of a carbohydrate-electrolyte beverage with several varieties of milk following exercise-induced fluid losses. Fifteen male participants (age 24.9 ± 5.5 years, height 179.3 ± 4.9 cm, body mass 75.8 ± 6.6 kg (mean ± SD)) lost 2.0% ± 0.2% body mass through intermittent cycling before consuming a different beverage on 4 separate occasions. Drinks included cow's milk (286 kJ·100 mL(-1)), soy milk (273 kJ·100 mL(-1)), a milk-based liquid meal supplement (Sustagen Sport (Nestle); 417 kJ·100 mL(-1)), and a sports drink (Powerade (Coca Cola Ltd); 129 kJ·100 mL(-1)). Beverages were consumed over 1 h in volumes equivalent to 150% of body mass loss. Body mass, blood and urine samples, and measures of gastrointestinal tolerance were obtained before and hourly for 4 h after beverage consumption. Net body mass at the conclusion of each trial was significantly less with Powerade (-1.37 ± 0.3 kg) than with cow's milk (-0.92 ± 0.48 kg), soy milk (-0.78 ± 0.37 kg), and Sustagen Sport (-0.48 ± 0.39 kg). Net body mass was also significantly greater for Sustagen Sport compared with cow's milk trials, but not soy milk. Upon completion of trials, the percentage of beverage retained was Sustagen Sport 65.1% ± 14.7%, soy milk 46.9% ± 19.9%, cow's milk 40.0% ± 24.9%, and Powerade 16.6% ± 16.5%. Changes in plasma volume and electrolytes were unaffected by drink treatment. Subjective ratings of bloating and fullness were higher during all milk trials compared with Powerade whereas ratings of overall thirst were not different between beverages. Milk-based drinks are more effective rehydration options compared with traditional sports drinks. The additional energy, protein, and sodium in a milk-based liquid meal supplement facilitate superior fluid recovery following exercise.

  18. Micromold methods for fabricating perforated substrates and for preparing solid polymer electrolyte composite membranes

    Energy Technology Data Exchange (ETDEWEB)

    Mittelsteadt, Cortney; Argun, Avni; Laicer, Castro; Willey, Jason

    2017-08-08

    In polymer electrolyte membrane (PEM) fuel cells and electrolyzes, attaining and maintaining high membrane conductivity and durability is crucial for performance and efficiency. The use of low equivalent weight (EW) perfluorinated ionomers is one of the few options available to improve membrane conductivity. However, excessive dimensional changes of low EW ionomers upon application of wet/dry or freeze/thaw cycles yield catastrophic losses in membrane integrity. Incorporation of ionomers within porous, dimensionally-stable perforated polymer electrolyte membrane substrates provides improved PEM performance and longevity. The present invention provides novel methods using micromolds to fabricate the perforated polymer electrolyte membrane substrates. These novel methods using micromolds create uniform and well-defined pore structures. In addition, these novel methods using micromolds described herein may be used in batch or continuous processing.

  19. Composite Electrolytes for Lithium Batteries: Ionic Liquids in APTES Crosslinked Polymers

    Science.gov (United States)

    Tigelaar, Dean M.; Meador, Mary Ann B.; Bennett, William R.

    2007-01-01

    Solvent free polymer electrolytes were made consisting of Li(+) and pyrrolidinium salts of trifluoromethanesulfonimide added to a series of hyperbranched poly(ethylene oxide)s (PEO). The polymers were connected by triazine linkages and crosslinked by a sol-gel process to provide mechanical strength. The connecting PEO groups were varied to help understand the effects of polymer structure on electrolyte conductivity in the presence of ionic liquids. Polymers were also made that contain poly(dimethylsiloxane) groups, which provide increased flexibility without interacting with lithium ions. When large amounts of ionic liquid are added, there is little dependence of conductivity on the polymer structure. However, when smaller amounts of ionic liquid are added, the inherent conductivity of the polymer becomes a factor. These electrolytes are more conductive than those made with high molecular weight PEO imbibed with ionic liquids at ambient temperatures, due to the amorphous nature of the polymer.

  20. A Nafion-Ceria Composite Membrane Electrolyte for Reduced Methanol Crossover in Direct Methanol Fuel Cells

    Directory of Open Access Journals (Sweden)

    Parthiban Velayutham

    2017-02-01

    Full Text Available An alternative Nafion composite membrane was prepared by incorporating various loadings of CeO2 nanoparticles into the Nafion matrix and evaluated its potential application in direct methanol fuel cells (DMFCs. The effects of CeO2 in the Nafion matrix were systematically studied in terms of surface morphology, thermal and mechanical stability, proton conductivity and methanol permeability. The composite membrane with optimum filler content (1 wt. % CeO2 exhibits a proton conductivity of 176 mS·cm−1 at 70 °C, which is about 30% higher than that of the unmodified membrane. Moreover, all the composite membranes possess a much lower methanol crossover compared to pristine Nafion membrane. In a single cell DMFC test, MEA fabricated with the optimized composite membrane delivered a peak power density of 120 mW·cm−2 at 70 °C, which is about two times higher in comparison with the pristine Nafion membrane under identical operating conditions.

  1. In situ Poly(methyl methacrylate)/Graphene Composite Gel Electrolytes for Highly Stable Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Kang, Yu-il; Moon, Jun Hyuk

    2015-11-01

    Dye-sensitized solar cells (DSCs) with long-term stability are produced using polymer-gel electrolytes (PGEs). In this study, we introduce the formation of PGEs using in situ gelation with poly(methyl methacrylate) (PMMA) particles and graphene fillers that are pre-deposited on the counter electrodes. We obtain a high concentration PMMA-based PGEs (i.e., over 10 wt%). A DSC composed of a PMMA/graphene composite PGEs exhibits an 8.49% photon-to-electric conversion efficiency, which is comparable to conventional liquid electrolyte DSCs. This finding is attributed to increased ion diffusivity and conductivity of the PMMA-based PGEs resulting from the incorporation of graphene nanofillers. The PMMA-based PGE DSCs exhibit highly stable long-term efficiencies, maintaining up to 90% of their initial efficiency during thermal soaking, whereas the efficiencies of liquid electrolyte cells decrease significantly, by up to 60%. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Enhancing long-term photostability of BiVO4 photoanodes for solar water splitting by tuning electrolyte composition

    Science.gov (United States)

    Lee, Dong Ki; Choi, Kyoung-Shin

    2018-01-01

    As the performance of photoelectrodes used for solar water splitting continues to improve, enhancing the long-term stability of the photoelectrodes becomes an increasingly crucial issue. In this study, we report that tuning the composition of the electrolyte can be used as a strategy to suppress photocorrosion during solar water splitting. Anodic photocorrosion of BiVO4 photoanodes involves the loss of V5+ from the BiVO4 lattice by dissolution. We demonstrate that the use of a V5+-saturated electrolyte, which inhibits the photooxidation-coupled dissolution of BiVO4, can serve as a simple yet effective method to suppress anodic photocorrosion of BiVO4. The V5+ species in the solution can also incorporate into the FeOOH/NiOOH oxygen-evolution catalyst layer present on the BiVO4 surface during water oxidation, further enhancing water-oxidation kinetics. The effect of the V5+ species in the electrolyte on both the long-term photostability of BiVO4 and the performance of the FeOOH/NiOOH oxygen-evolution catalyst layer is systematically elucidated.

  3. Interfacial Characteristics and Fracture Toughness of Electrolytically Ni-Plated Carbon Fiber-Reinforced Phenolic Resin Matrix Composites.

    Science.gov (United States)

    Park, Soo-Jin; Jang, Yu-Sin

    2001-05-01

    The electrolytic plating of metallic nickel on a carbon fiber surface has been carried out in order to improve the interfacial adhesion and the mechanical properties in carbon fiber/phenolic matrix composite systems. The surface and the mechanical interfacial properties of composites are characterized by X-ray photoelectron spectrometry (XPS), surface free energy, and the critical stress intensity factor (K(IC)). From the experimental results, it is clearly revealed that the oxygen functional groups and the metallic nickel on fibers largely affect the mechanical interfacial behavior of the composites, resulting in increased surface polarity, whereas the nitrogen functional groups have no effect. Also, a good correlation between surface oxygen functional groups and mechanical interfacial properties and between wettability and K(IC) is established and it is found that a 10 A m(-2) current density is the optimum condition for this system. Copyright 2001 Academic Press.

  4. Highly conductive quasi-coaxial electrospun quaternized polyvinyl alcohol nanofibers and composite as high-performance solid electrolytes

    Science.gov (United States)

    Liao, Guan-Ming; Li, Pin-Chieh; Lin, Jia-Shiun; Ma, Wei-Ting; Yu, Bor-Chern; Li, Hsieh-Yu; Liu, Ying-Ling; Yang, Chun-Chen; Shih, Chao-Ming; Lue, Shingjiang Jessie

    2016-02-01

    Electrospun quaternized polyvinyl alcohol (Q-PVA) nanofibers are prepared, and a potassium hydroxide (KOH)-doped nanofiber mat demonstrates enhanced ionic conductivity compared with a dense Q-PVA film with KOH doping. The Q-PVA composite containing 5.98% electrospun Q-PVA nanofibers exhibits suppressed methanol permeability. Both the high conductivity and suppressed methanol permeability are attributed to the quasi-coaxial structure of the electrospun nanofibers. The core of the fibers exhibits a more amorphous region that forms highly conductive paths, while the outer shell of the nanofibers contains more polymer crystals that serve as a hard sheath surrounding the soft core. This shell induces mass transfer resistance and creates a tortuous fuel pathway that suppresses methanol permeation. Such a Q-PVA composite is an effective solid electrolyte that makes the use of alkaline fuel cells viable. In a direct methanol alkaline fuel cell operated at 60 °C, a peak power density of 54 mW cm-2 is obtained using the electrospun Q-PVA composite, a 36.4% increase compared with a cell employing a pristine Q-PVA film. These results demonstrate that highly conductive coaxial electrospun nanofibers can be prepared through a single-opening spinneret and provide a possible approach for high-performance electrolyte fabrication.

  5. Enabling electrolyte compositions for columnar silicon anodes in high energy secondary batteries

    Science.gov (United States)

    Piwko, Markus; Thieme, Sören; Weller, Christine; Althues, Holger; Kaskel, Stefan

    2017-09-01

    Columnar silicon structures are proven as high performance anodes for high energy batteries paired with low (sulfur) or high (nickel-cobalt-aluminum oxide, NCA) voltage cathodes. The introduction of a fluorinated ether/sulfolane solvent mixture drastically improves the capacity retention for both battery types due to an improved solid electrolyte interface (SEI) on the surface of the silicon electrode which reduces irreversible reactions normally causing lithium loss and rapid capacity fading. For the lithium silicide/sulfur battery cycling stability is significantly improved as compared to a frequently used reference electrolyte (DME/DOL) reaching a constant coulombic efficiency (CE) as high as 98%. For the silicon/NCA battery with higher voltage, the addition of only small amounts of fluoroethylene carbonate (FEC) to the novel electrolyte leads to a stable capacity over at least 50 cycles and a CE as high as 99.9%. A high volumetric energy density close to 1000 Wh l-1 was achieved with the new electrolyte taking all inactive components of the stack into account for the estimation.

  6. Substrate selection for fundamental studies of electrocatalysts and photoelectrodes: inert potential windows in acidic, neutral, and basic electrolyte.

    Directory of Open Access Journals (Sweden)

    Jesse D Benck

    Full Text Available The selection of an appropriate substrate is an important initial step for many studies of electrochemically active materials. In order to help researchers with the substrate selection process, we employ a consistent experimental methodology to evaluate the electrochemical reactivity and stability of seven potential substrate materials for electrocatalyst and photoelectrode evaluation. Using cyclic voltammetry with a progressively increased scan range, we characterize three transparent conducting oxides (indium tin oxide, fluorine-doped tin oxide, and aluminum-doped zinc oxide and four opaque conductors (gold, stainless steel 304, glassy carbon, and highly oriented pyrolytic graphite in three different electrolytes (sulfuric acid, sodium acetate, and sodium hydroxide. We determine the inert potential window for each substrate/electrolyte combination and make recommendations about which materials may be most suitable for application under different experimental conditions. Furthermore, the testing methodology provides a framework for other researchers to evaluate and report the baseline activity of other substrates of interest to the broader community.

  7. Platinum dissolution and deposition in the polymer electrolyte membrane of a PEM fuel cell as studied by potential cycling.

    Science.gov (United States)

    Yasuda, Kazuaki; Taniguchi, Akira; Akita, Tomoki; Ioroi, Tsutomu; Siroma, Zyun

    2006-02-14

    The behavior of platinum dissolution and deposition in the polymer electrolyte membrane of a membrane-electrode-assembly (MEA) for a proton-exchange membrane fuel cell (PEMFC) was studied using potential cycling experiment and high-resolution transmission electron microscopy (HRTEM). The electrochemically active surface area decreased depending on the cycle number and the upper potential limit. Platinum deposition was observed in the polymer electrolyte membrane near a cathode catalyst layer. Platinum deposition was accelerated by the presence of hydrogen transported through the membrane from an anode compartment. Platinum was transported across the membrane and deposited on the anode layer in the absence of hydrogen in the anode compartment. This deposition was also affected by the presence of oxygen in the cathode compartment.

  8. Synthesis and Characterization of La, Sc, Yb and Nd co-doped Gadolinium doped Cerium (GDC) Composite Electrolyte for IT-SOFC

    Science.gov (United States)

    Damisih; Raharjo, Jarot; Masmui; Setya Aninda, Raffty; Ami Lestari, Novita

    2017-07-01

    Composite based on gadolinium doped cerium (GDC) co-doped Lanthanum (La), Scandium (Sc), Ytterbium (Yb) were investigated as electrolyte for solid oxide fuel cell (SOFC), namely GDC-La, GDC-Sc, GDC-Yb and GDC-Nd, respectively. The second co-doped La, Sc, Yb and Nd ensured the stability and high ionic conductivity of the GDC ceria-based electrolyte materials for SOFC. The GDC powder was synthesized via sol-gel technique. Then the La-GDC, Sc-GDC, Yb-GDC and GDC-Nd were subsequently prepared by mixing the GDC with La, Sc, Yb, and Nd respectively, through solid-state reaction in ballmill at 200rpm alumina balls. The composite electrolytes were then characterized in terms of its morphology, phase and thermal properties of the powders. Among the composite electrolytes investigated, GDC-Yb powder show higher purity and better dispersion than the others co-doped GDC. TGA analysis present that the addition of co-dopant led to improve thermal resistance and stability of solid electrolyte powders. The results confirm that GDC with co-dopant is promising alternative electrolyte for intermediate temperature solid oxide fuel cells (IT-SOFC).

  9. Composite electrolytes of polyethylene glycol methyl ether and TiO{sub 2} for dye-sensitized solar cells-Effect of heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Akhtar, M. Shaheer, E-mail: shaheerakhtar@jbnu.ac.kr [School of Semiconductor and Chemical Engineering and Solar Energy Research Center, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); New and Renewable Energy Material Development Center (NewREC), Chonbuk National University (Korea, Republic of); Park, Jung-Guen; Kim, Ui-Yeon [School of Semiconductor and Chemical Engineering and Solar Energy Research Center, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Yang, O-Bong, E-mail: obyang@jbnu.ac.kr [School of Semiconductor and Chemical Engineering and Solar Energy Research Center, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); New and Renewable Energy Material Development Center (NewREC), Chonbuk National University (Korea, Republic of)

    2011-06-15

    Highlights: {yields} The heat treatment (80 deg. C) on prepared PEGME-TiO{sub 2} composite was essential step to improve the morphological and electrochemical properties. {yields} Raman spectra of PEGME-acid, PEGME-TiO{sub 2} and PEGME-TiO{sub 2}/80 deg. C composite electrolytes. {yields} PEGME-TiO{sub 2}/80 deg. C shows drastically increased strong peak (I{sub 3}{sup -} species) with a slight shifting at 113.1 cm{sup -1}. {yields} Indicates the significant increase of I{sub 3}{sup -} species in redox electrolytes upon heat treatment. - Abstract: For solid-state dye-sensitized solar cells (DSSCs), a composite electrolyte of polyethylene glycol methyl ether (PEGME) and titania (TiO{sub 2}) nanoparticles was prepared and characterized by Fourier transform-infra red (FT-IR), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and Raman spectroscopy. The heat treatment on PEGME and TiO{sub 2} composite was found to be an essential step to improve morphology, amorphicity and ionic conductivity of PEGME-TiO{sub 2} composite electrolytes. It was attributed to the increased bond strength of OC-O-Ti between PEGME and TiO{sub 2} and increased surface roughness of composite materials, which may help to absorb a large amount of iodide couple and effective generation of I{sub 3}{sup -} ions. A DSSC fabricated with heat treated PEGME-TiO{sub 2} composite electrolyte showed significantly enhanced overall conversion efficiency of 3.1%, which was 20% higher than that of the DSSC fabricated with bare PEGME-TiO{sub 2} composite electrolyte.

  10. Control of morphology and composition of self-organized zirconium titanate nanotubes formed in (NH{sub 4}){sub 2}SO{sub 4}/NH{sub 4}F electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda, Kouji [Department of Materials Science, Institute for Surface Science and Corrosion (LKO), University of Erlangen-Nuremberg, Martensstrasse 7, D-91058 Erlangen (Germany); Schmuki, Patrik [Department of Materials Science, Institute for Surface Science and Corrosion (LKO), University of Erlangen-Nuremberg, Martensstrasse 7, D-91058 Erlangen (Germany)]. E-mail: schmuki@ww.uni-erlangen.de

    2007-03-10

    We investigated the formation of self-organized zirconium titanate nanotubes by anodizing a Ti-35Zr alloy in 1 M (NH{sub 4}){sub 2}SO{sub 4} + 0.1-2.0 wt.% NH{sub 4}F electrolytes. The morphology and composition of the zirconium titanate nanotube are controlled by the applied electrochemical conditions. The outer diameter of nanotubes is controlled by the anodization potential in the range between 1 and 100 V (versus Ag/AgCl). Tubes with diameters from 14 to 470 nm can be grown. The nanotube length correlates with the anodic charge up to a length where significant dissolution of the nanotube layer is observed. The wall thickness, composition of the nanotubes and porosity of the nanotube layer are significantly affected by the fluoride ion concentration. The length limiting factor of the nanotube growth is found to be the diffusion of ionic species in the electrolyte.

  11. In situ electrochemical polymerization of a nanorod-PANI-Graphene composite in a reverse micelle electrolyte and its application in a supercapacitor.

    Science.gov (United States)

    Hu, Liwen; Tu, Jiguo; Jiao, Shuqiang; Hou, Jungang; Zhu, Hongmin; Fray, Derek J

    2012-12-05

    Highly porous nanorod-PANI-Graphene composite films were prepared by in situ electrochemical polymerization onto an ITO substrate in a reverse micelle electrolyte. The morphology and microstructure of the composite films were analyzed by using a field emission scanning electron microscope. It was observed that the films were highly porous and the nanorod PANI films were inserted by graphene nanosheets. This indicated that a good conductive network between PANI nanorods and graphene sheets was formed. Further electrochemical tests involved cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS) in 1 mol L(-1) HClO(4) solution. The results showed that the composite film had a favorable capacitance with a high electron transfer rate and low resistance. The highest specific capacitance that could be achieved was as high as 878.57 F g(-1) with the charge loading of 500 mC at a current density of 1 A g(-1). The GCD at different charge loadings showed good cycle stability with a low fading rate of specific capacitance after 1000 cycles. The results demonstrated that the nanorod-PANI-Graphene composite was proved to be of great potential as an electrode material for supercapacitors.

  12. Final Report for Project DE-FG02-05ER15718 Fluoropolymers, Electrolytes, Composites and Electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Creager, Stephen [Clemson Univ., SC (United States)

    2017-05-24

    This report is for a project that was initiated under the title “New Proton-Conducting Fluoropolymer Electrolytes for PEM Fuel Cells”, as part of the DOE program titled “Basic Research for the Hydrogen Fuel Cell Initiative”, Program Notice DE-FG01-04ER04-20. The project received 750,000 dollars in initial funding for a three-year term with a start date of August 15, 2005. Creager was PI and co-PIs were DesMarteau and Smith, all from Clemson. The project was renewed for a second three-year term with a start date of June 15 2008, again for 750,000 dollars, with the new title, “Fluoropolymers, Electrolytes, Composites and Electrodes”. Shortly after the renewal was put in place, co-PI Smith left Clemson to accept a position at the University of Texas at Dallas. After a period of no-cost extension the project was renewed on January 1 2013 for another three-year term, this time for a smaller amount ($525,000) and with Thrasher, a new senior hire at Clemson, as co-PI in place of Smith. DesMarteau had retired from Clemson by this time but was retained as a project advisor. After a final one-year no-cost extension for calendar year 2016, the project ended on December 31, 2016, giving it an active period of eleven and one-half years, from August 15 2005 to December 31 2016. The overall objective of this research project has been to create and understand the behavior of new fluoropolymer-based electrolytes and electrodes suitable for use in electrochemical energy storage and conversion devices. The objective was pursued via research on new fluorinated monomers, new polymers and polyelectrolytes (also known as ionomers), and new electrocatalyst supports that in some cases include chemically grafted electrolytes to promote rapid ion transport to electrocatalytically active sites (usually platinum nanoparticles) on the support. The research involved synthesis and characterization of new materials, and creation and use of new measurement techniques that address key

  13. Composite polymer electrolytes for fuel cell applications: filler-induced effect on water sorption and transport properties.

    Science.gov (United States)

    Mecheri, Barbara; Felice, Valeria; D'Epifanio, Alessandra; Tavares, Ana C; Licoccia, Silvia

    2013-11-11

    Nafion- and sulfonated polysulfone (SPS)- based composite membranes were prepared by incorporation of SnO2 nanoparticles in a wide range of loading (0${ \\div }$35 wt. %). The composites were investigated by differential scanning calorimetry, dynamic vapor sorption and electrochemical impedance spectroscopy to study the filler effect on water sorption, water mobility, and proton conductivity. A detrimental effect of the filler was observed on water mobility and proton conductivity of Nafion-based membranes. An increase in water mobility and proton conductivity was instead observed in SPS-based samples, particularly at low hydration degree. Analysis of the water sorption isotherms and states of water revealed that the presence of SnO2 in SPS enhances interconnectivity of hydrophilic domains, while not affecting the Nafion microstructure. These results enable the design of suitable electrolyte materials that operate in proton exchange membrane fuel cell conditions. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. The role of cathodic current in PEO of aluminum: Influence of cationic electrolyte composition on the transient current-voltage curves and the discharges optical emission spectra

    Science.gov (United States)

    Rogov, A. B.; Shayapov, V. R.

    2017-02-01

    In this paper, the influence of cationic electrolytes composition on electrical and optical responses of plasma electrolytic oxidation process of A1050 aluminum alloy under alternating polarization is considered. The electrolytes consist of 0.1 M boric acid with addition of one of the following hydroxides: LiOH, NaOH, KOH, tetraethylammonium hydroxide, Ca(OH)2 up to pH value 9.2. Coatings microstructure, elemental and phase compositions were studied by SEM, EDS and XRD. It was shown that the hysteresis of anodic current-voltage curve (specific feature of "Soft sparking" PEO) was clear observed in the presence of sodium and potassium cations. It was found that composition of microdischarges plasma is also affected by the nature of the cations. It was shown that there are a number of reciprocal processes, which take place under anodic and cathodic polarization.

  15. High Specific Capacitance of Polyaniline/Mesoporous Manganese Dioxide Composite Using KI-H2SO4 Electrolyte

    Directory of Open Access Journals (Sweden)

    Zhongkai Hu

    2015-09-01

    Full Text Available The PANI/Mesoporous MnO2 composites were prepared through a simple one step method and we introduced the KI-H2SO4 solution as the electrolyte of PANI/MnO2 composites creatively. The characterization of structure, morphology, and composition are obtained by X-ray diffraction, Fourier transform infrared spectroscopy, thermal gravity analysis, Raman spectra, and scanning electron microscope. The electrochemical performances were investigated by constant-current charge–discharge, the voltammetry curve, and alternating current (AC impedance technique. The specific capacitance of composites is 1405 F/g, which is almost 10 times larger than MnO2 (158 F/g. We also find that the iodide concentration is closely related to the specific capacitance. Therefore, we explored the specific capacitance at different iodide concentration (0.05, 0.1, 0.2, 0.5, and 1 M, the results indicated that the specific capacitance reached a maximum value (1580 F/g at 0.5 mol/L. Additionally, the PANI/Mesoporous MnO2 composites not only exhibited a good ratio discharge property (857 F/g at high current density, but also revealed an excellent cycling stability after 500 cycles, which retained 90% of the original specific capacitance.

  16. Charge-discharge characteristics of LiCoO 2/mesocarbon microbeads battery with poly(vinyl chloride)-based composite polymer electrolyte

    Science.gov (United States)

    Subban, R. H. Y.; Arof, A. K.

    Polyvinyl chloride (PVC)-based composite polymer electrolyte films consisting of PVC-LiCF 3SO 3-SiO 2 are prepared by the solution-casting method. The electrical properties of the electrolyte are investigated for ionic conductivity and its dependence on temperature. The electrolyte with the highest ionic conductivity is used to fabricate a LiCoO 2/PVC-LiCF 3SO 3-SiO 2/mesocarbon microbeads (MCMB) battery. The charge-discharge characteristics and performance of the battery at room temperature are evaluated to ascertain the effective viability, of these solid electrolytes in lithium-polymer batteries. Battery performances is also investigated at 313, 323 and 333 K.

  17. Newly developed EMF cell with zirconia solid electrolyte for measurement of low oxygen potentials in liquid Cu-Cr and Cu-Zr alloys

    Directory of Open Access Journals (Sweden)

    Katayama I.

    2012-01-01

    Full Text Available In order to measure the very low oxygen potential by use of stabilized zirconia solid electrolyte emf method, a new cell construction was devised. The idea was based on Janke but a zirconia rod was used instead of the zirconia crucible which contacts liquid alloy electrode. The cell was used for determination of the oxygen potentials in liquid dilute Cu-Cr and Cu-Zr alloys. The reference electrode was Cr,Cr2O3. Emf measurements were performed in the temperature range of 1400-1580K and composition range of 0.198-3.10at%Cr-Cu alloys, and 1380-1465K, 0.085-0.761at%Zr-Cu alloys. The composition of liquid alloys were determined by picking up from the liquid alloys and ICP analysis. By use of the newly devised cell construction in this study, stable emf values were obtained at each temperature and alloy composition. Emf values were corrected by using the parameter for electronic contribution of the YSZ. Activity of Cr obeys Henry’s law and activity coefficient at infinitely dilute alloys of Cr in Cu-Cr alloys are: lng0 Cr =(3.80 at 1423K, (3.57 at 1473K, (3.38 at 1523K and (3.20 at 1573K. At 1423 K activity coefficient of Zr at infinitely diluted alloy is lnγo Zr = -4.0.

  18. Demonstrating the potential of yttrium-doped barium zirconate electrolyte for high-performance fuel cells.

    Science.gov (United States)

    Bae, Kiho; Jang, Dong Young; Choi, Hyung Jong; Kim, Donghwan; Hong, Jongsup; Kim, Byung-Kook; Lee, Jong-Ho; Son, Ji-Won; Shim, Joon Hyung

    2017-02-23

    In reducing the high operating temperatures (≥800 °C) of solid-oxide fuel cells, use of protonic ceramics as an alternative electrolyte material is attractive due to their high conductivity and low activation energy in a low-temperature regime (≤600 °C). Among many protonic ceramics, yttrium-doped barium zirconate has attracted attention due to its excellent chemical stability, which is the main issue in protonic-ceramic fuel cells. However, poor sinterability of yttrium-doped barium zirconate discourages its fabrication as a thin-film electrolyte and integration on porous anode supports, both of which are essential to achieve high performance. Here we fabricate a protonic-ceramic fuel cell using a thin-film-deposited yttrium-doped barium zirconate electrolyte with no impeding grain boundaries owing to the columnar structure tightly integrated with nanogranular cathode and nanoporous anode supports, which to the best of our knowledge exhibits a record high-power output of up to an order of magnitude higher than those of other reported barium zirconate-based fuel cells.

  19. Lead-Free Sn-Ce-O Composite Coating on Cu Produced by Pulse Electrodeposition from an Aqueous Acidic Sulfate Electrolyte

    Science.gov (United States)

    Sharma, Ashutosh; Das, Karabi; Das, Siddhartha

    2017-10-01

    Pulse-electrodeposited Sn-Ce-O composite solder coatings were synthesized on a Cu substrate from an aqueous acidic solution containing stannous sulfate (SnSO4·3H2O), sulfuric acid (H2SO4), and Triton X-100 as an additive. The codeposition was achieved by adding nano-cerium oxide powder in varying concentrations from 5 g/L to 20 g/L into the electrolytic bath. Microstructural characterization was carried out using x-ray diffraction (XRD), scanning electron microscopy, and transmission electron microscopy. The XRD analysis showed that the deposits consist mainly of tetragonal β (Sn) with reduced cerium oxide species. The composite coatings thus obtained exhibit a smaller grain size, possess higher microhardness, and a lower melting point than the monolithic Sn coating. The electrical resistivity of the developed composites increases, however, but lies within the permissible limits for current lead-free solder applications. Also, an optimum balance of properties in terms of microhardness, adhesion, melting point and resistivity can be obtained with 0.9 wt.% cerium oxide in the Sn matrix, which enables potential applications in solder joints and packaging.

  20. ZnTe Semiconductor-Polymer Gel Composited Electrolyte for Conversion of Solar Energy

    Directory of Open Access Journals (Sweden)

    Wonchai Promnopas

    2014-01-01

    Full Text Available Nanostructured cubic p-type ZnTe for dye sensitized solar cells (DSSCs was synthesized from 1 : 1 molar ratio of Zn : Te by 600 W and 900 W microwave plasma for 30 min. In this research, their green emissions were detected at the same wavelengths of 563 nm, the energy gap (Eg at 2.24 eV, and three Raman shifts at 205, 410, and 620 cm−1. The nanocomposited electrolyte of quasisolid state ZnO-DSSCs was in correlation with the increase in the JSC, VOC, fill factor (ff, and efficiency (η by increasing the wt% of ZnTe-GPE (gel polymer electrolyte to an optimum value and decreased afterwards. The optimal ZnO-DSSC performance was achieved for 0.20 wt% ZnTe-GPE with the highest photoelectronic energy conversion efficiency at 174.7% with respect to that of the GPE without doping of p-type ZnTe.

  1. In situ electron holography of electric potentials inside a solid-state electrolyte: Effect of electric-field leakage

    Energy Technology Data Exchange (ETDEWEB)

    Aizawa, Yuka; Yamamoto, Kazuo; Sato, Takeshi [Nanostructures Research Laboratory, Japan Fine Ceramics Center, 2-4-1 Mutsuno, Atsuta-ku, Nagoya, Aichi 456-8587 (Japan); Murata, Hidekazu [Faculty of Science and Technology, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi 468-8502 (Japan); Yoshida, Ryuji; Fisher, Craig A.J. [Nanostructures Research Laboratory, Japan Fine Ceramics Center, 2-4-1 Mutsuno, Atsuta-ku, Nagoya, Aichi 456-8587 (Japan); Kato, Takehisa; Iriyama, Yasutoshi [Department of Materials, Physics and Energy Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601 (Japan); Hirayama, Tsukasa, E-mail: t-hirayama@jfcc.or.jp [Nanostructures Research Laboratory, Japan Fine Ceramics Center, 2-4-1 Mutsuno, Atsuta-ku, Nagoya, Aichi 456-8587 (Japan)

    2017-07-15

    In situ electron holography is used to observe changes of electric-potential distributions in an amorphous lithium phosphorus oxynitride (LiPON) solid-state electrolyte when different voltages are applied. 2D phase images are simulated by integrating the 3D potential distribution along the electron trajectory through a thin Cu/LiPON/Cu region. Good agreement between experimental and simulated phase distributions is obtained when the influence of the external electric field is taken into account using the 3D boundary-charge method. Based on the precise potential changes, the lithium-ion and lithium-vacancy distributions inside the LiPON layer and electric double layers (EDLs) are inferred. The gradients of the phase drops at the interfaces in relation to EDL widths are discussed. - Highlights: • Solid-state electrolyte LiPON has been observed by in situ electron holography. • Observed phase distributions are compared with those simulated numerically. • 3D electric fields around the specimen are taken into account in the simulation. • Electric-potential distributions inside LiPON have been obtained. • The lithium-ion and lithium-vacancy distributions inside the LiPON are inferred.

  2. Electrolyte salts for nonaqueous electrolytes

    Science.gov (United States)

    Amine, Khalil; Zhang, Zhengcheng; Chen, Zonghai

    2012-10-09

    Metal complex salts may be used in lithium ion batteries. Such metal complex salts not only perform as an electrolyte salt in a lithium ion batteries with high solubility and conductivity, but also can act as redox shuttles that provide overcharge protection of individual cells in a battery pack and/or as electrolyte additives to provide other mechanisms to provide overcharge protection to lithium ion batteries. The metal complex salts have at least one aromatic ring. The aromatic moiety may be reversibly oxidized/reduced at a potential slightly higher than the working potential of the positive electrode in the lithium ion battery. The metal complex salts may also be known as overcharge protection salts.

  3. Branched Rod-Coil Polyimide-Poly(Alkylene Oxide) Copolymers and Electrolyte Compositions

    Science.gov (United States)

    Meador, Maryann B. (Inventor); Tigelaar, Dean M. (Inventor)

    2014-01-01

    Crosslinked polyimide-poly(alkylene oxide) copolymers capable of holding large volumes of liquid while maintaining good dimensional stability. Copolymers are derived at ambient temperatures from amine endcapped amic-acid oligomers subsequently imidized in solution at increased temperatures, followed by reaction with trifunctional compounds in the presence of various additives. Films of these copolymers hold over four times their weight at room temperature of liquids such as ionic liquids (RTIL) and/or carbonate solvents. These rod-coil polyimide copolymers are used to prepare polymeric electrolytes by adding to the copolymers various amounts of compounds such as ionic liquids (RTIL), lithium trifluoromethane-sulfonimide (LiTFSi) or other lithium salts, and alumina.

  4. Rehydration and catabolic preventive effects depend on the composition of oral electrolyte solutions for diarrheic calves.

    Science.gov (United States)

    Tsukano, Kenji; Ajito, Tadaharu; Abe, Izumi; Sarashina, Shinya; Suzuki, Kazuyuki

    2017-11-10

    In this study, two commercially available oral electrolyte solutions (OES) with high sodium (CF) or with high glucose and glycine (SL), and two prototype OES were evaluated in terms of rehydration and preventing catabolism. Prototype OES based on CF were prepared by doubling the glucose amount (CFG) or by doubling both glucose and glycine (CFGG). Thirty-two diarrheic calves were randomly assigned four groups with eight calves in each group. Blood volume increased with CF and CFGG compared with that of other OES. The catabolic preventive effect was excellent in CFGG and SL. Our results suggest that both the amount of sodium, glucose, and glycine, and ratio of these factors aid dehydration and provide energy.

  5. Computer optimization of background electrolyte composition in the separation of metal ions by capillary electrophoresis.

    Science.gov (United States)

    Billiet, H A; Andersson, P E; Haddad, P R

    1996-08-01

    The iterative regression design developed earlier for high performance liquid chromatography (HPLC) has been applied successfully to the optimization of the separation of 11 metal ions by capillary electrophoresis. The parameters used for optimization were pH (over the range 3.5-5.0) and the concentration of 2-hydroxyisobutyric acid (HIBA) (2-20 mM) used as the complex-forming ligand added to the background electrolyte. Five initial experiments were performed and the response surface was calculated using the relative resolution product as criterion. Three additional experiments were sufficient to establish a stable optimum, with which all 11 metal ions were separated and well spread in the electropherogram. The total analysis time was less than 5 min.

  6. A novel lithium/sulfur battery based on sulfur/graphene nanosheet composite cathode and gel polymer electrolyte.

    Science.gov (United States)

    Zhang, Yongguang; Zhao, Yan; Bakenov, Zhumabay

    2014-03-21

    A novel sulfur/graphene nanosheet (S/GNS) composite was prepared via a simple ball milling of sulfur with commercial multi-layer graphene nanosheet, followed by a heat treatment. High-resolution transmission and scanning electronic microscopy observations showed the formation of irregularly interlaced nanosheet-like structure consisting of graphene with uniform sulfur coating on its surface. The electrochemical properties of the resulting composite cathode were investigated in a lithium cell with a gel polymer electrolyte (GPE) prepared by trapping 1 mol dm-3 solution of lithium bistrifluoromethanesulfonamide in tetraethylene glycol dimethyl ether in a polymer matrix composed of poly(vinylidene fluoride-co-hexafluoropropylene)/poly(methylmethacrylate)/silicon dioxide (PVDF-HFP/PMMA/SiO2). The GPE battery delivered reversible discharge capacities of 809 and 413 mAh g-1 at the 1st and 50th cycles at 0.2C, respectively, along with a high coulombic efficiency over 50 cycles. This performance enhancement of the cell was attributed to the suppression of the polysulfide shuttle effect by a collective effect of S/GNS composite cathode and GPE, providing a higher sulfur utilization.

  7. Solid polymer electrolyte from phosphorylated chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Fauzi, Iqbal, E-mail: arcana@chem.itb.ac.id; Arcana, I Made, E-mail: arcana@chem.itb.ac.id [Inorganic and Physical Chemistry Research Groups, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia)

    2014-03-24

    Recently, the need of secondary battery application continues to increase. The secondary battery which using a liquid electrolyte was indicated had some weakness. A solid polymer electrolyte is an alternative electrolytes membrane which developed in order to replace the liquid electrolyte type. In the present study, the effect of phosphorylation on to polymer electrolyte membrane which synthesized from chitosan and lithium perchlorate salts was investigated. The effect of the component’s composition respectively on the properties of polymer electrolyte, was carried out by analyzed of it’s characterization such as functional groups, ion conductivity, and thermal properties. The mechanical properties i.e tensile resistance and the morphology structure of membrane surface were determined. The phosphorylation processing of polymer electrolyte membrane of chitosan and lithium perchlorate was conducted by immersing with phosphoric acid for 2 hours, and then irradiated on a microwave for 60 seconds. The degree of deacetylation of chitosan derived from shrimp shells was obtained around 75.4%. Relative molecular mass of chitosan was obtained by viscometry method is 796,792 g/mol. The ionic conductivity of chitosan membrane was increase from 6.33 × 10{sup −6} S/cm up to 6.01 × 10{sup −4} S/cm after adding by 15 % solution of lithium perchlorate. After phosphorylation, the ionic conductivity of phosphorylated lithium chitosan membrane was observed 1.37 × 10{sup −3} S/cm, while the tensile resistance of 40.2 MPa with a better thermal resistance. On the strength of electrolyte membrane properties, this polymer electrolyte membrane was suggested had one potential used for polymer electrolyte in field of lithium battery applications.

  8. Solid polymer electrolyte from phosphorylated chitosan

    Science.gov (United States)

    Fauzi, Iqbal; Arcana, I. Made

    2014-03-01

    Recently, the need of secondary battery application continues to increase. The secondary battery which using a liquid electrolyte was indicated had some weakness. A solid polymer electrolyte is an alternative electrolytes membrane which developed in order to replace the liquid electrolyte type. In the present study, the effect of phosphorylation on to polymer electrolyte membrane which synthesized from chitosan and lithium perchlorate salts was investigated. The effect of the component's composition respectively on the properties of polymer electrolyte, was carried out by analyzed of it's characterization such as functional groups, ion conductivity, and thermal properties. The mechanical properties i.e tensile resistance and the morphology structure of membrane surface were determined. The phosphorylation processing of polymer electrolyte membrane of chitosan and lithium perchlorate was conducted by immersing with phosphoric acid for 2 hours, and then irradiated on a microwave for 60 seconds. The degree of deacetylation of chitosan derived from shrimp shells was obtained around 75.4%. Relative molecular mass of chitosan was obtained by viscometry method is 796,792 g/mol. The ionic conductivity of chitosan membrane was increase from 6.33 × 10-6 S/cm up to 6.01 × 10-4 S/cm after adding by 15 % solution of lithium perchlorate. After phosphorylation, the ionic conductivity of phosphorylated lithium chitosan membrane was observed 1.37 × 10-3 S/cm, while the tensile resistance of 40.2 MPa with a better thermal resistance. On the strength of electrolyte membrane properties, this polymer electrolyte membrane was suggested had one potential used for polymer electrolyte in field of lithium battery applications.

  9. Electrolytic Synthesis of Ni-W-MWCNT Composite Coating for Alkaline Hydrogen Evolution Reaction

    Science.gov (United States)

    Elias, Liju; Hegde, A. Chitharanjan

    2018-01-01

    Nickel-tungsten multi-walled carbon nanotube (Ni-W-MWCNT) composite films were fabricated by an electrodeposition technique, and their electrocatalytic activity toward hydrogen evolution reaction (HER) was studied. Ni-W-MWCNT composite films with a homogeneous dispersion of MWCNTs were deposited from an optimal Ni-W plating bath containing functionalized MWCNTs, under galvanostatic condition. The presence of functionalized MWCNT was found to enhance the induced codeposition of the reluctant metal W and resulted in a W-rich composite coating with improved properties. The electrocatalytic behaviors of Ni-W-MWCNT composite coating toward HER were studied by cyclic voltammetry (CV) and chronopotentiometry techniques in 1.0 M KOH medium. Further, Tafel polarization and electrochemical impedance spectroscopy (EIS) studies were carried out to establish the kinetics of HER on the alloy and composite electrodes. The experimental results revealed that the addition of MWCNTs (having a diameter of around 10-15 nm) into the alloy plating bath has a significant effect on the electrocatalytic behavior of Ni-W alloy deposit. The Ni-W-MWCNT composite coating was found to show better HER activity than the conventional Ni-W alloy coating. The enhanced electrocatalytic activity of Ni-W-MWCNT composite coating is attributed to the MWCNT intersticed in the deposit matrix, evidenced by surface morphology, composition and phase structure of the coating through SEM, EDS and XRD analyses, respectively.

  10. Regional variations in transepidermal water loss, eccrine sweat gland density, sweat secretion rates and electrolyte composition in resting and exercising humans

    Science.gov (United States)

    2013-01-01

    Literature from the past 168 years has been filtered to provide a unified summary of the regional distribution of cutaneous water and electrolyte losses. The former occurs via transepidermal water vapour diffusion and secretion from the eccrine sweat glands. Daily insensible water losses for a standardised individual (surface area 1.8 m2) will be 0.6–2.3 L, with the hands (80–160 g.h−1) and feet (50–150 g.h−1) losing the most, the head and neck losing intermediate amounts (40–75 g.h−1) and all remaining sites losing 15–60 g.h−1. Whilst sweat gland densities vary widely across the skin surface, this same individual would possess some 2.03 million functional glands, with the highest density on the volar surfaces of the fingers (530 glands.cm−2) and the lowest on the upper lip (16 glands.cm−2). During passive heating that results in a resting whole-body sweat rate of approximately 0.4 L.min−1, the forehead (0.99 mg.cm−2.min−1), dorsal fingers (0.62 mg.cm−2.min−1) and upper back (0.59 mg.cm−2.min−1) would display the highest sweat flows, whilst the medial thighs and anterior legs will secrete the least (both 0.12 mg.cm−2.min−1). Since sweat glands selectively reabsorb electrolytes, the sodium and chloride composition of discharged sweat varies with secretion rate. Across whole-body sweat rates from 0.72 to 3.65 mg.cm−2.min−1, sodium losses of 26.5–49.7 mmol.L−1 could be expected, with the corresponding chloride loss being 26.8–36.7 mmol.L−1. Nevertheless, there can be threefold differences in electrolyte losses across skin regions. When exercising in the heat, local sweat rates increase dramatically, with regional glandular flows becoming more homogeneous. However, intra-regional evaporative potential remains proportional to each local surface area. Thus, there is little evidence that regional sudomotor variations reflect an hierarchical distribution of sweating either at rest or during exercise. PMID:23849497

  11. Regional variations in transepidermal water loss, eccrine sweat gland density, sweat secretion rates and electrolyte composition in resting and exercising humans.

    Science.gov (United States)

    Taylor, Nigel As; Machado-Moreira, Christiano A

    2013-02-01

    Literature from the past 168 years has been filtered to provide a unified summary of the regional distribution of cutaneous water and electrolyte losses. The former occurs via transepidermal water vapour diffusion and secretion from the eccrine sweat glands. Daily insensible water losses for a standardised individual (surface area 1.8 m2) will be 0.6-2.3 L, with the hands (80-160 g.h-1) and feet (50-150 g.h-1) losing the most, the head and neck losing intermediate amounts (40-75 g.h-1) and all remaining sites losing 15-60 g.h-1. Whilst sweat gland densities vary widely across the skin surface, this same individual would possess some 2.03 million functional glands, with the highest density on the volar surfaces of the fingers (530 glands.cm-2) and the lowest on the upper lip (16 glands.cm-2). During passive heating that results in a resting whole-body sweat rate of approximately 0.4 L.min-1, the forehead (0.99 mg.cm-2.min-1), dorsal fingers (0.62 mg.cm-2.min-1) and upper back (0.59 mg.cm-2.min-1) would display the highest sweat flows, whilst the medial thighs and anterior legs will secrete the least (both 0.12 mg.cm-2.min-1). Since sweat glands selectively reabsorb electrolytes, the sodium and chloride composition of discharged sweat varies with secretion rate. Across whole-body sweat rates from 0.72 to 3.65 mg.cm-2.min-1, sodium losses of 26.5-49.7 mmol.L-1 could be expected, with the corresponding chloride loss being 26.8-36.7 mmol.L-1. Nevertheless, there can be threefold differences in electrolyte losses across skin regions. When exercising in the heat, local sweat rates increase dramatically, with regional glandular flows becoming more homogeneous. However, intra-regional evaporative potential remains proportional to each local surface area. Thus, there is little evidence that regional sudomotor variations reflect an hierarchical distribution of sweating either at rest or during exercise.

  12. A Cross-Linking Succinonitrile-Based Composite Polymer Electrolyte with Uniformly Dispersed Vinyl-Functionalized SiO2 Particles for Li-Ion Batteries.

    Science.gov (United States)

    Liu, Kai; Ding, Fei; Liu, Jiaquan; Zhang, Qingqing; Liu, Xingjiang; Zhang, Jinli; Xu, Qiang

    2016-09-14

    A cross-linking succinonitrile (SN)-based composite polymer electrolyte (referred to as "CLPC-CPE"), in which vinyl-functionalized SiO2 particles connect with trimethylolpropane propoxylate triacrylate (TPPTA) monomers by covalent bonds, was prepared by an ultraviolet irradiation (UV-curing) process successfully. Vinyl-functionalized SiO2 particles may react with TPPTA monomers to form a cross-linking network within the SN-based composite polymer electrolyte under ultraviolet irradiation. Vinyl-functionalized SiO2 particles as the fillers of polymer electrolyte may improve both the thermal stability of CLPC-CPE and interfacial compatibility between CLPC-CPE and electrodes effectively. There is no weight loss for CLPC-CPE until above 230 °C. The ionic conductivity of CLPC-CPE may reach 7.02 × 10(-4) S cm(-1) at 25 °C. CLPC-CPE has no significant oxidation current until up to 4.6 V (vs Li/Li(+)). The cell of LiFePO4/CLPC-CPE/Li has presented superior cycle performance and rate capability. The cell of LiFePO4/CLPC-CPE/Li may deliver a high discharge capacity of 154.4 mAh g(-1) at a rate of 0.1 C after 100 charge-discharge cycles, which is similar than that of the control cell of LiFePO4/liquid electrolyte/Li. Furthermore, the cell of LiFePO4/CLPC-CPE/Li can display a high discharge capacity of 112.7 mAh g(-1) at a rate of 2 C, which is higher than that of the cells assembled with other plastic crystal polymer electrolyte reported before obviously.

  13. Implementation of concurrent electrolytic generation of two homogeneous mediators under widened potential conditions to facilitate removal of air-pollutants.

    Science.gov (United States)

    Govindan, Muthuraman; Bond, Alan M; Moon, Il-Shik

    2017-02-13

    Electro-scrubbing is being developed as a futuristic technology for the removal of air-pollutants. To date, only one homogeneous mediator for the removal of air pollutants has been generated in each experiment using a divided electrolytic flow cell in an acidic medium. This paper reports the concurrent generation of two homogenous mediators, one at the anodic half-cell containing an acidic solution and the other at the cathodic half-cell containing a basic solution. The concept was inspired by the change in pH that occurs during water electrolysis in a divided cell. A 10 M KOH electrolyte medium assisted in the electrochemical generation of low valent 14% Co1+ ([CoI(CN)5]4-) mediator formed from reduction of [CoII(CN)5]3- which was accompanied by a change in the solution 'oxidation reduction potential' (ORP) of -1.05 V Simultaneously, 41% of Co3+ was generated from oxidation of CoIISO4 in the anodic half-cell. No change in the solution ORP was observed at the cathodic half-cell when both half-cells contain 5 M H2SO4, and Co3+ was formed in the anodic half-cell. An electro-scrubbing approach based on the above principles was developed and tested on gaseous-pollutants, CH3CHO and CCl4, by Co3+ and Co1+, respectively, with 90 and 96% removal achieved, respectively.

  14. Synthesis and Thermophysical Properties of Ether-Functionalized Sulfonium Ionic Liquids as Potential Electrolytes for Electrochemical Applications.

    Science.gov (United States)

    Coadou, Erwan; Goodrich, Peter; Neale, Alex R; Timperman, Laure; Hardacre, Christopher; Jacquemin, Johan; Anouti, Mérièm

    2016-12-05

    During this work, a novel series of hydrophobic room temperature ionic liquids (ILs) based on five ether functionalized sulfonium cations bearing the bis{(trifluoromethyl)sulfonyl}imide, [NTf2 ](-) anion were synthesized and characterized. Their physicochemical properties, such as density, viscosity and ionic conductivity, electrochemical window, along with thermal properties including phase transition behavior and decomposition temperature, have been measured. All of these ILs showed large liquid range temperature, low viscosity, and good conductivity. Additionally, by combining DFT calculations along with electrochemical characterization it appears that these novel ILs show good electrochemical stability windows, suitable for the potential application as electrolyte materials in electrochemical energy storage devices. ©2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  15. Potential controlled stripping of an amorphous As layer on GaAs(001) in an electrolyte: An in situ x-ray scattering study

    DEFF Research Database (Denmark)

    Scherb, G.; Kazimirov, A.; Zegenhagen, J.

    1997-01-01

    2SO4. we monitored the stripping process of the 50 nm As cap over a period of hours in situ with x-ray diffraction. Our results suggest that, using this potential controlled stripping, smooth and well ordered GaAs(001) surfaces can be obtained in an aqueous electrolyte. (C) 1997 American Institute......We demonstrate that an amorphous As layer deposited as protection on a GaAs(001) surface frown by molecular beam epitaxy can be removed via reductive etching in an electrolytical cell at sufficiently negative electrode potentials. Employing a specially constructed electrochemical cell filled with H...

  16. Effects of TiO{sub 2} addition on ionic conductivity of PVC/PEMA blend based composite polymer electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Subban, R. H. Y. [Institute of Science Universiti Teknologi MARA 40450 Shah Alam Selangor Malaysia (Malaysia); Facultyof Applied Sciences Universiti Teknologi MARA40450 Shah Alam Selangor Malaysia (Malaysia); Sukri, Nursyazwani [Facultyof Applied Sciences Universiti Teknologi MARA40450 Shah Alam Selangor Malaysia (Malaysia)

    2015-08-28

    PVC/PEMA blend based polymer electrolytes with lithium bistrifluoromethane sulfonimide (LiN(CF{sub 3}SO{sub 2}){sub 2}) and PVC/PEMA/(LiN(CF{sub 3}SO{sub 2}){sub 2}-TiO{sub 2} films were prepared by solution cast technique. The sample containing 35 wt. % LiN(CF{sub 3}SO{sub 2}){sub 2} exhibited the highest conductivity of 1.75 × 10{sup −5} Scm{sup −1}. The conductivity of the sample increased to 2.12 × 10{sup −5} Scm{sup −1} and 4.61 × 10{sup −5} Scm{sup −1} when 4 wt. % and 10 wt. % of titanium dioxide (TiO{sub 2}) was added to the sample at 65 wt. % PVC/PEMA-35 wt. % LiN(CF{sub 3}SO{sub 2}){sub 2} composition respectively. The low increase in conductivity is attributed to two competing factors: increase in crystallinity as accounted by X-Ray diffraction (XRD) and decrease in glass transition temperature as accounted by differential scanning calorimetry (DSC)

  17. Stabilizing the Performance of High-Capacity Sulfur Composite Electrodes by a New Gel Polymer Electrolyte Configuration.

    Science.gov (United States)

    Agostini, Marco; Lim, Du Hyun; Sadd, Matthew; Fasciani, Chiara; Navarra, Maria Assunta; Panero, Stefania; Brutti, Sergio; Matic, Aleksandar; Scrosati, Bruno

    2017-09-11

    Increased pollution and the resulting increase in global warming are drawing attention to boosting the use of renewable energy sources such as solar or wind. However, the production of energy from most renewable sources is intermittent and thus relies on the availability of electrical energy-storage systems with high capacity and at competitive cost. Lithium-sulfur batteries are among the most promising technologies in this respect due to a very high theoretical energy density (1675 mAh g(-1) ) and that the active material, sulfur, is abundant and inexpensive. However, a so far limited practical energy density, life time, and the scaleup of materials and production processes prevent their introduction into commercial applications. In this work, we report on a simple strategy to address these issues by using a new gel polymer electrolyte (GPE) that enables stable performance close to the theoretical capacity of a low cost sulfur-carbon composite with high loading of active material, that is, 70 % sulfur. We show that the GPE prevents sulfur dissolution and reduces migration of polysulfide species to the anode. This functional mechanism of the GPE membranes is revealed by investigating both its morphology and the Li-anode/GPE interface at various states of discharge/charge using Raman spectroscopy. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Surface composition effect of nitriding Ni-free stainless steel as bipolar plate of polymer electrolyte fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yang; Shironita, Sayoko [Nagaoka University of Technology, 1603-1, Kamitomioka, Nagaoka, Niigata 940-2188 (Japan); Nakatsuyama, Kunio [Nakatsuyama Heat Treatment Co., Ltd., 1-1089-10, Nanyou, Nagaoka, Niigata 940-1164 (Japan); Souma, Kenichi [Nagaoka University of Technology, 1603-1, Kamitomioka, Nagaoka, Niigata 940-2188 (Japan); Hitachi Industrial Equipment Systems Co., Ltd., 3 Kanda Neribei, Chiyoda, Tokyo 101-0022 (Japan); Umeda, Minoru, E-mail: mumeda@vos.nagaokaut.ac.jp [Nagaoka University of Technology, 1603-1, Kamitomioka, Nagaoka, Niigata 940-2188 (Japan)

    2016-12-01

    Graphical abstract: The anodic current densities in the passive region of nitrided SUS445-N stainless steel are lower than those of a non heat-treated SUS445 stainless steel and heat-treated SUS445-Ar stainless steel under an Ar atmosphere. It shows a better corrosion resistance for the SUS445 stainless steel after the nitriding heat treatment. - Highlights: • The nitriding heat treatment was carried out using Ni-free SUS445 stainless steel. • The corrosion resistance of the nitrided SUS445-N stainless steel was improved. • The structure of the nitrided SUS445-N stainless steel changed from α-Fe to γ-Fe. • The surface elemental components present in the steels affect the corrosion resistance. - Abstract: In order to increase the corrosion resistance of low cost Ni-free SUS445 stainless steel as the bipolar plate of a polymer electrolyte fuel cell, a nitriding surface treatment experiment was carried out in a nitrogen atmosphere under vacuum conditions, while an Ar atmosphere was used for comparison. The electrochemical performance, microstructure, surface chemical composition and morphology of the sample before and after the electrochemical measurements were investigated using linear sweep voltammetry (LSV), X-ray diffraction (XRD), glow discharge optical emission spectroscopy (GDS) and laser scanning microscopy (LSM) measurements. The results confirmed that the nitriding heat treatment not only increased the corrosion resistance, but also improved the surface conductivity of the Ni-free SUS445 stainless steel. In contrast, the corrosion resistance of the SUS445 stainless steel decreased after heat treatment in an Ar atmosphere. These results could be explained by the different surface compositions between these samples.

  19. Numerical investigation of the effect of cathode catalyst layer structure and composition on polymer electrolyte membrane fuel cell performance

    Science.gov (United States)

    Kamarajugadda, Sai; Mazumder, Sandip

    The effect of the cathode catalyst layer's structure and composition on the overall performance of a polymer electrolyte membrane fuel cell (PEMFC) is investigated numerically. The starting point of the sub-grid scale catalyst layer model is the well-known flooded agglomerate concept. The proposed model addresses the effects of ionomer (Nafion) loading, catalyst (platinum) loading, platinum/carbon ratio, agglomerate size and cathode layer thickness. The sub-grid scale model is first validated against experimental data and previously published results, and then embedded within a two-dimensional validated computational fluid dynamics code that can predict the overall performance of the fuel cell. The integrated model is then used to explore a wide range of the compositional and structural parameter space, mentioned earlier. In each case, the model is able to correctly predict the trends observed by past experimental studies. It is found that the performance trends are often different at intermediate versus high current densities-the former being governed by agglomerate-scale (or local) losses, while the latter is governed by catalyst layer thickness-scale (or global) losses. The presence of an optimal performance with varying Nafion content in the cathode is more due to the local agglomerate-scale mass transport and conductivity losses in the polymer coating around the agglomerates than due to the amount of Nafion within the agglomerate. It is also found that platinum mass loading needs to be at a moderate level in order to optimize fuel cell performance, even if cost is to be disregarded.

  20. Potential Coir Fibre Composite for Small Wind Turbine Blade Application

    Directory of Open Access Journals (Sweden)

    Bakri Bakri

    2017-03-01

    Full Text Available Natural fibers have been developed as reinforcement of composite to shift synthetic fibers. One of potential natural fibers developed is coir fiber. This paper aims to describe potential coir fiber as reinforcement of composite for small wind turbine blade application. The research shows that mechanical properties ( tensile, impact, shear, flexural and compression strengths of coir fiber composite have really similar to wood properties for small wind turbine blade material, but inferior to glass fiber composite properties. The effect of weathering was also evaluated to coir fiber composite in this paper.

  1. A Dendrite-Free Lithium Metal Battery Model Based on Nanoporous Polymer/Ceramic Composite Electrolytes and High-Energy Electrodes.

    Science.gov (United States)

    Tu, Zhengyuan; Lu, Yingying; Archer, Lynden

    2015-06-10

    Nanoporous polymer/ceramic composite electrolytes that suppress dendrite growth in full-cell, high-energy secondary lithium metal batteries are reported. The battery cathode design used in the study is energetically balanced with the metallic lithium anode. The results reported show that such batteries can stably operate for over 1000 h without signs of short circuit. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Study on ion conductivity and crystallinity of composite polymer electrolytes based on poly(ethylene oxide)/poly(acrylonitrile) containing nano-sized Al2O3 fillers.

    Science.gov (United States)

    Kim, Mingyeong; Lee, Lyungyu; Jung, Yongju; Kim, Seok

    2013-12-01

    In this paper, composite polymer electrolytes were prepared by a blend of poly(ethylene oxide) (PEO) and poly(acrylonitrile) (PAN) as a polymer matrix, ethylene carbonate as a plasticizer, LiClO4 as a salt, and by containing a different content of nano-sized Al2O3. The composite films were prepared by using the solution casting method. The crystallinity and ionic conductivity of the polymer electrolytes was investigated using X-ray diffraction (XRD) and AC impedance method, respectively. The morphology of composite polymer electrolyte film was analyzed by SEM method. From the experimental results, by increasing the Al2O3 content, the crystallinity of PEO was reduced, and the ionic conductivity was increased. In particular, by a doping of 15 wt.% Al2O3 in PEO/PAN polymer blend, the CPEs showed the superior ionic conductivity. However, when Al2O3 content exceeds 15 wt.%, the ionic conductivity was decreased. From the surface morphology, it was concluded that the ionic conductivity was decreased because the CPEs showed a heterogenous morphology due to immiscibility or aggregation of the ceramic filler within the polymer matrix.

  3. New Potentials in Red Phosphorus Compositions

    Science.gov (United States)

    1976-08-01

    pyrolusite (Mn02), 8% magnesium, 3% ZnO and 3% binder. e When this composition is ignited, the magnesium and Mn02 react as a thermite to generate heat...November 1973). 4C. F. Parrish, J. E. Short and W. T. Biggs, Radia~ion-.F.lkmer- ization Binder for ?,k 48 Decoy Flares, RDTR No. 232, Naval Ammunition

  4. Photoelectrochemical properties of ZnO nanocrystals/MEH-PPV composite: The effects of nanocrystals synthetic route, film deposition and electrolyte composition

    Energy Technology Data Exchange (ETDEWEB)

    Petrella, A. [Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e Chimica, Politecnico di Bari, Via Orabona 4, 70125 Bari (Italy); Curri, M.L.; Striccoli, M. [CNR IPCF Sez. Bari c/o Dip. Chimica, Università di Bari, Via Orabona 4, 70126 Bari (Italy); Agostiano, A. [Dipartimento di Chimica, Università di Bari, via Orabona 4, 70126 Bari (Italy); CNR IPCF Sez. Bari c/o Dip. Chimica, Università di Bari, Via Orabona 4, 70126 Bari (Italy); Cosma, P., E-mail: pinalysa.cosma@uniba.it [Dipartimento di Chimica, Università di Bari, via Orabona 4, 70126 Bari (Italy); CNR IPCF Sez. Bari c/o Dip. Chimica, Università di Bari, Via Orabona 4, 70126 Bari (Italy)

    2015-11-30

    This paper reports a study on the photoelectrochemical processes occurring at the interface of ZnO nanocrystals/MEH-PPV composites. Colloidal chemical routes were used to obtain size controlled non-hydrolytic ZnO nanocrystals (NCs) dispersible in organic solvents, while a low molecular weight poly[2-methoxy-5-(2′-ethyl-hexyloxy)phenylene vinylene] (MEH-PPV), characterized by high degree of structural order, was synthesized via an organometallic method. The optical properties of the nanocomposite material were comprehensively investigated on solution and on films deposited by spin coating. Remarkably, a significant fluorescence quenching of the polymer at the MEH-PPV/ZnO junction was observed. Photoelectrochemical measurements demonstrated that the photoactivity of the composite material was significantly improved in the case of non-hydrolytic NCs with respect to hydrolytic route prepared ZnO. Moreover, the effective role of the organic/inorganic blend to improve the charge transfer with respect to the double layer hetero-junction was confirmed, thanks to the extended interfaces which enable an effective electron transfer between the hetero-junction components. The system was also studied at different film thicknesses and electrolyte compositions. The results indicated that film photoactivity increased with film thickness up to 300 nm due to the presence of a large number of interfaces, while the change of cation size influenced the ionic conductivity through the nanocomposite film. It was shown that efficient photoconductivity requires not only efficient charge separation, but also efficient transport of the carriers to the electrodes without recombination. - Highlights: • The photoelectrochemical processes at ZnO nanocrystals/MEH-PPV hetero-junction were studied. • Fluorescence quenching of the polymer at the MEH-PPV/ZnO interface was observed. • Non-hydrolytic ZnO junction showed higher photocurrents than hydrolytic equivalent. • The blends showed

  5. Solid state electrolyte systems

    Energy Technology Data Exchange (ETDEWEB)

    Pederson, L.R.; Armstrong, B.L.; Armstrong, T.R. [Pacific Northwest Lab., Richland, WA (United States)] [and others

    1997-12-01

    Lanthanum gallates are a new family of solid electrolytes that exhibit high ionic conductivity and are stable to high temperatures. Compositions have been developed that are as much as a factor of two more conductive than yttria-stabilized zirconia at a given temperature, through partial replacement of lanthanum by calcium, strontium, and/or barium and through partial replacement of gallium by magnesium. Oxide powders were prepared using combustion synthesis techniques developed in this laboratory; these were sintered to >95% of theoretical density and consisted of a single crystalline phase. Electrical conductivities, electron and ion transference numbers, thermal expansion, and phase behavior were evaluated as a function of temperature and oxygen partial pressure. A key advantage of the use of lanthanum gallate electrolytes in solid oxide fuel cells is that the temperature of operation may be lowered to perhaps 800 C, yet provide approximately the same power density as zirconia-based cells operating at 1000 C. Ceramic electrolytes that conduct both oxygen ions and electrons are potentially useful to passively separate pure oxygen from an air source at low cost. In such materials, an oxygen ion flux in one direction is charge-compensated by an opposing electron flux. The authors have examined a wide range of mixed ion and electron conducting perovskite ceramics in the system La{sub 1{minus}x}M{sub x}Co{sub 1{minus}y{minus}z}Fe{sub y}N{sub z}O{sub 3{minus}{delta}}, where M = Sr, Ca, and Ba, and N = Pr, Mn, Ni, Cu, Ti, and Al, as well as mixed conducting brownmillerite ceramics, and have characterized oxygen permeation behavior, defect chemistry, structural and phase stability, and performance as cathodes.

  6. Ion-Chain Dynamics in Polymer Electrolytes

    OpenAIRE

    Carlos, L. D.; Videira, A. L. L.

    1996-01-01

    Representing polyether-salt systems by chains of interacting coordination shells, defined by the cation and by its nearest ligands, we derive the interaction potential between closest shells -- the inter-shells potential -- in terms of two-electron polarization effects. Values are presented for monovalent-based crystalline poly(ethylene oxide), PEO, electrolytes. For the eutectic composition $\\text{PEO}_{12} \\text{EuBr}_3$, the inter-shells energy is evaluated also by relating the empirical v...

  7. Enhanced electrochemical stability and charge storage of MnO{sub 2}/carbon nanotubes composite modified by polyaniline coating layer in acidic electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Changzhou; Su, Linghao; Gao, Bo; Zhang, Xiaogang [College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Yudao Street 29, Nanjing 210016 (China)

    2008-10-15

    Manganese dioxide/multiwalled carbon nanotubes (MnO{sub 2}/MWCNTs) were synthesized by chemically depositing MnO{sub 2} onto the surface of MWCNTs wrapped with poly(sodium-p-styrenesulfonate). Then, polyaniline (PANI) with good supercapacitive performance was further coated onto the MnO{sub 2}/MWCNTs composite to form PANI/MnO{sub 2}/MWCNTs organic-inorganic hybrid nanoarchitecture. Electrochemical performance of the hybrid in Na{sub 2}SO{sub 4}-H{sub 2}SO{sub 4} mixed acidic electrolytes was evaluated by cyclic voltammetry (CV) and chronopotentiometry (CP) in detail. Comparative electrochemical tests revealed that the hybrid nanoarchitecture could operate in the acidic medium due to the protective modification of PANI coating layer onto the MnO{sub 2}/MWCNTs composite, and that its electrochemical behavior was greatly dependent upon the concentration of protons in the acidic electrolytes. Here, PANI not only served as a physical barrier to restrain the underlying MnO{sub 2}/MWCNTs composite from reductive-dissolution process so as to make the novel ternary hybrid material work in acidic medium to enhance the utilization of manganese oxide as much as possible, but also was another electroactive material for energy storage in the acidic mixed electrolytes. It was due to the existence of PNAI layer that an even larger specific capacitance (SC) of 384 F g{sup -1} and a much better SC retention of 79.9% over 1000 continuous charge/discharge cycles than those for the MnO{sub 2}/MWCNTs nanocomposite were delivered for the hybrid in the optimum 0.5 M Na{sub 2}SO{sub 4}-0.5 M H{sub 2}SO{sub 4} mixed acidic electrolyte. (author)

  8. Enhanced electrochemical stability and charge storage of MnO{sub 2}/carbon nanotubes composite modified by polyaniline coating layer in acidic electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Yuan Changzhou; Su Linghao; Gao Bo [College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Yudao Street 29, Nanjing 210016 (China); Zhang Xiaogang [College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Yudao Street 29, Nanjing 210016 (China)], E-mail: azhangxg@163.com

    2008-10-15

    Manganese dioxide/multiwalled carbon nanotubes (MnO{sub 2}/MWCNTs) were synthesized by chemically depositing MnO{sub 2} onto the surface of MWCNTs wrapped with poly(sodium-p-styrenesulfonate). Then, polyaniline (PANI) with good supercapacitive performance was further coated onto the MnO{sub 2}/MWCNTs composite to form PANI/MnO{sub 2}/MWCNTs organic-inorganic hybrid nanoarchitecture. Electrochemical performance of the hybrid in Na{sub 2}SO{sub 4}-H{sub 2}SO{sub 4} mixed acidic electrolytes was evaluated by cyclic voltammetry (CV) and chronopotentiometry (CP) in detail. Comparative electrochemical tests revealed that the hybrid nanoarchitecture could operate in the acidic medium due to the protective modification of PANI coating layer onto the MnO{sub 2}/MWCNTs composite, and that its electrochemical behavior was greatly dependent upon the concentration of protons in the acidic electrolytes. Here, PANI not only served as a physical barrier to restrain the underlying MnO{sub 2}/MWCNTs composite from reductive-dissolution process so as to make the novel ternary hybrid material work in acidic medium to enhance the utilization of manganese oxide as much as possible, but also was another electroactive material for energy storage in the acidic mixed electrolytes. It was due to the existence of PNAI layer that an even larger specific capacitance (SC) of 384 F g{sup -1} and a much better SC retention of 79.9% over 1000 continuous charge/discharge cycles than those for the MnO{sub 2}/MWCNTs nanocomposite were delivered for the hybrid in the optimum 0.5 M Na{sub 2}SO{sub 4}-0.5 M H{sub 2}SO{sub 4} mixed acidic electrolyte.

  9. High Lithium Transference Number Electrolytes via Creation of 3-Dimensional, Charged, Nanoporous Networks from Dense Functionalized Nanoparticle Composites

    KAUST Repository

    Schaefer, Jennifer L.

    2013-03-26

    High lithium transference number, tLi+, electrolytes are desired for use in both lithium-ion and lithium metal rechargeable battery technologies. Historically, low tLi+ electrolytes have hindered device performance by allowing ion concentration gradients within the cell, leading to high internal resistances that ultimately limit cell lifetime, charging rates, and energy density. Herein, we report on the synthesis and electrochemical features of electrolytes based on nanoparticle salts designed to provide high tLi+. The salts are created by cofunctionalization of metal oxide nanoparticles with neutral organic ligands and tethered lithium salts. When dispersed in a conducting fluid such as tetraglyme, they spontaneously form a charged, nanoporous network of particles at moderate nanoparticle loadings. Modification of the tethered anion chemistry from -SO3 - to -SO3BF3 - is shown to enhance ionic conductivity of the electrolytes by facilitating ion pair dissociation. At a particle volume fraction of 0.15, the electrolyte exists as a self-supported, nanoporous gel with an optimum ionic conductivity of 10 -4 S/cm at room temperature. Galvanostatic polarization measurements on symmetric lithium metal cells containing the electrolyte show that the cell short circuit time, tSC, is inversely proportional to the square of the applied current density tSC ∼ J-2, consistent with previously predicted results for traditional polymer-in-salt electrolytes with low tLi+. Our findings suggest that electrolytes with tLi+ ≈ 1 and good ion-pair dissociation delay lithium dendrite nucleation and may lead to improved lithium plating in rechargeable batteries with metallic lithium anodes. © 2013 American Chemical Society.

  10. Bi2O3 and La10Si6O27 composite electrolyte for enhanced performance in solid oxide fuel cells

    Science.gov (United States)

    Hairul Absah, H. Q. Hj; Abu Bakar, M. S.; Zaini, J. Hj; Azad, A.; Ming, L. C.

    2016-03-01

    Adding suitable metal oxide into lanthanum silicate apatite can produce a composite with a good oxygen ion-conducting electrolyte that enhances the performance of solid oxide fuel cells (SOFCs). In this paper we present the synthesis and characterisation of Bi2O3 and La10Si6O27 composite prepared by a solid state reaction. The sintering temperature of the composite was 1500°C for 10 hours with the heating and cooling rates of 10°C per minute. The properties of the resulting composite have been characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM), and ionic conductivity measured by an a.c. impedance spectroscopy (IS). Rietveld refinement of XRD data shows that the composition is purely the mixture of Bi2O3 and La10Si6O27 with the unit cell parameters of the main phase as a = 9.9810 (8) and c = 7.3239 (6) Å. The room temperature crystal structure was hexagonal with space group P63/m. The highest ionic conductivity of 1.76 × 10-2 Scm-1 with a corresponding activation energy of 0.39 eV was obtained at 750°C. SEM images show the material is densed enough to use as an electrolyte for SOFCs.

  11. Investigation of woven composites as potential cryogenic tank materials

    Science.gov (United States)

    Islam, Md. S.; Melendez-Soto, E.; Castellanos, A. G.; Prabhakar, P.

    2015-12-01

    In this paper, carbon fiber and Kevlar® fiber woven composites were investigated as potential cryogenic tank materials for storing liquid fuel in spacecraft or rocket. Towards that end, both carbon and Kevlar® fiber composites were manufactured and tested with and without cryogenic exposure. The focus was on the investigation of the influence of initial cryogenic exposure on the degradation of the composite. Tensile, flexural and inter laminar shear strength (ILSS) tests were conducted, which indicate that Kevlar® and carbon textile composites are potential candidates for use under cryogenic exposure.

  12. Study on characteristics of PVDF/nano-clay composite polymer electrolyte using PVP as pore-forming agent

    Energy Technology Data Exchange (ETDEWEB)

    Dyartanti, Endah R., E-mail: heru.susanto@undip.ac.id, E-mail: endah-rd@uns.ac.id [Departement of Chemical Engineering, Sebelas Maret University, Surakarta (Indonesia); Department of Chemical Engineering, Diponegoro University, Semarang (Indonesia); Purwanto, Agus [Departement of Chemical Engineering, Sebelas Maret University, Surakarta (Indonesia); Widiasa, I. Nyoman; Susanto, Heru, E-mail: heru.susanto@undip.ac.id, E-mail: endah-rd@uns.ac.id [Department of Chemical Engineering, Diponegoro University, Semarang (Indonesia)

    2016-02-08

    Polyvinylidene fluoride (PVDF) based polymer electrolytes have a high dielectric constant, which can assist in greater ionization of lithium salts. The main advantages of PVDF are its durability in long battery operation and its ability to be a good ion conductor. However, the limitation of this polymer is its crystalline molecular structure. Dispersing nano-particles in the polymer matrix may improve the characteristics of the PVDF polymer. This paper aims to investigate the impact of nano-clay addition on the characteristics of PVDF polymer to be used as a polymer electrolyte membrane. In addition, the effect of poly(vinyl pyrrolidone) (PVP) is also investigated. The membrane was prepared by phase separation method whereas the polymer electrolyte membranes was prepared by immersing into 1 M lithium hexafluorophosphate (LiPF{sub 6}) in ethylene carbonate/dimethyl carbonate (EC/DMC) electrolytes for 1 h. The membranes were characterized by scanning electron microscope (SEM), porosity and electrolyte uptake and performance in battery cell. The results showed that both nano-clay and PVP have significant impacts on the improvement of PVDF membranes to be used as polymer electrolyte.

  13. Non-aqueous electrolytes for electrochemical cells

    Science.gov (United States)

    Zhang, Zhengcheng; Dong, Jian; Amine, Khalil

    2016-06-14

    An electrolyte electrochemical device includes an anodic material and an electrolyte, the electrolyte including an organosilicon solvent, a salt, and a hybrid additiving having a first and a second compound, the hybrid additive configured to form a solid electrolyte interphase film on the anodic material upon application of a potential to the electrochemical device.

  14. Bread Making Potential of Composite Flour of Wheat-Acha ...

    African Journals Online (AJOL)

    Bread-making potentials of composite flours containing 90% wheat and 10% acha enriched with 0-15% cowpea flour were investigated. Proximate composition and functional properties of the blends were studied using AOAC standard methods. Bread loaves were prepared from the blends using the straight dough method ...

  15. Potential Usage of Thermoelectric Devices in a High-Temperature Polymer Electrolyte Membrane (PEM) Fuel Cell System: Two Case Studies

    Science.gov (United States)

    Gao, Xin; Chen, Min; Andreasen, Søren Juhl; Kær, Søren Knudsen

    2012-06-01

    Methanol-fueled, high-temperature polymer electrolyte membrane fuel cell (HTPEMFC) power systems are promising as the next generation of vehicle engines, efficient and environmentally friendly. Currently, their performance still needs to be improved, and they still rely on a large Li-ion battery for system startup. In this article, to handle these two issues, the potential of thermoelectric (TE) devices applied in a HTPEMFC power system has been preliminarily evaluated. First, right after the fuel cell stack or the methanol reformer, thermoelectric generators (TEGs) are embedded inside a gas-liquid heat exchanger to form a heat recovery subsystem jointly for electricity production. It is calculated that the recovered power can increase the system efficiency and mitigate the dependence on Li-ion battery during system startup. To improve the TEG subsystem performance, a finite-difference model is then employed and two main parameters are identified. Second, TE coolers are integrated into the methanol steam reformer to regulate heat fluxes herein and improve the system dynamic performance. Similar modification is also done on the evaporator to improve its dynamic performance as well as to reduce the heat loss during system startup. The results demonstrate that the TE-assisted heat flux regulation and heat-loss reduction can also effectively help solve the abovementioned two issues. The preliminary analysis in this article shows that a TE device application inside HTPEMFC power systems is of great value and worthy of further study.

  16. High performance of SDC and GDC core shell type composite electrolytes using methane as a fuel for low temperature SOFC

    Energy Technology Data Exchange (ETDEWEB)

    Irshad, Muneeb; Siraj, Khurram, E-mail: razahussaini786@gmail.com, E-mail: khurram.uet@gmail.com; Javed, Fayyaz; Ahsan, Muhammad; Rafique, Muhammad Shahid [Department of Physics, University of Engineering and Technology, Lahore (Pakistan); Raza, Rizwan, E-mail: razahussaini786@gmail.com, E-mail: khurram.uet@gmail.com [Department of Physics, COMSATS Institute of Information Technology, Lahore (Pakistan); Shakir, Imran [Deanship of scientific research, College of Engineering, PO Box 800, King Saud University, Riyadh 11421 (Saudi Arabia)

    2016-02-15

    Nanocomposites Samarium doped Ceria (SDC), Gadolinium doped Ceria (GDC), core shell SDC amorphous Na{sub 2}CO{sub 3} (SDCC) and GDC amorphous Na{sub 2}CO{sub 3} (GDCC) were synthesized using co-precipitation method and then compared to obtain better solid oxide electrolytes materials for low temperature Solid Oxide Fuel Cell (SOFCs). The comparison is done in terms of structure, crystallanity, thermal stability, conductivity and cell performance. In present work, XRD analysis confirmed proper doping of Sm and Gd in both single phase (SDC, GDC) and dual phase core shell (SDCC, GDCC) electrolyte materials. EDX analysis validated the presence of Sm and Gd in both single and dual phase electrolyte materials; also confirming the presence of amorphous Na{sub 2}CO{sub 3} in SDCC and GDCC. From TGA analysis a steep weight loss is observed in case of SDCC and GDCC when temperature rises above 725 °C while SDC and GDC do not show any loss. The ionic conductivity and cell performance of single phase SDC and GDC nanocomposite were compared with core shell GDC/amorphous Na{sub 2}CO{sub 3} and SDC/ amorphous Na{sub 2}CO{sub 3} nanocomposites using methane fuel. It is observed that dual phase core shell electrolytes materials (SDCC, GDCC) show better performance in low temperature range than their corresponding single phase electrolyte materials (SDC, GDC) with methane fuel.

  17. High performance of SDC and GDC core shell type composite electrolytes using methane as a fuel for low temperature SOFC

    Science.gov (United States)

    Irshad, Muneeb; Siraj, Khurram; Raza, Rizwan; Javed, Fayyaz; Ahsan, Muhammad; Shakir, Imran; Rafique, Muhammad Shahid

    2016-02-01

    Nanocomposites Samarium doped Ceria (SDC), Gadolinium doped Ceria (GDC), core shell SDC amorphous Na2CO3 (SDCC) and GDC amorphous Na2CO3 (GDCC) were synthesized using co-precipitation method and then compared to obtain better solid oxide electrolytes materials for low temperature Solid Oxide Fuel Cell (SOFCs). The comparison is done in terms of structure, crystallanity, thermal stability, conductivity and cell performance. In present work, XRD analysis confirmed proper doping of Sm and Gd in both single phase (SDC, GDC) and dual phase core shell (SDCC, GDCC) electrolyte materials. EDX analysis validated the presence of Sm and Gd in both single and dual phase electrolyte materials; also confirming the presence of amorphous Na2CO3 in SDCC and GDCC. From TGA analysis a steep weight loss is observed in case of SDCC and GDCC when temperature rises above 725 °C while SDC and GDC do not show any loss. The ionic conductivity and cell performance of single phase SDC and GDC nanocomposite were compared with core shell GDC/amorphous Na2CO3 and SDC/ amorphous Na2CO3 nanocomposites using methane fuel. It is observed that dual phase core shell electrolytes materials (SDCC, GDCC) show better performance in low temperature range than their corresponding single phase electrolyte materials (SDC, GDC) with methane fuel.

  18. High performance of SDC and GDC core shell type composite electrolytes using methane as a fuel for low temperature SOFC

    Directory of Open Access Journals (Sweden)

    Muneeb Irshad

    2016-02-01

    Full Text Available Nanocomposites Samarium doped Ceria (SDC, Gadolinium doped Ceria (GDC, core shell SDC amorphous Na2CO3 (SDCC and GDC amorphous Na2CO3 (GDCC were synthesized using co-precipitation method and then compared to obtain better solid oxide electrolytes materials for low temperature Solid Oxide Fuel Cell (SOFCs. The comparison is done in terms of structure, crystallanity, thermal stability, conductivity and cell performance. In present work, XRD analysis confirmed proper doping of Sm and Gd in both single phase (SDC, GDC and dual phase core shell (SDCC, GDCC electrolyte materials. EDX analysis validated the presence of Sm and Gd in both single and dual phase electrolyte materials; also confirming the presence of amorphous Na2CO3 in SDCC and GDCC. From TGA analysis a steep weight loss is observed in case of SDCC and GDCC when temperature rises above 725 °C while SDC and GDC do not show any loss. The ionic conductivity and cell performance of single phase SDC and GDC nanocomposite were compared with core shell GDC/amorphous Na2CO3 and SDC/ amorphous Na2CO3 nanocomposites using methane fuel. It is observed that dual phase core shell electrolytes materials (SDCC, GDCC show better performance in low temperature range than their corresponding single phase electrolyte materials (SDC, GDC with methane fuel.

  19. Electrolytically exfoliated graphene-loaded flame-made Ni-doped SnO2 composite film for acetone sensing.

    Science.gov (United States)

    Singkammo, Suparat; Wisitsoraat, Anurat; Sriprachuabwong, Chakrit; Tuantranont, Adisorn; Phanichphant, Sukon; Liewhiran, Chaikarn

    2015-02-11

    In this work, flame-spray-made SnO2 nanoparticles are systematically studied by doping with 0.1-2 wt % nickel (Ni) and loading with 0.1-5 wt % electrolytically exfoliated graphene for acetone-sensing applications. The sensing films (∼12-18 μm in thickness) were prepared by a spin-coating technique on Au/Al2O3 substrates and evaluated for acetone-sensing performances at operating temperatures ranging from 150 to 350 °C in dry air. Characterizations by X-ray diffraction, transmission/scanning electron microscopy, Brunauer-Emmett-Teller analysis, X-ray photoelectron spectroscopy and Raman spectroscopy demonstrated that Ni-doped SnO2 nanostructures had a spheriodal morphology with a polycrystalline tetragonal SnO2 phase, and Ni was confirmed to form a solid solution with SnO2 lattice while graphene in the sensing film after annealing and testing still retained its high-quality nonoxidized form. Gas-sensing results showed that SnO2 sensing film with 0.1 wt % Ni-doping concentration exhibited an optimal response of 54.2 and a short response time of ∼13 s toward 200 ppm acetone at an optimal operating temperature of 350 °C. The additional loading of graphene at 5 wt % into 0.1 wt % Ni-doped SnO2 led to a drastic response enhancement to 169.7 with a very short response time of ∼5.4 s at 200 ppm acetone and 350 °C. The superior gas sensing performances of Ni-doped SnO2 nanoparticles loaded with graphene may be attributed to the large specific surface area of the composite structure, specifically the high interaction rate between acetone vapor and graphene-Ni-doped SnO2 nanoparticles interfaces and high electronic conductivity of graphene. Therefore, the 5 wt % graphene loaded 0.1 wt % Ni-doped SnO2 sensor is a promising candidate for fast, sensitive and selective detection of acetone.

  20. The counterintuitive impact of separator-electrolyte combinations on the cycle life of graphite-silicon composite electrodes

    Science.gov (United States)

    Schott, Tiphaine; Gómez-Cámer, Juan Luis; Bünzli, Christa; Novák, Petr; Trabesinger, Sigita

    2017-03-01

    Thin polymeric membranes such as Celgard are commonly used as separators in Li-ion batteries to ensure high volumetric energy density. Independently, for silicon-based electrodes fluoroethylene carbonate (FEC) is often added to the electrolyte to improve the cycling stability of the cell. Here we demonstrate that, counterintuitively, this separator-electrolyte combination negatively affects the performance of graphite-Si electrodes in half-cells. In a statistical evaluation of the cycling behavior of C-Si electrode cells with various separators and either with or without FEC addition, we show that by improving the solid electrolyte interphase on the silicon particles, FEC addition leads to inhomogeneous current distribution in the electrodes, therefore favoring lithium dendrite growth and leading to irreversible failure with Celgard. In contrast, self-recovery is observed with simple glass-fiber separators. Without FEC, neither dendrites nor failure are observed, but cells with Celgard suffer from poorer electrochemical performance, due to clogging by the thick polymeric layer formed using standard electrolytes, than cells with thicker and hydrophilic separators.

  1. Effect of electrodeposition potential on composition and morphology ...

    Indian Academy of Sciences (India)

    Variation in composition with applied potentials was explained by cyclic voltammetry (CV) data. A suitable potential range from −0.8 to −1.0 V was found for obtaining films with desired and stable stoichiometry. In the post-annealing films, chalcopyrite structure starts forming in the samples deposited at −0.5 V and grows on ...

  2. Phyto-nutrient composition and antioxidative potential of ethanolic ...

    African Journals Online (AJOL)

    Phytochemical, micronutrient composition and anti-oxidative potential of ethanolic leaf extract of Sida acuta in albino wistar rats were investigated using standard analytical methods. The result (mg/100 g) for phytochemical composition were 91.46 ± 0.02 tannin, 1500.36 ± 0.36 alkaloid, 530.27 ± 0.03 saponin, 1163.86 ± 0.1 ...

  3. Ionic Liquid-Sulfolane Composite Electrolytes for High-Performance and Stable Dye-Sensitized Solar Cells

    OpenAIRE

    Marsalek Magdalena; Duriaux Arendse Francine; Decoppet Jean-David; Babkair Saeed Salem; Ansari Azhar Ahmad; Habib Sami S.; Wang Mingkui; Zakeeruddin Shaik M.; Graätzel Michael

    2014-01-01

    Ionic liquid electrolytes are prepared using sulfolane as a plasticizer for eutectic melts to realize highly stable and effi ciently performing dye sensi tized solar cells (DSCs) in hot climate conditions. Variations in the viscosity of the formulations with sulfolane content are measured and performance in DSCs is investigated using the ruthenium dye C106 as a sensitizer. A power conversion effi ciency (PCE) of 8.2 is achieved under standard reporting con ditions. Apart from lowering the vis...

  4. Plasma electrolytic oxidation of Titanium Aluminides

    Science.gov (United States)

    Morgenstern, R.; Sieber, M.; Grund, T.; Lampke, T.; Wielage, B.

    2016-03-01

    Due to their outstanding specific mechanical and high-temperature properties, titanium aluminides exhibit a high potential for lightweight components exposed to high temperatures. However, their application is limited through their low wear resistance and the increasing high-temperature oxidation starting from about 750 °C. By the use of oxide ceramic coatings, these constraints can be set aside and the possible applications of titanium aluminides can be extended. The plasma electrolytic oxidation (PEO) represents a process for the generation of oxide ceramic conversion coatings with high thickness. The current work aims at the clarification of different electrolyte components’ influences on the oxide layer evolution on alloy TNM-B1 (Ti43.5Al4Nb1Mo0.1B) and the creation of compact and wear resistant coatings. Model experiments were applied using a ramp-wise increase of the anodic potential in order to show the influence of electrolyte components on the discharge initiation and the early stage of the oxide layer growth. The production of PEO layers with technically relevant thicknesses close to 100 μm was conducted in alkaline electrolytes with varying amounts of Na2SiO3·5H2O and K4P2O7 under symmetrically pulsed current conditions. Coating properties were evaluated with regard to morphology, chemical composition, hardness and wear resistance. The addition of phosphates and silicates leads to an increasing substrate passivation and the growth of compact oxide layers with higher thicknesses. Optimal electrolyte compositions for maximum coating hardness and thickness were identified by statistical analysis. Under these conditions, a homogeneous inner layer with low porosity can be achieved. The frictional wear behavior of the compact coating layer is superior to a hard anodized layer on aluminum.

  5. The chemical composition and potential nutritive value of the foliage ...

    African Journals Online (AJOL)

    The chemical composition and potential nutritive value of the foliage of four subtropical tree species in southern Africa for ruminants. ... The foliage contained relatively low levels of sodium (Na), 0.041 g/kg DM, based on beef cattle standards. The IVOMD ranged from 53% for C. mopane to 64% C. apiculatum and the rumen ...

  6. Reactant gas composition for fuel cell potential control

    Science.gov (United States)

    Bushnell, Calvin L.; Davis, Christopher L.

    1991-01-01

    A fuel cell (10) system in which a nitrogen (N.sub.2) gas is used on the anode section (11) and a nitrogen/oxygen (N.sub.2 /O.sub.2) gaseous mix is used on the cathode section (12) to maintain the cathode at an acceptable voltage potential during adverse conditions occurring particularly during off-power conditions, for example, during power plant shutdown, start-up and hot holds. During power plant shutdown, the cathode section is purged with a gaseous mixture of, for example, one-half percent (0.5%) oxygen (O.sub.2) and ninety-nine and a half percent (99.5%) nitrogen (N.sub.2) supplied from an ejector (21) bleeding in air (24/28) into a high pressure stream (27) of nitrogen (N.sub.2) as the primary or majority gas. Thereafter the fuel gas in the fuel processor (31) and the anode section (11) is purged with nitrogen gas to prevent nickel (Ni) carbonyl from forming from the shift catalyst. A switched dummy electrical load (30) is used to bring the cathode potential down rapidly during the start of the purges. The 0.5%/99.5% O.sub.2 /N.sub.2 mixture maintains the cathode potential between 0.3 and 0.7 volts, and this is sufficient to maintain the cathode potential at 0.3 volts for the case of H.sub.2 diffusing to the cathode through a 2 mil thick electrolyte filled matrix and below 0.8 volts for no diffusion at open circuit conditions. The same high pressure gas source (20) is used via a "T" juncture ("T") to purge the anode section and its associated fuel processor (31).

  7. P(MMA-EMA Random Copolymer Electrolytes Incorporating Sodium Iodide for Potential Application in a Dye-Sensitized Solar Cell

    Directory of Open Access Journals (Sweden)

    Nurul Akmaliah Dzulkurnain

    2015-02-01

    Full Text Available Polymer electrolytes based on 90 wt% of methyl methacrylate and 10 wt% of ethyl methacrylate (90MMA-co-10EMA incorporating different weight ratios of sodium iodide were prepared using the solution casting method. The complexation between salt and copolymer host has been investigated using Fourier transform infrared spectroscopy. The ionic conductivity and thermal stability of the electrolytes were measured using impedance spectroscopy and differential scanning calorimetry, respectively. Scanning electron microscopy was used to study the morphology of the polymer electrolytes. The ionic conductivity and glass transition temperature increased up to 20 wt% of sodium iodide (5.19 × 10−6 S·cm−1 and decreased with the further addition of salt concentration, because of the crosslinked effect. The morphology behavior of the highest conducting sample also showed smaller pores compared to the other concentration. The total ionic transference number proved that this system was mainly due to ions, and the electrochemical stability window was up to 2.5 V, which is suitable for a dye-sensitized solar cell application. This sample was then tested in a dye-sensitized solar cell and exhibited an efficiency of 0.62%.

  8. Composite measures quantify households' obesogenic potential and adolescents' risk behaviors.

    Science.gov (United States)

    Grunseit, Anne Carolyn; Taylor, Alan J; Hardy, Louise Lawson; King, Lesley

    2011-08-01

    The aims of this study were to generate composite measures quantifying a household's obesogenic potential and to examine the relationship of the composite variables with older children's eating, physical activity (PA), and small screen recreation. Data were from surveys with 1685 child-parent pairs in which the child was in grade 6, 8, or 10 (mean age: 14 years). Composite measures of the obesogenic household environment were generated from 11 measures using nonlinear principal components analysis. Associations between the composite measures and the children's healthy and unhealthy food intake, PA, and screen time were tested (adjusting for demographic characteristics). Two scales were generated: (1) obesogenic control, which clustered together factors that mitigate risk; and (2) obesogenic risk. Higher scores on the control scale were associated with higher adolescent intake of healthy foods, lower intake of unhealthy foods, higher PA, and less screen time. Higher scores on the risk scale were associated with lower adolescent intake of healthy foods, higher intake of unhealthy foods, lower PA, and more screen time. There were significant 2-way interactions between the scales for soft drink consumption and PA. Household obesogenic potential may be quantified as 2 factors reflecting cumulative risk and control practices. These factors have both additive associations with obesogenic behaviors and, in some cases, modify each other, suggesting that a healthy home environment requires attention to both. Health promotion messages could incorporate these 2 different but interacting factors that parents can use to modify the obesogenic potential of their household.

  9. Polymer composite electrolytes having core-shell silica fillers with anion-trapping boron moiety in the shell layer for all-solid-state lithium-ion batteries.

    Science.gov (United States)

    Shim, Jimin; Kim, Dong-Gyun; Kim, Hee Joong; Lee, Jin Hong; Lee, Jong-Chan

    2015-04-15

    Core-shell silica particles with ion-conducting poly(ethylene glycol) and anion-trapping boron moiety in the shell layer were prepared to be used as fillers for polymer composite electrolytes based on organic/inorganic hybrid branched copolymer as polymer matrix for all-solid-state lithium-ion battery applications. The core-shell silica particles were found to improve mechanical strength and thermal stability of the polymer matrix and poly(ethylene glycol) and boron moiety in the shell layer increase compatibility between filler and polymer matrix. Furthermore, boron moiety in the shell layer increases both ionic conductivity and lithium transference number of the polymer matrix because lithium salt can be more easily dissociated by the anion-trapping boron. Interfacial compatibility with lithium metal anode is also improved because well-dispersed silica particles serve as protective layer against interfacial side reactions. As a result, all-solid-state battery performance was found to be enhanced when the copolymer having core-shell silica particles with the boron moiety was used as solid polymer electrolyte.

  10. Electrophoretic deposition of 9-YSZ solid electrolyte on Ni- YSZ composite; Estudos de deposicao eletroforetica de ceramicas de 9-YSZ sobre Ni-YSZ

    Energy Technology Data Exchange (ETDEWEB)

    Santos, F.S.; Yoshito, W.K.; Lazar, D.R.R.; Ussui, V., E-mail: vussui@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (CCTM/IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Ciencia e Tecnologia de Materiais

    2010-07-01

    9-YSZ ceramic and Ni-YSZ metal/ceramic composite are the more commonly used materials for the fabrication of solid oxide fuel cell electrolyte and anode, respectively. The main challenges for these applications are the forming of both materials as superposed double thin layers. In the present work ceramic powder of 9- YSZ was synthesized by a coprecipitation technique and the Ni O-YSZ composite by a combustion technique. The later was formed by uniaxial pressing as cylindrical pellets of 15 mm diameter. Thin ceramic layers of 9-YSZ were deposited on composite pellets from a suspension with 10% solid content by an Electrophoretic Deposition technique. Applied voltage varied in the range of 30 to 200 V and deposition time from 15 to 90 seconds, evaluating the deposited mass, porosity on the interface and adhesion of layers. Resulted ceramics were characterized by X-ray diffraction and were observed in a scanning electron microscope. Results showed that deposited layers are thin ({approx}20{mu}m), dense and have good adhesion on the surface of composite substrate. (author)

  11. Non-contact electric potential measurements of electrode components in an operating polymer electrolyte fuel cell by near ambient pressure XPS.

    Science.gov (United States)

    Yu, Liwei; Takagi, Yasumasa; Nakamura, Takahiro; Sekizawa, Oki; Sakata, Tomohiro; Uruga, Tomoya; Tada, Mizuki; Iwasawa, Yasuhiro; Samjeské, Gabor; Yokoyama, Toshihiko

    2017-11-22

    Photoelectron spectroscopy has the advantage of providing electric potentials by non-contact measurements based on the kinetic energy shift in component potential. We performed operando hard X-ray photoelectron spectroscopy (HAXPES) measurements with an 8 keV excitation source to measure the shift in electron kinetic energies as a function of the voltages of all the components at the anode and cathode electrodes of a polymer electrolyte fuel cell (PEFC). At the cathode electrode, when we increase the voltage between the cathode and anode from 0.2 to 1.2 V, the O 1s and F 1s peaks shift to a lower binding energy and the magnitude of the energy shift is equal to the voltage. The Pt 3d and C 1s peaks do not shift with the voltage since platinum nanoparticles and carbon supports at the cathode electrode have ground contact. In contrast to the cathode electrode, the peak shifts of all the components at the anode electrode show the same amount of shift as the voltages. It is clear that the change in the potential difference occurs only in an electrical double layer at the interface between the cathode electrode (Pt/C) and the electrolyte (Nafion and water), and that the anode electrode is in equilibrium as a pseudo-hydrogen electrode. Moreover, the electric potential variation of the cathode electrode in a PEFC under a power generation condition was also directly detected by operando HAXPES.

  12. Evaluation of apatite silicates as solid oxide fuel cell electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Marrero-Lopez, D. [Dpto. de Fisica Aplicada I, Laboratorio de Materiales y Superficies (Unidad Asociada al C.S.I.C.), Universidad de Malaga, 29071 Malaga (Spain); Dpto. de Quimica Inorganica, Universidad de La Laguna, 38200 La Laguna, Tenerife (Spain); Martin-Sedeno, M.C.; Aranda, M.A.G. [Dpto. de Quimica Inorganica, Universidad Malaga, 29071 Malaga (Spain); Pena-Martinez, J. [Dpto. de Quimica Inorganica, Universidad de La Laguna, 38200 La Laguna, Tenerife (Spain); Instituto de Energias Renovables, Parque Tecnologico, Universidad de Castilla La Mancha, 02006 Albacete (Spain); Ruiz-Morales, J.C.; Nunez, P. [Dpto. de Quimica Inorganica, Universidad de La Laguna, 38200 La Laguna, Tenerife (Spain); Ramos-Barrado, J.R. [Dpto. de Fisica Aplicada I, Laboratorio de Materiales y Superficies (Unidad Asociada al C.S.I.C.), Universidad de Malaga, 29071 Malaga (Spain)

    2010-05-01

    Apatite-type silicates have been considered as promising electrolytes for Solid Oxide Fuel Cells (SOFC); however studies on the potential use of these materials in SOFC devices have received relatively little attention. The lanthanum silicate with composition La{sub 10}Si{sub 5.5}Al{sub 0.5}O{sub 26.75} has been evaluated as electrolyte with the electrode materials commonly used in SOFC, i.e. manganite, ferrite and cobaltite as cathode materials and NiO-CGO composite, chromium-manganite and Sr{sub 2}MgMoO{sub 6} as anode materials. Chemical compatibility, area-specific resistance and fuel cell studies have been performed. X-ray powder diffraction (XRPD) analysis did not reveal any trace of reaction products between the apatite electrolyte and most of the aforementioned electrode materials. However, the area-specific polarisation resistance (ASR) of these electrodes in contact with apatite electrolyte increased significantly with the sintering temperature, indicating reactivity at the electrolyte/electrode interface. On the other hand, the ASR values are significantly improved using a ceria buffer layer between the electrolyte and electrode materials to prevent reactivity. Maximum power densities of 195 and 65 mWcm{sup -2} were obtained at 850 and 700 C, respectively in H{sub 2} fuel, using an 1 mm-thick electrolyte, a NiO-Ce{sub 0.8}Gd{sub 0.2}O{sub 1.9} composite as anode and La{sub 0.6}Sr{sub 0.4}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} as cathode materials. This fuel cell was tested for 100 h in 5%H{sub 2}-Ar atmosphere showing stable performance. (author)

  13. The potential of bamboo in the design of polymer composites

    Directory of Open Access Journals (Sweden)

    Patrícia Santos Delgado

    2012-08-01

    Full Text Available Bamboo is an alternative sustainable material for use in product design and has been incorporated into the concepts of eco-design. Here, we investigated the mechanical properties and morphologies of low density polyethylene (LDPE/bamboo flour (BF composites that were modified with polyethylene-graft-maleic anhydride (PE-g-MA and glycerol. Scanning electron microscopy (SEM and tensile tests of the composites demonstrated poor adhesion between the filler and matrix. Contact angle measurement showed that the surface of LDPE was modified by the presence of the load. The thermal stability of the composites was studied by measuring the oxidation induction time (OIT. Preliminary bacterial penetration tests were performed using culture inoculums of E. coli and S. aureus to investigate the natural antibacterial and bacteriostatic properties attributed to bamboo. Furthermore, bamboo may have interesting antioxidant activity with potential for use in food packaging applications.

  14. Effects of dietary protein and energy levels on digestive enzyme activities and electrolyte composition in the small intestinal fluid of geese.

    Science.gov (United States)

    Yang, Jing; Yang, Lin; Wang, Yongchang; Zhai, Shuangshuang; Wang, Shenshen; Yang, Zhipeng; Wang, Wence

    2017-02-01

    The present study was conducted to evaluate the effects of dietary protein and energy levels on digestive enzymes and electrolyte composition in jejunum of geese. A 3×3 factorial and completely randomized design was adopted with three protein levels and three energy levels. The experiment included four replicates for each treatment, and three geese for each replicate. Isovolumetric supernate from centrifugal jejuna fluid were mixed in each replicate. Activities of digestive enzymes and ions were analyzed. The results showed trypsin and chymotrypsin activities were significantly increased with increasing of dietary protein and energy levels (Pelectrolytes in the small intestine adapted to the protein and energy levels. The activities of protease, rather than amylase and cellulase were induced with increasing of protein and energy levels. The imbalance of positive and negative ions was possibly adjusted by the fluctuant concentrations of K(+) , Cl(-) and Ca(2+) for maintaining normal physiological function. © 2016 Japanese Society of Animal Science.

  15. Electrolyte Racers

    Science.gov (United States)

    Kellie, Shawn; Kellie, Tonya; Corbin-Tipton, Elizabeth

    2006-01-01

    A fast way to teach investigative skills in science is to tie them to NASCAR using Hot Wheels Formula Fuelers Race Cars. These inexpensive toy cars travel different distances based on the strength of the "electrolyte" (a substance that conducts electricity when dissolved in water) in their "fuel" tanks. Advertisements for these race cars urge kids…

  16. Thermophysical and Electrochemical Properties of Ethereal Functionalised Cyclic Alkylammonium-based Ionic Liquids as Potential Electrolytes for Electrochemical Applications.

    Science.gov (United States)

    Neale, Alex R; Murphy, Sinead; Goodrich, Peter; Hardacre, Christopher; Jacquemin, Johan

    2017-08-05

    A series of hydrophobic room temperature ionic liquids (ILs) based on ethereal functionalised pyrrolidinium, piperidinium and azepanium cations bearing the bis[(trifluoromethyl)sulfonyl]imide, [TFSI](-) , anion were synthesized and characterized. Their physicochemical properties such as density, viscosity and electrolytic conductivity, and thermal properties including phase transition behaviour and decomposition temperature have been measured. All of the ILs showed low melting point, low viscosity and good conductivity and the latter properties have been discussed in terms of the IL fragility, an important electrolyte feature of the transport properties of glass-forming ILs. Furthermore, the studied [TFSI](-) -based ILs generally exhibit good electrochemical stabilities and, by coupling electrochemical experiments and DFT calculations, the effect of ether functionalisation at the IL cation on the electrochemical stability of the IL is discussed. Preliminary investigations into the Li-redox chemistry at a Cu working electrode are also reported as a function of ether-functionality within the pyrrolidinium-based IL family. Overall, the results show that these ionic liquids are suitable for electrochemical devices such as battery systems, fuel cells or supercapacitors. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  17. Improved protocols for the study of urinary electrolyte excretion and blood pressure in rodents: use of gel food and stepwise changes in diet composition.

    Science.gov (United States)

    Nizar, Jonathan M; Bouby, Nadine; Bankir, Lise; Bhalla, Vivek

    2018-01-10

    Many experimental protocols in rodents require the comparison of groups that are fed different diets. Changes in dietary electrolyte and/or fat content can influence food intake, which can potentially introduce bias or confound the results. Unpalatable diets slow growth or cause weight loss, which is exacerbated by housing the animals in individual metabolic cages or by surgery. For balance studies in mice, small body weight and food intake, and low urinary flow can amplify these challenges. Powder food can be administered as a gel with the addition of a desired amount of water, electrolytes, drugs (if any), and a small amount of agar. We describe here how the use of gel food, to vary water, Na, K, and fat content can reduce weight loss and improve reproducibility of intake, urinary excretion, and blood pressure in rodents. In addition, mild food restriction reduces the inter-individual variability and inter-group differences in food intake and associated variables, thus, improving the statistical power of the experiment. Finally, we also demonstrate the advantages of using gel food for weight-based drug dosing. These protocols can improve the accuracy and reproducibility of experimental data where dietary manipulations are needed, and are especially advisable in rodent studies related to water balance, obesity and blood pressure.

  18. Reversible Compositional Control of Oxide Surfaces by Electrochemical Potentials

    KAUST Repository

    Mutoro, Eva

    2012-01-05

    Perovskite oxides can exhibit a wide range of interesting characteristics such as being catalytically active and electronically/ionically conducting, and thus, they have been used in a number of solid-state devices such as solid oxide fuel cells (SOFCs) and sensors. As the surface compositions of perovskites can greatly influence the catalytic properties, knowing and controlling their surface compositions is crucial to enhance device performance. In this study, we demonstrate that the surface strontium (Sr) and cobalt (Co) concentrations of perovskite-based thin films can be controlled reversibly at elevated temperatures by applying small electrical potential biases. The surface compositional changes of La 0.8Sr 0.2CoO 3-δ (LSC 113), (La 0.5Sr 0.5) 2CoO 4±δ (LSC 214), and LSC 214-decorated LSC 113 films (LSC 113/214) were investigated in situ by utilizing synchrotron-based X-ray photoelectron spectroscopy (XPS), where the largest changes of surface Sr were found for the LSC 113/214 surface. These findings offer the potential of reversibly controlling the surface functionality of perovskites. © 2011 American Chemical Society.

  19. High Energy Density Electrolytic Capacitor

    Science.gov (United States)

    Evans, David A.

    1996-01-01

    A new type of electrolytic capacitor which combines an electrolytic capacitor anode with an electrochemical capacitor cathode was developed. The resulting capacitor has a four time higher energy density than standard electrolytic capacitors, with comparable electric performance. The prototype, a 480 microFarad, 200 V device, has an energy density exceeding 4 J/cc. Now a 680 microFarad 50 V, MIL-style all tantalum device has been constructed and is undergoing qualification testing. Pending a favorable outcome, work will begin on other ratings. The potential for commercially significant development exists in applying this technology to aluminum-based electrolytic capacitors. It is possible to at least double the energy density of aluminum electrolytics, while using existing manufacturing methods, and without adding material expense. Data presented include electrical characteristics and performance measurements of the 200 V and 50 V hybrid capacitors and results from ongoing qualification testing of the MIL-style tantalum capacitors.

  20. Electrolyte Additives for Phosphoric Acid Fuel Cells

    DEFF Research Database (Denmark)

    Gang, Xiao; Hjuler, H.A.; Olsen, C.A.

    1993-01-01

    Electrochemical characteristics of a series of modified phosphoric acid electrolytes containing fluorinated car on compounds and silicone fluids as additives are presented. When used in phosphoric acid fuel cells, the modified electrolytes improve the performance due to the enhanced oxygen......, as a fuel-cell performance with the modified electrolytes. Specific conductivity measurements of some of the modified phosphoric acid electrolytes are reported. At a given temperature, the conductivity of the C4F9SO3K-modified electrolyte decreases with an increasing amount of the additive; the conductivity...... of the remains at the same value as the conductivity of the pure phosphoric acid. At a given composition, the conductivity of any modified electrolyte increases with temperature. We conclude that the improved cell performance for modified electrolytes is not due to any increase in conductivity....

  1. Construction of All-Solid-State Batteries based on a Sulfur-Graphene Composite and Li9.54 Si1.74 P1.44 S11.7 Cl0.3 Solid Electrolyte.

    Science.gov (United States)

    Xu, Ruochen; Wu, Zhang; Zhang, Shenzhao; Wang, Xiuli; Xia, Yan; Xia, Xinhui; Huang, Xiaohua; Tu, Jiangping

    2017-10-09

    Herein an effective way for construction of all-solid-state lithium-sulfur batteries (LSBs) with sulfur/reduced graphene oxide (rGO) and Li9.54 Si1.74 P1.44 S11.7 Cl0.3 solid electrolyte is reported. In the composite cathode, the Li9.54 Si1.74 P1.44 S11.7 Cl0.3 powder is homogeneously mixed with the S/rGO composite to enhance the ionic conductivity. Coupled with a metallic Li anode and solid electrolyte, the designed S/rGO-Li9.54 Si1.74 P1.44 S11.7 Cl0.3 composite cathode exhibits a high specific capacity and good cycling stability. A high initial discharge capacity of 969 mAh g(-1) is achieved at a current density of 80 mA g(-1) at room temperature and the cell retains a reversible capacity of over 827 mAh g(-1) after 60 cycles. The enhanced performance is attributed to the intimate contact between the S/rGO and Li9.54 Si1.74 P1.44 S11.7 Cl0.3 electrolyte, and high electrical conductivity of rGO and high ionic conductivity of the solid electrolyte. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Solid electrolytes

    Science.gov (United States)

    Abraham, Kuzhikalail M.; Alamgir, Mohamed

    1993-06-15

    This invention pertains to Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized (encapsulated) in a solid organic polymer matrix. In particular, this invention relates to solid polymer electrolytes derived by immobilizing complexes (solvates) formed between a Li salt such as LiAsF.sub.6, LiCF.sub.3 SO.sub.3 or LiClO.sub.4 and a mixture of aprotic organic solvents having high dielectric constants such as ethylene carbonate (EC) (dielectric constant=89.6) and propylene carbonate (PC) (dielectric constant=64.4) in a polymer matrix such as polyacrylonitrile, poly(tetraethylene glycol diacrylate), or poly(vinyl pyrrolidinone).

  3. Synthesis of 8YSZ-LSGM Composite Thick Film Ceramics for Solid Electrolyte From Nanopowder Utilizing Local Zircon Prepared Using Sol Gel Process

    Science.gov (United States)

    Syarif, Dani Gustaman; Soepriyanto, Syoni; Ismunandar, Korda, Akhmad

    2010-10-01

    Thick film ceramics of 8% mol Y2O3 doped-ZrO2 (8YSZ)-La0.8Sr0.2Ga0.2Mg0.8O3 (LSGM) composite for solid electrolyte have been synthesized from nanopowder. Concentration of LSGM was 0 and 10% weight. A paste for the thick films was made from 8YSZ nanopowder prepared using sol gel method and LSGM powder prepared by solid state reaction. Precursors for the 8YSZ nanopowder preparation were ZrOCl2ṡ8H2O derived from local zircon as byproduct of Tin processing at Bangka Island using caustic fussion method, and Y(NO3)3. The thick films were produced by screen printing technique on alumina substrates. The films were sintered at 1500° C for 2 hours in air. X-ray diffraction (XRD) data showed that the nanopowder of 8YSZ was well produced with broad peaks. The particle size of the 8YSZ powder was about 12 nm as calculated using Debye Scherrer method. The thick films of 8YSZ and 8YSZ-LSGM (90:10 in weight %) composite could be produced, however, the films still contain voids. The ionic conductance of the YSZ-10LSGM films was smaller than that of the YSZ films.

  4. POTENTIAL ANTISTATIC PROPERTIES OF A CEMENT COMPOSITION MODIFIED BY CHITOSAN

    Directory of Open Access Journals (Sweden)

    Darchiya Valentina Ivanovna

    2012-10-01

    Full Text Available Environmental compatibility of construction materials and their impact onto the human organism and the environment are the essential factors to be taken account of in the course of construction. Therefore, natural renewable biological polymers arouse interest. Polysaccharide chitin takes a special position among them. It represents one of the most widely spread biological polymers; it is extracted from 100% renewable materials. It is part of the external skeleton of crustaceans and insects, and it also part of cell walls of mushrooms and algae. Any research of potential materials to be generated from chitin and its derivative chitosan may involve a practical implementation. The research of the antistatic properties followed the introduction of 1% of chitosan into the cement composition. Electrostatic field intensity was measured by Electrostatic Field Intensity Meter ST-01. The electrostatic property of the sample modified by chitosan turned out to be lower than the one of the benchmark sample by 5.6 times. The presence of chitosan in the cement composition makes no impact on strength-related properties of the construction material. The cement composition modified by chitosan may be used in the manufacturing of antistatic self-leveling floors.

  5. Solid polymer electrolyte water electrolyser based on Nafion-TiO{sub 2} composite membrane for high temperature operation

    Energy Technology Data Exchange (ETDEWEB)

    Baglio, V.; Antonucci, V.; Arico, A.S. [CNR-ITAE, Messina (Italy); Matteucci, F.; Martina, F.; Zama, I. [Tozzi Renewable Energy SpA, Mezzano (Italy); Ciccarella, G. [National Nanotechnology Laboratory (NNL) of INFM-CNR, Distretto Tecnologico ISUFI, Innovazione, Universita del Salento, Lecce (Italy); Arriaga, L.G. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, Queretaro Sanfandila (Mexico); Ornelas, R.

    2009-06-15

    A composite Nafion-TiO{sub 2} membrane was manufactured by a recast procedure, using an in-house prepared TiO{sub 2}. This membrane has shown promising properties for high temperature operation in an SPE electrolyser allowing to achieve higher performance with respect to a commercial Nafion 115 membrane. This effect is mainly due to the water retention properties of the TiO{sub 2} filler. A promising increase in electrical efficiency was recorded at low current densities for the composite membrane-based SPE electrolyser at high temperature compared to conventional membrane-based devices. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  6. Investigating the Potential of Using Off-Axis 3D Woven Composites in Composite Joints' Applications

    Science.gov (United States)

    Saleh, Mohamed Nasr; Wang, Ying; Yudhanto, Arief; Joesbury, Adam; Potluri, Prasad; Lubineau, Gilles; Soutis, Constantinos

    2017-04-01

    The effect of circular notch has been evaluated for three different architectures of three-dimensional (3D) carbon fibre woven composites (orthogonal, ORT; layer-to-layer, LTL; angle interlock, AI) through open-hole quasi-static tension and double-lap bearing strength tests in the off-axis (45°) direction. Damage characterisation is monitored using Digital Image correlation (DIC) for open-hole testing and X-ray Computed Tomography (CT) for double-lap bearing strength test. The off-axis notched 3D woven composites exhibits minor reduction (less than 10 %) of the notched strength compared to the un-notched strength. DIC strain contour clearly show stress/strain localisation regions around the hole periphery and stress/strain redistribution away from the whole due to the z-binder existence, especially for ORT architecture. Up to 50 % bearing strain, no significant difference in the bearing stress/bearing strain response is observed. However when ORT architecture was loaded up to failure, it demonstrates higher strain to failure ( 140 %) followed by AI ( 105 %) and lastly LTL ( 85 %). X-ray CT scans reveal the effect of the z-binder architecture on damage evolution and delamination resistance. The study suggests that off-axis loaded 3D woven composites, especially ORT architecture, has a great potential of overcoming the current challenges facing composite laminates when used in composite joints' applications.

  7. Investigating the Potential of Using Off-Axis 3D Woven Composites in Composite Joints’ Applications

    KAUST Repository

    Saleh, Mohamed Nasr

    2016-09-26

    The effect of circular notch has been evaluated for three different architectures of three-dimensional (3D) carbon fibre woven composites (orthogonal, ORT; layer-to-layer, LTL; angle interlock, AI) through open-hole quasi-static tension and double-lap bearing strength tests in the off-axis (45°) direction. Damage characterisation is monitored using Digital Image correlation (DIC) for open-hole testing and X-ray Computed Tomography (CT) for double-lap bearing strength test. The off-axis notched 3D woven composites exhibits minor reduction (less than 10 %) of the notched strength compared to the un-notched strength. DIC strain contour clearly show stress/strain localisation regions around the hole periphery and stress/strain redistribution away from the whole due to the z-binder existence, especially for ORT architecture. Up to 50 % bearing strain, no significant difference in the bearing stress/bearing strain response is observed. However when ORT architecture was loaded up to failure, it demonstrates higher strain to failure (~140 %) followed by AI (~105 %) and lastly LTL (~85 %). X-ray CT scans reveal the effect of the z-binder architecture on damage evolution and delamination resistance. The study suggests that off-axis loaded 3D woven composites, especially ORT architecture, has a great potential of overcoming the current challenges facing composite laminates when used in composite joints’ applications. © 2016 The Author(s)

  8. Geopolymer Composites for Potential Applications in Cultural Heritage

    Directory of Open Access Journals (Sweden)

    Laura Ricciotti

    2017-12-01

    Full Text Available A new class of geopolymer composites, as materials alternative to traditional binders, was synthesized and its potentialities as restoration material in Cultural Heritage has been explored. This material has been prepared through a co-reticulation reaction in mild conditions of a metakaolin-based geopolymer inorganic matrix and a commercial epoxy resin. The freshly prepared slurry displays a consistency, workability and thixotropic behavior that make it suitable to be spread on different substrates in restoration, repair and reinforcement actions, even on walls and ceilings. Applicability and compatibility tests on tuff and concrete substrates were carried out and the microstructure of the samples in correspondence of the transition zone was analyzed by means of scanning electron microscope (SEM observations and energy dispersive spectroscopy (EDS mapping. Our studies pointed out the formation of a continuous phase between the geopolymer composite and tuff and concrete substrates, highlighting a high compatibility of the geopolymer binder with different kinds of materials. These features indicate a large potential for applications of these materials in Cultural Heritage.

  9. Surfactant-Assisted Perovskite Nanofillers Incorporated in Quaternized Poly (Vinyl Alcohol Composite Membrane as an Effective Hydroxide-Conducting Electrolyte

    Directory of Open Access Journals (Sweden)

    Selvaraj Rajesh Kumar

    2017-05-01

    Full Text Available Perovskite LaFeO3 nanofillers (0.1% are incorporated into a quaternized poly(vinyl alcohol (QPVA matrix for use as hydroxide-conducting membranes in direct alkaline methanol fuel cells (DAMFCs. The as-synthesized LaFeO3 nanofillers are amorphous and functionalized with cetyltrimethylammonium bromide (CTAB surfactant. The annealed LaFeO3 nanofillers are crystalline without CTAB. The QPVA/CTAB-coated LaFeO3 composite membrane shows a defect-free structure while the QPVA/annealed LaFeO3 film has voids at the interfaces between the soft polymer and rigid nanofillers. The QPVA/CTAB-coated LaFeO3 composite has lower methanol permeability and higher ionic conductivity than the pure QPVA and QPVA/annealed LaFeO3 films. We suggest that the CTAB-coated LaFeO3 provides three functions to the polymeric composite: increasing polymer free volume, ammonium group contributor, and plasticizer to enhance the interfacial compatibility. The composite containing CTAB-coated LaFeO3 results in superior cell performance. A maximum power density of 272 mW cm−2 is achieved, which is among the highest power outputs reported for DAMFCs in the literature.

  10. Plasma membranes modified by plasma treatment or deposition as solid electrolytes for potential application in solid alkaline fuel cells.

    Science.gov (United States)

    Reinholdt, Marc; Ilie, Alina; Roualdès, Stéphanie; Frugier, Jérémy; Schieda, Mauricio; Coutanceau, Christophe; Martemianov, Serguei; Flaud, Valérie; Beche, Eric; Durand, Jean

    2012-07-30

    In the highly competitive market of fuel cells, solid alkaline fuel cells using liquid fuel (such as cheap, non-toxic and non-valorized glycerol) and not requiring noble metal as catalyst seem quite promising. One of the main hurdles for emergence of such a technology is the development of a hydroxide-conducting membrane characterized by both high conductivity and low fuel permeability. Plasma treatments can enable to positively tune the main fuel cell membrane requirements. In this work, commercial ADP-Morgane® fluorinated polymer membranes and a new brand of cross-linked poly(aryl-ether) polymer membranes, named AMELI-32®, both containing quaternary ammonium functionalities, have been modified by argon plasma treatment or triallylamine-based plasma deposit. Under the concomitant etching/cross-linking/oxidation effects inherent to the plasma modification, transport properties (ionic exchange capacity, water uptake, ionic conductivity and fuel retention) of membranes have been improved. Consequently, using plasma modified ADP-Morgane® membrane as electrolyte in a solid alkaline fuel cell operating with glycerol as fuel has allowed increasing the maximum power density by a factor 3 when compared to the untreated membrane.

  11. Investigation of bio polymer electrolyte based on cellulose acetate-ammonium nitrate for potential use in electrochemical devices.

    Science.gov (United States)

    Monisha, S; Mathavan, T; Selvasekarapandian, S; Milton Franklin Benial, A; Aristatil, G; Mani, N; Premalatha, M; Vinoth Pandi, D

    2017-02-10

    Proton conducting materials create prime interest in electro chemical device development. Present work has been carried out to design environment friendly new biopolymer electrolytes (BPEs) using cellulose acetate (CA) complex with different concentrations of ammonium nitrate (NH4NO3), which have been prepared as film and characterized. The 50mol% CA and 50mol% NH4NO3 complex has highest ionic conductivity (1.02×10(-3)Scm(-1)). Differential scanning calorimetry shows the changes in glass transition temperature depends on salt concentration. Structural analysis indicates that the highest ionic conductivity complex exhibits more amorphous nature. Vibrational analysis confirms the complex formation, which has been validated theoretically by Gaussian 09 software. Conducting element in the BPEs has been predicted. Primary proton battery and proton exchange membrane fuel cell have been developed for highest ionic conductivity complex. Output voltage and power performance has been compared for single fuel cell application, which manifests the present BPE holds promise application in electrochemical devices. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Plasma Membranes Modified by Plasma Treatment or Deposition as Solid Electrolytes for Potential Application in Solid Alkaline Fuel Cells

    Science.gov (United States)

    Reinholdt, Marc; Ilie, Alina; Roualdès, Stéphanie; Frugier, Jérémy; Schieda, Mauricio; Coutanceau, Christophe; Martemianov, Serguei; Flaud, Valérie; Beche, Eric; Durand, Jean

    2012-01-01

    In the highly competitive market of fuel cells, solid alkaline fuel cells using liquid fuel (such as cheap, non-toxic and non-valorized glycerol) and not requiring noble metal as catalyst seem quite promising. One of the main hurdles for emergence of such a technology is the development of a hydroxide-conducting membrane characterized by both high conductivity and low fuel permeability. Plasma treatments can enable to positively tune the main fuel cell membrane requirements. In this work, commercial ADP-Morgane® fluorinated polymer membranes and a new brand of cross-linked poly(aryl-ether) polymer membranes, named AMELI-32®, both containing quaternary ammonium functionalities, have been modified by argon plasma treatment or triallylamine-based plasma deposit. Under the concomitant etching/cross-linking/oxidation effects inherent to the plasma modification, transport properties (ionic exchange capacity, water uptake, ionic conductivity and fuel retention) of membranes have been improved. Consequently, using plasma modified ADP-Morgane® membrane as electrolyte in a solid alkaline fuel cell operating with glycerol as fuel has allowed increasing the maximum power density by a factor 3 when compared to the untreated membrane. PMID:24958295

  13. CsH2PO4/NdPO4 Composites as Proton Conducting Electrolytes for Intermediate Temperature Fuel Cells

    DEFF Research Database (Denmark)

    Anfimova, Tatiana; Jensen, Annemette Hindhede; Christensen, Erik

    2015-01-01

    Composite proton conducting materials based on cesium dihydrogen phosphate and neodymium phosphate hydrate were prepared and investigated in terms of X-ray diffraction, thermogravimetry, conductivity, stability and fuel cell performance. At 150°C the conductivity was 1.8 × 10−6 S cm−1 for the pri......Composite proton conducting materials based on cesium dihydrogen phosphate and neodymium phosphate hydrate were prepared and investigated in terms of X-ray diffraction, thermogravimetry, conductivity, stability and fuel cell performance. At 150°C the conductivity was 1.8 × 10−6 S cm−1...... of the solid acid. The electromotive force, open circuit voltage and fuel cell performance were measured as demonstration of the material application....

  14. Morphological, mechanical and thermo-kinetic characterization of coal ash incorporated high performance PEO/PMMA thin film electrolyte composites

    Science.gov (United States)

    Sultana, Sabiha; Saleem Khan, Mohammad; Rehan, Imran; Rehan, Kamran; Amin, Noor-ul-; Humayun, Muhammad; Tabassum, Safia; Minhaz, Aaliya

    2017-11-01

    In the present work indigenous coal ash of Pakistan was used to prepare polymeric nanocomposites with Poly (ethylene oxide) (PEO)/Poly (methyl methacrylate) (PMMA)/lithium perchlorate (LiClO4). The coal ash was first characterized by various advanced spectroscopic techniques. The coal ash loading into the polymeric blend composites was considered by Thermo gravimetric/differential thermal analysis (TG/DTA), universal testing machine (UTM) and scanning electron microscopy (SEM)/energy dispersive x-rays (EDX) analysis. From TG/DTA data detailed kinetic analysis was performed. By applying various kinetic models, a range of kinetic parameters like ▵E, ▵G, ▵H, ▵S and A were successfully calculated for the first time for the studied system. Based upon aforementioned characterization it was established that coal ash incorporation into the polymeric blend composites improves its thermal and mechanical performance.

  15. The charge transport in polymeric gel electrolytes

    CERN Document Server

    Reiche, A

    2001-01-01

    The aim of the present thesis consisted in the study of the charge transport in gel electrolytes, which were obtained by photopolymerization of oligo(ethylene glycol) sub n -dimethacrylates with n=3, 9, and 23, and the survey of structure and property relations for the optimization of the electrolyte composition. The pressure dependence of the electric conductivity was measured. (HSI)

  16. Optimization of Pore Structure of Cathodic Carbon Supports for Solvate Ionic Liquid Electrolytes Based Lithium-Sulfur Batteries.

    Science.gov (United States)

    Zhang, Shiguo; Ikoma, Ai; Li, Zhe; Ueno, Kazuhide; Ma, Xiaofeng; Dokko, Kaoru; Watanabe, Masayoshi

    2016-10-04

    Lithium-sulfur (Li-S) batteries are a promising energy-storage technology owing to their high theoretical capacity and energy density. However, their practical application remains a challenge because of the serve shuttle effect caused by the dissolution of polysulfides in common organic electrolytes. Polysulfide-insoluble electrolytes, such as solvate ionic liquids (ILs), have recently emerged as alternative candidates and shown great potential in suppressing the shuttle effect and improving the cycle stability of Li-S batteries. Redox electrochemical reactions in polysulfide-insoluble electrolytes occur via a solid-state process at the interphase between the electrolyte and the composite cathode; therefore, creating an appropriate interface between sulfur and a carbon support is of great importance. Nevertheless, the porous carbon supports established for conventional organic electrolytes may not be suitable for polysulfide-insoluble electrolytes. In this work, we investigated the effect of the porous structure of carbon materials on the Li-S battery performance in polysulfide-insoluble electrolytes using solvate ILs as a model electrolyte. We determined that the pore volume (rather than the surface area) exerts a major influence on the discharge capacity of S composite cathodes. In particular, inverse opal carbons with three-dimensionally ordered interconnected macropores and a large pore volume deliver the highest discharge capacity. The battery performance in both polysulfide-soluble electrolytes and solvate ILs was used to study the effect of electrolytes. We propose a plausible mechanism to explain the different porous structure requirements in polysulfide-soluble and polysulfide-insoluble electrolytes.

  17. Electrolytes for Wide Operating Temperature Lithium-Ion Cells

    Science.gov (United States)

    Smart, Marshall C. (Inventor); Bugga, Ratnakumar V. (Inventor)

    2016-01-01

    Provided herein are electrolytes for lithium-ion electrochemical cells, electrochemical cells employing the electrolytes, methods of making the electrochemical cells and methods of using the electrochemical cells over a wide temperature range. Included are electrolyte compositions comprising a lithium salt, a cyclic carbonate, a non-cyclic carbonate, and a linear ester and optionally comprising one or more additives.

  18. Prebiotic Potential and Chemical Composition of Seven Culinary Spice Extracts

    Science.gov (United States)

    Lu, Qing‐Yi; Summanen, Paula H.; Lee, Ru‐Po; Huang, Jianjun; Henning, Susanne M.; Heber, David; Finegold, Sydney M.

    2017-01-01

    Abstract The objective of this study was to investigate prebiotic potential, chemical composition, and antioxidant capacity of spice extracts. Seven culinary spices including black pepper, cayenne pepper, cinnamon, ginger, Mediterranean oregano, rosemary, and turmeric were extracted with boiling water. Major chemical constituents were characterized by RP‐HPLC‐DAD method and antioxidant capacity was determined by measuring colorimetrically the extent to scavenge ABTS radical cations. Effects of spice extracts on the viability of 88 anaerobic and facultative isolates from intestinal microbiota were determined by using Brucella agar plates containing serial dilutions of extracts. A total of 14 phenolic compounds, a piperine, cinnamic acid, and cinnamaldehyde were identified and quantitated. Spice extracts exhibited high antioxidant capacity that correlated with the total amount of major chemicals. All spice extracts, with the exception of turmeric, enhanced the growth of Bifidobacterium spp. and Lactobacillus spp. All spices exhibited inhibitory activity against selected Ruminococcus species. Cinnamon, oregano, and rosemary were active against selected Fusobacterium strains and cinnamon, rosemary, and turmeric were active against selected Clostridium spp. Some spices displayed prebiotic‐like activity by promoting the growth of beneficial bacteria and suppressing the growth of pathogenic bacteria, suggesting their potential role in the regulation of intestinal microbiota and the enhancement of gastrointestinal health. The identification and quantification of spice‐specific phytochemicals provided insight into the potential influence of these chemicals on the gut microbial communities and activities. Future research on the connections between spice‐induced changes in gut microbiota and host metabolism and disease preventive effect in animal models and humans is needed. PMID:28678344

  19. Prebiotic Potential and Chemical Composition of Seven Culinary Spice Extracts.

    Science.gov (United States)

    Lu, Qing-Yi; Summanen, Paula H; Lee, Ru-Po; Huang, Jianjun; Henning, Susanne M; Heber, David; Finegold, Sydney M; Li, Zhaoping

    2017-08-01

    The objective of this study was to investigate prebiotic potential, chemical composition, and antioxidant capacity of spice extracts. Seven culinary spices including black pepper, cayenne pepper, cinnamon, ginger, Mediterranean oregano, rosemary, and turmeric were extracted with boiling water. Major chemical constituents were characterized by RP-HPLC-DAD method and antioxidant capacity was determined by measuring colorimetrically the extent to scavenge ABTS radical cations. Effects of spice extracts on the viability of 88 anaerobic and facultative isolates from intestinal microbiota were determined by using Brucella agar plates containing serial dilutions of extracts. A total of 14 phenolic compounds, a piperine, cinnamic acid, and cinnamaldehyde were identified and quantitated. Spice extracts exhibited high antioxidant capacity that correlated with the total amount of major chemicals. All spice extracts, with the exception of turmeric, enhanced the growth of Bifidobacterium spp. and Lactobacillus spp. All spices exhibited inhibitory activity against selected Ruminococcus species. Cinnamon, oregano, and rosemary were active against selected Fusobacterium strains and cinnamon, rosemary, and turmeric were active against selected Clostridium spp. Some spices displayed prebiotic-like activity by promoting the growth of beneficial bacteria and suppressing the growth of pathogenic bacteria, suggesting their potential role in the regulation of intestinal microbiota and the enhancement of gastrointestinal health. The identification and quantification of spice-specific phytochemicals provided insight into the potential influence of these chemicals on the gut microbial communities and activities. Future research on the connections between spice-induced changes in gut microbiota and host metabolism and disease preventive effect in animal models and humans is needed. © 2017 The Authors. Journal of Food Science published by Wiley Periodicals, Inc. on behalf of Institute of

  20. Towards more thermally stable Li-ion battery electrolytes with salts and solvents sharing nitrile functionality

    Science.gov (United States)

    Kerner, Manfred; Lim, Du-Hyun; Jeschke, Steffen; Rydholm, Tomas; Ahn, Jou-Hyeon; Scheers, Johan

    2016-11-01

    The overall safety of Li-ion batteries is compromised by the state-of-the-art electrolytes; the thermally unstable lithium salt, lithium hexafluorophosphate (LiPF6), and flammable carbonate solvent mixtures. The problem is best addressed by new electrolyte compositions with thermally robust salts in low flammability solvents. In this work we introduce electrolytes with either of two lithium nitrile salts, lithium 4,5-dicyano-1,2,3-triazolate (LiDCTA) or lithium 4,5-dicyano-2-trifluoromethylimidazolide (LiTDI), in solvent mixtures with high flashpoint adiponitrile (ADN), as the main component. With sulfolane (SL) and ethylene carbonate (EC) as co-solvents the liquid temperature range of the electrolytes are extended to lower temperatures without lowering the flashpoint, but at the expense of high viscosities and moderate ionic conductivities. The anodic stabilities of the electrolytes are sufficient for LiFePO4 cathodes and can be charged/discharged for 20 cycles in Li/LiFePO4 cells with coulombic efficiencies exceeding 99% at best. The excellent thermal stabilities of the electrolytes with the solvent combination ADN:SL are promising for future electrochemical investigations at elevated temperatures (> 60 °C) to compensate the moderate transport properties and rate capability. The electrolytes with EC as a co-solvent, however, release CO2 by decomposition of EC in presence of a lithium salt, which potentially makes EC unsuitable for any application targeting higher operating temperatures.

  1. Fatty Acid Composition and Antioxidant Potential of Ten Cephalaria Species

    Directory of Open Access Journals (Sweden)

    Nazli Boke Sarikahya

    2015-01-01

    Full Text Available This paper focused on the assessment of fatty acid composition and antioxidant properties of ten Cephalaria (C. aytachii, C. taurica, C. tuteliana, C. procera, C. speciosa, C. tchihatchewii, C. hirsuta, C. elazigensis var. elazigensis,C. anatolica and C. aristata species. The principal fatty acids in all species were oleic acid (10.28-31.65%, linoleic acid (17.81–37.67% and palmitic acid (10.54–23.81%. L inolenic acid was also the most abundant fatty acid component in C. tuteliana (24.42% and in C. speciosa (36.65% . Invitro antioxidant capacity of the hexane extracts of ten Cephalaria species was investigated by CUPRAC and DPPH methods. Total phenolic content of hexane extracts was also examined. The results showed that all species of Cephalaria have antioxidant properties with the highest trolox equivalent antioxidant capacity (1.005 ± 0.13 mmol trolox equivalent per gram extact in C. aristata and the highest radical scavenging activity (IC 50 value 3.768 ± 0.67 mg/mL in C. tchihatchewii . It was found that reducing power of C. aristata and radical scavenging potential of C. tchihatchewii were mainly due to highest phenolic contents of these species (2.907 ± 0.146 and 3.037 ± 0.156 mg gallic acid equivalent per gram extract, respectively. These findings suggest that the Cephalaria species might be used as a potential source of unsaturated fatty acids as well as phenolic constituents possessing antioxidant activity in food, cosmetics and pharmaceutical industries

  2. In-plane and through-plane non-uniform carbon corrosion of polymer electrolyte fuel cell cathode catalyst layer during extended potential cycles

    Science.gov (United States)

    Ghosh, Sourov; Ohashi, Hidenori; Tabata, Hiroshi; Hashimasa, Yoshiyuki; Yamaguchi, Takeo

    2017-09-01

    The impact of electrochemical carbon corrosion via potential cycling durability tests mimicking start-stop operation events on the microstructure of the cathode catalyst layer in polymer electrolyte fuel cells (PEFCs) is investigated using focused ion beam (FIB) fabrication without/with the pore-filling technique and subsequent scanning electron microscope (SEM) observations. FIB/SEM investigations without pore-filling reveals that the durability test induces non-uniform cathode shrinking across the in-plane direction; the thickness of the catalyst layer decreases more under the gas flow channel compared to the area under the rim of the flow field. Furthermore, FIB/SEM investigations with the pore-filling technique reveal that the durability test also induces non-uniform cathode shrinking in the through-plane direction; the pores in the area close to the membrane are more shrunken compared with those close to the microporous layer. In particular, a thin area (1-1.5 μm) close to the membrane is found to be severely damaged; it includes closed pores that hinder mass transport through the catalyst layer. It is suggested that uneven carbon corrosion and catalyst layer compaction are responsible for the performance loss during potential cycling operation of PEFCs.

  3. Composition of Algal Oil and Its Potential as Biofuel

    Directory of Open Access Journals (Sweden)

    Pascal Schlagermann

    2012-01-01

    Full Text Available First test flights using blends with algae oil are already carried out and expectations by the aviation and other industries are high. On the other hand technical data about performance of cultivation systems, downstream processing, and suitability of algae oil as fuel are still limited. The existing microalgae growing industry mainly produces for the food and feed market. Energy efficiency is so far out of scope but needs to be taken into account if the product changes to biofuel. Energy and CO2 balances are used to estimate the potential of algae oil to fulfil the EU sustainability criteria for biofuels. The analysis is supported by lab tests as well as data gained by a pilot scale demonstrator combined with published data for well-known established processes. The algae oil composition is indicator of suitability as fuel as well as for economic viability. Approaches attaining high value fractions are therefore of great importance and will be discussed in order to determine the most intended market.

  4. Antioxidant Potential and Oil Composition of Callistemon viminalis Leaves

    Directory of Open Access Journals (Sweden)

    Muhammad Zubair

    2013-01-01

    Full Text Available The present study was designed to investigate the antioxidant potential and oil composition of Callistemon viminalis leaves. GC-MS analysis of the n-hexane extract revealed the presence of 40 compounds. Leaves contained appreciable levels of total phenolic contents (0.27–0.85 GAE mg/g and total flavonoid contents (2.25–7.96 CE mg/g. DPPH radical scavenging IC50 and % inhibition of linoleic acid peroxidation were found to be in the ranges of 28.4–56.2 μg/ml and 40.1–70.2%, respectively. The haemolytic effect of the plant leaves was found in the range of 1.79–4.95%. The antioxidant activity of extracts was also studied using sunflower oil as an oxidative substrate and found that it stabilized the oil. The correlation between the results of different antioxidant assays and oxidation parameters of oil indicated that leaves' methanolic extract, exhibiting higher TPC and TFC and scavenging power, was also more potent for enhancing the oxidative stability of sunflower oil.

  5. Glass Frit Dissolution Influenced by Material Composition and the Water Content in Iodide/Triiodide Electrolyte of Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Katrine Flarup Jensen

    2013-01-01

    Full Text Available To ensure long-term stable dye-sensitized solar cells (DSCs and modules, a hermetic sealing is required. This research investigates the chemical stability of I-/I3- redox electrolyte and four different glass frits (GFs. Sintered GF layers were openly exposed to nonaqueous redox electrolyte and redox electrolyte with 1, 5, and 10 wt% H2O in thin, encapsulated cells. The change in I3− absorbance was assigned to a reaction between the GF and I-/I3- electrolyte and was used to evaluate the chemical stability of the different GFs. The I3− absorbance change was monitored over 100 days. Two out of the four GFs were unstable when H2O was added to the redox electrolyte. The H2O caused metal ion leaching which was determined from EDX analysis of the inorganic remains of electrolyte samples. A GF based on Bi2O3–SiO2–B2O3 with low bond strength leached bismuth into electrolyte and formed the BiI3- complex. A ZnO–SiO2–Al2O3-based GF also became unstable when H2O was added to the redox electrolyte. Leaching of zinc ions due to exchange with H+ resulted in the formation of a zinc-iodine compound which caused I3− depletion. By applying the test design to different types of GFs, the material suitability in the DSC working environment was investigated.

  6. Effects of Solvent Composition on Liquid Range, Glass Transition, and Conductivity of Electrolytes of a (Li, Cs)PF6 Salt in EC-PC-EMC Solvents

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Michael S.; Li, Qiuyan; Li, Xing; Xu, Wu; Xu, Kang

    2017-05-10

    Electrolytes of 1 M LiPF6 (lithium hexafluorophosphate) and 0.05 M CsPF6 (cesium hexafluorophosphate) in EC-PC-EMC (ethylene carbonate-propylene carbonate-ethyl methyl carbonate) solvents of varying solvent compositions were studied for the effects of solvent composition on the lower limit of liquid range, viscosity (as reflected by the glass transition temperature), and electrolytic conductivity. In addition, a ternary phase diagram of EC-PC-EMC was constructed and crystallization temperatures of EC and EMC were calculated to assist the interpretation and understanding of the change of liquid range with solvent composition. A function based on Vogel-Fulcher-Tammann equation was fitted to the conductivity data in their entirety and plotted as conductivity surfaces in solvent composition space for more direct and clear comparisons and discussions. Changes of viscosity and dielectric constant of the solvents with their composition, in relation to those of the solvent components, were found to be underlying many of the processes studied.

  7. Ambient temperature deposition of gallium nitride/gallium oxynitride from a deep eutectic electrolyte, under potential control.

    Science.gov (United States)

    Sarkar, Sujoy; Sampath, S

    2016-05-11

    A ternary, ionically conducting, deep eutectic solvent based on acetamide, urea and gallium nitrate is reported for the electrodeposition of gallium nitride/gallium indium nitride under ambient conditions; blue and white light emitting photoluminescent deposits are obtained under potential control.

  8. Phyto-nutrient composition and antioxidative potential of ethanolic ...

    African Journals Online (AJOL)

    Linda

    The vitamin composition (mg/100 g) were 0.36 ± 0.01 thiamin, 0.19 ± 0.02 niacin, 24.27 .... Composition of some vitamins in the leaf of Sida acuta. Vitamin. Composition (mg/100 g). Thiamin. 0.36 ± 0.01. Niacin. 0.19 ± 0.02. Ascorbic acid. 24.27 ± 0.25. Tocopherol .... Chromolaena odorata in diabetic rats and Salmonella.

  9. LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES

    Energy Technology Data Exchange (ETDEWEB)

    Harlan U. Anderson

    2000-03-31

    . However, they have the potential of being useful as an interface on the anode side of the electrolyte. NexTech has focused much of its effort during the past few months on establishing tape casting methods for porous LSM substrates. This work, performed under a separate DOE-funded program, involved tape casting formulations comprising LSM powders with bi-modal particle size distributions and fugitive pore forming additives. Sintered LSM substrates with porosities in the 30 to 40 vol% range, and pore sizes of 10 {approx} 20 microns have been prepared. In addition, tape casting formulations involving composite mixtures of LSM and Sm-doped ceria (SDC) have been evaluated. The LSM/SDC cathode substrates are expected to provide better performance at low temperatures. Characterization of these materials is currently underway.

  10. Voltammetric investigation of the complexation equilibria in the presence of a low level of supporting electrolyte Part 1: Steady-state current-potential curves for inert complexes

    NARCIS (Netherlands)

    Palys, M.J.; Palys, Marcin J.; Stojek, Zbigniew; Bos, M.; van der Linden, W.E.

    1997-01-01

    The use of microelectrodes for voltammetric investigations of the complexation equilibria at very low concentrations of supporting electrolyte allows the risk of competitive complexation or contamination to be avoided, makes the activities of the species involved closer to their concentrations

  11. Effect of filler content on the properties of expanded- graphite-based composite bipolar plates for application in polymer electrolyte membrane fuel cells

    Science.gov (United States)

    Masand, Aakash; Borah, Munu; Pathak, Abhishek K.; Dhakate, Sanjay R.

    2017-09-01

    Minimization of the weight and volume of a hydrogen-based PEM fuel cell stack is an essential area of research for the development and commercialization of PEMFCs for various applications. Graphite-based composite bipolar plates have significant advantages over conventional metallic bipolar plates due to their corrosion resistivity and low cost. On the other hand, expanded graphite is seen to be a potential candidate for facilitating the required electrical, thermal and mechanical properties of bipolar plates with a low density. Therefore, in the present study, the focus is on minimization of the high loading of graphite and optimizes its composition to meet the target properties of bipolar plates as per the USDOE target. Three types of expanded graphite (EG)-phenolic-resin-based composite bipolar plates were developed by partially replacing the expanded graphite content with natural graphite (NG) and carbon black as an additional filler. The three types of composite plate with the reinforcing constituent ratio EG:NG:R (25:25:50) give a bending strength of 49 MPa, a modulus of ~6 GPa, electrical conductivity  >100 S cm-1, a shore hardness of 55 and a bulk density of 1.55 g/cc. The 50 wt% loading of resin is sufficient to wet the 50 wt% filler content in the composite plate. This study gives an insight into using hybrid reinforcements in order to achieve the desired properties of bipolar plates.

  12. Power dependent effects in the luminescence decay of GaAs/electrolyte contacts at the flat band potential

    Energy Technology Data Exchange (ETDEWEB)

    Kauffman, J.F.; Balko, B.A.; Richmond, G.L. [Univ. of Oregon, Eugene, OR (United States)

    1992-07-23

    Saturation of surface traps has been observed in the GaAs/Na{sub 2}-S photoelectrochemical system under modest excitation conditions. Saturation is shown to result in a surface minority trapping velocity that is dependent on time as well as laser excitation power. These saturation effects are observed by studying the luminescence decays of GaAs as a function of excitation pulse power under potentiostatic control at the flat band potential. The decays also indicate that surface minority carrier trapping is fast compared with processes which remove minority carriers from trap states. These results suggest that time-resolved experiments under high injection open circuit conditions may underestimate the surface minority trapping rate under typical solar conditions. 21 refs., 2 figs., 1 tab.

  13. The potential of bamboo in the design of polymer composites

    OpenAIRE

    Patrícia Santos Delgado; Sebastiana Luiza Bragança Lana; Eliane Ayres; Patrícia Oliveira Santiago Patrício; Rodrigo Lambert Oréfice

    2012-01-01

    Bamboo is an alternative sustainable material for use in product design and has been incorporated into the concepts of eco-design. Here, we investigated the mechanical properties and morphologies of low density polyethylene (LDPE)/bamboo flour (BF) composites that were modified with polyethylene-graft-maleic anhydride (PE-g-MA) and glycerol. Scanning electron microscopy (SEM) and tensile tests of the composites demonstrated poor adhesion between the filler and matrix. Contact angle measuremen...

  14. Phyto-nutrient composition and antioxidative potential of ethanolic ...

    African Journals Online (AJOL)

    Linda

    The vitamin composition (mg/100 g) were 0.36 ± 0.01 thiamin, 0.19 ± 0.02 niacin, 24.27 ± 0.25 ascorbic acid, 1.85 ± 0.32 tocopherol, 0.12 ± 0.05 riboflavin while mineral composition (mg/100 mg) ... 0.05) in mean values of plasma malondialdehyde concentration and a significant increase (P < 0.05) in reduced glutathione ...

  15. Effects of current generation and electrolyte pH on reverse salt flux across thin film composite membrane in osmotic microbial fuel cells.

    Science.gov (United States)

    Qin, Mohan; Abu-Reesh, Ibrahim M; He, Zhen

    2016-11-15

    Osmotic microbial fuel cells (OsMFCs) take advantages of synergy between forward osmosis (FO) and microbial fuel cells (MFCs) to accomplish wastewater treatment, current generation, and high-quality water extraction. As an FO based technology, OsMFCs also encounter reverse salt flux (RSF) that is the backward transport of salt ions across the FO membrane into the treated wastewater. This RSF can reduce water flux, contaminate the treated wastewater, and increase the operational expense, and thus must be properly addressed before any possible applications. In this study, we aimed to understand the effects of current generation and electrolyte pH on RSF in an OsMFC. It was found that electricity generation could greatly inhibit RSF, which decreased from 16.3 ± 2.8 to 3.9 ± 0.7 gMH when the total Coulomb production increased from 0 to 311 C. The OsMFC exhibited 45.9 ± 28.4% lower RSF at the catholyte pH of 3 than that at pH 11 when 40 Ω external resistance was connected. The amount of sodium ions transported across the FO membrane was 18.3-40.7% more than that of chloride ions. Ion transport was accomplished via diffusion and electrically-driven migration, and the theoretical analysis showed that the inhibited electrically-driven migration should be responsible for the reduced RSF. These findings are potentially important to control and reduce RSF in OsMFCs or other osmotic-driven processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Studies on the effect of acid treated TiO2 on the electrical and tensile properties of hexanoyl chitosan-polystyrene-LiCF3SO3 composite polymer electrolytes

    Science.gov (United States)

    Hanif, Nur Shazlinda Muhammad; Shahril, Nur Syuhada Mohd; Azmar, Amisha; Winie, Tan

    2015-08-01

    Composite polymer electrolytes (CPEs) comprised of hexanoyl chitosan:polystyrene (90:10) blend, lithium triflouromethanesulfonate (LiCF3SO3) salt and titanium oxide (TiO2) filler were prepared by solution casting technique. The TiO2 fillers were treated with 2% sulphuric acid (H2SO4) aqueous solution. The effect of acid treated TiO2 on the electrical and tensile properties of the electrolytes were investigated. Acid treated TiO2 decreased the electrolyte conductivity. Both the dielectric constant and dielectric loss decrease with increasing frequency and increases with increasing temperature. Relaxation times for ionic carriers were extracted from the loss tangent maximum peak at various temperatures. A distribution of relaxation time implied the non-Debye response. At all frequencies, ac conductivity increases with increasing temperature. An enhancement in the Young's modulus was observed with the addition of TiO2. The Young's modulus increases with increasing TiO2 content. This is discussed using the percolation concept.

  17. Studies on the effect of acid treated TiO{sub 2} on the electrical and tensile properties of hexanoyl chitosan-polystyrene-LiCF{sub 3}SO{sub 3} composite polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Hanif, Nur Shazlinda Muhammad; Shahril, Nur Syuhada Mohd; Azmar, Amisha; Winie, Tan [Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam (Malaysia)

    2015-08-28

    Composite polymer electrolytes (CPEs) comprised of hexanoyl chitosan:polystyrene (90:10) blend, lithium triflouromethanesulfonate (LiCF{sub 3}SO{sub 3}) salt and titanium oxide (TiO{sub 2}) filler were prepared by solution casting technique. The TiO{sub 2} fillers were treated with 2% sulphuric acid (H{sub 2}SO{sub 4}) aqueous solution. The effect of acid treated TiO{sub 2} on the electrical and tensile properties of the electrolytes were investigated. Acid treated TiO{sub 2} decreased the electrolyte conductivity. Both the dielectric constant and dielectric loss decrease with increasing frequency and increases with increasing temperature. Relaxation times for ionic carriers were extracted from the loss tangent maximum peak at various temperatures. A distribution of relaxation time implied the non-Debye response. At all frequencies, ac conductivity increases with increasing temperature. An enhancement in the Young’s modulus was observed with the addition of TiO{sub 2}. The Young’s modulus increases with increasing TiO{sub 2} content. This is discussed using the percolation concept.

  18. Composite Gel Polymer Electrolyte Based on Poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) with Modified Aluminum-Doped Lithium Lanthanum Titanate (A-LLTO) for High-Performance Lithium Rechargeable Batteries.

    Science.gov (United States)

    Le, Hang T T; Ngo, Duc Tung; Kalubarme, Ramchandra S; Cao, Guozhong; Park, Choong-Nyeon; Park, Chan-Jin

    2016-08-17

    A composite gel polymer electrolyte (CGPE) based on poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) polymer that includes Al-doped Li0.33La0.56TiO3 (A-LLTO) particles covered with a modified SiO2 (m-SiO2) layer was fabricated through a simple solution-casting method followed by activation in a liquid electrolyte. The obtained CGPE possessed high ionic conductivity, a large electrochemical stability window, and interfacial stability-all superior to that of the pure gel polymer electrolyte (GPE). In addition, under a highly polarized condition, the CGPE effectively suppressed the growth of Li dendrites due to the improved hardness of the GPE by the addition of inorganic A-LLTO/m-SiO2 particles. Accordingly, the Li-ion polymer and Li-O2 cells employing the CGPE exhibited remarkably improved cyclability compared to cells without CGPE. In particular, the CGPE as a protection layer for the Li metal electrode in a Li-O2 cell was effective in blocking the contamination of the Li electrode by oxygen gas or impurities diffused from the cathode side while suppressing the Li dendrites.

  19. CREATIVE POTENTIAL OF RESEARCH AND DEVELOPMENT - A COMPOSITE INDEX OF POTENTIAL SIENTIFIC CREATIVITY

    Directory of Open Access Journals (Sweden)

    Dinescu Maria - Cristina

    2011-12-01

    Full Text Available Both Lisbon Council in March 2000 and the one in Barcelona in 2002 represent major turning points in science and research activities at European level. At that time there was a formal recognition that science, technology and innovation, coupled with a quality education is the key to development and long-term competitiveness of European space. Moreover, the decade 2000-2010 was declared as a dedicated to the investment in these sectors, and 2009 was named Year of Creativity and Innovation at European level. In a study in the EU States and candidate countries, whose results were published in 2010, it was noted however that, despite the special attention given lately to these issues, index fund allocations for research and development budgets national level of 2007 is 0.67% on average in the EU (27 countries, compared with Japan (0.68%, South Korea (0.80% and especially the United States (1.03 %. The purpose of this paper is to identify those factors that influence a nation's potential of scientific creativity and to find a way to compare different countries in terms of such potential. If until now many attempts were made to create an index of national or regional creativity, our goal is to narrow the field of creativity to scientific research and to compare the performance / potential of Romania compared to other European Union countries. Among the basic elements which have a direct impact on the potential for innovative scientific development, one can identify investment, human resources and current performance. Based on the above factors, a composite index of scientific creativity potential was developed, which takes into account the three main elements described above: human capital (human resources in science and technology and researchers, financial capital (investment in research and development and scientific performance (Hirsch Index. Data for the first two were extracted from the Eurostat database for comparisons to be made between

  20. Electrolytes and thermoregulation

    Science.gov (United States)

    Nielsen, B.; Greenleaf, J. E.

    1977-01-01

    The influence of ions on temperature is studied for cases where the changes in ionic concentrations are induced by direct infusion or injection of electrolyte solutions into the cerebral ventricles or into specific areas of brain tissue; intravenous infusion or injection; eating food or drinking solutions of different ionic composition; and heat or exercise dehydration. It is shown that introduction of Na(+) and Ca(++) into the cerebral ventricles or into the venous system affects temperature regulation. It appears that the specific action of these ions is different from their osmotic effects. It is unlikely that their action is localized to the thermoregulatory centers in the brain. The infusion experiments demonstrate that the changes in sodium balance occurring during exercise and heat stress are large enough to affect sweat gland function and vasomotor activity.

  1. Influence of the external conditions on salt retention and pressure-induced electrical potential measured across a composite membrane

    DEFF Research Database (Denmark)

    Benavente, Juana; Jonsson, Gunnar Eigil

    1999-01-01

    Transport on single electrolyte solutions (NaCl and MgCl2) due to pressure gradients across a commercial reverse osmosis membrane was studied by measuring volume flux (J(v)), salt rejection (S) and pressure induced electrical potential (Delta E) in a crossflow cell. The influence on these paramet......Transport on single electrolyte solutions (NaCl and MgCl2) due to pressure gradients across a commercial reverse osmosis membrane was studied by measuring volume flux (J(v)), salt rejection (S) and pressure induced electrical potential (Delta E) in a crossflow cell. The influence...... with respect to the value determined with single electrolytes at the same concentration was obtained, which is attributed to a strong coupling among the fluxes of individual ions and their distribution in the membrane when transport of mixed salt is studied. (C) 1999 Elsevier Science B.V. All rights reserved....

  2. Potentials to differentiate milk composition by different feeding strategies

    DEFF Research Database (Denmark)

    Slots, Tina; Butler, G.; Leifert, C.

    2009-01-01

    To investigate the effect of the dietary intake of the cow on milk composition, bulk-tank milk was collected on 5 occasions from conventional (n = 15) and organic (n = 10) farms in Denmark and on 4 occasions from low-input nonorganic farms in the United Kingdom, along with management and production...

  3. Elemental composition and potential health impacts of phaseolus ...

    African Journals Online (AJOL)

    The filtrate is added to hard-to-cook foods, like dried legumes, to decrease cooking time and improve flavor. However, the elemental ... Dried ash and ash filtrate samples of P. vulgaris from Dog Abam, Telela, Arok, and Tit villages in Northern Uganda were analyzed for chemical composition. Ash filtrate samples were ...

  4. Potential release scenarios for carbon nanotubes used in composites

    Science.gov (United States)

    The expected widespread use of carbon nanotube (CNT)-composites in consumer products calls for an assessment of the possible release and exposure to workers, consumers and the environment. Release of CNTs may occur at all steps in the life cycle of products, but to date only limi...

  5. Effect of electrodeposition potential on composition and morphology ...

    Indian Academy of Sciences (India)

    Ga, In and Se systems, binary Cu–Se, Ga–Se and In–Se systems and quaternary Cu–In–Ga–Se were carried out to understand the mechanism of ... observed in voltammograms of binary and quaternary systems. Variation in composition ... absorber material for solar cell application because it has a large optical absorption ...

  6. Lithium ion conducting electrolytes

    Science.gov (United States)

    Angell, Charles Austen; Liu, Changle; Xu, Kang; Skotheim, Terje A.

    1999-01-01

    The present invention relates generally to highly conductive alkali-metal ion non-crystalline electrolyte systems, and more particularly to novel and unique molten (liquid), rubbery, and solid electrolyte systems which are especially well suited for use with high current density electrolytic cells such as primary and secondary batteries.

  7. Lithium ion conducting electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Angell, C.A.; Liu, C.; Xu, K.; Skotheim, T.A.

    1999-10-05

    The present invention relates generally to highly conductive alkali-metal ion non-crystalline electrolyte systems, and more particularly to novel and unique molten (liquid), rubbery, and solid electrolyte systems which are especially well suited for use with high current density electrolytic cells such as primary and secondary batteries.

  8. High elastic modulus polymer electrolytes

    Science.gov (United States)

    Balsara, Nitash Pervez; Singh, Mohit; Eitouni, Hany Basam; Gomez, Enrique Daniel

    2013-10-22

    A polymer that combines high ionic conductivity with the structural properties required for Li electrode stability is useful as a solid phase electrolyte for high energy density, high cycle life batteries that do not suffer from failures due to side reactions and dendrite growth on the Li electrodes, and other potential applications. The polymer electrolyte includes a linear block copolymer having a conductive linear polymer block with a molecular weight of at least 5000 Daltons, a structural linear polymer block with an elastic modulus in excess of 1.times.10.sup.7 Pa and an ionic conductivity of at least 1.times.10.sup.-5 Scm.sup.-1. The electrolyte is made under dry conditions to achieve the noted characteristics.

  9. Abiotic reversible self-assembly of fulvic and humic acid aggregates in low electrolytic conductivity solutions by dynamic light scattering and zeta potential investigation.

    Science.gov (United States)

    Esfahani, Milad Rabbani; Stretz, Holly A; Wells, Martha J M

    2015-12-15

    The aggregation of humic substances and their interaction with filtration media (membranes, soils) has implications for our understanding of membrane fouling during water treatment, the facilitated transport of contaminants, and the transport of organic matter through the microbial loop. To investigate the aggregation of fulvic and humic acids in low electrolytic conductivity solutions, laboratory studies of simulated environmental water samples as well as actual environmental water samples were examined. Intensity-, volume-, and number-based particle size distributions (PSDs) were obtained by dynamic light scattering. Aggregates were categorized into three ranges, i.e., 10-100 nm, 100-1000 nm, and >1 μm. Individual biomacromolecules and the aggregates between 10 nm and 1 μm were presumed to be precursors for the formation of a large 5-μm-sized-particle. The self-assembly of the large-in-volume, few-in-number, 5-μm-sized particle was observed in real-time and occurred in unfiltered samples and in samples filtered (0.45 μm) at a nominal size one order of magnitude smaller. The supramicrometer-sized particle formed, dissipated, and spontaneously re-formed over turbulent/quiescent cycles in the presence of sodium azide indicating reversible abiotic self-assembly. Zeta potential analyses demonstrated that colloidal stability increased as concentration increased. DLS studies of the environmental water samples were comparable to those of the simulated laboratory samples. The operational range of the instrumentation used in these experiments was 0.6 nm-6 μm; therefore, aggregates larger than 6 μm may exist in these solutions. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Influence of beverage composition on the results of erosive potential measurement by different measurement techniques

    NARCIS (Netherlands)

    Jager, D. H. J.; Vieira, A. M.; Ruben, J. L.; Huysmans, M. C. D. N. J. M.

    2008-01-01

    The influence of beverage composition on the measurement of erosive potential is unclear. The aim of this study was to evaluate whether beverage composition influences the measurement of erosive potential and to evaluate the influence of exposure in small and large volumes. Eleven beverages were

  11. Influence of beverage composition on the results of erosive potential measurement by different measurement techniques.

    NARCIS (Netherlands)

    Jager, D.H.; Vieira, A.M.; Ruben, J.L.; Huysmans, M.C.D.N.J.M.

    2008-01-01

    The influence of beverage composition on the measurement of erosive potential is unclear. The aim of this study was to evaluate whether beverage composition influences the measurement of erosive potential and to evaluate the influence of exposure in small and large volumes. Eleven beverages were

  12. A Synopsis of Interfacial Phenomena in Lithium-Based Polymer Electrolyte Electrochemical Cells

    Science.gov (United States)

    Baldwin, Richard S.; Bennett, William R.

    2007-01-01

    The interfacial regions between electrode materials, electrolytes and other cell components play key roles in the overall performance of lithium-based batteries. For cell chemistries employing lithium metal, lithium alloy or carbonaceous materials (i.e., lithium-ion cells) as anode materials, a "solid electrolyte interphase" (SEI) layer forms at the anode/electrolyte interface, and the properties of this "passivating" layer significantly affect the practical cell/battery quality and performance. A thin, ionically-conducting SEI on the electrode surface can beneficially reduce or eliminate undesirable side reactions between the electrode and the electrolyte, which can result in a degradation in cell performance. The properties and phenomena attributable to the interfacial regions existing at both anode and cathode surfaces can be characterized to a large extent by electrochemical impedance spectroscopy (EIS) and related techniques. The intention of the review herewith is to support the future development of lithium-based polymer electrolytes by providing a synopsis of interfacial phenomena that is associated with cell chemistries employing either lithium metal or carbonaceous "composite" electrode structures which are interfaced with polymer electrolytes (i.e., "solvent-free" as well as "plasticized" polymer-binary salt complexes and single ion-conducting polyelectrolytes). Potential approaches to overcoming poor cell performance attributable to interfacial effects are discussed.

  13. Nutrient composition, availability, current and potential uses of dusa ...

    African Journals Online (AJOL)

    The samples were analysed for their proximate composition and (%) NDF, ADF and Hemicellulose. The mean DM, CP, EE, CF, Ash and NFE ranged between 89.58-93.02, 10.51-21.86, 1.42-5.38, 4.70-10.77, 0.68-4.55 and 58.29-68.89% respectively and the corresponding mean NDF, ADF and Hemicellulose ranged from ...

  14. Nanoporous polymer electrolyte

    Science.gov (United States)

    Elliott, Brian [Wheat Ridge, CO; Nguyen, Vinh [Wheat Ridge, CO

    2012-04-24

    A nanoporous polymer electrolyte and methods for making the polymer electrolyte are disclosed. The polymer electrolyte comprises a crosslinked self-assembly of a polymerizable salt surfactant, wherein the crosslinked self-assembly includes nanopores and wherein the crosslinked self-assembly has a conductivity of at least 1.0.times.10.sup.-6 S/cm at 25.degree. C. The method of making a polymer electrolyte comprises providing a polymerizable salt surfactant. The method further comprises crosslinking the polymerizable salt surfactant to form a nanoporous polymer electrolyte.

  15. The chemical composition and potential nutritive value of the foliage ...

    African Journals Online (AJOL)

    UPUSER

    (1998) emphasised that an important objective in the evaluation is also to identify tree species with a potential to be introduced in integrated crop and livestock agroforestry systems. These forages are important for animal production owing to their potentially good nutritive value. Their deep root systems take up minerals and ...

  16. Preparation and characterization of Nafion - TiO{sub 2} composite electrolytes for application in proton exchange membrane fuel cells; Preparacao e caracterizacao de eletrolitos compositos Nafion - TiO{sub 2} para aplicacao em celulas a combustivel de membrana de troca protonica

    Energy Technology Data Exchange (ETDEWEB)

    Matos, Bruno Ribeiro de

    2008-11-06

    The fabrication and characterization of Nafion - TiO{sub 2} composites, and the use of such electrolytes in PEM (Proton Exchange Membrane) fuel cell operating at high temperature (130 deg C) were studied. The operation of a PEM fuel cell at such high temperature is considered as an effective way to promote fast electrode reaction kinetics, high diffusional transport, and high tolerance to the carbon monoxide fuel contaminant. The polymer Nafion{sup R} is the most used electrolyte in PEM fuel cells due to its high proton conductivity. However, the proton transport in Nafion is dependent on the water content in the polymeric membrane. The need of absorbed water in the polymer structure limits the operation of the fuel cell to temperatures close to 100 deg C, above which Nafion exhibits a fast decrease of the ionic conductivity. In order to increase the performance of the electrolyte operating at high temperatures, Nafion-TiO{sub 2} composites have been prepared by casting. The addition of titania hygroscopic particles to the polymeric matrix aims at the enhancement of the humidification of the electrolyte at temperatures above 100 deg C. Three types of titania particles with different specific surface area and morphology have been investigated. Nafion-based composites with the addition of titania nanoparticles, in the 2.5-15 wt.% range, with nearly spherical shape and specific surface area up to approx. 115 m{sup 2}g{sup -1} were found to have higher glass transition temperature than the polymer. Such an increase improves the stability of the electrolyte during the fuel cell operation at high temperatures. The addition of titania-derived nanotubes results in a pronounced increase of the performance of PEM fuel cell operating at 130 deg C. In this composite, the high specific surface area and the tubular shape of the inorganic phase are responsible for the measured increase of both the absorption and retention of water of the composite electrolyte. Nonetheless, the

  17. Microbial community composition is unaffected by anode potential

    KAUST Repository

    Zhu, Xiuping

    2014-01-21

    There is great controversy on how different set anode potentials affect the performance of a bioelectrochemical system (BES). It is often reported that more positive potentials improve acclimation and performance of exoelectrogenic biofilms, and alter microbial community structure, while in other studies relatively more negative potentials were needed to achieve higher current densities. To address this issue, the biomass, electroactivity, and community structure of anodic biofilms were examined over a wide range of set anode potentials (-0.25, -0.09, 0.21, 0.51, and 0.81 V vs a standard hydrogen electrode, SHE) in single-chamber microbial electrolysis cells. Maximum currents produced using a wastewater inoculum increased with anode potentials in the range of -0.25 to 0.21 V, but decreased at 0.51 and 0.81 V. The maximum currents were positively correlated with increasing biofilm biomass. Pyrosequencing indicated biofilm communities were all similar and dominated by bacteria most similar to Geobacter sulfurreducens. Differences in anode performance with various set potentials suggest that the exoelectrogenic communities self-regulate their exocellular electron transfer pathways to adapt to different anode potentials. © 2013 American Chemical Society.

  18. Ionic potential as a controller of seawater composition

    Digital Repository Service at National Institute of Oceanography (India)

    DileepKumar, M.

    Attempts have been made to study whether linear relations exist between ionic potentials (IP) and factors determining their fate in seawater. Various elements have been studied according to the geochemical classification. Lithophilic 1 (L1) elements...

  19. Lithium carbon batteries with solid polymer electrolyte; Accumulateur lithium carbone a electrolyte solide polymere

    Energy Technology Data Exchange (ETDEWEB)

    Andrieu, X.; Boudin, F. [Alcatel Alsthom Recherche, 91 - Marcoussis (France)

    1996-12-31

    The lithium carbon batteries studied in this paper use plasticized polymer electrolytes made with passive polymer matrix swollen by a liquid electrolyte with a high ionic conductivity (> 10{sup -3} S/cm at 25 deg. C). The polymers used to prepare the gels are polyacrylonitrile (PAN) and vinylidene poly-fluoride (PVdF). The electrochemical and physical properties of these materials are analyzed according to their composition. The behaviour of solid electrolytes with different materials of lithium ion insertion (graphite and LiNiO{sub 2}) are studied and compared to liquid electrolytes. The parameters taken into account are the reversible and irreversible capacities, the cycling performance and the admissible current densities. Finally, complete lithium ion batteries with gelled electrolytes were manufactured and tested. (J.S.) 2 refs.

  20. Tuning chemical potential in the dirac cone by compositional engineering

    Science.gov (United States)

    Gopal, R. K.; Singh, Sourabh; Sarkar, Jit; Mitra, Chiranjib

    2017-10-01

    To realize fully topological transport for any device applications it is essential to tune the chemical potential in the bulk gap of the Dirac cone. Bi2Se3 (BS) and Bi2Te3 (BT) thin films do not show in general topological transport as the chemical potential doesn't lie entirely in the bulk gap. We report the successful formation of bulk insulating ternary topological insulators Bi2Se2Te (BST) by double target pulsed laser deposition technique. The films were deposited with sequential ablation of separate BS and BT targets. From the X-ray diffraction analysis and temperature dependent resistivity, we were able to conclude that the as-grown thin films have ordered chalcogen layers and the chemical potential in these thin films lie in the bulk gap. We have been able to achieve this fully topological transport in our sample grown by this technique. Our Magnetotransport data exhibits pronounced two-dimensional weak-antilocalization behavior (WAL) at low temperatures. It was possible to tune the chemical potential at will in the gap by depositing thin films through pulsed laser deposition technique using this simple and cost effective double target approach to grow quaternary TI thin films.

  1. Study on new BaCe{sub 0.7}In{sub 0.3}O{sub 3−δ}–Gd{sub 0.1}Ce{sub 0.9}O{sub 2−δ} composite electrolytes for intermediate-temperature solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Fengguang; Dang, Junjie; Hou, Jie; Qian, Jing; Zhu, Zhiwen; Wang, Zhongtao [CAS Key Laboratory of Materials for Energy Conversion, Department of Material Science and Engineering, University of Science and Technology of China, Hefei 230026 (China); Liu, Wei, E-mail: wliu@ustc.edu.cn [CAS Key Laboratory of Materials for Energy Conversion, Department of Material Science and Engineering, University of Science and Technology of China, Hefei 230026 (China); Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2015-08-05

    Highlights: • New BCI–GDC composite electrolytes were synthesized using a one-step method for SOFCs. • The sintering temperature decreases as the BCI content increases. • The conductivity and OCV values enhanced as the GDC content increases. • The possible interface effects between BCI and GDC were analyzed. - Abstract: New mixed ionic conductors, BaCe{sub 0.7}In{sub 0.3}O{sub 3−δ}–Gd{sub 0.1}Ce{sub 0.9}O{sub 2−δ} (BCI–GDC, weight ratio, 3:7, 5:5 and 7:3), were synthesized via a one-step citric acid–nitrate gel combustion method as electrolyte materials for solid oxide fuel cells (SOFCs). X-ray diffraction patterns of BCI–GDC indicated that there was no impurity phase formed after sintering at high temperature up to 1400 °C. Scanning electron microscopic study of BCI–GDC depicted dense grain morphology. Single fuel cells were prepared and the corresponding electrochemical performances were tested. The sintering temperature of the dense composite electrolyte membranes decrease as the BCI content increases because of the sintering aids of In element. All samples with the composite electrolyte showed higher open circuit voltage (OCV) values than the single phase GDC. In addition, Electrical conductivity of the composite electrolyte under different atmospheres at different temperatures confirmed that the BCI–GDC exhibited high mixed oxygen ionic and protonic conduction. The test results indicated that the conductivity and OCV values of the composite electrolyte enhanced as the GDC content increases, and the optimum performance was found to be BCI3–GDC7 compared with the pure BCI and GDC electrolyte. The possible interface effects were suggested to explain this phenomenon. Our results not only provide one new promising composite electrolyte material for intermediate-temperature SOFCs but the composition dependence can actually provide a guide for the material design, optimization.

  2. PEO nanocomposite polymer electrolyte for solid state symmetric ...

    Indian Academy of Sciences (India)

    Physical and electrochemical properties of polyethylene oxide (PEO)-based nanocomposite solid polymer electrolytes (NPEs) were investigated for symmetric capacitor applications. Nanosize fillers, i.e., Al2O3 and SiO2 incorporated polymer electrolyte exhibited higher ionic conductivity than those with filler-free composites ...

  3. Novel Nonflammable Electrolytes for Secondary Magnesium Batteries and High Voltage Electrolytes for Electrochemcial Supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, Brian

    2008-12-30

    Magnesium has been used successfully in primary batteries, but its use in rechargeable cells has been stymied by the lack of suitable non-aqueous electrolyte that can conduct Mg+2 species, combined with poor stripping and plating properties. The development of a suitable cathode material for rechargeable magnesium batteries has also been a roadblock, but a nonflammable electrolyte is key. Likewise, the development of safe high voltage electrochemical supercapaitors has been stymied by the use of flammable solvents in the liquid electrolyte; to wit, acetonitrile. The purpose of the research conducted in this effort was to identify useful compositions of magnesium salts and polyphosphate solvents that would enable magnesium ions to be cycled within a secondary battery design. The polyphosphate solvents would provide the solvent for the magnesium salts while preventing the electrolyte from being flammable. This would enable these novel electrolytes to be considered as an alternative to THF-based electrolytes. In addition, we explored several of these solvents together with lithium slats for use as high voltage electrolytes for carbon-based electrochemical supercapacitors. The research was successful in that: 1) Magnesium imide dissolved in a phosphate ester solvent that contains a halogented phosphate ester appears to be the preferred electrolyte for a rechargeable Mg cell. 2) A combination of B-doped CNTs and vanadium phosphate appear to be the cathode of choice for a rechargeable Mg cell by virtue of higher voltage and better reversibility. 3) Magnesium alloys appear to perform better than pure magnesium when used in combination with the novel polyphosphate electrolytes. Also, this effort has established that Phoenix Innovation's family of phosphonate/phosphate electrolytes together with specific lithium slats can be used in supercapacitor systems at voltages of greater than 10V.

  4. based gel polymer electrolytes

    Indian Academy of Sciences (India)

    vity at ambient temperature (Wright 1975; Martuscelli et al 1984). Generally solid polymer electrolytes have many advantages, viz. high ionic conductivity, high specific energy, wide electrochemical stability windows, light and easy processibility. Apart from this, polymer electrolyte studies have been carried out in poly(vinyl ...

  5. Human Water and Electrolyte Balance

    National Research Council Canada - National Science Library

    Montain, S. J; Cheuvront, S. N; Carter, R; Sawka, M. N

    2006-01-01

    .... Sweat losses, if not replaced, reduce body water volume and electrolyte content. Excessive body water or electrolyte losses can disrupt physiological homeostasis and threaten both health and performance...

  6. Towards Prognostics of Electrolytic Capacitors

    Data.gov (United States)

    National Aeronautics and Space Administration — A remaining useful life prediction algorithm and degradation model for electrolytic capacitors is presented. Electrolytic capacitors are used in several applications...

  7. Synthesis and ceramic processing of zirconia alumina composites for application as solid oxide fuel cell electrolytes; Sintese e processamento de compositos de zirconia-alumina para aplicacao como eletrolito em celulas a combustivel de oxido solido

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Rafael Henrique Lazzari

    2007-07-01

    The global warmness and the necessity to obtain clean energy from alternative methods than petroleum raises the importance of developing cleaner and more efficient systems of energy generation, among then, the solid oxide fuel cell (SOFC). Cubic stabilized zirconia (CSZ) has been the most studied material as electrolyte in SOFC, due to its ionic conductivity and great stability at operation conditions. However, its low fracture toughness difficulties its application as a thin layer, what could lead to an improvement of cell efficiency. In this sense, the alumina addition in CSZ forms a composite, which can shift its mechanical properties, without compromising its electrical properties. In this work, coprecipitation synthesis route and ceramic processing of zirconia-alumina composites were studied, in order to establish optimum conditions to attain high density, homogeneous microstructure, and better mechanical properties than CSZ, without compromising ionic conductivity. For this purpose, composites containing up to 40 wt % of alumina, in a 9 mol % yttria-stabilized zirconia (9Y-CSZ) matrix were evaluated. In order to optimize the synthesis of the composites, a preliminary study of powder obtaining and processing were carried out, at compositions containing 20 wt % of alumina, in 9Y-CSZ. The ceramic powders were characterized by helium picnometry, X-ray diffraction, scanning electronic microscopy, transmission electronic microscopy, thermogravimetry, differential scanning calorimetry, granulometry by laser diffraction and gas adsorption (BET). The characterization of sinterized compacts were performed by X-ray diffraction, scanning electron microscopy, optical microscopy, density measurements, Vickers indentation and impedance spectroscopy. The obtained results show that the alumina addition, in the 9Y-CSZ matrix powders, raises the specific surface area, promotes deagglomeration of powders and elevates the oxides crystallization temperature, requiring higher

  8. Plasma electrolytic oxidation of tantalum

    Directory of Open Access Journals (Sweden)

    Petković Marija

    2012-01-01

    Full Text Available This paper is a review of our research on the plasma electrolytic oxidation (PEO process of tantalum in 12-tungstosilicic acid. For the characterization of microdischarges during PEO, real-time imaging and optical emission spectroscopy (OES were used. The surface morphology, chemical and phase composition of oxide coatings were investigated by AFM, SEM-EDS and XRD. Oxide coating morphology is strongly dependent on PEO time. The elemental components of PEO coatings are Ta, O, Si and W. The oxide coatings are partly crystallized and mainly composed of WO3, Ta2O5 and SiO2.

  9. In-vivo study for anti-hyperglycemic potential of aqueous extract of Basil seeds (Ocimum basilicum Linn) and its influence on biochemical parameters, serum electrolytes and haematological indices.

    Science.gov (United States)

    Chaudhary, Sachin; Semwal, Amit; Kumar, Hitesh; Verma, Harish Chandra; Kumar, Amit

    2016-12-01

    The study introduced anti-hyperglycemic influence of aqueous extract of Ocimum basilicum seeds (AEOBS) in Streptozotocin (STZ) induced diabetic rats and estimating its potential to ameliorate altered level of biochemical parameters, serum electrolytes level and haematological indices along with its effect on body weight of treated rats. The albino rats were selected to observe oral glucose tolerance test by oral intake of aq. glucose solution (4g/kg, body weight) in normal rats and estimation of blood glucose level after administration of AEOBS at 250mg/kg, 500mg/kg and standard drug glibenclamide at 0.6mg/kg, body weight. Antidiabetic activity was evaluated in chronic study models by STZ induced diabetes in rats followed by blood glucose estimation. Chronic study model was selected to carry out further studies to evaluate the effect of AEOBS at 250mg/kg, 500mg/kg and standard drug on body weight, alterations in biochemical parameters including AST, ALT, ALP, total bilirubin and total protein, alterations in serum electrolytes like Na+, K+, Cl-, HCO3- along with estimation of haematological indices like red blood cells (RBC), white blood cells (WBC), hemoglobin (Hb), lymphocytes, neutrophils, eosinophils, monocytes and basophils. AEOBS significantly reduced the blood glucose level of diabetic rats at both doses. Body weight was also improved significantly. Similarly, the levels of biochemical parameters, serum electrolytes, and haematological indices were significantly ameliorated at both doses of AEOBS. The histopathological results revealed reconstitution of pancreatic islets towards normal cellular architecture in rats treated with AEOBS. The results illustrated that AEOBS have eminent antidiabetic potential in STZ effectuated diabetes in rats and can be extensively used for the treatment of diabetes mellitus-II and its associated complications including anaemia, diabetic nephropathy, liver dysfunction, and immunosuppression. Copyright © 2016 Elsevier Masson

  10. Vibrational dynamics of CO at single-crystal platinum electrodes in aqueous and non-aqueous electrolytes

    Science.gov (United States)

    Peremans, A.; Tadjeddine, A.; Zheng, W.-Q.; Le Rille, A.; Guyot-Sionnest, P.; Thiry, P. A.

    1996-12-01

    The vibrational dynamics of CO at two electrochemical interfaces is studied as a function of the electrode potential, for {CO}/{Pt(100) } in 0.1M aqueous H 2SO 4 and {CO}/{Pt(110) } in 0.05M C 16H 36ClNO 4 acetonitrile electrolyte. The measured lifetime of ˜1.7 ps is in line with those previously determined for dry CO-metal interfaces. The lifetime appears to be independent of the electrolyte composition, and unaffected by an electrode-potential variation as large as 2 V achieved for the non-aqueous electrolyte experiment. These measurements suggest that the 2π∗ CO acceptor orbital involved in the substrate/adsorbate charge transfer process is much broader than 0.8 eV.

  11. Development and demonstration of process and components for the control of aluminum-air-battery electrolyte composition through the precipitation of aluminum trihydroxide. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Swansiger, T. G.; Misra, C.

    1982-05-11

    Physical property data on density, viscosity, and electrical conductivity were developed and reduced to correlation form for synthetic electrolytes containing nominally 7 g/L Sn and 0.20 g/L Ga in 3,4,5,6 M NaOH. Concentrations of Al(OH)/sub 4/ were selected at six levels for each NaOH concentration and ranged from 0 to as high as 4 M Al(OH)/sub 4/ at 6 M NaOH. Measurements of each property were made at 25, 40, 60, and 80 C. The effect of the Sn and Ga impurities was to increase density by a relatively small percentage, increase viscosity by a significant percentage, and decrease electrical conductance by a significant percentage. Isothermal, batch precipitation experiments at 40, 60, and 80 C were utilized to develop data from which kinetic and solubility correlations were derived as functions of electrolyte and system parameters. Precipitation rate was negatively affected by tin in solution, with a 40% reduction in the rate constant being attributed to 0.06 M Sn. Both Sn and Ga co-precipitated with the Al(OH)/sub 3/ to an extent strongly dependent on temperature. Very high precipitation rates resulted in Na levels in product exceeding the target level of 0.24% Na on the hydrate basis. The incorporation of Na in product was also a strong function of temperature. A total of 108 computer simulations were performed and documented to delineate the region of feasible operation with respect to meeting the aluminate production specification. A full-scale precipitator was operated in a continuous mode to assess production rate, population changes with time, and hardware aspects. A digester was used to perform the function of an Al-Air battery, that is to drive Al(OH)/sub 4//sup -/ into solution. Results are presented in detail. (WHK)

  12. Interrelationships among Grain Size, Surface Composition, Air Stability, and Interfacial Resistance of Al-Substituted Li7La3Zr2O12 Solid Electrolytes.

    Science.gov (United States)

    Cheng, Lei; Wu, Cheng Hao; Jarry, Angelique; Chen, Wei; Ye, Yifan; Zhu, Junfa; Kostecki, Robert; Persson, Kristin; Guo, Jinghua; Salmeron, Miquel; Chen, Guoying; Doeff, Marca

    2015-08-19

    The interfacial resistances of symmetrical lithium cells containing Al-substituted Li7La3Zr2O12 (LLZO) solid electrolytes are sensitive to their microstructures and histories of exposure to air. Air exposure of LLZO samples with large grain sizes (∼150 μm) results in dramatically increased interfacial impedances in cells containing them, compared to those with pristine large-grained samples. In contrast, a much smaller difference is seen between cells with small-grained (∼20 μm) pristine and air-exposed LLZO samples. A combination of soft X-ray absorption (sXAS) and Raman spectroscopy, with probing depths ranging from nanometer to micrometer scales, revealed that the small-grained LLZO pellets are more air-stable than large-grained ones, forming far less surface Li2CO3 under both short- and long-term exposure conditions. Surface sensitive X-ray photoelectron spectroscopy (XPS) indicates that the better chemical stability of the small-grained LLZO is related to differences in the distribution of Al and Li at sample surfaces. Density functional theory calculations show that LLZO can react via two different pathways to form Li2CO3. The first, more rapid, pathway involves a reaction with moisture in air to form LiOH, which subsequently absorbs CO2 to form Li2CO3. The second, slower, pathway involves direct reaction with CO2 and is favored when surface lithium contents are lower, as with the small-grained samples. These observations have important implications for the operation of solid-state lithium batteries containing LLZO because the results suggest that the interfacial impedances of these devices is critically dependent upon specific characteristics of the solid electrolyte and how it is prepared.

  13. PVC-PBMA nanocomposite polymer electrolytes for lithium battery applications

    Science.gov (United States)

    Arunkumar, R.; Rani, M. Usha; Babu, Ravishanker

    2017-05-01

    Polyvinyl chloride (PVC)-Poly (butyl methacrylate) (PBMA) composite polymer electrolytes with incorporation of different ratio of ZrO2 doped was prepared by solution casting technique. The ionic conductivity, dielectric behavior, ionic transference number and surface morphology of the composite polymer electrolytes were characterized by using ac impedance, dielectric, DC polarization method and SEM studies respectively. The best room temperature ionic conductivity (0.520mScm-1 at 303 K), high dielectric constant (27340 ± 10 at 50 Hz) and high pore size obtained for 10 wt% of ZrO2 doped composite polymer electrolytes. DC polarization method confirms the occurrences of conduction in composite PVC-PBMA blend polymer electrolytes predominantly due to ions.

  14. Improved Electrolytic Hydrogen Peroxide Generator

    Science.gov (United States)

    James, Patrick I.

    2005-01-01

    An improved apparatus for the electrolytic generation of hydrogen peroxide dissolved in water has been developed. The apparatus is a prototype of H2O2 generators for the safe and effective sterilization of water, sterilization of equipment in contact with water, and other applications in which there is need for hydrogen peroxide at low concentration as an oxidant. Potential applications for electrolytic H2O2 generators include purification of water for drinking and for use in industrial processes, sanitation for hospitals and biotechnological industries, inhibition and removal of biofouling in heat exchangers, cooling towers, filtration units, and the treatment of wastewater by use of advanced oxidation processes that are promoted by H2O2.

  15. Electrochemical performance of lanthanum calcium cobalt ferrite cathode interfaced to LAMOX electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Cheng-Wei; Tsai, Dah-Shyang; Jin, Tsu-Yung; Chung, Wen-Hung [Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106 (Taiwan); Chou, Chen-Chia [Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei 106 (Taiwan)

    2008-05-15

    Lanthanum calcium cobalt ferrite (LCCF), a potential cathode composition for the LAMOX electrolyte, is studied on its electrocatalytic performance in oxygen reduction reaction (ORR) using impedance spectroscopy. Nyquist plots of LCCF impedance at 600-800 C display two arcs, in which the low-frequency arc is constantly larger than the high-frequency arc. When interfaced to the electrolyte containing 20 mol% tungsten, the ORR polarization resistance of LCCF exhibits a strong temperature dependency whose activation energy increases with increasing Co content, 190 (10 mol%)-220 (90 mol%) kJ mol{sup -} {sup 1}. Among the cathode compositions, LCCF82 (80 mol% Co) exhibits the best catalytic performance. Its zero-bias ORR resistance is 242.4 at 600 C, 0.845 {omega} cm{sup 2} at 800 C, along with the capacitance 7.79 (600 C), 14.93 mF cm{sup -} {sup 2} (800 C). The ORR resistance of LCCF82 decreases with increasing dc bias at 600 and 700 C, hardly changes at 800 C. The electrocatalytic activity of LCCF82 is also influenced by the tungsten content of its interfacing electrolyte. The exchange current density of LCCF82 correlates positively with the electrolyte ion conductivity which increases with decreasing tungsten content. (author)

  16. Alkaline direct ethanol fuel cell performance using alkali-impregnated polyvinyl alcohol/functionalized carbon nano-tube solid electrolytes

    Science.gov (United States)

    Huang, Chien-Yi; Lin, Jia-Shiun; Pan, Wen-Han; Shih, Chao-Ming; Liu, Ying-Ling; Lue, Shingjiang Jessie

    2016-01-01

    This study investigates the application of a polyvinyl alcohol (PVA)/functionalized carbon nano-tubes (m-CNTs) composite in alkaline direct ethanol fuel cells (ADEFC). The m-CNTs are functionalized with PVA using the ozone mediation method, and the PVA composite containing the modified CNTs is prepared. Adding m-CNT into the PVA matrix enhances the alkaline uptake and the ionic conductivity of the KOH-doped electrolyte. Meanwhile, the m-CNT-containing membrane exhibited a lower swelling ratio and suppressed ethanol permeability compared to the pristine PVA film. The optimal condition for the ADEFC is determined to be under operation at an anode feed of 3 M ethanol in a 5 M KOH solution (at a flow rate of 5 cm3 min-1) with a cathode feed of moisturized oxygen (with a flow rate of 100 cm3 min-1) and the KOH-doped PVA/m-CNT electrolyte. We achieved a peak power density value of 65 mW cm-2 at 60 °C, which is the highest among the ADEFC literature data and several times higher than the proton-exchange direct ethanol fuel cells using sulfonated membrane electrolytes. Therefore, the KOH-doped PVA/m-CNT electrolyte is a suitable solid electrolyte for ADEFCs and has potential for commercialization in alkaline fuel cell applications.

  17. Electrolytic refining of gold

    OpenAIRE

    Wohlwill, Emil

    2008-01-01

    At the request of the editor of ELECTROCHEMICAL INDUSTRY, I herewith give some notes on the electrolytic method of gold refining, to supplement the article of Dr. Tuttle (Vol. I, page 157, January, 1903).

  18. Anion exchange polymer electrolytes

    Science.gov (United States)

    Kim, Yu Seung; Kim, Dae Sik

    2015-06-02

    Anion exchange polymer electrolytes that include guanidinium functionalized polymers may be used as membranes and binders for electrocatalysts in preparation of anodes for electrochemical cells such as solid alkaline fuel cells.

  19. Nanoscale Organic Hybrid Electrolytes

    KAUST Repository

    Nugent, Jennifer L.

    2010-08-20

    Nanoscale organic hybrid electrolytes are composed of organic-inorganic hybrid nanostructures, each with a metal oxide or metallic nanoparticle core densely grafted with an ion-conducting polyethylene glycol corona - doped with lithium salt. These materials form novel solvent-free hybrid electrolytes that are particle-rich, soft glasses at room temperature; yet manifest high ionic conductivity and good electrochemical stability above 5V. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Phase composition and fine structure of 0.18C-1Cr-3Ni-1Mo-Fe steel after plasma-electrolytic treatment

    Science.gov (United States)

    Popova, Natalya; Bayatanova, Lyayla; Nikonenko, Elena; Skakov, Mazhyn; Kozlov, Eduard

    2017-01-01

    The paper presents the transmission electron microscopy (TEM) investigation of 0.18C-1Cr-3Mn-1Mo- Fe steel specimens to study phase transitions and modification of fine structure after plasma-electrolytic treatment (carbonitriding at 850°C during 5 min). TEM investigations involve two points: on the specimen surface and at ˜40 µm distance from it. The experiments show that the structure in the original state is a mixture consisting of ferrite and perlite grains. Carbonitriding results in a considerable modification of the quality and quantity of steel structure. Thus, on the surface, α-phase is represented by lamellar martensite, while at ˜40 µm depth - by massive and lamellar martensite tempered at low and high temperatures. Moreover, on the subsurface of the martensite plates' boundaries retained austenite layers are observed, while inside plates the particles of alloyed cementite, carbonitrides of M23(C,N)6, M2C0.61N0.39, M6,2C3,5N0,3, M(C,N)2, Cr12Fe32Mo7Ni7 types, and β-graphite are present. In the specimen at the depth of ˜40 µm, retained austenite layers are observed on the boundaries of martensite laths and plates, while inside plates only the particles of alloyed cementite and M23(C,N)6 carbonitride are formed.

  1. Hydrophobicity, surface tension, and zeta potential measurements of glass-reinforced hydroxyapatite composites.

    Science.gov (United States)

    Lopes, M A; Monteiro, F J; Santos, J D; Serro, A P; Saramago, B

    1999-06-15

    Wettability and zeta potential studies were performed to characterize the hydrophobicity, surface tension, and surface charge of P2O5-glass-reinforced hydroxyapatite composites. Quantitative phase analysis was performed by the Rietveld method using GSAS software applied to X-ray diffractograms. Surface charge was assessed by zeta potential measurements. Protein adsorption studies were performed using vitronectin. Contact angles and surface tensions variation with time were determined by the sessile and pendent drop techniques, respectively, using ADSA-P software. The highest (-18.1 mV) and lowest (-28.7 mV) values of zeta potential were found for hydroxyapatite (HA) and beta-tricalcium phosphate (beta-TCP), respectively, with composite materials presenting values in between. All studied bioceramic materials showed similar solid surface tension. For HA and beta-TCP, solid surface tensions of 46.7 and 45.3 mJ/m2, respectively, were obtained, while composites presented intermediate surface tension values. The dispersive component of surface tension was the predominant one for all materials studied. Adhesion work values between the vitronectin solution and HA and beta-TCP were found to be 79.8 and 88.0 mJ/m2, respectively, while the 4.0 wt % glass composites showed slightly lower values than the 2.5 wt % ones. The presence of beta-TCP influenced surface charge, hydrophobicity, and protein adsorption of the glass-reinforced HA composites, and therefore indirectly affected cell-biomaterial interactions.

  2. Low temperature solid oxide electrolytes (LT-SOE): A review

    Science.gov (United States)

    Singh, B.; Ghosh, S.; Aich, S.; Roy, B.

    2017-01-01

    Low temperature solid oxide fuel cell (LT-SOFC) can be a source of power for vehicles, online grid, and at the same time reduce system cost, offer high reliability, and fast start-up. A huge amount of research work, as evident from the literature has been conducted for the enhancement of the ionic conductivity of LT electrolytes in the last few years. The basic conduction mechanisms, advantages and disadvantages of different LT oxide ion conducting electrolytes {BIMEVOX systems, bilayer systems including doped cerium oxide/stabilised bismuth oxide and YSZ/DCO}, mixed ion conducting electrolytes {doped cerium oxides/alkali metal carbonate composites}, and proton conducting electrolytes {doped and undoped BaCeO3, BaZrO3, etc.} are discussed here based on the recent research articles. Effect of various material aspects (composition, doping, layer thickness, etc.), fabrication methods (to achieve different microstructures and particle size), design related strategies (interlayer, sintering aid etc.), characterization temperature & environment on the conductivity of the electrolytes and performance of the fuel cells made from these electrolytes are shown in tabular form and discussed. The conductivity of the electrolytes and performance of the corresponding fuel cells are compared. Other applications of the electrolytes are mentioned. A few considerations regarding the future prospects are pointed.

  3. Ionic liquid-nanoparticle hybrid electrolytes

    KAUST Repository

    Lu, Yingying

    2012-01-01

    We investigate physical and electrochemical properties of a family of organic-inorganic hybrid electrolytes based on the ionic liquid 1-methyl-3-propylimidazolium bis(trifluoromethanesulfone) imide covalently tethered to silica nanoparticles (SiO 2-IL-TFSI). The ionic conductivity exhibits a pronounced maximum versus LiTFSI composition, and in mixtures containing 13.4 wt% LiTFSI, the room-temperature ionic conductivity is enhanced by over 3 orders of magnitude relative to either of the mixture components, without compromising lithium transference number. The SiO 2-IL-TFSI/LiTFSI hybrid electrolytes are thermally stable up to 400°C and exhibit tunable mechanical properties and attractive (4.25V) electrochemical stability in the presence of metallic lithium. We explain these observations in terms of ionic coupling between counterion species in the mobile and immobile (particle-tethered) phases of the electrolytes. © 2012 The Royal Society of Chemistry.

  4. Electrolytic smelting of lunar rock for oxygen, iron, and silicon

    Science.gov (United States)

    Haskin, Larry A.; Colson, Russell O.; Lindstrom, David J.; Lewis, Robert H.; Semkow, Krystyna W.

    1992-01-01

    Preliminary studies of the electrochemical properties of silicate melts such as those available from heating of lunar mare soils indicate that conductivities are high enough for design of a practical electrolytic cell. The nature and kinetics of the electrode reactions, which involve reduction of Fe(++) and Si(IV) and oxidation of silicate anions as the primary, product-forming reactions, are also satisfactory. A survey of the efficiencies for production (amount of product for a given current) of O2, Fe(sup 0), and Si(sup 0) as functions of potential and of electrolyte composition indicate that conditions can be chosen to yield high production efficiencies. We also conclude that electronic conductivity does not occur to a significant extent. Based on these data, a cell with electrodes of 30 sq m in area operating between 1 and 5V with a current between 1.6 and 3.5(10)(exp 5) A for a mean power requirement of 0.54 MW and total energy use of approximately 13 MWhr per 24-hr day would produce 1 ton of O2, 0.81 ton of Fe(sup 0), 0.65 ton of Si(sup 0) (as Fe(sup 0)-Si(sup 0) alloy), and about 3.5 tons of silicate melt of altered composition per 24 hr. Adjustable distance between electrodes could offer flexibility with respect to feedstock and power source.

  5. Long-term antibiotic delivery by chitosan-based composite coatings with bone regenerative potential

    Science.gov (United States)

    Ordikhani, F.; Simchi, A.

    2014-10-01

    Composite coatings with bone-bioactivity and drug-eluting capacity are considered as promising materials for titanium bone implants. In this work, drug-eluting chitosan-bioactive glass coatings were fabricated by a single-step electrophoretic deposition technique. Drug-loading and -releasing capacity of the composite coatings were carried out using the vancomycin antibiotic. Uniform coatings with a thickness of ∼55 μm containing 23.7 wt% bioactive glass particles and various amounts of the antibiotic (380-630 μg/cm2) were produced. The coatings were bioactive in terms of apatite-forming ability in simulated body fluid and showed favorable cell adhesion and growth. In vitro biological tests also indicated that the composite coatings had better cellular affinity than pristine chitosan coatings. The in vitro elution kinetics of the composite coating revealed an initial burst release of around 40% of the drug within the first elution step of 1 h and following by a continuous eluting over 4 weeks, revealing long-term drug-delivering potential. Antibacterial tests using survival assay against Gram-positive Staphylococcus aureus bacteria determined the effect of vancomycin release on reduction of infection risk. Almost no bacteria were survived on the coatings prepared from the EPD suspension containing ≥0.5 g/l vancomycin. The developed chitosan-based composite coatings with bone bioactivity and long-term drug-delivery ability may be potentially useful for metallic implants to reduce infection risk.

  6. Electrochemical characterization of electrospun nanocomposite polymer blend electrolyte fibrous membrane for lithium battery.

    Science.gov (United States)

    Padmaraj, O; Rao, B Nageswara; Venkateswarlu, M; Satyanarayana, N

    2015-04-23

    Novel hybrid (organic/inorganic) electrospun nanocomposite polymer blend electrolyte fibrous membranes with the composition poly(vinylidene difluoride-co-hexafluoropropylene) [P(VdF-co-HFP)]/poly(methyl methacrylate) [P(MMA)]/magnesium aluminate (MgAl2O4)/LiPF6 were prepared by the electrospinning technique. All of the prepared electrospun P(VdF-co-HFP), PMMA blend [90% P(VdF-co-HFP)/10% PMMA], and nanocomposite polymer blend [90% P(VdF-co-HFP)/10% PMMA/x wt % MgAl2O4 (x = 2, 4, 6, and 8)] fibrous membranes were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, differential scanning calorimetry, and scanning electron microscopy. The fibrous nanocomposite separator-cum-polymer blend electrolyte membranes were obtained by soaking the nanocomposite polymer blend membranes in an electrolyte solution containing 1 M LiPF6 in ethylene carbonate (EC)/diethyl carbonate (DEC) (1:1, v/v). The newly developed fibrous nanocomposite polymer blend electrolyte [90% P(VdF-co-HFP)/10% PMMA/6 wt % MgAl2O4/LiPF6] membrane showed a low crystallinity, low average fiber diameter, high thermal stability, high electrolyte uptake, high conductivity (2.60 × 10(-3) S cm(-1)) at room temperature, and good potential stability above 4.5 V. The best properties of the fibrous nanocomposite polymer blend electrolyte (NCPBE) membrane with a 6 wt % MgAl2O4 filler content was used for the fabrication of a Li/NCPBE/LiCoO2 CR 2032 coin cell. The electrochemical performance of the fabricated CR 2032 cell was evaluated at a current density of 0.1 C-rate. The fabricated CR 2032 cell lithium battery using the newly developed NCPBE membrane delivered an initial discharge capacity of 166 mAh g(-1) and a stable cycle performance.

  7. Design for additive manufacturing of composite materials and potential alloys: a review

    Directory of Open Access Journals (Sweden)

    Hegab Hussien A.

    2016-01-01

    Full Text Available As a first step of applying additive manufacturing (AM technology, plastic prototypes have been produced using various AM Process such as Fusion Deposition Modeling (FDM, Stereolithography (SLA and other processes. After more research and development, AM has become capable of producing complex net shaped in materials which can be used in applicable parts. These materials include metals, ceramics, and composites. Polymers and metals are considered as commercially available materials for AM processes; however, ceramics and composites are still considered under research and development. In this study, a literature review on design for AM of composite materials and potential alloys is discussed. It is investigated that polymer matrix, ceramic matrix, metal matrix, and fiber reinforced are most common composites through AM. Furthermore, Functionally Graded Materials (FGM is considered as an effective application of AM because AM offers the ability to control the composition and optimize the properties of the built part. An example of FGM through using AM technology is the missile nose cone which includes an ultra-high temperature ceramic graded to a refractory metal from outside to inside and it used for sustaining extreme external temperatures. During this work, different applications of AM on different classifications of composite materials are shown through studying of industrial objective, the importance of application, processing, results and future challenges.

  8. Potential of Carbon Nanotube Reinforced Cement Composites as Concrete Repair Material

    Directory of Open Access Journals (Sweden)

    Tanvir Manzur

    2016-01-01

    Full Text Available Carbon nanotubes (CNTs are a virtually ideal reinforcing agent due to extremely high aspect ratios and ultra high strengths. It is evident from contemporary research that utilization of CNT in producing new cement-based composite materials has a great potential. Consequently, possible practical application of CNT reinforced cementitious composites has immense prospect in the field of applied nanotechnology within construction industry. Several repair, retrofit, and strengthening techniques are currently available to enhance the integrity and durability of concrete structures with cracks and spalling, but applicability and/or reliability is/are often limited. Therefore, there is always a need for innovative high performing concrete repair materials with good mechanical, rheological, and durability properties. Considering the mechanical properties of carbon nanotubes (CNTs and the test results of CNT reinforced cement composites, it is apparent that such composites could be used conveniently as concrete repair material. With this end in view, the applicability of multiwalled carbon nanotube (MWNT reinforced cement composites as concrete repair material has been evaluated in this study in terms of setting time, bleeding, and bonding strength (slant shear tests. It has been found that MWNT reinforced cement mortar has good prospective as concrete repair material since such composites exhibited desirable behavior in setting time, bleeding, and slant shear.

  9. Leaching of the potentially toxic pollutants from composites based on waste raw material

    Directory of Open Access Journals (Sweden)

    Terzić Anja

    2012-01-01

    Full Text Available The disposal of the fly ash generated in coal based power-plants may pose a significant risk to the environment due to the possible leaching of hazardous pollutants, such as toxic metals. Also, there is a risk of leaching even when fly ash is built-in the construction composites. Fly ashes from various landfills were applied in several composite samples (mortar, concrete and brick without any physical or thermal pre-treatment. The leachability of the potentially toxic pollutants from the fly ash based products was investigated. The leaching behavior and potential environmental impact of the 11 potentially hazardous elements was tracked: Pb, Cd, Zn, Cu, Ni, Cr, Hg, As, Ba, Sb and Se. A detailed study of physico-chemical characteristics of the fly ash, with accent on trace elements and the chemical composition investigation is included. Physico/chemical properties of fly ash were investigated by means of X-ray fluorescence, differential thermal analysis and X-ray diffraction methods. Scanning electron microscope was used in microstructural analysis. The results show that most of the elements are more easily leachable from the fly ash in comparison with the fly ash based composites. The leaching of investigated pollutants is within allowed range thus investigated fly ashes can be reused in construction materials production.

  10. Therapeutic approach to electrolyte emergencies.

    Science.gov (United States)

    Schaer, Michael

    2008-05-01

    Hypokalemia, hyperkalemia, hyponatremia, hypernatremia, hypocalcemia, and hypercalcemia are commonly seen in emergency medicine. Severe abnormalities in any of these electrolytes can cause potentially life-threatening consequences to the patient. It is essential that the clinician understand and correct (if possible) the underlying cause of each disorder and recognize the importance of the rates of correction, especially with serum sodium disorders. The recommended doses in this article might have to be adjusted to the individual patient, and these modifications must be adjusted again to the pathophysiology of the primary underlying disorder.

  11. Physical properties of molten carbonate electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, T.; Yanagida, M.; Tanimoto, K. [Osaka National Research Institute (Japan)] [and others

    1996-12-31

    Recently many kinds of compositions of molten carbonate electrolyte have been applied to molten carbonate fuel cell in order to avoid the several problems such as corrosion of separator plate and NiO cathode dissolution. Many researchers recognize that the addition of alkaline earth (Ca, Sr, and Ba) carbonate to Li{sub 2}CO{sub 3}-Na{sub 2}CO{sub 3} and Li{sub 2}CO{sub 3}-K{sub 2}CO{sub 3} eutectic electrolytes is effective to avoid these problems. On the other hand, one of the corrosion products, CrO{sub 4}{sup 2-} ion is found to dissolve into electrolyte and accumulated during the long-term MCFC operations. This would affect the performance of MCFC. There, however, are little known data of physical properties of molten carbonate containing alkaline earth carbonates and CrO{sub 4}{sup 2-}. We report the measured and accumulated data for these molten carbonate of electrical conductivity and surface tension to select favorable composition of molten carbonate electrolytes.

  12. Electrolytes in the cornea: a therapeutic challenge.

    Science.gov (United States)

    Schrage, N F; Flick, S; Redbrake, C; Reim, M

    1996-12-01

    Reported here are the results of electrolyte measurements in different layers of 70 apparently normal human corneas. Samples were examined by energy-dispersive X-ray analysis under calibrated conditions in a scanning electron microscope. The method allows the simultaneous quantitative analysis of, among others, sodium (Na), chloride (Cl), phosphorus (P) and potassium (K). The results are related to the dry weight of the analyzed samples. Four distinct layers, subepithelium, middle stroma, posterior stroma and Descemet's membrane, were analysed in each cornea. In the middle stroma we found concentrations of: sodium 0.609 +/- 0.13, chloride 0.557 +/- 0.115, potassium 0.058 +/- 0.02 and phosphorus 0.038 +/- 0.01 (mol/kg dry weight) [corrected]. The collation of normal electrolyte concentrations provides reference values for future studies on changes of the corneal electrolyte composition in diseased or injured eyes. The electrolyte composition of rinsing fluids or eye drops should be adjusted to that of the corneal stroma. Phosphate buffer, for example, is not a good vehicle for topical eye treatments and should be replaced by organic buffering systems.

  13. MultiLayer solid electrolyte for lithium thin film batteries

    Science.gov (United States)

    Lee, Se -Hee; Tracy, C. Edwin; Pitts, John Roland; Liu, Ping

    2015-07-28

    A lithium metal thin-film battery composite structure is provided that includes a combination of a thin, stable, solid electrolyte layer [18] such as Lipon, designed in use to be in contact with a lithium metal anode layer; and a rapid-deposit solid electrolyte layer [16] such as LiAlF.sub.4 in contact with the thin, stable, solid electrolyte layer [18]. Batteries made up of or containing these structures are more efficient to produce than other lithium metal batteries that use only a single solid electrolyte. They are also more resistant to stress and strain than batteries made using layers of only the stable, solid electrolyte materials. Furthermore, lithium anode batteries as disclosed herein are useful as rechargeable batteries.

  14. The buffer effect in neutral electrolyte supercapacitors

    Science.gov (United States)

    Vindt, Steffen T.; Skou, Eivind M.

    2016-02-01

    The observation that double-layer capacitors based on neutral aqueous electrolytes can have significantly wider usable potential windows than those based on acidic or alkaline electrolytes is studied. This effect is explained by a local pH change taking place at the electrode surfaces, leading to a change in the redox potential of water in opposite directions on the two electrodes, resulting in the wider stability window. The magnitude of this effect is suggested to be dependent on the buffer capacity, rather than the intrinsic pH value of the electrolyte. This is confirmed by studying the impact of addition of a buffer to such systems. It is shown that a 56 % higher dynamic storage capacity may be achieved, simply by controlling the buffer capacity of the electrolyte. The model system used, is based on a well-known commercial activated carbon (NORIT™ A SUPRA) as the electrode material, aqueous potassium nitrate as the electrolyte and potassium phosphates as the buffer system.

  15. Gel electrolytes and electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Fleischmann, Sven; Bunte, Christine; Mikhaylik, Yuriy V.; Viner, Veronika G.

    2017-09-05

    Gel electrolytes, especially gel electrolytes for electrochemical cells, are generally described. In some embodiments, the gel electrolyte layers comprise components a) to c). Component a) may be at least one layer of at least one polymer comprising polymerized units of: a1) at least one monomer containing an ethylenically unsaturated unit and an amido group and a2) at least one crosslinker. Component b) may be at least one conducting salt and component c) may be at least one solvent. Electrodes may comprise the components a), d) and e), wherein component a) may be at least one layer of at least one polymer as described herein. Component d) may be at least one electroactive layer and component e) may be at least one ceramic layer. Furthermore, electrochemical cells comprising component a) which may be at least one layer of at least one polymer as described herein, are also provided.

  16. Potential emissions savings of lightweight composite aircraft components evaluated through life cycle assessment

    Directory of Open Access Journals (Sweden)

    2011-03-01

    Full Text Available A cradle-to-grave life cycle assessment (LCA of structural aircraft materials has been utilised to assess and compare the total emissions produced during manufacturing, use and disposal of aerospace materials and their selected components. First, a comparison of aluminium, GLARE and carbon fibre reinforced polymer (CFRP plates was performed to investigate the potential of lightweight composites in reducing aviation emissions. Subsequently, a case study is presented on a tubular component for which more accurate manufacturing data were directly available. A structural steel tube was replaced with a composite tubular component. The analysis has shown that once the composite material is used as a component in the aircraft, there is a cumulative saving of aircraft fuel and emissions, in particular from CFRP structures. The environmental analysis included the long-term use predictions for CFRPs, involving detailed raw materials production, use and operation, and disposal scenarios.

  17. Seebeck effect in electrolytes.

    Science.gov (United States)

    Chikina, I; Shikin, V; Varlamov, A A

    2012-07-01

    We study Seebeck effect in liquid electrolytes, starting from its simple neutral analog--thermodiffusion (so-called Ludwig-Soret or Soret effect). It is observed that when two or more subsystems of mobile particles are subjected to the temperature gradient, various types of them respond to it differently. In the case when these fractions, with different mobility parameters (Soret coefficients), are oppositely charged (a case typical for electrolytes), the nonhomogeneous internal electric field is generated. The latter field prevents these fractions from space separation and determines the intensity of the appearing Seebeck effect.

  18. One-parameter families of supersymmetric isospectral potentials from Riccati solutions in function composition form

    Energy Technology Data Exchange (ETDEWEB)

    Rosu, Haret C., E-mail: hcr@ipicyt.edu.mx [IPICYT, Instituto Potosino de Investigacion Cientifica y Tecnologica, Camino a la presa San José 2055, Col. Lomas 4a Sección, 78216 San Luis Potosí, S.L.P. (Mexico); Mancas, Stefan C., E-mail: mancass@erau.edu [Department of Mathematics, Embry–Riddle Aeronautical University, Daytona Beach, FL 32114-3900 (United States); Chen, Pisin, E-mail: pisinchen@phys.ntu.edu.tw [Leung Center for Cosmology and Particle Astrophysics (LeCosPA) and Department of Physics, National Taiwan University, Taipei 10617, Taiwan (China)

    2014-04-15

    In the context of supersymmetric quantum mechanics, we define a potential through a particular Riccati solution of the composition form (F∘f)(x)=F(f(x)) and obtain a generalized Mielnik construction of one-parameter isospectral potentials when we use the general Riccati solution. Some examples for special cases of F and f are given to illustrate the method. An interesting result is obtained in the case of a parametric double well potential generated by this method, for which it is shown that the parameter of the potential controls the heights of the localization probability in the two wells, and for certain values of the parameter the height of the localization probability can be higher in the smaller well. -- Highlights: •Function-composition generalization of parametric isospectral potentials is presented. •Mielnik one-parameter family of harmonic potentials is obtained as a particular case. •Graphical discussion of regular and singular regions in the parameter space is given.

  19. Multi-scale simulations of Na2S + SiS2 glassy electrolyte

    Science.gov (United States)

    Beckman, Scott; Dive, Aniruddha; King, Clarence; Martin, Steve; Banerjee, Soumik

    Developing solid electrolytes with high ionic conductivity is a significant challenge. Here we explore sulfide glasses as potential electrolytes. A classical molecular dynamics approach was applied to evaluate the structures and ionic conductivity of a wide range of xNa2S - (1-x) SiS2 glassy electrolytes. Due to their amorphous nature, various starting configurations obtained using a typical melt-quench technique were explored to gather statistically reasonable structures. In order to validate the model, the results from the pair distribution functions for [0.5Na2S - 0.5SiS2] were compared with structure factor data from experiments. Finally, ionic conductivity was calculated for varying compositions to identify the most promising electrolytes. To scale up the calculations, allowing for the determination of interface properties and large scale calculations, a kinetic Monte Carlo simulation is developed to work in conjunction with the molecular dynamics calculations. Using this approach, it is possible to model the conductivity in these glasses from the atomic level to the macroscale.

  20. Atomic Layer Deposition of the Solid Electrolyte Garnet Li7La3Zr2O12

    Energy Technology Data Exchange (ETDEWEB)

    Kazyak, Eric; Chen, Kuan-Hung; Wood, Kevin N.; Davis, Andrew L.; Thompson, Travis; Bielinski, Ashley R.; Sanchez, Adrian; Wang, Xiang; Wang, Chongmin; Sakamoto, Jeff S.; Dasgupta, Neil P.

    2017-04-25

    Lithium solid electrolytes are a promising platform for achieving high energy density, long-lasting, and safe rechargeable batteries, which could have widespread societal impact. In particular, the ceramic oxide garnet Li7La3Zr2O12 (LLZO) has been shown to be a promising electrolyte due to its stability and high ionic conductivity. Two major challenges for commercialization are manufacturing of thin layers and creating stable, low-impedance, interfaces with both anode and cathode materials. Atomic Layer Deposition (ALD) has recently been shown as a potential method for depositing both solid electrolytes and interfacial layers to improve the stability and performance at electrode-electrolyte interfaces in battery systems. Herein we present the first reported ALD process for LLZO, demonstrating the ability to tune composition within the amorphous film and anneal to achieve the desired cubic garnet phase. Formation of the cubic phase was observed at temperatures as low as 555°C, significantly lower than is required for bulk processing. Additionally, challenges associated with achieving a dense garnet phase due to substrate reactivity, morphology changes and Li loss under the necessary high temperature annealing are quantified via in situ synchrotron diffraction.

  1. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.

    Science.gov (United States)

    Yu, Xingwen; Manthiram, Arumugam

    2017-11-21

    Electrode-electrolyte interfacial properties play a vital role in the cycling performance of lithium-sulfur (Li-S) batteries. The issues at an electrode-electrolyte interface include electrochemical and chemical reactions occurring at the interface, formation mechanism of interfacial layers, compositional/structural characteristics of the interfacial layers, ionic transport across the interface, and thermodynamic and kinetic behaviors at the interface. Understanding the above critical issues is paramount for the development of strategies to enhance the overall performance of Li-S batteries. Liquid electrolytes commonly used in Li-S batteries bear resemblance to those employed in traditional lithium-ion batteries, which are generally composed of a lithium salt dissolved in a solvent matrix. However, due to a series of unique features associated with sulfur or polysulfides, ether-based solvents are generally employed in Li-S batteries rather than simply adopting the carbonate-type solvents that are generally used in the traditional Li+-ion batteries. In addition, the electrolytes of Li-S batteries usually comprise an important additive, LiNO3. The unique electrolyte components of Li-S batteries do not allow us to directly take the interfacial theories of the traditional Li+-ion batteries and apply them to Li-S batteries. On the other hand, during charging/discharging a Li-S battery, the dissolved polysulfide species migrate through the battery separator and react with the Li anode, which magnifies the complexity of the interfacial problems of Li-S batteries. However, current Li-S battery development paths have primarily been energized by advances in sulfur cathodes. Insight into the electrode-electrolyte interfacial behaviors has relatively been overshadowed. In this Account, we first examine the state-of-the-art contributions in understanding the solid-electrolyte interphase (SEI) formed on the Li-metal anode and sulfur cathode in conventional liquid-electrolyte Li

  2. The electrolytic plating of compositionally modulated alloys and laminated metal nano-structures based on an automated computer-controlled dual-bath system

    DEFF Research Database (Denmark)

    NabiRahni, D.M.A.; Tang, Peter Torben; Leisner, Peter

    1996-01-01

    applications reported in the literature. Until recently, however, producing such multilayered coatings has been difficult at best, especially for larger samples of irregular configuration and in mass production. We will explain the design, objective and the use of our newly developed automated computer....... Employing the automated dual-bath technique, multilayered composite materials of copper-nickel and copper-cobalt with more than 1000 alternating layers of varying dimensions, if desired, have been investigated and manufactured. The thickness of each sub-layer ranges from 25 nm to several micrometres (mu m...

  3. Composition, texture and methane potential of cellulosic residues from Lewis acids organosolv pulping of wheat straw.

    Science.gov (United States)

    Constant, Sandra; Barakat, Abdellatif; Robitzer, Mike; Di Renzo, Francesco; Dumas, Claire; Quignard, Françoise

    2016-09-01

    Cellulosic pulps have been successfully isolated from wheat straw through a Lewis acids organosolv treatment. The use of Lewis acids with different hardness produced pulps with different delignification degrees. The cellulosic residue was characterised by chemical composition, X-ray diffraction, FT-IR spectroscopy, N2 physisorption, scanning electron microscopy and potential for anaerobic digestibility. Surface area and pore volume increased with the hardness of the Lewis acid, in correspondence with the decrease of the amount of lignin and hemicellulose in the pulp. The non linearity of the correlation between porosity and composition suggests that an agglomeration of cellulose fibrils occurs in the early stages of pulping. All organosolv pulps presented a significantly higher methane potential than the parent straw. A methane evolution of 295Ncm(3)/g OM was reached by a moderate improvement of the accessibility of the native straw. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Synthesis and physico-chemical characterization of a polysialate-hydroxyapatite composite for potential biomedical application

    Science.gov (United States)

    Zoulgami, M.; Lucas-Girot, A.; Michaud, V.; Briard, P.; Gaudé, J.; Oudadesse, H.

    2002-09-01

    New composite materials based on aluminosilicate materials were developed to be used in orthopaedic or maxillo-facial surgery. They are called geopolymers or polysialate-siloxo (PSS) and were studied alone or mixed with hydroxyapatite (HAP). The properties of these materials were investigated for potential use in biological or surgery applications. In this work, the chemistry involved in materials preparation was described. Samples were characterized by some physico-chemical methods like X-ray diffraction (XRD), infrared spectrometry (IR) and electron dispersion X-ray spectrometry (EDX). Results indicate that the mixing hydroxyapatite-geopolymer (PSS) leads to a neutral porous composite material with interesting physico-chemical properties. A preliminary evaluation of its cytotoxicity reveals an harmlessness towards fibroblasts. These properties allow to envisage this association as a potential biomaterial.

  5. A composite peripheral blood gene expression measure as a potential diagnostic biomarker in bipolar disorder

    DEFF Research Database (Denmark)

    Munkholm, Klaus; Peijs, L; Vinberg, M

    2015-01-01

    as a diagnostic and state biomarker in bipolar disorder. First, messenger RNA levels of 19 candidate genes were assessed in peripheral blood mononuclear cells of 37 rapid cycling bipolar disorder patients in different affective states (depression, mania and euthymia) during a 6-12-month period and in 40 age......Gene expression in peripheral blood has the potential to inform on pathophysiological mechanisms and has emerged as a viable avenue for the identification of biomarkers. Here, we aimed to identify gene expression candidate genes and to explore the potential for a composite gene expression measure......- and gender-matched healthy control subjects. Second, a composite gene expression measure was constructed in the first half study sample and independently validated in the second half of the sample. We found downregulation of POLG and OGG1 expression in bipolar disorder patients compared with healthy control...

  6. Transparent bifacial dye-sensitized solar cells based on organic counter electrodes and iodine-free electrolyte

    Science.gov (United States)

    Ku, Zhiliang; Rong, Yaoguang; Han, Hongwei

    2013-10-01

    In this study, a novel bifacially active transparent dye-sensitized solar cell (DSSCs) assembled with a transparent poly(3,4-ethylenedioxythiophene) (PEDOT) counter electrode and a colorless iodine-free polymer gel (IFPG) electrolyte was developed. The IFPG electrolyte was prepared by employing an ionic liquid (1,2-dimethyl-3-propylinmidazolium iodide, DMPII) as the charge transfer intermediate and a polymer composite as the gelator without the addition of iodine, exhibiting high conductivity and non-absorption characters. PEDOT electrodes were prepared via a facile electro-polymerization method. By controlling the amount of polymerization charge capacity, we optimized the PEDOT electrodes with high transparency and a favorable activity for catalyzing the IFPG electrolyte. The bifacial DSSCs device fabricated by this kind of transparent PEDOT electrode and colorless IFPG electrolyte showed a power conversion efficiency (PCE) of 6.35% and 4.98% at 100 mW cm-2 AM1.5 illumination corresponding to front- and rear-side illumination. It is notable that the PCE under rear-side illumination approaches 80% that of front-side illumination. Moreover, the device shows excellent stability as confirmed by aging test. These promising results highlight the enormous potential of this transparent PEDOT CE and colorless IFPG electrolyte in scaling up and commercialization of low cost and effective bifacial DSSCs.

  7. The effect of tooth age on colour adjustment potential of resin composite restorations.

    Science.gov (United States)

    Tanaka, A; Nakajima, M; Seki, N; Foxton, R M; Tagami, J

    2015-02-01

    The purpose of this study was to investigate the effect of tooth age on colour adjustment potential of resin composite restorations in human teeth. Twenty extracted human premolars with an A2 shade, extracted for orthodontic reasons from younger patients (20-28yrs) (younger teeth) and periodontal reasons from older patients (45-69yrs) (older teeth), were used in this study. Cylindrical shaped cavities (3.0mm depth; 2.0mm diameter) were prepared in the centre of the crowns on the buccal surface. One of four resin composites of A2 shade (Kalore, KA; Solare, SO; Clearfil Majesty, MJ; Beautifil II, BF) was placed in the cavity, and the colour was measured at four areas (0.4mm×0.4mm) on the restored teeth (area 1; tooth area 1.0mm away from the border of resin composite restoration: area 2; tooth border area 0.3mm away from margin of resin composite restoration: area 3; resin composite border area 0.3mm away from margin of resin composite restoration: area 4; resin composite area at the centre of resin composite restoration) using a spectrophotometer (Crystaleye). The colour of each area was determined according to the CIELAB colour scale. Colour differences (ΔE*) between the areas of 1 and 2, 2 and 3, 3 and 4 and 1 and 4 were calculated, and also the ratio of ΔE*area2-3 to ΔE*area1-4 (ΔE*area2-3/1-4), ΔE*area3-4 to ΔE*area1-4 (ΔE*area3-4/1-4) and ΔE*area1-2 to ΔE*area1-4 (ΔE*area1-2/1-4) as a parameter of the colour shift in resin composite restoration, were determined. Moreover, the light transmission characteristics of the resin materials and dentine discs from the younger and older teeth were measured using a goniophotometer. The data were statistically analyzed using two-way ANOVA, and Dunnett's T3 and t-test for the post hoc test. ΔE*area2-3 (colour difference between resin composite and tooth at the border) and ΔE*area1-4 (colour difference between resin composite and tooth) of the older teeth groups were significantly larger than those of younger

  8. Guava: phytochemical composition of a potential source of antioxidants for cosmetic and/or dermatological applications

    OpenAIRE

    Bruna Galdorfini Chiari-Andréo; Eliane Trovatti; Joana Marto; Maria Gabriela José de Almeida-Cincotto; Ana Melero; Marcos Antonio Corrêa; Leila Aparecida Chiavacci; Helena Ribeiro; Teresa Garrigues; Vera Lucia Borges Isaac

    2017-01-01

    ABSTRACT Guava (Psidium guajava L.) is a native fruit of the American tropics with commercial applications for its taste, flavor and aroma. Numerous pharmacological uses have been described for it, such as the antiseptic effect of its leaves, the use of the fresh fruit and tea from its leaves for the treatment of diarrhea, dysentery, diabetes mellitus, and others. However, considering its rich composition, the guava also is a potential source of antioxidants to be used in the development of n...

  9. Negative Transference Numbers in Polymer Electrolytes

    Science.gov (United States)

    Pesko, Danielle; Timachova, Ksenia; Balsara, Nitash

    Energy density and safety of conventional lithium-ion batteries is limited by the use of flammable organic liquids as a solvent for lithium salts. Polymer electrolytes have the potential to address both limitations. The poor performance of batteries with polymer electrolytes is generally attributed to low ionic conductivity. The purpose of our work is to show that another transport property, the cation transference number, t +, of polymer electrolytes is fundamentally different from that of conventional electrolytes. Our experimental approach, based on concentrated solution theory, indicates that t + of mixtures of poly(ethylene oxide) and LiTFSI salt are negative over most of the accessible concentration window. In contrast, approaches based on dilute solution theory suggest that t + in the same system is positive. In addition to presenting a new approach for determining t +, we also present data obtained from the steady-state current method, pulsed-field-gradient NMR, and the current-interrupt method. Discrepancies between different approaches are resolved. Our work implies that in the absence of concentration gradients, the net fluxes of both cations and anions are directed toward the positive electrode. Conventional liquid electrolytes do not suffer from this constraint.

  10. Electrolyte Volume Effects on Electrochemical Performance and Solid Electrolyte Interphase in Si-Graphite/NMC Lithium-Ion Pouch Cells.

    Science.gov (United States)

    An, Seong Jin; Li, Jianlin; Daniel, Claus; Meyer, Harry M; Trask, Stephen E; Polzin, Bryant J; Wood, David L

    2017-06-07

    This study aims to explore the correlations between electrolyte volume, electrochemical performance, and properties of the solid electrolyte interphase in pouch cells with Si-graphite composite anodes. The electrolyte is 1.2 M LiPF6 in ethylene carbonate:ethylmethyl carbonate with 10 wt % fluoroethylene carbonate. Single layer pouch cells (100 mA h) were constructed with 15 wt % Si-graphite/LiNi0.5Mn0.3CO0.2O2 electrodes. It is found that a minimum electrolyte volume factor of 3.1 times to the total pore volume of cell components (cathode, anode, and separator) is needed for better cycling stability. Less electrolyte causes increases in ohmic and charge transfer resistances. Lithium dendrites are observed when the electrolyte volume factor is low. The resistances from the anodes become significant as the cells are discharged. Solid electrolyte interphase thickness grows as the electrolyte volume factor increases and is nonuniform after cycling.

  11. Halogen acid electrolysis in solid polymer electrolyte cells

    Energy Technology Data Exchange (ETDEWEB)

    Balko, E.N.; McElroy, J.F.; LaConti, A.B.

    1981-01-01

    The use of solid polymer electrolyte systems has been extended to the electrolysis of aqueous HCl and HBr. The reduced internal losses in these cells permits the production of hydrogen and the halogen at an energy consumption considerably less than that reported previously. Data are presented for the operational characteristics of the solid polymer electrolyte acid electrolysers operating over a range of current densities, pressures, feedstock compositions, and temperatures.

  12. Spin coating of electrolytes

    Science.gov (United States)

    Stetter, Joseph R.; Maclay, G. Jordan

    1989-01-01

    Methods for spin coating electrolytic materials onto substrates are disclosed. More particularly, methods for depositing solid coatings of ion-conducting material onto planar substrates and onto electrodes are disclosed. These spin coating methods are employed to fabricate electrochemical sensors for use in measuring, detecting and quantifying gases and liquids.

  13. The buffer effect in neutral electrolyte supercapacitors

    DEFF Research Database (Denmark)

    Thrane Vindt, Steffen; Skou, Eivind M.

    2016-01-01

    to a change in the redox potential of water in opposite directions on the two electrodes, resulting in the wider stability window. The magnitude of this effect is suggested to be dependent on the buffer capacity, rather than the intrinsic pH value of the electrolyte. This is confirmed by studying the impact...... of addition of a buffer to such systems. It is shown that a 56 % higher dynamic storage capacity may be achieved, simply by controlling the buffer capacity of the electrolyte. The model system used, is based on a well-known commercial activated carbon (NORIT™ A SUPRA) as the electrode material, aqueous...... potassium nitrate as the electrolyte and potassium phosphates as the buffer system....

  14. Bacterial Community Composition and Potential Driving Factors in Different Reef Habitats of the Spermonde Archipelago, Indonesia

    Directory of Open Access Journals (Sweden)

    Hauke F. Kegler

    2017-04-01

    bacterial community composition at the inshore site for water column and sediment samples. Alarmingly, there was generally a high prevalence of potentially pathogenic bacteria across the entire gradient.

  15. Bacterial Community Composition and Potential Driving Factors in Different Reef Habitats of the Spermonde Archipelago, Indonesia

    Science.gov (United States)

    Kegler, Hauke F.; Lukman, Muhammad; Teichberg, Mirta; Plass-Johnson, Jeremiah; Hassenrück, Christiane; Wild, Christian; Gärdes, Astrid

    2017-01-01

    community composition at the inshore site for water column and sediment samples. Alarmingly, there was generally a high prevalence of potentially pathogenic bacteria across the entire gradient. PMID:28473810

  16. Microbial community composition and in silico predicted metabolic potential reflect biogeochemical gradients between distinct peatland types.

    Science.gov (United States)

    Urbanová, Zuzana; Bárta, Jiří

    2014-12-01

    It is not well understood how the ecological status and microbial community composition of spruce swamp forests (SSF) relate to those found in bogs and fens. To clarify this, we investigated biogeochemical parameters and microbial community composition in a bog, a fen and two SSF using high throughput barcoded sequencing of the small ribosomal subunit (SSU) variable region V4. The results demonstrated that the microbial community of SSF is positioned between those of bogs and fens, and this was confirmed by in silico predicted metabolic potentials. This corresponds well with the position of SSF on the trophic gradient and reflects distinct responses of microbial communities to environmental variables. Species richness and microbial diversity increased significantly from bog to fen, with SSF in between, reflecting the variation in pH, nutrient availability and peat decomposability. The archaeal community, dominated by hydrogenotrophic methanogens, was more similar in SSF and the bog compared with the fen. The composition of the bacterial community of SSF was intermediate between those of bog and fen. However, the production of CO2 (an indicator of peat decomposability) did not differ between SSF and bog, suggesting the limiting effect of low pH and poor litter quality on the functioning of the bacterial community in SSF. These results help to clarify the transitional position of SSF between bogs and fens and showed the strong effect of environmental conditions on microbial community composition and functioning. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  17. Compositional and Agronomic Evaluation of Sorghum Biomass as a Potential Feedstock for Renewable Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Dahlberg, J.; Wolfrum, E.; Bean, B.; Rooney, W. L.

    2011-12-01

    One goal of the Biomass Research and Development Technical Advisory Committee was to replace 30% of current U.S. petroleum consumption with biofuels by 2030. This will take mixtures of various feedstocks; an annual biomass feedstock such as sorghum will play an important role in meeting this goal. Commercial forage sorghum samples collected from field trials grown in Bushland, TX in 2007 were evaluated for both agronomic and compositional traits. Biomass compositional analysis of the samples was performed at the National Renewable Energy Lab in Golden, CO following NREL Laboratory Analytical Procedures. Depending on the specific cultivar, several additional years of yield data for this location were considered in establishing agronomic potential. Results confirm that sorghum forages can produce high biomass yields over multiple years and varied growing conditions. In addition, the composition of sorghum shows significant variation, as would be expected for most crops. Using theoretical estimates for ethanol production, the sorghum commercial forages examined in this study could produce an average of 6147 L ha{sup -1} of renewable fuels. Given its genetic variability, a known genomic sequence, a robust seed industry, and biomass composition, sorghum will be an important annual feedstock to meet the alternative fuel production goals legislated by the US Energy Security Act of 2007.

  18. Amauroderma rugosum (Blume & T. Nees Torrend: Nutritional Composition and Antioxidant and Potential Anti-Inflammatory Properties

    Directory of Open Access Journals (Sweden)

    Pui-Mun Chan

    2013-01-01

    Full Text Available Amauroderma rugosum is a wild mushroom that is worn as a necklace by the indigenous communities in Malaysia to prevent fits and incessant crying by babies. The aim of this study was to investigate the nutritive composition and antioxidant potential and anti-inflammatory effects of A. rugosum extracts on LPS-stimulated RAW264.7 cells. Nutritional analysis of freeze-dried mycelia of A. rugosum (KUM 61131 from submerged culture indicated a predominant presence of carbohydrates, proteins, dietary fibre, phosphorus, potassium, and sodium. The ethanol crude extract (EE, its hexane (HF, ethyl acetate (EAF, and aqueous (AF fractions of mycelia of A. rugosum grown in submerged culture were evaluated for antioxidant potential and anti-inflammatory effects. EAF exhibited the highest total phenolic content and the strongest antioxidant activity based on 2,2-diphenyl-1-picrylhydrazyl (DPPH and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS assays. HF showed dose-dependent inhibition of NO production in LPS-stimulated RAW264.7 cells and NO radical scavenging activity. Gas chromatographic analysis of HF revealed the presence of ethyl linoleate and ergosterol, compounds with known anti-inflammatory properties. In conclusion, the nutritive compositions and significant antioxidant potential and anti-inflammatory effects of mycelia extracts of A. rugosum have the potential to serve as a therapeutic agent or adjuvant in the management of inflammatory disorders.

  19. Gel polymer electrolytes for batteries

    Science.gov (United States)

    Balsara, Nitash Pervez; Eitouni, Hany Basam; Gur, Ilan; Singh, Mohit; Hudson, William

    2014-11-18

    Nanostructured gel polymer electrolytes that have both high ionic conductivity and high mechanical strength are disclosed. The electrolytes have at least two domains--one domain contains an ionically-conductive gel polymer and the other domain contains a rigid polymer that provides structure for the electrolyte. The domains are formed by block copolymers. The first block provides a polymer matrix that may or may not be conductive on by itself, but that can soak up a liquid electrolyte, thereby making a gel. An exemplary nanostructured gel polymer electrolyte has an ionic conductivity of at least 1.times.10.sup.-4 S cm.sup.-1 at 25.degree. C.

  20. POLYMER ELECTROLYTE MEMBRANE FUEL CELLS

    DEFF Research Database (Denmark)

    2001-01-01

    A method for preparing polybenzimidazole or polybenzimidazole blend membranes and fabricating gas diffusion electrodes and membrane-electrode assemblies is provided for a high temperature polymer electrolyte membrane fuel cell. Blend polymer electrolyte membranes based on PBI and various...... thermoplastic polymers for high temperature polymer electrolyte fuel cells have also been developed. Miscible blends are used for solution casting of polymer membranes (solid electrolytes). High conductivity and enhanced mechanical strength were obtained for the blend polymer solid electrolytes...... electrolyte membrane by hot-press. The fuel cell can operate at temperatures up to at least 200 °C with hydrogen-rich fuel containing high ratios of carbon monoxide such as 3 vol% carbon monoxide or more, compared to the carbon monoxide tolerance of 10-20 ppm level for Nafion$m(3)-based polymer electrolyte...

  1. Nonflammable perfluoropolyether-based electrolytes for lithium batteries.

    Science.gov (United States)

    Wong, Dominica H C; Thelen, Jacob L; Fu, Yanbao; Devaux, Didier; Pandya, Ashish A; Battaglia, Vincent S; Balsara, Nitash P; DeSimone, Joseph M

    2014-03-04

    The flammability of conventional alkyl carbonate electrolytes hinders the integration of large-scale lithium-ion batteries in transportation and grid storage applications. In this study, we have prepared a unique nonflammable electrolyte composed of low molecular weight perfluoropolyethers and bis(trifluoromethane)sulfonimide lithium salt. These electrolytes exhibit thermal stability beyond 200 °C and a remarkably high transference number of at least 0.91 (more than double that of conventional electrolytes). Li/LiNi1/3Co1/3Mn1/3O2 cells made with this electrolyte show good performance in galvanostatic cycling, confirming their potential as rechargeable lithium batteries with enhanced safety and longevity.

  2. Nonflammable perfluoropolyether-based electrolytes for lithium batteries

    Science.gov (United States)

    Wong, Dominica H. C.; Thelen, Jacob L.; Fu, Yanbao; Devaux, Didier; Pandya, Ashish A.; Battaglia, Vincent S.; Balsara, Nitash P.; DeSimone, Joseph M.

    2014-01-01

    The flammability of conventional alkyl carbonate electrolytes hinders the integration of large-scale lithium-ion batteries in transportation and grid storage applications. In this study, we have prepared a unique nonflammable electrolyte composed of low molecular weight perfluoropolyethers and bis(trifluoromethane)sulfonimide lithium salt. These electrolytes exhibit thermal stability beyond 200 °C and a remarkably high transference number of at least 0.91 (more than double that of conventional electrolytes). Li/LiNi1/3Co1/3Mn1/3O2 cells made with this electrolyte show good performance in galvanostatic cycling, confirming their potential as rechargeable lithium batteries with enhanced safety and longevity. PMID:24516123

  3. Ionic liquid salt bridge based on tributyl(2-methoxyethyl)phosphonium bis(pentafluoroethanesulfonyl)amide for stable liquid junction potentials in highly diluted aqueous electrolyte solutions.

    Science.gov (United States)

    Sakaida, Hideaki; Kitazumi, Yuki; Kakiuchi, Takashi

    2010-12-15

    A moderately hydrophobic ionic liquid, tributyl(2-methoxyethyl)phosphonium bis(pentafluoroethanesulfonyl)amide ([TBMOEP(+)][C(2)C(2)N(-)]), shows a very stable liquid junction potential upon contact with an aqueous solution whose ionic strength is as low as 1 μ mol dm(-3). The stability with the maximum excursion of the potential within ± 0.5 mV for 30 min is very promising for accurate determination of pH and other single ion activities potentiometrically. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Mass Spectrometry of Polymer Electrolyte Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Viktor Johánek

    2016-01-01

    Full Text Available The chemical analysis of processes inside fuel cells under operating conditions in either direct or inverted (electrolysis mode and their correlation with potentiostatic measurements is a crucial part of understanding fuel cell electrochemistry. We present a relatively simple yet powerful experimental setup for online monitoring of the fuel cell exhaust (of either cathode or anode side downstream by mass spectrometry. The influence of a variety of parameters (composition of the catalyst, fuel type or its concentration, cell temperature, level of humidification, mass flow rate, power load, cell potential, etc. on the fuel cell operation can be easily investigated separately or in a combined fashion. We demonstrate the application of this technique on a few examples of low-temperature (70°C herein polymer electrolyte membrane fuel cells (both alcohol- and hydrogen-fed subjected to a wide range of conditions.

  5. Mass Spectrometry of Polymer Electrolyte Membrane Fuel Cells.

    Science.gov (United States)

    Johánek, Viktor; Ostroverkh, Anna; Fiala, Roman; Rednyk, Andrii; Matolín, Vladimír

    2016-01-01

    The chemical analysis of processes inside fuel cells under operating conditions in either direct or inverted (electrolysis) mode and their correlation with potentiostatic measurements is a crucial part of understanding fuel cell electrochemistry. We present a relatively simple yet powerful experimental setup for online monitoring of the fuel cell exhaust (of either cathode or anode side) downstream by mass spectrometry. The influence of a variety of parameters (composition of the catalyst, fuel type or its concentration, cell temperature, level of humidification, mass flow rate, power load, cell potential, etc.) on the fuel cell operation can be easily investigated separately or in a combined fashion. We demonstrate the application of this technique on a few examples of low-temperature (70°C herein) polymer electrolyte membrane fuel cells (both alcohol- and hydrogen-fed) subjected to a wide range of conditions.

  6. Electrodeposition of NiPd alloy from aqueous chloride electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Mech, K., E-mail: kmech@agh.edu.pl [AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, al. A. Mickiewicza 30, 30-059 Krakow (Poland); Wróbel, M [AGH, University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, al. A. Mickiewicza 30, Krakow (Poland); Wojnicki, M [AGH University of Science and Technology, Faculty of Non-Ferrous Metals, Department of Physical Chemistry and Metallurgy of Non-Ferrous Metals, al. A. Mickiewicza 30, 30-059 Krakow (Poland); Mech-Piskorz, J. [Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw (Poland); Żabiński, P.; Kowalik, R. [AGH University of Science and Technology, Faculty of Non-Ferrous Metals, Department of Physical Chemistry and Metallurgy of Non-Ferrous Metals, al. A. Mickiewicza 30, 30-059 Krakow (Poland)

    2016-12-01

    Highlights: • Mechanism of electrode reactions resulting in NiPd alloys was described. • Electrolysis conditions enabling alloys synthesis were determined. • Alloys were characterized towards composition, structure and surface properties. - Abstract: Presented results describing properties of alloys deposited at potentiostatic conditions in Ni{sup 2+} – Pd{sup 2+} – Cl{sup −} – H{sub 2}O system. Electrolysis parameters were defined based on results of thermodynamic analysis as well as voltammetry coupled with electrochemical quartz crystal microbalance (EQCM). Influence of electrode potential and electrolyte components concentration on alloy composition, morphology and its structure was investigated. Alloys were deposited at different Ni(II) and Pd(II) complexes concentrations. Results indicated possibilities of electrochemical synthesis of alloys of wide composition range. Deposits structure as well as crystallites size were discussed based on results of XRD measurements. Alloys composition was determined with the use of energy dispersive spectroscopy (EDS). Morphology of alloys was characterized with the use of scanning electron microscopy (SEM).

  7. Recent results on aqueous electrolyte cells

    KAUST Repository

    Wessells, Colin

    2011-03-01

    The improved safety of aqueous electrolytes makes aqueous lithium-ion batteries an attractive alternative to commercial cells utilizing flammable and expensive organic electrolytes. Two important issues relating to their use have been addressed in this work. One is the extension of the usable voltage range by the incorporation of lithium salts, and the other is the investigation of a useful negative electrode reactant, LiTi 2(PO 4) 3. The electrochemical stability of aqueous lithium salt solutions containing two lithium salts, LiNO 3 and Li 2SO 4, has been characterized using a constant current technique. In both cases, concentrated solutions had effective electrolyte stability windows substantially greater than that of pure water under standard conditions. At an electrolyte leakage current of 10 μA cm -2 between two platinum electrodes in 5 M LiNO 3 the cell voltage can reach 2.0 V, whereas with a leakage current of 50 μA cm -2 it can reach 2.3 V. LiTi 2(PO 4) 3 was synthesized using a Pechini method and cycled in pH-neutral Li 2SO 4. At a reaction potential near the lower limit of electrolyte stability, an initial discharge capacity of 118 mAh g -1 was measured at a C/5 rate, while about 90% of this discharge capacity was retained after 100 cycles. This work demonstrates that it is possible to have useful aqueous electrolyte lithium-ion batteries using the LiTi 2(PO 4) 3 anode with cell voltages of 2 V and above. © 2010 Elsevier B.V. All rights reserved.

  8. Nanoporous hybrid electrolytes

    KAUST Repository

    Schaefer, Jennifer L.

    2011-01-01

    Oligomer-suspended SiO2-polyethylene glycol nanoparticles are studied as porous media electrolytes. At SiO2 volume fractions, , bracketing a critical value y ≈ 0.29, the suspensions jam and their mechanical modulus increase by more than seven orders. For >y, the mean pore diameter is close to the anion size, yet the ionic conductivity remains surprisingly high and can be understood, at all , using a simple effective medium model proposed by Maxwell. SiO 2-polyethylene glycol hybrid electrolytes are also reported to manifest attractive electrochemical stability windows (0.3-6.3 V) and to reach a steady-state interfacial impedance when in contact with metallic lithium. © 2010 The Royal Society of Chemistry.

  9. Assessment of beetle diversity, community composition and potential threats to forestry using kairomone-baited traps.

    Science.gov (United States)

    Olivier-Espejel, S; Hurley, B P; Garnas, J

    2017-02-01

    Traps designed to capture insects during normal movement/dispersal, or via attraction to non-specific (plant) volatile lures, yield by-catch that carries valuable information about patterns of community diversity and composition. In order to identify potential native/introduced pests and detect predictors of colonization of non-native pines, we examined beetle assemblages captured in intercept panel traps baited with kairomone lures used during a national monitoring of the woodwasp, Sirex noctilio, in Southern Africa. We identified 50 families and 436 morphospecies of beetles from nine sites sampled in both 2008 and 2009 and six areas in 2007 (trap catch pooled by region) across a latitudinal and elevational gradient. The most diverse groups were mainly those strongly associated with trees, known to include damaging pests. While native species dominated the samples in terms of richness, the dominant species was the introduced bark beetle Orthotomicus erosus (Curculionidae: Scolytinae) (22 ± 34 individuals/site). Four Scolytinae species without previous records in South Africa, namely Coccotrypes niger, Hypocryphalus robustus (formerly Hypocryphalus mangiferae), Hypothenemus birmanus and Xyleborus perforans, were captured in low abundances. Communities showed temporal stability within sites and strong biogeographic patterns across the landscape. The strongest single predictors of community composition were potential evaporation, latitude and maximum relative humidity, while the strongest multifactor model contained elevation, potential evaporation and maximum relative humidity. Temperature, land use variables and distance to natural areas did not significantly correlate with community composition. Non-phytophagous beetles were also captured and were highly diverse (32 families) perhaps representing important beneficial insects.

  10. Solid polymer electrolytes

    Science.gov (United States)

    Abraham, Kuzhikalail M.; Alamgir, Mohamed; Choe, Hyoun S.

    1995-01-01

    This invention relates to Li ion (Li.sup.+) conductive solid polymer electrolytes composed of poly(vinyl sulfone) and lithium salts, and their use in all-solid-state rechargeable lithium ion batteries. The lithium salts comprise low lattice energy lithium salts such as LiN(CF.sub.3 SO.sub.2).sub.2, LiAsF.sub.6, and LiClO.sub.4.

  11. Ice electrode electrolytic cell

    Science.gov (United States)

    Glenn, D.F.; Suciu, D.F.; Harris, T.L.; Ingram, J.C.

    1993-04-06

    This invention relates to a method and apparatus for removing heavy metals from waste water, soils, or process streams by electrolytic cell means. The method includes cooling a cell cathode to form an ice layer over the cathode and then applying an electric current to deposit a layer of the heavy metal over the ice. The metal is then easily removed after melting the ice. In a second embodiment, the same ice-covered electrode can be employed to form powdered metals.

  12. Non-electrolytic microelectroporation.

    Science.gov (United States)

    Lyu, Chenang; Wang, Jianping; Rubinsky, Boris

    2017-09-01

    Micro and nano technologies are of increasing importance in microfluidics devices used for electroporation (electroporation - the permeabilization of the cell membrane with brief high electric field pulses). Electrochemical reactions of electrolysis occur whenever an electric current flows between an electrode and an ionic solution. It can have substantial detrimental effects, both on the cells and solutions during the electroporation. As electrolysis is a surface phenomenon, between electrodes and solution, the extent of electrolysis is increased in micro and nano electroporation over macro-electroporation, because the surface area of the electrodes in micro and nano electroporation is much larger. A possible way to eliminate the electrolytic effect is to develop non-electrolytic microelectroporation by coating the microelectroporation devices with a dielectric insulating layer. In this study, we examine the effect of a dielectric insulating layer on the performance of a singularity microelectroporation device that we have recently designed. Using numerical analysis, we study the effects of various design parameters including, input sinusoidal voltage amplitude and frequency, geometrical configuration and material electrical properties on the electroporation performance of the non-electrolytic microelectroporation device. In the simulation, we used properties of four real dielectric materials and four solutions of interest for microelectroporation. We characterized the effect of various design parameters of relevance to singularity based microelectroporation, on non-electrolytic microelectroporation. Interestingly, we found that the system behaves in some aspects as a filter and in many circumstances saturation of performance is reached. After saturation is reached, changes in parameters will not affect the performance of the device.

  13. Electrochemical polymer electrolyte membranes

    CERN Document Server

    Fang, Jianhua; Wilkinson, David P

    2015-01-01

    Electrochemical Polymer Electrolyte Membranes covers PEMs from fundamentals to applications, describing their structure, properties, characterization, synthesis, and use in electrochemical energy storage and solar energy conversion technologies. Featuring chapters authored by leading experts from academia and industry, this authoritative text: Discusses cutting-edge methodologies in PEM material selection and fabricationPoints out important challenges in developing PEMs and recommends mitigation strategies to improve PEM performanceAnalyzes the cur

  14. Electrolyte Concentrates Treat Dehydration

    Science.gov (United States)

    2009-01-01

    Wellness Brands Inc. of Boulder, Colorado, exclusively licensed a unique electrolyte concentrate formula developed by Ames Research Center to treat and prevent dehydration in astronauts returning to Earth. Marketed as The Right Stuff, the company's NASA-derived formula is an ideal measure for athletes looking to combat dehydration and boost performance. Wellness Brands also plans to expand with products that make use of the formula's effective hydration properties to help treat conditions including heat stroke, altitude sickness, jet lag, and disease.

  15. Surface Structure and Relaxation at the Pt(110)/Electrolyte Interface

    Science.gov (United States)

    Lucas, C. A.; Marković, N. M.; Ross, P. N.

    1996-12-01

    In situ x-ray scattering studies of the Pt(110) electrode show that a stable 1×2 reconstruction is present over a wide electrode potential range and that the topmost rows of Pt atoms are expanded into the electrolyte. Additional expansion occurs upon the potential-induced adsorption of hydroxyl or hydrogen atoms. The presence and stability of the 1×2 reconstruction have an important influence on some of the surface reactions that can occur in electrolyte.

  16. High performance MCFC using Li/Na electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Donado, R.A.; Ong, E.T.; Sishtla, C.I.

    1995-08-01

    The substitution of a lithium/ sodium carbonate (Li/Na) mixture for the lithium/potassium carbonate (Li/K) electrolyte used in MCFCs holds the promise of higher ionic conductivity, higher exchange current density at both electrodes, lower vapor pressure, and lower cathode dissolution rates. However, when the substitution is made in cells optimized for use with the Li/K electrolyte, the promised increase in performance is not realized. As a consequence the literature contains conflicting data with regard to the performance, compositional stability, and chemical reactivity of the Li/Na electrolyte. Experiments conducted at the Institute of Gas Technology (IGT) concluded that the source of the problem is the different wetting characteristics of the two electrolytes. Electrode pore structures optimized for use with Li/K do not work well with Li/Na. Using proprietary methods and materials, IGT was able to optimize a set of electrodes for the Li/Na electrolyte. Experiments conducted in bench-scale cells have confirmed the superior performance of the Li/Na electrolyte compared to the Li/K electrolyte. The Li/Na cells exhibited a 5 to 8 percent improvement in overall performance, a substantial decrease in the rate of cathode dissolution, and a decreased decay rate. The longest running cell has logged over 13,000 hours of operation with a decay rate of less than 2 mV/1000 hours.

  17. Enhancing graphene oxide reinforcing potential in composites by combined latex compounding and spray drying

    Science.gov (United States)

    Mao, Yingyan; Zhang, Shubai; Zhang, Dandan; Chan, Tung W.; Liu, Li

    2014-04-01

    A new strategy was developed to prepare graphene oxide/styrene-butadiene rubber (GO/SBR) composites with highly exfoliated GO sheets and strong interfaces. In particular, GO/SBR microparticles, in which exfoliated GO sheets (with a thickness of ˜1 nm and diameter of tens of nanometers) are trapped in a well-dispersed state throughout the SBR matrix, were made by a combined latex-compounding and spray-drying method. Subsequently, a chemical bridge between GO and rubber matrix through KH550 and Si69 was built during vulcanization, and the interfacial strength of the cured GO/SBR composite was remarkably improved. Due to the highly exfoliated structure and the strong interface, the GO/SBR composite exhibited 7.8 times higher modulus at 300% strain and 6.4 times higher tensile strength compared with cured pure SBR. The combined latex-compounding and spray-drying method presented here is feasible and water-mediated and has great potential for industrial applications.

  18. Preparation and Characterization of Plasma Electrolytic Oxidation Coating on 5005 Aluminum Alloy with Red Mud as an Electrolyte Additive

    Science.gov (United States)

    Liu, Shifeng; Zeng, Jianmin; Wang, Youbin

    2017-10-01

    A coating with red mud as an electrolyte additive was applied to 5005 aluminum alloy using plasma electrolytic oxidation (PEO). The phase composition of the coating was investigated using X-ray diffraction. Scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS) was used to determine the microstructure and composition profiles of the coating. The coating/substrate adhesion was determined by scratch testing. The corrosion behaviors of the substrate and coating were evaluated using potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS). The results indicated that the PEO coating with red mud consisted mainly of α-Al2O3 and γ-Al2O3, with small amounts of Fe2O3, CaCO3, and CaTiO3. The surface of the coating was the color of the red mud. The coating had a uniform thickness of about 80 μm and consisted of two main layers: a 6- μm porous outer layer and a 74- μm dense inner layer, which showed typical metallurgical adhesion (coating/substrate adhesion strength of 59 N). The coating hardness was about 1142 HV, much higher than that of the substrate (60 HV). The corrosion potential E corr and corrosion current density i corr of the coating were estimated to be -0.743 V and 3.85 × 10-6 A cm-2 from the PDP curve in 3.5 wt pct NaCl solution, and the maximum impedance and phase angle of the coating were 11 000 Ω and -67 deg, respectively, based on EIS. PEO coating with red mud improved the surface properties and corrosion resistance of 5005 aluminum alloy. This study also shows a potential method for reusing red mud.

  19. Wetting of Nano-Confined Electrodes By Lithium-Ion Battery Electrolytes Using Multiple Beam Interferometry

    OpenAIRE

    Moeremans, Boaz; Cheng, Hsiu-Wei; Garces, Hector; Padture, Nitin; Hardy, An; Renner, Frank Uwe; Valtiner, Markus

    2015-01-01

    The interface with the electrolyte is a decisive feature in the design of composite battery electrodes, which typically contain active material particles, conductive material, and polymer binder. A detailed understanding of the electrolyte layering and wetting of materials such as graphene, graphites, metals such as aluminum or even gold, silicon, and metal oxides are ultimately important for improving crucial lithium-ion battery mechanisms. In particular the solid electrolyte interphase (SEI...

  20. Analyses of soil microbial community compositions and functional genes reveal potential consequences of natural forest succession.

    Science.gov (United States)

    Cong, Jing; Yang, Yunfeng; Liu, Xueduan; Lu, Hui; Liu, Xiao; Zhou, Jizhong; Li, Diqiang; Yin, Huaqun; Ding, Junjun; Zhang, Yuguang

    2015-05-06

    The succession of microbial community structure and function is a central ecological topic, as microbes drive the Earth's biogeochemical cycles. To elucidate the response and mechanistic underpinnings of soil microbial community structure and metabolic potential relevant to natural forest succession, we compared soil microbial communities from three adjacent natural forests: a coniferous forest (CF), a mixed broadleaf forest (MBF) and a deciduous broadleaf forest (DBF) on Shennongjia Mountain in central China. In contrary to plant communities, the microbial taxonomic diversity of the DBF was significantly (P cycling genes showed the network for the DBF samples was relatively large and tight, revealing strong couplings between microbes. Soil temperature, reflective of climate regimes, was important in shaping microbial communities at both taxonomic and functional gene levels. As a first glimpse of both the taxonomic and functional compositions of soil microbial communities, our results suggest that microbial community structure and function potentials will be altered by future environmental changes, which have implications for forest succession.

  1. Detection of Fatigue Crack in Basalt FRP Laminate Composite Pipe using Electrical Potential Change Method

    Science.gov (United States)

    Altabey, Wael A.; Noori, Mohammed

    2017-05-01

    Novel modulation electrical potential change (EPC) method for fatigue crack detection in a basalt fibre reinforced polymer (FRP) laminate composite pipe is carried out in this paper. The technique is applied to a laminate pipe with an embedded crack in three layers [0º/90º/0º]s. EPC is applied for evaluating the dielectric properties of basalt FRP pipe by using an electrical capacitance sensor (ECS) to discern damages in the pipe. Twelve electrodes are mounted on the outer surface of the pipe and the changes in the modulation dielectric properties of the piping system are analyzed to detect damages in the pipe. An embedded crack is created by a fatigue internal pressure test. The capacitance values, capacitance change and node potential distribution of ECS electrodes are calculated before and after crack initiates using a finite element method (FEM) by ANSYS and MATLAB, which are combined to simulate sensor characteristics and fatigue behaviour. The crack lengths of the basalt FRP are investigated for various number of cycles to failure for determining crack growth rate. Response surfaces are adopted as a tool for solving inverse problems to estimate crack lengths from the measured electric potential differences of all segments between electrodes to validate the FEM results. The results show that, the good convergence between the FEM and estimated results. Also the results of this study show that the electrical potential difference of the basalt FRP laminate increases during cyclic loading, caused by matrix cracking. The results indicate that the proposed method successfully provides fatigue crack detection for basalt FRP laminate composite pipes.

  2. Flexible matrix composites: Dynamic characterization, modeling, and potential for driveshaft applications

    Science.gov (United States)

    Shan, Ying

    Flexible matrix composites (FMCs) utilize the high elongation capability of elastomers such as polyurethane to withstand large strains in the direction transverse to the fiber reinforcement while retaining strength and stiffness in the longitudinal direction. FMCs are highly anisotropic and can therefore be tailored to achieve distinctive mechanical characteristics that are difficult to obtain using conventional rigid matrix composites. In the current study, the potential of using an FMC to construct a flexurally-soft, torsionally-stiff driveshaft is examined. The FMC selected for the current investigation is a carbon fiber/polyurethane matrix material system. Both quasi-static and dynamic tests have been performed to characterize the properties of the FMC material. By modeling viscoelastic FMC lamina properties with a fractional derivative approach, a novel damping model that accounts for the frequency and temperature dependence of the FMC material is developed. This is the first time fractional derivative model has been applied to a fiber composite. Good agreement between the damping model and experimental data for angle-ply tubes was obtained. Based on the validated damping model, a self-heating model to predict the temperature increase caused by internal damping of a FMC shaft under misaligned rotation is also proposed. A laboratory-scale, misaligned FMC shaft rotation test stand was built to validate the proposed model. Good agreement is shown between the self-heating model predictions and experiment results. This model can be valuable in the selection of constituent materials for FMCs and also in the design of FMC shafts. Preliminary fatigue test results show that FMC materials have potentially good fatigue performance in shaft applications.

  3. PREDICTING WATER ACTIVITY IN ELECTROLYTE SOLUTIONS WITH THE CISTERNAS-LAM MODEL

    Energy Technology Data Exchange (ETDEWEB)

    REYNOLDS JG; GREER DA; DISSELKAMP RL

    2011-03-01

    Water activity is an important parameter needed to predict the solubility of hydrated salts in Hanford nuclear waste supernatants. A number of models available in the scientific literature predict water activity from electrolyte solution composition. The Cisternas-Lam model is one of those models and has several advantages for nuclear waste application. One advantage is that it has a single electrolyte specific parameter that is temperature independent. Thus, this parameter can be determined from very limited data and extrapolated widely. The Cisternas-Lam model has five coefficients that are used for all aqueous electrolytes. The present study aims to determine if there is a substantial improvement in making all six coefficients electrolyte specific. The Cisternas-Lam model was fit to data for six major electrolytes in Hanford nuclear waste supernatants. The model was first fit to all data to determine the five global coefficients, when they were held constant for all electrolytes it yielded a substantially better fit. Subsequently, the model was fit to each electrolyte dataset separately, where all six coefficients were allowed to be electrolyte specific. Treating all six coefficients as electrolyte specific did not make sufficient difference, given the complexity of applying the electrolyte specific parameters to multi-solute systems. Revised water specific parameters, optimized to the electrolytes relevant to Hanford waste, are also reported.

  4. Corrosion Behavior of Pure Copper Surrounded by Hank's Physiological Electrolyte at 310 K (37 °C) as a Potential Biomaterial for Contraception: An Analogy Drawn Between Micro- and Nano-grained Copper

    Science.gov (United States)

    Fattah-alhosseini, Arash; Imantalab, Omid; Vafaeian, Saeed; Ansari, Ghazaleh

    2017-08-01

    This work aims to evaluate the corrosion behavior of pure copper from the microstructural viewpoint for a biomedical application, namely intrauterine devices. For this purpose, Tafel polarization and electrochemical impedance spectroscopy (EIS) techniques were used to evaluate the corrosion behavior of annealed pure copper (with the average grain size of 45 ± 1 µm) and nano-grained microstructure in physiological electrolyte of Hank at 310 K (37 °C). Pure copper in nanoscale grain size, typically an average of 90 ± 5 nm, was successfully made by eight-cycle accumulative roll bonding process at room temperature. On the basis of Tafel polarization results, it was revealed that nano-grained sample had lower corrosion current density and more noble corrosion potential for prolonged exposure in Hank's physiological solution at 310 K (37 °C). In addition, the EIS results showed that the nano-grained sample had more corrosion resistance compared to the coarse-grained one for long-time immersion.

  5. Chemical composition of Artemisia annua L. leaves and antioxidant potential of extracts as a function of extraction solvents

    National Research Council Canada - National Science Library

    Iqbal, Shahid; Younas, Umer; Chan, Kim Wei; Zia-Ul-Haq, Muhammad; Ismail, Maznah

    2012-01-01

    This study was conducted to investigate the chemical and nutritional composition of Artemisia annua leaves in addition to determination of antioxidant potential of their extracts prepared in different solvents...

  6. Potential effects of ocean acidification on Alaskan corals based on calcium carbonate mineralogy composition analysis (NCEI Accession 0157223)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains potential effects of ocean acidification on Alaskan corals based on calcium carbonate mineralogy composition analysis. Effects of...

  7. In situ infrared characterisation of the interfacial oxide during the anodic dissolution of a silicon electrode in fluoride electrolytes

    Science.gov (United States)

    da Fonseca, C.; Ozanam, F.; Chazalviel, J.-N.

    1996-09-01

    The interfacial oxides formed under steady-state anodic polarisation of p-silicon in fluoride electrolytes have been studied using in situ infrared spectroscopy in the difference mode. The oxide is characterized in the 900 to 1250 cm -1 range by the vSiO TO and LO bands, and by other absorption bands related to oxide defects such as non-bridging oxygens. The shape and magnitude of all these bands strongly depend on formation potential as well as on electrolyte composition. Oxide thickness can be estimated from the intensity of the TO absorption band. It is shown to increase with potential and to be little dependent on electrolyte composition. On the other hand, obtaining reliable structural information requires to quantitatively account for both LO and TO bands. Specifically, the frequency splitting between LO and TO modes as well as a properly defined average frequency appear as the relevant parameters. In the present case, the oxides grown at low current (i.e., for low fluoride concentration and at potentials corresponding to the second electropolishing plateau) are those exhibiting a high SiO vibrator density and a low defect concentration.

  8. The electrochemical redox processes in PMMA gel electrolytes - behaviour of transition metal complexes

    Energy Technology Data Exchange (ETDEWEB)

    Reiter, Jakub; Vondrak, Jiri [Institute of Inorganic Chemistry, Department of Solid-State Chemistry, Academy of Sciences, 25068 Rez near Prague (Czech Republic); Micka, Zdenek [Faculty of Science, Charles University, 12840 Prague (Czech Republic)

    2005-08-10

    Electrochemical properties of polymer gel electrolytes based on polymethylmethacrylate (PMMA) were studied by cyclic voltammetry and impedance spectroscopy using new solid-state PMMA-Cd-Cd{sup 2+} reference electrode. The suitable potential window of the PC-PMMA system was estimated from -0.2 to + 1.5 V versus Cd-Cd{sup 2+}. New polymer gels containing ferrocene-ferricinium (Fc-Fc{sup +}) couple and other transition metal complexes were prepared by the direct polymerisation of methylmethacrylate (MMA) monomer and the solution of metal complex and supporting electrolyte in anhydrous aprotic solvent - propylene carbonate (PC). The half-wave potentials and apparent diffusion coefficients of used complexes and their dependence on the composition of the system (liquid or gel) were estimated. Time dependent electrochemical measurements showed almost three order decrease of the diffusion coefficients of ferrocene (Fc) and ferricinium (Fc{sup +}) cation from 6 x 10{sup -5} to 2 x 10{sup -9} cm{sup 2} s{sup -1} during the polymerisation from the liquid to the polymer state. The results show that the PC-PMMA gel electrolyte can be described as a system of embedded solvent in the polymer network of PMMA without present monomer. (author)

  9. Liquid Redox Electrolytes for Dye-Sensitized Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Ze

    2012-07-01

    This thesis focuses on liquid redox electrolytes in dye-sensitized solar cells (DSCs). A liquid redox electrolyte, as one of the key constituents in DSCs, typically consists of a redox mediator, additives and a solvent. This thesis work concerns all these three aspects of liquid electrolytes, aiming through fundamental insights to enhance the photovoltaic performances of liquid DSCs. Initial attention has been paid to the iodine concentration effects in ionic liquid (IL)-based electrolytes. It has been revealed that the higher iodine concentration required in IL-based electrolytes can be attributed to both triiodide mobility associated with the high viscosity of the IL, and chemical availability of triiodide. The concept of incompletely solvated ionic liquids (ISILs) has been introduced as a new type of electrolyte solvent for DSCs. It has been found that the photovoltaic performance of ISIL-based electrolytes can even rival that of organic solvent-based electrolytes. And most strikingly, ISIL-based electrolytes provide highly stable DSC devices under light-soaking conditions, as a result of the substantially lower vapor pressure of the ISIL system. A significant synergistic effect has been observed when both guanidinium thiocyanate and N-methylbenzimidazole are employed together in an IL-based electrolyte, exhibiting an optimal overall conversion efficiency. Tetrathiafulvalene (TTF) has been investigated as an organic iodine-free redox couple in electrolytes for DSCs. An unexpected worse performance has been observed for the TTF system, albeit it possesses a particularly attractive positive redox potential. An organic, iodine-free thiolate/disulfide system has also been adopted as a redox couple in electrolytes for organic DSCs. An impressive efficiency of 6.0 % has successfully been achieved by using this thiolate/disulfide redox couple in combination with a poly (3, 4-ethylenedioxythiophene) (PEDOT) counter electrode material under full sunlight illumination (AM

  10. Studies on MgNi-Based Metal Hydride Electrode with Aqueous Electrolytes Composed of Various Hydroxides

    Directory of Open Access Journals (Sweden)

    Jean Nei

    2016-08-01

    Full Text Available Compositions of MgNi-based amorphous-monocrystalline thin films produced by radio frequency (RF sputtering with a varying composition target have been optimized. The composition Mg52Ni39Co3Mn6 is identified to possess the highest initial discharge capacity of 640 mAh·g−1 with a 50 mA·g−1 discharge current density. Reproduction in bulk form of Mg52Ni39Co3Mn6 alloy composition was prepared through a combination of melt spinning (MS and mechanical alloying (MA, shows a sponge-like microstructure with >95% amorphous content, and is chosen as the metal hydride (MH alloy for a sequence of electrolyte experiments with various hydroxides including LiOH, NaOH, KOH, RbOH, CsOH, and (C2H54N(OH. The electrolyte conductivity is found to be closely related to cation size in the hydroxide compound used as 1 M additive to the 4 M KOH aqueous solution. The degradation performance of Mg52Ni39Co3Mn6 alloy through cycling demonstrates a strong correlation with the redox potential of the cation in the alkali hydroxide compound used as 1 M additive to the 5 M KOH aqueous solution. NaOH, CsOH, and (C2H54N(OH additions are found to achieve a good balance between corrosion and conductivity performances.

  11. Evaluating the composition and processing potential of novel sources of Brazilian biomass for sustainable biorenewables production.

    Science.gov (United States)

    Lima, Marisa A; Gomez, Leonardo D; Steele-King, Clare G; Simister, Rachael; Bernardinelli, Oigres D; Carvalho, Marcelo A; Rezende, Camila A; Labate, Carlos A; Deazevedo, Eduardo R; McQueen-Mason, Simon J; Polikarpov, Igor

    2014-01-18

    The search for promising and renewable sources of carbohydrates for the production of biofuels and other biorenewables has been stimulated by an increase in global energy demand in the face of growing concern over greenhouse gas emissions and fuel security. In particular, interest has focused on non-food lignocellulosic biomass as a potential source of abundant and sustainable feedstock for biorefineries. Here we investigate the potential of three Brazilian grasses (Panicum maximum, Pennisetum purpureum and Brachiaria brizantha), as well as bark residues from the harvesting of two commercial Eucalyptus clones (E. grandis and E. grandis x urophylla) for biofuel production, and compare these to sugarcane bagasse. The effects of hot water, acid, alkaline and sulfite pretreatments (at increasing temperatures) on the chemical composition, morphology and saccharification yields of these different biomass types were evaluated. The average yield (per hectare), availability and general composition of all five biomasses were compared. Compositional analyses indicate a high level of hemicellulose and lignin removal in all grass varieties (including sugarcane bagasse) after acid and alkaline pretreatment with increasing temperatures, whilst the biomasses pretreated with hot water or sulfite showed little variation from the control. For all biomasses, higher cellulose enrichment resulted from treatment with sodium hydroxide at 130°C. At 180°C, a decrease in cellulose content was observed, which is associated with high amorphous cellulose removal and 5-hydroxymethyl-furaldehyde production. Morphological analysis showed the effects of different pretreatments on the biomass surface, revealing a high production of microfibrillated cellulose on grass surfaces, after treatment with 1% sodium hydroxide at 130°C for 30 minutes. This may explain the higher hydrolysis yields resulting from these pretreatments, since these cellulosic nanoparticles can be easily accessed and cleaved by

  12. Impact of isoelectric points of nanopowders in electrolytes on electrochemical characteristics of dye sensitized solar cells

    Science.gov (United States)

    Mohanty, Shyama Prasad; Bhargava, Parag

    2012-11-01

    Nanoparticle loaded quasi solid electrolytes are important from the view point of developing electrolytes for dye sensitized solar cells (DSSCs) having long term stability. The present work shows the influence of isoelectric point of nanopowders in electrolyte on the photoelectrochemical characteristics of DSSCs. Electrolytes with nanopowders of silica, alumina and magnesia which have widely differing isoelectric points are used in the study. Adsorption of ions from the electrolyte on the nanopowder surface, characterized by zeta potential measurement, show that cations get adsorbed on silica, alumina surface while anions get adsorbed on magnesia surface. The electrochemical characteristics of nanoparticulate loaded electrolytes are examined through cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). DSSCs fabricated using liquid, silica or alumina loaded electrolytes exhibit almost similar performance. But interestingly, the magnesia loaded electrolyte-based cell show lower short circuit current density (JSC) and much higher open circuit voltage (VOC), which is attributed to adsorption of anions. Such anionic adsorption prevents the dark reaction in magnesia loaded electrolyte-based cell and thus, enhances the VOC by almost 100 mV as compared to liquid electrolyte based cell. Also, higher electron life time at the titania/electrolyte interface is observed in magnesia loaded electrolyte-based cell as compared to others.

  13. An Evaluation of 3D Woven Orthogonal Composites' Potential in the Automotive Supply Chain

    Science.gov (United States)

    Taylor, Dalia

    The automotive supply chain and its management can be a very complex process and comprises a long dynamic and complex network that consists of four primary segments: original equipment manufacturers (OEMs), first tier suppliers, sub tiers suppliers, and infrastructure suppliers. During the analysis of the current automotive industry it was identified that textile industry importance is considerable increasing as a part of the global automotive supply chain, because textile products are used for interior, exterior and even suspension parts and components. Automotive industry has an increasing demand for higher quality exterior panels with better functional properties and reduced weight. One of the main potentials for this demand is based on the three-dimensional woven composites technology innovations which can replace an existing technology. The new role of the textile industry could make important changes in the automotive supply chain industry, such as: changes in the size of the supply chain, the time to the market and the position of textile industry in the automotive supply chain structure. 3D composite materials from high performance fibers, such as glass and carbon, have been used for automotive applications in a limited way due to the low production rate and the lack of research and development. This research will contribute to the understanding of textile composites in transportation and the textile parameters that affect the performance characteristics of these materials. The research examines the performance characteristics of lighter and stronger 3D woven fabric composites made from fiberglass with the aim to improve fuel efficiency by reducing the total vehicle weight while maintaining safety standards. The performance characteristics of the 3D woven fabric composite can be designed by changing different construction parameters, such as picks density, pick roving linear density, arrangements of warp and z-yarns, and the number of warp and picks layers

  14. X-ray reflectivity at polarized liquid-Hg-aqueous-electrolyte interface: challenging macroscopic approaches for ion-specificity issues.

    Science.gov (United States)

    Duval, Jérôme F L; Bera, Sambhunath; Michot, Laurent J; Daillant, Jean; Belloni, Luc; Konovalov, Oleg; Pontoni, Diego

    2012-05-18

    We report Angstrom-resolved x-ray reflectivity analysis of externally polarized liquid-Hg surface in contact with molar LiCl, LiBr, and MgSO4 aqueous electrolytes. Interpretation of reflectivity curves demonstrates a dependence of Hg-surface layering on both applied potential and ion nature. It further highlights how interfacial polarization degree impacts electron density profiles at a molecular scale. These profiles indicate accumulation of anions and cations at the Hg surface. Upon decrease of the potential from the point of zero charge, anions are gradually expelled from the Hg surface. The study challenges traditional thermodynamic approaches for deriving countercharge composition at the Hg-electrolyte-solution interface from macroscopic Hg-surface tension data. It further dismisses the long-standing approximation that assimilates the Hg surface to a smooth, perfect chemically inert conductor with a uniformly smeared-out surface charge density.

  15. Systems and methods for rebalancing redox flow battery electrolytes

    Science.gov (United States)

    Pham, Ai Quoc; Chang, On Kok

    2015-03-17

    Various methods of rebalancing electrolytes in a redox flow battery system include various systems using a catalyzed hydrogen rebalance cell configured to minimize the risk of dissolved catalyst negatively affecting flow battery performance. Some systems described herein reduce the chance of catalyst contamination of RFB electrolytes by employing a mediator solution to eliminate direct contact between the catalyzed membrane and the RFB electrolyte. Other methods use a rebalance cell chemistry that maintains the catalyzed electrode at a potential low enough to prevent the catalyst from dissolving.

  16. Methods and electrolytes for electrodeposition of smooth films

    Science.gov (United States)

    Zhang, Jiguang; Xu, Wu; Graff, Gordon L; Chen, Xilin; Ding, Fei; Shao, Yuyan

    2015-03-17

    Electrodeposition involving an electrolyte having a surface-smoothing additive can result in self-healing, instead of self-amplification, of initial protuberant tips that give rise to roughness and/or dendrite formation on the substrate and/or film surface. For electrodeposition of a first conductive material (C1) on a substrate from one or more reactants in an electrolyte solution, the electrolyte solution is characterized by a surface-smoothing additive containing cations of a second conductive material (C2), wherein cations of C2 have an effective electrochemical reduction potential in the solution lower than that of the reactants.

  17. Towards Addressing the Body Electrolyte Environment via Sweat Analysis:Pilocarpine Iontophoresis Supports Assessment of Plasma Potassium Concentration

    OpenAIRE

    Vairo, Donato; Bruzzese, Laurie; Marlinge, Marion; Fuster, Lea; Adjriou, Nabil; Kipson, Nathalie; Brunet, Philippe; Cautela, Jennifer; Jammes, Yves; Mottola, Giovanna; Burtey, Stephane; Ruf, Jean; Guieu, Regis; Fenouillet, Emmanuel

    2017-01-01

    Electrolyte concentration in sweat depends on environmental context and physical condition but also on the pathophysiological status. Sweat analyzers may be therefore the future way for biological survey although how sweat electrolyte composition can reflect plasma composition remains unclear. We recruited 10 healthy subjects and 6 patients to have a broad range of plasma electrolyte concentrations (chloride, potassium and sodium) and pH. These variables were compared to those found in sweat ...

  18. Formation of Reversible Solid Electrolyte Interface on Graphite Surface from Concentrated Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Dongping; Tao, Jinhui; Yan, Pengfei; Henderson, Wesley A.; Li, Qiuyan; Shao, Yuyan; Helm, Monte L.; Borodin, Oleg; Graff, Gordon L.; Polzin, Bryant; Wang, Chong-Min; Engelhard, Mark; Zhang, Ji-Guang; De Yoreo, James J.; Liu, Jun; Xiao, Jie

    2017-02-10

    Interfacial phenomena have always been key determinants for the performance of energy storage technologies. The solid electrolyte interfacial (SEI) layer, pervasive on the surfaces of battery electrodes for numerous chemical couples, directly affects the ion transport, charge transfer and lifespan of the entire energy system. Almost all SEI layers, however, are unstable resulting in the continuous consumption of the electrolyte. Typically, this leads to the accumulation of degradation products on/restructuring of the electrode surface and thus increased cell impedance, which largely limits the long-term operation of the electrochemical reactions. Herein, a completely new SEI formation mechanism has been discovered, in which the electrolyte components reversibly self-assemble into a protective surface coating on a graphite electrode upon changing the potential. In contrast to the established wisdom regarding the necessity of employing the solvent ethylene carbonate (EC) to form a protective SEI layer on graphite, a wide range of EC-free electrolytes are demonstrated for the reversible intercalation/deintercalation of Li+ cations within a graphite lattice, thereby providing tremendous flexibility in electrolyte tailoring for battery couples. This novel finding is broadly applicable and provides guidance for how to control interfacial reactions through the relationship between ion aggregation and solvent decomposition at polarized interfaces.

  19. Facile synthesis of reduced graphene oxide/peroxomolybdate(VI)-citrate composite and its potential energy storage application

    Science.gov (United States)

    Ciszewski, Mateusz; Benke, Grzegorz; Leszczyńska-Sejda, Katarzyna; Kopyto, Dorota

    2017-11-01

    A new energy storage material based on molybdate active species has been presented. Molybdenum seems to be a perspective material in supercapacitors because of numerous possible metal oxidation states, electrolyte storage by means of various chemical reactions and availability in comparison to other refractory metals. Material synthesized within this research was composed of reduced graphene oxide matrix and peroxomolybdate(VI)-citrate active dimers. It was showed that peroxomolybdate(VI)-citrate structure enhanced electrochemical activity of symmetric supercapacitor. Simple methodology was used to synthesize a composite with pH adjustment as the key step. The specific capacity calculated from galvanostatic charge/discharge curves was as high as 250 F/g. Material was distinguished by good cyclability with 5% capacity loss after 1000 cycles. The increase in charge transfer resistance, induced by metal-oxygen compound within the carbon matrix was relatively low, compared to parent reduced graphene oxide. Amorphous structure of peroxomolybdate(VI)-modified material was observed with slight increase in the interlayer distance in comparison to parent reduced graphene oxide. The height and lateral size of crystallites were also determined. Significant decrease in the specific surface area of peroxomolybdate(VI)-modified composite was observed, in comparison to the parent reduced graphene oxide.

  20. Extraction of Carbon Dioxide and Hydrogen from Seawater By an Electrolytic Cation Exchange Module (E-CEM) Part 5: E-CEM Effluent Discharge Composition as a Function of Electrode Water Composition

    Science.gov (United States)

    2017-08-01

    composition and flowrate. These evaluations have identified additional software and hardware capabilities that will be included in in the prototype skid to...ensure E-CEM performance and operational safety while maintaining effluent water quality . 01-08-2017 Memorandum Report Unclassified Unlimited iii...additional software and hardware capabilities that will be included in the prototype skid to ensure E-CEM performance and operational safety while

  1. Resonance line shape, strain and electric potential distributions of composite magnetoelectric sensors

    Directory of Open Access Journals (Sweden)

    Martina Gerken

    2013-06-01

    Full Text Available Multiferroic composite magnetoelectric (ME sensors are based on the elastic coupling of a magnetostrictive phase and a piezoelectric phase. A deformation of the magnetostrictive phase causes strain in the piezoelectric phase and thus an induced voltage. Such sensors may be applied both for static as well as for dynamic magnetic field measurements. Particularly high sensitivities are achieved for operation at a mechanical resonance. Here, the resonance line shape of layered (2-2 composite cantilever ME sensors at the first bending-mode resonance is investigated theoretically. Finite element method (FEM simulations using a linear material model reveal an asymmetric resonance profile and a zero-response frequency for the ME coefficient. Frequency-dependent strain and electric potential distributions inside the magnetoelectric composite are studied for the case of a magnetostrictive-piezoelectric bilayer. It is demonstrated that a positive or a negative voltage may be induced across the piezoelectric layer depending on the position of the neutral plane. The frequency-dependent induced electric potential is investigated for structured cantilevers that exhibit magnetostriction only at specific positions. For static operation an induced voltage is obtained locally at positions with magnetostriction. In addition to this direct effect a resonance-assisted effect is observed for dynamic operation. Magnetostriction in a limited area of the cantilever causes a global vibration of the cantilever. Thus, deformation of the piezoelectric layer and an induced electric potential also occur in areas of the cantilever without magnetostriction. The direct and the resonance-assisted pathway may induce voltages of equal or of opposite sign. The net induced voltage results from the superposition of the two effects. As the resonance-assisted induced voltage changes sign upon passing the resonance frequency, while the direct component is constant, an asymmetric line

  2. Conductivity study of PEO–LiClO4 polymer electrolyte doped with ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. The preparation and characterization of composite polymer electrolytes comprising PEO and. LiClO4 with different concentrations of ZnO nanoparticles are studied. Conductivity measurements were carried out and discussed. In order to ascertain the thermal stability of the polymer electrolyte with maximum.

  3. Conductivity study of PEO–LiClO4 polymer electrolyte doped with ...

    Indian Academy of Sciences (India)

    The preparation and characterization of composite polymer electrolytes comprising PEO and LiClO4 with different concentrations of ZnO nanoparticles are studied. Conductivity measurements were carried out and discussed. In order to ascertain the thermal stability of the polymer electrolyte with maximum conductivity, films ...

  4. Composition

    DEFF Research Database (Denmark)

    Bergstrøm-Nielsen, Carl

    2014-01-01

    Cue Rondo is an open composition to be realised by improvising musicians. See more about my composition practise in the entry "Composition - General Introduction". Caution: streaming the sound/video files will in some cases only provide a few minutes' sample, or the visuals will not appear at all...

  5. Composition

    DEFF Research Database (Denmark)

    Bergstrøm-Nielsen, Carl

    2011-01-01

    Strategies are open compositions to be realised by improvising musicians. See more about my composition practise in the entry "Composition - General Introduction". Caution: streaming the sound files will in some cases only provide a few minutes' sample. Please DOWNLOAD them to hear them in full...

  6. Composition

    DEFF Research Database (Denmark)

    Bergstrøm-Nielsen, Carl

    2010-01-01

    New Year is an open composition to be realised by improvising musicians. It is included in "From the Danish Seasons" (see under this title). See more about my composition practise in the entry "Composition - General Introduction". This work is licensed under a Creative Commons "by-nc" License. You...

  7. Composition

    DEFF Research Database (Denmark)

    2014-01-01

    Memory Pieces are open compositions to be realised solo by an improvising musicians. See more about my composition practise in the entry "Composition - General Introduction". Caution: streaming the sound files will in some cases only provide a few minutes' sample. Please DOWNLOAD them to hear them...

  8. Dietary emulsifiers directly alter human microbiota composition and gene expression ex vivo potentiating intestinal inflammation.

    Science.gov (United States)

    Chassaing, Benoit; Van de Wiele, Tom; De Bodt, Jana; Marzorati, Massimo; Gewirtz, Andrew T

    2017-08-01

    The intestinal microbiota plays a central role in the development of many chronic inflammatory diseases including IBD and metabolic syndrome. Administration of substances that alter microbiota composition, including the synthetic dietary emulsifiers polysorbate 80 (P80) and carboxymethylcellulose (CMC), can promote such inflammatory disorders. However, that inflammation itself impacts microbiota composition has obfuscated defining the extent to which these compounds or other substances act directly upon the microbiota versus acting on host parameters that promote inflammation, which subsequently reshapes the microbiota. We examined the direct impact of CMC and P80 on the microbiota using the mucosal simulator of the human intestinal microbial ecosystem (M-SHIME) model that maintains a complex stable human microbiota in the absence of a live host. This approach revealed that both P80 and CMC acted directly upon human microbiota to increase its proinflammatory potential, as revealed by increased levels of bioactive flagellin. The CMC-induced increase in flagellin was rapid (1 day) and driven by altered microbiota gene expression. In contrast, the P80-induced flagellin increase occurred more slowly and was closely associated with altered species composition. Transfer of both emulsifier-treated M-SHIME microbiotas to germ-free recipient mice recapitulated many of the host and microbial alterations observed in mice directly treated with emulsifiers. These results demonstrate a novel paradigm of deconstructing host-microbiota interactions and indicate that the microbiota can be directly impacted by these commonly used food additives, in a manner that subsequently drives intestinal inflammation. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  9. Asymmetric adsorption in an open electrolytic cell

    Science.gov (United States)

    Bousiadi, S.; Lelidis, I.

    2018-01-01

    We investigate the effect of adsorption-desorption phenomenon of ions in an asymmetric electrolytic cell at open circuit conditions. Our approach is based on the Poisson-Nernst-Planck theory for electrolytes and the kinetic model of Langmuir for the description of adsorption-desorption phenomena on the electrodes. When the electrodes are immersed into the solution, selective ion adsorption takes place. It is shown, that the selective ion adsorption is responsible for generating an electrical potential difference between the electrodes of the cell. The analytical expressions for the potential difference and for the charge distribution are calculated. Finally, the time evolution of the system is investigated and the relaxation times of the problem are deduced numerically.

  10. Developing a composite indicator to measure civic participatory potential in two Chinese societies

    Directory of Open Access Journals (Sweden)

    Lijuan Li

    2016-12-01

    Full Text Available This study examined whether there is evidence in Hong Kong and Taiwan students’ early attitudes to civic participation that suggests they will adopt radical forms of civic participation and whether civic participatory potential of students from these two Chinese societies differed in early adolescence. To achieve these purposes, we used a Rasch measurement approach to construct comparable profiles. In doing so, we adopted conceptual and empirical approaches to construct a composite indicator and then tested validity and reliability of this indicator for the two societies, respectively. Such an approach is based on the assumption that reliable and accurate measurement is essential for theorizing the results of empirical studies. The data from the 2009 International Civics and Citizenship Education Study were also used for comparing the potential participation profiles. The results suggested that the unidimensional profile has good item fit and model fit for both societies, thereby valid and reliable. Preliminary findings suggest that inclination towards radical action can be identified during early adolescence and students from the two Chinese societies differed in civic participatory potential. Taiwanese students appear to be more radical than Hong Kong students while maintaining less positive attitudes to conventional forms of citizenship engagement.

  11. Self-Passivating Lithium/Solid Electrolyte/Iodine Cells

    Science.gov (United States)

    Bugga, Ratnakumar; Whitcare, Jay; Narayanan, Sekharipuram; West, William

    2006-01-01

    Robust lithium/solid electrolyte/iodine electrochemical cells that offer significant advantages over commercial lithium/ iodine cells have been developed. At room temperature, these cells can be discharged at current densities 10 to 30 times those of commercial lithium/iodine cells. Moreover, from room temperature up to 80 C, the maximum discharge-current densities of these cells exceed those of all other solid-electrolyte-based cells. A cell of this type includes a metallic lithium anode in contact with a commercial flexible solid electrolyte film that, in turn, is in contact with an iodine/ graphite cathode. The solid electrolyte (the chemical composition of which has not been reported) offers the high ionic conductivity needed for high cell performance. However, the solid electrolyte exhibits an undesirable chemical reactivity to lithium that, if not mitigated, would render the solid electrolyte unsuitable for use in a lithium cell. In this cell, such mitigation is affected by the formation of a thin passivating layer of lithium iodide at the anode/electrolyte interface. Test cells of this type were fabricated from iodine/graphite cathode pellets, free-standing solid-electrolyte films, and lithium-foil anodes. The cathode mixtures were made by grinding together blends of nominally 10 weight percent graphite and 90 weight percent iodine. The cathode mixtures were then pressed into pellets at 36 kpsi (248 MPa) and inserted into coin-shaped stainless-steel cell cases that were coated with graphite paste to minimize corrosion. The solid-electrolyte film material was stamped to form circular pieces to fit in the coin cell cases, inserted in the cases, and pressed against the cathode pellets with polyethylene gaskets. Lithium-foil anodes were placed directly onto the electrolyte films. The layers described thus far were pressed and held together by stainless- steel shims, wave springs, and coin cell caps. The assembled cells were then crimped to form hermetic seals

  12. Fatty acid and amino acid composition in haruan as a potential role in wound healing.

    Science.gov (United States)

    Jais, A M; McCulloch, R; Croft, K

    1994-09-01

    1. Two species of snakehead fish are available in Sabah, i.e. Channa striatus and Channa melanosoma, and are commonly known as haruan. Haruan is consumed by many Malaysians to induce healing after a clinical operations. However, there is no scientific evidence as yet to substantiate the claim, and so it was decided to analyse the biochemical composition in haruan to determine which compounds may have a possible role or potential in wound healing. 2. Samples (midline fillet) of both species were extracted separately in hexane for the qualitative analysis of fatty acids by a gas chromatography, Hewlett-Packard 5890A, using a 10 meter superox 11 column (Alltech) at temperature between 190 and 245 degrees C. Peak areas were calculated automatically using Hewlett-Packard 3393A computing integrator. Subsequently, the amino acid composition was analysed using a precolumn derivatization reverse phase HPLC waters PICO-TAG system. 3. Haruan is found to contain unusually high arachidonic acid (AA) but almost no eicosapentaenoic acid (EPA). AA which is a precursor of prostaglandin may initiate blood clotting and be responsible for growth. Haruan also contains all the essential amino acids for wound healing, particularly glycine which is the most important component of human skin collagen. Therefore, haruan contained all the basic biochemical requirements for wound healing.

  13. Optical properties of functional composite silver nanoparticles and their potential use in reproductive medicine

    Science.gov (United States)

    Syrvatka, Vasyl J.; Slyvchuk, Yurij I.; Rozgoni, Ivan I.; Gevkan, Ivan I.; Bilyy, Oleksandr I.

    2013-06-01

    Silver nanoparticles are promising product of nanotechnology with attractive physicochemical and biological properties. The main aim of the study was to investigate optical properties of functional silver nanoparticles with different composite agents: polyvinylpyrrolidone, bovine serum albumin, hyaluronan and to explore their potential using in reproductive medicine. The date obtained in the study showed that surface modification of nanoparticles leads to change of their optical, physicochemical and biological properties. The optical properties of silver nanoparticles display, that AgNPs with PVP and BSA is most stable in PBS than AgNPs with HA. However the absorption curves after 120 hours of storage show, that AgNPs-HA were the most stable in ethanol. Results show, that silver nanoparticles did not effect on sperm viability and motility, but cause a changes of some biochemical parameters of conditioned medium, particular increase the concentration of triglycerides, activity of alkaline phosphatase, lactate dehydrogenase and decrease the activity of aspartate aminotransferase and alanine aminotransferase after 3 h of in vitro cultivation at 37°C. According to our latest data AgNPs with HA have a less toxic effect on biological processes in rabbits sperm compared with AgNPs with PVP and BSA. Nevertheless all functional composites of silver nanoparticles at the concentration of 0.1 μg/mL have no toxic effect on spermatozoa and can be successfully applied in reproductive medicine at low concentrations as signal enhancers, optical sensors, and biomarkers.

  14. Bioresorable polymers: their potential as scaffolds for Bioglass {sup trademark} composites

    Energy Technology Data Exchange (ETDEWEB)

    Stamboulis, A.; Hench, L.L. [Imperial Coll. of Science, Technology and Medicine, London (United Kingdom). Dept. of Materials

    2001-07-01

    Developing living tissue substitutes based on synthetic biodegradable polymers holds great promise in the field of tissue engineering. Poly-L-lactide acid, polyglycolic acid and their copolymers are the most well studied biocompatible, biodegradable polymers, which have been proved suitable substrates for many cell types. Novel synthesis and manufacturing techniques have been developed to give porous scaffolds with large void volumes for cell seeding and cell attachment. The combination of such polymers with bioactive Bioglass {sup trademark} particles has the potential of serving as bioactive tissue engineering scaffolds. There are three reasons for combining Bioglass {sup trademark} with resorbable polymers: 1.To achieve the desired 3-D shape of the tissue engineering construct, 2.To improve structural flexibility over otherwise brittle Bioglass {sup trademark} for eventual load bearing applications, 3.To control the rate of release of cations from Bioglass {sup trademark} to enhance osteogenesis. Composites of polyglycolic-polylactic acid with incorporated Bioglass {sup trademark} particles have shown better mechanical properties as compared with the neat copolymer. A new bioactive composite, which combines the advantages of Bioglass {sup trademark} and a resorbable polymer for tissue engineering applications, is described. (orig.)

  15. Guava: phytochemical composition of a potential source of antioxidants for cosmetic and/or dermatological applications

    Directory of Open Access Journals (Sweden)

    Bruna Galdorfini Chiari-Andréo

    2017-06-01

    Full Text Available ABSTRACT Guava (Psidium guajava L. is a native fruit of the American tropics with commercial applications for its taste, flavor and aroma. Numerous pharmacological uses have been described for it, such as the antiseptic effect of its leaves, the use of the fresh fruit and tea from its leaves for the treatment of diarrhea, dysentery, diabetes mellitus, and others. However, considering its rich composition, the guava also is a potential source of antioxidants to be used in the development of new formulations for cosmetic and/or dermatological applications, the main focus of this research. Herein, we describe the study of the phytochemical composition and the antioxidant activity of a guava extract prepared with non-toxic solvents aiming its use at biological applications. High performance liquid chromatography and mass spectrometry were employed to identify the major components, while thermoanalytical measurements and hot stage microscopy were used to assess the chemical stability of guava fruit extract. The antioxidant activity was also evaluated assessing the SOD-like activity and ABTS free radical scavenger. The results show that the extract is a rich source of phenolic compounds, such as quercetin, kaempferol, schottenol, among many others. All of the components found in guava extract exhibit biological effects according to the literature data, mainly antioxidant properties.

  16. Altered gut microbiome composition in HIV infection: causes, effects and potential intervention.

    Science.gov (United States)

    Bandera, Alessandra; De Benedetto, Ilaria; Bozzi, Giorgio; Gori, Andrea

    2018-01-01

    Aim of this review is to summarize the alterations occurring in gut microbiome composition after HIV infection, and to underline how intestinal dysbiosis can affect immune homeostasis, immune recovery, and persisting immune activation under antiretroviral therapy (ART). Many interventions have been suggested, mostly with inconclusive results. Recent evidence showed that gut microbiota from HIV-infected patients harbor reproducible differences compared to uninfected individuals. In this line, there is growing evidence that alterations in gut ecology during HIV infection correlate with persistence of immune defects and chronic inflammation. A reduced microbial diversity in feces of HIV-infected patients is highly associated with microbial translocation and monocyte activation markers; moreover, changes in mucosa-associated bacteria correlate with inflammation and T-cell activation. Studying the human host-microbiota interaction suggests that the consequences of HIV infection on microbial composition can influence immune status in HIV patients. ART induces microbiome changes that are independent of HIV infection, and some imply that ART may enhance dysbiosis. Studies and trials evaluated the effects of administering probiotics and prebiotics, finding a potential benefit on inflammation markers and immune cell activation. Emerging data on fecal microbial transplantation need to be assessed with further studies.

  17. Effects of the external magnetic field on the composition-fluctuation potentials in diluted magnetic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Umehara, Masakatsu [3-11-30 Koyadai, Tsukuba, Ibaraki 305-0074 (Japan)

    2006-07-26

    We investigated the effects of the external magnetic field on the compositional-fluctuation potentials (APFs) in diluted magnetic semiconductors (DMSs). The APFs in DMSs are divided into two parts: one is the nonmagnetic part usually considered in mixed nonmagnetic semiconductors and the other is the magnetic part caused by the compositional fluctuations of the substituted magnetic ions and the sp-d exchange interaction under the external magnetic field. The APFs in DMSs, thus, depend on the external magnetic field and the temperature as well as the concentration of the magnetic ions; for example in Cd{sub 1-x}Mn{sub x}Te, the APFs increase with the magnetic field up to about 40 kOe for an Mn concentration of x = 0.2 and 0.3, while the APFs decrease drastically with the magnetic field for x less than 0.05 at low temperatures. After a general discussion of the APFs in DMSs, we calculated the exciton magnetic polarons weakly bound to APFs under the external magnetic field. The calculated results were compared with the experiment on the L{sub 2} photoluminescence in Cd{sub 1-x}Mn{sub x}Te, with the purpose of revealing the peculiar properties caused by the magnetic part of the APFs.

  18. Phenolics of pomegranate peels: extraction optimization by central composite design and alpha glucosidase inhibition potentials.

    Science.gov (United States)

    Çam, Mustafa; İçyer, Necattin Cihat

    2015-03-01

    Optimum water extraction conditions for phenolics of pomegranate peels were investigated by fractional factorial and face-centered central composite designs. Five potential factors were selected for the fractional factorial design: extraction technique, extraction temperature, extraction time, particle size and solvent to solid ratio. After eliminating statistically unimportant factors, a face-centered central composite design was set up with two controllable factors and with two responses: total phenolics and α-glucosidase inhibition activity. Optimum conditions were found as 100 °C for extraction temperature and 1 min for extraction time. There were no statistically significant differences (p > 0.05) between water extracts at optimized conditions and classical methanol extracts. Total phenolic content by HPLC was192.0 mg/g of pomegranate peels on dry matter basis. Phenolics of pomegranate peels showed α-glucosidase inhibition activity with an IC50 (concentration of phenolics required to inhibit 50 % of the enzyme activity) value of 5.56 ± 2.23 μg/ml. Pomegranate peel phenolics with its antioxidant and α-glucosidase inhibition properties might be a suitable ingredient for functional food applications.

  19. Composition of near-Earth Asteroid 2008 EV5: Potential target for robotic and human exploration

    Science.gov (United States)

    Reddy, Vishnu; Le Corre, Lucille; Hicks, Michael; Lawrence, Kenneth; Buratti, Bonnie J.; Abell, Paul A.; Gaffey, Michael J.; Hardersen, Paul S.

    2012-11-01

    We observed Potentially Hazardous Asteroid (PHA) 2008 EV5 in the visible (0.30-0.92 μm) and near-IR (0.75-2.5 μm) wavelengths to determine its surface composition. This asteroid is especially interesting because it is a potential target for two sample return mission proposals (Marco Polo-R and Hayabusa-2) and human exploration due to its low delta-v for rendezvous. The spectrum of 2008 EV5 is essentially featureless with exception of a weak 0.48-μm spin-forbidden Fe3+ absorption band. The spectrum also has an overall blue slope. The albedo of 2008 EV5 remains uncertain with a lower limit at 0.05 and a higher end at 0.20 based on thermal modeling. The Busch et al. (Busch et al. [2011]. Icarus 212, 649-660) albedo estimate of 0.12 ± 0.04 is consistent with our thermal modeling results. The albedo and composition of 2008 EV5 are also consistent with a C-type taxonomic classification (Somers, J.M., Hicks, M.D., Lawrence, K.J. [2008]. Bull. Am. Astron. Soc. 40, 440). The best spectral match is with CI carbonaceous chondrites similar to Orgueil, which also have a weak 0.48-μm feature and an overall blue slope. This 0.48-μm feature is also seen in the spectrum of magnetite. The albedo of CI chondrites is at the lower limit of our estimated range for the albedo of 2008 EV5.

  20. Effects of electrolytes on virus inactivation by acidic solutions.

    Science.gov (United States)

    Nishide, Mitsunori; Tsujimoto, Kazuko; Uozaki, Misao; Ikeda, Keiko; Yamasaki, Hisashi; Koyama, A Hajime; Arakawa, Tsutomu

    2011-06-01

    Acidic pH is frequently used to inactivate viruses. We have previously shown that arginine synergizes with low pH in enhancing virus inactivation. Considering a potential application of the acid inactivation of viruses for the prevention and treatment of superficial virus infection at body surfaces and fixtures, herein we have examined the effects of various electrolytes on the acid-induced inactivation of the herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2), the influenza A virus (IAV) and the poliovirus upon their incubation at 30˚C for 5 min. Eight electrolytes, i.e., phosphate, NaCl, glutamate, aspartate, pyrrolidone carboxylate, citrate, malate and acetate were tested. No detectable inactivation of the poliovirus was observed under the conditions examined, reflecting its acid-resistance. HSV-1 and HSV-2 responded similarly to the acid-treatment and electrolytes. Some electrolytes showed a stronger virus inactivation than others at a given pH and concentration. The effects of the electrolytes were virus-dependent, as IAV responded differently from HSV-1 and HSV-2 to these electrolytes, indicating that certain combinations of the electrolytes and a low pH can exert a more effective virus inactivation than other combinations and that their effects are virus-specific. These results should be useful in designing acidic solvents for the inactivation of viruses at various surfaces.

  1. Balance between the physical diffusion and the exchange reaction on binary ionic liquid electrolyte for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Feng; Lin, Hong; Zhang, Jing [State Key Laboratory of New Ceramics and Fine Processing, Department of Material Science and Engineering, Tsinghua University, Beijing 100084 (China); Li, Jianbao [State Key Laboratory of New Ceramics and Fine Processing, Department of Material Science and Engineering, Tsinghua University, Beijing 100084 (China); Key Laboratory of Ministry of Education for Application Technology of Chemical Materials in Hainan Superior Resources, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, College of Materials Science and Chemical Engineering, Hainan University, Haikou 570228 (China)

    2011-02-01

    A comprehensive characterizations of viscosities, conductivities, triiodide diffusion coefficients, charge-transfer resistances and photovoltaic performance of a potential dye-sensitized solar cell (DSC) electrolyte systems based on binary ionic liquid (IL) mixtures, namely, 1-ethyl-3-methylimidazolium dicyanamide (EMIDCA)/1-methyl-3-propylimidazolium iodide (PMII) with a fixed iodine concentration at varying EMIDCA volume fraction are investigated in the present study. Viscosity and conductivity values are accurately correlated with regard to temperature and EMIDCA volume fraction. The triiodide diffusion coefficients, the predominant electrolyte parameter for limitation of DSC efficiency, are determined by symmetrical cell methods. The physical diffusion and exchange reactions between the iodide and triiodide dominate the apparent triiodide diffusion coefficients at different range of EMIDCA volume fraction. A balance between the viscosity-dependent physical diffusion and the exchange reactions can get at an optimal volume percents of EMIDCA. Impedance spectroscopy and photovoltaic results both support the existence of an optimized binary IL electrolyte composition. Hence, for optimizing an IL-based electrolyte in regards to triiodide transport, a low viscosity is not the exclusive crucial factor since exchange reactions transport effects also play an important role to resolve the diffusion limitation of DSC efficiency. (author)

  2. Investigation on the corrosion behaviour and microstructure of 2024-T3 Al alloy treated via plasma electrolytic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Fadaee, Hossein; Javidi, Mehdi, E-mail: mjavidi@yahoo.com

    2014-08-01

    Highlights: • Plasma electrolytic oxidation used to improve corrosion resistance of 2024-T3 alloy. • A conventional DC source with low applied voltage was considered for PEO. • Use of glycerin was effective in enhancement of corrosion resistance. • The surface morphology indicated coatings have a dense structure without cracking. • Degradation of coatings with immersion time was investigated. - Abstract: Plasma electrolytic oxidation treatment was performed on 2024-T3 aluminium alloy in a simple and inexpensive electrolyte. It was found that treatment time of 30 min resulted in the most noble corrosion potential and lowest corrosion current density. The surface and cross-sectional morphology indicated that the coating has a dense structure without any cracking. Furthermore, the result of X-ray diffraction analysis indicated that the coating was formed mainly from α-Al{sub 2}O{sub 3}, γ-Al{sub 2}O{sub 3}, Al{sub 3.21}Si{sub 0.47} and small amounts of amorphous phases. The presence of glycerine in the electrolyte composition resulted in not only stabilising the solution but also improving the corrosion resistance.

  3. Hindered Glymes for Graphite-Compatible Electrolytes.

    Science.gov (United States)

    Shanmukaraj, Devaraj; Grugeon, Sylvie; Laruelle, Stephane; Armand, Michel

    2015-08-24

    Organic carbonate mixtures are used almost exclusively as lithium battery electrolyte solvents. The linear compounds (dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate) act mainly as thinner for the more viscous and high-melting ethylene carbonate but are the least stable component and have low flash points; these are serious handicaps for lifetime and safety. Polyethers (glymes) are useful co-solvents, but all formerly known representatives solvate Li(+) strongly enough to co-intercalate in the graphite negative electrode and exfoliate it. We have put forward a new electrolyte composition comprising a polyether to which a bulky tert-butyl group is attached ("hindered glyme"), thus completely preventing co-intercalation while maintaining good conductivity. This alkyl-carbonate-free electrolyte shows remarkable cycle efficiency of the graphite electrode, not only at room temperature, but also at 50 and 70 °C in the presence of lithium bis(fluorosulfonimide). The two-ethylene-bridge hindered glyme has a high boiling point and a flash point of 80 °C, a considerable advantage for safety. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. EMTA’s Evaluation of the Elastic Properties for Fiber Polymer Composites Potentially Used in Hydropower Systems

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Ba Nghiep; Paquette, Joshua

    2010-08-01

    Fiber-reinforced polymer composites can offer important advantages over metals where lightweight, cost-effective manufacturing and high mechanical performance can be achieved. To date, these materials have not been used in hydropower systems. In view of the possibility to tailor their mechanical properties to specific applications, they now have become a subject of research for potential use in hydropower systems. The first step in any structural design that uses composite materials consists of evaluating the basic composite mechanical properties as a function of the as-formed composite microstructure. These basic properties are the elastic stiffness, stress-strain response, and strength. This report describes the evaluation of the elastic stiffness for a series of common discontinuous fiber polymer composites processed by injection molding and compression molding in order to preliminarily estimate whether these composites could be used in hydropower systems for load-carrying components such as turbine blades. To this end, the EMTA (Copyright © Battelle 2010) predictive modeling tool developed at the Pacific Northwest National Laboratory (PNNL) has been applied to predict the elastic properties of these composites as a function of three key microstructural parameters: fiber volume fraction, fiber orientation distribution, and fiber length distribution. These parameters strongly control the composite mechanical performance and can be tailored to achieve property enhancement. EMTA uses the standard and enhanced Mori-Tanaka type models combined with the Eshelby equivalent inclusion method to predict the thermoelastic properties of the composite based on its microstructure.

  5. Compositional Characters and Antimicrobial Potential of Artemisia stricta Edgew. f. stricta Pamp. Essential Oil

    Directory of Open Access Journals (Sweden)

    N Manika

    2016-01-01

    Full Text Available Chemical and biological investigations were carried out to evaluate the composition and anti-microbial potential of a rare Artemisia species viz. Artemisia stricta Edgew. f. stricta Pamp. essential oil for the first time. GC and GC/MS analysis resulted in the identification of 27 compounds, which constituted 93.2% volatile constituents of the oil. The major constituents were capillene (41.6%, spathulenol (14.6% and β-caryophyllene (13.4%. The oil was also assayed to determine its antimicrobial potential against eight bacterial and six fungal strains. The oil exhibited both antifungal and antibacterial activities. Among bacteria, the oil was most effective against Staphylococcus epidermidis (MIC 0.625 mg/mL followed by Staphylococcu. Aureus (MIC 1.25 mg/mL . While among fungi, the oil was most effective against Aspergillus flavus followed by Aspergillus niger and Sporothrix schenckii with MIC as low as 0.625 mg/mL.

  6. Analyses of soil microbial community compositions and functional genes reveal potential consequences of natural forest succession

    Science.gov (United States)

    Cong, Jing; Yang, Yunfeng; Liu, Xueduan; Lu, Hui; Liu, Xiao; Zhou, Jizhong; Li, Diqiang; Yin, Huaqun; Ding, Junjun; Zhang, Yuguang

    2015-05-01

    The succession of microbial community structure and function is a central ecological topic, as microbes drive the Earth’s biogeochemical cycles. To elucidate the response and mechanistic underpinnings of soil microbial community structure and metabolic potential relevant to natural forest succession, we compared soil microbial communities from three adjacent natural forests: a coniferous forest (CF), a mixed broadleaf forest (MBF) and a deciduous broadleaf forest (DBF) on Shennongjia Mountain in central China. In contrary to plant communities, the microbial taxonomic diversity of the DBF was significantly (P functional diversity was also highest in the DBF. Furthermore, a network analysis of microbial carbon and nitrogen cycling genes showed the network for the DBF samples was relatively large and tight, revealing strong couplings between microbes. Soil temperature, reflective of climate regimes, was important in shaping microbial communities at both taxonomic and functional gene levels. As a first glimpse of both the taxonomic and functional compositions of soil microbial communities, our results suggest that microbial community structure and function potentials will be altered by future environmental changes, which have implications for forest succession.

  7. Evaluation of the Technical-Economic Potential of Particle- Reinforced Aluminum Matrix Composites and Electrochemical Machining

    Science.gov (United States)

    Schubert, A.; Götze, U.; Hackert-Oschätzchen, M.; Lehnert, N.; Herold, F.; Meichsner, G.; Schmidt, A.

    2016-03-01

    Compared to conventional cutting, the processing of materials by electrochemical machining offers some technical advantages like high surface quality, no thermal or mechanical impact on the work piece and preservation of the microstructure of the work piece material. From the economic point of view, the possibility of process parallelization and the absence of any process-related tool wear are mentionable advantages of electrochemical machining. In this study, based on experimental results, it will be evaluated to what extent the electrochemical machining is technically and economically suitable for the finish-machining of particle- reinforced aluminum matrix composites (AMCs). Initial studies showed that electrochemical machining - in contrast to other machining processes - has the potential to fulfil demanding requirements regarding precision and surface quality of products or components especially when applied to AMCs. In addition, the investigations show that processing of AMCs by electrochemical machining requires less energy than the electrochemical machining of stainless steel. Therefore, an evaluation of electrochemically machined AMCs - compared to stainless steel - from a technical and an economic perspective will be presented in this paper. The results show the potential of electro-chemically machined AMCs and contribute to the enhancement of instruments for technical-economic evaluations as well as a comprehensive innovation control.

  8. Nutrient Composition and Anti-inflammatory Potential of a Prescribed Macrobiotic Diet.

    Science.gov (United States)

    Harmon, Brook E; Carter, Mollie; Hurley, Thomas G; Shivappa, Nitin; Teas, Jane; Hébert, James R

    2015-01-01

    Despite nutrient adequacy concerns, macrobiotic diets are practiced by many individuals with cancer and other life-threatening illnesses. This study compared the nutrient composition and inflammatory potential of a macrobiotic diet plan with national dietary recommendations and intakes from a nationally representative sample. Nutrient comparisons were made using the 1) macrobiotic diet plan outlined in the Kushi Institute's Way to Health; 2) recommended dietary allowances (RDA); and 3) National Health and Nutrition Examination Survey (NHANES) 2009-2010 data. Comparisons included application of the recently developed dietary inflammatory index (DII). Analyses focused on total calories, macronutrients, 28 micronutrients, and DII scores. Compared to NHANES data, the macrobiotic diet plan had a lower percentage of energy from fat, higher total dietary fiber, and higher amounts of most micronutrients. Nutrients often met or exceeded RDA recommendations, except for vitamin D, vitamin B12, and calcium. Based on DII scores, the macrobiotic diet was more anti-inflammatory compared to NHANES data (average scores of -1.88 and 1.00, respectively). Findings from this analysis of a macrobiotic diet plan indicate the potential for disease prevention and suggest the need for studies of real-world consumption as well as designing, implementing, and testing interventions based on the macrobiotic approach.

  9. Plasma electrolytic oxidation of titanium in a phosphate/silicate electrolyte and tribological performance of the coatings

    Energy Technology Data Exchange (ETDEWEB)

    Aliasghari, S.; Skeldon, P., E-mail: p.skeldon@manchester.ac.uk; Thompson, G.E.

    2014-10-15

    Highlights: • Plasma electrolytic oxidation performed of titanium in silicate/phosphate electrolyte. • Range of duty cycle, current density, positive-to-negative current ratio studied. • Coatings contain anatase, rutile, Ti{sub 3}O{sub 5}, and amorphous silica. • Ptfe incorporated into coatings by addition of ptfe emulsion to the electrolyte. • Fiction reduced but wear life relatively short due to porosity of coatings. - Abstract: Plasma electrolytic oxidation of titanium has been investigated using a phosphate/silicate electrolyte with a square waveform and a frequency of 50 Hz. A range of constant rms current densities, duty cycles and negative-to-positive current ratios was employed. The resultant coatings were examined by analytical scanning and transmission electron microscopies and X-ray diffraction. The coatings, which were limited in thickness to ∼40 to 50 μm, contained anatase, rutile, Ti{sub 2}O{sub 5} and silicon-rich, amorphous material. The tribological behaviour was investigated using a ball-on-disc test, revealing a coefficient of friction against steel of ∼0.8, which reduced to ∼0.4 by incorporation of ptfe particles from the electrolyte. However, due to the composition and morphology of the coatings, their wear life was relatively short.

  10. Titania-silver and alumina-silver composite nanoparticles: novel, versatile synthesis, reaction mechanism and potential antimicrobial application.

    Science.gov (United States)

    Bala, Tanushree; Armstrong, Gordon; Laffir, Fathima; Thornton, Roibeard

    2011-04-15

    Titania-silver (TiO(2)-Ag) and alumina-silver (Al(2)O(3)-Ag) composite nanoparticles were synthesised by a simple, reproducible, wet chemical method under ambient conditions. The surface of the oxides was modified with oleic acid, which acted as an intermediate between the oxide surface and the silver nanoparticles. The resulting composite nanoparticles were thoroughly characterised by XRD, TEM, XPS, FTIR and TGA to elucidate the mode of assembly of Ag nanoparticles on the oxide surfaces. Epoxy nanocomposites were formulated with TiO(2)-Ag and Al(2)O(3)-Ag to examine potential applications for the composite nanoparticles. Preliminary results from disc diffusion assays against Escherichia coli DH5α and Staphylococcus epidermidis NCIMB 12721 suggest that these TiO(2)-Ag and Al(2)O(3)-Ag composite nanoparticles have potential as antimicrobial materials. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Potential of milk fatty acid composition to predict diet composition and authenticate feeding systems and altitude origin of European bulk milk.

    Science.gov (United States)

    Coppa, M; Chassaing, C; Ferlay, A; Agabriel, C; Laurent, C; Borreani, G; Barcarolo, R; Baars, T; Kusche, D; Harstad, O M; Verbič, J; Golecký, J; Delavaud, C; Chilliard, Y; Martin, B

    2015-03-01

    The aims of this work were to elucidate the potential of using milk fatty acid (FA) concentration to predict cow diet composition and altitude of bulk milk collected in 10 different European countries and to authenticate cow-feeding systems and altitude of the production area using a data set of 1,248 bulk cow milk samples and associated farm records. The predictions based on FA for cow diet composition were excellent for the proportions of fresh herbage [coefficient of determination (R2)=0.81], good for hay, total herbage-derived forages, and total preserved forages (R2>0.73), intermediate for corn silage and grass silage (R2>0.62), and poor for concentrates (R2diet. Milk samples were assigned to groups according to feeding system, level of concentrate supplementation, and altitude origin. Milk FA composition successfully authenticated cow-feeding systems dominated by a main forage (>93% of samples correctly classified), but the presence of mixed diets reduced the discrimination. Altitude prediction reliability was intermediate (R2composition was not able to authenticate concentrate supplementation level in the diet (composition (composition to authenticate cow feeding was confirmed using a data set representative of the diversity of European production conditions. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. A solid-polymer-electrolyte direct methanol fuel cell (DMFC) with Pt ...

    Indian Academy of Sciences (India)

    polymer-electrolyte direct methanol fuel cell (DMFC) with Pt-Ru nanoparticles supported onto poly(3,4-ethylenedioxythiophene) and polystyrene sulphonic acid polymer composite as anode. K K Tintula S Pitchumani P Sridhar A K Shukla.

  13. Modeling of Porous Insertion Electrodes with Liquid Electrolyte

    DEFF Research Database (Denmark)

    West, Keld; Jacobsen, Torben; Atlung, Sven

    1982-01-01

    The dynamics of porous insertion electrodes during charge or discharge is described by a simplified mathematicalmodel, accounting for the coupled transport in electrode and electrolyte phases. A numerical method to evaluate theresponse of this model to either controlled potential or controlled...... current is outlined, and numerical results for thedischarge of a porous TiS2-electrode in an idealized organic electrolyte are presented. It is demonstrated how electrolyte depletion is the principal limiting factor in the capacity obtained during discharge of this electrode system. Thisdepletion...... is a consequence of the mobility of the ions not inserted, hence the performance of this type of electrode isoptimized by choosing electrolytes with transport number as close to unity as possible for the inserted ion....

  14. Nanofilm processors controlled by electrolyte flows of femtoliter volume.

    Science.gov (United States)

    Nolte, Marius; Knoll, Meinhard

    2013-06-25

    Nanofilm processors are a new kind of smart system based on the lateral self-oxidation of nanoscale aluminum films. The time dependency of these devices is controlled by electrolyte flows of femtoliter volume which can be modulated by different mechanisms. In this paper, we provide a deeper investigation of the electrolyte transport in the nanofilm processor and the different possibilities to control the aluminum oxidation velocity. A method for the in situ investigation of the acidic characteristic of the channel electrolyte is demonstrated. The obtained results form a set of instruments for constructing more complex electrolyte circuits and should allow the creation of nanofilm processors of arbitrary time dependence. Because the nanofilm processor combines different functional blocks and can operate in a self-sustained manner, without requiring batteries, this smart system may serve as a basis for many potential applications.

  15. Evaluation of Electrolytes Imbalance and Dyslipidemia in Diabetic Patients.

    Science.gov (United States)

    Hasona, Nabil A; Elasbali, Abdulbaset

    2016-04-01

    Electrolytes and Lipids have always played significant roles, and changes in their concentrations gives good indications of disease progression in a number of non-communicable diseases. Diabetes mellitus is the most common metabolic disorder in the community. Diabetics may suffer from electrolyte disorders due to complications of diabetes mellitus and the medication they receive. Serum glucose, electrolytes (Na⁺, K⁺, Cl(-) and Ca(++)), and lipid profiles (total cholesterol, triglyceride, and HDL-c) were determined in 100 diabetics and in non-diabetic subjects. All the diabetic patients had a significant (p electrolytes found in diabetics may have great potential as a diagnostic tool in clinical practice and have a significant effect upon the risk of contracting many diseases.

  16. Progress in Electrolyte-Free Fuel Cells

    Directory of Open Access Journals (Sweden)

    Yuzheng eLu

    2016-05-01

    Full Text Available Solid Oxide Fuel Cell (SOFC represents a clean electrochemical energy conversion technology with characteristics of high conversion efficiency and low emissions. It is one of the most important new energy technologies in the future. However, the manufacture of SOFCs based on the structure of anode/electrolyte/cathode is complicated and time-consuming. Thus, the cost for the entire fabrication and technology is too high to be affordable and challenges still hinder commercialization. Recently, a novel type of Electrolyte -free fuel cell (EFFC with single component was invented which could be the potential candidate for the next generation of advanced fuel cells. This paper briefly introduces the EFFC, working principle, performance and advantages with updated research progress. A number of key R&D issues about EFFCs have been addressed and future opportunities and challenges are discussed.

  17. Compositional changes in swine manure fibers treated with aqueous ammonia soaking (AAS) resulting in increased methane potential

    DEFF Research Database (Denmark)

    Jurado, Esperanza; Hansen, Mads A.T.; Gavala, Hariklia N.

    2013-01-01

    AAS treatment is a very efficient method to increase the methane potential of manure fibers. The chemical composition and supramolecular structures of swine manure fibers before and after AAS treatment was investigated in this study. Composition analyses, atomic force microscopy (AFM), scanning...... electron microscopy (SEM), and chemical surface composition by Attenuated Total Reflectance–Fourier Transform Infrared (ATR–FTIR) showed that no delignification of the lignocellulose took place during AAS-treatment. Instead, the fibers were cleansed from debris, thus leaving the cellulose more exposed...

  18. COMPOSITE

    African Journals Online (AJOL)

    An effective medium theory of ferroelectric ceramic-polymer composite materials which treats both components symmetrically has been investigated to demonstrate the role played by the microgeometry of inclusions on dielectric, mechanical and piezoelectric properties of 0-3 composites. The limits of the various theoretical ...

  19. Oxygen isotopic composition of opaline phytoliths: Potential for terrestrial climatic reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Shahack-Gross, R.; Weiner, S.; Shemesh, A.; Yakir, D. [Weizmann Institute of Science, Rehovot (Israel)

    1996-10-01

    Opaline mineralized bodies are produced by many terrestrial plants and accumulate in certain soils and archaeological sites. Analyses of the oxygen isotopic compositions of these so-called phytoliths from stems and leaves of wheat plants grown in a greenhouse showed a linear relationship with stem and leaf water isotopic compositions and hence, indirectly, rain water isotopic composition. Analyses of wheat plants grown in fields showed that stem phytoliths isotopic composition directly reflects the seasonal air temperature change, whereas leaf phytoliths isotopic composition reflects both temperature and relative humidity. Temperature and the oxygen isotopic composition of stem phytoliths were related by an equation similar to that proposed for marine opal. Oxygen isotopic compositions of fossil phytoliths, and in particular those from stems, could be valuable for reconstructing past terrestrial climate change.

  20. Lithium ion conducting ionic electrolytes

    Science.gov (United States)

    Angell, C. Austen; Xu, Kang; Liu, Changle

    1996-01-01

    A liquid, predominantly lithium-conducting, ionic electrolyte is described which has exceptionally high conductivity at temperatures of 100.degree. C. or lower, including room temperature. It comprises molten lithium salts or salt mixtures in which a small amount of an anionic polymer lithium salt is dissolved to stabilize the liquid against recrystallization. Further, a liquid ionic electrolyte which has been rubberized by addition of an extra proportion of anionic polymer, and which has good chemical and electrochemical stability, is described. This presents an attractive alternative to conventional salt-in-polymer electrolytes which are not cationic conductors.

  1. Lithium ion conducting ionic electrolytes

    Science.gov (United States)

    Angell, C.A.; Xu, K.; Liu, C.

    1996-01-16

    A liquid, predominantly lithium-conducting, ionic electrolyte is described which has exceptionally high conductivity at temperatures of 100 C or lower, including room temperature. It comprises molten lithium salts or salt mixtures in which a small amount of an anionic polymer lithium salt is dissolved to stabilize the liquid against recrystallization. Further, a liquid ionic electrolyte which has been rubberized by addition of an extra proportion of anionic polymer, and which has good chemical and electrochemical stability, is described. This presents an attractive alternative to conventional salt-in-polymer electrolytes which are not cationic conductors. 4 figs.

  2. Electrorefining of copper from a cuprous ion complexing electrolyte. II. Experimental comparison of possible alternative electrolytes and preliminary cost engineering analysis

    Energy Technology Data Exchange (ETDEWEB)

    Brown, A.P.; Loutfy, R.O.; Cook, G.M.

    1980-04-01

    The energy saving potential and refining capability of three copper(I)/electrolyte systems for the electrorefining of copper were compared experimentally. The alternative electrolyte systems studied were copper(I)/acid chloride, copper(I)/acetonitrile and sulfuric acid, and copper(I)/ammonia solutions. These were compared to the conventional copper(II)/sulfuric acid electrolyte. All of the alternative electrolyte systems demonstrated at least some potential for saving energy when run at an equal deposition rate to the conventional process; the chloride electrolyte showed the greatest energy saving potential, about 70%, and the ammonia electrolyte showed the least, about 25%. All of the alternative electrolyte systems, however, exhibited performance problems, primarily with regard to inadequate separation of impurities. A preliminary capital cost estimate was made for the copper(I)/chloride system. This estimate showed that, for the alternative electrolyte system to be cost competitive (that is, a reduction of capital cost of about 15 to 20%) with the conventional electrorefining process, the refining cells would have to be operated at a current density of about 25 to 30 mA-cm/sup -2/. At this current density, the estimated energy saving potential for the copper(I)/chloride system was still about 50%.

  3. Elemental Composition of Two Rice Cultivars under Potentially Toxic an Aquept and Aquent

    Directory of Open Access Journals (Sweden)

    Adesola Olutayo OLALEYE

    2009-12-01

    Full Text Available Iron toxicity is a major nutrient disorder affecting rice production of wetland rice in the irrigated and rainfed ecosystem in West Africa sub-region. Little attention has been paid to evaluating nutrient contents of rice cultivars grown on such soils and their relationship to the iron toxicity scores, grain yield and dry matter yields. A pot experiment was conducted on two potentially Fe-toxic soils (Aeric Fluvaquent and Aeric Tropaquept. The experiment was a 2 x 2 x 4 factorial experiment with three replicates in arranged in a randomized fashion. The factors were two soil types, two rice cultivars (ITA 212 and tolerant (Suakoko 8 and four Fe 2+ levels (control, 1000, 3000 and 4000 mg L-1. The result showed that for both susceptible cultivar (ITA 212 and the relatively tolerant (Suakoko 8 cultivar, little or no differences were observed in their elemental composition with regards to micro and macro-nutrients. For the susceptible cultivar, results showed that none of the tissue nutrients significantly relates to iron toxicity scores (ITS, grain yield and dry matter yield on both soil types. However, for the tolerant cultivar, ITS was observed to be significantly related to tissue K and P contents on the two soil types respectively. Tissue Ca and Mg were observed to be significantly related to the dry matter yield (DMY on Aeric Tropquept. It could be concluded that for these rice cultivars grown on two potentially Fe-toxic soils, different tissue nutrients may trigger the manifestation of bronzing or yellowing symptoms of rice cultivars.

  4. High temperature lithium cells with solid polymer electrolytes

    Science.gov (United States)

    Yang, Jin; Eitouni, Hany Basam; Singh, Mohit

    2017-03-07

    Electrochemical cells that use electrolytes made from new polymer compositions based on poly(2,6-dimethyl-1,4-phenylene oxide) and other high-softening-temperature polymers are disclosed. These materials have a microphase domain structure that has an ionically-conductive phase and a phase with good mechanical strength and a high softening temperature. In one arrangement, the structural block has a softening temperature of about 210.degree. C. These materials can be made with either homopolymers or with block copolymers. Such electrochemical cells can operate safely at higher temperatures than have been possible before, especially in lithium cells. The ionic conductivity of the electrolytes increases with increasing temperature.

  5. Growth and biochemical composition of filamentous microalgae Tribonema sp. as potential biofuel feedstock.

    Science.gov (United States)

    Wang, Hui; Ji, Bei; Wang, Junfeng; Guo, Fajin; Zhou, Wenjun; Gao, Lili; Liu, Tian Zhong

    2014-12-01

    Filamentous oleaginous microalgae Tribonema minus have advantages in relatively easy harvesting and grazers resistance in mass cultivation due to its filaments in previous study. To evaluate whether the genus Tribonema is a valuable candidate for use in biofuel production, the morphology, growth, biochemical composition and fatty acid profile of six filamentous microalgae strains Tribonema sp. were investigated. All the strains are unbranched filament in single row of elongated cylinder, attaining 0.5-3 mm in length. The growth rates of tested strains were 0.35-0.42 g L(-1) d(-1). Generally, for all strains, decrease in protein content was followed by a slight increase in lipid and significant increase in carbohydrate in early phase, afterwards, lipid increased constantly inversely to decrease in carbohydrate content. After 15-day cultivation, total lipid contents of tested strains ranged from 38-61 %, of which TAG were the majority and palmitic acid (C16:0) and palmitoleic acid (C16:1) were the dominant components. The study confirmed that the genus Tribonema is the potential for biodiesel and bioethanol production upon culture time.

  6. CHEMICAL COMPOSITION, DEGRADABILITY AND METHANE EMISSION POTENTIAL OF BANANA CROP RESIDUES FOR RUMINANTS

    Directory of Open Access Journals (Sweden)

    Lincoln Nunes Oliveira

    2014-08-01

    Full Text Available Banana leaf hay (BL, banana pseudostem hay (BP, coast-cross hay (CC, 50% coast-cross hay with 50% banana leaf (BLCC and 50% coast-cross hay with 50% pseudostem hay (BPCC were evaluated for chemical composition, cumulative gas production, dry matter degradability and methane emission potential. Inoculums from sheep and cattle were collected to tests. The experimental design was completely randomized in a factorial arrangement of 5 x 2, being data analysed by variance analysis and the means compared by Tukey test (5%. The crude protein levels for the substrates BL, BP, CC, BLCC and BPCC were respectively 13.8%, 3.5%, 8.6%, 9.7% and 6.1%. Despite its low protein level, the BP substrate had higher content of non-fibrous carbohydrates (28.4%, followed by BL (23.4%, BPCC (23.4%, BLCC (20.0% and CC (13.3%. The highest cumulative gas production was observed for BP (P < 0.05, reflecting their greater effective degradability (76.3%. This substrate showed the largest emissions of methane (34,16 mL/g DMD.

  7. Polymer-Single Wall Carbon Nanotube Composites for Potential Spacecraft Applications

    Science.gov (United States)

    Park, C.; Ounaies, Z.; Watson, K. A.; Pawlowski, K.; Lowther, S. E.; Connell, J. W.; Siochi, E. J.; Harrison, J. S.; St.Clair, T. L.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    Polymer-single wall carbon nanotube (SWNT) composite films were prepared and characterized as part of an effort to develop polymeric materials with improved combinations of properties for potential use on future spacecraft. Next generation spacecraft will require ultra-lightweight materials that possess specific and unique combinations of properties such as radiation and atomic oxygen resistance, low solar absorptivity, high thermal emissitivity, electrical conductivity, tear resistance, ability to be folded and seamed, and good mechanical properties. The objective of this work is to incorporate sufficient electrical conductivity into space durable polyimides to mitigate static charge build-up. The challenge is to obtain this level of conductivity (10(exp -8) S/cm) without degrading other properties of importance, particularly optical transparency. Several different approaches were attempted to fully disperse the SWNTs into the polymer matrix. These included high shear mixing, sonication, and synthesizing the polymers in the presence of pre-dispersed SWNTs. Acceptable levels of conductivity were obtained at loading levels less than one tenth weight percent SWNT without significantly sacrificing optical properties. Characterization of the nanocomposite films and the effect of SWNT concentration and dispersion on the conductivity, solar absorptivity, thermal emissivity, mechanical and thermal properties were discussed. Fibers and non-woven porous mats of SWNT reinforced polymer nanocomposite were produced using electrospinning.

  8. Effect of hydrothermal pretreatment of sunflower oil cake on biomethane potential focusing on fibre composition.

    Science.gov (United States)

    Fernández-Cegrí, Victoria; Angeles De la Rubia, M; Raposo, Francisco; Borja, Rafael

    2012-11-01

    The aim of this study was to elucidate the effect of hydrothermal pretreatment at 25, 100, 150 and 200°C on fibre composition and the biomethane potential of sunflower oil cake (SuOC). An increase in pretreatment temperature from 25 to 200°C caused a decrease in hemicellulose content in the solid pretreated fraction from 13 to 6% while the lignin content increased by 16%. Soluble compounds also increased with temperature. Digestion of solid fractions from pretreatments at 25, 100, 150 and 200°C in batch assays at 35±1°C resulted in methane yields of 114±9, 105±7, 82±7 and 53±8mL CH(4) g(-1)COD(added), respectively. The corresponding methane yields for the liquid fractions were 276±6, 310±4, 220±15 and 247±10mL CH(4) g(-1)COD(added), respectively. Therefore the overall methane yield was highest for SuOC pretreated at 100°C; however, this value was only 6.5% higher than that achieved after pretreatment at 25°C. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. A comparative study of nutritional composition and potential use of some underutilized tropical fruits of Arecaceae

    Directory of Open Access Journals (Sweden)

    RAQUEL B. SILVA

    2015-09-01

    Full Text Available In this study, pulp and kernel of fruits from six Arecaceae species were subjected to proximate analysis, fatty acid composition and total carotenoid content analysis. The species with the highest carbohydrate, lipid and protein values were Ptychosperma macarthurii(70.1 g/100 g in the kernel, Syagrus cearensis(40.6 g/100 g in the kernel, andS. coronata(20.6 g/100 g in the pulp. The ash content ranged from 0.61 to 7.51 g/100 g. Lauric, palmitic, and oleic acids were the major fatty acids identified. The total carotenoid contents and retinol activity equivalents were highest in the Pinanga kuhlii (180.3 µg/g andAcrocomia intumescens (138.0 µg/g pulp oils. Retinol activity equivalents varied between the investigated species (456 to 1515 μg RAE/100 g. Native species such as A. intumescens, S. coronata, and S. cearensis are good sources of fresh food for the underserved populations that inhabit poorly developed areas such as the semi-arid region of Brazil. P. macarthurii, an exotic species, is an excellent source of ash and carotenoids, demonstrating its potential both as a food source and as bioactive compounds. Pulp and kernel ofA. intumescens,could be a good alternative feedstock for soap and biodiesel production, respectively.

  10. A comparative study of nutritional composition and potential use of some underutilized tropical fruits of Arecaceae.

    Science.gov (United States)

    Silva, Raquel B; Silva-Júnior, Edvaldo V; Rodrigues, Laís C; Andrade, Laise H C; da Silva, Suzene I; Harand, Wolfgang; Oliveira, Antonio F M

    2015-09-01

    In this study, pulp and kernel of fruits from six Arecaceae species were subjected to proximate analysis, fatty acid composition and total carotenoid content analysis. The species with the highest carbohydrate, lipid and protein values were Ptychosperma macarthurii(70.1 g/100 g in the kernel), Syagrus cearensis(40.6 g/100 g in the kernel), andS. coronata(20.6 g/100 g in the pulp). The ash content ranged from 0.61 to 7.51 g/100 g. Lauric, palmitic, and oleic acids were the major fatty acids identified. The total carotenoid contents and retinol activity equivalents were highest in the Pinanga kuhlii (180.3 µg/g) and Acrocomia intumescens (138.0 µg/g) pulp oils. Retinol activity equivalents varied between the investigated species (456 to 1515 μg RAE/100 g). Native species such as A. intumescens, S. coronata, and S. cearensis are good sources of fresh food for the underserved populations that inhabit poorly developed areas such as the semi-arid region of Brazil. P. macarthurii, an exotic species, is an excellent source of ash and carotenoids, demonstrating its potential both as a food source and as bioactive compounds. Pulp and kernel ofA. intumescens,could be a good alternative feedstock for soap and biodiesel production, respectively.

  11. Composition and potential anticancer activities of essential oils obtained from myrrh and frankincense

    Science.gov (United States)

    CHEN, YINGLI; ZHOU, CHUNLAN; GE, ZHENDAN; LIU, YUFA; LIU, YUMING; FENG, WEIYI; LI, SEN; CHEN, GUOYOU; WEI, TAIMING

    2013-01-01

    The present study aimed to investigate the composition and potential anticancer activities of essential oils obtained from two species, myrrh and frankincense, by hydrodistillation. Using gas chromatography-mass spectrometry (GC-MS), 76 and 99 components were identified in the myrrh and frankincense essential oils, respectively, with the most abundant components, 2-Cyclohexen-1-one, 4-ethynyl-4-hydroxy-3,5,5-trimethyl- and n-Octylacetate, accounting for 12.01 and 34.66%, respectively. The effects of the two essential oils, independently and as a mixture, on five tumor cell lines, MCF-7, HS-1, HepG2, HeLa and A549, were investigated using the MTT assay. The results indicated that the MCF-7 and HS-1 cell lines showed increased sensitivity to the myrrh and frankincense essential oils compared with the remaining cell lines. In addition, the anticancer effects of myrrh were markedly increased compared with those of frankincense, however, no significant synergistic effects were identified. The flow cytometry results indicated that apoptosis may be a major contributor to the biological efficacy of MCF-7 cells. PMID:24137478

  12. Antireduction Insulator For Solid-Electrolyte Cell

    Science.gov (United States)

    Shlichta, Paul J.

    1990-01-01

    Depletion of oxygen from electrolyte prevented. Proposed to add layer of electrical insulation between solid electrolyte and portion of porous negative electrode under negative metal contact in solid-electrolyte cell. Helps maintain efficiency of cell by preventing "shadow" effect degrading portion of electrolyte under negative contact and sometimes near seals.

  13. [Electrolyte metabolism and emergency].

    Science.gov (United States)

    Nakao, I; Ito, T; Kasai, N

    1983-02-01

    In outlining the pathology of various electrolyte metabolism abnormalities in cancer patients we considered the main clinical points between pathologies and emergency treatment. In regard to sodium (Na+) metabolism, one pathologic state that requires our attention is hypernatremia. Hypernatremia is accompanied with dehydration and is due to water loss, vomiting, diarrhea and renal insufficiency. One of the major causes of this condition is lack of the antidiuretic hormone due to intracranial metastasis of the tumor. When hypernatremia becomes severe, it is accompanied with circulatory failure, muscular asthenia, disorientation, convulsions, coma and other cerebral symptoms. Treatment consists of replenishing the water content by infusion of electrolyte solutions which should be carefully conducted after complete diagnose of the severity of the patient's pathological condition. Hyponatremia, like sick cell syndrome, is observed relatively frequently in cancer patients. When the serum Na level falls markedly, it induces cerebral edema and causes disorders of consciousness. The major treatment consists of providing both water and sodium supplements. Hyperkalemia is observed at the time of renal insufficiency, tissue lesions, vomiting, and diarrhea. When serum potassium level rises, it causes bradycardia, ventricular fibrillation, or cardiac arrest. It is important to diagnostically apprehend the severity of this condition using EKG and determining the serum K1+ level. For emergency treatment injection of calcium gluconate is very effective. Hypokalemia is often manifested by the loss of intestinal fluids due to diarrhea or during administration of diuretic agents. Clinical symptoms include neural paralysis but emergencies occur relatively infrequently. K C1 injections are used in treating this condition. Hypercalcemia is manifested in cancer patients during hyperparathyroidism. Its clinical symptoms include lassitude, tachycardia, nausea, vomiting, and renal dys

  14. Preliminary study of application of Moringa oleifera resin as polymer electrolyte in DSSC solar cells

    Science.gov (United States)

    Saehana, Sahrul; Darsikin, Muslimin

    2016-04-01

    This study reports the preliminary study of application of Moringa oleifera resin as polymer electrolyte in dye-sensitized solar cell (DSSC). We found that polymer electrolyte membrane was formed by using solution casting methods. It is observed that polymer electrolyte was in elastic form and it is very potential to application as DSSC component. Performance of DSSC which employing Moringa oleifera resin was also observed and photovoltaic effect was found.

  15. Alkaline solid polymer electrolytes and their application to rechargeable batteries; Electrolytes solides polymeres alcalins application aux generateurs electrochimiques rechargeables

    Energy Technology Data Exchange (ETDEWEB)

    Guinot, S.

    1996-03-15

    A new family of solid polymer electrolytes (SPE) based on polyoxyethylene (POE), KOH and water is investigated in view of its use in rechargeable batteries. After a short review on rechargeable batteries, the preparation of various electrolyte compositions is described. Their characterization by differential scanning calorimetry (DSC), thermogravimetric analysis, X-ray diffraction and microscopy confirm a multi-phasic structure. Conductivity measurements give values up to 10 sup -3 S cm sup -1 at room temperature. Their use in cells with nickel as negative electrode and cadmium or zinc as positive electrode has been tested; cycling possibility has been shown to be satisfactory. (C.B.) 113 refs.

  16. Electrolytic formation of carbon nanostructures

    Science.gov (United States)

    Hsu, W. K.; Terrones, M.; Hare, J. P.; Terrones, H.; Kroto, H. W.; Walton, D. R. M.

    1996-11-01

    Carbon nanotubes (with and without encapsulated material) as well as nanoparticles and onion-like structures have been generated by electrolysis in molten alkali halide salts using carbon electrodes under an argon atmosphere. The nature of the products depends upon several factors including the electrolysis voltage and current, depth of electrode immersion in the electrolyte, the length of time the current is maintained and the electrolyte.

  17. Electrolytes for lithium ion batteries

    Science.gov (United States)

    Vaughey, John; Jansen, Andrew N.; Dees, Dennis W.

    2014-08-05

    A family of electrolytes for use in a lithium ion battery. The genus of electrolytes includes ketone-based solvents, such as, 2,4-dimethyl-3-pentanone; 3,3-dimethyl 2-butanone(pinacolone) and 2-butanone. These solvents can be used in combination with non-Lewis Acid salts, such as Li.sub.2[B.sub.12F.sub.12] and LiBOB.

  18. Cosolvent electrolytes for electrochemical devices

    Energy Technology Data Exchange (ETDEWEB)

    Wessells, Colin Deane; Firouzi, Ali; Motallebi, Shahrokh; Strohband, Sven

    2018-02-13

    A system and method for stabilizing electrodes against dissolution and/or hydrolysis including use of cosolvents in liquid electrolyte batteries for three purposes: the extension of the calendar and cycle life time of electrodes that are partially soluble in liquid electrolytes, the purpose of limiting the rate of electrolysis of water into hydrogen and oxygen as a side reaction during battery operation, and for the purpose of cost reduction.

  19. Cosolvent electrolytes for electrochemical devices

    Energy Technology Data Exchange (ETDEWEB)

    Wessells, Colin Deane; Firouzi, Ali; Motallebi, Shahrokh; Strohband, Sven

    2018-01-23

    A method for stabilizing electrodes against dissolution and/or hydrolysis including use of cosolvents in liquid electrolyte batteries for three purposes: the extension of the calendar and cycle life time of electrodes that are partially soluble in liquid electrolytes, the purpose of limiting the rate of electrolysis of water into hydrogen and oxygen as a side reaction during battery operation, and for the purpose of cost reduction.

  20. Solid polymer electrolyte lithium batteries

    Science.gov (United States)

    Alamgir, Mohamed; Abraham, Kuzhikalail M.

    1993-01-01

    This invention pertains to Lithium batteries using Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride).

  1. Embedding of Bacterial Cellulose Nanofibers within PHEMA Hydrogel Matrices: Tunable Stiffness Composites with Potential for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Radka Hobzova

    2018-01-01

    Full Text Available Bacterial cellulose (BC and poly(2-hydroxyethyl methacrylate (PHEMA hydrogels are both considered as biocompatible materials with potential use in various biomedical applications including cartilage, cardiovascular stent, and soft tissue engineering. In this work, the “ever-wet” process based on in situ UV radical polymerization of HEMA monomer in BC nanofibrous structure impregnated with HEMA was used, and a series of BC-PHEMA composites was prepared. The composite structures were characterized by ATR FT-IR spectroscopy, WAXD, SEM, and TEM techniques. The strategy of using densified BC material of various cellulose fiber contents was applied to improve mechanical properties. The mechanical properties were tested under tensile, dynamic shear, and relaxation modes. The final composites contained 1 to 20 wt% of BC; the effect of the reinforcement degree on morphology, swelling capacity, and mechanical properties was investigated. The biocompatibility test of BC-PHEMA composites was performed using mouse mesenchymal stem cells.

  2. [Cancer and electrolytes imbalance].

    Science.gov (United States)

    Shibata, Hiroyuki

    2010-06-01

    The electrolyte imbalance in advanced cancer patients, including hyperkalemia, hypercalcemia and hyponatremia, can be induced by various factors. Hyperkalemia is occasionally induced by chemotherapy for very large malignant tumors, due to tumor lysis syndrome. Hypercalcemia and hyponatremia are often observed in patients with breast cancer, renal cancer, prostate cancer, and the like, as a paraneoplastic syndrome. Some part of hypercalcemia results from osteolysis, but the majority is induced by hormonal factors, such as parathyroid hormone-related protein. One of the paraneoplastic causes of hyponatremia is antidiuretic hormone-producing tumor. These disorders could be morbid or even motile, resulting from encephalopathy or arrhythmia in some cases. However, it should be kept in mind that they could be improved or cured by prompt treatment. Recently, after approval of the molecular targeted drugs for epidermal growth factor receptors, such as cetuximab and panitumumab, the incidence of hypomagnesia with use of these monoclonal antibodies, is relatively frequent. In addition, small molecular targeted drugs, such as m-TORinhibitors and ABL kinase inhibitors, also exert adverse reactions including hypomagnesia and hypophosphatemia. Careful monitoring of the serum concentration of magnesium and phosphate ions, to which little attention was paid previously, is a key issue in these cases.

  3. Electrolytes: Sodium Disorders.

    Science.gov (United States)

    Braun, Michael M; Mahowald, Megan

    2017-08-01

    Sodium disorders (ie, hyponatremia, hypernatremia) are common electrolyte disturbances in clinical medicine and are associated with increased rates of morbidity and mortality. Etiologies of hyponatremia are classified into four categories. The first is pseudohyponatremia, in which the sodium level is low due to hyperproteinemia, hyperlipidemia, or hyperglycemia. The other three categories are based on overall patient fluid status and include hypovolemic (commonly due to fluid loss), hypervolemic (commonly due to fluid retention from heart failure, cirrhosis, or renal failure), and euvolemic (most often because of syndrome of inappropriate secretion of antidiuretic hormone). Hypovolemic hyponatremia is managed by rehydration with isotonic saline. Hypervolemic hyponatremia is managed by addressing the underlying cause. Euvolemic hyponatremia is managed by restricting free water intake, addressing the underlying cause, and occasionally with drugs (eg, vasopressin receptor antagonists). Patients with severe or acutely symptomatic hyponatremia (eg, altered mental status, seizures), including those with acute symptomatic exercise-induced hyponatremia, require urgent treatment. This should consist of hypertonic saline administration along with monitoring of sodium levels to avoid overly rapid correction. Hypernatremia most often occurs because of water loss or inadequate water intake. Depending on severity, management involves oral or intravenous hypotonic fluids and addressing the underlying cause. Written permission from the American Academy of Family Physicians is required for reproduction of this material in whole or in part in any form or medium.

  4. Evaluation of physical stability of all in one parenteral admixtures for pediatric home care with high electrolytes concentrations.

    Science.gov (United States)

    Watrobska-Swietlikowska, Dorota; Szlagatys-Sidorkiewicz, Agnieszka; Łuszkiewicz, Katarzyna

    2014-01-01

    The aim of the study was to evaluate stability of 48 total parenteral admixtures for pediatric patients who require home parenteral nutrition. Admixtures contain high amounts of electrolytes. In a clinical practice electrolytes-enrichment of the parenteral nutrition admixtures is a usual demand, especially on the neonatal/pediatric wards. The supplementation of parenteral nutrition with high concentration of electrolytes is a living problem due to decreased stability of lipid emulsions in nutrition admixtures caused by bivalent cations. Preliminary admixtures were prepared in two-chamber ethylene vinyl acetate bags: amino acids, glucose and electrolytes were combined in one chamber and 20% (w/w) lipid emulsions (SMOFlipid®, Intralipid ® or ClinOleic®) were placed separately in the second chamber. Organic salts of calcium and phosphates were used. Pre-admixtures were stored at +4ºC for up to 21 days after preparation. Each composition of admixtures was prepared twice, because contents of the two chambers were combined at t=0 or after 21 days of storage at +4ºC. Visual observations, globule size distribution (using optical microscopy, laser diffraction and photon correlation spectroscopy methods), pH analyses, zeta potential and surface tension were performed after combining all components together with vitamins. Among 48 of investigated admixtures only two were problematic and other may be stored for at least 21 days at 4°C and completed admixtures demonstrated stability for at least 24 h at room temperature. It was possible to obtain stable admixtures despite of the high concentration of electrolytes. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  5. Enhanced performance of dicationic ionic liquid electrolytes by organic solvents.

    Science.gov (United States)

    Li, Song; Zhang, Pengfei; Fulvio Pasquale, F; Hillesheim Patrick, C; Feng, Guang; Dai, Sheng; Cummings Peter, T

    2014-07-16

    The use of dicationic ionic liquid (DIL) electrolytes in supercapacitors is impeded by the slow dynamics of DILs, whereas the addition of organic solvents into DIL electrolytes improves ion transport and then enhances the power density of supercapacitors. In this work, the influences of organic solvents on the conductivity of DILs and the electrical double layer (EDL) of DIL-based supercapacitors are investigated using classical molecular dynamics simulation. Two types of organic solvents, acetonitrile (ACN) and propylene carbonate (PC), were used to explore the effects of different organic solvents on the EDL structure and capacitance of DIL/organic solvent-based supercapacitors. Firstly, it was found that the conductivity of DIL electrolytes was greatly enhanced in the presence of the organic solvent ACN. Secondly, a stronger adsorption of PC on graphite results in different EDL structures formed by DIL/ACN and DIL/PC electrolytes. The expulsion of co-ions from EDLs was observed in DIL/organic solvent electrolytes rather than neat DILs and this feature is more evident in DIL/PC. Furthermore, the bell-shaped differential capacitance-electric potential curve was not essentially changed by the presence of organic solvents. Comparing DIL/organic solvent electrolytes with neat DILs, the capacitance is slightly increased by organic solvents, which is in agreement with experimental observation.

  6. Block Copolymer Electrolytes: Thermodynamics, Ion Transport, and Use in Solid- State Lithium/Sulfur Cells

    Science.gov (United States)

    Teran, Alexander Andrew

    Nanostructured block copolymer electrolytes containing an ion-conducting block and a modulus-strengthening block are of interest for applications in solid-state lithium metal batteries. These materials can self-assemble into well-defined microstructures, creating conducting channels that facilitate ion transport. The overall objective of this dissertation is to gain a better understanding of the behavior of salt-containing block copolymers, and evaluate their potential for use in solid-state lithium/sulfur batteries. Anionically synthesized polystyrene-b-poly(ethylene oxide) (SEO) copolymers doped with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt were used as a model system. This thesis investigates the model system on several levels: from fundamental thermodynamic studies to bulk characterization and finally device assembly and testing. First, the thermodynamics of neat and salt-containing block copolymers was studied. The addition of salt to these materials is necessary to make them conductive, however even small amounts of salt can have significant effects on their phase behavior, and consequently their iontransport and mechanical properties. As a result, the effect of salt addition on block copolymer thermodynamics has been the subject of significant interest over the last decade. A comprehensive study of the thermodynamics of block copolymer/salt mixtures over a wide range of molecular weights, compositions, salt concentrations and temperatures was conducted. Next, the effect of molecular weight on ion transport in both homopolymer and copolymer electrolytes were studied over a wide range of chain lengths. Homopolymer electrolytes show an inverse relationship between conductivity and chain length, with a plateau in the infinite molecular weight limit. This is due to the presence of two mechanisms of ion conduction in homopolymers; the first mechanism is a result of the segmental motion of the chains surrounding the salt ions, 2 creating a liquid

  7. Morphological and mechanical characterization of chitosan-calcium phosphate composites for potential application as bone-graft substitutes

    Directory of Open Access Journals (Sweden)

    Guilherme Maia Mulder van de Graaf

    Full Text Available Introduction: Bone diseases, aging and traumas can cause bone loss and lead to bone defects. Treatment of bone defects is challenging, requiring chirurgical procedures. Bone grafts are widely used for bone replacement, but they are limited and expensive. Due to bone graft limitations, natural, semi-synthetic, synthetic and composite materials have been studied as potential bone-graft substitutes. Desirable characteristics of bone-graft substitutes are high osteoinductive and angiogenic potentials, biological safety, biodegradability, bone-like mechanical properties, and reasonable cost. Herein, we prepared and characterized potential bone-graft substitutes composed of calcium phosphate (CP - a component of natural bone, and chitosan (CS - a biocompatible biopolymer. Methods CP-CS composites were synthetized, molded, dried and characterized. The effect of drying temperatures (38 and 60 °C on the morphology, porosity and chemical composition of the composites was evaluated. As well, the effects of drying temperature and period of drying (3, 24, 48 and 72 hours on the mechanical properties - compressive strength, modulus of elasticity and relative deformation-of the demolded samples were investigated. Results Scanning electron microscopy and gas adsorption-desorption analyses of the CS-CP composites showed interconnected pores, indicating that the drying temperature played an important role on pores size and distribution. In addition, drying temperature have altered the color (brownish at 60 °C due to Maillard reaction and the chemical composition of the samples, confirmed by FTIR. Conclusion Particularly, prolonged period of drying have improved mechanical properties of the CS-CP composites dried at 38 °C, which can be designed according to the mechanical needs of the replaceable bone.

  8. Dye-Sensitized Solar Cells with Optimal Gel Electrolyte Using the Taguchi Design Method

    Directory of Open Access Journals (Sweden)

    Jenn-Kai Tsai

    2013-01-01

    Full Text Available The Taguchi method was adopted to determine the optimal gel electrolyte used in dye-sensitized solar cells (DSSCs. Since electrolyte is a very important factor in fabrication of high performance and long-term stability DSSCs, to find the optimal composition of gel electrolyte is desired. In this paper, the common ingredients used in the liquid electrolyte were chosen. The ingredients then mixed with cheap ionic liquids and poly(vinylidenefluoride-co-hexafluoropropylene (PVDF-HFP were added to form colloidal electrolyte (gel. The optimal composition of each materials in the gel electrolyte determined by Taguchi method consists of 0.03 M I2, 0.15 M KI, 0.6 M LiI, 0.5 M 4-tertbutylpyridine (TBP, and 10% PVDF-HFP dissolved in the acetonitrile and 3-methoxypropionitrile (MPN solution with volume ratio of 2 : 1. The short circuit current density of 14.11 mA/cm2, the conversion efficiency (η of 5.52%, and the lifetime of over 110 days were observed for the dye-sensitized solar cell assembled with optimal gel electrolyte. The lifetime increases 10 times when compared with the conventional dye-sensitized solar cell assembled with liquid electrolyte.

  9. ELECTROLYTIC-PLASMA TREATMENT OF INNER SURFACE OF TUBULAR PRODUCTS

    Directory of Open Access Journals (Sweden)

    Yu. G. Alekseev

    2016-01-01

    Full Text Available While manufacturing a number of important tubular products stringent requirements have been imposed on quality of their inner surfaces. The well-known methods for inner surface treatment of pipes include sandblasting, chemical cleaning with acid reagents (oxalic, formic, sulfamic, orthophosphoric acids and electrochemical polishing. Disadvantages of the chemical method are cleaning-up irregularities, high metal removal, limited number of reagent application, complicated selection of reagent chemical composition and concentration, complicated and environmentally harmful recycling of waste chemicals, high cost of reagents. Low productivity at a high cost, as well as hazardous impact on personnel due to high dispersion of abrasive dust are considered as disadvantages of sandblasting. Electrochemical polishing is characterized by the following disadvantages: low processing productivity because supply of high currents is rather difficult due to electrolyte scattering capacity away from the main electrode action zone, limited length of the cavity to be treated due to heating of flexible current leads at operating current densities, application of expensive aggressive electrolytes and high costs of their recycling. A new method for polishing and cleaning of inner surfaces of tubular products based on electrolyte-plasma treatment has been developed. In comparison with the existing methods the proposed methods ensures quality processing with high intensity while applying non-toxic, environmentally friendly and cheap electrolytes. The paper presents results of investigations on technological specific features of electrolyte-plasma treatment for inner surfaces of tubular products: influence of slotted nozzle width, electrolyte flow and rate on stability of gas-vapor blanket, current density and productivity. Results of the research have made it possible to determine modes that provide stability and high productivity in the process of electrolyte

  10. Finding Universals through Difference: Disability Theory's Potential to Empower Composition Studies

    Science.gov (United States)

    Stanton, Courtney

    2016-01-01

    While much attention has been paid to the borders between those within and beyond the discipline of composition, the primary goal of this project is to examine the discourses which exist within composition and, subsequently, how these discourses might work to undermine pedagogy and scholarship. I take the position that even those working directly…

  11. Multifunctional nano-hydroxyapatite and alginate/gelatin based sticky gel composites for potential bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yurong; Yu, Juhong [The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, National Engineering Lab of Textile Fiber Materials & Processing Technology, College of Materials and Textile, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Kundu, Subhas C. [Department of Biotechnology, Indian Institute of Technology (IIT) Kharagpur, West Bengal 721302 (India); Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714 (Korea, Republic of); Yao, Juming, E-mail: yaoj@zstu.edu.cn [The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, National Engineering Lab of Textile Fiber Materials & Processing Technology, College of Materials and Textile, Zhejiang Sci-Tech University, Hangzhou 310018 (China)

    2016-09-15

    To improve the fixations of the implant and implant-bone integration after joint arthroplasty from locally preventing inflammation and promoting the bone regeneration, we design a multifunctional biomaterial consisting of recombinant human bone morphogenetic protein 2 (rhBMP-2) and antibiotic loaded nano-hydroxyapatite with an alginate/gelatin sticky gel. We investigate its role for the prevention of the inflammation and possibility of inducing a new bone growth along with its adhesive ability. The stickiness exists in the composite, which may help to fix itself on the bone fracture surface. The composite sustains the antibacterial effect and promotes the proliferation and differentiation of MG63 cells in vitro. In vivo experimentation also shows that the composite gel has a role for the reduction of inflammation. It enhances the formation of new bone and blood vessels compared to both the sole rhBMP-2 and non-rhBMP-2/antibiotic loaded composite gels. The multifunctional composite provides a promising material for the prosthetic and bone tissue regeneration. - Highlights: • Multifunctional nanohydroxyapatite composite is fabricated. • The composite consists of nHAP, growth factor, antibiotic and alginate/gelatin gel. • The composite shows antibacterial effect and good cytocompatibility. • No adverse effect to the cells tested in vitro and in vivo.

  12. Safer Electrolytes for Lithium-Ion Batteries: State of the Art and Perspectives.

    Science.gov (United States)

    Kalhoff, Julian; Eshetu, Gebrekidan Gebresilassie; Bresser, Dominic; Passerini, Stefano

    2015-07-08

    Lithium-ion batteries are becoming increasingly important for electrifying the modern transportation system and, thus, hold the promise to enable sustainable mobility in the future. However, their large-scale application is hindered by severe safety concerns when the cells are exposed to mechanical, thermal, or electrical abuse conditions. These safety issues are intrinsically related to their superior energy density, combined with the (present) utilization of highly volatile and flammable organic-solvent-based electrolytes. Herein, state-of-the-art electrolyte systems and potential alternatives are briefly surveyed, with a particular focus on their (inherent) safety characteristics. The challenges, which so far prevent the widespread replacement of organic carbonate-based electrolytes with LiPF6 as the conducting salt, are also reviewed herein. Starting from rather "facile" electrolyte modifications by (partially) replacing the organic solvent or lithium salt and/or the addition of functional electrolyte additives, conceptually new electrolyte systems, including ionic liquids, solvent-free, and/or gelled polymer-based electrolytes, as well as solid-state electrolytes, are also considered. Indeed, the opportunities for designing new electrolytes appear to be almost infinite, which certainly complicates strict classification of such systems and a fundamental understanding of their properties. Nevertheless, these innumerable opportunities also provide a great chance of developing highly functionalized, new electrolyte systems, which may overcome the afore-mentioned safety concerns, while also offering enhanced mechanical, thermal, physicochemical, and electrochemical performance. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Protein, peptide, amino acid composition, and potential functional properties of existing and novel dietary protein sources for monogastrics

    NARCIS (Netherlands)

    Kar, S.K.; Jansman, A.J.M.; Boeren, S.; Kruijt, L.; Smits, M.A.

    2016-01-01

    Replacement of current protein resources for novel or alternative sources may be one of the solutions to abolish the expected scarcity of dietary protein for animal feeds. However, little is known about the nutritional, protein composition, and potential functional value of such novel or

  14. Integrated experimental and modeling assessment of potential effects of gas leakages on groundwater composition

    Science.gov (United States)

    Berta, Marton; Dethlefsen, Frank; Ebert, Markus; Schäfer, Dirk

    2017-04-01

    Storing renewably produced energy is one of the major challenges for the energy systems of the upcoming decades. Power-to-gas technologies coupled to geological storage of compressed air, methane, and hydrogen offer a comparatively safe and cost-efficient way for large-scale energy storage. However, the stored gases can potentially escape from their geological reservoir and may thus affect protected natural goods such as groundwater. The geochemical reactions responsible for these composition changes are usually investigated separately in experiments and numerical models. Here we present the outcomes of an integrated experimental and modeling approach through the example of a compressed air leakage scenario. A main consequence of the presence of oxygen to be assessed in an aquifer is pyrite oxidation, well known from acid mine drainage sites. However, in contrast to acid mine drainage sites exhibiting unsaturated sediments and fed by meteoric low-carbonate water, aquifers such as in Northern Germany contain a considerable amount of solid and dissolved inorganic carbon species potentially buffering pH changes. High pressure flow-through column experiments representing an intrusion of compressed air into an aquifer were carried out to quantify pyrite oxidation kinetics and to incorporate the observations into a descriptive reaction model. Surface passivation was found to decrease the reactivity of pyrite by more than 90% after a few months of experimental run time. We propose that the carbonate buffer system enables the precipitation of a passivating mineral layer on the pyrite surface reducing the overall reaction rate significantly. Consequently, an established rate law from the literature was extended by a reactive surface passivation term[1]. This improved reaction rate equation was incorporated into a 3D numerical model using OpenGeoSys with parameters representing similarly typical aquifer conditions the experiments had characterized. These boundaries include

  15. Chemical Composition and Allelopathic Potential of Essential Oils from Citharexylum spinosum L. Grown in Tunisia.

    Science.gov (United States)

    El Ayeb-Zakhama, Asma; Sakka-Rouis, Lamia; Flamini, Guido; Ben Jannet, Hichem; Harzallah-Skhiri, Fethia

    2017-04-01

    Citharexylum spinosum L. (Verbenaceae) also known as Citharexylum quadrangulare Jacq. or Citharexylum fruticosum L. is an exotic tree introduced many years ago in Tunisia, specially used as a street and park ornamental tree. Essential oils (EOs) were obtained by hydrodistillation of the different parts (roots, stems, leaves, flowers and fruits; drupes) collected from trees grown in the area of Monastir (Tunisia). In total, 84 compounds, representing 90.1 - 98.4% of the whole oil composition, were identified by GC-FID and GC/MS analyses. The root EO was distinguished by its high content in monoterpene hydrocarbons (α-phellandrene; 30.8%) whereas that obtained from stems was dominated by sesquiterpene hydrocarbons (cuparene; 16.4%). The leaf oil was rich in an apocarotenoid derivative (hexahydrofarnesylacetone; 26%) and an aliphatic hydrocarbon (nonadecane; 14.5%). Flowers oil was rich in esters (2-phenylethyl benzoate; 33.5%). Finally, drupes oil was rich in oxygenated sesquiterpenes (β-eudesmol; 33.1%). Flowers oil showed a significant phytotoxic effect against lettuce seeds germination, it induces a total inhibition when tested at 1 mg/ml. Root and shoot elongation seemed to be more affected than germination. The inhibition of the shoot length varied from 3.6% to 100% and that of the root from 16.1% to 100%. The highest inhibition of 100% was detected for flower oil tested at 1 mg/ml. Our in vitro studies suggest a possible and new alternative use of C. spinosum EOs in herbicidal formulations, further experiments involving field conditions are necessary to confirm its herbicidal potential. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  16. Geographic origin influences the phenolic composition and antioxidant potential of wild Crataegus monogyna from Spain.

    Science.gov (United States)

    Abuashwashi, M A; Palomino, O M; Gómez-Serranillos, M P

    2016-11-01

    Crataegus monogyna Jacq L. (Lind.) (Rosaceae) is used in folk medicine as a sedative, aerial parts being rich in polyphenols with antioxidant ability. To study the variation in polyphenolic composition and antioxidant ability of spontaneous samples of C. monogyna in order to assess the relationship among these variables. Aerial parts of C. monogyna were collected from nine different locations in central Spain and extracted with methanol after drying. Total polyphenols were determined by the Folin-Ciocalteu method using gallic acid (GA) as standard. Sixteen polyphenolic compounds (11 flavonoids and 5 phenolic acids) were identified and quantified by reversed-phase HPLC in one single analysis. The antioxidant ability was evaluated by the oxygen radical absorbance capacity (ORAC) and the free radical scavenging activity (DPPH) methods. Linear correlation analysis was used to explore the relationships between the studied variables. Total polyphenol content ranged between 117.729 ± 0.011 and 204.286 ± 0.015 mg GAE/g extract, depending on the geographic origin. No relationship was found between total polyphenols and antioxidant ability by the ORAC or DPPH methods. Chromatographic analysis yielded lower amounts of polyphenols (23.3-143.26 mg/kg), as only flavonoids and phenolic acids were quantified. All the samples exhibited antioxidant activity between 1.32 ± 0.08 and 2.76 ± 0.007 μmol Trolox equivalents/mg and IC50 from 0.82 ± 0.10 to 3.76 ± 0.67 μg/mL. A statistically significant relationship between flavonoids and phenolic acids content and the antioxidant potential obtained by the ORAC method for C. monogyna samples was proven.

  17. Chemical composition and allelopathic potential of essential oils obtained from Acacia cyanophylla Lindl. Cultivated in Tunisia.

    Science.gov (United States)

    El Ayeb-Zakhama, Asma; Sakka-Rouis, Lamia; Bergaoui, Afifa; Flamini, Guido; Ben Jannet, Hichem; Harzallah-Skhiri, Fethia

    2015-04-01

    Acacia cyanophylla Lindl. (Fabaceae), synonym Acacia saligna (Labill.) H. L.Wendl., native to West Australia and naturalized in North Africa and South Europe, was introduced in Tunisia for rangeland rehabilitation, particularly in the semiarid zones. In addition, this evergreen tree represents a potential forage resource, particularly during periods of drought. A. cyanophylla is abundant in Tunisia and some other Mediterranean countries. The chemical composition of the essential oils obtained by hydrodistillation from different plant parts, viz., roots, stems, phyllodes, flowers, and pods (fully mature fruits without seeds), was characterized for the first time here. According to GC-FID and GC/MS analyses, the principal compound in the phyllode and flower oils was dodecanoic acid (4), representing 22.8 and 66.5% of the total oil, respectively. Phenylethyl salicylate (8; 34.9%), heptyl valerate (3; 17.3%), and nonadecane (36%) were the main compounds in the root, stem, and pod oils, respectively. The phyllode and flower oils were very similar, containing almost the same compounds. Nevertheless, the phyllode oil differed from the flower oil for its higher contents of hexahydrofarnesyl acetone (6), linalool (1), pentadecanal, α-terpineol, and benzyl benzoate (5) and its lower content of 4. Principal component and hierarchical cluster analyses separated the five essential oils into four groups, each characterized by its main constituents. Furthermore, the allelopathic activity of each oil was evaluated using lettuce (Lactuca sativa L.) as a plant model. The phyllode, flower, and pod oils exhibited a strong allelopathic activity against lettuce. Copyright © 2015 Verlag Helvetica Chimica Acta AG, Zürich.

  18. Sparingly Solvating Electrolytes for High Energy Density Lithium-Sulfur Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Lei; Curtiss, Larry A.; Zavadil, Kevin R.; Gewirth, Andrew A.; Shao, Yuyan; Gallagher, Kevin

    2016-07-11

    Moving to lighter and less expensive battery chemistries compared to lithium-ion requires the control of energy storage mechanisms based on chemical transformations rather than intercalation. Lithium sulfur (Li/S) has tremendous theoretical specific energy, but contemporary approaches to control this solution-mediated, precipitation-dissolution chemistry requires using large excesses of electrolyte to fully solubilize the polysulfide intermediate. Achieving reversible electrochemistry under lean electrolyte operation is the only path for Li/S to move beyond niche applications to potentially transformational performance. An emerging topic for Li/S research is the use of sparingly solvating electrolytes and the creation of design rules for discovering new electrolyte systems that fundamentally decouple electrolyte volume from reaction mechanism. This perspective presents an outlook for sparingly solvating electrolytes as the key path forward for longer-lived, high-energy density Li/S batteries including an overview of this promising new concept and some strategies for accomplishing it.

  19. Potentiality of the composite fulleren based carbon films as the stripper foils for tandem accelerators

    CERN Document Server

    Vasin, A V; Rusavsky, A V; Totsky, Y I; Vishnevski, I N

    2001-01-01

    The problem of the radiation resistance of the carbon stripper foils is considered. The short review of the experimental data available in literature and original experimental results of the are presented. In the paper discussed is the possibility of composite fulleren based carbon films to be used for preparation of the stripper foils. Some technological methods for preparation of composite fulleren based carbon films are proposed. Raman scattering and atom force microscopy were used for investigation of the fulleren and composite films deposited by evaporation of the C sub 6 sub 0 fulleren powder.

  20. Composition.

    Science.gov (United States)

    Communication: Journalism Education Today, 2002

    2002-01-01

    Considers how photography is more than just pointing a camera in the right direction. Explains that good pictures use elements of composition such as the Rule of Thirds, leading lines, framing and repetition of shapes. Presents 16 photographs from college and secondary school publications, and describes the techniques that makes them effective.…

  1. Proximate composition, phytochemical analysis, and in vitro antioxidant potentials of extracts of Annona muricata (Soursop)

    National Research Council Canada - National Science Library

    Agu, Kingsley C; Okolie, Paulinus N

    2017-01-01

    ... of A. muricata using standard biochemical procedures. The defatted Annona muricata crude methanolic extracts of the different parts of the plant were used for the estimation of proximate composition and phytochemical screening...

  2. Composites from bast fibres - prospects and potential in the changing market environment

    CSIR Research Space (South Africa)

    Anandjiwala, RD

    2004-10-01

    Full Text Available Composite materials reinforced with natural fibres, such as flax, hemp, kenaf and jute, are gaining increasing importance in automotive, aerospace, packaging and other industrial applications due to their lighter weight, competitive specific...

  3. Chemical composition of the thermomineral waters of Josanicka Banja spa as an origin indicator, balneological valorization and geothermal potential

    Directory of Open Access Journals (Sweden)

    Milenić Dejan R.

    2015-01-01

    Full Text Available The chemical composition of the groundwater is directly dependent on the geological structure, hydrogeological and hydrochemical characteristics and as such it represents an output result of all the factors and processes which take place in the environment within which they were formed. The chemical composition of thermomineral waters often represents a crucial factor in determining the origin, balneological valorization and geothermal potential of the resources. This work presents the analysis of origin, belneological valorization and geothermal potential of Josanicka Banja spa, on the basis of the results gained through making the analyisis of chemical contents of the thermomineral waters which occur in the area. The ratio of concentrations of specific chemical components in the thermomineral waters of Josanicka Banja has served as the basic tool for ascertaining the origin of these waters. On the basis of the analysis of the main anion-cation and gas compositions as well as the contents of specific micro-components, a balneological valorization of these resources has been carried out. Apart from that this work also presents the calculation of the expected temperatures in the primary geothermal reservoir, which was carried out on the basis of the results of chemical analysis of thermomineral waters that occur in the area. Geothermal potential of about 4 MWt and significant contents of balneologically active components of the chemical composition of these waters, open up a possibility for their multi-purpose use, which is also presented in the work. [Projekat Ministarstva nauke Republike Srbije, br. TR 33053

  4. Chemical composition, potential toxicity, and quality control procedures of the crude drug of Cyrtopodium macrobulbon.

    Science.gov (United States)

    Morales-Sánchez, Viridiana; Rivero-Cruz, Isabel; Laguna-Hernández, Guillermo; Salazar-Chávez, Gerardo; Mata, Rachel

    2014-07-03

    Cyrtopodium macrobulbon ("cañaveral") has been long used in Mexican traditional medicine for the treatment of painful urinary ailments ("mal de orin") in men. This study was conducted (i) to establish the potential acute toxicity and the antinociceptive activity of some preparations of Cyrtopodium macrobulbon, in order to demonstrate its preclinical efficacy for treating symptoms of "mal de orin"; and (ii) to determine the chemical composition and quality control parameters of this medicinal orchid. The antinociceptive effect was assessed using the acetic acid-induced writhing and the hot-plate tests. Investigation of the acute toxicity was accomplished by the Lorke method. The organic extract (OE) was subjected to conventional phytochemical study using chromatographic conventional procedures. The volatile components profile of the species was accomplished via GC-MS analysis of HS-SPME-adsorbed compounds. Furthermore, an HPLC method to quantify ephemeranthol B (10) was developed and validated according to the International Conference on Harmonization Guidelines. Microscopic anatomy studies were performed using light and scanning electron microscopies. Finally, a potential distribution map was generated using the MaxEnt modeling method. AE and OE were not toxic to mice since the LD50 was higher than 5000 mg/kg. OE was only active in the acetic acid-induced writhing assay at the doses of 100 and 316 mg/kg. Conventional phytochemical analysis of OE led to the isolation and characterization of n-hexacosyl-trans-p-coumarate (1), n-octacosyl-trans-p-coumarate (2), n-triacontyl-trans-p-coumarate (3), 4-methoxy-benzyl alcohol (4), 4-hydroxybenzaldehyde (5), 1,5,7-trimethoxy-9,10-dihydrophenanthrene-2,6-diol (6), confusarin (7), gigantol (8), batatasin III (9), and ephemeranthol B (10). The major volatile components identified by HS-SPME analysis were 6,10,14-trimethyl-2-pentadecanone, eucalyptol (11), and isobornyl formate. An HPLC analytical method for the quantification

  5. Electrochemical Impedance Spectroscopy of Polyvinylalcohol Based Gel Electrolyte

    National Research Council Canada - National Science Library

    Nirwan Syarif; Nurlisa Hidayanti; Edy Herianto Majlan; Monica Sari Jayanti

    2017-01-01

    Research on the effect of electrolyte ammonium salt, concentration electrolyte with plasticizer to ionic and electronic conductivity of polymer gel electrolyte has been conducted with the variations...

  6. Compositional features are potentially involved in the regulation of gene expression of tumor suppressor genes in human tissues.

    Science.gov (United States)

    Hajjari, Mohammadreza; Khoshnevisan, Atefeh; Behmanesh, Mehrdad

    2014-12-15

    Different mechanisms regulate the expression level of tissue specific genes in human. Here we report some compositional features such as codon usage bias, amino acid usage bias, codon frequency, and base composition which may be potentially related to mRNA amount of tissue specific tumor suppressor genes. Our findings support the possibility that structural elements in gene and protein may play an important role in the regulation of tumor suppressor genes, development, and tumorigenesis. The data presented here can open broad vistas in the understanding and treatment of a variety of human malignancies. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Optimization of non-aqueous electrolytes for Primary lithium/air batteries operated in Ambient Enviroment

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Wu; Xiao, Jie; Zhang, Jian; Wang, Deyu; Zhang, Jiguang

    2009-07-07

    The selection and optimization of non-aqueous electrolytes for ambient operations of lithium/air batteries has been studied. Organic solvents with low volatility and low moisture absorption are necessary to minimize the change of electrolyte compositions and the reaction between lithium anode and water during discharge process. It is critical to make the electrolytes with high polarity so that it can reduce wetting and flooding of carbon based air electrode and lead to improved battery performance. For ambient operations, the viscosity, ionic conductivity, and oxygen solubility of the electrolyte are less important than the polarity of organic solvents once the electrolyte has reasonable viscosity, conductivity, and oxygen solubility. It has been found that PC/EC mixture is the best solvent system and LiTFSI is the most feasible salt for ambient operations of Li/air batteries. Battery performance is not very sensitive to PC/EC ratio or salt concentration.

  8. Mamey sapote seed oil (Pouteria sapota. Potential, composition, fractionation and thermal behavior

    Directory of Open Access Journals (Sweden)

    Solís-Fuentes, J. A.

    2015-03-01

    Full Text Available The chemical composition of the waste from mamey sapote (Pouteria sapota and its oil extracted from the seed (MSSO of ripe and unripe fruits, was studied. The MSSO from ripe fruits was dry-fractionated, and the thermal and phase behaviors of its fractions and their mixtures with other known natural fats were analyzed. The main components of the mamey peel and the seed were crude fiber (81.32% and fat (44.41% db, respectively. The seed oil contained oleic, stearic, palmitic and linoleic as its main fatty acids. The MSSO showed a simple thermal behavior with a broad fusion range and four maximum temperature peaks. The solid fractions showed maximum melting peaks at higher temperatures than the residual liquid. The MSSO solid fractions showed a potential for use as constituents in mixtures with other natural fats, such as cocoa butter or mango seed fat.Se estudió la composición de los residuos del zapote mamey (Pouteria sapota y del aceite extraído de la semilla (ASZM de frutos maduros e inmaduros. El ASZM de frutos maduros fue fraccionado en seco y se analizó la conducta térmica y de fase de las fracciones y mezclas de éstas con otras grasas naturales conocidas. Los principales componentes de la cáscara y de la semilla fueron fibra cruda (81.32% bs y grasa (44.41% bs, respectivamente. Los principales ácidos grasos del ASZM fueron: oleico, esteárico, palmítico y linoleico y mostró una conducta térmica simple con un intervalo de fusión amplio y cuatro máximos de temperatura. Las fracciones sólidas obtenidas presentaron máximos de fusión a temperaturas más altas que la fracción líquida residual. Las fracciones sólidas del ASZM mostraron potencialidad para usarse como constituyente en mezclas con la manteca de cacao y la grasa de la semilla de mango.

  9. Multivalent weak electrolytes - risky background electrolytes for capillary zone electrophoresis

    Czech Academy of Sciences Publication Activity Database

    Beckers, J. L.; Boček, Petr

    2002-01-01

    Roč. 23, č. 12 (2002), s. 1942-1946 ISSN 0173-0835 R&D Projects: GA ČR GA203/99/0044; GA ČR GA203/02/0023; GA ČR GA203/01/0401; GA AV ČR IAA4031703; GA AV ČR IAA4031103 Institutional research plan: CEZ:AV0Z4031919 Keywords : background electrolytes * capillary zone electrophoresis * multivalent electrolytes Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.325, year: 2002

  10. Ionic Liquid Hybrid Electrolytes for Lithium-Ion Batteries: A Key Role of the Separator-Electrolyte Interface in Battery Electrochemistry.

    Science.gov (United States)

    Huie, Matthew M; DiLeo, Roberta A; Marschilok, Amy C; Takeuchi, Kenneth J; Takeuchi, Esther S

    2015-06-10

    Batteries are multicomponent systems where the theoretical voltage and stoichiometric electron transfer are defined by the electrochemically active anode and cathode materials. While the electrolyte may not be considered in stoichiometric electron-transfer calculations, it can be a critical factor determining the deliverable energy content of a battery, depending also on the use conditions. The development of ionic liquid (IL)-based electrolytes has been a research area of recent reports by other researchers, due, in part, to opportunities for an expanded high-voltage operating window and improved safety through the reduction of flammable solvent content. The study reported here encompasses a systematic investigation of the physical properties of IL-based hybrid electrolytes including quantitative characterization of the electrolyte-separator interface via contact-angle measurements. An inverse trend in the conductivity and wetting properties was observed for a series of IL-based electrolyte candidates. Test-cell measurements were undertaken to evaluate the electrolyte performance in the presence of functioning anode and cathode materials, where several promising IL-based hybrid electrolytes with performance comparable to that of conventional carbonate electrolytes were identified. The study revealed that the contact angle influenced the performance more significantly than the conductivity because the cells containing IL-tetrafluoroborate-based electrolytes with higher conductivity but poorer wetting showed significantly decreased performance relative to the cells containing IL-bis(trifluoromethanesulfonyl)imide electrolytes with lower conductivity but improved wetting properties. This work contributes to the development of new IL battery-based electrolyte systems with the potential to improve the deliverable energy content as well as safety of lithium-ion battery systems.

  11. A Finite Difference Solution of a Simply Supported Beam of Orthotropic Composite Materials Using Displacement Potential Formulation

    Directory of Open Access Journals (Sweden)

    S. K. Deb Nath

    2014-01-01

    Full Text Available Here an efficient displacement potential formulation based finite difference technique is used to solve the elastic field of a simply supported beam of orthotropic composite materials. A simply supported beam made of orthotropic composite material under uniformly distributed loading is considered and its elastic behaviors under such loading conditions are analyzed considering plane stress condition. The solutions of the problem satisfy the force equilibrium conditions as well as boundary conditions. For understanding the elastic behavior of a simply supported beam, the displacement and stress components of some important sections of the beam are shown graphically. Effects of different orthotropic composite materials on the solutions are also analyzed. Besides, at a particular section of the beam, the comparative analysis of the elastic field is carried out by using the FDM and FEM methods.

  12. PEO polymer electrolytes

    Indian Academy of Sciences (India)

    Unknown

    MEEP was synthesized according to a previously reported procedure (Allock et al 1986). The Li-. ClO4 and LiBF4 were obtained from Fluka, Germany and. Aldrich. The samples of MEEP : (LiClO4)n; PEO : (LiBF4)n;. MEEP/PEO–(LiBF4)n and MEEP/PEO–(LiClO4)n and. Al2O3 and TiO2 doped composite ceramic fillers were.

  13. A Review on Potentiality of Nano Filler/Natural Fiber Filled Polymer Hybrid Composites

    Directory of Open Access Journals (Sweden)

    Naheed Saba

    2014-08-01

    Full Text Available The increasing demand for greener and biodegradable materials leading to the satisfaction of society requires a compelling towards the advancement of nano-materials science. The polymeric matrix materials with suitable and proper filler, better filler/matrix interaction together with advanced and new methods or approaches are able to develop polymeric composites which shows great prospective applications in constructions and buildings, automotive, aerospace and packaging industries. The biodegradability of the natural fibers is considered as the most important and interesting aspects of their utilization in polymeric materials. Nanocomposite shows considerable applications in different fields because of larger surface area, and greater aspect ratio, with fascinating properties. Being environmentally friendly, applications of nanocomposites offer new technology and business opportunities for several sectors, such as aerospace, automotive, electronics, and biotechnology industries. Hybrid bio-based composites that exploit the synergy between natural fibers in a nano-reinforced bio-based polymer can lead to improved properties along with maintaining environmental appeal. This review article intended to present information about diverse classes of natural fibers, nanofiller, cellulosic fiber based composite, nanocomposite, and natural fiber/nanofiller-based hybrid composite with specific concern to their applications. It will also provide summary of the emerging new aspects of nanotechnology for development of hybrid composites for the sustainable and greener environment.

  14. Electrochemical Behavior of PEDOT/Lignin in Ionic Liquid Electrolytes: Suitable Cathode/Electrolyte System for Sodium Batteries.

    Science.gov (United States)

    Casado, Nerea; Hilder, Matthias; Pozo-Gonzalo, Cristina; Forsyth, Maria; Mecerreyes, David

    2017-04-22

    Biomass-derived polymers, such as lignin, contain quinone/ hydroquinone redox moieties that can be used to store charge. Composites based on the biopolymer lignin and several conjugated polymers have shown good charge-storage properties. However, their performance has been only studied in acidic aqueous media limiting their applications mainly to supercapacitors. Here, we show that PEDOT/lignin (PEDOT: poly(3,4-ethylenedioxythiophene)) biopolymers are electroactive in aprotic ionic liquids (ILs) and we move a step further by assembling sodium full cell batteries using PEDOT/lignin as electrode material and IL electrolytes. Thus, the electrochemical activity and cycling of PEDOT/lignin electrodes was investigated in 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (BMPyrTFSI), 1-butyl-1-methylpyrrolidinium bis(fluorosulfonyl)imide (BMPyrFSI), 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMImTFSI) and 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide (EMImFSI) IL electrolytes. The effects of water and sodium salt addition to the ILs were investigated to obtain optimum electrolyte systems for sodium batteries. Finally, sodium batteries based on PEDOT/lignin cathode with imidazolium-based IL electrolyte showed higher capacity values than pyrrolidinium ones, reaching 70 mAhg-1 . Our results demonstrate that PEDOT/lignin composites can serve as low cost and sustainable cathode materials for sodium batteries. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Hermetically Sealed Aluminum Electrolytic Capacitor

    Science.gov (United States)

    Alwitt, Robert S.; Liu, Yanming; Elias, William

    1996-01-01

    Aluminum electrolytic capacitors are presently not allowed on NASA missions because they outgas water and organic vapors, as well as H2. As a consequence, for some applications, much larger and heavier packages of tantalum capacitors must be used. A hermetically sealed aluminum capacitor has been developed. This contains a nongassing electrolyte that was developed for this application so internal pressure would remain low. Capacitors rated from 250 V to 540 V have been operated under full load for thousands of hours at 85 and 105 C with good electrical performance and absence of gas generation. Electrolyte chemistry and seal engineering will be discussed, as well as the extension of this design concept to lower voltage ratings.

  16. Semiconductor electrolyte photovoltaic energy converter

    Science.gov (United States)

    Anderson, W. W.; Anderson, L. B.

    1975-01-01

    Feasibility and practicality of a solar cell consisting of a semiconductor surface in contact with an electrolyte are evaluated. Basic components and processes are detailed for photovoltaic energy conversion at the surface of an n-type semiconductor in contact with an electrolyte which is oxidizing to conduction band electrons. Characteristics of single crystal CdS, GaAs, CdSe, CdTe and thin film CdS in contact with aqueous and methanol based electrolytes are studied and open circuit voltages are measured from Mott-Schottky plots and open circuit photo voltages. Quantum efficiencies for short circuit photo currents of a CdS crystal and a 20 micrometer film are shown together with electrical and photovoltaic properties. Highest photon irradiances are observed with the GaAs cell.

  17. Chemical compositions, methods of making the chemical compositions, and structures made from the chemical compositions

    Science.gov (United States)

    Yang, Lei; Cheng, Zhe; Liu, Ze; Liu, Meilin

    2015-01-13

    Embodiments of the present disclosure include chemical compositions, structures, anodes, cathodes, electrolytes for solid oxide fuel cells, solid oxide fuel cells, fuel cells, fuel cell membranes, separation membranes, catalytic membranes, sensors, coatings for electrolytes, electrodes, membranes, and catalysts, and the like, are disclosed.

  18. Factors affecting breast milk composition and potential consequences for development of the allergic phenotype.

    Science.gov (United States)

    Munblit, D; Boyle, R J; Warner, J O

    2015-03-01

    There is conflicting evidence on the protective role of breastfeeding in relation to allergic sensitization and disease. The factors in breast milk which influence these processes are still unclear and under investigation. We know that colostrum and breast milk contain a variety of molecules which can influence immune responses in the gut-associated lymphoid tissue of a neonate. This review summarizes the evidence that variations in colostrum and breast milk composition can influence allergic outcomes in the infant, and the evidence that maternal and environmental factors can modify milk composition. Taken together, the data presented support the possibility that maternal dietary interventions may be an effective way to promote infant health through modification of breast milk composition. © 2014 John Wiley & Sons Ltd.

  19. Composition variability of the organic fraction of municipal solid waste and effects on hydrogen and methane production potentials.

    Science.gov (United States)

    Alibardi, Luca; Cossu, Raffaello

    2015-02-01

    The composition of the Organic Fraction of Municipal Solid Waste (OFMSW) strongly depends on the place and time of collection for a specific municipality or area. Moreover synthetic food waste or organic waste from cafeterias and restaurants may not be representative of the overall OFMSW received at treatment facilities for source-separated waste. This work is aimed at evaluating the composition variability of OFMSW, the potential productions of hydrogen and methane from specific organic waste fractions typically present in MSW and the effects of waste composition on overall hydrogen and methane yields. The organic waste fractions considered in the study were: bread-pasta, vegetables, fruits, meat-fish-cheese and undersieve 20mm. Composition analyses were conducted on samples of OFMSW that were source segregated at household level. Batch tests for hydrogen and methane productions were carried out under mesophilic conditions on selected fractions and OFMSW samples. Results indicated that the highest production of hydrogen was achieved by the bread-pasta fraction while the lowest productions were measured for the meat-fish-cheese fraction. The results indicated that the content of these two fractions in organic waste had a direct influence on the hydrogen production potentials of OFMSW. The higher the content of bread-pasta fraction, the higher the hydrogen yields were while the contrary was observed for the meat-fish-cheese fraction. The definition of waste composition therefore represents fundamental information to be reported in scientific literature to allow data comparison. The variability of OFMSW and its effects on hydrogen potentials might also represents a problematic issue in the management of pilot or full-scale plants for the production of hydrogen by dark fermentation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Amino acid composition, including key derivatives of eccrine sweat: potential biomarkers of certain atopic skin conditions.

    Science.gov (United States)

    Mark, Harker; Harding, Clive R

    2013-04-01

    The free amino acid (AA) composition of eccrine sweat is different from other biological fluids, for reasons which are not properly understood. We undertook the detailed analysis of the AA composition of freshly isolated pure human eccrine sweat, including some of the key derivatives of AA metabolism, to better understand the key biological mechanisms governing its composition. Eccrine sweat was collected from the axillae of 12 healthy subjects immediately upon formation. Free AA analysis was performed using an automatic AA analyser after ninhydrin derivatization. Pyrrolidine-5-carboxylic acid (PCA) and urocanic acid (UCA) levels were determined using GC/MS. The free AA composition of sweat was dominated by the presence of serine accounting for just over one-fifth of the total free AA composition. Glycine was the next most abundant followed by PCA, alanine, citrulline and threonine, respectively. The data obtained indicate that the AA content of sweat bears a remarkable similarity to the AA composition of the epidermal protein profilaggrin. This protein is the key source of free AAs and their derivatives that form a major part of the natural moisturizing factor (NMF) within the stratum corneum (SC) and plays a major role in maintaining the barrier integrity of human skin. As perturbations in the production of NMF can lead to abnormal barrier function and can arise as a consequence of filaggrin genotype, we propose the quantification of AAs in sweat may serve as a non-invasive diagnostic biomarker for certain atopic skin conditions, that is, atopic dermatitis (AD). © 2012 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  1. Nutrient composition of important fish species in Bangladesh and potential contribution to recommended nutrient intakes

    DEFF Research Database (Denmark)

    Bogard, Jessica R.; Thilsted, Shakuntala H.; Marks, Geoffrey C.

    2015-01-01

    Fish, in Bangladesh where malnutrition remains a significant development challenge, is an irreplaceable animal-source food in the diet of millions. However, existing data on the nutrient composition of fish do not reflect the large diversity available and have focused on only a few select nutrients....... The purpose of this study was to fill the gaps in existing data on the nutrient profiles of common fish in Bangladesh by analysing the proximate, vitamin, mineral and fatty acid composition of 55 fish, shrimp and prawn species from inland capture, aquaculture and marine capture fisheries. When comparing...... indigenous species, which should guide policy and programmes to improve food and nutrition security in Bangladesh....

  2. Degradation Potential of Bulk Versus Incrementally Applied and Indirect Composites: Color, Microhardness, and Surface Deterioration.

    Science.gov (United States)

    El Gezawi, M; Kaisarly, D; Al-Saleh, H; ArRejaie, A; Al-Harbi, F; Kunzelmann, K H

    This study investigated the color stability and microhardness of five composites exposed to four beverages with different pH values. Composite discs were produced (n=10); Filtek Z250 (3M ESPE) and Filtek P90 (3M ESPE) were applied in two layers (2 mm, 20 seconds), and Tetric N-Ceram Bulk Fill (TetricBF, Ivoclar Vivadent) and SonicFill (Kerr) were applied in bulk (4 mm) and then light cured (40 seconds, Ortholux-LED, 1600 mW/cm2). Indirect composite Sinfony (3M ESPE) was applied in two layers (2 mm) and cured (Visio system, 3M ESPE). The specimens were polished and tested for color stability; ΔE was calculated using spectrophotometer readings. Vickers microhardness (50 g, dwell time=45 seconds) was assessed on the top and bottom surfaces at baseline, 40 days of storage, subsequent repolishing, and 60 days of immersion in distilled water (pH=7.0), Coca-Cola (pH=2.3), orange juice (pH=3.75), or anise (pH=8.5) using scanning electron microscopy (SEM). The materials had similar ΔE values (40 days, p>0.05), but TetricBF had a significantly greater ΔE than P90 or SF (40 days). The ΔE was less for P90 and TetricBF than for Z250, SonicFill, and Sinfony (60 days). Repolishing and further immersion significantly affected the ΔE (p<0.05) except for P90. All composites had significantly different top vs bottom baseline microhardnesses. This was insignificant for the Z250/water, P90/orange juice (40 days), and Sinfony groups (40 and 60 days). Immersion produced variable time-dependent deterioration of microhardness in all groups. Multivariate repeated measures analysis of variance with post hoc Bonferroni tests were used to compare the results. ΔE and microhardness changes were significantly inversely correlated at 40 days, but this relationship was insignificant at 60 days (Pearson test). SEM showed degradation (40 days) that worsened (60 days). Bulk-fill composites differ regarding color-stability and top-to-bottom microhardness changes compared with those of other

  3. Hybrid materials and polymer electrolytes for electrochromic device applications.

    Science.gov (United States)

    Thakur, Vijay Kumar; Ding, Guoqiang; Ma, Jan; Lee, Pooi See; Lu, Xuehong

    2012-08-08

    Electrochromic (EC) materials and polymer electrolytes are the most imperative and active components in an electrochromic device (ECD). EC materials are able to reversibly change their light absorption properties in a certain wavelength range via redox reactions stimulated by low direct current (dc) potentials of the order of a fraction of volts to a few volts. The redox switching may result in a change in color of the EC materials owing to the generation of new or changes in absorption band in visible region, infrared or even microwave region. In ECDs the electrochromic layers need to be incorporated with supportive components such as electrical contacts and ion conducting electrolytes. The electrolytes play an indispensable role as the prime ionic conduction medium between the electrodes of the EC materials. The expected applications of the electrochromism in numerous fields such as reflective-type display and smart windows/mirrors make these materials of prime importance. In this article we have reviewed several examples from our research work as well as from other researchers' work, describing the recent advancements on the materials that exhibit visible electrochromism and polymer electrolytes for electrochromic devices. The first part of the review is centered on nanostructured inorganic and conjugated polymer-based organic-inorganic hybrid EC materials. The emphasis has been to correlate the structures, morphologies and interfacial interactions of the EC materials to their electronic and ionic properties that influence the EC properties with unique advantages. The second part illustrates the perspectives of polymer electrolytes in electrochromic applications with emphasis on poly (ethylene oxide) (PEO), poly (methyl methacrylate) (PMMA) and polyvinylidene difluoride (PVDF) based polymer electrolytes. The requirements and approaches to optimize the formulation of electrolytes for feasible electrochromic devices have been delineated. Copyright © 2012 WILEY

  4. Electrospinning of Ceramic Solid Electrolyte Nanowires for Lithium-Ion Batteries with Enhanced Ionic Conductivity

    Science.gov (United States)

    Yang, Ting

    Solid electrolytes have great potential to address the safety issues of Li-ion batteries, but better synthesis methods are still required for ceramics electrolytes such as lithium lanthanum titanate (LLTO) and lithium lanthanum zirconate (LLZO). Pellets made from ceramic nanopowders using conventional sintering can be porous due to the agglomeration of nanoparticles (NPs). Electrospinning is a simple and versatile technique for preparing oxide ceramic nanowires (NWs) and was used to prepare electrospun LLTO and LLZO NWs. Pellets prepared from the electrospun LLTO NWs had higher density, less void space, and higher Li+ conductivity compared to those comprised of LLTO prepared with conventional sol-gel methods, which demonstrated the potential that electrospinning can provide towards improving the properties of sol-gel derived ceramics. Cubic phase LLZO was stabilized at room temperature in the form of electrospun NWs without extrinsic dopants. Bulk LLZO with tetragonal structure was transformed to the cubic phase using particle size reduction via ball milling. Heating conditions that promoted particle coalescence and grain growth induced a transformation from the cubic to tetragonal phase in both types of nanostructured LLZO. Composite polymer solid electrolyte was fabricated using LLZO NWs as the filler and showed an improved ionic conductivity at room temperature. Nuclear magnetic resonance studies show that LLZO NWs partially modify the polymer matrix and create preferential pathways for Li+ conduction through the modified polymer regions. Doping did not have significant effect on improving the overall conductivity as the interfaces played a predominant role. By comparing fillers with different morphologies and intrinsic conductivities, it was found that both NW morphology and high intrinsic conductivity are desired.

  5. EVALUATING MORTALITY RATE CAUSED BY ELECTROLYTE ABNORMALITIES IN PATIENTS HOSPITALIZED

    Directory of Open Access Journals (Sweden)

    B. Khorasani

    2008-05-01

    Full Text Available Adjustment of composition of body fluids and electrolytes is one of the most important aspects of patients care. Sodium and Potassium are the most important body cations, the improper adjustment of them will cause sever disorders in neuromuscular, gastrointestinal, respiratory and cardiovascular systems. Acute renal failure indicated by increase in creatinine and nitrogen urea, brings an accumulation of fluids, salts and metabolites of nitrogen in body. This study intends to assess the status of electrolyte abnormalities and mortality rates of the patients hospitalized in ICU wards in our country. This is a descriptive and retrospective study on the records of 378 patients hospitalized in ICU. A questionnaire was prepared and the data were entered in SPSS system. They were statistically analyzed by using chi-square and fisher's Exact test methods. Out of 378 patients hospitalized in ICU, over 2/3 of them were male and over half of them were>45 years old. Frequency distribution of electrolyte abnormalities was as follows: Hyponatremia 59% hypernatremia 23% hypokalemia 37% hyperkalemia 28%, 35% and 21% of patients had respectively BUN and creatinine more than the normal range. 26% of patients hospitalized in ICU had nonsurgical problems and 74% of the patients had surgical problems. Average time of hospitalization in ICU was 85 days and mortality rate was 35%. The most common electrolyte abnormality was related to variation in serum sodium levels in the form of hyponatremia. And the highest prevalence electrolyte abnormality in dead patients was hyponatremia. This study proves that the prevalence of electrolyte abnormalities is directly related to mortality and increase in hospitalization period and those having undergone surgical operations during hospitalization in ICU, manifested more abnormalities.

  6. Electrospun PDLLA/PLGA composite membranes for potential application in guided tissue regeneration.

    Science.gov (United States)

    Zhang, Ershuai; Zhu, Chuanshun; Yang, Jun; Sun, Hong; Zhang, Xiaomin; Li, Suhua; Wang, Yonglan; Sun, Lu; Yao, Fanglian

    2016-01-01

    With the aim to explore a membrane system with appropriate degradation rate and excellent cell-occlusiveness for guided tissue regeneration (GTR), a series of poly(D, L-lactic acid) (PDLLA)/poly(D, L-lactic-co-glycolic acid) (PLGA) (100/0, 70/30, 50/50, 30/70, 0/100, w/w) composite membranes were fabricated via electrospinning. The fabricated membranes were evaluated by morphological characterization, water contact angle measurement and tensile test. In vitro degradation was characterized in terms of the weight loss and the morphological change. Moreover, in vitro cytologic research revealed that PDLLA/PLGA composite membranes could efficiently inhibit the infiltration of 293 T cells. Finally, subcutaneous implant test on SD rat in vivo showed that PDLLA/PLGA (70/30, 50/50) composite membranes could function well as a physical barrier to prevent cellular infiltration within 13 weeks. These results suggested that electrospun PDLLA/PLGA (50/50) composite membranes could serve as a promising barrier membrane for guided tissue regeneration due to suitable biodegradability, preferable mechanical properties and excellent cellular shielding effects. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Phytoplankton dynamics in contrasting early stage North Atlantic spring blooms: composition, succession, and potential drivers

    DEFF Research Database (Denmark)

    Daniels, C.J.; Poulton, A. J.; Esposito, M.

    2015-01-01

    by a lack of in situ observations of the phytoplankton community composition and its evolution during this critical period. We investigated the dynamics of the phytoplankton community structure at two contrasting sites in the Iceland and Norwegian Basins during the early stage (25 March–25 April...

  8. Magnetic composites based on metallic nickel and molybdenum carbide: A potential material for pollutants removal

    Energy Technology Data Exchange (ETDEWEB)

    Mambrini, Raquel V.; Fonseca, Thales L. [Departamento de Quimica, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901 (Brazil); Dias, Anderson [Departamento de Quimica, Universidade Federal de Ouro Preto, Ouro Preto, MG 35400-000 (Brazil); Oliveira, Luiz C.A.; Araujo, Maria Helena [Departamento de Quimica, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901 (Brazil); Moura, Flavia C.C., E-mail: flaviamoura@ufmg.br [Departamento de Quimica, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901 (Brazil)

    2012-11-30

    Highlights: Black-Right-Pointing-Pointer New magnetic molybdenum carbide composites can be prepared by CVD from ethanol. Black-Right-Pointing-Pointer Magnetic molybdenum carbide shows promising results for pollutants removal. Black-Right-Pointing-Pointer The carbide composites can be easily recovered magnetically and reused. - Abstract: New magnetic composites based on metallic nickel and molybdenum carbide, Ni/Mo{sub 2}C, have been produced via catalytic chemical vapor deposition from ethanol. Scanning electron microscopy, thermal analysis, Raman spectroscopy and X-ray diffraction studies suggest that the CVD process occurs in a single step. This process involves the reduction of NiMo oxides at different temperatures (700, 800 and 900 Degree-Sign C) with catalytic deposition of carbon from ethanol producing molybdenum carbide on Ni surface. In the absence of molybdenum the formation of Ni/C was observed. The magnetic molybdenum carbide was successfully used as pollutants removal by adsorption of sulfur and nitrogen compounds from liquid fuels and model dyes such as methylene blue and indigo carmine. The dibenzothiofene adsorption process over Ni/Mo{sub 2}C reached approximately 20 mg g{sup -1}, notably higher than other materials described in the literature and also removed almost all methylene blue dye. The great advantage of these carbide composites is that they may be easily recovered magnetically and reused.

  9. Evaluation of the Potential Health Hazards Associated with the Machining of Carbon Fiber Composites.

    Science.gov (United States)

    1987-01-01

    considered biologically inert, as evidenced by their introduction into the human body as surgical implants. It is not the chemistry of carbon fibers...encouraged and facilitated by management. Handwashing stations suitable for removing carbon composite debris from the skin should be provided. Hands

  10. Novel Stable Gel Polymer Electrolyte: Toward a High Safety and Long Life Li-Air Battery.

    Science.gov (United States)

    Yi, Jin; Liu, Xizheng; Guo, Shaohua; Zhu, Kai; Xue, Hailong; Zhou, Haoshen

    2015-10-28

    Nonaqueous Li-air battery, as a promising electrochemical energy storage device, has attracted substantial interest, while the safety issues derived from the intrinsic instability of organic liquid electrolytes may become a possible bottleneck for the future application of Li-air battery. Herein, through elaborate design, a novel stable composite gel polymer electrolyte is first proposed and explored for Li-air battery. By use of the composite gel polymer electrolyte, the Li-air polymer batteries composed of a lithium foil anode and Super P cathode are assembled and operated in ambient air and their cycling performance is evaluated. The batteries exhibit enhanced cycling stability and safety, where 100 cycles are achieved in ambient air at room temperature. The feasibility study demonstrates that the gel polymer electrolyte-based polymer Li-air battery is highly advantageous and could be used as a useful alternative strategy for the development of Li-air battery upon further application.

  11. Factors Influencing Plasma Electrolytic Oxidation(PEO) Coatings on Magnesium Alloys: A Review

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Gunchoo [KISTI ReSEAT Program, Daejon (Korea, Republic of)

    2017-05-15

    Magnesium alloys, which possess excellent specific strength and castability, are highly susceptible to corrosion. Although anodizing is widely used to resolve this problem, it requires toxic electrolytes and produces relatively thin and weak surface coatings. Recently, plasma electrolytic oxidation (PEO) has emerged as an alternative to anodizing. Although it is derived from conventional anodizing, it uses eco-friendly electrolytes and forms thicker, denser, and harder coatings on the surface of magnesium alloys. However, PEO is a complex process involving physical, chemical, and electrochemical reactions, and it is influenced by various factors such as the alloy substrate composition, electrolyte/additive composition, and the electrical variables including the mode of power supply, applied voltage/current density, frequency, and duty cycle. In this article, the detailed effects of these parameters on the microstructure and properties of the PEO coatings are reviewed, and methods of improving the coatings are proposed.

  12. Comparative Study of Ether-Based Electrolytes for Application in Lithium-Sulfur Battery.

    Science.gov (United States)

    Carbone, Lorenzo; Gobet, Mallory; Peng, Jing; Devany, Matthew; Scrosati, Bruno; Greenbaum, Steve; Hassoun, Jusef

    2015-07-01

    Herein, we report the characteristics of electrolytes using various ether-solvents with molecular composition CH3O[CH2CH2O]nCH3, differing by chain length, and LiCF3SO3 as the lithium salt. The electrolytes, considered as suitable media for lithium-sulfur batteries, are characterized in terms of thermal properties (TGA, DSC), lithium ion conductivity, lithium interface stability, cyclic voltammetry, self-diffusion properties of the various components, and lithium transference number measured by NMR. Furthermore, the electrolytes are characterized in lithium cells using a sulfur-carbon composite cathode by galvanostatic charge-discharge tests. The results clearly evidence the influence of the solvent chain length on the species mobility within the electrolytes that directly affects the behavior in lithium sulfur cell. The results may effectively contribute to the progress of an efficient, high-energy lithium-sulfur battery.

  13. Reactive sintering of ceramic lithium ion electrolyte membranes

    Energy Technology Data Exchange (ETDEWEB)

    Badding, Michael Edward; Dutta, Indrajit; Iyer, Sriram Rangarajan; Kent, Brian Alan; Lonnroth, Nadja Teresia

    2017-06-06

    Disclosed herein are methods for making a solid lithium ion electrolyte membrane, the methods comprising combining a first reactant chosen from amorphous, glassy, or low melting temperature solid reactants with a second reactant chosen from refractory oxides to form a mixture; heating the mixture to a first temperature to form a homogenized composite, wherein the first temperature is between a glass transition temperature of the first reactant and a crystallization onset temperature of the mixture; milling the homogenized composite to form homogenized particles; casting the homogenized particles to form a green body; and sintering the green body at a second temperature to form a solid membrane. Solid lithium ion electrolyte membranes manufactured according to these methods are also disclosed herein.

  14. Nanogel Polymer Electrolytes

    National Research Council Canada - National Science Library

    Giannelis, Emmanuel

    2004-01-01

    Fuel cells based on proton exchange membranes have the potential to provide the core of all Air Force power production, from aircraft ground support equipment to unmanned aerial vehicle and remote power generation...

  15. Solid State Multinuclear Magnetic Resonance Investigation of Electrolyte Decomposition Products on Lithium Ion Electrodes

    Science.gov (United States)

    DeSilva, J .H. S. R.; Udinwe, V.; Sideris, P. J.; Smart, M. C.; Krause, F. C.; Hwang, C.; Smith, K. A.; Greenbaum, S. G.

    2012-01-01

    Solid electrolyte interphase (SEI) formation in lithium ion cells prepared with advanced electrolytes is investigated by solid state multinuclear (7Li, 19F, 31P) magnetic resonance (NMR) measurements of electrode materials harvested from cycled cells subjected to an accelerated aging protocol. The electrolyte composition is varied to include the addition of fluorinated carbonates and triphenyl phosphate (TPP, a flame retardant). In addition to species associated with LiPF6 decomposition, cathode NMR spectra are characterized by the presence of compounds originating from the TPP additive. Substantial amounts of LiF are observed in the anodes as well as compounds originating from the fluorinated carbonates.

  16. Mg/O2 Battery Based on the Magnesium-Aluminum Chloride Complex (MACC) Electrolyte

    DEFF Research Database (Denmark)

    Vardar, Galin; Smith, Jeffrey G.; Thomson, Travis

    2016-01-01

    Mg/O2 cells employing a MgCl2/AlCl3/DME (MACC/DME) electrolyte are cycled and compared to cells with modified Grignard electrolytes, showing that performance of magnesium/oxygen batteries depends strongly on electrolyte composition. Discharge capacity is far greater for MACC/DME-based cells, while...... substantially and likely explains the poor rechargeability. An additional impedance rise consistent with film formation on the Mg negative electrode suggests the presence of detrimental O2 crossover. Minimizing O2 crossover and bypassing charge transfer through the discharge product would improve battery...

  17. Conditions for preparation of ultrapure beryllium by electrolytic refining in molten alkali-metal chlorides

    Energy Technology Data Exchange (ETDEWEB)

    Wohlfarth, Hagen [Stuttgart Univ. (Germany)

    1982-02-01

    Electrolytic refining is regarded as the most suitable process for the production of beryllium with impurity contents below 1 at.-ppM. Several parameters are important for electrolytic refining of beryllium in a BeCl2-containing LiCl-KCl melt: current density, BeCl2 content, electrolyte temperature, composition of the unpurified beryllium and impurity-ion concentrations in the melt, as well as apparatus characteristics such as rotation speed of the cathode and condition of the crucible material. These factors were studied and optimized such that extensive removal of the maximum number of accompanying and alloying elements was achieved.

  18. Advances in the electrodeposition of aluminum from ionic liquid based electrolytes

    Science.gov (United States)

    Leadbetter, Kirt C.

    . Advancements of this nonaqueous aluminum plating process have the potential to lead to a novel and competitive commercial aluminum deposition process. In this investigation aluminum electrodeposition from ionic liquid based electrolytes onto steel, copper and magnesium substrates without conversion coatings or strike layers was evaluated in six different ionic liquid based electrolytes in two technical setups. Three of which are commercially available aluminum plating electrolytes, three of which, discussed in literature were created on site by research personnel in the laboratory. The three commercially available electrolytes were: 1-Butyl-3-methylimidazolium chloride ([BMIm]Cl) * 1.5 AlCl3 with proprietary additives from IoLiTec, 1-Ethyl-3-methylimidazolium chloride ([EMIm]Cl) * 1.5 AlCl3 with proprietary additives from IoLiTec, and BasionicsTM AL-02, an aluminum plating electrolyte containing [EMIm]Cl * 1.5 AlCl3 with additives from BASF. The three electrolytes created on site were based on the 1-ethyl-3-methylimidazolium chloride ionic liquid with added 1.5 AlCl3 and one with added sodium dodecyl sulfate. Small scale plating tests in a 25-mL plating cell were conducted to provide a comparative analysis of the six different electrolytes considered. From these investigations, two were chosen to be evaluated in a larger 1-liter plating cell; designed and constructed to provide a more realistic evaluation of plating parameters with selected electrolytes to better portray industrial electroplating conditions. The effect of current density (10-40 mA/cm 2), temperature (30-90° Celsius) and plating bath agitation on current efficiency, corrosion resistance by the ASTM B117 method, adhesion, microstructure, and chemical composition (evaluated with energy-dispersive x-ray spectroscopy) of the plated Al-layer was explored in both the 25-mL and 1-L plating cell investigations. In addition development of pre- and post-treatment processes for the metal substrates was attempted. While

  19. Efficient Electrolytes for Lithium–Sulfur Batteries

    OpenAIRE

    Natarajan eAngulakshmi; Arul Manuel Stephan

    2015-01-01

    This review article mainly encompasses on the state-of-the-art electrolytes for lithium–sulfur batteries. Different strategies have been employed to address the issues of lithium–sulfur batteries across the world. One among them is identification of electrolytes and optimization of their properties for the applications in lithium–sulfur batteries. The electrolytes for lithium–sulfur batteries are broadly classified as (i) non-aqueous liquid electrolytes, (ii) ionic liquids, (iii) solid polyme...

  20. Polymer Electrolytes for Lithium/Sulfur Batteries

    OpenAIRE

    The Nam Long Doan; Denise Gosselink; Yongguang Zhang; Mikhail Sadhu; Ho-Jae Cheang; Pu Chen; Yan Zhao

    2012-01-01

    This review evaluates the characteristics and advantages of employing polymer electrolytes in lithium/sulfur (Li/S) batteries. The main highlights of this study constitute detailed information on the advanced developments for solid polymer electrolytes and gel polymer electrolytes, used in the lithium/sulfur battery. This includes an in-depth analysis conducted on the preparation and electrochemical characteristics of the Li/S batteries based on these polymer electrolytes.

  1. Polymer Electrolytes for Lithium/Sulfur Batteries

    Directory of Open Access Journals (Sweden)

    The Nam Long Doan

    2012-08-01

    Full Text Available This review evaluates the characteristics and advantages of employing polymer electrolytes in lithium/sulfur (Li/S batteries. The main highlights of this study constitute detailed information on the advanced developments for solid polymer electrolytes and gel polymer electrolytes, used in the lithium/sulfur battery. This includes an in-depth analysis conducted on the preparation and electrochemical characteristics of the Li/S batteries based on these polymer electrolytes.

  2. Polymer Electrolytes for Lithium/Sulfur Batteries

    Science.gov (United States)

    Zhao, Yan; Zhang, Yongguang; Gosselink, Denise; Doan, The Nam Long; Sadhu, Mikhail; Cheang, Ho-Jae; Chen, Pu

    2012-01-01

    This review evaluates the characteristics and advantages of employing polymer electrolytes in lithium/sulfur (Li/S) batteries. The main highlights of this study constitute detailed information on the advanced developments for solid polymer electrolytes and gel polymer electrolytes, used in the lithium/sulfur battery. This includes an in-depth analysis conducted on the preparation and electrochemical characteristics of the Li/S batteries based on these polymer electrolytes. PMID:24958296

  3. The effect of different chemical compositions caused by the variation of deposition potential on properties of Ni-Co films

    Energy Technology Data Exchange (ETDEWEB)

    Karpuz, Ali, E-mail: alikarpuz@bau.edu.tr [Physics Department, Science and Literature Faculty, Balikesir University, Balikesir (Turkey); Kockar, Hakan [Physics Department, Science and Literature Faculty, Balikesir University, Balikesir (Turkey); Alper, Mursel [Physics Department, Science and Literature Faculty, Uludag University, Bursa (Turkey)

    2011-02-01

    The magnetic and microstructural properties of Ni-Co films electrodeposited at different cathode potentials were investigated. The compositional analysis revealed that the Ni content increases from 13 at.% to 44 at.% in the films with increasing deposition potential. Magnetic measurements showed that the saturation magnetization, M{sub s} of the films decreased with increase of Ni content as the deposition potential increased. M{sub s} values changed between 1160 emu/cm{sup 3} and 841 emu/cm{sup 3}. The X-ray diffraction revealed that the crystalline structure of the films is a mixture of the predominant face-centered cubic (fcc) and hexagonal closed packed. However, the mixture phase turns to the fcc because of increasing Ni content up to 44 at.% at the highest (-1.9 V) potential by enhancing the intensity of reflections from the fcc phase. The changes observed in the magnetic and microstructural properties were ascribed to the changes observed in the chemical composition caused by the applied different deposition potentials.

  4. Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes

    KAUST Repository

    Chan, Candace K.

    2009-04-01

    Silicon nanowires (SiNWs) have the potential to perform as anodes for lithium-ion batteries with a much higher energy density than graphite. However, there has been little work in understanding the surface chemistry of the solid electrolyte interphase (SEI) formed on silicon due to the reduction of the electrolyte. Given that a good, passivating SEI layer plays such a crucial role in graphite anodes, we have characterized the surface composition and morphology of the SEI formed on the SiNWs using X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). We have found that the SEI is composed of reduction products similar to that found on graphite electrodes, with Li2CO3 as an important component. Combined with electrochemical impedance spectroscopy, the results were used to determine the optimal cycling parameters for good cycling. The role of the native SiO2 as well as the effect of the surface area of the SiNWs on reactivity with the electrolyte were also addressed. © 2009 Elsevier B.V. All rights reserved.

  5. Electrochemical characterizations on MnO2 supercapacitors with potassium polyacrylate and potassium polyacrylate-co-polyacrylamide gel polymer electrolytes

    KAUST Repository

    Lee, Kuang-Tsin

    2009-11-01

    MnO2·nH2O supercapacitors with potassium polyacrylate (PAAK) and potassium polyacrylate-co-polyacrylamide (PAAK-co-PAAM) gel polymer electrolytes (GPEs) having the weight compositions of polymer:KCl:H2O = 9%:6.7%:84.3% have been characterized for their electrochemical performance. Compared with the liquid electrolyte (LE) counterpart, the GPE cells exhibit remarkable (∼50-130%) enhancement in specific capacitance of the oxide electrode, and the extent of the enhancement increases with increasing amount of the carboxylate groups in the polymers as well as with increasing oxide/electrolyte interfacial area. In situ X-ray absorption near-edge structure (XANES) analysis indicates that the oxide electrodes of the GPE cells possess higher Mn-ion valences and are subjected to greater extent of valence variation than that of the LE cell upon charging/discharging over the same potential range. Copolymerization of PAAK with PAAM greatly improves the cycling stability of the MnO2·nH2O electrode, and the improvement is attributable to the alkaline nature of the amino groups. Both GPEs exhibit ionic conductivities greater than 1.0 × 10-1 S cm-1 and are promising for high-rate applications. © 2009 Elsevier Ltd. All rights reserved.

  6. Liquid-liquid interfacial tension of electrolyte solutions

    NARCIS (Netherlands)

    Bier, Markus; Zwanikken, J.W.; van Roij, R.H.H.G.

    2008-01-01

    It is theoretically shown that the excess liquid-liquid interfacial tension between two electrolyte solutions as a function of the ionic strength I behaves asymptotically as (-) for small I and as (±I) for large I. The former regime is dominated by the electrostatic potential due to an unequal

  7. The Pt(111)/Electrolyte Interface under Oxygen Reduction Reaction Conditions

    DEFF Research Database (Denmark)

    Bondarenko, A.S.; Stephens, Ifan; Hansen, Heine Anton

    2011-01-01

    The Pt(111)/electrolyte interface has been characterized during the oxygen reduction reaction (ORR) in 0.1 M HClO4 using electrochemical impedance spectroscopy. The surface was studied within the potential region where adsorption of OH* and O* species occur without significant place exchange...

  8. Liquid-Feed Methanol Fuel Cell With Membrane Electrolyte

    Science.gov (United States)

    Surampudi, Subbarao; Narayanan, S. R.; Halpert, Gerald; Frank, Harvey; Vamos, Eugene

    1995-01-01

    Fuel cell generates electricity from direct liquid feed stream of methanol/water solution circulated in contact with anode, plus direct gaseous feed stream of air or oxygen in contact with cathode. Advantages include relative simplicity and elimination of corrosive electrolytic solutions. Offers potential for reductions in size, weight, and complexity, and for increases in safety of fuel-cell systems.

  9. Common Student Misconceptions in Electrochemistry: Galvanic, Electrolytic, and Concentration Cells.

    Science.gov (United States)

    Sanger, Michael J.; Greenbowe, Thomas J.

    1997-01-01

    Investigates student (N=16) misconceptions concerning electrochemistry related to galvanic, electrolytic, and concentration cells. Findings indicate that most students demonstrating misconceptions were still able to calculate cell potentials correctly. Discusses common misconceptions and possible sources of these. Contains 33 references.…

  10. Solid lithium ion conducting electrolytes and methods of preparation

    Science.gov (United States)

    Narula, Chaitanya K; Daniel, Claus

    2013-05-28

    A composition comprised of nanoparticles of lithium ion conducting solid oxide material, wherein the solid oxide material is comprised of lithium ions, and at least one type of metal ion selected from pentavalent metal ions and trivalent lanthanide metal ions. Solution methods useful for synthesizing these solid oxide materials, as well as precursor solutions and components thereof, are also described. The solid oxide materials are incorporated as electrolytes into lithium ion batteries.

  11. Effect of composition on the polarization and ohmic resistances of ...

    Indian Academy of Sciences (India)

    2017-06-09

    Jun 9, 2017 ... Solid oxide fuel cell; composite cathodes; polarization resistance; ohmic resistance; impedance spectroscopy. 1. Introduction. In electrolyte-supported solid oxide fuel cell (SOFC) or in anode-supported SOFC with thick film electrolytes(>50 µm), ohmic resistance originating from electrolytes dominates and.

  12. Rechargeable solid polymer electrolyte battery cell

    Science.gov (United States)

    Skotheim, Terji

    1985-01-01

    A rechargeable battery cell comprising first and second electrodes sandwiching a solid polymer electrolyte comprising a layer of a polymer blend of a highly conductive polymer and a solid polymer electrolyte adjacent said polymer blend and a layer of dry solid polymer electrolyte adjacent said layer of polymer blend and said second electrode.

  13. Electrolytes for magnesium electrochemical cells

    Energy Technology Data Exchange (ETDEWEB)

    Burrell, Anthony K.; Sa, Niya; Proffit, Danielle Lee; Lipson, Albert; Liao, Chen; Vaughey, John T.; Ingram, Brian J.

    2017-07-04

    An electrochemical cell includes a high voltage cathode configured to operate at 1.5 volts or greater; an anode including Mg.sup.0; and an electrolyte including an ether solvent and a magnesium salt; wherein: a concentration of the magnesium salt in the ether is 1 M or greater.

  14. Electroless copper electrolytes and its surface characteristics for semiconductor interconnects

    Science.gov (United States)

    Lee, Hong-Kee; Hur, Jin-Young

    2013-07-01

    In this research, to develop proper electroless copper electrolytes for semiconductor interconnects, the concentration and amount of additives are varied. Then, the stability, reactivity, deposition rate, leveling effect, and surface structure are examined. After a virgin makeup solution with suitable deposition characteristics is obtained, an electroless copper coating layer of high uniformity and adhesion strength was achieved using the stabilizer, catalyst, buffer, and pH adjuster as additives and surfactant on Ru diffusion barriers. Through annealing, resistance characteristics could be enhanced. Moreover, by measuring the cyclic voltammetry stripping and mixed potential of the electroless Cu electrolyte, its surface reactivity is electrochemically evaluated, and the result is in agreement with the deposition reaction. When the electrolyte developed in this study is applied on a trench pattern wafer with A/R 3.5 and a line width of 30 nm, it is possible to observe immaculate filling with improved leveling.

  15. Ceramic-in-polymer versus polymer-in-ceramic polymeric electrolytes - A novel approach

    Energy Technology Data Exchange (ETDEWEB)

    Syzdek, Jaroslaw [Warsaw University of Technology, Faculty of Chemistry, ul. Noakowskiego 3, 00-664 Warszawa (Poland); Universite de Picardie Jules Verne, Laboratoire de Reactivite et de Chimie des Solides, 33 Rue Saint-Leu, F-80039 Amiens Cedex (France); Armand, Michel [Universite de Picardie Jules Verne, Laboratoire de Reactivite et de Chimie des Solides, 33 Rue Saint-Leu, F-80039 Amiens Cedex (France); Gizowska, Magdalena; Marcinek, Marek; Sasim, Elzbieta; Szafran, Mikolaj; Wieczorek, Wladyslaw [Warsaw University of Technology, Faculty of Chemistry, ul. Noakowskiego 3, 00-664 Warszawa (Poland)

    2009-10-20

    A new type of composites, i.e. polymer-in-ceramic (as opposed to the ''classical'' ceramic-in-polymer approach) was introduced into the field of composite polymeric electrolytes. In this work the preparation of porous ceramic samples based on alumina is designed and their properties are characterised by XRD, porosimetry and SEM. Special setup was developed for the preparation of electrolytes in vacuum/controlled atmosphere conditions and it was used for preparing the composites. The studied systems exhibited excellent mechanical properties, high conductivities and good stability vs. Li metal electrodes under prolonged storage. (author)

  16. On the morphology and potential application of polydimethylsiloxane-silica-titania composites

    Directory of Open Access Journals (Sweden)

    2011-02-01

    Full Text Available Polydimethylsiloxane-α,ω-diol was used as matrix for the preparation of polysiloxane-SiO2-TiO2 composites through in situ incorporation of silica and titania using a solvent-free sol-gel procedure. For this purpose, oxide precursors tetraethyl-orthosilicate and tetrabutyl-orthotitanate, and a proper condensation catalyst, viz. dibuthyltin dilaurate, were added in pre-established amounts to the polymer. The hydrolysis and condensation reactions take place under mild conditions, with the formation of silicon and titanium oxide networks and polymer crosslinking. The effect of SiO2 and TiO2 mass ratio on the morphology of the composites was investigated by scanning electron microscopy (SEM and X-rays diffraction (XRD, and interpreted in correlation with differential scanning calorimetry (DSC and energy-dispersive X-ray spectroscopy (EDX data. The film samples were tested as active elements in actuation devices.

  17. Ultrasensitive NO2 Sensor Based on Ohmic Metal-Semiconductor Interfaces of Electrolytically Exfoliated Graphene/Flame-Spray-Made SnO2 Nanoparticles Composite Operating at Low Temperatures.

    Science.gov (United States)

    Tammanoon, Nantikan; Wisitsoraat, Anurat; Sriprachuabwong, Chakrit; Phokharatkul, Ditsayut; Tuantranont, Adisorn; Phanichphant, Sukon; Liewhiran, Chaikarn

    2015-11-04

    In this work, flame-spray-made undoped SnO2 nanoparticles were loaded with 0.1-5 wt % electrolytically exfoliated graphene and systematically studied for NO2 sensing at low working temperatures. Characterizations by X-ray diffraction, transmission/scanning electron microscopy, and Raman and X-ray photoelectron spectroscopy indicated that high-quality multilayer graphene sheets with low oxygen content were widely distributed within spheriodal nanoparticles having polycrystalline tetragonal SnO2 phase. The 10-20 μm thick sensing films fabricated by spin coating on Au/Al2O3 substrates were tested toward NO2 at operating temperatures ranging from 25 to 350 °C in dry air. Gas-sensing results showed that the optimal graphene loading level of 0.5 wt % provided an ultrahigh response of 26,342 toward 5 ppm of NO2 with a short response time of 13 s and good recovery stabilization at a low optimal operating temperature of 150 °C. In addition, the optimal sensor also displayed high sensor response and relatively short response time of 171 and 7 min toward 5 ppm of NO2 at room temperature (25 °C). Furthermore, the sensors displayed very high NO2 selectivity against H2S, NH3, C2H5OH, H2, and H2O. Detailed mechanisms for the drastic NO2 response enhancement by graphene were proposed on the basis of the formation of graphene-undoped SnO2 ohmic metal-semiconductor junctions and accessible interfaces of graphene-SnO2 nanoparticles. Therefore, the electrolytically exfoliated graphene-loaded FSP-made SnO2 sensor is a highly promising candidate for fast, sensitive, and selective detection of NO2 at low operating temperatures.

  18. Proximate composition, phytochemical analysis, and in vitro antioxidant potentials of extracts of Annona muricata (Soursop)

    OpenAIRE

    Agu, Kingsley C.; Okolie, Paulinus N.

    2017-01-01

    Abstract Numerous bioactive compounds and phytochemicals have been reported to be present Annona muricata (Soursop). Some of these chemical compounds have been linked to the ethnomedicinal properties of the plant and its antioxidant properties. The aim of this study was to assess the proximate composition, phytochemical constituents and in vitro antioxidant properties of A. muricata using standard biochemical procedures. The defatted Annona muricata crude methanolic extracts of the different ...

  19. Polyamide Thin-Film Composite Membranes for Potential Raw Biogas Purification: Experiments and Modelling.

    Czech Academy of Sciences Publication Activity Database

    Šimčík, Miroslav; Růžička, Marek; Kárászová, Magda; Sedláková, Zuzana; Vejražka, Jiří; Veselý, M.; Čapek, P.; Friess, K.; Izák, Pavel

    2016-01-01

    Roč. 167, JUL 14 (2016), s. 163-173 ISSN 1383-5866 R&D Projects: GA ČR GA14-12695S; GA TA ČR TE01020080; GA MŠk(CZ) LD13018; GA MŠk LH14006 Institutional support: RVO:67985858 Keywords : thin film composite membrane * biogas membrane separation * transport modeling Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 3.359, year: 2016

  20. Super hard WC-Cr composite coatings. An approach to potential wear applications

    Energy Technology Data Exchange (ETDEWEB)

    Sancakoglu, Orkut; Celik, Erdal [Dokuz Eylul Univ., Izmir (Turkey). Dept. of Metallurgy and Materials Engineering

    2016-11-01

    In this study, submicron (APS = 200 nm) tungsten carbide (WC) ceramic particles were co-deposited with chromium metal (Cr) via electro-co-deposition system to fabricate WC-Cr metal matrix composite coatings. Instead of traditional electrodeposition cells, a new system was designed and coatings were fabricated using this system. Phase identifications of the coatings were performed by X-ray diffractometry (XRD) and surface morphologies were investigated using energy dispersive X-ray spectroscopy (EDS) with attached scanning electron microscope (SEM). Hardness values of the coatings were performed under 980.7 mN applied load using a microhardness tester. It was concluded that WC ceramic particles were physically adsorbed on the cathode surface and formed a composite structure with metal Cr and co-deposition of submicron sized ceramic particles with metals via electrodeposition system was strictly successful. In addition, with respect to the reference coatings, WC reinforced composite coatings depict an increased hardness up to twice its value. Frequency, as a parameter of pulse current, is determined as an effective parameter in co-deposition.

  1. Potential role of the bovine rumen microbiome in modulating milk composition and feed efficiency.

    Directory of Open Access Journals (Sweden)

    Elie Jami

    Full Text Available Ruminants are completely dependent on their microbiota for feed digestion and consequently, their viability. It is therefore tempting to hypothesize a connection between the composition and abundance of resident rumen bacterial taxa and the physiological parameters of the host. Using a pyrosequencing approach, we characterized the rumen bacterial community composition in 15 dairy cows and their physiological parameters. We analyzed the degree of divergence between the different animals and found that some physiological parameters, such as milk yield and composition, are highly correlated with the abundance of various bacterial members of the rumen microbiome. One apparent finding was a strong correlation between the ratio of the phyla Firmicutes to Bacteroidetes and milk-fat yield. These findings paralleled human studies showing similar trends of increased adiposity with an increase in Bacteroidetes. This correlation remained evident at the genus level, where several genera showed correlations with the animals' physiological parameters. This suggests that the bacterial community has a role in shaping host physiological parameters. A deeper understanding of this process may allow us to modulate the rumen microbiome for better agricultural yield through bacterial community design.

  2. Molecular simulations of electrolyte structure and dynamics in lithium-sulfur battery solvents

    Science.gov (United States)

    Park, Chanbum; Kanduč, Matej; Chudoba, Richard; Ronneburg, Arne; Risse, Sebastian; Ballauff, Matthias; Dzubiella, Joachim

    2018-01-01

    The performance of modern lithium-sulfur (Li/S) battery systems critically depends on the electrolyte and solvent compositions. For fundamental molecular insights and rational guidance of experimental developments, efficient and sufficiently accurate molecular simulations are thus in urgent need. Here, we construct a molecular dynamics (MD) computer simulation model of representative state-of-the art electrolyte-solvent systems for Li/S batteries constituted by lithium-bis(trifluoromethane)sulfonimide (LiTFSI) and LiNO3 electrolytes in mixtures of the organic solvents 1,2-dimethoxyethane (DME) and 1,3-dioxolane (DOL). We benchmark and verify our simulations by comparing structural and dynamic features with various available experimental reference systems and demonstrate their applicability for a wide range of electrolyte-solvent compositions. For the state-of-the-art battery solvent, we finally calculate and discuss the detailed composition of the first lithium solvation shell, the temperature dependence of lithium diffusion, as well as the electrolyte conductivities and lithium transference numbers. Our model will serve as a basis for efficient future predictions of electrolyte structure and transport in complex electrode confinements for the optimization of modern Li/S batteries (and related devices).

  3. Comparative study of chemistry compositions and antimicrobial potentials of essential oils and oleoresins from dried and fresh Mentha longifolia L.

    Directory of Open Access Journals (Sweden)

    Sunita Singh

    2015-12-01

    Full Text Available Objective: To investigate the chemical compositions and antimicrobial potentials of the essential oils and oleoresins obtained from fresh and dried Mentha longifolia L. Methods: Gas chromatography and gas chromatography-mass spectrometer techniques were used to determine the profiling of the essential oils and oleoresins. In order to determine the antimicrobial efficacy of the volatile oil and oleoresins, the pathogenic fungus Aspergillus niger (1884, Aspergillus flavus (2479, Fusarium monoliforme (1893, Fusarium graminearum (2088 and Penicillium viridicatum (2007 were undertaken whereas four pathogenic bacteria Bacillus subtilis (1790, Staphylococcus aureus (3103 (Gram-positive, Escherichia coli (1672, Pseudomonas aeruginosa (1942 (Gram-negative were selected for the present study. Food poisoned, inverted Petri plate, agar well diffusion and disk diffusion methods were employed for investigating antimicrobial potentials. Results: Piperitenone oxide, an oxygenated monoterpene, dominated the chemical compositions of essential oils and oleoresins whose compositions varied from 23.5%–87.8%. Both essential oils showed good antifungal activities against Aspergillus and Fusarium species. The antibacterial investigations revealed that Gram-positive bacteria were more sensitive to the essential oils. Conclusions: Drying the fresh herbal materials influences the chemical contents and the biological activities of the essential oils and oleoresins. Such results indicate that essential oils of Mentha longifolia L. can be possible candidates for further investigations to isolate and characterize their active principles as possible new natural preservatives.

  4. Optimized Carbonate and Ester-Based Li-Ion Electrolytes

    Science.gov (United States)

    Smart, Marshall; Bugga, Ratnakumar

    2008-01-01

    To maintain high conductivity in low temperatures, electrolyte co-solvents have been designed to have a high dielectric constant, low viscosity, adequate coordination behavior, and appropriate liquid ranges and salt solubilities. Electrolytes that contain ester-based co-solvents in large proportion (greater than 50 percent) and ethylene carbonate (EC) in small proportion (less than 20 percent) improve low-temperature performance in MCMB carbon-LiNiCoO2 lithium-ion cells. These co-solvents have been demonstrated to enhance performance, especially at temperatures down to 70 C. Low-viscosity, ester-based co-solvents were incorporated into multi-component electrolytes of the following composition: 1.0 M LiPF6 in ethylene carbonate (EC) + ethyl methyl carbonate (EMC) + X (1:1:8 volume percent) [where X = methyl butyrate (MB), ethyl butyrate EB, methyl propionate (MP), or ethyl valerate (EV)]. These electrolyte formulations result in improved low-temperature performance of lithium-ion cells, with dramatic results at temperatures below 40 C.

  5. Lacrimal Sac Dacryoliths-Pathogenesis and Composition

    Directory of Open Access Journals (Sweden)

    Serdar Özer

    2013-06-01

    Full Text Available The Main objective of the present study is to review the literature about the chemical composition and the formation of dacryoliths. Dacryoliths are calculi of the lacrimal system observed incidentally during dacryocystorhinostomy. Theories about the formation of dacryoliths mainly suppose that dacryoliths are simply a secondary phenomenon resulting from a lacrimal pathway obstruction and accumulation of debris. Inflammation caused by fungi, most commonly Candida albicans, an eyelash within the sac, or adrenalin use are also considered to be potential causes. It was also reported that the unstable concentrations of electrolytes rather than the supersaturation of some electrolytes are related to the pathogenesis of dacryoliths. Chemical analysis of the dacryoliths in studies had revealed calcium, magnesium, potassium, sulfur, and some phosphorus. Atomic absorption spectrophotometric investigations demonstrated organic proteins and, to a much lesser extent, inorganic material. (Turk J Ophthalmol 2013; 43: 186-9

  6. Perovskite-Ni composite: a potential route for management of radioactive metallic waste.

    Science.gov (United States)

    Mahadik, Pooja Sawant; Sengupta, Pranesh; Halder, Rumu; Abraham, G; Dey, G K

    2015-04-28

    Management of nickel - based radioactive metallic wastes is a difficult issue. To arrest the release of hazardous material to the environment it is proposed to develop perovskite coating for the metallic wastes. Polycrystalline BaCe0.8Y0.2O3-δ perovskite with orthorhombic structure has been synthesized by sol-gel route. Crystallographic analyses show, the perovskite belong to orthorhombic Pmcn space group at room temperature, and gets converted to orthorhombic Incn space group at 623K, cubic Pm3m space group (with a=4.434Å) at 1173K and again orthorhombic Pmcn space group at room temperature after cooling. Similar observations have been made from micro-Raman study as well. Microstructural studies of BaCe0.8Y0.2O3-δ-NiO/Ni composites showed absence of any reaction product at the interface. This suggests that both the components (i.e. perovskite and NiO/Ni) of the composite are compatible to each other. Interaction of BaCe0.8Y0.2O3-δ-NiO/Ni composites with simulated barium borosilicate waste glass melt also did not reveal any reaction product at the interfaces. Importantly, uranium from the waste glass melt was found to be partitioned within BaCe0.8Y0.2O3-δ perovskite structure. It is therefore concluded that BaCe0.8Y0.2O3-δ can be considered as a good coating material for management of radioactive Ni based metallic wastes. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. A comparative study of nutritional composition and potential use of some underutilized tropical fruits of Arecaceae

    OpenAIRE

    SILVA,RAQUEL B.; SILVA-JÚNIOR,EDVALDO V.; RODRIGUES,LAÍS C.; ANDRADE,LAISE H.C.; SILVA,SUZENE I. DA; HARAND,WOLFGANG; OLIVEIRA,ANTONIO F.M.

    2015-01-01

    In this study, pulp and kernel of fruits from six Arecaceae species were subjected to proximate analysis, fatty acid composition and total carotenoid content analysis. The species with the highest carbohydrate, lipid and protein values were Ptychosperma macarthurii(70.1 g/100 g in the kernel), Syagrus cearensis(40.6 g/100 g in the kernel), andS. coronata(20.6 g/100 g in the pulp). The ash content ranged from 0.61 to 7.51 g/100 g. Lauric, palmitic, and oleic acids were the major fatty acids id...

  8. Anthropogenic marine litter composition in coastal areas may be a predictor of potentially invasive rafting fauna.

    Science.gov (United States)

    Rech, Sabine; Borrell Pichs, Yaisel J; García-Vazquez, Eva

    2018-01-01

    Anthropogenic plastic pollution is a global problem. In the marine environment, one of its less studied effects is the transport of attached biota, which might lead to introductions of non-native species in new areas or aid in habitat expansions of invasive species. The goal of the present work was to assess if the material composition of beached anthropogenic litter is indicative of the rafting fauna in a coastal area and could thus be used as a simple and cost-efficient tool for risk assessment in the future. Beached anthropogenic litter and attached biota along the 200 km coastline of Asturias, central Bay of Biscay, Spain, were analysed. The macrobiotic community attached to fouled litter items was identified using genetic barcoding combined with visual taxonomic analysis, and compared between hard plastics, foams, other plastics and non-plastic items. On the other hand, the material composition of beached litter was analysed in a standardized area on each beach. From these two datasets, the expected frequency of several rafting taxa was calculated for the coastal area and compared to the actually observed frequencies. The results showed that plastics were the most abundant type of beached litter. Litter accumulation was likely driven by coastal sources (industry, ports) and river/sewage inputs and transported by near-shore currents. Rafting vectors were almost exclusively made up of plastics and could mainly be attributed to fishing activity and leisure/ household. We identified a variety of rafting biota, including species of goose barnacles, acorn barnacles, bivalves, gastropods, polychaetes and bryozoan, and hydrozoan colonies attached to stranded litter. Several of these species were non-native and invasive, such as the giant Pacific oyster (Crassostrea gigas) and the Australian barnacle (Austrominius modestus). The composition of attached fauna varied strongly between litter items of different materials. Plastics, except for foam, had a much more diverse

  9. Electric Field and Potential Distribution in a 420 kV Novel Unibody Composite Cross-Arm

    DEFF Research Database (Denmark)

    Jahangiri, Tohid; Bak, Claus Leth; Silva, Filipe Miguel Faria da

    2015-01-01

    of shield wires. Due to a major difference between the novel cross-arm structure and traditional composite cross-arms, the electric field distribution in the uni-body composite cross-arm is of considerable interest. This paper presents and analyses the electric field distribution around and inside...... the hollow core uni-body cross-arm through which ground cable passes to connect the shield wires. Two different shed profiles are considered on the cross-arm and evaluated based on the guidelines of IEC 60815-3. The 2D geometry of pylon is modeled in ANSYS Finite Element Analysis package. The electric field...... and potential distribution along the pylon is graphically depicted and the effectiveness of assigned shed profiles in controlling the power frequency stresses are investigated in the areas with high field intensities....

  10. Type II diabetes disparities in diverse women: the potential roles of body composition, diet and physical activity.

    Science.gov (United States)

    Crawford, Margaret A; Mendoza-Vasconez, Andrea S; Larsen, Britta A

    2015-11-01

    The rates of diabetes in the USA are rapidly increasing, and vary widely across different racial/ethnic groups. This paper explores the potential contribution of body composition, diet and physical activity in explaining diabetes disparities across women of different racial and ethnic backgrounds. For body composition, racial/ethnic groups differ widely by BMI, distribution of body mass and quantity and type of adipose tissue. Dietary patterns that vary across race/ethnicity include consumption of meat, added sugars, high-glycemic carbohydrates and fast food. Additionally, physical activity patterns of interest include aerobic versus muscle-strengthening exercises, and the purpose of physical activity (leisure, occupation, or transportation). Overall, these variables provide a partial picture of the source of these widening disparities, and could help guide future research in addressing and reducing diabetes disparities.

  11. BFR Electrolyte Additive Safety and Flammability Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Allcorn, Eric [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-13

    Lithium-ion battery safety is a critical issue in the adoption of the chemistry to larger scale applications such as transportation and stationary storage. One of the critical components impacting the safety of lithium-ion batteries is their use of highly flammable organic electrolytes. In this work, brominated flame retardants (BFR’s) – an existing class of flame retardant materials – are incorporated as additives to lithium-ion battery electrolytes with the intention to reduce the electrolyte flammability and thereby improve safety. There are a few critical needs for a successful electrolyte additive: solubility in the electrolyte, electrochemical stability over the range of battery operation, and minimal detrimental effects on battery performance. Those detrimental effects can take the form of electrolyte specific impacts, such as a reduction in conductivity, or electrode impacts, such as SEI-layer modification or chemical instability to the active material. In addition to these needs, the electrolyte additive also needs to achieve its intended purpose, which in this case is to reduce the flammability of the electrolyte. For the work conducted as part of this SPP agreement three separate BFR materials were provided by Albemarle to be tested by Sandia as additives in a traditional lithium-ion battery electrolyte. The provided BFR materials were tribromo-neopentyl alcohol, tetrabromo bisphenol A, and tribromoethylene. These materials were incorporated as separate 4 wt.% additives into a traditional lithium-ion battery electrolyte and compared to said traditional electrolyte, designated Gen2.

  12. Efficient Electrolytes for Lithium-Sulfur Batteries

    Directory of Open Access Journals (Sweden)

    Natarajan eAngulakshmi

    2015-05-01

    Full Text Available This review article mainly encompasses on the state-of-the-art electrolytes for lithium–sulfur batteries. Different strategies have been employed to address the issues of lithium-sulfur batteries across the world. One among them is identification of electrolytes and optimization of their properties for the applications in lithium-sulfur batteries. The electrolytes for lithium-sulfur batteries are broadly classified as (i non-aqueous liquid electrolytes, (ii ionic liquids, (iii solid polymer and (iv glass-ceramic electrolytes. This article presents the properties, advantages and limitations of each type of electrolytes. Also the importance of electrolyte additives on the electrochemical performance of Li-S cells is discussed.

  13. Lepidopteran defence droplets - a composite physical and chemical weapon against potential predators

    DEFF Research Database (Denmark)

    Pentzold, Stefan; Zagrobelny, Mika; Khakimov, Bekzod

    2016-01-01

    Insects often release noxious substances for their defence. Larvae of Zygaena filipendulae (Lepidoptera) secrete viscous and cyanogenic glucoside-containing droplets, whose effectiveness was associated with their physical and chemical properties. The droplets glued mandibles and legs of potential...

  14. Quantification of phenolic acids and antioxidant potential of inbred, hybrid and composite cultivars of maize under different nitrogen regimes.

    Science.gov (United States)

    Ganie, Arshid Hussain; Yousuf, Peerzada Yasir; Ahad, Amjid; Pandey, Renu; Ahmad, Sayeed; Aref, Ibrahim M; Noor, Jewel Jameeta; Iqbal, Muhammad

    2016-11-01

    Maize (Zea mays L.) is a multipurpose crop, which is immensely used worldwide for its nutritional as well as medicinal properties. This study evaluates the effect of varying concentrations of nitrogen (N) on accumulation of phenolic acids and antioxidant activity in different maize cultivars, including inbreds, hybrids and a composite, which were grown in natural light under controlled temperature (30°C/20°C D/N) and humidity (80%), with sufficient (4.5mM) and low (0.05mM) nitrogen supply. Seeds of different cultivars were powdered and extracted in a methanol:water (80:20) mixture through reflux at 60-75°C, and the extracts obtained were subjected to high performance thin layer chromatography (HPTLC), using ethyl acetate: acetic acid: formic acid: water (109:16:12:31) solvent system for the separation of phenolic acids. Antioxidant activity of the extracts was determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and H2O2-scavenging activity assays. At sufficient nitrogen condition, the contents of different phenolic acids were higher in the composite cultivar (8.7 mg g-1 d.wt. in gallic acid to 39.3 mg g-1 d.wt. in cinnamic and salicylic acids) than in inbreds and hybrids. Under low nitrogen condition, the phenolic acids contents declined significantly in inbreds and hybrids, but remained almost unaffected in the composite. The antioxidant activity was also the maximum in the composite, and declined similarly as phenolic acids under low nitrogen supply, showing a significant reduction in inbreds and hybrids only. Therefore, the maize composite has a potential for being used as a nutraceutical in human-health sector.

  15. Polymerization Effect of Electrolytes on Hydrogen-Bonding Cryoprotectants: Ion–Dipole Interactions between Metal Ions and Glycerol

    Science.gov (United States)

    2015-01-01

    Protectants which are cell membrane permeable, such as glycerol, have been used effectively in the cryopreservation field for a number of decades, for both slow cooling and vitrification applications. In the latter case, the glass transition temperature (Tg) of the vitrification composition is key to its application, dictating the ultimate storage conditions. It has been observed that the addition of some electrolytes to glycerol, such as MgCl2, could elevate the Tg of the mixture, thus potentially providing more storage condition flexibility. The microscopic mechanisms that give rise to the Tg-enhancing behavior of these electrolytes are not yet well understood. The current study focuses on molecular dynamics simulation of glycerol mixed with a variety of metal chlorides (i.e., NaCl, KCl, MgCl2, and CaCl2), covering a temperature range that spans both the liquid and glassy states. The characteristics of the ion–dipole interactions between metal cations and hydroxyl groups of glycerol were analyzed. The interruption of the original hydrogen-bonding network among glycerol molecules by the addition of ions was also investigated in the context of hydrogen-bonding quantity and lifetime. Divalent metal cations were found to significantly increase the Tg by strengthening the interacting network in the electrolyte/glycerol mixture via strong cation–dipole attractions. In contrast, monovalent cations increased the Tg insignificantly, as the cation–dipole attraction was only slightly stronger than the original hydrogen-bonding network among glycerol molecules. The precursor of crystallization of NaCl and KCl was also observed in these compositions, potentially contributing to weak Tg-enhancing ability. The Tg-enhancing mechanisms elucidated in this study suggest a structure-enhancing role for divalent ions that could be of benefit in the design of protective formulations for biopreservation purposes. PMID:25405831

  16. Polymerization effect of electrolytes on hydrogen-bonding cryoprotectants: ion-dipole interactions between metal ions and glycerol.

    Science.gov (United States)

    Weng, Lindong; Elliott, Gloria D

    2014-12-11

    Protectants which are cell membrane permeable, such as glycerol, have been used effectively in the cryopreservation field for a number of decades, for both slow cooling and vitrification applications. In the latter case, the glass transition temperature (Tg) of the vitrification composition is key to its application, dictating the ultimate storage conditions. It has been observed that the addition of some electrolytes to glycerol, such as MgCl2, could elevate the Tg of the mixture, thus potentially providing more storage condition flexibility. The microscopic mechanisms that give rise to the Tg-enhancing behavior of these electrolytes are not yet well understood. The current study focuses on molecular dynamics simulation of glycerol mixed with a variety of metal chlorides (i.e., NaCl, KCl, MgCl2, and CaCl2), covering a temperature range that spans both the liquid and glassy states. The characteristics of the ion-dipole interactions between metal cations and hydroxyl groups of glycerol were analyzed. The interruption of the original hydrogen-bonding network among glycerol molecules by the addition of ions was also investigated in the context of hydrogen-bonding quantity and lifetime. Divalent metal cations were found to significantly increase the Tg by strengthening the interacting network in the electrolyte/glycerol mixture via strong cation-dipole attractions. In contrast, monovalent cations increased the Tg insignificantly, as the cation-dipole attraction was only slightly stronger than the original hydrogen-bonding network among glycerol molecules. The precursor of crystallization of NaCl and KCl was also observed in these compositions, potentially contributing to weak Tg-enhancing ability. The Tg-enhancing mechanisms elucidated in this study suggest a structure-enhancing role for divalent ions that could be of benefit in the design of protective formulations for biopreservation purposes.

  17. Potential of Using Recycled Low-Density Polyethylene in Wood Composites Board

    Directory of Open Access Journals (Sweden)

    A. C. Igboanugo

    2011-03-01

    Full Text Available The aim of this study was to investigate the suitability of using recycled low density polyethylene (RLDPE in wood board manufacturing. The composite board was produced by compressive moulding by increasing the percentage LDPE from 30 to 50wt% with interval of 10wt% at a temperatures of 140 and 180oC, pressure of 30-40 Kg/cm2 and pressing time 7-13minutes. The microstructure and mechanical properties: modulus of rupture (MOR, modulus of elasticity (MOE, Tensile strength, impact strength properties of boards were determined. The results showed that high modulus of rupture of 20.31N/mm2and MOE of 1363N/mm2 were obtained from board produced at 140oC, 60/40wt% wood particles/LDPE content. The uniform distribution of the particles and the recycled LDPE in the microstructure of the composites board is the major factor responsible for the improvement in the mechanical properties. The results showed that the MOE, MOR meets the minimum requirements of the European standards, for general purpose. The boards produced had tensile strength that is within the requirement. Hence this LDPE can be used in board production for general purpose applications.

  18. Controls on ferromanganese crust composition and reconnaissance resource potential, Ninetyeast Ridge, Indian Ocean

    Science.gov (United States)

    Hein, James; Conrad, Tracey A.; Mizell, Kira; Banakar, Virupaxa K.; Frey, Frederick A.; Sager, William W.

    2016-01-01

    A reconnaissance survey of Fe-Mn crusts from the 5000 km long (~31°S to 10°N) Ninetyeast Ridge (NER) in the Indian Ocean shows their widespread occurrence along the ridge as well as with water depth on the ridge flanks. The crusts are hydrogenetic based in growth rates and discrimination plots. Twenty samples from 12 crusts from 9 locations along the ridge were analyzed for chemical and mineralogical compositions, growth rates, and statistical relationships (Q-mode factor analysis, correlation coefficients) were calculated. The crusts collected are relatively thin (maximum 40 mm), and those analyzed varied from 4 mm to 32 mm. However, crusts as thick as 80 mm can be expected to occur based on the age of rocks that comprise the NER and the growth rates calculated here. Growth rates of the crusts increase to the north along the NER and with water depth. The increase to the north resulted from an increased supply of Mn from the oxygen minimum zone (OMZ) to depths below the OMZ combined with an increased supply of Fe at depth from the dissolution of biogenic carbonate and from deep-sourced hydrothermal Fe. These increased supplies of Fe increased growth rates of the deeper-water crusts along the entire NER. Because of the huge terrigenous (rivers, eolian, pyroclastic) and hydrothermal (three spreading centers) inputs to the Indian Ocean, and the history of primary productivity, Fe-Mn crust compositions vary from those analyzed from open-ocean locations in the Pacific.

  19. New composite materials based on alginate and hydroxyapatite as potential carriers for ascorbic acid.

    Science.gov (United States)

    Ilie, Andreia; Ghiţulică, Cristina; Andronescu, Ecaterina; Cucuruz, Andrei; Ficai, Anton

    2016-08-30

    The purpose of this article was to obtain prolonged drug release systems in which the drug (ascorbic acid) to reach intact the target area in an environment that is able to control the administration of the active component by chemical or physiological pathways. As support for drug, it was used a material based on calcium phosphate - hydroxyapatite and a natural polymer - alginate, since it is one of the most investigated composite materials for medical applications due to its positive response to biological testing: bioactivity, biocompatibility and osteoconductivity. Three composites with different ratios between alginate and hydroxyapatite were obtained: (a) Alg/HA/AA 1:1 (the mass ratio between Alg and HA being of 1:1), (b) Alg/HA/AA 1:3 (Alg:HA mass ratio of 1:3) and (c) Alg/HA/AA 3:1 (Alg:HA mass ratio of 3:1). The synthesized materials were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and to observe the drug release process, UV-vis spectroscopy. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Magnetic composites based on metallic nickel and molybdenum carbide: a potential material for pollutants removal.

    Science.gov (United States)

    Mambrini, Raquel V; Fonseca, Thales L; Dias, Anderson; Oliveira, Luiz C A; Araujo, Maria Helena; Moura, Flávia C C

    2012-11-30

    New magnetic composites based on metallic nickel and molybdenum carbide, Ni/Mo(2)C, have been produced via catalytic chemical vapor deposition from ethanol. Scanning electron microscopy, thermal analysis, Raman spectroscopy and X-ray diffraction studies suggest that the CVD process occurs in a single step. This process involves the reduction of NiMo oxides at different temperatures (700, 800 and 900°C) with catalytic deposition of carbon from ethanol producing molybdenum carbide on Ni surface. In the absence of molybdenum the formation of Ni/C was observed. The magnetic molybdenum carbide was successfully used as pollutants removal by adsorption of sulfur and nitrogen compounds from liquid fuels and model dyes such as methylene blue and indigo carmine. The dibenzothiofene adsorption process over Ni/Mo(2)C reached approximately 20 mg g(-1), notably higher than other materials described in the literature and also removed almost all methylene blue dye. The great advantage of these carbide composites is that they may be easily recovered magnetically and reused. Copyright © 2012 Elsevier B.V. All rights reserved.