WorldWideScience

Sample records for electroless ni-p deposition

  1. Electroless deposition of Ni-P on a silicon surface

    Directory of Open Access Journals (Sweden)

    hassan El Grini

    2017-06-01

    Full Text Available The present article concerns the metallization of silicon substrates by deposition of the nickel-phosphorus alloy produced by an autocatalytic chemical process. The deposition electrolyte is composed of a metal salt, a reducing agent (sodium hypophosphite, a complexing agent (sodium citrate and a buffer (ammonium acetate. The deposition could only be carried out after activation of the silicon by fixing catalytic species on its surface. The immersion of the silicon samples in palladium chloride made it possible to produce relatively thick and regular Ni-P coatings. The immersion time was optimized. The activation of Si was characterized by XPS and the Ni-P coating by XPS and M.E.B. The electrochemical study did not show any real mechanism changes compared to the Ni-P deposition on a conductive surface. 

  2. XRD studies on solid state amorphisation in electroless Ni/P and Ni/B deposits

    International Nuclear Information System (INIS)

    Sampath Kumar, P.; Kesavan Nair, P.

    1996-01-01

    The decomposition of electroless Ni-P and Ni-B deposits on annealing at various temperature is studied using x-ray diffraction techniques employing profile deconvolution and line profile analysis. It appears that solid state amorphisation takes place in the Ni-B deposits in a narrow temperature range just prior to the onset of crystallization of amorphous phase. In the case of Ni-P deposits no evidence for solid state amorphisation could be obtained. Thermodynamic and kinetic considerations also support such a conclusion

  3. Effect of W addition on the electroless deposited NiP(W) barrier layer

    International Nuclear Information System (INIS)

    Tao, Yishi; Hu, Anmin; Hang, Tao; Peng, Li; Li, Ming

    2013-01-01

    Electroless deposition of NiP, NiWP thin film on p-type Si as the barrier layer to prevent the diffusion of Cu into Si was investigated. The thermal stability of the Si/Ni(W)P/Cu layers were evaluated by measuring the changes of resistance of the samples after annealed at various temperatures. XRD was applied to detect the formation of Cu 3 Si and evaluate the barrier performance of the layers. The results of XRD of the stacked Si/NiP/Cu, Si/NiWP-1/Cu, Si/NiWP–2/Cu films reveal that Cu atom could diffuse through NiP barrier layer at 450 °C, Cu could hardly diffuse through NiWP layer at 550 °C. This means that with W added in the layer, the barrier performance is improved. Although the resistance of Si/NiWP-1 and Si/NiWP-2 are higher than that of Si/NiP, the resistance of stacked layers of Si/NiWP-1/Cu and Si/NiWP–2/Cu are close to that of Si/NiP/Cu. This means that using NiWP as barrier layer is acceptable.

  4. Influence of load and temperature on tribological behaviour of electroless Ni-P deposits

    Science.gov (United States)

    Kundu, S.; Das, S. K.; Sahoo, P.

    2016-09-01

    Electroless Ni-P coatings have shown tremendous potential as tribology material at room temperature. However, the performance of the same in high temperature field needs to be evaluated as investigation reveals the softening of most of the coating materials. In the current study, both as-deposited as well as heat treated samples are developed for the performance evaluation. Coatings are tested under different loads with a constant speed and at temperatures ranging from room temperature (R.T.) to 500°C. Tribological tests are carried out on a pin-on- disc tribotester by selecting a wear track diameter of 60 mm for 5 minutes. Wear is reported in the form of wear rate by following Archard's equation. The microstructure characterization of the coating is performed using SEM (Scanning Electron Microscopy), EDX (Energy Dispersive X-Ray Analysis) and XRD (X-Ray Diffraction Analysis). Coating is developed with phosphorous weight percentages around 9% on cylindrical mild steel samples and the deposition thickness is observed to be around 50 μm. The as-deposited coating is found to be amorphous in nature and hardness of the as-deposited coating is found to be around 585HV01. Friction coefficient increases initially with the increase in temperature from room temperature up to 100°C but thereafter gradually decrease with the increase in temperature. Initial increase in temperature (up to 100°C) provides higher rate of wear compared to room temperature but with further increase it drops in most of the cases. Wear rate increases with the increase in temperature but as it crosses or nears the phase transformation temperature (around 340°C), the scenario gets reversed. From X-ray diffraction analysis, it is found that coating is amorphous in as-deposited condition but transforms into a crystalline structure with heat treatment.

  5. Potentiodynamic studies of Ni-P-TiO{sub 2} nano-composited coating on the mild steel deposited by electroless plating method

    Energy Technology Data Exchange (ETDEWEB)

    Uttam, Vibha, E-mail: vibhauttam74@gmail.com; Duchaniya, R. K., E-mail: rkduchaniya.meta@mnit.ac.in [Department of Metallurgical and Materials Engineering, MNIT Jaipur (India)

    2016-05-06

    Now a days, corrosion studies are important for reducing the wastage of metals. The importance of corrosion studies is two folds i.e. first is economic, including the reduction of material losses resulting from the wasting away or sudden failure of materials and second is conservation Electroless process is an autocatalytic reduction method in which metallic ions are reduced in the solution. Nanocomposite coatings of Ni-P-TiO{sub 2} on mild steel are deposited by varying volume of TiO{sub 2} nano-powder by electroless method from Ni-P plating bath containing Nickel Sulphate as a source of nickel ions, sodium hypophosphite as the reducing agent, lactic acid as a complexing agents and TiO{sub 2} nano powder. Electroless Ni-P-TiO{sub 2} coating have been widely used in the chemical process industries, mechanical industries, electronic industries and chloroalkali industries due to their excellent corrosion with mechanical properties. In the present work, deposition of Ni-P alloy coating and Ni-P-TiO{sub 2} nanocomposited coatings were done on the mild steel and corrosion properties were studied with Potentio-dynamic polarization measurements method in 3.5 wt% sodium chloride solution. It showed in the experiments that Ni-P-TiO{sub 2} nanocomposited coating has better corrosion resistance as comparedthan Ni-P alloy coating. Morphological studies were done by field emission scanning electron microscopy (FESEM), energy–dispersive analysis of X-ray (EDAX) and X-ray diffraction (XRD). These studies confirmed the deposition of Ni-P alloy coating and Ni-P-TiO{sub 2} nanocomposited coating.

  6. Potentiodynamic studies of Ni-P-TiO2 nano-composited coating on the mild steel deposited by electroless plating method

    Science.gov (United States)

    Uttam, Vibha; Duchaniya, R. K.

    2016-05-01

    Now a days, corrosion studies are important for reducing the wastage of metals. The importance of corrosion studies is two folds i.e. first is economic, including the reduction of material losses resulting from the wasting away or sudden failure of materials and second is conservation Electroless process is an autocatalytic reduction method in which metallic ions are reduced in the solution. Nanocomposite coatings of Ni-P-TiO2 on mild steel are deposited by varying volume of TiO2 nano-powder by electroless method from Ni-P plating bath containing Nickel Sulphate as a source of nickel ions, sodium hypophosphite as the reducing agent, lactic acid as a complexing agents and TiO2 nano powder. Electroless Ni-P-TiO2 coating have been widely used in the chemical process industries, mechanical industries, electronic industries and chloroalkali industries due to their excellent corrosion with mechanical properties. In the present work, deposition of Ni-P alloy coating and Ni-P-TiO2 nanocomposited coatings were done on the mild steel and corrosion properties were studied with Potentio-dynamic polarization measurements method in 3.5 wt% sodium chloride solution. It showed in the experiments that Ni-P-TiO2 nanocomposited coating has better corrosion resistance as comparedthan Ni-P alloy coating. Morphological studies were done by field emission scanning electron microscopy (FESEM), energy-dispersive analysis of X-ray (EDAX) and X-ray diffraction (XRD). These studies confirmed the deposition of Ni-P alloy coating and Ni-P-TiO2 nanocomposited coating.

  7. Effect Of Low-Temperature Annealing On The Properties Of Ni-P Amorphous Alloys Deposited Via Electroless Plating

    Directory of Open Access Journals (Sweden)

    Zhao Guanlin

    2015-06-01

    Full Text Available Amorphous Ni-P alloys were prepared via electroless plating and annealing at 200°C at different times to obtain different microstructures. The effects of low-temperature annealing on the properties of amorphous Ni-P alloys were studied. The local atomic structure of the annealed amorphous Ni-P alloys was analyzed by calculating the atomic pair distribution function from their X-ray diffraction patterns. The results indicate that the properties of the annealed amorphous Ni-P alloys are closely related to the order atomic cluster size. However, these annealed Ni-P alloys maintained their amorphous structure at different annealing times. The variation in microhardness is in agreement with the change in cluster size. By contrast, the corrosion resistance of the annealed alloys in 3.5 wt% NaCl solution increases with the decrease in order cluster size.

  8. Thin and flexible Ni-P based current collectors developed by electroless deposition for energy storage devices

    International Nuclear Information System (INIS)

    Wu, Haoran; Susanto, Amelia; Lian, Keryn

    2017-01-01

    Highlights: • A PET metallized by electroless nickel was developed as flexible current collector. • The Ni-PET current collector showed good conductivity and chemical stability. • The flexible nanocarbon electrodes with Ni-PET exhibited capacitive behavior. • The Ni-PET enabled electrodes performed nicely in liquid and solid supercapacitors. - Abstract: A PET film metalized by electroless nickel deposition was demonstrated as thin and flexible current collector for energy storage devices. The resultant nickel-on-PET film (Ni-PET) can be used both as current collector for electrochemical capacitors and as electrode for thin film batteries. The composition of Ni-PET was characterized by EDX and XPS. The electrochemical performance of the Ni-PET current collector was similar to Ni foil but with less hydrogen evolution at low potential. The Ni-PET film exhibited better flexibility than a metallic Ni foil. Carbon nanotubes were coated on a Ni-PET substrate to form an electrochemical capacitor electrode which exhibited high chemical stability in both liquid and solid electrolytes, showing strong promise for solid energy storage devices.

  9. Thin and flexible Ni-P based current collectors developed by electroless deposition for energy storage devices

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Haoran, E-mail: haoran.wu@mail.utoronto.ca; Susanto, Amelia; Lian, Keryn

    2017-02-01

    Highlights: • A PET metallized by electroless nickel was developed as flexible current collector. • The Ni-PET current collector showed good conductivity and chemical stability. • The flexible nanocarbon electrodes with Ni-PET exhibited capacitive behavior. • The Ni-PET enabled electrodes performed nicely in liquid and solid supercapacitors. - Abstract: A PET film metalized by electroless nickel deposition was demonstrated as thin and flexible current collector for energy storage devices. The resultant nickel-on-PET film (Ni-PET) can be used both as current collector for electrochemical capacitors and as electrode for thin film batteries. The composition of Ni-PET was characterized by EDX and XPS. The electrochemical performance of the Ni-PET current collector was similar to Ni foil but with less hydrogen evolution at low potential. The Ni-PET film exhibited better flexibility than a metallic Ni foil. Carbon nanotubes were coated on a Ni-PET substrate to form an electrochemical capacitor electrode which exhibited high chemical stability in both liquid and solid electrolytes, showing strong promise for solid energy storage devices.

  10. Development of high performance electroless Ni-P-HNT composite coatings

    Science.gov (United States)

    Ranganatha, S.; Venkatesha, T. V.; Vathsala, K.

    2012-12-01

    Halloysite nanotubes (HNTs) of the dimension 50 nm × 1-3 μm (diameter × length) are utililized to fabricate the alloy composite by employing electroless/autocatalytic deposition technique. Electroless Ni-P-HNT binary alloy composite coatings are prepared successfully on low carbon steel. These nanotubes were made to get inserted/incorporated into nickel matrix and corresponding composites are examined for their electrochemical, mechanical and tribological performances and compared with that of plain Ni-P. The coatings were characterized using scanning electron microscopy (SEM) and Energy dispersive X-ray analysis (EDX) techniques to analyze surface nature and composition correspondingly. Small amount of incorporated HNTs made Ni-P deposits appreciable enhancement and betterment in corrosion resistance, hardness and friction resistance. This drastic improvement in the properties reflects the effect of addition of HNTs into Ni-P matrix leading to the development of high performance Ni-P-HNT composite coatings.

  11. Electrochemical behavior of low phosphorus electroless Ni-P-Si3N4 composite coatings

    International Nuclear Information System (INIS)

    Balaraju, J.N.; Ezhil Selvi, V.; Rajam, K.S.

    2010-01-01

    In the present investigation the electroless Ni-P-Si 3 N 4 composite coatings were prepared by using a low phosphorus bath containing submicron size silicon nitride particles. Plain Ni-P deposits were also prepared for comparison. The phosphorus contents present in electroless plain Ni-P and Ni-P-Si 3 N 4 coatings are 3.7 and 3.4 wt.%, respectively. Scanning electron microscope (SEM) images obtained for composite coatings (cross-sections) showed that the second phase particles are uniformly distributed throughout the thickness of the deposits. It was found that nodularity increased with particle codeposition in Ni-P matrix. To find out the electrochemical behavior of plain Ni-P and composite coatings, potentiodynamic polarization and electrochemical impedance (EIS) studies were carried out in 3.5 wt.% sodium chloride solution in non-deaerated condition. Second phase particle incorporation in Ni-P matrix indicated a marginal decrease in corrosion current density compared to the plain Ni-P deposits. This was further confirmed by EIS studies and SEM analysis of the corroded samples.

  12. Development of high performance electroless Ni-P-HNT composite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Ranganatha, S., E-mail: kamath.ranganath@gmail.com [Department of studies in chemistry, School of chemical sciences, Kuvempu university, Shankaraghatta-577451, Shimoga, Karnataka (India); Venkatesha, T.V., E-mail: drtvvenkatesha@yahoo.co.uk [Department of studies in chemistry, School of chemical sciences, Kuvempu university, Shankaraghatta-577451, Shimoga, Karnataka (India); Vathsala, K., E-mail: vathsala.mahesh@gmail.com [Nanotribology Laboratory, Mechanical engineering department, Indian Institute of Science, Bangalore 560012, Karnataka (India)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Novel Ni-P composites were prepared by incorporating Halloysite nanotubes. Black-Right-Pointing-Pointer Mild steel specimens surface engineered by nickel using electroless technique. Black-Right-Pointing-Pointer Incorporated halloysite nanotubes made nickel matrix highly corrosion resistant. Black-Right-Pointing-Pointer HNT composite exhibits high hardness and largely reduces friction. - Abstract: Halloysite nanotubes (HNTs) of the dimension 50 nm Multiplication-Sign 1-3 {mu}m (diameter Multiplication-Sign length) are utililized to fabricate the alloy composite by employing electroless/autocatalytic deposition technique. Electroless Ni-P-HNT binary alloy composite coatings are prepared successfully on low carbon steel. These nanotubes were made to get inserted/incorporated into nickel matrix and corresponding composites are examined for their electrochemical, mechanical and tribological performances and compared with that of plain Ni-P. The coatings were characterized using scanning electron microscopy (SEM) and Energy dispersive X-ray analysis (EDX) techniques to analyze surface nature and composition correspondingly. Small amount of incorporated HNTs made Ni-P deposits appreciable enhancement and betterment in corrosion resistance, hardness and friction resistance. This drastic improvement in the properties reflects the effect of addition of HNTs into Ni-P matrix leading to the development of high performance Ni-P-HNT composite coatings.

  13. Preparation and corrosion resistance of electroless Ni-P/SiC functionally gradient coatings on AZ91D magnesium alloy

    Science.gov (United States)

    Wang, Hui-Long; Liu, Ling-Yun; Dou, Yong; Zhang, Wen-Zhu; Jiang, Wen-Feng

    2013-12-01

    In this paper, the protective electroless Ni-P/SiC gradient coatings on AZ91D magnesium alloy substrate were successfully prepared. The prepared Ni-P/SiC gradient coatings were characterized for its microstructure, morphology, microhardness and adhesion to the substrate. The deposition reaction kinetics was investigated and an empirical rate equation for electroless Ni-P/SiC plating on AZ91D magnesium alloy was developed. The anticorrosion properties of the Ni-P/SiC gradient coatings in 3.5 wt.% NaCl solution were evaluated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) studies. The potentiodynamic polarization measurements revealed that the SiC concentration in the bath and heat treatment can influence the corrosion protection performance of electroless deposited Ni-P/SiC gradient coatings. EIS studies indicated that higher charge transfer resistance and slightly lower capacitance values were obtained for Ni-P/SiC gradient coatings compared to Ni-P coatings. The corrosion resistance of the Ni-P/SiC gradient coatings increases initially and decreases afterwards with the sustained increasing of immersion time in the aggressive medium. The electroless Ni-P/SiC gradient coatings can afford better corrosion protection for magnesium alloy substrate compared with Ni-P coatings.

  14. Corrosion Resistance Of Electroless Ni-P/Cu/Ni-P Multilayer Coatings

    Directory of Open Access Journals (Sweden)

    Zhao G.L.

    2015-06-01

    Full Text Available Ni-P/Cu/Ni-P multilayer coatings were prepared by deposition of Cu layer between two Ni–P layers. The Cu layer was deposited by metal displacement reaction between Cu2+ and Fe atoms. Corrosion behavior of single-layer Ni-P coatings, double-layer Ni-P/Cu coatings, and three-layer Ni-P/Cu/Ni-P coatings were investigated by electrochemical tests in 3.5% NaCl solution. The three-layer coatings exhibited more positive Ecorr and decreased Icorr compared with conventional single-layer Ni-P coatings, which indicated an improved corrosion resistance. The polarization curves of the three-layer coatings were characterized by two passive regions. The improved corrosion resistance was not only attributed to the function of the blocked pores of Cu. The Cu interlayer also acted as a sacrificial layer instead of a barrier in the coatings, which altered the corrosion mechanism and further improved the corrosion resistance of the coatings.

  15. Electroless atomic layer deposition

    Science.gov (United States)

    Robinson, David Bruce; Cappillino, Patrick J.; Sheridan, Leah B.; Stickney, John L.; Benson, David M.

    2017-10-31

    A method of electroless atomic layer deposition is described. The method electrolessly generates a layer of sacrificial material on a surface of a first material. The method adds doses of a solution of a second material to the substrate. The method performs a galvanic exchange reaction to oxidize away the layer of the sacrificial material and deposit a layer of the second material on the surface of the first material. The method can be repeated for a plurality of iterations in order to deposit a desired thickness of the second material on the surface of the first material.

  16. Electrochemical studies on electroless ternary and quaternary Ni-P based alloys

    International Nuclear Information System (INIS)

    Balaraju, J.N.; Selvi, V. Ezhil; Grips, V.K. William; Rajam, K.S.

    2006-01-01

    The autocatalytic (electroless) deposition of Ni-P based alloys is a well-known commercial process that has found numerous applications because of their excellent anticorrosive, wear, magnetic, solderable properties, etc. It is a barrier coating, protecting the substrate by sealing it off from the corrosive environments, rather than by sacrificial action. The corrosion resistance varies with the phosphorus content of the deposit: relatively high for a high-phosphorus electroless nickel deposit but low for a low-phosphorus electroless nickel deposit. In the present investigation ternary Ni-W-P alloy films were prepared using alkaline citrate-based bath. Quaternary Ni-W-Cu-P films were deposited by the addition of 3 mM copper ions in ternary Ni-W-P bath. X-ray diffraction (XRD) studies indicated that all the deposits were nanocrystalline, i.e. 1.2, 2.1 and 6.0 nm, respectively, for binary, ternary and quaternary alloys. Corrosion resistance of the films was evaluated in 3.5% sodium chloride solution in non-deaerated and deaerated conditions by potentiodynamic polarization and electrochemical impedance (EIS) methods. Lower corrosion current density values were obtained for the coatings tested in deaerated condition. EIS studies showed that higher charge transfer resistance values were obtained for binary Ni-P coatings compared to ternary or quaternary coatings. For all the coatings a gradual increase in the anodic current density had been observed beyond 740 mV. In deaerated condition all the reported coatings exhibited a narrow passive region and all the values of E p , E tp and i pass were very close showing no major changes in the electrochemical behavior. In the non-deaerated conditions no passivation behavior had been observed for all these coatings

  17. Study of Nd:YAG laser annealing of electroless Ni-P film on spiegel-iron plate by Taguchi method and grey system theory

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W.L. [Department of Materials Science and Engineering, National Formosa University, 64, Wunhua Road, Huwei, Yunlin 632, Taiwan (China); Chien, W.T.; Jiang, M.H. [Department of Mechanical Engineering, National Pingtung University of Science and Technology, 1, Shuehfu Road, Neipu, Pingtung 912, Taiwan (China); Chen, W.J., E-mail: chenwjau@yuntech.edu.t [Graduate School of Materials Science, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, Yunlin 64002, Taiwan (China)

    2010-04-09

    An electroless Ni-P film was first deposited on a spiegel-iron plate and then annealed by an Nd:YAG pulsed wave laser. In order to obtain the optimal laser annealing parameters for maximizing the hardness and minimizing the surface roughness of electroless Ni-P films, the Taguchi method and grey system theory were used to analyze the experimental data. The electroless Ni-P film was also characterized by scanning electron microscopy for the morphology, and transmission electron microscopy for the microstructure and crystal structure. The results showed that the hardness and the surface roughness of electroless Ni-P films can be, at the same time, improved to 50.8% and 68%, respectively, by the laser annealing with the optimal parameters.

  18. Study of Nd:YAG laser annealing of electroless Ni-P film on spiegel-iron plate by Taguchi method and grey system theory

    International Nuclear Information System (INIS)

    Liu, W.L.; Chien, W.T.; Jiang, M.H.; Chen, W.J.

    2010-01-01

    An electroless Ni-P film was first deposited on a spiegel-iron plate and then annealed by an Nd:YAG pulsed wave laser. In order to obtain the optimal laser annealing parameters for maximizing the hardness and minimizing the surface roughness of electroless Ni-P films, the Taguchi method and grey system theory were used to analyze the experimental data. The electroless Ni-P film was also characterized by scanning electron microscopy for the morphology, and transmission electron microscopy for the microstructure and crystal structure. The results showed that the hardness and the surface roughness of electroless Ni-P films can be, at the same time, improved to 50.8% and 68%, respectively, by the laser annealing with the optimal parameters.

  19. Electroless Ni-P/Nano-SiO2 Composite Plating on Dual Phase Magnesium-Lithium Alloy

    Science.gov (United States)

    Zou, Y.; Zhang, Z. W.; Zhang, M. L.

    The application of Mg-Li alloys is restricted in practice due to mainly poor corrosion resistance and wear resistance. Electroless nickel plating is one of the common and effective ways to protect alloys from corrosion. In this study, nano-SiO2 particles with Ni-P matrix have been successfully co-deposited onto dual phase Mg-8Li base alloy through electroless plating, generating homogeneously Ni-P/nano-SiO2 composite coating. The morphology, elemental composition and structures of coatings were investigated. Coating performances were evaluated using hardness tests and electrochemical analysis. The results indicate that the Ni-P/nano-SiO2 composite coating can significantly improve the wear and corrosion resistance.

  20. Study on the nano-composite electroless coating of Ni-P/Ag

    International Nuclear Information System (INIS)

    Ma Hongfang; Tian Fang; Li Dan; Guo Qiang

    2009-01-01

    The nano-composite coating of Ni-P/Ag was obtained by adding silver nanoparticles to the Ni-P electroless plating solutions. The properties of the coating were tested by scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), differential scanning calorimeter (DSC), X-ray diffraction (XRD) and microsclerometer. Silver nanoparticles changed the properties of the composite coating. The Ni-P electroless coating contains 12.23 wt.% P while the composite coating of Ni-P/Ag contains 11.17 wt.% P and 0.24 wt.% Ag. The hardness of the composite coating is bigger than that of Ni-P alloy coating. Differential scanning calorimeter studies showed the amorphous to crystalline transition with precipitation of Ni 3 P and Ni around 335 deg. C

  1. Tribological Performance Optimization of Electroless Ni-P-W Coating Using Weighted Principal Component Analysis

    Directory of Open Access Journals (Sweden)

    S. Roy

    2013-12-01

    Full Text Available The present investigation is an experimental approach to deposit electroless Ni-P-W coating on mild steel substrate and find out the optimum combination of various tribological performances on the basis of minimum friction and wear, using weighted principal component analysis (WPCA. In this study three main tribological parameters are chosen viz. load (A, speed (B and time(C. The responses are coefficient of friction and wear depth. Here Weighted Principal Component Analysis (WPCA method is adopted to convert the multi-responses into single performance index called multiple performance index (MPI and Taguchi L27 orthogonal array is used to design the experiment and to find the optimum combination of tribological parameters for minimum coefficient of friction and wear depth. ANOVA is performed to find the significance of the each tribological process parameters and their interactions. The EDX analysis, SEM and XRD are performed to study the composition and structural aspects.

  2. Ductile electroless Ni-P coating onto flexible printed circuit board

    Science.gov (United States)

    Wang, Wenchang; Zhang, Weiwei; Wang, Yurong; Mitsuzak, Naotoshi; Chen, Zhidong

    2016-03-01

    In this study, a ductile electroless Ni-P coating on the flexible printed circuit board (FPCB) was prepared in an acidic nickel plating bath. The addition of dipropylamine (DPA) in electroless plating not only improves the ductility of the Ni-P coating, but also enhances the corrosion resistance. The further analysis reveals that the ductility improvement and enhancement of corrosion resistance for the Ni-P coating may be due to the fact that the addition of DPA significantly refines the volume of columnar nodule and reduce the porosity, thus leading to the released internal stress. In addition, it was found that the nodule within the Ni-P coating grew into a columnar structure, which may be also contribute to the improvement of ductility.

  3. Review on Electroless Plating Ni-P Coatings for Improving Surface Performance of Steel

    Science.gov (United States)

    Zhang, Hongyan; Zou, Jiaojuan; Lin, Naiming; Tang, Bin

    2014-04-01

    Electroless plating has been considered as an effective approach to provide protection and enhancement for metallic materials with many excellent properties in engineering field. This paper begins with a brief introduction of the fundamental aspects underlying the technological principles and conventional process of electroless nickel-phosphorus (Ni-P) coatings. Then this paper discusses different electroless nickel plating, including binary plating, ternary composite plating and nickel plating with nanoparticles and rare earth, with the intention of improving the surface performance on steel substrate in recent years in detail. Based on different coating process, the varied features depending on the processing parameters are highlighted. Separately, diverse preparation techniques aiming at improvement of plating efficiency are summarized. Moreover, in view of the outstanding performance, such as corrosion resistance, abrasive resistance and fatigue resistance, this paper critically reviews the behaviors and features of various electroless coatings under different conditions.

  4. Effect of heat treatment, top coatings and conversion coatings on the corrosion properties of black electroless Ni-P films

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y., E-mail: liu_yunli@hotmail.com [R and D Department, MacDermid plc, 198 Golden Hillock Road, Birmingham B11 2PN (United Kingdom); Beckett, D.; Hawthorne, D. [R and D Department, MacDermid plc, 198 Golden Hillock Road, Birmingham B11 2PN (United Kingdom)

    2011-02-15

    Electroless black nickel-phosphorus plating is an advanced electroless nickel plating process formulated to deposit a black finish when processed through an oxidizing acid solution. Heat treatment, five types of top organic coating techniques and one conversion coating technique with three different experimental conditions were investigated to stabilize the black film and increase the hardness and corrosion resistance. Morphology and compositions of electroless nickel-phosphorous films with or without heat treatment, with five types of top organic coatings, and with three conversion coatings were compared to examine nickel, phosphorus, oxygen, carbon, silicon and chrome contents on the corrosion resistance of black surfaces by energy dispersive X-ray microanalysis and scanning electron microscope. Corrosion resistance of black electroless nickel-phosphorus coatings with or without heat treatment, with five types of top organic coatings, and with three conversion coatings was investigated by the polarization measurements and the salt spray test in 5% NaCl solution, respectively. HydroLac as the top organic coating from MacDermid showed the excellent corrosion resistance and the black EN film did not lose the black color after 48 h salt spray test. Electrotarnil B process with 0.5 ASD for 1 min stabilized the black Ni-P film immediately and increased the hardness and corrosion performance of the black Ni-P film. The black Ni-P coating with Electroarnil B process passed the 5% NaCl salt spray test for 3000 h in the black color and had a minimal corrosion current 0.8547 {mu}A/cm{sup 2} by the polarization measurement.

  5. EFFECT OF pH ON ELECTROLESS Ni-P COATING OF CONDUCTIVE AND NON-CONDUCTIVE MATERIALS

    Directory of Open Access Journals (Sweden)

    Subrata Roy

    2011-12-01

    Full Text Available Electroless nickel-phosphorus (Ni-P coating of carbon steel as well as a polypropylene substrate was conducted using sodium hypophosphite as a reducing agent in alkaline media. The influence of pH on coating appearances and the properties of the coatings for both steel and the polypropylene substrate were studied. A nickel-phosphorus coating of good appearance was obtained in the pH range between 5.5 and 12.5 on the carbon steel substrate and between 8.5 and 12 on the polypropylene substrate. The percentage of Ni content in the coating increased with increasing pH of the bath solution. A smooth, uniform microstructure was found in the coating deposited in relatively lower pH solutions compared to higher pH baths. The microhardness of the Ni-P coating decreased with an increasing percentage Ni content in the deposit.

  6. Electroless Ni-P/Ni-B duplex coatings: preparation and evaluation of microhardness, wear and corrosion resistance

    International Nuclear Information System (INIS)

    Narayanan, T.S.N. Sankara; Krishnaveni, K.; Seshadri, S.K.

    2003-01-01

    The present work deals with the formation of Ni-P/Ni-B duplex coatings by electroless plating process and evaluation of their hardness, wear resistance and corrosion resistance. The Ni-P/Ni-B duplex coatings were prepared using dual baths (acidic hypophosphite- and alkaline borohydride-reduced electroless nickel baths) with both Ni-P and Ni-B as inner layers and with varying single layer thickness. Scanning electron microscopy (SEM) was used to assess the duplex interface. The microhardness, wear resistance and corrosion resistance of electroless nickel duplex coatings were compared with electroless Ni-P and Ni-B coatings of similar thickness. The study reveals that the Ni-P and Ni-B coatings are amorphous in their as-plated condition and upon heat-treatment at 450 deg. C for 1 h, both Ni-P and Ni-B coatings crystallize and produce nickel, nickel phosphide and nickel borides in the respective coatings. All the three phases are formed when Ni-P/Ni-B and Ni-B/Ni-P duplex coatings are heat-treated at 450 deg. C for 1 h. The duplex coatings are uniform and the compatibility between the layers is good. The microhardness, wear resistance and corrosion resistance of the duplex coating is higher than Ni-P and Ni-B coatings of similar thickness. Among the two types of duplex coatings studied, hardness and wear resistance is higher for coatings having Ni-B coating as the outer layer whereas better corrosion resistance is offered by coatings having Ni-P coating as the outer layer

  7. Structure and phase transformation behavior of electroless Ni-P alloys containing tin and tungsten

    International Nuclear Information System (INIS)

    Balaraju, J.N.; Jahan, S. Millath; Jain, Anjana; Rajam, K.S.

    2007-01-01

    Autocatalytic ternary Ni-Sn-P, Ni-W-P and quaternary Ni-W-Sn-P films were prepared using alkaline citrate-based baths and compared with binary Ni-P coatings. Energy dispersive analysis of X-ray (EDAX) showed that binary Ni-P deposit contained 11.3 wt.% of phosphorus. Codeposition of tungsten in Ni-P matrix resulted in ternary Ni-W-P with 5 wt.% P and 7.8 wt.% of tungsten. Incorporation of tin led to ternary Ni-Sn-P deposit containing 0.4 wt.% Sn and 10.3 wt.% P. Presence of both sodium tungstate and sodium stannate in the basic bath had resulted in quaternary coating with 6.9 wt.% W, traces of Sn and 6.4 wt.% P. X-ray diffraction patterns of all the deposits revealed a single, broad peak which showed the nanocrystalline nature of the deposits. For the first time in related literature, the presence of a metastable phase Ni 12 P 5 in ternary deposits is reported in the present study. Metallographic cross-sections of all the deposits revealed the banded/lamellar structure. Scanning electron microscopy (SEM) studies of the deposits showed smooth nodules for ternary deposits, but coarse and well-defined nodules for quaternary deposits. DSC studies of phase transformation behavior of the ternary Ni-Sn-P deposit revealed a single sharp exothermic peak at 365 o C. However, ternary Ni-W-P and quaternary Ni-W-Sn-P deposits exhibited a low temperature peak at 300 o C, a split type high temperature peak at 405 and 440 o C and a very high temperature peak at 550 o C. Higher activation energy values were obtained for W-based alloy deposits. Presence of W and Sn has helped to retain high microhardness values even at higher temperatures indicating an improved thermal stability

  8. Application of electroless Ni-P coating on magnesium alloy via CrO3/HF free titanate pretreatment

    Science.gov (United States)

    Rajabalizadeh, Z.; Seifzadeh, D.

    2017-11-01

    The titanate conversion coating was applied as CrO3/HF free pretreatment for the electroless Ni-P plating on AM60B magnesium alloy. The microscopic images revealed that the alloy surface was completely covered by a cracked conversion film after titanate pretreatment which was mainly composed of Mg(OH)2/MgO, MgF2, TiO2, SiO2, and Al2O3/Al(OH)3. The microscopic images also revealed that numerous Ni nucleation centers were formed over the titanate film after short electroless plating times. The nucleation centers were created not only on the cracked area but also over the whole pretreated surface due to the catalytic action of the titanate film. Also, uniform, dense, and defect-free Ni-P coating with fine structure was achieved after 3 h plating. The Ni-P coating showed mixed crystalline-amorphous structure due to its moderate phosphorus content. The results of two traditional corrosion monitoring methods indicated that the Ni-P coating significantly increases the corrosion resistance of the magnesium alloy. Moreover, Electrochemical Noise (EN) method was used as a non-polarized technique to study the corrosion behavior of the electroless coating at different immersion times. The results of the EN tests were clearly showed the localized nature of the corrosion process. Micro-hardness value of the magnesium alloy was remarkably enhanced after the electroless plating. Finally, suitable adhesion between the Ni-P coating and the magnesium alloy substrate was confirmed by thermal shock and pull-off-adhesion tests.

  9. Optimization of wear behavior of electroless Ni-P-W coating under dry and lubricated conditions using genetic algorithm (GA

    Directory of Open Access Journals (Sweden)

    Arkadeb Mukhopadhyay

    2016-12-01

    Full Text Available The present study aims to investigate the tribological behavior of Ni-P-W coating under dry and lubricated condition. The coating is deposited onto mild steel (AISI 1040 specimens by the electroless method using a sodium hypophosphite based alkaline bath. Coating characterization is done to investigate the effect of microstructure on its performance. The change in microhardness is observed to be quite significant after annealing the deposits at 400°C for 1h. A pin–on–disc type tribo-tester is used to investigate the tribological behavior of the coating under dry and lubricated conditions. The experimental design formulation is based on Taguchi’s orthogonal array. The design parameters considered are the applied normal load, sliding speed and sliding duration while the response parameter is wear depth. Multiple regression analysis is employed to obtain a quadratic model of the response variables with the main design parameters under considerations. A high value of coefficient of determination of 95.3% and 87.5% of wear depth is obtained under dry and lubricated conditions, respectively which indicate good correlation between experimental results and the multiple regression models. Analysis of variance at a confidence level of 95% shows that the models are statistically significant. Finally, the quadratic equations are used as objective functions to obtain the optimal combination of tribo testing parameters for minimum wear depth using genetic algorithm (GA.

  10. Vacuum brazing of electroless Ni-P alloy-coated SiCp/Al composites using aluminum-based filler metal foil

    Science.gov (United States)

    Wang, Peng; Xu, Dongxia; Niu, Jitai

    2016-12-01

    Using rapidly cooled (Al-10Si-20Cu-0.05Ce)-1Ti (wt%) foil as filler metal, the research obtained high-performance joints of electroless Ni-P alloy-coated aluminum matrix composites with high SiC particle content (60 vol%, SiCp/Al-MMCs). The effect of brazing process on joint properties and the formation of Al-Ni and Al-Cu-Ni intermetallic compounds were investigated, respectively. Due to the presence of Ni-P alloy coating, the wettability of liquid filler metal on the composites was improved obviously and its contact angle was only 21°. The formation of Al3Ni2 and Al3(CuNi)2 intermetallic compounds indicated that well metallurgical bonding occurred along the 6063Al matrix alloy/Ni-P alloy layer/filler metal foil interfaces by mutual diffusion and dissolution. And the joint shear strength increased with increasing the brazing temperature from 838 to 843 K or prolonging the soaking time from 15 to 35 min, while it decreased a lot because of corrosion occurring in the 6063Al matrix at high brazing temperature of 848 K. Sound joints with maximum shear strength of 112.5 MPa were obtained at 843 K for soaking time of 35 min. In this research, the beneficial effect of surface metallization by Ni-P alloy deposits on improving wettability on SiCp/Al-MMCs was demonstrated, and capable welding parameters were broadened as well.

  11. Adhesion of electrolessly deposited nickel-phosphorus on alumina ceramic : an assessment of the current status

    NARCIS (Netherlands)

    Severin, J.W.; With, de G.

    1993-01-01

    Literature data on the adhesion of electrolessly deposited Ni(P) films on alumina ceramic substrates are reviewed in this paper. The influences of conditions of successive etching, nucleation and metallization processes on adhesion are discussed as well as the effect of subsequent annealing

  12. Comparative study of electroless Co-Ni-P plating on Tencel fabric by Co0-based and Ni0-based activation for electromagnetic interference shielding

    Science.gov (United States)

    Bi, Siyi; Zhao, Hang; Hou, Lei; Lu, Yinxiang

    2017-10-01

    The primary objective of this research work was to develop high-performance conductive fabrics with desired electromagnetic interference (EMI) shielding effectiveness (SE), excellent durability and improved corrosion resistance. Such conductive fabrics were fabricated by combining an ultra-low-cost electroless plating method with an alkoxy silane self-assembly technology, which involved successive steps of modification, activation, Co-Ni-P coating deposition and 3-aminopropyltrimethoxysilane (APTMS) thin coatings assembling. Malic acid (MA) was selected to modify the pristine Tencel (TS) substrates, and the probably interaction mechanism was investigated by FT-IR measurement. Co0 and Ni0 nanoparticles (NPs) were used as the activators to initiate electroless plating, respectively, and thereby two categories of Co-Ni-P coatings with different Co/Ni atomic ratio were obtained. Both of them presented compact morphologies and preferential (1 1 1) crystal orientation, which were validated by FE-SEM and XRD measurements. Owing to the lower square resistance and higher magnetic properties, the Co-Ni-P coated fabric activated by Co0 activator showed a higher EMI SE (18.2-40.1 dB) at frequency of 30-1000 MHz. APTMS thin coatings were then assembled on the top of alloy coated fabrics to act as anti-corrosion barriers. Electrochemical polarization measurement in 3.5 wt.% NaCl solution showed that top-APTMS coated conductive fabric exhibited a higher corrosion resistance than the one in absence of APTMS assembly. Overall, the whole process of fabrication could be performed in several hours (or less) without any specialized equipment, which shows a great potential as EMI shielding fabrics in mass-production.

  13. Selective Electroless Silver Deposition on Graphene Edges

    DEFF Research Database (Denmark)

    Durhuus, D.; Larsen, M. V.; Andryieuski, Andrei

    2015-01-01

    We demonstrate a method of electroless selective silver deposition on graphene edges or between graphene islands without covering the surface of graphene. Modifications of the deposition recipe allow for decoration of graphene edges with silver nanoparticles or filling holes in damaged graphene...... on silica substrate and thus potentially restoring electric connectivity with minimal influence on the overall graphene electrical and optical properties. The presented technique could find applications in graphene based transparent conductors as well as selective edge functionalization and can be extended...

  14. Electroless plating of Cu-Ni-P alloy on PET fabrics and effect of plating parameters on the properties of conductive fabrics

    International Nuclear Information System (INIS)

    Gan Xueping; Wu Yating; Liu Lei; Shen Bin; Hu Wenbin

    2008-01-01

    Electroless plating of Cu-Ni-P alloy on polyethylene terephthalate (PET) fabrics and effect of plating parameters on the properties of alloy-coated fabrics were investigated. The deposition rate increased with the increase of temperature, pH and nickel ion concentration. The addition of K 4 Fe(CN) 6 to the solution could reduce the deposition rate and make the deposits become more compact. The color of the deposits also had a corresponding improvement, changing from dark-brown to copper-bright with the addition of K 4 Fe(CN) 6 to the plating solution. The deposits have an intensified copper (1 1 1) plane orientation with the addition of K 4 Fe(CN) 6 to the plating bath. The surface electrical resistance of alloy-coated fabrics increased with increase of nickel ions concentration in the solution. The addition of K 4 Fe(CN) 6 to the solution reduced significantly the surface resistance of alloy-coated fabrics. The conductive fabrics with high shielding effectiveness could be prepared at the optimum condition with 0.0038 M nickel ions and 2 ppm K 4 Fe(CN) 6 . As the deposit weight on the fabric was 40 g/m 2 , the shielding effectiveness of alloy-coated fabrics was more than 85 dB at frequency ranging from 100 MHz to 20 GHz

  15. Electroless deposition, post annealing and characterization of nickel ...

    Indian Academy of Sciences (India)

    Wintec

    Currently at: Department of Physics, Columbia University, New York, USA. MS received 9 ... The electroless deposition is a promising method to prepare durable metal films on both .... graphic data available in literature. The XRD patterns were ...

  16. Multi-layered electroless Ni-P coatings on powder-sintered Nd-Fe-B permanent magnet

    International Nuclear Information System (INIS)

    Chen Zhong; Ng, Alice; Yi Jianzhang; Chen Xingfu

    2006-01-01

    This paper has shown a successful protective coating scheme for powder-sintered Nd-Fe-B permanent magnet using multi-layered electroless nickel (EN) deposition. A low-phosphorus nickel layer is plated with an alkaline EN solution first, followed by a high-phosphorus nickel layer plated with an acidic solution. An additional topcoat by medium-phosphorus nickel on the high-phosphorus coating is also explored. It is shown that the high-phosphorus nickel layer coated in acidic solution provides the best corrosion protection because of its dense amorphous structure. The medium phosphorus topcoat is also dense and is able to provide reasonable corrosion resistance. The low-phosphorus layer itself does not have enough corrosion resistance; its main role is to provide an intermediate coating on the powder-sintered magnet. X-ray diffraction measurement shows that the low-phosphorus coating consists of nano-crystallines, and the high- and the medium-phosphorus coatings are dominated by amorphous structure. Microscopic observation and scratch test on these composite coatings demonstrate good adhesion between the magnet and the coatings. Remanence and coercivity of the plated magnet decrease with the applied coatings, but measured values are still very attractive for practical applications among known hard magnets

  17. Electroless deposition, post annealing and characterization of nickel ...

    Indian Academy of Sciences (India)

    Electroless deposition of nickel (EN) films on -type silicon has been investigated under different process conditions. The interface between the film and substrate has been characterized for electrical properties by probing the contact resistances. X-ray diffraction and atomic force microscopy have been performed to obtain ...

  18. Optimizing growth conditions for electroless deposition of Au films ...

    Indian Academy of Sciences (India)

    Unknown

    Optimizing growth conditions for electroless deposition of Au films on. Si(111) substrates. BHUVANA and G U KULKARNI*. Chemistry and Physics of Materials Unit and DST Unit on Nanoscience, Jawaharlal Nehru Centre for. Advanced Scientific Research, Jakkur PO, Bangalore 560 064, India. MS received 24 March 2006.

  19. Broadband infrared absorption enhancement by electroless-deposited silver nanoparticles

    DEFF Research Database (Denmark)

    Gritti, Claudia; Raza, Søren; Kadkhodazadeh, Shima

    2017-01-01

    Decorating semiconductor surfaces with plasmonic nanoparticles (NPs) is considered a viable solution for enhancing the absorptive properties of photovoltaic and photodetecting devices. We propose to deposit silver NPs on top of a semiconductor wafer by a cheap and fast electroless plating technique....... Optical characterization confirms that the random array of electroless-deposited NPs improves absorption by up to 20% in a broadband of nearinfrared frequencies from the bandgap edge to 2000 nm. Due to the small filling fraction of particles, the reflection in the visible range is practically unchanged......, which points to the possible applications of such deposition method for harvesting photons in nanophotonics and photovoltaics. The broadband absorption is a consequence of the resonant behavior of particles with different shapes and sizes, which strongly localize the incident light at the interface...

  20. Broadband infrared absorption enhancement by electroless-deposited silver nanoparticles

    Directory of Open Access Journals (Sweden)

    Gritti Claudia

    2016-07-01

    Full Text Available Decorating semiconductor surfaces with plasmonic nanoparticles (NPs is considered a viable solution for enhancing the absorptive properties of photovoltaic and photodetecting devices. We propose to deposit silver NPs on top of a semiconductor wafer by a cheap and fast electroless plating technique. Optical characterization confirms that the random array of electroless-deposited NPs improves absorption by up to 20% in a broadband of near-infrared frequencies from the bandgap edge to 2000 nm. Due to the small filling fraction of particles, the reflection in the visible range is practically unchanged, which points to the possible applications of such deposition method for harvesting photons in nanophotonics and photovoltaics. The broadband absorption is a consequence of the resonant behavior of particles with different shapes and sizes, which strongly localize the incident light at the interface of a high-index semiconductor substrate. Our hypothesis is substantiated by examining the plasmonic response of the electroless-deposited NPs using both electron energy loss spectroscopy and numerical calculations.

  1. Enhancement of porous silicon photoluminescence by electroless deposition of nickel

    Energy Technology Data Exchange (ETDEWEB)

    Amdouni, S. [Unité de nanomatériaux et photonique, Université El Manar, Faculté des Sciences de Tunis, Département de Physique, 2092 El Manar, Tunis Tunisia (Tunisia); Rahmani, M., E-mail: rahmanimehdi79@yahoo.com [Unité de nanomatériaux et photonique, Université El Manar, Faculté des Sciences de Tunis, Département de Physique, 2092 El Manar, Tunis Tunisia (Tunisia); Zaïbi, M.-A [Unité de nanomatériaux et photonique, Université El Manar, Faculté des Sciences de Tunis, Département de Physique, 2092 El Manar, Tunis Tunisia (Tunisia); Ecole Nationale Supérieure des Ingénieurs de Tunis, Université de Tunis, 5 Avenue Taha Hussein, 1008 Tunis (Tunisia); Oueslati, M. [Unité de nanomatériaux et photonique, Université El Manar, Faculté des Sciences de Tunis, Département de Physique, 2092 El Manar, Tunis Tunisia (Tunisia)

    2015-01-15

    Nickel-porous silicon nanocomposites (PS/Ni) are elaborated by an electroless deposition method using NiCl{sub 2} aqueous solution. The presence of nickel ions in the porous layer is confirmed by Fourier Transformed InfraRed spectroscopy (FTIR) and Raman spectroscopy. The photoluminescence (PL) spectra of PS/Ni, prepared at different electroless durations (t{sub edp}), are analyzed. A remarkable enhancement in the integrated PL intensity of PS containing nickel was observed. The lower t{sub edp} favor the deposition of nickel in PS, hence the silicon dangling bonds at the porous surface are quenched and this was increased the PL intensity. However, for the longer t{sub edp}, the PL intensity has been considerably decreased due to the destruction of some Si nanocrystallites. The PL spectra of PS/Ni, for t{sub edp} less than 8 min, show a multiband profile indicating the creation of new luminescent centers by Ni elements which induces a strong modification in the emission mechanisms. - Highlights: • Deposition of Ni ions into porous silicon (PS) layer using the electroless method. • Formation of Ni–O bonds on the porous layer. • The photoluminescence (PL) intensity of PS is enhanced after Ni deposition. • The increase of the PL is due to the contribution of radiative centers related to Ni.

  2. Electroless deposition and electrical characterization of N- Cu 2 O ...

    African Journals Online (AJOL)

    This work describes the preparation of n-Cu2O layer by the electroless methods of boiling and immersion of copper plates in 0.001M CuSO4Electron Microscopy (SEM) have been used to characterize the oxide films deposited. XRD studies show, for the first time, that cuprous oxide (Cu2O) and cupric oxide (CuO) were ...

  3. Electroless deposition process for zirconium and zirconium alloys

    Science.gov (United States)

    Donaghy, Robert E.; Sherman, Anna H.

    1981-01-01

    A method is disclosed for preventing stress corrosion cracking or metal embrittlement of a zirconium or zirconium alloy container that is to be coated on the inside surface with a layer of a metal such as copper, a copper alloy, nickel, or iron and used for holding nuclear fuel material as a nuclear fuel element. The zirconium material is etched in an etchant solution, desmutted mechanically or ultrasonically, oxidized to form an oxide coating on the zirconium, cleaned in an aqueous alkaline cleaning solution, activated for electroless deposition of a metal layer and contacted with an electroless metal plating solution. This method provides a boundary layer of zirconium oxide between the zirconium container and the metal layer.

  4. Broadband infrared absorption enhancement by electroless-deposited silver nanoparticles

    DEFF Research Database (Denmark)

    Gritti, Claudia; Raza, Søren; Kadkhodazadeh, Shima

    2017-01-01

    Decorating semiconductor surfaces with plasmonic nanoparticles (NPs) is considered a viable solution for enhancing the absorptive properties of photovoltaic and photodetecting devices. We propose to deposit silver NPs on top of a semiconductor wafer by a cheap and fast electroless plating technique......, which points to the possible applications of such deposition method for harvesting photons in nanophotonics and photovoltaics. The broadband absorption is a consequence of the resonant behavior of particles with different shapes and sizes, which strongly localize the incident light at the interface...

  5. Determination of electroless deposition by chemical nickeling

    Directory of Open Access Journals (Sweden)

    M. Badida

    2013-07-01

    Full Text Available Increasing of technical level and reliability of machine products in compliance with the economical and ecological terms belongs to the main trends of the industrial development. During the utilisation of these products there arise their each other contacts and the interaction with the environment. That is the reason for their surface degradation by wear effect, corrosion and other influences. The chemical nickel-plating allows autocatalytic deposition of nickel from water solutions in the form of coherent, technically very profitable coating without usage of external source of electric current. The research was aimed at evaluating the surface changes after chemical nickel-plating at various changes of technological parameters.

  6. Electrochromism of the electroless deposited cuprous oxide films

    International Nuclear Information System (INIS)

    Neskovska, R.; Ristova, M.; Velevska, J.; Ristov, M.

    2007-01-01

    Thin cuprous oxide films were prepared by a low cost, chemical deposition (electroless) method onto glass substrates pre-coated with fluorine doped tin oxide. The X-ray diffraction pattern confirmed the Cu 2 O composition of the films. Visible transmittance spectra of the cuprous oxide films were studied for the as-prepared, colored and bleached films. The cyclic voltammetry study showed that those films exhibited cathode coloring electrochromism, i.e. the films showed change of color from yellowish to black upon application of an electric field. The transmittance across the films for laser light of 670 nm was found to change due to the voltage change for about 50%. The coloration memory of those films was also studied during 6 h, ex-situ. The coloration efficiency at 670 nm was calculated to be 37 cm 2 /C

  7. Electroless deposition of metal nanoparticle clusters: Effect of pattern distance

    KAUST Repository

    Gentile, Francesco

    2014-04-03

    Electroless plating is a deposition technique in which metal ions are reduced as atoms on specific patterned sites of a silicon surface to form metal nanoparticles (NPs) aggregates with the desired characteristics. Those NPs, in turn, can be used as constituents of surface enhanced Raman spectroscopy substrates, which are devices where the electromagnetic field and effects thereof are giantly amplified. Here, the electroless formation of nanostructures was studied as a function of the geometry of the substrate. High resolution, electron beam lithography techniques were used to obtain nonperiodic arrays of circular patterns, in which the spacing of patterns was varied over a significant range. In depositing silver atoms in those circuits, the authors found that the characteristics of the aggregates vary with the pattern distance. When the patterns are in close proximity, the interference of different groups of adjacent aggregates cannot be disregarded and the overall growth is reduced. Differently from this, when the patterns are sufficiently distant, the formation of metal clusters of NPs is independent on the spacing of the patterns. For the particular subset of parameters used here, this critical correlation distance is about three times the pattern diameter. These findings were explained within the framework of a diffusion limited aggregation model, which is a simulation method that can decipher the formation of nanoaggregates at an atomic level. In the discussion, the authors showed how this concept can be used to fabricate ordered arrays of silver nanospheres, where the size of those spheres may be regulated on varying the pattern distance, for applications in biosensing and single molecule detection.

  8. Electroless deposition of metal nanoparticle clusters: Effect of pattern distance

    KAUST Repository

    Gentile, Francesco; Laura Coluccio, Maria; Candeloro, Patrizio; Barberio, Marianna; Perozziello, Gerardo; Francardi, Marco; Di Fabrizio, Enzo M.

    2014-01-01

    Electroless plating is a deposition technique in which metal ions are reduced as atoms on specific patterned sites of a silicon surface to form metal nanoparticles (NPs) aggregates with the desired characteristics. Those NPs, in turn, can be used as constituents of surface enhanced Raman spectroscopy substrates, which are devices where the electromagnetic field and effects thereof are giantly amplified. Here, the electroless formation of nanostructures was studied as a function of the geometry of the substrate. High resolution, electron beam lithography techniques were used to obtain nonperiodic arrays of circular patterns, in which the spacing of patterns was varied over a significant range. In depositing silver atoms in those circuits, the authors found that the characteristics of the aggregates vary with the pattern distance. When the patterns are in close proximity, the interference of different groups of adjacent aggregates cannot be disregarded and the overall growth is reduced. Differently from this, when the patterns are sufficiently distant, the formation of metal clusters of NPs is independent on the spacing of the patterns. For the particular subset of parameters used here, this critical correlation distance is about three times the pattern diameter. These findings were explained within the framework of a diffusion limited aggregation model, which is a simulation method that can decipher the formation of nanoaggregates at an atomic level. In the discussion, the authors showed how this concept can be used to fabricate ordered arrays of silver nanospheres, where the size of those spheres may be regulated on varying the pattern distance, for applications in biosensing and single molecule detection.

  9. Nanocrystalline soft ferromagnetic Ni-Co-P thin film on Al alloy by low temperature electroless deposition

    International Nuclear Information System (INIS)

    Aal, A. Abdel; Shaaban, A.; Hamid, Z. Abdel

    2008-01-01

    Soft ferromagnetic ternary Ni-Co-P films were deposited onto Al 6061 alloy from low temperature Ni-Co-P electroless plating bath. The effect of deposition parameters, such as time and pH, on the plating rate of the deposit were examined. The results showed that the plating rate is a function of pH bath and the highest coating thickness can be obtained at pH value from 8 to10. The surface morphology, phase structure and the magnetic properties of the prepared films have been investigated using scanning electron microscopy (SEM), X-ray diffraction analysis (XRD) and vibrating magnetometer device (VMD), respectively. The deposit obtained at optimum conditions showed compact and smooth with nodular grains structure and exhibited high magnetic moments and low coercivety. Potentiodynamic polarization corrosion tests were used to study the general corrosion behavior of Al alloys, Ni-P and Ni-Co-P coatings in 3.5% NaCl solution. It was found that Ni-Co-P coated alloy demonstrated higher corrosion resistance than Ni-P coating containing same percent of P due to the Co addition. The Ni-Co-P coating with a combination of high corrosion resistance, high hardness and excellent magnetic properties would be expected to enlarge the applications of the aluminum alloys

  10. The Effects of Electroless Nickel Plating Bath Conditions on Stability of Solution and Properties of Deposit

    International Nuclear Information System (INIS)

    Huh, Jin; Lee, Jae Ho

    2000-01-01

    Electroless depositions of nickel were conducted in different bath conditions to find optimum conditions of electroless nickel plating at low operating temperature and pH. The effect of complexing reagent on stability of plating solution was investigated. Sodium citrate complexed plating solution is more stable than sodium pyrophosphate complexed solution. The effects of nickel salt concentration, reducing agent, complexing agent and inhibitor on deposition rate was investigated. The effects of pH on deposition rate and content of phosphorous in deposited nickel were also analyzed. Electroless deposited nickel become crystallized with increasing pH due to lower phosphorous content. In optimum operating bath condition, deposition rate was 7 μm/hr at 60 .deg. C and pH 10.0 without stabilizer. The rate was decreased with stabilizer concentration

  11. Development and electrochemical characterization of Ni‐P coated tungsten incorporated electroless nickel coatings

    Energy Technology Data Exchange (ETDEWEB)

    Shibli, S.M.A., E-mail: smashibli@yahoo.com; Chinchu, K.S.

    2016-08-01

    Ni‐P-W alloy and composite coatings were prepared by incorporation of sodium tungstate/tungsten and Ni‐P coated tungsten into electroless nickel bath respectively. Good inter-particle interactions among the depositing elements i.e. Ni and P with the incorporating tungsten particles were achieved by means of pre-coated tungsten particle by electroless nickel covering prior to its addition into the electroless bath. The pre-coated tungsten particles got incorporated uniformly into the Ni-P matrix of the coating. The particles and the coatings were characterized at different stages by different techniques including X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). The electroless Ni-P coating incorporated with pre-coated tungsten exhibited considerably high hardness, thickness and deposition rate. The performance and corrosion resistance characteristics of the composite coating incorporated with the nickel coated tungsten were found to be superior over other conventional Ni-P-W ternary alloy coatings currently reported. - Highlights: • An amorphous Ni-P coating was effectively formed on tungsten particles. • Electroless ternary Ni-P-W composite coatings were successfully prepared. • Enhancement in the inter-particle interaction in the Ni-P composite matrix was achieved. • Efficient and uniform incorporation of the composite in the internal layer was evident. • The tungsten incorporated coating possessed effective barrier protection.

  12. Controlled Ag electroless deposition in bulk structures with complex three-dimensional profiles

    DEFF Research Database (Denmark)

    Malureanu, Radu; Zalkovskij, Maksim; Andryieuski, Andrei

    2010-01-01

    are of high uniformity, having an average roughness of about 4 nm. The characterization of the metal deposition is done using both the scanning electron microscopy technique as well as by atomic force microscope measurements. The electroless technique can be easily implemented, providing the effective...... and reliable metal deposition for fabrication of 3D samples in the broad range of plasmonics and photonics applications....

  13. Young Investigator Proposal, Research Area 7.4 Reactive Chemical Systems: Multifunctional, Bimetallic Nanomaterials Prepared by Atomic Layer Electroless Deposition

    Science.gov (United States)

    2017-09-30

    Report: Young Investigator Proposal, Research Area 7.4 Reactive Chemical Systems: Multifunctional, Bimetallic Nanomaterials Prepared by Atomic Layer ...Chemical Systems: Multifunctional, Bimetallic Nanomaterials Prepared by Atomic Layer Electroless Deposition Report Term: 0-Other Email: pcappillino... Layer Electroless Deposition (ALED, Figure 1) is the ability to tune growth mechanism, hence growth morphology, by altering conditions. In this

  14. Improvement of copper plating adhesion on silane modified PET film by ultrasonic-assisted electroless deposition

    International Nuclear Information System (INIS)

    Lu Yinxiang

    2010-01-01

    Copper thin film on silane modified poly(ethylene terephthalate) (PET) substrate was fabricated by ultrasonic-assisted electroless deposition. The composition and topography of copper plating PET films were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and atomic force microscopy (AFM), respectively. Peel adhesion strength, as high as 16.7 N/cm, was achieved for the planting copper layer to the modified PET substrate with ultrasonic-assisted deposition; however, a relative low value as 11.9 N/cm was obtained for the sample without ultrasonic vibration by the same measurement. The electrical conductivity of Cu film was changed from 7.9 x 10 4 to 2.1 x 10 5 S/cm by using ultrasonic technique. Ultrasonic operation has the significant merits of fast deposition and formation of good membranes for electroless deposition of Cu on PET film.

  15. Synthesis of dense nano cobalt-hydroxyapatite by modified electroless deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Mohd Zaheruddin, K., E-mail: zaheruddin@unimap.edu.my; Rahmat, A., E-mail: azmirahmat@unimap.edu.my; Shamsul, J. B., E-mail: sbaharin@unimap.edu.my; Mohd Nazree, B. D., E-mail: nazree@unimap.edu.my; Aimi Noorliyana, H., E-mail: aimiliyana@unimap.edu.my [School of Materials Engineering, Universiti Malaysia Perlis, Kompleks Pusat Pengajian Jejawi Universiti Malaysia Perlis, Taman Muhibbah, Jejawi 02600 Arau Perlis (Malaysia)

    2016-07-19

    Cobalt-hydroxyapatite (Co-HA) composites was successfully prepared by simple electroless deposition process of Co on the surface of hydroxyapatite (HA) particles. Co deposition was carried out in an alkaline bath with sodium hypophosphite as a reducing agent. The electroless process was carried out without sensitization and activation steps. The deposition of Co onto HA was characterized by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). The Co-HA composite powder was compacted and sintered at 1250°C. The Co particles were homogeneously dispersed in the HA matrix after sintering and the mechanical properties of composites was enhanced to 100 % with 3 % wt Co and gradually decreased at higher Co content.

  16. Initial deposition mechanism of electroless nickel plating on AZ91D magnesium alloys

    International Nuclear Information System (INIS)

    Song, Y.; Shan, D.; Han, E.

    2006-01-01

    The pretreatment processes and initial deposition mechanism of electroless nickel plating on AZ91D magnesium alloy were investigated by scanning electron microscopy (SEM) and energy dispersive X-ray (EDX). The results showed that alkaline cleaning could remove the greases and oils from the substrate surface. Acid etching could wipe off the metal chippings and oxides. The hydrofluoric acid activating process which could improve the adhesion of coating to substrate played a key role in the subsequent process of electroless nickel plating. The nickel coating was deposited preferentially on the primary α phase and then spread to the eutectic α phase and β phase. The nickel initially nucleated on the primary α phase by a replacement reaction, then grew depending on the autocatalysis function of nickel. The coating on the β phase displayed better adhesion than that on the α phase due to the nails fixing effect. (author)

  17. Room temperature synthesis of indium tin oxide nanotubes with high precision wall thickness by electroless deposition

    Directory of Open Access Journals (Sweden)

    Mario Boehme

    2011-02-01

    Full Text Available Conductive nanotubes consisting of indium tin oxide (ITO were fabricated by electroless deposition using ion track etched polycarbonate templates. To produce nanotubes (NTs with thin walls and small surface roughness, the tubes were generated by a multi-step procedure under aqueous conditions. The approach reported below yields open end nanotubes with well defined outer diameter and wall thickness. In the past, zinc oxide films were mostly preferred and were synthesized using electroless deposition based on aqueous solutions. All these methods previously developed, are not adaptable in the case of ITO nanotubes, even with modifications. In the present work, therefore, we investigated the necessary conditions for the growth of ITO-NTs to achieve a wall thickness of around 10 nm. In addition, the effects of pH and reductive concentrations for the formation of ITO-NTs are also discussed.

  18. Surface modification of an epoxy resin with polyamines and polydopamine: Adhesion toward electroless deposited copper

    Energy Technology Data Exchange (ETDEWEB)

    Schaubroeck, David, E-mail: David.Schaubroeck@elis.ugent.be [Center for Microsystems Technology (CMST), IMEC and Ghent University, Technologiepark 914A, B-9052 Ghent (Belgium); Mader, Lothar [Center for Microsystems Technology (CMST), IMEC and Ghent University, Technologiepark 914A, B-9052 Ghent (Belgium); Dubruel, Peter [Polymer Chemistry and Biomaterials Research Group, Ghent University, Krijgslaan 281 S4 bis, B-9000 Ghent (Belgium); Vanfleteren, Jan [Center for Microsystems Technology (CMST), IMEC and Ghent University, Technologiepark 914A, B-9052 Ghent (Belgium)

    2015-10-30

    Highlights: • Surface modifications of epoxy resins with polydopamine and grafted polyamines can significantly increase the adhesion toward electroless deposited copper. • A clear characterization of the copper/epoxy interphase is provided by SEM analyses of cross sections. • Tailored conditions such as etching time (roughness) and electroless deposition temperature are needed to increase the adhesion of the modified surfaces. - Abstract: In this paper the influence of the epoxy roughness, surface modifications and ELD (electroless copper deposition) temperatures on the adhesive strength of the copper is studied. Good adhesion at low roughness values is targeted due to their applicability in high density electronic circuits. Roughened epoxy surfaces are modified with adsorbed polyamines, polydopamine and polyamines grafted to polydopamine. Next the, adhesive strength of ELD copper is determined with peel strength measurements and the interphases are examined with SEM (scanning electron microscopy). Polydopamine and polyamines grafted to polydopamine can lead to increased adhesive strength at lower roughness values compared to the non-modified samples at specific plating temperatures.

  19. Enhanced Dissolution of Platinum Group Metals Using Electroless Iron Deposition Pretreatment

    Science.gov (United States)

    Taninouchi, Yu-ki; Okabe, Toru H.

    2017-12-01

    In order to develop a new method for efficiently recovering platinum group metals (PGMs) from catalyst scraps, the authors investigated an efficient dissolution process where the material was pretreated by electroless Fe deposition. When Rh-loaded alumina powder was kept in aqua regia at 313 K (40 °C) for 30 to 60 minutes, the Rh hardly dissolved. Meanwhile, after electroless Fe plating using a bath containing sodium borohydride and potassium sodium tartrate as the reducing and complexing agents, respectively, approximately 60 pct of Rh was extracted by aqua regia at 313 K (40 °C) after 30 minutes. Furthermore, when heat treatment was performed at 1200 K (927 °C) for 60 minutes in vacuum after electroless plating, the extraction of Rh approached 100 pct for the same leaching conditions. The authors also confirmed that the Fe deposition pretreatment enhanced the dissolution of Pt and Pd. These results indicate that an effective and environmentally friendly process for the separation and extraction of PGMs from catalyst scraps can be developed utilizing this Fe deposition pretreatment.

  20. A novel Ag catalyzation process using swelling impregnation method for electroless Ni deposition on Kevlar® fiber

    Science.gov (United States)

    Pang, Hongwei; Bai, Ruicheng; Shao, Qinsi; Gao, Yufang; Li, Aijun; Tang, Zhiyong

    2015-12-01

    A novel Ag catalyzation process using swelling impregnation pretreatment method was developed for electroless nickel (EN) deposition on Kevlar fiber. Firstly, the fiber was immersed into an aqueous dimethylsulfoxide (DMSO) solution of silver nitrate to impart silver nitrate into the inner part of the fiber near the surface. Subsequently silver nitrate was reduced to metal silver nanoparticles on the fiber surface by treatment with aqueous solution of sodium borohydride. After electroless plating, a dense and homogeneous nickel coating was obtained on the fiber surface. The silver nanoparticles formed at the fiber surface functioned as a catalyst for electroless deposition as well as an anchor for the plated layer. The study also revealed that the incorporation of surfactant sodium dodecyl sulfate (SDS) in electroless nickel plating bath can enhance the adhesion strength of EN layer with the fiber surface and minimize the surface roughness of the EN coating. The Ni plated Kevlar fiber possessed excellent corrosion resistance and high tensile strength.

  1. Hall Measurements on Carbon Nanotube Paper Modified With Electroless Deposited Platinum

    Directory of Open Access Journals (Sweden)

    Iwuoha Emmanuel

    2009-01-01

    Full Text Available Abstract Carbon nanotube paper, sometimes referred to as bucky paper, is a random arrangement of carbon nanotubes meshed into a single robust structure, which can be manipulated with relative ease. Multi-walled carbon nanotubes were used to make the nanotube paper, and were subsequently modified with platinum using an electroless deposition method based on substrate enhanced electroless deposition. This involves the use of a sacrificial metal substrate that undergoes electro-dissolution while the platinum metal deposits out of solution onto the nanotube paper via a galvanic displacement reaction. The samples were characterized using SEM/EDS, and Hall-effect measurements. The SEM/EDS analysis clearly revealed deposits of platinum (Pt distributed over the nanotube paper surface, and the qualitative elemental analysis revealed co-deposition of other elements from the metal substrates used. When stainless steel was used as sacrificial metal a large degree of Pt contamination with various other metals was observed. Whereas when pure sacrificial metals were used bimetallic Pt clusters resulted. The co-deposition of a bimetallic system upon carbon nanotubes was a function of the metal type and the time of exposure. Hall-effect measurements revealed some interesting fluctuations in sheet carrier density and the dominant carrier switched from N- to P-type when Pt was deposited onto the nanotube paper. Perspectives on the use of the nanotube paper as a replacement to traditional carbon cloth in water electrolysis systems are also discussed.

  2. Effect of strontium tantalate surface texture on nickel nanoparticle dispersion by electroless deposition

    Energy Technology Data Exchange (ETDEWEB)

    Compean-González, C.L. [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Civil, Departamento de Ecomateriales y Energía, Av. Universidad s/n, Ciudad Universitaria, San Nicolás de los Garza, Nuevo León C.P. 66451 (Mexico); Arredondo-Torres, V.M. [Facultad de Químico Farmacobiología, Universidad Michoacana de San Nicolás de Hidalgo, Tzintzuntzan #173, Col. Matamoros, Morelia, Michoacán C.P. 58240 (Mexico); Zarazúa-Morin, M.E. [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Civil, Departamento de Ecomateriales y Energía, Av. Universidad s/n, Ciudad Universitaria, San Nicolás de los Garza, Nuevo León C.P. 66451 (Mexico); Figueroa-Torres, M.Z., E-mail: m.zyzlila@gmail.com [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Civil, Departamento de Ecomateriales y Energía, Av. Universidad s/n, Ciudad Universitaria, San Nicolás de los Garza, Nuevo León C.P. 66451 (Mexico)

    2015-09-15

    Highlights: • Efficient short-time procedure for nickel nanoparticles dispersion by electroless. • Nanoparticles are spherical in shape with an average size of 15 nm. • Influence of surface texture on deposition temperature and time was observed. • Nickel deposition can be done below 50 °C. - Abstract: The present work studies the effect of smooth and porous texture of Sr{sub 2}Ta{sub 2}O{sub 7} on its surface modification with nickel nanoparticles through electroless deposition technique. The influence of temperature to control Ni nanoparticles loading amount and dispersion were analyzed. Nitrogen adsorption isotherms were used to examine surface texture characteristics. The morphology was observed by scanning electron microscopy (MEB) equipped with an energy dispersive spectrometry system (EDS), which was used to determine the amount of deposited Ni. The material with smooth texture (SMT) consists of big agglomerates of semispherical shape particles of 400 nm. Whilst the porous texture (PRT) exhibit a pore-wall formed of needles shape particles of around 200 nm in size. Results indicated that texture characteristics strongly influence the deposition reaction rate; for PRT oxide, Ni deposition can be done from 20 °C while for SMT oxide deposition begins at 40 °C. Analysis of Sr{sub 2}Ta{sub 2}O{sub 7} surface indicated that in both textures, Ni nanoparticles with spherical shape in the range of 10–20 nm were obtained.

  3. Characterisation of phase composition, microstructure and microhardness of electroless nickel composite coating co-deposited with SiC on casting aluminium LM24 alloy substrate

    OpenAIRE

    Franco, M.; Sha, Wei; Malinov, Savko

    2013-01-01

    Electroless Ni-P (EN) and composite Ni-P-SiC (ENC) coatings were developed on cast aluminium alloy, LM24. The coating phase composition, microstructure and microhardness were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) and microhardness tester, respectively, on as-plated and heat-treated specimens. The original microstructure of the Ni-P matrix is not affected by the inclusion of the hard particles SiC. No formation of Ni-Si phase was observed upto 500°C of ...

  4. Metal deposition by electroless plating on polydopamine functionalized micro- and nanoparticles.

    Science.gov (United States)

    Mondin, Giovanni; Wisser, Florian M; Leifert, Annika; Mohamed-Noriega, Nasser; Grothe, Julia; Dörfler, Susanne; Kaskel, Stefan

    2013-12-01

    A novel approach for the fabrication of metal coated micro- and nanoparticles by functionalization with a thin polydopamine layer followed by electroless plating is reported. The particles are initially coated with polydopamine via self-polymerization. The resulting polydopamine coated particles have a surface rich in catechols and amino groups, resulting in a high affinity toward metal ions. Thus, they provide an effective platform for selective electroless metal deposition without further activation and sensitization steps. The combination of a polydopamine-based functionalization with electroless plating ensures a simple, scalable, and cost-effective metal coating strategy. Silver-plated tungsten carbide microparticles, copper-plated tungsten carbide microparticles, and copper-plated alumina nanoparticles were successfully fabricated, showing also the high versatility of the method, since the polymerization of dopamine leads to the formation of an adherent polydopamine layer on the surface of particles of any material and size. The metal coated particles produced with this process are particularly well suited for the production of metal matrix composites, since the metal coating increases the wettability of the particles by the metal, promoting their integration within the matrix. Such composite materials are used in a variety of applications including electrical contacts, components for the automotive industries, magnets, and electromagnetic interference shielding. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Studying the Effect of the Concentration of PTFE Nanoparticles on the Tribological Behavior of Ni-P-PTFE Composite Coatings

    Directory of Open Access Journals (Sweden)

    Hamid Rahmati

    2015-10-01

    Full Text Available In the past 30 years, electroless nickel (EN plating has grown to such proportions that these coatings and their applications are now found underground, in outer space, and in a myriad of areas in between. Moreover, in order to further improve the mechanical and tribological properties of the nickel-phosphorous (Ni-P coatings, Ni-P/PTFE composite coatings can be obtained, which provides even greater friction behavior and lubricity than the one naturally occurring in the nickel-phosphorous alloy deposit. In this paper, The Ni-P-PTFE coating was deposited on mild carbon steel surface via electroless deposition process. The friction behavior and wear mechanisms of Ni-P-PTFE nanocomposite coating were studied at different concentrations of PTFE. Frictional behavior was examined using a pin on disk wear test method. Surface morphology and worn surface was evaluated using field emission scanning electron microscopy (FESEM and energy dispersive spectroscopy (EDS analysis. The results showed that the incorporation of PTFE nanoparticles can reduce the wear rate of Ni-P coating from 33.07×10-6 mm3/Nm to 12.46×10-6 mm3/Nm for the Ni-P PTFE containing 10 g/l PTFE and decrease the friction coefficient from 0.64 to 0.2. Thus the tribological behavior of Ni-P coating is much improved in the presence of PTFE nanoparticles and 10 g/l is the optimized concentration of PTFE in the electroless bath.

  6. Surface modification of an epoxy resin with polyamines and polydopamine: The effect on the initial electroless copper deposition

    Energy Technology Data Exchange (ETDEWEB)

    Schaubroeck, David, E-mail: David.Schaubroeck@elis.ugent.be [Center for Microsystems Technology (CMST), imec and Ghent University, Technologiepark 914A, B-9052 Ghent (Belgium); Mader, Lothar [Center for Microsystems Technology (CMST), imec and Ghent University, Technologiepark 914A, B-9052 Ghent (Belgium); De Geyter, Nathalie; Morent, Rino [Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering, Ghent University, Sint-Pietersnieuwstraat 41, B-9000 Ghent (Belgium); Dubruel, Peter [Polymer Chemistry and Biomaterials Research Group, Ghent University, Krijgslaan 281 S4 bis, B-9000 Ghent (Belgium); Vanfleteren, Jan [Center for Microsystems Technology (CMST), imec and Ghent University, Technologiepark 914A, B-9052 Ghent (Belgium)

    2014-06-01

    This paper describes the influence of polydopamine and polyamine surface modifications of an etched epoxy cresol novolak (ECN) resin on the initial electroless copper deposition. Three different strategies to introduce polyamines on a surface in aqueous environment are applied: via polyethyleneimine adsorption (PEI), via polydopamine and via polyamines grafted to polydopamine. Next, the influence of these surface modifications on the catalytic palladium activation is investigated through X-ray photoelectron spectroscopy (XPS) analysis. Finally, the initial electroless copper deposition on modified epoxy surfaces is evaluated using SEM and Energy Dispersive Spectroscopy (EDS). Grafted polyamines on polydopamine surface modifications result in a large increase of the initial deposited copper.

  7. Enhancement in the Tribological and Mechanical Properties of Electroless Nickel-Nanodiamond Coatings Plated on Iron

    Directory of Open Access Journals (Sweden)

    Z. Karaguiozova

    2017-12-01

    Full Text Available A technology to improve the tribological and mechanical surface properties of iron alloys is developed based on the electroless nickel plating. The technology combines sol-gel and electroless deposition technique. Novel nanocomposite coatings are obtained consisting of Nickel-phosphorus-nanodiamond (Ni-P-ND. The ND sol is added directly to the electroless Ni-P solution. A suitable surfactant is added to achieve well-dispersed ND particles in the electroless solution to facilitate their embodiment and equal distribution in the coating. Substrates of steel 17CrNiMo6 and spheroidal graphite cast irons are used for the manufacture of the iron alloys specimens. The surface morphology and microstructure observation performed by scanning electron microscopy (SEM and optical metallography confirms the influence of ND particles on the coating structure. The structural phase investigation by X Ray analysis indicates a transformation of the amorphous phase to a crystalline one such as Ni, Ni3P after coatings' heat treatment. The microhardness investigation by Knoop Method and wear resistance measurement in accordance with the Polish Standard PN-83/H-04302 of Ni-P and Ni-P-ND composite coatings are evaluated and compared with each other. The increase in the value of hardness and wear resistance of Ni-P composite coatings in the presence of ND particles and after heat treatment is obtained.

  8. Effects of heat treatment on optical absorption properties of Ni-P/AAO nano-array composite structure

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yi-Fan; Wang, Feng-Hua; Guo, Dong-Lai; Huang, Sheng-You; Zou, Xian-Wu [Wuhan University, Department of Physics, Wuhan (China); Sang, Jian-Ping [Wuhan University, Department of Physics, Wuhan (China); Jianghan University, Department of Physics, Wuhan (China)

    2009-11-15

    Ni-P/AAO nano-array composite structure assemblies with Ni and P grown in the pores of anodic aluminum oxide (AAO) membranes were prepared by electroless deposition. The results of SEM, TEM and SAED show that as-deposited Ni-P nanowires have an amorphous structure and a few nanocrystallites form after annealing. The optical absorption spectra reveal that, as the annealing temperature increases, the absorption band edge of the Ni-P/AAO composite structure is obviously blue shifted, which is attributed to a decrease of the internal pressure after heat treatment. Meanwhile, the annealed Ni-P/AAO nano-array composite structure exhibits the absorption behavior of a direct band gap semiconductor. Details of this behavior are discussed together with the implications for potential device applications. (orig.)

  9. Fabrication and performance of the Pt-Ru/Ni-P/FTO counter electrode for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Ma, Huanmei; Tian, Jianhua; Bai, Shuming; Liu, Xiaodong; Shan, Zhongqiang

    2014-01-01

    Highlights: • Pt-Ru alloy acts as the catalyst of counter electrodes in dye-sensitized solar cell. • Ni-P/FTO (fluorine-doped SnO 2 ) substrate is prepared by electroless plating method. • Pt-Ru/Ni-P/FTO counter electrode is fabricated by electrodeposition method. • The Ni-P sublayer improves the conductivity and light reflectance of FTO substrate. • The cell with Pt-Ru/Ni-P/FTO counter electrode exhibits an improved efficiency. - Abstract: In this paper, Pt-Ru/Ni-P/FTO has been designed and fabricated as the counter electrode for dye-sensitized solar cells. The Pt-Ru catalytic layer and Ni-P alloy sublayer are prepared by traditional electrodeposition method and a simple electroless plating method, respectively, and the preparation conditions have been optimized. The scanning electron microscopy (SEM) images show that the Pt-Ru particles are evenly distributed on FTO and Ni-P/FTO substrate. By X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), it is confirmed that the Ni-P amorphous alloy has been formed, and no other compounds involved Ni and P have been formed. The electrochemical measurement results reveal that the Pt-Ru electrode has higher catalytic activity and stability towards tri-iodine reduction reaction than Pt electrode in the organic medium. The Ni-P sublayer deposited on FTO glasses increases the conductivity and light-reflection ability of the counter electrode, and this contributes to lowering the inner resistance of the cell and improving the light utilization efficiency. Through the photovoltaic test, it is confirmed that the energy conversion efficiency of a single DSSC with the optimized Pt-Ru/Ni-P/FTO counter electrode is increased by 29% compared with that of the cell based on the Pt/FTO counter electrode under the same conditions

  10. The Morphology of Silver Layers on SU8 polymers prepared by Electroless Deposition

    Science.gov (United States)

    Dutta, Aniruddha; Yuan, Biao; Heinrich, Helge; Grabill, Chris; Williams, Henry; Kuebler, Stephen; Bhattacharya, Aniket

    2010-03-01

    Silver was deposited onto the functionalized surface of polymeric SU-8 where gold nanoparticles (Au-NPs) act as nucleation sites using electroless metallization chemistry. Here we report on the evolution of the nanoscale morphology of deposited Ag studied by Transmission Electron Microscopy (TEM). In TEM of sample cross sections correlations between the original gold and the silver nanoparticles were obtained while plan-view TEM results showed the distribution of nanoparticles on the surface. Scanning TEM with a high-angle annular dark field detector was used to obtain atomic number contrast. The morphology of the deposited Ag was controlled through the presence and absence of gum Arabic. The thickness and height fluctuations of the Ag layer were determined as a function of time and a statistical analysis of the growth process was conducted for the initial deposition periods.

  11. Self-organized synthesis of silver dendritic nanostructures via an electroless metal deposition method

    Science.gov (United States)

    Qiu, T.; Wu, X. L.; Mei, Y. F.; Chu, P. K.; Siu, G. G.

    2005-09-01

    Unique silver dendritic nanostructures, with stems, branches, and leaves, were synthesized with self-organization via a simple electroless metal deposition method in a conventional autoclave containing aqueous HF and AgNO3 solution. Their growth mechanisms are discussed in detail on the basis of a self-assembled localized microscopic electrochemical cell model. A process of diffusion-limited aggregation is suggested for the formation of the silver dendritic nanostructures. This nanostructured material is of great potential to be building blocks for assembling mini-functional devices of the next generation.

  12. NiCo-lead zirconium titanate-NiCo trilayered magnetoelectric composites prepared by electroless deposition

    International Nuclear Information System (INIS)

    Zhou, M. H.; Wang, Y. G.; Bi, K.; Fan, H. P.; Zhao, Z. S.

    2015-01-01

    The NiCo layers with various Ni/Co atomic ratio have been successfully electroless deposited on PZT layers by varying the bath composition. As the cobalt atomic ratio in the deposited layer increases from 17.2 to 54.8 wt%, the magnetostrictive coefficient decreases. The magnetoelectric effect depends strongly on the magnetostrictive properties of magnetostrictive phase. The magnetoelectric coefficient of NiCo/PZT/NiCo trilayers increases with Ni/Co atomic ratio of the deposited NiCo layers increasing from 45:55 to 83:17. A maximum ME voltage coefficient of α E,31 = 2.8 V ⋅ cm −1 ⋅ Oe −1 is obtained at a frequency of about 88 kHz, which makes these trilayers suitable for applications in actuators, transducers and sensors

  13. NiCo-lead zirconium titanate-NiCo trilayered magnetoelectric composites prepared by electroless deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, M. H.; Wang, Y. G.; Bi, K., E-mail: bike@bupt.edu.cn [State Key Laboratory of Information Photonics and Optical Communications and School of Science, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Fan, H. P. [School of Mechanical and Electrical Engineering, Qingdao Technological University Qindao College, Qingdao 266106 (China); Zhao, Z. S. [Shandong Engineering Consulting Institute, Jinan 250013 (China)

    2015-04-15

    The NiCo layers with various Ni/Co atomic ratio have been successfully electroless deposited on PZT layers by varying the bath composition. As the cobalt atomic ratio in the deposited layer increases from 17.2 to 54.8 wt%, the magnetostrictive coefficient decreases. The magnetoelectric effect depends strongly on the magnetostrictive properties of magnetostrictive phase. The magnetoelectric coefficient of NiCo/PZT/NiCo trilayers increases with Ni/Co atomic ratio of the deposited NiCo layers increasing from 45:55 to 83:17. A maximum ME voltage coefficient of α{sub E,31} = 2.8 V ⋅ cm{sup −1} ⋅ Oe{sup −1} is obtained at a frequency of about 88 kHz, which makes these trilayers suitable for applications in actuators, transducers and sensors.

  14. Microwave absorption property of the diatomite coated by Fe-CoNiP films

    International Nuclear Information System (INIS)

    Yan, Zhenqiang; Cai, Jun; Xu, Yonggang; Zhang, Deyuan

    2015-01-01

    Highlights: • The bio-absorbent coated Fe-CoNiP was fabricated by electroless and CVD. • The EM parameters were enlarged as Fe coated on the diatomite. • The coating CIPs play a key role in the enhancement mechanism. • The Fe-CoNiP diatomite had a better absorbing and shielding properties. - Abstract: A bio-absorbent of Fe-CoNiP coated on the diatomite was fabricated by way of electroless plating of CoNiP and subsequent chemical vapor deposition of Fe. The surface morphology and composition of the above-mentioned diatomite particles at different stage were characterized with the scanning electron microscopy and the energy spectrum analysis respectively, and the results showed that the diatomite was successfully coated with CoNoP and Fe (carbony iron). The complex permittivity and permeability of composites filled with the bio-absorbent and paraffin was measured in frequency range of 2–18 GHz, and then the microwave reflection loss (RL) and the shielding effectiveness (SE) were calculated. The results showed that the permittivity and the permeability were both enlarged as Fe films were coated onto the CoNiP-coated diatomite, which was attributed to the excellent electromagnetic property of carbonyl irons. The composites made with the Fe-CoNiP diatomite had a better absorbing property (minimum RL −11.0 dB) as well as the shielding property (maximum SE 5.6 dB) at thickness 2 mm. It indicated the absorption property was mainly due to the attenuation on the microwave, and the Fe-CoNiP diatomite could be an effective absorbent with low-density

  15. Microwave absorption property of the diatomite coated by Fe-CoNiP films

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Zhenqiang; Cai, Jun; Xu, Yonggang, E-mail: xuyonggang221@163.com; Zhang, Deyuan

    2015-08-15

    Highlights: • The bio-absorbent coated Fe-CoNiP was fabricated by electroless and CVD. • The EM parameters were enlarged as Fe coated on the diatomite. • The coating CIPs play a key role in the enhancement mechanism. • The Fe-CoNiP diatomite had a better absorbing and shielding properties. - Abstract: A bio-absorbent of Fe-CoNiP coated on the diatomite was fabricated by way of electroless plating of CoNiP and subsequent chemical vapor deposition of Fe. The surface morphology and composition of the above-mentioned diatomite particles at different stage were characterized with the scanning electron microscopy and the energy spectrum analysis respectively, and the results showed that the diatomite was successfully coated with CoNoP and Fe (carbony iron). The complex permittivity and permeability of composites filled with the bio-absorbent and paraffin was measured in frequency range of 2–18 GHz, and then the microwave reflection loss (RL) and the shielding effectiveness (SE) were calculated. The results showed that the permittivity and the permeability were both enlarged as Fe films were coated onto the CoNiP-coated diatomite, which was attributed to the excellent electromagnetic property of carbonyl irons. The composites made with the Fe-CoNiP diatomite had a better absorbing property (minimum RL −11.0 dB) as well as the shielding property (maximum SE 5.6 dB) at thickness 2 mm. It indicated the absorption property was mainly due to the attenuation on the microwave, and the Fe-CoNiP diatomite could be an effective absorbent with low-density.

  16. Electroless deposition of NiCrB diffusion barrier layer film for ULSI-Cu metallization

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuechun [School of Materials Science and Engineering, Yunnan University, Kunming (China); Chen, Xiuhua, E-mail: chenxh@ynu.edu.cn [School of Materials Science and Engineering, Yunnan University, Kunming (China); Ma, Wenhui [National Engineering Laboratory of Vacuum Metallurgy, Kunming University of Science and Technology, Kunming (China); Shang, Yudong; Lei, Zhengtao; Xiang, Fuwei [School of Materials Science and Engineering, Yunnan University, Kunming (China)

    2017-02-28

    Highlights: • In this paper, the electroless deposited NiCrB thin film was mainly in the form of NiB, CrB{sub 2} compounds and elementary Ni. • The sheet resistance of NiCrB thin film was 3.043 Ω/□, it is smaller than that of the widely used Ta, TaN and TiN diffusion barrier layers. • Annealing experiments showed that the failure temperature of NiCrB thin film regarding Cu diffusion was 900 °C. • NiCrB barrier layer crystallized after 900 °C annealing, Cu grains arrived at Si-substrate through grain boundaries, resulting in the formation of Cu{sub 3}Si. • Eelectroless deposited NiCrB film also had good oxidation resistance, it is expected to become an anti-oxidant layer of copper interconnection. - Abstract: NiCrB films were deposited on Si substrates using electroless deposition as a diffusion barrier layer for Cu interconnections. Samples of the prepared NiCrB/SiO{sub 2}/Si and NiCrB/Cu/NiCrB/SiO{sub 2}/Si were annealed at temperatures ranging from 500 °C to 900 °C. The reaction mechanism of the electroless deposition of the NiCrB film, the failure temperature and the failure mechanism of the NiCrB diffusion barrier layer were investigated. The prepared samples were subjected to XRD, XPS, FPP and AFM to determine the phases, composition, sheet resistance and surface morphology of samples before and after annealing. The results of these analyses indicated that the failure temperature of the NiCrB barrier film was 900 °C and the failure mechanism led to crystallization and grain growth of the NiCrB barrier layer after high temperature annealing. It was found that this process caused Cu grains to reach Si substrate through the grain boundaries, and then the reaction between Cu and Si resulted in the formation of highly resistive Cu{sub 3}Si.

  17. Self-optimized metal coatings for fiber plasmonics by electroless deposition.

    Science.gov (United States)

    Bialiayeu, A; Caucheteur, C; Ahamad, N; Ianoul, A; Albert, J

    2011-09-26

    We present a novel method to prepare optimized metal coatings for infrared Surface Plasmon Resonance (SPR) sensors by electroless plating. We show that Tilted Fiber Bragg grating sensors can be used to monitor in real-time the growth of gold nano-films up to 70 nm in thickness and to stop the deposition of the gold at a thickness that maximizes the SPR (near 55 nm for sensors operating in the near infrared at wavelengths around 1550 nm). The deposited films are highly uniform around the fiber circumference and in spite of some nanoscale roughness (RMS surface roughness of 5.17 nm) the underlying gratings show high quality SPR responses in water. © 2011 Optical Society of America

  18. Fabrication of biomimetic superhydrophobic surface on engineering materials by a simple electroless galvanic deposition method.

    Science.gov (United States)

    Xu, Xianghui; Zhang, Zhaozhu; Yang, Jin

    2010-03-02

    We have reported an easy means in this paper to imitate the "lotus leaf" by constructing a superhydrophobic surface through a process combining both electroless galvanic deposition and self-assembly of n-octadecanethiol. Superhydrophobicity with a static water contact angle of about 169 +/- 2 degrees and a sliding angle of 0 +/- 2 degrees was achieved. Both the surface chemical compositions and morphological structures were analyzed. We have obtained a feather-like surface structure, and the thickness of the Ag film is about 10-30 microm. The stability of the superhydrophobic surface was tested under the following three conditions: (1) pH value from 1 to 13; (2) after freezing treatment at -20 degrees C; (3) at ambient temperature. It shows a notable stability in that the contact angle of the sample still remained higher than 150 degrees in different conditions. It can be concluded that our approach can provide an alternative way to fabricate stable superhydrophobic materials.

  19. Enhancement of the corrosion protection of electroless Ni–P coating by deposition of sonosynthesized ZnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sharifalhoseini, Zahra [Sonochemical Research Center, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, 91779 Mashhad (Iran, Islamic Republic of); Entezari, Mohammad H., E-mail: entezari@um.ac.ir [Sonochemical Research Center, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, 91779 Mashhad (Iran, Islamic Republic of); Environmental Chemistry Research Center, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, 91779 Mashhad (Iran, Islamic Republic of)

    2015-10-01

    Graphical abstract: Enhancement of the corrosion protection of electroless Ni–P layer by ZnO nanoparticles deposition and the comparison with the classical and sonochemical Ni–P coatings. - Highlights: • Unique effects of ultrasound were investigated on the anticorrosive performance of electroless Ni–P coating. • Sonoynthesis of ZnO NPs and its deposition were performed on the surface of Ni–P coating. • ZnO as an anticorrosive has a critical role in the multifunctional surfaces. • Electrochemical properties of all fabricated samples were compared with each other. - Abstract: Ni–P coatings were deposited through electroless nickel plating in the presence and absence of ultrasound. The simultaneous synthesis of ZnO nanoparticle and its deposition under ultrasound were also carried out on the surface of Ni–P layer prepared by the classical method. The morphology of the surfaces and the chemical composition were determined by scanning electron microscopy(SEM) and energy dispersive spectroscopy (EDS), respectively. Electrochemical techniques were applied for the corrosion behavior studies. The Ni–P layer deposited by ultrasound showed a higher anticorrosive property than the layer deposited by the classical method. The ZnO nanoparticles deposited on the surface of Ni–P layer significantly improved the corrosion resistance.

  20. Comparison of the surfaces and interfaces formed for sputter and electroless deposited gold contacts on CdZnTe

    Science.gov (United States)

    Bell, Steven J.; Baker, Mark A.; Duarte, Diana D.; Schneider, Andreas; Seller, Paul; Sellin, Paul J.; Veale, Matthew C.; Wilson, Matthew D.

    2018-01-01

    Cadmium zinc telluride (CdZnTe) is a leading sensor material for spectroscopic X/γ-ray imaging in the fields of homeland security, medical imaging, industrial analysis and astrophysics. The metal-semiconductor interface formed during contact deposition is of fundamental importance to the spectroscopic performance of the detector and is primarily determined by the deposition method. A multi-technique analysis of the metal-semiconductor interface formed by sputter and electroless deposition of gold onto (111) aligned CdZnTe is presented. Focused ion beam (FIB) cross section imaging, X-ray photoelectron spectroscopy (XPS) depth profiling and current-voltage (IV) analysis have been applied to determine the structural, chemical and electronic properties of the gold contacts. In a novel approach, principal component analysis has been employed on the XPS depth profiles to extract detailed chemical state information from different depths within the profile. It was found that electroless deposition forms a complicated, graded interface comprised of tellurium oxide, gold/gold telluride particulates, and cadmium chloride. This compared with a sharp transition from surface gold to bulk CdZnTe observed for the interface formed by sputter deposition. The electronic (IV) response for the detector with electroless deposited contacts was symmetric, but was asymmetric for the detector with sputtered gold contacts. This is due to the electroless deposition degrading the difference between the Cd- and Te-faces of the CdZnTe (111) crystal, whilst these differences are maintained for the sputter deposited gold contacts. This work represents an important step in the optimisation of the metal-semiconductor interface which currently is a limiting factor in the development of high resolution CdZnTe detectors.

  1. The large magnetoelectric effect in Ni-lead zirconium titanate-Ni trilayers derived by electroless deposition

    International Nuclear Information System (INIS)

    Bi, K; Wang, Y G; Wu, W; Pan, D A

    2010-01-01

    Magnetoelectric (ME) Ni-lead zirconium titanate-Ni trilayers with neither electrodes nor bonding layers have been derived by electroless deposition. The structure and magnetic properties of the electroless deposited Ni layers with different pH values are characterized by x-ray diffraction and vibrating sample magnetometer. The influence of the bias magnetic field and the magnetic field frequency (f) on ME coupling is discussed. It is seen that α E,31 depends strongly on H dc and f. The value of the ME coefficient increases as the thickness of the Ni layer and the pH of the bath increase. A maximum of the ME voltage coefficient α E,31 = 5.77 V cm -1 Oe -1 at resonance frequency with a deposited Ni layer thickness t Ni = 302 μm is obtained. The large ME coefficient makes these Ni-PZT-Ni trilayers suitable for applications in sensors, actuators and transducers. (fast track communication)

  2. Preparation of highly dispersed PEM fuel cell catalysts using electroless deposition methods

    Energy Technology Data Exchange (ETDEWEB)

    Beard, K.D.; Schaal, M.T.; Van Zee, J.W.; Monnier, J.R. [Department of Chemical Engineering, University of South Carolina, Swearingen Engineering Center, 301 South Main Street, Columbia, SC 29208 (United States)

    2007-03-30

    A methodology for the electroless deposition (ED) of PtCl{sub 6}{sup 2-} using dimethylamine borane (DMAB) on a Rh-seeded carbon support has been developed for electrochemical and fuel cell applications. This procedure required seeding the carbon with a Rh-precursor catalyst via wet impregnation prior to the exposure of an aqueous ED bath containing PtCl{sub 6}{sup 2-}, DMAB, and sodium citrate (complexing/stabilizing agent). Kinetic parameters that affect the extent and rate of PtCl{sub 6}{sup 2-} deposition include concentrations of PtCl{sub 6}{sup 2-}, DMAB, and sodium citrate as well as pH and concentrations of Rh seed sites. A linear relationship between rate and extent of PtCl{sub 6}{sup 2-} deposition and DMAB and Rh concentrations was found while the citrate concentration had little effect on rate and a modest effect on extent. Lastly, extent of PtCl{sub 6}{sup 2-} deposition showed a maximum with respect to pH. Characterization of the Rh-seeded, carbon support by transmission electron microscopy (TEM) shows that the Rh particle diameters remain constant at 33-43 Aa as the Rh weight loading increases from 0.4% to 2.2% to 4.4%. Further, after deposition of similar loadings of Pt, TEM analysis shows Pt particle diameters decrease with increasing Rh loading, since equal amounts of Pt were deposited on greater numbers of Rh seed particles. This pattern suggests a shell-core geometry, where Pt is deposited more or less uniformly around a Rh core. (author)

  3. Comparison of radiation detector performance for different metal contacts on CdZnTe deposited by electroless deposition method

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Q.; Dierre, F.; Crocco, J.; Bensalah, H.; Dieguez, E. [Crystal Growth Laboratory, Department of Materials Physics, Universidad Autonoma de Madrid, 28049 Madrid (Spain); Ayoub, M. [Durham Scientific Crystals Laboratory, Netpark, Thomas Wright Way, Sedgefield, TS21, 3FD (United Kingdom); Corregidor, V.; Alves, E. [Unidade de Fisica e Aceleradores, LFI, ITN, E.N.10, 2686-953, Sacavem (Portugal); Fernandez-Ruiz, R. [Servicio Interdepartamental de Investigacion. Laboratorio de TXRF/Laue-XRD. Facultad de Ciencias, Universidad Autonoma de Madrid, 28049 Madrid (Spain); Perez, J.M. [CIEMAT, Edificio 22, Avda Complutense 22, 28040 Madrid (Spain)

    2011-11-15

    A comparative study of four different metals gold (Au), platinum (Pt), ruthenium (Ru) and rhodium (Rh) deposited on CdZnTe(CZT) by the electroless deposition method has been carried out. Two of these materials, Ru and Rh, have been deposited for the first time by this method. In contrast to the Pt deposition, the deposition of Ru and Rh were not carried out under the optimal conditions. The metals deposited on the samples were identified by Total reflection X-ray Fluorescence (TXRF). Rutherford Backscattering Spectrometry (RBS) analyses show that Au forms the thickest layer ({proportional_to}160 nm) for the experimental conditions of this work. Current-voltage measurements show that Pt forms a more linear ohmic contact with the lowest leakage current. A {sup 57}Co gamma ray spectrum gave a better detector performance with a FWHM 11 keV at 122 keV. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Improved electroless plating method through ultrasonic spray atomization for depositing silver nanoparticles on multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Zhao, Qi; Xie, Ming; Liu, Yichun; Yi, Jianhong

    2017-01-01

    Highlights: • Electroless plating method assisted by ultrasonic spray atomization was developed. • This method leads to much more uniform silver coatings on MWCNTs. • The plating parameters affect the layer morphologies a lot. - Abstract: A novel method was developed to deposit nanosized silver particles on multi-walled carbon nanotubes (MWCNTs). The electroless plating of silver on MWCNTs accomplished in small solution drops generated by ultrasonic spray atomization, which inhibited excessive growth of silver particles and led to much more uniform nanometer grain-sized coatings. The results showed that pretreatment was essential for silver particles to deposit on the MWCNTs, and the electrolyte concentration and reaction temperature were important parameters which had a great influence on the morphology and structure of the silver coatings. Possible mechanisms of this method are also discussed in the paper.

  5. Improved electroless plating method through ultrasonic spray atomization for depositing silver nanoparticles on multi-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Qi [School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Xie, Ming [Kunming Institute of Precious Metals, Kunming 650106 (China); Liu, Yichun, E-mail: liuyichun@kmust.edu.cn [School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Yi, Jianhong [School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China)

    2017-07-01

    Highlights: • Electroless plating method assisted by ultrasonic spray atomization was developed. • This method leads to much more uniform silver coatings on MWCNTs. • The plating parameters affect the layer morphologies a lot. - Abstract: A novel method was developed to deposit nanosized silver particles on multi-walled carbon nanotubes (MWCNTs). The electroless plating of silver on MWCNTs accomplished in small solution drops generated by ultrasonic spray atomization, which inhibited excessive growth of silver particles and led to much more uniform nanometer grain-sized coatings. The results showed that pretreatment was essential for silver particles to deposit on the MWCNTs, and the electrolyte concentration and reaction temperature were important parameters which had a great influence on the morphology and structure of the silver coatings. Possible mechanisms of this method are also discussed in the paper.

  6. Electrochemical Investigation on the Formation of Cu Nanowires by Electroless Deposition

    Directory of Open Access Journals (Sweden)

    Felizco Jenichi Clairvaux E.

    2015-01-01

    Full Text Available The growth of copper (Cu nanowires by electroless deposition in aqueous solution at 60-80 °C was studied from an electrochemical perspective using in situ mixed potential measurements and potential-pH diagrams. Scanning Electron Microscopy (SEM showed that thick and short nanowires were obtained at high temperatures, while long and thin nanowires result from low reaction temperatures. In situ mixed potential measurements reveal that Cu(II reduction is more favored at higher reaction temperatures, hastening the reduction reaction. The fast reaction leads to a high concentration of Cu atoms in the solution. As a result, Cu deposition occurs rapidly, such that they attached on both sides and ends of the primary Cu nanowires. This results to the formation of thick and short structures. On the other hand, thin and long nanowires are obtained due to the slow reduction reaction, which gives the Cu atoms more time to orderly attach in a wire-like formation.

  7. Microwave absorption property of the diatomite coated by Fe-CoNiP films

    Science.gov (United States)

    Yan, Zhenqiang; Cai, Jun; Xu, Yonggang; Zhang, Deyuan

    2015-08-01

    A bio-absorbent of Fe-CoNiP coated on the diatomite was fabricated by way of electroless plating of CoNiP and subsequent chemical vapor deposition of Fe. The surface morphology and composition of the above-mentioned diatomite particles at different stage were characterized with the scanning electron microscopy and the energy spectrum analysis respectively, and the results showed that the diatomite was successfully coated with CoNoP and Fe (carbony iron). The complex permittivity and permeability of composites filled with the bio-absorbent and paraffin was measured in frequency range of 2-18 GHz, and then the microwave reflection loss (RL) and the shielding effectiveness (SE) were calculated. The results showed that the permittivity and the permeability were both enlarged as Fe films were coated onto the CoNiP-coated diatomite, which was attributed to the excellent electromagnetic property of carbonyl irons. The composites made with the Fe-CoNiP diatomite had a better absorbing property (minimum RL -11.0 dB) as well as the shielding property (maximum SE 5.6 dB) at thickness 2 mm. It indicated the absorption property was mainly due to the attenuation on the microwave, and the Fe-CoNiP diatomite could be an effective absorbent with low-density.

  8. Natural reducing agents for electroless nanoparticle deposition: Mild synthesis of metal/carbon nanostructured microspheres

    International Nuclear Information System (INIS)

    Duffy, Paul; Reynolds, Lyndsey A.; Sanders, Stephanie E.; Metz, Kevin M.; Colavita, Paula E.

    2013-01-01

    Composite materials are of interest because they can potentially combine the properties of their respective components in a manner that is useful for specific applications. Here, we report on the use of coffee as a low-cost, green reductant for the room temperature formation of catalytically active, supported metal nanoparticles. Specifically, we have leveraged the reduction potential of coffee in order to grow Pd and Ag nanoparticles at the surface of porous carbon microspheres synthesized via ultraspray pyrolysis. The metal nanoparticle-on-carbon microsphere composites were characterized using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD) and thermal gravimetric analysis (TGA). To demonstrate the catalytic activity of Pd/C and Ag/C materials, Suzuki coupling reactions and nitroaromatic reduction reactions were employed, respectively. - Highlights: • Natural reductants were used as green electroless deposition reagents. • Room temperature synthesis of supported Ag and Pd nanoparticles was achieved. • Carbon porous microspheres were used as supports. • Synthesis via natural reductants yielded catalytically active nanoparticles.

  9. Development of process technologies for improvement of electroless nickel coatings properties

    International Nuclear Information System (INIS)

    Barba-Pingarrón, A; Trujillo-Barragán, M; Hernandez-Gallegos, M A; Valdez-Navarro, R; Bolarín-Miró, A; Jesús, F Sánchez – de; Vargas-Mendoza, L; Molera-Sola, P

    2013-01-01

    This paper describes research and technology developments that enable to improve nickel electroless coating properties. This work deals with: (a) different methods in order to achieve Ni-P-Mo coatings. (b) Other development is related with coatings with addition of hard particles such as SiC, WC or Al 2 O 3 ,(c) Electroless nickel deposits on PBT and austempered ductile iron (ADI). (d) In addition, nickel coatings were deposited on powder metallic pieces and finally, electroless nickel coatings, in conjunction with layers from thermal spray process were formed. Characterization of all coatings by means of optical microscopy, scanning electron microscopy, micro-hardness, wear and corrosion tests were carried out. Results indicate positive increment in both mechanical and electrochemical properties which enhance field applications in Mexican industry.

  10. Preparation of graphene-enhanced nickel-phosphorus composite films by ultrasonic-assisted electroless plating

    Science.gov (United States)

    Yu, Qian; Zhou, Tianfeng; Jiang, Yonggang; Yan, Xing; An, Zhonglie; Wang, Xibin; Zhang, Deyuan; Ono, Takahito

    2018-03-01

    To improve the mechanical properties of nickel-phosphorus (Ni-P) mold material for glass molding, an ultrasonic-assisted electroless plating method is proposed for the synthesis of graphene-enhanced nickel-phosphorus (G-Ni-P) composite films on heat-resistant stainless steel (06Cr25Ni20). Graphene flakes are prepared by an electrochemical exfoliation method. The surface roughness of the as-plated G-Ni-P composite plating is Ra 2.84 μm, which is higher than that of the Ni-P plating deposited using the same method. After annealing at 400 ºC for 2 h, the main phase of the G-Ni-P composite is transformed to crystalline Ni3P with an average grain size of 32.8 nm. The Vickers hardness and Young's modulus of the G-Ni-P composite are increased by 8.0% and 8.2% compared with the values of Ni-P, respectively. The detailed plating process is of great significance for the fabrication of G-Ni-P mold materials with enhanced mechanical properties.

  11. Bath temperature effect on magnetoelectric performance of Ni-lead zirconate titanate-Ni laminated composites synthesized by electroless deposition

    Energy Technology Data Exchange (ETDEWEB)

    Wu, W. [College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Wang, Y.G., E-mail: yingang.wang@nuaa.edu.c [College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Bi, K. [College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China)

    2011-03-15

    Magnetoelectric (ME) Ni-lead zirconate titanate-Ni laminated composites have been prepared by electroless deposition at various bath temperatures. The structure of the Ni layers deposited at various bath temperatures was characterized by X-ray diffraction, and microstructures were investigated by transmission electron microscopy. The magnetostrictive coefficients were measured by means of a resistance strain gauge. The transverse ME voltage coefficient {alpha}{sub E,31} was measured with the magnetic field applied parallel to the sample plane. The deposition rate of Ni increases with bath temperature. Ni layer with smaller grain size is obtained at higher bath temperature and shows higher piezomagnetic coefficient, promoting the ME effect of corresponding laminated composites. It is advantageous to increase the bath temperature, while trying to avoid the breaking of bath constituents. - Research Highlights: Laminated composites without interlayer are prepared by electroless deposition. Bath temperature affects the grain size of the deposited Ni layers. Higher bath temperature is beneficial to obtain stronger ME response.

  12. The performance of electroless nickel deposits in oil-field environments

    International Nuclear Information System (INIS)

    Mack, R.; Bayes, M.

    1984-01-01

    An experimental study was conducted on an electroless nickel plated (represented by Enplate NI-422) C-90 steel, uncoated C-90 steel, AISI 420, 174 PH, SAF 2205, and HASTELLOY /sup R/ G-3 to determine their corrosion-performance in twelve simulated downhole oil or gas production environments during 28 day exposures. These environments were aqueous brines containing various concentrations of Cl - , H 2 S and/or CO 2 , and over a range of temperatures. The results from this study and oilfield data for electroless nickel plated low alloy steels are presented and discussed. The study demonstrates the feasibility of electroless nickel coated low alloy steels as an economical substitute for some highly alloyed materials in certain oilfield applications; the field data support this

  13. Quantifying the dependence of Ni(P) thickness in ultrathin-ENEPIG metallization on the growth of Cu–Sn intermetallic compounds in soldering reaction

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Cheng-Ying; Duh, Jenq-Gong, E-mail: jgd@mx.nthu.edu.tw

    2014-11-14

    A new multilayer metallization, ENEPIG (Electroless Ni(P)/Electroless Pd/Immersion Au) with ultrathin Ni(P) deposit (ultrathin-ENEPIG), was designed to be used in high frequency electronic packaging in this study because of its ultra-low electrical impedance. Sequential interfacial microstructures of commercial Sn–3.0Ag–0.5Cu solders reflowed on ultarthin-ENEPIG with Ni(P) deposit thickness ranged from 4.79 μm to 0.05 μm were first investigated. Accelerated thermal aging test was then conducted to evaluate the long-term thermal stabilization of solder joints. The results showed that P-rich intermetallic compound (IMC) layer formed when the Ni(P) thickness was greater than a critical vale (about 0.18 μm). Besides, it is interesting to mention that the growth of (Cu,Ni){sub 6}Sn{sub 5} and (Cu,Ni){sub 3}Sn IMCs was suppressed with the formation of P-rich layer, i.e., Ni{sub 3}P and Ni{sub 2}Sn{sub 1+x}P{sub 1−x} phase, even though the electroless-plated Ni(P) layer was exhausted at initial stage of reflow process. The atomic Cu flux in solder joints without P-rich layer was calculated to be several times larger than that with P-rich layer formation after calculation, which implies that the P-rich layer and ultrathin Ni(P) deposit in ENEPIG served as diffusion barrier against rapid Cu diffusion. - Highlights: • Microstructures in ultrathin-ENEPIG with various Ni(P) thickness are investigated. • P-rich IMC layer formed when the Ni(P) thickness is greater than 0.18 μm. • Secondary (Cu,Ni){sub 6}Sn{sub 5} formed when the Ni(P) thickness is between 0.18 and 0.31 μm. • Cu diffusion flux without P-rich layer is larger than those with P-rich layer. • P-rich layer in ultrathin-ENEPIG exhibits good diffusion barrier characteristic.

  14. Production of hard hydrophilic Ni-B coatings on hydrophobic Ni-Ti and Ti-6Al-4V alloys by electroless deposition

    Energy Technology Data Exchange (ETDEWEB)

    Buelbuel, Ferhat; Karabudak, Filiz; Yesildal, Ruhi [Ataturk Univ., Erzurum (Turkey). Mechanical Engineering Dept.

    2017-07-01

    This paper is mainly focused on the wetting state of liquid droplets on Ni-Ti and Ti-6Al-4V hierarchical structured hydrophobic surfaces in micro/nanoscale. Electroless Ni-B deposition as a surface coating treatment has recently drawn considerable attention of researchers owing to remarkable advantages when compared with other techniques such as low price, conformal ability to coat substrates, good bath stability and relatively easier plating process control. The Ni-Ti and Ti-6Al-4V substrates were plated by electroless Ni-B plating process. The coated films were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), hardness testing and static contact angle measurement. Results obtained from the analyses show that electroless Ni-B deposition may improve the hardness and wettability of the Ni-Ti and Ti-6Al-4V alloy surfaces.

  15. Influence of electroless coatings of Cu, Ni-P and Co-P on MmNi3.25Al0.35Mn0.25Co0.66 alloy used as anodes in Ni-MH batteries

    International Nuclear Information System (INIS)

    Raju, M.; Ananth, M.V.; Vijayaraghavan, L.

    2009-01-01

    Electroless coatings of Ni-P, Co-P and Cu were applied on the surface of non-stoichiometric MmNi 3.25 Al 0.35 Mn 0.25 Co 0.66 (Mm: misch metal) metal hydride alloy. Elemental analysis was made with Energy Dispersive X-ray Analysis (EDAX). The structural analysis of bare and coated alloys was done by X-ray diffraction (XRD) whereas surface morphology was examined with scanning electron microscope (SEM) and transmission electron microscope (TEM). The electrode characteristics inclusive of electrochemical capacity and cycle life were studied at C/5 rate. Superior performance is obtained with copper coated alloy. Microstructure observations indicate that the observed excellent performance could be attributed to uniform and efficient surface coverage with copper. Also, lanthanum surface enrichment in samples during Cu coating leads to improvement in performance. It is inferred from electro analytical investigations that copper coatings act as microcurrent collectors with alterations in hydrogen transport mechanism and facilitate charge transfer reaction on the alloy surface without altering battery properties. Moreover, supportive first time TEM evidence of existence of such copper nano current collectors (about 8 nm in diameter and length about 20 nm) is reported.

  16. Formation Process of Eosin Y-Adsorbing ZnO Particles by Electroless Deposition and Their Photoelectric Conversion Properties.

    Science.gov (United States)

    Nagaya, Satoshi; Nishikiori, Hiromasa; Mizusaki, Hideaki; Wagata, Hajime; Teshima, Katsuya

    2015-06-03

    The thin films consisting of crystalline ZnO particles were prepared on fluorine-doped tin oxide electrodes by electroless deposition. The particles were deposited from an aqueous solution containing zinc nitrate, dimethyamine-borane, and eosin Y at 328 K. As the Pd particles were adsorbed on the substrate, not only the eosin Y monomer but also the dimer and debrominated species were rapidly adsorbed on the spherical ZnO particles, which were aggregated and formed secondary particles. On the other hand, in the absence of the Pd particles, the monomer was adsorbed on the flake-shaped ZnO particles, which vertically grew on the substrate surface and had a high crystallinity. The photoelectric conversion efficiency was higher for the ZnO electrodes containing a higher amount of the monomer during light irradiation.

  17. Electroless deposition of nickel-boron coatings using low frequency ultrasonic agitation: Effect of ultrasonic frequency on the coatings.

    Science.gov (United States)

    Bonin, L; Bains, N; Vitry, V; Cobley, A J

    2017-05-01

    The effect of ultrasound on the properties of Nickel-Boron (NiB) coatings was investigated. NiB coatings were fabricated by electroless deposition using either ultrasonic or mechanical agitation. The deposition of Ni occurred in an aqueous bath containing a reducible metal salt (nickel chloride), reducing agent (sodium borohydride), complexing agent (ethylenediamine) and stabilizer (lead tungstate). Due to the instability of the borohydride in acidic, neutral and slightly alkaline media, pH was controlled at pH 12±1 in order to avoid destabilizing the bath. Deposition was performed in three different configurations: one with a classical mechanical agitation at 300rpm and the other two employing ultrasound at a frequency of either 20 or 35kHz. The microstructures of the electroless coatings were characterized by a combination of optical Microscopy and Scanning Electron Microscope (SEM). The chemistry of the coatings was determined by ICP-AES (Inductively Coupled Plasma - Atomic Emission Spectrometry) after dissolution in aqua regia. The mechanical properties of the coatings were established by a combination of roughness measurements, Vickers microhardness and pin-on-disk tribology tests. Lastly, the corrosion properties were analysed by potentiodynamic polarization. The results showed that low frequency ultrasonic agitation could be used to produce coatings from an alkaline NiB bath and that the thickness of coatings obtained could be increased by over 50% compared to those produced using mechanical agitation. Although ultrasonic agitation produced a smoother coating and some alteration of the deposit morphology was observed, the mechanical and corrosion properties were very similar to those found when using mechanical agitation. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Electroless deposition and nanolithography can control the formation of materials at the nano-scale for plasmonic applications

    KAUST Repository

    Coluccio, Maria Laura; Gentile, Francesco; Francardi, Marco; Perozziello, Gerardo; Malara, Natalia; Candeloro, Patrizio; Di Fabrizio, Enzo M.

    2014-01-01

    The new revolution in materials science is being driven by our ability to manipulate matter at the molecular level to create structures with novel functions and properties. The aim of this paper is to explore new strategies to obtain plasmonic metal nanostructures through the combination of a top down method, that is electron beam lithography, and a bottom up technique, that is the chemical electroless deposition. This technique allows a tight control over the shape and size of bi- and three-dimensional metal patterns at the nano scale. The resulting nanostructures can be used as constituents of Surface Enhanced Raman Spectroscopy (SERS) substrates, where the electromagnetic field is strongly amplified. Our results indicate that, in electroless growth, high quality metal nanostructures with sizes below 50 nm may be easily obtained. These findings were explained within the framework of a diffusion limited aggregation (DLA) model, that is a simulation model that makes it possible to decipher, at an atomic level, the rules governing the evolution of the growth front; moreover, we give a description of the physical echanisms of growth at a basic level. In the discussion, we show how these findings can be utilized to fabricate dimers of silver nanospheres where the size and shape of those spheres is controlled with extreme precision and can be used for very large area SERS substrates and nano-optics, for single molecule detection. 2014 by the authors; licensee MDPI, Basel, Switzerland.

  19. Electroless deposition and nanolithography can control the formation of materials at the nano-scale for plasmonic applications

    KAUST Repository

    Coluccio, Maria Laura

    2014-03-27

    The new revolution in materials science is being driven by our ability to manipulate matter at the molecular level to create structures with novel functions and properties. The aim of this paper is to explore new strategies to obtain plasmonic metal nanostructures through the combination of a top down method, that is electron beam lithography, and a bottom up technique, that is the chemical electroless deposition. This technique allows a tight control over the shape and size of bi- and three-dimensional metal patterns at the nano scale. The resulting nanostructures can be used as constituents of Surface Enhanced Raman Spectroscopy (SERS) substrates, where the electromagnetic field is strongly amplified. Our results indicate that, in electroless growth, high quality metal nanostructures with sizes below 50 nm may be easily obtained. These findings were explained within the framework of a diffusion limited aggregation (DLA) model, that is a simulation model that makes it possible to decipher, at an atomic level, the rules governing the evolution of the growth front; moreover, we give a description of the physical echanisms of growth at a basic level. In the discussion, we show how these findings can be utilized to fabricate dimers of silver nanospheres where the size and shape of those spheres is controlled with extreme precision and can be used for very large area SERS substrates and nano-optics, for single molecule detection. 2014 by the authors; licensee MDPI, Basel, Switzerland.

  20. Electroless Deposition and Nanolithography Can Control the Formation of Materials at the Nano-Scale for Plasmonic Applications

    Directory of Open Access Journals (Sweden)

    Maria Laura Coluccio

    2014-03-01

    Full Text Available The new revolution in materials science is being driven by our ability to manipulate matter at the molecular level to create structures with novel functions and properties. The aim of this paper is to explore new strategies to obtain plasmonic metal nanostructures through the combination of a top down method, that is electron beam lithography, and a bottom up technique, that is the chemical electroless deposition. This technique allows a tight control over the shape and size of bi- and three-dimensional metal patterns at the nano scale. The resulting nanostructures can be used as constituents of Surface Enhanced Raman Spectroscopy (SERS substrates, where the electromagnetic field is strongly amplified. Our results indicate that, in electroless growth, high quality metal nanostructures with sizes below 50 nm may be easily obtained. These findings were explained within the framework of a diffusion limited aggregation (DLA model, that is a simulation model that makes it possible to decipher, at an atomic level, the rules governing the evolution of the growth front; moreover, we give a description of the physical mechanisms of growth at a basic level. In the discussion, we show how these findings can be utilized to fabricate dimers of silver nanospheres where the size and shape of those spheres is controlled with extreme precision and can be used for very large area SERS substrates and nano-optics, for single molecule detection.

  1. Electroless plating of PVC plastic through new surface modification method applying a semi-IPN hydrogel film

    Science.gov (United States)

    Wang, Ming-Qiu; Yan, Jun; Du, Shi-Guo; Li, Hong-Guang

    2013-07-01

    A novel palladium-free surface activation process for electroless nickel plating was developed. This method applied a semi-Interpenetrating Polymer Network (semi-IPN) hydrogel film to modify the poly(vinyl chloride) (PVC) surface by chemical bonds. The activation process involved the formation of semi-IPN hydrogel film on the PVC surface and the immobilization of catalyst for electroless plating linking to the pretreated substrate via Nsbnd Ni chemical bond. The hydrogel layer was used as the chemisorption sites for nickel ions, and the catalyst could initiate the subsequent electroless nickel plating onto the PVC surface. Finally, a Ni-P layer was deposited on the nickel-activated PVC substrate by electroless plating technique. The composition and morphology of nickel-plated PVC foils were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The results of SEM and XRD show that a compact and continuous Ni-P layer with amorphous nickel phase is formed on the PVC surface. EDS shows that the content of the nickel and the phosphorus in the deposits is 89.4 wt.% and 10.6 wt.%, respectively.

  2. Interface structure and properties of CNTs/Cu composites fabricated by electroless deposition and spark plasma sintering

    Science.gov (United States)

    Wang, Hu; Zhang, Zhao-Hui; Hu, Zheng-Yang; Song, Qi; Yin, Shi-Pan

    2018-01-01

    In this paper, we fabricated a novel copper matrix composites reinforced by carbon nanotubes (CNTs) using electroless deposition (ED) and spark plasma sintering technique. Microstructure, mechanical, electric conductivity, and thermal properties of the CNTs/Cu composites were investigated. The results show that a favorable interface containing C-O and O-Cu bond was formed between CNTs and matrix when the CNTs were coated with nano-Cu by ED method. Thus, we accomplished the uniformly dispersed CNTs in the CNTs/Cu powders and compacted composites, which eventually leads to the enhancement of the mechanical properties of the CNTs/Cu composites in the macro-scale environment. However, the interface structure can hinder the movement of carriers and free electrons and increase the interface thermal resistance, which leads to modest decrease of electrical and thermal conductivity of the CNTs/Cu composites.

  3. Preparation of Stable Superhydrophobic Coatings on Wood Substrate Surfaces via Mussel-Inspired Polydopamine and Electroless Deposition Methods

    Directory of Open Access Journals (Sweden)

    Kaili Wang

    2017-06-01

    Full Text Available Mussel-inspired polydopamine (PDA chemistry and electroless deposition approaches were used to prepare stable superhydrophobic coatings on wood surfaces. The as-formed PDA coating on a wood surface exhibited a hierarchical micro/nano roughness structure, and functioned as an “adhesive layer” between the substrate and a metallic film by the metal chelating ability of the catechol moieties on PDA, allowing for the formation of a well-developed micro/nanostructure hierarchical roughness. Additionally, the coating acted as a stable bridge between the substrate and hydrophobic groups. The morphology and chemical components of the prepared superhydrophobic wood surfaces were characterized by scanning electron microscopy (SEM, Fourier transform infrared (FT-IR spectroscopy, and X-ray photoelectron spectroscopy (XPS. The PDA and octadecylamine (OA modified surface showed excellent superhydrophobicity with a water contact angle (CA of about 153° and a rolling angle (RA of about 9°. The CA further increased to about 157° and RA reduced to about 5° with the Cu metallization. The superhydrophobic material exhibited outstanding stability in harsh conditions including ultraviolet aging, ultrasonic washing, strong acid-base and organic solvent immersion, and high-temperature water boiling. The results suggested that the PDA/OA layers were good enough to confer robust, degradation-resistant superhydrophobicity on wood substrates. The Cu metallization was likely unnecessary to provide significant improvements in superhydrophobic property. However, due to the amazing adhesive capacity of PDA, the electroless deposition technique may allow for a wide range of potential applications in biomimetic materials.

  4. The Effect of Adding Corrosion Inhibitors into an Electroless Nickel Plating Bath for Magnesium Alloys

    Science.gov (United States)

    Hu, Rong; Su, Yongyao; Liu, Hongdong; Cheng, Jiang; Yang, Xin; Shao, Zhongcai

    2016-10-01

    In this work, corrosion inhibitors were added into an electroless nickel plating bath to realize nickel-phosphorus (Ni-P) coating deposition on magnesium alloy directly. The performance of five corrosion inhibitors was evaluated by inhibition efficiency. The results showed that only ammonium hydrogen fluoride (NH4HF2) and ammonium molybdate ((NH4)2MoO4) could be used as corrosion inhibitors for magnesium alloy in the bath. Moreover, compounding NH4HF2 and (NH4)2MoO4, the optimal concentrations were both at 1.5 ~ 2%. The deposition process of Ni-P coating was observed by using a scanning electron microscope (SEM). It showed corrosion inhibitors inhibited undesired dissolution of magnesium substrate during the electroless plating process. In addition, SEM observation indicated that the corrosion inhibition reaction and the Ni2+ replacement reaction were competitive at the initial deposition time. Both electrochemical analysis and thermal shock test revealed that the Ni-P coating exhibited excellent corrosion resistance and adhesion properties in protecting the magnesium alloy.

  5. Corrosion and wear protective composition modulated alloy coatings based on ternary Ni-P-X alloys

    DEFF Research Database (Denmark)

    Leisner, P.; Benzon, M. E.; Christoffersen, Lasse

    1996-01-01

    Scattered reporting in the litterature describes a number of ternary Ni-P-X alloyes (where X can be Co, Cr, Cu, Mo, Pd, Re or W) with promising corrosin and wear protective performance. Based on a systematic study of Ni-P-X alloys it is the intention to produce coatings with improved corrosion...... and wear performance compared with conventional coatings like electroless nickel, hard chromioum and anodised aluminium....

  6. Electrochemical and structural characterization of carbon-supported Pt-Pd bimetallic electrocatalysts prepared by electroless deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, Masato; Beard, Kevin D.; Ma Shuguo; Blom, Douglas A.; St-Pierre, Jean; Van Zee, John W. [Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208 (United States); Monnier, John R., E-mail: monnier@cec.sc.ed [Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208 (United States)

    2010-10-01

    Electrochemical and structural characteristics of various Pt-Pd/C bimetallic catalysts prepared by electroless deposition (ED) methods have been investigated. Structural analysis was conducted by X-ray diffraction spectroscopy, X-ray photoelectron spectroscopy, scanning transmission electron microscopy, and energy dispersive X-ray spectroscopy (EDS). Monometallic Pt or Pd particles were not detected by EDS, indicating the ED methodology formed only bimetallic particles. The size of the Pt-Pd bimetallic particles was smaller than those of a commercially available Pt/C catalyst. The morphology of the Pt on Pd/C catalysts was identified and corresponded to Pd particles partially encapsulated by Pt. The electrochemical characteristics of the lowest Pd loading catalyst (7.0% Pt on 0.5% Pd/C) for the oxygen reduction reaction (ORR) have been investigated by the rotating ring disk electrode technique. The electrochemical activity was equal or lower than the commercially available Pt/C catalyst; however, the amount of hydrogen peroxide observed at the ring was reduced by the Pd, suggesting that such a catalyst has the potential to decrease ionomer degradation in applications. The Pt on Pd/C catalysts also show a higher tolerance to ripening induced by potential cycling. Therefore, catalyst suitability cannot be judged solely by its initial performance; information related to specific degradation mechanisms is also needed for a more complete assessment.

  7. Study of electroless Ni-W-P alloy coating on martensitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Nikitasari, Arini, E-mail: arini-nikitasari@yahoo.com; Mabruri, Efendi, E-mail: efendi-lipi@yahoo.com [Research Center for Metallurgy and Materials, Indonesian Institute of Sciences (470 Building, Puspiptek, Serpong, Indonesia 15313) (Indonesia)

    2016-04-19

    Electroless nickel phospor (Ni-P) is widely used in many industries due to their corrosion and wear resistance, coating uniformity, and ability to coat non-conductive surfaces. The unique properties of tungsten such as high hardness, higher melting point, lower coefficient of linear thermal expansion, and high tensile strength have created a lot of interest in developing ternary Ni-W-P alloys. This article presents the study of electroless Ni-W-P alloys coating using acid or alkaline bath on martensitic stainless steel. Nickel sulfate and sodium tungstate were used as nickel and tungsten sources, respectively, and sodium hypophosphite was used as a reducing agent. Acid or alkaline bath refer to bath pH condition was adjusted by adding sulfuric acid. Martensitic stainless steel was immersed in Ni-W-P bath for 15, 30, and 60 minutes. The substrate of martensitic stainless steel was subjected to pre-treatment (polishing and cleaning) and activation prior to electroless plating. The plating characteristics were investigated for concentration ratio of nickel and hypophosphite (1:3), sodium tungstate concentration 0,1 M, immersion time (15 min, 30 min, 60 min), and bath condition (acid, alkaline). The electroless Ni-W-P plating was heat treated at 400°C for 1 hour. Deposits were characterized using scanning electron microscope (SEM) and corrosion measurement system (CMS).

  8. Fabrication and characterization of Ni-decorated h-BN powders with ChCl-EG ionic liquid as addition by electroless deposition

    Science.gov (United States)

    Yang, Qionglian; Ru, Juanjian; Song, Peng; Hu, Mingyu; Feng, Jing

    2018-05-01

    Ni-decorated h-BN powders are fabricated with ChCl-EG as additive via electroless plating in the paper. As comparison, the different additive concentration of choline chloride-ethylene glycol (ChCl-EG) ionic liquid (0 g l-1, 30 g l-1, 60 g l-1, 90 g l-1) is presented. The effects of ChCl-EG concentration are studied, including the surface morphologies, phase analysis of Ni-decorated h-BN powders and the residual Ni2+ concentration is measured in electroless plating bath. It is demonstrated that the deposition phenomena of nickel particles on h-BN surface is changed with the addition of ChCl-EG. When the concentration of ChCl-EG is 30 g l-1, the Ni particles on h-BN surface are in dispersed and spheroid state with the average size of 10-1000 nm. It can be found that 30 g l-1 ChCl-EG is conducive to the arise of deposition phenomena, which is the formation of the single nickel particle on h-BN surface. Besides, more Ni particles are deposited on h-BN surface with the increase of nickel plating times, which is characterized with scanning electron microscope and transmission electron microscope. Furthermore, the deposition phenomenon and growth mechanism are proposed without and with ChCl-EG as additive to further elaborate the formation of Ni particles on h-BN surface.

  9. Influence of hydrofluoric acid treatment on electroless deposition of Au clusters

    Directory of Open Access Journals (Sweden)

    Rachela G. Milazzo

    2017-01-01

    Full Text Available The morphology of gold nanoparticles (AuNPs deposited on a (100 silicon wafer by simple immersion in a solution containing a metal salt and hydrofluoric acid (HF is altered by HF treatment both before and after deposition. The gold clusters are characterized by the presence of flat regions and quasispherical particles consistent with the layer-by-layer or island growth modes, respectively. The cleaning procedure, including HF immersion prior to deposition, affects the predominantly occurring gold structures. Flat regions, which are of a few tens of nanometers long, are present after immersion for 10 s. The three-dimensional (3D clusters are formed after a cleaning procedure of 4 min, which results in a large amount of spherical particles with a diameter of ≈15 nm and in a small percentage of residual square layers of a few nanometers in length. The samples were also treated with HF after the deposition and we found out a general thickening of flat regions, as revealed by TEM and AFM analysis. This result is in contrast to the coalescence observed in similar experiments performed with Ag. It is suggested that the HF dissolves the silicon oxide layer formed on top of the thin flat clusters and promotes the partial atomic rearrangement of the layered gold atoms, driven by a reduction of the surface energy. The X-ray diffraction investigation indicated changes in the crystalline orientation of the flat regions, which partially lose their initially heteroepitaxial relationship with the substrate. A postdeposition HF treatment for almost 70 s has nearly the same effect of long duration, high temperature annealing. The process presented herein could be beneficial to change the spectral response of nanoparticle arrays and to improve the conversion efficiency of hybrid photovoltaic devices.

  10. Cisplatin-Loaded Porous Si Microparticles Capped by Electroless Deposition of Platinum

    Science.gov (United States)

    Park, Jennifer S.; Kinsella, Joseph M.; Jandial, Danielle D.; Howell, Stephen B.

    2012-01-01

    The loading and release of the anti-cancer drug platinum cis-dichlorodiamine (cisplatin) from mesoporous silicon (pSi) microparticles is studied. The pSi microparticles are modified with 1-dodecene or with 1,12-undecylenic acid by hydrosilylation, and each modified pSi material acts as a reducing agent, forming a deposit of Pt on its surface that nucleates further deposition, capping the mesoporous structure and trapping free (unreduced) cisplatin within. Slow oxidation and hydrolytic dissolution of the Si/SiO2 matrix in buffer solution or in culture medium leads to the release of drugs from the microparticles. The drug-loaded particles show significantly greater toxicity toward human ovarian cancer cells (in vitro), relative to an equivalent quantity of free cisplatin. This result is consistent with the mechanism of drug release, which generates locally high concentrations of the drug in the vicinity of the degrading particles. Control assays with pSi particles loaded in a similar manner with the therapeutically inactive trans isomer of the platinum drug, and with pSi particles containing no drug, result in low cellular toxicity. A hydrophobic prodrug, cis,trans,cis-[Pt(NH3)2(O2C(CH2)8CH3)2Cl2], is loaded into the pSi films from chloroform without concomitant reduction of the pSi carrier. PMID:21630444

  11. Electroless Deposition of Palladium on Macroscopic 3D-Printed Polymers with Dense Microlattice Architectures for Development of Multifunctional Composite Materials

    International Nuclear Information System (INIS)

    Jones, Christopher G.; Mills, Bernice E.; Nishimoto, Ryan K.; Robinson, David B.

    2017-01-01

    A simple procedure has been developed to create palladium (Pd) films on the surface of several common polymers used in commercial fused deposition modeling (FDM) and stereolithography (SLA) based three-dimensional (3D) printing by an electroless deposition process. The procedure can be performed at room temperature, with equipment less expensive than many 3D printers, and occurs rapidly enough to achieve full coverage of the film within a few minutes. 3D substrates composed of dense logpile or cubic lattices with part sizes in the mm to cm range, and feature sizes as small as 150 μm were designed and printed using commercially available 3D printers. The deposition procedure was successfully adapted to show full coverage in the lattice substrates. As a result, the ability to design, print, and metallize highly ordered three-dimensional microscale structures could accelerate development of a range of optimized chemical and mechanical engineering systems.

  12. Electrochemical investigation of the surface energy: Effect of the HF concentration on electroless silver deposition onto p-Si (1 1 1)

    International Nuclear Information System (INIS)

    Ye Weichun; Chang Yanlong; Ma Chuanli; Jia Bingyu; Cao Guiyan; Wang Chunming

    2007-01-01

    Electroless silver deposition onto p-silicon (1 1 1) from 0.005 mol l -1 AgNO 3 solutions with different HF concentration was investigated by using an electrochemical direct current polarization method and open circuit potential-time (Ocp-t) technique. The fact that three-dimensional (3D) growth of silver onto silicon is favored with increasing the HF concentration was ascribed to the drop of the surface energy and approved by electrochemical direct current polarization, Ocp-t technique and atomic force microscopy (AFM). The drop slope of open-circuit potential, K -ΔE(OCP)/t , was educed from the mixed-potential theory. K -ΔE(OCP)/t as well as the deposition rate determined by an inductively coupled plasma atomic emission spectrometry (ICP-AES), increased with the HF concentration, yet was not a linear function. Results were explained by the stress generation and relaxation mechanisms

  13. Fabrication and characterization of Ni-decorated h-BN powders with ChCl-EG ionic liquid as addition by electroless deposition.

    Science.gov (United States)

    Yang, Qionglian; Ru, Juanjian; Song, Peng; Hu, Mingyu; Feng, Jing

    2018-05-01

    Ni-decorated h-BN powders are fabricated with ChCl-EG as additive via electroless plating in the paper. As comparison, the different additive concentration of choline chloride-ethylene glycol (ChCl-EG) ionic liquid (0 g l -1 , 30 g l -1 , 60 g l -1 , 90 g l -1 ) is presented. The effects of ChCl-EG concentration are studied, including the surface morphologies, phase analysis of Ni-decorated h-BN powders and the residual Ni 2+ concentration is measured in electroless plating bath. It is demonstrated that the deposition phenomena of nickel particles on h-BN surface is changed with the addition of ChCl-EG. When the concentration of ChCl-EG is 30 g l -1 , the Ni particles on h-BN surface are in dispersed and spheroid state with the average size of 10-1000 nm. It can be found that 30 g l -1 ChCl-EG is conducive to the arise of deposition phenomena, which is the formation of the single nickel particle on h-BN surface. Besides, more Ni particles are deposited on h-BN surface with the increase of nickel plating times, which is characterized with scanning electron microscope and transmission electron microscope. Furthermore, the deposition phenomenon and growth mechanism are proposed without and with ChCl-EG as additive to further elaborate the formation of Ni particles on h-BN surface.

  14. Performance comparison of small-pixel CdZnTe radiation detectors with gold contacts formed by sputter and electroless deposition

    Science.gov (United States)

    Bell, S. J.; Baker, M. A.; Duarte, D. D.; Schneider, A.; Seller, P.; Sellin, P. J.; Veale, M. C.; Wilson, M. D.

    2017-06-01

    Recent improvements in the growth of wide-bandgap semiconductors, such as cadmium zinc telluride (CdZnTe or CZT), has enabled spectroscopic X/γ-ray imaging detectors to be developed. These detectors have applications covering homeland security, industrial analysis, space science and medical imaging. At the Rutherford Appleton Laboratory (RAL) a promising range of spectroscopic, position sensitive, small-pixel Cd(Zn)Te detectors have been developed. The challenge now is to improve the quality of metal contacts on CdZnTe in order to meet the demanding energy and spatial resolution requirements of these applications. The choice of metal deposition method and fabrication process are of fundamental importance. Presented is a comparison of two CdZnTe detectors with contacts formed by sputter and electroless deposition. The detectors were fabricated with a 74 × 74 array of 200 μm pixels on a 250 μm pitch and bump-bonded to the HEXITEC ASIC. The X/γ-ray emissions from an 241Am source were measured to form energy spectra for comparison. It was found that the detector with contacts formed by electroless deposition produced the best uniformity and energy resolution; the best pixel produced a FWHM of 560 eV at 59.54 keV and 50% of pixels produced a FWHM better than 1.7 keV . This compared with a FWHM of 1.5 keV for the best pixel and 50% of pixels better than 4.4 keV for the detector with sputtered contacts.

  15. Characterization of Ni-P-SiO2 nano-composite coating on magnesium

    Science.gov (United States)

    Sadreddini, S.; Salehi, Z.; Rassaie, H.

    2015-01-01

    In this study, the effects of SiO2 nanoparticles added to the electroless Ni-P coating were studied. The surface morphology, corrosion behavior, hardness and porosity of Ni-P-SiO2composite were investigated. The related microstructure was investigated through field emission scanning electron microscopy (FESEM) and the amount of SiO2 was examined by Energy Dispersive Analysis of X-ray (EDX). The corrosion behavior was evaluated through electrochemical impedance spectroscopy (EIS) and polarization techniques. The results illustrated that with increasing the quantity of the SiO2 nanoparticles, the corrosion rate decreased and the hardness increased.

  16. Hybrid Antifouling and Antimicrobial Coatings Prepared by Electroless Co-Deposition of Fluoropolymer and Cationic Silica Nanoparticles on Stainless Steel: Efficacy against Listeria monocytogenes.

    Science.gov (United States)

    Huang, Kang; Chen, Juhong; Nugen, Sam R; Goddard, Julie M

    2016-06-29

    Controlling formation, establishment, and proliferation of microbial biofilms on surfaces is critical for ensuring public safety. Herein, we report on the synthesis of antimicrobial nanoparticles and their co-deposition along with fluorinated nanoparticles during electroless nickel plating of stainless steel. Plating bath composition is optimized to ensure sufficiently low surface energy to resist fouling and microbial adhesion as well as to exert significant (>99.99% reduction) antimicrobial activity against Listeria monocytogenes. The resulting coatings present hybrid antifouling and antimicrobial character, can be applied onto stainless steel, and do not rely on leaching or migration of the antimicrobial nanoparticles to be effective. Such coatings can support reducing public health issues related to microbial cross-contamination in areas such as food processing, hospitals, and water purification.

  17. Co-P-B catalyst thin films prepared by electroless and pulsed laser deposition for hydrogen generation by hydrolysis of alkaline sodium borohydride: A comparison

    International Nuclear Information System (INIS)

    Patel, N.; Fernandes, R.; Bazzanella, N.; Miotello, A.

    2010-01-01

    Co-P-B catalyst thin films have been synthesized on Ni-foam and glass substrate by using electroless deposition (ED) and pulsed laser deposition (PLD) respectively. The efficiency of these catalyst films was tested by catalytic hydrolysis of NaBH 4 for H 2 generation. While the chemically produced Co-P-B film on Ni-foam shows similar activity as that of their corresponding powder, the Co-P-B film deposited by PLD exhibits much superior H 2 generation rate as compared to Co-P-B powder. We attribute this increased efficiency to the special features of the Co-P-B films which are in the form of nanoparticle-assembled films, a peculiar characteristic of PLD films for appropriate choice of the pulse laser parameters. The surface nanoparticle-configuration increases the active surface area and also favors electronic exchange mechanisms to promote hydrolysis process for H 2 gas generation. The films deposited by using laser energy density of 3 J/cm 2 show the highest activity in connection to the best configuration of the ablated nanoparticles. Different numbers of Co-P-B layers were deposited on Ni-foam by ED and it was found that at least four layers are required for complete coverage of the foam to have the best activity.

  18. Electroless Fabrication of Cobalt Alloys Nanowires within Alumina Template

    Directory of Open Access Journals (Sweden)

    Nazila Dadvand

    2007-01-01

    Full Text Available A new method of nanowire fabrication based on electroless deposition process is described. The method is novel compared to the current electroless procedure used in making nanowires as it involves growing nanowires from the bottom up. The length of the nanowires was controlled at will simply by adjusting the deposition time. The nanowires were fabricated within the nanopores of an alumina template. It was accomplished by coating one side of the template by a thin layer of palladium in order to activate the electroless deposition within the nanopores from bottom up. However, prior to electroless deposition process, the template was pretreated with a suitable wetting agent in order to facilitate the penetration of the plating solution through the pores. As well, the electroless deposition process combined with oblique metal evaporation process within a prestructured silicon wafer was used in order to fabricate long nanowires along one side of the grooves within the wafer.

  19. Synthesis and Electrochemical Evaluation of Carbon Supported Pt-Co Bimetallic Catalysts Prepared by Electroless Deposition and Modified Charge Enhanced Dry Impregnation

    Directory of Open Access Journals (Sweden)

    John Meynard M. Tengco

    2016-06-01

    Full Text Available Carbon-supported bimetallic Pt-Co cathode catalysts have been previously identified as higher activity alternatives to conventional Pt/C catalysts for fuel cells. In this work, a series of Pt-Co/C catalysts were synthesized using electroless deposition (ED of Pt on a Co/C catalyst prepared by modified charge enhanced dry impregnation. X-ray diffraction (XRD and scanning transmission electron microscopy (STEM characterization of the base catalyst showed highly dispersed particles. A basic ED bath containing PtCl62− as the Pt precursor, dimethylamine borane as reducing agent, and ethylenediamine as stabilizing agent successfully targeted deposition of Pt on Co particles. Simultaneous action of galvanic displacement and ED resulted in Pt-Co alloy formation observed in XRD and energy dispersive X-ray spectroscopy (XEDS mapping. In addition, fast deposition kinetics resulted in hollow shell Pt-Co alloy particles while particles with Pt-rich shell and Co-rich cores formed with controlled Pt deposition. Electrochemical evaluation of the Pt-Co/C catalysts showed lower active surface but much higher mass and surface activities for oxygen reduction reaction compared to a commercial Pt/C fuel cell catalyst.

  20. Encapsulation of electroless copper patterns into diamond films

    Energy Technology Data Exchange (ETDEWEB)

    Pimenov, S.M.; Shafeev, G.A.; Lavrischev, S.V. [General Physics Institute, Moscow (Russian Federation)] [and others

    1995-12-31

    The results are reported on encapsulating copper lines into diamond films grown by a DC plasma CVD. The process includes the steps of (i) laser activation of diamond for electroless metal plating, (ii) electroless copper deposition selectively onto the activated surface regions, and (iii) diamond regrowth on the Cu-patterned diamond films. The composition and electrical properties of the encapsulated copper lines were examined, revealing high purity and low electrical resistivity of the encapsulated electroless copper.

  1. Fabrication and optical characterization of improved electroless ...

    African Journals Online (AJOL)

    Thin semi conductor films of strontium fluoride (SrF2) were successfully deposited on glass microscope slides using simple and cheap electroless chemical bath deposition methods at 320K and pH values of 9, 10 and 12. Controlled addition of ethylenediamine tetra acetate (EDTA), another complexing agent with pH to ...

  2. The Electrochemical Behavior of Carbon Fiber Microelectrodes Modified with Carbon Nanotubes Using a Two-Step Electroless Plating/Chemical Vapor Deposition Process

    Directory of Open Access Journals (Sweden)

    Longsheng Lu

    2017-03-01

    Full Text Available Carbon fiber microelectrode (CFME has been extensively applied in the biosensor and chemical sensor domains. In order to improve the electrochemical activity and sensitivity of the CFME, a new CFME modified with carbon nanotubes (CNTs, denoted as CNTs/CFME, was fabricated and investigated. First, carbon fiber (CF monofilaments grafted with CNTs (simplified as CNTs/CFs were fabricated in two key steps: (i nickel electroless plating, followed by (ii chemical vapor deposition (CVD. Second, a single CNTs/CF monofilament was selected and encapsulated into a CNTs/CFME with a simple packaging method. The morphologies of as-prepared CNTs/CFs were characterized by scanning electron microscopy. The electrochemical properties of CNTs/CFMEs were measured in potassium ferrocyanide solution (K4Fe(CN6, by using a cyclic voltammetry (CV and a chronoamperometry method. Compared with a bare CFME, a CNTs/CFME showed better CV curves with a higher distinguishable redox peak and response current; the higher the CNT content was, the better the CV curves were. Because the as-grown CNTs significantly enhanced the effective electrode area of CNTs/CFME, the contact area between the electrode and reactant was enlarged, further increasing the electrocatalytic active site density. Furthermore, the modified microelectrode displayed almost the same electrochemical behavior after 104 days, exhibiting remarkable stability and outstanding reproducibility.

  3. A chiral microwave absorbing absorbent of Fe–CoNiP coated on spirulina

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yonggang, E-mail: xuyonggang221@163.com [Science and Technology on Electromagnetic Scattering Laboratory, Shanghai, 200438 (China); Yuan, Liming [Science and Technology on Electromagnetic Scattering Laboratory, Shanghai, 200438 (China); Zhang, Deyuan [School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191 (China)

    2015-11-15

    A chiral bio-absorbent of Fe–CoNiP coated on the spirulina was fabricated by the electroless and chemical vapor decomposition. The scanning electron microscopy (SEM) was used to evaluate the spirulina cells particle morphology. X-ray diffraction (XRD) patterns were done to analyze the particle crystal grain structure. The permittivity and permeability was measured by a vector network analyzer in frequency 8–18 GHz, and the reflection loss (RL) was calculated. The results showed the carbonyl iron particles (CIPs) and CoNiP were bonded to the spirulina surface, the permittivity and permeability could be enlarged as Fe films coated on the particles compared with the CoNiP spirulina, it was attributed to the excellent electromagnetic property of CIPs. The chiral Fe–CoNiP composites had a better absorbing property at 8–18 GHz than the CoNiP spirulina composite, the RL was −16.26 dB at 10.48 GHz, the absorbing band was 9.5–11.5 GHz of RL less than −10 dB, which indicated the Fe–CoNiP spirulina could be an effective absorbent used in 8–18 GHz. - Highlights: • Absorbers filled with Fe–CoNiP coating on the spirulina were fabricated. • The permittivity and permeability increased as CIPs coated. • The Fe material enhanced the electromagnetic property. • The spirulina coated Fe–CoNiP was effective in 8–18 GHz.

  4. Fabrication and Characteristics of High Capacitance Al Thin Films Capacitor Using a Polymer Inhibitor Bath in Electroless Plating Process.

    Science.gov (United States)

    Cho, Young-Lae; Lee, Jung-Woo; Lee, Chang-Hyoung; Choi, Hyung-Seon; Kim, Sung-Su; Song, Young Il; Park, Chan; Suh, Su-Jeong

    2015-10-01

    An aluminum (Al) thin film capacitor was fabricated for a high capacitance capacitor using electrochemical etching, barrier-type anodizing, and electroless Ni-P plating. In this study, we focused on the bottom-up filling of Ni-P electrodes on Al2O3/Al with etched tunnels. The Al tunnel pits were irregularly distributed on the Al foil, diameters were in the range of about 0.5~1 μm, the depth of the tunnel pits was approximately 35~40 μm, and the complex structure was made full filled hard metal. To control the plating rate, the experiment was performed by adding polyethyleneimine (PEI, C2H5N), a high molecular substance. PEI forms a cross-link at the etching tunnel inlet, playing the role of delaying the inlet plating. When the PEI solution bath was used after activation, the Ni-P layer was deposited selectively on the bottoms of the tunnels. The characteristics were analyzed by adding the PEI addition quantity rate of 100~600 mg/L into the DI water. The capacitance of the Ni-P/Al2O3 (650~700 nm)/Al film was measured at 1 kHz using an impedance/gain phase analyzer. For the plane film without etch tunnels the capacitance was 12.5 nF/cm2 and for the etch film with Ni-P bottom-up filling the capacitance was 92 nF/cm2. These results illustrate a remarkable maximization of capacitance for thin film metal capacitors.

  5. Surface free energy of TiC layers deposited by electrophoretic deposition (EPD)

    Science.gov (United States)

    Gorji, Mohammad Reza; Sanjabi, Sohrab

    2018-01-01

    In this study porous structure coatings of bare TiC (i.e. 20 nm, 0.7 µm and 5/45 µm) and core-shell structures of TiC/NiP synthesized through electroless plating were deposited by EPD. Room temperature surface free energy (i.e. γs) of TiC and TiC/NiP coatings were determined via measuring contact angles of distilled water and diiodemethane liquids. The effect of Ni-P shell on spreading behavior of pure copper on porous EPD structures was also investigated by high temperature wetting experiments. According to the results existence of a Ni-P layer around the TiC particles has led to roughness (i.e. at least 0.1 µm), and porosity mean length (i.e. at least 1 µm) increase. This might be related to various sizes of TiC agglomerates formed during electroless plating. It has been observed that room temperature γs changed from 44.49 to 54.12 mJ.m-2 as a consequence of particle size enlargement for TiC. The highest and lowest (67.25 and 44.49 mJ.m-2) γs were measured for TiC nanoparticles which showed 1.5 times increase in surface free energy after being plated with Ni-P. It was also observed that plating Ni-P altered non-spreading (θs > 100 o) behavior of TiC to full-spreading ((θs 0o)) which can be useful for preparation of hard coatings by infiltration sintering phenomenon. Zeta potential of EPD suspensions, morphology, phase structure and topography of as-EPD layers were investigated through Zetasizer, field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and atomic force microscopy (AFM) instruments respectively.

  6. Comparison of galvanic displacement and electroless methods for ...

    Indian Academy of Sciences (India)

    tron microscopy, field emission scanning electron microscopy (FE–SEM) and diffuse reflectance spectroscopy (DRS) .... FE–SEM images of gold nanoparticles deposited calcite, prepared by electroless ... or Au3+ compound of oxalate. The Ag.

  7. Electroless plating apparatus for discrete microsized particles

    International Nuclear Information System (INIS)

    Mayer, A.

    1978-01-01

    Method and apparatus are disclosed for producing very uniform coatings of a desired material on discrete microsized particles by electroless techniques. Agglomeration or bridging of the particles during the deposition process is prevented by imparting a sufficiently random motion to the particles that they are not in contact with each other for a time sufficient for such to occur

  8. High corrosion resistance of electroless composite plating coatings on AZ91D magnesium alloys

    International Nuclear Information System (INIS)

    Song, Y.W.; Shan, D.Y.; Han, E.H.

    2008-01-01

    The process of electroless plating Ni-P on AZ91D magnesium alloys was improved. The Ni-P-ZrO 2 composite coatings and multilayer coatings were investigated based on the new electroless plating process. The coatings surface and cross-section morphologies were observed with scanning electron microscopy (SEM). The chemical compositions were analyzed by EDXS. The corrosion behaviors were evaluated by immersion, salt spray and electrochemical tests. The experimental results indicated that the Ni-P-ZrO 2 composite coatings suffered attack in NaCl solution but displayed passivation characteristics in NaOH and Na 2 SO 4 solutions. The corrosion resistance of Ni-P-ZrO 2 coatings was superior to Ni-P coatings due to the effect of ZrO 2 nano-particle. The multilayer coatings consisting of Ni-P-ZrO 2 /electroplating nickel/Ni-P (from substrate to surface) can protect magnesium alloys from corroding more than 1000 h for the salt spray test

  9. Formation of nanocrystalline phases during decomposition of amorphous Ni-P alloys by continuous linear heating

    Energy Technology Data Exchange (ETDEWEB)

    Revesz, A.; Lendvai, J. [Eoetvoes Lorand Tudomanyegyeten, Budapest (Hungary). Dept. for General Physics; Cziraki, A. [Eoetvoes Univ. (Hungary). Dept. of Solid State Physics; Liebermann, H.H. [Honeywell Amorphous Metals, Morristown, NJ (United States); Bakonyi, I. [Hungarian Academy of Sciences (Hungary). Research Inst. for Solid State Physics and Optics

    2001-05-01

    Differential scanning calorimetry (DSC), powder diffraction and high-resolution X-ray diffraction (XRD), and transmission electron microscopy (TEM) investigations have been performed on melt-quenched amorphous Ni-P alloys with compositions of 18 to 22 at.% P. The calorimetric results revealed different crystallization routes during linear heating below, at and above the eutectic point (19 at.% P) but with the same general transformation scheme as reported previously for electrodeposited and electroless Ni-P amorphous alloys. The composition dependence of the activation energy of the crystallization and the heats evolved during the structural transformations were determined from DSC measurements. The average grain size was derived from XRD line broadening and important information on the crystallization products and their microstructure could be revealed also from the TEM studies. All these findings will have special significance when analysing the results of isothermal annealing experiments to be described in a forthcoming paper. (orig.)

  10. Effect of heat treatment duration on tribological behavior of electroless Ni-(high)P coatings

    Science.gov (United States)

    Biswas, A.; Das, S. K.; Sahoo, P.

    2016-09-01

    Electroless nickel coating occurs through an autocatalytic chemical reaction and without the aid of electricity. From tribological perspective, it is recommended due to its high hardness, wear resistance, lubricity and corrosion resistance properties. In this paper electroless Ni-P coatings with high phosphorous weight percentages are developed on mild steel (AISI 1040) substrates. The coatings are subjected to heat treatment at 300°C and 500°C for time durations up to 4 hours. The effect of heat treatment duration on the hardness as well as tribological properties is discussed in detail. Hardness is measured in a micro hardness tester while the tribological tests are carried out on a pin-on-disc tribotester. Wear is reported in the form of wear rates of the sample subjected to the test. As expected, heat treatment of electroless Ni-P coating results in enhancement in its hardness which in turn increases its wear resistance. The present study also finds that duration of heat treatment has quite an effect on the properties of the coating. Increase in heat treatment time in general results in increase in the hardness of the coating. Coefficient of friction is also found to be lesser for the samples heat treated for longer durations (4 hour). However, in case of wear, similar trend is not observed. Instead samples heat treated for 2 to 3 hour display better wear resistance compared to the same heat treated for 4 hour duration. The microstructure of the coating is also carried out to ensure about its proper development. From scanning electron microscopy (SEM), the coating is found to possess the conventional nodular structure while energy dispersive X-ray analysis (EDX) shows that the phosphorous content in the coating to be greater than 9%. This means that the current coating belongs to the high phosphorous category. From X-ray diffraction analysis (XRD), it is found that coating is amorphous in as-deposited condition but transforms into a crystalline structure with

  11. Processing of aluminum matrix composites by electroless plating and melt infiltration

    International Nuclear Information System (INIS)

    Leon, C.A.; Bourassa, A.-M.; Drew, R.A.L.

    2000-01-01

    Reduction of the SiC/ Al interaction and enhancement of wetting between reinforcements and molten aluminum was obtained by modifying the ceramic surface with deposition of nickel and copper coatings. The preparation of nickel- and copper-coated ceramic particles as precursors for MMC fabrication was studied. Al 2 O 3 and SiC powders were successfully coated with Ni and Cu using electroless metal plating. Uniform and continuous metal films were deposited on both, alumina and silicon carbide powders XRD showed that the Ni-P deposit was predominantly amorphous, while the copper deposit was essentially polycrystalline. Infiltration results showed that the use of the coated powders enhances the wettability between the matrix and ceramic phase when processing particulate MMCs by a vacuum infiltration technique, giving a porosity-free composite with a homogeneously distributed reinforcing phase. The coating promoted easy metal flow through the preform, compared to the non-infiltration behavior of the uncoated counterpart samples XRD microstructural analysis of the composites indicates the formation of intermetallic phases such as CuAl 2 , in the case of copper coating, and NiAl and NiAl 3 when nickel-coated powders are infiltrated. Metallization of the ceramics minimizes the interfacial reaction of the SiC/Al composites and promotes wetting of Al 2 O 3 reinforcements with liquid aluminum. Copyright (2000) AD-TECH - International Foundation for the Advancement of Technology Ltd

  12. Fabrication of micro-Ni arrays by electroless and electrochemical ...

    Indian Academy of Sciences (India)

    Administrator

    in electroless solution. With the help of the membrane, nickel micro-columns of about 1–2 µm diameter were obtained. The surface-deposited nickel layer served as a substrate for the nickel micro-columns, and the resulting material possessed strong mechanical strength. Electrochemical deposition was operated without ...

  13. Electroless nickel – phosphorus coating on crab shell particles and its characterization

    Energy Technology Data Exchange (ETDEWEB)

    Arulvel, S., E-mail: gs.arulvel.research@gmail.com; Elayaperumal, A.; Jagatheeshwaran, M.S.

    2017-04-15

    Being hydrophilic material, crab shell particles have only a limited number of applications. It is, therefore, necessary to modify the surface of the crab shell particles. To make them useful ever for the applications, the main theme we proposed in this article is to utilize crab shell particles (CSP) with the core coated with nickel phosphorus (NiP) as a shell using the electroless coating process. For dealing with serious environmental problems, utilization of waste bio-shells is always an important factor to be considered. Chelating ability of crab shell particles eliminates the surface activation in this work proceeding to the coating process. The functional group, phase structure, microstructure, chemical composition and thermal analysis of CSP and NiP/CSP were characterized using Fourier transform infra-red spectroscopy (FTIR), x-ray diffraction analyzer (XRD), scanning electron microscope (SEM), energy-dispersive x-ray spectroscopy (EDS), and thermogravimetric analysis (TGA). The combination of an amorphous and crystalline structure was exhibited by CSP and NiP/CSP. NiP/CSP has shown a better thermal stability when compared to uncoated CSP. Stability test, adsorption test, and conductivity test were conducted for the study of adsorption behavior and conductivity of the particles. CSP presented a hydrophilic property in contrast to hydrophobic NiP/CSP. NiP/CSP presented a conductivity of about 44% greater compared to the CSP without any fluctuations. - Highlights: • Utilization of crab shell waste is focused on. • NiP coating on crab shell particle is fabricated using electroless process. • Thermal analysis, stability test, adsorption test and conductivity test were done. • Organic matrix of crab shell particle favors the coating process. • Results demonstrate the characterization of CSP core – NiP shell structure.

  14. Development of nickel membranes deposited on ceramic materials by electroless plating: studies of the hydrogen perm-selectivity properties at elevated temperatures

    International Nuclear Information System (INIS)

    Amer, J.

    2008-09-01

    The main objective of this work was to synthesize nickel based membranes by electroless plating on materials such as alumina-α, alumina-γ and zirconia with various textures and to determine their hydrogen perm-selectivity at high temperatures. The synthesis of metal films of high purity (≥ 99% mass Ni) resulting from the choice of hydrazine with its dual role of reducing and complexing agent has revealed that the diameter of pores on the surface support has an impact on the quality of metal adherence. The various contributions of hydrogen transport through these composite membranes at low temperatures (Knudsen and surface diffusion) and at high temperatures (Knudsen and activated diffusion) was established. At its implementation in a membrane reactor (reaction of propane dehydrogenation), the layer of nickel showed a very good resistance to coking. (author)

  15. Ni-P/Zn-Ni compositionally modulated multilayer coatings - Part 2: Corrosion and protection mechanisms

    Science.gov (United States)

    Bahadormanesh, Behrouz; Ghorbani, Mohammad

    2018-06-01

    The Ni-P/Zn-Ni compositionally modulated multilayer coatings CMMCs were electrodeposited from a single bath by switching the deposition current density. The corrosion resistance of the deposits was studied and compared with that of monolayers of Ni-P and Zn-Ni alloys via Tafel polarization, EIS and salt spray tests. Characterization of corrosion products by means of EDS and XRD revealed more details from the corrosion mechanism of the monolayers and multilayers. The corrosion current density of Ni-P/Zn-Ni CMMCs were around one tenth of Zn-Ni monolayer. The CMMC with incomplete layers performed lower polarization resistance and higher corrosion current density compared to the CMMC with complete layers. The electrical circuit that was proposed for modeling the corrosion process based on the EIS spectrum, proved that layering reduces the porosity and consequently improves the barrier properties. Although, layering of Zn-Ni layers with Ni-P deposits increased the time to red rust in salt spray test, the time for white rust formation decreased. The corrosion mechanism of both Zn-Ni and Ni-P (containing small amount of Zn) was preferential dissolution of Zn and the corrosion products were comprised of mainly Zn hydroxychloride and Zn hydroxycarbonate. Also, Ni and P did not take part in the corrosion products. Based on the electrochemical character of the layers and the morphology of the corroded surface, the corrosion mechanism of multilayers was discussed.

  16. Effect of surfactant on electrodeposited Ni-P layer as an under bump metallization

    International Nuclear Information System (INIS)

    Lin, Yung-Chi; Duh, Jenq-Gong

    2007-01-01

    In the microelectronic industry, the nickel plating has been used as the under bump metallization (UBM). The electroplated process was demonstrated to be a favorable alternative approach to produce the Ni-P layer as UBM. In this study, the role of sodium dodecylsulfate (SDS) addition in electrodeposition was investigated. The variations on surface morphology and surface roughness in the SDS-added process of electroplated Ni-P were revealed with both field emission scanning electronic microscope and atomic force microscope. The influence of SDS addition process in wettability of several commercial solder pastes, including Sn-37Pb, Sn-3.5Ag, and Sn-3.0Ag-0.5Cu, on electroplated Ni-P with various phosphorous contents was evaluated. The surface morphology and the surface roughness of Ni-P layer were affected by SDS addition. It was demonstrated that modified surface morphology and surface roughness acted to enhance the wettability of electroplated Ni-P. In addition, the interfacial reactions between Sn-3.0Ag-0.5Cu and electroplated Ni-P UBM with SDS addition during deposition was also probed and discussed

  17. Electroless or autocatalytic coating of microparticles for laser fusion targets

    International Nuclear Information System (INIS)

    Mayer, A.; Catlett, D.S.

    1977-04-01

    Use of a novel device for applying uniform metallic coatings to spherical microparticles is described. The apparatus deposits electroless metal coatings on hollow, thin-walled metal or sensitized nonmetallic micromandrels. The apparatus and process were developed for fabrication of microsphere pressure vessels for use as targets in laser-initiated fusion research

  18. Preparation and Study of Electromagnetic Interference Shielding Materials Comprised of Ni-Co Coated on Web-Like Biocarbon Nanofibers via Electroless Deposition

    Directory of Open Access Journals (Sweden)

    Xiaohu Huang

    2015-01-01

    Full Text Available Electromagnetic interference (EMI shielding materials made of Ni-Co coated on web-like biocarbon nanofibers were successfully prepared by electroless plating. Biocarbon nanofibers (CF with a novel web-like structure comprised of entangled and interconnected carbon nanoribbons were obtained using bacterial cellulose pyrolyzed at 1200°C. Paraffin wax matrix composites filled with different loadings (10, 20, and 30 wt%, resp. of CF and Ni-Co coated CF (NCCF were prepared. The electrical conductivities and electromagnetic parameters of the composites were investigated by the four-probe method and vector network analysis. From these results, the EMI shielding efficiencies (SE of NCCF composites were shown to be significantly higher than that of CF at the same mass fraction. The paraffin wax composites containing 30 wt% NCCF showed the highest EMI SE of 41.2 dB (99.99% attenuation, which are attributed to the higher electrical conductivity and permittivity of the NCCF composites than the CF composites. Additionally, EMI SE increased with an increase in CF and NCCF loading and the absorption was determined to be the primary factor governing EMI shielding. This study conclusively reveals that NCCF composites have potential applications as EMI shielding materials.

  19. Electroless metal plating of plastics

    International Nuclear Information System (INIS)

    Krause, L.J.

    1986-01-01

    The product of an electroless plating process is described for plating at least one main group metal directly on a surface of a polymeric substrate comprising the steps of forming a nonaqueous solution containing a metallic salt of an alkali metal in a positive valence state and at least one main group metal in a negative valence state, the main group metal being selected from the group consisting of Ge, Sn, Pb, As, Sb, Bi, Si and Te, selecting an aromatic polymeric substrate reducible by the solublized salt and resistant to degration during the reaction, and carrying out a redox reaction between the salt in solution and the substrate by contacting the solution with the substrate for a sufficient time to oxidize and deposit the main group metal in elemental form to produce a plated substrate. The product is characterized by the plated metal being directly on the surface of the polymeric substrate and the alkali metal being retained in the plated substrate with the substrate being negatively charged with electrons transferred from the main group metal during the redox reaction

  20. Lubricated sliding wear behaviour of Ni-P-W multilayered alloy coatings produced by pulse plating

    DEFF Research Database (Denmark)

    Panagopoulos, C. N.; Papachristos, V. D.; Christoffersen, Lasse

    2000-01-01

    The lubricated sliding wear behaviour of Ni-P-W multilayered alloy coatings sliding against hardened steel discs was studied, in a pin-on-disc set-up. The multilayered coatings had been deposited on mild steel pins by pulse plating and they consisted of ternary Ni-P-W layers of high and low W con...... lubrication regimes. The wear mechanisms in each lubrication regime were studied and in mixed lubrication regime, the effect of normal load and sliding speed on wear volume and friction coefficient was also studied. (C) 2000 Elsevier Science S.A. All rights reserved....

  1. Synthesis and characterization of Ni-P-Ag composite coating as efficient electrocatalyst for alkaline hydrogen evolution reaction

    International Nuclear Information System (INIS)

    Elias, Liju; Hegde, A. Chitharanjan

    2016-01-01

    Highlights: • Electrocatalytic activity of Ni-P alloy is improved by Ag nanoparticle incorporation. • Ni-P-Ag electrode is developed through sol-enhanced electrodeposition. • Ni-P-Ag composite coating shows better electrocatalytic efficiency for HER. - Abstract: The effect of addition of silver nanoparticle sol (SNS) into Ni-P plating bath was studied in terms of the variation in electrocatalytic behavior of the developed coatings in 1.0 M KOH. Ni-P-Ag composite coating was achieved through direct electrolysis by adding a known quantity of the conventionally prepared SNS into Ni-P bath. Ni-P-Ag coatings electrodeposited galvanostatically on copper under different conditions of the bath was used as electrode material for alkaline hydrogen evolution reaction (HER). The optimal concentration of the SNS required for maximum electrocatalytic activity towards HER was obtained by adding different volumes of SNS (from 0 to 50 mL L −1 ) into the bath. The HER efficiency of the test electrodes in 1.0 M KOH medium was examined using cyclic voltammetry (CV) and chronopotentiometry (CP) techniques. The kinetics of HER on the alloy and composite electrodes were established through Tafel polarization and electrochemical impedance spectroscopy (EIS) analyses. Energy dispersive spectroscopy (EDS) was used to confirm the incorporation of Ag nanoparticles into the Ni-P alloy matrix. The microstructure and morphology of the alloy and composite coatings were analyzed by Scanning Electron Microscopy (SEM). A significant improvement in the electrocatalytic property of nano-Ag derived composite coatings was found, and was attributed to the enhanced electroactive sites of Ag particles. Deposition conditions to maximize the electrocatalytic activity of Ni-P-Ag nanocomposite coatings in relation to traditional Ni-P alloy coatings was arrived, and results are discussed.

  2. Self-assembled synthesis of 3D Cu(In1 − xGax)Se2 nanoarrays by one-step electroless deposition into ordered AAO template

    International Nuclear Information System (INIS)

    Zhang, Bin; Zheng, Maojun; Xiong, Zuzhou; Zhu, Changqing; Li, Hong; Wang, Faze; Shen, Wenzhong; Zhou, Tao; Ma, Li

    2014-01-01

    Quaternary nanostructured Cu(In 1 − x Ga x )Se 2 (CIGS) arrays were successfully fabricated via a novel and simple solution-based protocol on the electroless deposition method, using a flexible, highly ordered anodic aluminium oxide (AAO) substrate. This method does not require electric power, complicated sensitization processes, or complexing agents, but provides nearly 100% pore fill factor to AAO templates. The field emission scanning electron microscopy (FE-SEM) images show that we obtained uniformly three-dimensional nanostructured CIGS arrays, and we can tailor the diameter and wall thicknesses of the nanostructure by adjusting the pore diameter of the AAO and metal Mo layer. Their chemical composition was determined by energy-dispersive spectroscopy analysis, which is very close to the stoichiometric value. The Raman spectroscopy, x-ray diffraction (XRD) pattern, and transmission electron microscopy (TEM) further confirm the formation of nanostructured CIGS with prominent chalcopyrite structure. The nanostructured CIGS arrays can support the design of low-cost, highlight-trapping, and enhanced carrier collection nanostructured solar cells. (paper)

  3. Fabrication and characterization of single segment CoNiP and multisegment CoNiP/Au nanowires

    International Nuclear Information System (INIS)

    Luu Van Thiem; Le Tuan Tu

    2014-01-01

    This paper presents the fabrication of CoNiP single segment and CoNiP/Au multisegment nanowires. We have fabricated these nanowires by electrodeposition method into polycarbonate templates with a nominal pore diameter about 100 nm. The hysteresis loops were measured with the applied magnetic field parallel and perpendicular to the wire axis using a vibrating sample magnetometer (VSM). The structure morphology was observed by Scanning Electron Microscopy (SEM) and the element composition of CoNiP/Au multisegment nanowires were analyzed by EDS. The results show that nanowires are very uniform with the diameter of 100 nm. The observed coercivity (H C ) and squareness (Mr/Ms) of CoNiP single segment nanowires are larger than the CoNiP/Au multisegment nanowires. (author)

  4. Electroless alloy/composite coatings

    Indian Academy of Sciences (India)

    The market for these coatings is expanding fast as the potential applications are on the rise. In the present article, an attempt has been made to review different electroless alloy/composite coatings with respect to bath types and their composition, properties and applications. Different characterisation studies have been ...

  5. Interlaminar and ductile characteristics of carbon fibers-reinforced plastics produced by nanoscaled electroless nickel plating on carbon fiber surfaces.

    Science.gov (United States)

    Park, Soo-Jin; Jang, Yu-Sin; Rhee, Kyong-Yop

    2002-01-15

    In this work, a new method based on nanoscaled Ni-P alloy coating on carbon fiber surfaces is proposed for the improvement of interfacial properties between fibers and epoxy matrix in a composite system. Fiber surfaces and the mechanical interfacial properties of composites were characterized by atomic absorption spectrophotometer (AAS), scanning electron microscopy (SEM), X-ray photoelectron spectrometry (XPS), interlaminar shear strength (ILSS), and impact strength. Experimental results showed that the O(1s)/C(1s) ratio or Ni and P amounts had been increased as the electroless nickel plating proceeded; the ILSS had also been slightly improved. The impact properties were significantly improved in the presence of Ni-P alloy on carbon fiber surfaces, increasing the ductility of the composites. This was probably due to the effect of substituted Ni-P alloy, leading to an increase of the resistance to the deformation and the crack initiation of the epoxy system.

  6. The Investigaton of Physical and Mechanical Properties of Ni-P Coatings

    Directory of Open Access Journals (Sweden)

    Vadim Chayevski

    2016-04-01

    Full Text Available The parameters of electrolytic synthesis of Ni-P coatings on steel surface from sulfate-chloride electrolyte have been determinated. The Ni-P alloys consist of separate phases of Ni and Ni3P and solid solution of implementation on the basis of the FCC Ni lattice, when it was deposited from the electrolyte at current density to be more than 7 A/dm2. The coating was formed with continuous globular surface at current density of 5 A/dm2. The globular formations are the Ni3P phase. The obtained at current density of 9 A/dm2 coatings have maximum value of micro¬hardness 430 HV.

  7. Electroless Cu Plating on Anodized Al Substrate for High Power LED.

    Science.gov (United States)

    Rha, Sa-Kyun; Lee, Youn-Seoung

    2015-03-01

    Area-selective copper deposition on screen printed Ag pattern/anodized Al/Al substrate was attempted using a neutral electroless plating processes for printed circuit boards (PCBs), according to a range of variation of pH 6.5-pH 8 at 70 °C. The utilized basic electroless solution consisted of copper(II) sulfate pentahydrate, sodium phosphinate monohydrate, sodium citrate tribasic dihydrate, ammonium chloride, and nickel(II) sulfate hexahydrate. The pH of the copper plating solutions was adjusted from pH 6.5 to pH 8 using NH4OH. Using electroless plating in pH 6.5 and pH 7 baths, surface damage to the anodized Al layer hardly occurred; the structure of the plated Cu-rich films was a typical fcc-Cu, but a small Ni component was co-deposited. In electroless plating at pH 8, the surface of the anodized Al layer was damaged and the Cu film was composed of a lot of Ni and P which were co-deposited with Cu. Finally, in a pH 7 bath, we can make a selectively electroless plated Cu film on a PCB without any lithography and without surface damage to the anodized Al layer.

  8. Electrochemical deposition of buried contacts in high-efficiency crystalline silicon photovoltaic cells

    DEFF Research Database (Denmark)

    Jensen, Jens Arne Dahl; Møller, Per; Bruton, Tim

    2003-01-01

    This article reports on a newly developed method for electrochemical deposition of buried Cu contacts in Si-based photovoltaic ~PV! cells. Contact grooves, 20 mm wide by 40 mm deep, were laser-cut into Si PV cells, hereafter applied with a thin electroless NiP base and subsequently filled with Cu...... by electrochemical deposition at a rate of up to 10 mm per min. With the newly developed process, void-free, superconformal Cu-filling of the laser-cut grooves was observed by scanning electron microscopy and focused ion beam techniques. The Cu microstructure in grooves showed both bottom and sidewall texture......, with a grain-size decreasing from the center to the edges of the buried Cu contacts and a pronounced lateral growth outside the laser-cut grooves. The measured specific contact resistances of the buried contacts was better than the production standard. Overall performance of the new PV cells was equal...

  9. Electroless nickel plating of arc discharge synthesized carbon nanotubes for metal matrix composites

    International Nuclear Information System (INIS)

    Jagannatham, M.; Sankaran, S.; Prathap, Haridoss

    2015-01-01

    Highlights: • Electroless Ni coatings have been performed on CNTs for various deposition times. • The deposition of nickel increased with increase in deposition time. • A deposition time of 60 min has been optimum for uniform coating of Ni on CNTs. • The CNTs with uniform coating of Ni are potential for reinforcements in composites. • Electroless nickel coatings are determined to be super paramagnetic behavior. - Abstract: Electroless nickel (EN) plating was performed on arc discharge synthesized multiwalled carbon nanotubes for various deposition times. X-ray diffraction (XRD), Transmission electron microscopy (TEM), and Raman spectroscopy characterization techniques are used to identify the presence of nickel deposition on the carbon nanotubes (CNTs) and the degree of graphitization. The results indicate that impurities are less in the purified CNTs as compared to raw carbon soot. Increasing deposition time up to 60 min increases uniform deposition of nickel throughout the length of the CNTs. However, for deposition time longer than 60 min, nickel particles are seen separated from the surface of the CNTs. Uniformly coated nickel CNTs throughout their length are potential candidates for reinforcements in composite materials. Magnetic properties of the nickel coated CNTs, with deposition time of 30 and 60 min were also evaluated. The magnetic saturation of nickel coated CNTs with deposition time of 30 min is less compared to nickel coated CNTs with deposition time of 60 min

  10. Electroless nickel plating of arc discharge synthesized carbon nanotubes for metal matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Jagannatham, M.; Sankaran, S.; Prathap, Haridoss, E-mail: prathap@iitm.ac.in

    2015-01-01

    Highlights: • Electroless Ni coatings have been performed on CNTs for various deposition times. • The deposition of nickel increased with increase in deposition time. • A deposition time of 60 min has been optimum for uniform coating of Ni on CNTs. • The CNTs with uniform coating of Ni are potential for reinforcements in composites. • Electroless nickel coatings are determined to be super paramagnetic behavior. - Abstract: Electroless nickel (EN) plating was performed on arc discharge synthesized multiwalled carbon nanotubes for various deposition times. X-ray diffraction (XRD), Transmission electron microscopy (TEM), and Raman spectroscopy characterization techniques are used to identify the presence of nickel deposition on the carbon nanotubes (CNTs) and the degree of graphitization. The results indicate that impurities are less in the purified CNTs as compared to raw carbon soot. Increasing deposition time up to 60 min increases uniform deposition of nickel throughout the length of the CNTs. However, for deposition time longer than 60 min, nickel particles are seen separated from the surface of the CNTs. Uniformly coated nickel CNTs throughout their length are potential candidates for reinforcements in composite materials. Magnetic properties of the nickel coated CNTs, with deposition time of 30 and 60 min were also evaluated. The magnetic saturation of nickel coated CNTs with deposition time of 30 min is less compared to nickel coated CNTs with deposition time of 60 min.

  11. Selective Electroless Nickel Plating on PMMA using Chloroform Pre-Treatment

    Science.gov (United States)

    Sipes, Nicholas

    In the past 5 years, we have discovered that chloroform promotes the adhesion of thin gold films to Poly(methyl methacrylate) surfaces. Based on this new understanding of the interaction of chloroform with PMMA and metal atoms, we were curious to see if chloroform would promote the adhesion of Nickel to PMMA deposited by electroless plating. My goal was to selectively electroless plate Nickel onto PMMA. Chloroform was spun-cast onto 1 inch square PMMA substrates. I used electrical tape to shield one half of the PMMA from the chloroform during spin-casting; this allowed for a direct comparison of treated vs. untreated. The samples were then put through hydrochloric acid and a series of baths provided by Transene Company Inc. to electrolessly deposit nickel on the sample. After many trials, there was a clear distinction in the adhesion strength of the Nickel to the plain PMMA surface vs. the chloroform pre-treated surface. Showing that it is possible to create chloroform sites via spin-casting for electroless nickel plating on PMMA opens up the challenge to better understand the chemistry taking place and to perfect the electroless plating process.

  12. Fabrication of Hydrophobic Surface on Wood Veneer via Electroless Nickel Plating Combined with Chemical Corrosion

    Directory of Open Access Journals (Sweden)

    Zhaojun Tang

    2015-12-01

    Full Text Available Birch veneers were coated with Ni-P films by a combined process of KBH4 activation and electroless plating. The plated veneers were further chemically corroded to obtain hydrophobic surfaces on wood. The effect of chemical corrosion on the contact angle of the veneers was investigated. The hydrophobic veneers were characterized by X-ray photo electron spectroscopy (XPS, scanning electron microscopy (SEM, and X-ray diffraction (XRD. The surface contact angle of birch veneer before and after it was plated with Ni-P alloy coating was 41º and 121º, respectively. The contact angle reached 136.7º when the nickel-coated veneers were corroded in CuSO4 aqueous solution for 30 min. XPS analysis showed that Cu0 cluster doped with little CuO formed on the corroded surface of Ni-P alloy film after chemical corrosion. SEM and XRD showed that rough copper clusters formed on the surface of the wood veneer and revealed the reason of the surface hydrophobicity. This study provides a new pathway for fabricating hydrophobic wood.

  13. Anodized porous titanium coated with Ni-CeO{sub 2} deposits for enhancing surface toughness and wear resistance

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xiaowei, E-mail: zhouxiaowei901@163.com; Ouyang, Chun

    2017-05-31

    Highlights: • Structural design of anodized nanoporous Ti was introduced for bonding pinholes to achieve a metallurgical bonding interface. • Anodized porous Ti substrate was activated by electroless Ni-P film to be acted as transitional layer to deposit Ni-CeO{sub 2} nanocomposite coatings. • An analytical model was validated for predicting the Ce-rich worn products as a self-lubricant phase for monitoring wear mechanisms. - Abstract: In order to make large improvements of surface toughness and wear resistance for pure titanium (Ti) substrate, anodic titanium oxide (ATO) surface with nanoporous structure was coated with the Ni-CeO{sub 2} nanocomposite coatings. Regarding TiO{sub 2} barrier layer on Ti surface to inhibit its electrochemical activity, pre-treatments were successively processed with anodizing, sensitizing, activating, and then followed by electroless Ni-P film to be acted as an activated layer for electroplating Ni-CeO{sub 2} deposits. The existing Pd atoms around ATO nanopores were expected as the heterogeneous nucleation sites for supporting the growing locations of electroless Ni-P film. The innovative of interface design using porous structure was introduced for bonding pinholes to achieve a metallurgical adhesion interface between Ti substrate and surface coatings. Besides the objectives of this work were to elucidate how effects by the adding CeO{sub 2} nanoparticles on modifying microstructures and wear mechanisms of Ni-CeO{sub 2} nanocomposite coatings. Many efforts of XRD, FE-SEM, TEM and Nanoindentation tests were devoted to comparing different wear behaviors of Ni-CeO{sub 2} coatings relative to pure nickel. Results indicated that uniform-distributed Ti nanopores with an average diameter size of ∼200 nm was achieved using the Phosphate-type anodizing solution at DC 150 V. A worn surface without fatigue cracks was observed for TAO surface coated with Ni-CeO{sub 2} deposits, showing the existing Ce-rich worn products to be acted as a

  14. Ablation, surface activation, and electroless metallization of insulating materials by pulsed excimer laser irradiation

    International Nuclear Information System (INIS)

    Lowndes, D.H.; Godbole, M.J.; Pedraza, A.J.

    1993-01-01

    Pulsed-laser irradiation of wide bandgap ceramic substrates, using photons with sub-bandgap energies, activates the ceramic surface for subsequent electroless copper deposition. The copper deposit is confined within the irradiated region when the substrate is subsequently immersed in an electroless copper bath. However, a high laser fluence (typically several j/cm 2 ) and repeated laser shots are needed to obtain uniform copper coverage by this direct-irradiation process. In contrast, by first applying an evaporated SiO x thin film (with x ∼1), laser ablation at quite low energy density (∼0.5 J/cm 2 ) results in re-deposition on the ceramic substrate of material that is catalytic for subsequent electroless copper deposition. Experiments indicate that the re-deposited material is on silicon, on which copper nucleates. Using an SiO x film on a laser-transparent substrate, quite fine (∼12 μm) copper lines can be formed at the boundary of the region that is laser-etched in SiO x . Using SiO x with an absorbing (polycrystalline) ceramic substrate, more-or-less uniform activation and subsequent copper deposition are obtained. In the later case, interactions with the ceramic substrate also may be important for uniform deposition

  15. Corrosion resistance enhancement of Ni-P-nano SiO{sub 2} composite coatings on aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Sadreddini, Sina, E-mail: sina.sadreddini1986@gmail.com [Department of Materials Science and Engineering, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Afshar, Abdollah [Department of Materials Science and Engineering, Sharif university of Technology, Tehran (Iran, Islamic Republic of)

    2014-06-01

    In this study, the influences of different concentrations of SiO{sub 2} nano sized particles in the bath on deposition rate, surface morphology and corrosion behavior of Ni-P-SiO{sub 2} Composite coatings were investigated. The deposition rate of coating was influenced by incorporation of SiO{sub 2} particles. The microstructure was investigated with field emission scanning electron microscopy (FESEM). The amount of SiO{sub 2} was examined by Energy Dispersive Analysis of X-Ray (EDX) and amount of SiO{sub 2} nanoparticles co-deposited reached a maximum value at 4.5 %wt. Corrosion behavior of coated aluminum was evaluated by electrochemical impedance spectroscopy (EIS) and polarization techniques. The results illustrated that the corrosion rate decreases (6.5–0.6 μA/cm{sup 2}) and the corrosion potential increases (−0.64 to −0.3) with increasing the quantity of the SiO{sub 2} nanoparticles in the bath. Moreover, Ni-p-SiO{sub 2} nano-composite coating possesses less porosity than that in Ni-P coating, resulting in improving corrosion resistance.

  16. Nickel Electroless Plating: Adhesion Analysis for Mono-Type Crystalline Silicon Solar Cells.

    Science.gov (United States)

    Shin, Eun Gu; Rehman, Atteq ur; Lee, Sang Hee; Lee, Soo Hong

    2015-10-01

    The adhesion of the front electrodes to silicon substrate is the most important parameters to be optimized. Nickel silicide which is formed by sintering process using a silicon substrate improves the mechanical and electrical properties as well as act as diffusion barrier for copper. In this experiment p-type mono-crystalline czochralski (CZ) silicon wafers having resistivity of 1.5 Ω·cm were used to study one step and two step nickel electroless plating process. POCl3 diffusion process was performed to form the emitter with the sheet resistance of 70 ohm/sq. The Six, layer was set down as an antireflection coating (ARC) layer at emitter surface by plasma enhanced chemical vapor deposition (PECVD) process. Laser ablation process was used to open SiNx passivation layer locally for the formation of the front electrodes. Nickel was deposited by electroless plating process by one step and two step nickel electroless deposition process. The two step nickel plating was performed by applying a second nickel deposition step subsequent to the first sintering process. Furthermore, the adhesion analysis for both one step and two steps process was conducted using peel force tester (universal testing machine, H5KT) after depositing Cu contact by light induced plating (LIP).

  17. Comparative study of electroless nickel film on different organic acids modified cuprammonium fabric (CF)

    Science.gov (United States)

    Zhao, Hang; Lu, Yinxiang

    2016-01-01

    Nickel films were grown on citric acid (CA), malic acid (MA) and oxalic acid (OA) modified cuprammonium fabric (CF) substrates via electroless nickel deposition. The nickel films were examined using scanning electron microscopy (SEM) and X-ray diffraction (XRD). Their individual deposition rate and electromagnetic interference (EMI) shielding effectiveness (SE) were also investigated to compare the properties of electroless nickel films. SEM images illustrated that the nickel film on MA modified CF substrate was smooth and uniform, and the density of nickel nuclei was much higher. Compared with that of CA modified CF, the coverage of nickel nuclei on OA and MA modified CF substrate was very limited and the nickel particles size was too big. XRD analysis showed that the nickel films deposited on the different modified CF substrates had a structure with Ni (1 1 1) preferred orientation. All the nickel coatings via different acid modification were firmly adhered to the CF substrates, as demonstrated by an ultrasonic washing test. The result of tensile test indicated that the electroless nickel plating on CF has ability to strengthen the CF substrate while causes limited effect on tensile elongation. Moreover, the nickel film deposited on MA modified CF substrate showed more predominant in EMI SE than that deposited on CA or OA modified CF.

  18. Hard coatings on magnesium alloys by sputter deposition using a pulsed d.c. bias voltage

    Energy Technology Data Exchange (ETDEWEB)

    Reiners, G. [Bundesanstalt fuer Materialforschung und -pruefung, Berlin (Germany); Griepentrog, M. [Bundesanstalt fuer Materialforschung und -pruefung, Berlin (Germany)

    1995-12-01

    An increasing use of magnesium-based light-metal alloys for various industrial applications was predicted in different technological studies. Companies in different branches have developed machine parts made of magnesium alloys (e.g. cars, car engines, sewing and knitting machines). Hence, this work was started to evaluate the ability of hard coatings obtained by physical vapour deposition (PVD) in combination with coatings obtained by electrochemical deposition to protect magnesium alloys against wear and corrosion. TiN hard coatings were deposited onto magnesium alloys by unbalanced magnetron sputter deposition. A bipolar pulsed d.c. bias voltage was used to limit substrate temperatures to 180 C during deposition without considerable loss of microhardness and adhesion. Adhesion, hardness and load-carrying capacity of TiN coatings deposited directly onto magnesium alloys are compared with the corresponding values of TiN coatings deposited onto substrates which had been coated electroless with an Ni-P alloy interlayer prior to the PVD. (orig.)

  19. Electroless alloy/composite coatings: A review

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    pharmaceutical ... Four types of reducing agent have been used for electroless nickel bath including ..... coatings, however, the bath is more stable at a pH of about 9. 5. ..... ite coating by dry sliding tests with a slider-on-cylinder tribometer in ...

  20. A structural study of effects of NiP seed layer on the magnetic properties of CoCrPt/Ti/NiP perpendicular magnetic films

    CERN Document Server

    Sun, C J; Wang, J P; Soo, E W; Noh, D Y; Je, J H; Hwu, Y K

    2003-01-01

    The CoCrPt/Ti/NiP films for perpendicular magnetic recording were studied using X-ray scattering and anomalous X-ray scattering. When the NiP seed layer was used, the long range order of the texture peak of the magnetic film decreased and less Co was associated with this Bragg order. The structural results were consistent with the observed increased coercivity and decreased magnetization due to the increased magnetic grain isolation caused by the presence of NiP seed layer.

  1. The effect of inducing uniform Cu growth on formation of electroless Cu seed layer

    International Nuclear Information System (INIS)

    Lim, Taeho; Kim, Myung Jun; Park, Kyung Ju; Kim, Kwang Hwan; Choe, Seunghoe; Lee, Young-Soo; Kim, Jae Jeong

    2014-01-01

    The uniformity of Cu growth on Pd nanocatalysts was controlled by using organic additives in the formation of electroless Cu seed layers. Polyethylene glycol (PEG, Mw. 8000) not only reduced the deposition rate but also improved the uniformity of Cu growth on each Pd nanocatalyst during the seed layer formation. The stronger suppression effect of PEG on Cu than on Pd reduced the difference in the deposition rate between the two surfaces, resulting in the uniform deposition. Meanwhile, bis(3-sulfopropyl) disulfide degraded the uniformity by strong and nonselective suppression. The sheet resistance measurement and atomic force microscopy imaging revealed that the uniform Cu growth by PEG was more advantageous for the formation of a thin and smooth Cu seed layer than the non-uniform growth. The uniform Cu growth also had a positive influence on the subsequent Cu electrodeposition: the 60-nm-thick electrodeposited Cu film on the Cu seed layer showed low resistivity (2.70 μΩ·cm), low surface roughness (6.98 nm), and good adhesion strength. - Highlights: • Uniform Cu growth on Pd was achieved in formation of electroless Cu seed layer. • PEG addition to electroless bath improved the uniformity of Cu growth on Pd. • A thin, smooth and continuous Cu seed layer was obtained with PEG. • Adhesion strength of the Cu seed layer was also improved with PEG. • The uniformity improvement positively affected subsequent Cu electrodeposition

  2. Electroless Plated Nanodiamond Coating for Stainless Steel Passivation

    International Nuclear Information System (INIS)

    Li, D.; Korinko, P.; Spencer, W.; Stein, E.

    2016-01-01

    Tritium gas sample bottles and manifold components require passivation surface treatments to minimize the interaction of the hydrogen isotopes with surface contamination on the stainless steel containment materials. This document summarizes the effort to evaluate electroless plated nanodiamond coatings as a passivation layer for stainless steel. In this work, we developed an electroless nanodiamond (ND)-copper (Cu) coating process to deposit ND on stainless steel parts with the diamond loadings of 0%, 25% and 50% v/v in a Cu matrix. The coated Conflat Flanged Vessel Assemblies (CFVAs) were evaluated on surface morphology, composition, ND distribution, residual hydrogen release, and surface reactivity with deuterium. For as-received Cu and ND-Cu coated CFVAs, hydrogen off-gassing is rapid, and the off-gas rates of H 2 was one to two orders of magnitude higher than that for both untreated and electropolished stainless steel CFVAs, and hydrogen and deuterium reacted to form HD as well. These results indicated that residual H 2 was entrapped in the Cu and ND-Cu coated CFVAs during the coating process, and moisture was adsorbed on the surface, and ND and/or Cu might facilitate catalytic isotope exchange reaction for HD formation. However, hydrocarbons (i.e., CH 3 ) did not form, and did not appear to be an issue for the Cu and ND-Cu coated CFVAs. After vacuum heating, residual H 2 and adsorbed H 2 O in the Cu and ND-Cu coated CFVAs were dramatically reduced. The H 2 off-gassing rate after the vacuum treatment of Cu and 50% ND-Cu coated CFVAs was on the level of 10 -14 l mbar/s cm 2 , while H 2 O off-gas rate was on the level of 10 -15 l mbar/s cm 2 , consistent with the untreated or electropolished stainless steel CFVA, but the HD formation remained. The Restek EP bottle was used as a reference for this work. The Restek Electro-Polished (EP) bottle and their SilTek coated bottles tested under a different research project exhibited very little hydrogen off-gassing and

  3. Electroless Plated Nanodiamond Coating for Stainless Steel Passivation

    Energy Technology Data Exchange (ETDEWEB)

    Li, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Korinko, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Spencer, W. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Stein, E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-15

    Tritium gas sample bottles and manifold components require passivation surface treatments to minimize the interaction of the hydrogen isotopes with surface contamination on the stainless steel containment materials. This document summarizes the effort to evaluate electroless plated nanodiamond coatings as a passivation layer for stainless steel. In this work, we developed an electroless nanodiamond (ND)-copper (Cu) coating process to deposit ND on stainless steel parts with the diamond loadings of 0%, 25% and 50% v/v in a Cu matrix. The coated Conflat Flanged Vessel Assemblies (CFVAs) were evaluated on surface morphology, composition, ND distribution, residual hydrogen release, and surface reactivity with deuterium. For as-received Cu and ND-Cu coated CFVAs, hydrogen off-gassing is rapid, and the off-gas rates of H2 was one to two orders of magnitude higher than that for both untreated and electropolished stainless steel CFVAs, and hydrogen and deuterium reacted to form HD as well. These results indicated that residual H2 was entrapped in the Cu and ND-Cu coated CFVAs during the coating process, and moisture was adsorbed on the surface, and ND and/or Cu might facilitate catalytic isotope exchange reaction for HD formation. However, hydrocarbons (i.e., CH3) did not form, and did not appear to be an issue for the Cu and ND-Cu coated CFVAs. After vacuum heating, residual H2 and adsorbed H2O in the Cu and ND-Cu coated CFVAs were dramatically reduced. The H2 off-gassing rate after the vacuum treatment of Cu and 50% ND-Cu coated CFVAs was on the level of 10-14 l mbar/s cm2, while H2O off-gas rate was on the level of 10-15 l mbar/s cm2, consistent with the untreated or electropolished stainless steel CFVA, but the HD formation remained. The Restek EP bottle was used as a reference for this work. The Restek Electro-Polished (EP) bottle and their Sil

  4. Electroless nickel plating of arc discharge synthesized carbon nanotubes for metal matrix composites

    Science.gov (United States)

    Jagannatham, M.; Sankaran, S.; Prathap, Haridoss

    2015-01-01

    Electroless nickel (EN) plating was performed on arc discharge synthesized multiwalled carbon nanotubes for various deposition times. X-ray diffraction (XRD), Transmission electron microscopy (TEM), and Raman spectroscopy characterization techniques are used to identify the presence of nickel deposition on the carbon nanotubes (CNTs) and the degree of graphitization. The results indicate that impurities are less in the purified CNTs as compared to raw carbon soot. Increasing deposition time up to 60 min increases uniform deposition of nickel throughout the length of the CNTs. However, for deposition time longer than 60 min, nickel particles are seen separated from the surface of the CNTs. Uniformly coated nickel CNTs throughout their length are potential candidates for reinforcements in composite materials. Magnetic properties of the nickel coated CNTs, with deposition time of 30 and 60 min were also evaluated. The magnetic saturation of nickel coated CNTs with deposition time of 30 min is less compared to nickel coated CNTs with deposition time of 60 min.

  5. Electroless Sliver-Plating Process in the Preparation of 103Pd-125I Hybrid Brachytherapy Seed Cores

    Directory of Open Access Journals (Sweden)

    LI Zhong-yong1,2;CHEN Bin-da1;Lv Xiao-zhou1;LU Jin-hui1;CUI Hai-ping1,2

    2014-02-01

    Full Text Available Electroless 103Pd plating and electroless Ag plating and chemical 125I depositing were took place on the surface of carbon rods in turn, which was a reliable method for the preparation of 103Pd-125I hybrid brachytherapy seed cores. 103Pd and 125I were deposited on the same substrate effectively through silver coating as a bridge. The process of electroless Ag plating was a novel and important step in the preparation of 103Pd-125I hybrid seed. In this work, the process of electroless Ag plating was studied using 0.5×3.0 mm carbon rods with palladium coating as substrate, silver-ammino complex as precursor, 110mAg as radioactive tracer, and hydrazine as reductant. The optimum conditions were AgNO3 2g/L,Na2EDTA 40 g/L,NH3•H2O 16.25%,H4N2•H2O 5‰,pH=10,t=60 min,and T=35 ℃. Sliver deposited on each carbon rod was uniform, and sliver-coating was white and smooth.

  6. Metal Deposition from Organic Solutions for Microelectronic Applications

    National Research Council Canada - National Science Library

    Dahlgren, E

    2001-01-01

    ... plating in aqueous solutions. This process was also shown to be capable of producing selectively deposited seed layers only on exposed reactive metal surfaces for subsequent electroless and electrolytic metal depositions...

  7. Development of high performance electroless Ni–P–HNT composite coatings

    International Nuclear Information System (INIS)

    Ranganatha, S.; Venkatesha, T.V.; Vathsala, K.

    2012-01-01

    Highlights: ► Novel Ni–P composites were prepared by incorporating Halloysite nanotubes. ► Mild steel specimens surface engineered by nickel using electroless technique. ► Incorporated halloysite nanotubes made nickel matrix highly corrosion resistant. ► HNT composite exhibits high hardness and largely reduces friction. - Abstract: Halloysite nanotubes (HNTs) of the dimension 50 nm × 1–3 μm (diameter × length) are utililized to fabricate the alloy composite by employing electroless/autocatalytic deposition technique. Electroless Ni–P–HNT binary alloy composite coatings are prepared successfully on low carbon steel. These nanotubes were made to get inserted/incorporated into nickel matrix and corresponding composites are examined for their electrochemical, mechanical and tribological performances and compared with that of plain Ni–P. The coatings were characterized using scanning electron microscopy (SEM) and Energy dispersive X-ray analysis (EDX) techniques to analyze surface nature and composition correspondingly. Small amount of incorporated HNTs made Ni–P deposits appreciable enhancement and betterment in corrosion resistance, hardness and friction resistance. This drastic improvement in the properties reflects the effect of addition of HNTs into Ni–P matrix leading to the development of high performance Ni–P–HNT composite coatings.

  8. Tribological and corrosion behaviour of electroless Ni-B coating possessing a blackberry like structure

    Science.gov (United States)

    Bülbül, Ferhat; Altun, Hikmet; Küçük, Özkan; Ezirmik, Vefa

    2012-08-01

    This study aims to evaluate the tribological and corrosion properties of the electroless Ni-B coating deposited on AISI 304 stainless steels. The microstructure of the coating was characterized using x-ray diffraction (XRD) and scanning electron microscopy-energy dispersive spectrometry (SEM-EDS). XRD analysis revealed that the prepared coating possessed an amorphous character. SEM-EDS investigation also indicated that a non-stoichiometric Ni-B coating was deposited with a columnar growth mechanism on the stainless steel substrate and the morphology of the growth surface was blackberry-like. The hardness and tribological properties were characterized by microhardness and a pin-on-disc wear test. The electroless Ni-B coated sample had a higher degree of hardness, a lower friction coefficient and a lower wear rate than the uncoated substrate. The electrochemical potentiodynamic polarization method was used to evaluate the corrosion resistance of the coating. The electroless Ni-B coating offered cathodic protection on the substrate by acting as a sacrificial anode although it was electrochemically more reactive than the stainless steel substrate.

  9. Process and properties of electroless Ni–Cu–P–ZrO2 nanocomposite coatings

    International Nuclear Information System (INIS)

    Ranganatha, S.; Venkatesha, T.V.; Vathsala, K.

    2012-01-01

    Highlights: ► The Ni–P and Ni–P–Cu–ZrO 2 coatings were produced by electroless technique. ► The influence of copper and ZrO 2 nanoparticles on Ni–P was studied. ► Surface morphology, structure and electrochemical behavior were evaluated. ► The Ni–Cu–P–ZrO 2 and Ni–P–ZrO 2 coatings are more resistant to corrosion than Ni–P. ► Introduction of Cu and ZrO 2 in the matrix aids to the enhancement of microhardness. -- Abstract: Electroless Ni–Cu–P–ZrO 2 composite coating was successfully obtained on low carbon steel matrix by electroless plating technique. Coatings with different compositions were obtained by varying copper as ternary metal and nano sized zirconium oxide particles so as to obtain elevated corrosion resistant Ni–P coating. Microstructure, crystal structure and composition of deposits were analyzed by SEM, EDX and XRD techniques. The corrosion behavior of the deposits was studied by anodic polarization, Tafel plots and electrochemical impedance spectroscopy (EIS) in 3.5% sodium chloride solution. The ZrO 2 incorporated Ni–P coating showed higher corrosion resistance than plain Ni–P. The introduction of copper metal into Ni–P–ZrO 2 enhanced the protection ability against corrosion. The influence of copper metal and nanoparticles on microhardness of coatings was evaluated.

  10. Evaluation of Electroless-Nickel Plated Polypropylene under Thermal Cycling and Mechanical Tests

    Directory of Open Access Journals (Sweden)

    O.O. Ajibola

    2016-09-01

    Full Text Available The electroless-nickel composite (ENC consisting of bright metallic electroless-nickel (EN and dull electroless-nickel-phosphorus (EN-P were deposited on the polypropylene (PP substrate from the sodium hypophosphite baths. The ENC plated specimens were subjected to abrasive wear-adhesion test of 1750, 3500, 7000 and 14000 cycles; thermal cycle-adhesion tests, and tensile strength and creep tests. The deposition of ENC influenced the strength and creep strain properties of the PP. The maximum stress σ of 118 (MPa was obtained from EN-PP specimen at strain  of 0.1 mm/mm as compared with the PP having stress σ of 36 (MPa at strain  of 0.07 mm/mm before failure The surface appearances and microstructures of ENC film on PP substrates were examined under the higher resolution metallurgical microscope with digital camera and microscopic camera. The composition of ENC film was characterized using Scanning Electron Microscopy and Energy Dispersive X-Ray analyses (Jeol JSM-7600F Field Emission SEM/EDX, The micrographs and spectra lines data generated were used to interpret the results.

  11. Site-selective electroless nickel plating on patterned thin films of macromolecular metal complexes.

    Science.gov (United States)

    Kimura, Mutsumi; Yamagiwa, Hiroki; Asakawa, Daisuke; Noguchi, Makoto; Kurashina, Tadashi; Fukawa, Tadashi; Shirai, Hirofusa

    2010-12-01

    We demonstrate a simple route to depositing nickel layer patterns using photocross-linked polymer thin films containing palladium catalysts, which can be used as adhesive interlayers for fabrication of nickel patterns on glass and plastic substrates. Electroless nickel patterns can be obtained in three steps: (i) the pattern formation of partially quaterized poly(vinyl pyridine) by UV irradiation, (ii) the formation of macromolecular metal complex with palladium, and (iii) the nickel metallization using electroless plating bath. Metallization is site-selective and allows for a high resolution. And the resulting nickel layered structure shows good adhesion with glass and plastic substrates. The direct patterning of metallic layers onto insulating substrates indicates a great potential for fabricating micro/nano devices.

  12. Study of anti corrosive behaviour on A I 6061 samples covered with Ni-P alloys obtained by autocatalytic method

    International Nuclear Information System (INIS)

    Castro, M. E; Barbero, J. A; Bubach, E

    2006-01-01

    There are many ways to keep safe an industrial material from corrosion attack.One is covering the piece with a layer of another material which corrosion resistance is higher to the one of the element to protect.The anticorrosion protection mechanism is achieved by the formation of a physical pore less barrier without any defects.This avoid the arrival of those agents from environment responsible of electrochemical attack.In this paper, corrosion resistance of metallic coatings over nuclear usage aluminum samples is analyzed.Our interest is aimed on nickel I phosphorous alloy coatings (Ni I P) obtained by electroless method (autocatalytic) over Al 6061 alloy samples.A comparative study is carried on with different phosphorous contents but always under 12 %.This job is completed with other nickel coating, Vitro vac 0080 (with no phosphorous content) in order to compare structures and anti corrosive properties.Besides, the comparison between mentioned materials and aluminum samples is made.The study is carried on using superficial characterization of each sample with or without coating through a series of complementary techniques such as chemical, electrochemical (linear sweep voltammetry, cyclic voltammetry, polarization resistance determination) and physical (scanning electronic microscopy, hardness determination) techniques.Finally, variable correlation is made as a function of the phosphorous content in the samples used in the experiences.The coating structure obtained is amorphous.It presents no pore or failure and its hardness shows important values.The electrochemical analysis allows to check that anti corrosive protection capacity of Ni-P alloy increases with the phosphorous content in the coat. Al 6061 by itself demonstrate an electrochemically bad behaviour.Substrate I coating adherence is very good [es

  13. Electroless plating of PVC plastic through new surface modification method applying a semi-IPN hydrogel film

    International Nuclear Information System (INIS)

    Wang, Ming-Qiu; Yan, Jun; Du, Shi-Guo; Li, Hong-Guang

    2013-01-01

    A novel palladium-free surface activation process for electroless nickel plating was developed. This method applied a semi-Interpenetrating Polymer Network (semi-IPN) hydrogel film to modify the poly(vinyl chloride) (PVC) surface by chemical bonds. The activation process involved the formation of semi-IPN hydrogel film on the PVC surface and the immobilization of catalyst for electroless plating linking to the pretreated substrate via N-Ni chemical bond. The hydrogel layer was used as the chemisorption sites for nickel ions, and the catalyst could initiate the subsequent electroless nickel plating onto the PVC surface. Finally, a Ni–P layer was deposited on the nickel-activated PVC substrate by electroless plating technique. The composition and morphology of nickel-plated PVC foils were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The results of SEM and XRD show that a compact and continuous Ni–P layer with amorphous nickel phase is formed on the PVC surface. EDS shows that the content of the nickel and the phosphorus in the deposits is 89.4 wt.% and 10.6 wt.%, respectively.

  14. Electroless plating of PVC plastic through new surface modification method applying a semi-IPN hydrogel film

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ming-Qiu, E-mail: mqwang1514@163.com; Yan, Jun; Du, Shi-Guo; Li, Hong-Guang

    2013-07-15

    A novel palladium-free surface activation process for electroless nickel plating was developed. This method applied a semi-Interpenetrating Polymer Network (semi-IPN) hydrogel film to modify the poly(vinyl chloride) (PVC) surface by chemical bonds. The activation process involved the formation of semi-IPN hydrogel film on the PVC surface and the immobilization of catalyst for electroless plating linking to the pretreated substrate via N-Ni chemical bond. The hydrogel layer was used as the chemisorption sites for nickel ions, and the catalyst could initiate the subsequent electroless nickel plating onto the PVC surface. Finally, a Ni–P layer was deposited on the nickel-activated PVC substrate by electroless plating technique. The composition and morphology of nickel-plated PVC foils were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The results of SEM and XRD show that a compact and continuous Ni–P layer with amorphous nickel phase is formed on the PVC surface. EDS shows that the content of the nickel and the phosphorus in the deposits is 89.4 wt.% and 10.6 wt.%, respectively.

  15. Electroless metal plating of plastics

    Science.gov (United States)

    Krause, L.J.

    1982-09-20

    Process for plating main group metals on aromatic polymers is carried out by the use of a nonaqueous solution of a salt of an alkali metal in a positive valence state and a main group metal in a negative valence state with contact between the solution and polymer providing a redox reaction causing the deposition of the main group metal and the reduction of the polymer. Products from the process exhibit useful decorative and electrical properties.

  16. Electroless nickel plating on stainless steels and aluminum

    Science.gov (United States)

    1966-01-01

    Procedures for applying an adherent electroless nickel plating on 303 SE, 304, and 17-7 PH stainless steels, and 7075 aluminum alloy was developed. When heat treated, the electroless nickel plating provides a hard surface coating on a high strength, corrosion resistant substrate.

  17. Comparative study of electroless nickel film on different organic acids modified cuprammonium fabric (CF)

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Hang; Lu, Yinxiang, E-mail: yxlu@fudan.edu.cn

    2016-01-30

    Graphical abstract: - Highlights: • An etchant-free and moderate surface pre-treatment process was studied. • Citric acid, malic acid and oxalic acid were selected as modification agents. • High adhesive nickel coating on cuprammonium fabric was obtained. • The electromagnetic parameters were evaluated from the experimental data. - Abstract: Nickel films were grown on citric acid (CA), malic acid (MA) and oxalic acid (OA) modified cuprammonium fabric (CF) substrates via electroless nickel deposition. The nickel films were examined using scanning electron microscopy (SEM) and X-ray diffraction (XRD). Their individual deposition rate and electromagnetic interference (EMI) shielding effectiveness (SE) were also investigated to compare the properties of electroless nickel films. SEM images illustrated that the nickel film on MA modified CF substrate was smooth and uniform, and the density of nickel nuclei was much higher. Compared with that of CA modified CF, the coverage of nickel nuclei on OA and MA modified CF substrate was very limited and the nickel particles size was too big. XRD analysis showed that the nickel films deposited on the different modified CF substrates had a structure with Ni (1 1 1) preferred orientation. All the nickel coatings via different acid modification were firmly adhered to the CF substrates, as demonstrated by an ultrasonic washing test. The result of tensile test indicated that the electroless nickel plating on CF has ability to strengthen the CF substrate while causes limited effect on tensile elongation. Moreover, the nickel film deposited on MA modified CF substrate showed more predominant in EMI SE than that deposited on CA or OA modified CF.

  18. Atom probe characterization of precipitation in an aged Cu-Ni-P alloy

    International Nuclear Information System (INIS)

    Aruga, Yasuhiro; Saxey, David W.; Marquis, Emmanuelle A.; Cerezo, Alfred; Smith, George D.W.

    2011-01-01

    A temporal evolution of clusters associated with age hardening behavior in a Cu-Ni-P alloy during ageing at 250 o C for up to 100 ks after solution treatment has been carried out. A three-dimensional atom probe (3DAP) analysis has showed that Ni-P clusters are present in the as-quenched condition, and that the cluster density increases as the ageing time increases. The clusters have a wide range of Ni/P ratios when they are relatively small, whereas larger clusters exhibit a narrow distribution of the Ni/P ratio, approaching a ratio of approximately two. These results would indicate that the clusters with various Ni/P ratios form at the early stage of precipitation and the ratio approaches a value identical to that of the equilibrium phase at 250 o C as the clusters enlarge during ageing. -- Research highlights: → We characterize the clustering behavior in a Cu-Ni-P alloy during ageing at 250 o C. → The clusters have a wide range of Ni/P ratios when they are relatively small. → Larger clusters exhibit a narrow distribution of the ratio. → Hardness increases almost linearly with the logarithm of ageing time beyond 100s. → We believe increasing density and size of the clusters leads to the age hardening.

  19. Environmentally benign electroless nickel plating using supercritical carbon-dioxide on hydrophilically modified acrylonitrile-butadiene-styrene

    Science.gov (United States)

    Tengsuwan, Siwach; Ohshima, Masahiro

    2014-08-01

    Electroless Ni-P plating using supercritical carbon dioxide (scCO2) in conjunction with copolymer-based hydrophilic modification was applied to an acrylonitrile-butadiene-styrene (ABS) substrate. The surface of ABS substrate was hydrophilically modified by blending with a multi-block copolymer, poly(ether-ester-amide)s (PEEA), in injection molding process. The substrate was then impregnated with Pd(II)-hexafluoroacetylacetonate, Pd(hfa)2, using scCO2, followed by the electroless plating reaction. ABS/PEEA substrates with different PEEA to ABS blend ratios and different volume ratios of butadiene to the styrene-acrylonitrile copolymer (SAN) matrix were prepared to investigate how the dispersed PEEA and butadiene domains affected the blend morphology and the adhesive strength of the plating metal-to-polymer contact. Increasing the PEEA copolymer to ABS blend ratio increased the mass transfer rate of the plating solution in the ABS substrate. Consequently, the metal-polymer composite layer became thicker, which increased the adhesive strength of the metal-to-polymer contact because of the anchoring effect. The butadiene domains appeared to attract the Pd catalyst precursor, and thus, the proportion of butadiene in the ABS matrix also affected the adhesive strength of the contact between the metal layer and the substrate. The ABS substrate was successfully plated with a Ni-P metal layer with an average adhesive strength of 9.1 ± 0.5 N cm-1 by choosing appropriate ABS/PEEA blend ratios and a Pd(hfa)2 concentration.

  20. Fine Structure Study of the Plasma Coatings B4C-Ni-P

    Science.gov (United States)

    Kornienko, E. E.; Bezrukova, V. A.; Kuz'min, V. I.; Lozhkin, V. S.; Tutunkova, M. K.

    2017-12-01

    The article considers structure of coatings formed of the B4C-Ni-P powder. The coatings were deposited using air-plasma spraying with the unit for annular injection of powder. The pipes from steel 20 (0.2 % C) were used as a substrate. The structure and phase composition of the coatings were studied by optical microscopy, scanning electron microscopy, transmission electron microscopy and X-ray diffractometry. It is shown that high-density composite coatings consisting of boron carbide particles distributed in the nickel boride metal matrix are formed using air-plasma spraying. The areas with round inclusions characterized by the increased amount of nickel, phosphorus and boron are located around the boron carbide particles. Boron oxides and nickel oxides are also present in the coatings. Thin interlayers with amorphous-crystalline structure are formed around the boron carbide particles. The thickness of these interlayers does not exceed 1 μm. The metal matrix material represents areas with nanocrystalline structure and columnar crystals.

  1. HER Catalytic Activity of Electrodeposited Ni-P Nanowires under the Influence of Magnetic Field

    Directory of Open Access Journals (Sweden)

    Hung-Bin Lee

    2013-01-01

    Full Text Available Nickel alloy electrodes both in plane and nanowire morphologies were fabricated by electrodeposition in sulfamate bath. With the increasing concentration of phosphorous acid in the electrolyte, the P content in the deposition increased accordingly. In the meantime, the grain refined and even became amorphous in microstructure as the P content was raised. For the nanowire electrode, vibrating sample magnetometer (VSM measurement showed that its coercivity was anisotropic and decreased with P-content. In addition, the easy axis for magnetization of the electrode was parallel to the axial direction of nanowire. The electrocatalytic activity measurement of the electrode in 0.5 M H2SO4 electrolyte showed that the nanowire electrode had higher activity than the plane one, and the alloying of P in Ni electrode raised its hydrogen evolution reaction (HER performance. The enhanced performance of nanowire electrode was attributed to the smaller and more uniform hydrogen bubbles generated in HER reaction. Finally, the applied magnetic field (3.2 T improved significantly the HER activity of Ni but not Ni-P electrode. By using nanowire morphology and applying magnetic field, the current density at −0.75 V HER stability test of the Ni electrode increased fourfold more than its plane counterpart.

  2. Copper circuit patterning on polymer using selective surface modification and electroless plating

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Jin [Department of Materials Science and Engineering, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Ko, Tae-Jun [Institute for Multidisciplinary Convergence of Materials, Korea Institute of Science and Technology, Seoul 130-650 (Korea, Republic of); Department of Materials Science and Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of); Yoon, Juil [Department of Mechanical Systems Engineering, Hansung University, Seoul 136-792 (Korea, Republic of); Moon, Myoung-Woon [Institute for Multidisciplinary Convergence of Materials, Korea Institute of Science and Technology, Seoul 130-650 (Korea, Republic of); Oh, Kyu Hwan [Department of Materials Science and Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of); Han, Jun Hyun, E-mail: jhhan@cnu.ac.kr [Department of Materials Science and Engineering, Chungnam National University, Daejeon 305-764 (Korea, Republic of)

    2017-02-28

    Highlights: • A new simple two step method for the pattering of Cu circuits on PET substrate was proposed. • The simple patterning of the high adhesive Cu circuits was achieved by plasma treatment using a patterned mask coated with a catalyst material. • The high adhesive strength of Cu circuits was due to the nanostructure formed by oxygen plasma treatment. - Abstract: We have examined a potential new and simple method for patterning a copper circuit on PET substrate by copper electroless plating, without the pretreatment steps (i.e., sensitization and activation) for electroless plating as well as the etching processes of conventional circuit patterning. A patterned mask coated with a catalyst material, Ag, for the reduction of Cu ions, is placed on a PET substrate. Subsequent oxygen plasma treatment of the PET substrate covered with the mask promotes the selective generation of anisotropic pillar- or hair-like nanostructures coated with co-deposited nanoparticles of the catalyst material on PET. After oxygen plasma treatment, a Cu circuit is well formed just by dipping the plasma-treated PET into a Cu electroless plating solution. By increasing the oxygen gas pressure in the chamber, the height of the nanostructures increases and the Ag catalyst particles are coated on not only the top but also the side surfaces of the nanostructures. Strong mechanical interlocking between the Cu circuit and PET substrate is produced by the large surface area of the nanostructures, and enhances peel strength. Results indicate this new simple two step (plasma surface modification and pretreatment-free electroless plating) method can be used to produce a flexible Cu circuit with good adhesion.

  3. Electroless silver plating of the surface of organic semiconductors.

    Science.gov (United States)

    Campione, Marcello; Parravicini, Matteo; Moret, Massimo; Papagni, Antonio; Schröter, Bernd; Fritz, Torsten

    2011-10-04

    The integration of nanoscale processes and devices demands fabrication routes involving rapid, cost-effective steps, preferably carried out under ambient conditions. The realization of the metal/organic semiconductor interface is one of the most demanding steps of device fabrication, since it requires mechanical and/or thermal treatments which increment costs and are often harmful in respect to the active layer. Here, we provide a microscopic analysis of a room temperature, electroless process aimed at the deposition of a nanostructured metallic silver layer with controlled coverage atop the surface of single crystals and thin films of organic semiconductors. This process relies on the reaction of aqueous AgF solutions with the nonwettable crystalline surface of donor-type organic semiconductors. It is observed that the formation of a uniform layer of silver nanoparticles can be accomplished within 20 min contact time. The electrical characterization of two-terminal devices performed before and after the aforementioned treatment shows that the metal deposition process is associated with a redox reaction causing the p-doping of the semiconductor. © 2011 American Chemical Society

  4. Electrodeposited synthesis of self-supported Ni-P cathode for efficient electrocatalytic hydrogen generation

    Directory of Open Access Journals (Sweden)

    Ruixian Wu

    2016-06-01

    Full Text Available One of the key challenges for electrochemical water splitting is the development of low-cost and efficient hydrogen evolution cathode. In this work, a self-supported Ni-P cathode was synthesized by a facile electrodeposition method. The composition and morphology were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy and transmission electron microscopy. The Ni-P cathode performed low onset over-potential, good catalytic activity and long-term stability under neutral and alkaline conditions. The mechanism of Ni-P electrode for hydrogen production was discussed by electrochemical impedance spectroscopy. The excellent performance of Ni-P cathode was mainly attributed to the synergistic effect of phosphate anions and the self-supported feature.

  5. Recovery process for electroless plating baths

    Science.gov (United States)

    Anderson, Roger W.; Neff, Wayne A.

    1992-01-01

    A process for removing, from spent electroless metal plating bath solutions, accumulated byproducts and counter-ions that have deleterious effects on plating. The solution, or a portion thereof, is passed through a selected cation exchange resin bed in hydrogen form, the resin selected from strong acid cation exchangers and combinations of intermediate acid cation exchangers with strong acid cation exchangers. Sodium and nickel ions are sorbed in the selected cation exchanger, with little removal of other constituents. The remaining solution is subjected to sulfate removal through precipitation of calcium sulfate hemihydrate using, sequentially, CaO and then CaCO.sub.3. Phosphite removal from the solution is accomplished by the addition of MgO to form magnesium phosphite trihydrate. The washed precipitates of these steps can be safely discarded in nontoxic land fills, or used in various chemical industries. Finally, any remaining solution can be concentrated, adjusted for pH, and be ready for reuse. The plating metal can be removed from the exchanger with sulfuric acid or with the filtrate from the magnesium phosphite precipitation forming a sulfate of the plating metal for reuse. The process is illustrated as applied to processing electroless nickel plating baths.

  6. Comparative Study of Electroless Copper Film on Different Self-Assembled Monolayers Modified ABS Substrate

    Directory of Open Access Journals (Sweden)

    Jiushuai Xu

    2014-04-01

    Full Text Available Copper films were grown on (3-Mercaptopropyltrimethoxysilane (MPTMS, (3-Aminopropyltriethoxysilane (APTES and 6-(3-(triethoxysilylpropylamino-1,3,5- triazine-2,4-dithiol monosodium (TES self-assembled monolayers (SAMs modified acrylonitrile-butadiene-styrene (ABS substrate via electroless copper plating. The copper films were examined using scanning electron microscopy (SEM and X-ray diffraction (XRD. Their individual deposition rate and contact angle were also investigated to compare the properties of SAMs and electroless copper films. The results indicated that the formation of copper nuclei on the TES-SAMs modified ABS substrate was faster than those on the MPTMS-SAMs and APTES-SAMs modified ABS substrate. SEM images revealed that the copper film on TES-SAM modified ABS substrate was smooth and uniform, and the density of copper nuclei was much higher. Compared with that of TES-SAMs modified resin, the coverage of copper nuclei on MPTMS and APTES modified ABS substrate was very limited and the copper particle size was too big. The adhesion property test demonstrated that all the SAMs enhanced the interfacial interaction between copper plating and ABS substrate. XRD analysis showed that the copper film deposited on SAM-modified ABS substrate had a structure with Cu(111 preferred orientation, and the copper film deposited on TES-SAMs modified ABS substrate is better than that deposited on MPTMS-SAMs or APTES-SAMs modified ABS resins in electromigrtion resistance.

  7. Tuning microstructure and magnetic properties of electrodeposited CoNiP films by high magnetic field annealing

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Chun; Wang, Kai [Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China); Li, Donggang, E-mail: lidonggang@smm.neu.edu.cn [School of Metallurgy, Northeastern University, Shenyang 110819 (China); Lou, Changsheng [School of Materials Science and Engineering, Shenyang Ligong University, Shenyang 110159 (China); Zhao, Yue; Gao, Yang [Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China); Wang, Qiang, E-mail: wangq@mail.neu.edu.cn [Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China)

    2016-10-15

    A high magnetic field (up to 12 T) has been used to anneal 2.6-µm-thick Co{sub 50}Ni{sub 40}P{sub 10} films formed by pulse electrodeposition. The effects of high magnetic field annealing on the microstructure and magnetic properties of CoNiP thin films have been investigated. It was found that a high magnetic field accelerated a phase transformation from fcc to hcp and enhanced the preferred hcp-(002) orientation during annealing. Compared with the films annealed without a magnetic field, annealing at 12 T decreased the surface particle size, roughness, and coercivity, but increased the saturation magnetization and remanent magnetization of CoNiP films. The out-of-plane coercivity was higher than that the in-plane for the as-deposited films. After annealing without a magnetic field, the out-of-plane coercivity was equal to that of the in-plane. However, the out-of-plane coercivity was higher than that of the in-plane when annealing at 12 T. These results indicate that high magnetic field annealing is an effective method for tuning the microstructure and magnetic properties of thin films. - Highlights: • High magnetic field annealing accelerated phase transformation from γ to ε. • High magnetic field annealing enhanced preferred hcp-(002) orientation. • High magnetic field annealing decreased particle size, roughness and coercivity. • High magnetic field annealing increased the saturation and remanent magnetization.

  8. Experimental study on the formation and growth of electroless nickel-boron coatings from borohydride-reduced bath on mild steel

    Energy Technology Data Exchange (ETDEWEB)

    Vitry, Veronique, E-mail: veronique.vitry@umons.ac.be [Service de Metallurgie, Universite de Mons, Rue de l' Epargne 56, 7000 Mons (Belgium); Sens, Adeline [Service de Metallurgie, Universite de Mons, Rue de l' Epargne 56, 7000 Mons (Belgium); Kanta, Abdoul-Fatah [Service de Sciences des Materiaux, Universite de Mons, Rue de l' Epargne 56, 7000 Mons (Belgium); Delaunois, Fabienne [Service de Metallurgie, Universite de Mons, Rue de l' Epargne 56, 7000 Mons (Belgium)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Initiation mechanism of electroless Ni-B on St-37 steel has been identified. Black-Right-Pointing-Pointer Different phases of the plating process were observed and identified. Black-Right-Pointing-Pointer Influence of chemical heterogeneity on coating morphology was revealed. Black-Right-Pointing-Pointer Batch replenishment of the plating bath induces new germination phase. - Abstract: Quality and homogeneity of electroless nickel-boron coatings are very important for applications in corrosion and electronics and are completely dependent on the formation of the deposit. The growth and formation process of electroless nickel-boron was investigated by immersing mild steel (St-37) samples in an un-replenished bath for various periods of time (from 5 s to 1 h). The coatings obtained at the different stages of the process were then characterized: thickness was measured by SEM, morphology was observed, weight gain was recorded and top composition of the coatings was obtained from XPS. Three main phases were identified during the coating formation and links between plating time, instantaneous deposition rate, chemistry of last formed deposit and morphology were established. The mechanism for initial deposition on steel substrate for borohydride-reduced electroless nickel bath was also observed. Those results were confronted with chemistry evolution in the unreplenished plating bath during the process. This allowed getting insight about phenomena occurring in the plating bath and their influence on coating formation.

  9. Fabrication of Three Dimensional Cu Metallic Photonic Crystal by Electroless Plating

    International Nuclear Information System (INIS)

    Wu, S-C; Hou, F-J; Jian, P-C Jang-; Tsai, M-S; Chen, M-C; Li, L-S; Huang, J-Y; Lin, S-Y

    2007-01-01

    A 3D copper (Cu) metallic photonic crystal (MPC) with 180nm line width was fabricated by electroless plating. The mold of 3D MPC for Cu replacement is poly-Si. It has been verified as an enhancing thermal photovoltaic effect while the mold was transferred into tungsten MPC by chemical vapor deposition method. The 5 layers structure of Cu MPC was clear observed with scanning electron microscopy. The photonic band-gap ranged from 1.5 to 13 μm was measured by Fourier transform infrared spectroscopy (FTIR) instrument

  10. Synthesis and characterization of electroless Ni–P coated graphite ...

    Indian Academy of Sciences (India)

    Wintec

    Metallurgical and Materials Engineering Department, Indian Institute of Technology Roorkee, Roorkee 247 667, India ... the chemical composition of the bath was also reported ..... viour of electroless Ni–P films, Ph.D. Thesis, University of.

  11. GaN Nanowires Synthesized by Electroless Etching Method

    KAUST Repository

    Najar, Adel; Anjum, Dalaver H.; Ng, Tien Khee; Ooi, Boon S.; Ben Slimane, Ahmed

    2012-01-01

    Ultra-long Gallium Nitride Nanowires is synthesized via metal-electroless etching method. The morphologies and optical properties of GaN NWs show a single crystal GaN with hexagonal Wurtzite structure and high luminescence properties.

  12. Electroless Ni-B plating on SiO2 with 3-aminopropyl-triethoxysilane as a barrier layer against Cu diffusion for through-Si via interconnections in a 3-dimensional multi-chip package

    International Nuclear Information System (INIS)

    Ikeda, Akihiro; Sakamoto, Atsushi; Hattori, Reiji; Kuroki, Yukinori

    2009-01-01

    Electroless Ni-B was plated on SiO 2 as a barrier layer against Cu diffusion for through-Si via (TSV) interconnections in a 3-dimensional multi-chip package. The electroless Ni-B was deposited on the entire area of the SiO 2 side wall of a deep via with vapor phase pre-deposition of 3-aminopropyl-triethoxysilane on the SiO 2 . The carrier lifetimes in the Si substrates plated with Ni-B/Cu did not decrease with an increase in annealing temperature up to 400 deg. C . The absence of degradation of carrier lifetimes indicates that Cu atoms did not diffuse into the Si through the Ni-B. The advantages of electroless Ni-B (good conformal deposition and forming an effective diffusion barrier against Cu) make it useful as a barrier layer for TSV interconnections in a 3-dimensional multi-chip package

  13. Enzyme-Free Electrochemical Glucose Sensors Prepared by Dealloying Pd-Ni-P Metallic Glasses

    Directory of Open Access Journals (Sweden)

    Yuqiao Zeng

    2014-01-01

    Full Text Available We report the formation of enzyme-free electrochemical glucose sensors by electrochemical dealloying palladium-containing Pd-Ni-P metallic glasses. When metallic glasses with different Pd contents are used as the dealloying precursor alloys, palladium-based nanoporous metals with different ligament and pore sizes can be obtained. The chemical compositions of the nanoporous metals also vary according to the different precursor compositions. All the as-obtained nanoporous metals exhibit electrochemical catalytic activity towards the oxidation of d-glucose, indicating that the nanoporous metals prepared by dealloying the Pd-Ni-P metallic glasses are promising materials for enzyme-free electrochemical glucose sensor.

  14. Improvement of the Wear Resistance of Ferrous Alloys by Electroless Plating of Nickel

    Science.gov (United States)

    Kaleicheva, J. K.; Karaguiozova, Z.

    2018-01-01

    The electroless nickel (Ni) and composite nickel - nanodiamond (Ni+DND) coatings are investigated in this study. The method EFTTOM-NICKEL for electroless nickel plating with nanosized strengthening particles (DND 4-6 nm) is applied for the coating deposition. The coatings are deposited on ferrous alloys samples. The wear resistance of the coatings is performed by friction wear tests under 50-400 MPa loading conditions - in accordance with a Polish Standard PN-83/H-04302. The microstructure observations are made by optic metallographic microscope GX41 OLIMPUS and the microhardness is determined by Vickers Method. Tests for wear resistance, thickness and microhardness measurements of the coatings without heat treatment and heat treatment are performed. The heat treatment regime is investigated with the aim to optimize the thermal process control of the coated samples without excessive tempering of the substrate material. The surface fatigue failure is determined by contact fatigue test with the purpose to establish suitable conditions for production of high performance materials.

  15. Catalysts characteristics of Ni/YSZ core-shell according to plating conditions using electroless plating

    Science.gov (United States)

    Park, Hyun-Wook; Jang, Jae-Won; Lee, Young-Jin; Kim, Jin-Ho; Jeon, Dae-Woo; Lee, Jong-Heun; Hwang, Hae-jin; Lee, Mi-Jai

    2017-11-01

    This study aims to develop an anode catalyst for a solid oxide fuel cell (SOFC) using electroless nickel plating. We have proposed a new method for electroless plating of Ni metal on yttria-stabilized zirconia (YSZ) particles. We examine the uniformity of the Ni layer on the plated core-shell powder, in addition to the content of Ni and the reproducibility of the plating. We have also evaluated the carbon deposition rate and characteristics of the SOFC anode catalyst. To synthesize Ni-plated YSZ particles, the plated powder is heat-treated at 1200 °C. The resultant particles, which have an average size of 50 μm, were subsequently used in the experiment. The size of the Ni particles and the Ni content both increase with increasing plating temperature and plating time. The X-ray diffraction pattern reveals the growth of Ni particles. After heat-treatment, Ni is oxidized to NiO, leading to the co-existence of Ni and NiO; Ni3P is also observed due to the presence of phosphorous in the plating solution. Following heat treatment for 1 h at 1200 °C, Ni is mostly oxidized to NiO. The carbon deposition rate of the reference YSZ powder is 135%, while that of the Ni-plated YSZ is 1%-6%.

  16. Design, fabrication, and characterization of electroless Ni–P alloy films for micro heating devices

    International Nuclear Information System (INIS)

    Liu, Bernard Haochih; Liao, Fang-Yi; Chen, Jian-Hong

    2013-01-01

    In this work electroless nickel–phosphorous coatings were used as the micro heaters for scanning thermal microscopy. The deposition of Ni–P alloys not only simplified the microelectromechanical system fabrication steps but also provided flexibility in the tuning of the resistance of the heating elements. Ni–P films were plated on patterned silicon substrates and silicon with a silicon nitride film. The pre-deposition reactive ion etch (RIE) treatment caused a change in surface roughness that enhanced the adhesion of Ni–P coatings. Optimization of RIE parameters and pH values could achieve selective deposition of Ni–P, thus helped the lift-off of a serpentine circuit pattern. The chemical composition and microstructure of Ni–P films affect the electrical properties of micro heaters. Energy-dispersive X-ray spectroscopy identified the Ni–P composition and confirmed its insignificant level of oxidation. The high-temperature X-ray diffraction indicated that the as-deposited film was crystalline Ni, which later transformed into Ni 3 P at higher temperature. The resistivity of Ni–P films was tailored between 10 −5 and 10 −7 Ω m via a post-deposition annealing, which also obtained a stable temperature coefficient of resistance. Consequently, the performance of micro heaters could be designed with a high degree of flexibility. - Highlights: • We developed a process to fabricate micro heater by Ni–P electroless plating. • Reactive ion etch caused oscillating surface roughness and affected Ni–P adhesion. • Ni 3 P phase precipitates during annealing and reduces resistivity of Ni–P alloys. • Resistivity of Ni–P is tunable from 10 −5 to 10 −7 Ω m by plating and annealing

  17. Design, fabrication, and characterization of electroless Ni–P alloy films for micro heating devices

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bernard Haochih, E-mail: hcliu@mail.ncku.edu.tw [Department of Materials Science and Engineering, National Cheng Kung University, Taiwan (China); Promotion Center for Global Materials Research, National Cheng Kung University, Taiwan (China); Research Center for Energy Technology and Strategy, National Cheng Kung University, Taiwan (China); Liao, Fang-Yi; Chen, Jian-Hong [Department of Materials Science and Engineering, National Cheng Kung University, Taiwan (China)

    2013-06-30

    In this work electroless nickel–phosphorous coatings were used as the micro heaters for scanning thermal microscopy. The deposition of Ni–P alloys not only simplified the microelectromechanical system fabrication steps but also provided flexibility in the tuning of the resistance of the heating elements. Ni–P films were plated on patterned silicon substrates and silicon with a silicon nitride film. The pre-deposition reactive ion etch (RIE) treatment caused a change in surface roughness that enhanced the adhesion of Ni–P coatings. Optimization of RIE parameters and pH values could achieve selective deposition of Ni–P, thus helped the lift-off of a serpentine circuit pattern. The chemical composition and microstructure of Ni–P films affect the electrical properties of micro heaters. Energy-dispersive X-ray spectroscopy identified the Ni–P composition and confirmed its insignificant level of oxidation. The high-temperature X-ray diffraction indicated that the as-deposited film was crystalline Ni, which later transformed into Ni{sub 3}P at higher temperature. The resistivity of Ni–P films was tailored between 10{sup −5} and 10{sup −7} Ω m via a post-deposition annealing, which also obtained a stable temperature coefficient of resistance. Consequently, the performance of micro heaters could be designed with a high degree of flexibility. - Highlights: • We developed a process to fabricate micro heater by Ni–P electroless plating. • Reactive ion etch caused oscillating surface roughness and affected Ni–P adhesion. • Ni{sub 3}P phase precipitates during annealing and reduces resistivity of Ni–P alloys. • Resistivity of Ni–P is tunable from 10{sup −5} to 10{sup −7} Ω m by plating and annealing.

  18. The Ni-rich Part of the Ni-P-Sn System: Isothermal Sections

    Czech Academy of Sciences Publication Activity Database

    Schmetterer, C.; Vízdal, J.; Kroupa, Aleš; Kodentsov, A.; Ipser, H.

    2009-01-01

    Roč. 38, č. 11 (2009), s. 2275-2300 ISSN 0361-5235 R&D Projects: GA MŠk(CZ) OC08053 Institutional research plan: CEZ:AV0Z20410507 Keywords : lead free solder * phase diagram * Ni-P-Sn Subject RIV: BJ - Thermodynamics Impact factor: 1.428, year: 2009

  19. HDO of Methyl Palmitate over Silica-Supported Ni Phosphides: Insight into Ni/P Effect

    Directory of Open Access Journals (Sweden)

    Irina V. Deliy

    2017-10-01

    Full Text Available Two sets of silica-supported nickel phosphide catalysts with a nickel content of about 2.5 and 10 wt % and Ni/P molar ratio 2/1, 1/1 and 1/2 in each set, were prepared by way of a temperature-programmed reduction method using (Ni(CH3COO2 and ((NH42HPO4 as a precursor. The NixPy/SiO2 catalysts were characterized using chemical analysis N2 physisorption, XRD, TEM, 31P MAS NMR. Methyl palmitate hydrodeoxygenation (HDO was performed in a trickle-bed reactor at 3 MPa and 290 °C with LHSV ranging from 0.3 to 16 h−1. The Ni/P ratio was found to affect the nickel phosphide phase composition, POx groups content and catalytic properties in methyl palmitate HDO with the TOF increased along with a decline of Ni/P ratio and a growth of POx groups’ content. Taking into account the possible routes of methyl palmitate conversion (metal-catalyzed hydrogenolysis or acid-catalyzed hydrolysis, we proposed that the enhancement of acid POx groups’ content with the Ni/P ratio decrease provides an enhancement of the rate of methyl palmitate conversion through the acceleration of acid-catalyzed hydrolysis.

  20. Microstructural Studies of Ni-P Thick Film Resistor Temperature Sensors

    Directory of Open Access Journals (Sweden)

    Barbara Holodnik

    1986-01-01

    Full Text Available Thick Ni-P films have been widely investigated at our Institute. This article tends to visualize by use of various microscopic methods how the growth and sintering of individual conducting grains, results in the formation of nickel dendrites responsible for the metallic character of electrical conduction.

  1. Electrodeposition of amorphous Ni-P coatings onto Nd-Fe-B permanent magnet substrates

    Energy Technology Data Exchange (ETDEWEB)

    Ma, C.B [Department of Chemistry, Yuquan campus, Zhejiang University, Hangzhou 310027 (China); Cao, F.H [Department of Chemistry, Yuquan campus, Zhejiang University, Hangzhou 310027 (China); Zhang, Z. [Department of Chemistry, Yuquan campus, Zhejiang University, Hangzhou 310027 (China)]. E-mail: eaglezzy@zjuem.zju.edu.cn; Zhang, J.Q [Department of Chemistry, Yuquan campus, Zhejiang University, Hangzhou 310027 (China); State Key Laboratory for Corrosion and Protection of Metals, Institute of Metal Research, The Chinese Academy of Sciences, Shenyang 110016 (China)

    2006-12-15

    Decorative and protective Ni-P amorphous coatings were electroplated onto NdFeB permanent magnet from an ortho-phosphorous acid contained bath. The influences of the main electroplating technological parameters including current density, bath pH, bath temperature and H{sub 3}PO{sub 3} on the structure and chemical composition of Ni-P coatings were investigated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques in conjunction with X-ray diffraction (XRD), scanning transmission electron microscopy (SEM) and X-ray energy-dispersive spectrometry (EDX). The optimized amorphous Ni-P coated NdFeB can stand for ca. 180 h against neutral 3.0 wt.% NaCl salt spray without any pitting corrosion. Meanwhile, the results also showed that large phosphorous content is the precondition for Ni-P coatings to possess the amorphous structure, but too much high phosphorous content can damage the amorphous structure due to the separation of superfluous P from Ni{sub 2}P/Ni{sub 3}P and the resultant formation of multi-phase coatings (such as Ni{sub 2}P-P)

  2. Crystallization in metglass: growth mechanism of crystals and radiation effects in Fe Ni P B

    International Nuclear Information System (INIS)

    Limoge, Y.; Barbu, A.

    1981-08-01

    Studying crystallization mechanisms and transport properties in amorphous metallic alloys we propose a model for systems wich are displaying eutectoid decomposition. Bringing together self diffusion, electron microscopy and electron irradiation experiments on a Fe Ni P B alloys we have shown that crystallization controlled by interfacial diffusion at the crystal surface can explain all the observed features of the experimental behaviour

  3. Electroless synthesis of 3 nm wide alloy nanowires inside Tobacco mosaic virus

    International Nuclear Information System (INIS)

    Balci, Sinan; Kern, Klaus; Bittner, Alexander M; Hahn, Kersten; Kopold, Peter; Kadri, Anan; Wege, Christina

    2012-01-01

    We show that 3 nm wide cobalt–iron alloy nanowires can be synthesized by simple wet chemical electroless deposition inside tubular Tobacco mosaic virus particles. The method is based on adsorption of Pd(II) ions, formation of a Pd catalyst, and autocatalytic deposition of the alloy from dissolved metal salts, reduced by a borane compound. Extensive energy-filtering TEM investigations at the nanoscale revealed that the synthesized wires are alloys of Co, Fe, and Ni. We confirmed by high-resolution TEM that our alloy nanowires are at least partially crystalline, which is compatible with typical Co-rich alloys. Ni traces bestow higher stability, presumably against corrosion, as also known from bulk CoFe. Alloy nanowires, as small as the ones presented here, might be used for a variety of applications including high density data storage, imaging, sensing, and even drug delivery. (paper)

  4. LASER INDUCED SELECTIVE ACTIVATION UTILIZING AUTO-CATALYTIC ELECTROLESS PLATING ON POLYMER SURFACE

    DEFF Research Database (Denmark)

    Zhang, Yang; Nielsen, Jakob Skov; Tang, Peter Torben

    2009-01-01

    . Characterization of the deposited copper layer was used to select and improve laser parameters. Several types of polymers with different melting points were used as substrate. Using the above mentioned laser treatment, standard grades of thermoplastic materials such as ABS, SAN, PE, PC and others have been......This paper presents a new method for selective micro metallization of polymers induced by laser. An Nd: YAG laser was employed to draw patterns on polymer surfaces using a special set-up. After subsequent activation and auto-catalytic electroless plating, copper only deposited on the laser tracks....... Induced by the laser, porous and rough structures are formed on the surface, which favours the palladium attachment during the activation step prior to the metallization. Laser focus detection, scanning electron microscopy (SEM) and other instruments were used to analyze the topography of the laser track...

  5. Characterization and Properties of Electroless Nickel Plated Poly (ethylene terephthalate) Nonwoven Fabric Enhanced by Dielectric Barrier Discharge Plasma Pretreatment

    International Nuclear Information System (INIS)

    Geng Yamin; Lu Canhui; Liang Mei; Zhang Wei

    2010-01-01

    In order to develop a more economical pretreatment method for electroless nickel plating, a dielectric barrier discharge (DBD) plasma at atmospheric pressure was used to improve the hydrophilicity and adhesion of poly (ethylene terephthalate) (PET) nonwoven fabric. The properties of the PET nonwoven fabric including its liquid absorptive capacity (W A ), aging behavior, surface chemical composition, morphology of the surface, adhesion strength, surface electrical resistivity and electromagnetic interference (EMI)- shielding effectiveness (SE) were studied. The liquid absorptive capacity (W A ) increased due to the incorporation of oxygen-containing and nitrogen-containing functional groups on the surface of PET nonwoven fabric after DBD air-plasma treatment. The surface morphology of the nonwoven fibers became rougher after plasma treatment. Therefore, the surface was more prone to absorb tin sensitizer and palladium catalyst to form an active layer for the deposition of electroless nickel. SEM and X-ray diffraction (XRD) measurements indicated that a uniform coating of nickel was formed on the PET nonwoven fabric. The average EMI-SE of Ni-plating of PET nonwoven fabric maintained a relatively stable value (38.2 dB to 37.3 dB) in a frequency range of 50 MHz to 1500 MHz. It is concluded that DBD is feasible for pretreatment of nonwoven fabric for electroless nickel plating to prepare functional material with good EMI-SE properties.

  6. Non-contact evaluation of mechanical properties of electroplated wear resistant Ni-P layer from the velocity dispersion of laser SAW; Laser reiki Rayleigh ha no sokudo bunsan wo mochiita taimamo Ni-P mekkiso tokusei no hisesshoku hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Morikawa, Y.; Cho, H.; Takemoto, M. [Aoyama Gakuin University, Tokyo (Japan). Faculty of Science and Engineering; Nakayama, T. [Kobe Steel Ltd., Kobe (Japan)

    1996-11-01

    We developed a new laser surface acoustic wave (SAW) system and applied this to estimate the mechanical properties of the wear-resistant Ni-P layer electroplated on a stainless steel. The velocity dispersions of Rayleigh wave of the as -plated and heat-treated Ni-P layer were obtained by the one point time domain signal processing. The Ni-P layers with excellent wear resistance produced by the heated treatment higher than 725K were found to show higher Rayleigh velocities than that of the substrate steel, while the Ni-P layer with poor wear resistance showed lower velocities. Young`s moduli of the Ni-P layer, estimated so as the computed velocity dispersion agreed with the measured one, increased with the increase of wear resistance. 10 refs., 9 figs., 2 tabs.

  7. Electroless plating technology of integral hohlraum Cu target

    International Nuclear Information System (INIS)

    Liu Jiguang; Fu Qu; Wan Xiaobo; Zhou Lan; Xiao Jiang

    2005-01-01

    The electroless plating method of making integral hohlraum Cu target and corrosion-resistant technology of target's surface were researched. The actual process was as follows, choosing plexiglass (PMMA) as arbor, taking cationic activation and electroless plating Cu on the arbor surface, taking arbor surface passivation and chemical etching by C 6 H 5 N 3 solution. The technology is easy to realize and its cost is lower, so it is of great reference value for fabricating other integral hohlraum metal or alloy targets used for inertial confinement fusion study. (author)

  8. Corrosion of AZ91D magnesium alloy with a chemical conversion coating and electroless nickel layer

    International Nuclear Information System (INIS)

    Huo Hongwei; Li Ying; Wang Fuhui

    2004-01-01

    A chemical conversion treatment and an electroless nickel plating were applied to AZ91D alloy to improve its corrosion resistance. By conversion treatment in alkaline stannate solution, the corrosion resistance of the alloy was improved to some extent as verified by immersion test and potentiodynamic polarization test in 3.5 wt.% NaCl solution at pH 7.0. X-ray diffraction patterns of the stannate treated AZ91D alloy showed the presence of MgSnO 3 · H 2 O, and SEM images indicated a porous structure, which provided advantage for the adsorption during sensitisation treatment prior to electroless nickel plating. A nickel coating with high phosphorus content was successfully deposited on the chemical conversion coating pre-applied to AZ91D alloy. The presence of the conversion coating between the nickel coating and the substrate reduced the potential difference between them and enhanced the corrosion resistance of the alloy. An obvious passivation occurred for the nickel coating during anodic polarization in 3.5 wt.% NaCl solution

  9. Tribological characteristics of electroless Ni–P–MoS2 composite coatings at elevated temperatures

    International Nuclear Information System (INIS)

    Li Zhen; Wang Jingbo; Lu Jinjun; Meng Junhu

    2013-01-01

    Highlights: ► Uniform Ni–P–MoS 2 composite coatings are deposited by electroless plating. ► Friction coefficient of composite coating decreases with the increase of temperature. ► Formation of lubricious oxide film leads to excellent tribological property. - Abstract: Ni–P–MoS 2 composite coatings were deposited on AISI-1045 steel plate by electroless plating followed by a heat treatment at 300 °C for 2 h. The high-temperature tribological characteristics of the composite coatings were evaluated under dry sliding conditions in a tribometer with ball-on-disk configuration. The effect of the co-deposition of MoS 2 on the friction and wear behaviors of composite coatings at elevated temperature was investigated. Scanning electron microscopy was used to determine the morphology of the worn surface of composite coating. The chemical states of some typical elements on the worn surfaces were determined by X-ray photoelectron spectroscope. The results indicate that friction coefficient of the composite coatings decreases with the increase of test temperature up to 500 °C, and the best tribological properties of Ni–P–MoS 2 composite coatings are achieved at 400 °C. The worn surface of Ni–P–MoS 2 composite coatings are characterized by mild scuffing and deformation. The improvement of tribological properties of the composite coatings was attributed to the formation of the lubricious oxide film composed of oxides of Ni and Mo at high temperatures. With the test temperature increasing to 600 °C, the tribological properties of the composite coating begin to deteriorate due to softening of the coating.

  10. Electroless Plating on Plastic Induced by Selective Laser Activation

    DEFF Research Database (Denmark)

    Zhang, Yang; Tang, Peter Torben; Hansen, Hans Nørgaard

    2009-01-01

    This paper presents a new method for selective micro metallization of polymers. A Nd:YAG laser is employed to draw patterns on polymer surfaces that are submerged in a liquid (usually water). After subsequent activation with palladium chloride and followed by auto-catalytic electroless plating, c...

  11. Electroless copper plating on 3-mercaptopropyltriethoxysilane modified PET fabric challenged by ultrasonic washing

    International Nuclear Information System (INIS)

    Lu Yinxiang

    2009-01-01

    Electroless deposition of Cu on poly(ethylene terephthalate) (PET) fabric modified with 3-mercaptopropyltriethoxysilane was investigated. Morphology, composition, structure, thermal decomposing behavior of copper coating PET fabric after ultrasonic washing in water for 1 h were characterized by scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis, X-ray photoelectron spectroscopy (XPS), Raman spectrometer, X-ray diffraction (XRD), and thermogravimetric analysis (TG), respectively. Copper plating on modified fabric has good adherence stability and high electric conductivity before and after ultrasonic washing, while copper coating fabric without modification is easily destroyed during the washing process, which leads to the textile changing from conductor to dielectric. As the copper weight on the treated fabric is 28 g/m 2 , the shielding effectiveness (SE) is more than 54 dB at frequency ranging from 0.01 MHz to 18 GHz.

  12. Low Temperature Steam Methane Reforming Over Ni Based Catalytic Membrane Prepared by Electroless Palladium Plating.

    Science.gov (United States)

    Lee, Sang Moon; Hong, Sung Chang; Kim, Sung Su

    2018-09-01

    A Pd/Ni-YSZ porous membrane with different palladium loadings and hydrazine as a reducing reagent was prepared by electroless plating and evaluated for the steam methane reforming activity. The steam-reforming activity of a Ni-YSZ porous membrane was greatly increased by the deposition of 4 g/L palladium in the low-temperature range (600 °C). With an increasing amount of reducing reagent, the Pd clusters were well dispersed on the Ni-YSZ surface and were uniform in size (∼500 nm). The Pd/Ni-YSZ catalytic porous membrane prepared by 1 of Pd/hydrazine ratio possessed an abundant amount of metallic Pd. The optimal palladium loadings and Pd/hydrazine ratio increased the catalytic activity in both the steam-reforming reaction and the Pd dispersion.

  13. Mechanically robust silver coatings prepared by electroless plating on thermoplastic polyurethane

    Science.gov (United States)

    Vasconcelos, B.; Vediappan, K.; Oliveira, J. C.; Fonseca, C.

    2018-06-01

    A simple and low-cost surface functionalization method is proposed to activate a thermoplastic polyurethane (TPU) for the electroless deposition of a silver coating with excellent adhesion and low resistivity. The TPU surface functionalization was performed in solution and consisted in forming a physical interpenetrating network at the TPU surface, involving TPU and polyvinylpyrrolidone (PVP), a polymer displaying a strong affinity for metals. The presence of PVP on the TPU surface and its stability in aqueous solution were assessed by ATR-FTIR and contact angle measurements as a function of the PVP concentration and treatment time. A modified Tollens solution was used to grow a silver film on the TPU substrate, by using the electroless plating method. Compact silver films with an average thickness of 12.5 μm and a resistivity of 8.57 mΩ·cm were obtained for a 24 h plating time. The adhesion strength of the silver film proved to be higher than 8.5 N/cm. The resistance to fatigue of the silver films was studied by performing series of compression/stretching tests (150 cycles). It was concluded that the films kept low resistance values, although displaying a higher sensitivity to compression than to stretching. Furthermore, the films keep a good conductivity for strains up to 400%. The excellent electrical and mechanical properties of the films make them suitable candidates for the coating of multipin dry bioelectrodes. Owing to the high affinity of many metals for PVP, this activation technique has the potential to be extended to the deposition of other metals and other polymers as well, provided a suitable solvent is used.

  14. Tribological behavior of dual-layer electroless-plated Ag–carbon nanotube coatings

    International Nuclear Information System (INIS)

    Lee, Hyun-Dai; Penkov, Oleksiy V.; Kim, Dae-Eun

    2013-01-01

    The tribological behavior of electroless Ag-plated carbon nanotube (CNT) dual-layer coatings was assessed and compared to that of the pure CNT coating. The motivation was to protect the surface of CNT coatings from wear by depositing a thin, soft Ag coating. The methods used for coating CNTs and Ag were spin coating and electroless plating, respectively. These coating methods were selected based on their simplicity and cost effectiveness. Wear tests were conducted by sliding the coatings against a stainless steel ball under a 10–30 mN applied load. Results showed that the wear rate of the dual-layer coating was strongly dependent on the thickness of the Ag layer as well as the applied load. At a 10 mN load and an Ag thickness of 65 nm, the wear rate of the dual-layer coating was about 10 times less than that of the pure CNT coating. However, when the thickness of the Ag was decreased to 11.5 nm, the wear rate was significantly higher. Also, the steady-state friction coefficients of the CNT and the dual-layer Ag–CNT coatings were in the range of 0.65–0.73 for all loads. A model of the wear reduction mechanism of the dual-layer Ag–CNT coating was proposed. - Highlights: ► Dual-layer Ag–carbon nanotube (CNT) coatings were deposited on silicon wafer. ► Friction coefficient of the Ag–CNT coatings was about 0.65. ► Wear of Ag–CNT coatings depended on the thickness of Ag layer and the applied load. ► Wear rate of the Ag–CNT coating was 10-fold less than that of the pure CNT coating

  15. Reduction of core loss in non-oriented (NO) electrical steel by electroless-plated magnetic coating

    International Nuclear Information System (INIS)

    Chivavibul, Pornthep; Enoki, Manabu; Konda, Shigeru; Inada, Yasushi; Tomizawa, Tamotsu; Toda, Akira

    2011-01-01

    An important issue in development of electrical steels for core-laminated products is to reduce core loss to improve energy conversion efficiency. This is usually obtained by tailoring the composition, microstructure, and texture of electrical steels themselves. A new technique to reduce core loss in electrical steel has been investigated. This technique involves electroless plating of magnetic thin coating onto the surface of electrical steel. The material system was electroless Ni-Co-P coatings with different thicknesses (1, 5, and 10 μm) deposited onto the surface of commercially available Fe-3% Si electrical steel. Characterization of deposited Ni-Co-P coating was carried out using X-ray diffraction (XRD), scanning electron microscope (SEM), and energy dispersive X-ray (EDX) spectrometer. The deposited Ni-Co-P coatings were amorphous and composed of 56-59% Ni, 32-35% Co, and 8-10% P by mass. The effect of coatings on core loss of the electrical steel was determined using single sheet test. A core loss reduction of 4% maximum was achieved with the Ni-Co-P coating of 1 μm thickness at 400 Hz and 0.3 T. - Research Highlights: → New approach to reduce core loss of electrical steel by magnetic coating. → Ni-Co-P coating influences core loss of NO electrical steel. → Core loss increases in RD direction but reduces in TD direction.

  16. Laser melting treatment of Ni-P surface alloys on mild steel. Influence of initial coating thickness and laser scanning rate

    Directory of Open Access Journals (Sweden)

    García-Alonso, M. C.

    1997-08-01

    Full Text Available Different thickness Ni-P coatings deposited on mild steel are submitted to laser surface melting at different scanning rates. The microstructure of the alloys is characterized by optical and scanning electron microscopy and microprobe analysis. It is shown that both the initial coating thickness and the laser scanning rate have an influence on the shape, extent and size of the different structures resulting from the solidification process. Thus, when the laser scanning rate increases a progressive refinement of the structure takes place that could even totally block the dendritic growth produced during solidification for a high initial coating thickness.

    Recubrimientos de Ni-P, con distinto espesor, depositados sobre un acero microaleado fueron tratados con láser a diferentes velocidades de barrido. La microestructura, tanto del recubrimiento como del acero base, ha sido caracterizada por microscopía óptica y electrónica y por microanálisis. En el proceso de solidificación se han obtenido distintas estructuras que varían en cuanto a la forma, extensión y tamaño dependiendo del espesor inicial de recubrimiento y de la velocidad de barrido del haz láser. A medida que la velocidad del haz aumenta, se produce un refinamiento progresivo de la microestructura dendrítica y, en casos extremos de alto espesor de recubrimiento y velocidades grandes, este crecimiento dendrítico se bloquea.

  17. Electroless siliconizing Fe-3% Cr-3% Si alloy

    International Nuclear Information System (INIS)

    Nurlina, Enung; Darmono, Budy; Purwadaria, Sunara

    2000-01-01

    In this research Fe-3%Cr-3%Mo-3%Si and Fe-3%Cr-3%Cu-3%Si alloys had been coated by silicon metal without electricity current which knows as electroless siliconizing. Coating was conducted by immersed sampler into melt fluoride-chloride salt bath at temperature of 750 o C for certain period. The layer consisted of Fe3Si phase. Observation by microscope optic and EDAX showed that the silicide layer were thick enough, adherent, free for crack and had silicon content on the surface more than 15%. The growth rate of silicide layer followed parabolic rate law, where the process predominantly controlled by interdiffusion rate in the solid phase. Key words : electroless siliconizing, the melt fluoride- chloride salt mix, silicide layer

  18. Magnetically Driven Micromachines Created by Two-Photon Microfabrication and Selective Electroless Magnetite Plating for Lab-on-a-Chip Applications

    Directory of Open Access Journals (Sweden)

    Tommaso Zandrini

    2017-01-01

    Full Text Available We propose a novel method to fabricate three-dimensional magnetic microparts, which can be integrated in functional microfluidic networks and lab-on-a-chip devices, by the combination of two-photon microfabrication and selective electroless plating. In our experiments, magnetic microparts could be successfully fabricated by optimizing various experimental conditions of electroless plating. In addition, energy dispersive X-ray spectrometry (EDS clarified that iron oxide nanoparticles were deposited onto the polymeric microstructure site-selectively. We also fabricated magnetic microrotors which could smoothly rotate using common laboratory equipment. Since such magnetic microparts can be remotely driven with an external magnetic field, our fabrication process can be applied to functional lab-on-a-chip devices for analytical and biological applications.

  19. Tentative investigation on neutron mirror fabrication with electroless nickel plating

    International Nuclear Information System (INIS)

    Guo, Jiang; Morita, Shin-ya; Yamagata, Yutaka; Takeda, Shin; Kato, Jun-ichi; Hino, Masahiro; Furusaka, Michihiro

    2013-01-01

    Neutron optics becomes highly required due to the rapid development of neutron technology. In this paper, we attempt to fabricate the neutron mirror by using a metal substrate made of electroless nickel plating to take place of glass concerning about mirror's optical performance and manufacturing method. A new manufacture process chain of neutron mirror is proposed by following the steps of fast milling and precision cutting of aluminium/stainless, electroless nickel plating, ultra-precision cutting by diamond tools, super-smooth polishing and super mirror coating to obtain high form accuracy and good surface roughness time-efficiently. Some tentative investigations are carried out. A workpiece (□ 50 x 50 mm 2 ) with flat surface made of electroless nickel plating is machined by ultra-precision cutting and polishing. The surface roughness with 0.728 nm rms (0.588 nm Ra) is acquired. According to results of reflectometry, the neutron beam can be reflected effectively with high intensity and little scattering. (author)

  20. Characterization of electroless Au, Pt and Pd contacts on CdTe and ZnTe by RBS and SIMS techniques

    Energy Technology Data Exchange (ETDEWEB)

    Roumie, M. E-mail: mroumie@cnrs.edu.lb; Hageali, M.; Zahraman, K.; Nsouli, B.; Younes, G

    2004-06-01

    Rutherford backscattering spectrometry (RBS) was applied to characterize Au, Pt and Pd contacts on II-VI semiconductor materials, CdTe and ZnTe, used as nuclear detectors. Electroless thin film depositions were prepared by changing the concentration of the reaction solution. Contrary to the deposition reaction time, it was observed that the amount of solution dilution degree had a considerable effect on increasing the thickness of the metal layer. Furthermore, PICTS electrical measurements confirmed the depth profile analysis performed by RBS and SIMS.

  1. Region-selective electroless gold plating on polycarbonate sheets by UV-patterning in combination with silver activating

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Qinghua [Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Zijin' gang Campus, Hangzhou 310058 (China); Chen Hengwu, E-mail: hwchen@zju.edu.c [Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Zijin' gang Campus, Hangzhou 310058 (China); Wang Yi [Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Zijin' gang Campus, Hangzhou 310058 (China)

    2010-02-28

    A simple, time- and cost-effective approach for region-selective metalization of polycarbonate (PC) surface has been established by combining photoresist-free UV-patterning with tin- and amine-free silver activating and electroless gold plating. The surface of PC sheets was exposed to the UV lights emitted from a low-pressure mercury lamp through a photomask, the micro pattern on the mask being transferred to the PC surface due to the photochemical generation of carboxyl groups on the UV-exposed region. The UV-exposed PC sheets were then treated with an ammoniacal AgNO{sub 3} solution, so that the silver ions were chemisorbed by the photochemically generated carboxyl groups. When the Ag{sup +}-adsorbed PC sheet was immersed into an electroless gold plating bath, shiny gold film quickly deposited on the UV-exposed region, resulting in the formation of a micro gold devices on the PC surface. The whole plating process including UV-exposure, surface activating and gold plating can be completed in about 3-4 h. Attenuated total reflection Fourier transformation infrared spectrometer (ATR-FT-IR), X-ray photoelectron spectroscopy (XPS), atomic force microscope (AFM) and scanning electron microscope (SEM) were employed to trace the surface change during the plating process. Cyclic voltammetry (CV) and Scotch-tape test were employed to characterize the electrochemical properties and adhesion strength of the prepared micro gold devices, respectively. The prepared micro gold electrodes were demonstrated for amperometric detection of hydrogen peroxide.

  2. Electrochemical supercapacitor application of electroless surface polymerization of polyaniline nanostructures

    International Nuclear Information System (INIS)

    Amarnath, Chellachamy A.; Chang, Jin Ho; Kim, Doyoung; Mane, Rajaram S.; Han, Sung-Hwan; Sohn, Daewon

    2009-01-01

    Electrochemical supercapacitive behaviour of polyaniline nanostructures, i.e., nanorods and nanospheres fabricated on aniline-primed conducting indium-tin oxide substrate via electroless surface polymerization using ammonium persulfate as initiator and selenious acid as efficient dopant is investigated. The self-assembled monolayer of urea derivative in presence of 3-(triethoxysilyl)-propyl isocyanate and aniline plays role of aniline-primed substrate. Polyaniline electrode composed of nanorods of excess surface area responsible for large redox reactions has shown 592 F g -1 specific capacitance which is significantly greater than closely compact polyaniline nanospheres, i.e., 214 F g -1

  3. Preparation, characterization and wear behavior of carbon coated magnesium alloy with electroless plating nickel interlayer

    International Nuclear Information System (INIS)

    Mao, Yan; Li, Zhuguo; Feng, Kai; Guo, Xingwu; Zhou, Zhifeng; Dong, Jie; Wu, Yixiong

    2015-01-01

    Highlights: • The carbon film with nickel interlayer (Ni + C coating) is deposited on GW83. • In Ni + C composite coating the carbon coating has good adhesion with the nickel interlayer. • The wear track of Ni + C coating is narrower compared to the bare one. • The wear resistance of GW83 is greatly improved by the Ni + C coating. - Abstract: Poor wear resistance of rare earth magnesium alloys has prevented them from wider application. In this study, composite coating (PVD carbon coating deposited on electroless plating nickel interlayer) is prepared to protect GW83 magnesium alloys against wear. The Ni + C composite coating has a dense microstructure, improved adhesion strength and hardness due to the effective support of Ni interlayer. The wear test result shows that the Ni + C composite coating can greatly prolong the wear life of the magnesium alloy. The wear track of the Ni + C coated magnesium alloy is obviously narrower and shows less abrasive particles as compared with the bare one. Abrasive wear is the wear mechanism of the coatings at the room temperature. In conclusion, the wear resistance of the GW83 magnesium alloy can be greatly improved by the Ni + C composite coating

  4. Synthesis, characterization and application of electroless metal assisted silicon nanowire arrays

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, Sumanta Kumar [Centre for Nanoscience & Technology, Department of Mechanical Engineering, Mepco Schlenk Engineering College, Sivakasi 626 005, Tamilnadu (India); Marikani, Arumugam, E-mail: amari@mepcoeng.ac.in [Department of Physics, Mepco Schlenk Engineering College, Sivakasi 626 005, Tamilnadu (India)

    2015-12-01

    Highlights: • Preparation of Silicon nanowire arrays (SiNWs) by electroless metal deposition technique. • From analysis, it has been found that the as-prepared SiNWs are of 3.5–4.0 μm and 75 nm of length and diameter in average respectively. Further a characteristic Raman peak at 520 cm{sup −1} also has been observed. • It exhibits good electron field-emission properties with turn-on field (E{sub 0}) of about 8.26 V μm{sup −1} at current density (J) of 4.9 μA cm{sup −2}. • Functionalized SiNWs have been used for electrochemical detection bovine serum albumin protein bio-molecules. - Abstract: Vertically aligned silicon nanowire arrays (SiNWs) have been synthesized by electroless metal deposition process. The fabricated SiNWs have an average diameter of 75 nm and 3.5–4.0 μm length, as confirmed from scanning electron microscopy. A characteristic asymmetric peak broadening at 520 cm{sup −1} from Raman spectroscopy was obtained for the SiNWs as compared to the bulk silicon crystal due to phonon confinement. The as-prepared SiNWs exhibit good electron field-emission properties with turn-on field of about 8.26 V μm{sup −1} at a current density of 4.9 μA cm{sup −2}. The SiNWs was functionalized by coating with a thin gold metallic film for 60 s, and then used as bio-probe for the detection of bovine serum albumin (BSA) protein molecules. From the linear sweep voltammetry analysis, the Au coated SiNWs, exhibit linear response to the BSA analyte with increase in concentration. The minimum detection limit of the protein molecule was calculated of about 1.16 μM by the as-synthesized SiNWs probe.

  5. Fabrication of Micro Components by Electrochemical Deposition

    DEFF Research Database (Denmark)

    Tang, Peter Torben

    The main issue of this thesis is the combination of electrochemical deposition of metals and micro machining. Processes for electroplating and electroless plating of nickel and nickel alloys have been developed and optimised for compatibility with microelectronics and silicon based micromechanics...... of electrochemical machining and traditional machining is compared to micro machining techniques as performed in the field of microelectronics. Various practical solutions and equipment for electrochemical deposition of micro components are demonstrated, as well as the use and experience obtained utilising...

  6. Electrolytic Recovery of Nickel from Spent Electroless Nickel Bath Solution

    Directory of Open Access Journals (Sweden)

    R. Idhayachander

    2010-01-01

    Full Text Available Plating industry is one of the largest polluting small scale industries and nickel plating is among the important surface finishing process in this industry. The waste generated during this operation contains toxic nickel. Nickel removal and recovery is of great interest from spent bath for environmental and economic reasons. Spent electroless nickel solution from a reed relay switch manufacturing industry situated in Chennai was taken for electrolytic recovery of nickel. Electrolytic experiment was carried out with mild steel and gold coated mild steel as cathode and the different parameters such as current density, time, mixing and pH of the solution were varied and recovery and current efficiency was studied. It was noticed that there was an increase in current efficiency up to 5 A/dm2 and after that it declines. There is no significant improvement with mixing but with modified cathode there was some improvement. Removal of nickel from the spent electroless nickel bath was 81.81% at 5 A/dm2 and pH 4.23. Under this condition, the content of nickel was reduced to 0.94 g/L from 5.16 g/L. with 62.97% current efficiency.

  7. Electroless silver coating of rod-like glass particles.

    Science.gov (United States)

    Moon, Jee Hyun; Kim, Kyung Hwan; Choi, Hyung Wook; Lee, Sang Wha; Park, Sang Joon

    2008-09-01

    An electroless silver coating of rod-like glass particles was performed and silver glass composite powders were prepared to impart electrical conductivity to these non-conducting glass particles. The low density Ag-coated glass particles may be utilized for manufacturing conducting inorganic materials for electromagnetic interference (EMI) shielding applications and the techniques for controlling the uniform thickness of silver coating can be employed in preparation of biosensor materials. For the surface pretreatment, Sn sensitization was performed and the coating powders were characterized by scanning electron microscopy (SEM), focused ion beam microscopy (FIB), and atomic force microscopy (AFM) along with the surface resistant measurements. In particular, the use of FIB technique for determining directly the Ag-coating thickness was very effective on obtaining the optimum conditions for coating. The surface sensitization and initial silver loading for electroless silver coating could be found and the uniform and smooth silver-coated layer with thickness of 46 nm was prepared at 2 mol/l of Sn and 20% silver loading.

  8. The advantage of an alternative substrate over Al/NiP disks

    Science.gov (United States)

    Jiaa, Chi L.; Eltoukhy, Atef

    1994-02-01

    Compact-size disk drives with high storage densities are in high demand due to the popularity of portable computers and workstations. The contact-start-stop (CSS) endurance performance must improve in order to accomodate the higher number of on/off cycles. In this paper, we looked at 65 mm thin-film canasite substrate disks and evaluated their mechanical performance. We compared them with conventional aluminum NiP-plated disks in surface topography, take-off time with changes of skew angles and radius, CSS, drag test and glide height performance, and clamping effect. In addition, a new post-sputter process aimed at the improvement of take-off and glide as well as CSS performances was investigated and demonstrated for the canasite disks. From the test results, it is indicated that canasite achieved a lower take-off velocity, higher clamping resistance, and better glide height and CSS endurance performance. This study concludes that a new generation disk drive equipped with canasite substrate disks will consume less power from the motor due to faster take-off and lighter weight, achieve higher recording density since the head flies lower, can better withstand damage from sliding friction during the CSS operations, and will be less prone to disk distortion from clamping due to its superior mechanical properties.

  9. Temperature dependent diffusion and epitaxial behavior of oxidized Au/Ni/p-GaN ohmic contact

    International Nuclear Information System (INIS)

    Hu, C.Y.; Qin, Z.X.; Feng, Z.X.; Chen, Z.Z.; Ding, Z.B.; Yang, Z.J.; Yu, T.J.; Hu, X.D.; Yao, S.D.; Zhang, G.Y.

    2006-01-01

    The temperature dependent diffusion and epitaxial behavior of oxidized Au/Ni/p-GaN ohmic contact were studied with Rutherford backscattering spectroscopy/channeling (RBS/C) and synchrotron X-ray diffraction (XRD). It is found that the Au diffuses to the surface of p-GaN to form an epitaxial structure on p-GaN after annealing at 450 deg. C. At the same time, the O diffuses to the metal-semiconductor interface and forms NiO. Both of them are suggested to be responsible for the sharp decrease in the specific contact resistance (ρ c ) at 450 deg. C. At 500 deg. C, the epitaxial structure of Au develops further and the O also diffuses deeper into the interface. As a result, the ρ c reaches the lowest value at this temperature. However, when annealing temperature reaches 600 deg. C, part or all of the interfacial NiO is detached from the p-GaN and diffuses out, which cause the ρ c to increase greatly

  10. Ultraviolet light and ozone surface modification of poly-alpha α-methylstyrene using electroless nickel plating

    International Nuclear Information System (INIS)

    Chi Fangting; Sichuan Univ., Chengdu; Li Bo; Liu Yiyang; Chen Sufen; Jiang Bo

    2009-01-01

    The deposition capability of nickel on the surface of poly-α-methylstyrene microspheres was improved by combined treatment of ozone aeration and UV irradiation in aqueous ammonia. Surface properties of the treated film were investigated by X-ray photoelectron spectroscopy(XPS) and Fourier transform infrared(FT-TR) measurements. The samples were characterized by SEM. The results indicate that after ultraviolet joint ozone treatment, the surfaces of microspheres were oxidized, and the amine and amide groups are introduced on their surface. The images of SEM show the adhesion between microspheres and nickel-phosphorus films was improved after surface modification. This was attributed to amide which could chemisorb palladium ions to catalyze electroless nickel plating on the pretreated surface of microspheres. (authors)

  11. Quantitative Transmission Electron Microscopy of Nanoparticles and Thin-Film Formation in Electroless Metallization of Polymeric Surfaces

    Science.gov (United States)

    Dutta, Aniruddha; Heinrich, Helge; Kuebler, Stephen; Grabill, Chris; Bhattacharya, Aniket

    2011-03-01

    Gold nanoparticles(Au-NPs) act as nucleation sites for electroless deposition of silver on functionalized SU8 polymeric surfaces. Here we report the nanoscale morphology of Au and Ag nanoparticles as studied by Transmission Electron Microscopy (TEM). Scanning TEM with a high-angle annular dark-field detector is used to obtain atomic number contrast. From the intensity-calibrated plan-view scanning TEM images we determine the mean thickness and the volume distribution of the Au-NPs on the surface of the functionalized polymer. We also report the height and the radius distribution of the gold nanoparticles obtained from STEM images taking into consideration the experimental errors. The cross sectional TEM images yield the density and the average distance of the Au and Ag nanoparticles on the surface of the polymer. Supported by grant NSF, Chemistry Division.

  12. Electroless formation of silver nanoaggregates: An experimental and molecular dynamics approach

    KAUST Repository

    Gentile, Francesco T.

    2014-02-20

    The ability to manipulate matter to create non-conventional structures is one of the key issues of material science. The understanding of assembling mechanism at the nanoscale allows us to engineer new nanomaterials, with physical properties intimately depending on their structure.This paper describes new strategies to obtain and characterise metal nanostructures via the combination of a top-down method, such as electron beam lithography, and a bottom-up technique, such as the chemical electroless deposition. We realised silver nanoparticle aggregates within well-defined patterned holes created by electron beam lithography on silicon substrates. The quality characteristics of the nanoaggregates were verified by using scanning electron microscopy and atomic force microscopy imaging. Moreover, we compared the experimental findings to molecular dynamics simulations of nanoparticles growth. We observed a very high dependence of the structure characteristics on the pattern nanowell aspect ratio. We found that high-quality metal nanostructures may be obtained in patterns with well aspect ratio close to one, corresponding to a maximum diameter of 50 nm, a limit above which the fabricated structures become less regular and discontinuous. When regular shapes and sizes are necessary, as in nanophotonics, these results suggest the pattern characteristics to obtain isolated, uniform and reproducible metal nanospheres. © 2014 Taylor & Francis.

  13. Preparation and characterization of electroless Ni–B/nano-SiO2 ...

    Indian Academy of Sciences (India)

    tance, lubricity, good ductility and corrosion resistance and excellent solderability and electrical properties.1 To enhance the properties of electroless ..... ingly porous Ni–B nanolayer structures and the nodule size grows with the nanolayer ...

  14. 2-Mercaptobenzimidazole, 2-Mercaptobenzothiazole, and Thioglycolic Acid in an Electroless Nickel-Plating Bath

    Directory of Open Access Journals (Sweden)

    Ahmet Ozan Gezerman

    2015-01-01

    Full Text Available The use of three different materials, 2-mercaptobenzimidazole, 2-mercaptobenzothiazole, and thioglycolic acid, was investigated to improve the performance of electroless nickel-plating baths. By changing the concentrations of these materials, sample plates were coated. Optical microscope images were obtained by selecting representative coated plates. From the results of the investigations, the effects of these materials on electroless nickel plating were observed, and the most appropriate amounts of these materials for nickel plating were determined. Moreover, the nickel plating speed observed with the bath solution containing 2-mercaptobenzimidazole, 2-mercaptobenzothiazole, and thioglycolic acid is higher than that in the case of traditional electroless plating baths, but the nickel consumption amount in the former case is lower. In order to minimize the waste water generated from electroless nickel-plating baths, we determined the lowest amounts of the chemicals that can be used for the concentrations reported in the literature.

  15. Modeling, Fabrication and Characterization of Scalable Electroless Gold Plated Nanostructures for Enhanced Surface Plasmon Resonance

    Science.gov (United States)

    Jang, Gyoung Gug

    The scientific and industrial demand for controllable thin gold (Au) film and Au nanostructures is increasing in many fields including opto-electronics, photovoltaics, MEMS devices, diagnostics, bio-molecular sensors, spectro-/microscopic surfaces and probes. In this study, a novel continuous flow electroless (CF-EL) Au plating method is developed to fabricate uniform Au thin films in ambient condition. The enhanced local mass transfer rate and continuous deposition resulting from CF-EL plating improved physical uniformity of deposited Au films and thermally transformed nanoparticles (NPs). Au films and NPs exhibited improved optical photoluminescence (PL) and surface plasmon resonance (SPR), respectively, relative to batch immersion EL (BI-EL) plating. Suggested mass transfer models of Au mole deposition are consistent with optical feature of CF-EL and BI-EL films. The prototype CF-EL plating system is upgraded an automated scalable CF-EL plating system with real-time transmission UV-vis (T-UV) spectroscopy which provides the advantage of CF-EL plating, such as more uniform surface morphology, and overcomes the disadvantages of conventional EL plating, such as no continuous process and low deposition rate, using continuous process and controllable deposition rate. Throughout this work, dynamic morphological and chemical transitions during redox-driven self-assembly of Ag and Au film on silica surfaces under kinetic and equilibrium conditions are distinguished by correlating real-time T-UV spectroscopy with X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) measurements. The characterization suggests that four previously unrecognized time-dependent physicochemical regimes occur during consecutive EL deposition of silver (Ag) and Au onto tin-sensitized silica surfaces: self-limiting Ag activation; transitory Ag NP formation; transitional Au-Ag alloy formation during galvanic replacement of Ag by Au; and uniform morphology formation under

  16. An Approach to Preparing Ni-P with Different Phases for Use as Supercapacitor Electrode Materials.

    Science.gov (United States)

    Wang, Dan; Kong, Ling-Bin; Liu, Mao-Cheng; Luo, Yong-Chun; Kang, Long

    2015-12-01

    Herein, we describe a simple two-step approach to prepare nickel phosphide with different phases, such as Ni2 P and Ni5 P4 , to explain the influence of material microstructure and electrical conductivity on electrochemical performance. In this approach, we first prepared a Ni-P precursor through a ball milling process, then controlled the synthesis of either Ni2 P or Ni5 P4 by the annealing method. The as-prepared Ni2 P and Ni5 P4 are investigated as supercapacitor electrode materials for potential energy storage applications. The Ni2 P exhibits a high specific capacitance of 843.25 F g(-1) , whereas the specific capacitance of Ni5 P4 is 801.5 F g(-1) . Ni2 P possesses better cycle stability and rate capability than Ni5 P4 . In addition, the Fe2 O3 //Ni2 P supercapacitor displays a high energy density of 35.5 Wh kg(-1) at a power density of 400 W kg(-1) and long cycle stability with a specific capacitance retention rate of 96 % after 1000 cycles, whereas the Fe2 O3 //Ni5 P4 supercapacitor exhibits a high energy density of 29.8 Wh kg(-1) at a power density of 400 W kg(-1) and a specific capacitance retention rate of 86 % after 1000 cycles. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Influence of layer compositions and annealing conditions on complete formation of ternary PdAgCu alloys prepared by sequential electroless and electroplating methods

    Energy Technology Data Exchange (ETDEWEB)

    Sumrunronnasak, Sarocha [Graduate Program of Petrochemistry and Polymer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Tantayanon, Supawan, E-mail: supawan.t@chula.ac.th [Green Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Kiatgamolchai, Somchai [Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand)

    2017-01-01

    PdAgCu ternary alloy membranes were synthesized by the sequential electroless plating of Pd following by electroplating of Ag and Cu onto stainless steel substrate. The composition of the composite was varied by changing the deposition times. The fabricated layers were annealed at the temperatures between 500 and 600 °C for 20–60 h. The Energy Dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) were employed to investigate the element distribution in the membrane which provided the insight on membrane alloying process. Complete formation of the alloy could be obtained when the Pd composition was greater than a critical value of 60 wt%, and Ag and Cu contents were in the range of 18–30 wt% and 2–13 wt%, respectively. Deposition times of Ag and Cu were found to affect the completion of alloy formation. Excess amount of the deposited Cu particularly tended to segregate on the surface of the membrane. - Highlights: • Ternary PdAgCu alloy membranes were successfully prepared by the sequential electroless and electroplating methods. • The average Pd composition required to form alloy was found to be approximately at least 60%wt. • The alloy region was achieved for f Pd 60–73 wt%, Cu 18–30 wt% and Ag 2–13 wt%. • Suitable annealing temperature in the range of 500–600 °C for an adequate period of treating time (20–60 h).

  18. Mn-doped NiP2 nanosheets as an efficient electrocatalyst for enhanced hydrogen evolution reaction at all pH values

    Science.gov (United States)

    Wang, Xiaodeng; Zhou, Hongpeng; Zhang, Dingke; Pi, Mingyu; Feng, Jiajia; Chen, Shijian

    2018-05-01

    Developing stable and high-efficiency hydrogen generation electrocatalysts, particularly for the cathode hydrogen evolution reaction (HER), is an urgent challenge in energy conversion technologies. In this work, we have successfully synthesized Mn-doped NiP2 nanosheets on carbon cloth (Mn-NiP2 NSs/CC), which behaves as a higher efficient three dimensional HER electrocatalyst with better stability at all pH values than pure NiP2. Electrochemical tests demonstrate that the catalytic activity of NiP2 is enhanced by Mn doping. In 0.5 M H2SO4, this Mn-NiP2 NSs/CC catalyst drives 10 mA cm-2 at an overpotential of 69 mV, which is 20 mV smaller than pure NiP2. To achieve the same current density, it demands overpotentials of 97 and 107 mV in 1.0 M KOH and phosphate-buffered saline (PBS), respectively. Compared with pure NiP2, higher HER electrocatalytic performance for Mn-NiP2 NSs/CC can be attributed to its lower thermo-neutral hydrogen adsorption free energy, which is supported by density functional theory calculations.

  19. Evaluation of the effect of Ni-P coating on the corrosion resistance of the aluminium 7075 T6 alloy

    Directory of Open Access Journals (Sweden)

    Gil, L.

    2008-02-01

    Full Text Available The aluminum alloy 7075-T6 is a structural alloy widely used for aeronautical applications due to its high relationship between mechanical resistance and weight. Depending upon the environmental conditions, many types of corrosion mechanisms such as intergranular, exfoliation, have been found to occur in aircraft structural aluminum alloys. A significant advance in order to improve the behavior of this alloy is related to the application of the autocatalytic Ni-P coating which confers an excellent corrosion resistance coupled with both reduced erosive wear and higher hardness. The purpose of this work was to investigate the effect of the application of a Ni-P coating on the corrosion resistance of an aluminum 7075-T6 alloy. The results obtained indicated that the application of the Ni-P coatings diminishes the susceptibility to pitting and makes the aluminum 7075 T6 alloy immune to the exfoliation corrosion attack.

    La aleación de aluminio 7075-T6 es una aleación estructural ampliamente utilizada para aplicaciones aeronáuticas, debido a su alta relación entre resistencia mecánica y peso. Dependiendo de las condiciones ambientales, algunos mecanismos de corrosion tales como intergranular, exfoliacion, picadura y crevice se ha encontrado que ocurren en estructuras de aviones de aleaciones de aluminio. Un avance siginificativo para mejorar el comportamiento de esta aleación es la aplicación de recubrimientos autocatalíticos de Ni-P, los cuales confieren una excelente resistencia a la corrosión acoplado con una reducción del desgaste erosivo y un aumento de la dureza. El propósito de este trabajo fue investigar el efecto de la aplicación de un recubrimiento de Ni-P sobre la resistencia a la corrosión de una aleación de aluminio 7075-T6. Los resultados obtenidos indican que la aplicación del recubrimiento de Ni-P disminuye la susceptibilidad a la picadura y hace a la aleación de aluminio 7075 T6, prácticamente inmune al ataque

  20. 2-Mercaptobenzimidazole, 2-Mercaptobenzothiazole, and Thioglycolic Acid in an Electroless Nickel-Plating Bath

    OpenAIRE

    Ahmet Ozan Gezerman; Burcu Didem Çorbacıoğlu

    2015-01-01

    The use of three different materials, 2-mercaptobenzimidazole, 2-mercaptobenzothiazole, and thioglycolic acid, was investigated to improve the performance of electroless nickel-plating baths. By changing the concentrations of these materials, sample plates were coated. Optical microscope images were obtained by selecting representative coated plates. From the results of the investigations, the effects of these materials on electroless nickel plating were observed, and the most appropriate amo...

  1. ELECTROLESS NICKEL PLATING ON ABS PLASTIC BY USING ENVIRONMENTALLY FRIENDLY CHEMICALS

    OpenAIRE

    Uraz, Canan

    2017-01-01

    In this study, electroless nickel (EN) plating onacrylonitrile butadiene styrene (ABS) engineering plastic by usingenvironmentally friendly chemicals were studied. Electroless plating is afundamental step in the metal plating on the plastic. This step makes theplastic conductive and makes it possible to a homogeneous and hard platingwithout using any hazardous and unfriendly chemical such as palladium, tin,etc. In the industry there are many distinct chemical materials both catalystsand activ...

  2. Method for regeneration of electroless nickel plating solution

    Science.gov (United States)

    Eisenmann, E.T.

    1997-03-11

    An electroless nickel(EN)/hypophosphite plating bath is provided employing acetic acid/acetate as a buffer and which is, as a result, capable of perpetual regeneration while avoiding the production of hazardous waste. A regeneration process is provided to process the spent EN plating bath solution. A concentrated starter and replenishment solution is provided for ease of operation of the plating bath. The regeneration process employs a chelating ion exchange system to remove nickel cations from spent EN plating solution. Phosphites are then removed from the solution by precipitation. The nickel cations are removed from the ion exchange system by elution with hypophosphorus acid and the nickel concentration of the eluate adjusted by addition of nickel salt. The treated solution and adjusted eluate are combined, stabilizer added, and the volume of resulting solution reduced by evaporation to form the bath starter and replenishing solution. 1 fig.

  3. Method for regeneration of electroless nickel plating solution

    Science.gov (United States)

    Eisenmann, Erhard T.

    1997-01-01

    An electroless nickel(EN)/hypophosphite plating bath is provided employing acetic acid/acetate as a buffer and which is, as a result, capable of perpetual regeneration while avoiding the production of hazardous waste. A regeneration process is provided to process the spent EN plating bath solution. A concentrated starter and replenishment solution is provided for ease of operation of the plating bath. The regeneration process employs a chelating ion exchange system to remove nickel cations from spent EN plating solution. Phosphites are then removed from the solution by precipitation. The nickel cations are removed from the ion exchange system by elution with hypophosphorous acid and the nickel concentration of the eluate adjusted by addition of nickel salt. The treated solution and adjusted eluate are combined, stabilizer added, and the volume of resulting solution reduced by evaporation to form the bath starter and replenishing solution.

  4. Laser Induced Selective Activation For Subsequent Autocatalytic Electroless Plating

    DEFF Research Database (Denmark)

    Zhang, Yang

    . The third hypothesis is that the activation and rinsing process can be described by diffusion. This hypothesis is proved using Fick’s diffusion laws combined with the short-time-plating experiment. The influence of laser parameters on the surface structure is investigated for Nd:YAG, UV, and fiber lasers......The subject of this PhD thesis is “Laser induced selective activation for subsequent autocatalytic electroless plating.” The objective of the project is to investigate the process chains for micro structuring of polymer surfaces for selective micro metallization. Laser induced selective activation...... (LISA) is introduced and studied as a new technique for producing 3D moulded interconnect devices (3D-MIDs). This technique enables the metallization of polymer surface modified by laser and subsequently activated by a PdCl2/SnCl2 system. Various technologies exist on an industrial level...

  5. INFLUENCE OF THE THICKNESS OF Ni-P COATING APPLIED ON 7075 ALUMINUM ALLOY ON ITS HARDNESS

    Directory of Open Access Journals (Sweden)

    Kazimierz Czapczyk

    2016-12-01

    Full Text Available The paper presents the results of hardness tests of aluminum alloy AW-7075 (for plastic processing and Ni-P chemical coatings (nickel-phosphorus which had been applied by the no-current method. Coatings of various thickness have been made and their influence on the increase of the top layer hardness has been determined, as well as the increase of the hardness of the coating and substrate system after puncturing the coating with an indenter. The purpose of the investigation was to determine the possibility of applying the Ni-P coating for selected technical applications, among others, by the selection of its optimum thickness on the hard aluminum alloy and by the determination of the deformation resistance of the top layer if the given coating.

  6. Evaluation of the effect of Ni-P coating on the corrosion resistance of the aluminium 7075 T6 alloy

    OpenAIRE

    Gil, L.; Jiménez, L.; Castro, A. C.; Staia, M. H.; Puchi-Cabrera, E. S.

    2008-01-01

    The aluminum alloy 7075-T6 is a structural alloy widely used for aeronautical applications due to its high relationship between mechanical resistance and weight. Depending upon the environmental conditions, many types of corrosion mechanisms such as intergranular, exfoliation, have been found to occur in aircraft structural aluminum alloys. A significant advance in order to improve the behavior of this alloy is related to the application of the autocatalytic Ni-P coating which confers an exce...

  7. Improved ethanol electrooxidation performance by shortening Pd-Ni active site distance in Pd-Ni-P nanocatalysts

    Science.gov (United States)

    Chen, Lin; Lu, Lilin; Zhu, Hengli; Chen, Yueguang; Huang, Yu; Li, Yadong; Wang, Leyu

    2017-01-01

    Incorporating oxophilic metals into noble metal-based catalysts represents an emerging strategy to improve the catalytic performance of electrocatalysts in fuel cells. However, effects of the distance between the noble metal and oxophilic metal active sites on the catalytic performance have rarely been investigated. Herein, we report on ultrasmall (~5 nm) Pd-Ni-P ternary nanoparticles for ethanol electrooxidation. The activity is improved up to 4.95 A per mgPd, which is 6.88 times higher than commercial Pd/C (0.72 A per mgPd), by shortening the distance between Pd and Ni active sites, achieved through shape transformation from Pd/Ni-P heterodimers into Pd-Ni-P nanoparticles and tuning the Ni/Pd atomic ratio to 1:1. Density functional theory calculations reveal that the improved activity and stability stems from the promoted production of free OH radicals (on Ni active sites) which facilitate the oxidative removal of carbonaceous poison and combination with CH3CO radicals on adjacent Pd active sites.

  8. Review of Supported Pd-Based Membranes Preparation by Electroless Plating for Ultra-Pure Hydrogen Production.

    Science.gov (United States)

    Alique, David; Martinez-Diaz, David; Sanz, Raul; Calles, Jose A

    2018-01-23

    In the last years, hydrogen has been considered as a promising energy vector for the oncoming modification of the current energy sector, mainly based on fossil fuels. Hydrogen can be produced from water with no significant pollutant emissions but in the nearest future its production from different hydrocarbon raw materials by thermochemical processes seems to be more feasible. In any case, a mixture of gaseous compounds containing hydrogen is produced, so a further purification step is needed to purify the hydrogen up to required levels accordingly to the final application, i.e., PEM fuel cells. In this mean, membrane technology is one of the available separation options, providing an efficient solution at reasonable cost. Particularly, dense palladium-based membranes have been proposed as an ideal chance in hydrogen purification due to the nearly complete hydrogen selectivity (ideally 100%), high thermal stability and mechanical resistance. Moreover, these membranes can be used in a membrane reactor, offering the possibility to combine both the chemical reaction for hydrogen production and the purification step in a unique device. There are many papers in the literature regarding the preparation of Pd-based membranes, trying to improve the properties of these materials in terms of permeability, thermal and mechanical resistance, poisoning and cost-efficiency. In this review, the most relevant advances in the preparation of supported Pd-based membranes for hydrogen production in recent years are presented. The work is mainly focused in the incorporation of the hydrogen selective layer (palladium or palladium-based alloy) by the electroless plating, since it is one of the most promising alternatives for a real industrial application of these membranes. The information is organized in different sections including: (i) a general introduction; (ii) raw commercial and modified membrane supports; (iii) metal deposition insights by electroless-plating; (iv) trends in

  9. Fabrication of conductive copper patterns using reactive inkjet printing followed by two-step electroless plating

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jin-Ju; Lin, Guo-Qiang; Wang, Yan [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054 (China); Sowade, Enrico; Baumann, Reinhard R. [Digital Printing and Imaging Technology, Technische Universität Chemnitz, Chemnitz, 09126 (Germany); Feng, Zhe-Sheng, E-mail: fzs@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054 (China)

    2017-02-28

    Highlights: • Copper patterns were fabricated by reactive inkjet printing and two-step electroless plating. • Cu particles produced via reactive inkjet printing act as catalyst for copper electroless plating. • High conductivity can be obtained without many printing passes and high temperature sintering. • This approach can largely avoid nozzle-clogging problems. • This approach presents a potential way in the flexible printed electronics with simple process. - Abstract: A simple and low-cost process for fabricating conductive copper patterns on flexible polyimide substrates was demonstrated. Copper catalyst patterns were first produced on polyimide substrates using reactive inkjet printing of Cu (II)-bearing ink and reducing ink, and then the conductive copper patterns were generated after a two-step electroless plating procedure. The copper layers were characterized by optical microscope, SEM, XRD and EDS. Homogeneously distributed copper nanoclusters were found in the catalyst patterns. A thin copper layer with uniform particle size was formed after first-step electroless plating, and a thick copper layer of about 14.3 μm with closely packed structure and fine crystallinity was produced after second-step electroless plating. This resulting copper layer had good solderability, reliable adhesion strength and a low resistivity of 5.68 μΩ cm without any sintering process.

  10. Fabrication of conductive copper patterns using reactive inkjet printing followed by two-step electroless plating

    International Nuclear Information System (INIS)

    Chen, Jin-Ju; Lin, Guo-Qiang; Wang, Yan; Sowade, Enrico; Baumann, Reinhard R.; Feng, Zhe-Sheng

    2017-01-01

    Highlights: • Copper patterns were fabricated by reactive inkjet printing and two-step electroless plating. • Cu particles produced via reactive inkjet printing act as catalyst for copper electroless plating. • High conductivity can be obtained without many printing passes and high temperature sintering. • This approach can largely avoid nozzle-clogging problems. • This approach presents a potential way in the flexible printed electronics with simple process. - Abstract: A simple and low-cost process for fabricating conductive copper patterns on flexible polyimide substrates was demonstrated. Copper catalyst patterns were first produced on polyimide substrates using reactive inkjet printing of Cu (II)-bearing ink and reducing ink, and then the conductive copper patterns were generated after a two-step electroless plating procedure. The copper layers were characterized by optical microscope, SEM, XRD and EDS. Homogeneously distributed copper nanoclusters were found in the catalyst patterns. A thin copper layer with uniform particle size was formed after first-step electroless plating, and a thick copper layer of about 14.3 μm with closely packed structure and fine crystallinity was produced after second-step electroless plating. This resulting copper layer had good solderability, reliable adhesion strength and a low resistivity of 5.68 μΩ cm without any sintering process.

  11. Anodic photodissolution of n-InP, under electroless conditions

    International Nuclear Information System (INIS)

    Debiemme-Chouvy, Catherine; Quennoy, Anne

    2004-01-01

    In the presence of α-SiMo 12 O 40 4- ions dissolved in acidic solution and under laser irradiation, the electroless photoetching of n-type InP is achieved. At the laser impact, the semiconductor is oxidized while SiMo 12 O 40 4- species are reduced. The shape of the pit formed, due to the photoanodic dissolution of the material, depends on the experimental conditions, notably on the presence or not of Cl - ions in the medium. It can have either a Gaussian shape or a flat bottom. To specify the charge transfer which occurs at the n-InP/solution illuminated interface, some electrochemical studies were performed on n- and p-type InP electrodes. In fact, the reduction of SiMo 12 O 40 4- ions occurs by capture of electrons from the InP conduction band. Considering the energetic situation at the InP/electrolyte interface and some electrochemical results, it is concluded that the electron transfer from InP to SiMo 12 is mediated by surface states. The influence of Cl - ions on the n-InP photodissolution process is also discussed

  12. Characterization of Ni-P-SiO_2-Al_2O_3 nanocomposite coatings on aluminum substrate

    International Nuclear Information System (INIS)

    Rahemi Ardakani, S.; Afshar, A.; Sadreddini, S.; Ghanbari, A.A.

    2017-01-01

    In the present work, nano-composites of Ni-P-SiO_2-Al_2O_3 were coated on a 6061 aluminum substrate. The surface morphology of the nano-composite coating was studied by field emission scanning electron microscopy (FESEM). The amount of SiO_2 in the coating was determined by Energy Dispersive Analysis of X-Ray (EDX) and the crystalline structure of the coating was examined by X-ray diffractometer (XRD). All the experiments concerning the corrosion behavior of the coating carried out in 3.5%wt NaCl solution and evaluated by electrochemical impedance spectroscopy (EIS) and polarization technique. The results showed that an incorporation of SiO_2 and Al_2O_3 in Ni-P coating at the SiO_2 concentration of 10 g/L and 14 g/L Al_2O_3 led to the lowest corrosion rate (i_c_o_r_r = 0.88 μA/cm"2), the most positive E_c_o_r_r and maximum microhardness (537 μHV). Furthermore, increasing the amount of nanoparticles in the coating was found to decrease CPE_d_l and improve porosity. - Highlights: • The maximum content of Al_2O_3 and SiO_2 in the coating was increased to 14.02%wt and 4.54%wt, respectively. • By enhancing the amount of nanoparticles in the coating, there was higher corrosion resistance. • Increasing the nanoparticles content in the coating improved microhardness of coating. • The maximum of microhardness of Ni-P-SiO_2-Al_2O_3 was measured to be 537 μHV.

  13. Process of super-black shading material applied to the star sensor based on Ni-P alloys

    Science.gov (United States)

    Liu, Fengdeng; Xing, Fei; Wu, Yuelong; You, Zheng

    2014-12-01

    Super-black materials based on Nanotechnology have very important applications in many science fields. Super-black materials which have been reported currently, although have excellent light-trapping properties, most of them need the use of sophisticated equipment , the long-time synthesis , high temperature environment and release flammable, explosive and other dangerous gases. So many kinds of problems have hindered the application of such super-black material in practice. This project had nano super-black material developed with simple equipment and process, instead of complicated and dangerous process steps in high temperature and high pressure. On the basis of literature research, we successfully worked out a set of large-area Ni-P alloy plating method through a series of experiments exploring and analyze the experimental results. In the condition of the above Ni-P alloy, we took the solution, which anodized the Ni-P alloy immersed in the non-oxidizing acid, instead of conventional blackening process. It`s a big break for changing the situation in which oxidation, corrosion, vigorous evolution of hydrogen gas in the process are performed at the same location. As a result, not only the reaction process decreased sensitivity to time error, but also the position of the bubble layer no longer located in the surface of the workpiece which may impede observing the process of reaction. Consequently, the solution improved the controllability of the blackening process. In addition, we conducted the research of nano super-black material, exploring nano-super-black material in terms of space optical sensor.

  14. Electroless nickel plating on abs plastics from nickel chloride and nickel sulfate baths

    International Nuclear Information System (INIS)

    Inam-ul-haque; Ahmad, S.; Khan, A.

    2005-01-01

    Aqueous acid nickel chloride and alkaline nickel sulphate bath were studied for electroless nickel planting on acrylonitrile-butadiene-styrene (ABS) plastic. Before electroless nickel plating, specimens were etched, sensitized and activated. Effects of sodium hypophosphite and sodium citrate concentration on the electroless nickel plating thickness were discussed. Aqueous acid nickel chloride bath comprising, nickel chloride 10 g/L, sodium hypophosphite 40 g/L, sodium citrate 40g/L at pH 5.5, temperature 85 deg. C and density of 1 Be/ for thirty minutes gave best coating thickness in micrometer. It was found that acid nickel chloride bath had a greater stability, wide operating range and better coating thickness results than alkaline nickel sulphate bath. Acid nickel chloride bath gave better coating thickness than alkaline nickel sulfate bath

  15. Electromagnetic properties of core–shell particles by way of electroless Ni–Fe–P alloy plating on flake-shaped diatomite

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Deyuan [Bionic and Micro/Nano/Bio Manufacturing Technology Research Center, School of Mechanical Engineering and Automation, Beihang University, Beijing 100191 (China); Yuan, Liming, E-mail: lming_y@163.com [Bionic and Micro/Nano/Bio Manufacturing Technology Research Center, School of Mechanical Engineering and Automation, Beihang University, Beijing 100191 (China); Lan, Mingming; Hu, Yanyan; Cai, Jun [Bionic and Micro/Nano/Bio Manufacturing Technology Research Center, School of Mechanical Engineering and Automation, Beihang University, Beijing 100191 (China); Zhang, Wenqiang [College of Engineering, China Agricultural University, Beijing 100083 (China); Li, Haiyang [China Aerospace Science and Technology Corporation, Beijing 100854 (China)

    2013-11-15

    Flake-shaped diatomite particles coated by Ni–Fe–P alloy were prepared by electroless plating technique and processed by heat treatment. The samples were characterized by SEM, EDS and XRD. The results indicated that the magnetic diatomite particles had continuous and homogeneous Ni–Fe–P coating, and the phase constitution of the Ni–Fe–P coating was transformed from an amorphous structure to a crystalline structure during heat treatment. The measured electromagnetic parameters and the calculated reflection loss suggested that heat treatment was able to enhance the microwave absorption performance of the paraffin wax based composites. In a word, the Ni–Fe–P coated diatomite particle obtained in this paper is a promising candidate for lightweight microwave absorbing inclusions. - Highlights: • We used the flake-shaped diatomite particles as forming template to fabricate the core–shell ferromagnetic particles. • The diatomite particles were deposited Ni–Fe–P alloy by way of electroless plating methods. • The coated diatomite particles were lightweight ferromagnetic fillers. • The composites containing coated diatomite particles with heat treatment exhibited great potential in the field of electromagnetic absorbing.

  16. Electromagnetic properties of core–shell particles by way of electroless Ni–Fe–P alloy plating on flake-shaped diatomite

    International Nuclear Information System (INIS)

    Zhang, Deyuan; Yuan, Liming; Lan, Mingming; Hu, Yanyan; Cai, Jun; Zhang, Wenqiang; Li, Haiyang

    2013-01-01

    Flake-shaped diatomite particles coated by Ni–Fe–P alloy were prepared by electroless plating technique and processed by heat treatment. The samples were characterized by SEM, EDS and XRD. The results indicated that the magnetic diatomite particles had continuous and homogeneous Ni–Fe–P coating, and the phase constitution of the Ni–Fe–P coating was transformed from an amorphous structure to a crystalline structure during heat treatment. The measured electromagnetic parameters and the calculated reflection loss suggested that heat treatment was able to enhance the microwave absorption performance of the paraffin wax based composites. In a word, the Ni–Fe–P coated diatomite particle obtained in this paper is a promising candidate for lightweight microwave absorbing inclusions. - Highlights: • We used the flake-shaped diatomite particles as forming template to fabricate the core–shell ferromagnetic particles. • The diatomite particles were deposited Ni–Fe–P alloy by way of electroless plating methods. • The coated diatomite particles were lightweight ferromagnetic fillers. • The composites containing coated diatomite particles with heat treatment exhibited great potential in the field of electromagnetic absorbing

  17. Ultrasonic preparation of nano-nickel/activated carbon composite using spent electroless nickel plating bath and application in degradation of 2,6-dichlorophenol.

    Science.gov (United States)

    Su, Jingyu; Jin, Guanping; Li, Changyong; Zhu, Xiaohui; Dou, Yan; Li, Yong; Wang, Xin; Wang, Kunwei; Gu, Qianqian

    2014-11-01

    Ni was effectively recovered from spent electroless nickel (EN) plating baths by forming a nano-nickel coated activated carbon composite. With the aid of ultrasonication, melamine-formaldehyde-tetraoxalyl-ethylenediamine chelating resins were grafted on activated carbon (MFT/AC). PdCl2 sol was adsorbed on MFT/AC, which was then immersed in spent electroless nickel plating bath; then nano-nickel could be reduced by ascorbic acid to form a nano-nickel coating on the activated carbon composite (Ni/AC) in situ. The materials present were carefully examined by Fourier transform infrared spectroscopy, X-ray diffraction, field emission scanning electron microscopy, X-ray photoelectron spectroscopy and electrochemistry techniques. The resins were well distributed on the inside and outside surfaces of activated carbon with a size of 120 ± 30 nm in MFT/AC, and a great deal of nano-nickel particles were evenly deposited with a size of 3.8 ± 1.1 nm in Ni/MFT. Moreover, Ni/AC was successfully used as a catalyst for ultrasonic degradation of 2,6-dichlorophenol. Copyright © 2014. Published by Elsevier B.V.

  18. An experimental study on the effect of aqueous hypophosphite pre-treatment used on an Al-alloy substrate before electroless Ni plating

    International Nuclear Information System (INIS)

    Szirmai, G.; Toeroek, T.I.

    2009-01-01

    Complete text of publication follows. A new surface pre-treatment method is under development for electroless nickel plating, which appears to be an effective and environmentally benign treatment for the following deposition of a sound and high quality surface nickel coating with good adhesion. The aluminium substrate is immersed in a mildly acidic solution (lactic acid) of sodium hypophosphite in order to modify the passive surface and make it suitable for the reductive chemical precipitation of the nickel-phosphorus nuclei from the electroless nickel plating bath. During this novel pre-treatment procedure the surface adsorption of the hypophosphite anions might play an important role, therefore, several advanced surface testing and analytical techniques (SEM-EPMA-EDXRS, TEM, XPS) were applied in order to monitor and characterize the surface reactions and adsorption phenomena taking place during the pre-treatment. For the XPS study a home built XPS machine was applied.The Al excited XPS (studying P 2s, P 2p, O 1s, C 1s, Al 2p, Ni 2p photoelectron lines) proved to be one of the most powerful technique in the identification of the chemical species formed and present on the surfaces examined in this study. Acknowledgements One of the authors J.T. is indebted for the support of the Hungarian Science Foundation OTKA: (No K67873).

  19. A study on the corrosion and erosion behavior of electroless nickel and TiAlN/ZrN duplex coatings on ductile iron

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chung-Kwei [School of Dental Technology, Taipei Medical University, Taipei 110, Taiwan (China); Hsu, Cheng-Hsun, E-mail: chhsu@ttu.edu.tw [Department of Materials Engineering, Tatung University, Taipei 104, Taiwan (China); College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan (China); Cheng, Yin-Hwa [Department of Materials Engineering, Tatung University, Taipei 104, Taiwan (China); Ou, Keng-Liang [College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan (China); Department of Mechanical Engineering, National Central University, Taoyuan 320, Taiwan (China); Lee, Sheng-Long [Research Center for Biomedical Devices and Prototyping Production, Taipei Medical University, Taipei 110, Taiwan (China)

    2015-01-01

    Highlights: • Electroless nickel was used as an interlayer for TiAlZrN-coated ductile iron. • The duplex coatings evidently improved corrosion resistance of ductile iron. • The duplex coated ductile iron showed a good erosion resistance. - Abstract: This study utilized electroless nickel (EN) and cathodic arc evaporation (CAE) technologies to deposit protective coatings onto ductile iron. Polarization corrosion tests were performed in 3.5 wt.% sodium chloride, and also erosion tests were carried out by using Al{sub 2}O{sub 3} particles (∼177 μm in size and Mohr 7 scale) of about 5 g. Surface morphologies of the corroded and eroded specimens were observed separately. To further understand the coating effects on both the corrosive and erosive behavior of ductile iron, coating structure, morphology, and adhesion were analyzed using X-ray diffractormeter, scanning electron microscopy, and Rockwell-C indenter, respectively. The results showed that the EN exhibited an amorphous structure while the CAE-TiAlN/ZrN coating was a multilayered nanocrystalline. When the TiAlN/ZrN coated specimen with EN interlayer could effectively increase the adhesion strength between the CAE coating and substrate. Consequently, the combination of TiAlN/ZrN and EN delivered a better performance than did the monolithic EN or TiAlN/ZrN for both corrosion and erosion protection.

  20. A study on the corrosion and erosion behavior of electroless nickel and TiAlN/ZrN duplex coatings on ductile iron

    International Nuclear Information System (INIS)

    Lin, Chung-Kwei; Hsu, Cheng-Hsun; Cheng, Yin-Hwa; Ou, Keng-Liang; Lee, Sheng-Long

    2015-01-01

    Highlights: • Electroless nickel was used as an interlayer for TiAlZrN-coated ductile iron. • The duplex coatings evidently improved corrosion resistance of ductile iron. • The duplex coated ductile iron showed a good erosion resistance. - Abstract: This study utilized electroless nickel (EN) and cathodic arc evaporation (CAE) technologies to deposit protective coatings onto ductile iron. Polarization corrosion tests were performed in 3.5 wt.% sodium chloride, and also erosion tests were carried out by using Al 2 O 3 particles (∼177 μm in size and Mohr 7 scale) of about 5 g. Surface morphologies of the corroded and eroded specimens were observed separately. To further understand the coating effects on both the corrosive and erosive behavior of ductile iron, coating structure, morphology, and adhesion were analyzed using X-ray diffractormeter, scanning electron microscopy, and Rockwell-C indenter, respectively. The results showed that the EN exhibited an amorphous structure while the CAE-TiAlN/ZrN coating was a multilayered nanocrystalline. When the TiAlN/ZrN coated specimen with EN interlayer could effectively increase the adhesion strength between the CAE coating and substrate. Consequently, the combination of TiAlN/ZrN and EN delivered a better performance than did the monolithic EN or TiAlN/ZrN for both corrosion and erosion protection

  1. Electroless Ni-Mo-P diffusion barriers with Pd-activated self-assembled monolayer on SiO2

    International Nuclear Information System (INIS)

    Liu Dianlong; Yang Zhigang; Zhang Chi

    2010-01-01

    Ternary Ni-based amorphous films can serve as a diffusion barrier layer for Cu interconnects in ultralarge-scale integration (ULSI) applications. In this paper, electroless Ni-Mo-P films deposited on SiO 2 layer without sputtered seed layer were prepared by using Pd-activated self-assembled monolayer (SAM). The solutions and operating conditions for pretreatment and deposition were presented, and the formation of Pd-activated SAM was demonstrated by XPS (X-ray photoelectron spectroscopy) analysis and BSE (back-scattered electron) observation. The effects of the concentration of Na 2 MoO 4 added in electrolytes, pH value, and bath temperature on the surface morphology and compositions of Ni-Mo-P films were investigated. The microstructures, diffusion barrier property, electrical resistivity, and adhesion were also examined. Based on the experimental results, the Ni-Mo-P alloys produced by using Pd-activated SAM had an amorphous or amorphous-like structure, and possessed good performance as diffusion barrier layer.

  2. Electroless preparation and characterization of Ni-B nanoparticles supported on multi-walled carbon nanotubes and their catalytic activity towards hydrogenation of styrene

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zheng; Li, Zhilin [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Institute of Carbon Fibers and Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Wang, Feng, E-mail: wangf@mail.buct.edu.cn [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Institute of Carbon Fibers and Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Liu, Jingjun; Ji, Jing [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Institute of Carbon Fibers and Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Park, Ki Chul [Institute of Carbon Science and Technology (ICST), Shinshu University, 4-17-1 Wakasato, Nagano-shi, Nagano 380-8553 (Japan); Endo, Morinobu [Department of Electrical and Electronic Engineering, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano-shi, Nagano 380-8553 (Japan)

    2012-02-15

    Graphical abstract: The MWCNT/Ni-B catalyst has been successfully prepared by an electroless deposition process. The Ni-B nanoparticles on the supporter are amorphous and are well-distributed. The catalytic conversion towards hydrogenation of styrene shows excellent catalytic activity of the obtained materials. Highlights: Black-Right-Pointing-Pointer A two-step treatment of MWCNTs enabled the homogeneous growth of Ni-B nanoparticles. Black-Right-Pointing-Pointer Ni-B nanoparticles were amorphous with an average size of 60 nm. Black-Right-Pointing-Pointer There were electron transfer between Ni and B. Black-Right-Pointing-Pointer The catalyst had excellent catalytic activity towards hydrogenation of styrene. -- Abstract: Nickel-boron (Ni-B) nanoparticles supported on multi-walled carbon nanotubes (MWCNTs) were successfully synthesized through an electroless deposition process using the plating bath with sodium borohydride as a reducing agent. The structural and morphological analyses using field-emission scanning electron microscopy, X-ray diffractometry and high-resolution transmission electron microscopy have shown that the Ni-B nanoparticles deposited on the sidewalls of MWCNTs are fine spheres comprised of amorphous structure with the morphologically unique fine-structure like flowers, and homogenously dispersed with a narrow particle size distribution centered at around 60 nm diameter. The catalytic activity of MWCNT/Ni-B nanoparticles was evaluated with respect to hydrogenation of styrene. The hydrogenation catalyzed by MWCNT-supported Ni-B nanoparticles has been found to make styrene selectively converted into ethylbenzene. The highest conversion reaches 99.8% under proper reaction conditions, which demonstrates the high catalytic activity of MWCNT/Ni-B nanoparticles.

  3. Electroless silver plating on PET fabric initiated by in situ reduction of polyaniline

    Energy Technology Data Exchange (ETDEWEB)

    Mu, Shipeng; Xie, Huayang [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Wang, Wei [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Key Lab of Eco-Textile, Ministry of Education, Donghua University, Shanghai 201620 (China); Yu, Dan, E-mail: yudan@dhu.edu.cn [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Key Lab of Eco-Textile, Ministry of Education, Donghua University, Shanghai 201620 (China)

    2015-10-30

    Graphical abstract: - Highlights: • We propose a method to initiate electroless plating by reduction of PANI. • The shielding effective of the silver-plated fabric reaches 50–90 dB. • The silver-plated fabric has good antibacterial activity. - Abstract: Novel electroless silver plating poly(ethylene terephthalate) (PET) fabric was prepared by a two-step procedure. In the first step, the in situ polymerized polyaniline (PANI) occurred on the fabric surface in the presence of ammonium persulfate (APS). Then, Ag(0) species reduced from silver nitrate (AgNO{sub 3}) by in situ reduction of PANI were used as catalyst to initiate electroless silver plating. Hence, this composite material was prepared by conductive polymer combined with electroless plating. The silver layer on PET fabric surface was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectroscopy (EDX) as well as X-ray photoelectron spectroscopy (XPS). The results showed that the silver layer was plated uniformly and compactly with surface resistance about 0.1 Ω/sq on average. The shielding effectiveness (SE) of silver-plated PET fabric was around 50–90 dB, which was considered to have potential applications in electromagnetic shielding materials. Thermogravimetric (TG) analysis was carried out to study thermal stability. The antibacterial tests demonstrated that the silver-plated fabric exhibited excellent antibacterial activity against Staphylococcus aureus and Escherichia coli both with 100%.

  4. Effects of Pretreatment on the Structure And Properties of Electroless Nickel Coatings

    DEFF Research Database (Denmark)

    Møller, Per; Deng, Hong

    1994-01-01

    The pretreatment process can significantly affect the corrosion resistance of electroless nickel (EN) coatings One of the most important reasons is that different pretreatment processes can give different surface morphologies of the substrate. The scanning electron microscope (SEM) and the scanni...

  5. Electroless plating and magnetic properties of Co–Zn–P coating on ...

    Indian Academy of Sciences (India)

    Electroless plating; magnetic properties; Co–Zn–P coating; short carbon fibres. 1. Introduction. Since carbon ... high temperature resistance, corrosion resistance, fatigue and ... achieved in the production process of carbon fibres prepared from organic ... and a variety of functional applications (Fitzer et al 1984;. Abraham et ...

  6. Electroless Nickel-Based Catalyst for Diffusion Limited Hydrogen Generation through Hydrolysis of Borohydride

    Directory of Open Access Journals (Sweden)

    Shannon P. Anderson

    2013-07-01

    Full Text Available Catalysts based on electroless nickel and bi-metallic nickel-molybdenum nanoparticles were synthesized for the hydrolysis of sodium borohydride for hydrogen generation. The catalysts were synthesized by polymer-stabilized Pd nanoparticle-catalyzation and activation of Al2O3 substrate and electroless Ni or Ni-Mo plating of the substrate for selected time lengths. Catalytic activity of the synthesized catalysts was tested for the hydrolyzation of alkaline-stabilized NaBH4 solution for hydrogen generation. The effects of electroless plating time lengths, temperature and NaBH4 concentration on hydrogen generation rates were analyzed and discussed. Compositional analysis and surface morphology were carried out for nano-metallized Al2O3 using Scanning Electron Micrographs (SEM and Energy Dispersive X-Ray Microanalysis (EDAX. The as-plated polymer-stabilized electroless nickel catalyst plated for 10 min and unstirred in the hydrolysis reaction exhibited appreciable catalytic activity for hydrolysis of NaBH4. For a zero-order reaction assumption, activation energy of hydrogen generation using the catalyst was estimated at 104.6 kJ/mol. Suggestions are provided for further work needed prior to using the catalyst for portable hydrogen generation from aqueous alkaline-stabilized NaBH4 solution for fuel cells.

  7. Effects of annealing temperatures on the physicochemical properties of nickel-phosphorus deposits

    International Nuclear Information System (INIS)

    Bai, Allen; Hu, C.-C.

    2003-01-01

    The dependence of physicochemical properties, including microhardness, magnetism, morphology, crystalline information, roughness factor and hydrogen evolution ability, on the phosphorus content, varying from 0 to 28 atomic percentage (at.%), of Ni-P deposits with annealing in air at eight temperatures (i.e., 100, 200, 300, 400, 500, 600, 700 and 800 deg. C) were systematically compared. The microhardness reached a maximum at 400 deg. C due to the crystallization of Ni and Ni 3 P at 400 deg. C and the significant diffusion of Cu into the Ni-P deposit at temperatures ≥500 deg. C, confirmed by the depth profiles of Ni, P, Cu and O elements. The paramagnetism of Ni-P deposit was gradually transformed into ferromagnetism at 400 deg. C, attributable to the phase separation of Ni and Ni 3 P. The roughness factor, R a , of the deposits with P contents ≤12 at.% were increased with increasing the annealing temperature at temperatures a of the deposits with 17-28 at.% of P is approximately independent of the annealing temperature. The rate of hydrogen evolution decreased with increasing the annealing temperature because the specific activity (i/R a ) of the Ni-P deposits was decreased with increasing the annealing temperature

  8. Electroless Ni-B plating for electrical contact applications

    Directory of Open Access Journals (Sweden)

    Dervos, C. T.

    2005-12-01

    Full Text Available Electroless Ni-B plating has been tried on steel substrate in an effort to employ low-cost starting materials for electrical contacts or connectors. By selected conditions of heat treatment in a high vacuum environment the plating can acquire Cr-equivalent hardness without the effluents of the hard chromium plating process. The surfaces were characterized under scanning electron microscope and by XRD. The fabricated materials were tested under corrosion conditions by polarization measurements. Semispherical nickel plated steel joints were tested in a computer controlled contact make-break apparatus, under simultaneous application of a mechanical and a low-voltage electrical load for 20,000 cycles. After heat treatment the plating acquires a crystalline structure with very good adhesion to the substrate material. Corrosion decreases and increased hardness is obtained. The surface is also characterized by good electrical properties during aging accelerated tests.

    Se ha investigado la deposición de Ni-B por vía química sobre un substrato de acero, con el fin de poder emplear materiales de bajo coste para los contactos o conectores eléctricos. Mediante condiciones específicas de tratamiento térmico en un ambiente de alto vacío, la deposición puede alcanzar durezas equivalentes al cromo (Cr sin los efluentes del proceso de cromado duro. Las superficies se caracterizaron en el microscopio electrónico de barrido y mediante DRX. Los materiales fabricados se ensayaron bajo condiciones de corrosión utilizando mediciones de polarización. Se ensayaron las juntas semiesféricas de acero niquelado en un equipo de contactos controlado por ordenador bajo la aplicación simultánea de una carga mecánica y de una carga eléctrica de bajo voltaje durante 20.000 ciclos. Después del tratamiento térmico, el recubrimiento adquiere una estructura cristalina con muy buena adherencia al material del substrato. Se consigue una menor corrosión y mayor

  9. Production and characterization of nickel nanoparticles on carbon nanotubes by electroless and its application to hydrogen storage; Produccion y caracterizacion de nanoparticulas de niquel sobre nanotubos de carbono por electroless y su aplicacion en el almacenamiento de hidrogeno

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa-Torres, Mayra Zyzlila; Dominguez-Rios, Carlos [Centro de Investigacion en Materiales Avanzados, Chihuahua, Chihuahua (Mexico); Cabanas-Moreno, Jose Gerardo; Suarez-Alcantara, Karina [Departamento de Ciencia de Materiales, ESFM-IPN, Mexico, D.F. (Mexico); Aguilar-Elguezabal, Alfredo [Centro de Investigacion en Materiales Avanzados, Chihuahua, Chihuahua (Mexico)

    2009-09-15

    The search for an appropriate storage system for the transportation industry to enable implementing the use of hydrogen as an energy carrier has become a strategic research concern. Carbon nanotubes (CNT) are potentially interesting materials for the storage of hydrogen. This work investigates the deposition condition for dispersing nickel nanoparticles in one single step using the electroless technique on the surface of carbon nanotubes. It also studied the influence on the ability to store hydrogen. The materials were characterized using sweep electron and transmission microscopy. The surface areas of the materials were determined with nitrogen adsorption isotherms. The hydrogen storage capacity was studied at a temperature of 77 K and atmospheric pressure, as well as at 303 K and pressures of de 0.1-5 MPa. The results show that highly dispersed spherical nickel nanoparticles were obtained on carbon nanotubes with an average size of 3-9 nm. The addition of nickel on carbon nanotubes significantly improves the hydrogen storage capacity, finding that at 303 K and 5 MPa the increment factor was as much as twice that of nanotubes without nickel. [Spanish] La busqueda de un sistema de almacenamiento apropiado para la industria del transporte se ha convertido en un tema estrategico de investigacion para poder implementar el uso del hidrogeno como portador de energia. Los nanotubos de carbono (NTC) son materiales potencialmente interesantes en el almacenamiento de hidrogeno. En este trabajo se investigaron las condiciones de deposito para dispersar en un solo paso nanoparticulas de niquel por la tecnica de electroless sobre la superficie de los nanotubos de carbono y se estudio su influencia en la capacidad de almacenamiento de hidrogeno. Los materiales se caracterizaron por microscopia electronica de barrido y transmision. Mediante isotermas de adsorcion de nitrogeno se determino el area superficial de los materiales. La capacidad de almacenamiento de hidrogeno se

  10. Electroless oxidation of diamond surfaces in ceric and ferricyanide solutions: An easy way to produce 'C-O' functional groups

    Energy Technology Data Exchange (ETDEWEB)

    Simon, N., E-mail: nathalie.simon@uvsq.f [Institut Lavoisier de Versailles, UMR 8180, Universite de Versailles-St-Quentin en Yvelines, 45 avenue des Etats Unis, 78000 Versailles (France); Charrier, G.; Etcheberry, A. [Institut Lavoisier de Versailles, UMR 8180, Universite de Versailles-St-Quentin en Yvelines, 45 avenue des Etats Unis, 78000 Versailles (France)

    2010-08-01

    Despite many works are devoted to oxidation of diamond surfaces, it is still a challenge, to successfully produce well defined 'C-O' functions, particularly for functionalization purposes. In this paper we describe and compare, for the first time, the 'electroless' oxidation of as-deposited polycrystalline boron-doped diamond (BDD) films in ceric and ferricyanide solutions at room temperature. Both reactions efficiently generate oxygen functionalities on BDD surface. While a higher amount of 'C-O' moieties is produced with Ce{sup 4+} as oxidizing agent, the use of ferricyanide specie seems the most interesting to specifically generate hydroxyl groups. Additionally, this easy to perform oxidative method appears not damaging for diamond surfaces and adapted to conductive or non-conductive materials. The resulting surfaces were characterized using X-ray photoelectron spectroscopy, contact angle and capacitance-voltage analysis.

  11. A Study on Characterization of Light-Induced Electroless Plated Ni Seed Layer and Silicide Formation for Solar Cell Application

    Science.gov (United States)

    Takaloo, Ashkan Vakilipour; Joo, Seung Ki; Es, Firat; Turan, Rasit; Lee, Doo Won

    2018-03-01

    Light-induced electroless plating (LIEP) is an easy and inexpensive method that has been widely used for seed layer deposition of Nickel/Copper (Ni/Cu)-based metallization in the solar cell. In this study, material characterization aspects of the Ni seed layer and Ni silicide formation at different bath conditions and annealing temperatures on the n-side of a silicon diode structure have been examined to achieve the optimum cell contacts. The effects of morphology and chemical composition of Ni film on its electrical conductivity were evaluated and described by a quantum mechanical model. It has been found that correlation exists between the theoretical and experimental conductivity of Ni film. Residual stress and phase transformation of Ni silicide as a function of annealing temperature were evaluated using Raman and XRD techniques. Finally, transmission line measurement (TLM) technique was employed to determine the contact resistance of Ni/Si stack after thermal treatment and to understand its correlation with the chemical-structural properties. Results indicated that low electrical resistive mono-silicide (NiSi) phase as low as 5 mΩ.cm2 was obtained.

  12. Preparation and magnetic properties of Ni–P–La coating by electroless plating on silicon substrate

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Yun [Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Wang, Jihui, E-mail: jhwang@tju.edu.cn [Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Yuan, Jing [Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); College of Physics and Electronic Information Engineering, Qinghai University for Nationalities, Xining, Qinghai 810007 (China); Li, Haiqin [College of Physics and Electronic Information Engineering, Qinghai University for Nationalities, Xining, Qinghai 810007 (China)

    2016-02-28

    Graphical abstract: The content of Ni phase, which is the main ferromagnetic phase in Ni–P–La coating, is almost increased linearly with the concentration of La in plating solution. - Highlights: • The La element improves the magnetic properties of Ni–P–La coating. • Magnetism increases but the stability of bath decreases with La content and pH. • Coatings peel off at high temperature (≥80 °C) and magnetism is weak in short time. • The optimum is the La{sub 2}O{sub 3} of 10 mg L{sup −1}, pH of 5.0, temperature of 75 °C and time of 45 min. - Abstract: Ni–P–La coatings were prepared on Si substrate by electroless plating method under different La content, pH value, plating temperature and plating time. The surface morphology, chemical composition, structure and magnetic properties of coatings were observed and determined by scanning electron microscope (SEM), energy dispersive X-ray spectrometry (EDS), X-ray diffractometer (XRD) and vibrating sample magnetometer (VSM). The results showed that Ni–P–La coating is smooth and uniform with a cellular morphology grown in columnar manner. With the increase of La content, pH value and plating time, the thickness and saturation magnetization of coating are increased continuously, but the stability of plating bath is decreased greatly with La content and pH value. Under higher plating temperature, the thickness and saturation magnetization of coatings are obviously enhanced. But too high plating temperature is harmful to the plating bath and coating. The optimum plating conditions for Ni–P–La coating is La{sub 2}O{sub 3} addition of 10 mg L{sup −1}, pH value of 5.0, plating temperature of 75 °C and plating time of 45 min. The role of La element is to benefit the deposition of Ni element, promote the formation of Ni phase during the annealing process, and thus improve the magnetic properties of Ni–P–La coating.

  13. Optimisation of the electroless metal deposition technique for use in photonics

    DEFF Research Database (Denmark)

    Malureanu, Radu; Andryieuski, Andrei; Lavrinenko, Andrei

    2010-01-01

    Even if the first approach toward metamaterials was made more than 40 years ago [1] the topic was not considered for practical applications until 2000 due to the lack of natural materials with tuneable magnetic interaction with electromagnetic waves. In 1999 the first engineered metamaterial was ...

  14. Corrosion Behavior and Microhardness of Ni-P-SiO2-Al2O3 Nano-composite Coatings on Magnesium Alloy

    Science.gov (United States)

    Sadreddini, S.; Rahemi Ardakani, S.; Rassaee, H.

    2017-05-01

    In the present work, nano-composites of Ni-P-SiO2-Al2O3 were coated on AZ91HP magnesium alloy. The surface morphology of the nano-composite coating was studied by field emission scanning electron microscopy (FESEM). The amount of SiO2 in the coating was determined by energy-dispersive analysis of x-ray (EDX), and the crystalline structure of the coating was examined by x-ray diffractometer (XRD). All the experiments concerning the corrosion behavior of the coating carried out in 3.5 wt.% NaCl solution and evaluated by electrochemical impedance spectroscopy (EIS) and polarization technique. The results showed that an incorporation of SiO2 and Al2O3 in Ni-P coating at the SiO2 concentration of 10 g/Land 14 g/LAl2O3 led to the lowest corrosion rate ( i corr = 1.3 µA/cm2), the most positive E corr and maximum microhardness (496 VH). Furthermore, Ni-P-SiO2-Al2O3 nano-composite coating possesses less porosity than that in Ni-P coating, resulting in improving corrosion resistance.

  15. Probing the semi-magicity of $^{68}$Ni via the $^{3}$H($^{66}$Ni,$^{68}$Ni)p two-neutron transfer reaction in inverse kinematics

    CERN Multimedia

    Reiter, P; Blazhev, A A; Kruecken, R; Franchoo, S; Mertzimekis, T; Darby, I G; Van de walle, J; Raabe, R; Elseviers, J; Gernhaeuser, R A; Sorlin, O H; Georgiev, G P; Bree, N C F; Habs, D; Chapman, R; Gaudefroy, L; Diriken, J V J; Jenkins, D G; Kroell, T; Axiotis, M; Huyse, M L; Patronis, N

    We propose to perform the two-neutron transfer reaction $^{3}$H($^{66}$Ni, $^{68}$Ni)$p$ using the ISOLDE radioactive ion beam at 2.7 $A$ MeV and the MINIBALL + T-REX setup to characterize the 0$^{+}$ and 2$^{+}$ states in $^{68}$Ni.

  16. Higher-resolution selective metallization on alumina substrate by laser direct writing and electroless plating

    Science.gov (United States)

    Lv, Ming; Liu, Jianguo; Wang, Suhuan; Ai, Jun; Zeng, Xiaoyan

    2016-03-01

    How to fabricate conductive patterns on ceramic boards with higher resolution is a challenge in the past years. The fabrication of copper patterns on alumina substrate by laser direct writing and electroless copper plating is a low cost and high efficiency method. Nevertheless, the lower resolution limits its further industrial applications in many fields. In this report, the mechanisms of laser direct writing and electroless copper plating were studied. The results indicated that as the decomposed products of precursor PdCl2 have different chemical states respectively in laser-irradiated zone (LIZ) and laser-affected zone (LAZ). This phenomenon was utilized and a special chemical cleaning method with aqua regia solution was taken to selectively remove the metallic Pd in LAZ, while kept the PdO in LIZ as the only active seeds. As a result, the resolution of subsequent copper patterns was improved significantly. This technique has a great significance to develop the microelectronics devices.

  17. Microwave-assisted activation for electroless nickel plating on PMMA microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yen-Chung [Graduate School of Defense Science, Chung Cheng Institute of Technology, National Defense University, Tao-Yuan, Taiwan 335 (China); Materials and Electro-optics Research Division, Chung Shan Institute of Science and Technology, Tao-Yuan, Taiwan 325 (China); Liu, Robert Lian-Huey [Graduate School of Defense Science, Chung Cheng Institute of Technology, National Defense University, Tao-Yuan, Taiwan 335 (China); Department of Chemical and Materials Engineering, Minghsin University of Science and Technology, Hsinchu Taiwan 304 (China); Chen, Xin-Liang [Graduate School of Defense Science, Chung Cheng Institute of Technology, National Defense University, Tao-Yuan, Taiwan 335 (China); Shu, Hsiou-Jeng [Materials and Electro-optics Research Division, Chung Shan Institute of Science and Technology, Tao-Yuan, Taiwan 325 (China); Ger, Ming-Der, E-mail: mingderger@gmail.com [Department of Chemical and Materials Engineering, Chung Cheng Institute of Technology, National Defense University, Tao-Yuan, Taiwan 335 (China)

    2011-05-15

    A novel microwave-assisted activation method for electroless plating on PMMA microspheres is presented in this study. When the microwave irradiation was applied during the activation step, the amount of the Pd species adsorbed on PMMA surfaces was much higher than that of sample pretreated with a conventional activation process without microwave irradiation. With this activation method, it was also shown that the adsorbed Pd species with a size of 4-6 nm were uniformly distributed on the surfaces of the PMMA microspheres, thus a smooth and uniform nickel-phosphorus coating on the PMMA microspheres was obtained by subsequent electroless plating. The samples after each step were characterized by XPS, TEM, ICP and SEM.

  18. Synthesis of gold nano-catalysts supported on carbon nanotubes by using electroless plating technique

    International Nuclear Information System (INIS)

    Ma Xicheng; Li Xia; Lun Ning; Wen Shulin

    2006-01-01

    Gold nanoparticles supported on carbon nanotubes were prepared by using electroless plating technique. High-resolution transmission electron microscopy (HRTEM) has shown that spherical gold nanoparticles were homogeneously dispersed on the surfaces of the carbon nanotubes with a distribution of particle sizes sharply at around 3-4 nm in diameter. The results presented in this work will probably provide new catalysts with better performances

  19. Laboratory procedure for sizing and electroless nickel plating assembled steel bearings

    International Nuclear Information System (INIS)

    Wright, R.R.; Petit, G.S.

    1976-01-01

    The bearing is placed in a holder and degreased in methyl chloroform. The entire bearing is etched in hydrochloric acid and sized in an ammonium bifluoride-hydrogen peroxide solution (NH 4 F.HF--H 2 O 2 ). The bearing is removed from the holder, activated in hydrochloric acid and plated with 0.001 in. of nickel in a plating tumbler immersed in a heated electroless nickel plating bath. The bearing is water-rinsed and air-dried

  20. A Ni-P@NiCo LDH core-shell nanorod-decorated nickel foam with enhanced areal specific capacitance for high-performance supercapacitors.

    Science.gov (United States)

    Xing, Jiale; Du, Jing; Zhang, Xuan; Shao, Yubo; Zhang, Ting; Xu, Cailing

    2017-08-14

    Recently, transition metal-based nanomaterials have played a key role in the applications of supercapacitors. In this study, nickel phosphide (Ni-P) was simply combined with NiCo LDH via facile phosphorization of Ni foam and subsequent electrodeposition to form core-shell nanorod arrays on the Ni foam; the Ni-P@NiCo LDH was then directly used for a pseudocapacitive electrode. Owing to the splendid synergistic effect between Ni-P and NiCo LDH nanosheets as well as the hierarchical structure of 1D nanorods, 2D nanosheets, and 3D Ni foam, the hybrid electrode exhibited significantly enhanced electrochemical performances. The Ni-P@NiCo LDH electrode showed a high specific capacitance of 12.9 F cm -2 at 5 mA cm -2 (3470.5 F g -1 at a current density of 1.3 A g -1 ) that remained as high as 6.4 F cm -2 at a high current density of 100 mA cm -2 (1700 F g -1 at 27 A g -1 ) and excellent cycling stability (96% capacity retention after 10 000 cycles at 40 mA cm -2 ). Furthermore, the asymmetric supercapacitors (ASCs) were assembled using Ni-P@NiCo LDH as a positive electrode and activated carbon (AC) as a negative electrode. The obtained ASCs delivered remarkable energy density and power density as well as good cycling performance. The enhanced electrochemical activities open a new avenue for the development of supercapacitors.

  1. Preparation of 64Cu based on nuclear reaction of 64Ni (p,n) 64Cu: Simulations of target preparation and radionuclidic separation

    International Nuclear Information System (INIS)

    Sunarhadijoso Soenarjo; Wira Y Rahman; Sriyono; Triyanto

    2010-01-01

    As a preliminary study for production technology of 64 Cu based on nuclear reaction of 64 Ni (p,n) 64 Cu, the nickel targets were prepared by electroplating method using acidic solution of nickel chloride - boric acid and basic solution of nickel sulphate - nickel chloride mixtures on a silver-surfaced target holder. The simulated solution of Ni(II) - Cu(II) matrix was considered as the solution of post-proton-irradiated nickel containing radioactive copper. In the presented work the irradiation of nickel target was omitted, while the radioactive copper was obtained from neutron irradiation of CuO target. The separation of radioactive copper was based on anion exchange column chromatography in which the radiocopper was conditioned to form CuCl 4 2- anion complex, while the nickel was kept as Ni 2+ cation. It was found that the electroplating deposit from the acidic solution was better than that form the basic solution. By conditioning the matrix solution in 6 M HCl, the radioactive copper was indicated in the forms of Cu 2+ and CuCl 4 2- while the nickel was in the form of Ni 2+ . In the condition of 9 M HCl, the radioactive copper was in the form of CuCl 4 2- , while the nickel was found as both Ni 2+ and CuCl 4 2- . The best condition of separation was in 8 M HCl in which the radioactive copper was in the form of CuCl 4 2- , while the nickel was in the form of Ni 2+ . The retained CuCl 4 2- was then changed back into Cu 2+ cation and eluted out from the column by using 0.05 M HCl. The γ-spectrometric analysis showed a single strong peak at 511 keV in accordance to γ-annihilation peak coming from positron decay of 64 Cu, and a very weak peak at 1346 keV related to γ-ray from internal energy transition of 64 Cu. (author)

  2. Electroless silver plating on PET fabric initiated by in situ reduction of polyaniline

    Science.gov (United States)

    Mu, Shipeng; Xie, Huayang; Wang, Wei; Yu, Dan

    2015-10-01

    Novel electroless silver plating poly(ethylene terephthalate) (PET) fabric was prepared by a two-step procedure. In the first step, the in situ polymerized polyaniline (PANI) occurred on the fabric surface in the presence of ammonium persulfate (APS). Then, Ag(0) species reduced from silver nitrate (AgNO3) by in situ reduction of PANI were used as catalyst to initiate electroless silver plating. Hence, this composite material was prepared by conductive polymer combined with electroless plating. The silver layer on PET fabric surface was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectroscopy (EDX) as well as X-ray photoelectron spectroscopy (XPS). The results showed that the silver layer was plated uniformly and compactly with surface resistance about 0.1 Ω/sq on average. The shielding effectiveness (SE) of silver-plated PET fabric was around 50-90 dB, which was considered to have potential applications in electromagnetic shielding materials. Thermogravimetric (TG) analysis was carried out to study thermal stability. The antibacterial tests demonstrated that the silver-plated fabric exhibited excellent antibacterial activity against Staphylococcus aureus and Escherichia coli both with 100%.

  3. Higher-resolution selective metallization on alumina substrate by laser direct writing and electroless plating

    International Nuclear Information System (INIS)

    Lv, Ming; Liu, Jianguo; Wang, Suhuan; Ai, Jun; Zeng, Xiaoyan

    2016-01-01

    Graphical abstract: - Highlights: • Mechanisms of laser direct writing and electroless plating were studied. • Active seeds in laser-irradiated zone and laser-affected zone were found to be different. • A special chemical cleaning method with aqua regia was taken. • Higher-resolution copper patterns on alumina ceramic were obtained conveniently. - Abstract: How to fabricate conductive patterns on ceramic boards with higher resolution is a challenge in the past years. The fabrication of copper patterns on alumina substrate by laser direct writing and electroless copper plating is a low cost and high efficiency method. Nevertheless, the lower resolution limits its further industrial applications in many fields. In this report, the mechanisms of laser direct writing and electroless copper plating were studied. The results indicated that as the decomposed products of precursor PdCl_2 have different chemical states respectively in laser-irradiated zone (LIZ) and laser-affected zone (LAZ). This phenomenon was utilized and a special chemical cleaning method with aqua regia solution was taken to selectively remove the metallic Pd in LAZ, while kept the PdO in LIZ as the only active seeds. As a result, the resolution of subsequent copper patterns was improved significantly. This technique has a great significance to develop the microelectronics devices.

  4. Adhesion enhancement between electroless nickel and polyester fabric by a palladium-free process

    Energy Technology Data Exchange (ETDEWEB)

    Lu Yinxiang, E-mail: yxlu@fudan.edu.cn [Department of Materials Science, Fudan University, 220 Handan Road, Shanghai 200433 (China); Xue Longlong; Li Feng [Department of Materials Science, Fudan University, 220 Handan Road, Shanghai 200433 (China)

    2011-01-15

    A new, efficient, palladium- and etchant-free process for the electroless nickel plating of poly(ethylene terephthalate) (PET) fabric has been developed. PET electroless plating can be prepared in three steps, namely: (i) the grafting of thiol group onto PET, (ii) the silver Ag{sup 0} seeding of the PET surface, and (iii) the nickel metallization using electroless plating bath. Scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis, X-ray photoelectron spectroscopy (XPS), Raman spectrometer, X-ray diffraction (XRD), and thermogravimetric analysis (TG) were used to characterize the samples in the process, and the nickel loading was quantified by weighing. This process successfully compares with the traditional one based on KMnO{sub 4}/H{sub 2}SO{sub 4} etching and palladium-based seed layer. The nickel coating obtained in this palladium-free process can pass through ultrasonic washing challenge, and shows excellent adhesion with the PET substrate. However, the sample with Pd catalyst via traditional process was damaged during the testing experiment.

  5. Electroless plating of low-resistivity Cu–Mn alloy thin films with self-forming capacity and enhanced thermal stability

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Sung-Te, E-mail: stchen@mail.hust.edu.tw [Department of Electronic Engineering, Hsiuping University of Science and Technology, Dali 412, Taichung, Taiwan (China); Chen, Giin-Shan [Department of Materials Science and Engineering, Feng Chia University, Seatwen 407, Taichung, Taiwan (China)

    2015-11-05

    Previous studies have typically used sputter deposition to fabricate Cu–Mn alloy thin films with concentrated solute additions which have exceeded several atomic percentages, and the electrical resistivity values of the resultant films from previous studies are relatively high, ranging from 2.5 to 3.5 μΩ-cm. Herein, we proposed a different approach by using electroless process to plate dilute Cu–Mn (0.1 at.%) alloy thin films on dielectric layers (SiO{sub 2}). Upon forming-gas annealing, the Mn incorporated into Cu–Mn films was segregated toward the SiO{sub 2} side, eventually converting itself into a few atomic layer thickness at the Cu/SiO{sub 2} interface, and forming films with a low level of resistivity the same as that of pure Cu films (2.0 μΩ-cm). The interfacial layer served as not only a diffusion barrier, but also an adhesion promoter that prevented the film’s agglomeration during annealing at elevated temperatures. The mechanism for the dual-function performance by the Mn addition was elucidated by interfacial bonding analysis, as well as dynamic (adhesive strength) and thermodynamic (surface-tension) measurements. - Highlights: • Electroless plating is proposed to grow dilute (0.1%) Cu–Mn films on SiO{sub 2} layers. • Adequate annealing results in a self-forming of MnO{sub x} at the Cu/SiO{sub 2} interface. • The role of interfacial MnO{sub x} as a barrier and adhesion promoter is demonstrated. • The treated dilute film has a low ρ level of pure Cu, in contrast to concentrated films. • Its potential as a single entity replacement of Cu interconnect is presented.

  6. Influence of Ni-P Coated SiC and Laser Scan Speed on the Microstructure and Mechanical Properties of IN625 Metal Matrix Composites

    Science.gov (United States)

    Sateesh, N. H.; Kumar, G. C. Mohan; Krishna, Prasad

    2015-12-01

    Nickel based Inconel-625 (IN625) metal matrix composites (MMCs) were prepared using pre-heated nickel phosphide (Ni-P) coated silicon carbide (SiC) reinforcement particles by Direct Metal Laser Sintering (DMLS) additive manufacturing process under inert nitrogen atmosphere to obtain interface influences on MMCs. The distribution of SiC particles and microstructures were characterized using optical and scanning electron micrographs, and the mechanical behaviours were thoroughly examined. The results clearly reveal that the interface integrity between the SiC particles and the IN625 matrix, the mixed powders flowability, the SiC ceramic particles and laser beam interaction, and the hardness, and tensile characteristics of the DMLS processed MMCs were improved effectively by the use of Ni-P coated SiC particles.

  7. Electroless Ni–B Coating of Pure Titanium Surface for Enhanced Tribocorrosion Performance in Artificial Saliva and Antibacterial Activity

    Directory of Open Access Journals (Sweden)

    F. Mindivan

    2017-05-01

    Full Text Available In the present study, the surface of commercial pure (Grade 2 titanium was coated with electroless Ni–B. The surface morphology, microstructure and phase identification were analysed by X-Ray Diffraction (XRD and Field Emission Gun Scanning Electron Microscope (FEG-SEM equipped with Energy Dispersive X-ray Spectroscopy (EDS. The tribocorrosion performance in a laboratory simulated artificial saliva was investigated using a reciprocating ball-on-plate tribometer coupled to an electrochemical cell. The antibacterial property of the electroless Ni–B film coated on pure titanium was basically investigated. From this study, it may be concluded that this electroless Ni–B coating process cannot only improve the hardness and tribocorrosion performance of the pure titanium, but can also provide antimicrobial activity.

  8. Corrosion Characteristics of Nano-structured Coatings for the Application in Secondary Piping System of Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Won; Kim, Seung Hyun; Kim, Ji Hyun [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2015-05-15

    Coating surface using less corrosive metal is one of methods that reduce electrochemical corrosion. And metal oxide like a TiO{sub 2} is studied because it is stable, insoluble when coating is exposed severe environment. Several coating technics are used for better corrosion resistance. Pysical vapor deposition(PVD), chemical vapor deposition(CVD), thermal spray, electroplating, electroless etc. But thermal spray coating makes thermal stress to substrates because its temperature are more than 3000K. And powder's deformation can occur. And CVD makes decarburization near interface between surface and coating layer. In addition, CVD and PVD needs vacuum chamber. Electroplating is chemical reaction at surface, but it needs electric power. On the other hands, electroless plating dosen't needs electric power and it's temperature is low than thermal spray. Also the pipe dipping into the chemically solution can proceed coating easily. To reduce FAC, we have experiment about corrosion resistance of electroless Ni-P coated carbon steel in room temperature. And it has possibility of reducing corrosion and addition of TiO{sub 2} nano particles in Ni-P coating layer makes having better corrosion resistance. And results give us a possibility that electroless Ni-P coating added TiO{sub 2} nano particle can have better corrosion resistance compared carbon steel. So it needs study about high temperature corrosion experiment of electroless Ni-P coating added TiO{sub 2} nano particle.

  9. Improved the lithium storage capability of BaLi2Ti6O14 by electroless silver coating

    International Nuclear Information System (INIS)

    Lin, Xiaoting; Wang, Pengfei; Li, Peng; Yu, Haoxiang; Qian, Shangshu; Shui, Miao; Wang, Dongjie; Long, Nengbing; Shu, Jie

    2015-01-01

    Highlights: • BaLi 2 Ti 6 O 14 /Ag is fabricated via a facile electroless deposition. • Highly dispersed Ag nanoparticles are successively coated on BaLi 2 Ti 6 O 14 . • BaLi 2 Ti 6 O 14 /Ag is used as anode material for lithium storage. • BaLi 2 Ti 6 O 14 /Ag exhibits improved lithium storage capability. - Abstract: To form BaLi 2 Ti 6 O 14 /Ag, highly dispersed Ag nanoparticles are successfully deposited on the surface of BaLi 2 Ti 6 O 14 by a simple chemical deposition method. The morphology, quantity and size of Ag nanoparticles in BaLi 2 Ti 6 O 14 /Ag composites are significantly influenced by the Ag coating contents. Electrochemical results show that Ag nanoparticles play a positive role in reducing redox polarization and improving electrical conductivity of BaLi 2 Ti 6 O 14 during lithiation/delithiation processes. Among all the as-obtained products, 6 wt.% Ag coated BaLi 2 Ti 6 O 14 shows the highest initial charge specific capacity of 160 mAh g −1 at the current density of 100 mA g −1 (1C), which is much higher than the 149.1 mAh g −1 for bare BaLi 2 Ti 6 O 14 . After 100 charge/discharge cycles, the reversible capacity can be maintained at 117.0 mAh g −1 . Moreover, this sample also shows excellent rate performance with high reversible charge capacities of 147.5, 139.7, 132.6, and 126.7 mAh g −1 at the rates of 2C, 3C, 4C and 5C, respectively. Compared with bare BaLi 2 Ti 6 O 14 , the superior electrochemical performance indicates that BaLi 2 Ti 6 O 14 /Ag can be a good anode material in lithium ion batteries.

  10. Control of biofouling on titanium condenser tubes with the use of electroless copper plating

    International Nuclear Information System (INIS)

    Anandkumar, B.; George, R.P.; Kamachi Mudali, U.; Ramachandran, D.

    2015-01-01

    In sea water environments titanium condenser tubes face serious issues of biofouling and biomineralization. Electroless plating of nanocopper film is attempted inside the tubes for the control of biofilm formation. Using advanced techniques like AFM, SEM, and XPS, electroless copper plated flat Ti specimens were characterized. Examination of Cu coated Ti surfaces using AFM and SEM showed more reduction in the microroughness compared to anodized Ti surface. Cu 2p 3/2 peak in XPS spectral analysis showed the shift in binding energy inferring the reduction of the hydroxide to metallic copper. Tubular specimens were exposed to sea water up to three months and withdrawn at monthly intervals to evaluate antibacterial activity and long term stability of the coating. Total viable counts and epifluorescence microscopy analyses showed two orders decrease in bacterial counts on copper coated Ti specimens when compared to as polished control Ti specimens. Molecular biology techniques like DGGE and protein expression analysis system were done to get insight into the community diversity and copper tolerance of microorganisms. DGGE gel bands clearly showed the difference in the bacterial diversity inferring from the 16S rRNA gene fragments (V3 regions). Protein analysis showed distinct protein spots appearing in electroless copper coated Ti biofilm protein samples in addition to protein spots common to both the biofilms of Cu coated and as polished Ti. The results indicated copper accumulating proteins in copper resistant bacterial species of biofilm. Reduced microroughness of the surface and toxic copper ions resulted in good biofouling control even after three months exposure to sea water. (author)

  11. Monodispersed Carbon-Coated Cubic NiP2 Nanoparticles Anchored on Carbon Nanotubes as Ultra-Long-Life Anodes for Reversible Lithium Storage.

    Science.gov (United States)

    Lou, Peili; Cui, Zhonghui; Jia, Zhiqing; Sun, Jiyang; Tan, Yingbin; Guo, Xiangxin

    2017-04-25

    In search of new electrode materials for lithium-ion batteries, metal phosphides that exhibit desirable properties such as high theoretical capacity, moderate discharge plateau, and relatively low polarization recently have attracted a great deal of attention as anode materials. However, the large volume changes and thus resulting collapse of electrode structure during long-term cycling are still challenges for metal-phosphide-based anodes. Here we report an electrode design strategy to solve these problems. The key to this strategy is to confine the electroactive nanoparticles into flexible conductive hosts (like carbon materials) and meanwhile maintain a monodispersed nature of the electroactive particles within the hosts. Monodispersed carbon-coated cubic NiP 2 nanoparticles anchored on carbon nanotubes (NiP 2 @C-CNTs) as a proof-of-concept were designed and synthesized. Excellent cyclability (more than 1000 cycles) and capacity retention (high capacities of 816 mAh g -1 after 1200 cycles at 1300 mA g -1 and 654.5 mAh g -1 after 1500 cycles at 5000 mA g -1 ) are characterized, which is among the best performance of the NiP 2 anodes and even most of the phosphide-based anodes reported so far. The impressive performance is attributed to the superior structure stability and the enhanced reaction kinetics incurred by our design. Furthermore, a full cell consisting of a NiP 2 @C-CNTs anode and a LiFePO 4 cathode is investigated. It delivers an average discharge capacity of 827 mAh g -1 based on the mass of the NiP 2 anode and exhibits a capacity retention of 80.7% over 200 cycles, with an average output of ∼2.32 V. As a proof-of-concept, these results demonstrate the effectiveness of our strategy on improving the electrode performance. We believe that this strategy for construction of high-performance anodes can be extended to other phase-transformation-type materials, which suffer a large volume change upon lithium insertion/extraction.

  12. Study of electroless nickel plating on PerFactoryTM rapid prototype model

    OpenAIRE

    J.C. Rajaguru; C. Au, M. Duke

    2012-01-01

    This paper presents an investigation of electroless nickel plating on PerFactoryTM rapid prototype model built on PerFactoryTM R05 material. PerFactoryTM R05 is acrylic based photo sensitive resin. It is a popular material in rapid prototyping using PerFactoryTM method which employs addictive manufacturing technique to build prototypes for visual inspection, assembly etc. Metallization of such a prototype can extend the application envelop of the rapid prototyping technique as they can be use...

  13. Metallization on FDM Parts Using the Chemical Deposition Technique

    Directory of Open Access Journals (Sweden)

    Azhar Equbal

    2014-08-01

    Full Text Available Metallization of ABS (acrylonitrile-butadiene-styrene parts has been studied on flat part surfaces. These parts are fabricated on an FDM (fused deposition modeling machine using the layer-wise deposition principle using ABS as a part material. Electroless copper deposition on ABS parts was performed using two different surface preparation processes, namely ABS parts prepared using chromic acid for etching and ABS parts prepared using a solution mixture of sulphuric acid and hydrogen peroxide (H2SO4/H2O2 for etching. After surface preparations using these routes, copper (Cu is deposited electrolessly using four different acidic baths. The acidic baths used are 5 wt% CuSO4 (copper sulfate with 15 wt% of individual acids, namely HF (hydrofluoric acid, H2SO4 (sulphuric acid, H3PO4 (phosphoric acid and CH3COOH (acetic acid. Cu deposition under different acidic baths used for both the routes is presented and compared based on their electrical performance, scanning electron microscopy (SEM and energy dispersive X-ray spectrometry (EDS. The result shows that chromic acid etched samples show better electrical performance and Cu deposition in comparison to samples etched via H2SO4/H2O2.

  14. Preceedings of the International Congress (12th), Corrosion Control for Low-Cost Reliability, Held in Houston, Texas on September 19 -24, 1993. Volume 2. Process Industries Plant Operations.

    Science.gov (United States)

    1993-09-24

    abraded to no. 1000 emeryc paper, degreased with acetone and then electrolytically etched in 10C, Oxalic acid , with a current density of I Ampere per square...16 during Atmospheric Exposure by Means of Electrochemical Impedance Spectroscopy 400 Hydrothermal Properties of...329 040 The Effects of Acid Deposition on the Atmospheric Corrosion 461 Study of Corrosion Resistance of Electroless Ni-P Platings

  15. Thermophysical properties and microstructure of graphite flake/copper composites processed by electroless copper coating

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qian; He, Xin-Bo; Ren, Shu-Bin; Zhang, Chen; Ting-Ting, Liu; Qu, Xuan-Hui, E-mail: quxh@ustb.edu.cn

    2014-02-25

    Highlights: • GF–copper composites were fabricated using a sparking plasma sintering, which involves coating GF with copper, using electroless plating technique. • The oriented graphite flake distributed homogeneously in matrix. • With the increase of flake graphite from 44 to 71 vol.%, the basal plane thermal conductivity of composites increases from 445 to 565 W m{sup −1} K{sup −1} and the thermal expansion of composites decreases from 8.1 to 5.0. • The obtained composites are suitable for electronic packaging materials. -- Abstract: This study focuses on the fabrication of thermal management material for power electronics applications using graphite flake reinforced copper composites. The manufacturing route involved electroless plating of copper on the graphite flake and further spark plasma sintering of composite powders. The relative density of the composites with 44–71 vol.% flakes achieved up to 98%. Measured thermal conductivities and coefficients of thermal expansion of composites ranged from 455–565 W m{sup −1} K{sup −1} and 8 to 5 ppm K{sup −1}, respectively. Obtained graphite flake–copper composites exhibit excellent thermophysical properties to meet the heat dispersion and matching requirements of power electronic devices to the packaging materials.

  16. Thermophysical properties and microstructure of graphite flake/copper composites processed by electroless copper coating

    International Nuclear Information System (INIS)

    Liu, Qian; He, Xin-Bo; Ren, Shu-Bin; Zhang, Chen; Ting-Ting, Liu; Qu, Xuan-Hui

    2014-01-01

    Highlights: • GF–copper composites were fabricated using a sparking plasma sintering, which involves coating GF with copper, using electroless plating technique. • The oriented graphite flake distributed homogeneously in matrix. • With the increase of flake graphite from 44 to 71 vol.%, the basal plane thermal conductivity of composites increases from 445 to 565 W m −1 K −1 and the thermal expansion of composites decreases from 8.1 to 5.0. • The obtained composites are suitable for electronic packaging materials. -- Abstract: This study focuses on the fabrication of thermal management material for power electronics applications using graphite flake reinforced copper composites. The manufacturing route involved electroless plating of copper on the graphite flake and further spark plasma sintering of composite powders. The relative density of the composites with 44–71 vol.% flakes achieved up to 98%. Measured thermal conductivities and coefficients of thermal expansion of composites ranged from 455–565 W m −1 K −1 and 8 to 5 ppm K −1 , respectively. Obtained graphite flake–copper composites exhibit excellent thermophysical properties to meet the heat dispersion and matching requirements of power electronic devices to the packaging materials

  17. Seeding of silicon by copper ion implantation for selective electroless copper plating

    Energy Technology Data Exchange (ETDEWEB)

    Bhansali, S; Sood, D K; Zmood, R B [Microelectronic and Materials Technology Centre, Royal Melbourne Institute of Technolgy, Melbourne, VIC (Australia)

    1994-12-31

    We report on the successful use of copper(self) ion implantation into silicon to seed the electroless plating of copper on silicon (100) surfaces. Copper ions have been implanted to doses of 5E14-6.4E16 ions/cm{sup 2} using a MEEVA ion implanter at extraction voltage of 40kV. Dose was varied in fine steps to determine the threshold dose of 2E15 Cu ions/cm{sup 2} for `seed` formation of copper films on silicon using a commercial electroless plating solution. Plated films were studied with Rutherford backscattering spectrometry, scanning electron microscopy, EDX and profilometry . The adhesion of films was measured by `scotch tape test`. The adhesion was found to improve with increasing dose. However thicker films exhibited rather poor adhesion and high internal stress. SEM results show that the films grow first as isolated islands which become larger and eventually impinge into a continuous film as the plating time is increased. (authors). 5 refs., 1 tab., 3 figs.

  18. Seeding of silicon by copper ion implantation for selective electroless copper plating

    Energy Technology Data Exchange (ETDEWEB)

    Bhansali, S.; Sood, D.K.; Zmood, R.B. [Microelectronic and Materials Technology Centre, Royal Melbourne Institute of Technolgy, Melbourne, VIC (Australia)

    1993-12-31

    We report on the successful use of copper(self) ion implantation into silicon to seed the electroless plating of copper on silicon (100) surfaces. Copper ions have been implanted to doses of 5E14-6.4E16 ions/cm{sup 2} using a MEEVA ion implanter at extraction voltage of 40kV. Dose was varied in fine steps to determine the threshold dose of 2E15 Cu ions/cm{sup 2} for `seed` formation of copper films on silicon using a commercial electroless plating solution. Plated films were studied with Rutherford backscattering spectrometry, scanning electron microscopy, EDX and profilometry . The adhesion of films was measured by `scotch tape test`. The adhesion was found to improve with increasing dose. However thicker films exhibited rather poor adhesion and high internal stress. SEM results show that the films grow first as isolated islands which become larger and eventually impinge into a continuous film as the plating time is increased. (authors). 5 refs., 1 tab., 3 figs.

  19. Seeding of silicon by copper ion implantation for selective electroless copper plating

    International Nuclear Information System (INIS)

    Bhansali, S.; Sood, D.K.; Zmood, R.B.

    1993-01-01

    We report on the successful use of copper(self) ion implantation into silicon to seed the electroless plating of copper on silicon (100) surfaces. Copper ions have been implanted to doses of 5E14-6.4E16 ions/cm 2 using a MEEVA ion implanter at extraction voltage of 40kV. Dose was varied in fine steps to determine the threshold dose of 2E15 Cu ions/cm 2 for 'seed' formation of copper films on silicon using a commercial electroless plating solution. Plated films were studied with Rutherford backscattering spectrometry, scanning electron microscopy, EDX and profilometry . The adhesion of films was measured by 'scotch tape test'. The adhesion was found to improve with increasing dose. However thicker films exhibited rather poor adhesion and high internal stress. SEM results show that the films grow first as isolated islands which become larger and eventually impinge into a continuous film as the plating time is increased. (authors). 5 refs., 1 tab., 3 figs

  20. Synthesis, optical properties and residual strain effect of GaN nanowires generated via metal-assisted photochemical electroless etching

    KAUST Repository

    Najar, Adel; Shafa, Muhammad; Anjum, Dalaver H.

    2017-01-01

    Herein, we report on the studies of GaN nanowires (GaN NWs) prepared via a metal-assisted photochemical electroless etching method with Pt as the catalyst. It has been found that etching time greatly influences the growth of GaN NWs. The density

  1. A fine surface roughness electroless Ni–P–PTFE composite modified stamper for light guide plate application

    International Nuclear Information System (INIS)

    Pan, K; Fu, C

    2010-01-01

    Electroless Ni–P–PTFE composite coating technology takes advantage of the beneficial properties from both Ni–P alloy and PTFE, such as good wear resistance, good anti-adhesion, dry lubrication, low coefficient of friction and good corrosion resistance. It has been applied in many mold industries. However, the Ni–P–PTFE composite coating suffers from bad surface roughness, when the PTFE particles incorporate into a Ni–P matrix. This severely hampers the technology to be applied to optical grade applications. In this paper, we propose a trick to generate a fine surface roughness (FSR) electroless Ni–P–PTFE composite to modify a nickel stamper. Using this new method, the nickel stamper can be covered by a Ni–P–PTFE functional layer and can keep the original surface property at the same time, namely the optical properties. We have chosen 4.5 inch (97 mm × 59 mm × 0.6 mm) light guide plates (LGPs) to demonstrate the effectiveness of the procedure. For the sake of comparison, the LGPs were produced by injection molding with three kinds of stampers including an original SUS430 master, an electroless Ni–P–PTFE composite coated nickel stamper and an FSR electroless Ni–P–PTFE composite modified stamper. We measured and discussed the optical performances at both the element level and system level, namely complete back light units.

  2. Characterization of Ni-P-SiO{sub 2}-Al{sub 2}O{sub 3} nanocomposite coatings on aluminum substrate

    Energy Technology Data Exchange (ETDEWEB)

    Rahemi Ardakani, S., E-mail: saeed.rahemi69@gmail.com [Department of Materials Science and Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Afshar, A. [Department of Materials Science and Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Sadreddini, S., E-mail: sina.sadreddini1986@gmail.com [Young Researchers and Elites Club, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Ghanbari, A.A. [Department of Materials Science and Engineering, Sharif University of Technology, International Campus, Kish Island (Iran, Islamic Republic of)

    2017-03-01

    In the present work, nano-composites of Ni-P-SiO{sub 2}-Al{sub 2}O{sub 3} were coated on a 6061 aluminum substrate. The surface morphology of the nano-composite coating was studied by field emission scanning electron microscopy (FESEM). The amount of SiO{sub 2} in the coating was determined by Energy Dispersive Analysis of X-Ray (EDX) and the crystalline structure of the coating was examined by X-ray diffractometer (XRD). All the experiments concerning the corrosion behavior of the coating carried out in 3.5%wt NaCl solution and evaluated by electrochemical impedance spectroscopy (EIS) and polarization technique. The results showed that an incorporation of SiO{sub 2} and Al{sub 2}O{sub 3} in Ni-P coating at the SiO{sub 2} concentration of 10 g/L and 14 g/L Al{sub 2}O{sub 3} led to the lowest corrosion rate (i{sub corr} = 0.88 μA/cm{sup 2}), the most positive E{sub corr} and maximum microhardness (537 μHV). Furthermore, increasing the amount of nanoparticles in the coating was found to decrease CPE{sub dl} and improve porosity. - Highlights: • The maximum content of Al{sub 2}O{sub 3} and SiO{sub 2} in the coating was increased to 14.02%wt and 4.54%wt, respectively. • By enhancing the amount of nanoparticles in the coating, there was higher corrosion resistance. • Increasing the nanoparticles content in the coating improved microhardness of coating. • The maximum of microhardness of Ni-P-SiO{sub 2}-Al{sub 2}O{sub 3} was measured to be 537 μHV.

  3. Fragmentation of neutron-hole strengths in 59Ni observed in the 60Ni(p, d) 59Ni reaction at 65 MeV

    International Nuclear Information System (INIS)

    Matoba, M.; Ohgaki, H.; Kugimiya, H.; Ijiri, H.; Maki, T.; Nakano, M.

    1995-01-01

    The 60 Ni(p, d) 59 Ni reaction has been studied with 65 MeV polarized protons. Angular distributions of the differential cross section and analyzing power have been measured for neutron hole states in 59 Ni up to the excitation energies of 7 MeV. The data analysis with a standard distorted-wave Born approximation theory provides transferred angular momenta l, j and spectroscopic factors for thirty-nine transitions. The nuclear damping mechanism of the single hole states is discussed. ((orig.))

  4. The Shear Strength and Fracture Behavior of Sn-Ag- xSb Solder Joints with Au/Ni-P/Cu UBM

    Science.gov (United States)

    Lee, Hwa-Teng; Hu, Shuen-Yuan; Hong, Ting-Fu; Chen, Yin-Fa

    2008-06-01

    This study investigates the effects of Sb addition on the shear strength and fracture behavior of Sn-Ag-based solders with Au/Ni-P/Cu underbump metallization (UBM) substrates. Sn-3Ag- xSb ternary alloy solder joints were prepared by adding 0 wt.% to 10 wt.% Sb to a Sn-3.5Ag alloy and joining them with Au/Ni-P/Cu UBM substrates. The solder joints were isothermally stored at 150°C for up to 625 h to study their microstructure and interfacial reaction with the UBM. Single-lap shear tests were conducted to evaluate the mechanical properties, thermal resistance, and failure behavior. The results show that UBM effectively suppressed intermetallic compound (IMC) formation and growth during isothermal storage. The Sb addition helped to refine the Ag3Sn compounds, further improving the shear strength and thermal resistance of the solders. The fracture behavior evolved from solder mode toward the mixed mode and finally to the IMC mode with increasing added Sb and isothermal storage time. However, SnSb compounds were found in the solder with 10 wt.% Sb; they may cause mechanical degradation of the solder after long-term isothermal storage.

  5. Effect of pickling processes on the microstructure and properties of electroless Ni–P coating on Mg–7.5Li–2Zn–1Y alloy

    Directory of Open Access Journals (Sweden)

    Chunjie Xu

    2014-12-01

    Full Text Available The electroless plating Ni–P is prepared on the surface of Mg–7.5Li–2Zn–1Y alloys with different pickling processes. The microstructure and properties of Ni–P coating are investigated. The results show that the Ni–P coatings deposited using the different pickling processes have a different high phosphorus content amorphous Ni–P solid solution structure, and the Ni–P coatings exhibit higher hardness. There is higher phosphorus content of Ni–P amorphous coating using 125 g/L CrO3 and 110 ml/L HNO3 (w=68% than using 180 g/L CrO3 and 1 g/L KF during pre-treatment, and the coating structure is more compact, and the Ni–P coatings exhibit more excellent adhesion with substrate (Fc up to 22 N. The corrosion potential of Ni–P coating is improved and exhibits good corrosion resistance. As a result, Mg-7.5Li-2Zn-1Y alloy is remarkably protected by the Ni–P coating.

  6. Effect of hydrofluoric acid concentration on the evolution of photoluminescence characteristics in porous silicon nanowires prepared by Ag-assisted electroless etching method

    KAUST Repository

    Najar, Adel; Anjum, Dalaver H.; Hedhili, Mohamed N.; Ng, Tien Khee; Ooi, Boon S.; Ben Slimane, Ahmed; Sougrat, Rachid

    2012-01-01

    We report on the structural and optical properties of porous silicon nanowires (PSiNWs) fabricated using silver (Ag) ions assisted electroless etching method. Silicon nanocrystallites with sizes <5 nm embedded in amorphous silica have been

  7. Roles of Ag in fabricating Si nanowires by the electroless chemical etching technique

    International Nuclear Information System (INIS)

    Wan, X.; Wang, Q. K.; Wangyang, P. H.; Tao, H.

    2012-01-01

    Silicon wafers coated with a film of Ag pattern are used for investigating roles of Ag in the fabrication of silicon nanowire arrays (SiNWs) by the electroless chemical etching technique. The diameter of SiNWs grown in the mixed AgNO 3 /HF solution ranges from 20 to 250 nm. A growth mechanism for such obtained SiNWs is proposed and further experimentally verified. As a comparison as well as to better understand this chemical process, another popular topic on growing SiNWs in the H 2 O 2 /HF solution is also studied. Originating from different chemical reaction mechanisms, Ag film could protect the underneath Si in the AgNO 3 /HF solution and it could, on the contrary, accelerate etching of the underneath Si in the H 2 O 2 /HF solution.

  8. Preparation and pattern recognition of metallic Ni ultrafine powders by electroless plating

    International Nuclear Information System (INIS)

    Zhang, H.J.; Zhang, H.T.; Wu, X.W.; Wang, Z.L.; Jia, Q.L.; Jia, X.L.

    2006-01-01

    Using hydrazine hydrate as reductant, metallic Ni ultrafine powders were prepared from NiSO 4 aqueous solution by electroless plating method. The factors including concentration of NiSO 4 , bathing temperature, ratio of hydrazine hydrate to NiSO 4 , the pH of the solution, etc., on influence of the yield and average particle size of metallic Ni ultrafine powders were studied in detail. X-ray powders diffraction patterns show that the nickel powders are cubic crystallite. The average crystalline size of the ultrafine nickel powders is about 30 nm. The dielectric and magnetic loss of ultrafine Ni powders-paraffin wax composites were measured by the rectangle waveguide method in the range 8.2-12.4 GHz. The factors for Ni ultrafine powders preparation are optimized by computer pattern recognition program based on principal component analysis, the optimum factors regions with higher yield of metallic Ni ultrafine powders are indicated by this way

  9. Effect of Rake Angle During Machining of Micro Grooves on Electroless Nickel Plated Die Materials

    International Nuclear Information System (INIS)

    Rezaur Rahman, K.M.; Rahman, M.

    2005-01-01

    This study attempts to evaluate the performance of two single crystal diamond tools with different rake angle (0 0 and -15 0 ) during micro grooving on electroless nickel plated die materials. It was found that the 0 0 rake diamond tool has superior performance compared to the -15 0 rake angle tool. The negative rake tool experienced very high thrust force, and severe chipping on the flank face was evident after a short cutting distance of 3.13 km. On the other hand, the 0 0 rake tool machined satisfactorily up to 50 km without any significant tool wear. While machining with the -15 0 rake tool, significant change in surface roughness with spindle speed was observed compared to the 0 0 rake tool. With increasing infeed rate variation in surface roughness was evident only with the -15 0 rake tool. Steep change in roughness with machining distance was also observed while machining with the negative rake tool. (authors)

  10. Electroless porous silicon formation applied to fabrication of boron-silica-glass cantilevers

    DEFF Research Database (Denmark)

    Teva, Jordi; Davis, Zachary James; Hansen, Ole

    2010-01-01

    This work describes the characterization and optimization of anisotropic formation of porous silicon in large volumes (0.5-1 mm3) of silicon by an electroless wet etching technique. The main goal is to use porous silicon as a sacrificial volume for bulk micromachining processes, especially in cases...... where etching of the full wafer thickness is needed. The porous silicon volume is formed by a metal-assisted etching in a wet chemical solution composed of hydrogen peroxide (30%), hydrofluoric acid (40%) and ethanol. This paper focuses on optimizing the etching conditions in terms of maximizing...... for bio-chemical sensors. The porous silicon volume is formed in an early step of the fabrication process, allowing easy handling of the wafer during all of the micromachining processes in the process flow. In the final process step, the porous silicon is quickly etched by immersing the wafer in a KOH...

  11. Facile synthesis of dendritic Cu by electroless reaction of Cu-Al alloys in multiphase solution

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ying; Liang, Shuhua, E-mail: liangxaut@gmail.com; Yang, Qing; Wang, Xianhui

    2016-11-30

    Highlights: • Nano- or micro-scale fractal dendritic copper (FDC) was synthesized by electroless immersing of Cu-Al alloys in CuCl{sub 2} + HCl. • FDC size increases with the increase of Al content in Cu-Al alloys immersed in CuCl{sub 2} + HCl solution. • Nanoscale Cu{sub 2}O was found at the edge of FDC. Nanoporous copper (NPC) can also be obtained by using Cu{sub 17}Al{sub 83} alloy. • The potential difference between CuAl{sub 2} and α-Al phase and the replacement reaction in multiphase solution are key factors. - Abstract: Two-dimensional nano- or micro-scale fractal dendritic coppers (FDCs) were synthesized by electroless immersing of Cu-Al alloys in hydrochloric acid solution containing copper chloride without any assistance of template or surfactant. The FDC size increases with the increase of Al content in Cu-Al alloys immersed in CuCl{sub 2} + HCl solution. Compared to Cu{sub 40}Al{sub 60} and Cu{sub 45}Al{sub 55} alloys, the FDC shows hierarchical distribution and homogeneous structures using Cu{sub 17}Al{sub 83} alloy as the starting alloy. The growth direction of the FDC is <110>, and all angles between the trunks and branches are 60°. Nanoscale Cu{sub 2}O was found at the edge of FDC. Interestingly, nanoporous copper (NPC) can also be obtained through Cu{sub 17}Al{sub 83} alloy. Studies showed that the formation of FDC depended on two key factors: the potential difference between CuAl{sub 2} intermetallic and α-Al phase of dual-phase Cu-Al alloys; a replacement reaction that usually occurs in multiphase solution. The electrochemical experiment further proved that the multi-branch dendritic structure is very beneficial to the proton transfer in the process of catalyzing methanol.

  12. Enhancement of seeding for electroless Cu plating of metallic barrier layers by using alkyl self-assembled monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Sung-Te [Department of Electronic Engineering, Hsiuping University of Science and Technology, Dali 412, Taichung, Taiwan (China); Chung, Yu-Cheng [Department of Materials Science and Engineering, Feng Chia University, Taichung 407, Taiwan (China); Fang, Jau-Shiung [Department of Materials Science and Engineering, National Formosa University, Huwei 632, Taiwan (China); Cheng, Yi-Lung [Department of Electrical Engineering, National Chi-Nan University, Puli, Nantou 545, Taiwan (China); Chen, Giin-Shan, E-mail: gschen@fcu.edu.tw [Department of Materials Science and Engineering, Feng Chia University, Taichung 407, Taiwan (China)

    2017-05-31

    Highlights: • Ta barrier layers are used as model substrates for seeding of electroless plating. • Ta layers seeded with Ta-OH yield seeds with limited density and large size (>10 nm). • Substantial improvement of seeding is obtained with functionalized SAMs. • The mechanism of seeding improvement by functionalized SAMs is clearly clarified. - Abstract: Tethering a self-assembled monolayer (SAM) on ultralow-k (porous) dielectric materials as a seed-trapping layer for electroless Cu plating has been extensively studied. By contrast, literature on direct electroless Cu plating of metallic barrier layers assisted by SAMs is scarce. Therefore, Ta, a crucial component of barrier materials for Cu interconnect metallization, was investigated as a model substrate for a new seeding (Ni catalyst formation) process of electroless Cu plating. Transmission and scanning electron microscopies indicated that catalytic particles formed on Ta films through Ta−OH groups tend to become aggregates with an average size of 14 nm and density of 2 × 10{sup 15} m{sup −2}. By contrast, Ta films with a plasma-functionalized SAM tightly bound catalytic particles without agglomeration, thus yielding a markedly smaller size (3 nm) and higher density (3 × 10{sup 16} m{sup −2}; one order greater than those formed by other novel methods). X-ray photoelectron spectroscopy clearly identified the types of material species and functional groups induced at each step of the seeding process. Moreover, the phase of the catalytic particles, either nickel alkoxide, Ni(OH){sub 2}, or metallic Ni, along with the seed-bonding mechanism, was also unambiguously distinguished. The enhancement of film-formation quality of Cu by the new seeding process was thus demonstrated.

  13. Nanogranular Au films deposited on carbon covered Si substrates for enhanced optical reflectivity and Raman scattering

    International Nuclear Information System (INIS)

    Bhuvana, T; Kumar, G V Pavan; Narayana, Chandrabhas; Kulkarni, G U

    2007-01-01

    Electroless deposition of gold has been carried out on Si(100) surfaces precoated with laser ablated carbon layers of different thicknesses, and the resulting substrates have been characterized by a host of techniques. We first established the porous nature of the amorphous carbon layer by Raman and profilometric measurements. The Au uptake from the plating solution was optimal at a carbon layer thickness of 90 nm, where we observed nanogranules of ∼60-70 nm, well separated from each other in the carbon matrix (mean interparticle spacing ∼7 nm). We believe that the observed nanostructure is a result of Au 3+ electroless reduction on the Si surface through porous channels present in the amorphous carbon matrix. Importantly, this nanostructured substrate exhibited high reflectivity in the near IR region besides being effective as a substrate for surface enhanced Raman scattering (SERS) measurements with enhancement factors up to 10 7

  14. Effect of copper content on the properties of electroless Ni–Cu–P coatings prepared on magnesium alloys

    International Nuclear Information System (INIS)

    Liu, Junjun; Wang, Xudong; Tian, Zhiyong; Yuan, Ming; Ma, Xijuan

    2015-01-01

    Highlights: • Electroless Ni–Cu–P coatings were obtained on ZK61M magnesium alloys. • The crystallinity and compactness increases with the increasing of copper content. • The introduction of copper element in the coatings contributes to the formation of passivation film. • The coatings with higher corrosion resistance were obtained from the solution with a higher CuSO 4 concentration. - Abstract: The Ni–Cu–P coatings were obtained by electroless plating method on ZK61M magnesium alloys. The effect of copper content on the properties of electroless Ni–Cu–P coatings on magnesium alloys was further studied. The coatings surface and cross-section morphologies were observed with scanning electron microscope. The crystal structure and corrosion resistance of Ni–Cu–P coatings were evaluated by X-ray diffractometer and electrochemical tests. The experimental results showed that the Ni–Cu–P coatings were uniform and compact, and the corrosion resistance of these coatings was superior to Ni–P coatings owing to the introduction of copper. The crystallinity and compactness of the Ni–Cu–P coatings gradually enhanced with the increasing of copper content in the coatings. The introduction of copper element in the Ni–Cu–P coatings contributes to the formation of passivation film. The Ni–Cu–P coatings with higher corrosion resistance were obtained from the solution with a higher CuSO 4 concentration.

  15. Electroless nickel-plating for the PWSCC mitigation of nickel-base alloys in nuclear power plants

    International Nuclear Information System (INIS)

    Kim, Ji Hyun; Hwang, Il Soon

    2008-01-01

    The feasibility study has been performed as an effort to apply the electroless nickel-plating method for a proposed countermeasure to mitigate primary water stress corrosion cracking (PWSCC) of nickel-base alloys in nuclear power plants. In order to understand the corrosion behavior of nickel-plating at high temperature water, the electrochemical properties of electroless nickel-plated alloy 600 specimens exposed to simulated pressurized water reactor (PWR) primary water were experimentally characterized in high temperature and high pressure water condition. And, the resistance to the flow accelerated corrosion (FAC) test was investigated to check the durability of plated layers in high-velocity water-flowing environment at high temperature. The plated surfaces were examined by using both scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) after exposures to the condition. From this study, it is found that the corrosion resistance of electroless nickel-plated Alloy 600 is higher than that of electrolytic plating in 290 deg. C water

  16. Effect of Gold on the Corrosion Behavior of an Electroless Nickel/Immersion Gold Surface Finish

    Science.gov (United States)

    Bui, Q. V.; Nam, N. D.; Yoon, J. W.; Choi, D. H.; Kar, A.; Kim, J. G.; Jung, S. B.

    2011-09-01

    The performance of surface finishes as a function of the pH of the utilized plating solution was evaluated by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization tests in 3.5 wt.% NaCl solution. In addition, the surface finishes were examined by x-ray diffraction (XRD), and the contact angle of the liquid/solid interface was recorded. NiP films on copper substrates with gold coatings exhibited their highest coating performance at pH 5. This was attributed to the films having the highest protective efficiency and charge transfer resistance, lowest porosity value, and highest contact angle among those examined as a result of the strongly preferred Au(111) orientation and the improved surface wettability.

  17. Investigation on cell biocompatible behaviors of polyaniline film fabricated via electroless surface polymerization

    International Nuclear Information System (INIS)

    Liu Sheng; Wang Jinqing; Zhang Dong; Zhang Puliang; Ou Junfei; Liu Bin; Yang Shengrong

    2010-01-01

    Considering for the potential application in tissue engineering, polyaniline (PANi) film was fabricated via a two-step route: a self-assembled monolayer of C 6 H 5 NHC 3 H 6 Si(OMe) 3 was firstly formed on the single-crystal Si substrate; the conducting PANi film was then prepared through electroless surface polymerization of the aniline molecules on the aniline monolayer-bearing silane surface in an acidic aqueous solution. The formation of PANi film on Si surface was confirmed by characterizations of X-ray photoelectron spectroscope (XPS) and specular reflectance Fourier transform infrared (SR-FTIR) spectrum, etc. At last, the proliferation behaviors of PC-12 cells on the PANi film surface were studied by the [3-(4,5-dimethyldiazol-2-yl)-2,5-diphenyl tetrazolium bromide] (MTT) colorimetric assays, acridine orange fluorometric staining, and scanning electron microscope (SEM) observation, etc. The results demonstrate that the as-prepared PANi film provides high ability for cell proliferation, exhibiting promising potentials as surface coating to cultivate neuronal cells for applications in the tissue engineering.

  18. Effects of Two Purification Pretreatments on Electroless Copper Coating over Single-Walled Carbon Nano tubes

    International Nuclear Information System (INIS)

    Zheng, Z.; Li, L.; Dong, Sh.; Li, Sh.; Xiao, A.; Sun, Sh.

    2014-01-01

    To achieve the reinforcement of copper matrix composite by single-walled carbon nano tubes, a three-step-refluxing purification of carbon nano tubes sample with HNO 3 -NaOH-HCl was proposed and demonstrated. A previously reported purification process using an electromagnetic stirring with H 2 O 2 /HCl mixture was also repeated. Then, the purified carbon nano tubes were coated with copper by the same electroless plating process. At the end, the effects of the method on carbon nano tubes themselves and on copper coating were determined by transmission electron microscope spectroscopy, scanning electron microscope spectroscopy, X-ray diffractometry, thermogravimetric analysis, Fourier transformed infrared spectroscopy, and energy dispersive spectrometry. It was clearly confirmed that both of the two processes could remove most of iron catalyst particles and carbonaceous impurities without significant damage to carbon nano tubes. The thermal stability of the sample purified by H 2 O 2 /HCl treatment was slightly higher than that purified by HNO 3 -NaOH-HCl treatment. Nevertheless, the purification by HNO 3 -NaOH-HCl treatment was more effective for carboxyl functionalization on nano tubes than that by H 2 O 2 /HCl treatment. The Cu-coating on carbon nano tubes purified by both purification processes was complete, homogenous, and continuous. However, the Cu-coating on carbon nano tubes purified by H 2 O 2 /HCl was oxidized more seriously than those on carbon nano tubes purified by HNO 3 -NaOH-HCl treatment.

  19. Stability of nonfouling electroless nickel-polytetrafluoroethylene coatings after exposure to commercial dairy equipment sanitizers.

    Science.gov (United States)

    Huang, Kang; Goddard, Julie M

    2015-09-01

    Application of nonfouling coatings on thermal processing equipment can improve operational efficiency. However, to enable effective commercial translation, a need exists for more comprehensive studies on the stability of nonfouling coatings after exposure to different sanitizers. In the current study, the influence of different commercial dairy equipment sanitizers on the nonfouling properties of stainless steel modified with electroless Ni-polytetrafluoroethylene (PTFE) coatings was determined. Surface properties, such as dynamic contact angle, surface energy, surface morphology, and elemental composition, were measured before and after the coupons were exposed to the sanitizers for 168 cleaning cycles. The fouling behavior of Ni-PTFE-modified stainless steel coupons after exposure was also evaluated by processing raw milk on a self-fabricated benchtop-scale plate heat exchanger. The results indicated that peroxide sanitizer had only minor effect on the Ni-PTFE-modified stainless steel surface, whereas chlorine- and iodine-based sanitizers influenced the surface properties drastically. The coupons after 168 cycles of exposure to peroxide sanitizer accumulated the least amount of fouling material (4.44±0.24mg/cm(2)) compared with the coupons exposed to the other 3 sanitizers. These observations indicated that the Ni-PTFE nonfouling coating retained antifouling properties after 168 cycles of exposure to peroxide-based sanitizer, supporting their potential application as nonfouling coatings for stainless steel dairy processing equipment. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. Electroless porous silicon formation applied to fabrication of boron–silica–glass cantilevers

    International Nuclear Information System (INIS)

    Teva, J; Davis, Z J; Hansen, O

    2010-01-01

    This work describes the characterization and optimization of anisotropic formation of porous silicon in large volumes (0.5–1 mm 3 ) of silicon by an electroless wet etching technique. The main goal is to use porous silicon as a sacrificial volume for bulk micromachining processes, especially in cases where etching of the full wafer thickness is needed. The porous silicon volume is formed by a metal-assisted etching in a wet chemical solution composed of hydrogen peroxide (30%), hydrofluoric acid (40%) and ethanol. This paper focuses on optimizing the etching conditions in terms of maximizing the etching rate and reproducibility of the etching. In addition to that, a study of the morphology of the pore that is obtained by this technique is presented. The results from the characterization of the process are applied to the fabrication of boron–silica–glass cantilevers that serve as a platform for bio-chemical sensors. The porous silicon volume is formed in an early step of the fabrication process, allowing easy handling of the wafer during all of the micromachining processes in the process flow. In the final process step, the porous silicon is quickly etched by immersing the wafer in a KOH solution

  1. Effect of electroless etching parameters on the growth and reflection properties of silicon nanowires

    International Nuclear Information System (INIS)

    Ozdemir, Baris; Unalan, Husnu Emrah; Kulakci, Mustafa; Turan, Rasit

    2011-01-01

    Vertically aligned silicon nanowire (Si NW) arrays have been fabricated over large areas using an electroless etching (EE) method, which involves etching of silicon wafers in a silver nitrate and hydrofluoric acid based solution. A detailed parametric study determining the relationship between nanowire morphology and time, temperature, solution concentration and starting wafer characteristics (doping type, resistivity, crystallographic orientation) is presented. The as-fabricated Si NW arrays were analyzed by field emission scanning electron microscope (FE-SEM) and a linear dependency of nanowire length to both temperature and time was obtained and the change in the growth rate of Si NWs at increased etching durations was shown. Furthermore, the effects of EE parameters on the optical reflectivity of the Si NWs were investigated in this study. Reflectivity measurements show that the 42.8% reflectivity of the starting silicon wafer drops to 1.3%, recorded for 10 μm long Si NW arrays. The remarkable decrease in optical reflectivity indicates that Si NWs have a great potential to be utilized in radial or coaxial p-n heterojunction solar cells that could provide orthogonal photon absorption and enhanced carrier collection.

  2. Effect of electroless etching parameters on the growth and reflection properties of silicon nanowires.

    Science.gov (United States)

    Ozdemir, Baris; Kulakci, Mustafa; Turan, Rasit; Unalan, Husnu Emrah

    2011-04-15

    Vertically aligned silicon nanowire (Si NW) arrays have been fabricated over large areas using an electroless etching (EE) method, which involves etching of silicon wafers in a silver nitrate and hydrofluoric acid based solution. A detailed parametric study determining the relationship between nanowire morphology and time, temperature, solution concentration and starting wafer characteristics (doping type, resistivity, crystallographic orientation) is presented. The as-fabricated Si NW arrays were analyzed by field emission scanning electron microscope (FE-SEM) and a linear dependency of nanowire length to both temperature and time was obtained and the change in the growth rate of Si NWs at increased etching durations was shown. Furthermore, the effects of EE parameters on the optical reflectivity of the Si NWs were investigated in this study. Reflectivity measurements show that the 42.8% reflectivity of the starting silicon wafer drops to 1.3%, recorded for 10 µm long Si NW arrays. The remarkable decrease in optical reflectivity indicates that Si NWs have a great potential to be utilized in radial or coaxial p-n heterojunction solar cells that could provide orthogonal photon absorption and enhanced carrier collection.

  3. Effect of electroless etching parameters on the growth and reflection properties of silicon nanowires

    Science.gov (United States)

    Ozdemir, Baris; Kulakci, Mustafa; Turan, Rasit; Emrah Unalan, Husnu

    2011-04-01

    Vertically aligned silicon nanowire (Si NW) arrays have been fabricated over large areas using an electroless etching (EE) method, which involves etching of silicon wafers in a silver nitrate and hydrofluoric acid based solution. A detailed parametric study determining the relationship between nanowire morphology and time, temperature, solution concentration and starting wafer characteristics (doping type, resistivity, crystallographic orientation) is presented. The as-fabricated Si NW arrays were analyzed by field emission scanning electron microscope (FE-SEM) and a linear dependency of nanowire length to both temperature and time was obtained and the change in the growth rate of Si NWs at increased etching durations was shown. Furthermore, the effects of EE parameters on the optical reflectivity of the Si NWs were investigated in this study. Reflectivity measurements show that the 42.8% reflectivity of the starting silicon wafer drops to 1.3%, recorded for 10 µm long Si NW arrays. The remarkable decrease in optical reflectivity indicates that Si NWs have a great potential to be utilized in radial or coaxial p-n heterojunction solar cells that could provide orthogonal photon absorption and enhanced carrier collection.

  4. Electroless Formation of Hybrid Lithium Anodes for Fast Interfacial Ion Transport

    KAUST Repository

    Choudhury, Snehashis; Tu, Zhengyuan; Stalin, Sanjuna; Vu, Duylinh; Fawole, Kristen; Gunceler, Deniz; Sundararaman, Ravishankar; Archer, Lynden A.

    2017-01-01

    Rechargeable batteries based on metallic anodes are of interest for fundamental and application-focused studies of chemical and physical kinetics of liquids at solid interfaces. Approaches that allow facile creation of uniform coatings on these metals to prevent physical contact with liquid electrolytes, while enabling fast ion transport, are essential to address chemical instability of the anodes. Here, we report a simple electroless ion-exchange chemistry for creating coatings of indium on lithium. By means of joint density functional theory and interfacial characterization experiments, we show that In coatings stabilize Li by multiple processes, including exceptionally fast surface diffusion of lithium ions and high chemical resistance to liquid electrolytes. Indium coatings also undergo reversible alloying reactions with lithium ions, facilitating design of high-capacity hybrid In-Li anodes that use both alloying and plating approaches for charge storage. By means of direct visualization, we further show that the coatings enable remarkably compact and uniform electrodeposition. The resultant In-Li anodes are shown to exhibit minimal capacity fade in extended galvanostatic cycling when paired with commercial-grade cathodes.

  5. ADSORPTION PROPERTIES OF NICKEL-BASED MAGNETIC ACTIVATED CARBON PREPARED BY PD-FREE ELECTROLESS PLATING

    Directory of Open Access Journals (Sweden)

    Boyang Jia

    2011-02-01

    Full Text Available Nickel-based magnetic activated carbon was synthesized from coconut shell activated carbon by electroless plating with palladium-free activation. The effect of plating solution volume on metallic ratio and adsorption capacity were evaluated. The effect of metallic ratio on specific area, pore volume, and magnetic properties were investigated. The morphologies of activated carbon before and after plating were observed by SEM, and the composition of the layer was analyzed by EDS analysis. The results showed that the metallic ratio was increased with the increase of the plating solution volume. The magnetic activated carbon showed high adsorption capacity for methylene blue and a high iodine number. Those values reached 142.5 mg/g and 1035 mg/g, respectively. The specific area and pore volume decreased from 943 m2/g to 859 m2/g and 0.462 ml/g to 0.417 ml/g, respectively. And the layer was more compact and continuous when the metallic ratio reached 16.37 wt.%. In the layer, there was about 97 wt.% nickel and 3 wt.% phosphorus, which indicates that the layer was a low-phosphorus one. At the same time, magnetism was enhanced, making the product suitable for some special applications.

  6. Facile synthesis of dendritic Cu by electroless reaction of Cu-Al alloys in multiphase solution

    Science.gov (United States)

    Wang, Ying; Liang, Shuhua; Yang, Qing; Wang, Xianhui

    2016-11-01

    Two-dimensional nano- or micro-scale fractal dendritic coppers (FDCs) were synthesized by electroless immersing of Cu-Al alloys in hydrochloric acid solution containing copper chloride without any assistance of template or surfactant. The FDC size increases with the increase of Al content in Cu-Al alloys immersed in CuCl2 + HCl solution. Compared to Cu40Al60 and Cu45Al55 alloys, the FDC shows hierarchical distribution and homogeneous structures using Cu17Al83 alloy as the starting alloy. The growth direction of the FDC is , and all angles between the trunks and branches are 60°. Nanoscale Cu2O was found at the edge of FDC. Interestingly, nanoporous copper (NPC) can also be obtained through Cu17Al83 alloy. Studies showed that the formation of FDC depended on two key factors: the potential difference between CuAl2 intermetallic and α-Al phase of dual-phase Cu-Al alloys; a replacement reaction that usually occurs in multiphase solution. The electrochemical experiment further proved that the multi-branch dendritic structure is very beneficial to the proton transfer in the process of catalyzing methanol.

  7. Electroless Formation of Hybrid Lithium Anodes for Fast Interfacial Ion Transport

    KAUST Repository

    Choudhury, Snehashis

    2017-08-17

    Rechargeable batteries based on metallic anodes are of interest for fundamental and application-focused studies of chemical and physical kinetics of liquids at solid interfaces. Approaches that allow facile creation of uniform coatings on these metals to prevent physical contact with liquid electrolytes, while enabling fast ion transport, are essential to address chemical instability of the anodes. Here, we report a simple electroless ion-exchange chemistry for creating coatings of indium on lithium. By means of joint density functional theory and interfacial characterization experiments, we show that In coatings stabilize Li by multiple processes, including exceptionally fast surface diffusion of lithium ions and high chemical resistance to liquid electrolytes. Indium coatings also undergo reversible alloying reactions with lithium ions, facilitating design of high-capacity hybrid In-Li anodes that use both alloying and plating approaches for charge storage. By means of direct visualization, we further show that the coatings enable remarkably compact and uniform electrodeposition. The resultant In-Li anodes are shown to exhibit minimal capacity fade in extended galvanostatic cycling when paired with commercial-grade cathodes.

  8. Electroless formation of hybrid lithium anodes for fast interfacial ion transport

    Energy Technology Data Exchange (ETDEWEB)

    Choudhury, Snehashis; Stalin, Sanjuna; Vu, Duylinh; Fawole, Kristen; Archer, Lynden A. [School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY (United States); Tu, Zhengyuan [Department of Material Science and Engineering, Cornell University, Ithaca, NY (United States); Gunceler, Deniz [Department of Physics, Cornell University, Ithaca, NY (United States); Sundararaman, Ravishankar [Material Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY (United States)

    2017-10-09

    Rechargeable batteries based on metallic anodes are of interest for fundamental and application-focused studies of chemical and physical kinetics of liquids at solid interfaces. Approaches that allow facile creation of uniform coatings on these metals to prevent physical contact with liquid electrolytes, while enabling fast ion transport, are essential to address chemical instability of the anodes. Here, we report a simple electroless ion-exchange chemistry for creating coatings of indium on lithium. By means of joint density functional theory and interfacial characterization experiments, we show that In coatings stabilize Li by multiple processes, including exceptionally fast surface diffusion of lithium ions and high chemical resistance to liquid electrolytes. Indium coatings also undergo reversible alloying reactions with lithium ions, facilitating design of high-capacity hybrid In-Li anodes that use both alloying and plating approaches for charge storage. By means of direct visualization, we further show that the coatings enable remarkably compact and uniform electrodeposition. The resultant In-Li anodes are shown to exhibit minimal capacity fade in extended galvanostatic cycling when paired with commercial-grade cathodes. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Feasibility Study on a Process for Electroless Metal Deposition in Pits and Fissures of Teeth for Use in Preventive Dentistry.

    Science.gov (United States)

    1980-08-01

    that the silver solution forms silver phosphate when it reacts *w . with hydroxyapatite . The FeSO4 solution does not reduce all the porous Ag3PO4 to...methionine. * 30 . ." qI !I A-- IV4 yd p... - ..-- 4.’ ,’ ~ . , v I -min. 20 (jp Aq,. I’ min. satu ate FeS. + d i ie ?..- -4 :. , " ’ b. me ho. (. 1. . ir ...phosphate is formed when a silver solution reacts with hydroxyapatite . The Ag3PO4 is not completely reduced by FeSO4 , and a powdery layer remains

  10. Modification of alumina matrices through chemical etching and electroless deposition of nano-Au array for amperometric sensing

    Directory of Open Access Journals (Sweden)

    Valinčius Gintaras

    2007-01-01

    Full Text Available AbstractSimple nanoporous alumina matrix modification procedure, in which the electrically highly insulating alumina barrier layer at the bottom of the pores is replaced with the conductive layer of the gold beds, was described. This modification makes possible the direct electron exchange between the underlying aluminum support and the redox species encapsulated in the alumina pores, thus, providing the generic platform for the nanoporous alumina sensors (biosensors with the direct amperometric signal readout fabrication.

  11. The 58606264Ni(p,α)55575961Co reactions and their description by the semi-microscopic model for three-nucleon transfer

    International Nuclear Information System (INIS)

    Smits, J.W.; Siemssen, R.H.; Werf, S.Y. van der; Woude, A. van der

    1979-01-01

    The (p,α) reaction on the even-A nickel isotopes has been studied at an incident proton energy of 30 MeV. Between 14 and 26 states, or groups of states, were analysed for each of the residual cobalt isotopes. For these transitions angular distributions were determined from thetasub(lab) = 7.5 0 to 70 0 . In all reactions the proton-hole states (0fsub(7/2), 1ssub(1/2) and 0dsub(3/2)) stand out in the spectra. Also, states formed by the weak-coupling of the proton-holes to excitations of the neutron core were seen. Differences in the relative strengths of the positive-parity hole states between the proton pickup and the (p,α) data can be explained by a semi-microscopic model for three-nucleon transfer. Also the strength distribution of the transitions to the lowest weak-coupling quintuplet is correctly predicted. These results underline the importance of the inclusion of non-zero coupled neutron pairs into the description of (p, α) reactions. Several T> states are observed in the 58 Ni(p, α) 55 Co reactions

  12. Study of interfacial reactions in Sn-3.5Ag-3.0Bi and Sn-8.0Zn-3.0Bi sandwich structure solder joint with Ni(P)/Cu metallization on Cu substrate

    International Nuclear Information System (INIS)

    Sun, Peng; Andersson, Cristina; Wei, Xicheng; Cheng, Zhaonian; Shangguan, Dongkai; Liu, Johan

    2007-01-01

    In this paper, the coupling effect in Sn-3.5Ag-3.0Bi and Sn-8.0Zn-3.0Bi solder joint with sandwich structure by long time reflow soldering was studied. It was found that the interfacial compound at the Cu substrate was binary Cu-Sn compound in Sn-Ag-Bi solder joint and Cu 5 Zn 8 phase in Sn-Zn-Bi solder joint. The thickness of the Cu-Zn compound layer formed at the Cu substrate was greater than or equal to that of Cu-Sn compound layer, although the reflow soldering temperature of Sn-Zn-Bi (240 o C) was lower than that of Sn-Ag-Bi (250 o C). The stable Cu-Zn compound was the absolute preferential phase in the interfacial layer between Sn-Zn-Bi and the Cu substrate. The ternary (Cu, Ni) 6 Sn 5 compound was formed at the Sn-Ag-Bi/Ni(P)-Cu metallization interface, and a complex alloy Sn-Ni-Cu-Zn was formed at the Sn-Zn-Bi/Ni(P)-Cu metallization interface. It was noted that Cu atoms could diffuse from the Cu substrate through the solder matrix to the Ni(P)-Cu metallization within 1 min reflow soldering time for both solder systems, indicating that just 30 s was long enough for Cu to go through 250 μm diffusion length in the Sn-Ag-Bi solder joint at 250 o C. The coupling effect between Ni(P)/Cu metallization and Cu substrate was confirmed as the type of IMCs at Ni(P) layer had been changed from Ni-Sn system to Cu-Sn system apparently by the diffusion effect of Cu atoms. The (Cu, Ni) 6 Sn 5 layer at the Ni(P)/Cu metallization grew significantly and its thickness was even greater than that of the Cu-Sn compound on the opposite side, however the growth of the complex alloy including Sn, Ni, Cu and Zn on the Ni(P)/Cu metallization was suppressed

  13. Fabrication of a micro-porous Ti–Zr alloy by electroless reduction with a calcium reductant for electrolytic capacitor applications

    International Nuclear Information System (INIS)

    Kikuchi, Tatsuya; Yoshida, Masumi; Taguchi, Yoshiaki; Habazaki, Hiroki; Suzuki, Ryosuke O.

    2014-01-01

    Highlights: • A metallic Ti–Zr alloy was obtained by electroless reduction for capacitor applications. • The reduction mechanisms were studied by SEM, XRD, EPMA, and an oxygen analyzer. • The alloy was obtained by electroless reduction in the presence of excess calcium reductant. • A micro-porous Ti–Zr alloy was successfully obtained. • The alloy has a low oxygen content and a large surface area. -- Abstract: A metallic titanium and zirconium micro-porous alloy for electrolytic capacitor applications was produced by electroless reduction with a calcium reductant in calcium chloride molten salt at 1173 K. Mixed TiO 2 –70 at%ZrO 2 oxides, metallic calcium, and calcium chloride were placed in a titanium crucible and heated under argon atmosphere to reduce the oxides with the calcium reductant. A metallic Ti–Zr alloy was obtained by electroless reduction in the presence of excess calcium reductant and showed a micro-porous morphology due to the sintering of each of the reduced particles during the reduction. The residual oxygen content and surface area of the reduced Ti–Zr alloy decreased over time during the electroless reduction. The element distributions were slightly different at the positions of the alloy and were in the composition range of Ti-69.3 at% to 74.3 at%Zr. A micro-porous Ti–Zr alloy with low oxygen content (0.20 wt%) and large surface area (0.55 m 2 g −1 ) was successfully fabricated by electroless reduction under optimal conditions. The reduction mechanisms of the mixed and pure oxides by the calcium reductant are also discussed

  14. Electrical resistivity and dielectric properties of helical microorganism cells coated with silver by electroless plating

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Jun, E-mail: jun_cai@buaa.edu.cn [Bionic and Micro/Nano/Bio Manufacturing Technology Research Center, School of Mechanical Engineering and Automation, Beihang University, Beijing 100191 (China); Lan, Mingming; Zhang, Deyuan; Zhang, Wenqiang [Bionic and Micro/Nano/Bio Manufacturing Technology Research Center, School of Mechanical Engineering and Automation, Beihang University, Beijing 100191 (China)

    2012-09-01

    Highlights: Black-Right-Pointing-Pointer We use the microorganism cells as forming templates to fabricate the bio-based conductive particles. Black-Right-Pointing-Pointer The microorganism cells selected as forming templates are Spirulina platens, which are of natural helical shape and high aspect ratio. Black-Right-Pointing-Pointer The sliver-coated Spirulina cells are a kind of lightweight conductive particles. Black-Right-Pointing-Pointer The composites containing sliver-coated Spirulina cells exhibit a lower percolation value. - Abstract: In this paper, microorganism cells (Spirulina platens) were used as forming templates for the fabrication of the helical functional particles by electroless silver plating process. The morphologies and ingredients of the coated Spirulina cells were analyzed with scanning electron microscopy and energy dispersive spectrometer. The crystal structures were characterized by employing the X-ray diffraction. The electrical resistivity and dielectric properties of samples containing different volume faction of sliver-coated Spirulina cells were measured and investigated by four-probe meter and vector network analyzer. The results showed that the Spirulina cells were successfully coated with a uniform silver coating and their initial helical shapes were perfectly kept. The electrical resistivity and dielectric properties of the samples had a strong dependence on the volume content of sliver-coated Spirulina cells and the samples could achieve a low percolation value owing to high aspect ratio and preferable helical shape of Spirulina cells. Furthermore, the conductive mechanism was analyzed with the classic percolation theory, and the values of {phi}{sub c} and t were obtained.

  15. Studies of a series of [Ni(P(R)2N(Ph)2)2(CH3CN)]2+ complexes as electrocatalysts for H2 production: substituent variation at the phosphorus atom of the P2N2 ligand.

    Science.gov (United States)

    Kilgore, Uriah J; Stewart, Michael P; Helm, Monte L; Dougherty, William G; Kassel, W Scott; DuBois, Mary Rakowski; DuBois, Daniel L; Bullock, R Morris

    2011-11-07

    A series of [Ni(P(R)(2)N(Ph)(2))(2)(CH(3)CN)](BF(4))(2) complexes containing the cyclic diphosphine ligands [P(R)(2)N(Ph)(2) = 1,5-diaza-3,7-diphosphacyclooctane; R = benzyl (Bn), n-butyl (n-Bu), 2-phenylethyl (PE), 2,4,4-trimethylpentyl (TP), and cyclohexyl (Cy)] have been synthesized and characterized. X-ray diffraction studies reveal that the cations of [Ni(P(Bn)(2)N(Ph)(2))(2)(CH(3)CN)](BF(4))(2) and [Ni(P(n-Bu)(2)N(Ph)(2))(2)(CH(3)CN)](BF(4))(2) have distorted trigonal bipyramidal geometries. The Ni(0) complex [Ni(P(Bn)(2)N(Ph)(2))(2)] was also synthesized and characterized by X-ray diffraction studies and shown to have a distorted tetrahedral structure. These complexes, with the exception of [Ni(P(Cy)(2)N(Ph)(2))(2)(CH(3)CN)](BF(4))(2), all exhibit reversible electron transfer processes for both the Ni(II/I) and Ni(I/0) couples and are electrocatalysts for the production of H(2) in acidic acetonitrile solutions. The heterolytic cleavage of H(2) by [Ni(P(R)(2)N(Ph)(2))(2)(CH(3)CN)](BF(4))(2) complexes in the presence of p-anisidine or p-bromoaniline was used to determine the hydride donor abilities of the corresponding [HNi(P(R)(2)N(Ph)(2))(2)](BF(4)) complexes. However, for the catalysts with the most bulky R groups, the turnover frequencies do not parallel the driving force for elimination of H(2), suggesting that steric interactions between the alkyl substituents on phosphorus and the nitrogen atom of the pendant amines play an important role in determining the overall catalytic rate. © 2011 American Chemical Society

  16. Simultaneous deposition of Ni nanoparticles and wires on a tubular halloysite template: A novel metallized ceramic microstructure

    International Nuclear Information System (INIS)

    Fu Yubin; Zhang Lide

    2005-01-01

    Tubular halloysite can be used as a template to fabricate a novel metallized ceramic microstructure through electroless plating. Reduction of Pd ions by methanol is conducted to initiate Ni plating. There is a simultaneous deposition of Ni nanoparticles on the outer surface and discontinuous wires in the lumen site of the halloysite template obtained. The different deposition could be caused by the different composition distribution of ferric oxide impurity in the wall due to the isomorphic substitution during the formation of halloysite template. Its magnetic property is mainly attributed to the Ni nanoparticles, not the wires. The metallized ceramic microstructure has the potential to be utilized as a novel magnetic material

  17. Studies on the influence of surface pre-treatments on electroless copper coating of boron carbide particles

    International Nuclear Information System (INIS)

    Deepa, J.P.; Resmi, V.G.; Rajan, T.P.D.; Pavithran, C.; Pai, B.C.

    2011-01-01

    Boron carbide is one of the hard ceramic particles which find application as structural materials and neutron shielding material due to its high neutron capture cross section. Copper coating on boron carbide particle is essential for the synthesis of metal-ceramic composites with enhanced sinterability and dispersibility. Surface characteristics of the substrate and the coating parameters play a foremost role in the formation of effective electroless coating. The effect of surface pre-treatment conditions and pH on electroless copper coating of boron carbide particles has been studied. Surface pre-treatement of B 4 C when compared to acid treated and alkali treated particles were carried out. Uniform copper coating was observed at pH 12 in alkali treated particles when compared to others due to the effective removal of inevitable impurities during the production and processing of commercially available B 4 C. A threshold pH 11 was required for initiation of copper coating on boron carbide particles. The growth pattern of the copper coating also varies depending on the surface conditions from acicular to spherical morphology.

  18. Improved Plasticity of Ti-Based Bulk Metallic Glass at Room Temperature by Electroless Thin Nickel Coating

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2017-12-01

    Full Text Available By restricting the dilated deformation, surface modification can stimulate multiple shear banding and improve the plasticity of bulk metallic glasses (BMGs. Aimed at modifying the surface of BMGs by thin layers, a crystalline Ni coating with ultrafine grains was coated on the surface of a Ti-based BMG by electroless plating. With a thickness of about 10 μm, the prepared thin coating could effectively limit the fast propagation of primary shear bands and stimulate the nucleation of multiple shear bands. As a result, the compression plasticity of the coated Ti-based BMG was improved to about 3.7% from near 0% of the non-coated BMG. Except for a small amount of Ni coating was adhered to the BMG substrate after fracture, most of the coatings were peeled off from the surface. It can be attributed to the abnormal growth of some coarse grains/particles in local region of the coating, which induces a large tensile stress at the interface between the coating and the BMG substrate. It is suggested that, for electroless nickel plating, improving the adhesive bonding strength between the coating and the substrate has a better geometric restriction effect than simply increasing the thickness of the coating.

  19. Synthesis, optical properties and residual strain effect of GaN nanowires generated via metal-assisted photochemical electroless etching

    KAUST Repository

    Najar, Adel

    2017-04-18

    Herein, we report on the studies of GaN nanowires (GaN NWs) prepared via a metal-assisted photochemical electroless etching method with Pt as the catalyst. It has been found that etching time greatly influences the growth of GaN NWs. The density and the length of nanowires increased with longer etching time, and excellent substrate coverage was observed. The average nanowire width and length are around 35 nm and 10 μm, respectively. Transmission electron microscopy (TEM) shows a single-crystalline wurtzite structure and is confirmed by X-ray measurements. The synthesis mechanism of GaN NWs using the metal-assisted photochemical electroless etching method was presented. Photoluminescence (PL) measurements of GaN NWs show red-shift PL peaks compared to the as-grown sample associated with the relaxation of compressive stress. Furthermore, a shift of the E2 peak to the lower frequency in the Raman spectra for the samples etched for a longer time confirms such a stress relaxation. Based on Raman measurements, the compressive stress σxx and the residual strain εxx were evaluated to be 0.23 GPa and 2.6 × 10−4, respectively. GaN NW synthesis using a low cost method might be used for the fabrication of power optoelectronic devices and gas sensors.

  20. Study on the poisoning resistance of Pd-coated ZrCo alloy prepared by electroless plating method

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Xiumei, E-mail: xiumei418@163.com; Wang, Shumao; Li, Zhinian; Yuan, Baolong; Ye, Jianhua; Qiu, Haochen; Wu, Yuanfang; Liu, Xiaopeng; Jiang, Lijun

    2016-12-15

    Highlights: • The Pd membrane was prepared by electroless plating method. • The Pd membrane was compact and uniform. • The effectiveness of Pd membranes was affected by impurity contents and temperatures. - Abstract: To improve the poisoning resistance of ZrCo alloy, Pd membranes have been prepared over the surface of the alloy substrates by using electroless plating method. The characteristics of Pd membranes have been examined by XRD, SEM, EDS and EPMA technologies. From SEM images, the uniform and compact thin Pd film was revealed. The effect of this Pd film was evaluated by comparing the hydrogen absorption properties of bare and Pd-coated ZrCo specimens in contaminated hydrogen gas. The degradation of hydrogen absorption of Pd-coated ZrCo induced by poisoning was less than that of bare ZrCo sample obviously, meaning that the Pd membranes over the surface of substrates appeared to be effective in improving the poisoning resistance of ZrCo alloy. Furthermore, the effect became more significant with the increasing of impurity contents in the experimental gas and the operation temperatures.

  1. Efficacy of reducing agent and surfactant contacting pattern on the performance characteristics of nickel electroless plating baths coupled with and without ultrasound.

    Science.gov (United States)

    Agarwal, Amrita; Pujari, Murali; Uppaluri, Ramgopal; Verma, Anil

    2014-07-01

    This article addresses furthering the role of sonication for the optimal fabrication of nickel ceramic composite membranes using electroless plating. Deliberating upon process modifications for surfactant induced electroless plating (SIEP) and combined surfactant and sonication induced electroless plating (SSOEP), this article highlights a novel method of contacting of the reducing agent and surfactant to the conventional electroless nickel plating baths. Rigorous experimental investigations indicated that the combination of ultrasound (in degas mode), surfactant and reducing agent pattern had a profound influence in altering the combinatorial plating characteristics. For comparison purpose, purely surfactant induced nickel ELP baths have also been investigated. These novel insights consolidate newer research horizons for the role of ultrasound to achieve dense metal ceramic composite membranes in a shorter span of total plating time. Surface and physical characterizations were carried out using BET, FTIR, XRD, FESEM and nitrogen permeation experiments. It has been analyzed that the SSOEP baths provided maximum ratio of percent pore densification per unit metal film thickness (PPDδ) and hold the key for further fine tuning of the associated degrees of freedom. On the other hand SIEP baths provided lower (PPDδ) ratio but higher PPD. For SSOEP baths with dropwise reducing agent and bulk surfactant, the PPD and metal film thickness values were 73.4% and 8.4 μm which varied to 66.9% and 13.3 μm for dropwise reducing agent and drop surfactant case. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Diffusion barrier characteristics and shear fracture behaviors of eutectic PbSn solder/electroless Co(W,P) samples

    International Nuclear Information System (INIS)

    Pan, Hung-Chun; Hsieh, Tsung-Eong

    2012-01-01

    Highlights: ► Diffusion barrier features, activation energies of IMC growth and mechanical behaviors of electroless Co(W,P)/PbSn joints. ► Amorphous Co(W,P) is a sacrificial- plus stuffed-type barrier while polycrystalline Co(W,P) is a sacrificial-type barrier. ► Ductile mode dominates the failure of Co(W,P)/PbSn joints. ► Phosphorus content of Co(W,P) is crucial to the barrier capability and microstructure evolution at Co(W,P)/PbSn interface. ► Diffusion barrier capability is governed by the nature of chemical bonds, rather than the crystallinity of materials. - Abstract: Diffusion barrier characteristics, activation energy (E a ) of IMC growth and bonding properties of amorphous and polycrystalline electroless Co(W,P) (termed as α-Co(W,P) and poly-Co(W,P)) to eutectic PbSn solder are presented. Intermetallic compound (IMC) spallation and an nano-crystalline P-rich layer were observed in PbSn/α-Co(W,P) samples subjected to liquid-state aging at 250 °C. In contrast, IMCs resided on the P-rich layer in PbSn/α-Co(W,P) samples subjected to solid-state aging at 150 °C. Thick IMCs neighboring to an amorphous W-rich layer was seen in PbSn/poly-Co(W,P) samples regardless of the aging type. α-Co(W,P) was found to be a sacrificial- plus stuffed-type barrier while poly-Co(W,P) is mainly a sacrificial-type barrier. The values of E a 's for PbSn/α-Co(W,P) and PbSn/poly-Co(W,P) systems were 338.6 and 167.5 kJ/mol, respectively. Shear test revealed the ductile mode dominates the failure in both α- and poly-Co(W,P) samples. Analytical results indicated the high P content in electroless layer might enhance the barrier capability but degrade the bonding strength.

  3. Electroless plating Cu-Co-P polyalloy on UV/ozonolysis irradiated polyethylene terephthalate film and its corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Lei; Bi, Siyi; Zhao, Hang; Xu, Yumeng; Mu, Yuhang; Lu, Yinxiang, E-mail: yxlu@fudan.edu.cn

    2017-05-01

    Highlights: • Electroless plating Cu-Co-P polyalloy was firstly fabricated onto polyethylene terephthalate (PET) substrate. • An etchant-free and amine-free UV/ozonolysis irradiation method UV/ozonolysis was effective for the transition from hydrophilic to hydrophobic of PET sheet. • A time-saving and cost-effective orthogonal experiment (L{sub 9}(3){sup 4}) was utilized to optimize the plating conditions. • The optimized copper polyalloy possessed high corrosion resistance in three aggressive mediums including NaCl, NaOH and HCl, respectively. • The Cu-Co-P coated PET composite showed excellent electromagnetic interference shielding effectiveness (EMI SE > 99.999% at frequency ranging from 30 MHz to 1000 MHz). - Abstract: High corrosion resistant Cu-Co-P coatings were firstly prepared on polyethylene terephthalate (PET) substrate by electroless plating in combination with UV/ozonolysis irradiation under optimized cobalt sulfate heptahydrate concentration, pH value, plating temperature and time. The copper polyalloy/PET composite can be obtained in three steps, namely: (i) the generation of oxygen-containing functionalities (carboxylic groups) onto PET surface through UV irradiation combined with ozone, (ii) Cu seeding catalysts were obtained after being immersed into cupric citrate and NaBH{sub 4} solutions subsequently, and (iii) Cu-Co-P polyalloy metallization using electroless plating bath. Attenuated total reflection fourier transformation infrared spectrometer (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), water contact angle measurement and energy dispersive X-ray analysis (EDAX) were utilized to track the surface changes during the whole process. The electroless plating conditions were optimized by an orthogonal experiment (L{sub 9}(3){sup 4}) for Cu-Co-P coating as follows: CoSO{sub 4}·7H{sub 2}O addition of 0.08 M, pH value, plating temperature and time were set on 10.0, 35 °C and 25 min, respectively. Under the optimal conditions, copper

  4. Controlled Deposition of Tin Oxide and Silver Nanoparticles Using Microcontact Printing

    Directory of Open Access Journals (Sweden)

    Joo C. Chan

    2015-02-01

    Full Text Available This report describes extensive studies of deposition processes involving tin oxide (SnOx nanoparticles on smooth glass surfaces. We demonstrate the use of smooth films of these nanoparticles as a platform for spatially-selective electroless deposition of silver by soft lithographic stamping. The edge and height roughness of the depositing metallic films are 100 nm and 20 nm, respectively, controlled by the intrinsic size of the nanoparticles. Mixtures of alcohols as capping agents provide further control over the size and shape of nanoparticles clusters. The distribution of cluster heights obtained by atomic force microscopy (AFM is modeled through a modified heterogeneous nucleation theory as well as Oswald ripening. The thermodynamic modeling of the wetting properties of nanoparticles aggregates provides insight into their mechanism of formation and how their properties might be further exploited in wide-ranging applications.

  5. Morphology of one-time coated palladium-alumina composite membrane prepared by sol-gel process and electroless plating technique

    Science.gov (United States)

    Sari, R.; Dewi, R.; Pardi; Hakim, L.; Diana, S.

    2018-03-01

    Palladium coated porous alumina ceramic membrane tube was obtained using a combination of sol-gel process and electroless plating technique. The thickness, structure and composition of palladium-alumina composite membrane were analyzed by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), and atomic force microscopy (AFM). Palladium particle size was 6.18 to 7.64 nm. Palladium membrane with thickness of approximately 301.5 to 815.1 nm was formed at the outer surface of the alumina layer. EDX data confirmed the formation of palladium-alumina membrane containing 45% of palladium. From this research it shows the combination of sol-gel process and electroless plating technique with one-time coating can produce a homogeneous and smoother palladium nano layer film on alumina substrate.

  6. Electroless Growth of Aluminum Dendrites in NaCl-AlCl3 Melts

    DEFF Research Database (Denmark)

    Li, Qingfeng; Hjuler, H.A.; Berg, Rolf W.

    1989-01-01

    The spontaneous growth of aluminum dendrites after deposition was observed and examined in sodium chloride-aluminumchloride melts. The concentration gradient of AlCl3 in the vicinity of the cathode surface resulting from electrolysisconstitutes a type of concentration cell with aluminum dendrites...... as electrodes. The short-circuit discharge of thecell is found to be the driving force for the growth of aluminum dendrites. Such a concentration gradient is proposed to beone of the causes for dendrite formation in the case of metal deposition....

  7. Tsunami deposits

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    The NSC (the Nuclear Safety Commission of Japan) demand to survey on tsunami deposits by use of various technical methods (Dec. 2011), because tsunami deposits have useful information on tsunami activity, tsunami source etc. However, there are no guidelines on tsunami deposit survey in JAPAN. In order to prepare the guideline of tsunami deposits survey and evaluation and to develop the method of tsunami source estimation on the basis of tsunami deposits, JNES carried out the following issues; (1) organizing information of paleoseismological record and tsunami deposit by literature research, (2) field survey on tsunami deposit, and (3) designing the analysis code of sediment transport due to tsunami. As to (1), we organize the information gained about tsunami deposits in the database. As to (2), we consolidate methods for surveying and identifying tsunami deposits in the lake based on results of the field survey in Fukui Pref., carried out by JNES. In addition, as to (3), we design the experimental instrument for hydraulic experiment on sediment transport and sedimentation due to tsunamis. These results are reflected in the guideline on the tsunami deposits survey and evaluation. (author)

  8. Tsunami deposits

    International Nuclear Information System (INIS)

    2013-01-01

    The NSC (the Nuclear Safety Commission of Japan) demand to survey on tsunami deposits by use of various technical methods (Dec. 2011), because tsunami deposits have useful information on tsunami activity, tsunami source etc. However, there are no guidelines on tsunami deposit survey in JAPAN. In order to prepare the guideline of tsunami deposits survey and evaluation and to develop the method of tsunami source estimation on the basis of tsunami deposits, JNES carried out the following issues; (1) organizing information of paleoseismological record and tsunami deposit by literature research, (2) field survey on tsunami deposit, and (3) designing the analysis code of sediment transport due to tsunami. As to (1), we organize the information gained about tsunami deposits in the database. As to (2), we consolidate methods for surveying and identifying tsunami deposits in the lake based on results of the field survey in Fukui Pref., carried out by JNES. In addition, as to (3), we design the experimental instrument for hydraulic experiment on sediment transport and sedimentation due to tsunamis. These results are reflected in the guideline on the tsunami deposits survey and evaluation. (author)

  9. Selected-area growth of nickel micropillars on aluminum thin films by electroless plating for applications in microbolometers

    Directory of Open Access Journals (Sweden)

    Do Ngoc Hieu

    2017-06-01

    Full Text Available An optimization process of electroless plating of nickel was carried out with NiCl2 as the nickel ion source, NaH2PO2 as the reduction agent, CH3COONa and Na3C6H5O7 as complexing agents. Electroless plated nickel layers on sputtered aluminum corning glass substrates with a resistivity of about 75.9 μΩ cm and a nickel concentration higher than 93% were obtained. This optimum process was successfully applied in growing nickel micropillars at selected areas with a well-controlled height. The microstructure of the masking layers was fabricated by means of optical photolithography for subsequent growth of nickel micropillars on selected areas. Micropillars size was defined by the opening size and the height was controlled by adjusting the plating time at a growth rate of 0.41 μm/min. This result shows that electroless nickel plating could be a good candidate for growing micropillars for applications in microbolometers.

  10. Effects of TiN nanoparticles on the microstructure and properties of W–30Cu composites prepared via electroless plating and powder metallurgy

    International Nuclear Information System (INIS)

    Huang, Li-Mei; Luo, Lai-Ma; Zhao, Mei-Ling; Luo, Guang-Nan; Zhu, Xiao-Yong; Cheng, Ji-Gui; Zan, Xiang; Wu, Yu-Cheng

    2015-01-01

    Highlights: • TiN-doped W–Cu composite was successfully prepared by electroless plating and powder metallurgy. • TiN-doped W–Cu significantly affected the microstructure and properties of the composites. • W–Cu composite with 0.25 wt.% TiN possesses the best comprehensive performance. - Abstract: W–30Cu/(0, 0.25, 0.5, 1, and 2) wt.% TiN composites were prepared via electroless plating with simplified pretreatment and powder metallurgy. The phase and morphology of W–Cu/TiN composite powders and sintered W–Cu/TiN samples were characterized via X-ray diffraction and field emission scanning electron microscopy. Transmission electron microscopy was performed to characterize the microstructure of the sintered W–Cu/TiN samples. The relative density, hardness, electrical conductivity, and compressive strength of the sintered samples were examined. Results showed that W–30Cu composite powders with a uniform structure can be obtained using W powder pretreated with nitric acid, ammonium fluoride, and hydrofluoric acid followed by electroless Cu plating. The addition of TiN nanoparticles significantly affected the microstructure and properties of the W–30Cu composites. A good combination of the compressive strength and hardness of the W–30Cu composite material can be obtained by incorporating the TiN additive at 0.25 wt.%. However, the relative density and electrical conductivity slightly decreased

  11. Direct sputtering- and electro-deposition of gold coating onto the closed surface of ultralow-density carbon-hydrogen foam cylinder

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Jiaqiu; Yin, Jialing; Zhang, Hao; Yao, Mengqi; Hu, Wencheng, E-mail: huwc@uestc.edu.cn

    2016-12-15

    Highlights: • The surface pores of P(DVB/St) foam cylinder are sealed by CVD method. • Gold film was deposited on the surface of foam cylinder by magnetron sputtering. • Electroless plating was excluded in the present experiments. • The gold coatings were thickened through the electrodeposition process. - Abstract: This work aimed to fabricate a gold coating on the surface of ultralow-density carbon-hydrogen foam cylinder without electroless plating. Poly (divinylbenzene/styrene) foam cylinder was synthetized by high internal phase emulsion, and chemical vapor deposition polymerization approach was used to form a compact poly-p-xylylene film on the foam cylinder. Conducting gold thin films were directly deposited onto the poly-p-xylylene-modified foam cylinder by magnetron sputtering, and electrochemical deposition was adopted to thicken the gold coatings. The micro-structures and morphologies of poly (divinylbenzene/styrene) foam cylinder and gold coating were observed by field-emission scanning electron microscopy. The gold coating content was investigated by energy-dispersive X-ray. The thicknesses of poly-p-xylylene coating and sputtered gold thin-film were approximately 500 and 100 nm, respectively. After electrochemical deposition, the thickness of gold coating increased to 522 nm, and the gold coating achieved a compact and uniform structure.

  12. X-ray Crystallographic, Multifrequency Electron Paramagnetic Resonance, and Density Functional Theory Characterization of the Ni(P(Cy)2N(tBu)2)2(n+) Hydrogen Oxidation Catalyst in the Ni(I) Oxidation State.

    Science.gov (United States)

    Niklas, Jens; Westwood, Mark; Mardis, Kristy L; Brown, Tiara L; Pitts-McCoy, Anthony M; Hopkins, Michael D; Poluektov, Oleg G

    2015-07-06

    The Ni(I) hydrogen oxidation catalyst [Ni(P(Cy)2N(tBu)2)2](+) (1(+); P(Cy)2N(tBu)2 = 1,5-di(tert-butyl)-3,7-dicyclohexyl-1,5-diaza-3,7-diphosphacyclooctane) has been studied using a combination of electron paramagnetic resonance (EPR) techniques (X-, Q-, and D-band, electron-nuclear double resonance, hyperfine sublevel correlation spectroscopy), X-ray crystallography, and density functional theory (DFT) calculations. Crystallographic and DFT studies indicate that the molecular structure of 1(+) is highly symmetrical. EPR spectroscopy has allowed determination of the electronic g tensor and the spin density distribution on the ligands, and revealed that the Ni(I) center does not interact strongly with the potentially coordinating solvents acetonitrile and butyronitrile. The EPR spectra and magnetic parameters of 1(+) are found to be distinctly different from those for the related compound [Ni(P(Ph)2N(Ph)2)2](+) (4(+)). One significant contributor to these differences is that the molecular structure of 4(+) is unsymmetrical, unlike that of 1(+). DFT calculations on derivatives in which the R and R' groups are systematically varied have allowed elucidation of structure/substituent relationships and their corresponding influence on the magnetic resonance parameters.

  13. Improvement in Surface Characterisitcs of Polymers for Subsequent Electroless Plating Using Liquid Assisted Laser Processing

    DEFF Research Database (Denmark)

    Marla, Deepak; Zhang, Yang; Jabbaribehnam, Mirmasoud

    2016-01-01

    Metallization of polymers is a widely used process in the electronic industry that involves their surface modification as a pre-treatment step. Laser-based surface modification is one of the commonly used techniques for polymers due to its speed and precision. The process involves laser heating...... of the polymer surface to generate a rough or porous surface. Laser processing in liquid generates superior surface characteristics that result in better metal deposition. In this study, a comparison of the surface characteristics obtained by laser processing in water vis-à-vis air along with the deposition...... characteristics are presented. In addition, a numerical model based on the finite volume method is developed to predict the temperature profile during the process. Based on the model results, it is hypothesized that physical phenomena such as vapor bubble generation and plasma formation may occur in the presence...

  14. Exogenous deposits

    International Nuclear Information System (INIS)

    Khasanov, A.Kh.

    1988-01-01

    Exogenous deposits forming as a result of complex exogenous processes, passed under the influence of outside forces on the Earth surface. To them relate physical and chemical weathering, decomposition and decay of mineral masses, redistribution and transportation of material, forming and deposit of new minerals and ores steady on the earth surface conditions

  15. Preparation and characterization of inorganic and organic coatings on AZ91D magnesium alloy with electroless plating pretreatment

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, S.Y.; Li, Q.; Zhang, H.X.; Wang, S.Y.; Liu, F. [School of Chemistry and Chemical Engineering, Southwest University Chongqing, 400715 (China); Yang, X.K. [School of Materials Science and Engineering, Southwest University Chongqing, 400715 (China)

    2011-09-15

    In this paper, a protective coating scheme was applied for the corrosion protection of AZ91D magnesium alloy. Electroless Ni coating (EN coating) as bottom layer, electrodeposited Ni coating (ENN coating), and silane-based coating (ENS coating) as top layer, respectively, were successfully prepared on AZ91D magnesium alloy by combination techniques. Scanning electron microscopy and X-ray diffraction were employed to investigate the surface and phase structure of coatings, respectively. The electrochemical corrosion behaviors of coatings in neutral 3.5 wt% NaCl solution were evaluated by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization techniques. The corrosion testing showed that the three kinds of coatings all could provide corrosion protection for AZ91D magnesium alloy to a certain extent, and the corrosion resistance of ENN and ENS was superior to EN. In order to further study the corrosion protection properties of ENN and ENS, a comparative investigation on the evolution of EIS of ENN and ENS was carried out by dint of immersion test in neutral 3.5 wt% NaCl solution. The results indicated that, compared with ENN, the ENS could provide longer corrosion protection for AZ91D magnesium alloy. It is significant to determine the barrier effect of each coating, which could provide reference for industry applications. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Collection of Ni-bearing material from electroless plating waste by magnetic separation with HTS bulk magnet

    International Nuclear Information System (INIS)

    Oka, T.; Fukazawa, H.; Fukui, S.; Ogawa, J.; Sato, T.; Ooizumi, M.; Tsujimura, M.; Yokoyama, K.

    2014-01-01

    Highlights: ► The magnetic separation for Ni compounds was conducted by HTS bulk magnet. ► The coarse Ni-sulfate crystals were formed from the Ni-phosphite precipitates. ► Ni-sulfate crystals was separated from the mixture of Ni-sulfate and Ni-phosphite compounds. -- Abstract: The magnetic separation experiment to collect the Ni compounds from the waste liquid of electroless plating processes was conducted in the open-gradient magnetic separation process with the high temperature superconducting bulk magnet system. The magnetic pole containing Gd-based bulk superconductors was activated to 3.45 T at 35 K in the static magnetic field of 5 T with use of a superconducting solenoid magnet. The coarse Ni-sulfate crystals were formed by adding the concentrated sulfuric acid to the Ni-phosphite precipitates which yielded from the plating waste liquid by controlling the temperature and the pH value. The open-gradient magnetic separation technique was employed to separate the Ni-sulfate crystals from the mixture of the Ni-sulfate and Ni-phosphite compounds by the difference between their magnetic properties. And we succeeded in collecting Ni-sulfate crystals preferentially to the Ni-phosphite by attracting them to the magnetic pole soon after the Ni-sulfate crystals began to grow

  17. Collection of Ni-bearing material from electroless plating waste by magnetic separation with HTS bulk magnet

    Energy Technology Data Exchange (ETDEWEB)

    Oka, T., E-mail: okat@eng.niigata-u.ac.jp [Niigata University, 8050 Ikarashi-Ninocho, Nishi-ku, Niigata 950-2181 (Japan); Fukazawa, H.; Fukui, S.; Ogawa, J.; Sato, T.; Ooizumi, M. [Niigata University, 8050 Ikarashi-Ninocho, Nishi-ku, Niigata 950-2181 (Japan); Tsujimura, M. [Aichi Giken Co., 50-1 Takeshita, Hitotugi-cho, Kariya, Aichi 448-0003 (Japan); Yokoyama, K. [Ashikaga Institute of Technology, 268-1 Ohmae-cho, Ashikaga, Tochigi 326-8558 (Japan)

    2014-01-15

    Highlights: ► The magnetic separation for Ni compounds was conducted by HTS bulk magnet. ► The coarse Ni-sulfate crystals were formed from the Ni-phosphite precipitates. ► Ni-sulfate crystals was separated from the mixture of Ni-sulfate and Ni-phosphite compounds. -- Abstract: The magnetic separation experiment to collect the Ni compounds from the waste liquid of electroless plating processes was conducted in the open-gradient magnetic separation process with the high temperature superconducting bulk magnet system. The magnetic pole containing Gd-based bulk superconductors was activated to 3.45 T at 35 K in the static magnetic field of 5 T with use of a superconducting solenoid magnet. The coarse Ni-sulfate crystals were formed by adding the concentrated sulfuric acid to the Ni-phosphite precipitates which yielded from the plating waste liquid by controlling the temperature and the pH value. The open-gradient magnetic separation technique was employed to separate the Ni-sulfate crystals from the mixture of the Ni-sulfate and Ni-phosphite compounds by the difference between their magnetic properties. And we succeeded in collecting Ni-sulfate crystals preferentially to the Ni-phosphite by attracting them to the magnetic pole soon after the Ni-sulfate crystals began to grow.

  18. Collection of Ni-bearing material from electroless plating waste by magnetic separation with HTS bulk magnet

    Science.gov (United States)

    Oka, T.; Fukazawa, H.; Fukui, S.; Ogawa, J.; Sato, T.; Ooizumi, M.; Tsujimura, M.; Yokoyama, K.

    2014-01-01

    The magnetic separation experiment to collect the Ni compounds from the waste liquid of electroless plating processes was conducted in the open-gradient magnetic separation process with the high temperature superconducting bulk magnet system. The magnetic pole containing Gd-based bulk superconductors was activated to 3.45 T at 35 K in the static magnetic field of 5 T with use of a superconducting solenoid magnet. The coarse Ni-sulfate crystals were formed by adding the concentrated sulfuric acid to the Ni-phosphite precipitates which yielded from the plating waste liquid by controlling the temperature and the pH value. The open-gradient magnetic separation technique was employed to separate the Ni-sulfate crystals from the mixture of the Ni-sulfate and Ni-phosphite compounds by the difference between their magnetic properties. And we succeeded in collecting Ni-sulfate crystals preferentially to the Ni-phosphite by attracting them to the magnetic pole soon after the Ni-sulfate crystals began to grow.

  19. Interfacial microstructure and mechanical properties of joining electroless nickel plated quartz fibers reinforced silica composite to Invar

    International Nuclear Information System (INIS)

    Lei, Zhao; Lixia, Zhang; Xiaoyu, Tian; Peng, He; Jicai, Feng

    2011-01-01

    Vacuum brazing of electroless nickel plated quartz fibers reinforced silica composite (QFSC) to Invar alloy using Ag-Cu eutectic alloy at various temperatures (1073-1163 K) and times (5-35 min) has been investigated. The scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction examination of the joints showed that the junction between QFSC and Invar produced reaction products like Cu 3.8 Ni, Cu (s, s), Ni (s, s) and Ag (s, s), with the structure of Invar/Cu 3.8 Ni + Ni (s, s)/Ni (s, s) + Cu 3.8 Ni + Ag (s, s) + Cu (s, s)/Cu (s, s) + Cu 3.8 Ni + Ni (s, s) + QFSC. The shear strength of joint was effected by the changes of relative amount of Cu-Ni eutectic structure (Cu 3.8 Ni + Ni (s, s)) and thickness of nickel plating film at different parameters. The shear strength of joint increased when there were proper amount of Cu-Ni eutectic structure and nickel plating film for reinforcement, and decreased while them were consumed excessively in interaction. The maximum shear strength of joint is 29 MPa, which was brazed at 1103 K for 15 min.

  20. Salt Spray Test to Determine Galvanic Corrosion Levels of Electroless Nickel Connectors Mounted on an Aluminum Bracket

    Science.gov (United States)

    Rolin, T. D.; Hodge, R. E.; Torres, P. D.; Jones, D. D.; Laird, K. R.

    2014-01-01

    During preliminary vehicle design reviews, requests were made to change flight termination systems from an electroless nickel (EN) connector coating to a zinc-nickel (ZN) plating. The reason for these changes was due to a new NASA-STD-6012 corrosion requirement where connectors must meet the performance requirement of 168 hr of exposure to salt spray. The specification for class F connectors, MIL-DTL-38999, certifies the EN coating will meet a 48-hr salt spray test, whereas the ZN is certified to meet a 168-hr salt spray test. The ZN finish is a concern because Marshall Space Flight Center has no flight experience with ZN-finished connectors, and MSFC-STD-3012 indicates that zinc and zinc alloys should not be used. The purpose of this test was to run a 168-hr salt spray test to verify the electrical and mechanical integrity of the EN connectors and officially document the results. The salt spray test was conducted per ASTM B117 on several MIL-DTL-38999 flight-like connectors mounted to an aluminum 6061-T6 bracket that was alodined. The configuration, mounting techniques, electrical checks, and materials used were typical of flight and ground support equipment.

  1. Laser assisted modification and chemical metallization of electron-beam deposited ceria thin films

    International Nuclear Information System (INIS)

    Krumov, E.; Starbov, N.; Starbova, K.; Perea, A.; Solis, J.

    2009-01-01

    Excimer laser processing is applied for tailoring the surface morphology and phase composition of CeO 2 ceramic thin films. E-beam evaporation technique is used to deposit samples on stainless steel and silicate glass substrates. The films are then irradiated with ArF* excimer laser pulses under different exposure conditions. Scanning electron microscopy, optical spectrophotometry, X-ray diffractometry and EDS microanalysis are used to characterize the non-irradiated and laser-processed films. Upon UV laser exposure there is large increase of the surface roughness that is accompanied by photo-darkening and ceria reduction. It is shown that the laser induced changes in the CeO 2 films facilitate the deposition of metal nano-aggregates in a commercial copper electroless plating bath. The significance of laser modification as a novel approach for the production of CeO 2 based thin film catalysts is discussed.

  2. Laser assisted modification and chemical metallization of electron-beam deposited ceria thin films

    Energy Technology Data Exchange (ETDEWEB)

    Krumov, E., E-mail: emodk@clf.bas.bg [Central Laboratory of Photoprocesses ' Acad. Jordan Malinowski' , Bulgarian Academy of Sciences, Acad. Georgy Bonchev Str., bl. 109, 1113 Sofia (Bulgaria); Starbov, N.; Starbova, K. [Central Laboratory of Photoprocesses ' Acad. Jordan Malinowski' , Bulgarian Academy of Sciences, Acad. Georgy Bonchev Str., bl. 109, 1113 Sofia (Bulgaria); Perea, A.; Solis, J. [Instituto de Optica ' Daza de Valdes' , CSIC, 28006 Madrid (Spain)

    2009-11-15

    Excimer laser processing is applied for tailoring the surface morphology and phase composition of CeO{sub 2} ceramic thin films. E-beam evaporation technique is used to deposit samples on stainless steel and silicate glass substrates. The films are then irradiated with ArF* excimer laser pulses under different exposure conditions. Scanning electron microscopy, optical spectrophotometry, X-ray diffractometry and EDS microanalysis are used to characterize the non-irradiated and laser-processed films. Upon UV laser exposure there is large increase of the surface roughness that is accompanied by photo-darkening and ceria reduction. It is shown that the laser induced changes in the CeO{sub 2} films facilitate the deposition of metal nano-aggregates in a commercial copper electroless plating bath. The significance of laser modification as a novel approach for the production of CeO{sub 2} based thin film catalysts is discussed.

  3. Electrochemical corrosion measurements on noble electrodeposits

    DEFF Research Database (Denmark)

    Christoffersen, Lasse; Maahn, Ernst Emanuel

    1998-01-01

    Novel electrodeposits are compared with hard chrome and electroless Ni-P with respect to production, corrosion resistance and hardness.......Novel electrodeposits are compared with hard chrome and electroless Ni-P with respect to production, corrosion resistance and hardness....

  4. Electroless plating of Ni–B film as a binder-free highly efficient electrocatalyst for hydrazine oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Xiao-Ping; Dai, Hong-Bin, E-mail: mshbdai@scut.edu.cn; Wu, Lin-Song; Wang, Ping, E-mail: mspwang@scut.edu.cn

    2017-07-01

    Graphical abstract: A Ni–B film was grown on Ni foam to form a binder-free highly efficient electrocatalyst for hydrazine oxidation in alkaline medium. The newly-developed Ni–B/Ni foam electrocatalyst may promote the practical application of hydrazine as a viable energy carrier for fuel cells. - Highlights: • A Ni–B film grown on Ni foam electrocatalyst is prepared by the electrless plating. • The Ni–B film shows high activity and stability for N{sub 2}H{sub 4} electrooxidation reaction. • The improved catalytic property is ascribed to B-tuned electronic structure of Ni. • The resultant catalyst may promote application of N{sub 2}H{sub 4} as a viable energy carrier. - Abstract: Hydrazine is a promising energy carrier for fuel cells owing to its combined advantages of high theoretical cell voltage, high-power density, and no greenhouse gas emission. By using an electroless plating process, we have prepared a robust Ni–B film grown on Ni foam that is highly effective for hydrazine electrooxidation in alkaline media. The effects of reaction temperature, concentrations of hydrous hydrazine and sodium hydroxide in the fuel solution on performance of hydrazine electrooxidation reaction are investigated. The mechanistic reason for the property advantage of as-prepared Ni–B/Ni foam catalyst over the relevant catalysts is discussed based on careful kinetics studies and characterization. The facile synthesis of Ni-based catalyst with high activity and good stability is of clear significance for the development of hydrous hydrazine as a viable energy carrier.

  5. Electroless plating of Ni–B film as a binder-free highly efficient electrocatalyst for hydrazine oxidation

    International Nuclear Information System (INIS)

    Wen, Xiao-Ping; Dai, Hong-Bin; Wu, Lin-Song; Wang, Ping

    2017-01-01

    Graphical abstract: A Ni–B film was grown on Ni foam to form a binder-free highly efficient electrocatalyst for hydrazine oxidation in alkaline medium. The newly-developed Ni–B/Ni foam electrocatalyst may promote the practical application of hydrazine as a viable energy carrier for fuel cells. - Highlights: • A Ni–B film grown on Ni foam electrocatalyst is prepared by the electrless plating. • The Ni–B film shows high activity and stability for N_2H_4 electrooxidation reaction. • The improved catalytic property is ascribed to B-tuned electronic structure of Ni. • The resultant catalyst may promote application of N_2H_4 as a viable energy carrier. - Abstract: Hydrazine is a promising energy carrier for fuel cells owing to its combined advantages of high theoretical cell voltage, high-power density, and no greenhouse gas emission. By using an electroless plating process, we have prepared a robust Ni–B film grown on Ni foam that is highly effective for hydrazine electrooxidation in alkaline media. The effects of reaction temperature, concentrations of hydrous hydrazine and sodium hydroxide in the fuel solution on performance of hydrazine electrooxidation reaction are investigated. The mechanistic reason for the property advantage of as-prepared Ni–B/Ni foam catalyst over the relevant catalysts is discussed based on careful kinetics studies and characterization. The facile synthesis of Ni-based catalyst with high activity and good stability is of clear significance for the development of hydrous hydrazine as a viable energy carrier.

  6. Analysis of continuous solvent extraction of nickel from spent electroless nickel plating baths by a mixer-settler.

    Science.gov (United States)

    Huang, Ying; Tanaka, Mikiya

    2009-05-30

    It is urgent to develop an effective technique to treat the large amount of spent electroless nickel plating bath and recycle the high concentration nickel. In our previous study, high recycling efficiency of nickel from the model spent bath was obtained by continuous solvent extraction with 2-hydroxy-5-nonylacetophenone oxime (LIX84I) as the extractant and 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (PC88A) as the accelerator using a mixer-settler extractor. It was observed that the extraction efficiency was affected by the operation parameters such as the flow rates of the aqueous and organic phases and the total stage number. In the present study, the effects of the operation parameters on the extraction efficiency were quantitatively studied on the basis of the pseudo-first-order interfacial extraction rate equation together with the hydrodynamic properties in the mixer. The organic phase holdup, measured under varying conditions of the flow rates of both phases, was analyzed by the Takahashi-Takeuchi holdup model in order to estimate the specific interfacial area. The overall extraction rate coefficients defined by the product of the interfacial extraction rate constant and the specific interfacial area were evaluated using the experimental data and ranged from 3.5 x 10(-3) to 6.7 x 10(-3)s(-1), which was close to the value of 3.4 x 10(-3)s(-1) obtained by batch extraction. Finally, an engineering simulation method was established for assessing the extraction efficiency of nickel during a multistage operation.

  7. Analysis of continuous solvent extraction of nickel from spent electroless nickel plating baths by a mixer-settler

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Ying, E-mail: huang-ying@aist.go.jp [Metals Recycling Group, Research Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569 (Japan); Tanaka, Mikiya, E-mail: mky-tanaka@aist.go.jp [Metals Recycling Group, Research Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569 (Japan)

    2009-05-30

    It is urgent to develop an effective technique to treat the large amount of spent electroless nickel plating bath and recycle the high concentration nickel. In our previous study, high recycling efficiency of nickel from the model spent bath was obtained by continuous solvent extraction with 2-hydroxy-5-nonylacetophenone oxime (LIX84I) as the extractant and 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (PC88A) as the accelerator using a mixer-settler extractor. It was observed that the extraction efficiency was affected by the operation parameters such as the flow rates of the aqueous and organic phases and the total stage number. In the present study, the effects of the operation parameters on the extraction efficiency were quantitatively studied on the basis of the pseudo-first-order interfacial extraction rate equation together with the hydrodynamic properties in the mixer. The organic phase holdup, measured under varying conditions of the flow rates of both phases, was analyzed by the Takahashi-Takeuchi holdup model in order to estimate the specific interfacial area. The overall extraction rate coefficients defined by the product of the interfacial extraction rate constant and the specific interfacial area were evaluated using the experimental data and ranged from 3.5 x 10{sup -3} to 6.7 x 10{sup -3} s{sup -1}, which was close to the value of 3.4 x 10{sup -3} s{sup -1} obtained by batch extraction. Finally, an engineering simulation method was established for assessing the extraction efficiency of nickel during a multistage operation.

  8. Analysis of continuous solvent extraction of nickel from spent electroless nickel plating baths by a mixer-settler

    International Nuclear Information System (INIS)

    Huang, Ying; Tanaka, Mikiya

    2009-01-01

    It is urgent to develop an effective technique to treat the large amount of spent electroless nickel plating bath and recycle the high concentration nickel. In our previous study, high recycling efficiency of nickel from the model spent bath was obtained by continuous solvent extraction with 2-hydroxy-5-nonylacetophenone oxime (LIX84I) as the extractant and 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (PC88A) as the accelerator using a mixer-settler extractor. It was observed that the extraction efficiency was affected by the operation parameters such as the flow rates of the aqueous and organic phases and the total stage number. In the present study, the effects of the operation parameters on the extraction efficiency were quantitatively studied on the basis of the pseudo-first-order interfacial extraction rate equation together with the hydrodynamic properties in the mixer. The organic phase holdup, measured under varying conditions of the flow rates of both phases, was analyzed by the Takahashi-Takeuchi holdup model in order to estimate the specific interfacial area. The overall extraction rate coefficients defined by the product of the interfacial extraction rate constant and the specific interfacial area were evaluated using the experimental data and ranged from 3.5 x 10 -3 to 6.7 x 10 -3 s -1 , which was close to the value of 3.4 x 10 -3 s -1 obtained by batch extraction. Finally, an engineering simulation method was established for assessing the extraction efficiency of nickel during a multistage operation.

  9. Effect of electroless nickel interlayer on the electrochemical behavior of single layer CrN, TiN, TiAlN coatings and nanolayered TiAlN/CrN multilayer coatings prepared by reactive dc magnetron sputtering

    International Nuclear Information System (INIS)

    Grips, V.K. William; Ezhil Selvi, V.; Barshilia, Harish C.; Rajam, K.S.

    2006-01-01

    The electrochemical behavior of single layer TiN, CrN, TiAlN and multilayer TiAlN/CrN coatings, deposited on steel substrates using a multi-target reactive direct current (dc) magnetron sputtering process, was studied in 3.5% NaCl solution. The total thickness of the coatings was about 1.5 μm. About 0.5 μm thick chromium interlayer was used to improve adhesion of the coatings. With an aim to improve the corrosion resistance, an additional interlayer of approximately 5 μm thick electroless nickel (EN) was deposited on the substrate. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) were used to study the corrosion behavior of the coatings. Scanning electron microscopy and energy dispersive X-ray analysis were used to characterize the corroded samples. The potentiodynamic polarization tests showed lower corrosion current density and higher polarization resistance (R p ) for the coatings with EN interlayer. For example, the corrosion current density of TiN coated steel was decreased by a factor of 10 by incorporating 5 μm thick EN interlayer. Similarly, multilayer coatings of TiAlN/CrN with EN interlayer showed about 30 times improved corrosion resistance as compared to the multilayers without EN interlayer. The porosity values were calculated from the potentiodynamic polarization data. The Nyquist and the Bode plots obtained from the EIS data were fitted by appropriate equivalent circuits. The pore resistance (R pore ), the charge transfer resistance (R ct ), the coating capacitance (Q coat ) and the double layer capacitance (Q dl ) of the coatings were obtained from the equivalent circuit. Multilayer coatings showed higher R pore and R ct values as compared to the single layer coatings. Similarly, the Q coat and Q dl values decreased from uncoated substrate to the multilayer coatings, indicating a decrease in the defect density by the addition of EN interlayer. These studies were confirmed by examining the corroded samples under

  10. Effect of hydrofluoric acid concentration on the evolution of photoluminescence characteristics in porous silicon nanowires prepared by Ag-assisted electroless etching method

    KAUST Repository

    Najar, Adel

    2012-01-01

    We report on the structural and optical properties of porous silicon nanowires (PSiNWs) fabricated using silver (Ag) ions assisted electroless etching method. Silicon nanocrystallites with sizes <5 nm embedded in amorphous silica have been observed from PSiNW samples etched using the optimum hydrofluoric acid (HF) concentration. The strongest photoluminescence (PL) signal has been measured from samples etched with 4.8 M of HF, beyond which a significant decreasing in PL emission intensity has been observed. A qualitative model is proposed for the formation of PSiNWs in the presence of Ag catalyst. This model affirms our observations in PL enhancement for samples etched using HF <4.8 M and the eventual PL reduction for samples etched beyond 4.8 M of HF concentration. The enhancement in PL signals has been associated to the formation of PSiNWs and the quantum confinement effect in the Si nanocrystallites. Compared to PSiNWs without Si-O x, the HF treated samples exhibited significant blue PL peak shift of 100 nm. This effect has been correlated to the formation of defect states in the surface oxide. PSiNWs fabricated using the electroless etching method can find useful applications in optical sensors and as anti-reflection layer in silicon-based solar cells. © 2012 American Institute of Physics.

  11. Au nanoparticle arrays with tunable particle gaps by template-assisted electroless deposition for high performance surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Mu Cheng; Xu Dongsheng; Zhang Jianping

    2010-01-01

    Surface-enhanced Raman spectroscopy (SERS) with enormous enhancements has shown great potential in ultrasensitive detection technologies, but the fabrication of large-scale, controllable and reproducible substrates with high SERS activity is a major challenge. Here, we report the preparation of Au nanoparticle arrays for SERS-active substrates with tunable particle sizes and interparticle gaps, and the enhancement factor of the SERS signal obtained from 4-mercaptopyridine probe molecules was as high as 10 7 . The experimental data points show the increase of enhancement factor as a function of the ratio of diameter to interparticle gap, which can be explained by the averaged electromagnetic field enhancement model. Furthermore, we demonstrated that this type of substrate merits its high uniformity, high reproducibility and excellent long-term stability. As the fabrication protocol of such a SERS substrate is simple and inexpensive, this substrate may anticipate a wide range of applications in SERS-based sensors.

  12. Infraordinary Deposits

    DEFF Research Database (Denmark)

    2016-01-01

    The exhibition Infraordinary Deposits presents three works in progress by PhD Fellow Espen Lunde Nielsen from the on-going PhD project Architectural Probes of the Infraordinary: Social Coexistence through Everyday Spaces. The infraordinary is understood as the opposite of the extraordinary...... and as that which is ‘worn half-invisible’ by use. Nevertheless, these unregarded spaces play a vital role to the social dimension of the city. The selected projects (‘urban biopsies’) on display explore how people coexist through these spaces and within the city itself, either through events in real......, daily 8.45 – 15.00 Where: Aarhus School of Architecture, The Canteen, Nørreport 18, 8000 Aarhus C...

  13. Fabrication of AIN/cU Composites Using Electroless Plating and Evaluation of Their Thermal Properties according to AIN Particle Size

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sung Chul; Han, Jun Hyun [Chungnam National University, Daejeon (Korea, Republic of); Ko, Se-Hyun [Korea Institute of Industrial Technology, Incheon (Korea, Republic of); Kim, Hye Sung [Pusan National University, Miryang (Korea, Republic of); Han, Jun Hyun [Korea Institute of Science and Technology, Seoul (Korea, Republic of)

    2015-12-15

    AIN/Cu composite powders with a core-shell structure were synthesized by a new technique using electroless plating of Cu on AIN particles and consolidated by spark plasma sintering (SPS). Dependence of the thermal conductivity and coefficient of thermal expansion (CTE) of the AIN/Cu composites on the particle size of AIN were studied. The thermal conductivity and coefficient of thermal expansion were significantly dependent on the existence of both boundary pores surrounding the Cu-coated AIN particles and the internal pores of the AIN particles. In order to eliminate the pores, the temperature and pressure of SPS were increased and the AIN particles were heat-treated at high temperature. Adoption of the core-shell AIN/Cu composite powders facilitated the fabrications of AIN/Cu composites with low porosity and uniform distribution in the AIN in Cu matrix.

  14. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Gold nanoparticles have been deposited on synthetic calcite substrate by galvanic displacement reaction and electroless deposition methods. A comparative study has shown that electroless deposition is superior compared to galvanic displacement reaction for uniform deposition of gold nanoparticles on calcite.

  15. Effect of electroless nickel on the series resistance of high-efficiency inkjet printed passivated emitter rear contacted solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Lenio, Martha A.T. [REC Technology US, Inc., 1159 Triton Dr., Foster City, CA 94301 (United States); Lennon, A.J.; Ho-Baillie, A.; Wenham, S.R. [ARC Photovoltaics Centre of Excellence, University of NSW, Sydney, NSW 2052 (Australia)

    2010-12-15

    Many existing and emerging solar cell technologies rely on plated metal to form the front surface contacts, and aluminium to form the rear contact. Interactions between the metal plating solutions and the aluminium rear can have a significant impact on cell performance. This paper describes non-uniform nickel deposition on the sintered aluminium rear surface of passivated emitter and rear contacted (PERC) cells patterned using an inkjet printing technique. Rather than being plated homogeneously over the entire rear surface as is observed on an alloyed aluminium rear, the nickel is plated only in the vicinity of the point openings in the rear surface silicon dioxide dielectric layer. Furthermore, this non-uniform nickel deposition was shown to increase the contact resistance of the rear point contacts by an order of magnitude, resulting in higher series resistance values for these fabricated PERC cells. (author)

  16. Nanostructure analysis of friction welded Pd-Ni-P/Pd-Cu-Ni-P metallic glass interface

    International Nuclear Information System (INIS)

    Ohkubo, T.; Shoji, S.; Kawamura, Y.; Hono, K.

    2005-01-01

    Friction welded Pd 40 Ni 40 P 20 /Pd 40 Cu 30 Ni 10 P 20 metallic glass interface has been characterized by energy filtering transmission electron microscopy. The interface is fully amorphous with a gradual compositional change of Cu and Ni in the range of 30 nm. By annealing above T g , the interdiffusion of Cu and Ni progressed in the supercooled liquid region, and the crystallization occurred from the Pd 40 Ni 40 P 20 glass

  17. Economical Atomic Layer Deposition

    Science.gov (United States)

    Wyman, Richard; Davis, Robert; Linford, Matthew

    2010-10-01

    Atomic Layer Deposition is a self limiting deposition process that can produce films at a user specified height. At BYU we have designed a low cost and automated atomic layer deposition system. We have used the system to deposit silicon dioxide at room temperature using silicon tetrachloride and tetramethyl orthosilicate. Basics of atomic layer deposition, the system set up, automation techniques and our system's characterization are discussed.

  18. The effects of surface modification on the electrical properties of p–n+ junction silicon nanowires grown by an aqueous electroless etching method

    International Nuclear Information System (INIS)

    Lee, Seulah; Koo, Ja Hoon; Seo, Jungmok; Kim, Sung-Dae; Lee, Kwang Hyun; Im, Seongil; Kim, Young-Woon; Lee, Taeyoon

    2012-01-01

    Although the aqueous electroless etching (AEE) method has received significant attention for the fabrication of silicon nanowires (SiNWs) due to its simplicity and effectiveness, SiNWs grown via the AEE method have a drawback in that their surface roughness is considerably high. Thus, we fabricated surface-modified p–n + junction SiNWs grown by AEE, wherein the surface roughness was reduced by a sequential processes of oxide growth using the rapid thermal oxidation (RTO) cycling process and oxide removal with a hydrofluoric acid solution. High-resolution transmission electron microscopy analysis confirmed that the surface roughness of the modified SiNWs was significantly decreased compared with that of the as-fabricated SiNWs. After RTO treatment, the wettability of the SiNWs had dramatically changed from superhydrophilic to superhydrophobic, which can be attributed to the formation of siloxane groups on the native oxide/SiNW surfaces and the effect of the nanoscale structure. Due to the enhancement in surface carrier mobility, the current density of the surface-modified p–n + junction SiNWs was approximately 6.3-fold greater than that of the as-fabricated sample at a forward bias of 4 V. Meanwhile, the photocurrent density of the surface-modified p–n + junction SiNWs was considerably decreased as a result of the decreases in the light absorption area, light absorption volume, and light scattering.

  19. Generalizable, Electroless, Template-Assisted Synthesis and Electrocatalytic Mechanistic Understanding of Perovskite LaNiO3 Nanorods as Viable, Supportless Oxygen Evolution Reaction Catalysts in Alkaline Media.

    Science.gov (United States)

    McBean, Coray L; Liu, Haiqing; Scofield, Megan E; Li, Luyao; Wang, Lei; Bernstein, Ashley; Wong, Stanislaus S

    2017-07-26

    The oxygen evolution reaction (OER) is a key reaction for water electrolysis cells and air-powered battery applications. However, conventional metal oxide catalysts, used for high-performing OER, tend to incorporate comparatively expensive and less abundant precious metals such as Ru and Ir, and, moreover, suffer from poor stability. To attempt to mitigate for all of these issues, we have prepared one-dimensional (1D) OER-active perovskite nanorods using a unique, simple, generalizable, and robust method. Significantly, our work demonstrates the feasibility of a novel electroless, seedless, surfactant-free, wet solution-based protocol for fabricating "high aspect ratio" LaNiO 3 and LaMnO 3 nanostructures. As the main focus of our demonstration of principle, we prepared as-synthesized LaNiO 3 rods and correlated the various temperatures at which these materials were annealed with their resulting OER performance. We observed generally better OER performance for samples prepared with lower annealing temperatures. Specifically, when annealed at 600 °C, in the absence of a conventional conductive carbon support, our as-synthesized LaNiO 3 rods not only evinced (i) a reasonable level of activity toward OER but also displayed (ii) an improved stability, as demonstrated by chronoamperometric measurements, especially when compared with a control sample of commercially available (and more expensive) RuO 2 .

  20. Characteristics of La0.7Ca0.3MnO3-Cu composites fabricated by an electroless process

    International Nuclear Information System (INIS)

    Xiong, Y H; Song, S J; Xu, W; Pi, H L; Ren, Z M; Zhang, J; Bao, X C; Xiong, J; Li, D G; Huang, W H; Sun, C L; Cheng, X W; Xiong, C S

    2007-01-01

    Ferromagnet-metal-type composites, La 0.7 Ca 0.3 MnO 3 (LCMO)-Cu, have been fabricated by a three-step route. We got LCMO powder using the conventional solid state method. Then, LCMO powders coated by Cu are obtained using a novel electroless plating technique, in which the contents of copper are controlled by changing the plating time. Finally these powders are pelletized and then sintered at different temperatures in argon. The powders coated by Cu are characterized by x-ray powder diffraction and scanning electron microscope. The temperature dependence of resistivity and the magnetoresistance in the applied field of 3000 Oe are measured. It is observed that the metal-insulator transition temperature (Tp) is improved above 20 K approximately up to 280 K compared with that of LCMO powder using the conventional solid state method without being coated by Cu; meanwhile, a second broad peak occurs in low temperature in the resistivity-temperature curve when sintering temperature is changed. Also an anisotropic magnetoresistance effect is observed

  1. Electro-Deposition Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The electro-deposition laboratory can electro-deposit various coatings onto small test samples and bench level prototypes. This facility provides the foundation for...

  2. Atmospheric Deposition Modeling Results

    Data.gov (United States)

    U.S. Environmental Protection Agency — This asset provides data on model results for dry and total deposition of sulfur, nitrogen and base cation species. Components include deposition velocities, dry...

  3. Calcium Pyrophosphate Deposition (CPPD)

    Science.gov (United States)

    ... Patient / Caregiver Diseases & Conditions Calcium Pyrophosphate Deposition (CPPD) Calcium Pyrophosphate Deposition (CPPD) Fast Facts The risk of ... young people, too. Proper diagnosis depends on detecting calcium pyrophosphate crystals in the fluid of an affected ...

  4. Acid Deposition Phenomena

    International Nuclear Information System (INIS)

    Ramadan, A.E.K.

    2004-01-01

    Acid deposition, commonly known as acid rain, occurs when emissions from the combustion of fossil fuels and other industrial processes undergo complex chemical reactions in the atmosphere and fall to the earth as wet deposition (rain, snow, cloud, fog) or dry deposition (dry particles, gas). Rain and snow are already naturally acidic, but are only considered problematic when less than a ph of 5.0 The main chemical precursors leading to acidic conditions are atmospheric concentrations of sulfur dioxide (SO 2 ) and nitrogen oxides (NO x ). When these two compounds react with water, oxygen, and sunlight in the atmosphere, the result is sulfuric (H 2 SO 4 ) and nitric acids (HNO 3 ), the primary agents of acid deposition which mainly produced from the combustion of fossil fuel and from petroleum refinery. Airborne chemicals can travel long distances from their sources and can therefore affect ecosystems over broad regional scales and in locations far from the sources of emissions. According to the concern of petroleum ministry with the environment and occupational health, in this paper we will discussed the acid deposition phenomena through the following: Types of acidic deposition and its components in the atmosphere Natural and man-made sources of compounds causing the acidic deposition. Chemical reactions causing the acidic deposition phenomenon in the atmosphere. Factors affecting level of acidic deposition in the atmosphere. Impact of acid deposition. Procedures for acidic deposition control in petroleum industry

  5. Deposition of Fe-Ni nanoparticles on Al2O3 for dechlorination of chloroform and trichloroethylene

    International Nuclear Information System (INIS)

    Hsieh, S.-H.; Horng, J.-J.

    2006-01-01

    This research proposes an efficient method for depositing Fe-Ni nanoparticles on Al 2 O 3 microparticles to decompose containments in ground water, such as chloroform and trichloroethylene. The Fe-Ni nanoparticles can be deposited onto the surface of Al 2 O 3 microparticles by electroless plating technique. The reasons why the Fe-Ni nanoparticles would be deposited on the surface of Al 2 O 3 microparticles is to avoid the agglomeration of Fe-Ni nanoparticles due to their surface effect and magnetic property. The results show that the sizes of Fe-Ni particles on Al 2 O 3 particles are between several and several hundreds of nanometers, the contents of Fe and Ni in Fe-Ni nanoparticles can be adjusted from 8 to 60 at.% for Fe and 40 to 92 at.% for Ni, the specific surface area of Fe-Ni nanoparticles can reach to 117 m 2 /g, and the reaction mechanism of dechlorination of chloroform of 2 mg/L by Fe-Ni/Al 2 O 3 particles of 5 g/L appears to be pseudo first order with a half life of 0.7 h and the half life is 0.25 h for the dechlorination of trichloroethylene of 2 mg/L

  6. Deposition Measurements in NSTX

    Science.gov (United States)

    Skinner, C. H.; Kugel, H. W.; Hogan, J. T.; Wampler, W. R.

    2004-11-01

    Two quartz microbalances have been used to record deposition on the National Spherical Torus Experiment. The experimental configuration mimics a typical diagnostic window or mirror. An RS232 link was used to acquire the quartz crystal frequency and the deposited thickness was recorded continuously with 0.01 nm resolution. Nuclear Reaction Analysis of the deposit was consistent with the measurement of the total deposited mass from the change in crystal frequency. We will present measurements of the variation of deposition with plasma conditions. The transport of carbon impurities in NSTX has been modelled with the BBQ code. Preliminary calculations indicated a negligible fraction of carbon generated at the divertor plates in quiescent discharges directly reaches the outer wall, and that transient events are responsible for the deposition.

  7. Shedding of ash deposits

    DEFF Research Database (Denmark)

    Zbogar, Ana; Frandsen, Flemming; Jensen, Peter Arendt

    2009-01-01

    Ash deposits formed during fuel thermal conversion and located on furnace walls and on convective pass tubes, may seriously inhibit the transfer of heat to the working fluid and hence reduce the overall process efficiency. Combustion of biomass causes formation of large quantities of troublesome...... ash deposits which contain significant concentrations of alkali, and earth-alkali metals. The specific composition of biomass deposits give different characteristics as compared to coal ash deposits, i.e. different physical significance of the deposition mechanisms, lower melting temperatures, etc....... Low melting temperatures make straw ashes especially troublesome, since their stickiness is higher at lower temperatures, compared to coal ashes. Increased stickiness will eventually lead to a higher collection efficiency of incoming ash particles, meaning that the deposit may grow even faster...

  8. Uraniferous surficial deposits

    International Nuclear Information System (INIS)

    Toens, P.D.; Hambleton-Jones, B.B.

    1980-10-01

    As a result of the discovery of uranium in surficial deposits of Tertiary to Recent age, in Australia and Southern Africa, increasing attention is being paid to the location and understanding of the genesis of these deposits. The paper discusses the definitions and terminology currently in use and a classification of these deposits is presented. It is concluded that in order to obtain a measure of clarity, the terms calcrete, gypcrete and dolocrete should not be used to describe the uraniferous valley-fill deposits of Southern Africa and Australia [af

  9. MAPLE deposition of nanomaterials

    International Nuclear Information System (INIS)

    Caricato, A.P.; Arima, V.; Catalano, M.; Cesaria, M.; Cozzoli, P.D.; Martino, M.; Taurino, A.; Rella, R.; Scarfiello, R.; Tunno, T.; Zacheo, A.

    2014-01-01

    The matrix-assisted pulsed laser evaporation (MAPLE) has been recently exploited for depositing films of nanomaterials by combining the advantages of colloidal inorganic nanoparticles and laser-based techniques. MAPLE-deposition of nanomaterials meeting applicative purposes demands their peculiar properties to be taken into account while planning depositions to guarantee a congruent transfer (in terms of crystal structure and geometric features) and explain the deposition outcome. In particular, since nanofluids can enhance thermal conductivity with respect to conventional fluids, laser-induced heating can induce different ablation thermal regimes as compared to the MAPLE-treatment of soft materials. Moreover, nanoparticles exhibit lower melting temperatures and can experience pre-melting phenomena as compared to their bulk counterparts, which could easily induce shape and or crystal phase modification of the material to be deposited even at very low fluences. In this complex scenario, this review paper focuses on examples of MAPLE-depositions of size and shape controlled nanoparticles for different applications highlights advantages and challenges of the MAPLE-technique. The influence of the deposition parameters on the physical mechanisms which govern the deposition process is discussed.

  10. MAPLE deposition of nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Caricato, A.P., E-mail: annapaola.caricato@le.infn.it [Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Arnesano, I-73100 Lecce (Italy); Arima, V.; Catalano, M. [National Nanotechnology Laboratory (NNL), CNR Istituto Nanoscienze, c/o Distretto Tecnologico, Via Arnesano n. 16, I-73100 Lecce (Italy); Cesaria, M. [Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Arnesano, I-73100 Lecce (Italy); Cozzoli, P.D. [Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Arnesano, I-73100 Lecce (Italy); National Nanotechnology Laboratory (NNL), CNR Istituto Nanoscienze, c/o Distretto Tecnologico, Via Arnesano n. 16, I-73100 Lecce (Italy); Martino, M. [Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Arnesano, I-73100 Lecce (Italy); Taurino, A.; Rella, R. [Institute for Microelectronics and Microsystems, IMM-CNR, Via Monteroni, I-73100 Lecce (Italy); Scarfiello, R. [National Nanotechnology Laboratory (NNL), CNR Istituto Nanoscienze, c/o Distretto Tecnologico, Via Arnesano n. 16, I-73100 Lecce (Italy); Tunno, T. [Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Arnesano, I-73100 Lecce (Italy); Zacheo, A. [Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Arnesano, I-73100 Lecce (Italy); National Nanotechnology Laboratory (NNL), CNR Istituto Nanoscienze, c/o Distretto Tecnologico, Via Arnesano n. 16, I-73100 Lecce (Italy)

    2014-05-01

    The matrix-assisted pulsed laser evaporation (MAPLE) has been recently exploited for depositing films of nanomaterials by combining the advantages of colloidal inorganic nanoparticles and laser-based techniques. MAPLE-deposition of nanomaterials meeting applicative purposes demands their peculiar properties to be taken into account while planning depositions to guarantee a congruent transfer (in terms of crystal structure and geometric features) and explain the deposition outcome. In particular, since nanofluids can enhance thermal conductivity with respect to conventional fluids, laser-induced heating can induce different ablation thermal regimes as compared to the MAPLE-treatment of soft materials. Moreover, nanoparticles exhibit lower melting temperatures and can experience pre-melting phenomena as compared to their bulk counterparts, which could easily induce shape and or crystal phase modification of the material to be deposited even at very low fluences. In this complex scenario, this review paper focuses on examples of MAPLE-depositions of size and shape controlled nanoparticles for different applications highlights advantages and challenges of the MAPLE-technique. The influence of the deposition parameters on the physical mechanisms which govern the deposition process is discussed.

  11. Nonenzymatic glucose sensing based on deposited palladium nanoparticles on epoxy-silver electrodes

    International Nuclear Information System (INIS)

    Gutes, Albert; Carraro, Carlo; Maboudian, Roya

    2011-01-01

    Highlights: → New nonenzymatic glucose sensor material. → Modified epoxy-silver electrodes with palladium nanoparticles. → Simple electroless surface modification. → Wide linear response range. → Easy implementation. - Abstract: A new approach for nonenzymatic glucose sensing, based on a simple modification of epoxy-silver surfaces deposited on the tip of commercial copper electric wires, is presented. Palladium was galvanically displaced on the surface of the epoxy-silver surface in order to obtain metal nanoparticles that act as catalyst for the direct oxidation of glucose. Scanning electron microscopy revealed the formation of the metal nanoparticles. X-ray photoelectron spectroscopy confirmed the metallic nature of the formed nanostructures on the surface. Electrochemical characterization and calibration of the palladium-modified epoxy-silver electrode is reported, obtaining a linear range of 1-20 mM for the detection of glucose with low interference of ascorbic acid and uric acid. A simple 3-step coulometry was used as the detection technique. The developed sensing material is believed to be a great candidate for integration in small devices for clinical essays, due to the simplicity and cost effectiveness of the presented approach, compared to the state-of-the-art devices reported recently in the literature. Simplicity in the coulometry determinations makes these Pd-modified epoxy-silver sensors a good candidate for easy glucose determinations.

  12. Urban acid deposition

    Energy Technology Data Exchange (ETDEWEB)

    Conlan, D.E.; Longhurst, J.W.S.; Gee, D.R.; Hare, S.E.

    1991-07-01

    In this document results from the Greater Manchester Acid Deposition Survey (GMADS), an urban precipitation chemistry network, for 1990 are presented. Full analytical methods are described along with the precision and accuracy of the methods used. The spatial variability of precipitation chemistry and deposition over this urban region was investigated using a network of twenty collectors. Concentrations of non marine sulphate, ammonium, calcium and hydrogen, and nitrogen dioxide gas concentrations all show significant spatial variability. The spatial variability of the deposition rates of non marine sulphate, nitrate, ammonium, hydrogen and calcium were significant. (Author).

  13. Alluvial Deposits in Iowa

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — This coverage maps alluvial deposits throughout Iowa. This generally would include areas of alluvial soils associated with modern streams that are identified on...

  14. 75 FR 20041 - Deposits

    Science.gov (United States)

    2010-04-16

    ... transmission to (202) 906- 6518; or send an e-mail to [email protected] . OTS will post... DD implements the Truth in Savings Act, part of the Federal Deposit Insurance Corporation Improvement...

  15. Modeled Wet Nitrate Deposition

    Data.gov (United States)

    U.S. Environmental Protection Agency — Modeled data on nitrate wet deposition was obtained from Dr. Jeff Grimm at Penn State Univ. Nitrate wet depostion causes acidification and eutrophication of surface...

  16. Uranium deposit research, 1983

    International Nuclear Information System (INIS)

    Ruzicka, V.; LeCheminant, G.M.

    1984-01-01

    Research on uranium deposits in Canada, conducted as a prerequisite for assessment of the Estimated Additional Resources of uranium, revealed that (a) the uranium-gold association in rudites of the Huronian Supergroup preferably occurs in the carbon layers; (b) chloritized ore at the Panel mine, Elliot Lake, Ontario, occurs locally in tectonically disturbed areas in the vicinity of diabase dykes; (c) mineralization in the Black Sturgeon Lake area, Ontario, formed from solutions in structural and lithological traps; (d) the Cigar Lake deposit, Saskatchewan, has two phases of mineralization: monomineralic and polymetallic; (e) mineralization of the JEB (Canoxy Ltd.) deposit is similar to that at McClean Lake; (f) the uranium-carbon assemblage was identified in the Claude deposit, Carswell Structure; and (g) the Otish Mountains area, Quebec, should be considered as a significant uranium-polymetallic metallogenic province

  17. Automatic Payroll Deposit System.

    Science.gov (United States)

    Davidson, D. B.

    1979-01-01

    The Automatic Payroll Deposit System in Yakima, Washington's Public School District No. 7, directly transmits each employee's salary amount for each pay period to a bank or other financial institution. (Author/MLF)

  18. Deposition of acidifying compounds

    International Nuclear Information System (INIS)

    Fowler, D.; Cape, J.N.; Sutton, M.A.; Mourne, R.; Hargreaves, K.J.; Duyzer, J.H.; Gallagher, M.W.

    1992-01-01

    Inputs of acidifying compounds to terrestrial ecosystems include deposition of the gases NO 2 , NO, HNO 2 , HNO 3 , NH 3 and SO 2 and the ions NO 3- , NH 4+ , SO 4 2- and H + in precipitation, cloud droplets and particles. Recent research has identified particular ecosystems and regions in which terrestrial effects are closely linked with specific deposition processes. This review paper identifies areas in which important developments have occurred during the last five years and attempts to show which aspects of the subject are most important for policy makers. Amongst the conclusions drawn, the authors advise that current uncertainties in estimates of S and N inputs by dry deposition should be incorporated in critical load calculations, and that, in regions dominated by wet deposition, spatial resolution of total inputs should be improved to match the current scales of information on landscape sensitivity to acidic inputs. 44 refs., 9 figs

  19. Speleothem (Cave Deposit) Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Records of past temperature, precipitation, and other aspects of climate derived from mineral deposits found in caves. Parameter keywords describe what was measured...

  20. Gemstone deposits of Serbia

    Directory of Open Access Journals (Sweden)

    Miladinović Zoran

    2016-06-01

    Full Text Available Gemstone minerals in Serbia have never been regarded as an interesting and significant resource. Nevertheless, more than 150 deposits and occurrences have been recorded and some of them preliminarily explored in the last 50 years. The majority of deposits and occurrences are located within the Serbo-Macedonian metallogenic province and the most significant metallogenic units at the existing level of knowledge are the Fruska Gora ore district, Cer ore district, Sumadija metallogenic zone, Kopaonik metallogenic zone and Lece-Halkidiki metallogenic zone. The most important genetic type of deposits is hydrothermal, particularly in case of serpentinite/peridotite as host/parent rock. Placer deposits are also economically important. The dominant gemstones are silica minerals: chalcedony (Chrysoprase, carnelian, bluish chalcedony etc., jasper (picture, landscape, red etc., common opal (dendritic, green, milky white etc., silica masses (undivided, and quartz (rock crystal, amethyst etc.. Beside silica minerals significant gemstones in Serbia include also beryl (aquamarine, garnet (almandine and pyrope, tourmaline, fluorite, rhodochrosite, carbonate-silica breccia, carbonate-silica onyx, silicified wood, howlite, serpentinite, marble onyx, and kyanite. This paper aims to present an overview of Serbian gemstone deposits and occurrences and their position based on a simplified gemstone metallogenic map of Serbia, as well as genetic-industrial classification of gemstone deposits and gemstone varieties.

  1. Uranium deposits in Africa

    International Nuclear Information System (INIS)

    Wilpolt, R.H.; Simov, S.D.

    1979-01-01

    Africa is not only known for its spectacular diamond, gold, copper, chromium, platinum and phosphorus deposits but also for its uranium deposits. At least two uranium provinces can be distinguished - the southern, with the equatorial sub-province; and the south Saharan province. Uranium deposits are distributed either in cratons or in mobile belts, the first of sandstone and quartz-pebble conglomerate type, while those located in mobile belts are predominantly of vein and similar (disseminated) type. Uranium deposits occur within Precambrian rocks or in younger platform sediments, but close to the exposed Precambrian basement. The Proterozoic host rocks consist of sediments, metamorphics or granitoids. In contrast to Phanerozoic continental uranium-bearing sediments, those in the Precambrian are in marginal marine facies but they do contain organic material. The geology of Africa is briefly reviewed with the emphasis on those features which might control the distribution of uranium. The evolution of the African Platform is considered as a progressive reduction of its craton area which has been affected by three major Precambrian tectonic events. A short survey on the geology of known uranium deposits is made. However, some deposits and occurrences for which little published material is available are treated in more detail. (author)

  2. Gemstone deposits of Serbia

    Science.gov (United States)

    Miladinović, Zoran; Simić, Vladimir; Jelenković, Rade; Ilić, Miloje

    2016-06-01

    Gemstone minerals in Serbia have never been regarded as an interesting and significant resource. Nevertheless, more than 150 deposits and occurrences have been recorded and some of them preliminarily explored in the last 50 years. The majority of deposits and occurrences are located within the Serbo-Macedonian metallogenic province and the most significant metallogenic units at the existing level of knowledge are the Fruska Gora ore district, Cer ore district, Sumadija metallogenic zone, Kopaonik metallogenic zone and Lece-Halkidiki metallogenic zone. The most important genetic type of deposits is hydrothermal, particularly in case of serpentinite/peridotite as host/parent rock. Placer deposits are also economically important. The dominant gemstones are silica minerals: chalcedony (Chrysoprase, carnelian, bluish chalcedony etc.), jasper (picture, landscape, red etc.), common opal (dendritic, green, milky white etc.), silica masses (undivided), and quartz (rock crystal, amethyst etc.). Beside silica minerals significant gemstones in Serbia include also beryl (aquamarine), garnet (almandine and pyrope), tourmaline, fluorite, rhodochrosite, carbonate-silica breccia, carbonate-silica onyx, silicified wood, howlite, serpentinite, marble onyx, and kyanite. This paper aims to present an overview of Serbian gemstone deposits and occurrences and their position based on a simplified gemstone metallogenic map of Serbia, as well as genetic-industrial classification of gemstone deposits and gemstone varieties.

  3. Deposition of Fe-Ni nanoparticles on Al{sub 2}O{sub 3} for dechlorination of chloroform and trichloroethylene

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, S.-H. [Graduate School of Engineering Science and Technology, National Yunlin University of Science and Technology, Taiwan (China) and Department of Materials Science and Engineering, National Formosa University, Taiwan (China)]. E-mail: shhsieh@sunws.nfu.edu.tw; Horng, J.-J. [Department of Safety, Health, and Environmental Engineering, National Yunlin University of Science and Technology, Douliou, Yunlin 640, Taiwan (China)

    2006-11-30

    This research proposes an efficient method for depositing Fe-Ni nanoparticles on Al{sub 2}O{sub 3} microparticles to decompose containments in ground water, such as chloroform and trichloroethylene. The Fe-Ni nanoparticles can be deposited onto the surface of Al{sub 2}O{sub 3} microparticles by electroless plating technique. The reasons why the Fe-Ni nanoparticles would be deposited on the surface of Al{sub 2}O{sub 3} microparticles is to avoid the agglomeration of Fe-Ni nanoparticles due to their surface effect and magnetic property. The results show that the sizes of Fe-Ni particles on Al{sub 2}O{sub 3} particles are between several and several hundreds of nanometers, the contents of Fe and Ni in Fe-Ni nanoparticles can be adjusted from 8 to 60 at.% for Fe and 40 to 92 at.% for Ni, the specific surface area of Fe-Ni nanoparticles can reach to 117 m{sup 2}/g, and the reaction mechanism of dechlorination of chloroform of 2 mg/L by Fe-Ni/Al{sub 2}O{sub 3} particles of 5 g/L appears to be pseudo first order with a half life of 0.7 h and the half life is 0.25 h for the dechlorination of trichloroethylene of 2 mg/L.

  4. Pore size control of Pitch-based activated carbon fibers by pyrolytic deposition of propylene

    International Nuclear Information System (INIS)

    Xie Jinchuan; Wang Xuhui; Deng Jiyong; Zhang Lixing

    2005-01-01

    In this paper, we attempted to narrow the pore size of Pitch-based activated carbon fiber (Pitch-ACF) by chemical vapor deposition (CVD) of propylene at 700 deg. C. The BET equation was used to estimate the specific surface areas. The micropore volumes were determined using DR equation, t-plot and α s -plot, and mesopore surface areas were determined by t-plot and α s -plot. The pore size distribution (PSD) of micropores and mesopore was investigated by micropore analysis method (MP method) and MK method, respectively. The relation between the graphite-like crystal interlayer distance and pore size was analyzed by X-ray diffraction (XRD). The results showed that the pore size of Pitch-ACF was gradually narrowed with increasing deposition time. The catalytic activation of Ni was attempted when Pitch-ACF was modified simultaneously by pyrolysis of propylene. The results obtained from the analysis of PSD of micropores, mesopores and macropores in Ni-P-ACF by density function theory (DFT) showed that the pore structure and surface chemistry were greatly changed due to introducing nickel catalyst

  5. Vein type uranium deposits

    International Nuclear Information System (INIS)

    1986-01-01

    Veins are tabular- or sheet-like masses of minerals occupying or following a fracture or a set of fractures in the enclosing rock. They have been formed later than the country rock and fractures, either by filling of the open spaces or by partial or complete replacement of the adjoining rock or most commonly by both of these processes combined. This volume begins with the occurrences and deposits known from old shield areas and the sedimentary belts surrounding them. They are followed by papers describing the European deposits mostly of Variscan age, and by similar deposits known from China being of Jurassic age. The volume is completed by two papers which do not fit exactly in the given scheme. A separate abstract was prepared for each of the 25 papers in this report

  6. Optical thin film deposition

    International Nuclear Information System (INIS)

    Macleod, H.A.

    1979-01-01

    The potential usefulness in the production of optical thin-film coatings of some of the processes for thin film deposition which can be classified under the heading of ion-assisted techniques is examined. Thermal evaporation is the process which is virtually universally used for this purpose and which has been developed to a stage where performance is in almost all respects high. Areas where further improvements would be of value, and the possibility that ion-assisted deposition might lead to such improvements, are discussed. (author)

  7. Radionuclide deposition control

    International Nuclear Information System (INIS)

    1980-01-01

    A method is described for controlling the deposition, on to the surfaces of reactor components, of the radionuclides manganese-54, cobalt-58 and cobalt-60 from a liquid stream containing the radionuclides. The method consists of disposing a getter material (nickel) in the liquid stream, and a non-getter material (tantalum, tungsten or molybdenum) as a coating on the surfaces where deposition is not desired. The process is described with special reference to its use in the coolant circuit in sodium cooled fast breeder reactors. (U.K.)

  8. Deposition potential of polonium

    Energy Technology Data Exchange (ETDEWEB)

    Heal, H. G.

    1948-11-23

    The cathodic deposition potential for polonium in concentrations of 10{sup -13} normal and 8 x 10{sup -13} normal, the former being 100-fold smaller than the smallest concentrations previously studied, has been determined. The value is 0.64 volt on the hydrogen scale. Considering the various ways in which the graphs can reasonably be drawn, we consider the maximum possible error to be of the order of +- 0.03 volt. There is apparently no shift of deposition potential between concentrations of 10{sup -8} and 10{sup -13} normal, indicating that the Nernst equation is not applicable in these circumstances.

  9. Reactive polymer fused deposition manufacturing

    Science.gov (United States)

    Kunc, Vlastimil; Rios, Orlando; Love, Lonnie J.; Duty, Chad E.; Johs, Alexander

    2017-05-16

    Methods and compositions for additive manufacturing that include reactive or thermosetting polymers, such as urethanes and epoxies. The polymers are melted, partially cross-linked prior to the depositing, deposited to form a component object, solidified, and fully cross-linked. These polymers form networks of chemical bonds that span the deposited layers. Application of a directional electromagnetic field can be applied to aromatic polymers after deposition to align the polymers for improved bonding between the deposited layers.

  10. Heavy metal deposition fluxes affecting an Atlantic coastal area in the southwest of Spain

    Science.gov (United States)

    Castillo, Sonia; de la Rosa, Jesús D.; Sánchez de la Campa, Ana M.; González-Castanedo, Yolanda; Fernández-Camacho, Rocío

    2013-10-01

    The present study seeks to estimate the impact of industrial emissions and harbour activities on total atmospheric deposition in an Atlantic coastal area in the southwest of the Iberian Peninsula. Three large industrial estates and a busy harbour have a notable influence on air quality in the city of Huelva and the surrounding area. The study is based on a geochemical characterization of trace elements deposited (soluble and insoluble fractions) in samples collected at a rate of 15 days/sample from June 2008 to May 2011 in three sampling sites, one in the principal industrial belt, another in the city of Huelva, and the last, 56 km outside Huelva city in an area of high ecological interest. The industrial emissions emitted by the Huelva industrial belt exert a notable influence on atmospheric deposition. Major deposition fluxes were registered for Fe, Cu, V, Ni, P, Pb, As, Sn, Sb, Se and Bi, principally in the insoluble fraction, derived from industrial funnel emissions and from harbour activities. Metals such as Mn, Ni, Cu and Zn, and elements such as P also have a significant presence in the soluble fraction converting them into potentially bio-available nutrients for the living organism in the ocean. A principal component analysis certifies three common emissions sources in the area: 1) a mineral factor composed mainly of elements derived from silicate minerals mixed with certain anthropogenic species (Mg, K, Sr, Na, Al, Ba, LREE, Li, Mn, HREE, Ti, Fe, Se, V, SO-, Ni, Ca and P); 2) an industrial factor composed of the same trace elements in the three areas (Sb, Mo, Bi, As, Pb, Sn and Cd) thus confirming the impact of the emissions from the Huelva industrial belt on remote areas; and 3) a marine factor composed of Na, Cl, Mg and SO.

  11. Ion Deposited Carbon Coatings.

    Science.gov (United States)

    1983-07-01

    PAGE ("’hen Dita t,,I,, efl TABLE OF CONTENTS Section No. Title Page No. 1.0 OBJECTIVE 1 2.0 SCOPE 2 3.0 BACKGROUND 3 4.0 COATINGS DEPOSITION 4 4.1...scientific, ards of measure. The Committee, and Confer- technical, practical, and teaching purposes.ence voting members, are leading professional On the

  12. Plasma deposition of refractories

    International Nuclear Information System (INIS)

    Kudinov, V.V.; Ivanov, V.M.

    1981-01-01

    The problems of deposition, testing and application of plasma coating of refractory metals and oxides are considered. The process fundamentals, various manufacturing procedures and equipment for their realization are described in detail. Coating materials are given (Al, Mg, Al 2 O 3 , ZrO 2 , MgAlO 4 ) which are used in reactor engineering and their designated purposes are shown [ru

  13. 75 FR 34533 - Deposits

    Science.gov (United States)

    2010-06-17

    ... collection request (ICR) described below has been submitted to the Office of Management and Budget (OMB) for..., Attention: Desk Officer for OTS, U.S. Office of Management and Budget, 725 17th Street, NW., Room 10235... statement the institution sends to the consumer. Regulation DD contains rules for advertisements of deposit...

  14. Synthesis and structural characterization of CsNiP crystal

    Indian Academy of Sciences (India)

    Unknown

    The crystals obtained by this method were of good quality exhibiting ... type framework structure having Cs atoms inside it (figures. 3 and 4). This helps for .... Gopalakrishna G S, Prasad J S and Lokanath N K 2001 Proc. joint 4th and 6th ICSTR ...

  15. 78 FR 56583 - Deposit Insurance Regulations; Definition of Insured Deposit

    Science.gov (United States)

    2013-09-13

    ... as a potential global deposit insurer, preserve confidence in the FDIC deposit insurance system, and... the United States.\\2\\ The FDIC generally pays out deposit insurance on the next business day after a... since 2001 and total approximately $1 trillion today. In many cases, these branches do not engage in...

  16. Uranium deposits of Zaire

    International Nuclear Information System (INIS)

    Kitmut, D.; Malu wa Kalenga

    1979-01-01

    Since April 1960, following the closing of the Shinkolobwe mine, the Republic of Zaire has ceased to be a producer of uranium. Nevertheless, Gecamines (Generale des carrieres et mines du Zaire), a wholly state-owned company, is continuing its research on uranium occurrences which have been discovered in its concession in the course of aerial radiometric prospecting. The most recent campaign was the one carried out in 1969 and 1972 by Hunting Company. On-the-ground verification of these shows has not yet resulted in the discovery of a workable deposit. There are other sectors cutting across Zaire which might well contain uranium deposits: this is true of the sedimentary phosphates of the region of Lower Zaire as well as of the frontier region between Zaire and the Central African Empire. However, no detailed exploration work has yet been carried out. (author)

  17. 20 CFR 703.306 - Kinds of negotiable securities that may be deposited; conditions of deposit; acceptance of deposits.

    Science.gov (United States)

    2010-04-01

    ... the Act in the amount fixed by the Office under the regulations in this part shall deposit any... deposited; conditions of deposit; acceptance of deposits. 703.306 Section 703.306 Employees' Benefits... negotiable securities that may be deposited; conditions of deposit; acceptance of deposits. A self-insurer or...

  18. Thorium ore deposits

    International Nuclear Information System (INIS)

    Angelelli, Victorio.

    1984-01-01

    The main occurences of the thorium minerals of the Argentine Republic which have not been exploited, due to their reduced volume, are described. The thoriferous deposits have three genetic types: pegmatitic, hydrothermal and detritic, being the most common minerals: monazite, thorite and thorogummite. The most important thorium accumulations are located in Salta, being of less importance those of Cordoba, Jujuy and San Juan. (M.E.L.) [es

  19. Electrophoretic deposition of biomaterials

    Science.gov (United States)

    Boccaccini, A. R.; Keim, S.; Ma, R.; Li, Y.; Zhitomirsky, I.

    2010-01-01

    Electrophoretic deposition (EPD) is attracting increasing attention as an effective technique for the processing of biomaterials, specifically bioactive coatings and biomedical nanostructures. The well-known advantages of EPD for the production of a wide range of microstructures and nanostructures as well as unique and complex material combinations are being exploited, starting from well-dispersed suspensions of biomaterials in particulate form (microsized and nanoscale particles, nanotubes, nanoplatelets). EPD of biological entities such as enzymes, bacteria and cells is also being investigated. The review presents a comprehensive summary and discussion of relevant recent work on EPD describing the specific application of the technique in the processing of several biomaterials, focusing on (i) conventional bioactive (inorganic) coatings, e.g. hydroxyapatite or bioactive glass coatings on orthopaedic implants, and (ii) biomedical nanostructures, including biopolymer–ceramic nanocomposites, carbon nanotube coatings, tissue engineering scaffolds, deposition of proteins and other biological entities for sensors and advanced functional coatings. It is the intention to inform the reader on how EPD has become an important tool in advanced biomaterials processing, as a convenient alternative to conventional methods, and to present the potential of the technique to manipulate and control the deposition of a range of nanomaterials of interest in the biomedical and biotechnology fields. PMID:20504802

  20. Radionuclides deposition over Antarctica

    International Nuclear Information System (INIS)

    Pourchet, M.; Magand, O.; Frezzotti, M.; Ekaykin, A.; Winther, J.-G.

    2003-01-01

    A detailed and comprehensive map of the distribution patterns for both natural and artificial radionuclides over Antarctica has been established. This work integrates the results of several decades of international programs focusing on the analysis of natural and artificial radionuclides in snow and ice cores from this polar region. The mean value (37±20 Bq m -2 ) of 241 Pu total deposition over 28 stations is determined from the gamma emissions of its daughter 241 Am, presenting a long half-life (432.7 yrs). Detailed profiles and distributions of 241 Pu in ice cores make it possible to clearly distinguish between the atmospheric thermonuclear tests of the fifties and sixties. Strong relationships are also found between radionuclide data ( 137 Cs with respect to 241 Pu and 210 Pb with respect to 137 Cs), make it possible to estimate the total deposition or natural fluxes of these radionuclides. Total deposition of 137 Cs over Antarctica is estimated at 760 TBq, based on results from the 90-180 deg. East sector. Given the irregular distribution of sampling sites, more ice cores and snow samples must be analyzed in other sectors of Antarctica to check the validity of this figure

  1. The effect of incorporated self-lubricated BN(h) particles on the tribological properties of Ni–P/BN(h) composite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Chih-I., E-mail: s1322509@gmail.com [School of Defense Science, Chung Cheng Institute of Technology, National Defense University, Taoyuan, Taiwan (China); Hou, Kung-Hsu, E-mail: khou@ndu.edu.tw [Department of Power Vehicle and Systems Engineering, Chung Cheng Institute of Technology, National Defense University, Taoyuan, Taiwan (China); Ger, Ming-Der, E-mail: mingderger@gmail.com [Department of Chemistry and Material Engineering, Chung Cheng Institute of Technology, National Defense University, Taoyuan, Taiwan (China); Wang, Gao-Liang, E-mail: wanggl@takming.edu.tw [Department of Marketing Management, Takming University of Science and Technology, Taipei, Taiwan (China)

    2015-12-01

    Highlights: • The Ni-P-BN(h) coatings were prepared by electroless plating techniques in this research. • Surfactant CTAB resulting in a uniform dispersion of particles in Ni-P coating. • CTAB with a positive effect on the tribological performance of Ni–P/BN(h) coatings. • Frictional tests results show that optimal friction coefficient would be decreased 75%. • Wear resistance of the Ni-P/BN(h) coating is higher about 10 times Ni–P coatings. - Abstract: Ni–P/BN(h) composite coatings are prepared by means of the conventional electroless plating from the bath containing up to 10.0 g/l of hexagonal boron nitride particles with size 0.5 μm. The Ni–P coating is also prepared as a comparison. Cationic surfactant cetyltrimethylammonium bromide (CTAB) is used to stabilize the electrolyte, and the optimum CTAB concentration resulting in a nonagglomerated dispersion of particles is obtained using a dispersion stability analyzer. Morphology of the coatings and the effect of incorporated particles on coating structure and composition are investigated via scanning electron microscopy, field emission electron probe micro-analyzer and X-ray diffraction analysis. Hardness, roughness, friction coefficient and wear resistance of the coatings are also evaluated using Vickers microhardness tester, atomic force microscopy and ball-on disk machine. The presence of CTAB in the depositing bath has a positive effect on the surface roughness and performance of Ni–P/BN(h) composite coatings. The friction and wear tests results show that incorporation of 14.5 vol% BN(h) particles into the Ni–P coating lowers the coating friction coefficient by about 75% and the wear resistance of the Ni–P composites is approximately 10 times higher than Ni–P coating.

  2. Deposition and Resuspension of Particles

    DEFF Research Database (Denmark)

    Lengweiler, P.; Nielsen, Peter V.; Moser, A.

    A new experimental set-up to investigate the physical process of dust deposition and resuspension on and from surfaces is introduced. Dust deposition can reduce the airBorne dust concentration considerably. As a basis for developing methods to eliminate dust related problems in rooms......, there is a need for better understanding of the mechanism of dust deposition and resuspension....

  3. A Micrometeorological Perspective on Deposition

    DEFF Research Database (Denmark)

    Jensen, Niels Otto

    1981-01-01

    An expression for the dry deposition velocity is given in terms of constant flux layer scaling. Numerical values of upper bounds on the deposition velocity is given for a typical situation. Some remarks are then offered on the relative merits of various ways in which the combined diffusion-deposition...

  4. Market Discipline and Deposit Insurance

    OpenAIRE

    Peresetsky, Anatoly

    2008-01-01

    The paper examines Russian banks’ household deposit interest rates for the transition period of setting up the deposit insurance system. Monthly observations of Russian banks’ interest rates and balance sheets are used in a fixed effects panel data model. It is shown market discipline has been significantly diminished after switching to the deposit insurance.

  5. Electrophoretic Deposition of Gallium with High Deposition Rate

    Directory of Open Access Journals (Sweden)

    Hanfei Zhang

    2014-12-01

    Full Text Available In this work, electrophoretic deposition (EPD is reported to form gallium thin film with high deposition rate and low cost while avoiding the highly toxic chemicals typically used in electroplating. A maximum deposition rate of ~0.6 μm/min, almost one order of magnitude higher than the typical value reported for electroplating, is obtained when employing a set of proper deposition parameters. The thickness of the film is shown to increase with deposition time when sequential deposition is employed. The concentration of Mg(NO32, the charging salt, is also found to be a critical factor to control the deposition rate. Various gallium micropatterns are obtained by masking the substrate during the process, demonstrating process compatibility with microfabrication. The reported novel approach can potentially be employed in a broad range of applications with Ga as a raw material, including microelectronics, photovoltaic cells, and flexible liquid metal microelectrodes.

  6. Dry deposition on urban surfaces

    International Nuclear Information System (INIS)

    Roed, J.

    1985-01-01

    In order to facilitate developing a model for deposition in urban areas, beryllium-7, created by cosmic radiation and fall-out cesium-137, have been used as tracers in measurements designed to find the dry deposition velocity on building surfaces. A literature review has revealed that very little work has been done on deposition in urban areas; therefore, a major effort on meausring the deposition parameter is needed to construct reliable models in this field. Deposition velocities in the range from 0.001-0.04 cm/s have been found. (author)

  7. Thermal plasma chemical vapor deposition

    International Nuclear Information System (INIS)

    Heberlein, J.; Pfender, E.

    1993-01-01

    Thermal plasmas, with temperatures up to and even exceeding 10 4 K, are capable of producing high density vapor phase precursors for the deposition of relatively thick films. Although this technology is still in its infancy, it will fill the void between the relatively slow deposition processes such as physical vapor deposition and the high rate thermal spray deposition processes. In this chapter, the present state-of-the-art of this field is reviewed with emphasis on the various types of reactors proposed for this emerging technology. Only applications which attracted particular attention, namely diamond and high T c superconducting film deposition, are discussed in greater detail. (orig.)

  8. Uranium ore deposits

    International Nuclear Information System (INIS)

    Angelelli, Victorio.

    1984-01-01

    The main uranium deposits and occurrences in the Argentine Republic are described, considering, in principle, their geologic setting, the kind of 'model' of the mineralization and its possible origin, and describing the ore species present in each case. The main uraniferous accumulations of the country include the models of 'sandstong type', veintype and impregnation type. There are also other kinds of accumulations, as in calcrete, etc. The main uranium production has been registered in the provinces of Mendoza, Salta, La Rioja, Chubut, Cordoba and San Luis. In each case, the minerals present are mentioned, having been recognized 37 different species all over the country (M.E.L.) [es

  9. Deposition of carbon dioxide

    International Nuclear Information System (INIS)

    2001-01-01

    In Norway, there is currently a debate about whether or not to build gas power stations. To meet the possibility of reduced emission quotas for carbon dioxide in the future, current interest focuses on the incorporation of large-scale separation and deposition of carbon dioxide when such plants are planned. A group of experts concludes that this technology will become self-financing by means of environmental taxes. From the environmental point of view, taxes upon production are to be preferred over taxes on consumption

  10. Stratigraphic implications of uranium deposits

    International Nuclear Information System (INIS)

    Langford, F.F.

    1980-01-01

    One of the most consistent characteristics of economic uranium deposits is their restricted stratigraphic distribution. Uraninite deposited with direct igneous affiliation contains thorium, whereas chemical precipitates in sedimentary rocks are characterized by thorium-free primary uranium minerals with vanadium and selenium. In marine sediments, these minerals form low-grade disseminations; but in terrestrial sediments, chiefly fluvial sandstones, the concentration of uranium varies widely, with the high-grade portions constituting ore. Pitchblende vein deposits not only exhibit the same chemical characteristics as the Colorado-type sandstone deposits, but they have a stratigraphically consistent position at unconformities covered by fluvial sandstones. If deposits in such diverse situations have critical features in common, they are likely to have had many features of their origin in common. Thus, vein deposits in Saskatchewan and Australia may have analogues in areas that contain Colorado-type sandstone deposits. In New Mexico, the presence of continental sandstones with peneconformable uranium deposits should also indicate good prospecting ground for unconformity-type vein deposits. All unconformities within the periods of continental deposition ranging from Permian to Cretaceous should have uranium potential. Some situations, such as the onlap of the Abo Formation onto Precambrian basement in the Zuni Mountains, may be directly comparable to Saskatchewan deposition. However, uranium occurrences in the upper part of the Entrada Sandstone suggest that unconformities underlain by sedimentary rocks may also be exploration targets

  11. Sandstone-type uranium deposits

    International Nuclear Information System (INIS)

    Austin, S.R.; D'Andrea, R.F. Jr.

    1978-01-01

    Three overall factors are necessary for formation of uranium deposits in sandstone: a source of uranium, host rocks capable of transmitting uranium-bearing solutions, and a precipitant. Possible sources of uranium in sandstone-type deposits include groundwaters emanating from granitic highlands, arkosic sediments, tuffaceous material within or overlying the host rocks, connate fluids, and overlying black shales. The first three sources are considered the most likely. Host rocks are generally immature sandstones deposited in alluvial-fan, intermontane-basin or marginal-marine environments, but uranium deposits do occur in well-winnowed barrier-bar or eolian sands. Host rocks for uranium deposits generally show coefficients of permeability on the order of 1 to 100 gal/day/ft 2 . Precipitants are normally agents capable of reducing uranium from the uranyl to the uranous state. The association of uranium with organic matter is unequivocal; H 2 S, a powerful reductant, may have been present at the time of formation of some deposits but may go unnoticed today. Vanadium can serve to preserve the tabular characteristics of some deposits in the near-surface environment, but is considered an unlikely primary precipitant for uranium. Uranium deposits in sandstone are divided into two overall types: peneconcordant deposits, which occur in locally reducing environments in otherwise oxidized sandstones; and roll-type deposits, which occur at the margin of an area where an oxidized groundwater has permeated an otherwise reduced sandstone. Uranium deposits are further broken down into four subclasses; these are described

  12. Geological factors of deposit formation

    International Nuclear Information System (INIS)

    Grushevoj, G.V.

    1980-01-01

    Geologic factors of hydrogenic uranium deposit formation are considered. Structural, formation and lithological-facies factors of deposit formation, connected with zones of stratal oxidation, are characterized. Peculiarities of deposit localization, connected with orogenic structures of Mesozoic and lenozoic age, are described. It is noted that deposits of anagenous group are widely spread in Paleozoic formations, infiltration uranium deposits are localized mainly in Cenozoic sediments, while uranium mineralization both anagenous and infiltration groups are widely developed in Mesozoic sediments. Anagenous deposits were formed in non-oxygen situation, their age varies from 200 to 55 mln years. Infiltration deposit formation is determined by asymmetric oxidation zonation, their age varies from 10 - 40 mln years to dozens of thousand years [ru

  13. Atmospheric wet deposition of mercury and other trace elements in Pensacola, Florida

    Directory of Open Access Journals (Sweden)

    W. M. Landing

    2010-05-01

    Full Text Available In an effort to understand and quantify the impact of local, regional, and far-distant atmospheric mercury sources to rainfall mercury deposition in the Pensacola, Florida watershed, a program of event-based rainfall sampling was started in late 2004. Modified Aerochem-Metrics wet/dry rainfall samplers were deployed at three sites in the region around the Crist coal-fired power plant and event-based samples were collected continuously for three years. Samples were analyzed for total Hg and a suite of trace elements including Al, As, Ba, Bi, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, La, Li, Mg, Mn, Na, Nb, Ni, P, Pb, Sb, Se, Si, Sn, Sr, Th, U, V, and Zn. Nutrients (ammonia and nitrate and major anions (chloride and sulfate were also measured on each sample. Multivariate statistical methods were used to sort these tracers into factors that represent potential source categories contributing to the rainfall chemistry. As, Hg, Sb, Se, Sn, and non sea-salt sulfate were all significantly correlated (R>0.6 with one factor which we interpret as an anthropogenic source term reflecting input from coal combustion throughout the southeastern US. Using ratios of total Hg to volatile elements, we estimate that 22–33% of the rainfall Hg results from coal combustion in the southeastern US with the majority coming from the global background.

  14. FDIC Summary of Deposits (SOD) Download File

    Data.gov (United States)

    Federal Deposit Insurance Corporation — The FDIC's Summary of Deposits (SOD) download file contains deposit data for branches and offices of all FDIC-insured institutions. The Federal Deposit Insurance...

  15. Plutonium in uranium deposits

    International Nuclear Information System (INIS)

    Curtis, D.; Fabryka-Martin, J.; Aguilar, R.; Attrep, M. Jr.; Roensch, F.

    1992-01-01

    Plutonium-239 (t 1/2 , 24,100 yr) is one of the most persistent radioactive constituents of high-level wastes from nuclear fission power reactors. Effective containment of such a long-lived constituent will rely heavily upon its containment by the geologic environment of a repository. Uranium ore deposits offer a means to evaluate the geochemical properties of plutonium under natural conditions. In this paper, analyses of natural plutonium in several ores are compared to calculated plutonium production rates in order to evaluate the degree of retention of plutonium by the ore. The authors find that current methods for estimating production rates are neither sufficiently accurate nor precise to provide unambiguous measures of plutonium retention. However, alternative methods for evaluating plutonium mobility are being investigated, including its measurement in natural ground waters. Preliminary results are reported and establish the foundation for a comprehensive characterization of plutonium geochemistry in other natural environments

  16. Classification of Uranium deposits

    International Nuclear Information System (INIS)

    Dahlkamp, F.J.

    1978-01-01

    A listing of the recognized types of uranium mineralization shows nineteen determinable types out of which only six can be classified as of economic significance at present: Oligomiitic quartz pebble conglomerates, sandstone types, calcretes, intra-intrusive types, hydrothermal veins, veinlike types. The different types can be genetically related to prevalent geological environments, i.e. 1. the primary uranium occurrences formed by endogenic processes, 2. the secondary derived from the primary by subsequent exogenic processes, 3. the tertiary occurrences are assumed to be formed by endogenic metamorphic processes, although little is known about the behaviour of the uranium during the metamorphosis and therefore the metallogenesis of this tertiary uranium generation is still vague. A metallotectonic-geochronologic correlation of the uranium deposits shows a distinct affinity of the uranium to certain geological epochs: The Upper Archean, Lower Proterozoic, the Hercynian and, in a less established stage, the Upper Proterozoic. (orig.) 891 HP/orig. 892 MKO [de

  17. Locating underground uranium deposits

    International Nuclear Information System (INIS)

    Felice, P.E.

    1979-01-01

    Underground uranium deposits are located by placing wires of dosimeters each about 5 to 18 mg/cm 2 thick underground in a grid pattern. Each dosimeter contains a phosphor which is capable of storing the energy of alpha particles. In each pair one dosimeter is shielded from alpha particles with more than 18 mg/cm 2 thick opaque material but not gamma and beta rays and the other dosimeter is shielded with less than 1 mg/cm 2 thick opaque material to exclude dust. After a period underground the dosimeters are heated which releases the stored energy as light. The amount of light produced from the heavily shielded dosimeter is subtracted from the amount of light produced from the thinly shielded dosimeter to give an indication of the location and quantity of uranium underground

  18. Global deposition of airborne dioxin.

    Science.gov (United States)

    Booth, Shawn; Hui, Joe; Alojado, Zoraida; Lam, Vicky; Cheung, William; Zeller, Dirk; Steyn, Douw; Pauly, Daniel

    2013-10-15

    We present a global dioxin model that simulates one year of atmospheric emissions, transport processes, and depositions to the earth's terrestrial and marine habitats. We map starting emission levels for each land area, and we also map the resulting deposits to terrestrial and marine environments. This model confirms that 'hot spots' of deposition are likely to be in northern Europe, eastern North America, and in parts of Asia with the highest marine dioxin depositions being the northeast and northwest Atlantic, western Pacific, northern Indian Ocean and the Mediterranean. It also reveals that approximately 40% of airborne dioxin emissions are deposited to marine environments and that many countries in Africa receive more dioxin than they produce, which results in these countries being disproportionately impacted. Since human exposure to dioxin is largely through diet, this work highlights food producing areas that receive higher atmospheric deposits of dioxin than others. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. A remote coal deposit revisited

    DEFF Research Database (Denmark)

    Bojesen-Kofoed, Jørgen A.; Kalkreuth, Wolfgang; Petersen, Henrik I.

    2012-01-01

    discovery. The outcrops found in 2009 amount to approximately 8 m of sediment including a coal seam of 2 m thickness. More outcrops and additional coal deposits most certainly are to be found, pending further fieldwork. The deposits are Middle Jurassic, Callovian, in age and were deposited in a floodplain...... environment related to meandering river channels. Spores and pollen in the lower fluvial deposits reflect abundant vegetation of ferns along the river banks. In contrast, a sparse spore and pollen flora in the coals show a mixed vegetation of ferns and gymnosperms. Based on proximate and petrographic analyses...

  20. 76 FR 41392 - Interest on Deposits; Deposit Insurance Coverage

    Science.gov (United States)

    2011-07-14

    ... banks' funding costs and also allow them to plan business growth more dependably and rigorously... of business deposits by offering continually higher rates of interest. Three of the four contended... deposits. They reasoned that large banks will offer high rates of interest and lure away business...

  1. Uranium deposits in granitic rocks

    International Nuclear Information System (INIS)

    Nishimori, R.K.; Ragland, P.C.; Rogers, J.J.W.; Greenberg, J.K.

    1977-01-01

    This report is a review of published data bearing on the geology and origin of uranium deposits in granitic, pegmatitic and migmatitic rocks with the aim of assisting in the development of predictive criteria for the search for similar deposits in the U.S. Efforts were concentrated on the so-called ''porphyry'' uranium deposits. Two types of uranium deposits are primarily considered: deposits in pegmatites and alaskites in gneiss terrains, and disseminations of uranium in high-level granites. In Chapter 1 of this report, the general data on the distribution of uranium in igneous and metamorphic rocks are reviewed. Chapter 2 contains some comments on the classification of uranium deposits associated with igneous rocks and a summary of the main features of the geology of uranium deposits in granites. General concepts of the behavior of uranium in granites during crustal evolution are reviewed in Chapter 3. Also included is a discussion of the relationship of uranium mineralization in granites to the general evolution of mobile belts, plus the influence of magmatic and post-magmatic processes on the distribution of uranium in igneous rocks and related ore deposits. Chapter 4 relates the results of experimental studies on the crystallization of granites to some of the geologic features of uranium deposits in pegmatites and alaskites in high-grade metamorphic terrains. Potential or favorable areas for igneous uranium deposits in the U.S.A. are delineated in Chapter 5. Data on the geology of specific uranium deposits in granitic rocks are contained in Appendix 1. A compilation of igneous rock formations containing greater than 10 ppM uranium is included in Appendix 2. Appendix 3 is a report on the results of a visit to the Roessing area. Appendix 4 is a report on a field excursion to eastern Canada

  2. Enhanced nitrogen deposition over China

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xuejun; Zhang, Ying; Han, Wenxuan; Tang, Aohan; Shen, Jianlin; Cui, Zhenling; Christie, Peter; Zhang, Fusuo [College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193 (China); Vitousek, Peter [Department of Biology, Stanford University, Stanford, California 94305 (United States); Erisman, Jan Willem [VU University Amsterdam, 1081 HV Amsterdam (Netherlands); Goulding, Keith [The Sustainable Soils and Grassland Systems Department, Rothamsted Research, Harpenden AL5 2JQ (United Kingdom); Fangmeier, Andreas [Institute of Landscape and Plant Ecology, University of Hohenheim, 70593 Stuttgart (Germany)

    2013-02-28

    China is experiencing intense air pollution caused in large part by anthropogenic emissions of reactive nitrogen. These emissions result in the deposition of atmospheric nitrogen (N) in terrestrial and aquatic ecosystems, with implications for human and ecosystem health, greenhouse gas balances and biological diversity. However, information on the magnitude and environmental impact of N deposition in China is limited. Here we use nationwide data sets on bulk N deposition, plant foliar N and crop N uptake (from long-term unfertilized soils) to evaluate N deposition dynamics and their effect on ecosystems across China between 1980 and 2010. We find that the average annual bulk deposition of N increased by approximately 8 kilograms of nitrogen per hectare (P < 0.001) between the 1980s (13.2 kilograms of nitrogen per hectare) and the 2000s (21.1 kilograms of nitrogen per hectare). Nitrogen deposition rates in the industrialized and agriculturally intensified regions of China are as high as the peak levels of deposition in northwestern Europe in the 1980s, before the introduction of mitigation measures. Nitrogen from ammonium (NH4+) is the dominant form of N in bulk deposition, but the rate of increase is largest for deposition of N from nitrate (NO3-), in agreement with decreased ratios of NH3 to NOx emissions since 1980. We also find that the impact of N deposition on Chinese ecosystems includes significantly increased plant foliar N concentrations in natural and semi-natural (that is, non-agricultural) ecosystems and increased crop N uptake from long-term-unfertilized croplands. China and other economies are facing a continuing challenge to reduce emissions of reactive nitrogen, N deposition and their negative effects on human health and the environment.

  3. Liquefier Dynamics in Fused Deposition

    DEFF Research Database (Denmark)

    Bellini, Anna; Guceri, Selcuk; Bertoldi, Maurizio

    2004-01-01

    Layered manufacturing (LM) is an evolution of rapid prototyping (RP) technology whereby a part is built in layers. Fused deposition modeling (FDM) is a particular LM technique in which each section is fabricated through vector style deposition of building blocks, called roads, which...

  4. NURE uranium deposit model studies

    International Nuclear Information System (INIS)

    Crew, M.E.

    1981-01-01

    The National Uranium Resource Evaluation (NURE) Program has sponsored uranium deposit model studies by Bendix Field Engineering Corporation (Bendix), the US Geological Survey (USGS), and numerous subcontractors. This paper deals only with models from the following six reports prepared by Samuel S. Adams and Associates: GJBX-1(81) - Geology and Recognition Criteria for Roll-Type Uranium Deposits in Continental Sandstones; GJBX-2(81) - Geology and Recognition Criteria for Uraniferous Humate Deposits, Grants Uranium Region, New Mexico; GJBX-3(81) - Geology and Recognition Criteria for Uranium Deposits of the Quartz-Pebble Conglomerate Type; GJBX-4(81) - Geology and Recognition Criteria for Sandstone Uranium Deposits in Mixed Fluvial-Shallow Marine Sedimentary Sequences, South Texas; GJBX-5(81) - Geology and Recognition Criteria for Veinlike Uranium Deposits of the Lower to Middle Proterozoic Unconformity and Strata-Related Types; GJBX-6(81) - Geology and Recognition Criteria for Sandstone Uranium Deposits of the Salt Wash Type, Colorado Plateau Province. A unique feature of these models is the development of recognition criteria in a systematic fashion, with a method for quantifying the various items. The recognition-criteria networks are used in this paper to illustrate the various types of deposits

  5. Sandstone-type uranium deposits

    International Nuclear Information System (INIS)

    Finch, W.I.; Davis, J.F.

    1985-01-01

    World-class sandstone-type uranium deposits are defined as epigenetic concentrations of uranium minerals occurring as uneven impregnations and minor massive replacements primarily in fluvial, lacustrine, and deltaic sandstone formations. The main purpose of this introductory paper is to define, classify, and introduce to the general geologic setting for sandstone-type uranium deposits

  6. High performance fuel electrodes fabricated by electroless plating of copper on BaZr0.8Ce0.1Y0.1O3-δ proton-conducting ceramic

    Science.gov (United States)

    Patki, Neil S.; Way, J. Douglas; Ricote, Sandrine

    2017-10-01

    The stability of copper at high temperatures in reducing and hydrocarbon-containing atmospheres makes it a good candidate for fabricating fuel electrodes on proton-conducting ceramics, such as BaZr0.9-xCexY0.1O3-δ (BZCY). In this work, the electrochemical performance of Cu-based electrodes fabricated by electroless plating (ELP) on BaZr0.8Ce0.1Y0.1O3-δ is studied with impedance spectroscopy. Three activation catalysts (Pd, Ru, and Cu) are investigated and ELP is compared to a commercial Cu paste (ESL 2312-G) for electrode fabrication. The area specific resistances (ASR) for Pd, Ru, and Cu activations at 700 °C in moist 5% H2 in Ar are 2.1, 3.2, and 13.4 Ω cm2, respectively. That is a 1-2 orders of magnitude improvement over the commercial Cu paste (192 Ω cm2). Furthermore, the ASR has contributions from electrode processes and charge transfer at the electrode/electrolyte interface. Additionally, the morphology of the as-fabricated electrode is unaffected by the activation catalyst. However, heat treatment at 750 °C in H2 for 24 h leads to sintering and large reorganization of the electrode fabricated with Cu activation (micron sized pores seen in the tested sample), while Pd and Ru activations are immune to such reorganization. Thus, Pd and Ru are identified as candidates for future work with improvements to charge transfer required for the former, and better electrode processes required for the latter.

  7. Unusual attempt to direct the growth of bimetallic Ag@Pt nanorods on electrochemically reduced graphene oxide nanosheets by electroless exchange of Cu by Pt for an efficient alcohol oxidation

    Science.gov (United States)

    Jeena, S. E.; Gnanaprakasam, P.; Selvaraju, T.

    2017-01-01

    A simple and an efficient tool for the direct growth of bimetallic Ag@Pt nanorods (NRDs) on electrochemically reduced graphene oxide (ERGO) nanosheets was developed at glassy carbon electrode (GCE). Initially, Cu shell was grown on Ag core as Ag@Cu NRD by the seed-mediated growth method. Accordingly, Cu shell has been successfully replaced by Pt using the electroless galvanic replacement method with ease by effective functionalization of L-tryptophan on ERGO surface (L-ERGO), which eventually plays an important role in the direct growth of one-dimensional bimetallic NRDs. As a result, the synthesized Ag@Pt NRD-supported L-ERGO nanosheets (Ag@Pt NRDs/L-ERGO/GCE) were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive X-ray analysis (EDAX) and Raman spectroscopy. Anodic stripping voltammetry was used to explore its electrochemical properties. Finally, the developed bimetallic Ag@Pt NRDs/L-ERGO/GCEs were studied as a better electrocatalyst compared to the commercial catalysts such as Pt40/C or Pt20/C-loaded electrode for the oxidation of ethanol or methanol with a high tolerance level and an enhanced current density. In addition, the long-term stability was studied using chronoamperometry for 1000 s at the bimetallic NRD electrode for alcohol oxidation which impedes the fouling properties. The unfavourable and favourable electrooxidation of ethanol at Ag@Cu NRDs/L-ERGO/GCE (a) and Ag@Pt NRDs/L-ERGO/GCE (b) is discussed. The synergistic effect of Ag core and catalytic properties of Pt shell at Ag@Pt NRDs/L-ERGO/GCE tend to strongly minimize the CO poisoning effect and enhanced ethanol electrooxidation.

  8. Unusual attempt to direct the growth of bimetallic Ag@Pt nanorods on electrochemically reduced graphene oxide nanosheets by electroless exchange of Cu by Pt for an efficient alcohol oxidation

    International Nuclear Information System (INIS)

    Jeena, S. E.; Gnanaprakasam, P.; Selvaraju, T.

    2017-01-01

    A simple and an efficient tool for the direct growth of bimetallic Ag@Pt nanorods (NRDs) on electrochemically reduced graphene oxide (ERGO) nanosheets was developed at glassy carbon electrode (GCE). Initially, Cu shell was grown on Ag core as Ag@Cu NRD by the seed-mediated growth method. Accordingly, Cu shell has been successfully replaced by Pt using the electroless galvanic replacement method with ease by effective functionalization of L-tryptophan on ERGO surface (L-ERGO), which eventually plays an important role in the direct growth of one-dimensional bimetallic NRDs. As a result, the synthesized Ag@Pt NRD-supported L-ERGO nanosheets (Ag@Pt NRDs/L-ERGO/GCE) were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive X-ray analysis (EDAX) and Raman spectroscopy. Anodic stripping voltammetry was used to explore its electrochemical properties. Finally, the developed bimetallic Ag@Pt NRDs/L-ERGO/GCEs were studied as a better electrocatalyst compared to the commercial catalysts such as Pt_4_0/C or Pt_2_0/C-loaded electrode for the oxidation of ethanol or methanol with a high tolerance level and an enhanced current density. In addition, the long-term stability was studied using chronoamperometry for 1000 s at the bimetallic NRD electrode for alcohol oxidation which impedes the fouling properties. The unfavourable and favourable electrooxidation of ethanol at Ag@Cu NRDs/L-ERGO/GCE (a) and Ag@Pt NRDs/L-ERGO/GCE (b) is discussed. The synergistic effect of Ag core and catalytic properties of Pt shell at Ag@Pt NRDs/L-ERGO/GCE tend to strongly minimize the CO poisoning effect and enhanced ethanol electrooxidation.

  9. Unusual attempt to direct the growth of bimetallic Ag@Pt nanorods on electrochemically reduced graphene oxide nanosheets by electroless exchange of Cu by Pt for an efficient alcohol oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Jeena, S. E.; Gnanaprakasam, P. [Karunya University, Department of Chemistry (India); Selvaraju, T., E-mail: veluselvaraju@gmail.com [Bharathiar University, Department of Chemistry (India)

    2017-01-15

    A simple and an efficient tool for the direct growth of bimetallic Ag@Pt nanorods (NRDs) on electrochemically reduced graphene oxide (ERGO) nanosheets was developed at glassy carbon electrode (GCE). Initially, Cu shell was grown on Ag core as Ag@Cu NRD by the seed-mediated growth method. Accordingly, Cu shell has been successfully replaced by Pt using the electroless galvanic replacement method with ease by effective functionalization of L-tryptophan on ERGO surface (L-ERGO), which eventually plays an important role in the direct growth of one-dimensional bimetallic NRDs. As a result, the synthesized Ag@Pt NRD-supported L-ERGO nanosheets (Ag@Pt NRDs/L-ERGO/GCE) were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive X-ray analysis (EDAX) and Raman spectroscopy. Anodic stripping voltammetry was used to explore its electrochemical properties. Finally, the developed bimetallic Ag@Pt NRDs/L-ERGO/GCEs were studied as a better electrocatalyst compared to the commercial catalysts such as Pt{sub 40}/C or Pt{sub 20}/C-loaded electrode for the oxidation of ethanol or methanol with a high tolerance level and an enhanced current density. In addition, the long-term stability was studied using chronoamperometry for 1000 s at the bimetallic NRD electrode for alcohol oxidation which impedes the fouling properties. The unfavourable and favourable electrooxidation of ethanol at Ag@Cu NRDs/L-ERGO/GCE (a) and Ag@Pt NRDs/L-ERGO/GCE (b) is discussed. The synergistic effect of Ag core and catalytic properties of Pt shell at Ag@Pt NRDs/L-ERGO/GCE tend to strongly minimize the CO poisoning effect and enhanced ethanol electrooxidation.

  10. Laser deposition of HTSC films

    International Nuclear Information System (INIS)

    Sobol', Eh.N.; Bagratashvili, V.N.; Zherikhin, A.N.; Sviridov, A.P.

    1990-01-01

    Studies of the high-temperature superconducting (HTSC) films fabrication by the laser deposition are reviewed. Physical and chemical processes taking place during laser deposition are considered, such as the target evaporation, the material transport from the target to the substrate, the film growth on the substrate, thermochemical reactions and mass transfer within the HTSC films and their stability. The experimental results on the laser deposition of different HTSC ceramics and their properties investigations are given. The major technological issues are discussed including the deposition schemes, the oxygen supply, the target compositions and structure, the substrates and interface layers selection, the deposition regimes and their impact on the HTSC films properties. 169 refs.; 6 figs.; 2 tabs

  11. Polymer deposition morphology by electrospray deposition - Modifications through distance variation

    International Nuclear Information System (INIS)

    Altmann, K.; Schulze, R.-D.; Friedrich, J.

    2014-01-01

    Electrospray deposition (ESD) of highly diluted polymers was examined with regard to the deposited surface structure. Only the flight distance (flight time) onto the resulting deposited surface was varied from 20 to 200 mm. An apparatus without any additional heating or gas flows was used. Polyacrylic acid (PAA) and polyallylamine (PAAm) in methanol were deposited on Si wafers. The polymer layers were characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, derivatization reactions and Fourier transform infrared spectroscopy using a grazing incidence unit. SEM images illustrated the changing structures of PAA and PAAm. For PAA the deposited structure changed from a smooth film (20 mm) to a film with individual droplets on the coated surface (100 mm and 200 mm), while for PAAm individual droplets can be seen at all distances. The ESD process with cascades of splitting droplets slows down for PAA after distances greater than 40 mm. In contrast, the ESD process for PAAm is nearly stopped within the first flight distance of 20 mm. Residual solvent analysis showed that most of the solvent evaporated within the first 20 mm capillary-sample distance. - Highlights: • We deposited polyacrylic acid and polyallylamine by electrospray ionization (ESI). • The morphology in dependence of flight distance (20 mm to 200 mm) was analyzed. • The amount of residual solvent after deposition was determined. • ESI-process slows down for polyacrylic acid after 40 mm flight distance. • ESI-Process is complete for polyallylamine within the first 20 mm

  12. 20 CFR 703.207 - Kinds of negotiable securities that may be deposited; conditions of deposit; acceptance of deposits.

    Science.gov (United States)

    2010-04-01

    ... amount fixed by the Office under the regulations in this part shall deposit any negotiable securities... deposited; conditions of deposit; acceptance of deposits. 703.207 Section 703.207 Employees' Benefits... AND RELATED STATUTES INSURANCE REGULATIONS Insurance Carrier Security Deposit Requirements § 703.207...

  13. Surface deposition from radioactive plumes

    International Nuclear Information System (INIS)

    Garland, J.A.

    1980-01-01

    Accidents involving nuclear plants may release radioactive particles and gases to the atmosphere. Dry deposition of particles has been investigated mainly in the laboratory and a general understanding of the transfer mechanisms has been established. However there is apparently a substantial discrepancy between the few field observations of dry deposition of particles and laboratory measurements, particularly for 0.1 - 1 μm particles for which laboratory work shows very small deposition rates. In addition there are few estimates of deposition rates for forest and some other kinds of terrain. The most important gas in the context of a nuclear accident is I-131 and the behaviour of this gas at grass surfaces has received much attention. However smaller quantities of other gases and vapours may be released and the surface absorption of these species may require further investigation. In addition there is little knowledge of the behaviour of gases over many types of surface. The rate of deposition of particles and gases is influenced by many parameters including wind speed and the temperature stratification of the lower atmosphere. Conditions which give poor atmospheric dispersion usually give lower deposition velocities. Transfer to man depends on the availability of deposited materials on crops and grass. A wide range of isotopes including iodine and several metallic fission products are lost with a half life for residence on grass ranging from a few days to a few tens days, depending on climatic conditions

  14. ITO thin films deposited by advanced pulsed laser deposition

    International Nuclear Information System (INIS)

    Viespe, Cristian; Nicolae, Ionut; Sima, Cornelia; Grigoriu, Constantin; Medianu, Rares

    2007-01-01

    Indium tin oxide thin films were deposited by computer assisted advanced PLD method in order to obtain transparent, conductive and homogeneous films on a large area. The films were deposited on glass substrates. We studied the influence of the temperature (room temperature (RT)-180 deg. C), pressure (1-6 x 10 -2 Torr), laser fluence (1-4 J/cm 2 ) and wavelength (266-355 nm) on the film properties. The deposition rate, roughness, film structure, optical transmission, electrical conductivity measurements were done. We deposited uniform ITO thin films (thickness 100-600 nm, roughness 5-10 nm) between RT and 180 deg. C on a large area (5 x 5 cm 2 ). The films have electrical resistivity of 8 x 10 -4 Ω cm at RT, 5 x 10 -4 Ω cm at 180 deg. C and an optical transmission in the visible range, around 89%

  15. Atmospheric deposition 2000. NOVA 2003; Atmosfaerisk deposition 2000. NOVA 2003

    Energy Technology Data Exchange (ETDEWEB)

    Ellermann, T.; Hertel, O.; Hovmand, M.F.; Kemp, K.; Skjoeth, C.A.

    2001-11-01

    This report presents measurements and calculations from the atmospheric part of NOVA 2003 and covers results for 2000. It summarises the main results concerning concentrations and depositions of nitrogen, phosphorus and sulphur compounds related to eutrophication and acidification. Depositions of atmospheric compounds to Danish marine waters as well as land surface are presented. Measurements: In 2000 the monitoring program consisted of eight stations where wet deposition of ammonium, nitrate, phosphate (semi quantitatively) and sulphate were measured using bulk precipitation samplers. Six of the stations had in addition measurements of atmospheric content of A, nitrogen, phosphorus, and sulphur compounds in gas and particulate phase carried out by use of filter pack samplers. Filters were analysed at the National Environmental Research Institute. Furthermore nitrogen dioxide were measured using nitrogen dioxide filter samplers and monitors. Model calculations: The measurements in the monitoring program were supplemented with model calculations of concentrations and depositions of nitrogen and sulphur compounds to Danish land surface, marine waters, fjords and bays using the ACDEP model (Atmospheric Chemistry and Deposition). The model is a so-called trajectory model and simulates the physical and chemical processes in the atmosphere using meteorological and emission data as input. The advantage of combining measurements with model calculations is that the strengths of both methods is obtained. Conclusions concerning: 1) actual concentration levels at the monitoring stations, 2) deposition at the monitoring stations, 3) seasonal variations and 4) long term trends in concentrations and depositions are mainly based on the direct measurements. These are furthermore used to validate the results of the model calculations. Calculations and conclusions concerning: 1) depositions to land surface and to the individual marine water, 2) contributions from different emission

  16. Particle deposition in ventilation ducts

    Energy Technology Data Exchange (ETDEWEB)

    Sippola, Mark Raymond [Univ. of California, Berkeley, CA (United States)

    2002-09-01

    Exposure to airborne particles is detrimental to human health and indoor exposures dominate total exposures for most people. The accidental or intentional release of aerosolized chemical and biological agents within or near a building can lead to exposures of building occupants to hazardous agents and costly building remediation. Particle deposition in heating, ventilation and air-conditioning (HVAC) systems may significantly influence exposures to particles indoors, diminish HVAC performance and lead to secondary pollutant release within buildings. This dissertation advances the understanding of particle behavior in HVAC systems and the fates of indoor particles by means of experiments and modeling. Laboratory experiments were conducted to quantify particle deposition rates in horizontal ventilation ducts using real HVAC materials. Particle deposition experiments were conducted in steel and internally insulated ducts at air speeds typically found in ventilation ducts, 2-9 m/s. Behaviors of monodisperse particles with diameters in the size range 1-16 μm were investigated. Deposition rates were measured in straight ducts with a fully developed turbulent flow profile, straight ducts with a developing turbulent flow profile, in duct bends and at S-connector pieces located at duct junctions. In straight ducts with fully developed turbulence, experiments showed deposition rates to be highest at duct floors, intermediate at duct walls, and lowest at duct ceilings. Deposition rates to a given surface increased with an increase in particle size or air speed. Deposition was much higher in internally insulated ducts than in uninsulated steel ducts. In most cases, deposition in straight ducts with developing turbulence, in duct bends and at S-connectors at duct junctions was higher than in straight ducts with fully developed turbulence. Measured deposition rates were generally higher than predicted by published models. A model incorporating empirical equations based on the

  17. Acid Deposition Maps in Spain

    International Nuclear Information System (INIS)

    Artinano, B.; Cabal, H.; Garcia, C.

    1998-01-01

    Animal and monthly deposition velocity and total sulfur deposition maps have been performed for the peninsular Spain for 1992 by using the inferential method. To do this, updated databases with high space and time resolution, for land uses (CORINE) and meteorological information from analysis modelling for the same year, have been utilized. The final result are deposition maps in a 5x5 Km 2 grid which allow to assess the methodology used in Europe to obtain the maps of excedances over the critical loads of pollutants. (Author) 32 refs

  18. The anthracite of Nazar-Aylok Deposit

    International Nuclear Information System (INIS)

    Pachadzhanov, D.N.; Valiev, Yu.Ya.

    2013-01-01

    Present article is devoted to anthracite of Nazar-Aylok Deposit. The ash content, composition of coals of Nazar-Aylok Deposit and thickness of deposit were considered. The coal samples were studied by means of neutron activation analysis.

  19. Deposition of Boron in Possible Evaporite Deposits in Gale Crate

    Science.gov (United States)

    Gasda, P. J.; Peets, E.; Lamm, S. N.; Rapin, W.; Lanza, N.; Frydenvang, J.; Clark, B. C.; Herkenhoff, K. E.; Bridges, J.; Schwenzer, S. P.; Haldeman, E. B.; Wiens, R. C.; Maurice, S.; Clegg, S. M.; Delapp, D.; Sanford, V.; Bodine, M. R.; McInroy, R.

    2017-12-01

    Boron has been previously detected in Gale crater using the ChemCam instrument on board the NASA Curiosity rover within calcium sulfate fracture fill hosted by lacustrine mudstone and eolian sandstone units. Recent results show that up to 300 ppm B is present in the upper sections of the lacustrine unit. Boron has been detected in both the groundwater-emplaced calcium sulfate fracture fill materials and bedding-parallel calcium sulfate layers. The widespread bedding-parallel calcium sulfate layers within the upper strata of the lacustrine bedrock that Curiosity has encountered recently could be interpreted as primary evaporite deposits. We have two hypotheses for the history of boron in Gale crater. In both hypotheses, borates were first deposited as lake water evaporated, depositing primary evaporates that were later re-dissolved by groundwater, which redistributed the boron into secondary evaporitic calcium sulfate fracture fill deposits. In the first scenario, Gale crater may have undergone a period of perennial lake formation during a drier period of martian history, depositing layers of evaporitic minerals (including borates) among lacustrine mudstone layers. In the second scenario, lake margins could have become periodically exposed during cyclic drops in lake level and subsequently desiccated. Evaporites were deposited and desiccation features were formed in lowstand deposits. Either hypothetical scenario of evaporite deposition would promote prebiotic chemical reactions via wet-dry cycles. Boron may be an important prebiotic element, and as such, its presence in ancient martian surface and groundwater provides evidence that important prebiotic chemical reactions could occur on Mars if organics were present. The presence of boron in ancient Gale crater groundwater also provides additional evidence that a habitable environment existed in the martian subsurface well after the expected disappearance of liquid water on the surface of Mars. We will report on the

  20. Atomic layer deposition for semiconductors

    CERN Document Server

    Hwang, Cheol Seong

    2014-01-01

    This edited volume discusses atomic layer deposition (ALD) for all modern semiconductor devices, moving from the basic chemistry of ALD and modeling of ALD processes to sections on ALD for memories, logic devices, and machines.

  1. Gasoline from Kumkol deposit petroleum

    International Nuclear Information System (INIS)

    Nadirov, A.N.; Zhizhin, N.I.; Musaeva, Z.G.

    1997-01-01

    Samples of gasoline from petroleum of Kumkol deposit are investigated by chromatographic analysis. It is found, that gasoline is characterizing by increased content of iso-paraffin hydrocarbons. (author)

  2. Electrospark deposition for die repair

    Directory of Open Access Journals (Sweden)

    J. Tušek

    2012-01-01

    Full Text Available The electrospark deposition is a process for surfacing of hard metal alloys, e.g. carbides and stellites, on the surfaces of new or old machine elements. In this process, a high current is conducted through an oscillating electrode and a substrate for a very short period of time. In the paper, the process is described and the thickness of deposited layer, chemical composition, dilution rate and the layer roughness are determined.

  3. A radon progeny deposition model

    International Nuclear Information System (INIS)

    Rielage, Keith; Elliott, Steven R.; Hime, Andrew; Guiseppe, Vincent E.; Westerdale, S.

    2010-01-01

    The next generation low-background detectors operating underground aim for unprecedented low levels of radioactive backgrounds. Although the radioactive decays of airborne radon (particularly 222 Rn) and its subsequent progeny present in an experiment are potential backgrounds, also problematic is the deposition of radon progeny on detector materials. Exposure to radon at any stage of assembly of an experiment can result in surface contamination by progeny supported by the long half life (22 y) of 210 Pb on sensitive locations of a detector. An understanding of the potential surface contamination from deposition will enable requirements of radon-reduced air and clean room environments for the assembly of low background experiments. It is known that there are a number of environmental factors that govern the deposition of progeny onto surfaces. However, existing models have not explored the impact of some environmental factors important for low background experiments. A test stand has been constructed to deposit radon progeny on various surfaces under a controlled environment in order to develop a deposition model. Results from this test stand and the resulting deposition model are presented.

  4. A Radon Progeny Deposition Model

    International Nuclear Information System (INIS)

    Guiseppe, V. E.; Elliott, S. R.; Hime, A.; Rielage, K.; Westerdale, S.

    2011-01-01

    The next generation low-background detectors operating underground aim for unprecedented low levels of radioactive backgrounds. Although the radioactive decays of airborne radon (particularly 222 Rn) and its subsequent progeny present in an experiment are potential backgrounds, also problematic is the deposition of radon progeny on detector materials. Exposure to radon at any stage of assembly of an experiment can result in surface contamination by progeny supported by the long half life (22 y) of 210 Pb on sensitive locations of a detector. An understanding of the potential surface contamination from deposition will enable requirements of radon-reduced air and clean room environments for the assembly of low background experiments. It is known that there are a number of environmental factors that govern the deposition of progeny onto surfaces. However, existing models have not explored the impact of some environmental factors important for low background experiments. A test stand has been constructed to deposit radon progeny on various surfaces under a controlled environment in order to develop a deposition model. Results from this test stand and the resulting deposition model are presented.

  5. Legal Deposit of Electronic Publications

    Directory of Open Access Journals (Sweden)

    Burcu Umut Zan

    2009-06-01

    Full Text Available The most important and basic role of the deposition studies, which are the greatest contributions to the knowledge sharing, is to gather the artistic and philosophical works of a country and provide them for the use of future researchers. However, since early deposition studies were limited with printed publications, they do not involve the electronic publication types appearing with the development of information technology. This stems from the fact that the electronic publications require procedures different from those of the printed publications in terms of deposition steps because of their structures. Today, in order to guarantee that all registered cultural products, which are mostly produced and used in the electronic environment could be fully collected, electronic publications should also be covered by and regulated under legal deposit. This study analyzes the deposition of electronic publications, within the framework of their storage and protection, being put in the use of the users as well as the common approaches to deposition practices in the world parallel to the developments in the information technology. The related situation in Turkey was also evaluated.

  6. Felsic magmatism and uranium deposits

    International Nuclear Information System (INIS)

    Cuney, Michel

    2014-01-01

    The strongly incompatible behaviour of uranium in silicate magmas results in its concentration in the most felsic melts and a prevalence of granites and rhyolites as primary U sources for the formation of U deposits. Despite its incompatible behavior, U deposits resulting directly from magmatic processes are quite rare. In most deposits, U is mobilized by hydrothermal fluids or ground water well after the emplacement of the igneous rocks. Of the broad range of granite types, only a few have U contents and physico-chemical properties that permit the crystallization of accessory minerals from which uranium can be leached for the formation of U deposits. The first granites on Earth, which crystallized uraninite, dated at 3.1 Ga, are the potassic granites from the Kaapval craton (South Africa) which were also the source of the detrital uraninite for the Dominion Reef and Witwatersrand quartz pebble conglomerate deposits. Four types of granites or rhyolites can be sufficiently enriched in U to represent a significant source for the genesis of U deposits: per-alkaline, high-K met-aluminous calc-alkaline, L-type peraluminous and anatectic pegmatoids. L-type peraluminous plutonic rocks in which U is dominantly hosted in uraninite or in the glass of their volcanic equivalents represent the best U source. Per-alkaline granites or syenites are associated with the only magmatic U-deposits formed by extreme fractional crystallization. The refractory character of the U-bearing minerals does not permit their extraction under the present economic conditions and make them unfavorable U sources for other deposit types. By contrast, felsic per-alkaline volcanic rocks, in which U is dominantly hosted in the glassy matrix, represent an excellent source for many deposit types. High-K calc-alkaline plutonic rocks only represent a significant U source when the U-bearing accessory minerals (U-thorite, allanite, Nb oxides) become metamict. The volcanic rocks of the same geochemistry may be

  7. Felsic magmatism and uranium deposits

    International Nuclear Information System (INIS)

    Cuney, M.

    2014-01-01

    Uranium strongly incompatible behaviour in silicate magmas results in its concentration in the most felsic melts and a prevalence of granites and rhyolites as primary U sources for the formation of U deposits. Despite its incompatible behaviour, U deposits resulting directly from magmatic processes are quite rare. In most deposits, U is mobilized by hydrothermal fluids or ground water well after the emplacement of the igneous rocks. Of the broad range of granite types, only a few have have U contents and physico-chemical properties that permit the crystallization of accessory minerals from which uranium can be leached for the formation of U deposits. The first granites on Earth which crystallized uraninite appeared at 3.1 Ga, are the potassic granites from the Kaapval craton (South Africa) which were also the source of the detrital uraninite for the Dominion Reef and Witwatersrand quartz pebble conglomerate deposits. Four types of granites or rhyolites can be sufficiently enriched in U to represent a significant source for the genesis of U deposits: peralkaline, high-K metaluminous calc-alkaline, L-type peraluminous ones and anatectic pegmatoids. L-type peraluminous plutonic rocks in which U is dominantly hosted in uraninite or in the glass in their volcanic equivalents represent the best U source. Peralkaline granites or syenites represent the only magmatic U-deposits formed by extreme fractional crystallization. The refractory character of the U-bearing minerals does not permit their extraction at the present economic conditions and make them unfavourable U sources for other deposit types. By contrast, felsic peralkaline volcanic rocks, in which U is dominantly hosted in the glassy matrix, represent an excellent source for many deposit types. High-K calc-alkaline plutonic rocks only represent a significant U source when the U-bearing accessory minerals [U-thorite, allanite, Nb oxides] become metamict. The volcanic rocks of the same geochemistry may be also a

  8. Vein-type uranium deposits

    International Nuclear Information System (INIS)

    Rich, R.A.; Holland, H.D.; Petersen, U.

    1975-01-01

    A critical review is presented of published data bearing on the mineralogy, paragenesis, geochemistry, and origin of veiw-type uranium deposits. Its aim is to serve as a starting point for new research and as a basis for the development of new exploration strategies. During the formation of both vein and sandstone types of deposits uranium seems to have been dissolved by and transported in rather oxidized solutions, and deposited where these solutions encountered reducing agents such as carbon, sulfides, ferrous minerals and hydrocarbons. Granitic rocks abnormally enriched in uranium have apparently been the most common source for uranium in vein-type deposits. Oxidizing solutions have been derived either from the surface or from depth. Surface solutions saturated with atmospheric oxygen have frequently passed through red bed or clean sandstone conduits on their way to and from uranium source rocks. Deep solutions of non-surface origin have apparently become sufficiently oxidizing by passage through and equilibration with red beds. The common association of clean sandstones or red beds with uranium-rich granites in the vicinity of vein-type uranium deposits is probably not fortuitous, and areas where these rock types are found together are considered particularly favorable targets for uranium exploration

  9. Channel Constrained Metalization Patterning of Reflective Backplane Electrodes for Liquid Crystal-on-Silicon Displays

    National Research Council Canada - National Science Library

    Hermanns, Anno

    1997-01-01

    Channel Constrained Metalization (CCM), which employs photoresist patterning to confine electroless metal deposition to selected regions, is an inexpensive alternative to metal sputtering or evaporation...

  10. Restoration of uranium solution mining deposits

    International Nuclear Information System (INIS)

    Devries, F.W.; Lawes, B.C.

    1982-01-01

    A process is provided for restoring an ore deposit after uranium solution mining using ammonium carbonate leaching solutions has ceased. The process involves flushing the deposit with an aqueous solution of a potassium salt during which potassium ions exchange with ammonium ions remaining in the deposit. The ammonium containing flushing solution is withdrawn from the deposit for disposal

  11. Understanding the spectrum of diesel injector deposits

    Energy Technology Data Exchange (ETDEWEB)

    Quigley, Robert; Barbour, Robert [Lubrizol Limited, Derby (United Kingdom); Arters, David; Bush, Jim [Lubrizol Corporation, Wickliffe, OH (United States)

    2013-06-01

    Understanding the origin of diesel fuel injector deposits used to be relatively simple; for the most part they were caused by the decomposition of fuel during the combustion process, were generally organic in nature and typically only affected the nozzle orifices. However, modem fuel injector designs appear to be both more severe in terms of generating conditions conducive to creating new and different types of deposits and more likely to have their operation affected by those deposits. Changes to fuel composition and type have in some cases increased the potential pool of reactive species or provided new potential deposit precursors. As a result, the universe of diesel injector deposits now range from the traditional organic to partially or fully inorganic in nature and from nozzle coking deposits to deposits which can seize the internal components of the injector; so called internal diesel injector deposits. Frequently, combinations of inorganic and organic deposits are found. While power loss is one well known issue associated with nozzle deposits, other field problems resulting from these new deposits include severe issues with drivability, emissions, fuel consumption and even engine failure. Conventional deposit control additive chemistries were developed to be effective against organic nozzle coking deposits. These conventional additives in many cases may prove ineffective against this wide range of deposit types. This paper discusses the range of deposits that have been found to adversely impact modem diesel fuel injectors and compares the performance of conventional and new, advanced deposit control additives against these various challenges to proper fuel injector functioning. (orig.)

  12. Restoration of uranium solution mining deposits

    Energy Technology Data Exchange (ETDEWEB)

    Devries, F.W.; Lawes, B.C.

    1982-01-19

    A process is provided for restoring an ore deposit after uranium solution mining using ammonium carbonate leaching solutions has ceased. The process involves flushing the deposit with an aqueous solution of a potassium salt during which potassium ions exchange with ammonium ions remaining in the deposit. The ammonium containing flushing solution is withdrawn from the deposit for disposal.

  13. Analysing the Cenozoic depositional record

    DEFF Research Database (Denmark)

    Goledowski, Bartosz; Clausen, O.R.; Nielsen, S.B.

    2008-01-01

    It is well known that sediment deposition in the North Sea and on the Norwegian Shelf varied significantly during the Cenozoic as a consequence of varying erosion rate mainly in Western Scandinavia, in Scotland and in the Alps. Recent results have demonstrated that a causal relationship exists...... of variations in erosion rates. Here we present the rationale behind the project, the data available and some preliminary results. The dense seismic and well coverage in the area makes it possible to estimate the rate of deposition of matrix mass. Assuming that sediment storage is not important, this provides...... models. The matrix mass deposition history will be compared with the paleoclimate record (e.g. oxygen isotope curves) to see if the previously observed correlation in the eastern North Sea can be extended to other ages and locations.  ...

  14. Surficial uranium deposits in Algeria

    International Nuclear Information System (INIS)

    Mokaddem, M.; Fuchs, Y.

    1984-01-01

    Along southern border of the Hoggar (Algeria) Precambrian shield, Lower Palaeozoic sediments lie unconformably on weathered metamorphic rocks. Along the eastern border of the Tin Seririne basin some good examples of the weathered rocks underneath the unconformity are exposed. The palaeosurface is a peneplain with only minor topographical reliefs from one to a few metres high. The nature and intensity of the weathering process was controlled by the topography, and the existence of badly drained areas is particularly important. At one such area the Tahaggart uranium ore deposit was discovered. The uranium ore consists mainly of torbernite and autunite. The deposit is present in the weathered gneiss underneath the palaeosurface. Mineralogical and geochemical observations indicated that the ore deposit was formed during the period of weathering which was controlled by climatological and palaeotopographical factors. (author)

  15. Sub-aerial tailings deposition

    International Nuclear Information System (INIS)

    Knight, R.B.; Haile, J.P.

    1984-01-01

    The sub-aerial technique involves the systematic deposition of tailings in thin layers and allowing each layer to settle, drain and partially air dry prior to covering with a further layer. Underdrainage produces densities in excess of those achieved by sub-aqueous deposition and any air-drying serves to preconsolidate each layer with a resulting further increase in density. The low permeability of the tailings surface resulting from this deposition technique results in high runoff coefficients and, by decanting the runoff component of direct precipitation, a net evaporation condition can be achieved even in high rainfall areas. An underdrainage system prevents the build-up of excess pore-pressures within the tailings mass and at decommissioning the tailings are fully consolidated and drained thereby eliminating the possibility of any long term seepage. This paper presents a general description of these design concepts, and details of two projects where the concepts have been applied

  16. TULSA UNIVERSITY PARAFFIN DEPOSITION PROJECTS

    Energy Technology Data Exchange (ETDEWEB)

    Cem Sarica; Michael Volk

    2004-06-01

    As oil and gas production moves to deeper and colder water, subsea multiphase production systems become critical for economic feasibility. It will also become increasingly imperative to adequately identify the conditions for paraffin precipitation and predict paraffin deposition rates to optimize the design and operation of these multi-phase production systems. Although several oil companies have paraffin deposition predictive capabilities for single-phase oil flow, these predictive capabilities are not suitable for the multiphase flow conditions encountered in most flowlines and wellbores. For deepwater applications in the Gulf of Mexico, it is likely that multiphase production streams consisting of crude oil, produced water and gas will be transported in a single multiphase pipeline to minimize capital cost and complexity at the mudline. Existing single-phase (crude oil) paraffin deposition predictive tools are clearly inadequate to accurately design these pipelines, because they do not account for the second and third phases, namely, produced water and gas. The objective of this program is to utilize the current test facilities at The University of Tulsa, as well as member company expertise, to accomplish the following: enhance our understanding of paraffin deposition in single and two-phase (gas-oil) flows; conduct focused experiments to better understand various aspects of deposition physics; and, utilize knowledge gained from experimental modeling studies to enhance the computer programs developed in the previous JIP for predicting paraffin deposition in single and two-phase flow environments. These refined computer models will then be tested against field data from member company pipelines.

  17. Hereditary iron and copper deposition

    DEFF Research Database (Denmark)

    Aaseth, Jan; Flaten, Trond Peder; Andersen, Ole

    2007-01-01

    Hereditary deposition of iron (primary haemochromatosis) or copper (Wilson's disease) are autosomal recessive metabolic disease characterized by progressive liver pathology and subsequent involvement of various other organs. The prevalence of primary haemochromatosis is approximately 0.5%, about......, they may be inadequate in patients diagnosed so late that extensive body deposits of metal have been developed. The main research needs in this field are to further clarify molecular mechanisms of disease progression and to develop new chelators that are more effective and less toxic than those presently...

  18. Investigation on radioactivity of deposition

    International Nuclear Information System (INIS)

    Vaas, L.H.; Smetsers, R.C.G.M.; Mattern, F.C.M.; Drost, R.M.S. van; Ockhuizen, A.; Glastra, P.; Koolwijk, A.C.

    1990-04-01

    This report of the Dutch National Institute of Public Health and Environmental Protection (RIVM) summarizes the results of measurements of radionuclides deposited in the Netherlands in 1988. The samples of deposition were taken at Bilthoven, located near the center of the country. In 1988 measurements were carried out to determine the activities of γ-emitters, where 7 Be, 40 K, 134 Cs and 137 Cs were identified, and those of 3 H, 210 Pb and 210 Po. Also the gross α-, gross β- and gross γ-activities were determined. (author). 10 refs.; 7 figs.; 6 tabs

  19. Mathematical geology studies of deposit prospect types

    International Nuclear Information System (INIS)

    Liu Guangping

    1998-08-01

    Exact certainty prospect type of uranium deposit, not only can assure the quality of deposit prospects, but also increase economic benefits. Based on the standard of geological prospect of uranium deposit, the author introduces a method of Fuzzy Synthetical Comment for dividing prospect type of uranium deposit. The practical applications demonstrate that the regression accuracy, discriminated by Zadeh operator, of 15 known deposits is 100%

  20. Bank deposits, notions and features of accounting

    Directory of Open Access Journals (Sweden)

    Georgeta MELNIC

    2016-06-01

    Full Text Available Bank deposits are the main method of raising capital and short-term available savings. The opening and using of the bank deposits is the main function of banks. In 2004 the Deposit Guarantee Fund was set up in the Republic of Moldova of Deposit Guarantee Fund and for the first time there was established a guaranteed bank minimum in case of bank insolvency which is currently 6,000 lei for the deposit of each natural person.

  1. Advanced deposition model for thermal activated chemical vapor deposition

    Science.gov (United States)

    Cai, Dang

    Thermal Activated Chemical Vapor Deposition (TACVD) is defined as the formation of a stable solid product on a heated substrate surface from chemical reactions and/or dissociation of gaseous reactants in an activated environment. It has become an essential process for producing solid film, bulk material, coating, fibers, powders and monolithic components. Global market of CVD products has reached multi billions dollars for each year. In the recent years CVD process has been extensively used to manufacture semiconductors and other electronic components such as polysilicon, AlN and GaN. Extensive research effort has been directed to improve deposition quality and throughput. To obtain fast and high quality deposition, operational conditions such as temperature, pressure, fluid velocity and species concentration and geometry conditions such as source-substrate distance need to be well controlled in a CVD system. This thesis will focus on design of CVD processes through understanding the transport and reaction phenomena in the growth reactor. Since the in situ monitor is almost impossible for CVD reactor, many industrial resources have been expended to determine the optimum design by semi-empirical methods and trial-and-error procedures. This approach has allowed the achievement of improvements in the deposition sequence, but begins to show its limitations, as this method cannot always fulfill the more and more stringent specifications of the industry. To resolve this problem, numerical simulation is widely used in studying the growth techniques. The difficulty of numerical simulation of TACVD crystal growth process lies in the simulation of gas phase and surface reactions, especially the latter one, due to the fact that very limited kinetic information is available in the open literature. In this thesis, an advanced deposition model was developed to study the multi-component fluid flow, homogeneous gas phase reactions inside the reactor chamber, heterogeneous surface

  2. Deposition and Resuspension of Particles

    DEFF Research Database (Denmark)

    Lengweiler, P.; Nielsen, Peter V.; Moser, A.

    To investigate the physical process of deposition and resuspension of particles in the indoor environment, scale experiments are used and a sampling method is established. The influences of surface orientation and turbulence and velocity of the air on the dust load on a surface are analysed....

  3. Cluster Implantation and Deposition Apparatus

    DEFF Research Database (Denmark)

    Hanif, Muhammad; Popok, Vladimir

    2015-01-01

    In the current report, a design and capabilities of a cluster implantation and deposition apparatus (CIDA) involving two different cluster sources are described. The clusters produced from gas precursors (Ar, N etc.) by PuCluS-2 can be used to study cluster ion implantation in order to develop...

  4. Deposition gradients across mangrove fringes

    NARCIS (Netherlands)

    Horstman, Erik Martijn; Mullarney, Julia C.; Bryan, K.R.; Sandwell, Dean R.; Aagaard, Troels; Deigaard, Rolf; Fuhrman, David

    2017-01-01

    Observations in a mangrove in the Whangapoua Harbour, New Zealand, have shown that deposition rates are greatest in the fringing zone between the tidal flats and the mangrove forest, where the vegetation is dominated by a cover of pneumatophores (i.e. pencil roots). Current speeds and suspended

  5. Uranium extraction from underground deposits

    International Nuclear Information System (INIS)

    Wolfe, C.R.

    1982-01-01

    Uranium is extracted from underground deposits by passing an aqueous oxidizing solution of carbon dioxide over the ore in the presence of calcium ions. Complex uranium carbonate or bicarbonate ions are formed which enter the solution. The solution is forced to the surface and the uranium removed from it

  6. Electrolytic nickel deposits upon uranium

    International Nuclear Information System (INIS)

    Baudin, G.; Chauvin, G.; Coriou, H.; Hure, J.

    1958-01-01

    The authors present a new possibility to protect uranium by very adherent nickel deposits got by aqueous medium electrolysis. Surface treatment of uranium is based upon the chemical etching method from Lietazke. After thermal treatments at 600, 700 and 800 deg. C, under vacuum, a good intermetallic U-Ni diffusion is observed for each case. (author) [fr

  7. IAEA Classification of Uranium Deposits

    International Nuclear Information System (INIS)

    Bruneton, Patrice

    2014-01-01

    Classifications of uranium deposits follow two general approaches, focusing on: • descriptive features such as the geotectonic position, the host rock type, the orebody morphology, …… : « geologic classification »; • or on genetic aspects: « genetic classification »

  8. Advances in energy deposition theory

    International Nuclear Information System (INIS)

    Paretzke, H.G.

    1980-01-01

    In light of the fields of radiation protection and dosimetric problems in medicine, advances in the area of microscopic target related studies are discussed. Energy deposition is discussed with emphasis upon track structures of electrons and heavy charged particles and track computer calculations

  9. Unconformity-related uranium deposits

    International Nuclear Information System (INIS)

    Ewers, G.R.; Ferguson, J.

    1985-01-01

    Documentation of ore deposit characterisation is being undertaken to assess the controls of uranium mineralisation associated with Proterozoic unconformities. The Turee Creek uranium prospect in Western Australia is associated with a faulted contact between the Middle Proterozoic Kunderong Sandstone and the Lower Proterozoic Wyloo Group

  10. Nitrogen deposition and terrestrial biodiversity

    Science.gov (United States)

    Christopher M. Clark; Yongfei Bai; William D. Bowman; Jane M. Cowles; Mark E. Fenn; Frank S. Gilliam; Gareth K. Phoenix; Ilyas Siddique; Carly J. Stevens; Harald U. Sverdrup; Heather L. Throop

    2013-01-01

    Nitrogen deposition, along with habitat losses and climate change, has been identified as a primary threat to biodiversity worldwide (Butchart et al., 2010; MEA, 2005; Sala et al., 2000). The source of this stressor to natural systems is generally twofold: burning of fossil fuels and the use of fertilizers in modern intensive agriculture. Each of these human...

  11. Electro-spark deposition technology

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R.N. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-12-01

    Electro-Spark Deposition (ESD) is a micro-welding process that uses short duration, high-current electrical pulses to deposit or alloy a consumable electrode material onto a metallic substrate. The ESD process was developed to produce coatings for use in severe environments where most other coatings fail. Because of the exceptional damage resistance of these coatings, and the versatility of the process to apply a wide variety of alloys, intermetallics, and cermets to metal surfaces, the ESD process has been designated critical to the life and economy of the advanced fossil energy systems as the higher temperatures and corrosive environments exceed the limits of known structural materials to accommodate the service conditions. Developments include producing iron aluminide-based coatings with triple the corrosion resistance of the best previous Fe{sub 3}Al coatings, coatings with refractory metal diffusion barriers and multi layer coatings for achieving functionally gradient properties between the substrate and the surface. A new development is the demonstration of advanced aluminide-based ESD coatings for erosion and wear applications. One of the most significant breakthroughs to occur in the last dozen years is the discovery of a process regime that yields an order of magnitude increase in deposition rates and achievable coating thicknesses. Achieving this regime has required the development of advanced ESD electronic capabilities. Development is now focused on further improvements in deposition rates, system reliability when operating at process extremes, and economic competitiveness.

  12. World distribution of uranium deposits

    Science.gov (United States)

    Fairclough, M. C.; Irvine, J. A.; Katona, L. F.; Simmon, W. L.; Bruneton, P.; Mihalasky, Mark J.; Cuney, M.; Aranha, M.; Pylypenko, O.; Poliakovska, K.

    2018-01-01

    Deposit data derived from IAEA UDEPO (http://infcis.iaea.org/UDEPO/About.cshtml) database with assistance from P. Bruneton (France) and M. Mihalasky (U.S.A.). The map is an updated companion to "World Distribution of Uranium Deposits (UDEPO) with Uranium Deposit Classification, IAEA Tech-Doc-1629". Geology was derived from L.B. Chorlton, Generalized Geology of the World, Geological Survey of Canada, Open File 5529 , 2007. Map production by M.C. Fairclough (IAEA), J.A. Irvine (Austrailia), L.F. Katona (Australia) and W.L. Slimmon (Canada). World Distribution of Uranium Deposits, International Atomic Energy Agency, Vienna, Austria. Cartographic Assistance was supplied by the Geological Survey of South Australia, the Saskatchewan Geological Survey and United States Geological Survey to the IAEA. Coastlines, drainage, and country boundaries were obtained from ArcMap, 1:25 000 000 scale, and are copyrighted data containing the intellectual property of Environmental Systems Research Institute (ESRI). The use of particular designations of countries or territories does not imply any judgment by the publisher, the IAEA, as to the legal status of such countries or territories, of their authorities and institutions or of the delimitation of their boundaries. Any revisions or additional geological information known to the user would be welcomed by the International Atomic Energy Agency and the Geological Survey of Canada.

  13. Deposit competition and loan markets

    NARCIS (Netherlands)

    Arping, S.

    Less-intense competition for deposits, by mitigating banks’ incentive to take excessive risks, is traditionally believed to lead to lower non-performing loan (NPL) ratios and more-stable banks. This paper revisits this proposition in a model with borrower moral hazard in which banks’ NPL ratios

  14. The uranium deposits of Ontario

    International Nuclear Information System (INIS)

    Robertson, J.A.

    1981-01-01

    The principal types of uranium deposits in Ontario are carbonatites and fenites, alkalic volcanic rocks, pegiatites, calc-silicate rocks, pyritic quartz-pebble conglomerates, polymictic conglomerates and some pelitic rocks, and various 'pitchblende' deposits including late Precambrian unconformities, possibly late Precambrian diabase dikes, and other unconformities: carbonates, sandstones, lignites, and semi-pelitic rocks of middle and upper Precambrian age. Only red unzoned pegmatite and the pyritic quartz-pebble conglomerate have supported production. Ontario reasonably assured and estimated resources in the economic and subeconomic categories in 1977 amounted to 553 000 tonnes U, and 1977 production was 4000 tonnes U. Measured, indicated, and inferred resources in the Elliot Lake - Agnew Lake area are at least 400 000 tonnes U. The latter deposits are also a significant thorium resource. Geological features reflecting major changes in physics and chemistry are prime controls on distribution of uranium deposits. Geological province and subprovince boundaries, major faults, higher metamorphic grades, domain boundaries related to quartz monzonite batholiths, alkalic complexes, and the distribution of carbonate rocks are examples of such geological features

  15. Persisting roughness when deposition stops.

    Science.gov (United States)

    Schwartz, Moshe; Edwards, S F

    2004-12-01

    Useful theories for growth of surfaces under random deposition of material have been developed by several authors. The simplest theory is that introduced by Edwards and Wilkinson (EW), which is linear and soluble. Its nonlinear generalization by Kardar, Parisi, and Zhang (KPZ) resulted in many subsequent studies. Yet both EW and KPZ theories contain an unphysical feature. When deposition of material is stopped, both theories predict that as time tends to infinity, the surface becomes flat. In fact, of course, the final surface is not flat, but simply has no gradients larger than the gradient related to the angle of repose. We modify the EW and KPZ theories to accommodate this feature and study the consequences for the simpler system which is a modification of the EW equation. In spite of the fact that the equation describing the evolution of the surface is not linear, we find that the steady state in the presence of noise is not very different in the long-wavelength limit from that of the linear EW equation. The situation is quite different from that of EW when deposition stops. Initially there is still some rearrangement of the surface, but that stops as everywhere on the surface the gradient is less than that related to the angle of repose. The most interesting feature observed after deposition stops is the emergence of history-dependent steady-state distributions.

  16. Discharge cleaning of carbon deposits

    International Nuclear Information System (INIS)

    Mozetic, M.; Vesel, A.; Drenik, A.

    2006-01-01

    Experimental results of discharge cleaning of carbon deposits are presented. Deposits were prepared by creating plasma in pure methane. The methane was cracked in RF discharge at the output power of 250 W. The resultant radicals were bonded to the wall of discharge vessel forming a thin film of hydrogenated black carbon with the thickness of about 200nm. The film was then cleaned in situ by oxygen plasma with the density of about 1x10 16 m -3 , electron temperature of 5 eV, neutral gas kinetic temperature of about 100 0 C and neutral atom density of 6x10 21 m -3 . The treatment time was 30 minutes. The efficiency of plasma cleaning was monitored by optical emission spectroscopy. As long as the wall was contaminated with carbon deposit, substantial emission of the CO molecules was detected. As the cleaning was in progress, the CO emission was decreasing and vanished after 30 minutes when the discharge vessel became free of any carbon. The results are explained by interaction of plasma radicals with carbon deposits. (author)

  17. Effect of plating time on growth of nanocrystalline Ni–P from ...

    Indian Academy of Sciences (India)

    Nanocrystalline nickel phosphorus (NC-Ni–P) deposits from sulphate/glycine bath using a simple electroless deposition process is demonstrated. In the present investigation, nanoporous alumina films are formed on the aluminium surface by anodization process followed by deposition of nickel onto the pores by electroless ...

  18. Improving deposition tester to study adherent deposits in papermaking

    OpenAIRE

    Monte Lara, Concepción; Sánchez, Mónica; Blanco Suárez, Ángeles; Negro Álvarez, Carlos; Tijero Miquel, Julio

    2012-01-01

    Conventional methods used for the quantification of adherent material contained in a pulp suspension propose either filtration of the sample, which may lead to loss of sticky material in the filtrate, or dilution of the pulp, which may cause destabilization of the dissolved and colloidal material; thus, leading to unreliable results. In 1998, the Cellulose and Paper Group of University Complutense of Madrid developed a deposition tester which aimed to quantify the adherence of material (micro...

  19. Constructing deposition chronologies for peat deposits using radiocarbon dating

    Directory of Open Access Journals (Sweden)

    N. Piotrowska

    2011-06-01

    Full Text Available Radiocarbon dating is one of the main methods used to establish peat chronologies. This article reviews the basis of the method and its application to dating of peat deposits. Important steps in the radiocarbon dating procedure are described, including selection and extraction of material (and fractions for dating, chemical and physical preparation of media suitable for measurements, measurements of 14C activity or concentration, calculations, calibration of results and age-depth modelling.

  20. Vapor deposition of tantalum and tantalum compounds

    International Nuclear Information System (INIS)

    Trkula, M.

    1996-01-01

    Tantalum, and many of its compounds, can be deposited as coatings with techniques ranging from pure, thermal chemical vapor deposition to pure physical vapor deposition. This review concentrates on chemical vapor deposition techniques. The paper takes a historical approach. The authors review classical, metal halide-based techniques and current techniques for tantalum chemical vapor deposition. The advantages and limitations of the techniques will be compared. The need for new lower temperature processes and hence new precursor chemicals will be examined and explained. In the last section, they add some speculation as to possible new, low-temperature precursors for tantalum chemical vapor deposition