Overview of Magnetic Levitation Systems with Emphasis on Electrodynamic Suspension
Directory of Open Access Journals (Sweden)
Abbas Najjar-Khodabakhsh
2011-07-01
Full Text Available Nowadays, the use of magnetic levitation systems has made attention in transportation. Suspension is caused by two magnetic fields in the near distance and thus the repulsion and attraction induced between them. In Iran, different types of magnetic systems and their applications, especially in the transportation system were not considered deeply and the features and specifications of each of these systems is not discussed yet. In this article we want to review past research and studies on the applications and the characteristics of these systems to fully express and we do compare them with each other. We also offer the laboratory equipment for study the behavior of magnetic suspension systems with emphasis on electrodynamic suspension.
Modeling, Design and Analysis of a Electrodynamic Levitation System by Considering the Skin Effect
Directory of Open Access Journals (Sweden)
Mohammad Rajabi Sabadani
2016-01-01
Full Text Available In this paper, lift and drag forces of permanent-magnet electrodynamic suspension (PMEDS System have been studied by considering the skin effect. Electrodynamic suspension is based on repulsive force between two magnetic fields with the same polarity. In this research the electrodynamic suspension system consists of a moving permanent magnet block levitated over a flat conducting plate with 2 mm thickness. At first, the analytical model of the PMEDS is proposed. For this propose, permanent magnet poles are modeled by the current sheets. Then the eddy current is calculated on aluminum sheet by considering the skin effect. Finally, the lift and drag forces are calculated in difference speed. The 2D finite element method is utilized to investigate the effect of speed variations on the performance of PMEDS at two different airgap. Two-dimensional finite element model, the accuracy of proposed analytical model is validated. The results of the finite element method are compared with results obtained by analytical model. It shows the accuracy of the analytical model in the estimation of the lift and drag forces of an electrodynamic suspension system.
Numerical Analysis for Dynamic Instability of Electrodynamic Maglev Systems
Directory of Open Access Journals (Sweden)
Y. Cai
1995-01-01
Full Text Available Suspension instabilities in an electrodynamic maglev system with three- and five-degrees-of-freedom DOF vehicles traveling on a double L-shaped set of guideway conductors were investigated with various experimentally measured magnetic force data incorporated into theoretical models. Divergence and flutter were obtained from both analytical and numerical solutions for coupled vibration of the three-DOF maglev vehicle model. Instabilities of five direction motion (heave, slip, roll, pitch, and yaw were observed for the five-DOF vehicle model. The results demonstrate that system parameters such as system damping, vehicle geometry, and coupling effects among five different motions play very important roles in the occurrence of dynamic instabilities of maglev vehicles.
Implementing quantum electrodynamics with ultracold atomic systems
Kasper, V.; Hebenstreit, F.; Jendrzejewski, F.; Oberthaler, M. K.; Berges, J.
2017-02-01
We discuss the experimental engineering of model systems for the description of quantum electrodynamics (QED) in one spatial dimension via a mixture of bosonic 23Na and fermionic 6Li atoms. The local gauge symmetry is realized in an optical superlattice, using heteronuclear boson-fermion spin-changing interactions which preserve the total spin in every local collision. We consider a large number of bosons residing in the coherent state of a Bose-Einstein condensate on each link between the fermion lattice sites, such that the behavior of lattice QED in the continuum limit can be recovered. The discussion about the range of possible experimental parameters builds, in particular, upon experiences with related setups of fermions interacting with coherent samples of bosonic atoms. We determine the atomic system’s parameters required for the description of fundamental QED processes, such as Schwinger pair production and string breaking. This is achieved by benchmark calculations of the atomic system and of QED itself using functional integral techniques. Our results demonstrate that the dynamics of one-dimensional QED may be realized with ultracold atoms using state-of-the-art experimental resources. The experimental setup proposed may provide a unique access to longstanding open questions for which classical computational methods are no longer applicable.
Lyapunov Orbits in the Jupiter System Using Electrodynamic Tethers
Bokelmann, Kevin; Russell, Ryan P.; Lantoine, Gregory
2013-01-01
Various researchers have proposed the use of electrodynamic tethers for power generation and capture from interplanetary transfers. The effect of tether forces on periodic orbits in Jupiter-satellite systems are investigated. A perturbation force is added to the restricted three-body problem model and a series of simplifications allows development of a conservative system that retains the Jacobi integral. Expressions are developed to find modified locations of equilibrium positions. Modified families of Lyapunov orbits are generated as functions of tether size and Jacobi integral. Zero velocity curves and stability analyses are used to evaluate the dynamical properties of tether-modified orbits.
Dual-keel electrodynamic maglev system
He, Jianliang; Wang, Zian; Rote, Donald M.; Coffey, Howard T.; Hull, John R.; Mulcahy, Thomas M.; Cal, Yigang
1996-01-01
A propulsion and stabilization system with a plurality of superconducting magnetic devices affixed to the dual-keels of a vehicle, where the superconducting magnetic devices produce a magnetic field when energized. The system also includes a plurality of figure-eight shaped null-flux coils affixed to opposing vertical sides of slots in a guideway. The figure-eight shaped null-flux coils are vertically oriented, laterally cross-connected in parallel, longitudinally connected in series, and continue the length of the vertical slots providing levitation and guidance force. An external power source energizes the figure-eight shaped null-flux coils to create a magnetic traveling wave that interacts with the magnetic field produced by the superconducting magnets to impart motion to the vehicle.
Sinusoidal Calibration of Force Transducers Using Electrodynamic Shaker Systems
Directory of Open Access Journals (Sweden)
Christian Schlegel
2012-03-01
Full Text Available The primary calibration of force transducers using sinusoidal excitations with electrodynamic shaker systems will be described. First a view comment concerning the importance of dynamic force measurements will be given. That will be followed by a mathematical description of the basics of dynamic measurements based on linear differential equations. Some useful approximations are given to average measured data. The technical equipment will be introduced together with a discussion concerning the traceability as well as the uncertainty consideration. Finally, exemplary a calibrations performed on a strain gauge force transducer will be presented.
Spin pumping in electrodynamically coupled magnon-photon systems
Bai, Lihui
The electronics industry is quickly approaching the limitation of Moore's Law due to Joule heating in high density-integrated devices. To achieve new higher-speed devices and reduce energy consumption, researchers are turning to spintronics where the intrinsic spin, rather than the charge of electrons, is used to carry information in devices. Advances in spintronics have led to the discovery of giant magnetoresistance (GMR), spin transfer torque etc. Another subject, cavity electrodynamics, promises a completely new quantum algorithm by studying the properties of a single electron interacting with photons inside of a cavity. By merging both spintronics and cavity electrodynamics, a new cutting edge field called Cavity Spintronics is forming, which draws on the advantages of both subjects to develop new spintronics devices utilizing light-matter interaction. In this work, we use electrical detection, in combination with microwave transmission, to investigate both resonant and nonresonant magnon-photon coupling in a microwave cavity at room temperature. Spin pumping in a dynamically coupled magnon-photon system is found to be distinctly different from previous experiments. Characteristic coupling features such as modes anticrossing, linewidth evolution, peculiar line shape, and resonance broadening are systematically measured and consistently analyzed by a theoretical model set on the foundation of classical electrodynamic coupling. Our experimental and theoretical approach paves the way for pursuing microwave coherent manipulation of pure spin current via the combination of spin pumping and magnon-photon coupling. Co-authored with M. Harder, C.-M. Hu from University of Manitoba, Y. P. Chen, J. Q. Xiao from University of Delaware, and X. Fan from Univeristy of Denver.
Bickler, Donald B. (Inventor)
1989-01-01
The invention provides a rough terrain vehicle which maintains a substantially constant weight, and therefore traction, on all wheels, despite one wheel moving considerably higher or lower than the others, while avoiding a very soft spring suspension. The vehicle includes a chassis or body to be supported and a pair of side suspensions at either side of the body. In a six wheel vehicle, each side suspension includes a middle wheel, and front and rear linkages respectively coupling the front and rear wheels to the middle wheel. A body link pivotally connects the front and rear linkages together, with the middle of the body link rising or falling by only a fraction of the rise or fall of any of the three wheels. The body link pivotally supports the middle of the length of the body. A transverse suspension for suspending the end of the body on the side suspensions includes a middle part pivotally connected to the body about a longitudinal axis and opposite ends each pivotally connected to one of the side suspensions along at least a longitudinal axis.
49 CFR 238.427 - Suspension system.
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Suspension system. 238.427 Section 238.427... Equipment § 238.427 Suspension system. (a) General requirements. (1) Suspension systems shall be designed to... equipment. (2) Passenger equipment shall meet the safety performance standards for suspension systems...
49 CFR 393.207 - Suspension systems.
2010-10-01
... 49 Transportation 5 2010-10-01 2010-10-01 false Suspension systems. 393.207 Section 393.207... NECESSARY FOR SAFE OPERATION Frames, Cab and Body Components, Wheels, Steering, and Suspension Systems § 393.207 Suspension systems. (a) Axles. No axle positioning part shall be cracked, broken, loose or missing...
49 CFR 570.61 - Suspension system.
2010-10-01
... 49 Transportation 6 2010-10-01 2010-10-01 false Suspension system. 570.61 Section 570.61 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY... 10,000 Pounds § 570.61 Suspension system. (a) Suspension condition. Ball joint seals shall not be cut...
49 CFR 570.8 - Suspension systems.
2010-10-01
... 49 Transportation 6 2010-10-01 2010-10-01 false Suspension systems. 570.8 Section 570.8 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY... Pounds or Less § 570.8 Suspension systems. (a) Suspension condition. Ball joint seals shall not be cut or...
Popa, Alexandru
2013-01-01
Applications of Quantum and Classical Connections in Modeling Atomic, Molecular and Electrodynamical Systems is a reference on the new field of relativistic optics, examining topics related to relativistic interactions between very intense laser beams and particles. Based on 30 years of research, this unique book connects the properties of quantum equations to corresponding classical equations used to calculate the energetic values and the symmetry properties of atomic, molecular and electrodynamical systems. In addition, it examines applications for these methods, and for the calculation of
Introducing Dual Suspension System in Road Vehicles
Directory of Open Access Journals (Sweden)
Imtiaz Hussain
2013-04-01
Full Text Available The main objective of suspension system is to reduce the motions of the vehicle body with respect to road disturbances. The conventional suspension systems in road vehicles use passive elements such as springs and dampers to suppress the vibrations induced by the irregularities in the road. But these conventional suspension systems can suppress vibrations to a certain limit. This paper presents a novel idea to improve the ride quality of roads vehicles without compromising vehicle?s stability. The paper proposes the use of primary and secondary suspension to suppress the vibrations more effectively.
49 CFR 238.227 - Suspension system.
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Suspension system. 238.227 Section 238.227 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Equipment § 238.227 Suspension system. On or after November 8, 1999— (a) All passenger equipment shall...
Control system design of active seat suspensions
Maciejewski, I.
2012-03-01
This paper presents an approach to the control system design of seat suspension systems for the active vibration attenuation. The paper presents the studies of the active vibration control strategy based on the reverse dynamics of force actuator and the primary controller. The multi-criteria optimization procedure is utilized in order to calculate the primary controller settings which subsequently define the vibro-isolation characteristics of active suspensions. As an example of the proposed control system design, the seat with a pneumatic suspension is investigated and its vibro-isolation properties are shaped by an appropriate selection of the controller settings.
Experimental Evaluation of Mountain Bike Suspension Systems
Directory of Open Access Journals (Sweden)
J. Titlestad
2003-01-01
Full Text Available A significant distinction between competitive mountain bikes is whether they have a suspension system. Research studies indicate that a suspension system gives advantages, but it is difficult to quantify the benefits because they depend on so many variables, including the physiology and psychology of the cyclist, the roughness of the track and the design of the suspension system. A laboratory based test rig has been built that allows the number of variables in the system to be reduced and test conditions to be controlled. The test rig simulates regular impacts of the rear wheel with bumps in a rolling road. The physiological variables of oxygen consumption and heart rate were measured, together with speeds and forces at various points in the system. Physiological and mechanical test results both confirm a significant benefit in using a suspension system on the simulated rough track, with oxygen consumption reduced by around 30 % and power transmitted through the pedals reduced by 30 % to 60 %.
Control by damping Injection of Electrodynamic Tether System in an Inclined Orbit
DEFF Research Database (Denmark)
Larsen, Martin Birkelund; Blanke, Mogens
2009-01-01
Control of a satellite system with an electrodynamic tether as actuator is a time-periodic and underactuated control problem. This paper considers the tethered satellite in a Hamiltonian framework and determines a port-controlled Hamiltonian formulation that adequately describes the nonlinear...... of the closed loop system is treated using Floquet theory, investigating the closed loop properties for their dependency of the controller gain and orbit inclination....
Ride responses of macpherson suspension systems
Directory of Open Access Journals (Sweden)
Yu Cheng-Chi
2017-01-01
Full Text Available The main purpose of this study is to obtain more correct vehicle ride responses by using a nonlinear ride model considering the effect of Macpherson suspension geometry. Traditional ride model applied to analysis and controller design uses a two degree of freedom linear model, which includes sprung mass and unsprung mass and a spring and a damper vertically connect them. In fact, suspension components do not vertically position above the tire. The motions of body and tire are not going straight up and down. Therefore, the analysis results obtained by the simple model are often different from the experimental values of the actual vehicle. Because of the difference between simple model and actual vehicle, the control strategy almost cannot apply to actual vehicle. In order to understand the effect of suspension geometry on the vehicle ride responses and design a more practical control strategy, a nonlinear model including the geometric parameters of the suspension is constructed in this study. To estimate the initial equilibrium position of the suspension assembly under load, the static equilibrium analysis and mechanism motion analysis are synchronous implemented at the same time. The nonlinear model describes not only the relative position and velocity but also the force transmission between body and tire. Furthermore, by linearize this nonlinear model the development of control strategy for subsequent (semi active suspension system could be expected.
Self-adjusting control system of the electrodynamic velocity transducer for Mössbauer spectrometer
Energy Technology Data Exchange (ETDEWEB)
Zekhtser, M.Yu., E-mail: mzekhtser@gmail.com; Revyakin, A.S., E-mail: anatolij-revyakin@yandex.ru; Sarychev, D.A., E-mail: sarychev@ip.rsu.ru
2016-08-15
The novel control system has been developed on the basis of motion equation for the moving part of the electrodynamic velocity transducer of Mössbauer spectrometer. The motion equation coefficients are the parameters of its vibrating system. The square of cyclic eigenfrequency and damping factor are automatically determined by the control software for the spectrometer using the express analysis of free damped oscillations before any measurements are taken. The control system does not require manual adjustment of the spectrometer before the experiment. It exhibits accuracy of self-tuning and high degree of Doppler modulation stability in long-term experiments, providing high quality Mössbauer spectra.
Popa, Alexandru
2013-01-01
Quantum and Classical Connections in Modeling Atomic, Molecular and Electrodynamic Systems is intended for scientists and graduate students interested in the foundations of quantum mechanics and applied scientists interested in accurate atomic and molecular models. This is a reference to those working in the new field of relativistic optics, in topics related to relativistic interactions between very intense laser beams and particles, and is based on 30 years of research. The novelty of this work consists of accurate connections between the properties of quantum equations and correspon
No Drama Quantum Electrodynamics?
Akhmeteli, Andrey
Is it possible to offer a ``no drama'' quantum electrodynamics, as simple (in principle) as classical electrodynamics - a theory described by a system of partial differential equations (PDE) in 3+1 dimensions, but reproducing unitary evolution of a quantum field theory in the Fock space? The following results suggest an affirmative answer: 1. The scalar field can be algebraically eliminated from scalar electrodynamics. 2. After introduction of a complex 4-potential (producing the same electromagnetic field (EMF) as the standard real 4-potential), the spinor field can be algebraically eliminated from spinor electrodynamics. 3. The resulting theories describe independent evolution of EMF and can be embedded into quantum field theories. Another fundamental result: in a general case, the Dirac equation is equivalent to a 4th order PDE for just one component, which can be made real by a gauge transform. Issues related to the Bell theorem are discussed.
Energy Technology Data Exchange (ETDEWEB)
Clemens, M.; Weiland, T. [Technische Hochschule Darmstadt (Germany)
1996-12-31
In the field of computational electrodynamics the discretization of Maxwell`s equations using the Finite Integration Theory (FIT) yields very large, sparse, complex symmetric linear systems of equations. For this class of complex non-Hermitian systems a number of conjugate gradient-type algorithms is considered. The complex version of the biconjugate gradient (BiCG) method by Jacobs can be extended to a whole class of methods for complex-symmetric algorithms SCBiCG(T, n), which only require one matrix vector multiplication per iteration step. In this class the well-known conjugate orthogonal conjugate gradient (COCG) method for complex-symmetric systems corresponds to the case n = 0. The case n = 1 yields the BiCGCR method which corresponds to the conjugate residual algorithm for the real-valued case. These methods in combination with a minimal residual smoothing process are applied separately to practical 3D electro-quasistatical and eddy-current problems in electrodynamics. The practical performance of the SCBiCG methods is compared with other methods such as QMR and TFQMR.
Study on electrodynamic sensor of multi-modality system for multiphase flow measurement.
Deng, Xiang; Chen, Dixiang; Yang, Wuqiang
2011-12-01
Accurate measurement of multiphase flows, including gas/solids, gas/liquid, and liquid/liquid flows, is still challenging. In principle, electrical capacitance tomography (ECT) can be used to measure the concentration of solids in a gas/solids flow and the liquid (e.g., oil) fraction in a gas/liquid flow, if the liquid is non-conductive. Electrical resistance tomography (ERT) can be used to measure a gas/liquid flow, if the liquid is conductive. It has been attempted to use a dual-modality ECT/ERT system to measure both the concentration profile and the velocity profile by pixel-based cross correlation. However, this approach is not realistic because of the dynamic characteristics and the complexity of multiphase flows and the difficulties in determining the velocities by cross correlation. In this paper, the issues with dual modality ECT/ERT and the difficulties with pixel-based cross correlation will be discussed. A new adaptive multi-modality (ECT, ERT and electro-dynamic) sensor, which can be used to measure a gas/solids or gas/liquid flow, will be described. Especially, some details of the electrodynamic sensor of multi-modality system such as sensing electrodes optimum design, electrostatic charge amplifier, and signal processing will be discussed. Initial experimental results will be given.
Development of an Air Pneumatic Suspension System for Transtibial Prostheses
Pirouzi, Gholamhossein; Osman, Noor Azuan Abu; Oshkour, Azim; Ali, Sadeeq; Gholizadeh, Hossein; Abas, Wan Wan
2014-01-01
The suspension system and socket fitting of artificial limbs have major roles and vital effects on the comfort, mobility, and satisfaction of amputees. This paper introduces a new pneumatic suspension system that overcomes the drawbacks of current suspension systems in donning and doffing, change in volume during daily activities, and pressure distribution in the socket-stump interface. An air pneumatic suspension system (APSS) for total-contact sockets was designed and developed. Pistoning a...
Directory of Open Access Journals (Sweden)
Giuseppe Vitiello
2014-05-01
Full Text Available In electrodynamics there is a mutual exchange of energy and momentum between the matter field and the electromagnetic field and the total energy and momentum are conserved. For a constant magnetic field and harmonic scalar potential, electrodynamics is shown to be isomorph to a system of damped/amplified harmonic oscillators. These can be described by squeezed coherent states which in turn are isomorph to self-similar fractal structures. Under the said conditions of constant magnetic field and harmonic scalar potential, electrodynamics is thus isomorph to fractal self-similar structures and squeezed coherent states. At a quantum level, dissipation induces noncommutative geometry with the squeezing parameter playing a relevant role. Ubiquity of fractals in Nature and relevance of coherent states and electromagnetic interaction point to a unified, integrated vision of Nature.
Bialynicki-Birula, I; Ter Haar, D
1975-01-01
Quantum Electrodynamics focuses on the formulation of quantum electrodynamics (QED) in its most general and most abstract form: relativistic quantum field theory. It describes QED as a program, rather than a closed theory, that rests on the theory of the quantum Maxwellian field interacting with given (external) classical sources of radiation and on the relativistic quantum mechanics of electrons interacting with a given (external) classical electromagnetic field.Comprised of eight chapters, this volume begins with an introduction to the fundamental principles of quantum theory formulated in a
Mirror suspension system for the TAMA SAS
Takamori, A; Bertolini, A; Cella, G; DeSalvo, R; Fukushima, M; Iida, Y; Jacquier, F; Kawamura, S; Marka, S; Nishi, Y; Numata, K; Sannibale, V; Somiya, K; Takahashi, R; Tariq, H; Tsubono, K; Ugas, J; Viboud, N; Yamamoto, H; Yoda, T; Wang Chen Yang
2002-01-01
Several R and D programmes are ongoing to develop the next generation of interferometric gravitational wave detectors providing the superior sensitivity desired for refined astronomical observations. In order to obtain a wide observation band at low frequencies, the optics need to be isolated from the seismic noise. The TAMA SAS (seismic attenuation system) has been developed within an international collaboration between TAMA, LIGO, and some European institutes, with the main objective of achieving sufficient low-frequency seismic attenuation (-180 dB at 10 HZ). The system suppresses seismic noise well below the other noise levels starting at very low frequencies above 10 Hz. It also includes an active inertial damping system to decrease the residual motion of the optics enough to allow a stable operation of the interferometer. The TAMA SAS also comprises a sophisticated mirror suspension subsystem (SUS). The SUS provides support for the optics and vibration isolation complementing the SAS performance. The SU...
Evaluation of new suspension system for limb prosthetics.
Gholizadeh, Hossein; Abu Osman, Noor Azuan; Eshraghi, Arezoo; Ali, Sadeeq; Arifin, Nooranida; Wan Abas, Wan Abu Bakar
2014-01-10
Good prosthetic suspension system secures the residual limb inside the prosthetic socket and enables easy donning and doffing. This study aimed to introduce, evaluate and compare a newly designed prosthetic suspension system (HOLO) with the current suspension systems (suction, pin/lock and magnetic systems). All the suspension systems were tested (tensile testing machine) in terms of the degree of the shear strength and the patient's comfort. Nine transtibial amputees participated in this study. The patients were asked to use four different suspension systems. Afterwards, each participant completed a questionnaire for each system to evaluate their comfort. Furthermore, the systems were compared in terms of the cost. The maximum tensile load that the new system could bear was 490 N (SD, 5.5) before the system failed. Pin/lock, magnetic and suction suspension systems could tolerate loads of 580 N (SD, 8.5), 350.9 (SD, 7) and 310 N (SD, 8.4), respectively. Our subjects were satisfied with the new hook and loop system, particularly in terms of easy donning and doffing. Furthermore, the new system is considerably cheaper (35 times) than the current locking systems in the market. The new suspension system could successfully retain the prosthesis on the residual limb as a good alternative for lower limb amputees. In addition, the new system addresses some problems of the existing systems and is more cost effective than its counterparts.
1990-01-01
Quantum electrodynamics is an essential building block and an integral part of the gauge theory of unified electromagnetic, weak, and strong interactions, the so-called standard model. Its failure or breakdown at some level would have a most profound impact on the theoretical foundations of elementary particle physics as a whole. Thus the validity of QED has been the subject of intense experimental tests over more than 40 years of its history. This volume presents an up-to-date review of high precision experimental tests of QED together with comprehensive discussion of required theoretical wor
Establishment of sorghum cell suspension culture system for ...
African Journals Online (AJOL)
STORAGESEVER
2008-03-18
Mar 18, 2008 ... This study describes the establishment of sorghum cell suspension culture system for use in proteomics studies. ... Key words: Sorghum, proteomics, callus, cell suspension cultures, total soluble protein, secretome. INTRODUCTION ..... system, are dynamic and heterogeneous, being com- posed of a ...
Mirror suspension system for the TAMA SAS
Energy Technology Data Exchange (ETDEWEB)
Takamori, Akiteru [California Institute of Technology, MS 18-34, Pasadena, CA 91125 (United States); Ando, Masaki [Dept. of Physics, Univ. of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 1130033 (Japan); Bertolini, Alessandro [Universita di Pisa, Pisa (Italy); Cella, Giancarlo [Universita di Pisa, Pisa (Italy); DeSalvo, Riccardo [California Institute of Technology, MS 18-34, Pasadena, CA 91125 (United States); Fukushima, Mitsuhiro [National Astronomy Observatory of Japan, Mitaka, Tokyo 1818588 (Japan); Iida, Yukiyoshi [Dept. of Physics, Univ. of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 1130033 (Japan); Jacquier, Florian [INSA de Lyon, Lyon (France); Kawamura, Seiji [National Astronomy Observatory of Japan, Mitaka, Tokyo 1818588 (Japan); Marka, Szabolcs [California Institute of Technology, MS 18-34, Pasadena, CA 91125 (United States); Nishi, Yuhiko [Dept. of Physics, Univ. of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 1130033 (Japan); Numata, Kenji [Dept. of Physics, Univ. of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 1130033 (Japan); Sannibale, Virginio [California Institute of Technology, MS 18-34, Pasadena, CA 91125 (United States); Somiya, Kentaro [Dept. of Physics, Univ. of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 1130033 (Japan); Takahashi, Ryutaro [National Astronomy Observatory of Japan, Mitaka, Tokyo 1818588 (Japan); Tariq, Hareem [Florida Institute of Technology, Melbourne, FL (United States); Tsubono, Kimio [Dept. of Physics, Univ. of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 1130033 (Japan); Ugas, Jose [California Institute of Technology, MS 18-34, Pasadena, CA 91125 (United States); Viboud, Nicolas [INSA de Lyon, Lyon (France); Yamamoto, Hiroaki [California Institute of Technology, MS 18-34, Pasadena, CA 91125 (United States); Yoda, Tatsuo [Dept. of Physics, Univ. of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 1130033 (Japan); Wang Chenyang [California Institute of Technology, MS 18-34, Pasadena, CA 91125 (United States)
2002-04-07
Several R and D programmes are ongoing to develop the next generation of interferometric gravitational wave detectors providing the superior sensitivity desired for refined astronomical observations. In order to obtain a wide observation band at low frequencies, the optics need to be isolated from the seismic noise. The TAMA SAS (seismic attenuation system) has been developed within an international collaboration between TAMA, LIGO, and some European institutes, with the main objective of achieving sufficient low-frequency seismic attenuation (-180 dB at 10 HZ). The system suppresses seismic noise well below the other noise levels starting at very low frequencies above 10 Hz. It also includes an active inertial damping system to decrease the residual motion of the optics enough to allow a stable operation of the interferometer. The TAMA SAS also comprises a sophisticated mirror suspension subsystem (SUS). The SUS provides support for the optics and vibration isolation complementing the SAS performance. The SUS is equipped with a totally passive magnetic damper to suppress internal resonances without degrading the thermal noise performance. In this paper we discuss the SUS details and present prototype results.
Suspension system for gimbal supported scanning payloads
Polites, Michael E.
1995-03-01
Gimballed scanning devices or instruments are the subject of this invention. Scanning is an important aspect of space science. To achieve a scan pattern some means must be provided which impart to the payload an oscillatory motion. Various forms of machines have been employed for controllably conferring on scanning instruments predetermined scan patterns. They include control moment gyroscopes, reaction wheels, torque motors, reaction control systems, and the like. But rotating unbalanced mass (RUM) devices are a new and efficient way to generate scans in gimballed payloads. RUM devices are superior to previous scanning apparatus, but they require power consuming and frequently complex auxiliary control systems to position and reposition the particular scan pattern relative to a target or a number of targets. Herein the control system is simplified. The most frequently employed method for achieving the various scan patterns is to gimbal the scanning device. Gimbals are suspended in such a way that they can be activated to generate the scan pattern. The suspension means described is for payloads supported in gimbals wherein the payload rotation is restricted by a flex pivot so that the payload oscillates, thereby moving in a scan pattern.
DESIGN AND CONTROL OF FULL VEHICLE SUSPENSION SYSTEM
National Research Council Canada - National Science Library
Ramë Likaj; Ahmet Shala
2017-01-01
This paper deals with the design and control of vehicle suspension system for a full vehicle model with the aim to improve the ride comfort and to guarantee permanent contact between road and wheel...
Nonlinear Model of the Passenger Car Seat Suspension System
Directory of Open Access Journals (Sweden)
Danko Ján
2017-04-01
Full Text Available The paper deals with the modelling of a passenger car seat suspension system. Currently, vehicle safety and ride comfort are one of the most important factors of vehicle design. This article analyses a mathematical model of the passenger car seat suspension system. Furthermore, experimental measurements of the passenger car seat suspension system are performed. Utilizing the experimental data, model parameters are identified. From the chosen mathematical model a simulation model in constructed in Matlab is designed. In this simulation, the force-velocity and force-displacement characteristics of the passenger car seat suspension system are described. Finally, evaluation of simulated damper characteristics with the characteristics form measured data are performed.
Optimal Vibration Control for Tracked Vehicle Suspension Systems
Directory of Open Access Journals (Sweden)
Yan-Jun Liang
2013-01-01
Full Text Available Technique of optimal vibration control with exponential decay rate and simulation for vehicle active suspension systems is developed. Mechanical model and dynamic system for a class of tracked vehicle suspension vibration control is established and the corresponding system of state space form is described. In order to prolong the working life of suspension system and improve ride comfort, based on the active suspension vibration control devices and using optimal control approach, an optimal vibration controller with exponential decay rate is designed. Numerical simulations are carried out, and the control effects of the ordinary optimal controller and the proposed controller are compared. Numerical simulation results illustrate the effectiveness of the proposed technique.
Development of A New Automotive Active Suspension System
Yousef Abdulhammed, Eng.; Eng. Hisham Elsherif, Dr, Prof.
2017-12-01
The main objective was to develop a smart new vehicle suspension system that minimizes the road irregularities impact on the driver, also to increase performance and stability of the vehicle at high speeds. The central idea is based on modifying the normal passive suspension system into a computer controller hydraulic actuated active suspension system simply by adding a new component such as a hydraulic cylinder on a normal passive system. The new suspension system is economical to be wildly used in consumer’s cars with low prices. The new added components was analytically tested and modeled according to different parameters. A new test rig was implemented to simulate a real quarter suspension system. The new suspension model was controlled by feedback controller according to the road conditions; the controller output controls the cylinder actuator to compensate the road oscillations and increases the vehicle stability for the passenger. Finally, to maximize the aerodynamics coefficients of the vehicle during high speeds by controlling the vehicle clearance level from the ground to achieve full stability, steering and fuel economy.
The Active Fractional Order Control for Maglev Suspension System
Peichang Yu; Jie Li; Jinhui Li
2015-01-01
Maglev suspension system is the core part of maglev train. In the practical application, the load uncertainties, inherent nonlinearity, and misalignment between sensors and actuators are the main issues that should be solved carefully. In order to design a suitable controller, the attention is paid to the fractional order controller. Firstly, the mathematical model of a single electromagnetic suspension unit is derived. Then, considering the limitation of the traditional PD controller adaptat...
Development of an air pneumatic suspension system for transtibial prostheses.
Pirouzi, Gholamhossein; Abu Osman, Noor Azuan; Oshkour, Azim Ataollahi; Ali, Sadeeq; Gholizadeh, Hossein; Abas, Wan A B Wan
2014-09-09
The suspension system and socket fitting of artificial limbs have major roles and vital effects on the comfort, mobility, and satisfaction of amputees. This paper introduces a new pneumatic suspension system that overcomes the drawbacks of current suspension systems in donning and doffing, change in volume during daily activities, and pressure distribution in the socket-stump interface. An air pneumatic suspension system (APSS) for total-contact sockets was designed and developed. Pistoning and pressure distribution in the socket-stump interface were tested for the new APSS. More than 95% of the area between each prosthetic socket and liner was measured using a Tekscan F-Scan pressure measurement which has developed matrix-based pressure sensing systems. The variance in pressure around the stump was 8.76 kPa. APSS exhibits less pressure concentration around the stump, improved pressure distribution, easy donning and doffing, adjustability to remain fitted to the socket during daily activities, and more adaptability to the changes in stump volume. The volume changes were adjusted by utility of air pressure sensor. The vertical displacement point and reliability of suspension were assessed using a photographic method. The optimum pressure in every level of loading weight was 55 kPa, and the maximum displacement was 6 mm when 90 N of weight was loaded.
Development of an Air Pneumatic Suspension System for Transtibial Prostheses
Directory of Open Access Journals (Sweden)
Gholamhossein Pirouzi
2014-09-01
Full Text Available The suspension system and socket fitting of artificial limbs have major roles and vital effects on the comfort, mobility, and satisfaction of amputees. This paper introduces a new pneumatic suspension system that overcomes the drawbacks of current suspension systems in donning and doffing, change in volume during daily activities, and pressure distribution in the socket-stump interface. An air pneumatic suspension system (APSS for total-contact sockets was designed and developed. Pistoning and pressure distribution in the socket-stump interface were tested for the new APSS. More than 95% of the area between each prosthetic socket and liner was measured using a Tekscan F-Scan pressure measurement which has developed matrix-based pressure sensing systems. The variance in pressure around the stump was 8.76 kPa. APSS exhibits less pressure concentration around the stump, improved pressure distribution, easy donning and doffing, adjustability to remain fitted to the socket during daily activities, and more adaptability to the changes in stump volume. The volume changes were adjusted by utility of air pressure sensor. The vertical displacement point and reliability of suspension were assessed using a photographic method. The optimum pressure in every level of loading weight was 55 kPa, and the maximum displacement was 6 mm when 90 N of weight was loaded.
Characterizing electrodynamic shakers
Energy Technology Data Exchange (ETDEWEB)
Smallwood, D.O.
1996-12-31
An electrodynamic shaker is modeled as a mixed electrical/mechanical system with an experimentally derived two port network characterization. The model characterizes the shaker in a manner that the performance of the shaker with a mounted load (test item and fixture) can be predicted. The characterization depends on the measurements of shaker input voltage and current, and on the acceleration of the shaker armature with several mounted loads. The force into the load is also required, and can be measured directly or inferred from the load apparent mass.
A magnetic suspension system for measuring liquid density
Directory of Open Access Journals (Sweden)
Luz María Centeno González
2013-04-01
Full Text Available Density is a derived quantity of mass and length; it is defined as mass per volume unit and its SI unit is kg/m3. National metrology institutes have been designing and building their own magnetic suspension systems during the last 5 decades for making fluid density measurements; this has allowed them to carry out research into liquids and gases’ physical characteristics. This paper was aimed at designing and developing a magnetic suspension system for a magnetic balance used in determining liquid density to be used in CENAM’s metrology density laboratories.
Parallel Damping Injection for the Quarter Car Suspension System.
Scherpen, Jacquelien M.A.; Jeltsema, Dimitri; Maulny, François
2006-01-01
In this paper we study an application of Passivity-Based Control (PBC) to a quarter car suspension system. We use Passivity-Based Control in the Brayton-Moser framework (BM-PBC) that has recently been developed for control of switching and non-switching electrical circuits. Via the usual
Remarks on nonlinear electrodynamics
Energy Technology Data Exchange (ETDEWEB)
Gaete, Patricio [Universidad Tecnica Federico Santa Maria, Departmento de Fisica and Centro Cientifico-Tecnologico de Valparaiso, Valparaiso (Chile); Helayel-Neto, Jose [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)
2014-11-15
We consider both generalized Born-Infeld and exponential electrodynamics. The field energy of a point-like charge is finite only for Born-Infeld-like electrodynamics. However, both Born-Infeld-type and exponential electrodynamics display the vacuum birefringence phenomenon. Subsequently, we calculate the lowest-order modifications to the interaction energy for both classes of electrodynamics, within the framework of the gauge-invariant path-dependent variables formalism. These are shown to result in long-range (1/r{sup 5}-type) corrections to the Coulomb potential. Once again, for their noncommutative versions, the interaction energy is ultraviolet finite. (orig.)
Rahmat, Mohd Fua'ad; Isa, Mohd Daud; Rahim, Ruzairi Abdul; Hussin, Tengku Ahmad Raja
2009-01-01
Electrical charge tomography (EChT) is a non-invasive imaging technique that is aimed to reconstruct the image of materials being conveyed based on data measured by an electrodynamics sensor installed around the pipe. Image reconstruction in electrical charge tomography is vital and has not been widely studied before. Three methods have been introduced before, namely the linear back projection method, the filtered back projection method and the least square method. These methods normally face ill-posed problems and their solutions are unstable and inaccurate. In order to ensure the stability and accuracy, a special solution should be applied to obtain a meaningful image reconstruction result. In this paper, a new image reconstruction method - Least squares with regularization (LSR) will be introduced to reconstruct the image of material in a gravity mode conveyor pipeline for electrical charge tomography. Numerical analysis results based on simulation data indicated that this algorithm efficiently overcomes the numerical instability. The results show that the accuracy of the reconstruction images obtained using the proposed algorithm was enhanced and similar to the image captured by a CCD Camera. As a result, an efficient method for electrical charge tomography image reconstruction has been introduced.
Annular suspension and pointing system with controlled DC electromagnets
Vu, Josephine Lynn; Tam, Kwok Hung
1993-01-01
The Annular Suspension and Pointing System (ASPS) developed by the Flight System division of Sperry Corporation is a six-degree of freedom payload pointing system designed for use with the space shuttle. This magnetic suspension and pointing system provides precise controlled pointing in six-degrees of freedom, isolation of payload-carrier disturbances, and end mount controlled pointing. Those are great advantages over the traditional mechanical joints for space applications. In this design, we first analyzed the assumed model of the single degree ASPS bearing actuator and obtained the plant dynamics equations. By linearizing the plant dynamics equations, we designed the cascade and feedback compensators such that a stable and satisfied result was obtained. The specified feedback compensator was computer simulated with the nonlinearized plant dynamics equations. The results indicated that an unstable output occurred. In other words, the designed feedback compensator failed. The failure of the design is due to the Taylor's series expansion not converging.
National Research Council Canada - National Science Library
Hassan Elahi; Dr. Riffat Asim Pasha; Dr. Asif Israr; Dr. M. Zubair Khan
2014-01-01
.... Passive Vehicle Suspension System is converted into Semi Active Vehicle System. Major advantage achieved by this system is that it adjusts the damping of the suspension system without the application of any actuator by using MATLAB® simulations...
Electrodynamic Tethers for Spacecraft Propulsion
Johnson, Les; Estes, Robert D.; Lorenzini, Enrico; Martinez-Sanchez, Manuel; Sanmartin, Juan; Vas, Irwin
1998-01-01
Relatively short electrodynamic tethers can use solar power to 'push' against a planetary magnetic field to achieve propulsion without the expenditure of propellant. The groundwork has been laid for this type of propulsion. NASA began developing tether technology for space applications in the 1960's. Important recent milestones include retrieval of a tether in space (TSS-1, 1992), successful deployment of a 20-km-long tether in space (SEDS-1, 1993), and operation of an electrodynamic tether with tether current driven in both directions-power and thrust modes (PMG, 1993). The planned Propulsive Small Expendable Deployer System (ProSEDS) experiment will demonstrate electrodynamic tether thrust during its flight in early 2000. ProSEDS will use the flight-proven Small Expendable Deployer System (SEDS) to deploy a 5 km bare copper tether from a Delta II upper stage to achieve approximately 0.4 N drag thrust, thus deorbiting the stage. The experiment will use a predominantly 'bare' tether for current collection in lieu of the endmass collector and insulated tether approach used on previous missions. Theory and ground-based plasma chamber testing indicate that the bare tether is a highly-efficient current collector. The flight experiment is a precursor to utilization of the technology on the International Space Station for reboost application and the more ambitious electrodynamic tether upper stage demonstration mission which will be capable of orbit raising, lowering and inclination changes - all using electrodynamic thrust. In addition, the use of this type of propulsion may be attractive for future missions at Jupiter and any other planetary body with a magnetosphere.
MEMS mass-spring-damper systems using an out-of-plane suspension scheme
Abdel Aziz, Ahmed Kamal Said
2014-02-04
MEMS mass-spring-damper systems (including MEMS gyroscopes and accelerometers) using an out-of-plane (or vertical) suspension scheme, wherein the suspensions are normal to the proof mass, are disclosed. Such out-of-plane suspension scheme helps such MEMS mass-spring-damper systems achieve inertial grade performance. Methods of fabricating out-of-plane suspensions in MEMS mass-spring-damper systems (including MEMS gyroscopes and accelerometers) are also disclosed.
Design and analysis of an intelligent controller for active geometry suspension systems
Goodarzi, Avesta; Oloomi, Ehsan; Esmailzadeh, Ebrahim
2011-02-01
An active geometry suspension (AGS) system is a device to optimise suspension-related factors such as toe angle and roll centre height by controlling vehicle's suspension geometry. The suspension geometry could be changed through control of suspension mounting point's position. In this paper, analysis and control of an AGS system is addressed. First, the effects of suspension geometry change on roll centre height and toe angle are studied. Then, based on an analytical approach, the improvement of the vehicle's stability and handling due to the control of suspension geometry is investigated. In the next section, an eight-degree-of-freedom handling model of a sport utility vehicle equipped with an AGS system is introduced. Finally, a self-tuning proportional-integral controller has been designed, using the fuzzy control theory, to control the actuator that changes the geometry of the suspension system. The simulation results show that an AGS system can improve the handling and stability of the vehicle.
Car suspension system monitoring under road conditions
Fedotov, A. I.; Kuznetsov, N. Y.; Lysenko, A. V.; Vlasov, V. G.
2017-12-01
The paper describes an advanced gyro-based measuring system comprising a CGV-4K central vertical gyro and a G-3M gyrocompass. The advanced system provides additional functions that help measure unsprung mass rotation angles about a vertical axis, rolling angles, trim angles and movements of the unsprung masses of the front (ap and al) and rear b axes when a car wheel hits a single obstruction. The paper also describes the operation of the system, which measures movements of unsprung masses about the body of a car when it hits a single obstruction. The paper presents the dependency diagrams ap = f(t) and al = f(t) for front and rear wheels respectively, as well as b = f(t) for a rear left wheel, which were determined experimentally. Test results for a car equipped with an advanced gyro-based measuring system moving around a circle can form a basis for developing a mathematical model of the process.
Directory of Open Access Journals (Sweden)
M. J. Colerico
2006-03-01
Full Text Available The thermospheric midnight temperature maximum (MTM is a highly variable, but persistent, large scale neutral temperature enhancement which occurs at low latitudes. Its occurrence can impact many fundamental upper atmospheric parameters such as pressure, density, neutral winds, neutral density, and F-region plasma. Although the MTM has been the focus of several investigations employing various instrumentation including photometers, satellites, and Fabry-Perot interferometers, limited knowledge exists regarding the latitude extent of its influence on the upper atmosphere. This is largely due to observational limitations which confined the collective geographic range to latitudes within ±23°. This paper investigates the MTM's latitudinal extent through all-sky imaging observations of its 6300Å airglow signature referred to by Colerico et al. (1996 as the midnight brightness wave (MBW. The combined field of view of three Southern Hemisphere imaging systems located at Arequipa, Peru, and Tucuman and El Leoncito, Argentina, for the first time extends the contiguous latitudinal range of imager observations to 8° S-39° S in the American sector. Our results highlight the propagation of MBW events through the combined fields of view past 39° S latitude, providing the first evidence that the MTM's effect on the upper atmosphere extends into mid-latitudes. The observations presented here are compared with modeled 6300Å emissions calculated using the NCAR thermosphere-ionosphere-electrodynamic general circulation model (TIEGCM in conjunction with an airglow code. We report that at this time TIEGCM is unable to simulate an MBW event due to the model's inability to reproduce an MTM of the same magnitude and occurrence time as those observed via FPI measurements made from Arequipa. This work also investigates the origins of an additional low latitude airglow feature referred to by Colerico et al. (1996 as the pre-midnight brightness wave (PMBW and
Directory of Open Access Journals (Sweden)
Hassan Elahi
2014-12-01
Full Text Available In this research work a simplified translational model of an automotive suspension system is constructed by only considering the translation motion of one wheel of a car. Passive Vehicle Suspension System is converted into Semi Active Vehicle System. Major advantage achieved by this system is that it adjusts the damping of the suspension system without the application of any actuator by using MATLAB® simulations. The semi-active control is found to control the vibration of suspension system very well.
Force Measurements in Magnetic Suspension and Balance System
Kuzin, Alexander; Shapovalov, George; Prohorov, Nikolay
1996-01-01
The description of an infrared telemetry system for measurement of drag forces in Magnetic Suspension and Balance Systems (MSBS) is presented. This system includes a drag force sensor, electronic pack and transmitter placed in the model which is of special construction, and receiver with a microprocessor-based measuring device, placed outside of the test section. Piezosensitive resonators as sensitive elements and non-magnetic steel as the material for the force sensor are used. The main features of the proposed system for load measurements are discussed and the main characteristics are presented.
Kumar, Vinay
2016-01-01
The present book entitled Concepts of Electrodynamics meets the demand of students of all engineering, graduate, honours and postgraduate courses in a single volume. This book covers all the topics on electrodynamics as per the new syllabus prescribed by UGC and AICTE and we do hope that this book will revive interest in the study of various topics on electrodynamics which will carries the reader to a high level of understanding. The text is enriched with a large number of solved examples apart from appropriate illustrations and examples in each chapter.
The Active Fractional Order Control for Maglev Suspension System
Directory of Open Access Journals (Sweden)
Peichang Yu
2015-01-01
Full Text Available Maglev suspension system is the core part of maglev train. In the practical application, the load uncertainties, inherent nonlinearity, and misalignment between sensors and actuators are the main issues that should be solved carefully. In order to design a suitable controller, the attention is paid to the fractional order controller. Firstly, the mathematical model of a single electromagnetic suspension unit is derived. Then, considering the limitation of the traditional PD controller adaptation, the fractional order controller is developed to obtain more excellent suspension specifications and robust performance. In reality, the nonlinearity affects the structure and the precision of the model after linearization, which will degrade the dynamic performance. So, a fractional order controller is addressed to eliminate the disturbance by adjusting the parameters which are added by the fractional order controller. Furthermore, the controller based on LQR is employed to compare with the fractional order controller. Finally, the performance of them is discussed by simulation. The results illustrated the validity of the fractional order controller.
Foundations of electrodynamics
Moon, Parry
2013-01-01
Advanced undergraduate text presupposes some knowledge of electricity and magnetism, making substantial use of vector analysis. A serious development of electrodynamics on a postulational basis that clearly defines each concept. 1960 edition.
Blash, Derek M.
The region known as Low-Earth Orbit (LEO) has become populated with artificial satellites and space debris since humanities initial venture into the region. This has turned LEO into a hazardous region. Since LEO is very valuable to many different countries, there has been a push to prevent further buildup and talk of even deorbiting spent satellites and debris already in LEO. One of the more attractive concepts available for deorbiting debris and spent satellites is a Bare Electrodynamic Tether (BET). A BET is a propellantless propulsion technique in which two objects are joined together by a thin conducting material. When these tethered objects are placed in LEO, the tether sweeps across the magnetic field lines of the Earth and induces an electromotive force (emf) along the tether. Current from the space plasma is collected on the bare tether under the action of the induced emf, and this current interacts with the Earth's magnetic field to create a drag force that can be used to deorbit spent satellites and space debris. A Plasma Contactor (PC) is used to close the electrical circuit between the BET and the ionospheric plasma. The PC requires a voltage and, depending on the device, a gas flow to emit electrons through a plasma bridge to the ionospheric plasma. The PC also can require a plasma discharge electrode and a heater to condition the PC for operation. These parameters as well as the PC performance are required to build an accurate simulation of a PC and, therefore, a BET deorbiting system. This thesis focuses on the development, validation, and implementation of a simulation tool to model the effects of a realistic hollow cathode PC system model on a BET deorbit system.
Stabilization of Electromagnetic Suspension System Behavior by Genetic Algorithm
Directory of Open Access Journals (Sweden)
Abbas Najar Khoda Bakhsh
2012-07-01
Full Text Available Electromagnetic suspension system with a nonlinear and unstable behavior, is used in maglev trains. In this paper a linear mathematical model of system is achieved and the state feedback method is used to improve the system stability. The control coefficients are tuned by two different methods, Riccati and a new method based on Genetic algorithm. In this new proposed method, we use Genetic algorithm to achieve the optimum values of control coefficients. The results of the system simulation by Matlab indicate the effectiveness of new proposed system. When a new reference of air gap is needed or a new external force is added, the proposed system could omit the vibration and shake of the train coupe and so, passengers feel more comfortable.
The Gravity Probe B electrostatic gyroscope suspension system (GSS)
Bencze, W. J.; Brumley, R. W.; Eglington, M. L.; Hipkins, D. N.; Holmes, T. J.; Parkinson, B. W.; Ohshima, Y.; Everitt, C. W. F.
2015-11-01
A spaceflight electrostatic suspension system was developed for the Gravity Probe B (GP-B) Relativity Mission’s cryogenic electrostatic vacuum gyroscopes which serve as an indicator of the local inertial frame about Earth. The Gyroscope Suspension System (GSS) regulates the translational position of the gyroscope rotors within their housings, while (1) minimizing classical electrostatic torques on the gyroscope to preserve the instrument’s sensitivity to effects of General Relativity, (2) handling the effects of external forces on the space vehicle, (3) providing a means of precisely aligning the spin axis of the gyroscopes after spin-up, and (4) acting as an accelerometer as part of the spacecraft’s drag-free control system. The flight design was tested using an innovative, precision gyroscope simulator Testbed that could faithfully mimic the behavior of a physical gyroscope under all operational conditions, from ground test to science data collection. Four GSS systems were built, tested, and operated successfully aboard the GP-B spacecraft from launch in 2004 to the end of the mission in 2008.
Gait biomechanics of individuals with transtibial amputation: effect of suspension system.
Directory of Open Access Journals (Sweden)
Arezoo Eshraghi
Full Text Available Prosthetic suspension system is an important component of lower limb prostheses. Suspension efficiency can be best evaluated during one of the vital activities of daily living, i.e. walking. A new magnetic prosthetic suspension system has been developed, but its effects on gait biomechanics have not been studied. This study aimed to explore the effect of suspension type on kinetic and kinematic gait parameters during level walking with the new suspension system as well as two other commonly used systems (the Seal-In and pin/lock. Thirteen persons with transtibial amputation participated in this study. A Vicon motion system (six cameras, two force platforms was utilized to obtain gait kinetic and kinematic variables, as well as pistoning within the prosthetic socket. The gait deviation index was also calculated based on the kinematic data. The findings indicated significant difference in the pistoning values among the three suspension systems. The Seal-In system resulted in the least pistoning compared with the other two systems. Several kinetic and kinematic variables were also affected by the suspension type. The ground reaction force data showed that lower load was applied to the limb joints with the magnetic suspension system compared with the pin/lock suspension. The gait deviation index showed significant deviation from the normal with all the systems, but the systems did not differ significantly. Main significant effects of the suspension type were seen in the GRF (vertical and fore-aft, knee and ankle angles. The new magnetic suspension system showed comparable effects in the remaining kinetic and kinematic gait parameters to the other studied systems. This study may have implications on the selection of suspension systems for transtibial prostheses. Trial registration: Iranian Registry of Clinical Trials IRCT2013061813706N1.
Digital Control Analysis and Design of a Field-Sensed Magnetic Suspension System
Directory of Open Access Journals (Sweden)
Jen-Hsing Li
2015-03-01
Full Text Available Magnetic suspension systems are mechatronic systems and crucial in several engineering applications, such as the levitation of high-speed trains, frictionless bearings, and wind tunnels. Magnetic suspension systems are nonlinear and unstable systems; therefore, they are suitable educational benchmarks for testing various modeling and control methods. This paper presents the digital modeling and control of magnetic suspension systems. First, the magnetic suspension system is stabilized using a digital proportional-derivative controller. Subsequently, the digital model is identified using recursive algorithms. Finally, a digital mixed linear quadratic regulator (LQR/H∞ control is adopted to stabilize the magnetic suspension system robustly. Simulation examples and a real-world example are provided to demonstrate the practicality of the study results. In this study, a digital magnetic suspension system model was developed and reviewed. In addition, equivalent state and output feedback controls for magnetic suspension systems were developed. Using this method, the controller design for magnetic suspension systems was simplified, which is the novel contribution of this study. In addition, this paper proposes a complete digital controller design procedure for magnetic suspension systems.
Digital control analysis and design of a field-sensed magnetic suspension system.
Li, Jen-Hsing; Chiou, Juing-Shian
2015-03-13
Magnetic suspension systems are mechatronic systems and crucial in several engineering applications, such as the levitation of high-speed trains, frictionless bearings, and wind tunnels. Magnetic suspension systems are nonlinear and unstable systems; therefore, they are suitable educational benchmarks for testing various modeling and control methods. This paper presents the digital modeling and control of magnetic suspension systems. First, the magnetic suspension system is stabilized using a digital proportional-derivative controller. Subsequently, the digital model is identified using recursive algorithms. Finally, a digital mixed linear quadratic regulator (LQR)/H∞ control is adopted to stabilize the magnetic suspension system robustly. Simulation examples and a real-world example are provided to demonstrate the practicality of the study results. In this study, a digital magnetic suspension system model was developed and reviewed. In addition, equivalent state and output feedback controls for magnetic suspension systems were developed. Using this method, the controller design for magnetic suspension systems was simplified, which is the novel contribution of this study. In addition, this paper proposes a complete digital controller design procedure for magnetic suspension systems.
Comparative study between double wish-bone and macpherson suspension system
Khan, Shoaib; Joshi, Yagvendra; Kumar, Ashutosh; Babu Vemuluri, Ramesh
2017-11-01
The present paper proposes comparative study between Double Wish-Bone and Macpherson Suspension system. The objective is achieved by using ANSYS simulation package. Dynamic and static loads are applied on the suspension systems. Various analysis such as Structural analysis with static as well as dynamic loading, Modal analysis and Transient analysis are carried out in order to study deflection, stress, frequency and strain of both the suspension systems and a thorough comparative study is accomplished.
ELECTRODYNAMICS OF TRANSMISSION AND LOSSES OF POWER IN THE DEVICES OF ELECTRIC TRACTION SYSTEMS
Directory of Open Access Journals (Sweden)
M. O. Kostin
2014-01-01
Full Text Available Purpose. Theoretical justification of the "field" approach (based on electromagnetic field to the transmission and losses of power in the devices of traction power supply systems and electric rolling stock. Methodology. The methods of electromagnetic field theory and, in particular, the theory and practice of electromagnetic energy transmission based on the concept of the Poynting vector and elements of the theory of propagation, reflection and refraction of plane electromagnetic waves were used. Findings. Theoretical studies of electromagnetic energy transmission from the traction substation to the electric rolling stock through dielectric (air surrounding traction network: between the contact wire and the rail were carried out. It is proposed strategic designing "squat" (low types of electric rolling stock. The components of electric energy flow through the roof of electric rolling stock and its frontal part of the body were estimated. This allows reliable etimating active power losses in electric traction system. To compensate the reactive power consumed by electric rolling stock, which is conditioned by standing waves, it is proposed (for extinction of the the last to develop and put in front of electric rolling stock the layer of particular environment with the necessary parameters. Originality. The "field" principle of the power transmission analysis and its losses arising in electric traction system was first proposed. The laws of motion of electromagnetic energy flows through the roof and the frontal part of the body of electric rolling stock were established. Practical value. An expression of the absolute value of the Poynting vector in the points of dielectric (air between the contact wire and the rail was obtained. This allows assessing the highest density of energy, which is transferred to the time unit and predicting the main dimensions of the unit of electric rolling stock. The energy indices of the roof of electric rolling stock
Molecular quantum electrodynamics
Craig, D P
1998-01-01
This systematic introduction to quantum electrodynamics focuses on the interaction of radiation with outer electrons and nuclei of atoms and molecules, answering the long-standing need of chemists and physicists for a comprehensive text on this highly specialized subject.Geared toward postgraduate students in the chemical sciences who require an understanding of quantum electrodynamics as applied to the interpretation of optical experiments on atoms and molecules, the text offers a detailed explanation of the quantum theory of electromagnetic radiation and its interaction with matter. It feat
Farzanehpour, Mehdi; Tokatly, Ilya; Nano-Bio Spectroscopy Group; ETSF Scientific Development Centre Team
2015-03-01
We present a rigorous formulation of the time-dependent density functional theory for interacting lattice electrons strongly coupled to cavity photons. We start with an example of one particle on a Hubbard dimer coupled to a single photonic mode, which is equivalent to the single mode spin-boson model or the quantum Rabi model. For this system we prove that the electron-photon wave function is a unique functional of the electronic density and the expectation value of the photonic coordinate, provided the initial state and the density satisfy a set of well defined conditions. Then we generalize the formalism to many interacting electrons on a lattice coupled to multiple photonic modes and prove the general mapping theorem. We also show that for a system evolving from the ground state of a lattice Hamiltonian any density with a continuous second time derivative is locally v-representable. Spanish Ministry of Economy and Competitiveness (Grant No. FIS2013-46159-C3-1-P), Grupos Consolidados UPV/EHU del Gobierno Vasco (Grant No. IT578-13), COST Actions CM1204 (XLIC) and MP1306 (EUSpec).
Active Electromechanical Suspension System for Planetary Rovers Project
National Aeronautics and Space Administration — Balcones Technologies, LLC proposes to adapt actively controlled suspension technology developed by The University of Texas at Austin Center for Electromechanics...
Estes, Robert D.
1987-01-01
An electrodynamic tether deployed from a satellite in low-Earth orbit can perform, if properly instrumented, as a partially self-powered generator of electromagnetic waves in the ULF/ELF band, potentially at power levels high enough to be of practical use. Two basic problems are examined. The first is that of the level of wave power that the system can be expected to generate in the ULF/ELF radiation band. The second major question is whether an electrodynamic tethered satellite system for transmitting waves can be made partially self-powering so that power requirements for drag compensation can be met within economical constraints of mass, cost, and complexity. The theoretical developments and the system applications study are presented. The basic design criteria, the drag-compensation method, the effects on the propagation paths from orbit to Earth surface of high-altitude nuclear debris patches, and the estimate of masses and sizes are covered. An outline of recommended analytical work, to be performed as a follow-on to the present study, is contained.
Stochastic inflationary scalar electrodynamics
Prokopec, T.; Tsamis, N.C.; Woodard, R.P.
2008-01-01
We stochastically formulate the theory of scalar quantum electrodynamics on a de Sitter background. This reproduces the leading infrared logarithms at each loop order. It also allows one to sum the series of leading infrared logarithms to obtain explicit, nonperturbative results about the late time
Causality in Classical Electrodynamics
Savage, Craig
2012-01-01
Causality in electrodynamics is a subject of some confusion, especially regarding the application of Faraday's law and the Ampere-Maxwell law. This has led to the suggestion that we should not teach students that electric and magnetic fields can cause each other, but rather focus on charges and currents as the causal agents. In this paper I argue…
Design and test of a novel magnetic lead screw for active suspension system in a vehicle
DEFF Research Database (Denmark)
Berg, Nick Ilsø; Holm, Rasmus Koldborg; Rasmussen, Peter Omand
2014-01-01
. Furthermore the Magnetic Lead Screw is introduced and its benefits when used with an active suspension system are discussed. Based on a model of a quarter car, the design specifications for the MLS active suspension system are found, which leads to a design study. The design study investigates the relation...
Improving the Dynamics of Suspension Bridges using Active Control Systems
DEFF Research Database (Denmark)
Thoft-Christensen, Palle
Improving the dynamics of suspension bridge using active control is discussed in this paper. The main dynamic problem with long suspension bridges is the aeroelastic phenomenon called flutter. Flutter oscillations of a bridge girder is a stability problem and the oscillations are perpendicular...
The Stiffness Characteristics Study on an Interconnected Anti-Rolling Suspension System
Hou, Youshan; Song, Huixin; Ma, Ming; Xiao, Jie; Zhao, Ning
The heavy-duty special vehicles easily roll during steering, anti-rolling technology becomes a critical technology to the heavy-duty vehicles. Aiming at the rolling problem of a full load heavy vehicle in the process of steering, an interconnected anti-rolling suspension system with adjustable damping was designed, the nonlinear stiffness mathematical model of interconnected anti-rolling suspension system was established. The stiffness characteristic was studied through digital simulation method, discussing the system parameter changes' affection on the stiffness performance of interconnected anti-rolling suspension system. The study results indicate that the interconnected anti-rolling suspension system betterly improves vehicles rolling resistance in contrast to the oil-gas mixed independent suspension, the study results provide theoretical basis for the anti-rolling's design of heavy-duty vehicles.
The Exact Linearization and LQR Control of Semiactive Connected Hydropneumatic Suspension System
Directory of Open Access Journals (Sweden)
Xuyang Cao
2015-01-01
Full Text Available Based on differential geometry theory, the nonlinear system of connected hydropneumatic suspension was transformed to a linear one. What is more, it realized the decoupling and inverter between the control variables and system outputs. With LQR (Linear Quadratic Regulator control theory, a semiactive system has been developed for connected hydropneumatic suspension in this paper. By AMESim/Simulink cosimulation, the results show that the semiactive connected hydropneumatic suspension decreases the vibration of upper vehicle quickly and reduces the impact acceleration strongly both in displacement and inroll angle. Moreover, the semiactive suspension could increase the suspension dynamic deflection, which would make the system reach balance quickly and keep small vibration amplitude under the effect of disturbance.
Electrodynamics an intensive course
Chaichian, Masud; Radu, Daniel; Tureanu, Anca
2016-01-01
This book is devoted to the fundamentals of classical electrodynamics, one of the most beautiful and productive theories in physics. A general survey on the applicability of physical theories shows that only few theories can be compared to electrodynamics. Essentially, all electric and electronic devices used around the world are based on the theory of electromagnetism. It was Maxwell who created, for the first time, a unified description of the electric and magnetic phenomena in his electromagnetic field theory. Remarkably, Maxwell’s theory contained in itself also the relativistic invariance of the special relativity, a fact which was discovered only a few decades later. The present book is an outcome of the authors’ teaching experience over many years in different countries and for different students studying diverse fields of physics. The book is intended for students at the level of undergraduate and graduate studies in physics, astronomy, engineering, applied mathematics and for researchers working ...
Theoretical physics 3 electrodynamics
Nolting, Wolfgang
2016-01-01
This textbook offers a clear and comprehensive introduction to electrodynamics, one of the core components of undergraduate physics courses. It follows on naturally from the previous volumes in this series. The first part of the book describes the interaction of electric charges and magnetic moments by introducing electro- and magnetostatics. The second part of the book establishes deeper understanding of electrodynamics with the Maxwell equations, quasistationary fields and electromagnetic fields. All sections are accompanied by a detailed introduction to the math needed. Ideally suited to undergraduate students with some grounding in classical and analytical mechanics, the book is enhanced throughout with learning features such as boxed inserts and chapter summaries, with key mathematical derivations highlighted to aid understanding. The text is supported by numerous worked examples and end of chapter problem sets. About the Theoretical Physics series Translated from the renowned and highly successful Germa...
Quantum mechanics and electrodynamics
Zamastil, Jaroslav
2017-01-01
This book highlights the power and elegance of algebraic methods of solving problems in quantum mechanics. It shows that symmetries not only provide elegant solutions to problems that can be solved exactly, but also substantially simplify problems that must be solved approximately. Furthermore, the book provides an elementary exposition of quantum electrodynamics and its application to low-energy physics, along with a thorough analysis of the role of relativistic, magnetic, and quantum electrodynamic effects in atomic spectroscopy. Included are essential derivations made clear through detailed, transparent calculations. The book’s commitment to deriving advanced results with elementary techniques, as well as its inclusion of exercises will enamor it to advanced undergraduate and graduate students.
Miller, Arthur I.
1995-10-01
Preface; Notes to the Preface; Acknowledgements; Notes to the Reader; 1. From quantum mechanics toward quantum electrodynamics; 1.1. Niels Bohr's atomic theory, 1913-23; 1.2. The coupling mechanism; 1.3. Virtual oscillators; 1.4. Quantum mechanics versus wave mechanics; 1.5. Intrinsic symmetry; 1.6. Transformation theory and word meanings; 1.7. The uncertainty principle paper; 1.8. Complementarity; 1.9. Conclusion; 2. Second quantization; 2.1. Jordan's 1926 results; 2.2. Dirac's quantization of the electromagnetic field; 2.3. Jordan's quantization of bosons and fermions; 2.4. Jordan and Pauli's relativistic quantization of charge-free electromagnetic fields; 3. Photons and relativistic electrons; 3.1. The Dirac equation; 3.2. Heisenberg and Pauli on quantum electrodynamics, 1929; 3.3. The electron's mass in classical and quantum electrodynamics; 3.4. From negative energy states to positrons; 4. Quantum electrodynamics; 4.1. Measurement problems in a quantum theory of the electromagnetic field; 4.2. Heisenberg's first attempt at a fundamental length; 4.3. An 'intuitive' time-dependent perturbation theory; 4.4. Multiple-time theory, hole theory and second quantization; 4.5. Dirac at Solvay in 1933: vacuum polarization; 4.6. The Heisenberg-Pauli collaboration on positron theory; 4.7. The subtraction physics; 4.7.1. Dirac defines the problem; 4.7.2. Weisskopf's calculation of the electron's self-energy in hole theory; 4.7.3. Beyond the correspondence principle; 4.7.4. Heisenberg's formulation of subtraction physics; 4.7.5. Some reactions to Heisenberg; 4.8. Quantization of the Klein-Gordon equation: the Pauli-Weisskopf statistics.
Passivity-Based Control of a Rigid Electrodynamic Tether
DEFF Research Database (Denmark)
Larsen, Martin Birkelund; Blanke, Mogens
2011-01-01
parts, a feedback connection, which stabilizes the open-loop equilibrium, and a bias term, which is able to drive the system trajectory away from this equilibrium, a feature necessary to obtain orbit adjustment capabilities of the electrodynamic tether. It is then shown how the periodic solutions......Electrodynamic tethers provide actuation for performing orbit correction of spacecrafts. When an electrodynamic tether system is orbiting the Earth in an inclined orbit, periodic changes in the magnetic field result in a family of unstable periodic solutions in the attitude motion. This paper shows...
Control system synthesis of seat suspensions used for protection of working machine operators
Maciejewski, Igor; Krzyzynski, Tomasz; Meyer, Lutz
2014-11-01
This paper deals with a novel approach to the control system synthesis of semi-active and active seat suspensions. An original control strategy is discussed in order to increase the effectiveness of vibration isolators used for protection of working machines operators. As an example of the proposed control system design, the suspension systems with a magneto-rheological damper and a pneumatic spring are investigated using a laboratory experimental set-up with seated humans.
Use of MBS (ADAMS / CAR software in simulations of vehicle suspension systems
Directory of Open Access Journals (Sweden)
Łukasz KONIECZNY
2014-03-01
Full Text Available The results of the examination of a vehicle suspension system in the plate position are presented in the paper. The model vehicle is a Fiat Seicento with front independent suspension, McPherson type, with the steering system and with the semi-trailing arm in the rear suspension. Identification of the model was made by comparing the simulation results with the results from the test stand. A multibody model of the vehicle will be used in studies of the impact of shock absorber technical conditions on the dynamics of automotive vehicles.
Active Control of Nonlinear Suspension System Using Modified Adaptive Supertwisting Controller
Directory of Open Access Journals (Sweden)
Jagat J. Rath
2015-01-01
Full Text Available The suspension system is faced with nonlinearities from the spring, damper, and external excitations from the road surface. The objective of any control action provided to the suspension is to improve ride comfort while ensuring road holding for the vehicle. In this work, a robust higher order sliding mode algorithm combining the merits of the modified supertwisting algorithm and the adaptive supertwisting algorithm has been proposed for the nonlinear active suspension system. The proposed controller is robust to linearly growing perturbations and bounded uncertainties. Simulations have been performed for different classes of road excitations and the results are presented.
Adaptive tracking control for active suspension systems with non-ideal actuators
Pan, Huihui; Sun, Weichao; Jing, Xingjian; Gao, Huijun; Yao, Jianyong
2017-07-01
As a critical component of transportation vehicles, active suspension systems are instrumental in the improvement of ride comfort and maneuverability. However, practical active suspensions commonly suffer from parameter uncertainties (e.g., the variations of payload mass and suspension component parameters), external disturbances and especially the unknown non-ideal actuators (i.e., dead-zone and hysteresis nonlinearities), which always significantly deteriorate the control performance in practice. To overcome these issues, this paper synthesizes an adaptive tracking control strategy for vehicle suspension systems to achieve suspension performance improvements. The proposed control algorithm is formulated by developing a unified framework of non-ideal actuators rather than a separate way, which is a simple yet effective approach to remove the unexpected nonlinear effects. From the perspective of practical implementation, the advantages of the presented controller for active suspensions include that the assumptions on the measurable actuator outputs, the prior knowledge of nonlinear actuator parameters and the uncertain parameters within a known compact set are not required. Furthermore, the stability of the closed-loop suspension system is theoretically guaranteed by rigorous mathematical analysis. Finally, the effectiveness of the presented adaptive control scheme is confirmed using comparative numerical simulation validations.
Solution or suspension - Does it matter for lipid based systems?
DEFF Research Database (Denmark)
Larsen, A T; Holm, R; Müllertz, A
2017-01-01
In this study, the potential of co-administering an aqueous suspension with a placebo lipid vehicle, i.e. chase dosing, was investigated in rats relative to the aqueous suspension alone or a solution of the drug in the lipid vehicle. The lipid investigated in the present study was Labrafil M2125CS...... or a lower solubility in the colloidal structures formed during digestion, but other mechanisms may also be involved. The study thereby supported the potential of chase dosing as a potential dosing regimen in situations where it is beneficial to have a drug in the solid state, e.g. due to chemical stability...
Effects of the Truck Suspension System on Animal Welfare, Carcass and Meat Quality Traits in Pigs
Dalla Costa, Filipe Antônio; Lopes, Letícia S.; Dalla Costa, Osmar Antônio
2017-01-01
Simple Summary Transportation is a complex stressor in which animals are exposed to a series negatively stimuli, such as vibration, new environmental conditions, variation in temperature and humidity, social mixing, noises among other poor factors, which can result in welfare problems and economic losses such as increased skin lesions, poorer pork quality traits. Transport stress may be reduced through a vehicle suspension system that provides a much smoother ride during transport, and consequently is less aversive to pigs. However, air suspension systems are more expensive and have bigger maintenance costs. This increase in transportation cost must be supported by the benefits from improvements in quality of freight transport; otherwise, the truckers will be paying unnecessarily for a similar or equivalent ride quality. Thus, finishing pigs were assessed after transport to slaughter by the same two double-decked trucks using two types of commercial vehicle suspension, leaf-spring and air suspension, to compare effects on blood cortisol and lactate at exsanguination, behaviour during lairage, and carcass (skin lesions) and pork quality traits. The use of leaf-spring suspension system negatively affects the welfare of pigs due to the increased carcass damage and resulted in poorer pork quality traits. Abstract The objective of this study was to assess the effects of two types of commercial suspension (leaf-spring (LS) vs. air suspension (AS)) installed on two similar double-decked trucks on blood cortisol and lactate concentration, lairage behavior, carcass skin lesions and pork quality traits of 120 crossbred pigs. The suspension type neither influenced pig behaviour in lairage nor blood cortisol and lactate concentrations (p > 0.10). However, when compared with the AS suspension system, the use of LS increased the number of skin lesions in the back and thigh (p = 0.03 and p = 0.01, respectively) and produced thigh with lower pHu (p meat quality traits of pigs
Practical quantum electrodynamics
Gingrich, Douglas M
2006-01-01
Taking a heuristic approach to relativistic quantum mechanics, Practical Quantum Electrodynamics provides a complete introduction to the theory, methodologies, and calculations used for explaining the physical interaction of charged particles. This book combines the principles of relativity and quantum theory necessary for performing the calculations of the electromagnetic scattering of electrons and positrons and the emission and absorption of photons. Beginning with an introduction of the wave equations for spin-0 and spin-1/2 particles, the author compares and contrasts the relativistic an
Qazi, Abroon Jamal; de Silva, Clarence W.
2014-01-01
This paper uses a quarter model of an automobile having passive and semiactive suspension systems to develop a scheme for an optimal suspension controller. Semi-active suspension is preferred over passive and active suspensions with regard to optimum performance within the constraints of weight and operational cost. A fuzzy logic controller is incorporated into the semi-active suspension system. It is able to handle nonlinearities through the use of heuristic rules. Particle swarm optimization (PSO) is applied to determine the optimal gain parameters for the fuzzy logic controller, while maintaining within the normalized ranges of the controller inputs and output. The performance of resulting optimized system is compared with different systems that use various control algorithms, including a conventional passive system, choice options of feedback signals, and damping coefficient limits. Also, the optimized semi-active suspension system is evaluated for its performance in relation to variation in payload. Furthermore, the systems are compared with respect to the attributes of road handling and ride comfort. In all the simulation studies it is found that the optimized fuzzy logic controller surpasses the other types of control. PMID:24574868
Qazi, Abroon Jamal; de Silva, Clarence W; Khan, Afzal; Khan, Muhammad Tahir
2014-01-01
This paper uses a quarter model of an automobile having passive and semiactive suspension systems to develop a scheme for an optimal suspension controller. Semi-active suspension is preferred over passive and active suspensions with regard to optimum performance within the constraints of weight and operational cost. A fuzzy logic controller is incorporated into the semi-active suspension system. It is able to handle nonlinearities through the use of heuristic rules. Particle swarm optimization (PSO) is applied to determine the optimal gain parameters for the fuzzy logic controller, while maintaining within the normalized ranges of the controller inputs and output. The performance of resulting optimized system is compared with different systems that use various control algorithms, including a conventional passive system, choice options of feedback signals, and damping coefficient limits. Also, the optimized semi-active suspension system is evaluated for its performance in relation to variation in payload. Furthermore, the systems are compared with respect to the attributes of road handling and ride comfort. In all the simulation studies it is found that the optimized fuzzy logic controller surpasses the other types of control.
Directory of Open Access Journals (Sweden)
Abroon Jamal Qazi
2014-01-01
Full Text Available This paper uses a quarter model of an automobile having passive and semiactive suspension systems to develop a scheme for an optimal suspension controller. Semi-active suspension is preferred over passive and active suspensions with regard to optimum performance within the constraints of weight and operational cost. A fuzzy logic controller is incorporated into the semi-active suspension system. It is able to handle nonlinearities through the use of heuristic rules. Particle swarm optimization (PSO is applied to determine the optimal gain parameters for the fuzzy logic controller, while maintaining within the normalized ranges of the controller inputs and output. The performance of resulting optimized system is compared with different systems that use various control algorithms, including a conventional passive system, choice options of feedback signals, and damping coefficient limits. Also, the optimized semi-active suspension system is evaluated for its performance in relation to variation in payload. Furthermore, the systems are compared with respect to the attributes of road handling and ride comfort. In all the simulation studies it is found that the optimized fuzzy logic controller surpasses the other types of control.
Operational Modal Analysis and the Performance Assessment of Vehicle Suspension Systems
Directory of Open Access Journals (Sweden)
L. Soria
2012-01-01
Full Text Available Comfort, road holding and safety of passenger cars are mainly influenced by an appropriate design of suspension systems. Improvements of the dynamic behaviour can be achieved by implementing semi-active or active suspension systems. In these cases, the correct design of a well-performing suspension control strategy is of fundamental importance to obtain satisfying results. Operational Modal Analysis allows the experimental structural identification in those that are the real operating conditions: Moving from output-only data, leading to modal models linearised around the more interesting working points and, in the case of controlled systems, providing the needed information for the optimal design and verification of the controller performance. All these characters are needed for the experimental assessment of vehicle suspension systems. In the paper two suspension architectures are considered equipping the same car type. The former is a semi-active commercial system, the latter a novel prototypic active system. For the assessment of suspension performance, two different kinds of tests have been considered, proving ground tests on different road profiles and laboratory four poster rig tests. By OMA-processing the signals acquired in the different testing conditions and by comparing the results, it is shown how this tool can be effectively utilised to verify the operation and the performance of those systems, by only carrying out a simple, cost-effective road test.
Farjoud, Alireza
2011-01-01
This research undertakes the problem of vibration control of vehicular and structural systems using intelligent materials and controllable devices. Advanced modeling tools validated with experimental test data are developed to help with understanding the fundamentals as well as advanced and novel applications of smart and conventional suspension systems. The project can be divided into two major parts. The first part is focused on development of novel smart suspensions using Magneto-Rheolo...
Magnetic suspension motorized spindle-cutting system dynamics analysis and vibration control review
Directory of Open Access Journals (Sweden)
Xiaoli QIAO
2016-10-01
Full Text Available The performance of high-speed spindle directly determines the development of high-end machine tools. The cutting system's dynamic characteristics and vibration control effect are inseparable with the performance of the spindle,which influence each other, synergistic effect together the cutting efficiency, the surface quality of the workpiece and tool life in machining process. So, the review status on magnetic suspension motorized spindle, magnetic suspension bearing-flexible rotor system dynamics modeling theory and status of active control technology of flexible magnetic suspension motorized spindle rotor vibration are studied, and the problems which present in the magnetic suspension flexible motorized spindle rotor systems are refined, and the development trend of magnetic levitation motorized spindle and the application prospect is forecasted.
Lozia, Z.; Zdanowicz, P.
2016-09-01
The paper presents the optimization of damping in the passive suspension system of a motor vehicle moving rectilinearly with a constant speed on a road with rough surface of random irregularities, described according to the ISO classification. Two quarter-car 2DoF models, linear and non-linear, were used; in the latter, nonlinearities of spring characteristics of the suspension system and pneumatic tyres, sliding friction in the suspension system, and wheel lift-off were taken into account. The smoothing properties of vehicle tyres were represented in both models. The calculations were carried out for three roads of different quality, with simulating four vehicle speeds. Statistical measures of vertical vehicle body vibrations and of changes in the vertical tyre/road contact force were used as the criteria of system optimization and model comparison. The design suspension displacement limit was also taken into account. The optimum suspension damping coefficient was determined and the impact of undesirable sliding friction in the suspension system on the calculation results was estimated. The results obtained make it possible to evaluate the impact of the structure and complexity of the model used on the results of the optimization.
Ride performance of a high speed rail vehicle using controlled semi active suspension system
Sharma, Sunil Kumar; Kumar, Anil
2017-05-01
The rail-wheel interaction in a rail vehicle running at high speed results in large amplitude vibration of carbody that deteriorates the ride comfort of travellers. The role of suspension system is crucial to provide an acceptable level of ride performance. In this context, an existing rail vehicle is modelled in vertical, pitch and roll motions of carbody and bogies. Additionally, nonlinear stiffness and damping parameters of passive suspension system are defined based on experimental data. In the secondary vertical suspension system, a magneto-rheological (MR) damper is included to improve the ride quality and comfort. The parameters of MR damper depend on the current, amplitude and frequency of excitations. At different running speeds, three semi-active suspension strategies with MR damper are analysed for periodic track irregularity and the resulting performance indices are juxtaposed with the nonlinear passive suspension system. The disturbance rejection and force tracking damper controller algorithms are applied to control the desired force of MR damper. This study reveals that the vertical vibrations of a vehicle can be reduced significantly by using the proposed semi-active suspension strategies. Moreover, it naturally results in improved ride quality and passenger’s comfort in comparison to the existing passive system.
Groom, Nelson J.
1993-01-01
A decoupled control approach for a Large Gap Magnetic Suspension System (LGMSS) is presented. The control approach is developed for an LGMSS which provides five degree-of-freedom control of a cylindrical suspended element that contains a core composed of permanent magnet material. The suspended element is levitated above five electromagnets mounted in a planar array. Numerical results are obtained by using the parameters of the Large Angle Magnetic Suspension Test Fixture (LAMSTF) which is a small scale laboratory model LGMSS.
Welch, Sharon S.; Clemmons, James I., Jr.; Shelton, Kevin J.; Duncan, Walter C.
1994-01-01
An optical measurement system (OMS) has been designed and tested for a large gap magnetic suspension system (LGMSS). The LGMSS will be used to study control laws for magnetic suspension systems for vibration isolation and pointing applications. The LGMSS features six degrees of freedom and consists of a planar array of electromagnets that levitate and position a cylindrical element containing a permanent magnet core. The OMS provides information on the location and orientation of the element to the LGMSS control system to stabilize suspension. The hardware design of this optical sensing system and the tracking algorithms are presented. The results of analyses and experiments are presented that define the accuracy limits of the optical sensing system and that quantify the errors in position estimation.
Eringen, A C
1990-01-01
The electrodynamics of continua is a branch ofthe physical sciences concerned with the interaction of electromagnetic fields with deformable bodies. De formable bodies are considered to be continua endowed with continuous distributions of mass and charge. The theory of electromagnetic continua is concerned with the determination of deformations, motions, stress, and elec tromagnetic fields developed in bodies upon the applications of external loads. External loads may be of mechanical origin (e.g., forces, couples, constraints placed on the surface of the body, and initial and boundary conditions arising from thermal and other changes) and/or electromagnetic origin (e.g., electric, magnetic, and current fields). Because bodies of different constitutions respond to external stimuli in a different way, it is imperative to characterize properly the response functions relevant to a given class of continua. This is done by means of the constitutive theory. For example, an elastic dielectric responds to electro...
Electrodynamics of Radiating Charges
Directory of Open Access Journals (Sweden)
Øyvind Grøn
2012-01-01
Full Text Available The theory of electrodynamics of radiating charges is reviewed with special emphasis on the role of the Schott energy for the conservation of energy for a charge and its electromagnetic field. It is made clear that the existence of radiation from a charge is not invariant against a transformation between two reference frames that has an accelerated motion relative to each other. The questions whether the existence of radiation from a uniformly accelerated charge with vanishing radiation reaction force is in conflict with the principle of equivalence and whether a freely falling charge radiates are reviewed. It is shown that the resolution of an electromagnetic “perpetuum mobile paradox” associated with a charge moving geodetically along a circular path in the Schwarzschild spacetime requires the so-called tail terms in the equation of motion of a charged particle.
Magnetic Levitation Experiments with the Electrodynamic Wheel
Cordrey, Vincent; Gutarra-Leon, Angel; Gaul, Nathan; Majewski, Walerian
Our experiments explored inductive magnetic levitation using circular Halbach arrays with the strong variable magnetic field on the outer rim of the ring. Such a system is usually called an Electrodynamic Wheel (EDW). Rotating this wheel around a horizontal axis above a flat conducting surface should induce eddy currents in said surface through the variable magnetic flux. The eddy currents produce, in turn, their own magnetic fields which interact with the magnets of the EDW. We constructed two Electrodynamic Wheels with different diameters and demonstrated that the magnetic interactions produce both lift and drag forces on the EDW which can be used for levitation and propulsion of the EDW. The focus of our experiments is the direct measurement of lift and drag forces to compare with theoretical models using wheels of two different radii. Supported by Grants from the Virginia Academy of Science, Society of Physics Students, Virginia Community College System, and the NVCC Educational Foundation.
A semi-active control suspension system for railway vehicles with magnetorheological fluid dampers
Wei, Xiukun; Zhu, Ming; Jia, Limin
2016-07-01
The high-speed train has achieved great progress in the last decades. It is one of the most important modes of transportation between cities. With the rapid development of the high-speed train, its safety issue is paid much more attention than ever before. To improve the stability of the vehicle with high speed, extra dampers (i.e. anti-hunting damper) are used in the traditional bogies with passive suspension system. However, the curving performance of the vehicle is undermined due to the extra lateral force generated by the dampers. The active suspension systems proposed in the last decades attempt to solve the vehicle steering issue. However, the active suspension systems need extra actuators driven by electrical power or hydraulic power. There are some implementation and even safety issues which are not easy to be overcome. In this paper, an innovative semi-active controlled lateral suspension system for railway vehicles is proposed. Four magnetorheological fluid dampers are fixed to the primary suspension system of each bogie. They are controlled by online controllers for enhancing the running stability on the straight track line on the one hand and further improving the curving performance by controlling the damper force on the other hand. Two control strategies are proposed in the light of the pure rolling concept. The effectiveness of the proposed strategies is demonstrated by SIMPACK and Matlab co-simulation for a full railway vehicle with two conventional bogies.
DESIGN AND APPLICATION OF MAGNETIC BEARING SUSPENSION SYSTEM IN A THREE PHASE INDUCTION MOTOR
Directory of Open Access Journals (Sweden)
Osman GÜRDAL
1998-03-01
Full Text Available The current popularity of suspension and levitation stems no doubt the possibilities in high-speed ground transportation schemes. Although these are both challenging and exciting, there is considerable scope for application of suspension techniques to achieving frictionless bearing. The requirement in this case is often for close tolerances, low power consumption, small airgaps and ingeneral, compactness. Thus, magnetic suspension using DC electromagnets schemes have received more attention than the other techniques of repulsion levitation. Proposed prototype system consists of a conventional stator and its rotor without iron core, set of electromagnets for suspension of rotor shaft and set of compensation circuits feedbacked by optical-transducers. Prototyped system is aimed as a laboratory demonstration tool so there is no challenging to exceed the speeds of 1500 rev/min that is the speed of motor with mechanical bearings. Magnetic bearing suspension system provides a high impact visual demonstration of many principles in undergraduate educational programs in electrical education, e.g., electromagnetic design, PD controlled compensation of a unstable control system and power amplifier design. The system is capable of giving a good comparison between mechanical and magnetic bearing up to speeds 350 rev/min. Power losses without load show about 15% reduction with magnetic bearing. The noise of the motor is also decreased to a low level.
Electrodynamic Arrays Having Nanomaterial Electrodes
Trigwell, Steven (Inventor); Biris, Alexandru S. (Inventor); Calle, Carlos I. (Inventor)
2013-01-01
An electrodynamic array of conductive nanomaterial electrodes and a method of making such an electrodynamic array. In one embodiment, a liquid solution containing nanomaterials is deposited as an array of conductive electrodes on a substrate, including rigid or flexible substrates such as fabrics, and opaque or transparent substrates. The nanomaterial electrodes may also be grown in situ. The nanomaterials may include carbon nanomaterials, other organic or inorganic nanomaterials or mixtures.
EMC Test Report Electrodynamic Dust Shield
Carmody, Lynne M.; Boyette, Carl B.
2014-01-01
This report documents the Electromagnetic Interference E M I evaluation performed on the Electrodynamic Dust Shield (EDS) which is part of the MISSE-X System under the Electrostatics and Surface Physics Laboratory at Kennedy Space Center. Measurements are performed to document the emissions environment associated with the EDS units. The purpose of this report is to collect all information needed to reproduce the testing performed on the Electrodynamic Dust Shield units, document data gathered during testing, and present the results. This document presents information unique to the measurements performed on the Bioculture Express Rack payload; using test methods prepared to meet SSP 30238 requirements. It includes the information necessary to satisfy the needs of the customer per work order number 1037104. The information presented herein should only be used to meet the requirements for which it was prepared.
Chiang, Mao-Hsiung; Sung, Yung-Ching; Liu, Han-Hsiang
2016-01-01
Suspension systems are used to diminish the vibration of vehicles. The hydraulic dampers in conventional suspension systems are mainly designed with the orifices of the piston; however, the vibration energy will be transferred into waste heat. In recent years, conventional vehicles with internal combustion engines and hybrid vehicles are used commonly. However, with the gradual depletion of fossil fuels, electric vehicles are developing. For this reason, the research focuses on recycling ener...
Very low frequency suspension systems for dynamic testing. [of flexible spacecraft structures
Kienholz, David A.; Crawley, Edward F.; Harvey, T. Jeffrey
1989-01-01
Specifications for a Space Station suspension system which can provide rigid-body translation frequencies on the order of 0.1-0.2 Hz for a 50-foot payload weighing about 3400 lb and having a number of highly flexible appendages are discussed. Two suspension devices are considered, an all-mechanical passive device based on coil springs and a device using a combination of a passive pneumatic system and an active electromagnetic system. Test results show that both devices meet the initial requirements.
Directory of Open Access Journals (Sweden)
J. J. Rath
2014-01-01
Full Text Available The estimation of road excitation profile is important for evaluation of vehicle stability and vehicle suspension performance for autonomous vehicle control systems. In this work, the nonlinear dynamics of the active automotive system that is excited by the unknown road excitation profile are considered for modeling. To address the issue of estimation of road profile, we develop an adaptive supertwisting observer for state and unknown road profile estimation. Under Lipschitz conditions for the nonlinear functions, the convergence of the estimation error is proven. Simulation results with Ford Fiesta MK2 demonstrate the effectiveness of the proposed observer for state and unknown input estimation for nonlinear active suspension system.
Robust finite-time tracking control for nonlinear suspension systems via disturbance compensation
Pan, Huihui; Jing, Xingjian; Sun, Weichao
2017-05-01
This paper focuses on the finite-time tracking control with external disturbance for active suspension systems. In order to compensate unknown disturbance efficiently, a disturbance compensator with finite-time convergence property is studied. By analyzing the discontinuous phenomenon of classical disturbance compensation techniques, this study presents a simple approach to construct a continuous compensator satisfying the finite-time disturbance rejection performance. According to the finite-time separation principle, the design procedures of the nominal controller for the suspension system without disturbance and the disturbance compensator can be implemented in a completely independent manner. Therefore, the overall control law for the closed-loop system is continuous, which offers some distinct advantages over the existing discontinuous ones. From the perspective of practical implementation, the continuous controller can avoid effectively the unexpected chattering in active suspension control. Comparative experimental results are presented and discussed to illustrate the advantage and effectiveness of the proposed control strategy.
The Design and Simulation of the Modular Vehicle Air Suspension Height Control System Based on ECAS
Directory of Open Access Journals (Sweden)
Yang Peigang
2014-02-01
Full Text Available Based on ECAS, this paper intended to develop a modular air suspension height control system with WABCO4728800010 two-position three way solenoid valves and Free scale MC9S12D64 microprocessor as its core components. And a simulation test was conducted in MATLAB/Simulink environment. The air suspension height control strategy of this system was divided into four modules: start control module, dynamic adjustment module, manual adjustment module and errors adjustment module, which were controlled by module select switch. Simulation tests indicated that the air suspension height control strategy is featured by its logical control accuracy and debug convenience, and the modular design greatly reduced the system complexity and software development cycle and costs as well.
Sky-Hook Control and Kalman Filtering in Nonlinear Model of Tracked Vehicle Suspension System
Directory of Open Access Journals (Sweden)
Jurkiewicz Andrzej
2017-09-01
Full Text Available The essence of the undertaken topic is application of the continuous sky-hook control strategy and the Extended Kalman Filter as the state observer in the 2S1 tracked vehicle suspension system. The half-car model of this suspension system consists of seven logarithmic spiral springs and two magnetorheological dampers which has been described by the Bingham model. The applied continuous sky-hook control strategy considers nonlinear stiffness characteristic of the logarithmic spiral springs. The control is determined on estimates generated by the Extended Kalman Filter. Improve of ride comfort is verified by comparing simulation results, under the same driving conditions, of controlled and passive vehicle suspension systems.
2001-01-16
This report was prepared in order to document the findings of a one year environmental and hydrographic survey program conducted as part of the Air GuardTM Pneumatic Sediment Suspension System installation at IMTT in Bayonne. This system was installe...
Directory of Open Access Journals (Sweden)
Chen Qiang
2017-01-01
Full Text Available Permanent magnetic-electromagnetic hybrid suspension system can effectively reduce energy consumption and heat release of the system, but also increase the difficulty of suspension control because of the existence of permanent magnets. The traditional current feedback control method is not conducive to the stability of the system and is difficult to debug. In this paper, the models of permanent magnetic-electromagnetic hybrid suspension system based on current feedback and magnetic flux density feedback are established. The effects of current feedback and magnetic flux density feedback on the stability of the system are analyzed in theory and the advantages of flux density feedback are pointed out. The model of magnet flux feedback is simple and it can overcome the disadvantages of current feedback, which is beneficial to the stability of the system. The magnetic flux density feedback control of permanent magnetic-electromagnetic hybrid suspension system is realized by simulation and experiment. Control system performs well and is easy to debug.
Eringen, A C
1990-01-01
This is the second volume of a two-volume set presenting a unified approach to the electrodynamics of continua, based on the principles of contemporary continuum of physics. The first volume was devoted mainly to the development of the theory and applications to deformable solid media. This volume extends the developments of the first volume to richer and newer grounds. It contains discussions on fluid media, magnetohydrodynamics, eletrohydrodynamics and media with more complicated structures. With the discussion, in the last two chapters, of memory-dependent materials and non-local E-M theory, the authors account for the nonlocal effects arising from motions and fields of material points at past times and at spatially distant points. This discussion is included here to stimulate further research in these important fields, which are presently in development stages. The second volume is self-contained and can be studied without the help of volume I. A section summarizing the constitutive equations and the unde...
Effects of the Truck Suspension System on Animal Welfare, Carcass and Meat Quality Traits in Pigs
Directory of Open Access Journals (Sweden)
Filipe Antônio Dalla Costa
2017-01-01
Full Text Available The objective of this study was to assess the effects of two types of commercial suspension (leaf-spring (LS vs. air suspension (AS installed on two similar double-decked trucks on blood cortisol and lactate concentration, lairage behavior, carcass skin lesions and pork quality traits of 120 crossbred pigs. The suspension type neither influenced pig behaviour in lairage nor blood cortisol and lactate concentrations (p > 0.10. However, when compared with the AS suspension system, the use of LS increased the number of skin lesions in the back and thigh (p = 0.03 and p = 0.01, respectively and produced thigh with lower pHu (p < 0.001 and yellower colour (higher b* value; p = 0.03, and paler back muscles (subjective colour; p < 0.05, with a tendency to lower pH (p = 0.06. Therefore, the use air suspension system can improve carcass and meat quality traits of pigs transported to slaughter.
A new pneumatic suspension system with independent stiffness and ride height tuning capabilities
Yin, Zhihong; Khajepour, Amir; Cao, Dongpu; Ebrahimi, Babak; Guo, Konghui
2012-12-01
This paper introduces a new pneumatic spring for vehicle suspension systems, allowing independent tuning of stiffness and ride height according to different vehicle operating conditions and driver preferences. The proposed pneumatic spring comprises a double-acting pneumatic cylinder, two accumulators and a tuning subsystem. This paper presents a detailed description of the pneumatic spring and its working principle. The mathematical model is established based on principles of thermo and fluid dynamics. An experimental setup has been designed and fabricated for testing and evaluating the proposed pneumatic spring. The analytical and experimental results confirm the capability of the new pneumatic spring system for independent tuning of stiffness and ride height. The mathematical model is verified and the capabilities of the pneumatic spring are further proved. It is concluded that this new pneumatic spring provides a more flexible suspension design alternative for meeting various conflicting suspension requirements for ride comfort and performance.
Decoupling Control Design for the Module Suspension Control System in Maglev Train
Directory of Open Access Journals (Sweden)
Guang He
2015-01-01
Full Text Available An engineering oriented decoupling control method for the module suspension system is proposed to solve the coupling issues of the two levitation units of the module in magnetic levitation (maglev train. According to the format of the system transfer matrix, a modified adjoint transfer matrix based decoupler is designed. Then, a compensated controller is obtained in the light of a desired close loop system performance. Optimization between the performance index and robustness index is also carried out to determine the controller parameters. However, due to the high orders and complexity of the obtained resultant controller, model reduction method is adopted to get a simplified controller with PID structure. Considering the modeling errors of the module suspension system as the uncertainties, experiments have been performed to obtain the weighting function of the system uncertainties. By using this, the robust stability of the decoupled module suspension control system is checked. Finally, the effectiveness of the proposed decoupling design method is validated by simulations and physical experiments. The results illustrate that the presented decoupling design can result in a satisfactory decoupling and better dynamic performance, especially promoting the reliability of the suspension control system in practical engineering application.
Time Varying Behavior of the Loudspeaker Suspension
DEFF Research Database (Denmark)
Pedersen, Bo Rohde; Agerkvist, Finn T.
2007-01-01
The suspension part of the electrodynamic loudspeaker is often modelled as a simple linear spring with viscous damping, however the dynamic behaviour of the suspension is much more complicated than predicted by such a simple model. At higher levels the compliance becomes non-linear and often...... changes during excitation at high levels. This paper investigates how the compliance of the suspension depends on the excitation, i.e. level and frequency content. The measurements are compared with other known measurement methods of the suspension....
Design a PID Controller for Suspension System by Back Propagation Neural Network
Directory of Open Access Journals (Sweden)
M. Heidari
2013-01-01
Full Text Available This paper presents a neural network for designing of a PID controller for suspension system. The suspension system, designed as a quarter model, is used to simplify the problem to one-dimensional spring-damper system. In this paper, back propagation neural network (BPN has been used for determining the gain parameters of a PID controller for suspension system of automotive. The BPN method is found to be the most accurate and quick. The best results were obtained by the BPN by Levenberg-Marquardt algorithm training with 10 neurons in the one hidden layer. Training was continued until the mean squared error is less than . Desired error value was achieved in the BPN, and the BPN was tested with both data used and not used for training. By training of this network, it is possible to estimate the gain parameters of PID controller at any condition. The inputs of network are automotive velocity, overshoot percentage, settling time, and steady state error of suspension system response. Also outputs of the net are the gain parameters of PID controller. Resultant low relative error value of the ANN model indicates the usability of the BPN in this area.
Emergence of Supersymmetric Quantum Electrodynamics.
Jian, Shao-Kai; Lin, Chien-Hung; Maciejko, Joseph; Yao, Hong
2017-04-21
Supersymmetric (SUSY) gauge theories such as the minimal supersymmetric standard model play a fundamental role in modern particle physics, but have not been verified so far in nature. Here, we show that a SUSY gauge theory with dynamical gauge bosons and fermionic gauginos emerges naturally at the pair-density-wave (PDW) quantum phase transition on the surface of a correlated topological insulator hosting three Dirac cones, such as the topological Kondo insulator SmB_{6}. At the quantum tricritical point between the surface Dirac semimetal and nematic PDW phases, three massless bosonic Cooper pair fields emerge as the superpartners of three massless surface Dirac fermions. The resulting low-energy effective theory is the supersymmetric XYZ model, which is dual by mirror symmetry to N=2 supersymmetric quantum electrodynamics in 2+1 dimensions, providing a first example of emergent supersymmetric gauge theory in condensed matter systems. Supersymmetry allows us to determine certain critical exponents and the optical conductivity of the surface states at the strongly coupled tricritical point exactly, which may be measured in future experiments.
Taylor, N J; Edwards, M; Kiernan, R J; Davey, C D; Blakesley, D; Henshaw, G G
1996-06-01
Procedures for the production of a new and highly prolific embryogenic culture system have been developed in cassava. The importance of the basal salts and type of auxin in controlling the development of cassava embryogenic tissues has been demonstrated, with culture on Gresshoff and Doy basal medium in the presence of 4-amino-3,5,6,trichloro-picolinic acid (picloram) inducing the formation of friable embryogenic callus from which highly totipotent embryogenic suspension cultures could be established. Plants have been regenerated from these cultures. The availability of embryogenic suspension cultures is considered to have important implications for the application of genetic transformation and other biotechnologies in the agronomic improvement of cassava.
A forecast of new test capabilities using Magnetic Suspension and Balance Systems
Lawing, Pierce L.; Johnson, William G., Jr.
1988-01-01
This paper outlines the potential of Magnetic Suspension and Balance System (MSBS) technology to solve existing problems related to support interference in wind tunnels. Improvement of existing test techniques and exciting new techniques are envisioned as a result of applying MSBS. These include improved data accuracy, dynamic stability testing, two-body/stores release testing, and pilot/designer-in-the-loop tests. It also discusses the use of MSBS for testing exotic configurations such as hybrid hypersonic vehicles. A new facility concept that combines features of ballistic tubes, magnetic suspension, and cryogenic tunnels is described.
Groom, Nelson J.; Britcher, Colin P.
1991-01-01
Mathematical models of a 5, 6, 7, and 8 coil large gap magnetic suspension system (MSDS) are presented. Some of the topics covered include: force and torque equations, reduction of state-space form, natural modes, origins of modes, effect of rotation in azimuth (yaw), future work, and n-coil ring conclusions.
Lin, Yuqun
2014-01-01
The performance of the suspension system is one of the most important factors in the vehicle design. For the double wishbone suspension system, the conventional deterministic optimization does not consider any deviations of design parameters, so design sensitivity analysis and robust optimization design are proposed. In this study, the design parameters of the robust optimization are the positions of the key points, and the random factors are the uncertainties in manufacturing. A simplified model of the double wishbone suspension is established by software ADAMS. The sensitivity analysis is utilized to determine main design variables. Then, the simulation experiment is arranged and the Latin hypercube design is adopted to find the initial points. The Kriging model is employed for fitting the mean and variance of the quality characteristics according to the simulation results. Further, a particle swarm optimization method based on simple PSO is applied and the tradeoff between the mean and deviation of performance is made to solve the robust optimization problem of the double wishbone suspension system. PMID:24683334
Directory of Open Access Journals (Sweden)
Ali Tanti
2017-01-01
Full Text Available It has been decade, researchers has been conducting researches on the topics concerning vehicle behavior. Suspension system, driving maneuver and road profile are the particular parameters in order to achieve the aim in vehicle behavior understanding. This paper combined these three criteria by means of using a passenger car equipped with MacPherson strut front suspension undergoes different driving behavior. The objective of this paper is to study the effect of passenger car equipped with MacPherson strut front suspension system vehicle behavior based on different driving maneuvers. For this study, Proton Persona Sedan 1.6 Manual Transmission Base Line was used to investigate the MacPherson strut suspension system. Data were collected using DEWESoft Software. As the velocity and direction varies with time, the vehicle response subjected to stationary excitation, while it varies with different velocity and different type of road. Acceleration, deceleration and bumpy test the suspension mechanism support the weight of the vehicle yet to cushion bumps and holes in the road. It can be concluded that the MacPherson strut suspension system has an effect on not only vehicle behavior but also comfort ride. These findings provide the following insights for future research in suspension vibration in order to optimize the performance of the MacPherson strut suspension system.
Modal and Dynamic Analysis of a Vehicle with Kinetic Dynamic Suspension System
Directory of Open Access Journals (Sweden)
Bangji Zhang
2016-01-01
Full Text Available A novel kinetic dynamic suspension (KDS system is presented for the cooperative control of the roll and warp motion modes of off-road vehicles. The proposed KDS system consists of two hydraulic cylinders acting on the antiroll bars. Hence, the antiroll bars are not completely replaced by the hydraulic system, but both systems are installed. In this paper, the vibration analysis in terms of natural frequencies of different motion modes in frequency domain for an off-road vehicle equipped with different configurable suspension systems is studied by using the modal analysis method. The dynamic responses of the vehicle with different configurable suspension systems are investigated under different road excitations and maneuvers. The results of the modal and dynamic analysis prove that the KDS system can reduce the roll and articulation motions of the off-road vehicle without adding extra bounce stiffness and deteriorating the ride comfort. Furthermore, the roll stiffness is increased and the warp stiffness is decreased by the KDS system, which could significantly enhance handing performance and off-road capability.
Directory of Open Access Journals (Sweden)
Yan-yang Wang
2014-01-01
Full Text Available The vibration of SRM obtains less attention for in-wheel motor applications according to the present research works. In this paper, the vertical component of SRM unbalanced radial force, which is named as SRM vertical force, is taken into account in suspension performance for in-wheel motor driven electric vehicles (IWM-EV. The analysis results suggest that SRM vertical force has a great effect on suspension performance. The direct cause for this phenomenon is that SRM vertical force is directly exerted on the wheel, which will result in great variation in tyre dynamic load and the tyre will easily jump off the ground. Furthermore, the frequency of SRM vertical force is broad which covers the suspension resonance frequencies. So it is easy to arouse suspension resonance and greatly damage suspension performance. Aiming at the new problem, FxLMS (filtered-X least mean square controller is proposed to improve suspension performance. The FxLMS controller is based on active suspension system which can generate the controllable force to suppress the vibration caused by SRM vertical force. The conclusion shows that it is effective to take advantage of active suspensions to reduce the effect of SRM vertical force on suspension performance.
Chun, Sehun
2013-01-01
To provide a unified theoretical framework ranging from a cellular-level excitation mechanism to organic-level geometric propagation, a new theory inspired by quantum electrodynamic theory for light propagation is proposed by describing the cardiac excitation propagation as the continuation of absorption and emission of charged ions by myocardial cells. By the choice of gauge and the membrane current density, a set of Maxwell's equations with a charge density and a current density is constructed in macroscopic bidomain and is shown to be equivalent to the diffusion-reaction system with the B. van der Pol oscillator. The derived Maxwell's equations for the excitation propagation obeys the conservational laws of the number of the cations, energy and momentum, but the total charge is not conserved. The Lagrangian is derived to reveal that the trajectory and wavefront of the excitation propagation are the same as the electrodynamic wave if ion channels work uniformly. From the second quantization, the Hamiltonian...
An Ultra-low Frequency Modal Testing Suspension System for High Precision Air Pressure Control
Directory of Open Access Journals (Sweden)
Qiaoling YUAN
2014-05-01
Full Text Available As a resolution for air pressure control challenges in ultra-low frequency modal testing suspension systems, an incremental PID control algorithm with dead band is applied to achieve high-precision pressure control. We also develop a set of independent hardware and software systems for high-precision pressure control solutions. Taking control system versatility, scalability, reliability, and other aspects into considerations, a two-level communication employing Ethernet and CAN bus, is adopted to complete such tasks as data exchange between the IPC, the main board and the control board ,and the pressure control. Furthermore, we build a single set of ultra-low frequency modal testing suspension system and complete pressure control experiments, which achieve the desired results and thus confirm that the high-precision pressure control subsystem is reasonable and reliable.
Quantum Electrodynamical Shifts in Multivalent Heavy Ions.
Tupitsyn, I I; Kozlov, M G; Safronova, M S; Shabaev, V M; Dzuba, V A
2016-12-16
The quantum electrodynamics (QED) corrections are directly incorporated into the most accurate treatment of the correlation corrections for ions with complex electronic structure of interest to metrology and tests of fundamental physics. We compared the performance of four different QED potentials for various systems to access the accuracy of QED calculations and to make a prediction of highly charged ion properties urgently needed for planning future experiments. We find that all four potentials give consistent and reliable results for ions of interest. For the strongly bound electrons, the nonlocal potentials are more accurate than the local potential.
Britcher, C. P.; Fortescue, P. W.; Allcock, G. A.; Goodyer, M. J.
1979-01-01
The technology which is required to allow the principles of magnetic suspension and balance systems (MSBS) to be applied to the high Reynolds number transonic testing of aircraft models is examined. A test facility is presented as comprising a pressurized transonic cryogenic wind tunnel, with the MSBS providing full six degree of freedom control. The electro-magnets which are superconducting and fed from quiet, bipolar power supplies are examined. A model control system having some self adaptive characteristics is discussed.
Gimenez, Carlos A.; Kozioł, Karol; Aucar, Gustavo A.
2016-03-01
NMR shielding constants for He- and Be-like atomic systems of Ne, Ar, Kr, Xe, and Rn have been calculated at the random-phase-approximation level of approach, including an estimation of QED corrections within the polarization propagator formalism. We show that QED effects enhance electron correlation when Z becomes heavier, which happens with relativistic effects, and also that QED effects become smaller when going from more to less ionized systems. We studied two- and four-electron systems. Then such studies could easily be generalized to other many-electron systems. Results of calculations with our relatively simple model, which includes QED and electron correlation effects on the same theoretical grounds, have a summarized error in the range from 10% (for Ne) up to 24% (for Rn), so that our accuracy is a little lower than for calculations on H-like systems. Our findings should stimulate the development and/or the application of more rigorous formalisms to get more accurate QED corrections to response properties in many-electron systems.
Topological vortices in generalized Born-Infeld-Higgs electrodynamics
Energy Technology Data Exchange (ETDEWEB)
Casana, R. [Universidade Federal do Maranhao, Departamento de Fisica, Sao Luis, Maranhao (Brazil); Hora, E. da [Universidade Federal do Maranhao, Departamento de Fisica, Sao Luis, Maranhao (Brazil); Universidade Federal do Maranhao, Coordenadoria Interdisciplinar de Ciencia e Tecnologia, Sao Luis, Maranhao (Brazil); Rubiera-Garcia, D. [Fudan University, Department of Physics, Center for Field Theory and Particle Physics, Shanghai (China); Santos, C. dos [Faculdade de Ciencias da Universidade do Porto, Centro de Fisica e Departamento de Fisica e Astronomia, Porto (Portugal)
2015-08-15
A consistent BPS formalism to study the existence of topological axially symmetric vortices in generalized versions of the Born-Infeld-Higgs electrodynamics is implemented. Such a generalization modifies the field dynamics via the introduction of three nonnegative functions depending only in the Higgs field, namely,G(vertical stroke φ vertical stroke), w(vertical stroke φ vertical stroke), and V (vertical stroke φ vertical stroke). A set of first-order differential equations is attained when these functions satisfy a constraint related to the Ampere law. Such a constraint allows one to minimize the system's energy in such way that it becomes proportional to the magnetic flux. Our results provides an enhancement of the role of topological vortex solutions in Born-Infeld-Higgs electrodynamics. Finally, we analyze a set of models entailing the recovery of a generalized version of Maxwell-Higgs electrodynamics in a certain limit of the theory. (orig.)
Iniguez, J.; Raposo, V.
2009-01-01
In this paper we analyse the behaviour of a small-scale model of a magnetic levitation system based on the Inductrack concept. Drag and lift forces acting on our prototype, moving above a continuous copper track, are studied analytically following a simple low-speed approach. The experimental results are in good agreement with the theoretical…
Sun, Xiaoqiang; Cai, Yingfeng; Chen, Long; Liu, Yanling; Wang, Shaohua
2016-03-01
The electronic air suspension (EAS) system can improve ride comfort, fuel economy and handling safety of vehicles by adjusting vehicle height. This paper describes the development of a novel controller using the hybrid system approach to adjust the vehicle height (height control) and to regulate the roll and pitch angles of the vehicle body during the height adjustment process (posture control). The vehicle height adjustment system of EAS poses challenging hybrid control problems, since it features different discrete modes of operation, where each mode has an associated linear continuous-time dynamic. In this paper, we propose a novel approach to the modelling and controller design problem for the vehicle height adjustment system of EAS. The system model is described firstly in the hybrid system description language (HYSDEL) to obtain a mixed logical dynamical (MLD) hybrid model. For the resulting model, a hybrid model predictive controller is tuned to improve the vehicle height and posture tracking accuracy and to achieve the on-off statuses direct control of solenoid valves. The effectiveness and performance of the proposed approach are demonstrated by simulations and actual vehicle tests.
Design of a New Integrated Structure of the Active Suspension System and Emergency Lane Change Test
Zhao, Jing-bo; Liu, Hai-mei; Zhang, Lan-chun; Bei, Shao-yi
2017-09-01
An integrated structure of the active suspension system was proposed in order to solve the problem of the individual control of the height of the body or the adjustable damping of the active suspension system of the electric vehicle, which improve the vibration reduction performance of the vehicle. The air bag was used to replace the traditional spiral spring, and the traditional shock absorber was replaced by the damping adjustable shock absorber, and the control module received the body acceleration sensor and the horizontal height sensor signal. The system controlled adjustable damping coefficient of shock absorber through the height of the car body the output of the air pump relay and the height control valve and the output of the electromagnetic valve of the adjustable damping shock absorber, and the emergency lane change test was carried out under different modes of speed of 60km/h. The experimental results indicated that the damping value was greater, average roll angle, yaw angle and average vehicle lateral acceleration were small when vehicle body was in the state of emergency lane change, which verified the feasibility of the integrated control strategy and structure design of the active suspension system. The research has important theoretical research value and engineering application prospect for designing and controlling strategy of vehicle chassis integrated control system.
Farzanehpour, M.; Tokatly, I. V.
2014-11-01
We present a rigorous formulation of the time-dependent density-functional theory for interacting lattice electrons strongly coupled to cavity photons. We start with an example of one particle on a Hubbard dimer coupled to a single photonic mode, which is equivalent to the single mode spin-boson model or the quantum Rabi model. For this system we prove that the electron-photon wave function is a unique functional of the electronic density and the expectation value of the photonic coordinate, provided the initial state and the density satisfy a set of well defined conditions. Then we generalize the formalism to many interacting electrons on a lattice coupled to multiple photonic modes and prove the general mapping theorem. We also show that for a system evolving from the ground state of a lattice Hamiltonian any density with a continuous second time derivative is locally v representable.
National Research Council Canada - National Science Library
Chaikin, Don
1992-01-01
... independent suspension. INDEPENDENCE! An independent system is simply one in which each of the vehicle's wheels is free to react totally separate from any of the other wheels. If the right rear wheel hits a bump, the left rear wheel is undisturbed. Since the whole car does not bounce and shake every time one of the wheels hits a potho...
Maciejewski, I.; Meyer, L.; Krzyzynski, T.
2010-09-01
The paper describes the simulated dynamic response of an active vibro-isolating pneumatic suspension seat. Active control of the air-spring force is used to improve its vibro-isolation properties. For the active vibration isolating system described, a triple feedback loop control system was developed and analysed. The system robustness for different load masses was investigated using the verified active seat suspension model. The Seat Effective Amplitude Transmissibility factor (SEAT) and the maximum suspension deflection were used as the seat performance indices.
YOSHIMURA, T.; KUME, A.; KURIMOTO, M.; HINO, J.
2001-01-01
This paper is concerned with the construction of an active suspension system for a quarter car model using the concept of sliding mode control. The active control is derived by the equivalent control and switching function where the sliding surface is obtained by using Linear quadratic control (LQ control) theory. The active control is generated with non-negligible time lag by using a pneumatic actuator, and the road profile is estimated by using the minimum order observer based on a linear system transformed from the exact non-linear system. The experimental result indicates that the proposed active suspension system is more effective in the vibration isolation of the car body than the linear active suspension system based on LQ control theory and the passive suspension system.
Active seat suspension for a small vehicle: considerations for control system including observer
Katsumata, Hiroyuki; Shiino, Hiroshi; Oshinoya, Yasuo; Ishibashi, Kazuhisa; Ozaki, Koichi; Ogino, Hirohiko
2007-12-01
We have examined the improvement of ride quality and the reduction of riding fatigue brought about by the active control of the seat suspension of small vehicles such as one-seater electric automobiles. A small active seat suspension, which is easy to install, was designed and manufactured for one-seater electric automobiles. For the actuator, a maintenance-free voice coil motor used as a direct drive was adopted. For fundamental considerations, we designed a one-degree-of-freedom model for the active seat suspension system. Then, we designed a disturbance cancellation control system that includes the observer for a two-degree-of-freedom model. In an actual driving test, a test road, in which the concavity and convexity of an actual road surface were simulated using hard rubber, was prepared and the control performance of vertical vibrations of the seat surface during driving was examined. As a result, in comparison with the one-degree-of-freedom control system, it was confirmed that the control performance was improved by the two-degree-of-freedom control system that includes the observer.
Muscle Activation during Push-Ups with Different Suspension Training Systems
Directory of Open Access Journals (Sweden)
Joaquin Calatayud, Sebastien Borreani, Juan C. Colado, Fernando F Martín, Michael E. Rogers
2014-09-01
Full Text Available The purpose of this study was to analyze upper extremity and core muscle activation when performing push-ups with different suspension devices. Young fit male university students (n = 29 performed 3 push-ups each with 4 different suspension systems. Push-up speed was controlled using a metronome and testing order was randomized. Average amplitude of the electromyographic root mean square of Triceps Brachii, Upper Trapezius, Anterior Deltoid, Clavicular Pectoralis, Rectus Abdominis, Rectus Femoris, and Lumbar Erector Spinae was recorded. Electromyographic signals were normalized to the maximum voluntary isometric contraction (MVIC. Electromyographic data were analyzed with repeated-measures analysis of variance with a Bonferroni post hoc. Based upon global arithmetic mean of all muscles analyzed, the suspended push-up with a pulley system provided the greatest activity (37.76% of MVIC; p < 0.001. Individually, the suspended push-up with a pulley system also provided the greatest triceps brachii, upper trapezius, rectus femoris and erector lumbar spinae muscle activation. In contrast, more stable conditions seem more appropriate for pectoralis major and anterior deltoid muscles. Independent of the type of design, all suspension systems were especially effective training tools for reaching high levels of rectus abdominis activation.
Kinematic design of double-wishbone suspension systems using a multiobjective optimisation approach
Sancibrian, Ramon; Garcia, Pablo; Viadero, Fernando; Fernandez, Alfonso; De-Juan, Ana
2010-07-01
This paper is focused on the kinematic design of double-wishbone suspension systems in vehicles, which is tackled using a multiobjective dimensional synthesis technique. The synthesis goal is to optimise an RSSR-SS linkage, subject to some constraints involved in the dynamic behaviour of vehicles. The synthesis method is based on gradient determination using exact differentiation to obtain the elements in the Jacobian matrix. These characteristics make the method adapt well to the optimum design of vehicle suspension systems. The method is capable of handling equality and inequality constraints, thus, the usual ranges of values may be imposed on the functional parameters. The formulation presented is easy to implement and the solutions obtained demonstrate the accuracy and robustness of the method.
Discrete-time sliding mode control for MR vehicle suspension system
Energy Technology Data Exchange (ETDEWEB)
Sohn, J W; Choi, S B [Smart Structures and Systems Laboratory, Department of Mechanical Engineering, Inha University, Incheon 402-751 (Korea, Republic of); Wereley, N M [Smart Structures Laboratory, Department of Aerospace Engineering, University of Maryland, College Park, MD 20742 (United States)], E-mail: seungbok@inha.ac.kr
2009-02-01
This paper presents control performance of a full-vehicle suspension system featuring magnetorheological (MR) dampers via a discrete-time sliding mode control algorithm (DSMC). A cylindrical MR damper is designed by incorporating Bingham model of the MR fluid and the field-dependent damping characteristics of the MR damper are evaluated. A full-vehicle suspension model installed with independent four MR dampers is constructed and the governing equations which include vertical, pitch and roll motion are derived. A discrete-time control model is established with considering system uncertainties and a discrete-time sliding mode controller which has inherent robustness to model uncertainty and external disturbance is formulated. Vibration control performances under bump excitation are evaluated and presented.
Dynamics of an Autoparametric Pendulum-Like System with a Nonlinear Semiactive Suspension
Directory of Open Access Journals (Sweden)
Krzysztof Kecik
2011-01-01
Full Text Available This paper presents vibration analysis of an autoparametric pendulum-like mechanism subjected to harmonic excitation. To improve dynamics and control motions, a new suspension composed of a semiactive magnetorheological damper and a nonlinear spring is applied. The influence of essential parameters such as the nonlinear damping or stiffness on vibration, near the main parametric resonance region, are carried out numerically and next verified experimentally in a special experimental rig. Results show that the magnetorheological damper, together with the nonlinear spring can be efficiently used to change the dynamic behaviour of the system. Furthermore, the nonlinear elements applied in the suspension of the autoparametric system allow to reduce the unstable areas and chaotic or rotating motion of the pendulum.
Establishment of sorghum cell suspension culture system for ...
African Journals Online (AJOL)
Total soluble proteins (TSP) and culture filtrate (CF) proteins were extracted from the cell culture system and solubilised in urea buffer (9 M urea, 2 M thiourea and 4% CHAPS). Both onedimensional (1D) and two-dimensional (2D) gel analysis of these two proteomes show that the TSP and CF proteomes have different ...
Alfi, Alireza; Fateh, Mohammad Mehdi
2011-06-01
This paper presents a novel modified particle swarm optimisation (MPSO) algorithm to identify nonlinear systems. The case of study is a hydraulic suspension system with a complicated nonlinear model. One of the main goals of system identification is to design a model-based controller such as a nonlinear controller using the feedback linearisation. Once the model is identified, the found parameters may be used to design or tune the controller. We introduce a novel mutation mechanism to enhance the global search ability and increase the convergence speed. The MPSO is used to find the optimum values of parameters by minimising the fitness function. The performance of MPSO is compared with genetic algorithm and alternative particle swarm optimisation algorithms in parameter identification. The presented comparisons confirm the superiority of MPSO algorithm in terms of the convergence speed and the accuracy without the premature convergence problem. Furthermore, MPSO is improved to detect any changes of system parameters, which can be used for designing an adaptive controller. Simulation results show the success of the proposed algorithm in tracking time-varying parameters.
Alternative Suspension System for Space Shuttle Avionics Shelf
Biele, Frank H., III
2010-01-01
Engineers working in the Aerospace field under deadlines and strict budgets often miss the opportunity to design something that is considered new or innovative, favoring instead to use the tried-and-true design over those that may, in fact, be more efficient. This thesis examines an electronic equipment stowage shelf suspended from a frame in the cargo bay (mid fuselage) of the United States Space Transportation System (STS), the Space Shuttle, and 3 alternative designs. Four different designs are examined and evaluated. The first design is a conventional truss, representing the tried and true approach. The second is a cable dome type structure consisting of struts and pre-stressed wiring. The third and fourth are double layer tensegrity systems consisting of contiguous struts of the order k=1 and k=2 respectively.
Optimized design of suspension systems for hand-arm transmitted vibration reduction
Saggin, Bortolino; Scaccabarozzi, Diego; Tarabini, Marco
2012-05-01
This paper describes a systematic approach for optimizing suspension systems to reduce the vibrations transmitted to workers by hand-held power tools. The optimization is based on modeling tool-operator interactions using a mobility scheme. The tool is modeled as a vibration generator, and its internal impedance is included. A hand-arm impedance matrix is used to model the operator upper limbs. The mobility model is used to identify the optimal suspension characteristics, which in our study were the set of parameters that minimizes the frequency-weighted acceleration at the hand-tool interface. Different handling conditions (one and two hands) and different working cycles with the same tools can be included in the optimization process. The constraints derived from the limitation on the increase in the tool mass and the static deflection of the mounting system under the working loads are also considered. The proposed method has been applied to the reduction of the vibrations transmitted to the operator by a small pneumatic hammer. The designed system reduced the worker's exposure so that it is within the limits of the EU directive. The agreement between the model predictions and the measured suspension performances validates the effectiveness of this approach.
Apparent paradoxes in classical electrodynamics: relativistic transformation of force
Energy Technology Data Exchange (ETDEWEB)
Kholmetskii, A L [Department of Physics, Belarusian State University, 4, F Skorina Avenue, 220080 Minsk (Belarus); Yarman, T [Department of Engineering, Okan University Istanbul, Turkey and Savronik, Eskisehir, Turkey (Turkey)
2007-05-15
In this paper, we analyse a number of paradoxical teaching problems of classical electrodynamics, dealing with the relativistic transformation of force for complex macro systems, consisting of a number of subsystems with nonzero relative velocities such as electric circuits that change their shape in the course of time.
Non-Equilibrium Quantum Electrodynamics
Anastopoulos, C.; Zoupas, A.
1997-01-01
We employ the influence functional technique to trace out the photonic contribution from full quantum electrodynamics. The reduced density matrix propagator for the spinor field is then constructed. We discuss the role of time-dependent renormalization in the propagator and focus on the possibility of obtaining dynamically induced superselection rules. Finally, we derive the master equation for the case of the field being in an one-particle state in a non-relativistic regime and discuss wheth...
Accelerator and electrodynamics capability review
Energy Technology Data Exchange (ETDEWEB)
Jones, Kevin W [Los Alamos National Laboratory
2010-01-01
Los Alamos National Laboratory (LANL) uses capability reviews to assess the science, technology and engineering (STE) quality and institutional integration and to advise Laboratory Management on the current and future health of the STE. Capability reviews address the STE integration that LANL uses to meet mission requirements. The Capability Review Committees serve a dual role of providing assessment of the Laboratory's technical contributions and integration towards its missions and providing advice to Laboratory Management. The assessments and advice are documented in reports prepared by the Capability Review Committees that are delivered to the Director and to the Principal Associate Director for Science, Technology and Engineering (PADSTE). Laboratory Management will use this report for STE assessment and planning. LANL has defined fifteen STE capabilities. Electrodynamics and Accelerators is one of the seven STE capabilities that LANL Management (Director, PADSTE, technical Associate Directors) has identified for review in Fiscal Year (FY) 2010. Accelerators and electrodynamics at LANL comprise a blend of large-scale facilities and innovative small-scale research with a growing focus on national security applications. This review is organized into five topical areas: (1) Free Electron Lasers; (2) Linear Accelerator Science and Technology; (3) Advanced Electromagnetics; (4) Next Generation Accelerator Concepts; and (5) National Security Accelerator Applications. The focus is on innovative technology with an emphasis on applications relevant to Laboratory mission. The role of Laboratory Directed Research and Development (LDRD) in support of accelerators/electrodynamics will be discussed. The review provides an opportunity for interaction with early career staff. Program sponsors and customers will provide their input on the value of the accelerator and electrodynamics capability to the Laboratory mission.
Nonlinear Dynamics Analysis of the Semiactive Suspension System with Magneto-Rheological Damper
Directory of Open Access Journals (Sweden)
Hailong Zhang
2015-01-01
Full Text Available This paper examines dynamical behavior of a nonlinear oscillator which models a quarter-car forced by the road profile. The magneto-rheological (MR suspension system has been established, by employing the modified Bouc-Wen force-velocity (F-v model of magneto-rheological damper (MRD. The possibility of chaotic motions in MR suspension is discovered by employing the method of nonlinear stability analysis. With the bifurcation diagrams and corresponding Lyapunov exponent (LE spectrum diagrams detected through numerical calculation, we can observe the complex dynamical behaviors and oscillating mechanism of alternating periodic oscillations, quasiperiodic oscillations, and chaotic oscillations with different profiles of road excitation, as well as the dynamical evolutions to chaos through period-doubling bifurcations, saddle-node bifurcations, and reverse period-doubling bifurcations.
Oya, H.; Safayi, S.; Jeffery, N. D.; Viljoen, S.; Reddy, C. G.; Dalm, B. D.; Kanwal, J. K.; Gillies, G. T.; Howard, M. A.
2013-10-01
We have characterized the mechanical compliance of an improved version of the suspension system used to position the electrode-bearing membrane of an intradural neuromodulator on the dorsal pial surface of the spinal cord. Over the compression span of 5 mm, it exhibited a restoring force of 2.4 μN μm-1 and a mean pressure of 0.5 mm Hg (=66 Pa) on the surface below it, well within the range of normal intrathecal pressures. We have implanted prototype devices employing this suspension and a novel device fixation technique in a chronic ovine model of spinal cord stimulation and found that it maintains stable contact at the electrode-pia interface without lead fracture, as determined by measurement of the inter-contact impedances.
High-lateral-tension abdominoplasty with superficial fascial system suspension.
Lockwood, T
1995-09-01
Modern abdominoplasty techniques were developed in the 1960s. The advent of liposuction has reduced the need for classic abdominoplasty and allowed more aesthetic sculpting of the entire trunk. However, the combination of significant truncal liposuction and classic abdominoplasty is not recommended due to the increased risk of complications. Although the surgical principles of classic abdominoplasty certainly have stood the test of time, they are based on two theoretical assumptions that may be proved to be inaccurate. The first assumption is that wide direct undermining to costal margins is essential for abdominal flap advancement. In fact, discontinuous undermining allows effective loosening of the abdominal flap while preserving vascular perforators. The second inaccurate assumption is that with aging and weight fluctuations (including pregnancy), abdominal skin relaxation occurs primarily in the vertical direction from the xiphoid to the pubis. This is true in the lower abdomen, but in most patients a strong superficial fascial system adherence to the linea alba in the epigastrium limits vertical descent. Epigastric laxity frequently results from a progressive horizontal loosening due to relaxation of the tissue along the lateral trunk. Experience with the lower-body lift procedure has shown that significant lateral truncal skin resection results in epigastric tightening. In these patients, the ideal abdominoplasty pattern would resect as much or more laterally than centrally, leading to more natural abdominal contours. Fifty patients who underwent high-lateral-tension abdominoplasty with and without significant truncal liposuction and other aesthetic procedures were followed for 4 to 16 months. The primary indication for surgery was moderate to severe laxity of abdominal skin and muscle with or without truncal fat deposits. Complication rates were equal to or less than those of historical controls and did not increase with significant adjunctive liposuction
Cox, D. E.; Groom, N. J.
1994-01-01
An implementation of a decoupled, single-input/single-output control approach for a large angle magnetic suspension test fixture is described. Numerical and experimental results are presented. The experimental system is a laboratory model large gap magnetic suspension system which provides five degree-of-freedom control of a cylindrical suspended element. The suspended element contains a core composed of permanent magnet material and is levitated above five electromagnets mounted in a planar array.
Directory of Open Access Journals (Sweden)
Ze Zhang
2014-01-01
Full Text Available A feedback control method based on an extended state observer (ESO method is implemented to vibration reduction in a typical semiactive suspension (SAS system using a magnetorheological (MR damper as actuator. By considering the dynamic equations of the SAS system and the MR damper model, an active disturbance rejection control (ADRC is designed based on the ESO. Numerical simulation and real-time experiments are carried out with similar vibration disturbances. Both the simulation and experimental results illustrate the effectiveness of the proposed controller in vibration suppression for a SAS system.
A reformulation of mechanics and electrodynamics
Directory of Open Access Journals (Sweden)
Mario J. Pinheiro
2017-07-01
Full Text Available Classical mechanics, as commonly taught in engineering and science, are confined to the conventional Newtonian theory. But classical mechanics has not really changed in substance since Newton formulation, describing simultaneous rotation and translation of objects with somewhat complicate drawbacks, risking interpretation of forces in non-inertial frames. In this work we introduce a new variational principle for out-of-equilibrium, rotating systems, obtaining a set of two first order differential equations that introduces a thermodynamic-mechanistic time into Newton's dynamical equation, and revealing the same formal symplectic structure shared by classical mechanics, fluid mechanics and thermodynamics. The results is a more consistent formulation of dynamics and electrodynamics, explaining natural phenomena as the outcome from a balance between energy and entropy, embedding translational with rotational motion into a single equation, showing centrifugal and Coriolis force as derivatives from the transport of angular momentum, and offering a natural method to handle variational problems, as shown with the brachistochrone problem. In consequence, a new force term appears, the topological torsion current, important for spacecraft dynamics. We describe a set of solved problems showing the potential of a competing technique, with significant interest to electrodynamics as well. We expect this new approach to have impact in a large class of scientific and technological problems.
A reformulation of mechanics and electrodynamics.
Pinheiro, Mario J
2017-07-01
Classical mechanics, as commonly taught in engineering and science, are confined to the conventional Newtonian theory. But classical mechanics has not really changed in substance since Newton formulation, describing simultaneous rotation and translation of objects with somewhat complicate drawbacks, risking interpretation of forces in non-inertial frames. In this work we introduce a new variational principle for out-of-equilibrium, rotating systems, obtaining a set of two first order differential equations that introduces a thermodynamic-mechanistic time into Newton's dynamical equation, and revealing the same formal symplectic structure shared by classical mechanics, fluid mechanics and thermodynamics. The results is a more consistent formulation of dynamics and electrodynamics, explaining natural phenomena as the outcome from a balance between energy and entropy, embedding translational with rotational motion into a single equation, showing centrifugal and Coriolis force as derivatives from the transport of angular momentum, and offering a natural method to handle variational problems, as shown with the brachistochrone problem. In consequence, a new force term appears, the topological torsion current, important for spacecraft dynamics. We describe a set of solved problems showing the potential of a competing technique, with significant interest to electrodynamics as well. We expect this new approach to have impact in a large class of scientific and technological problems.
The effects of suction and pin/lock suspension systems on transtibial amputees' gait performance.
Directory of Open Access Journals (Sweden)
Hossein Gholizadeh
Full Text Available BACKGROUND: The suction sockets that are commonly prescribed for transtibial amputees are believed to provide a better suspension than the pin/lock systems. Nevertheless, their effect on amputees' gait performance has not yet been fully investigated. The main intention of this study was to understand the potential effects of the Seal-in (suction and the Dermo (pin/lock suspension systems on amputees' gait performance. METHODOLOGY/PRINCIPAL FINDINGS: Ten unilateral transtibial amputees participated in this prospective study, and two prostheses were fabricated for each of them. A three-dimensional motion analysis system was used to evaluate the temporal-spatial, kinematics and kinetics variables during normal walking. We also asked the participants to complete some part of Prosthesis Evaluation Questionnaire (PEQ regarding their satisfaction and problems with both systems. The results revealed that there was more symmetry in temporal-spatial parameters between the prosthetic and sound limbs using the suction system. However, the difference between two systems was not significant (p<0.05. Evaluation of kinetic data and the subjects' feedback showed that the participants had more confidence using the suction socket and the sockets were more fit for walking. Nevertheless, the participants had more complaints with this system due to the difficulty in donning and doffing. CONCLUSION: It can be concluded that even though the suction socket could create better suspension, fit, and gait performance, overall satisfaction was higher with the pin/lock system due to easy donning and doffing of the prosthesis. TRIAL REGISTRATION: irct.ir IRCT2014012816395N1.
Optimization of Automotive Suspension System by Design of Experiments: A Nonderivative Method
Directory of Open Access Journals (Sweden)
Anirban C. Mitra
2016-01-01
Full Text Available A lot of health issues like low back pain, digestive disorders, and musculoskeletal disorders are caused as a result of the whole body vibrations induced by automobiles. This paper is concerned with the enhancement and optimization of suspension performance by using factorial methods of Design of Experiments, a nonderivative method. It focuses on the optimization of ride comfort and determining the parameters which affect the suspension behavior significantly as per the guidelines stated in ISO 2631-1:1997 standards. A quarter car test rig integrated with a LabVIEW based data acquisition system was developed to understand the real time behavior of a vehicle. In the pilot experiment, only three primary suspension parameters, that is, spring-stiffness, damping, and sprung mass, were considered and the full factorial method was implemented for the purpose of optimization. But the regression analysis of the data obtained rendered a very low goodness of fit which indicated that other parameters are likely to influence the response. Subsequently, steering geometry angles, camber and toe and tire pressure, were included in the design. Fractional factorial method with six factors was implemented to optimize ride comfort. The resultant optimum combination was then verified on the test rig with high correlation.
Loginov, V I
2007-01-01
Immunocytochemical and cytomorphological studies of ca/citonin-producing cells (C-cells) in the thyroid of rats were conducted on days 0, 2, 8, 14, 30 and 60 of readaptation from 30-d tail-suspension. It was shown that suspension reduced the C-cell pool by 35% and size of C-cell nuclei and cytoplasm by 15% and 12%, respectively. On the contrary, the amount of inactive cells within the total pool increased by 33% at the expense of actively secreting cells (17% loss) and secret depot cells (13% loss). The data suggest a dramatic inhibition of the C-cell functional activity due to insufficient loading of the musculoskeletal system. In 48 hrs. after suspension, biosynthesis in the C-cell population was obviously stimulated as indicated by the increase of nuclei size by 11%. The total C-cell population as well as the proportion of C-cell functional varieties regained normal values by day 8 of readaptation; however, nuclear size remained abnormal which could be consequence of elevated biosynthetic activity in that period. Investigations of morphometric indices of the C-cell functional activity fulfilled on days 14 and 30 of readaptation failed to detect any differences between the suspended rats and their controls. Investigations performed on days 30 and 60 of readaptation showed increases in C-cell population resulting from daily and total body mass gain.
Musacchia, X. J.; Steffen, J. M.
1984-01-01
Suspension systems are used to simulate hypokinetic/hypodynamic (H/H) and anitorthostatic (AO) responses seen under conditions of weightlessness. Growing rats in H/H suspension with unloaded hindlimbs for one and two weeks respond with muscle atrophy and increased excretion of nitrogenous end products such as urea, NH3 and 3 methyl histidine. Since muscle is in a dynamic state of synthesis and breakdown of protein, relationships between protein, RNA and DNA contents in the four muscles which reflect weight bearing and non-weight bearing functions were assessed. Protein and RNA progressively decreased over a one and two week period of H/H suspension: soleus gastrocnemius=plantaris EDL. Concommitant analysis of DNA contents showed there were no changes. The interpretation was that protein synthesis was slowed during H/H. As with muscle mass, protein and RNA levels recovered rapidly after removal from H/H. The AO rats (which are also H/H) respond with diuresis, natriuresis and kaliuresis in a manner comparable to responses seen when thoracic blood vessels are volume loaded.
Muscle Activation during Push-Ups with Different Suspension Training Systems.
Calatayud, Joaquin; Borreani, Sebastien; Colado, Juan C; Martín, Fernando F; Rogers, Michael E; Behm, David G; Andersen, Lars L
2014-09-01
The purpose of this study was to analyze upper extremity and core muscle activation when performing push-ups with different suspension devices. Young fit male university students (n = 29) performed 3 push-ups each with 4 different suspension systems. Push-up speed was controlled using a metronome and testing order was randomized. Average amplitude of the electromyographic root mean square of Triceps Brachii, Upper Trapezius, Anterior Deltoid, Clavicular Pectoralis, Rectus Abdominis, Rectus Femoris, and Lumbar Erector Spinae was recorded. Electromyographic signals were normalized to the maximum voluntary isometric contraction (MVIC). Electromyographic data were analyzed with repeated-measures analysis of variance with a Bonferroni post hoc. Based upon global arithmetic mean of all muscles analyzed, the suspended push-up with a pulley system provided the greatest activity (37.76% of MVIC; p up with a pulley system also provided the greatest triceps brachii, upper trapezius, rectus femoris and erector lumbar spinae muscle activation. In contrast, more stable conditions seem more appropriate for pectoralis major and anterior deltoid muscles. Independent of the type of design, all suspension systems were especially effective training tools for reaching high levels of rectus abdominis activation. Key PointsCompared with standard push-ups on the floor, suspended push-ups increase core muscle activation.A one-anchor system with a pulley is the best option to increase TRICEP, TRAPS, LUMB and FEM muscle activity.More stable conditions such as the standard push-up or a parallel band system provide greater increases in DELT and PEC muscle activation.A suspended push-up is an effective method to achieve high muscle activity levels in the ABS.
Electrodynamic Tether Propulsion for Spacecraft and Upper Stages
Johnson, Les; Gilchrist, Brian; Estes, Robert D.; Lorenzini, Rnrico; Martinez-Sanchez, Manuel; Sanmartin, Juan
1998-01-01
Relatively short electrodynamic tethers can use solar power to 'push' against a planetary magnetic field to achieve propulsion without the expenditure of propellant. The groundwork has been laid for this type of propulsion. Important recent milestones include retrieval of a tether in space (TSS-1, 1992), successful deployment of a 20-km-long tether in space (SEDS-1, 1993), and operation of an electrodynamic tether with tether current driven in both directions (PMG, 1993). The planned Propulsive Small Expendable Deployer System (ProSEDS) experiment will use the flight-proven Small Expendable Deployer System (SEDS) to deploy a 5 km bare copper tether from a Delta II upper stage to achieve approximately 0.4 N drag thrust, thus deorbiting the stage. The experiment will use a predominantly 'bare' tether for current collection in lieu of the endmass collector and insulated tether approach used on previous missions. The flight experiment is a precursor to utilization of the technology on the International Space Station for reboost and the electrodynamic tether upper stage demonstration mission which will be capable of orbit raising, lowering and inclination changes, all using electrodynamic thrust. In addition, the use of this type of propulsion may be attractive for future missions at Jupiter.
Modelling of Electrodynamic Phenomena in Slowly Moving Media
Rozov, Andrey Leonidovich
2017-08-01
We discuss the feasibility of using, along with Minkowski equations obtained on the basis of the theory of relativity and used at present in electrodynamics, alternative methods of describing the processes of interaction between electromagnetic fields and moving media. In this article, a way of describing electromagnetic fields in terms of classical mechanics is offered. A system of electrodynamic equations for slowly moving media was derived on the basis of Maxwell's theory within the framework of classical mechanics using Wilsons' experimental data with dielectrics in a previous article [A. Rozov, Z. Naturforsch. 70, 1019 (2015)]. This article puts forward a physical model that explains the features of the derived equations. The offered model made it possible to suggest a new approach to the derivation of electrodynamic equations for slowly moving media. A variant of Galileo's relativity principle, in accordance with which the electrodynamic equations for slowly moving media should be considered as Galilean-invariant, is laid down on the basis of both the interpretation of Galileo's concept following from Galileo's works and Pauli's concept of postulate of relativity within the framework of the represented physical model.
The Earth's ionosphere plasma physics and electrodynamics
Kelley, Michael C
2007-01-01
Although interesting in its own right, due to the ever-increasing use of satellites for communication and navigation, weather in the ionosphere is of great concern. Every such system uses trans-ionospheric propagation of radio waves, waves which must traverse the commonly turbulent ionosphere. Understanding this turbulence and predicting it are one of the major goals of the National Space Weather program. Acquiring such a prediction capability will rest on understanding the very topics of this book, the plasma physics and electrodynamics of the system. Fully updated to reflect advances in the field in the 20 years since the first edition published Explores the buffeting of the ionosphere from above by the sun and from below by the lower atmosphere Unique text appropriate both as a reference and for coursework.
Annoyance rate evaluation method on ride comfort of vehicle suspension system
Tang, Chuanyin; Zhang, Yimin; Zhao, Guangyao; Ma, Yan
2014-03-01
The existing researches of the evaluation method of ride comfort of vehicle mainly focus on the level of human feelings to vibration. The level of human feelings to vibration is influenced by many factors, however, the ride comfort according to the common principle of probability and statistics and simple binary logic is unable to reflect these uncertainties. The random fuzzy evaluation model from people subjective response to vibration is adopted in the paper, these uncertainties are analyzed from the angle of psychological physics. Discussing the traditional evaluation of ride comfort during vehicle vibration, a fuzzily random evaluation model on the basis of annoyance rate is proposed for the human body's subjective response to vibration, with relevant fuzzy membership function and probability distribution given. A half-car four degrees of freedom suspension vibration model is described, subject to irregular excitations from the road surface, with the aid of software Matlab/Simulink. A new kind of evaluation method for ride comfort of vehicles is proposed in the paper, i.e., the annoyance rate evaluation method. The genetic algorithm and neural network control theory are used to control the system. Simulation results are obtained, such as the comparison of comfort reaction to vibration environments between before and after control, relationship of annoyance rate to vibration frequency and weighted acceleration, based on ISO 2631/1(1982), ISO 2631-1(1997) and annoyance rate evaluation method, respectively. Simulated assessment results indicate that the proposed active suspension systems prove to be effective in the vibration isolation of the suspension system, and the subjective response of human being can be promoted from very uncomfortable to a little uncomfortable. Furthermore, the novel evaluation method based on annoyance rate can further estimate quantitatively the number of passengers who feel discomfort due to vibration. A new analysis method of vehicle
Electrodynamic Tethers for Spacecraft Propulsion
Johnson, Les
2009-01-01
Electrodynamic (Drag) Tether Thrust Principles: a) Uses both solar energy and consumes no propellant. b) Tether's orbital velocity v (approx. 7500 m/s) through North-pointing geomagnetic field B(sub north) (0.18 - 0.32 Gauss) induces voltage (35 - 160 V/km) in tether. c) Return current is through surrounding plasma. d) Current I produces a drag thrust force F on the tether. e) Magnetic force F from current I through insulated tether of length l: F = lI x B(sub north).
Hilbert space theory of classical electrodynamics
Indian Academy of Sciences (India)
Abstract. Classical electrodynamics is reformulated in terms of wave functions in the classical phase space of electrodynamics, following the Koopman–von Neumann–Sudarshan prescription for classical mechanics on Hilbert spaces sans the superselection rule which prohibits interference effects in classical mechanics.
Adaptive Neural-Sliding Mode Control of Active Suspension System for Camera Stabilization
Directory of Open Access Journals (Sweden)
Feng Zhao
2015-01-01
Full Text Available The camera always suffers from image instability on the moving vehicle due to the unintentional vibrations caused by road roughness. This paper presents a novel adaptive neural network based on sliding mode control strategy to stabilize the image captured area of the camera. The purpose is to suppress vertical displacement of sprung mass with the application of active suspension system. Since the active suspension system has nonlinear and time varying characteristics, adaptive neural network (ANN is proposed to make the controller robustness against systematic uncertainties, which release the model-based requirement of the sliding model control, and the weighting matrix is adjusted online according to Lyapunov function. The control system consists of two loops. The outer loop is a position controller designed with sliding mode strategy, while the PID controller in the inner loop is to track the desired force. The closed loop stability and asymptotic convergence performance can be guaranteed on the basis of the Lyapunov stability theory. Finally, the simulation results show that the employed controller effectively suppresses the vibration of the camera and enhances the stabilization of the entire camera, where different excitations are considered to validate the system performance.
Vehicle active suspension system using skyhook adaptive neuro active force control
Priyandoko, G.; Mailah, M.; Jamaluddin, H.
2009-04-01
This paper aims to highlight the practical viability of a new and novel hybrid control technique applied to a vehicle active suspension system of a quarter car model using skyhook and adaptive neuro active force control (SANAFC). The overall control system essentially comprises four feedback control loops, namely the innermost proportional-integral (PI) control loop for the force tracking of the pneumatic actuator, the intermediate skyhook and active force control (AFC) control loops for the compensation of the disturbances and the outermost proportional-integral-derivative (PID) control loop for the computation of the optimum target/commanded force. A neural network (NN) with a modified adaptive Levenberg-Marquardt learning algorithm was used to approximate the estimated mass and inverse dynamics of the pneumatic actuator in the AFC loop. A number of experiments were carried out on a physical test rig using a hardware-in-the-loop configuration that fully incorporates the theoretical elements. The performance of the proposed control method was evaluated and compared to examine the effectiveness of the system in suppressing the vibration effect on the suspension system. It was found that the simulation and experimental results were in good agreement, particularly for the sprung mass displacement and acceleration behaviours in which the proposed SANAFC scheme is found to outperform the PID and passive counterparts.
Adaptive neural networks control for camera stabilization with active suspension system
Directory of Open Access Journals (Sweden)
Feng Zhao
2015-08-01
Full Text Available The camera always suffers from image instability on the moving vehicle due to unintentional vibrations caused by road roughness. This article presents an adaptive neural network approach mixed with linear quadratic regulator control for a quarter-car active suspension system to stabilize the image captured area of the camera. An active suspension system provides extra force through the actuator which allows it to suppress vertical vibration of sprung mass. First, to deal with the road disturbance and the system uncertainties, radial basis function neural network is proposed to construct the map between the state error and the compensation component, which can correct the optimal state-feedback control law. The weights matrix of radial basis function neural network is adaptively tuned online. Then, the closed-loop stability and asymptotic convergence performance is guaranteed by Lyapunov analysis. Finally, the simulation results demonstrate that the proposed controller effectively suppresses the vibration of the camera and enhances the stabilization of the entire camera, where different excitations are considered to validate the system performance.
Three-dimensional finite-element modelling of a superconducting suspension system
Energy Technology Data Exchange (ETDEWEB)
Williams, J.T.; Paul, R.J.A.; Simkin, J.
1983-11-01
The suspension system considered is characterised by a superconducting magnet with an arrangement of superconducting screens to provide stable levitation of a long mild-steel bar. This paper is concerned with static modelling of the magnetic forces for which a nonlinear three-dimensional analysis is required. Problems encountered using the magneto-static program TOSCA are discussed and the code is subsequently extended to accommodate a representation of superconducting screens taped on the critical-state model. Measured and computed results which are in good agreement are presented, leading to further consideration of the practical application of the method.
Groom, Nelson J.; Britcher, Colin P.
1992-01-01
The open-loop characteristics of a Large-Gap Magnetic Suspension System (LGMSS) were studied and numerical results are presented. The LGMSS considered provides five-degree-of-freedom control. The suspended element is a cylinder that contains a core composed of permanent magnet material. The magnetic actuators are air core electromagnets mounted in a planar array. Configurations utilizing five, six, seven, and eight electromagnets were investigated and all configurations were found to be controllable from coil currents and observable from suspended element positions. Results indicate that increasing the number of coils has an insignificant effect on mode shapes and frequencies.
Numerical simulation of shock absorbers heat load for semi-active vehicle suspension system
Directory of Open Access Journals (Sweden)
Demić Miroslav D.
2016-01-01
Full Text Available Dynamic simulation, based on modelling, has a significant role during to the process of vehicle development. It is especially important in the first design stages, when relevant parameters are to be defined. Shock absorber, as an executive part of a semi-active suspension system, is exposed to thermal loads which can lead to its damage and degradation of characteristics. Therefore, this paper attempts to analyze a conversion of mechanical work into heat energy by use of a method of dynamic simulation. The issue of heat dissipation from the shock absorber has not been taken into consideration.
A Sliding Mode Control of Semi-Active Suspension Systems with Describing Function Method
Toyama, Shigehiro; Ikeda, Fujio
This paper presents a sliding mode controller of semi-active suspension systems. The sliding mode controller is designed by the describing function method so that a switching function is enforced into a desired limit cycle instead of a perfect sliding mode. Although the proposed sliding mode controller cannot generate the limit cycle as desired because of the passive constraint of controllable dampers, restricting the switching function in the vicinity of the origin can suppress the deterioration due to the passive constraint, such as increase of jerk of the sprung mass. Finally, simulation results show the effectiveness of the proposed controller.
Eshraghi, Arezoo; Abu Osman, Noor Azuan; Gholizadeh, Hossien; Ali, Sadeeq; Abas, Wan Abu Bakar Wan
2015-01-01
This study aimed to compare the effects of different suspension methods on the interface stress inside the prosthetic sockets of transtibial amputees when negotiating ramps and stairs. Three transtibial prostheses, with a pin/lock system, a Seal-In system, and a magnetic suspension system, were created for the participants in a prospective study. Interface stress was measured as the peak pressure by using the F-socket transducers during stairs and ramp negotiation. Twelve individuals with transtibial amputation managed to complete the experiments. During the stair ascent and descent, the greatest peak pressure was observed in the prosthesis with the Seal-In system. The magnetic prosthetic suspension system caused significantly different peak pressure at the anterior proximal region compared with the pin/lock (P = 0.022) and Seal-In (P = 0.001) during the stair ascent. It was also observed during the stair descent and ramp negotiation. The prostheses exhibited varying pressure profiles during the stair and ramp ascent. The prostheses with the pin/lock and magnetic suspension systems exhibited lower peak pressures compared with the Seal-In system. The intrasystem pressure distribution at the anterior and posterior regions of the residual limb was fairly homogenous during the stair and ramp ascent and descent. Nevertheless, the intrasystem pressure mapping revealed a significant difference among the suspension types, particularly at the anterior and posterior sensor sites.
Active Vibration Control in a Rotor System by an Active Suspension with Linear Actuators
Directory of Open Access Journals (Sweden)
M. Arias-Montiel
2014-10-01
Full Text Available In this paper the problem of modeling, analysis and unbalance response control of a rotor system with two disks in an asymmetrical configuration is treated. The Finite Element Method (FEM is used to get the system model including the gyroscopic effects and then, the obtained model is experimentally validated. Rotordynamic analysis is carried out using the finite element model obtaining the Campbell diagram, the natural frequencies and the critical speeds of the rotor system. An asymptotic observer is designed to estimate the full state vector which is used to synthesize a Linear Quadratic Regulator (LQR to reduce the vibration amplitudes when the system passes through the first critical speed. Some numerical simulations are carried out to verify the closed-loop system behavior. The active vibration control scheme is experimentally validated using an active suspension with electromechanical linear actuators, obtaining significant reductions in the resonant peak.
Design of Immune-Algorithm-Based Adaptive Fuzzy Controllers for Active Suspension Systems
Directory of Open Access Journals (Sweden)
Ming-Yuan Shieh
2014-04-01
Full Text Available The aim of this paper is to integrate the artificial immune systems and adaptive fuzzy control for the automobile suspension system, which is regarded as a multiobjective optimization problem. Moreover, the fuzzy control rules and membership controls are then introduced for identification and memorization. It leads fast convergence in the search process. Afterwards, by using the diversity of the antibody group, trapping into local optimum can be avoided, and the system possesses a global search capacity and a faster local search for finding a global optimal solution. Experimental results show that the artificial immune system with the recognition and memory functions allows the system to rapidly converge and search for the global optimal approximate solutions.
Cutoff-Free Circuit Quantum Electrodynamics
Malekakhlagh, Moein; Petrescu, Alexandru; Türeci, Hakan E.
2017-08-01
Any quantum-confined electronic system coupled to the electromagnetic continuum is subject to radiative decay and renormalization of its energy levels. When coupled to a cavity, these quantities can be strongly modified with respect to their values in vacuum. Generally, this modification can be accurately captured by including only the closest resonant mode of the cavity. In the circuit quantum electrodynamics architecture, it is, however, found that the radiative decay rates are strongly influenced by far off-resonant modes. A multimode calculation accounting for the infinite set of cavity modes leads to divergences unless a cutoff is imposed. It has so far not been identified what the source of divergence is. We show here that unless gauge invariance is respected, any attempt at the calculation of circuit QED quantities is bound to diverge. We then present a theoretical approach to the calculation of a finite spontaneous emission rate and the Lamb shift that is free of cutoff.
Subcycle quantum electrodynamics
Riek, C.; Sulzer, P.; Seeger, M.; Moskalenko, A. S.; Burkard, G.; Seletskiy, D. V.; Leitenstorfer, A.
2017-01-01
Squeezed states of electromagnetic radiation have quantum fluctuations below those of the vacuum field. They offer a unique resource for quantum information systems and precision metrology, including gravitational wave detectors, which require unprecedented sensitivity. Since the first experiments on this non-classical form of light, quantum analysis has been based on homodyning techniques and photon correlation measurements. These methods currently function in the visible to near-infrared and microwave spectral ranges. They require a well-defined carrier frequency, and photons contained in a quantum state need to be absorbed or amplified. Quantum non-demolition experiments may be performed to avoid the influence of a measurement in one quadrature, but this procedure comes at the expense of increased uncertainty in another quadrature. Here we generate mid-infrared time-locked patterns of squeezed vacuum noise. After propagation through free space, the quantum fluctuations of the electric field are studied in the time domain using electro-optic sampling with few-femtosecond laser pulses. We directly compare the local noise amplitude to that of bare (that is, unperturbed) vacuum. Our nonlinear approach operates off resonance and, unlike homodyning or photon correlation techniques, without absorption or amplification of the field that is investigated. We find subcycle intervals with noise levels that are substantially less than the amplitude of the vacuum field. As a consequence, there are enhanced fluctuations in adjacent time intervals, owing to Heisenberg’s uncertainty principle, which indicate generation of highly correlated quantum radiation. Together with efforts in the far infrared, this work enables the study of elementary quantum dynamics of light and matter in an energy range at the boundary between vacuum and thermal background conditions.
Ouyang, Wu; Zhao, Zhiming; Cai, Le; Yuan, Xiaoyang
2017-10-01
A measurement system error is a key factor that disturbs the identification precision of sliding bearing's dynamic characteristic coefficients. The transfer process and influence rule of errors from a measurement system to dynamic characteristic coefficients are analyzed by solving the dynamic characteristic measurement model. In order to ensure that the identification errors are no more than 40%, the amplitude error and phase error of the transfer function of the measurement system should be controlled within 10% and 1°, respectively. A novel magnetic suspension calibration method of the measurement system, which generates a vibration through a noncontact electromagnetic force rather than a traditional contact force, is proposed. A magnetic dynamic calibration device is developed. The experiment results show that the device can make dynamic calibration at different frequencies successfully, which is favorable to improve the controllability of the calibration process and the stability of calibration results.
Superconducting electromagnets for large wind tunnel magnetic suspension and balance systems
Boom, R. W.; Eyssa, Y. M.; Mcintosh, G. E.; Abdelsalam, M. K.; Scurlock, R. G.; Wu, Y. Y.; Goodyer, M. J.; Balcerek, K.; Eskins, J.; Britcher, C. P.
1984-01-01
A superconducting electromagnetic suspension and balance system for an 8 x 8-ft, Mach 0.9 wind tunnel is presented. The system uses a superconducting solenoid as a model core 70 cm long and with a 11.5 cm OD, and a combination of permanent magnet material in the model wings to produce the required roll torque. The design, which uses an integral cold structure rather than separate cryostats for mounting all control magnets, has 14 external magnets, including 4 racetrack-shaped roll coils. Helium capacity of the system is 3.0 to 3.5 l with idling boiloff rate predicted at 0.147 to 0.2 l/h. The improvements yielded a 50-percent reduction in the system size, weight, and cost.
Optimal control of electrodynamic tether satellites
Stevens, Robert E.
Low thrust propulsion systems offer a fuel-efficient means to maneuver satellites to new orbits, however they can only perform such maneuvers when they are continuously operated for a long time. Such long-term maneuvers occur over many orbital revolutions often rendering short time scale trajectory optimization methods ineffective. An approach to multirevolution, long time scale optimal control of an electrodynamic tether is investigated for a tethered satellite system in Low Earth Orbit with atmospheric drag. Control is assumed to be periodic over several orbits since under the assumptions of a nearly circular orbit, periodic control yields the only solution that significantly contributes to secular changes in the orbital parameters. The optimal control problem is constructed in such a way as to maneuver the satellite to a new orbit while minimizing a cost function subject to the constraints of the time-averaged equations of motion by controlling current in the tether. To accurately capture the tether orbital dynamics, libration is modeled and controlled over long time scales in a similar manner to the orbital states. Libration is addressed in two parts; equilibrium and stability analysis, and control. Libration equations of motion are derived and analyzed to provide equilibrium and stability criteria that define the constraints of the design. A new libration mean square state is introduced and constrained to maintain libration within an acceptable envelope throughout a given maneuver. Optimal control solutions are achieved using a pseudospectral method that maneuver an electrodynamic tether to new orbits over long time scales while managing librational motion using only current in a wire.
Suspension-thermal noise in spring–antispring systems for future gravitational-wave detectors
Harms, Jan; Mow-Lowry, Conor M.
2018-01-01
Spring–antispring systems have been investigated in the context of low-frequency seismic isolation in high-precision optical experiments. These systems provide the possibility to tune the fundamental resonance frequency to, in principle, arbitrarily low values, and at the same time maintain a compact design. It was argued though that thermal noise in spring–antispring systems would not be as small as one may naively expect from lowering the fundamental resonance frequency. In this paper, we present calculations of suspension-thermal noise for spring–antispring systems potentially relevant in future gravitational-wave detectors, i.e. the beam-balance tiltmeter, and the Roberts linkage. We find a concise expression of the suspension-thermal noise spectrum, which assumes a form very similar to the well-known expression for a simple pendulum. For systems such as the Roberts linkage foreseen as passive seismic isolation, we find that while they can provide strong seismic isolation due to a very low fundamental resonance frequency, their thermal noise is determined by the dimension of the system and is insensitive to fine-tunings of the geometry that can strongly influence the resonance frequency. By analogy, i.e. formal similarity of the equations of motion, this is true for all horizontal mechanical isolation systems with spring–antispring dynamics. This imposes strict requirements on mechanical spring–antispring systems for seismic isolation in potential future low-frequency gravitational-wave detectors as we discuss for the four main concepts, atom-interferometric, superconducting, torsion-bars, and conventional laser interferometer, and generally suggests that thermal noise needs to be evaluated carefully for high-precision experiments implementing spring–antispring dynamics.
Hasbullah, Faried; Faris, Waleed F.
2017-12-01
In recent years, Active Disturbance Rejection Control (ADRC) has become a popular control alternative due to its easy applicability and robustness to varying processes. In this article, ADRC with input decoupling transformation (ADRC-IDT) is proposed to improve ride comfort of a vehicle with an active suspension system using half-car model. The ride performance of the ADRC-IDT is evaluated and compared with decentralized ADRC control as well as the passive system. Simulation results show that both ADRC and ADRC-IDT manage to appreciably reduce body accelerations and able to cope well with varying conditions typically encountered in an active suspension system. Also, it is sufficient to control only the body motions with both active controllers to improve ride comfort while maintaining good road holding and small suspension working space.
2010-10-01
... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Suspension. 209.407... OF DEFENSE ACQUISITION PLANNING CONTRACTOR QUALIFICATIONS Debarment, Suspension, and Ineligibility 209.407 Suspension. ...
Directory of Open Access Journals (Sweden)
Mahesh Nagarkar
2016-04-01
Full Text Available In this paper, a genetic algorithm (GA based in an optimization approach is presented in order to search the optimum weighting matrix parameters of a linear quadratic regulator (LQR. A Macpherson strut quarter car suspension system is implemented for ride control application. Initially, the GA is implemented with the objective of minimizing root mean square (RMS controller force. For single objective optimization, RMS controller force is reduced by 20.42% with slight increase in RMS sprung mass acceleration. Trade-off is observed between controller force and sprung mass acceleration. Further, an analysis is extended to multi-objective optimization with objectives such as minimization of RMS controller force and RMS sprung mass acceleration and minimization of RMS controller force, RMS sprung mass acceleration and suspension space deflection. For multi-objective optimization, Pareto-front gives flexibility in order to choose the optimum solution as per designer’s need.
Badri, Pouya; Amini, Amir; Sojoodi, Mahdi
2016-12-01
This paper deals with designing a robust fixed-order non-fragile dynamic output feedback controller for active suspension system of a quarter-car, by means of convex optimization and linear matrix inequalities (LMIs). Our purpose is to design a low-order controller that keeps the desired design specifications besides the simplicity of the implementation. The proposed controller is capable of asymptotically stabilizing the closed-loop system and developing H∞ control, despite model uncertainties and nonlinear dynamics of the quarter-car as well as the norm bounded perturbations of controller parameters. Furthermore, controller parameters are prevented from taking very large and undesirable amounts through appropriate LMI constraints. Finally, a numerical example is presented to show the effectiveness of the proposed method by comparing it with similar works.
Jamali, M. S.; Ismail, K. A.; Taha, Z.; Aiman, M. F.
2017-10-01
In designing suitable isolators to reduce unwanted vibration in vehicles, the response from a mathematical model which characterizes the transmissibility ratio of the input and output of the vehicle is required. In this study, a Matlab Simulink model is developed to study the dynamic behaviour performance of passive suspension system for a lightweight electric vehicle. The Simulink model is based on the two degrees of freedom system quarter car model. The model is compared to the theoretical plots of the transmissibility ratios between the amplitudes of the displacements and accelerations of the sprung and unsprung masses to the amplitudes of the ground, against the frequencies at different damping values. It was found that the frequency responses obtained from the theoretical calculations and from the Simulink simulation is comparable to each other. Hence, the model may be extended to a full vehicle model.
Radiative corrections in bumblebee electrodynamics
Directory of Open Access Journals (Sweden)
R.V. Maluf
2015-10-01
Full Text Available We investigate some quantum features of the bumblebee electrodynamics in flat spacetimes. The bumblebee field is a vector field that leads to a spontaneous Lorentz symmetry breaking. For a smooth quadratic potential, the massless excitation (Nambu–Goldstone boson can be identified as the photon, transversal to the vacuum expectation value of the bumblebee field. Besides, there is a massive excitation associated with the longitudinal mode and whose presence leads to instability in the spectrum of the theory. By using the principal-value prescription, we show that no one-loop radiative corrections to the mass term is generated. Moreover, the bumblebee self-energy is not transverse, showing that the propagation of the longitudinal mode cannot be excluded from the effective theory.
Radiative corrections in bumblebee electrodynamics
Energy Technology Data Exchange (ETDEWEB)
Maluf, R.V., E-mail: r.v.maluf@fisica.ufc.br [Universidade Federal do Ceará (UFC), Departamento de Física, Campus do Pici, Fortaleza CE, CP 6030, 60455-760 (Brazil); Silva, J.E.G., E-mail: jgsilva@indiana.edu [Indiana University Center for Spacetime Symmetries, Bloomington, IN 47405 (United States); Almeida, C.A.S., E-mail: carlos@fisica.ufc.br [Universidade Federal do Ceará (UFC), Departamento de Física, Campus do Pici, Fortaleza CE, CP 6030, 60455-760 (Brazil)
2015-10-07
We investigate some quantum features of the bumblebee electrodynamics in flat spacetimes. The bumblebee field is a vector field that leads to a spontaneous Lorentz symmetry breaking. For a smooth quadratic potential, the massless excitation (Nambu–Goldstone boson) can be identified as the photon, transversal to the vacuum expectation value of the bumblebee field. Besides, there is a massive excitation associated with the longitudinal mode and whose presence leads to instability in the spectrum of the theory. By using the principal-value prescription, we show that no one-loop radiative corrections to the mass term is generated. Moreover, the bumblebee self-energy is not transverse, showing that the propagation of the longitudinal mode cannot be excluded from the effective theory.
Potentialities of Revised Quantum Electrodynamics
Directory of Open Access Journals (Sweden)
Lehnert B.
2013-10-01
Full Text Available The potentialities of a revised quantum electrodynamic theory (RQED earlier established by the author are reconsidered, also in respect to other fundamental theories such as those by Dirac and Higgs. The RQED theory is characterized by intrinsic linear symmetry breaking due to a nonzero divergence of the electric field strength in the vacuum state, as supported by the Zero Point Energy and the experimentally confirmed Casimir force. It includes the results of electron spin and antimatter by Dirac, as well as the rest mass of elementary particles predicted by Higgs in terms of spontaneous nonlinear symmetry breaking. It will here be put into doubt whether the approach by Higgs is the only theory which becomes necessary for explaining the particle rest masses. In addition, RQED theory leads to new results beyond those being available from the theories by Dirac, Higgs and the Standard Model, such as in applications to leptons and the photon.
Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.
THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE AIR SYSTEM AND REAR AXLE SUSPENSION USED ON DIESEL POWERED VEHICLES. TOPICS ARE (1) AIR INDUCTION AND EXHAUST SYSTEM, (2) VALVE MECHANISM, (3) TROUBLESHOOTING THE AIR SYSTEM, (4) PURPOSE OF VEHICLE SUSPENSION, (5) TANDEM…
Yoshimura, Toshio; Takagi, Atsushi
2004-09-01
This paper presents the construction of a pneumatic active suspension system for a one-wheel car model using fuzzy reasoning and a disturbance observer. The one-wheel car model can be approximately described as a nonlinear two degrees of freedom system subject to excitation from a road profile. The active control is composed of fuzzy and disturbance controls, and functions by actuating a pneumatic actuator. A phase lead-lag compensator is inserted to counter the performance degradation due to the delay of the pneumatic actuator. The experimental result indicates that the proposed active suspension improves much the vibration suppression of the car model.
The fundamental constants and quantum electrodynamics
Taylor, Barry N; Langenberg, D N
1969-01-01
Introduction ; review of experimental data ; least-squares adjustment to obtain values of the constants without QED theory ; implications for quantum electrodynamics ; final recommended set of fundamental constants ; summary and conclusions.
Comparison between Weber's electrodynamics and classical ...
Indian Academy of Sciences (India)
Home; Journals; Pramana – Journal of Physics; Volume 55; Issue 3. Comparison ... Keywords. Weber's electrodynamics; Maxwell's equations; Lorentz's force; classical electromagnetism ... Finally, we discuss some experiments performed and proposed with which we can distinguish Weber's force from Lorentz's one.
Aly, Mohamed F.; Nassef, Ashraf O.; Hamza, Karim
2015-05-01
This article presents a multi-objective design optimization study of a vehicle suspension system with passive variable stiffness and active damping. Design of suspension systems is particularly challenging when the effective mass of the vehicle is subject to considerable variation during service. Perfectly maintaining the suspension performance under the variable load typically requires a controlled actuator to emulate variable stiffness. This is typically done through a hydraulic or pneumatic system, which can be too costly for small/medium pick-up trucks. The system in this article employs two springs with an offset to the second spring so that it engages during large deformation only, thereby providing passive variable stiffness without expensive hydraulics. The system damping is assumed to be controlled via variable viscosity magnetizable fluid, which can be implemented in a compact, low-power set-up. Performance indices from the literature are evaluated at minimum and maximum weight, and regarded as objectives in a multi-objective problem. As the individual objectives are prone to having local optima, the multi-objective problem is prone to having a disjointed Pareto-space. To deal with this issue, a modification is proposed to a multi-objective genetic algorithm. The algorithm performance is investigated via analytical test functions as well as the design case of the suspension system.
Suspension system for a wheel rolling on a flat track. [bearings for directional antennas
Mcginness, H. D. (Inventor)
1981-01-01
An improved suspension system for an uncrowned wheel rolling on a flat track is presented. It is characterized by a wheel frame assembly including a wheel frame and at least one uncrowned wheel connected in supporting relation with the frame. It is adapted to be seated in rolling engagement with a flat track, a load supporting bed, and a plurality of flexural struts interconnecting the bed in supported relation with the frame. Each of said struts is disposed in a plane passing through the center of the uncrowned wheel surface along a line substantially bisecting the line of contact established between the wheel surface and the flat surface of the truck and characterized by a modulus of elasticity sufficient for maintaining the axis of rotation for the wheel in substantial parallelism with the line of contact established between the surfaces of the wheel and track.
The behaviour of a vehicle’s suspension system on dynamic testing conditions
Mihon, L.; Lontiş, N.; Deac, S.
2018-01-01
The paper presents a car suspension’s behaviour on dynamic testing conditions through theoretical and mathematical simulation on specific model, on the single traction wheel, according to the real vehicle and by experiment on the test bench by reproducing the road’s geometry and vehicle’s speed and measuring the acceleration and damping response of the suspension system on that wheel. There are taking in consideration also the geometry and properties of the tyre-wheel model and physical wheel’s properties. The results are important due to the suspension’s model properties which allows to extend the theory and applications to the whole vehicle for improving the vehicle’s dynamics.
Sun, Xiaoqiang; Yuan, Chaochun; Cai, Yingfeng; Wang, Shaohua; Chen, Long
2017-09-01
This paper presents the hybrid modeling and the model predictive control of an air suspension system with damping multi-mode switching damper. Unlike traditional damper with continuously adjustable damping, in this study, a new damper with four discrete damping modes is applied to vehicle semi-active air suspension. The new damper can achieve different damping modes by just controlling the on-off statuses of two solenoid valves, which makes its damping adjustment more efficient and more reliable. However, since the damping mode switching induces different modes of operation, the air suspension system with the new damper poses challenging hybrid control problem. To model both the continuous/discrete dynamics and the switching between different damping modes, the framework of mixed logical dynamical (MLD) systems is used to establish the system hybrid model. Based on the resulting hybrid dynamical model, the system control problem is recast as a model predictive control (MPC) problem, which allows us to optimize the switching sequences of the damping modes by taking into account the suspension performance requirements. Numerical simulations results demonstrate the efficacy of the proposed control method finally.
A Classroom Demonstration of Levitation and Suspension of a Superconductor over a Magnetic Track
Strehlow, Charles P.; Sullivan, M. C.
2008-01-01
The suspension and levitation of superconductors by permanent magnets is one of the most fascinating consequences of superconductivity, and a wonderful instrument for generating interest in low temperature physics and electrodynamics. We present a novel classroom demonstration of the levitation/suspension of a superconductor over a magnetic track that maximizes levitation/suspension time, separation distance between the magnetic track and superconductor and also insulator aesthetics. The demo...
2013-05-10
... From the Federal Register Online via the Government Publishing Office SECURITIES AND EXCHANGE COMMISSION Order of Suspension of Trading in the Matter of CoreCare Systems, Inc., Forticell Bioscience, Inc... concerning the securities of Forticell Bioscience, Inc. because it has not filed any periodic reports since...
Mukhopadhyay, Subhadeep
In this work, total 1592 individual leakage-free polymethylmethacrylate (PMMA) microfluidic devices as laboratory-on-a-chip systems are fabricated by maskless lithography, hot embossing lithography, and direct bonding technique. Total 1094 individual Audio Video Interleave Files as experimental outputs related to the surface-driven capillary flow have been recorded and analyzed. The influence of effective viscosity, effect of surface wettability, effect of channel aspect ratio, and effect of centrifugal force on the surface-driven microfluidic flow of aqueous microparticle suspensions have been successfully and individually investigated in these laboratory-on-a-chip systems. Also, 5 micron polystyrene particles have been separated from the aqueous microparticle suspensions in the microfluidic lab-on-a-chip systems of modified design with 98% separation efficiency, and 10 micron polystyrene particles have been separated with 100% separation efficiency. About the novelty of this work, the experimental investigations have been performed on the surface-driven microfluidic flow of aqueous microparticle suspensions with the investigations on the separation time in particle-size based separation mechanism to control these suspensions in the microfluidic lab-on-a-chip systems. This research work contains a total of 10,112 individual experimental outputs obtained using total 30 individual instruments by author’s own hands-on completely during more than three years continuously. Author has performed the experimental investigations on both the fluid statics and fluid dynamics to develop an automated fluid machine.
Workamp, Marcel; Alaie, Sepideh; Dijksman, Joshua
2017-01-01
We develop a method to investigate the microscopic origin of granular fluidity. We design a Couette cell in which we can probe the flow of soft hydrogel suspensions. As we drive the suspension with a rheometer, we have access to global flow characteristics. In addition, the Couette cell has been
Non-US electrodynamic launchers research and development
Energy Technology Data Exchange (ETDEWEB)
Parker, J.V.; Batteh, J.H.; Greig, J.R.; Keefer, D.; McNab, I.R.; Zabar, Z.
1994-11-01
Electrodynamic launcher research and development work of scientists outside the United States is analyzed and assessed by six internationally recognized US experts in the field of electromagnetic and electrothermal launchers. The assessment covers five broad technology areas: (1) Experimental railguns; (2) Railgun theory and design; (3) Induction launchers; (4) Electrothermal guns; (5) Energy storage and power supplies. The overall conclusion is that non-US work on electrodynamic launchers is maturing rapidly after a relatively late start in many countries. No foreign program challenges the US efforts in scope, but it is evident that the United States may be surpassed in some technologies within the next few years. Until recently, published Russian work focused on hypervelocity for research purposes. Within the last two years, large facilities have been described where military-oriented development has been underway since the mid-1980s. Financial support for these large facilities appears to have collapsed, leaving no effective effort to develop practical launchers for military or civilian applications. Electrodynamic launcher research in Europe is making rapid progress by focusing on a single application, tactical launchers for the military. Four major laboratories, in Britain, France, Germany, and the Netherlands, are working on this problem. Though narrower in scope than the US effort, the European work enjoys a continuity of support that has accelerated its progress. The next decade will see the deployment of electrodynamic launcher technology, probably in the form of an electrothermal-chemical upgrade for an existing gun system. The time scale for deployment of electromagnetic launchers is entirely dependent on the level of research-and-development effort. If resources remain limited, the advantage will lie with cooperative efforts that have reasonably stable funding such as the present French-German program.
Directory of Open Access Journals (Sweden)
Leilei Zhao
2016-01-01
Full Text Available During the dynamic simulation of cabin system, the damping parameters values of cabin suspension are the key factors. In previous work, for obtaining all the parameters of the cabin system of trucks for long distance transport, a parameters identification model was built by minimizing the error of the root-mean-square acceleration between the tested and the measured. However, the identification precision is not high. In this paper, according to the real cabin system of a heavy duty truck for short distance transport, a 3-DOF model of cabin system was built. Based on curve fitting method, a new identification model for damping parameters was established. At last, the bench test was done and the comparisons were conducted among the tested values, the values identified by the method built in this work, and those obtained by the method built in previous work. The results show that the model built and the method proposed are feasible, and the identification precision is higher than the previous work.
Magneto-rheological accumulator for temperature compensation in hydropneumatic suspension systems
Energy Technology Data Exchange (ETDEWEB)
Seo, Jeong Uk; Yun, Young Won; Park, Myeong Kwan [Pusan National University, Busan (Korea, Republic of)
2011-06-15
Hydro-pneumatic suspension systems consist of two fluids acting upon each other, usually gas over oil. In these systems, a compressible gas such as nitrogen is used as the springing medium, while a hydraulic fluid is used to convert the pressure to force. One of the problems associated with hydro-pneumatic systems is the effect of temperature change on the spring characteristics, which results in a variation in the spring rate and ride height. The important characteristics of a gas chamber filled with gas or air are to maintain the setting pressure, with very small variations, even for long strokes. This paper presents a magneto-rheological (MR) accumulator that can adjust the pressure of the gas chamber through the use of an MR device. To analyze the characteristics of the gas chamber, mathematical modeling based on the energy equation for a gas in a closed container is carried out. Further, a prototype of the MR device is designed and manufactured, and its performance is evaluated. The theoretical results are validated by conducting experiments in the laboratory environment. It is demonstrated that the MR accumulator can effectively compensate for the pressure variations caused by an increase in the gas temperature. Moreover, this research provides new information about the applicability of the MR accumulator to devices that use conventional accumulators.
Using fuzzy logic to control active suspension system of one-half-car model
Directory of Open Access Journals (Sweden)
Kruczek Ale
2003-12-01
Full Text Available In the paper, fuzzy logic is used to control active suspension of a one-half-car model. Velocity and acceleration of the front and rear wheels and undercarriage velocity above the mentioned wheels are taken as input data of the fuzzy logic controller. Active forces improving vehicle driving, ride comfort and handling properties are considered to be the controller outputs. The controller design is proposed to minimize chassis and wheels deflection when uneven road surfaces, pavement points, etc. are acting on the tires of running cars. In the conclusion, a comparison of active suspension fuzzy control and spring/damper passive suspension is shown using MATLAB simulations.
Zapateiro, M.; Luo, N.; Karimi, H. R.; Vehí, J.
2009-08-01
In this paper, we address the problem of designing the semiactive controller for a class of vehicle suspension system that employs a magnetorheological (MR) damper as the actuator. As the first step, an adequate model of the MR damper must be developed. Most of the models found in literature are based on the mechanical behavior of the device, with the Bingham and Bouc-Wen models being the most popular ones. These models can estimate the damping force of the device taking the control voltage and velocity inputs as variables. However, the inverse model, i.e., the model that computes the control variable (generally the voltage) is even more difficult to find due to the numerical complexity that implies the inverse of the nonlinear forward model. In our case, we develop a neural network being able to estimate the control voltage input to the MR damper, which is necessary for producing the optimal force predicted by the controller so as to reduce the vibrations. The controller is designed following the standard backstepping technique. The performance of the control system is evaluated by means of simulations in MATLAB/Simulink.
A nonlinear control method for the electromagnetic suspension system of the maglev train
National Research Council Canada - National Science Library
Xu, Junqi; Zhou, Yuan
... s. The proposed method has a faster response and stronger robustness. With a designed bi-DSP suspension controller, this nonlinear control method was implemented on the Shanghai Urban Maglev Test Line (SUMTL...
2010-10-01
... 48 Federal Acquisition Regulations System 7 2010-10-01 2010-10-01 false Suspension. 2909.407... CONTRACTOR QUALIFICATIONS Debarment, Suspension, and Ineligibility 2909.407 Suspension. (a) The Senior... authorized to make an exception, regarding suspension by another agency suspending official under the...
Lee, Jae-Hoon; Han, Changwan; Ahn, Dongsu; Lee, Jin Kyoo; Park, Sang-Hu; Park, Seonghun
2013-01-01
We designed and validated a rotary magnetorheological (MR) damper with a specified damping torque capacity, an unsaturated magnetic flux density (MFD), and a high magnetic field intensity (MFI) for unmanned vehicle suspension systems. In this study, for the rotary type MR damper to have these satisfactory performances, the roles of the sealing location and the cover case curvature of the MR damper were investigated by using the detailed 3D finite element model to reflect asymmetrical shapes and sealing components. The current study also optimized the damper cover case curvature based on the MFD, the MFI, and the weight of the MR damper components. The damping torques, which were computed using the characteristic equation of the MR fluid and the MFI of the MR damper, were 239.2, 436.95, and 576.78 N·m at currents of 0.5, 1, and 1.5 A, respectively, at a disk rotating speed of 10 RPM. These predicted damping torques satisfied the specified damping torque of 475 N·m at 1.5 A and showed errors of less than 5% when compared to experimental measurements from the MR damper manufactured by the proposed design. The current study could play an important role in improving the performance of rotary type MR dampers. PMID:23533366
Lee, Jae-Hoon; Han, Changwan; Ahn, Dongsu; Lee, Jin Kyoo; Park, Sang-Hu; Park, Seonghun
2013-01-01
We designed and validated a rotary magnetorheological (MR) damper with a specified damping torque capacity, an unsaturated magnetic flux density (MFD), and a high magnetic field intensity (MFI) for unmanned vehicle suspension systems. In this study, for the rotary type MR damper to have these satisfactory performances, the roles of the sealing location and the cover case curvature of the MR damper were investigated by using the detailed 3D finite element model to reflect asymmetrical shapes and sealing components. The current study also optimized the damper cover case curvature based on the MFD, the MFI, and the weight of the MR damper components. The damping torques, which were computed using the characteristic equation of the MR fluid and the MFI of the MR damper, were 239.2, 436.95, and 576.78 N·m at currents of 0.5, 1, and 1.5 A, respectively, at a disk rotating speed of 10 RPM. These predicted damping torques satisfied the specified damping torque of 475 N·m at 1.5 A and showed errors of less than 5% when compared to experimental measurements from the MR damper manufactured by the proposed design. The current study could play an important role in improving the performance of rotary type MR dampers.
Directory of Open Access Journals (Sweden)
Jae-Hoon Lee
2013-01-01
Full Text Available We designed and validated a rotary magnetorheological (MR damper with a specified damping torque capacity, an unsaturated magnetic flux density (MFD, and a high magnetic field intensity (MFI for unmanned vehicle suspension systems. In this study, for the rotary type MR damper to have these satisfactory performances, the roles of the sealing location and the cover case curvature of the MR damper were investigated by using the detailed 3D finite element model to reflect asymmetrical shapes and sealing components. The current study also optimized the damper cover case curvature based on the MFD, the MFI, and the weight of the MR damper components. The damping torques, which were computed using the characteristic equation of the MR fluid and the MFI of the MR damper, were 239.2, 436.95, and 576.78 N·m at currents of 0.5, 1, and 1.5 A, respectively, at a disk rotating speed of 10 RPM. These predicted damping torques satisfied the specified damping torque of 475 N·m at 1.5 A and showed errors of less than 5% when compared to experimental measurements from the MR damper manufactured by the proposed design. The current study could play an important role in improving the performance of rotary type MR dampers.
Gupta, R. C.; Misulis, K. E.; Dettbarn, W. D.
1984-01-01
Muscle disused induced changes in the cholinergic system of sciatic nerve, slow twitch soleus (SOL) and fast twitch extensor digitorum longus (EDL) muscle were studied in rats. Rats with hindlimbs suspended for 2 to 3 weeks showed marked elevation in the activity of choline acetyltransferase (ChAT) in sciatic nerve (38%), in SOL (108%) and in EDL (67%). Acetylcholinesterase (AChE) activity in SOL increased by 163% without changing the molecular forms pattern of 4S, 10S, 12S, and 16S. No significant changes in activity and molecular forms pattern of AChE were seen in EDL or in AChE activity of sciatic nerve. Nicotinic receptor binding of 3H-acetylcholine was increased in both muscles. When measured after 3 weeks of hindlimb suspension the normal distribution of type 1 fibers in SOL was reduced and a corresponding increase in type IIa and IIb fibers is seen. In EDL no significant change in fiber proportion is observed. Muscle activity, such as loadbearing, appears to have a greater controlling influence on the characteristics of the slow twitch SOL muscle than upon the fast twitch EDL muscle.
Considerations about Electrodynamic Forces Analytical Computation
Directory of Open Access Journals (Sweden)
Alina NEAMT
2016-12-01
Full Text Available The electrodynamic forces depend on the strength of the currents and conductors shapes and mutual positions. For simple configurations are available analytical solutions but for complex ones only numerical methods could be used. Anyway only the real-life tests will guarantee the accuracy in design process. So, the fastest method to predict the electrodynamic forces with acceptable error is desired. This paper deals with analytical solutions and the availability of each one regarding the imposed precision. The influence of filiformity and the infinite length is studied.
Anomalous electrical conductivity of nanoscale colloidal suspensions.
Chakraborty, Suman; Padhy, Sourav
2008-10-28
The electrical conductivity of colloidal suspensions containing nanoscale conducting particles is nontrivially related to the particle volume fraction and the electrical double layer thickness. Classical electrochemical models, however, tend to grossly overpredict the pertinent effective electrical conductivity values, as compared to those obtained under experimental conditions. We attempt to address this discrepancy by appealing to the complex interconnection between the aggregation kinetics of the nanoscale particles and the electrodynamics within the double layer. In particular, we model the consequent alterations in the effective electrophoretic mobility values of the suspension by addressing the fundamentals of agglomeration-deagglomeration mechanisms through the pertinent variations in the effective particulate dimensions, solid fractions, as well as the equivalent suspension viscosity. The consequent alterations in the electrical conductivity values provide a substantially improved prediction of the corresponding experimental findings and explain the apparent anomalous behavior predicted by the classical theoretical postulates.
Introduction to electrodynamics for microwave linear accelerators
Energy Technology Data Exchange (ETDEWEB)
Whittum, D.H.
1998-04-01
This collection of notes and exercises is intended as a workbook to introduce the principles of microwave linear accelerators, starting with the underlying foundation in electrodynamics. The author reviewed Maxwell's equations, the Lorentz force law, and the behavior of fields near a conducting boundary. The author goes on to develop the principles of microwave electronics, including waveguide modes, circuit equivalence, shunt admittance of an iris, and voltage standing-wave ratio. The author constructed an elementary example of a waveguide coupled to a cavity, and examined its behavior during transient filling of the cavity, and in steady-state. He goes on to examine a periodic line. Then he examined the problem of acceleration in detail, studying first the properties of a single cavity-waveguide-beam system and developing the notions of wall Q, external Q, [R/Q], shunt impedance, and transformer ratio. He then examined the behavior of such a system on and off resonance, on the bench, and under conditions of transient and steady-state beam-loading. This work provides the foundation for the commonly employed circuit equivalents and the basic scalings for such systems. Following this he examined the coupling of two cavities, powered by a single feed, and goes on to consider structures constructed from multiple coupled cavities. The basic scalings for constant impedance and constant gradient traveling-wave structures are set down, including features of steady-state beam-loading, and the coupled-circuit model. Effects of uniform and random detuning are derived. These notes conclude with a brief outline of some problems of current interest in accelerator research.
Four-dimensional black holes with scalar hair in nonlinear electrodynamics
Energy Technology Data Exchange (ETDEWEB)
Barrientos, Jose [Universidad de Concepcion, Departamento de Fisica, Concepcion (Chile); Universidad Catolica del Norte, Departamento de Ensenanza de las Ciencias Basicas, Coquimbo (Chile); Gonzalez, P.A. [Universidad Diego Portales, Facultad de Ingenieria, Santiago (Chile); Vasquez, Yerko [Universidad de La Serena, Departamento de Fisica y Astronomia, Facultad de Ciencias, La Serena (Chile)
2016-12-15
We consider a gravitating system consisting of a scalar field minimally coupled to gravity with a self-interacting potential and a U(1) nonlinear electromagnetic field. Solving analytically and numerically the coupled system for both power-law and Born-Infeld type electrodynamics, we find charged hairy black hole solutions. Then we study the thermodynamics of these solutions and we find that at a low temperature the topological charged black hole with scalar hair is thermodynamically preferred, whereas the topological charged black hole without scalar hair is thermodynamically preferred at a high temperature for power-law electrodynamics. Interestingly enough, these phase transitions occur at a fixed critical temperature and do not depend on the exponent p of the nonlinear electrodynamics. (orig.)
Directory of Open Access Journals (Sweden)
Marta Ribes
2000-12-01
Full Text Available Suspension feeding is one of the most widespread feeding strategies among benthic organisms. However, natural feeding ecology and energetics of benthic suspension feeders are poorly known. The scarcity of field methods, apparatus and protocols that facilitate obtention of reliable in situ data has contributed to this lack of knowledge. A detailed description of an improved semi-closed recirculating system as well as the experimental set up is provided for the study of energetics in benthic suspension feeders. The system, completely submersible and surface-independent, allows us to assess oxygen concentration changes and feeding rates under natural conditions. Methodological examinations are conducted to investigate: a the circulation of the water within the chamber; b the time required for the flushing pump to entirely renew the volume of water of the incubation chambers; c the behavior of the species within the chambers; d the time of acclimation to the chamber conditions for the different species; e the maximum decrease in oxygen concentration without affecting respiration rate; f the time required to detect changes in concentration of the natural food sources. The system and experimental protocol is tested with species from three representative phyla, Porifera, Cnidaria and Tunicata.
Moreno, Javier; Clotet, Eduard; Tresanchez, Marcel; Martínez, Dani; Casanovas, Jordi; Palacín, Jordi
2017-05-14
This paper presents the vibration pattern measurement of two tower-typed holonomic mobile robot prototypes: one based on a rigid mechanical structure, and the other including a passive suspension system. Specific to the tower-typed mobile robots is that the vibrations that originate in the lower part of the structure are transmitted and amplified to the higher areas of the tower, causing an unpleasant visual effect and mechanical stress. This paper assesses the use of a suspension system aimed at minimizing the generation and propagation of vibrations in the upper part of the tower-typed holonomic robots. The two robots analyzed were equipped with onboard accelerometers to register the acceleration over the X, Y, and Z axes in different locations and at different velocities. In all the experiments, the amplitude of the vibrations showed a typical Gaussian pattern which has been modeled with the value of the standard deviation. The results have shown that the measured vibrations in the head of the mobile robots, including a passive suspension system, were reduced by a factor of 16.
Directory of Open Access Journals (Sweden)
Javier Moreno
2017-05-01
Full Text Available This paper presents the vibration pattern measurement of two tower-typed holonomic mobile robot prototypes: one based on a rigid mechanical structure, and the other including a passive suspension system. Specific to the tower-typed mobile robots is that the vibrations that originate in the lower part of the structure are transmitted and amplified to the higher areas of the tower, causing an unpleasant visual effect and mechanical stress. This paper assesses the use of a suspension system aimed at minimizing the generation and propagation of vibrations in the upper part of the tower-typed holonomic robots. The two robots analyzed were equipped with onboard accelerometers to register the acceleration over the X, Y, and Z axes in different locations and at different velocities. In all the experiments, the amplitude of the vibrations showed a typical Gaussian pattern which has been modeled with the value of the standard deviation. The results have shown that the measured vibrations in the head of the mobile robots, including a passive suspension system, were reduced by a factor of 16.
Flux Modulation in the Electrodynamic Loudspeaker
DEFF Research Database (Denmark)
Halvorsen, Morten; Tinggaard, Carsten; Agerkvist, Finn T.
2015-01-01
This paper discusses the effect of flux modulation in the electrodynamic loudspeaker with main focus on the effect on the force factor. A measurement setup to measure the AC flux modulation with static voice coil is explained and the measurements shows good consistency with FEA simulations. Measu...
Octonion wave equation and tachyon electrodynamics
Indian Academy of Sciences (India)
The octonion wave equation is discussed to formulate the localization spaces for subluminal and superluminal particles. Accordingly, tachyon electrodynamics is established to obtain a consistent and manifestly covariant equation for superluminal electromagnetic fields. It is shown that the true localization space for ...
Linear Response Laws and Causality in Electrodynamics
Yuffa, Alex J.; Scales, John A.
2012-01-01
Linear response laws and causality (the effect cannot precede the cause) are of fundamental importance in physics. In the context of classical electrodynamics, students often have a difficult time grasping these concepts because the physics is obscured by the intermingling of the time and frequency domains. In this paper, we analyse the linear…
Students' Difficulties with Vector Calculus in Electrodynamics
Bollen, Laurens; van Kampen, Paul; De Cock, Mieke
2015-01-01
Understanding Maxwell's equations in differential form is of great importance when studying the electrodynamic phenomena discussed in advanced electromagnetism courses. It is therefore necessary that students master the use of vector calculus in physical situations. In this light we investigated the difficulties second year students at KU Leuven…
Quantum-electrodynamics corrections in pionic hydrogen
Schlesser, S.; Le Bigot, E. -O.; Indelicato, P.; Pachucki, K.
2011-01-01
We investigate all pure quantum-electrodynamics corrections to the np --> 1s, n = 2-4 transition energies of pionic hydrogen larger than 1 meV, which requires an accurate evaluation of all relevant contributions up to order alpha 5. These values are needed to extract an accurate strong interaction
Engineering electrodynamics electric machine, transformer, and power equipment design
Turowski, Janusz
2013-01-01
Due to a huge concentration of electromagnetic fields and eddy currents, large power equipment and systems are prone to crushing forces, overheating, and overloading. Luckily, power failures due to disturbances like these can be predicted and/or prevented.Based on the success of internationally acclaimed computer programs, such as the authors' own RNM-3D, Engineering Electrodynamics: Electric Machine, Transformer, and Power Equipment Design explains how to implement industry-proven modeling and design techniques to solve complex electromagnetic phenomena. Considering recent progress in magneti
Directory of Open Access Journals (Sweden)
Juan Lu
Full Text Available A fluidized bed bioreactor containing encapsulated hepatocytes may be a valuable alternative to a hollow fiber bioreactor for achieving the improved mass transfer and scale-up potential necessary for clinical use. However, a conventional fluidized bed bioreactor (FBB operating under high perfusion velocity is incapable of providing the desired performance due to the resulting damage to cell-containing microcapsules and large void volume. In this study, we developed a novel diversion-type microcapsule-suspension fluidized bed bioreactor (DMFBB. The void volume in the bioreactor and stability of alginate/chitosan microcapsules were investigated under different flow rates. Cell viability, synthesis and metabolism functions, and expression of metabolizing enzymes at transcriptional levels in an encapsulated hepatocyte line (C3A cells were determined. The void volume was significantly less in the novel bioreactor than in the conventional FBB. In addition, the microcapsules were less damaged in the DMFBB during the fluidization process as reflected by the results for microcapsule retention rates, swelling, and breakage. Encapsulated C3A cells exhibited greater viability and CYP1A2 and CYP3A4 activity in the DMFBB than in the FBB, although the increases in albumin and urea synthesis were less prominent. The transcription levels of several CYP450-related genes and an albumin-related gene were dramatically greater in cells in the DMFBB than in those in the FBB. Taken together, our results suggest that the DMFBB is a promising alternative for the design of a bioartificial liver system based on a fluidized bed bioreactor with encapsulated hepatocytes for treating patients with acute hepatic failure or other severe liver diseases.
A piezoelectric active mirror suspension system embedded into low-temperature cofired ceramic.
Sobocinski, Maciej; Leinonen, Mikko; Juuti, Jari; Jantunen, Heli
2012-09-01
Low-temperature cofired ceramic (LTCC) has proven to be a cost-effective, flexible technology for producing complicated structures such as sensors, actuators, and microsystems. This paper presents a piezoelectric active mirror suspension system embedded into LTCC. In the structure, the LTCC was used as a package, for the passive layers of piezoelectric monomorphs, as support for the mirrors, and as a substrate for the conductors. The active mirror structure, 17 mm in diameter, was made by compiling 20 LTCC layers using common LTCC processing techniques. Each sample contained a laser-micromachined bulk lead zirconate titanate (PZT) structure which formed a monomorph with the LTCC during the firing process. A mirror substrate (diameter 4 mm) was mounted in the middle of the monomorph arms for evaluation of the positioning performance, where each of the three arms had independent signal electrodes and a common ground electrode. Electrical and electromechanical properties were investigated with an LCR meter, network analyzer, and laser vibrometer for the different arms and the mirror. The active mirror structure exhibited more than 1 μm dc displacement for mirror leveling and also allowed small changes in mirror angle up to 0.06°. The first bending resonance frequency of the structure with the mirror was detected at 11.31 kHz with 4.0 μm displacement; 13.02 kHz and 2.7 μm were obtained without the mirror. The structure exhibited characteristics feasible for further utilization in tunable Fabry-Perot filter applications, allowing the mounting of active mirrors on both sides with distance and angle control.
On analytical study of holographic superconductors with Born–Infeld electrodynamics
Directory of Open Access Journals (Sweden)
Chuyu Lai
2015-10-01
Full Text Available Based on the Sturm–Liouville eigenvalue problem, Banerjee et al. proposed a perturbative approach to analytically investigate the properties of the (2+1-dimensional superconductor with Born–Infeld electrodynamics (Banerjee et al., 2013 [29]. By introducing an iterative procedure, we will further improve the analytical results and the consistency with the numerical findings, and can easily extend the analytical study to the higher-dimensional superconductor with Born–Infeld electrodynamics. We observe that the higher Born–Infeld corrections make it harder for the condensation to form but do not affect the critical phenomena of the system. Our analytical results can be used to back up the numerical computations for the holographic superconductors with various condensates in Born–Infeld electrodynamics.
Famelaer, L.; Bordas, M.; Baliu', E.; Ennik, E.; Meijer, H.; Tuyl, van J.M.; Creemers-Molenaar, J.
1997-01-01
The present study reports data on the development of a protoplast regeneration procedure in lily. Established morphogenic suspension cultures were obtained from callus cultures induced on mature embryos from crosses between cultivars of L. longiflorum. The effect on the frequency of protoplast
The stress system in a suspension of heavy particles: antisymmetric contribution
Prosperetti, Andrea; Zhang, Q.; Ichiki, K.
2006-01-01
The nature of the stress in a suspension of equal homogeneous spheres all subject to the same force, such as weight, is considered; inertial effects are neglected. This study builds upon some of the well-known work devoted to this problem by the founder of the Journal of Fluid Mechanics, Professor
Directory of Open Access Journals (Sweden)
Henryk Świnder
2013-01-01
Full Text Available The necessity to reduce CO2 emission in the environment has encouraged people to search for solutions for its safe capture and storage. Known methods for carbon dioxide mineral sequestration are based primarily on the use of its binding reaction with metal oxides, mainly earth metals. Increasingly important, due to the availability and price, are processes based on the suspension of various wastes such as fly ash, cement dust or furnace slag. Due to the complexity of the mineral sequestration of CO2 in water-waste suspensions, an important issue is to determine the reaction mechanisms. This applies mainly to the initial period of the transformation phase of mineral wastes, and consequently with the occurrence of a number of transition states of ionic equilibria. The mechanisms and reaction rates in the various stages of the process of CO2 mineral sequestration in heterogeneous systems containing selected wastes are defined herein. This paper presents a method of modeling kinetics of this type of process, developed on the basis of the results of the absorption of CO2 thanks to the aqueous suspension of fly ash and cement dust. This allowed for the transfer of obtained experimental results into the mathematical formula, using the invariant function method, used to describe the processes.
Five degrees of freedom linear state-space representation of electrodynamic thrust bearings
Verdeghem, J. Van; Kluyskens, V.; Dehez, B.
2017-09-01
Electrodynamic bearings can provide stable and contactless levitation of rotors while operating at room temperatures. Depending solely on passive phenomena, specific models have to be developed to study the forces they exert and the resulting rotordynamics. In recent years, models allowing us to describe the axial dynamics of a large range of electrodynamic thrust bearings have been derived. However, these bearings being devised to be integrated into fully magnetic suspensions, the existing models still suffer from restrictions. Indeed, assuming the spin speed as varying slowly, a rigid rotor is characterised by five independent degrees of freedom whereas early models only considered the axial degree. This paper presents a model free of the previous limitations. It consists in a linear state-space representation describing the rotor's complete dynamics by considering the impact of the rotor axial, radial and angular displacements as well as the gyroscopic effects. This set of ten equations depends on twenty parameters whose identification can be easily performed through static finite element simulations or quasi-static experimental measurements. The model stresses the intrinsic decoupling between the axial dynamics and the other degrees of freedom as well as the existence of electrodynamic angular torques restoring the rotor to its nominal position. Finally, a stability analysis performed on the model highlights the presence of two conical whirling modes related to the angular dynamics, namely the nutation and precession motions. The former, whose intrinsic stability depends on the ratio between polar and transverse moments of inertia, can be easily stabilised through external damping whereas the latter, which is stable up to an instability threshold linked to the angular electrodynamic cross-coupling stiffness, is less impacted by that damping.
Directory of Open Access Journals (Sweden)
Yusuf Altun
2017-06-01
Full Text Available The main aim of this paper is to attenuate the effects of the road disturbance on the quarter-car active suspension system (ASS for the passenger comfort by using design. Therefore, a new static disturbance compensator is proposed by using linear matrix inequality method such that the disturbance compensator and feedback controller are simultaneously designed for the disturbances in the linear time-invariant systems, which are measurable or predictable. They have static structure, and the disturbance compensator is designed on the feedforward path. The design is applied against the road disturbance affecting the quarter car ASS. The effectiveness of the design is demonstrated with the simulations.
Larsen, A T; Holm, R; Müllertz, A
2017-08-01
In this study, the potential of co-administering an aqueous suspension with a placebo lipid vehicle, i.e. chase dosing, was investigated in rats relative to the aqueous suspension alone or a solution of the drug in the lipid vehicle. The lipid investigated in the present study was Labrafil M2125CS and three evaluated poorly soluble model compounds, danazol, cinnarizine and halofantrine. For cinnarizine and danazol the oral bioavailability in rats after chase dosing or dosing the compound dissolved in Labrafil M21515CS was similar and significantly higher than for the aqueous suspension. For halofantrine the chase dosed group had a tendency towards a low bioavailability relative to the Labrafil M2125CS solution, but still a significant higher bioavailability relative to the aqueous suspension. This could be due to factors such as a slower dissolution rate in the intestinal phase of halofantrine or a lower solubility in the colloidal structures formed during digestion, but other mechanisms may also be involved. The study thereby supported the potential of chase dosing as a potential dosing regimen in situations where it is beneficial to have a drug in the solid state, e.g. due to chemical stability issues in the lipid vehicle. Copyright © 2017 Elsevier B.V. All rights reserved.
Electrodynamic modeling applied to micro-strip gas chambers
Energy Technology Data Exchange (ETDEWEB)
Fang, R
1998-12-31
Gas gain variations as functions of time, counting rate and substrate resistivity have been observed with Micro-Strip Gas Chambers (MSGC). Such a chamber is here treated as a system of 2 dielectrics, gas and substrate, with finite resistivities. Electric charging between their interface results in variations of the electric field and the gas gain. The electrodynamic equations (including time dependence) for such a system are proposed. A Rule of Charge Accumulation (RCA) is then derived which allows to determine the quantity and sign of charges accumulated on the surface at equilibrium. In order to apply the equations and the rule to MSGCs, a model of gas conductance induced by ionizing radiation is proposed, and a differential equation and some formulae are derived to calculate the rms dispersion and the spatial distribution of electrons (ions) in inhomogeneous electric fields. RCA coupled with a precise simulation of the electric fields gives the first quantitative explanation of gas gain variations of MSGCs. Finally an electrodynamic simulation program is made to reproduce the dynamic process of gain variation due to surface charging with an uncertainty of at most 15% relative to experimental data. As a consequence, the methods for stabilizing operation of MSGCs are proposed. (author) 18 refs.
Evolving wormhole geometries within nonlinear electrodynamics
Energy Technology Data Exchange (ETDEWEB)
Arellano, Aaron V B [Facultad de Ciencias, Universidad Autonoma del Estado de Mexico, El Cerrillo, Piedras Blancas, CP 50200, Toluca (Mexico); Lobo, Francisco S N [Centro de Astronomia e Astrofisica da Universidade de Lisboa, Campo Grande, Ed C8 1749-016 Lisbon (Portugal)
2006-10-21
In this work, we explore the possibility of evolving (2 + 1) and (3 + 1)-dimensional wormhole spacetimes, conformally related to the respective static geometries, within the context of nonlinear electrodynamics. For (3 + 1)-dimensional spacetime, it is found that the Einstein field equation imposes a contracting wormhole solution and the obedience of the weak energy condition. Nevertheless, in the presence of an electric field, the latter presents a singularity at the throat; however, for a pure magnetic field the solution is regular. For (2 + 1)-dimensional case, it is also found that the physical fields are singular at the throat. Thus, taking into account the principle of finiteness, which states that a satisfactory theory should avoid physical quantities becoming infinite, one may rule out evolving (3 + 1)-dimensional wormhole solutions, in the presence of an electric field, and (2 + 1)-dimensional case coupled to nonlinear electrodynamics.
Pair condensation in massless scalar electrodynamics
Hey, Anthony J. G.; Mandula, Jeffrey E.
1982-05-01
Motivated by the instabilities of the vacuum to bound-state pair production at large coupling in both abelian and non-abelian gauge theories, we examine the stability of the vacuum of a constrained version of massless scalar electrodynamics to the formation of a scalar pair condensate. The trial states are constructed by analogy with the BCS ground state of super-conductivity and are such that the vacuum expectation value of the scalar field vanishes. Analysis of the minimization equation for the energy density indicates that there are two phases as a function of the coupling constant. Under the constraint that the vacuum expectation value of the scalar field be zero, we find what, for small coupling, the perturbative vacuum minimizes the energy, while for large coupling a condensate of particle-antiparticle pairs is energetically favored. After discussing the relation of our results to the phase structure of unconstrained scalar electrodynamics, we speculate on possible implications for QCD.
Pair condensation in massless scalar electrodynamics
Energy Technology Data Exchange (ETDEWEB)
Hey, A.J.G. (Southampton Univ. (UK). Dept. of Physics); Mandula, J.E. (Washington Univ., St. Louis, MO (USA). Dept. of Physics)
1982-05-03
Motivated by the instabilities of the vacuum to bound-state pair production at large coupling in both abelian and non-abelian gauge theories, we examine the stability of the vacuum of a constrained version of massless scalar electrodynamics to the formation of a scalar pair condensate. The trial states are constructed by analogy with the BCS ground state of super-conductivity and are such that the vacuum expectation value of the scalar field vanishes. Analysis of the minimization equation for the energy density indicates that there are two phases as a function of the coupling constant. Under the constraint that the vacuum expectation value of the scalar field be zero, we find that, for small coupling, the perturbative vacuum minimizes the energy, while for large coupling a condensate of particle-antiparticle pairs is energetically favored. After discussing the relation of our results to the phase structure of unconstrained scalar electrodynamics, we speculate on possible implications for QCD.
Foundations of classical and quantum electrodynamics
Toptygin, Igor N
2014-01-01
This advanced textbook covers many fundamental, traditional and new branches of electrodynamics, as well as the related fields of special relativity, quantum mechanics and quantum electrodynamics. The book introduces the material at different levels, oriented towards 3rd–4th year bachelor, master, and PhD students. This is so as to describe the whole complexity of physical phenomena. The required mathematical background is collated in Chapter 1, while the necessary physical background is included in the main text of the corresponding chapters and also given in appendices. It contains approximately 800 examples and problems, many of which are described in detail. Some of these problems are designed for students to work on their own with only the answers and descriptions of results, and may be solved selectively. Equally suitable as a reference for researchers specialized in science and engineering.
Conceptual assessment tool for advanced undergraduate electrodynamics
Baily, Charles; Ryan, Qing X.; Astolfi, Cecilia; Pollock, Steven J.
2017-12-01
As part of ongoing investigations into student learning in advanced undergraduate courses, we have developed a conceptual assessment tool for upper-division electrodynamics (E&M II): the Colorado UppeR-division ElectrodyNamics Test (CURrENT). This is a free response, postinstruction diagnostic with 6 multipart questions, an optional 3-question preinstruction test, and accompanying grading rubrics. The instrument's development was guided by faculty-consensus learning goals and research into common student difficulties. It can be used to gauge the effectiveness of transformed pedagogy, and to gain insights into student thinking in the covered topic areas. We present baseline data representing 500 students across 9 institutions, along with validity, reliability, and discrimination measures of the instrument and scoring rubric.
Investigation on regulators in quantum electrodynamics
Stora, Raymond Félix
We present in this work three models which are able to suppress the divergences of approximate versions of Quantum Electrodynamics.It is indeed argued that, in view of the smallness of the fine structure constant, not only the first terms of a perturbation expansion, or of an expansion according to the number of particles involved in intermediate states, gives a fair approximattonbut furthermore, that it is in these terms that a breakdown of electrodynamics should be sought. Our goal is to connect the high energy behaviour of relevant physical processes with the suppression of the divergences. Our goal is to connect the high energy behaviour of relevant physical processes with the suppression of the divergences. The first model assumes the existence of a photon cut off, whose observable consequences are clearly stated, and of a fermion out off which, although unable to give a satisfactory ...
On the Critical Analysis of Classical Electrodynamics
Kalanov, Temur Z.
2011-04-01
Critical analysis of classical electrodynamics within the correct methodological basis - unity of formal logic and of rational dialectics - is proposed. The main result of analysis is as follows: 1) quantitative (mathematical) relations proposed by Faraday, Maxwell, Lorentz, and others have following qualitative determinacy: (field) = (source of field); 2) from the formal-logical point of view, the left-hand and right-hand parts of these quantitative relations must belong to one and only one of the following qualitative determinacy: (field) = (field) or (source of field) = (source of field) expressing the law of the identity of the object; 3) Faraday's, Maxwell's, and Lorentz's quantitative relations did not belong to the qualitative relations (field) = (field) or (source of field) = (source of field). Consequently, Faraday's, Maxwell's, and Lorentz's relations contradict the logical law of identity. Thus, classical electrodynamics is an erroneous theory, and it should be replaced by a correct theory.
Conceptual assessment tool for advanced undergraduate electrodynamics
Directory of Open Access Journals (Sweden)
Charles Baily
2017-09-01
Full Text Available As part of ongoing investigations into student learning in advanced undergraduate courses, we have developed a conceptual assessment tool for upper-division electrodynamics (E&M II: the Colorado UppeR-division ElectrodyNamics Test (CURrENT. This is a free response, postinstruction diagnostic with 6 multipart questions, an optional 3-question preinstruction test, and accompanying grading rubrics. The instrument’s development was guided by faculty-consensus learning goals and research into common student difficulties. It can be used to gauge the effectiveness of transformed pedagogy, and to gain insights into student thinking in the covered topic areas. We present baseline data representing 500 students across 9 institutions, along with validity, reliability, and discrimination measures of the instrument and scoring rubric.
Finite quantum electrodynamics the causal approach
Scharf, Günter
2014-01-01
In this classic text for advanced undergraduates and graduate students of physics, author Günter Scharf carefully analyzes the role of causality in quantum electrodynamics. His approach offers full proofs and detailed calculations of scattering processes in a mathematically rigorous manner. This third edition contains Scharf's revisions and corrections plus a brief new Epilogue on gauge invariance of quantum electrodynamics to all orders. The book begins with Dirac's theory, followed by the quantum theory of free fields and causal perturbation theory, a powerful method that avoids ultraviolet divergences and solves the infrared problem by means of the adiabatic limit. Successive chapters explore properties of the S-matrix — such as renormalizability, gauge invariance, and unitarity — the renormalization group, and interactive fields. Additional topics include electromagnetic couplings and the extension of the methods to non-abelian gauge theories. Each chapter is supplemented with problems, and four appe...
Inflation of universe due to nonlinear electrodynamics
Kruglov, S. I.
2017-05-01
A model of nonlinear electrodynamics with a dimensional parameter β is considered. Electromagnetic fields are the source of the gravitation field and inflation of the universe. We imply that the universe is filled by stochastic magnetic fields. It is demonstrated that after the universe inflation the universe decelerates approaching the Minkowski space-time. We evaluate the spectral index, the tensor-to-scalar ratio, and the running of the spectral index which approximately agree with the Planck and WMAP data.
Quantum simulations with circuit quantum electrodynamics
Romero, G.; Solano, E.; Lamata, L.
2016-01-01
Superconducting circuits have become a leading quantum technology for testing fundamentals of quantum mechanics and for the implementation of advanced quantum information protocols. In this chapter, we revise the basic concepts of circuit network theory and circuit quantum electrodynamics for the sake of digital and analog quantum simulations of quantum field theories, relativistic quantum mechanics, and many-body physics, involving fermions and bosons. Based on recent improvements in scalabi...
Lockerbie, N. A.; Tokmakov, K. V.
2016-07-01
The background to this work was a prototype shadow sensor, which was designed for retro-fitting to an advanced LIGO (Laser Interferometer Gravitational wave Observatory) test-mass/mirror suspension, in which 40 kg test-mass/mirrors are each suspended by four approximately 600 mm long by 0.4 mm diameter fused-silica suspension fibres. The shadow sensor comprised a LED source of Near InfraRed (NIR) radiation and a rectangular silicon photodiode detector, which, together, were to bracket the fibre under test. The aim was to detect transverse Violin-Mode resonances in the suspension fibres. Part of the testing procedure involved tensioning a silica fibre sample and translating it transversely through the illuminating NIR beam, so as to measure the DC responsivity of the detection system to fibre displacement. However, an equally important part of the procedure, reported here, was to keep the fibre under test stationary within the beam, whilst trying to detect low-level AC Violin-Mode resonances excited on the fibre, in order to confirm the primary function of the sensor. Therefore, a tensioning system, incorporating a load-cell readout, was built into the test fibre's holder. The fibre then was excited by a signal generator, audio power amplifier, and distant loudspeaker, and clear resonances were detected. A theory for the expected fundamental resonant frequency as a function of fibre tension was developed and is reported here, and this theory was found to match closely with the detected resonant frequencies as they varied with tension. Consequently, the resonances seen were identified as being proper Violin-Mode fundamental resonances of the fibre, and the operation of the Violin-Mode detection system was validated.
Energy Technology Data Exchange (ETDEWEB)
Lockerbie, N. A.; Tokmakov, K. V. [SUPA (Scottish Universities Physics Alliance) Department of Physics, University of Strathclyde, 107 Rottenrow, Glasgow G4 0NG (United Kingdom)
2016-07-15
The background to this work was a prototype shadow sensor, which was designed for retro-fitting to an advanced LIGO (Laser Interferometer Gravitational wave Observatory) test-mass/mirror suspension, in which 40 kg test-mass/mirrors are each suspended by four approximately 600 mm long by 0.4 mm diameter fused-silica suspension fibres. The shadow sensor comprised a LED source of Near InfraRed (NIR) radiation and a rectangular silicon photodiode detector, which, together, were to bracket the fibre under test. The aim was to detect transverse Violin-Mode resonances in the suspension fibres. Part of the testing procedure involved tensioning a silica fibre sample and translating it transversely through the illuminating NIR beam, so as to measure the DC responsivity of the detection system to fibre displacement. However, an equally important part of the procedure, reported here, was to keep the fibre under test stationary within the beam, whilst trying to detect low-level AC Violin-Mode resonances excited on the fibre, in order to confirm the primary function of the sensor. Therefore, a tensioning system, incorporating a load-cell readout, was built into the test fibre’s holder. The fibre then was excited by a signal generator, audio power amplifier, and distant loudspeaker, and clear resonances were detected. A theory for the expected fundamental resonant frequency as a function of fibre tension was developed and is reported here, and this theory was found to match closely with the detected resonant frequencies as they varied with tension. Consequently, the resonances seen were identified as being proper Violin-Mode fundamental resonances of the fibre, and the operation of the Violin-Mode detection system was validated.
Holographic paramagnetism–ferromagnetism phase transition with the nonlinear electrodynamics
Energy Technology Data Exchange (ETDEWEB)
Zhang, Cheng-Yuan; Wu, Ya-Bo, E-mail: ybwu61@163.com; Zhang, Ya-Nan; Wang, Huan-Yu; Wu, Meng-Meng
2017-01-15
In the probe limit, we investigate the nonlinear electrodynamical effects of the both exponential form and the logarithmic form on the holographic paramagnetism–ferromagnetism phase transition in the background of a Schwarzschild-AdS black hole spacetime. Moreover, by comparing the exponential form of nonlinear electrodynamics with the logarithmic form of nonlinear electrodynamics and the Born–Infeld nonlinear electrodynamics which has been presented in Ref. , we find that the higher nonlinear electrodynamics correction makes the critical temperature smaller and the magnetic moment harder form in the case without external field. Furthermore, the increase of nonlinear parameter b will result in extending the period of the external magnetic field. Especially, the effect of the exponential form of nonlinear electrodynamics on the periodicity of hysteresis loop is more noticeable.
Holographic paramagnetism–ferromagnetism phase transition with the nonlinear electrodynamics
Directory of Open Access Journals (Sweden)
Cheng-Yuan Zhang
2017-01-01
Full Text Available In the probe limit, we investigate the nonlinear electrodynamical effects of the both exponential form and the logarithmic form on the holographic paramagnetism–ferromagnetism phase transition in the background of a Schwarzschild-AdS black hole spacetime. Moreover, by comparing the exponential form of nonlinear electrodynamics with the logarithmic form of nonlinear electrodynamics and the Born–Infeld nonlinear electrodynamics which has been presented in Ref. [55], we find that the higher nonlinear electrodynamics correction makes the critical temperature smaller and the magnetic moment harder form in the case without external field. Furthermore, the increase of nonlinear parameter b will result in extending the period of the external magnetic field. Especially, the effect of the exponential form of nonlinear electrodynamics on the periodicity of hysteresis loop is more noticeable.
Quantum energy inequalities in premetric electrodynamics
Fewster, Christopher J.; Pfeifer, Christian; Siemssen, Daniel
2018-01-01
Premetric electrodynamics is a covariant framework for electromagnetism with a general constitutive relation. Its light-cone structure can be more complicated than that of Maxwell theory as is shown by the phenomenon of birefringence. We study the energy density of quantized premetric electrodynamics theories with linear constitutive relations admitting a single hyperbolicity double cone and show that averages of the energy density along the worldlines of suitable observers obey a quantum energy inequality (QEI) in states that satisfy a microlocal spectrum condition. The worldlines must meet two conditions: (a) the classical weak energy condition must hold along them, and (b) their velocity vectors have positive contractions with all positive frequency null covectors (we call such trajectories "subluminal"). After stating our general results, we explicitly quantize the electromagnetic potential in a translationally invariant uniaxial birefringent crystal. Since the propagation of light in such a crystal is governed by two nested light cones, the theory shows features absent in ordinary (quantized) Maxwell electrodynamics. We then compute a QEI bound for worldlines of inertial subluminal observers, which generalizes known results from the Maxwell theory. Finally, it is shown that the QEIs fail along trajectories that have velocity vectors which are timelike with respect to only one of the light cones.
Electrodynamics of a Cosmic Dark Fluid
Directory of Open Access Journals (Sweden)
Alexander B. Balakin
2016-06-01
Full Text Available Cosmic Dark Fluid is considered as a non-stationary medium, in which electromagnetic waves propagate, and magneto-electric field structures emerge and evolve. A medium-type representation of the Dark Fluid allows us to involve in its analysis the concepts and mathematical formalism elaborated in the framework of classical covariant electrodynamics of continua, and to distinguish dark analogs of well-known medium-effects, such as optical activity, pyro-electricity, piezo-magnetism, electro- and magneto-striction and dynamo-optical activity. The Dark Fluid is assumed to be formed by a duet of a Dark Matter (a pseudoscalar axionic constituent and Dark Energy (a scalar element; respectively, we distinguish electrodynamic effects induced by these two constituents of the Dark Fluid. The review contains discussions of 10 models, which describe electrodynamic effects induced by Dark Matter and/or Dark Energy. The models are accompanied by examples of exact solutions to the master equations, correspondingly extended; applications are considered for cosmology and space-times with spherical and pp-wave symmetries. In these applications we focused the attention on three main electromagnetic phenomena induced by the Dark Fluid: first, emergence of Longitudinal Magneto-Electric Clusters; second, generation of anomalous electromagnetic responses; third, formation of Dark Epochs in the Universe history.
Kilgore, Robert A.; Dress, David A.; Wolf, Stephen W. D.; Britcher, Colin P.
1989-01-01
The ability to get good experimental data in wind tunnels is often compromised by things seemingly beyond our control. Inadequate Reynolds number, wall interference, and support interference are three of the major problems in wind tunnel testing. Techniques for solving these problems are available. Cryogenic wind tunnels solve the problem of low Reynolds number. Adaptive wall test sections can go a long way toward eliminating wall interference. A magnetic suspension and balance system (MSBS) completely eliminates support interference. Cryogenic tunnels, adaptive wall test sections, and MSBS are surveyed. A brief historical overview is given and the present state of development and application in each area is described.
DEFF Research Database (Denmark)
Berg, Nick Ilsø; Holm, Rasmus Koldborg; Rasmussen, Peter Omand
2016-01-01
This paper describes the design and development of an novel Magnetic Lead Screw based active suspension system for passenger vehicles, using a new MLS topology. The design is based on performance specifications found from ISO road profiles, with a maximum harvested energy approach. By integrating...... the PMSM motor with the MLS, it possible to construct a very compact design with an integrated air spring. The prototype is build and frictional losses and efficiency for the MLS damper unit are measured. Additional the stall force and stall torque are measured for the build prototype to validate...
On some electrodynamic properties of binary pulsars
Sironi, Lorenzo
2006-07-01
The main purpose of my thesis is to examine some electrodynamic properties of binary pulsars, trying to understand the peculiar physical processes that can happen in their magnetospheres; the ultimate aim is to discuss if such systems can be the source of the observed flux of cosmic rays between the knee and the ankle, since the mechanisms of acceleration for the cosmic rays in this range of energies are still unknown. Attention around binary pulsars has arisen after the recent discovery (December 2003) of the first double neutron star system in which both the stars are visible as pulsars (PSR J0737-3039); the inspection of the physical features of this binary pulsar has led to some intriguing possibilities up to now unexplored. In this thesis I will first of all review what is already known about the main properties of this binary system. I will describe in particular the possibility to go further in the verification of the predictions of general relativity with the so-called post-Keplerian parameters; I will discuss the possibility of studying the optical properties of the magnetospheres, since the inclination angle of the orbit is nearly 90Â° and some orbital phases show an eclipse of the light from one pulsar due to absorption by the magnetosphere of the companion; I will rapidly summarize how the discovery of that binary pulsar can enlarge our knowledge about the origin and evolution of double neutron star systems; lastly, I will examine the increase in the estimate of the Galactic double neutron star merger rate due to the discovery of PSR J0737-3039. I will then summarize the current knowledge about the magnetosphere of a single pulsar. After describing the Gold-Pacini model for the energy loss of the oblique rotator (in which the magnetic and rotational axes are not parallel), I will discuss the Goldreich-Julian model for the aligned axisymmetric rotator in the force-free approximation in which the inertial and gravitational forces are neglected with
2010-10-01
... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Suspension. 2509.407 Section 2509.407 Federal Acquisition Regulations System NATIONAL SCIENCE FOUNDATION ACQUISITION PLANNING CONTRACTOR QUALIFICATIONS Debarment, Suspension, and Ineligibility 2509.407 Suspension. ...
2010-10-01
... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Suspension. 609.407 Section 609.407 Federal Acquisition Regulations System DEPARTMENT OF STATE COMPETITION AND ACQUISITION PLANNING CONTRACTOR QUALIFICATIONS Debarment, Suspension, and Ineligibility 609.407 Suspension. ...
2010-10-01
... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Suspension. 1309.407 Section 1309.407 Federal Acquisition Regulations System DEPARTMENT OF COMMERCE COMPETITION AND ACQUISITION PLANNING CONTRACTOR QUALIFICATIONS Debarment, Suspension, and Ineligibility 1309.407 Suspension. ...
2010-10-01
... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Suspension. 509.407 Section 509.407 Federal Acquisition Regulations System GENERAL SERVICES ADMINISTRATION COMPETITION AND ACQUISITION PLANNING CONTRACTOR QUALIFICATIONS Debarment, Suspension, and Ineligibility 509.407 Suspension. ...
2010-10-01
... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Suspension. 9.407 Section 9.407 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION ACQUISITION PLANNING CONTRACTOR QUALIFICATIONS Debarment, Suspension, and Ineligibility 9.407 Suspension. ...
2010-10-01
... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Suspension. 909.407 Section 909.407 Federal Acquisition Regulations System DEPARTMENT OF ENERGY COMPETITION ACQUISITION PLANNING CONTRACTOR QUALIFICATIONS Debarment, Suspension, and Ineligibility 909.407 Suspension. ...
2010-10-01
... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Suspension. 809.407 Section 809.407 Federal Acquisition Regulations System DEPARTMENT OF VETERANS AFFAIRS COMPETITION AND ACQUISITION PLANNING CONTRACTOR QUALIFICATIONS Debarment, Suspension, and Ineligibility 809.407 Suspension. ...
2010-10-01
... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Suspension. 1509.407 Section 1509.407 Federal Acquisition Regulations System ENVIRONMENTAL PROTECTION AGENCY ACQUISITION PLANNING CONTRACTOR QUALIFICATIONS Debarment, Suspension and Ineligibility 1509.407 Suspension. ...
2010-10-01
... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Suspension. 409.407 Section 409.407 Federal Acquisition Regulations System DEPARTMENT OF AGRICULTURE COMPETITION AND ACQUISITION PLANNING CONTRACTOR QUALIFICATIONS Debarment, Suspension and Ineligibility 409.407 Suspension. ...
2010-10-01
... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Suspension. 2009.407 Section 2009.407 Federal Acquisition Regulations System NUCLEAR REGULATORY COMMISSION COMPETITION AND ACQUISITION PLANNING CONTRACTOR QUALIFICATIONS Debarment, Suspension, and Ineligibility 2009.407 Suspension. ...
2010-10-01
... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Suspension. 309.407 Section 309.407 Federal Acquisition Regulations System HEALTH AND HUMAN SERVICES COMPETITION AND ACQUISITION PLANNING CONTRACTOR QUALIFICATIONS Debarment, Suspension, and Ineligibility 309.407 Suspension. ...
2010-10-01
... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Suspension. 1409.407 Section 1409.407 Federal Acquisition Regulations System DEPARTMENT OF THE INTERIOR COMPETITION AND ACQUISITION PLANNING CONTRACTOR QUALIFICATIONS Debarment, Suspension, and Ineligibility 1409.407 Suspension. ...
Groom, Nelson J.
1997-01-01
The expanded equations for torque and force on a cylindrical permanent magnet core in a large-gap magnetic suspension system are presented. The core is assumed to be uniformly magnetized, and equations are developed for two orientations of the magnetization vector. One orientation is parallel to the axis of symmetry, and the other is perpendicular to this axis. Fields and gradients produced by suspension system electromagnets are assumed to be calculated at a point in inertial space which coincides with the origin of the core axis system in its initial alignment. Fields at a given point in the core are defined by expanding the fields produced at the origin as a Taylor series. The assumption is made that the fields can be adequately defined by expansion up to second-order terms. Examination of the expanded equations for the case where the magnetization vector is perpendicular to the axis of symmetry reveals that some of the second-order gradient terms provide a method of generating torque about the axis of magnetization and therefore provide the ability to produce six-degree-of-freedom control.
Electrodynamic Dust Shield for Space Applications
Mackey, Paul J.; Johansen, Michael R.; Olsen, Robert C.; Raines, Matthew G.; Phillips, James R., III; Cox, Rachel E.; Hogue, Michael D.; Calle, Carlos I.; Pollard, Jacob R. S.
2016-01-01
The International Space Exploration Coordination Group (ISECG) has chosen dust mitigation technology as a Global Exploration Roadmap (GER) critical technology need in order to reduce life cycle cost and risk, and increase the probability of mission success. NASA has also included Particulate Contamination Prevention and Mitigation as a cross-cutting technology to be developed for contamination prevention, cleaning and protection. This technology has been highlighted due to the detrimental effect of dust on both human and robotic missions. During manned Apollo missions, dust caused issues with both equipment and crew. Contamination of equipment caused many issues including incorrect instrument readings and increased temperatures due to masking of thermal radiators. The astronauts were directly affected by dust that covered space suits, obscured face shields and later propagated to the cabin and into the crew's eyes and lungs. Robotic missions on Mars were affected when solar panels were obscured by dust thereby reducing the effectiveness of the solar panels. The Electrostatics and Surface Physics Lab in Swamp Works at the Kennedy Space Center has been developing an Electrodynamic Dust Shield (EDS) to remove dust from multiple surfaces, including glass shields and thermal radiators. This technology has been tested in lab environments and has evolved over several years. Tests of the technology include reduced gravity flights (6g) in which Apollo Lunar dust samples were successfully removed from glass shields while under vacuum (1 millipascal). Further development of the technology is underway to reduce the size of the EDS as well as to perform material and component testing outside of the International Space Station (ISS) on the Materials on International Space Station Experiment X (MISSE-X). This experiment is designed to verify that the EDS can withstand the harsh environment of space and will look to closely replicate the solar environment experienced on the moon
Electrodynamic tethers for energy conversion
Nobles, W.
1986-01-01
Conductive tethers have been proposed as a new method for converting orbital mechanical energy into electrical power for use on-board a satellite (generator mode) or conversely (motor mode) as a method of providing electric propulsion using electrical energy from the satellite. The operating characteristics of such systems are functionally dependent on orbit altitude and inclination. Effects of these relationships are examined to determine acceptable regions of application. To identify system design considerations, a specific set of system performance goals and requirements are selected. The case selected is for a 25 kW auxiliary power system for use on Space Station. Appropriate system design considerations are developed, and the resulting system is described.
New technical solutions of using rolling stock electrodynamical braking
Directory of Open Access Journals (Sweden)
Leonas Povilas LINGAITIS
2009-01-01
Full Text Available The paper considers some theoretical and practical problems associated with the use of traction motor are operating in the generator mode (in braking. Mathematical and graphical relationships of electrodynamic braking, taking into account the requirements raised to braking systems in rail transport are presented. The latter include discontinuity of braking process, braking force regulation, depending on the locomotive speed, mass, type of railway and other parameters. Schematic diagrams of the locomotive braking and ways of controlling the braking force by varying electric circuit parameters are presented. The authors suggested contact-free regulation method of braking resistor for controlling braking force in rheostatic braking, and resistor parameters regulate with pulse regulation mode by semiconductor devices, such as new electrical components for rolling stock – IGBT transistors operating in the key mode. Presenting energy savings power systems, which are using regenerative braking-returning energy and diesel engine or any form of hybrid traction vehicles systems, circuit diagrams, electrical parameters curves.
Digital Quantum Simulation of Spin Models with Circuit Quantum Electrodynamics
Directory of Open Access Journals (Sweden)
Y. Salathé
2015-06-01
Full Text Available Systems of interacting quantum spins show a rich spectrum of quantum phases and display interesting many-body dynamics. Computing characteristics of even small systems on conventional computers poses significant challenges. A quantum simulator has the potential to outperform standard computers in calculating the evolution of complex quantum systems. Here, we perform a digital quantum simulation of the paradigmatic Heisenberg and Ising interacting spin models using a two transmon-qubit circuit quantum electrodynamics setup. We make use of the exchange interaction naturally present in the simulator to construct a digital decomposition of the model-specific evolution and extract its full dynamics. This approach is universal and efficient, employing only resources that are polynomial in the number of spins, and indicates a path towards the controlled simulation of general spin dynamics in superconducting qubit platforms.
Haraguchi, Yuji; Matsuura, Katsuhisa; Shimizu, Tatsuya; Yamato, Masayuki; Okano, Teruo
2015-12-01
In this study, a simple three-dimensional (3D) suspension culture method for the expansion and cardiac differentiation of human induced pluripotent stem cells (hiPSCs) is reported. The culture methods were easily adapted from two-dimensional (2D) to 3D culture without any additional manipulations. When hiPSCs were directly applied to 3D culture from 2D in a single-cell suspension, only a few aggregated cells were observed. However, after 3 days, culture of the small hiPSC aggregates in a spinner flask at the optimal agitation rate created aggregates which were capable of cell passages from the single-cell suspension. Cell numbers increased to approximately 10-fold after 12 days of culture. The undifferentiated state of expanded hiPSCs was confirmed by flow cytometry, immunocytochemistry and quantitative RT-PCR, and the hiPSCs differentiated into three germ layers. When the hiPSCs were subsequently cultured in a flask using cardiac differentiation medium, expression of cardiac cell-specific genes and beating cardiomyocytes were observed. Furthermore, the culture of hiPSCs on Matrigel-coated dishes with serum-free medium containing activin A, BMP4 and FGF-2 enabled it to generate robust spontaneous beating cardiomyocytes and these cells expressed several cardiac cell-related genes, including HCN4, MLC-2a and MLC-2v. This suggests that the expanded hiPSCs might maintain the potential to differentiate into several types of cardiomyocytes, including pacemakers. Moreover, when cardiac cell sheets were fabricated using differentiated cardiomyocytes, they beat spontaneously and synchronously, indicating electrically communicative tissue. This simple culture system might enable the generation of sufficient amounts of beating cardiomyocytes for use in cardiac regenerative medicine and tissue engineering. Copyright © 2013 John Wiley & Sons, Ltd.
Guarneri, Paolo; Rocca, Gianpiero; Gobbi, Massimiliano
2008-09-01
This paper deals with the simulation of the tire/suspension dynamics by using recurrent neural networks (RNNs). RNNs are derived from the multilayer feedforward neural networks, by adding feedback connections between output and input layers. The optimal network architecture derives from a parametric analysis based on the optimal tradeoff between network accuracy and size. The neural network can be trained with experimental data obtained in the laboratory from simulated road profiles (cleats). The results obtained from the neural network demonstrate good agreement with the experimental results over a wide range of operation conditions. The NN model can be effectively applied as a part of vehicle system model to accurately predict elastic bushings and tire dynamics behavior. Although the neural network model, as a black-box model, does not provide a good insight of the physical behavior of the tire/suspension system, it is a useful tool for assessing vehicle ride and noise, vibration, harshness (NVH) performance due to its good computational efficiency and accuracy.
Valadez-Bustos, Ma Guadalupe; Aguado-Santacruz, Gerardo Armando; Tiessen-Favier, Axel; Robledo-Paz, Alejandrina; Muñoz-Orozco, Abel; Rascón-Cruz, Quintin; Santacruz-Varela, Amalio
2016-04-01
Glycine betaine is a quaternary ammonium compound that accumulates in a large variety of species in response to different types of stress. Glycine betaine counteracts adverse effects caused by abiotic factors, preventing the denaturation and inactivation of proteins. Thus, its determination is important, particularly for scientists focused on relating structural, biochemical, physiological, and/or molecular responses to plant water status. In the current work, we optimized the periodide technique for the determination of glycine betaine levels. This modification permitted large numbers of samples taken from a chlorophyllic cell line of the grass Bouteloua gracilis to be analyzed. Growth kinetics were assessed using the chlorophyllic suspension to determine glycine betaine levels in control (no stress) cells and cells osmotically stressed with 14 or 21% polyethylene glycol 8000. After glycine extraction, different wavelengths and reading times were evaluated in a spectrophotometer to determine the optimal quantification conditions for this osmolyte. Optimal results were obtained when readings were taken at a wavelength of 290 nm at 48 h after dissolving glycine betaine crystals in dichloroethane. We expect this modification to provide a simple, rapid, reliable, and cheap method for glycine betaine determination in plant samples and cell suspension cultures. Copyright © 2016 Elsevier Inc. All rights reserved.
Yang, Liping; Wang, Hongwei; Liu, Jingying; Li, Liang; Fan, Yajun; Wang, Xiufeng; Song, Yehua; Sun, Shaoguang; Wang, Lei; Zhu, Xiaojuan; Wang, Xingzhi
2008-04-30
Due to the laborious and scale-up limitation we have developed a simple system named "root absorption" to express foreign proteins in plants successfully. It has been shown that GFP was expressed in tobacco plants by root absorbing the Agrobacterium suspension containing TMV-based P35S-30B-GFP vector. Various factors influencing the gene expression were studied including Agrobacterium cell density, seedling age, plant materials and inoculation conditions. This system has the special advantages as simple and convenient work process, ease to scale-up and higher level of expression than leaf infiltration. Interestingly, GFP was expressed at 24h post-absorption. We assume that the root absorption system will facilitate the large-scale production of the recombinant pharmaceutical proteins in plants by means of transient expression.
Figliozzi, Patrick; Sule, Nishant; Yan, Zijie; Bao, Ying; Burov, Stanislav; Gray, Stephen K.; Rice, Stuart A.; Vaikuntanathan, Suriyanarayanan; Scherer, Norbert F.
2017-02-01
To date investigations of the dynamics of driven colloidal systems have focused on hydrodynamic interactions and often employ optical (laser) tweezers for manipulation. However, the optical fields that provide confinement and drive also result in electrodynamic interactions that are generally neglected. We address this issue with a detailed study of interparticle dynamics in an optical ring vortex trap using 150-nm diameter Ag nanoparticles. We term the resultant electrodynamically interacting nanoparticles a driven optical matter system. We also show that a superior trap is created by using a Au nanoplate mirror in a retroreflection geometry, which increases the electric field intensity, the optical drive force, and spatial confinement. Using nanoparticles versus micron sized colloids significantly reduces the surface hydrodynamic friction allowing us to access small values of optical topological charge and drive force. We quantify a further 50% reduction of hydrodynamic friction when the nanoparticles are driven over the Au nanoplate mirrors versus over a mildly electrostatically repulsive glass surface. Further, we demonstrate through experiments and electrodynamics-Langevin dynamics simulations that the optical drive force and the interparticle interactions are not constant around the ring for linearly polarized light, resulting in a strong position-dependent variation in the nanoparticle velocity. The nonuniformity in the optical drive force is also manifest as an increase in fluctuations of interparticle separation, or effective temperature, as the optical driving force is increased. Finally, we resolve an open issue in the literature on periodic modulation of interparticle separation with comparative measurements of driven 300-nm-diameter polystyrene beads that also clearly reveal the significance of electrodynamic forces and interactions in optically driven colloidal systems. Therefore, the modulations in the optical forces and electrodynamic interactions
Flywheel Magnetic Suspension Developments
Palazzolo, Alan; Kenny, Andrew; Sifford, Curtiss; Thomas, Erwin; Bhuiyan, Mohammad; Provenza, Andrew; Kascak, Albert; Montague, Gerald; Lei, Shuliang; Kim, Yeonkyu;
2002-01-01
The paper provides an overview of many areas of the flywheel magnetic suspension (MS) R&D being performed at the Texas A&M Vibration Control and Electromechanics Lab (TAMU-VCEL). This includes system response prediction, actuator optimization and redundancy, controller realizations and stages, sensor enhancements and backup bearing reliability.
EDITORIAL: Colloidal suspensions Colloidal suspensions
Petukhov, Andrei; Kegel, Willem; van Duijneveldt, Jeroen
2011-05-01
fluid-fluid interface [2]. Together with Remco Tuinier, Henk has recently completed a book in this area which is to appear later this year. A major theme in Henk's research is that of phase transitions in lyotropic liquid crystals. Henk, together with Daan Frenkel and Alain Stroobants, realized in the 1980s that a smectic phase in dispersions of rod-like particles can be stable without the presence of attractive interactions, similar to nematic ordering as predicted earlier by Onsager [3]. Together with Gert-Jan Vroege he wrote a seminal review in this area [4]. Henk once said that 'one can only truly develop one colloidal model system in one's career' and in his case this must be that of gibbsite platelets. Initially Henk's group pursued another polymorph of aluminium hydroxide, boehmite, which forms rod-like particles [5], which already displayed nematic liquid crystal phases. The real breakthrough came when the same precursors treated the produced gibbsite platelets slightly differently. These reliably form a discotic nematic phase [6] and, despite the polydispersity in their diameter, a columnar phase [7]. A theme encompassing a wide range of soft matter systems is that of colloidal dynamics and phase transition kinetics. Many colloidal systems have a tendency to get stuck in metastable states, such as gels or glasses. This is a nuisance if one wishes to study phase transitions, but it is of great practical significance. Such issues feature in many of Henk's publications, and with Valerie Anderson he wrote a highly cited review in this area [8]. Henk Lekkerkerker has also invested significant effort into the promotion of synchrotron radiation studies of colloidal suspensions. He was one of the great supporters of the Dutch-Belgian beamline 'DUBBLE' project at the ESRF [9]. He attended one of the very first experiments in Grenoble in 1999, which led to a Nature publication [7]. He was strongly involved in many other experiments which followed and also has been a
2010-07-01
... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Suspension. 223.141 Section... DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER Suspension and Debarment of Timber Purchasers § 223.141 Suspension. (a) The suspending official may, in the public interest, suspend a purchaser on the basis of...
Symmetries and couplings of non-relativistic electrodynamics
Festuccia, G.; Hansen, D.; Hartong, J.; Obers, N.A.
We examine three versions of non-relativistic electrodynamics, known as the electric and magnetic limit theories of Maxwell’s equations and Galilean electrodynamics (GED) which is the off-shell non-relativistic limit of Maxwell plus a free scalar field. For each of these three cases we study the
Directory of Open Access Journals (Sweden)
Miroslav Demić
2005-05-01
Full Text Available U ovom radu prikazanje sistem za aktivno oslanjanje vozila, uz korišćenje ravanskog modela vozila, bez filtera u povratnim spregama sistema za regulaciju. Za optimizaciju parametara PI kontrolera korišćena je metoda stohastičke parametarske optimizacije. Cilj optimizacije bio je istovremeno minimiziranje vibracijskih ubrzanja oslonjene mase i standardnog odstupanja sila u kontaktima točkova i tla, što poboljšava udobnost i ponašanje vozila na putu. / In this paper, an active suspension system is developed by use of a vehicle plane model without feedback filters in control system. A method of stochastic parameters optimization has been utilized in order to optimize PI controller parameters. The basic optimization goal was a simultaneous minimization of sprung mass acceleration and standard deviation of forces in tire-to-ground contact area, so as to improve vehicle comfort and handling performances.
Applications of electrodynamics in theoretical physics and astrophysics.
Ginzburg, V. L.
This book, revised from the third Russian edition of "Teoreticheskaya fizika i astrofizika", is translated by Oleg Glebov. The problems dealt with are associated with microscopic and macroscopic electrodynamics and material concerning the theory of transition radiation and transition scattering. Contents: 1. The Hamiltonian approach to electrodynamics. 2. Radiation reaction. 3. Uniformly accelerated charges. 4. Radiation emitted by relativistic and non-relativistic moving particles. 5. Synchrotron radiation. 6. Electrodynamics of a continuous medium. 7. The Čerenkov and Doppler effects. 8. Transition radiation and transition scattering. 9. Superluminal sources of radiation. 10. Reabsorption and transfer of radiation. 11. Electrodynamics of media with spatial dispersion. 12. Permittivity and wave propagation in plasmas. 13. The energy-momentum tensor and forces in macroscopic electrodynamics. Energy and heat liberated in a dispersive absorbing medium. 14. Fluctuations and van der Waals forces. 15. Wave scattering in a medium. 16. Astrophysics of cosmic rays. 17. X-ray astronomy. 18. Gamma-ray astronomy.
Finite field-energy and interparticle potential in logarithmic electrodynamics
Energy Technology Data Exchange (ETDEWEB)
Gaete, Patricio [Universidad Tecnica Federico Santa Maria, Departmento de Fisica and Centro Cientifico-Tecnologico de Valparaiso, Valparaiso (Chile); Helayel-Neto, Jose [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)
2014-03-15
We pursue an investigation of logarithmic electrodynamics, for which the field energy of a point-like charge is finite, as happens in the case of the usual Born-Infeld electrodynamics. We also show that, contrary to the latter, logarithmic electrodynamics exhibits the feature of birefringence. Next, we analyze the lowest-order modifications for both logarithmic electrodynamics and for its non-commutative version, within the framework of the gauge-invariant path-dependent variables formalism. The calculation shows a long-range correction (1/r{sup 5}-type) to the Coulomb potential for logarithmic electrodynamics. Interestingly enough, for its non-commutative version, the interaction energy is ultraviolet finite. We highlight the role played by the new quantum of length in our analysis. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Tazelaar, E.; Van Gerwen, R.J.F. (KEMA, Arnhem (Netherlands))
1994-06-01
Compared to conventional electricity generating systems, fuel cells theoretically combine high efficiencies with low emissions. However, the value of these theoretical advantages has to be proved in practice. An underexposed practical aspect of fuel cell systems is the electrodynamic performance of a fuel cell stack. In particular the response of a fuel cell system to fast load changes has not been modeled yet. KEMA, by the order of EnergieNed (Dutch Association of Energy Utilities), developed an electrodynamic model of a phosphoric acid fuel cell stack, using measured data from an actual PAFC stack. It shows that the parameters in this electrodynamic model are a measure for the stack condition. 6 figs., 1 tab., 4 refs.
Electrodynamics in accelerated frames revisited
Energy Technology Data Exchange (ETDEWEB)
Maluf, J.W. [Instituto de Fisica, Universidade de Brasilia (Brazil); Ulhoa, S.C. [Instituto de Ciencia e Tecnologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, UFVJM, Diamantina, MG (Brazil)
2010-10-15
Maxwell's equations are formulated in arbitrary moving frames by means of tetrad fields, which are interpreted as reference frames adapted to observers in space-time. We assume the existence of a general distribution of charges and currents in an inertial frame. Tetrad fields are used to project the electromagnetic fields and sources on accelerated frames. The purpose is to study several configurations of fields and observers that in the literature are understood as paradoxes. For instance, are the two situations, (i) an accelerated charge in an inertial frame, and (ii) a charge at rest in an inertial frame described from the perspective of an accelerated frame, physically equivalent? Is the electromagnetic radiation the same in both frames? Normally in the analysis of these paradoxes the electromagnetic fields are transformed to (uniformly) accelerated frames by means of a coordinate transformation of the Faraday tensor. In the present approach coordinate and frame transformations are disentangled, and the electromagnetic field in the accelerated frame is obtained through a frame (local Lorentz) transformation. Consequently the fields in the inertial and accelerated frames are described in the same coordinate system. This feature allows the investigation of paradoxes such as the one mentioned above. (Abstract Copyright [2010], Wiley Periodicals, Inc.)
Cavity Quantum Electrodynamics of Continuously Monitored Bose-Condensed Atoms
Directory of Open Access Journals (Sweden)
Mark D. Lee
2015-09-01
Full Text Available We study cavity quantum electrodynamics of Bose-condensed atoms that are subjected to continuous monitoring of the light leaking out of the cavity. Due to a given detection record of each stochastic realization, individual runs spontaneously break the symmetry of the spatial profile of the atom cloud and this symmetry can be restored by considering ensemble averages over many realizations. We show that the cavity optomechanical excitations of the condensate can be engineered to target specific collective modes. This is achieved by exploiting the spatial structure and symmetries of the collective modes and light fields. The cavity fields can be utilized both for strong driving of the collective modes and for their measurement. In the weak excitation limit the condensate–cavity system may be employed as a sensitive phonon detector which operates by counting photons outside the cavity that have been selectively scattered by desired phonons.
Su, Mei-Yin; Lin, Shi-Quan; zhou, Ye-Wen; Zhou, Ye-Wen; Liu, Si-Ya; Lin, Ai; Lin, Xi-Rong
2015-01-01
Elderly patients with acute neurological impairment are prone to severe disability, fecal incontinence (FI), and resultant complications. A suspension positioning system (SPS), based on the orthopedic suspension traction system commonly used for conservative treatment of pediatric femoral fracture and uncomplicated adult pelvic fracture, was developed to facilitate FI management in patients immobilized secondary to an acute neurological condition. To evaluate the effectiveness and safety of the system, a prospective, randomized, controlled study was conducted between October 2009 and July 2012. Two hundred (200) elderly, bedridden, hospitalized patients with acute, nonchronic neurological impairment were randomly assigned to receive routine FI nursing care (ie, individualized dietary modification, psychological support, health education, and social support for caregivers and family members [control group]) or routine incontinence care plus the SPS (experimental group) during the day. Rates of perianal fecal contamination, skin breakdown, incontinence associated dermatitis, pressure ulcer development, and lower urinary tract infection (LUTI) were significantly lower in the SPS than in the control group (P care were also lower in the SPS group (P <0.05). Patient quality-of-life (QoL) and FI QoL scores were similar at baseline but significantly higher (better) at the 6-month follow-up interview in the SPS than in the control group (P <0.05). In this study, the rate of FI-associated morbidities was lower and 6-month patient QoL scores were higher in the SPS than in the control group. No adverse events were observed, and all patients completed the study. Further clinical studies are needed to examine the long-term effects of SPS use among neurologically impaired FI patients.
A Process Algebra Approach to Quantum Electrodynamics
Sulis, William
2017-12-01
The process algebra program is directed towards developing a realist model of quantum mechanics free of paradoxes, divergences and conceptual confusions. From this perspective, fundamental phenomena are viewed as emerging from primitive informational elements generated by processes. The process algebra has been shown to successfully reproduce scalar non-relativistic quantum mechanics (NRQM) without the usual paradoxes and dualities. NRQM appears as an effective theory which emerges under specific asymptotic limits. Space-time, scalar particle wave functions and the Born rule are all emergent in this framework. In this paper, the process algebra model is reviewed, extended to the relativistic setting, and then applied to the problem of electrodynamics. A semiclassical version is presented in which a Minkowski-like space-time emerges as well as a vector potential that is discrete and photon-like at small scales and near-continuous and wave-like at large scales. QED is viewed as an effective theory at small scales while Maxwell theory becomes an effective theory at large scales. The process algebra version of quantum electrodynamics is intuitive and realist, free from divergences and eliminates the distinction between particle, field and wave. Computations are carried out using the configuration space process covering map, although the connection to second quantization has not been fully explored.
Directory of Open Access Journals (Sweden)
Li Zeng
2015-11-01
Full Text Available This article puts forward inductive magnetic suspension spherical active joints and has researched on its mechanism. The expression of motor’s electromagnetic torque is derived from the point of power balance of three-dimensional electromagnetic model, and on the basis of the air gap magnetic flux density distribution, we establish the joint’s mathematical model of electromagnetic levitation force. The relationship between the two of displacement, angle, and current and the transfer function expression of motor system are derived by the state equation and the inverse system theory We established the inverse system of joint’s original system using fuzzy neural network theory and simplified coupling relationship of the motor’s complex multivariable to establish ANFIS model of joint’s inverse system. An internal model controller with high robustness and stability was designed, and an internal model control joint pseudo linear system was built. According to the simulation analysis and experimental verification of the joint control system, the conclusion indicates that the rotor has quick dynamic response and high robustness.
Unuh, M. H.; Muhamad, P.; Norfazrina, H. M. Y.; Ismail, M. A.; Tanasta, Z.
2018-01-01
The applications of semi-active damper employing magnetorheological (MR) fluids keep increasing in fulfilling the demand to control undesired vibration effect. The aim of this study is to introduce the new design of damper for Malaysian vehicle model as well to evaluate its effectiveness in promoting comfort. The vibration isolation performance of the OEM damper featuring MR fluid was analysed physically under real road profile excitation experimentally. An experiment using quarter car rig suspension and LMS SCADAS Mobile was conducted to demonstrate the influence of current in controlling the characteristics of MR fluid in alter the damping behaviour under 5 cm bump impact. Subsequently, the displacement values were measured with respect to time. The new design OEM damper featuring MR fluid was validated by comparing the data with original equipment manufacturer (OEM) passive damper results under the same approach of testing. Comparison of numerical data of the new design OEM damper shown that it can reduce the excitation amplitude up to 40% compared to those obtained by OEM passive damper. Finally, the new design OEM damper featuring MR fluid has effectively isolated the disturbance from the road profile and control the output force.
Wu, Han; Zeng, Xiao-Hui; Yu, Yang
2017-12-01
In this study, the intrinsic mechanism of aerodynamic effects on the motion stability of a high-speed maglev system was investigated. The concept of a critical speed for maglev vehicles considering the aerodynamic effect is proposed. The study was carried out based on a single magnetic suspension system, which is convenient for proposing relevant concepts and obtaining explicit expressions. This study shows that the motion stability of the suspension system is closely related to the vehicle speed when aerodynamic effects are considered. With increases of the vehicle speed, the stability behavior of the system changes. At a certain vehicle speed, the stability of the system reaches a critical state, followed by instability. The speed corresponding to the critical state is the critical speed. Analysis reveals that when the system reaches the critical state, it takes two forms, with two critical speeds, and thus two expressions for the critical speed are obtained. The conditions of the existence of the critical speed were determined, and the effects of the control parameters and the lift coefficient on the critical speed were analyzed by numerical analysis. The results show that the first critical speed appears when the aerodynamic force is upward, and the second critical speed appears when the aerodynamic force is downward. Moreover, both critical speeds decrease with the increase of the lift coefficient.
Caffaro, Federica; Preti, Christian; Micheletti Cremasco, Margherita; Cavallo, Eugenio
2017-10-01
Agricultural and earth-moving machinery operators are particularly exposed to whole-body vibration (WBV), which has severe effects on health and affects comfort and performance. Few studies have investigated vibrational safety and comfort issues in telescopic handlers. These vehicles are widespread in many off-road applications-such as construction, agriculture, and mining-used to handle loads and to lift persons and equipment. This study investigated the effects of an active hydro-pneumatic cab-suspension system fitted to a telehandler on a driver's vibration exposure along the x-, y-, and z-axes, through both objective and subjective assessments. Sixteen healthy professional telehandler drivers took part in the study. Objective measurements were acquired at the operator's seat, and subjective ratings were taken while participants drove the telehandler with either a deactivated or activated suspension system at 12 kph on an ISO 5008 smooth track. The results showed that the activation of the cab-suspension system reduced the root-mean-square acceleration along the x- and z-axes (p =.038 and p =.000, respectively). Moreover, the frequency analysis showed a reduction in the acceleration along the z-axis in the range of 2-25 Hz (p suspension systems are discussed.
48 CFR 42.1302 - Suspension of work.
2010-10-01
... MANAGEMENT CONTRACT ADMINISTRATION AND AUDIT SERVICES Suspension of Work, Stop-Work Orders, and Government Delay of Work 42.1302 Suspension of work. A suspension of work under a construction or architect... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Suspension of work. 42...
Lagrangian formulation of Born-Infeld electrodynamics in fractional space
Khosropour, B.
2017-07-01
In this work, after a brief review of the Euler-Lagrange equations of motion in fractional space and Lagrangian formulation of Born-Infeld electrodynamics, we obtain the inhomogeneous and homogeneous Born-Infeld equations in fractional space. A fractional generalization of the Born-Infeld electrodynamics in vector form is found. Then, corresponding to fractal Born-Infeld equations we obtain the Laplace and Poisson equations in fractional space. Also, Faraday's law and Amper's law of Born-Infeld electrodynamics in fractional space are derived.
In-Depth Development of Classical Electrodynamics
Directory of Open Access Journals (Sweden)
Keilman Y.
2008-01-01
Full Text Available There is hope that a properly developed Classical Electrodynamics (CED will be able to play a r ˆ ole in a unified field theory explaining electromagnetism, quantum phenomena, and gravitation. There is much work that has to be done in this direction. In this article we propose a move towards this aim by refining the basic principles of an improved CED. Attention is focused on the reinterpretation of the E-M potential. We use these basic principles to obtain solutions that explain the interactions between a con- stant electromagnetic field and a thin layer of material continuum; between a constant electromagnetic field and a spherical configuration of material continuum (for a charged elementary particle; between a transverse electromagnetic wave and a material continuum; between a longitudinal aether wave (dummy wave and a material continuum.
Gravitational waves and electrodynamics: new perspectives
Energy Technology Data Exchange (ETDEWEB)
Cabral, Francisco; Lobo, Francisco S.N. [Faculdade de Ciencias da Universidade de Lisboa, Instituto de Astrofisica e Ciencias do Espaco, Lisbon (Portugal)
2017-04-15
Given the recent direct measurement of gravitational waves (GWs) by the LIGO-VIRGO collaboration, the coupling between electromagnetic fields and gravity have a special relevance since it opens new perspectives for future GW detectors and also potentially provides information on the physics of highly energetic GW sources. We explore such couplings using the field equations of electrodynamics on (pseudo) Riemann manifolds and apply it to the background of a GW, seen as a linear perturbation of Minkowski geometry. Electric and magnetic oscillations are induced that propagate as electromagnetic waves and contain information as regards the GW which generates them. The most relevant results are the presence of longitudinal modes and dynamical polarization patterns of electromagnetic radiation induced by GWs. These effects might be amplified using appropriate resonators, effectively improving the signal to noise ratio around a specific frequency. We also briefly address the generation of charge density fluctuations induced by GWs and the implications for astrophysics. (orig.)
Magnetized black holes and nonlinear electrodynamics
Kruglov, S. I.
2017-08-01
A new model of nonlinear electrodynamics with two parameters is proposed. We study the phenomenon of vacuum birefringence, the causality and unitarity in this model. There is no singularity of the electric field in the center of pointlike charges and the total electrostatic energy is finite. We obtain corrections to the Coulomb law at r →∞. The weak, dominant and strong energy conditions are investigated. Magnetized charged black hole is considered and we evaluate the mass, metric function and their asymptotic at r →∞ and r → 0. The magnetic mass of the black hole is calculated. The thermodynamic properties and thermal stability of regular black holes are discussed. We calculate the Hawking temperature of black holes and show that there are first-order and second-order phase transitions. The parameters of the model when the black hole is stable are found.
Gravitational waves and electrodynamics: new perspectives.
Cabral, Francisco; Lobo, Francisco S N
2017-01-01
Given the recent direct measurement of gravitational waves (GWs) by the LIGO-VIRGO collaboration, the coupling between electromagnetic fields and gravity have a special relevance since it opens new perspectives for future GW detectors and also potentially provides information on the physics of highly energetic GW sources. We explore such couplings using the field equations of electrodynamics on (pseudo) Riemann manifolds and apply it to the background of a GW, seen as a linear perturbation of Minkowski geometry. Electric and magnetic oscillations are induced that propagate as electromagnetic waves and contain information as regards the GW which generates them. The most relevant results are the presence of longitudinal modes and dynamical polarization patterns of electromagnetic radiation induced by GWs. These effects might be amplified using appropriate resonators, effectively improving the signal to noise ratio around a specific frequency. We also briefly address the generation of charge density fluctuations induced by GWs and the implications for astrophysics.
Plasma physics and fusion plasma electrodynamics
Bers, Abraham
2016-01-01
Plasma is a ubiquitous state of matter at high temperatures. The electrodynamics of plasmas encompasses a large number of applications, from understanding plasmas in space and the stars, to their use in processing semiconductors, and their role in controlled energy generation by nuclear fusion. This book covers collective and single particle dynamics of plasmas for fully ionized as well as partially ionized plasmas. Many aspects of plasma physics in current fusion energy generation research are addressed both in magnetic and inertial confinement plasmas. Linear and nonlinear dynamics in hydrodynamic and kinetic descriptions are offered, making both simple and complex aspects of the subject available in nearly every chapter. The approach of dividing the basic aspects of plasma physics as "linear, hydrodynamic descriptions" to be covered first because they are "easier", and postponing the "nonlinear and kinetic descriptions" for later because they are "difficult" is abandoned in this book. For teaching purpose...
In-Depth Development of Classical Electrodynamics
Directory of Open Access Journals (Sweden)
Keilman Y. N.
2008-01-01
Full Text Available There is hope that a properly developed Classical Electrodynamics (CED will be able to play a role in a unified field theory explaining electromagnetism, quantum phenomena, and gravitation. There is much work that has to be done in this direction. In this article we propose a move towards this aim by refining the basic principles of an improved CED. Attention is focused on the reinterpretation of the E-M potential. We use these basic principles to obtain solutions that explain the interactions between a constant electromagnetic field and a thin layer of material continuum; between a constant electromagnetic field and a spherical configuration of material continuum (for a charged elementary particle; between a transverse electromagnetic wave and a material continuum; between a longitudinal aether wave (dummy wave and a material continuum.
Gravitational waves and electrodynamics: new perspectives
Cabral, Francisco; Lobo, Francisco S. N.
2017-04-01
Given the recent direct measurement of gravitational waves (GWs) by the LIGO-VIRGO collaboration, the coupling between electromagnetic fields and gravity have a special relevance since it opens new perspectives for future GW detectors and also potentially provides information on the physics of highly energetic GW sources. We explore such couplings using the field equations of electrodynamics on (pseudo) Riemann manifolds and apply it to the background of a GW, seen as a linear perturbation of Minkowski geometry. Electric and magnetic oscillations are induced that propagate as electromagnetic waves and contain information as regards the GW which generates them. The most relevant results are the presence of longitudinal modes and dynamical polarization patterns of electromagnetic radiation induced by GWs. These effects might be amplified using appropriate resonators, effectively improving the signal to noise ratio around a specific frequency. We also briefly address the generation of charge density fluctuations induced by GWs and the implications for astrophysics.
Xiao, Hansong; Chen, Wuwei; Zhou, HuiHui; Zu, Jean W.
2011-02-01
Integrated vehicle dynamics control has been an important research topic in the area of vehicle dynamics and control over the past two decades. The aim of integrated vehicle control is to improve the overall vehicle performance including handling, stability, and comfort through creating synergies in the use of sensor information, hardware, and control strategies. This paper proposes a two-layer hierarchical control architecture for integrated control of the active suspension system (ASS) and the electronic stability programme (ESP). The upper-layer controller is designed to coordinate the interactions between the ASS and the ESP. While in the lower layer, the two controllers including the ASS and the ESP are developed independently to achieve their local control objectives. Both a simulation investigation and a hardware-in-the-loop experimental study are performed. Simulation results demonstrate that the proposed hierarchical control system is able to improve the multiple vehicle performance indices including both the ride comfort and the lateral stability, compared with the non-integrated control system. Moreover, the experimental results verify the effectiveness of the design of the hierarchical control system.
Directory of Open Access Journals (Sweden)
Nikolai N. Bogolubov
2015-04-01
Full Text Available We review new electrodynamics models of interacting charged point particles and related fundamental physical aspects, motivated by the classical A.M. Ampère magnetic and H. Lorentz force laws electromagnetic field expressions. Based on the Feynman proper time paradigm and a recently devised vacuum field theory approach to the Lagrangian and Hamiltonian, the formulations of alternative classical electrodynamics models are analyzed in detail and their Dirac type quantization is suggested. Problems closely related to the radiation reaction force and electron mass inertia are analyzed. The validity of the Abraham-Lorentz electromagnetic electron mass origin hypothesis is argued. The related electromagnetic Dirac–Fock–Podolsky problem and symplectic properties of the Maxwell and Yang–Mills type dynamical systems are analyzed. The crucial importance of the remaining reference systems, with respect to which the dynamics of charged point particles is framed, is explained and emphasized.
Asymptotic stability of a satellite with electrodynamic attitude control in the orbital frame
Aleksandrov, A. Yu.; Tikhonov, A. A.
2017-10-01
A satellite in a circular near-Earth orbit is under consideration. The three-axis stabilization of the satellite in the orbital coordinate system with the use of electrodynamic attitude control system is studied. No constraints are imposed on the Earth's magnetic field approximation. The gravity gradient disturbing torque acting on the satellite attitude dynamics is taken into account as the largest disturbing torque. With the use of the Lyapunov direct method, conditions under which electrodynamic control solves the problem are obtained. The restrictions on the control parameter values for which one can guarantee the asymptotic stability of the programmed satellite motion are found and represented in an explicit form. Comparison of the results of numerical simulation and analytical investigation demonstrate effectiveness of the proposed approach.
2016-03-30
increase of space debris is becoming a serious problem and active removal of large debris is required. The Japan Aerospace Exploration Agency (JAXA...mechanism, Deployment friction, Electrodynamic tether system, Space debris , Tether. Introduction The increase of space debris , which are defunct or...to exponentially increase [1] [2]. Consequently, the active removal of large space debris from crowded economically useful orbits (800-1500km alt
Analytical and hybrid methods in the theory of slot-hole coupling of electrodynamic volumes
Katrich, Victor A; Berdnik, Sergey L; Berdnik, Sergey L
2008-01-01
Narration of the text is both laconic and visually accessible, providing the reader with the possibility of rapid study and application of methods of computer analysis of electrodynamic problemsThe book is aimed at university professors, researchers and those specialists who are interested in theory and practical analysis of waveguide devices and systems using slot coupling elementsTopics included in the book are directly based on the original research results obtained by the authors and otherwise unknown earlier.
(2 + 1)-dimensional regular black holes with nonlinear electrodynamics sources
He, Yun; Ma, Meng-Sen(Department of Physics, Shanxi Datong University, Datong 037009, China)
2017-01-01
On the basis of two requirements: the avoidance of the curvature singularity and the Maxwell theory as the weak field limit of the nonlinear electrodynamics, we find two restricted conditions on the metric function of (2+1) -dimensional regular black hole in general relativity coupled with nonlinear electrodynamics sources. By the use of the two conditions, we obtain a general approach to construct (2+1) -dimensional regular black holes. In this manner, we construct four (2+1) -dimensional re...
Modern Classical Electrodynamics and Electromagnetic Radiation - Vacuum Field Theory Aspects
Bogolubov, N. N.; Prykarpatsky, A. K.
2012-01-01
The work is devoted to studying some new classical electrodynamics models of interacting charged point particles and related with them physical aspects. Based on the vacuum field theory no-geometry approach, developed in \\cite{BPT,BPT1}, the Lagrangian and Hamiltonian reformulations of some alternative classical electrodynamics models are devised. A problem closely related to the radiation reaction force is analyzed aiming to explain the Wheeler and Feynman reaction radiation mechanism, well ...
Electrodynamic Limit in a Model for Charged Solitons
Faber, Manfried; Kobushkin, Alexander P.
2002-01-01
We consider a model of topological solitons where charged particles have finite mass and the electric charge is quantised already at the classical level. In the electrodynamic limit, which physically corresponds to electrodynamics of solitons of zero size, the Lagrangian of this model has two degrees of freedom only and reduces to the Lagrangian of the Maxwell field in dual representation. We derive the equations of motion and discuss their relations with Maxwell's equations. It is shown that...
Privacy Impact Assessment for the Case Management System for Suspension and Debarment
This system collects contact information and other Personally Identifiable Information (PII). Learn how this data will be collected in the system, how it will be used, access to the data, the purpose of data collection, and the record retention policies.
Analytical study of holographic superconductor in Born–Infeld electrodynamics with backreaction
Directory of Open Access Journals (Sweden)
A. Sheykhi
2016-03-01
Full Text Available We extend the analytical studies on the properties of s-wave holographic superconductors in the presence of Born–Infeld nonlinear electrodynamics by taking the backreaction into account. We find that even in the case of nonlinear electrodynamics, one can still employ the analytical method when the backreaction is turned on. In our calculations, we use the variational method which is based on the Sturm–Liouville eigenvalue problem. For this system, we obtain the relation between the critical temperature and the charge density. We find that both backreaction and Born–Infeld parameters decrease the critical temperature of the superconductor and make the condensation harder. Finally, we compute the critical exponent associated with the condensation near the critical temperature and find that it equals 1/2 which is the universal value in the mean field theory.
Analytical study of holographic superconductor in Born–Infeld electrodynamics with backreaction
Energy Technology Data Exchange (ETDEWEB)
Sheykhi, A., E-mail: asheykhi@shirazu.ac.ir [Physics Department and Biruni Observatory, College of Sciences, Shiraz University, Shiraz 71454 (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), P.O. Box 55134-441, Maragha (Iran, Islamic Republic of); Shaker, F. [Physics Department and Biruni Observatory, College of Sciences, Shiraz University, Shiraz 71454 (Iran, Islamic Republic of)
2016-03-10
We extend the analytical studies on the properties of s-wave holographic superconductors in the presence of Born–Infeld nonlinear electrodynamics by taking the backreaction into account. We find that even in the case of nonlinear electrodynamics, one can still employ the analytical method when the backreaction is turned on. In our calculations, we use the variational method which is based on the Sturm–Liouville eigenvalue problem. For this system, we obtain the relation between the critical temperature and the charge density. We find that both backreaction and Born–Infeld parameters decrease the critical temperature of the superconductor and make the condensation harder. Finally, we compute the critical exponent associated with the condensation near the critical temperature and find that it equals 1/2 which is the universal value in the mean field theory.
Quantized Faraday and Kerr rotation and axion electrodynamics of a 3D topological insulator.
Wu, Liang; Salehi, M; Koirala, N; Moon, J; Oh, S; Armitage, N P
2016-12-02
Topological insulators have been proposed to be best characterized as bulk magnetoelectric materials that show response functions quantized in terms of fundamental physical constants. Here, we lower the chemical potential of three-dimensional (3D) Bi2Se3 films to ~30 meV above the Dirac point and probe their low-energy electrodynamic response in the presence of magnetic fields with high-precision time-domain terahertz polarimetry. For fields higher than 5 tesla, we observed quantized Faraday and Kerr rotations, whereas the dc transport is still semiclassical. A nontrivial Berry's phase offset to these values gives evidence for axion electrodynamics and the topological magnetoelectric effect. The time structure used in these measurements allows a direct measure of the fine-structure constant based on a topological invariant of a solid-state system. Copyright © 2016, American Association for the Advancement of Science.
Directory of Open Access Journals (Sweden)
Saki Imai
Full Text Available The tail suspension test (TST is widely recognized as a useful experimental paradigm for assessing antidepressant activity and depression-like behavior. We have previously identified ubiquitin-specific peptidase 46 (Usp46 as a quantitative trait gene responsible for decreasing immobility time in the TST in mice. This Usp46 mutation has a 3-bp deletion coding for lysine in the open reading frame, and we indicated that Usp46 is implicated in the regulation of the GABAergic system. However, it is not known precisely how the immobile behavior is regulated by the GABAergic system. Therefore, in the present study, we examined whether the immobility time is influenced by drugs affecting the action mediated by GABA(A receptor using both 3-bp deleted (the Usp46 mutant and null Usp46 (Usp46 KO mice. Nitrazepam, an agonist at the benzodiazepine-binding site of the GABA(A receptor, which potentiates the action of GABA, produced a dose-dependent increase in TST immobility time in the Usp46 mutant mice without affecting general behaviors. The Usp46 KO mice exhibited short immobility times comparable to the Usp46 mutant mice, which was also increased by nitrazepam administration. The effects of nitrazepam in the Usp46 mutant and KO mice were antagonized by flumazenil. These results indicate that the 3-bp deleted Usp46 mutation causes a loss-of-function phenotype, and that the GABA(A receptor might participate in the regulation of TST immobility time.
Hontanilla, Bernardo; Marre, Diego
2013-04-01
This study aims to analyse the efficacy of static techniques, namely gold weight implant and tendon sling, in the reanimation of the paralytic eyelid. Upper eyelid rehabilitation in terms of excursion and blinking velocity is performed using the automatic motion capture system, FACIAL CLIMA. Seventy-four patients underwent a total of 101 procedures including 58 upper eyelid gold weight implants and 43 lower eyelid tendon suspension with 27 patients undergoing both procedures. The presence of lagophtalmos, eye dryness, corneal ulcer, epiphora and lower lid ptosis/ectropion was assessed preoperatively. The Wilcoxon signed-rank test was used to compare preoperative versus postoperative measurements of upper eyelid excursion and blinking velocity determined with FACIAL CLIMA. Significance was set at p CLIMA revealed significant improvement of eyelid excursion and velocity of blinking (p CLIMA system is a reliable method to quantify upper eyelid excursion and blinking velocity and to detect the exact position of the lower eyelid. Copyright © 2012 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
Eskins, Jonathan
1988-01-01
The problem of determining the forces and moments acting on a wind tunnel model suspended in a Magnetic Suspension and Balance System is addressed. Two calibration methods were investigated for three types of model cores, i.e., Alnico, Samarium-Cobalt, and a superconducting solenoid. Both methods involve calibrating the currents in the electromagnetic array against known forces and moments. The first is a static calibration method using calibration weights and a system of pulleys. The other method, dynamic calibration, involves oscillating the model and using its inertia to provide calibration forces and moments. Static calibration data, found to produce the most reliable results, is presented for three degrees of freedom at 0, 15, and -10 deg angle of attack. Theoretical calculations are hampered by the inability to represent iron-cored electromagnets. Dynamic calibrations, despite being quicker and easier to perform, are not as accurate as static calibrations. Data for dynamic calibrations at 0 and 15 deg is compared with the relevant static data acquired. Distortion of oscillation traces is cited as a major source of error in dynamic calibrations.
Lockerbie, N. A.; Tokmakov, K. V.
2016-07-01
The background to this work was a prototype shadow sensor, which was designed for retro-fitting to an advanced LIGO (Laser Interferometer Gravitational wave Observatory) test-mass/mirror suspension, in which a 40 kg test-mass/mirror is suspended by four approximately 600 mm long by 0.4 mm diameter fused-silica suspension fibres. The shadow sensor comprised a LED source of Near InfraRed (NIR) radiation, and a "tall-thin" rectangular silicon photodiode detector, which together were to bracket the fibre under test. The photodiode was positioned so as to be sensitive (primarily) to transverse "Violin-Mode" vibrations of such a fibre, via the oscillatory movement of the shadow cast by the fibre, as this moved across the face of the detector. In this prototype shadow sensing system the photodiode was interfaced to a purpose-built transimpedance amplifier, this having both AC and DC outputs. A quasi-static calibration was made of the sensor's DC responsivity, i.e., incremental rate of change of output voltage versus fibre position, by slowly scanning a fused-silica fibre sample transversely through the illuminating beam. The work reported here concerns the determination of the sensor's more important AC (Violin-Mode) responsivity. Recognition of the correspondence between direct AC modulation of the source, and actual Violin-Mode signals, and of the transformative role of the AC/DC gain ratio for the amplifier, at any modulation frequency, f, resulted in the construction of the AC/DC calibration source described here. A method for determining in practice the transimpedance AC/DC gain ratio of the photodiode and amplifier, using this source, is illustrated by a specific numerical example, and the gain ratio for the prototype sensing system is reported over the frequency range 1 Hz-300 kHz. In fact, a maximum DC responsivity of 1.26 kV.m-1 was measured using the prototype photodiode sensor and amplifier discussed here. Therefore, the measured AC/DC transimpedance gain ratio
National Research Council Canada - National Science Library
Yan-yang Wang; Yi-nong Li; Wei Sun; Chao Yang; Guang-hui Xu
2014-01-01
.... In this paper, the vertical component of SRM unbalanced radial force, which is named as SRM vertical force, is taken into account in suspension performance for in-wheel motor driven electric vehicles (IWM-EV...
Directory of Open Access Journals (Sweden)
Chenyu Zhou
2017-01-01
Full Text Available This paper presents a double loop controller for a 7-DoF automobile electrohydraulic active suspension via T-S fuzzy modelling technique. The outer loop controller employs a modified H-infinity feedback control based on a T-S fuzzy model to provide the actuation force needed to ensure better riding comfort and handling stability. The resulting optimizing problem is transformed into a linear matrix inequalities solution issue associated with stability analysis, suspension stroke limit, and force constraints. Integrating these via parallel distributed compensation method, the feedback gains are derived to render the suspension performance dependent on the perturbation size and improve the efficiency of active suspensions. Adaptive Robust Control (ARC is then adopted in the inner loop design to deal with uncertain nonlinearities and improve tracking accuracy. The validity of improvements attained from this controller is demonstrated by comparing with conventional Backstepping control and a passive suspension on a 7-DoF simulation example. It is shown that the T-S fuzzy model based controller can achieve favourable suspension performance and energy conservation under both mild and malevolent road inputs.
Directory of Open Access Journals (Sweden)
S.N.Z Zainul Abidin
2011-12-01
Full Text Available Chinese hamster ovary (CHO cells have been most widely used as the production host for the commercial production of biopharmaceuticals product. They have been extensively studied and developed, and today provide a stable platform for producing monoclonal antibodies and recombinant proteins. This study was focusing on comparison of suspension culture system by using spinner flask and shake flask for the growth and production of recombinant protein in CHO cell line. The CHO cells were transfected with an expression of DNA plasmid containing lac Z gene which codes for Î²-galactosidase. The recombinant genes in these CHO cells and the Î²-galactosidase expressing cells were adapted to suspension culture. The agitation speed for both spinner and shake flask were adjusted accordingly. The experiments were carried out in duplicate and samples were taken for cell count, determination of glucose consumption, lactate production and protein level by using biochemical assay. The result showed that, the cell growth in spinner flask is more favorable then in shake flask. The cell concentration in spinner flask is 58% higher than in shake flask. On the other hand, specific activity of Î²-galactosidase is 25% higher in spinner flask compared to shake flask, at the same agitation speed.ABSTRAK: Sel ovari hamster China (Chinese hamster ovary (CHO digunakan secara meluas dalam hos pembiakan untuk tujuan komersil produk biofarmaseutikal. Ia telah dikaji dan dibangunkan secara ekstensif, dan kini ia menyediakan landasan yang stabil untuk penghasilan antibodi monoklon dan protein rekombinan. Kajian ini memfokuskan tentang penghasilan protein rekombinan menggunakan kultur ampaian sel CHO di dalam kelalang putar dan kelalang goncang. Sel CHO dimasukkan dengan plasmid DNA yang mengandungi gen lac Z yang juga memberikan kod untuk β-galaktosidase. Sel CHO β-galaktosidase-terungkap dimasukkan ke dalam kultur ampaian. Kelajuan agitasi untuk kedua-dua kelalang putar
Nguyen, Sy Dzung; Nguyen, Quoc Hung; Choi, Seung-Bok
2015-05-01
This work presents a novel neuro-fuzzy controller (NFC) for car-driver's seat-suspension system featuring magnetorheological (MR) dampers. The NFC is built based on the algorithm for building adaptive neuro-fuzzy inference systems (ANFISs) named B-ANFIS, which has been developed in Part 1, and fuzzy logic inference systems (FISs). In order to create the NFC, the following steps are performed. Firstly, a control strategy based on a ride-comfort-oriented tendency (RCOT) is established. Subsequently, optimal FISs are built based on a genetic algorithm (GA) to estimate the desired damping force that satisfies the RCOT corresponding to the road status at each time. The B-ANFIS is then used to build ANFISs for inverse dynamic models of the suspension system (I-ANFIS). Based on the FISs, the desired force values are calculated according to the status of road at each time. The corresponding exciting current value to be applied to the MR damper is then determined by the I-ANFIS. In order to validate the effectiveness of the developed neuro-fuzzy controller, control performances of the seat-suspension systems featuring MR dampers are evaluated under different road conditions. In addition, a comparative work between conventional skyhook controller and the proposed NFC is undertaken in order to demonstrate superior control performances of the proposed methodology.
Balestrazzi, Alma; Carbonera, Daniela; Avato, Pinarosa; Tava, Aldo
2014-01-01
In animal cells, the anticancer function played by plant saponins involves a complex network of molecular processes that still deserves investigation and apoptosis seems to be the outstanding pathway. An intriguing aspect of the biological activity of saponins is related to their effects on genome integrity. As demonstrated by the studies carried out in white poplar (Populus alba L., cv Villafranca) cell suspension cultures, plant cells can as well be used as a model system to unravel the molecular mechanisms activated by plant saponins. These recent studies have evidenced that animal and plant cells share common features in their response to saponins, paving the way for novel opportunities for both basic and applied research. Indeed, there is a certain interest in replacing the animal models for pharmacological research, at least when preliminary large-scale cytotoxicity tests are performed on wide collections of natural extracts and/or purified compounds. The review provides an up-date of the molecular pathways (signal transduction, antioxidant response, DNA repair) associated with plant saponin bioactivity, with an emphasis on apoptosis induced by alfalfa (Medicago sativa L.) saponins. The comparison between animal and plant cells as tools for the study of saponin bioactivity is also discussed in view of the most recent literature and innovative future applications.
Perret, A; Foray, G; Masenelli-Varlot, K; Maire, E; Yrieix, B
2018-01-01
For insulation applications, boards thinner than 2 cm are under design with specific thermal conductivities lower than 15 mW m-1 K-1 . This requires binding slightly hydrophobic aerogels which are highly nanoporous granular materials. To reach this step and ensure insulation board durability at the building scale, it is compulsory to design, characterise and analyse the microstructure at the nanoscale. It is indeed necessary to understand how the solid material is formed from a liquid suspension. This issue is addressed in this paper through wet-STEM experiments carried out in an Environmental Scanning Electron Microscope (ESEM). Latex-surfactant binary blends and latex-surfactant-aerogel ternary systems are studied, with two different surfactants of very different chemical structures. Image analysis is used to distinguish the different components and get quantitative morphological parameters which describe the sample architecture. The evolution of such morphological parameters during water evaporation permits a good understanding of the role of the surfactant. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.
Electrodynamic Tether Operations beyond the Ionosphere in the Low-Density Magnetosphere
Stone, Nobie H.
2007-01-01
In the classical concept for the operation of electrodynamic tethers in space, a voltage is generated across the tether, either by the tether's orbital motion through the earth's planetary magnetic field or by a power supply; electrons are then collected from the ionospheric plasma at the positive pole; actively emitted back into space at the negative pole; and the circuit is closed by currents driven through the ambient conducting ionosphere. This concept has been proven to work in space by the Tethered Satellite System TSS-1 and TSS-1R Space Shuttle missions; and the Plasma Motor-Generator (PMG) tether flight experiment. However, it limits electrodynamic tether operations to the F-region of the ionosphere where the plasma density is sufficient to conduct the required currents--in other words, between altitudes of approximately 200 to 1000 km in sunlight. In the earth's shadow, the ionospheric density drops precipitously and tether operations, using the above approach, are not effective--even within this altitude range. There are numerous missions that require in-space propulsion in the Earth's shadow and/or outside of the above altitude range. This paper will, therefore, present the fundamentals of a concept that would allow electrodynamic tethers to operate almost anywhere within the magnetosphere, the region of space containing the earth's planetary magnetic field. In other words, because operations would be virtually independent of any ambient plasma, the range of electrodynamic operations would be extended into the earth's shadow and out to synchronous orbit--forty times the present operational range. The key to this concept is the active generation of plasma at each pole of the tether so that current generation ,does not depend on the conductivity of the ambient ionosphere. Arguments will be presented, based on ,existing flight data, which shed light on the behavior of charge emissions in space and show the plausibility of the concept.
Fundamental tests in Cavity Quantum Electrodynamics
CERN. Geneva
2010-01-01
At the dawn of quantum physics, Einstein and Bohr had the dream to confine a photon in a box and to use this contraption in order to illustrate the strange laws of the quantum world. Cavity Quantum Electrodynamics has now made this dream real, allowing us to actually achieve in the laboratory variants of the thought experiments of the founding fathers of quantum theory. In our work at Ecole Normale Supérieure, we use a beam of Rydberg atoms to manipulate and probe non-destructively microwave photons trapped in a very high Q superconducting cavity. We realize ideal quantum non-demolition (QND) measurements of photon numbers, observe the radiation quantum jumps due to cavity relaxation and prepare non-classical fields such as Fock and Schrödinger cat states. Combining QND photon counting with a homodyne mixing method, we reconstruct the Wigner functions of these non-classical states and, by taking snapshots of these functions at increasing times, obtain movies of the decoherence process. These experiments ope...
The physical basis of ionospheric electrodynamics
Directory of Open Access Journals (Sweden)
V. M. Vasyliūnas
2012-02-01
Full Text Available The conventional equations of ionospheric electrodynamics, highly succesful in modeling observed phenomena on sufficiently long time scales, can be derived rigorously from the complete plasma and Maxwell's equations, provided that appropriate limits and approximations are assumed. Under the assumption that a quasi-steady-state equilibrium (neglecting local dynamical terms and considering only slow time variations of external or aeronomic-process origin exists, the conventional equations specify how the various quantities must be related numerically. Questions about how the quantities are related causally or how the stress equilibrium is established and on what time scales are not anwered by the conventional equations but require the complete plasma and Maxwell's equations, and these lead to a picture of the underlying physical processes that can be rather different from the commonly presented intuitive or ad hoc explanations. Particular instances include the nature of the ionospheric electric current, the relation between electric field and plasma bulk flow, and the interrelationships among various quantities of neutral-wind dynamo.
Electrodynamics and spacetime geometry: Astrophysical applications
Cabral, Francisco; Lobo, Francisco S. N.
2017-07-01
After a brief review of the foundations of (pre-metric) electromagnetism, we explore some physical consequences of electrodynamics in curved spacetime. In general, new electromagnetic couplings and related phenomena are induced by the spacetime curvature. The applications of astrophysical interest considered here correspond essentially to the following geometries: the Schwarzschild spacetime and the spacetime around a rotating spherical mass in the weak field and slow rotation regime. In the latter, we use the Parameterised Post-Newtonian (PPN) formalism. We also explore the hypothesis that the electric and magnetic properties of vacuum reflect the spacetime isometries. Therefore, the permittivity and permeability tensors should not be considered homogeneous and isotropic a priori. For spherical geometries we consider the effect of relaxing the homogeneity assumption in the constitutive relations between the fields and excitations. This affects the generalized Gauss and Maxwell-Ampère laws, where the electric permittivity and magnetic permeability in vacuum depend on the radial coordinate in accordance with the local isometries of space. For the axially symmetric geometries we relax both the assumptions of homogeneity and isotropy. We explore simple solutions and discuss the physical implications related to different phenomena, such as the decay of electromagnetic fields in the presence of gravity, magnetic terms in Gauss law due to the gravitomagnetism of the spacetime around rotating objects, a frame-dragging effect on electric fields and the possibility of a spatial (radial) variability of the velocity of light in vacuum around spherical astrophysical objects for strong gravitational fields.
Quantum electrodynamics of inhomogeneous anisotropic media
Energy Technology Data Exchange (ETDEWEB)
Lopez, Adrian E.R.; Lombardo, Fernando C. [Ciudad Universitaria, Departamento de Fisica Juan Jose Giambiagi, Buenos Aires (Argentina); IFIBA CONICET-UBA, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina)
2015-02-01
In this work we calculate the closed time path generating functional for the electromagnetic (EM) field interacting with inhomogeneous anisotropic matter. For this purpose, we first find a general expression for the electromagnetic field's influence action from the interaction of the field with a composite environment consisting in the quantum polarization degrees of freedom in each point of space, at arbitrary temperatures, connected to thermal baths. Then we evaluate the generating functional for the gauge field, in the temporal gauge, by implementing the Faddeev-Popov procedure. Finally, through the point-splitting technique, we calculate closed expressions for the energy, the Poynting vector, and the Maxwell tensor in terms of the Hadamard propagator. We show that all the quantities have contributions from the field's initial conditions and also from the matter degrees of freedom. Throughout the whole work we discuss how the gauge invariance must be treated in the formalism when the EM-field is interacting with inhomogeneous anisotropic matter. We study the electrodynamics in the temporal gauge, obtaining the EM-field's equation and a residual condition. Finally we analyze the case of the EM-field in bulk material and also discuss several general implications of our results in relation with the Casimir physics in a non-equilibrium scenario. (orig.)
Pole-factorization theorem in quantum electrodynamics
Energy Technology Data Exchange (ETDEWEB)
Stapp, H.P.
1996-01-01
In quantum electrodynamics a classical part of the S-matrix is normally factored out in order to obtain a quantum remainder that can be treated perturbatively without the occurrence of infrared divergences. However, this separation, as usually performed, introduces spurious large-distance effects that produce an apparent breakdown of the important correspondence between stable particles and poles of the S-matrix, and, consequently, lead to apparent violations of the correspondence principle and to incorrect results for computations in the mesoscopic domain lying between the atomic and classical regimes. An improved computational technique is described that allows valid results to be obtained in this domain, and that leads, for the quantum remainder, in the cases studied, to a physical-region singularity structure that, as regards the most singular parts, is the same as the normal physical-region analytic structure in theories in which all particles have non-zero mass. The key innovations here are to define the classical part in coordinate space, rather than in momentum space, and to define there a separation of the photon-electron coupling into its classical and quantum parts that has the following properties: (1) The contributions from the terms containing only classical couplings can be summed to all orders to give a unitary operator that generates the coherent state that corresponds to the appropriate classical process, and (2) The quantum remainder can be rigorously shown to exhibit, as regards its most singular parts, the normal analytic structure. 22 refs.
A Way to Revised Quantum Electrodynamics
Directory of Open Access Journals (Sweden)
Lehnert B.
2012-04-01
Full Text Available In conventional theoretical physics and its Standard Model the guiding principle is that the equations are symmetrical. This limitation leads to a number of difficulties, because it does not permit masses for leptons and quarks, the electron tends to “explode” un- der the action of its self-charge, a corresponding photon model has no spin, and such a model cannot account for the “needle radiation” proposed by Einstein and observed in the photoelectric e ff ect and in two-slit experiments. This paper summarizes a revised Lorentz and gauge invariant quantum electrodynamic theory based on a nonzero electric field divergence in the vacuum and characterized by linear intrinsic broken symmetry. It thus provides an alternative to the Higgs concept of nonlinear spontaneous broken sym- metry, for solving the difficulties of the Standard Model. New results are obtained, such as nonzero and finite lepton rest masses, a point-charge-like behavior of the electron due to a revised renormalization procedure, a magnetic volume force which counteracts the electrostatic eigen-force of the electron, a nonzero spin of the photon and of light beams, needle radiation, and an improved understanding of the photoelectric effect, two-slit ex- periments, electron-positron pair formation, and cork-screw-shaped light beams.
DEFF Research Database (Denmark)
Dong, Jing; Bowra, Steve; Vincze, Éva
2010-01-01
Background The overall research objective was to develop single cell plant cultures as a model system to facilitate functional genomics of monocots, in particular wheat and barley. The essential first step towards achieving the stated objective was the development of a robust, viable single cell...... suspension culture from both species. Results We established growth conditions to allow routine culturing of somatic cells in 24 well microtiter plate format. Evaluation of the wheat and barley cell suspension as model cell system is a multi step process. As an initial step in the evaluation procedure we...... chose to study the impact of selected abiotic stress elicitors at the physiological, biochemical and molecular level. We report the results of osmotic stress imposed by NaCl and PEG. As proline is an important osmoprotectant of the cereal cells, colorimetric assay for proline detection was developed...
Meire, M A; De Prijck, K; Coenye, T; Nelis, H J; De Moor, R J G
2009-04-01
To assess the antibacterial action of laser irradiation (Nd:YAG, KTP), photo activated disinfection (PAD) and 2.5% sodium hypochlorite (NaOCl) on Enterococcus faecalis, in an aqueous suspension and in an infected tooth model. Root canals of 60 human teeth with single straight canals were prepared to apical size 50, autoclaved, inoculated with an E. faecalis suspension and incubated for 48 h. They were randomly allocated to four treatment and one control groups. After treatment, the root canals were sampled by flushing with physiological saline, and the number of surviving bacteria in each canal was determined by plate count and solid phase cytometry. The same experimental or control treatments were completed on aqueous suspensions of E. faecalis, and the number of surviving bacteria was determined in the same way. In aqueous suspension, PAD and NaOCl resulted in a significant reduction in the number of E. faecalis cells (P teeth yielded significantly different results relative to the untreated controls (P faecalis, both in aqueous suspension and in the infected tooth model.
Decoupling Suspension Controller Based on Magnetic Flux Feedback
Directory of Open Access Journals (Sweden)
Wenqing Zhang
2013-01-01
Full Text Available The suspension module control system model has been established based on MIMO (multiple input and multiple output state feedback linearization. We have completed decoupling between double suspension points, and the new decoupling method has been applied to CMS04 magnetic suspension vehicle in national mid-low-speed maglev experiment field of Tangshan city in China. Double suspension system model is very accurate for investigating stability property of maglev control system. When magnetic flux signal is taken back to the suspension control system, the suspension module’s antijamming capacity for resisting suspension load variety has been proved. Also, the external force interference has been enhanced. As a result, the robustness and stability properties of double-electromagnet suspension control system have been enhanced.
Cavalcanti, João Henrique F; Quinhones, Carla G S; Schertl, Peter; Brito, Danielle S; Eubel, Holger; Hildebrandt, Tatjana; Nunes-Nesi, Adriano; Braun, Hans-Peter; Araújo, Wagner L
2017-12-01
Plant respiration mostly depends on the activity of glycolysis and the oxidation of organic acids in the tricarboxylic acid cycle to synthesize ATP. However, during stress situations plant cells also use amino acids as alternative substrates to donate electrons through the electron-transfer flavoprotein (ETF)/ETF:ubiquinone oxidoreductase (ETF/ETFQO) complex to the mitochondrial electron transport chain (mETC). Given this, we investigated changes of the oxidative phosphorylation (OXPHOS) system in Arabidopsis thaliana cell culture under carbohydrate starvation supplied with a range of amino acids. Induction of isovaleryl-CoA dehydrogenase (IVDH) activity was observed under carbohydrate starvation which was associated with increased amounts of IVDH protein detected by immunoblotting. Furthermore, activities of the protein complexes of the mETC were reduced under carbohydrate starvation. We also observed that OXPHOS system activity behavior is differently affected by different amino acids and that proteins associated with amino acids catabolism are upregulated in cells following carbohydrate starvation. Collectively, our results support the contention that ETF/ETFQO is an essential pathway to donate electrons to the mETC and that amino acids are alternative substrates to maintain respiration under carbohydrate starvation. © 2017 Scandinavian Plant Physiology Society.
Dilaton black holes coupled to nonlinear electrodynamic field
Sheykhi, A
2015-01-01
The theory of nonlinear electrodynamics has got a lot of attentions in recent years. It was shown that Born-Infeld nonlinear electrodynamics is not the only modification of the linear Maxwell's field which keeps the electric field of a charged point particle finite at the origin, and other type of nonlinear Lagrangian such as exponential and logarithmic nonlinear electrodynamics can play the same role. In this paper, we generalize the study on the exponential nonlinear electrodynamics by adding a scalar dilaton field to the action. By suitably choosing the coupling of the matter field to the dilaton field, we vary the action and obtain the corresponding field equations. Then, by making a proper ansatz, we construct a new class of charged dilaton black hole solutions coupled to the exponential nonlinear electrodynamics field in the presence of two Liouville-type potentials for the dilaton field. Due to the presence of the dilaton field, the asymptotic behavior of these solutions are neither flat nor (A)dS. In ...
Yan, Shuai; Sun, Weichao
2017-09-01
Active suspension systems have advantages on mitigating the effects of vehicle vibration caused by road roughness, which are one of the most important component parts in influencing the performances of vehicles. However, high amount of energy consumption restricts the application of active suspension systems. From the point of energy saving, this paper presents a self-powered criterion of the active suspension system to judge whether a motor-driven suspension can be self-powered or not, and then a motor parameter condition is developed as a reference to design a self-powered suspension. An energy regeneration implementation scheme is subsequently proposed to make the active suspension which has the potential to be self-powered achieve energy-saving target in the real application. In this implementation scheme, operating electric circuits are designed based on different working status of the actuator and power source and it is realizable to accumulate energy from road vibration and supply energy to the actuator by switching corresponding electric circuits. To apply the self-powered suspension criterion and energy regeneration implementation scheme, an active suspension system is designed with a constrained H∞ controller and calculation results indicate that it has the capability to be self-powered. Simulation results show that the performances of the self-powered active suspension are nearly the same as those of the active suspension with an external energy source and can achieve energy regeneration at the same time.
Perfect photon absorption in nonlinear regime of cavity quantum electrodynamics
Agarwal, G S; Wang, Liyong; Zhu, Yifu
2016-01-01
It has been shown that perfect photon absorption can occur in the linear excitation regime of cavity quantum electrodynamics (CQED), in which photons from two identical light fields coupled into two ends of the cavity are completely absorbed and result in excitation of the polariton state of the CQED system. The output light from the cavity is totally suppressed by the destructive interference and the polariton state can only decay incoherently back to the ground state. Here we analyze the perfect photon absorption and onset of optical bistability in the nonlinear regime of the CQED and show that the perfect photon absorption persists in the nonlinear regime of the CQED below the threshold of the optical bistability. Therefore the perfect photon absorption is a phenomenon that can be observed in both linear and nonlinear regimes of CQED. Furthermore, our study reveals for the first time that the optical bistability is influenced by the input-light interference and can be manipulated by varying the relative ph...
Lockerbie, N. A.; Tokmakov, K. V.
2014-10-01
This paper describes the design of, and results from, a calibration system for optical linear displacement (shadow) sensors. The shadow sensors were designed to detect "Violin-Mode" (VM) resonances in the 0.4 mm diameter silica fibre suspensions of the test masses/mirrors of Advanced Laser Interferometer Gravitational Wave Observatory gravitational wave interferometers. Each sensor illuminated the fibre under test, so as to cast its narrow shadow onto a "synthesized split photodiode" detector, the shadow falling over adjacent edges of the paired photodiodes. The apparatus described here translated a vertically orientated silica test fibre horizontally through a collimated Near InfraRed illuminating beam, whilst simultaneously capturing the separate DC "shadow notch" outputs from each of the paired split photodiode detectors. As the ratio of AC to DC photocurrent sensitivities to displacement was known, a calibration of the DC response to quasi-static shadow displacement allowed the required AC sensitivity to vibrational displacement to be found. Special techniques are described for generating the required constant scan rate for the test fibre using a DC motor-driven stage, for removing "jitter" at such low translation rates from a linear magnetic encoder, and so for capturing the two shadow-notch signals at each micrometre of the test fibre's travel. Calibration, across the four detectors of this work, gave a vibrational responsivity in voltage terms of (9.45 ± 1.20) MV (rms)/m, yielding a VM displacement sensitivity of (69 ± 13) pm (rms)/√Hz, at 500 Hz, over the required measuring span of ±0.1 mm.
Lockerbie, N A; Tokmakov, K V
2014-10-01
This paper describes the design of, and results from, a calibration system for optical linear displacement (shadow) sensors. The shadow sensors were designed to detect "Violin-Mode" (VM) resonances in the 0.4 mm diameter silica fibre suspensions of the test masses/mirrors of Advanced Laser Interferometer Gravitational Wave Observatory gravitational wave interferometers. Each sensor illuminated the fibre under test, so as to cast its narrow shadow onto a "synthesized split photodiode" detector, the shadow falling over adjacent edges of the paired photodiodes. The apparatus described here translated a vertically orientated silica test fibre horizontally through a collimated Near InfraRed illuminating beam, whilst simultaneously capturing the separate DC "shadow notch" outputs from each of the paired split photodiode detectors. As the ratio of AC to DC photocurrent sensitivities to displacement was known, a calibration of the DC response to quasi-static shadow displacement allowed the required AC sensitivity to vibrational displacement to be found. Special techniques are described for generating the required constant scan rate for the test fibre using a DC motor-driven stage, for removing "jitter" at such low translation rates from a linear magnetic encoder, and so for capturing the two shadow-notch signals at each micrometre of the test fibre's travel. Calibration, across the four detectors of this work, gave a vibrational responsivity in voltage terms of (9.45 ± 1.20) MV (rms)/m, yielding a VM displacement sensitivity of (69 ± 13) pm (rms)/√Hz, at 500 Hz, over the required measuring span of ±0.1 mm.
Fujiuchi, Naomichi; Matsuda, Ryo; Matoba, Nobuyuki; Fujiwara, Kazuhiro
2016-04-01
The use of detached leaves instead of whole plants provides an alternative means for recombinant protein production based on Agrobacterium tumefaciens-mediated transient gene overexpression. However, the process for high-level protein production in detached leaves has not yet been established. In this study, we focused on leaf handling and maintenance conditions immediately after infiltration with Agrobacterium suspension (agroinfiltration) to improve recombinant protein expression in detached Nicotiana benthamiana leaves. We demonstrated that the residual water of bacterial suspension in detached leaves had significant impact on the yield of recombinant influenza hemagglutinin (HA). Immediately after agroinfiltration, detached leaves were stored in a dehumidified chamber to allow bacterial suspension water occupying intercellular space to be removed by transpiration. We varied the duration of this water removal treatment from 0.7 to 4.4 h, which resulted in leaf fresh weights ranging from 0.94 to 1.28 g g(-1) relative to weights measured just before agroinfiltration. We used these relative fresh weights (RFWs) as an indicator of the amount of residual water. The detached leaves were then incubated in humidified chambers for 6 days. We found that the presence of residual water significantly decreased HA yield, with a clear inverse correlation observed between HA yield and RFW. We next compared HA yields in detached leaves with those obtained from intact leaves by whole-plant expression performed at the same time. The maximum HA yield obtained from a detached leaf with a RFW of approximately 1.0, namely, 800 μg gFW(-1), was comparable to the mean HA yield of 846 μg gFW(-1) generated in intact leaves. Our results indicate the necessity of removing bacterial suspension water from agroinfiltrated detached leaves in transient overexpression systems and point to a critical factor enabling the detached-leaf system as a viable recombinant protein factory.
Fuzzy logic control of vehicle suspensions with dry friction nonlinearity
Indian Academy of Sciences (India)
are faced with the problem of determining suspension spring and damper coefficients. Two important ... Replacement of spring damper suspensions of automobiles by active systems has the potential to ..... Rao M V C, Prahlad V 1997 A tunable fuzzy logic controller for vehicle-active suspension systems. Fuzzy Sets Syst.
Active Control of Suspension Bridges
DEFF Research Database (Denmark)
Thoft-Christensen, Palle
In this paper some recent research on active control of very long suspension bridges, is presented. The presentation is based on research work at Aalborg University, Denmark. The active control system is based on movable flaps attached to the bridge girder. Wind load on bridges with or without...... flaps attached to the girder is briefly presented. A simple active control system is discussed. Results from wind tunnel experiments with a bridge section show that flaps can be used effectively to control bridge girder vibrations. Flutter conditions for suspension bridges with and without flaps...
Famelaer, I.; Ennik, E.; Tuyl, van J.M.; Meijer, H.; Creemers-Molenaar, J.
1996-01-01
The present results indicate that established morphogenic suspension cultures can be obtained from crosses between cultivars of L. longiflorum and from a cross between Asiatic hybrid 'Orlito' x 'Connecticut King'. Meristem cultures were obtained from L. longiflorum 'Gelria' and Oriental hybrid 'Star
Unified radiation formulae for classical and quantum electrodynamics
Energy Technology Data Exchange (ETDEWEB)
Erber, Thomas [Department of Physics, Illinois Institute of Technology, Chicago, IL (United States); Latal, Heimo G [Institut fuer Theoretische Physik, Universitaet Graz (Austria)
2003-01-01
There are deep conceptual differences between the classical and quantum mechanical treatment of electromagnetic radiation processes. Nevertheless, it is possible to give a formally unified description of the spectral and angular distribution of radiation in both cases in terms of four-dimensional Fourier transforms of currents. We present parallel derivations of the basic radiation formulae utilizing classical electrodynamics as well as spinor quantum electrodynamics. In addition both derivations allow for the presence of a medium with an index of refraction. The practical application of these methods is illustrated by calculations of some specific radiation problems.
(2 + 1)-dimensional regular black holes with nonlinear electrodynamics sources
He, Yun; Ma, Meng-Sen
2017-11-01
On the basis of two requirements: the avoidance of the curvature singularity and the Maxwell theory as the weak field limit of the nonlinear electrodynamics, we find two restricted conditions on the metric function of (2 + 1)-dimensional regular black hole in general relativity coupled with nonlinear electrodynamics sources. By the use of the two conditions, we obtain a general approach to construct (2 + 1)-dimensional regular black holes. In this manner, we construct four (2 + 1)-dimensional regular black holes as examples. We also study the thermodynamic properties of the regular black holes and verify the first law of black hole thermodynamics.
On the Emergence of the Coulomb Forces in Quantum Electrodynamics
Directory of Open Access Journals (Sweden)
Jan Naudts
2017-01-01
Full Text Available A simple transformation of field variables eliminates Coulomb forces from the theory of quantum electrodynamics. This suggests that Coulomb forces may be an emergent phenomenon rather than being fundamental. This possibility is investigated in the context of reducible quantum electrodynamics. It is shown that states exist which bind free photon and free electron fields. The binding energy peaks in the long-wavelength limit. This makes it plausible that Coulomb forces result from the interaction of the electron/positron field with long-wavelength transversely polarized photons.
Active suspension for a field sprayer boom
DEFF Research Database (Denmark)
Nielsen, Henrik Skovsgaard; Sørensen, Paul Haase
1998-01-01
The possibilities of implementing an active boom suspension is investigated. The performance improvement of an active suspension over a traditional passive one is studied in simulation, and shows a significant improvement. A closed-loop control system involving two ultrasonic distance transducers...
2010-07-01
... 32 National Defense 6 2010-07-01 2010-07-01 false Suspension. 1609.5 Section 1609.5 National Defense Other Regulations Relating to National Defense SELECTIVE SERVICE SYSTEM UNCOMPENSATED PERSONNEL § 1609.5 Suspension. The Director of Selective Service may suspend from duty any uncompensated person...
Electrodynamic headphones and woofers for application in magnetic resonance imaging scanners.
Baumgart, F; Kaulisch, T; Tempelmann, C; Gaschler-Markefski, B; Tegeler, C; Schindler, F; Stiller, D; Scheich, H
1998-10-01
Electrodynamic speakers compatible with (functional) magnetic resonance imaging (MRI) are described. The speakers magnets are removed, their function is replaced by the scanner's magnetic field, resulting in an uncommon but efficient operation. The method can be used with headphones as well as woofers. Functional MRI is not associated with any known biological risks, but as a method for visualization of task-specific activation of brain regions it is undesirably noisy. Thus, it requires both noise protection and efficient sound transmission systems for delivering acoustic stimuli to subjects. Woofers could possibly be used in active noise-control systems. The speakers described in this paper can be used for either task.
Suspension as an Emergency Power
National Research Council Canada - National Science Library
Amanda L. Tyler
2009-01-01
... Legislation B. Suspension During Reconstruction: Putting Down the Klan in South Carolina IV. UNDERSTANDING SUSPENSION AS AN EMERGENCY POWER A. Reading the Suspension Clause in Context B. Giving Meaning to the Suspension Power C. Mapping the Suspension Clause Within the Constitution V. SUSPENSION AND THE SEPARATION OF POWERS CONCLUSION [A] suspensio...
Hybrid Secondary Suspension Systems
Directory of Open Access Journals (Sweden)
Nader Vahdati
2009-01-01
Full Text Available Passive fluid mounts are used in the fixed wing applications as engine mounts. The passive fluid mount is placed in between the engine and the fuselage to reduce the cabin's structure- borne noise and vibration generated by the engine.
Transmission function of pneumatic suspension
Turenko, A.; Bogomolov, V.; Klimenko, V.; Shilov, A.
2006-01-01
The transmission function of pneumatic suspension at assumption, that walls of pneumatic elastic element is absolute not stretched; the rubber buffers of compression and of retreat are absent; description of shock absorber is linear and symmetric; the processes of compression and expansion of air are adiabatic; motion of the oscillating system carry out without separation of wheel from a road is received.
Electrodynamics of relativistic electron beam x-ray sources
Niknejadi, Pardis
gun has been enhanced and/or the optical cavity (the final step of this proof-of-principle experiment) has been commissioned. Due to the complexity of this integrated system, one of the goals of this work is to serve the future members and staff of the UH FEL laboratory in configuring and operating this complex system. The final goal of the UH ICS project is to establish the principles on which producing a successful turn-key commercial inverse-Compton x-ray source will depend on. In the second part of this work we start with the discussion of coherent radiation at its most fundamental level, with emphasis on conservation of energy. We show that for coherently radiating particles the failure of conventional classical electrodynamics (CED) is far more serious than the well-known failure of CED at small scales. We will present a covariant picture of radiation in terms of the theory of action-at-a-distance and introduce a time-symmetric approach to electrodynamics. We demonstrate that this time symmetric approach provides a perfect match to the energy radiated by two coherently oscillating charged particles. This work is novel, as this was an unsolved problem in classical electrodynamics up until now. We also discuss how the conceptual implication of this work is demanding. For this purpose, we will propose two different experiments that can further our understanding of the presented problem. The first experiment involves a small (lambda/10) antenna, and the goal is to measure the advanced field of the absorber at distances of 5lambda or less. Calculation and precise measurement of the antenna field/potential at distances of order lambda is challenging, causing this experiment to be a difficult yet possible task. In the second experiment, we discuss in some detail the experimental setup that would verify and/or further our understanding of the underlying physics of Self Amplified Spontaneous Emission (SASE) FELs. We provide an analytical verification as a first step
48 CFR 52.242-14 - Suspension of Work.
2010-10-01
... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false Suspension of Work. 52.242... Suspension of Work. As prescribed in 42.1305(a), insert the following clause in solicitations and contracts when a fixed-price construction or architect-engineer contract is contemplated: Suspension of Work (APR...
Riemannian light cone from vanishing birefringence in premetric vacuum electrodynamics
Lämmerzahl, Claus; Hehl, Friedrich W.
2004-01-01
We consider premetric electrodynamics with a local and linear constitutive law for the vacuum. Within this framework, we find quartic Fresnel wave surfaces for the propagation of light. If we require vanishing birefringence in vacuum, then a Riemannian light cone is implied. No proper Finslerian structure can occur. This is generalized to dynamical equations of any order.
Electrodynamics, Differential Forms and the Method of Images
Low, Robert J.
2011-01-01
This paper gives a brief description of how Maxwell's equations are expressed in the language of differential forms and use this to provide an elegant demonstration of how the method of images (well known in electrostatics) also works for electrodynamics in the presence of an infinite plane conducting boundary. The paper should be accessible to an…
Analysis of adiabatic transfer in cavity quantum electrodynamics
Indian Academy of Sciences (India)
in the setting of cavity quantum electrodynamics (QED) [2]. For practical applications, the coupling between a single atom located in an optical cavity and a single intercavity photon should be strong. The strong coupling condition requires that g0/2 ≫ , κ, where g0 is the one-photon Rabi frequency, is the atomic decay rate to ...
RF electrodynamics in small particles of oxides - a review
CSIR Research Space (South Africa)
Srinivasu, VV
2008-01-01
Full Text Available electrodynamical response which is qualitatively different as compared to its bulk form, at least in the high-T superconducting YBa2Cu3O7-x (YBCO) cuprate superconductor and in the CMR manganite family members are discussed. Attention is focused on fascinating new...
Quantized fluctuational electrodynamics for three-dimensional plasmonic structures
DEFF Research Database (Denmark)
Partanen, Mikko; Häyrynen, Teppo; Tulkki, Jukka
2017-01-01
We recently introduced a quantized fluctuational electrodynamics (QFED) formalism that provides a physically insightful definition of an effective position-dependent photon-number operator and the associated ladder operators. However, this far the formalism has been applicable only for the normal...
Electrodynamics, differential forms and the method of images
Energy Technology Data Exchange (ETDEWEB)
Low, Robert J, E-mail: mtx014@coventry.ac.uk [Department of Mathematics, Statistics and Engineering Science, Coventry University, Coventry CV1 5FB (United Kingdom)
2011-09-15
We give a brief description of how Maxwell's equations are expressed in the language of differential forms and use this to provide an elegant demonstration of how the method of images (well known in electrostatics) also works for electrodynamics in the presence of an infinite plane conducting boundary.
On Galilean invariance and nonlinearity in electrodynamics and quantum mechanics
Goldin, Gerald A.; Shtelen, Vladimir
2000-01-01
Recent experimental results on slow light heighten interest in nonlinear Maxwell theories. We obtain Galilei covariant equations for electromagnetism by allowing special nonlinearities in the constitutive equations only, keeping Maxwell's equations unchanged. Combining these with linear or nonlinear Schroedinger equations, e.g. as proposed by Doebner and Goldin, yields a Galilean quantum electrodynamics.
Casimir forces and quantum electrodynamical torques: Physics and nanomechanics
Capasso, F.; Munday, J. N.; Iannuzzi, D.; Chan, H. B.
2007-01-01
This paper discusses recent developments on quantum electrodynamical (QED) phenomena, such as the Casimir effect, and their use in nanomechanics and nanotechnology in general. Casimir forces and torques arise from quantum fluctuations of vacuum or, more generally, from the zero-point energy of
Causal approach to (2+1)-dimensional Quantum Electrodynamics
Energy Technology Data Exchange (ETDEWEB)
Scharf, G.; Wreszinski, W.F. [Zurich Univ. (Switzerland). Inst. fuer Theoretische Physik; Pimentel, B.M.; Tomazelli, J.L.
1993-05-01
It is shown that the causal approach to (2+1)-dimensional quantum electrodynamics yields a well-defined perturbative theory. In particular, and in contrast to renormalized perturbative quantum field theory, it is free of any ambiguities and ascribes a nonzero value to the dynamically generated, nonperturbative photon mass. (author). 12 refs.
Two loop stress-energy tensor for inflationary scalar electrodynamics
Prokopec, T.; Tsamis, N.C.; Woodard, R.P.
2008-01-01
We calculate the expectation value of the coincident product of two field strength tensors at two loop order in scalar electrodynamics on de Sitter background. The result agrees with the stochastic formulation which we have developed in a companion paper [2] for the nonperturbative resummation of
Cheng, Yung-Chang; Lee, Cheng-Kang
2017-10-01
This paper proposes a systematic method, integrating the uniform design (UD) of experiments and quantum-behaved particle swarm optimization (QPSO), to solve the problem of a robust design for a railway vehicle suspension system. Based on the new nonlinear creep model derived from combining Hertz contact theory, Kalker's linear theory and a heuristic nonlinear creep model, the modeling and dynamic analysis of a 24 degree-of-freedom railway vehicle system were investigated. The Lyapunov indirect method was used to examine the effects of suspension parameters, wheel conicities and wheel rolling radii on critical hunting speeds. Generally, the critical hunting speeds of a vehicle system resulting from worn wheels with different wheel rolling radii are lower than those of a vehicle system having original wheels without different wheel rolling radii. Because of worn wheels, the critical hunting speed of a running railway vehicle substantially declines over the long term. For safety reasons, it is necessary to design the suspension system parameters to increase the robustness of the system and decrease the sensitive of wheel noises. By applying UD and QPSO, the nominal-the-best signal-to-noise ratio of the system was increased from -48.17 to -34.05 dB. The rate of improvement was 29.31%. This study has demonstrated that the integration of UD and QPSO can successfully reveal the optimal solution of suspension parameters for solving the robust design problem of a railway vehicle suspension system.
Hiroshima, F
2001-01-01
Scaling limits of the Hamiltonian $H$ of a system of $N$ charged particles coupled to a quantized radiation field are considered. Ultraviolet cutoffs, $\\la_1,....,\\la_N$, are imposed on the radiation field and the Coulomb gauge is taken. It is so called the Pauli-Fierz model in nonrelativistic quantum electrodynamics. We mainly consider two cases: (i) all the ultraviolet cutoffs are identical, $\\la_1=\\cdots=\\la_N$, (ii) supports of ultraviolet cutoffs have no intersection, ${\\rm supp}\\la_i\\cap{\\rm supp}\\laj=\\emptyset$, $i\
Suspension for the low frequency facility
Cella, G; Di Virgilio, A; Gaddi, A; Viceré, A
2000-01-01
We introduce the working principles of the VIRGO Low Frequency Facility (LFF), whose main aim is the measurement of the thermal noise in the VIRGO suspension system. We evaluate the displacement thermal noise of a mirror, which is an intermediate element of a double pendulum suspension system. This double pendulum will be suspended to the last stage of a VIRGO Super-Attenuator (SA), the prototype VIRGO suspension system being tested at the Pisa section of INFN. In the proposed configuration, we evaluate the spectrum of the thermal noise for different choices of the parameters: based on this study, we comment on the future directions to be undertaken in the LFF experiment.
Jin, Taicheng; Wang,Jing; Zhu, Xiaojuan; Xu, Yanan; Zhou, Xiaofu; Yang, Liping
2015-01-01
Plant transient expression using virus-based vectors is advantageous when high level of gene expression is desired within a short time. In this study, a new system, named “air-brush,” has been developed to facilitate a scale-up production of recombinant proteins in plants. GFP was expressed successfully in Nicotiana benthamiana (Nb) plants by air-brushing an Agrobacterium suspension that contained the TMV-based vector p35S-30B-GFP. Key factors influencing the gene expression were optimized, i...
Cao, Dongpu; Rakheja, Subhash; Su, Chun-Yi
2010-01-01
Passive fluidically coupled suspensions have been considered to offer a promising alternative solution to the challenging design of a vehicle suspension system. A theoretical foundation, however, has not been established for fluidically coupled suspension to facilitate its broad applications to various vehicles. The first part of this study investigates the fundamental issues related to feasibility and properties of the passive, full-vehicle interconnected, hydro-pneumatic suspension configur...
On the Benefits of Semi-Active Suspensions with Inerters
Directory of Open Access Journals (Sweden)
Xin-Jie Zhang
2012-01-01
Full Text Available Inerters have become a hot topic in recent years especially in vehicle, train, building suspension systems, etc. Eight different layouts of suspensions were analyzed with a quarter-car model in this paper. Dimensionless root mean square (RMS responses of the sprung mass vertical acceleration, the suspension travel, and the tire deflection are derived which were used to evaluate the performance of the quarter-car model. The behaviour of semi-active suspensions with inerters using Groundhook, Skyhook, and Hybrid control has been evaluated and compared to the performance of passive suspensions with inerters. Sensitivity analysis was applied to the development of a high performance semi-active suspension with an inerter. Numerical simulations indicate that a semi-active suspension with an inerter has much better performance than the passive suspension with an inerter, especially with the Hybrid control method, which has the best compromise between comfort and road holding quality.
Rizzo, R.
2017-01-01
In this paper an innovative multi-gap magnetorheological clutch is described. It is inspired by a device previously developed by the author’s research group and contains a novel solution based on electrodynamic effects, capable to considerably improve the transmissible torque during the engagement phase. Since this (transient) phase is characterized by a non-zero angular speed between the two clutch shafts, the rotation of a permanent magnets system, used to excite the fluid, induces eddy currents on some conductive material strategically positioned in the device. As a consequence, an electromagnetic torque is produced which is added to the torque transmitted by the magnetorheological fluid only. Once the clutch is completely engaged and the relative speed between the two shafts is zero, the electrodynamic effects vanish and the device operates like a conventional magnetorheological clutch. The system is investigated and designed by means a 3D FEM model and the performance of the device is experimentally validated on a prototype.
Electrorheology of nanofiber suspensions
National Research Council Canada - National Science Library
Yin, Jianbo; Zhao, Xiaopeng
2011-01-01
.... In this review, we especially focus on the recent researches on electrorheology of various nanofiber-based suspensions, including inorganic, organic, and inorganic/organic composite nanofibers...
Electrodynamics of s-Wave Superconductors Using First-Order Formalism
Directory of Open Access Journals (Sweden)
Naoum Karchev
2017-06-01
Full Text Available In this paper we give a derivation of a system of equations which generalize the London brothers and Ginzburg–Landau systems of equations, to describe the electrodynamics of s-wave superconductors. First, we consider a relativistically covariant theory in terms of gauge four-vector electromagnetic potential and scalar complex field. We use the first-order formalism to obtain the supplemented Maxwell equations for gauge-invariant electric, magnetic, four-vector fields and the modulus of the superconducting order parameter. The new four-vector field appears in some of the equations as a gauge-invariant super-current, and in other ones, while gauge invariant, as a four-vector electromagnetic potential. This dual contribution of the new four-vector field is the basis of the electrodynamics of superconductors. We focus on the system of equations with time-independent fields. The qualitative analysis shows that the applied magnetic field suppresses the superconductivity, while the applied electric field impacts oppositely, supporting it. Secondly, we consider time-dependent non-relativistic Ginzburg–Landau theory.
2010-04-01
... PHARMACEUTICAL GOOD MANUFACTURING PRACTICE REPORTS, MEDICAL DEVICE QUALITY SYSTEM AUDIT REPORTS, AND CERTAIN... Provisions for Pharmaceutical Good Manufacturing Practices § 26.16 Suspension. (a) Each party has the right...
Jin, Taicheng; Wang, Jing; Zhu, Xiaojuan; Xu, Yanan; Zhou, Xiaofu; Yang, Liping
2015-06-01
Plant transient expression using virus-based vectors is advantageous when high level of gene expression is desired within a short time. In this study, a new system, named "air-brush," has been developed to facilitate a scale-up production of recombinant proteins in plants. GFP was expressed successfully in Nicotiana benthamiana (Nb) plants by air-brushing an Agrobacterium suspension that contained the TMV-based vector p35S-30B-GFP. Key factors influencing the gene expression were optimized, including the Agrobacterium cell density, seedling age, and the growth temperature of plant materials. In addition, the pharmaceutical protein human acidic fibroblast growth factor (ha FGF) was also expressed in Nb plants by the air-brush system. The results demonstrated that using this system is highly advantageous; it is convenient, quick, easily scaled-up, and has a higher expression efficiency than leaf infiltration.
Directory of Open Access Journals (Sweden)
Taicheng Jin
2015-06-01
Full Text Available Plant transient expression using virus-based vectors is advantageous when high level of gene expression is desired within a short time. In this study, a new system, named “air-brush,” has been developed to facilitate a scale-up production of recombinant proteins in plants. GFP was expressed successfully in Nicotiana benthamiana (Nb plants by air-brushing an Agrobacterium suspension that contained the TMV-based vector p35S-30B-GFP. Key factors influencing the gene expression were optimized, including the Agrobacterium cell density, seedling age, and the growth temperature of plant materials. In addition, the pharmaceutical protein human acidic fibroblast growth factor (ha FGF was also expressed in Nb plants by the air-brush system. The results demonstrated that using this system is highly advantageous; it is convenient, quick, easily scaled-up, and has a higher expression efficiency than leaf infiltration.
Lift to Drag Ratio Analysis in Magnetic Levitation with an Electrodynamic Wheel
Gutarra-Leon, Angel; Cordrey, Vincent; Majewski, Walerian
Our experiments explored inductive magnetic levitation (MagLev) using simple permanent magnets and conductive tracks. Our investigations used a circular Halbach array with a 1 Tesla variable magnetic field on the outer rim of the ring. Such a system is usually called an Electrodynamic Wheel (EDW). Rotating this wheel around a horizontal axis above or below a flat conducting surface should induce eddy currents in said surface through the variable magnetic flux. The eddy currents produce, in turn, their own magnetic fields, which interact with the magnets of the EDW. We constructed a four-inch diameter Electrodynamic Wheel using twelve Neodymium permanent magnets and demonstrated that the magnetic interactions produce both lift and drag forces on the EDW. These forces can be used for levitation and propulsion of the EDW to produce magnetic levitation without coils and complex control circuitry. We achieved full levitation of the non-magnetic aluminum and copper plates. Our results confirm the expected behavior of lift to drag ratio as proportional to (L/R) ω, with L and R being the inductance and resistance of the track plate, and ω being the angular velocity of the magnetic flux. Supported by grants from the Virginia Academy of Science, Society of Physics Students, Virginia Community College System, and the NVCC Educational Foundation.
Fractal electrodynamics via non-integer dimensional space approach
Tarasov, Vasily E.
2015-09-01
Using the recently suggested vector calculus for non-integer dimensional space, we consider electrodynamics problems in isotropic case. This calculus allows us to describe fractal media in the framework of continuum models with non-integer dimensional space. We consider electric and magnetic fields of fractal media with charges and currents in the framework of continuum models with non-integer dimensional spaces. An application of the fractal Gauss's law, the fractal Ampere's circuital law, the fractal Poisson equation for electric potential, and equation for fractal stream of charges are suggested. Lorentz invariance and speed of light in fractal electrodynamics are discussed. An expression for effective refractive index of non-integer dimensional space is suggested.
Advances in FDTD computational electrodynamics photonics and nanotechnology
Oskooi, Ardavan; Johnson, Steven G
2013-01-01
Advances in photonics and nanotechnology have the potential to revolutionize humanity s ability to communicate and compute. To pursue these advances, it is mandatory to understand and properly model interactions of light with materials such as silicon and gold at the nanoscale, i.e., the span of a few tens of atoms laid side by side. These interactions are governed by the fundamental Maxwell s equations of classical electrodynamics, supplemented by quantum electrodynamics. This book presents the current state-of-the-art in formulating and implementing computational models of these interactions. Maxwell s equations are solved using the finite-difference time-domain (FDTD) technique, pioneered by the senior editor, whose prior Artech books in this area are among the top ten most-cited in the history of engineering. You discover the most important advances in all areas of FDTD and PSTD computational modeling of electromagnetic wave interactions. This cutting-edge resource helps you understand the latest develo...
The application of the electrodynamic separator in minerals beneficiation
Skowron, M.; Syrek, P.; Surowiak, A.
2017-05-01
The aim of presented paper is elaboration of methodology of upgrading natural minerals in example of chalcocite and bornite sample. The results were obtained by means of laboratory drum separator. This device operates in accordance to properties of materials, which in this case was electrical conductivity. The study contains the analysis of the forces occurring inside of electrodynamic separator chamber, that act on the particles of various electrical properties. Both, the potential and electric field strength distributions were calculated, with set of separators setpoints. Theoretical analysis influenced on separator parameters, and hence impacted the empirical results too. Next, the authors conducted empirical research on chalcocite and bornite beneficiation by means of electrodynamic separation. The results of this process were shown graphically in form of upgrading curves of chalcocite considering elementary copper and lead.
Born–Infeld electrodynamics in very special relativity
Directory of Open Access Journals (Sweden)
R. Bufalo
2015-06-01
Full Text Available In this work we discuss the properties of a modified Born–Infeld electrodynamics in the framework of very special relativity (VSR. This proposal allows us to study VSR mass effects in a gauge-invariant context of nonlinear electrodynamics. It is analyzed in detail the electrostatic solutions for two different cases, as well as the VSR dispersion relations are found to be of a massive particle with nonlinear modifications. Afterwards, the field energy and static potential are computed, in the latter we find from the VSR contribution a novel long-range 1/L3 correction to the Coulomb potential, in contrast to the 1/L5 correction of the usual Born–Infeld theory.
Cosmology and action-at-a-distance electrodynamics
Energy Technology Data Exchange (ETDEWEB)
Hoyle, F. [102 Admirals Walk, West Cliff Road, West Cliff, Bournemouth, Dorset BH25HF (United Kingdom); Narlikar, J.V. [Inter-University Centre for Astronomy and Astrophysics, Post Bag 4, Ganeshkind, Pune 411007 (India)
1995-01-01
This article reviews the developments in the electrodynamics of direct interparticle action, emphasizing the achievements in quantum as well as classical electrodynamics. It is shown that the application of the Wheeler-Feynman absorber theory of radiation places stringent requirements on the asymptotic future and past light cones of the universe. All Friedman cosmologies fail to meet these requirements, but the steady-state and the quasi-state-state models have the right kind of structure to make the theory work. Further, it is shown that the working theory is free from the problems of divergence that trouble the classical and quantum field theory. In particular, no renormalization is needed: The bare mass and bare charge of an electron are finite. A few ideas relating to the response of the universe to a local microscopic experiment are presented as well as on possible clues to the outstanding issues of foundations of quantum theory.
Time-symmetric electrodynamics and the Kocher-Commins experiment
Energy Technology Data Exchange (ETDEWEB)
Pegg, D.T. (Rochester Univ., NY (USA). Dept. of Physics and Astronomy)
1982-01-01
A quantised version of Wheeler-Feynman time-symmetric absorber theory sheds new light on an old problem at present experiencing a revival of interest. Some photon correlation experiments, when interpreted in terms of quantum electrodynamics, lead to conceptual difficulties of the Einstein-Podolsky-Rosen type. The results imply that one has to abandon either the concept of strict causality, which would make conventional quantum electrodynamics self-inconsistent, or the concept of an objective reality independent of the observer, which has far-reaching philosophical consequences. In terms of absorber theory, on the other hand, there is no need to abandon objective reality and, in fact, such an experiment is directly interpretable as an example of the manifestation of the future on the past, which is the important distinguishing feature of absorber theory.
Clothed Particles in Quantum Electrodynamics and Quantum Chromodynamics
Directory of Open Access Journals (Sweden)
Shebeko Alexander
2016-01-01
Full Text Available The notion of clothing in quantum field theory (QFT, put forward by Greenberg and Schweber and developed by M. Shirokov, is applied in quantum electrodynamics (QED and quantum chromodynamics (QCD. Along the guideline we have derived a novel analytic expression for the QED Hamiltonian in the clothed particle representation (CPR. In addition, we are trying to realize this notion in QCD (to be definite for the gauge group SU(3 when drawing parallels between QCD and QED.
Progress in quantum electrodynamics theory of highly charged ions
Volotka, A. V.; Glazov, D. A.; Plunien, G.; Shabaev, V. M.
2013-01-01
Recent progress in quantum electrodynamics (QED) calculations of highly charged ions is reviewed. The theoretical predictions for the binding energies, the hyperfine splittings, and the g factors are presented and compared with available experimental data. Special attention is paid to tests of bound-state QED at strong field regime. Future prospects for tests of QED at the strongest electric and magnetic fields as well as for determination of the fine structure constant and the nuclear magnet...
Wang, Qianqian; Xiao, Liang; He, Qian; Liu, Sihua; Zhang, Jing; Li, Yue; Zhang, Zhi; Nie, Fei; Guo, Yufeng; Zhang, Liming
2012-11-01
In this paper, we utilized two different test systems to compare the haemolysis of tentacle-only extract (TOE) devoid of nematocysts from jellyfish Cyanea capillata, the 1% whole blood and 0.45% erythrocyte suspension approximately with the same erythrocyte concentration from the blood samples of sheep, rabbit, mouse, rat and human, respectively. Without exception, the haemolytic activity of TOE was dose-dependent in both test systems from all the five kinds of blood samples, while it was generally stronger in erythrocyte suspension than that in diluted whole blood at the relatively high concentration of TOE. When various aliquots of plasma were added into the erythrocyte suspension test system, the haemolytic activity of TOE was declined with the plasma quantity increasing, and dropped to about 20% at the presence of two aliquots of plasma. If serum albumin of 0.5 mg/ml, approximately the same albumin content in 1% whole blood, was added into the erythrocyte suspension test system instead, the haemolysis of TOE was similarly inhibited. The effects of GSH, ascorbic acid and protease inhibitor on the haemolytic activity of TOE were detected in the erythrocyte suspension and diluted whole blood simultaneously, and the test results were coincident between the two systems. These results suggested that the inconsistency of TOE haemolysis between the erythrocyte suspension and diluted whole blood is a universal occurrence in the mammals, and blood plasma plays a dose-dependent protective role against haemolysis which may be due to serum albumin. Diluted whole blood is a valid and convenient test system for haemolysis study in vitro. Copyright © 2011 Elsevier GmbH. All rights reserved.
Fractal electrodynamics via non-integer dimensional space approach
Energy Technology Data Exchange (ETDEWEB)
Tarasov, Vasily E., E-mail: tarasov@theory.sinp.msu.ru
2015-09-25
Using the recently suggested vector calculus for non-integer dimensional space, we consider electrodynamics problems in isotropic case. This calculus allows us to describe fractal media in the framework of continuum models with non-integer dimensional space. We consider electric and magnetic fields of fractal media with charges and currents in the framework of continuum models with non-integer dimensional spaces. An application of the fractal Gauss's law, the fractal Ampere's circuital law, the fractal Poisson equation for electric potential, and equation for fractal stream of charges are suggested. Lorentz invariance and speed of light in fractal electrodynamics are discussed. An expression for effective refractive index of non-integer dimensional space is suggested. - Highlights: • Electrodynamics of fractal media is described by non-integer dimensional spaces. • Applications of the fractal Gauss's and Ampere's laws are suggested. • Fractal Poisson equation, equation for fractal stream of charges are considered.
Emergent electrodynamics of skyrmions in a chiral magnet
Schulz, T.; Ritz, R.; Bauer, A.; Halder, M.; Wagner, M.; Franz, C.; Pfleiderer, C.; Everschor, K.; Garst, M.; Rosch, A.
2012-04-01
When an electron moves in a smoothly varying non-collinear magnetic structure, its spin orientation adapts constantly, thereby inducing forces that act both on the magnetic structure and on the electron. These forces may be described by electric and magnetic fields of an emergent electrodynamics. The topologically quantized winding number of so-called skyrmions--a type of magnetic whirl discovered recently in chiral magnets--has been predicted to induce exactly one quantum of emergent magnetic flux per skyrmion. A moving skyrmion is therefore expected to induce an emergent electric field following Faraday's law of induction, which inherits this topological quantization. Here we report Hall-effect measurements that establish quantitatively the predicted emergent electrodynamics. We obtain quantitative evidence for the depinning of skyrmions from impurities (at current densities of only 106Am-2) and their subsequent motion. The combination of exceptionally small current densities and simple transport measurements offers fundamental insights into the connection between the emergent and real electrodynamics of skyrmions in chiral magnets, and might, in the long term, be important for applications.
Directory of Open Access Journals (Sweden)
Nor Nahazima Mohamad Zuldin
2013-01-01
Full Text Available This study aimed to determine the effects of different concentrations and combinations of the phytohormones 2,4-dichlorophenoxy acetic acid (2,4-D, kinetin, 6-benzylaminopurine (BAP, and 1-naphthaleneacetic acid (NAA on callus induction and to demonstrate the role of elicitors and exogenous precursors on the production of mitragynine in a Mitragyna speciosa suspension culture. The best callus induction was achieved from petiole explants cultured on WPM that was supplemented with 4 mg L−1 2, 4-D (70.83%. Calli were transferred to liquid media and agitated on rotary shakers to establish Mitragyna speciosa cell suspension cultures. The optimum settled cell volume was achieved in the presence of WPM that contained 3 mg L−1 2,4-D and 3% sucrose (9.47±0.4667 mL. The treatment of cultures with different concentrations of yeast extract and salicylic acid for different inoculation periods revealed that the highest mitragynine content as determined by HPLC was achieved from the culture treated with 250 mg L−1 yeast extract (9.275±0.082 mg L−1 that was harvested on day 6 of culturing; salicylic acid showed low mitragynine content in all concentrations used. Tryptophan and loganin were used as exogenous precursors; the highest level of mitragynine production was achieved in cultures treated with 3 μM tryptophan and harvested at 6 days (13.226±1.98 mg L−1.
Restructuring and aging in a capillary suspension.
Koos, Erin; Kannowade, Wolfgang; Willenbacher, Norbert
2014-12-01
The rheological properties of capillary suspensions, suspensions with small amounts of an added immiscible fluid, are dramatically altered with the addition of the secondary fluid. We investigate a capillary suspension to determine how the network ages and restructures at rest and under applied external shear deformation. The present work uses calcium carbonate suspended in silicone oil (11 % solids) with added water as a model system. Aging of capillary suspensions and their response to applied oscillatory shear is distinctly different from particulate gels dominated by the van der Waals forces. The suspensions dominated by the capillary force are very sensitive to oscillatory flow, with the linear viscoelastic regime ending at a deformation of only 0.1% and demonstrating power-law aging behavior. This aging persists for long times at low deformations or for shorter times with a sudden decrease in the strength at higher deformations. This aging behavior suggests that the network is able to rearrange and even rupture. This same sensitivity is not demonstrated in shear flow where very high shear rates are required to rupture the agglomerates returning the apparent viscosity of capillary suspensions to the same viscosity as for the pure vdW suspension. A transitional region is also present at intermediate water contents wherein the material response depends very strongly on the type, strength, and duration of the external forcing.
Stability of extemporaneously prepared rosuvastatin oral suspension.
Zaid, Abdel Naser; Shtayah, Rania; Qadumi, Ayman; Ghanem, Mashour; Qedan, Rawan; Daibes, Marah; Awwad, Somud Abu; Jaradat, Nidal; Kittana, Naim
2017-10-01
The stability of an extemporaneously prepared rosuvastatin suspension stored over 30 days under various storage conditions was evaluated. Rosuvastatin suspension was extemporaneously prepared using commercial rosuvastatin tablets as the source of active pharmaceutical ingredient. The organoleptic properties, dissolution profile, and stability of the formulation were investigated. For the stability studies, samples of the suspension were stored under 2 storage conditions, room temperature (25 °C and 60% relative humidity) and accelerated stability chambers (40 °C and 75% relative humidity). Viscosity, pH, organoleptic properties, and microbial contamination were evaluated according to the approved specifications. High-performance liquid chromatography was used for the analysis and quantification of rosuvastatin in selected samples. Microbiological investigations were also conducted. The prepared suspension showed acceptable organoleptic properties. It showed complete release of rosuvastatin within 15 minutes. The pH of the suspension was 9.8, which remained unchanged during the stability studies. The microbiological investigations demonstrated that the preparation was free of any microbial contamination. In addition, the suspension showed stability within at least the period of use of a 100-mL rosuvastatin bottle. Extemporaneously prepared rosuvastatin 20-mg/mL suspension was stable for 30 days when stored at room temperature. Copyright © 2017 by the American Society of Health-System Pharmacists, Inc. All rights reserved.
ELECTRODYNAMIC STABILITY COMPUTATIONS FOR FLEXIBLE CONDUCTORS OF THE AERIAL LINES
Directory of Open Access Journals (Sweden)
I. I. Sergey
2015-01-01
Full Text Available In aerial transmission lines aluminium multiwire conductors are in use. Owing to their flexible design the electrodynamic effect of short circuit currents may lead to intolerable mutual rendezvous and even cross-whipping of the phase conductors. The increasing motion of the conductors caused by effect of the short-circuit electrodynamic force impulse is accompanied by the dynamic load impact affecting the conductors, insulating and supporting constructions of the aerial lines. Intensity of the short-circuit currents electrodynamic impact on the flexible conductors depends on the short circuit current magnitude. For research into electrodynamic endurance of the conductors of the aerial lines located at the vertices of arbitrary triangle with spans of a large length, the authors assume the conductor analytical model in the form of a flexible tensile thread whose mass is distributed evenly lengthwise the conductor. With this analytical model, by the action of the imposed forces the conductor assumes the form conditioned by the diagram of applied external forces, and resists neither bending nor torsion. The initial conditions calculation task reduces to solving the flexible thread statics equations. The law of motion of the conductor marginal points comes out of the conjoint solution of dynamic equations of the conductor and structural components of the areal electric power lines. Based on the proposed algorithm, the researchers of the Chair of the Electric Power Stations of BNTU developed a software program LINEDYS+, which in its characteristics yields to no foreign analogs, e. g. SAMSEF. To calculate the initial conditions they modified a software program computing the flexible conductor mechanics named MR 21. The conductor short-circuit electrodynamic interaction estimation considers structural elements of the areal lines, ice and wind loads, objective parameters of the short circuit. The software programs are accommodated with the simple and
Robust Tensioned Kevlar Suspension Design
Young, Joseph B.; Naylor, Bret J.; Holmes, Warren A.
2012-01-01
One common but challenging problem in cryogenic engineering is to produce a mount that has excellent thermal isolation but is also rigid. Such mounts can be achieved by suspending the load from a network of fibers or strings held in tension. Kevlar fibers are often used for this purpose owing to their high strength and low thermal conductivity. A suite of compact design elements has been developed to improve the reliability of suspension systems made of Kevlar.
3D modeling design and engineering analysis of automotive suspension beam
Directory of Open Access Journals (Sweden)
Ju Zhi Lan
2016-01-01
Full Text Available Automotive suspension is an important device for transmission and torque. The main parameters and dimensions of 40 tons of heavy duty truck spring suspension system are designed in the paper. According to the data, the 3D modeling and virtual assembly of the leaf spring suspension are carried out by using parametric design. Structural stress of spring suspension is analyzed which can provide a guide and basis for the design of the leaf spring suspension.
Covariant Hyperbolization of Force-free Electrodynamics
Carrasco, Federico
2016-01-01
Force-Free Flectrodynamics (FFE) is a non-linear system of equations modeling the evolution of the electromagnetic field, in the presence of a magnetically dominated relativistic plasma. This configuration arises on several astrophysical scenarios, which represent exciting laboratories to understand physics in extreme regimes. We show that this system, when restricted to the correct constraint submanifold, is symmetric hyperbolic. In numerical applications is not feasible to keep the system in that submanifold, and so, it is necessary to analyze its structure first in the tangent space of that submanifold and then in a whole neighborhood of it. As already shown by Pfeiffer, a direct (or naive) formulation of this system (in the whole tangent space) results in a weakly hyperbolic system of evolution equations for which well-possednes for the initial value formulation does not follows. Using the generalized symmetric hyperbolic formalism due to Geroch, we introduce here a covariant hyperbolization for the FFE s...
Arrizabalaga, Jon; García-Reyes, Juan Carlos
2016-01-01
In May 1875, in the midst of a bloody civil conflict in Spain known as the Third Carlist War, Nicasio Landa, a medical officer with Military Health, wrote a report requesting authorization for the Spanish Red Cross, of which he was Inspector General, to adopt a new elastic suspension system for stretchers that he had designed, developed and tested. Intended above all for use in farm wagons - still the most widely-used method of transporting the wounded at the time - it was an inexpensive, sturdy mechanism that improved patient comfort and could also be installed in ambulance carriages, railway carriages and hospital ships. An annotated version of the report is included, preceded by a presentation of its contents.
Multi-qubit circuit quantum electrodynamics
Energy Technology Data Exchange (ETDEWEB)
Viehmann, Oliver
2013-09-03
Circuit QED systems are macroscopic, man-made quantum systems in which superconducting artificial atoms, also called Josephson qubits, interact with a quantized electromagnetic field. These systems have been devised to mimic the physics of elementary quantum optical systems with real atoms in a scalable and more flexible framework. This opens up a variety of possible applications of circuit QED systems. For instance, they provide a promising platform for processing quantum information. Recent years have seen rapid experimental progress on these systems, and experiments with multi-component circuit QED architectures are currently starting to come within reach. In this thesis, circuit QED systems with multiple Josephson qubits are studied theoretically. We focus on simple and experimentally realistic extensions of the currently operated circuit QED setups and pursue investigations in two main directions. First, we consider the equilibrium behavior of circuit QED systems containing a large number of mutually noninteracting Josephson charge qubits. The currently accepted standard description of circuit QED predicts the possibility of superradiant phase transitions in such systems. However, a full microscopic treatment shows that a no-go theorem for superradiant phase transitions known from atomic physics applies to circuit QED systems as well. This reveals previously unknown limitations of the applicability of the standard theory of circuit QED to multi-qubit systems. Second, we explore the potential of circuit QED for quantum simulations of interacting quantum many-body systems. We propose and analyze a circuit QED architecture that implements the quantum Ising chain in a time-dependent transverse magnetic field. Our setup can be used to study quench dynamics, the propagation of localized excitations, and other non-equilibrium features in this paradigmatic model in the theory of non-equilibrium thermodynamics and quantumcritical phenomena. The setup is based on a
Directory of Open Access Journals (Sweden)
Yu-Jeong Shin
2014-07-01
Full Text Available Ride quality became a very important factor in the performance of railway vehicles according to the expansion of high-speed railways and speedup of velocity of railway vehicles. In this study, the results of applying the MR (magnetorheological lateral damper on the secondary suspension to reduce the vibration of the car body, directly relating to the ride quality of railway vehicles, were mentioned. In order to verify the control performance of MR dampers, a 1/5 scaled railway vehicle model was constructed, and numerical simulation and experimental tests were conducted. The MR damper for the experimental tests was produced and was attached between the car body and bogie of a full scaled vehicle, and a vibration controlling test was performed to improve ride quality on a roller rig. The skyhook control algorithm was used as the controlling technique, and regarding the test results, the RMS (root mean square value was found by compensating the frequency of the lateral vibration based on the UIC 513 R Standard about the ride quality of railway vehicles. As a result of the test, it could be confirmed that vibration was reduced by approximately 24% when attaching the MR damper between the bogie and the car body compared to when applying a passive damper.
Suspension Trauma / Orthostatic Intolerance
... Emphasis Programs Directives Severe Violators TOPICS By Sector Construction Health Care Agriculture Maritime Oil and Gas Federal ... such fatalities often are referred to as "harnessinduced pathology" or "suspension trauma." Signs & symptoms that may be ...
Urinary incontinence - retropubic suspension
... your doctor will have you try bladder retraining, Kegel exercises, medicines, or other options. If you tried ... retropubic colposuspension; Needle suspension; Burch colposuspension Patient Instructions Kegel exercises - self-care Self catheterization - female Suprapubic catheter ...
Rheology of organoclay suspension
CSIR Research Space (South Africa)
Hato, MJ
2011-05-01
Full Text Available The authors have studied the rheological properties of clay suspensions in silicone oil, where clay surfaces were modified with three different types of surfactants. Dynamic oscillation measurements showed a plateau-like behavior for all...
Markert, Sven; Joeris, Klaus
2017-01-01
We developed an automated microtiter plate (MTP)-based system for suspension cell culture to meet the increased demands for miniaturized high throughput applications in biopharmaceutical process development. The generic system is based on off-the-shelf commercial laboratory automation equipment and is able to utilize MTPs of different configurations (6-24 wells per plate) in orbital shaken mode. The shaking conditions were optimized by Computational Fluid Dynamics simulations. The fully automated system handles plate transport, seeding and feeding of cells, daily sampling, and preparation of analytical assays. The integration of all required analytical instrumentation into the system enables a hands-off operation which prevents bottlenecks in sample processing. The modular set-up makes the system flexible and adaptable for a continuous extension of analytical parameters and add-on components. The system proved suitable as screening tool for process development by verifying the comparability of results for the MTP-based system and bioreactors regarding profiles of viable cell density, lactate, and product concentration of CHO cell lines. These studies confirmed that 6 well MTPs as well as 24 deepwell MTPs were predictive for a scale up to a 1000 L stirred tank reactor (scale factor 1:200,000). Applying the established cell culture system for automated media blend screening in late stage development, a 22% increase in product yield was achieved in comparison to the reference process. The predicted product increase was subsequently confirmed in 2 L bioreactors. Thus, we demonstrated the feasibility of the automated MTP-based cell culture system for enhanced screening and optimization applications in process development and identified further application areas such as process robustness. The system offers a great potential to accelerate time-to-market for new biopharmaceuticals. Biotechnol. Bioeng. 2017;114: 113-121. © 2016 Wiley Periodicals, Inc. © 2016 Wiley
Force-free electrodynamics around extreme Kerr black holes
Energy Technology Data Exchange (ETDEWEB)
Lupsasca, Alexandru; Rodriguez, Maria J.; Strominger, Andrew [Center for the Fundamental Laws of Nature, Harvard University,Cambridge, MA 02138 (United States)
2014-12-31
Plasma-filled magnetospheres can extract energy from a spinning black hole and provide the power source for a variety of observed astrophysical phenomena. These magnetospheres are described by the highly nonlinear equations of force-free electrodynamics, or FFE. Typically these equations can only be solved numerically. In this paper we consider the FFE equations very near the horizon of a maximally spinning black hole, where the energy extraction takes place. Thanks to an enhanced conformal symmetry which appears in this near-horizon region, we are able to analytically obtain several infinite families of exact solutions of the full nonlinear equations.
DEFF Research Database (Denmark)
Olson, M. E.; Fejer, B. G.; Stolle, Claudia
2013-01-01
We use ground-based and satellite measurements to examine, for the first time, the characteristics of equatorial electrodynamic perturbations measured during the 2002 major and 2010 minor Southern Hemisphere sudden stratospheric warming (SSW) events. Our data suggest the occurrence of enhanced...... quasi 2 day fluctuations during the 2002 early autumnal equinoctial warming. They also show a moderately large multi-day perturbation pattern, resembling those during arctic SSW events, during 2002 late equinox, as the major SSW was weakening. We also compare these data with extensive recent results...
Preliminary AD-Horn Thermomechanical and Electrodynamic Simulations
AUTHOR|(CDS)2095747; Horvath, David; Calviani, Marco
2016-01-01
As part of the Antiproton Decelerator (AD) target area consolidation activities planned for LS2, it has been necessary to perform a comprehensive study of the thermo-structural behaviour of the AD magnetic horn during operation, in order to detail specific requirements for the upgrade projects and testing procedures. The present work illustrates the preliminary results of the finite element analysis carried out to evaluate the thermal and structural behaviour of the device, as well as the methodology used to model and solve the thermomechanical and electrodynamic simulations performed in the AD magnetic horn.
Classical and quantum electrodynamics and the B(3) field
Evans, Myron W
2001-01-01
It is well known that classical electrodynamics is riddled with internal inconsistencies springing from the fact that it is a linear, Abelian theory in which the potentials are unphysical. This volume offers a self-consistent hypothesis which removes some of these problems, as well as builds a framework on which linear and nonlinear optics are treated as a non-Abelian gauge field theory based on the emergence of the fundamental magnetizing field of radiation, the B(3) field. Contents: Interaction of Electromagnetic Radiation with One Fermion; The Field Equations of Classical O (3) b Electrodyn
History and Flight Devleopment of the Electrodynamic Dust Shield
Johansen, Michael R.; Mackey, Paul J.; Hogue, Michael D.; Cox, Rachel E.; Phillips, James R., III; Calle, Carlos I.
2015-01-01
The surfaces of the moon, Mars, and that of some asteroids are covered with a layer of dust that may hinder robotic and human exploration missions. During the Apollo missions, for example, lunar dust caused a number of issues including vision obscuration, false instrument readings, contamination, and elevated temperatures. In fact, some equipment neared failure after only 75 hours on the lunar surface due to effects of lunar dust. NASA's Kennedy Space Center has developed an active technology to remove dust from surfaces during exploration missions. The Electrodynamic Dust Shield (EDS), which consists of a series of embedded electrodes in a high dielectric strength substrate, uses a low power, low frequency signal that produces an electric field wave that travels across the surface. This non-uniform electric field generates dielectrophoretic and electrostatic forces capable of moving dust out of these surfaces. Implementations of the EDS have been developed for solar radiators, optical systems, camera lenses, visors, windows, thermal radiators, and fabrics The EDS implementation for transparent applications (solar panels, optical systems, windows, etc.) uses transparent indium tin oxide electrodes on glass or transparent lm. Extensive testing was performed in a roughly simulated lunar environment (one-sixth gravity at 1 mPa atmospheric pressure) with lunar simulant dust. EDS panels over solar radiators showed dust removal that restored solar panel output reaching values very close to their initial output. EDS implementations for thermal radiator protection (metallic spacecraft surfaces with white thermal paint and reflective films) were also extensively tested at similar high vacuum conditions. Reflectance spectra for these types of implementations showed dust removal efficiencies in the 96% to 99% range. These tests indicate that the EDS technology is now at a Technology Readiness Level of 4 to 5. As part of EDS development, a flight version is being prepared for
X-ray Mapping of Dynamic Suspensions
Gholami, Mohammad; Lenoir, Nicolas; Ovarlez, Guillaume; Hormozi, Sarah
2016-11-01
Dense non-colloidal suspensions are materials with broad application both in industrial processes and natural phenomena. In most of these applications, the suspensions are either far from equilibrium or strongly non-Newtonian (i.e., non-colloidal particles are suspended in non-Newtonian fluid) meaning that the flow kinetics are not only strain-dependent but also strain-rate dependent. Therefore, experimental techniques must be developed to analyze the flows of these complex suspensions over a wide range of steady and transient shear rates. Techniques such as Nuclear Magnetic Resonance/Imaging (NMR/I) are inapplicable due to low sampling frequency and low image resolution (typically 10 minutes per averaged NMR image of 1x1cm). We introduce a new technique using an X-ray/CT-scan system to study dynamic suspensions. We show our recent results on the application of this technique for the study of shear induced migration of particles in a yield stress matrix fluid in a wide-gap cylindrical Couette cell. This work opens new avenues to study dynamic non-colloidal suspensions and the suspensions with other types of nonlinear suspending fluids such as viscoelastic and shear thickening fluids. NFS(CBET-1554044-CAREER).
Multidisciplinary approach to railway pneumatic suspensions: pneumatic pipe modelling
Docquier, Nicolas; Fisette, Paul; Jeanmart, Hervé; Multibody Dynamics 2007 - ECCOMAS Thematic Conference
2007-01-01
On the majority of modern railway vehicles, airspring are used for the secondary suspension, i.e. the suspension located between the bogie frame and the carbody. The airspring is connected with several other pneumatic components such as auxiliary tanks, pipes, valves, etc. Such a system can be analysed in a multidisciplinary approach by coupling a multibody model of the train with a detailed pneumatic model of the suspension. This paper presents and compares various modelling approach for the...
Editors' perspectives: road vehicle suspension design, dynamics, and control
Cao, Dongpu; Song, Xubin; Ahmadian, Mehdi
2011-01-01
This paper provides an overview of the latest advances in road vehicle suspension design, dynamics, and control, together with the authors' perspectives, in the context of vehicle ride, handling, and stability. The general aspects of road vehicle suspension dynamics and design are discussed, followed by descriptions of road-roughness excitations with a particular emphasis on road potholes. Passive suspension system designs and their effects on road vehicle dynamics and stability are presented...
Exploring the Physics of Semiconductor Quantum Dots using Circuit Quantum Electrodynamics
Stockklauser, Anna; Maisi, Ville; Ihn, Thomas; Ensslin, Klaus; Wallraff, Andreas
2015-03-01
Semiconductor quantum dots and superconducting qubits both possess excitations in the microwave domain for which a wide range of novel approaches to create, store, manipulate and detect individual photons have been developed. A key ingredient are coplanar waveguide resonators in which the field energy of an excitation is distributed over a small mode volume. This feature creates sizable electromagnetic fields at the level of individual microwave photons mediating strong electromagnetic interactions with a variety of quantum systems. In an approach known as circuit quantum electrodynamics (QED) we both probe fundamental quantum optical effects and demonstrate basic features of quantum information processing. In this presentation, I will discuss experiments exploring the physics of semiconductor quantum dots in the context of circuit QED. We investigate the coherent dipole coupling of double dots to microwave photons and detect radiation emitted from the dots in inelastic electron tunneling processes. This approach may allow us to explore quantum coherent interfaces between semiconducting and superconducting qubits.
Scale magnetic effect in quantum electrodynamics and the Wigner-Weyl formalism
Chernodub, M. N.; Zubkov, M. A.
2017-09-01
The scale magnetic effect (SME) is the generation of electric current due to a conformal anomaly in an external magnetic field in curved spacetime. The effect appears in a vacuum with electrically charged massless particles. Similarly to the Hall effect, the direction of the induced anomalous current is perpendicular to the direction of the external magnetic field B and to the gradient of the conformal factor τ , while the strength of the current is proportional to the beta function of the theory. In massive electrodynamics the SME remains valid, but the value of the induced current differs from the current generated in the system of massless fermions. In the present paper we use the Wigner-Weyl formalism to demonstrate that in accordance with the decoupling property of heavy fermions the corresponding anomalous conductivity vanishes in the large-mass limit with m2≫|e B | and m ≫|∇τ | .
Stochastic electrodynamics simulations for collective atom response in optical cavities
Lee, Mark D.; Jenkins, Stewart D.; Bronstein, Yael; Ruostekoski, Janne
2017-08-01
We study the collective optical response of an atomic ensemble confined within a single-mode optical cavity by stochastic electrodynamics simulations that include the effects of atomic position correlations, internal level structure, and spatial variations in cavity coupling strength and atom density. In the limit of low light intensity, the simulations exactly reproduce the full quantum field-theoretical description for cold stationary atoms and at higher light intensities we introduce semiclassical approximations to atomic saturation that we compare with the exact solution in the case of two atoms. We find that collective subradiant modes of the atoms, with very narrow linewidths, can be coupled to the cavity field by spatial variation of the atomic transition frequency and resolved at low intensities, and show that they can be specifically driven by tailored transverse pumping beams. We show that the cavity optical response, in particular both the subradiant mode profile and the resonance shift of the cavity mode, can be used as a diagnostic tool for the position correlations of the atoms and hence the atomic quantum many-body phase. The quantum effects are found to be most prominent close to the narrow subradiant mode resonances at high light intensities. Although an optical cavity can generally strongly enhance quantum fluctuations via light confinement, we show that the semiclassical approximation to the stochastic electrodynamics model provides at least a qualitative agreement with the exact optical response outside the subradiant mode resonances even in the presence of significant saturation of the atoms.
Electrostatic spherically symmetric configurations in gravitating nonlinear electrodynamics
Diaz-Alonso, J.; Rubiera-Garcia, D.
2010-03-01
We perform a study of the gravitating electrostatic spherically symmetric (G-ESS) solutions of Einstein field equations minimally coupled to generalized nonlinear Abelian gauge models in three space dimensions. These models are defined by Lagrangian densities which are general functions of the gauge field invariants, restricted by some physical conditions of admissibility. They include the class of nonlinear electrodynamics supporting electrostatic spherically symmetric (ESS) nontopological soliton solutions in absence of gravity. We establish that the qualitative structure of the G-ESS solutions of admissible models is fully characterized by the asymptotic and central-field behaviors of their ESS solutions in flat space (or, equivalently, by the behavior of the Lagrangian densities in vacuum and on the point of the boundary of their domain of definition, where the second gauge invariant vanishes). The structure of these G-ESS configurations for admissible models supporting divergent-energy ESS solutions in flat space is qualitatively the same as in the Reissner-Nordström case. In contrast, the G-ESS configurations of the models supporting finite-energy ESS solutions in flat space exhibit new qualitative features, which are discussed in terms of the Arnowitt-Deser-Misner mass, the charge, and the soliton energy. Most of the results concerning well-known models, such as the electrodynamics of Maxwell, Born-Infeld, and the Euler-Heisenberg effective Lagrangian of QED, minimally coupled to gravitation, are shown to be corollaries of general statements of this analysis.
Symmetries and couplings of non-relativistic electrodynamics
Energy Technology Data Exchange (ETDEWEB)
Festuccia, Guido [Department of Physics and Astronomy, Uppsala University,Lägerhyddsvägen 1, Uppsala (Sweden); Hansen, Dennis [The Niels Bohr Institute, Copenhagen University,Blegdamsvej 17, Copenhagen Ø, DK-2100 (Denmark); Hartong, Jelle [Physique Théorique et Mathématique and International Solvay Institutes,Université Libre de Bruxelles, C.P. 231, Brussels, 1050 (Belgium); Obers, Niels A. [The Niels Bohr Institute, Copenhagen University,Blegdamsvej 17, Copenhagen Ø, DK-2100 (Denmark)
2016-11-08
We examine three versions of non-relativistic electrodynamics, known as the electric and magnetic limit theories of Maxwell’s equations and Galilean electrodynamics (GED) which is the off-shell non-relativistic limit of Maxwell plus a free scalar field. For each of these three cases we study the couplings to non-relativistic dynamical charged matter (point particles and charged complex scalars). The GED theory contains besides the electric and magnetic potentials a so-called mass potential making the mass parameter a local function. The electric and magnetic limit theories can be coupled to twistless torsional Newton-Cartan geometry while GED can be coupled to an arbitrary torsional Newton-Cartan background. The global symmetries of the electric and magnetic limit theories on flat space consist in any dimension of the infinite dimensional Galilean conformal algebra and a U(1) current algebra. For the on-shell GED theory this symmetry is reduced but still infinite dimensional, while off-shell only the Galilei algebra plus two dilatations remain. Hence one can scale time and space independently, allowing Lifshitz scale symmetries for any value of the critical exponent z.
On the black hole mass decomposition in nonlinear electrodynamics
Energy Technology Data Exchange (ETDEWEB)
Pereira, Jonas P. [ICRANet, Piazza della Repubblica 10, I-65122 Pescara (Italy); Dip. di Fisica and ICRA, Sapienza Università di Roma, P.le Aldo Moro 5, I-00185 Rome (Italy); Université de Nice Sophia Antipolis, 28 Av. de Valrose, 06103 Nice Cedex 2 (France); Mosquera Cuesta, Herman J. [ICRANet, Piazza della Repubblica 10, I-65122 Pescara (Italy); Instituto Federal de Educação, Ciência e Tecnologia do Ceará, Avenida Treze de Maio, 2081, Benfica, Fortaleza/CE, CEP 60040-531 (Brazil); ICRANet-Rio, Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, Rio de Janeiro, RJ, 22290-180 (Brazil); Rueda, Jorge A. [ICRANet, Piazza della Repubblica 10, I-65122 Pescara (Italy); Dip. di Fisica and ICRA, Sapienza Università di Roma, P.le Aldo Moro 5, I-00185 Rome (Italy); ICRANet-Rio, Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, Rio de Janeiro, RJ, 22290-180 (Brazil); Ruffini, R. [ICRANet, Piazza della Repubblica 10, I-65122 Pescara (Italy); Dip. di Fisica and ICRA, Sapienza Università di Roma, P.le Aldo Moro 5, I-00185 Rome (Italy); ICRANet-Rio, Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, Rio de Janeiro, RJ, 22290-180 (Brazil); Université de Nice Sophia Antipolis, 28 Av. de Valrose, 06103 Nice Cedex 2 (France)
2014-06-27
In the weak field limit of nonlinear Lagrangians for electrodynamics, i.e. theories in which the electric fields are much smaller than the scale (threshold) fields introduced by the nonlinearities, a generalization of the Christodoulou–Ruffini mass formula for charged black holes is presented. It proves that the black hole outer horizon never decreases. It is also demonstrated that reversible transformations are, indeed, fully equivalent to constant horizon solutions for nonlinear theories encompassing asymptotically flat black hole solutions. This result is used to decompose, in an analytical and alternative way, the total mass-energy of nonlinear charged black holes, circumventing the difficulties faced to obtain it via the standard differential approach. It is also proven that the known first law of black hole thermodynamics is the direct consequence of the mass decomposition for general black hole transformations. From all the above we finally show a most important corollary: for relevant astrophysical scenarios nonlinear electrodynamics decreases the extractable energy from a black hole with respect to the Einstein–Maxwell theory. Physical interpretations for these results are also discussed.
Experimental Evaluation of Three Designs of Electrodynamic Flexural Transducers
Directory of Open Access Journals (Sweden)
Tobias J. R. Eriksson
2016-08-01
Full Text Available Three designs for electrodynamic flexural transducers (EDFT for air-coupled ultrasonics are presented and compared. An all-metal housing was used for robustness, which makes the designs more suitable for industrial applications. The housing is designed such that there is a thin metal plate at the front, with a fundamental flexural vibration mode at ∼50 kHz. By using a flexural resonance mode, good coupling to the load medium was achieved without the use of matching layers. The front radiating plate is actuated electrodynamically by a spiral coil inside the transducer, which produces an induced magnetic field when an AC current is applied to it. The transducers operate without the use of piezoelectric materials, which can simplify manufacturing and prolong the lifetime of the transducers, as well as open up possibilities for high-temperature applications. The results show that different designs perform best for the generation and reception of ultrasound. All three designs produced large acoustic pressure outputs, with a recorded sound pressure level (SPL above 120 dB at a 40 cm distance from the highest output transducer. The sensitivity of the transducers was low, however, with single shot signal-to-noise ratio ( SNR ≃ 15 dB in transmit–receive mode, with transmitter and receiver 40 cm apart.
Dispersion relations in quantum electrodynamics on the noncommutative Minkowski space
Energy Technology Data Exchange (ETDEWEB)
Zahn, J.W.
2006-12-15
We study field theories on the noncommutative Minkowski space with noncommuting time. The focus lies on dispersion relations in quantized interacting models in the Yang-Feldman formalism. In particular, we compute the two-point correlation function of the field strength in noncommutative quantum electrodynamics to second order. At this, we take into account the covariant coordinates that allow the construction of local gauge invariant quantities (observables). It turns out that this does not remove the well-known severe infrared problem, as one might have hoped. Instead, things become worse, since nonlocal divergences appear. We also show that these cancel in a supersymmetric version of the theory if the covariant coordinates are adjusted accordingly. Furthermore, we study the {phi}{sup 3} and the Wess-Zumino model and show that the distortion of the dispersion relations is moderate for parameters typical for the Higgs field. We also discuss the formulation of gauge theories on noncommutative spaces and study classical electrodynamics on the noncommutative Minkowski space using covariant coordinates. In particular, we compute the change of the speed of light due to nonlinear effects in the presence of a background field. Finally, we examine the so-called twist approach to quantum field theory on the noncommutative Minkowski space and point out some conceptual problems of this approach. (orig.)
Rheological behavior of oxide nanopowder suspensions
Cinar, Simge
Ceramic nanopowders offer great potential in advanced ceramic materials and many other technologically important applications. Because a material's rheological properties are crucial for most processing routes, control of the rheological behavior has drawn significant attention in the recent past. The control of rheological behavior relies on an understanding of how different parameters affect the suspension viscosities. Even though the suspension stabilization mechanisms are relatively well understood for sub-micron and micron size particle systems, this knowledge cannot be directly transferred to nanopowder suspensions. Nanopowder suspensions exhibit unexpectedly high viscosities that cannot be explained with conventional mechanisms and are still a topic of investigation. This dissertation aims to establish the critical parameters governing the rheological behavior of concentrated oxide nanopowder suspensions, and to elucidate the mechanisms by which these parameters control the rheology of these suspensions. Aqueous alumina nanopowders were chosen as a model system, and the findings were extrapolated to other oxide nanopowder systems such as zirconia, yttria stabilized zirconia, and titania. Processing additives such as fructose, NaCl, HCl, NaOH, and ascorbic acid were used in this study. The effect of solids content and addition of fructose on the viscosity of alumina nanopowder suspensions was investigated by low temperature differential scanning calorimetry (LT-DSC), rheological, and zeta potential measurements. The analysis of bound water events observed in LT-DSC revealed useful information regarding the rheological behavior of nanopowder suspensions. Because of the significance of interparticle interactions in nanopowder suspensions, the electrostatic stabilization was investigated using indifferent and potential determining ions. Different mechanisms, e.g., the effect of the change in effective volume fraction caused by fructose addition and electrostatic
Storm Enhanced Densities simulations using the Ionosphere Plasmasphere Electrodynamics (IPE) Model
Maruyama, N.; Richards, P.; Sun, Y. Y.; Fang, T. W.; Fuller-Rowell, T. J.; Richmond, A. D.; Maute, A. I.
2014-12-01
Storm time response of the middle latitude ionosphere goes through different phases of positive and negative storms for different events. Storm Enhanced Densities (SEDs) are particularly difficult to self-consistently categorize with physical models. The area of enhanced density is surrounded by steep density gradients and appears to progress rapidly through mid-latitudes and into the polar regions. The goal of this study is to improve our scientific understanding of the plasma height variations associated with SEDs, specifically to determine the relative role of the various drivers including neutral wind, composition, and electric fields. A new Ionosphere-Plasmasphere-Electrodynamics (IPE) model used in this study has been developed by collaboration between CU CIRES, NOAA/SWPC, NOAA/GSD and NCAR/HAO. The main objectives are to improve our specification of ionosphere and plasmasphere in response to external forcing from both above and below, and to couple to whole atmosphere models for understanding the interaction between the terrestrial weather to space weather. The model describes the time dependent, three-dimensional, global density of nine ion species, electron density, temperatures of electron and ions in the ionosphere and plasmasphere. The parallel plasma transport is based on the Field Line Interhemispheric Plasma (FLIP) Model [Richards et al., 1990]. A realistic model of Earth's magnetic field is implemented by using the APEX coordinate system [Richmond, 1995]. Global, seamless plasma transport perpendicular to the magnetic field has been included all the way from the equator to the poles. The electrodynamics solver based on the TIEGCM [Richmond and Maute, 2014] calculates the global electric field self-consistently. This presentation focuses on an impact of IGRF on the variations of plasma gradients associated with SEDs. In particular, difference between IGRF and dipole coordinate system is quantified. Furthermore, the relative roles of the various storm
Nason, Steven; Davis, Kris; Hickman, Nicoleta; McFall, Judith; Arens, Ellen; Calle, Carlos
2009-01-01
The viability of photovoltaics on the Lunar and Martian surfaces may be determined by their ability to withstand significant degradation in the Lunar and Martian environments. One of the greatest threats is posed by fine dust particles which are continually blown about the surfaces. In an effort to determine the extent of the threat, and to investigate some abatement strategies, a series of experiments were conducted outdoors and in the Moon and Mars environmental chamber at the Florida Solar Energy Center. Electrodynamic dust shield prototypes based on the electric curtain concept have been developed by our collaborators at the Kennedy Space Center [1]. These thin film layers can remove dust from surfaces and prevent dust accumulation. Several types of dust shields were designed, built and tested under high vacuum conditions and simulated lunar gravity to validate the technology for lunar exploration applications. Gallium arsenide, single crystal and polycrystalline silicon photovoltaic integrated devices were designed, built and tested under Moon and Mars environmental conditions as well as under ambient conditions. Photovoltaic efficiency measurements were performed on each individual cell with the following configurations; without an encapsulation layer, with a glass covering, and with various thin film dust shields. It was found that the PV efficiency of the hybrid systems was unaffected by these various thin film dust shields, proving that the optical transmission of light through the device is virtually uninhibited by these layers. The future goal of this project is to incorporate a photovoltaic cell as the power source for the electrodynamic dust shield system, and experimentally show the effective removal of dust obstructing any light incident on the cell, thus insuring power production is maximized over time.
Directory of Open Access Journals (Sweden)
Byung-Keun Song
2017-10-01
Full Text Available This paper presents a new fuzzy sliding mode controller (FSMC to improve control performances in the presence of uncertainties related to model errors and external disturbance (UAD. As a first step, an adaptive control law is designed using Lyapunov stability analysis. The control law can update control parameters of the FSMC with a disturbance estimator (DE in which the closed-loop stability and finite-time convergence of tracking error are guaranteed. A solution for estimating the compensative quantity of the impact of UAD on a control system and a set of solutions are then presented in order to avoid the singular cases of the fuzzy-based function approximation, increase convergence ability, and reduce the calculating cost. Subsequently, the effectiveness of the proposed controller is verified through the investigation of vibration control performances of a semi-active vehicle suspension system featuring a magnetorheological damper (MRD. It is shown that the proposed controller can provide better control ability of vibration control with lower consumed power compared with two existing fuzzy sliding mode controllers.
Energy Technology Data Exchange (ETDEWEB)
Lockerbie, N. A.; Tokmakov, K. V. [SUPA (Scottish Universities Physics Alliance) Department of Physics, University of Strathclyde, 107 Rottenrow, Glasgow G4 0NG (United Kingdom)
2016-07-15
The background to this work was a prototype shadow sensor, which was designed for retro-fitting to an advanced LIGO (Laser Interferometer Gravitational wave Observatory) test-mass/mirror suspension, in which a 40 kg test-mass/mirror is suspended by four approximately 600 mm long by 0.4 mm diameter fused-silica suspension fibres. The shadow sensor comprised a LED source of Near InfraRed (NIR) radiation, and a “tall-thin” rectangular silicon photodiode detector, which together were to bracket the fibre under test. The photodiode was positioned so as to be sensitive (primarily) to transverse “Violin-Mode” vibrations of such a fibre, via the oscillatory movement of the shadow cast by the fibre, as this moved across the face of the detector. In this prototype shadow sensing system the photodiode was interfaced to a purpose-built transimpedance amplifier, this having both AC and DC outputs. A quasi-static calibration was made of the sensor’s DC responsivity, i.e., incremental rate of change of output voltage versus fibre position, by slowly scanning a fused-silica fibre sample transversely through the illuminating beam. The work reported here concerns the determination of the sensor’s more important AC (Violin-Mode) responsivity. Recognition of the correspondence between direct AC modulation of the source, and actual Violin-Mode signals, and of the transformative role of the AC/DC gain ratio for the amplifier, at any modulation frequency, f, resulted in the construction of the AC/DC calibration source described here. A method for determining in practice the transimpedance AC/DC gain ratio of the photodiode and amplifier, using this source, is illustrated by a specific numerical example, and the gain ratio for the prototype sensing system is reported over the frequency range 1 Hz–300 kHz. In fact, a maximum DC responsivity of 1.26 kV.m{sup −1} was measured using the prototype photodiode sensor and amplifier discussed here. Therefore, the measured AC
Poli, G; Acerbi, D
2003-02-01
Pharmacokinetic properties of a drug, and selection and correct usage of an appropriate delivery device, are factors that can affect the outcome of inhaled therapyThe use of nebulization can overcome problems that are associated with other delivery systems used for inhalation therapyThe objective of this open, randomized, single-dose study was to compare the systemic exposure and safety of beclometasone dipropionate (BDP) suspension for nebulization with BDP via metered-dose inhaler (MDI) in healthy subjects. Following a run-in period to assess basal 24-h serum cortisol levels and cortisol urinary excretion, 12 healthy males were administered BDP 1,600 microg given via MDI and were then randomized to receive a single dose of either 1,600 microg (n = 6) or 3,200 microg BDP (n = 6) suspension for nebulization given via a nebulizer Results with respect to systemic exposure to beclometasone-17-monopropionate (B17MP) (the active metabolite of BDP) and systemic effects on the hypothalamic-pituitary-adrenal (HPA) axis were determined by evaluation of a number of pharmacokinetic parameters for plasma B17MP and serum and urinary cortisol, respectively. A statistically significantly greater peak plasma concentration (Cmax) of B17MP was reported with BDP via MDI (1,587 pg ml(-1)) compared with BDP 1,600 microg (455 pg ml(-1)) and BDP 3,200 microg suspensions for nebulization (758 pg ml(-1)), and was achieved more rapidly (Tmax) (1.3 h, 3 h, and 2.5 h, respectively). In addition, elimination half-life (t 1/2(el)) was statistically significantly shorter with BDP via MDI (4.6 h) than with both dosages of BDP suspensions for nebulization (7.4 h and 6.3 h with 1600 microg and 3,200 microg, respectively), as was mean residence time (MRT) (5.4 h, 11.1 h, and 10.0 h, respectively). Total systemic exposure to B17MP (as determined by the area under the concentration-time curve: AUCinfinity) was comparable for BDP via MDI (6,883 pg ml(-1) h(-1)) and BDP 3,200 microg suspension for
Energy Technology Data Exchange (ETDEWEB)
Meyer, S.D.; Paez, T.L.
1977-01-01
The dynamic store suspension environment in an open bay of the F-111 aircraft is under investigation. This experimental study was prompted by the uncertainties relative to the loads on the store suspension system which result from the severe aerodynamic environment in the open bay. Because of the complex flow field which exists, the loads on the swaybraces, vertical chocks, horizontal chocks, and lugs are not amenable to accurate analytical predictions. In an effort to verify that a store is capable of withstanding the loads experienced during carriage to the performance limits of the aircraft, an experimental buildup program was undertaken and is currently in progress. This paper discusses the design of the unit which is being used to measure the random loads on the suspension system during open-door carriage and the methods used to establish the reliability of the store suspension system. A numerical example shows that the suspension system of the store under consideration is highly reliable.
Viscosity of colloidal suspensions
Energy Technology Data Exchange (ETDEWEB)
Cohen, E.G.D. [Rockefeller Univ., New York, NY (United States); Schepper, I.M. de [Delft Univ. of Technology (Netherlands)
1995-12-31
Simple expressions are given for the effective Newtonian viscosity as a function of concentration as well as for the effective visco-elastic response as a function of concentration and imposed frequency, of monodisperse neutral colloidal suspensions over the entire fluid range. The basic physical mechanisms underlying these formulae are discussed. The agreement with existing experiments is very good.
Cryonic Suspension and the Law.
Smith, George P.; Hall, Clare
1987-01-01
Analyzes three central problems which adversely affect use, development, and perfection of cryonic suspension of individuals: the extent to which a physician may be guilty of malpractice in assisting with a suspension; the need for a recognition of suspension; and the present effect of the law's anachronistic treatment of estate devolution upon a…
What We've Learned from Three Complementary Suspension Studies.
Hawkins, Joseph A.
The Montgomery County (Maryland) Public Schools Suspension Project has evolved into three distinct studies: (1) the Discipline Monitoring System (DMS); (2) the experience and behavior of students suspended multiple times in Junior and Senior High; and (3) school suspension rates. This paper reviews/summarizes the findings from the first two…
Improved production of chlorogenic acid from cell suspension ...
African Journals Online (AJOL)
Purpose: To evaluate the potential of Lonicera macranthoides Hand. -Mazz. Yulei1 suspension culture system for enhanced production of the main secondary metabolite, chlorogenic acid. Methods: The callus of L. macranthoides Hand.-Mazz. “Yulei1” was suspension cultured in B5 liquid medium supplemented with ...
Quantum electrodynamics with 1D arti cial atoms
DEFF Research Database (Denmark)
Javadi, Alisa
A 1D atom, a single quantum emitter coupled to a single optical mode, exhibits rich quantum electrodynamic (QED) e_ects and is thought to be the key ingredient for many applications in quantuminformation processing. Single quantum dots (QD) in photonic-crystal waveguides (PCW) constitute a robust...... platform for realizing a 1D atom, and are the subject of theoretical and experimental investigations in this thesis. We use _nite element method in 3D to calculate the local density of states (LDOS) in photonic-crystal membranes. The detailed spatial maps show strong inhibition of LDOS in the bandgap...... atom. One of the signatures and functions of a 1D atom is the nonlinear optical response at the single-photon level. A PCW chip is designed to experimentally study the transmission spectrum of an embedded QD. The transmission spectrum is shown to be modi_ed by 30% around the resonance of the QD...
Rotating Dilaton Black Strings Coupled to Exponential Nonlinear Electrodynamics
Directory of Open Access Journals (Sweden)
Ahmad Sheykhi
2014-01-01
Full Text Available We construct a new class of charged rotating black string solutions coupled to dilaton and exponential nonlinear electrodynamic fields with cylindrical or toroidal horizons in the presence of a Liouville-type potential for the dilaton field. Due to the presence of the dilaton field, the asymptotic behaviors of these solutions are neither flat nor (AdS. We analyze the physical properties of the solutions in detail. We compute the conserved and thermodynamic quantities of the solutions and verify the first law of thermodynamics on the black string horizon. When the nonlinear parameter β2 goes to infinity, our results reduce to those of black string solutions in Einstein-Maxwell-dilaton gravity.
Higgs-Like Particle due to Revised Quantum Electrodynamics
Directory of Open Access Journals (Sweden)
Lehnert B.
2013-07-01
Full Text Available A Higgs-like particle having zero net electric charge, zero spin, and a nonzero rest mass can be deduced from an earlier elaborated revised quantum electrodynamical theory which is based on linear symmetry breaking through a nonzero electric ﬁeld divergence in the vacuum state. This special particle is obtained from a composite longitudinal solution based on a zero magnetic ﬁeld strength and on a nonzero divergence but a vanishing curl of the electric ﬁeld strength. The present theory further diﬀers from that of the nonlinear spontaneously broken symmetry by Higgs, in which elementary particles obtain their masses through an interaction with the Higgs ﬁeld. An experimental proof of the basic features of a Higgs-like particle thus supports the present theory, but does not for certain conﬁrm the process which would generate massive particles through a Higgs ﬁeld
Special relativity, electrodynamics, and general relativity from Newton to Einstein
Kogut, John B
2018-01-01
Special Relativity, Electrodynamics and General Relativity: From Newton to Einstein, Second Edition, is intended to teach (astro)physics, astronomy, and cosmology students how to think about special and general relativity in a fundamental, but accessible, way. Designed to render any reader a "master of relativity," everything on the subject is comprehensible and derivable from first principles. The book emphasizes problem solving, contains abundant problem sets, and is conveniently organized to meet the needs of both student and instructor. Fully revised, updated and expanded second edition Includes new chapters on magnetism as a consequence of relativity and electromagnetism Contains many improved and more engaging figures Uses less algebra resulting in more efficient derivations Enlarged discussion of dynamics and the relativistic version of Newton's second law
Review on Electrodynamic Energy Harvesters—A Classification Approach
Directory of Open Access Journals (Sweden)
Roland Lausecker
2013-04-01
Full Text Available Beginning with a short historical sketch, electrodynamic energy harvesters with focus on vibration generators and volumes below 1dm3 are reviewed. The current challenges to generate up to several milliwatts of power from practically relevant flows and vibrations are addressed, and the variety of available solutions is sketched. Sixty-seven different harvester concepts from more than 130 publications are classified with respect to excitation, additional boundary conditions, design and fabrication. A chronological list of the harvester concepts with corresponding references provides an impression about the developments. Besides resonant harvester concepts, the review includes broadband approaches and mechanisms to harvest from flow. Finally, a short overview of harvesters in applications and first market ready concepts is given.
Towards measuring quantum electrodynamic torque with a levitated nanorod
Xu, Zhujing; Bang, Jaehoon; Ahn, Jonghoon; Hoang, Thai M.; Li, Tongcang
2017-04-01
According to quantum electrodynamics, quantum fluctuations of electromagnetic fields give rise to a zero-point energy that never vanishes, even in the absence of electromagnetic sources. The interaction energy will not only lead to the well-known Casimir force but will also contribute to the Casimir torque for anisotropic materials. We propose to use an optically levitated nanorod in vacuum and a birefringent substrate to experimentally investigate the QED torque. We have previously observed the libration of an optically levitated non-spherical nanoparticle in vacuum and found it to be an ultrasensitive torque sensor. A nanorod with a long axis of 300nm and a diameter of 60nm levitated in vacuum at 10 (- 8) torr will have a remarkable torque detection sensitivity on the order of 10 (- 28) Nm/ √Hz, which will be sufficient to detect the Casimir torque. This work is partially supported by the National Science Foundation under Grant No.1555035-PHY.
Generalized noise terms for the quantized fluctuational electrodynamics
DEFF Research Database (Denmark)
Partanen, Mikko; Hayrynen, Teppo; Tulkki, Jukka
2017-01-01
position-dependent quantum models for the photon number in resonant structures have only been formulated very recently and only for dielectric media. Here we present a general position-dependent quantized fluctuational electrodynamics (QFED) formalism that extends the consistent field quantization...... to describe the photon number also in the presence of magnetic field-matter interactions. It is shown that the magnetic fluctuations provide an additional degree of freedom in media where the magnetic coupling to the field is prominent. Therefore, the field quantization requires an additional independent...... noise operator that is commuting with the conventional bosonic noise operator describing the polarization current fluctuations in dielectric media. In addition to allowing the detailed description of field fluctuations, our methods provide practical tools for modeling optical energy transfer...
Cavity quantum electrodynamics with Anderson-localized modes
DEFF Research Database (Denmark)
Sapienza, Luca; Nielsen, Henri Thyrrestrup; Stobbe, Søren
2010-01-01
by a factor of 15 on resonance with the Anderson-localized mode, and 94% of the emitted single photons coupled to the mode. Disordered photonic media thus provide an efficient platform for quantum electrodynamics, offering an approach to inherently disorder-robust quantum information devices.......A major challenge in quantum optics and quantum information technology is to enhance the interaction between single photons and single quantum emitters. This requires highly engineered optical cavities that are inherently sensitive to fabrication imperfections. We have demonstrated a fundamentally...... different approach in which disorder is used as a resource rather than a nuisance. We generated strongly confined Anderson-localized cavity modes by deliberately adding disorder to photonic crystal waveguides. The emission rate of a semiconductor quantum dot embedded in the waveguide was enhanced...
Nonequilibrium Fluctuational Quantum Electrodynamics: Heat Radiation, Heat Transfer, and Force
Bimonte, Giuseppe; Emig, Thorsten; Kardar, Mehran; Krüger, Matthias
2017-03-01
Quantum-thermal fluctuations of electromagnetic waves are the cornerstone of quantum statistics and inherent to phenomena such as thermal radiation and van der Waals forces. Although the principles are found in elementary texts, recent experimental and technological advances make it necessary to come to terms with counterintuitive consequences at short scales—the so-called near-field regime. We focus on three manifestations: (a) The Stefan-Boltzmann law describes radiation from macroscopic bodies but fails for small objects. (b) The heat transfer between two bodies at close proximity is dominated by evanescent waves and can be orders of magnitude larger than the classical (propagating) contribution. (c) Casimir forces, dominant at submicron separation, are not sufficiently explored for objects at different temperatures (at least experimentally). We explore these phenomena using fluctuational quantum electrodynamics (QED), introduced by Rytov in the 1950s, combined with scattering formalisms. This enables investigation of different material properties, shapes, separations, and arrangements.
Black hole solution in the framework of arctan-electrodynamics
Kruglov, S. I.
An arctan-electrodynamics coupled with the gravitational field is investigated. We obtain the regular black hole solution that at r →∞ gives corrections to the Reissner-Nordström solution. The corrections to Coulomb’s law at r →∞ are found. We evaluate the mass of the black hole that is a function of the dimensional parameter β introduced in the model. The magnetically charged black hole was investigated and we have obtained the magnetic mass of the black hole and the metric function at r →∞. The regular black hole solution is obtained at r → 0 with the de Sitter core. We show that there is no singularity of the Ricci scalar for electrically and magnetically charged black holes. Restrictions on the electric and magnetic fields are found that follow from the requirement of the absence of superluminal sound speed and the requirement of a classical stability.
A Uniﬁed Theory of Interaction: Gravitation and Electrodynamics
Directory of Open Access Journals (Sweden)
Wagener P.
2008-10-01
Full Text Available A theory is proposed from which the basic equations of gravitation and electromagnetism are derived from a single Lagrangian. The total energy of an atom can be expressed in a power series of the fine structure constant, $alpha$. Specific selections of these terms yield the relativistic correction to the Bohr values of the hydrogen spectrum and the Sommerfeld-Dirac equation for the fine structure spectrum of the hydrogen atom. Expressions for the classical electron radius and some of the Large Number Coincidences are derived. A Lorentz-type force equation is derived for both gravitation and electrodynamics. Electron spin is shown to be an effect of fourth order in $alpha$.
Thermodynamic analysis of black hole solutions in gravitating nonlinear electrodynamics
Diaz-Alonso, J.; Rubiera-Garcia, D.
2013-10-01
We perform a general study of the thermodynamic properties of static electrically charged black hole solutions of nonlinear electrodynamics minimally coupled to gravitation in three space dimensions. The Lagrangian densities governing the dynamics of these models in flat space are defined as arbitrary functions of the gauge field invariants, constrained by some requirements for physical admissibility. The exhaustive classification of these theories in flat space, in terms of the behaviour of the Lagrangian densities in vacuum and on the boundary of their domain of definition, defines twelve families of admissible models. When these models are coupled to gravity, the flat space classification leads to a complete characterization of the associated sets of gravitating electrostatic spherically symmetric solutions by their central and asymptotic behaviours. We focus on nine of these families, which support asymptotically Schwarzschild-like black hole configurations, for which the thermodynamic analysis is possible and pertinent. In this way, the thermodynamic laws are extended to the sets of black hole solutions of these families, for which the generic behaviours of the relevant state variables are classified and thoroughly analyzed in terms of the aforementioned boundary properties of the Lagrangians. Moreover, we find universal scaling laws (which hold and are the same for all the black hole solutions of models belonging to any of the nine families) running the thermodynamic variables with the electric charge and the horizon radius. These scale transformations form a one-parameter multiplicative group, leading to universal "renormalization group"-like first-order differential equations. The beams of characteristics of these equations generate the full set of black hole states associated to any of these gravitating nonlinear electrodynamics. Moreover the application of the scaling laws allows to find a universal finite relation between the thermodynamic variables
Probing nonlinear electrodynamics in slowly rotating spacetimes through neutrino astrophysics
Mosquera Cuesta, Herman J.; Lambiase, Gaetano; Pereira, Jonas P.
2017-01-01
Huge electromagnetic fields are known to be present during the late stages of the dynamics of supernovae. Thus, when dealing with electrodynamics in this context, the possibility may arise to probe nonlinear theories (generalizations of the Maxwellian electromagnetism). We firstly solve Einstein field equations minimally coupled to an arbitrary (current-free) nonlinear Lagrangian of electrodynamics (NLED) in the slow rotation regime a ≪M (black hole's mass), up to first order in a /M . We then make use of the robust and self-contained Born-Infeld Lagrangian in order to compare and contrast the physical properties of such NLED spacetime with its Maxwellian counterpart (a slowly rotating Kerr-Newman spacetime), especially focusing on the astrophysics of both neutrino flavor oscillations (νe→νμ , ντ ) and spin-flip (νl→νr, "l " stands for "left" and "r " stands for "right", change of neutrino handedness) mass level crossings, the equivalent to gyroscopic precessions. Such analysis proves that in the spacetime of a slowly rotating nonlinear charged black hole (RNCBH), intrinsically associated with the assumption the electromagnetism is nonlinear, the neutrino dynamics in core-collapse supernovae could be significantly changed. In such an astrophysical environment, a positive enhancement (reduction of the electron fraction Yesupernova explosions due to enlargement, in atomic number and amount, of the decaying nuclides. Finally, we envisage some physical scenarios that may lead to short-lived charged black holes with high charge-to-mass ratios (associated with unstable highly magnetized neutron stars) and ways to possibly disentangle theories of the electromagnetism from other black hole observables (by means of light polarization measurements).
Explicit symmetry breaking in electrodynamic systems and electromagnetic radiation
Sinha, Dhiraj
2016-01-01
This book is an introduction to the concept of symmetries in electromagnetism and explicit symmetry breaking. It begins with a brief background on the origin of the concept of symmetry and its meaning in fields such as architecture, mathematics and physics. Despite the extensive developments of symmetry in these fields, it has yet to be applied to the context of classical electromagnetism and related engineering applications. This book unravels the beauty and excitement of this area to scientists and engineers.
Numerical methods in computational electrodynamics: linear systems in practical applications
National Research Council Canada - National Science Library
Van Rienen, Ursula
2001-01-01
.... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1.3 Classification of Electromagnetic Fields ... 1.3.1 Stationary Fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1.3.2 Quasistatic Fields...
Cao, Dongpu; Rakheja, Subhash; Su, Chun-Yi
2010-03-01
Passive fluidically coupled suspensions have been considered to offer a promising alternative solution to the challenging design of a vehicle suspension system. A theoretical foundation, however, has not been established for fluidically coupled suspension to facilitate its broad applications to various vehicles. The first part of this study investigates the fundamental issues related to feasibility and properties of the passive, full-vehicle interconnected, hydro-pneumatic suspension configurations using both analytical and simulation techniques. Layouts of various interconnected suspension configurations are illustrated based on two novel hydro-pneumatic suspension strut designs, both of which provide a compact design with a considerably large effective working area. A simplified measure, vehicle property index, is proposed to permit a preliminary evaluation of different interconnected suspension configurations using qualitative scaling of the bounce-, roll-, pitch- and warp-mode stiffness properties. Analytical formulations for the properties of unconnected and three selected X-coupled suspension configurations are derived, and simulation results are obtained to illustrate their relative stiffness and damping properties in the bounce, roll, pitch and warp modes. The superior design flexibility feature of the interconnected hydro-pneumatic suspension is also discussed through sensitivity analysis of a design parameter, namely the annular piston area of the strut. The results demonstrate that a full-vehicle interconnected hydro-pneumatic suspension could provide enhanced roll- and pitch-mode stiffness and damping, while retaining the soft bounce- and warp-mode properties. Such an interconnected suspension thus offers considerable potential in realising enhanced decoupling among the different suspension modes.
Directory of Open Access Journals (Sweden)
Noveri Lysbetti
2010-10-01
Full Text Available In a control system problem, identification system mechanism is a absolute thing, especially in adaptation controlling to disturbance changing. For that case, is needed an identification method which can identify the changing of disturbance in that system. The aim of this research is to give an alternative in system/plant identification which is a combination (hybrid of ARX and Fast Fourier Transform. So, it is needed an algorithm design for identification process. In this case, the designed algorithm will be implemented in software that works based on Matlab. The result of car mass 500Kg in seventh second with first way disturbance is the biggest frequency at this time. Operation frequency produced is 27.4889Hz, estimation model magnitude is 1.3431E-006 and estimation model phase is -86.8307. The result of car mass 1000Kg in 15th-second, with second way disturbance is the biggest frequency at this time. Operation frequency produced is 3.9270Hz, estimation model magnitude is 1.1780E-006 and estimation model phase is 131,5950. These results show that as lighter car mass when disturbance happened by road surface, as bigger the operation frequency happen.
Electroneutrality and phase behavior of colloidal suspensions.
Denton, A R
2007-11-01
Several statistical mechanical theories predict that colloidal suspensions of highly charged macroions and monovalent microions can exhibit unusual thermodynamic phase behavior when strongly deionized. Density-functional, extended Debye-Hückel, and response theories, within mean-field and linearization approximations, predict a spinodal phase instability of charged colloids below a critical salt concentration. Poisson-Boltzmann cell model studies of suspensions in Donnan equilibrium with a salt reservoir demonstrate that effective interactions and osmotic pressures predicted by such theories can be sensitive to the choice of reference system, e.g., whether the microion density profiles are expanded about the average potential of the suspension or about the reservoir potential. By unifying Poisson-Boltzmann and response theories within a common perturbative framework, it is shown here that the choice of reference system is dictated by the constraint of global electroneutrality. On this basis, bulk suspensions are best modeled by density-dependent effective interactions derived from a closed reference system in which the counterions are confined to the same volume as the macroions. Lower-dimensional systems (e.g., monolayers, clusters), depending on the strength of macroion-counterion correlations, may be governed instead by density-independent effective interactions tied to an open reference system with counterions dispersed throughout the reservoir, possibly explaining the observed structural crossover in colloidal monolayers and anomalous metastability of colloidal crystallites.
Reducing Transmitted Vibration Using Delayed Hysteretic Suspension
Directory of Open Access Journals (Sweden)
Lahcen Mokni
2011-01-01
Full Text Available Previous numerical and experimental works show that time delay technique is efficient to reduce transmissibility of vibration in a single pneumatic chamber by controlling the pressure in the chamber. The present work develops an analytical study to demonstrate the effectiveness of such a technique in reducing transmitted vibrations. A quarter-car model is considered and delayed hysteretic suspension is introduced in the system. Analytical predictions based on perturbation analysis show that a delayed hysteretic suspension enhances vibration isolation comparing to the case where the nonlinear damping is delay-independent.
Crust formation in drying colloidal suspensions
Style, R. W.
2010-06-30
During the drying of colloidal suspensions, the desiccation process causes the suspension near the air interface to consolidate into a connected porous matrix or crust. Fluid transport in the porous medium is governed by Darcy\\'s law and the equations of poroelasticity, while the equations of colloid physics govern processes in the suspension. We derive new equations describing this process, including unique boundary conditions coupling the two regions, yielding a moving-boundary model of the concentration and stress profiles during drying. A solution is found for the steady-state growth of a nedimensional crust during constant evaporation rate from the surface. The solution is used to demonstrate the importance of the system boundary conditions on stress profiles and diffusivity in a drying crust. © 2011 The Royal Society.
National Aeronautics and Space Administration — Electrodynamic tethers are optimally suited for use in Low-Earth-Orbit (LEO) to generate thrust or drag maneuver satellites. LEO region is polluted with space debris...
Class of gauge-invariant models of quantum electrodynamics with nonlocal interaction
National Research Council Canada - National Science Library
Tao Mei
2017-01-01
.... Finally, we employ a special choice of the models to calculate the vacuum polarization as an example to demonstrate the possibility of establishing a theory of quantum electrodynamics without divergence.
Miranda, Cláudia C; Fernandes, Tiago G; Diogo, M Margarida; Cabral, Joaquim M S
2016-12-01
The demand of high cell numbers for applications in cellular therapies and drug screening requires the development of scalable platforms capable to generating highly pure populations of tissue-specific cells from human pluripotent stem cells. In this work, we describe the scaling-up of an aggregate-based culture system for neural induction of human induced pluripotent stem cells (hiPSCs) under chemically-defined conditions. A combination of non-enzymatic dissociation and rotary agitation was successfully used to produce homogeneous populations of hiPSC aggregates with an optimal (140 μm) and narrow distribution of diameters (coefficient of variation of 21.6%). Scalable neural commitment of hiPSCs as 3D aggregates was performed in 50 mL spinner flasks, and the process was optimized using a factorial design approach, involving parameters such as agitation rate and seeding density. We were able to produce neural progenitor cell cultures, that at the end of a 6-day neural induction process contained less than 3% of Oct4-positive cells and that, after replating, retained more than 60% of Pax6-positive neural cells. The results here presented should set the stage for the future generation of a clinically relevant number of human neural progenitors for transplantation and other biomedical applications using controlled, automated and reproducible large-scale bioreactor culture systems. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Roll- and pitch-plane-coupled hydro-pneumatic suspension. Part 2 dynamic response analyses
Cao, Dongpu; Rakheja, Subhash; Su, Chun-Yi
2010-01-01
In the first part of this study, the potential performance benefits of fluidically coupled passive suspensions were demonstrated through analyses of suspension properties, design flexibility and feasibility. In this second part of the study, the dynamic responses of a vehicle equipped with different configurations of fluidically coupled hydro-pneumatic suspension systems are investigated for more comprehensive assessments of the coupled suspension concepts. A generalised 14 degree-of-freedom ...
Heteropolar Magnetic Suspension
Misovec, Kathleen; Johnson, Bruce; Downer, James; Eisenhaure, David; Hockney, Richard
1990-01-01
Compact permanent-magnet/electromagnet actuator has six degrees of freedom. Heteropolar magnetic actuator conceived for use as actively controlled vibration-isolating suspension device. Exerts forces along, and torques about, all three principal coordinate axes to resist all three components of translational vibration and all three components of rotational vibration. Inner cylinder suspended magnetically within outer cylinder. Electro-magnet coils interact with fields of permanent magnets to provide active control of suspending force and torque.
Gao, Yi; Neuhauser, Daniel
2013-05-14
We show how to obtain the correct electronic response of a large system by embedding; a small region is propagated by TDDFT (time-dependent density functional theory) simultaneously with a classical electrodynamics evolution using the Near-Field method over a larger external region. The propagations are coupled through a combined time-dependent density yielding a common Coulomb potential. We show that the embedding correctly describes the plasmonic response of a Mg(0001) slab and its influence on the dynamical charge transfer between an adsorbed H2O molecule and the substrate, giving the same spectral shape as full TDDFT (similar plasmon peak and molecular-dependent differential spectra) with much less computational effort. The results demonstrate that atomistic embedding electrodynamics is promising for nanoplasmonics and nanopolaritonics.
Progressive collapse susceptibility of a long span suspension bridge
DEFF Research Database (Denmark)
Olmati, Pierluigi; Giuliani, Luisa
2013-01-01
should be maintained in case of an accidental hanger detachment. Local damages in bridges, which are characterized by an horizontal load transfer system, may progress along the deck or along the suspension system, as the dynamic overloading of the structural elements immediately adjacent to the failed...... ones may lead to subsequent failures. In suspension bridges, which are characterized by a relatively low continuity of the system, the damage of the deck may favor a collapse standstill, in case of an early detachment of the deck collapsing section. In the paper, a long span suspension bridge is taken...
Energy Technology Data Exchange (ETDEWEB)
Lockerbie, N. A.; Tokmakov, K. V. [SUPA (Scottish Universities Physics Alliance), Department of Physics, University of Strathclyde, 107 Rottenrow, Glasgow G4 0NG (United Kingdom)
2014-10-15
This paper describes the design of, and results from, a calibration system for optical linear displacement (shadow) sensors. The shadow sensors were designed to detect “Violin-Mode” (VM) resonances in the 0.4 mm diameter silica fibre suspensions of the test masses/mirrors of Advanced Laser Interferometer Gravitational Wave Observatory gravitational wave interferometers. Each sensor illuminated the fibre under test, so as to cast its narrow shadow onto a “synthesized split photodiode” detector, the shadow falling over adjacent edges of the paired photodiodes. The apparatus described here translated a vertically orientated silica test fibre horizontally through a collimated Near InfraRed illuminating beam, whilst simultaneously capturing the separate DC “shadow notch” outputs from each of the paired split photodiode detectors. As the ratio of AC to DC photocurrent sensitivities to displacement was known, a calibration of the DC response to quasi-static shadow displacement allowed the required AC sensitivity to vibrational displacement to be found. Special techniques are described for generating the required constant scan rate for the test fibre using a DC motor-driven stage, for removing “jitter” at such low translation rates from a linear magnetic encoder, and so for capturing the two shadow-notch signals at each micrometre of the test fibre's travel. Calibration, across the four detectors of this work, gave a vibrational responsivity in voltage terms of (9.45 ± 1.20) MV (rms)/m, yielding a VM displacement sensitivity of (69 ± 13) pm (rms)/√Hz, at 500 Hz, over the required measuring span of ±0.1 mm.
Kayes, J B
1977-04-01
The effect of added surface-active agents of various ionic types on the sedimentation volume of drug suspensions of betamethasone, griseofulvin, nalidixic acid and thiabendazole has been investigated, and the results correlated with previously measured zeta potentials. Study of the zeta potential/sedimentation volumes versus concentration plots showed that apparently only coagulated, deflocculated or sterically stabilized systems were formed. In most cases the sterically stabilized systems were produced from mixtures of ionic/non-ionic surfactants. These are examples of controlled coagulation, although non-ionic surfactant alone conferred stability against caking. Secondary minimum flocculation was not apparent but this may have been due to the method of examination of suspensions. The work confirmed that the DLVO theory of colloid stability and its modification to include a steric term can be applied to coarse suspension systems.
Network synthesis and parameter optimization for vehicle suspension with inerter
Directory of Open Access Journals (Sweden)
Long Chen
2016-12-01
Full Text Available In order to design a comfortable-oriented vehicle suspension structure, the network synthesis method was utilized to transfer the problem into solving a timing robust control problem and determine the structure of “inerter–spring–damper” suspension. Bilinear Matrix Inequality was utilized to obtain the timing transfer function. Then, the transfer function of suspension system can be physically implemented by passive elements such as spring, damper, and inerter. By analyzing the sensitivity and quantum genetic algorithm, the optimized parameters of inerter–spring–damper suspension were determined. A quarter-car model was established. The performance of the inerter–spring–damper suspension was verified under random input. The simulation results manifested that the dynamic performance of the proposed suspension was enhanced in contrast with traditional suspension. The root mean square of vehicle body acceleration decreases by 18.9%. The inerter–spring–damper suspension can inhibit the vertical vibration within the frequency of 1–3 Hz effectively and enhance the performance of ride comfort significantly.
Studies of nonlinear electrodynamics of high-temperature superconductors
Energy Technology Data Exchange (ETDEWEB)
Lam, Quan-Chiu H.
1991-08-01
Nonlinear electrodynamics of high-{Tc} superconductors are studied both theoretically and experimentally. For powdered samples, a novel model is presented in which the metallographically observed superconducting grains in the powder are modeled as superconducting current loops of various areas with weak links. Surprising harmonic generation behavior in an arc field, H{sub 1} cos({omega}t), is predicted by the model; the power at high harmonics show sharp dips almost periodic in a superposing dc magnetic field, revealing flux quantization in the prototype loops in the model. Such oscillation of the harmonic power in dc magnetic field P{sub nf}(H{sub dc}), is indeed experimentally observed in powdered YBa{sub 2}Cu{sub 3}O{sub 7}. Other experimental aspects also agree with model predictions. For bulk sintered cylindrical samples, a generalized critical state model is presented. In this model, the nonlinear electrodynamics are due to flux-pinning, somewhat similar to low-temperature type-II superconductors, but with a more generalized critical current densities' dependence on magnetic field -- J{sub c}(H){approximately}H{sub local}{sup -{beta}}, with {beta} being an adjustable parameter. Experiments in ac and dc magnetic fields on a sintered cylindrical rod of YBa{sub 2}Cu{sub 3}O{sub 7} yield unambiguous evidence of independent inter- and intragranular contributions to the complex harmonic permeability {tilde {mu}}{sub n} = {mu}{prime}{sub n} -i{mu}{double prime}{sub n}. Temperature- dependence measurements reveal that, while the intragranular supercurrents disappear at {Tc}{ge}91.2 K, the intergranular supercurrents disappear at T{ge}86.6 K. This result is, to our knowledge, the first clear measurement of the phase-locking temperature of the 3-D matrix formed by YBa{sub 2}Cu{sub 3}O{sub 7} grains, which are in electrical contact with one another through weak links.
Studies of nonlinear electrodynamics of high-temperature superconductors
Energy Technology Data Exchange (ETDEWEB)
Lam, Quan-Chiu H. [Univ. of California, Berkeley, CA (United States)
1991-08-01
Nonlinear electrodynamics of high-T_{c} superconductors are studied both theoretically and experimentally. For powdered samples, a novel model is presented in which the metallographically observed superconducting grains in the powder are modeled as superconducting current loops of various areas with weak links. Surprising harmonic generation behavior in an arc field, H_{1} cos(ωt), is predicted by the model; the power at high harmonics show sharp dips almost periodic in a superposing dc magnetic field, revealing flux quantization in the prototype loops in the model. Such oscillation of the harmonic power in dc magnetic field P_{nf}(H_{dc}), is indeed experimentally observed in powdered YBa_{2}Cu_{3}O_{7}. Other experimental aspects also agree with model predictions. For bulk sintered cylindrical samples, a generalized critical state model is presented. In this model, the nonlinear electrodynamics are due to flux-pinning, somewhat similar to low-temperature type-II superconductors, but with a more generalized critical current densities` dependence on magnetic field -- J_{c}(H)~H$β\\atop{local}$, with β being an adjustable parameter. Experiments in ac and dc magnetic fields on a sintered cylindrical rod of YBa_{2}Cu_{3}O_{7} yield unambiguous evidence of independent inter- and intragranular contributions to the complex harmonic permeability$\\tilde{μ}$_{n} = μ'_{n} -iμ''_{n}. Temperature- dependence measurements reveal that, while the intragranular supercurrents disappear at T_{c}≥91.2 K, the intergranular supercurrents disappear at T≥86.6 K. This result is, to our knowledge, the first clear measurement of the phase-locking temperature of the 3-D matrix formed by YBa_{2}Cu_{3}O_{7} grains, which are in electrical contact with one another through weak links.
Effects of energetic electrons on the electrodynamics in the ionosphere
Directory of Open Access Journals (Sweden)
A. Aksnes
2004-01-01
Full Text Available From the observations by the PIXIE and UVI cameras on board the Polar satellite, we derive global maps of the precipitating electron energy spectra from less than 1keV to 100keV. Based on the electron spectra, we generate instantaneous global maps of Hall and Pedersen conductances. The UVI camera provides good coverage of the lower electron energies contributing most to the Pedersen conductance, while PIXIE captures the high energy component of the precipitating electrons affecting the Hall conductance. By characterizing the energetic electrons from some tens of keV and up to about 100keV using PIXIE X-ray measurements, we will, in most cases, calculate a larger electron flux at higher energies than estimated from a simple extrapolation of derived electron spectra from UVI alone. Instantaneous global conductance maps derived with and without inclusion of PIXIE data have been implemented in the Assimilative Mapping of Ionospheric Electrodynamics (AMIE procedure, to study the effects of energetic electrons on electrodynamical parameters in the ionosphere. We find that the improved electron spectral characterization using PIXIE data most often results in a larger Hall conductance and a smaller inferred electric field. In some localized regions the increase in the Hall conductance can exceed 100%. On the contrary, the Pedersen conductance remains more or less unaffected by the inclusion of the PIXIE data. The calculated polar cap potential drop may decrease more than 10%, resulting in a reduction of the estimated Joule heating integrated over the Northern Hemisphere by up to 20%. Locally, Joule heating may decrease more than 50% in some regions. We also find that the calculated energy flux by precipitating electrons increases around 5% when including the PIXIE data. Combined with the reduction of Joule heating, this results in a decrease in the ratio between Joule heating and energy flux, sometimes exceeding 25%. An investigation of the relationship
Colla, André R S; Machado, Daniele G; Bettio, Luis E B; Colla, Guilherme; Magina, Michele D A; Brighente, Inês M C; Rodrigues, Ana Lúcia S
2012-09-28
Several species of Eugenia L. are used in folk medicine for the treatment of various diseases. Eugenia brasiliensis is used for the treatment of inflammatory diseases, whereas Eugenia. uniflora is used for the treatment of symptoms related to depression and mood disorders, and is used in Brazil by the Guarani Indians as a tonic stimulant. To investigate the antidepressant-like effect of hydroalcoholic extracts of different plant species of genus Eugenia and to characterize the participation of the monoaminergic systems in the mechanism of action of the specie that afforded the most prominent antidepressant-like efficacy. In the first set of experiments, the effects of hydroalcoholic extracts of Eugenia beaurepaireana, Eugenia brasiliensis, Eugenia catharinae, Eugenia umbelliflora and Eugenia uniflora and the antidepressant fluoxetine (positive control) administered acutely by p.o. route were evaluated in the tail suspension test (TST) and locomotor activity was assessed in the open-field test in mice. In the second set of experiments, the involvement of the monoaminergic systems in the antidepressant-like activity of Eugenia brasiliensis was evaluated by treating mice with several pharmacological agonists and antagonists. The effects of the combined administration of sub-effective doses of Eugenia brasiliensis and the antidepressants fluoxetine, imipramine and bupropion were also evaluated. The administration of the extracts from Eugenia brasiliensis, Eugenia catharinae and Eugenia umbelliflora, but not Eugenia beaurepaireana and Eugenia uniflora, exerted a significant antidepressant-like effect, without altering locomotor activity. The behavioral profile was similar to fluoxetine. Pre-treatment of mice with ketanserin, haloperidol, SCH23390, sulpiride, prazosin and yohimbine prevented the reduction of immobility time induced by Eugenia brasiliensis. Treatment with sub-effective doses of WAY100635, SKF38393, apomorphine, phenylephrine, but not clonidine, combined
31 CFR 10.82 - Expedited suspension.
2010-07-01
... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Expedited suspension. 10.82 Section... INTERNAL REVENUE SERVICE Rules Applicable to Disciplinary Proceedings § 10.82 Expedited suspension. (a... suspension. A suspension under this section will commence on the date that written notice of the suspension...
Transtibial prosthesis suspension failure during skydiving freefall: a case report.
Gordon, Assaf T; Land, Rebekah M
2009-01-01
This report describes the unusual case of an everyday-use prosthesis suspension system failure during the freefall phase of a skydiving jump. The case individual was a 53-year-old male with a left transtibial amputation secondary to trauma. He used his everyday prosthesis, a transtibial endoskeleton with push-button, plunger-releasing, pin-locking silicon liner suction suspension and a neoprene knee suspension sleeve, for a standard recreational tandem skydive. Within seconds of exiting the plane, the suspension systems failed, resulting in the complete prosthesis floating away. Several factors may have led to suspension system failure, including an inadequate seal and material design of the knee suspension sleeve and liner, lack of auxiliary suspension mechanisms, and lack of a safety cover overlying the push-button release mechanism. This is the first report, to our knowledge, to discuss prosthetic issues specifically related to skydiving. While amputees are to be encouraged to participate in this extreme sport, special modifications to everyday components may be necessary to reduce the possibility of prosthesis failure during freefall, parachute deployment, and landing.
Nonlinear quantum electrodynamic and electroweak processes in strong laser fields
Energy Technology Data Exchange (ETDEWEB)
Meuren, Sebastian
2015-06-24
Various nonlinear electrodynamic and electroweak processes in strong plane-wave laser fields are considered with an emphasis on short-pulse effects. In particular, the momentum distribution of photoproduced electron-positron pairs is calculated numerically and a semiclassical interpretation of its characteristic features is established. By proving the optical theorem, compact double-integral expressions for the total pair-creation probability are obtained and numerically evaluated. The exponential decay of the photon wave function in a plane wave is included by solving the Schwinger-Dyson equations to leading-order in the quasistatic approximation. In this respect, the polarization operator in a plane wave is investigated and its Ward-Takahashi identity verified. A classical analysis indicates that a photoproduced electron-positron pair recollides for certain initial conditions. The contributions of such recollision processes to the polarization operator are identified and calculated both analytically and numerically. Furthermore, the existence of nontrivial electron-spin dynamics induced by quantum fluctuations is verified for ultra-short laser pulses. Finally, the exchange of weak gauge bosons is considered, which is essential for neutrino-photon interactions. In particular, the axial-vector-vector coupling tensor is calculated and the so-called Adler-Bell-Jackiw (ABJ) anomaly investigated.
Transformational fluctuation electrodynamics: application to thermal radiation illusion.
Alwakil, Ahmed; Zerrad, Myriam; Bellieud, Michel; Veynante, Denis; Enguehard, Franck; Rolland, Nathalie; Volz, Sebastian; Amra, Claude
2017-07-24
Thermal radiation is a universal property for all objects with temperatures above 0K. Every object with a specific shape and emissivity has its own thermal radiation signature; such signature allows the object to be detected and recognized which can be an undesirable situation. In this paper, we apply transformation optics theory to a thermal radiation problem to develop an electromagnetic illusion by controlling the thermal radiation signature of a given object. Starting from the fluctuation dissipation theorem where thermally fluctuating sources are related to the radiative losses, we demonstrate that it is possible for objects residing in two spaces, virtual and physical, to have the same thermal radiation signature if the complex permittivities and permeabilities satisfy the standard space transformations. We emphasize the invariance of the fluctuation electrodynamics physics under transformation, and show how this result allows the mimicking in thermal radiation. We illustrate the concept using the illusion paradigm in the two-dimensional space and a numerical calculation validates all predictions. Finally, we discuss limitations and extensions of the proposed technique.
Regular multihorizon black holes in modified gravity with nonlinear electrodynamics
Nojiri, Shin'ichi; Odintsov, S. D.
2017-11-01
We investigated the regular multihorizon black holes in the Einstein gravity, F (R ) gravity, and the 5 dimensional Gauss-Bonnet gravity, all of them coupled with nonlinear electrodynamics. We presented several explicit examples of the actions which admit the solutions describing regular black hole space-time with multihorizons. Thermodynamics of the obtained black hole solutions is studied. The explicit expressions of the temperature, the entropy, the thermodynamical energy and the free energy are obtained. Although the temperature vanishes in the extremal limit where the radii of the two horizons coincide with each other as in the standard multihorizon black hole like the Reissner-Nordström black hole or the Kerr black hole, the larger temperature corresponds to the larger horizon radius. This is different from the standard black holes, where the larger temperature corresponds to the smaller horizon radius. We also found that the specific heat becomes positive for the large temperature, which is also different from the standard black holes, where the specific heat is negative. It should be also noted that the thermodynamical energy is not identical with the ADM mass. Furthermore in case of the Gauss-Bonnet gravity,it is demonstrated that the entropy can become negative.
Ultrafast terahertz electrodynamics of photonic and electronic nanostructures
Energy Technology Data Exchange (ETDEWEB)
Luo, Liang [Iowa State Univ., Ames, IA (United States)
2015-01-01
This thesis summarizes my work on using ultrafast laser pulses to study Terahertz (THz) electrodynamics of photonic and electronic nanostructures and microstructures. Ultrafast timeresolved (optical, NIR, MIR, THz) pump-probe spectroscopy setup has been successfully built, which enables me to perform a series of relevant experiments. Firstly, a novel high e ciency and compact THz wave emitter based on split-ring-resonators has been developed and characterized. The emitter can be pumped at any wavelength by tailoring the magnetic resonance and could generate gapless THz waves covering the entire THz band. Secondly, two kinds of new photonic structures for THz wave manipulation have been successfully designed and characterized. One is based on the 1D and 2D photo-imprinted di ractive elements. The other is based on the photoexcited double-split-ring-resonator metamaterials. Both structures are exible and can modulate THz waves with large tunability. Thirdly, the dark excitons in semiconducting singlewalled carbon nanotubes are studied by optical pump and THz probe spectroscopy, which provides the rst insights into the THz responses of nonequilibrium excitonic correlations and dynamics from the dark ground states in carbon nanotubes. Next, several on-going projects are brie y presented such as the study of ultrafast THz dynamics of Dirac fermions in topological insulator Bi_{2}Se_{3} with Mid-infrared excitation. Finally, the thesis ends with a summary of the completed experiments and an outlook of the future plan.
Implementing phase-covariant cloning in circuit quantum electrodynamics
Energy Technology Data Exchange (ETDEWEB)
Zhu, Meng-Zheng [School of Physics and Material Science, Anhui University, Hefei 230039 (China); School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000 (China); Ye, Liu, E-mail: yeliu@ahu.edu.cn [School of Physics and Material Science, Anhui University, Hefei 230039 (China)
2016-10-15
An efficient scheme is proposed to implement phase-covariant quantum cloning by using a superconducting transmon qubit coupled to a microwave cavity resonator in the strong dispersive limit of circuit quantum electrodynamics (QED). By solving the master equation numerically, we plot the Wigner function and Poisson distribution of the cavity mode after each operation in the cloning transformation sequence according to two logic circuits proposed. The visualizations of the quasi-probability distribution in phase-space for the cavity mode and the occupation probability distribution in the Fock basis enable us to penetrate the evolution process of cavity mode during the phase-covariant cloning (PCC) transformation. With the help of numerical simulation method, we find out that the present cloning machine is not the isotropic model because its output fidelity depends on the polar angle and the azimuthal angle of the initial input state on the Bloch sphere. The fidelity for the actual output clone of the present scheme is slightly smaller than one in the theoretical case. The simulation results are consistent with the theoretical ones. This further corroborates our scheme based on circuit QED can implement efficiently PCC transformation.
Pair production in classical Stueckelberg-Horwitz-Piron electrodynamics
Land, Martin
2015-05-01
We calculate pair production from bremsstrahlung as a classical effect in Stueckelberg-Horwitz electrodynamics. In this framework, worldlines are traced out dynamically through the evolution of events xμ(τ) parameterized by a chronological time τ that is independent of the spacetime coordinates. These events, defined in an unconstrained 8D phase space, interact through five τ-dependent gauge fields induced by the event evolution. The resulting theory differs in its underlying mechanics from conventional electromagnetism, but coincides with Maxwell theory in an equilibrium limit. In particular, the total mass-energy-momentum of particles and fields is conserved, but the mass-shell constraint is lifted from individual interacting events, so that the Feynman-Stueckelberg interpretation of pair creation/annihilation is implemented in classical mechanics. We consider a three-stage interaction which when parameterized by the laboratory clock x0 appears as (1) particle-1 scatters on a heavy nucleus to produce bremsstrahlung, (2) the radiation field produces a particle/antiparticle pair, (3) the antiparticle is annihilated with particle-2 in the presence of a second heavy nucleus. When parameterized in chronological time τ, the underlying process develops as (1) particle-2 scatters on the second nucleus and begins evolving backward in time with negative energy, (2) particle-1 scatters on the first nucleus and releases bremsstrahlung, (3) particle-2 absorbs radiation which returns it to forward time evolution with positive energy.
The electrodynamic effects of MOSC-like plasma clouds
Retterer, John; Groves, Keith M.; Pedersen, Todd R.; Caton, Ronald G.
2017-05-01
The effects on the plasma/electrodynamic environment in the low-latitude ionosphere produced by the artificial plasma clouds created in the Metal Oxide Space Cloud (MOSC) experiment are studied via simulations. The electric fields and plasma flow in the vicinity of the cloud are calculated using its estimated field-line-integrated conductance; it is found that the "comma-like" flow around the cloud seen in the ALTAIR (Advanced Research Project Agency [ARPA] Long-range Tracking and Identification Radar) observations can be explained by the perturbations to the electric field produced by the conductance gradients around the cloud. Next, the conductance is introduced into a simulation of the development of the Rayleigh-Taylor instability. The simulations suggest that a moderately denser cloud than the MOSC cloud, closer to the bottom edge of the F layer, could indeed suppress the development of the low-density plumes and the shorter-wavelength irregularities associated with radio scintillation that form with the Rayleigh-Taylor instability in the low-latitude ionosphere.
Electric field control of emergent electrodynamics in quantum spin ice
Lantagne-Hurtubise, Étienne; Bhattacharjee, Subhro; Moessner, R.
2017-09-01
We study the coupling between conventional (Maxwell) and emergent electrodynamics in quantum spin ice, a 3+1-dimensional U (1 ) quantum spin liquid. We find that a uniform electric field can be used to tune the properties of both the ground state and excitations of the spin liquid. In particular, it induces emergent birefringence, rendering the speed of the emergent light anisotropic and polarization-dependent. A sufficiently strong electric field triggers a quantum phase transition into new U (1 ) quantum spin liquid phases, which trap emergent electric π fluxes. The flux patterns of these new phases depend on the direction of the electric field. Strikingly, some of the canonical pinch points in the spin structure factor, characteristic of classical spin ice, emerge near the phase transition, while they are absent in the quantum spin liquid phases. Estimating the electric field strength required, we find that this transition is potentially accessible experimentally. Finally, we propose a minimal mechanism by which an oscillating electric field can generate emergent radiation inside a quantum spin ice material with non-Kramers spin doublets.
Single atom cavity quantum electrodynamics with non-transversally polarized light fields
Energy Technology Data Exchange (ETDEWEB)
Junge, Christian; O' Shea, Danny; Volz, Juergen; Rauschenbeutel, Arno [Vienna Center for Quantum Science and Technology, TU Wien, Atominstitut, Stadionallee 2, A-1020 Wien (Austria)
2013-07-01
Whispering-gallery-mode (WGM) microresonators are versatile devices for enhancing light-matter interaction. They combine ultra high quality factors and small mode volumes with near lossless in- and out-coupling of light via tapered fiber couplers. Here, we report on a cavity quantum electrodynamics (CQED) experiment in which single {sup 85}Rb atoms interact in the strong coupling regime with a WGM in an ultra high-Q bottle microresonator. We present optical transmission spectra of our system that fundamentally deviate from the predictions of the established theoretical model for CQED in ring resonators. We identify the non-transversal character of the field of WGMs as the origin of this discrepancy. Excellent agreement is found between our data and the predictions of an extended theoretical model that accounts for the full vectorial description of the WGMs. Our studies demonstrate that the non-transversal character of WGMs allows one to realize a paradigmatic quantum system that is ideally suited for basic studies as well as for technological applications.
Energy Distribution of a Regular Black Hole Solution in Einstein-Nonlinear Electrodynamics
Directory of Open Access Journals (Sweden)
I. Radinschi
2015-01-01
Full Text Available A study about the energy momentum of a new four-dimensional spherically symmetric, static and charged, regular black hole solution developed in the context of general relativity coupled to nonlinear electrodynamics is presented. Asymptotically, this new black hole solution behaves as the Reissner-Nordström solution only for the particular value μ=4, where μ is a positive integer parameter appearing in the mass function of the solution. The calculations are performed by use of the Einstein, Landau-Lifshitz, Weinberg, and Møller energy momentum complexes. In all the aforementioned prescriptions, the expressions for the energy of the gravitating system considered depend on the mass M of the black hole, its charge q, a positive integer α, and the radial coordinate r. In all these pseudotensorial prescriptions, the momenta are found to vanish, while the Landau-Lifshitz and Weinberg prescriptions give the same result for the energy distribution. In addition, the limiting behavior of the energy for the cases r→∞, r→0, and q=0 is studied. The special case μ=4 and α=3 is also examined. We conclude that the Einstein and Møller energy momentum complexes can be considered as the most reliable tools for the study of the energy momentum localization of a gravitating system.
Stability of erythrocyte suspensions layered on stationary and flowing liquids
Omenyi, S. N.; Rhodes, P. H.; Snyder, R. S.
1982-01-01
The apparent stability of erythrocyte suspensions layered on stationary and flowing Ficoll solutions was studied considering the effects of particle concentration, type and size, and the different flow rates of the particle suspensions and chamber liquid. The data from the flowing system were empirically fitted and, when extrapolated to zero chamber liquid flow rate, gave values comparable to the data from the stationary system, thus confirming the validity of the data and our approach to obtain that data.
Directory of Open Access Journals (Sweden)
Ya-Bo Wu
2017-04-01
Full Text Available We numerically investigate the holographic paramagnetism–ferromagnetism phase transition in the 4-dimensional Lifshitz spacetime in the presence of three kinds of typical Born–Infeld-like nonlinear electrodynamics. Concretely, in the probe limit, we thoroughly discuss the effects of the nonlinear parameter b and the dynamical exponent z on the critical temperature, magnetic moment and hysteresis loop. The results show that the exponential form of nonlinear electrodynamics correction makes the critical temperature smaller and the magnetic moment harder to form with the absent external field for a constant nonlinear parameter b comparing it with the logarithmic form of nonlinear electrodynamics and the Born–Infeld nonlinear electrodynamics, especially for the case of larger dynamical exponent z. Moreover, the increase of nonlinear parameter b (for the fixed z or dynamical exponent z (for the fixed b will result in extending the period of the external magnetic field. Particularly, the effect of the exponential form of nonlinear electrodynamics on the periodicity of hysteresis loop is more noteworthy.
Energy Technology Data Exchange (ETDEWEB)
Wu, Ya-Bo, E-mail: ybwu61@163.com; Zhang, Cheng-Yuan; Lu, Jian-Bo; Hu, Mu-Hong; Chai, Yun-Tian
2017-04-10
We numerically investigate the holographic paramagnetism–ferromagnetism phase transition in the 4-dimensional Lifshitz spacetime in the presence of three kinds of typical Born–Infeld-like nonlinear electrodynamics. Concretely, in the probe limit, we thoroughly discuss the effects of the nonlinear parameter b and the dynamical exponent z on the critical temperature, magnetic moment and hysteresis loop. The results show that the exponential form of nonlinear electrodynamics correction makes the critical temperature smaller and the magnetic moment harder to form with the absent external field for a constant nonlinear parameter b comparing it with the logarithmic form of nonlinear electrodynamics and the Born–Infeld nonlinear electrodynamics, especially for the case of larger dynamical exponent z. Moreover, the increase of nonlinear parameter b (for the fixed z) or dynamical exponent z (for the fixed b) will result in extending the period of the external magnetic field. Particularly, the effect of the exponential form of nonlinear electrodynamics on the periodicity of hysteresis loop is more noteworthy.
Macroscopic quantum electrodynamics of high-Q cavities
Energy Technology Data Exchange (ETDEWEB)
Khanbekyan, Mikayel
2009-10-27
In this thesis macroscopic quantum electrodynamics in linear media was applied in order to develop an universally valid quantum theory for the description of the interaction of the electromagnetic field with atomic sources in high-Q cavities. In this theory a complete description of the characteristics of the emitted radiation is given. The theory allows to show the limits of the applicability of the usually applied theory. In order to establish an as possible generally valid theory first the atom-field interaction was studied in the framework of macroscopic quantum electrodynamics in dispersive and absorptive media. In order to describe the electromagnetic field from Maxwell's equations was started, whereby the noise-current densities, which are connected with the absorption of the medium, were included. The solution of these equations expresses the electromagnetic field variables by the noise-current densities by means of Green's tensor of the macroscopic Maxwell equations. The explicit quantization is performed by means of the noise-current densities, whereby a diagonal Hamiltonian is introduced, which then guarantees the time development according to Maxwell's equation and the fulfillment of the fundamental simultaneous commutation relations of the field variables. In the case of the interaction of the medium-supported field with atoms the Hamiltonian must be extended by atom-field interactions energies, whereby the canonical coupling schemes of the minimal or multipolar coupling can be used. The dieelectric properties of the material bodies as well as their shape are coded in the Green tensor of the macroscopic Maxwell equations. As preparing step first the Green tensor was specified in order to derive three-dimensional input-output relations for the electromagnetic field operators on a plane multilayer structure. Such a general dewscription of the electromagnetic field allows the inclusion both of dispersion and absorption of the media and the
What the electrical impedance can tell about the intrinsic properties of an electrodynamic shaker.
Lütkenhöner, Bernd
2017-01-01
Small electrodynamic shakers are becoming increasingly popular for diagnostic investigations of the human vestibular system. More specifically, they are used as mechanical stimulators for eliciting a vestibular evoked myogenic potential (VEMP). However, it is largely unknown how shakers perform under typical measurement conditions, which considerably differ from the normal use of a shaker. Here, it is shown how the basic properties of a shaker can be determined without requiring special sensors such as accelerometers or force gauges. In essence, the mechanical parts of the shaker leave a signature in the electrical impedance, and an interpretation of this signature using a simple model allows for drawing conclusions about the properties of the shaker. The theory developed (which is quite general so that it is usable also in other contexts) is applied to experimental data obtained for the minishaker commonly used in VEMP measurements. It is shown that the experimental conditions substantially influence the properties of the shaker. Relevant factors are, in particular, the spatial orientation of the shaker (upright, horizontal or upside-down) and the static force acting on the table of the shaker (which in a real measurement corresponds to the force by which the shaker is pressed against the test person's head). These results underline the desirability of a proper standardization of VEMP measurements. Direct measurements of displacement and acceleration prove the consistency of the conclusions derived from the electrical impedance.
Birdsall, Adam W.; Krieger, Ulrich K.; Keutsch, Frank N.
2018-01-01
New analytical techniques are needed to improve our understanding of the intertwined physical and chemical processes that affect the composition of aerosol particles in the Earth's atmosphere, such as gas-particle partitioning and homogenous or heterogeneous chemistry, and their ultimate relation to air quality and climate. We describe a new laboratory setup that couples an electrodynamic balance (EDB) to a mass spectrometer (MS). The EDB stores a single laboratory-generated particle in an electric field under atmospheric conditions for an arbitrarily long length of time. The particle is then transferred via gas flow to an ionization region that vaporizes and ionizes the analyte molecules before MS measurement. We demonstrate the feasibility of the technique by tracking evaporation of polyethylene glycol molecules and finding agreement with a kinetic model. Fitting data to the kinetic model also allows determination of vapor pressures to within a factor of 2. This EDB-MS system can be used to study fundamental chemical and physical processes involving particles that are difficult to isolate and study with other techniques. The results of such measurements can be used to improve our understanding of atmospheric particles.
Anderson, B. J.; Korth, H.; Waters, C. L.; Green, D. L.; Merkin, V. G.; Barnes, R. J.; Dyrud, L. P.
2014-05-01
The Active Magnetosphere and Planetary Electrodynamics Response Experiment uses magnetic field data from the Iridium constellation to derive the global Birkeland current distribution every 10 min. We examine cases in which the interplanetary magnetic field (IMF) rotated from northward to southward resulting in onsets of the Birkeland currents. Dayside Region 1/2 currents, totaling ~25% of the final current, appear within 20 min of the IMF southward turning and remain steady. Onset of nightside currents occurs 40 to 70 min after the dayside currents appear. Thereafter, the currents intensify at dawn, dusk, and on the dayside, yielding a fully formed Region 1/2 system ~30 min after the nightside onset. The results imply that the dayside Birkeland currents are driven by magnetopause reconnection, and the remainder of the system forms as magnetospheric return flows start and progress sunward, ultimately closing the Dungey convection cycle.
Cavity quantum electrodynamics in application to plasmonics and metamaterials
Directory of Open Access Journals (Sweden)
Pavel Ginzburg
2016-11-01
Full Text Available Frontier quantum engineering tasks require reliable control over light-matter interaction dynamics, which could be obtained by introducing electromagnetic structuring. Initiated by the Purcell's discovery of spontaneous emission acceleration in a cavity, the concept of electromagnetic modes' design have gained a considerable amount of attention due to development of photonic crystals, micro-resonators, plasmonic nanostructures and metamaterials. Those approaches, however, offer qualitatively different strategies for tailoring light-matter interactions and are based on either high quality factor modes shaping, near field control, or both. Remarkably, rigorous quantum mechanical description might address those processes in a different fashion. While traditional cavity quantum electrodynamics tools are commonly based on mode decomposition approach, few challenges rise once dispersive and lossy nanostructures, such as noble metals (plasmonic antennas or metamaterials, are involved. The primary objective of this review is to introduce key methods and techniques while aiming to obtain comprehensive quantum mechanical description of spontaneous, stimulated and higher order emission and interaction processes, tailored by nanostructured material environment. The main challenge and the complexity here are set by the level of rigorousity, up to which materials should be treated. While relatively big nanostructured features (10nm and larger could be addressed by applying fluctuation–dissipation theorem and corresponding Green functions' analysis, smaller objects will require individual approach. Effects of material granularity, spatial dispersion, tunneling over small gaps, material memory and others will be reviewed. Quantum phenomena, inspired and tailored by nanostructured environment, plays a key role in development of quantum information devices and related technologies. Rigorous analysis is required for both examination of experimental observations
Construction and Control of an active suspension for a field sprayer boom
DEFF Research Database (Denmark)
Nielsen, Henrik Skovsgaard; Sørensen, Paul Haase
1998-01-01
perforamnce of an active and passive boom suspension. A model has been made of an advanced active system, that combines a traditional trapezoid, with a spring pendulum system. The system can be described with a linear forth order model. The system has been the foundation for an active suspension...
Differential Evolution-Based PID Control of Nonlinear Full-Car Electrohydraulic Suspensions
Directory of Open Access Journals (Sweden)
Jimoh O. Pedro
2013-01-01
Full Text Available This paper presents a differential-evolution- (DE- optimized, independent multiloop proportional-integral-derivative (PID controller design for full-car nonlinear, electrohydraulic suspension systems. The multiloop PID control stabilises the actuator via force feedback and also improves the system performance. Controller gains are computed using manual tuning and through DE optimization to minimise a performance index, which addresses suspension travel, road holding, vehicle handling, ride comfort, and power consumption constraints. Simulation results showed superior performance of the DE-optimized PID-controlled active vehicle suspension system (AVSS over the manually tuned PID-controlled AVSS and the passive vehicle suspension system (PVSS.
Many-body quantum electrodynamics networks: Non-equilibrium condensed matter physics with light
Le Hur, Karyn; Henriet, Loïc; Petrescu, Alexandru; Plekhanov, Kirill; Roux, Guillaume; Schiró, Marco
2016-10-01
We review recent developments regarding the quantum dynamics and many-body physics with light, in superconducting circuits and Josephson analogues, by analogy with atomic physics. We start with quantum impurity models addressing dissipative and driven systems. Both theorists and experimentalists are making efforts towards the characterization of these non-equilibrium quantum systems. We show how Josephson junction systems can implement the equivalent of the Kondo effect with microwave photons. The Kondo effect can be characterized by a renormalized light frequency and a peak in the Rayleigh elastic transmission of a photon. We also address the physics of hybrid systems comprising mesoscopic quantum dot devices coupled with an electromagnetic resonator. Then, we discuss extensions to Quantum Electrodynamics (QED) Networks allowing one to engineer the Jaynes-Cummings lattice and Rabi lattice models through the presence of superconducting qubits in the cavities. This opens the door to novel many-body physics with light out of equilibrium, in relation with the Mott-superfluid transition observed with ultra-cold atoms in optical lattices. Then, we summarize recent theoretical predictions for realizing topological phases with light. Synthetic gauge fields and spin-orbit couplings have been successfully implemented in quantum materials and with ultra-cold atoms in optical lattices - using time-dependent Floquet perturbations periodic in time, for example - as well as in photonic lattice systems. Finally, we discuss the Josephson effect related to Bose-Hubbard models in ladder and two-dimensional geometries, producing phase coherence and Meissner currents. The Bose-Hubbard model is related to the Jaynes-Cummings lattice model in the large detuning limit between light and matter (the superconducting qubits). In the presence of synthetic gauge fields, we show that Meissner currents subsist in an insulating Mott phase. xml:lang="fr"
Cristofolini, Andrea; Latini, Chiara; Borghi, Carlo A.
2011-02-01
This paper presents a technique for improving the convergence rate of a generalized minimum residual (GMRES) algorithm applied for the solution of a algebraic system produced by the discretization of an electrodynamic problem with a tensorial electrical conductivity. The electrodynamic solver considered in this work is a part of a magnetohydrodynamic (MHD) code in the low magnetic Reynolds number approximation. The code has been developed for the analysis of MHD interaction during the re-entry phase of a space vehicle. This application is a promising technique intensively investigated for the shock mitigation and the vehicle control in the higher layers of a planetary atmosphere. The medium in the considered application is a low density plasma, characterized by a tensorial conductivity. This is a result of the behavior of the free electric charges, which tend to drift in a direction perpendicular both to the electric field and to the magnetic field. In the given approximation, the electrodynamics is described by an elliptical partial differential equation, which is solved by means of a finite element approach. The linear system obtained by discretizing the problem is solved by means of a GMRES iterative method with an incomplete LU factorization threshold preconditioning. The convergence of the solver appears to be strongly affected by the tensorial characteristic of the conductivity. In order to deal with this feature, the bandwidth reduction in the coefficient matrix is considered and a novel technique is proposed and discussed. First, the standard reverse Cuthill-McKee (RCM) procedure has been applied to the problem. Then a modification of the RCM procedure (the weighted RCM procedure, WRCM) has been developed. In the last approach, the reordering is performed taking into account the relation between the mesh geometry and the magnetic field direction. In order to investigate the effectiveness of the methods, two cases are considered. The RCM and WRCM procedures
Energetic instability unjams sand and suspension.
Jiang, Yimin; Liu, Mario
2004-10-01
Jamming is a phenomenon occurring in systems as diverse as traffic, colloidal suspensions, and granular materials. A theory on the reversible elastic deformation of jammed states is presented. First, an explicit granular stress-strain relation is derived that captures many relevant features of sand, including especially the Coulomb yield surface and a third-order jamming transition. Then this approach is generalized, and employed to consider jammed magnetorheological and electrorheological fluids, again producing results that compare well to experiments and simulations.
Flow dynamics of pulp fiber suspensions
Ventura, Carla; Garcia, Fernando; Ferreira, Paulo; Rasteiro, Maria
2008-01-01
The transport between different equipment and unit operations plays an important role in pulp and paper mills because fiber suspensions differ from all other solid-liquid systems, due to the complex interactions between the different pulp and paper components. Poor understanding of the suspensions’ flow dynamics means the industrial equipment design is usually conservative and frequently oversized, thus contributing to excessive energy consumption in the plants. Our study aim was ...
Magnetic suspension - Today's marvel, tomorrow's tool
Lawing, Pierce L.
1989-01-01
NASA's Langley facility has through constant advocacy of magnetic suspension systems (MSSs) for wind-tunnel model positioning obtained a technology-development status for the requisite large magnets, computers, automatic control techniques, and apparatus configurations, to contemplate the construction of MSSs for large wind tunnels. Attention is presently given to the prospects for MSSs in wind tunnels employing superfluid helium atmospheres to obtain very high Reynolds numbers, where the MSS can yield substantial enhancements of wind tunnel productivity.
Directory of Open Access Journals (Sweden)
Kasprzyk Jerzy
2017-06-01
Full Text Available The efficiency of vibration control in an automotive semi-active suspension system depends on the quality of information from sensors installed in the vehicle, including information about deflection of the suspension system. The control algorithm for vibration attenuation of the body takes into account its velocity as well as the relative velocity of the suspension. In this paper it is proposed to use the Linear Variable Differential Transformer (LVDT unit to measure the suspension deflection and then to estimate its relative velocity. This approach is compared with a typical solution implemented in such applications, where the relative velocity is calculated by processing signals acquired from accelerometers placed on the body and on the chassis. The experiments performed for an experimental All-Terrain Vehicle (ATV confirm that using LVDT units allows for improving ride comfort by better vibration attenuation of the body.
Effect of β--charged eradiation and its calculation in the nuclear electrodynamics theory
Tertychny-Dauri, V. Yu
2015-09-01
The study of own fields and charged particles motion and also charged fission splinters of a heavy nucleuses into nonrelativistic approximation is the subject of this paper research. The main efforts are concentrated in quest of charged share components by the radioactive β--disintegration. The corresponding field equations and equations of motion in the nuclear electrodynamics processes are obtained and their solutions are found. Analysis of the microscopic equations is generalized to the level of the macroscopic description of continuous medium electrodynamics and is accompanied by quantumomechanical additions.
(2+1-dimensional regular black holes with nonlinear electrodynamics sources
Directory of Open Access Journals (Sweden)
Yun He
2017-11-01
Full Text Available On the basis of two requirements: the avoidance of the curvature singularity and the Maxwell theory as the weak field limit of the nonlinear electrodynamics, we find two restricted conditions on the metric function of (2+1-dimensional regular black hole in general relativity coupled with nonlinear electrodynamics sources. By the use of the two conditions, we obtain a general approach to construct (2+1-dimensional regular black holes. In this manner, we construct four (2+1-dimensional regular black holes as examples. We also study the thermodynamic properties of the regular black holes and verify the first law of black hole thermodynamics.
Electrodynamical Light Trapping Using Whispering-Gallery Resonances in Hyperbolic Cavities
Directory of Open Access Journals (Sweden)
Chihhui Wu
2014-04-01
Full Text Available We theoretically study spherical cavities composed of hyperbolic metamaterials with indefinite permittivity tensors. Such cavities are capable of electrodynamically confining fields with deep subwavelength cavity sizes. The supported resonant modes are analogous to the whispering-gallery modes found in dielectric microcavities with much larger physical sizes. Because of the nature of electrodynamical confinement, these hyperbolic metamaterial cavities exhibit quality factors higher than predicted in the electrostatic limit. In addition, confining electromagnetic fields into the small cavities results in an extremely high photonic local density of states.