WorldWideScience

Sample records for electrodes ii influence

  1. Studies of copper(II) sulphide ion-selective electrodes.

    Science.gov (United States)

    Johansson, G; Edström, K

    1972-12-01

    Changes in liquid junction potentials in copper(II) solutions were measured when different reference electrodes were used. The slope and intercept of a calibration curve for a copper-selective electrode will depend on the selection of reference electrode. The condition of the electrode surface of an Orion copper-selective electrode was studied microscopically and the influence of redox potential on stability of the electrode against corrosion is discussed. Oxidizing solutions will produce pits at dislocations in the material and there will be a mixed electrode potential. The slope, stability, and speed of response are much lower when the surface contains pits. Diamond-polishing was shown to improve the electrode significantly.

  2. Influence of phosphate buffer and proteins on the potentiometric response of a polymeric membrane-based solid-contact Pb(II) ion-selective electrode

    DEFF Research Database (Denmark)

    Joon, Narender Kumar; He, Ning; Wagner, Michal

    2017-01-01

    with electrode conditioning in phosphate-buffered saline (PBS) solution was elucidated by potentiometry and electrochemical impedance spectroscopy. The adsorbed BSA at the surface of the Pb2+-ISE slightly lowered the detection limit but did not influence the selectivity of the Pb2+-ISE towards the interfering...

  3. A mercury free electrode for anodic stripping voltammetric determination of Pb (II) ions using poly zincon film modified electrode

    Science.gov (United States)

    Vasanthi, S.; Devendiran, M.; Narayanan, S. Sriman

    2017-11-01

    With an aim of developing a mercury-free electrode for anodic stripping voltammetric determination of Pb (II) ions, a poly zincon film (PZF) modified electrode is reported here. The PZF on the electrode surface has been obtained by electropolymerisation of zincon. PZF present on the electrode surface has been used for preconcentrating Pb (II) ions through complexation. The electrochemical determination of the above metal ion has been carried out by reducing the preconcentrated Pb (II) at -1.0 V followed by anodic stripping in acetate buffer of pH 6 and measuring the stripping current at -0.64 V. The PZF and Pb preconcentrated PZF modified electrodes have been characterized by scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The factors influencing the determination of Pb (II) ions such as the nature of medium/background electrolyte, pH, preconcentration time and electrode regeneration have been studied in detail. Under optimum conditions, a linear relation for the stripping current with Pb (II) ions in the solution has been observed in the range from 3.45 to 136.3 μg L-1 with a detection limit of 0.98 μg L-1. The regeneration of the modified electrode after each experiment has been achieved by simply immersing the electrode in 0.1 M EDTA solution for 2 min and washing thoroughly in de-ionised water. PZF modified electrode has shown a promising and sensitive platform for the anodic stripping determination of Pb (II) ions and the regeneration of the electrode has been found to be easy for subsequent uses. The proposed method has been applied for the determination of Pb (II) ions in ground water and tap water samples.

  4. Fabrication of carbon nanotubes paste electrode for determination of Cd (II) and Pb (II) ions

    Science.gov (United States)

    Le Hai, Tran; Hai, Tran Duy

    2017-09-01

    In this study, the electrode for determination of Cd (II) and Pb (II) was prepared by a paste composition of multi-wall carbon nanotubes (MWCNTs) and paraffin oil as a binder. Effect of MWCNTs/paraffin oil ratio on electrochemical behaviors of the electrodes was investigated. For the characterization of the fabricated MWCNT paste electrodes, the cyclic voltammetry, SEM images, RAMAN and XRD spectroscopy were employed. It was found that the electrode containing 20% (w/w) paraffin oil and 80 % (w/w) MWCNTs exhibited the satisfactory properties through the anodic stripping voltammetry (ASV) results. This electrode showed a reversible redox process with an electrochemical mechanism of controlled diffusion. Furthermore, the ASV results of the prepared electrode revealed a linear response of Pb (II) and Cd (II) concentrations with a detection limit of 6.33 µmol.L-1 and 0.42 µmol.L-1, respectively

  5. Iodide Selective Electrodes Based on Bis(2-mercaptobenzothiazolato Mercury(II and Bis(4-chlorothiophenolato Mercury(II Carriers

    Directory of Open Access Journals (Sweden)

    Morteza M. Zohory

    2003-12-01

    Full Text Available New iodide-selective electrodes based on bis(2-mercaptobenzothiazolato mercury(II [Hg(MBT2] and bis(4-chlorothiophenolato mercury(II [Hg(CTP2] carriers are described. The electrodes were prepared by incorporating the ionophores into plasticized PVC membranes, which were directly coated on the surface of graphite disk electrodes. The electrodes displayed high selectivity for iodide with respect to a number of inorganic and organic anions. The influence of the membrane composition and pH, and the effect of lipophilic cationic and anionic additives on the response properties of the electrodes were investigated. The electrodes exhibited near-Nernstian slopes of -57.6 ± 0.8 and -58.4 ± 1.4 mV/decade of iodide concentration over the range 1 × 10-6 – 1 × 10-1 M, with detection limits of ~4 × 10-7 and 6 × 10-7 M for the electrodes based on [Hg(MBT2] and [Hg(CTP2], respectively. They have relatively fast response times (≤ 10 s, satisfactory reproducibility, and life times of at least two months. The potentiometric responses of the electrodes are independent of pH of the test solution over the range 3.5 – 11.5.

  6. Cellulosic-covered electrode storage condition - influence on weld properties

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, Robert J.; Ogborn, Jonathan S. [The Lincoln Electric Company (United States)

    2005-07-01

    Cellulosic-covered electrodes have been used for circumferential shielded metal arc welding of line pipe over many decades. Unlike low hydrogen electrodes that achieve optimum results at low covering moisture levels, cellulosic-covered electrodes require much higher covering moisture levels for proper operation. Further, Johnson and Bruce [1] recently suggested that high incidents of hydrogen assisted cracking (HAC) might be associated with low moisture levels in the cellulosic-covered electrodes used. This suggests further that storage and handling practices based on conventional wisdom in the field may not be sufficient as the industry transitions to more demanding applications and higher strength materials. Consequently, this work was undertaken to develop more definitive information on the performance of cellulosic-covered electrodes for three purposes: determine the influence of storage and handling practices on covering moisture; determine the influence of moisture on electrode operability, weld metal chemical composition and hardness; develop guidelines for cellulosic-covered electrode storage and handling. Three different E8010 type electrodes were subjected to various storage temperatures and durations. As temperature increased, there was a tendency for lower electrode covering moisture levels with corresponding increases in weld metal alloy content, hardness, strength, and tendency for HAC. Variations in operation were also noted. (author)

  7. Tracer Studies of the Influence of Foreign Substances at the Surface of the Electrodes. II Influence in electro crystallization phenomena; Accion de las sustancias extranas en la superficies de los electrodos. Estudio mediante radiotrazadores. II. Influencia en los procesos de electrocristalizacion

    Energy Technology Data Exchange (ETDEWEB)

    Llopis, J.; Gamboa, J. M.; Arizmendi, L.

    1963-07-01

    The action of foreign substances present on the surface of the electrodes, in electro crystallization phenomena, has been studied. The number of Ag crystals per square centimeter of Pt electrode varies with the polishing, the current density and the presence of multilayers of stearic acid. The statistical distribution of Ag crystals without and with multilayers and their influence on the concentration index and the deformation of Ag crystals has been studied. the size of these crystals increases as the current density decreases. (Author) 16 refs.

  8. DEFORMATION INFLUENCE ON A LIFETIME OF WELDING ELECTRODE TIPS

    Directory of Open Access Journals (Sweden)

    Ján Viňáš

    2009-02-01

    Full Text Available The contribution deals with the influence of welding electrode tips deformation on their lifetime. The influence of material properties, production technology and the intensity of welding electrodes load on their lifetime are presented. The electrode tips of the most used type of CuCr1Zr alloy of three basic standard shapes before and after the process of welding are evaluated. The process of welding is realized with low, middle and maximum welding parameters on programmable pneumatic spot welding machine VTS BPK 20. The influence of welding parameters on chosen material characteristics of welding tips is observed. Through the use of upsetting test, dependency of forming strength and deformation of material on used technology of welding tip production is observed.

  9. Preparation and characterization of selective electrode for determination of copper ion(II

    Directory of Open Access Journals (Sweden)

    Salwa Fares Rassi

    2015-12-01

    Full Text Available Achemically modified carbon paste electrode with diphenyl carbazide the potentiometric determination of Cu(II is demonstrated. The electrode exhibits linear response to Cu(II over a wide concentration range (9.2×10−7-5.0×10−1 with Nernstian slope of 30±0.15 mV per decade. It has a response time of about 40 s and can be used for a period of two months with good reproducibility. The detection limit of this electrode was 7.0×10−7 M. The proposed electrode shows a very good selectivity for Cu(II over a wide variety of metal ions. This chemically modified carbon paste electrode was successfully used for the determination of Cu(II in various water samples solution and pharmaceutical formulation

  10. Advanced bionics thin lateral and Helix II electrodes: a temporal bone study.

    Science.gov (United States)

    Wright, Charles G; Roland, Peter S; Kuzma, Janusz

    2005-11-01

    This study was performed to evaluate the insertional properties of two cochlear implant electrodes recently developed by Advanced Bionics Corporation. Anatomic study using human cadaveric temporal bones. The electrode prototypes we tested are the Thin Lateral and Helix II arrays, which incorporate features designed to minimize insertional trauma. A total of eight electrodes (4 of each prototype) were evaluated after insertion into freshly fixed temporal bones. The electrodes were inserted by way of standard cochleostomies, and the specimens were subsequently dissected to assess electrode position, insertion depth, and intracochlear trauma. Quantitative data regarding insertion depths and contact distances from the modiolus are presented for all electrodes tested. The mean insertion depths were 368 degrees for the Thin Lateral electrodes, which are designed to approximate the lateral cochlear wall, and 436 degrees for the Helix II electrodes, which occupy a more medial position in the scala tympani. No evidence of insertional trauma was observed with either electrode. The ease of insertion and absence of trauma were confirmed during additional trials in which electrode behavior was directly observed during insertion into previously opened cochleas. Both electrodes performed favorably in our human temporal bone trials, and both arrays appear promising for clinical use, especially in patients with residual hearing in whom atraumatic insertion is an important objective.

  11. Morphology-dependent NiO modified glassy carbon electrode surface for lead(II) and cadmium(II) detection

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xuewu [School of Mechanical and Electronic Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070 (China); Wen, Hao [School of Materials Science and Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070 (China); Fu, Qiang; Peng, Dai [Wuhan Institute of Marine Electric Propulsion, Wuhan 430070 (China); Yu, Jingui [School of Mechanical and Electronic Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070 (China); Zhang, Qiaoxin, E-mail: qiaoxinzhang1220@163.com [School of Mechanical and Electronic Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070 (China); Huang, Xingjiu [School of Mechanical and Electronic Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070 (China)

    2016-02-15

    Graphical abstract: Glassy carbon electrode surfaces have been modified with rods NiO, flakes NiO and balls NiO prepared via hydrothermal synthesis method for Pb(II) and Cd(II) detection by using the square wave anodic stripping voltammetry, among which the balls NiO modified electrode can achieve the optimal electrochemical detection ability for its enhanced electron transfer capacity, large BET surface area and strong adsorption capacity on surface. - Highlights: • Glassy carbon electrode surface was modified with NiO for lead(II) and cadmium(II) detection. • Surface detection effect was evaluated by detection limit, sensitivity and linear relativity. • Balls NiO modified electrode showed better electrochemical detection ability. • Lager BET surface area of NiO made electrode surface excellent electron transfer capacity. • Balls NiO modified electrode exhibited superior adsorption capacity and detection stability. - Abstract: Glassy carbon electrode (GCE) surfaces have been modified with different NiO morphologies consisting of rods NiO, flakes NiO and balls NiO prepared via the hydrothermal synthesis method for Pb(II) and Cd(II) detection by using the square wave anodic stripping voltammetry (SWASV). Meanwhile, the typical cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), BET surface area and adsorption property of the modified electrode surfaces have been investigated to evaluate their electrochemical detection effect. Results show that balls NiO modified GCE can get the optimal detection ability for its highest detection sensitivity to Pb(II) (13.46 A M{sup −1}) and Cd(II) (5.10 A M{sup −1}), the lowest detection limit (DL) to Pb(II) (0.08 μM) and Cd(II) (0.07 μM) as well as the superior linear relativity. In addition, an enhanced current at redox peaks, lower electron transfer resistance, larger BET surface area and stronger adsorption capacity have been confirmed for the balls NiO modified GCE surface. Finally, excellent

  12. The influence of cochlear implant electrode position on performance.

    Science.gov (United States)

    van der Marel, Kim S; Briaire, Jeroen J; Verbist, Berit M; Muurling, Tjeerd J; Frijns, Johan H M

    2015-01-01

    To study the relation between variables related to cochlear implant electrode position and speech perception performance scores in a large patient population. The study sample consisted of 203 patients implanted with a CII or HiRes90K implant with a HiFocus 1 or 1J electrode of Advanced Bionics. Phoneme and word score averages for the 1- and 2-year follow-up were calculated for 41 prelingually deaf and 162 postlingually deaf patients. Analyses to reveal correlations between these performance outcomes and 6 position-related variables (angle of most basal electrode contact, surgical insertion angle, surgical insertion, wrapping factor, angular insertion depth, linear insertion depth) were executed. The scalar location, as an indication for the presence of intracochlear trauma, and modiolus proximity beyond the basal turn were not evaluated in this study. In addition, different patient-specific variables (age at implantation, age at onset of hearing loss, duration of deafness, preoperative phoneme and word scores) were tested for correlation with performance. The performance scores of prelingual patients were correlated with age at onset of hearing loss, duration of deafness and preoperative scores. For the postlingual patients, performance showed correlations with all 5 patient-specific variables. None of the 6 position-related variables influenced speech perception in cochlear implant patients. Although several patient-specific variables showed correlations with speech perception outcomes, not one of the studied angular and linear position-related variables turned out to have a demonstrable influence on performance.

  13. Nanomolar determination of Pb (II ions by selective templated electrode

    Directory of Open Access Journals (Sweden)

    Mazloum-Ardakani Mohammad

    2012-01-01

    Full Text Available Polypyrrole modified electrode, prepared by electropolymerization of pyrrole in the presence of methyl red as a dopant, was templated with respect to Pb2+ ion and applied for potentiometric and voltammetric detection of this ion. The templating process improved the analytical response characteristics of the electrode, specially their selectivity, with respect to Pb2+ ion. The improvement depends on both the incorporated ligand (dopant and the templating process, with the latter being more vital. The potentiometric response of the electrode was linear within the Pb2+ concentration range of 2.0×10-6 to 5.0×10-2 M with a near-Nernstian slope of 28.6 mV decade-1 and a detection limit of 7.0 ×10-7 M. The electrode was also used for preconcentration differential pulse anodic stripping voltammetry (DPASV and results showed that peak currents for the incorporated lead species were dependent on the metal ion concentration in the range of 1.0×10-8 to 1.0×10-3 M. The detection limit of DPASV method was 3.5 ×10-9 M. The selectivity of the electrode with respect to some transition metal ions was investigated. The modified-templated electrode was used for the successful assay of lead in two standard reference material samples.

  14. Thiocyanate ion-selective PVC membrane electrode based on N,N'-ethylene-bis(4-methylsalicylidineiminato)nickel(II).

    Science.gov (United States)

    Mazloum Ardakani, M; Jamshidpour, M; Naeimi, H; Moradi, L

    2006-09-01

    A highly selective poly(vinyl chloride) (PVC) membrane electrode based on an N,N'-ethylene-bis(4-methyl-salicylidineiminato) nickel(II) [Ni(EBMSI)] complex as a carrier for a thiocyanate-selective electrode is reported. The influences of the membrane composition, pH and possible interfering anions were investigated based on the response properties of the electrode. The electrode exhibited a good Nernstian slope of -58.9 +/- 0.7 mV decade(-1), over a wide pH range of 3.5 - 8.5 and a linear range of 1.0 x 10(-6) - 1.0 x 10(-1) M for thiocyanate. The detection limit of electrode was 3.1 x 10(-7) M SCN(-). The selectivity coefficients determined by a fixed interference method (FIM) indicate that a good discriminating ability towards the SCN- ion compared to other anions. The proposed sensor had a fast response time of about 5 - 15 s and could be used for at least 3 months without any considerable divergence in the potential. It was applied as an indicator electrode in the titration of thiocyanate with Ag+ and in the potentiometric determination of thiocyanate in saliva and urine samples.

  15. The effective determination of Cd(ii) and Pb(ii) simultaneously based on an aluminum silicon carbide-reduced graphene oxide nanocomposite electrode.

    Science.gov (United States)

    Wu, Yale; Yang, Tao; Chou, Kuo-Chih; Chen, Junhong; Su, Lei; Hou, Xinmei

    2017-07-24

    A platform for the simultaneous determination of Cd(ii) and Pb(ii) in aqueous solution has been applied based on an aluminum silicon carbide-reduced graphene oxide nanocomposite (Al4SiC4-RGO) modified bismuth film glassy carbon electrode (GCE) using square wave anodic stripping voltammetry (SWASV) for the first time. The Al4SiC4-RGO nanocomposite electrode was characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Compared with the Al4SiC4 modified GCE and bare GCE, the electrochemical performance of the Al4SiC4-RGO nanocomposite electrode is obviously enhanced resulting from the synergistic effects of Al4SiC4, RGO and bismuth film. The chemical and electrochemical parameters that exert an influence on the deposition and stripping of metal ions, such as supporting electrolytes, pH values, concentrations of Bi3+, deposition potentials and deposition times, were carefully studied. Under optimal conditions, a linear relationship exists between the currents and the concentrations of Cd(ii) and Pb(ii) in the range of 50 to 2700 μg L-1. The limits of detection (S/N = 3) are estimated to be 1.30 μg L-1 for Pb(ii) and 2.15 μg L-1 for Cd(ii). Compared with the related work reported in the literature, the analytical performance in this work has a lower determination limit and a wider detection linear range. In addition, this electrode also exhibits good stability and reproducibility. These results imply that the Al4SiC4-RGO nanocomposite might be a promising candidate for practical applications in the electrochemical detection of metal ions.

  16. Determination of Mercury (II Ion on Aryl Amide-Type Podand-Modified Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Sevgi Güney

    2011-01-01

    Full Text Available A new voltammetric sensor based on an aryl amide type podand, 1,8-bis(o-amidophenoxy-3,6-dioxaoctane, (AAP modified glassy carbon electrode, was described for the determination of trace level of mercury (II ion by cyclic voltammetry (CV and differential pulse voltammetry (DPV. A well-defined anodic peak corresponding to the oxidation of mercury on proposed electrode was obtained at 0.2 V versus Ag/AgCl reference electrode. The effect of experimental parameters on differential voltammetric peak currents was investigated in acetate buffer solution of pH 7.0 containing 1 × 10−1 mol L−1 NaCl. Mercury (II ion was preconcentrated at the modified electrode by forming complex with AAP under proper conditions and then reduced on the surface of the electrode. Interferences of Cu2+, Pb2+, Fe3+, Cd2+, and Zn2+ ions were also studied at two different concentration ratios with respect to mercury (II ions. The modified electrode was applied to the determination of mercury (II ions in seawater sample.

  17. Simultaneous determination of trace Cd(II), Pb(II) and Cu(II) by differential pulse anodic stripping voltammetry using a reduced graphene oxide-chitosan/poly-l-lysine nanocomposite modified glassy carbon electrode.

    Science.gov (United States)

    Guo, Zhuo; Li, Dong-di; Luo, Xian-Ke; Li, Ya-Hui; Zhao, Qi-Nai; Li, Meng-Meng; Zhao, Yang-Ting; Sun, Tian-Shuai; Ma, Chi

    2017-03-15

    The reduced graphene oxide (RGO) and Chitosan (CS) hybrid matrix RGO-CS were coated onto the glassy carbon electrode (GCE) surface, then, poly-l-lysine films (PLL) were prepared by electropolymerization with cyclic voltammetry (CV) method to prepare RGO-CS/PLL modified glassy carbon electrode (RGO-CS/PLL/GCE) for the simultaneous electrochemical determination of heavy metal ions Cd(II), Pb(II) and Cu(II). Combining the advantageous features of RGO and CS, RGO and CS are used together because the positively charged CS can interact with the negatively changed RGO to prevent their aggregation. Furthermore, CS has many amino groups along its macromolecular chains and possessed strongly reactive with metal ions. Moreover, PLL modified electrodes have good stability, excellent permselectivity, more active sites and strong adherence to electrode surface, which enhanced electrocatalytic activity. The RGO-CS/PLL/GCE was characterized voltammetrically using redox couples (Fe(CN)63-/4-), complemented with electrochemical impedance spectroscopy (EIS). Differential pulse anodic stripping voltammetry (DPASV) has been used for the detection of Cd(II), Pb(II) and Cu(II). The detection limit of RGO-CS/PLL/GCE toward Cd(II), Pb(II) and Cu(II) is 0.01μgL-1, 0.02μgL-1 and 0.02μgL-1, respectively. The electrochemical parameters that exert influence on deposition and stripping of metal ions, such as supporting electrolytes, pH value, deposition potential, and deposition time, were carefully studied. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Determination of Pb(II) with a dithizone-modified carbon paste electrode.

    Science.gov (United States)

    Vázquez, Ma Dolores; Tascón, Ma Luz; Debán, Luis

    2006-01-01

    A dithizone (DTZ) modified carbon paste electrode was developed for the sensitive and selective determination of Pb(II) using differential pulse anodic stripping voltammetry as well in batch as in FIA system. The analysis procedure is based on an open circuit accumulation step in a stirred sample solution. This was followed by a medium exchange to a clean solution and subsequently by a proper anodic stripping. The analytical performance was evaluated with respect to the quantity of modifier in the paste, accumulation time, background electrolyte, Pb(II) concentration and other variables. When the accumulation time applied was 5 minutes, linear calibration graphs were obtained in the concentration range 1 x 10(-7)-1 x 10(-5) M and 8 x 10(-8)-5 x 10(-6) M for batch and Flow Injection Analysis (FIA), respectively. The detection limits found were 8.65 x 10(-8) M in batch and 4.45 x 10(-8) M in FIA. A convenient and rapid renewal of electrode surface allows the use of a single modified electrode surface in multiple analytical determinations. Several coexisting metals ions such as Cd(II), Hg(II), Cu(II) and Zn(II) had no interference on the determination of Pb(II). The proposed method was applied in the determination of lead in soils located in the vicinity of metallurgic transformation industry. The results obtained were in accordance to the ones supplied by Atomic Absorption Spectroscopy (AAS).

  19. Graphite electrode modified with Indigo Carmine for Cu(II ions detection

    Directory of Open Access Journals (Sweden)

    Coulibaly Mariame

    2014-07-01

    Full Text Available An electrochemical method for Cu(II determination, based on its reaction with indigo carmine (IC in alkaline medium and differential pulse voltammetry performed at graphite electrode, was elaborated. The experimental parameters affecting the Cu(II - IC complex formation (reaction time and pH were optimized. The linear range of the calibration curve, obtaining by representing the IC oxidation current (Eappl = 0.175 V vs. Ag/AgCl,KClsat versus the Cu(II concentration (pH 10, was from 10 μM up to 70 μM Cu (II and the detection limit was 4.74 μM.

  20. Determination of cadmium (II) ion using the nafion-ethylenediamine-modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.A.; Park, C.J.; Chng, K.H. [Chonnam National University, Kwangju (Korea); Ko, Y.C. [Daebul University, Chonnam (Korea); Park, B.H. [Kumho R and D Center, Kwangju (Korea)

    2001-04-01

    Determination of cadmium (II) ion with a perfluorinated sulfonated polymer-ethylenediamine (nafion-en) modified glassy carbon electrode was studied. It was based on the chemical reactivity of an immobilized layer (nafion-en) to yield complex [Cd (en){sub 2}]{sup 2+}. The reduction peak potential by differential pulse voltammetry (DPV) was observed at -0.780 ({+-}0.005)V vs. Ag/AgCl. The linear calibration curve was obtained in cadmium (II) ion concentration range 5.0 * 10{sup -7}-2.0 * 10{sup -5} M, and the detection limit (3s) was 2.20 * 10{sup -7} M. The detection limit of nafion-en modified glassy carbon electrode has been shown about 14 higher sensitivity than a bare glassy carbon electrode. (author). 9 refs., 5 tabs., 7 figs.

  1. Electrochemical behavior of tin(II at the electrodeposition tin sulfide on Mo-electrode

    Directory of Open Access Journals (Sweden)

    Kazhmukhan Urazov

    2015-03-01

    Full Text Available The electrochemical behavior of tin ions (II and thiosulfate ions (S2O32- on the Mo electrode in various concentrations and potential scan rate was studied by voltammetric method. Dependence of oxidation and reduction currents from concentrations of tin (II ions and scan rate was obtained. It was showed the diffusion nature of the limiting stage of reduction. It was determined the different voltammograms’s character with a sweep potential to E = -1300mV or -1500mV for simultaneous reduction ions Sn (II and (S2O32- from 0,2 M sodium citrate on molybdenum electrode. Nanocrystalline films SnS with a thickness of 1 µ were obtained by the electrodeposition on glass/SnO2.

  2. The influence of cochlear implant electrode position on performance

    NARCIS (Netherlands)

    Marel, K.S. van der; Briaire, J.J.; Verbist, B.M.; Muurling, T.J.; Frijns, J.H.M.

    2015-01-01

    To study the relation between variables related to cochlear implant electrode position and speech perception performance scores in a large patient population.The study sample consisted of 203 patients implanted with a CII or HiRes90K implant with a HiFocus 1 or 1J electrode of Advanced Bionics.

  3. Enhanced glucose sensing based on a novel composite CoII-MOF/Acb modified electrode.

    Science.gov (United States)

    Wen, Yuanyuan; Meng, Wei; Li, Chen; Dai, Lei; He, Zhangxing; Wang, Ling; Li, Ming; Zhu, Jing

    2018-02-16

    In this work, we demonstrate the synthesis and application of a novel Co II -based metal-organic framework {[Co 2 (Dcpp)(Bpe) 0.5 (H 2 O)(μ 2 -H 2 O)]·(Bpe) 0.5 } n (Co II -MOF, H 4 Dcpp = 4,5-bis(4'-carboxylphenyl)-phthalic acid, Bpe = 1,2-bis(4-pyridyl)ethane) as an electrochemical sensor for glucose detection. Single-crystal X-ray diffraction analysis shows that the Co II -MOF has a two-dimensional (2D) bilayer structure composed of Co 2 units and Dcpp 4- ligands. There are two kinds of Bpe in the structure: one serves as a bidentate ligand linking two Co1 atoms in each 2D layer; the other is just free in the lattice. The Co II -MOF modified glassy carbon electrode (GCE) shows good electrocatalytic activity towards glucose oxidation. To further improve the catalytic activity of the electrode, a new composite of Co II -MOF/acetylene black (Co II -MOF/Acb) was constructed. The Co II -MOF/Acb modified electrode exhibits enhanced sensing behavior for glucose detection. The sensing performance of Co II -MOF/Acb/GCE with different Acb loadings was investigated in detail. The results demonstrate that Co II -MOF/GCE with 2% Acb (Co II -MOF/Acb-2%/GCE) exhibits the best sensing behavior, including a high sensitivity of 0.255 μA μM -1 cm -2 and a wide linear range of 5-1000 μM, as well as a low detection limit of 1.7 μM (S/N = 3). It's worth noting that the linear range of Co II -MOF/Acb-2%/GCE was extended by more than ten times when compared to that of Co II -MOF/GCE without Acb addition. In addition, Co II -MOF/Acb-2%/GCE shows good selectivity and stability in the sensing process.

  4. Schiff bases as cadmium(II) selective ionophores in polymeric membrane electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, V.K. [Department of Chemistry, Indian Institute of Technology-Roorkee, Roorkee 247667 (India)]. E-mail: vinodfcy@iitr.ernet.in; Singh, A.K. [Department of Chemistry, Indian Institute of Technology-Roorkee, Roorkee 247667 (India); Gupta, Barkha [Department of Chemistry, Indian Institute of Technology-Roorkee, Roorkee 247667 (India)

    2007-02-05

    The construction and performance characteristics of polymeric membrane electrodes based on two neutral ionophores, N,N'-[bis(pyridin-2-yl)formylidene]butane-1,4-diamine (S{sub 1}) and N-(2-pyridinylmethylene)-1,2-benzenediamine (S{sub 2}) for quantification of cadmium ions, are described. The influences of membrane compositions on the potentiometric response of the electrodes have been found to substantially improve the performance characteristics. The best performance was obtained with the electrode having a membrane composition (w/w) of (S{sub 1}) (2.15%):PVC (32.2%):o-NPOE (64.5%):KTpClPB (1.07%). The proposed electrode exhibits Nernstian response in the concentration range of 7.9 x 10{sup -8} to 1.0 x 10{sup -1} M Cd{sup 2+} with limit of detection 5.0 x 10{sup -8} M, performs satisfactorily over wide pH range (2.0-8.0) with a fast response time (10 s). The sensor has been found to work satisfactorily in partially non-aqueous media up to 30% (v/v) content of methanol, ethanol and acetonitrile and could be used for a period of 2 months. The analytical usefulness of the proposed electrode has been evaluated by its application in the determination of cadmium in real samples. The practical utility of the membrane electrode has also been observed in the presence of surfactants.

  5. Schiff bases as cadmium(II) selective ionophores in polymeric membrane electrodes.

    Science.gov (United States)

    Gupta, V K; Singh, A K; Gupta, Barkha

    2007-02-05

    The construction and performance characteristics of polymeric membrane electrodes based on two neutral ionophores, N,N'-[bis(pyridin-2-yl)formylidene]butane-1,4-diamine (S1) and N-(2-pyridinylmethylene)-1,2-benzenediamine (S2) for quantification of cadmium ions, are described. The influences of membrane compositions on the potentiometric response of the electrodes have been found to substantially improve the performance characteristics. The best performance was obtained with the electrode having a membrane composition (w/w) of (S1) (2.15%):PVC (32.2%):o-NPOE (64.5%):KTpClPB (1.07%). The proposed electrode exhibits Nernstian response in the concentration range of 7.9x10(-8) to 1.0x10(-1) M Cd2+ with limit of detection 5.0x10(-8) M, performs satisfactorily over wide pH range (2.0-8.0) with a fast response time (10 s). The sensor has been found to work satisfactorily in partially non-aqueous media up to 30% (v/v) content of methanol, ethanol and acetonitrile and could be used for a period of 2 months. The analytical usefulness of the proposed electrode has been evaluated by its application in the determination of cadmium in real samples. The practical utility of the membrane electrode has also been observed in the presence of surfactants.

  6. Development and characterisation of disposable gold electrodes, and their use for lead(II) analysis

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Mohd F. M. [Cranfield University, Cranfield Health, Silsoe (United Kingdom); Institute for Medical Research, Toxicology and Pharmacology Unit, Herbal Medicine Research Centre, Kuala Lumpur (Malaysia); Tothill, Ibtisam E. [Cranfield University, Cranfield Health, Silsoe (United Kingdom)

    2006-12-15

    There is an increasing need to assess the harmful effects of heavy-metal-ion pollution on the environment. The ability to detect and measure toxic contaminants on site using simple, cost effective, and field-portable sensors is an important aspect of environmental protection and facilitating rapid decision making. A screen-printed gold sensor in a three-electrode configuration has been developed for analysis of lead(II) by square-wave stripping voltammetry (SWSV). The working electrode was fabricated with gold ink deposited by use of thick-film technology. Conditions affecting the lead stripping response were characterised and optimized. Experimental data indicated that chloride ions are important in lead deposition and subsequent analysis with this type of sensor. A linear concentration range of 10-50 {mu}g L{sup -1} and 25-300 {mu}g L{sup -1} with detection limits of 2 {mu}g L{sup -1} and 5.8 {mu}g L{sup -1} were obtained for lead(II) for measurement times of four and two minutes, respectively. The electrodes can be reused up to 20 times after cleaning with 0.5 mol L{sup -1} sulfuric acid. Interference of other metals with the response to lead were also examined to optimize the sensor response for analysis of environmental samples. The analytical utility of the sensor was demonstrated by applying the system to a variety of wastewater and soil sample extracts from polluted sites. The results are sufficient evidence of the feasibility of using these screen-printed gold electrodes for the determination of lead(II) in wastewater and soil extracts. For comparison purposes a mercury-film electrode and ICP-MS were used for validation. (orig.)

  7. Preconcentration and voltammetric determination of palladium (II) at sodium humate modified carbon paste electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Sun Qiaoyu; Wang, C.; Li Liangxi; Li Hulin [Dept. Chemistry, Lanzhou Univ. (China)

    1999-01-01

    A chemically modified carbon paste electrode was prepared by incorporating appropriate amounts of sodium humate(NaA). Palladium(II) was selectively accumulated in a solution of Britton-Robinson(B-R) buffer (pH 2.8) onto the electrode surface in open circuit mode. The subsequent electrochemical measurement was carried out by cyclic voltammetry (CV) and linear sweep anodic stripping voltammetry (LSASV) in a supporting electrolyte of 1.0 M HCl. The obtained oxidation currents (I{sub pa1} and L{sub pa2}) were proportional to the Pd(II) concentration in the range of 4.7 x 10{sup -6} - 9.4 x 10{sup -8} M. The developed method was applied to the quantitative determination of palladium in real samples. (orig.) With 4 figs., 1 tab., 9 refs.

  8. Nanocellulosic fiber-modified carbon paste electrode for ultra trace determination of Cd (II) and Pb (II) in aqueous solution.

    Science.gov (United States)

    Rajawat, Deepak Singh; Kardam, Abhishek; Srivastava, Shalini; Satsangee, Soami Piara

    2013-05-01

    In recent years, increasing awareness of the environmental impact of heavy metals has prompted a demand for monitoring and decontaminating industrial wastes prior to discharging into natural water bodies. This paper describes the preparation and electrochemical application of carbon paste electrode modified with nanocellulosic fibers for the determination of cadmium and lead in water samples using anodic stripping voltammetry. First, cadmium and lead were adsorbed on the carbon paste electrode surface at open circuit potential, followed by anodic stripping voltammetric scan from -1 to 0 V. Different factors affecting sensitivity and precision of the electrode, including accumulating solvent, pH of the accumulating solvent, accumulation time, supporting electrolyte, and scan rate were investigated. The proposed method was also applied to the determination of Cd (II) and Pb (II) in the presence of other interfering metal ions and cetyl trimethyl ammonium bromide, sodium dodecyl sulfate, and Triton X-100 as a representative of cationic, anionic, and neutral surfactants. Linear calibration curves were obtained in the concentration ranges of 150-650 μg L(-1) and 80-300 μg L(-1), respectively, for cadmium and lead at an accumulated time of 10 min with limits of detection 88 and 33 μg L(-1). Optimized working conditions are defined as acetate buffer of pH 5 as accumulating solvent, hydrochloric acid as supporting electrolyte, and scan rate 50 mV/s. This technique does not use mercury and therefore has a positive environmental benefit. The method is reasonably sensitive and selective and has been successfully applied to the determination of trace amounts of Cd (II) and Pb (II) in water samples.

  9. Influence of electrode misplacement on the electrocardiographic signs of inferior myocardial ischemia.

    Science.gov (United States)

    Rudiger, Alain; Schöb, Lukas; Follath, Ferenc

    2003-11-01

    Electrocardiographic (ECG) artifacts resulting from misplacements of electrodes are frequent, difficult to detect, and can become of clinical importance. We investigated 2 healthy volunteers and 3 patients with ECG signs of inferior myocardial scars. We exchanged the peripheral electrodes in a defined manner and investigated the resulting ECG for morphology and possible diagnostic errors. In the volunteers, ECG signs of inferior ischemia could be produced. In the patients with ischemic heart disease, normal ECG without signs of ischemia resulted by placing the electrode of the left leg to the left arm. The automatic ECG analyzer was not helpful in detecting artifacts by misplaced electrodes. A very low amplitude of the QRS complex in lead I, II, or III was pathognomonic for electrode misplacement in half of the cases. ECG artifacts must also be suspected when abnormal QRS- or P-axis occur or when QRS morphology does not match with the clinical presentation of the patient.

  10. Influence of Process Parameters in n-PMEDM of Inconel 800 with Electrode and Coated Electrodes

    Directory of Open Access Journals (Sweden)

    Karunakaran K.

    2017-01-01

    Full Text Available By considering the unique performances, the Powder Mixed Electrical Discharge Machining (PMEDM mostly encounter choice for machining the hard materials with job features like intricate shapes with grater accuracy and those materials are difficult to cut in conventional machining processes. This Research aimed to prepare parameter index chart for machining nickel based super alloy - Inconel 800 for various requirements. To achieve the aim, In this experimental study on machining of Inconel 800 in PMEDM with electrolyte copper electrode as well as silver coated electrolyte copper electrode is focused. Taguchi full factorial design derived from MINITAB release-16 software was used to design the experimentation. The factors like pulse off time, Current and Pulse on Time were considered. The responses like amount of Tool Wear, Quantity of material removal, surface finishes were noted against each case. In the same experimental conditions the coated electrode increased the MRR by 36.67% with minor increment of maximum surface roughness to 16.11%.

  11. Influence of Electric Fields on Biofouling of Carbonaceous Electrodes.

    Science.gov (United States)

    Pandit, Soumya; Shanbhag, Sneha; Mauter, Meagan; Oren, Yoram; Herzberg, Moshe

    2017-09-05

    Biofouling commonly occurs on carbonaceous capacitive deionization electrodes in the process of treating natural waters. Although previous work reported the effect of electric fields on bacterial mortality for a variety of medical and engineered applications, the effect of electrode surface properties and the magnitude and polarity of applied electric fields on biofilm development has not been comprehensively investigated. This paper studies the formation of a Pseudomonas aeruginosa biofilm on a Papyex graphite (PA) and a carbon aerogel (CA) in the presence and the absence of an electric field. The experiments were conducted using a two-electrode flow cell with a voltage window of ±0.9 V. The CA was less susceptible to biofilm formation compared to the PA due to its lower surface roughness, lower hydrophobicity, and significant antimicrobial properties. For both positive and negative applied potentials, we observed an inverse relationship between biofilm formation and the magnitude of the applied potential. The effect is particularly strong for the CA electrodes and may be a result of cumulative effects between material toxicity and the stress experienced by cells at high applied potentials. Under the applied potentials for both electrodes, high production of endogenous reactive oxygen species (ROS) was indicative of bacterial stress. For both electrodes, the elevated specific ROS activity was lowest for the open circuit potential condition, elevated when cathodically and anodically polarized, and highest for the ±0.9 V cases. These high applied potentials are believed to affect the redox potential across the cell membrane and disrupt redox homeostasis, thereby inhibiting bacterial growth.

  12. Towards the clinical use of concentric electrodes in ECG recordings: influence of ring dimensions and electrode position

    Science.gov (United States)

    Prats-Boluda, G.; Ye-Lin, Y.; Bueno-Barrachina, JM; Rodriguez de Sanabria, R.; Garcia-Casado, J.

    2016-02-01

    To overcome the limited spatial resolution of standard 12-lead ECG recordings, concentric ring electrodes (CRE) have been proposed to provide valuable data for the diagnosis of a wide range of cardiac abnormalities, including infarction and arrhythmia. Although theoretical studies indicate that the dimensions of the CRE regulate the depth of the electric dipoles sensed by these electrodes, this has not been experimentally confirmed. The aim of this work was to analyze the influence of CRE dimensions and position of a wireless multi-CRE sensor node on the cardiac signal recorded. For this, four wireless multichannel ECG recording nodes based on flexible multi-ring electrodes were placed at positions CMV1 (position comparable to V1), CMV2, CMV4R and CMV5; each node providing three bipolar concentric ECG signals (BC-ECG). Standard 12-lead ECG and 12 BC-ECG signals were recorded in 29 volunteers. The results revealed that a ring with an outer diameter of 33.5 mm achieves a balance between the ease-of-use and spatial resolution of smaller electrodes and improved detectability and higher amplitudes of signals from larger ring electrodes. Although a standard 12-lead ECG outperforms BC-ECC recordings in detectability of cardiac waves, if the relative amplitude of the wave is also considered, BC-ECG at CMV1 proved superior at picking up atrial activity. In fact, in most of the BC-ECG signals picked up at CMV1, P1 and P2 atrial activity waves were more clearly identified than in simultaneous 12-Lead ECG signals. Likewise, BC-ECG signals revealed higher spatial resolution in detecting anomalous electrical activity in local regions, such as impaired intraventricular driving, or atrioventricular blocks. Finally, the wireless multi-CRE sensor node provides enhanced comfort and handling to both patient and clinician over wired systems.

  13. New polymeric membrane cadmium(II)-selective electrodes using tripodal amine based ionophores

    Energy Technology Data Exchange (ETDEWEB)

    Khamjumphol, Utisawadee [Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Watchasit, Sarayut [Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Suksai, Chomchai [Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Burapha University, Chonburi 20131 (Thailand); Janrungroatsakul, Wanwisa [Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Boonchiangma, Suthasinee [Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Tuntulani, Thawatchai [Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Ngeontae, Wittaya, E-mail: wittayange@kku.ac.th [Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Research Center for Environmental and Hazardous Substance Management, Khon Kaen University, Khon Kaen 40002 (Thailand); National Center of Excellence for Environmental and Hazardous Waste Management, Khon Kaen University, Khon Kaen 40002 (Thailand)

    2011-10-17

    Highlights: {yields} New four ionophores having tripodal amine (TPA) unit on anthracene and calixarene. {yields} Synthesis and characterization data were reported. {yields} Incorporated to the plasticized PVC membranes to prepare Cd-ISEs. {yields} Two TPA units on calixarene showed the best selectivity toward Cd{sup 2+}. {yields} Applied for sensing Cd{sup 2+} from the oxidation of CdS QDs solution. - Abstract: Fabrication of PVC membrane electrodes incorporating selective neutral carriers for Cd{sup 2+} was reported. The ionophores were designed to have different topologies, donor atoms and lipophilicity by attaching tripodal amine (TPA) units to the lipophilic anthracene (ionophore I) and p-tert-butylcalix[4]arene (ionophores II, III and IV). The synthesized ionophores were incorporated to the plasticized PVC membranes to prepare Cd(II) ion selective electrodes (ISEs). The membrane electrodes were optimized by changing types and amounts of ionic sites and plasticizers. The selectivity of the membranes fabricated from the synthesized ionophores was evaluated, the relationship between structures of ionophores and membrane characteristics were explored. The ionophore IV which composed of two opposites TPA units on the calix[4]arene compartment showed the best selectivity toward Cd{sup 2+}. The best membrane electrode was fabricated from ionophore IV (10.2 mmol kg{sup -1}) with KTpClPB (50.1 mol% related to the ionophore) as an ion exchanger incorporated in the DOS plasticized PVC membrane (1:2; PVC:DOS). The Cd-ISE fabricated from ionophore IV exhibited good properties with a Nernstian response of 29.4 {+-} 0.6 mV decade{sup -1} of activity for Cd{sup 2+} ions and a working concentration range of 1.6 x 10{sup -6}-1.0 x 10{sup -2} M. The sensor has a fast response time of 10 s and can be used for at least 1 week without any divergence in potential. The electrode can be used in the pH range of 6.0-9.0. The proposed electrodes using ionophores III and IV were employed

  14. Electro-oxidation of chlorophenols at glassy carbon electrodes modified with polyNi(II)complexes

    Energy Technology Data Exchange (ETDEWEB)

    Berrios, Cristhian [Facultad de Quimica y Biologia, Departamento de Ciencias del Ambiente, Universidad de Santiago de Chile (USACh), casilla 40, correo 33, Santiago (Chile); Marco, Jose F.; Gutierrez, Claudio [Instituto de Quimica Fisica ' Rocasolano' , CSIC, C. Serrano, 119, 28006, Madrid (Spain); Ureta-Zanartu, Maria Soledad [Facultad de Quimica y Biologia, Departamento de Ciencias del Ambiente, Universidad de Santiago de Chile (USACh), casilla 40, correo 33, Santiago (Chile)], E-mail: soledad.ureta@usach.cl

    2009-11-01

    The effect of the ligand macrocycle (phenylporphyrin (PP) or phthalocyanine (Pc)) and of the ligand substituent (-NH{sub 2} or -SO{sub 3}{sup -}) on the catalytic activity for the electro-oxidation in a pH 11 buffer electrolyte of 2- and 4-chlorophenol (2-CP and 4-CP), 2,4- and 2,6-dichlorophenol (2,4-DCP and 2,6-DCP), 2,4,6-trichlorophenol (2,4,6-TCP), and pentachlorophenol (PCP) at glassy carbon electrodes modified with electropolymerized Ni(II) macrocycles was studied. The polyphenolic residue deposited at the electrode surface was characterized by cyclic voltammetry, impedance measurements, ex situ Fourier transform infrared spectroscopy (FT-IR) and X-ray Photoelectron Spectroscopy (XPS). A band of aliphatic C=O stretching in the IR spectrum of the fouling film produced by potential cycling in 2,4,6-TCP indicated that the aromatic ring had been broken, yielding ketones, aldehydes and/or carboxylic acids. The sulphonated Ni(II) polymers, which showed the Ni(III)/Ni(II) process in the CV, had XP spectra typical of paramagnetic Ni(II), indicating that they contained Ni(OH){sub 2} clusters. On the contrary, the CVs of the amino Ni(II) did not show the Ni(III)/Ni(II) process at all, this process appearing only after previous activation by potential cycling, and only to a small extent. As was to be expected, the XP spectra of activated amino films corresponded to diamagnetic Ni(II), showing that the concentration of Ni(OH){sub 2} clusters was very small. The amino films were less active than the sulpho films for the oxidation of chlorophenols, in agreement with the lower concentration of Ni(OH){sub 2} clusters in the former films. For all electrodes the highest activity was observed for 2,4,6-TCP, since its oxidation yields a phenolic residue which is much more porous than those produced by the other CPs.

  15. Mercury(II) trace detection by a gold nanoparticle-modified glassy carbon electrode using square-wave anodic stripping voltammetry including a chloride desorption step.

    Science.gov (United States)

    Laffont, Laure; Hezard, Teddy; Gros, Pierre; Heimbürger, Lars-Eric; Sonke, Jeroen E; Behra, Philippe; Evrard, David

    2015-08-15

    Gold nanoparticles (AuNPs) were deposited on a glassy carbon (GC) substrate by constant potential electrolysis and characterized by cyclic voltammetry in H2SO4 and field emission gun scanning electron microscopy (FEG-SEM). The modified AuNPs-GC electrode was used for low Hg(II) concentration detection using a Square Wave Anodic Stripping Voltammetry (SWASV) procedure which included a chloride desorption step. The comparison of the obtained results with our previous work in which no desorption step was used showed that this latter step significantly improved the analytical performances, providing a three time higher sensitivity and a limit of detection of 80pM for 300s preconcentration, as well as a lower average standard deviation. The influence of chloride concentration on the AuNPs-GC electrode response to Hg(II) trace amounts was also studied and its optimal value confirmed to be in the 10(-2)M range. Finally, the AuNPs-GC electrode was used for the determination of Hg(II) in a natural groundwater sample from south of France. By using a preconcentration time of 3000s, a Hg(II) concentration of 19±3pM was found, which compared well with the result obtained by cold vapor atomic fluorescence spectroscopy (22±2pM). Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Electrochemical Behavior of Ni(II-Salen at the Mercury Electrode

    Directory of Open Access Journals (Sweden)

    Pércio Augusto Mardini Farias

    2013-01-01

    Full Text Available The complex Ni(II-salen has been studied using cyclic and square-wave cathodic stripping voltammetry at the static mercury drop electrode in an aqueous media of phosphate and Hepes buffers (at pH 7.0. The resulting voltammograms consist of a totally irreversible one-electron transfer attributable to the coupling of Ni(II salen/Ni(I salen via an EC mechanism. The mean value for the transfer coefficient α in both supporting electrolytes was calculated as 0.35 ± 0.05. The amount of reactant adsorbed after 60 s of accumulation at −700 mV was calculated to be 2.8 × 10−8 mol·cm−2. The detection limit for nickel determination was found to be 3.4 × 10−9 mol L−1.

  17. Model tests for corrosion influence of electrode surface on electroosmosis in marine sludge

    Science.gov (United States)

    Zheng, Lingwei; Li, Jinzhu; Shi, Hanru

    2017-11-01

    The corrosion of metal electrodes is inevitable on electroosmosis in soil. Surface corrosion of electrodes is also one of the reasons for increasing energy consumption in electroosmosis treatment. A series of laboratory tests were conducted employing three kinds of materials, aluminium, steel, and brass. To explore the impact of surface corrosion degree on electroosmosis, metal electrodes were pretreated with durations 0 h, 12 h, 24 h, and 36 h. After the pretreatment, corroded electrodes are used as anodes on electroosmosis. Water discharge, current, voltage potential were measured during the tests; water content was also tested at three points after the electroosmosis. The results showed that aluminium was better than steel in electroosmotic drainage while brass provided the worst dewatering performance. Surface corrosion did not influence the aluminium and steel on electroosmosis in marine sludge, but brass did. In the pretreatment of brass electrodes, corrosion rate had started to slow down at later periods, with the deterioration rate of dewatering reduced afterwards. As the results showed, it is not recommended to employ those easily deteriorated electrode materials from surface corrosion in practical engineering, such as brass; electrode material with higher electroosmosis exchange rate is recommended, such as aluminium.

  18. Influence of finite geometrical asymmetry of the electrodes in capacitively coupled radio frequency plasma

    Energy Technology Data Exchange (ETDEWEB)

    Bora, B., E-mail: bbora@cchen.cl; Soto, L. [Comisión Chilena de Energía Nuclear, Santiago, Chile and Center for Research and Applications in Plasma Physics and Pulsed Power, P4 (Chile)

    2014-08-15

    Capacitively coupled radio frequency (CCRF) plasmas are widely studied in last decades due to the versatile applicability of energetic ions, chemically active species, radicals, and also energetic neutral species in many material processing fields including microelectronics, aerospace, and biology. A dc self-bias is known to generate naturally in geometrically asymmetric CCRF plasma because of the difference in electrode sizes known as geometrical asymmetry of the electrodes in order to compensate electron and ion flux to each electrode within one rf period. The plasma series resonance effect is also come into play due to the geometrical asymmetry and excited several harmonics of the fundamental in low pressure CCRF plasma. In this work, a 13.56 MHz CCRF plasma is studied on the based on the nonlinear global model of asymmetric CCRF discharge to understand the influences of finite geometrical asymmetry of the electrodes in terms of generation of dc self-bias and plasma heating. The nonlinear global model on asymmetric discharge has been modified by considering the sheath at the grounded electrode to taking account the finite geometrical asymmetry of the electrodes. The ion density inside both the sheaths has been taken into account by incorporating the steady-state fluid equations for ions considering that the applied rf frequency is higher than the typical ion plasma frequency. Details results on the influences of geometrical asymmetry on the generation of dc self-bias and plasma heating are discussed.

  19. Analysis of the Damping Characteristics of Cylindrical Resonators Influenced by Piezoelectric Electrodes.

    Science.gov (United States)

    Sun, Jiangkun; Wu, Yulie; Xi, Xiang; Zhang, Yongmeng; Wu, Xuezhong

    2017-05-04

    The cylindrical resonator gyroscope (CRG) is a typical Coriolis vibratory gyroscope whose performance is mostly influenced by the damping characteristic of the cylindrical resonator. However, the tremendous damping influences caused by pasting piezoelectric electrodes on the gyroscope, which degrades the performance to a large extent, have rarely been studied. In this paper, the dynamical model is established to analyze various forms of energy consumption. In addition, a FE COMSOL model is also created to discuss the damping influences of several significant parameters of the adhesive layer and piezoelectric electrodes, respectively, and then explicit influence laws are obtained. Simulation results demonstrate that the adhesive layer has some impact on the damping characteristic, but it not significant. The Q factor decreases about 30.31% in total as a result of pasting piezoelectric electrodes. What is more, it is discovered that piezoelectric electrodes with short length, locations away from the outside edges, proper width and well-chosen thickness are able to reduce the damping influences to a large extent. Afterwards, experiments of testing the Q factor are set up to validate the simulation values.

  20. The influence of conductive additives and inter-particle voids in carbon EDLC electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Pandolfo, A.G.; Wilson, G.J.; Huynh, T.D.; Hollenkamp, A.F. [CSIRO - Energy Technology, Bayview Avenue, Clayton, Vic 3168 (Australia)

    2010-10-15

    Through the interpretation of porosity and intrusion data, and correlation to the electrochemical response, this study has confirmed that are not only carbon blacks (CBs) very effective in improving the electrical connectivity of a carbon electrode coating, but they also significantly modify the porosity of the electrode coating and thereby also influence ionic diffusion. CBs are more effective conductive fillers than graphites in EDLC electrodes. The highly branched structure of CBs allows multiple electrical contact points and results in a lower electrode electronic resistance. CBs can decrease inter-particle porosity (both volume and size) and introduce additional porosity that is characteristic of the type of carbon employed. It is observed that electrode coatings prepared from a carbon slurry have a highly macroporous structure and that electrolyte accessibility to individual activated carbon particles is unlikely to be the limiting factor to accessing capacitance. Electrochemical testing has confirmed the strong relationship between bulk electrode resistance and the accessibility of capacitance at different rates. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  1. Space Charge Formation in XLPE - the Influence of Electrodes and Pre-conditioning

    DEFF Research Database (Denmark)

    Holbøll, Joachim T.; Henriksen, Mogens; Fleming, R.J.

    1999-01-01

    investigations of the influence of these factors, on space charge accumulation or other electrical properties of XLPE, have been reported. In this paper we present space charge profiles for a range of XLPE planar samples under dc stress. Three different types of semicon electrodes were investigated, as well...

  2. Sequence and Temperature Influence on Kinetics of DNA Strand Displacement at Gold Electrode Surfaces.

    Science.gov (United States)

    Biala, Katarzyna; Sedova, Ada; Flechsig, Gerd-Uwe

    2015-09-16

    Understanding complex contributions of surface environment to tethered nucleic acid sensing experiments has proven challenging, yet it is important because it is essential for interpretation and calibration of indispensable methods, such as microarrays. We investigate the effects of DNA sequence and solution temperature gradients on the kinetics of strand displacement at heated gold wire electrodes, and at gold disc electrodes in a heated solution. Addition of a terminal double mismatch (toehold) provides a reduction in strand displacement energy barriers sufficient to probe the secondary mechanisms involved in the hybridization process. In four different DNA capture probe sequences (relevant for the identification of genetically modified maize MON810), all but one revealed a high activation energy up to 200 kJ/mol during hybridization, that we attribute to displacement of protective strands by capture probes. Protective strands contain 4 to 5 mismatches to ease their displacement by the surface-confined probes at the gold electrodes. A low activation energy (30 kJ/mol) was observed for the sequence whose protective strand contained a toehold and one central mismatch, its kinetic curves displayed significantly different shapes, and we observed a reduced maximum signal intensity as compared to other sequences. These findings point to potential sequence-related contributions to oligonucleotide diffusion influencing kinetics. Additionally, for all sequences studied with heated wire electrodes, we observed a 23 K lower optimal hybridization temperature in comparison with disc electrodes in heated solution, and greatly reduced voltammetric signals after taking into account electrode surface area. We propose that thermodiffusion due to temperature gradients may influence both hybridization and strand displacement kinetics at heated microelectrodes, an explanation supported by computational fluid dynamics. DNA assays with surface-confined capture probes and temperature

  3. Ag Nanoparticles Drop-Casting Modification of Screen-Printed Electrodes for the Simultaneous Voltammetric Determination of Cu(II) and Pb(II).

    Science.gov (United States)

    Pérez-Ràfols, Clara; Bastos-Arrieta, Julio; Serrano, Núria; Díaz-Cruz, José Manuel; Ariño, Cristina; de Pablo, Joan; Esteban, Miquel

    2017-06-21

    A new silver nanoparticle modified screen-printed electrode was developed and applied to the simultaneous determination of Pb(II) and Cu(II). Two different types of silver nanoparticles with different shapes and sizes, Ag nanoseeds and Ag nanoprisms, were microscopically characterized and three different carbon substrates, graphite, graphene and carbon nanofibers, were tested. The best analytical performance was achieved for the combination of Ag nanoseeds with a carbon nanofiber modified screen-printed electrode. The resulting sensor allowed the simultaneous determination of Pb(II) and Cu(II) at trace levels and its applicability to natural samples was successfully tested with a groundwater certified reference material, presenting high reproducibility and trueness.

  4. Characterization of multi-walled carbon nanotube electrodes functionalized by electropolymerized tris(pyrrole-ether bipyridine) ruthenium (II)

    Energy Technology Data Exchange (ETDEWEB)

    Le Goff, Alan; Holzinger, Michael [Departement de Chimie Moleculaire UMR-5250, ICMG FR-2607, CNRS Universite Joseph Fourier, BP-53, 38041 Grenoble (France); Cosnier, Serge, E-mail: Serge.Cosnier@ujf-grenoble.f [Departement de Chimie Moleculaire UMR-5250, ICMG FR-2607, CNRS Universite Joseph Fourier, BP-53, 38041 Grenoble (France)

    2011-04-01

    We synthesized new electropolymerizable [Ru(bpy){sub n}L{sub m}](PF{sub 6}){sub 2} (L = 4,4 bis(3-pyrrol-1-ylpropyloxy)bipyridyl) derivatives. The introduction of electron donating ether groups in the bipyridine ligand induced a negative shift of the Ru(III)/(II) redox couple. The electrochemical behavior of complex Ru1 (n = 2, m = 1) and complex Ru2 (n = 0, m = 3) were compared using platinum and Multi-Walled Carbon Nanotube (MWCNT) electrode. Higher polymerization yields and surface concentrations were obtained at MWCNT electrodes. Furthermore, MWCNT electrodes increase polymer permeability and decrease the charge trapping phenomenon involved in the oxidation and reduction of the polypyrrolic skeleton of the Ru(II) functionalized polymers.

  5. Sputtered bismuth screen-printed electrode: a promising alternative to other bismuth modifications in the voltammetric determination of Cd(II) and Pb(II) ions in groundwater.

    Science.gov (United States)

    Sosa, Velia; Serrano, Núria; Ariño, Cristina; Díaz-Cruz, José Manuel; Esteban, Miquel

    2014-02-01

    A commercially available sputtered bismuth screen-printed electrode (BispSPE) has been pioneeringly applied for the simultaneous determination of Cd(II) and Pb(II) ions in a certified groundwater sample by means of differential pulse anodic stripping voltammetry (DPASV) as an alternative to more conventional bismuth screen-printed carbon electrodes (BiSPCEs). BispSPEs can be used for a large set of measurements without any previous plating or activation. The obtained detection and quantification limits suggest that BispSPEs produce a better analytical performance as compared to In-situ BiSPCE for Pb(II) and Cd(II) determination, but also to Ex-situ BiSPCE for Cd(II) determination. The results confirm the applicability of these devices for the determination of low level concentrations of these metal ions in natural samples with very high reproducibility (0.7% and 2.5% for Pb(II) and Cd(II) respectively), and good trueness (0.3% and 2.4% for Pb(II) and Cd(II) respectively). © 2013 Published by Elsevier B.V.

  6. Diversity in cochlear morphology and its influence on cochlear implant electrode position.

    Science.gov (United States)

    van der Marel, Kim S; Briaire, Jeroen J; Wolterbeek, Ron; Snel-Bongers, Jorien; Verbist, Berit M; Frijns, Johan H M

    2014-01-01

    To define a minimal set of descriptive parameters for cochlear morphology and study its influence on the cochlear implant electrode position in relation to surgical insertion distance. Cochlear morphology and electrode position were analyzed using multiplanar reconstructions of the pre- and postoperative CT scans in a population of 336 patients (including 26 bilaterally implanted ones) with a CII HiFocus1 or HiRes90K HiFocus1J implant. Variations in cochlear diameter and cochlear canal size were analyzed. The relationship between the outer and inner walls was investigated. Size differences based on sex, age, and ear side were investigated using linear mixed models. Two new methods, spiral fitting and principal component analysis, were proposed to describe cochlear shape, and the goodness of fit was investigated. The relationship between cochlear shape and electrode position, in terms of modiolus proximity and insertion depth, was analyzed using clustering, one-way analysis of variance (ANOVA) and simple linear regression analysis. Large variations in cochlear morphology were found, with cochlear canal sizes ranging from 0.98 to 2.96 mm and average cochlear diameters between 8.85 and 5.92 mm (with standard deviations of around 0.4 mm). The outer and inner walls were significantly correlated (p cochlear shape variance. A significant sex difference was also found with spiral fitting and PCA. Cochlear size was found to have a significant influence on modiolus proximity and insertion depth of the electrode (p Cochlear size explained around 13% of the variance in electrode position. When cochlear size was combined with surgical insertion, more than 81% of the variance in insertion depth can be explained. This study demonstrates a large variety in cochlear morphology, which significantly impacts electrode position in terms of modiolus proximity and insertion depth. The effect size is, however, relatively small compared with surgical insertion distance. PCA is shown to be

  7. Amino-functionalized mesoporous silica modified glassy carbon electrode for ultra-trace copper(II) determination

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Xingxin [College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123 (China); Qiu, Fagui [Department of Quartermaster Engineering, Jilin University, No. 5333, Xi' an Road, Changchun 130062 (China); Zhou, Xuan [College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123 (China); Long, Yumei, E-mail: yumeilong@suda.edu.cn [College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123 (China); The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou (China); Li, Weifeng, E-mail: liweifeng@suda.edu.cn [College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123 (China); Tu, Yifeng [College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123 (China)

    2014-10-27

    NH{sub 2}-MCM-41 modified glassy carbon electrode was prepared and it exhibited enhanced anodic stripping response toward Cu (II), which could result from the large surface area of MCM-41 and the good chelating ability of amine-group. The as-constructed electrochemical sensor showed excellent analytical properties in the determination of Cu{sup 2+} and was successfully used for real sample assays. - Highlights: • We report a facile method to selectively detect Cu{sup 2+} based on NH{sub 2}-MCM-41 as sensing platform. • NH{sub 2}-MCM-41 has good affinity toward Cu{sup 2+}. • Detection limit of 0.9 ng L{sup −1} and linear concentration range of 5–1000 ng L{sup −1} are achieved. • The method is successfully applied to detect Cu{sup 2+} in real samples. - Abstract: This paper described a facile and direct electrochemical method for the determination of ultra-trace Cu{sup 2+} by employing amino-functionalized mesoporous silica (NH{sub 2}-MCM-41) as enhanced sensing platform. NH{sub 2}-MCM-41 was prepared by using a post-grafting process and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and fourier transform infrared (FTIR) spectroscopy. NH{sub 2}-MCM-41 modified glassy carbon (GC) electrode showed higher sensitivity for anodic stripping voltammetric (ASV) detection of Cu{sup 2+} than that of MCM-41 modified one. The high sensitivity was attributed to synergistic effect between MCM-41 and amino-group, in which the high surface area and special mesoporous morphology of MCM-41 can cause strong physical absorption, and amino-groups are able to chelate copper ions. Some important parameters influencing the sensor response were optimized. Under optimum experimental conditions the sensor linearly responded to Cu{sup 2+} concentration in the range from 5 to 1000 ng L{sup −1} with a detection limit of 0.9 ng L{sup −1} (S/N = 3). Moreover, the sensor possessed good stability and electrode renewability. In the end, the proposed

  8. Preparation of polypyrrole thin film counter electrode with pre-stored iodine and resultant influence on its performance

    Science.gov (United States)

    Lu, Shan; Zhang, Xuehua; Feng, Ting; Han, Ruobing; Liu, Dongsheng; He, Tao

    2015-01-01

    The performance of DSSCs can be improved if iodine species can be pre-stored in the polymer counter electrodes (CEs) since the I-/I3- redox couple is usually used as the mediator in electrolyte for DSSCs. In this work, such porous polypyrrole (PPy) CEs have been successfully synthesized by electrochemical method. Detailed mechanism about the electro-polymerization and film growth has been investigated both experimentally and theoretically. The influence of iodine species pre-stored in the film during polymerization on the properties of resultant PPy CEs (such as porous structure, doping state, and electrocatalytic activity) and, thereby, the device performance has been studied thoroughly. We envision that the results may help to facilitate the research and development of the polymer-based CEs used in DSSCs.

  9. Study on the influence of the electrode model on discharge characteristics in High-voltage Pulsed Deplugging Technology

    Science.gov (United States)

    Yan, Bingnan; Jing, Zhou; Liang, Zhao

    2017-05-01

    In the oil-field development, blocking caused by impurities leads to a decline in oil production. The high-voltage pulsed deplugging technology can be applied successfully in oil deplugging. One of the key problems in this technology is the influence of the electrode model on discharge characteristics. In this paper, the electrode structure was studied. Firstly, the influence of the electrode gap on electric-field intensity was studied by using ANSYS simulation. Secondly, a high-voltage pulsed discharge experiment system was built and the discharge characteristics were studied under different static pressure when the electrode gap varied. The results show that the larger the electrode gap, the lower the electric strength and the longer the time delay. Short breakdown time delay would make greater energy of impact waves and better blockage relieving effect.

  10. A sensitive, selective and rapid determination of lead(II) ions in real-life samples using an electrochemically reduced graphene oxide-graphite reinforced carbon electrode.

    Science.gov (United States)

    Hamsawahini, Kunashegaran; Sathishkumar, Palanivel; Ahamad, Rahmalan; Yusoff, Abdull Rahim Mohd

    2015-11-01

    In this study, a sensitive and cost-effective electrochemically reduced graphene oxide (ErGO) on graphite reinforced carbon (GRC) was developed for the detection of lead (Pb(II)) ions present in the real-life samples. A film of graphene oxide (GO) was drop-casted on GRC and their electrochemical properties were investigated using cyclic voltammetry (CV), amperometry and square wave voltammetry (SWV). Factors influencing the detection of Pb(II) ions, such as grades of GRC, constant applied cathodic potential (CACP), concentration of hydrochloric acid and drop-casting drying time were optimised. GO is irreversibly reduced in the range of -0.7 V to -1.6 V vs Ag/AgCl (3 M) in acidic condition. The results showed that the reduction behaviour of GO contributed to the high sensitivity of Pb(II) ions detection even at nanomolar level. The ErGO-GRC showed the detection limit of 0.5 nM and linear range of 3-15 nM in HCl (1 M). The developed electrode has potential to be a good candidate for the determination of Pb(II) ions in different aqueous system. The proposed method gives a good recovery rate of Pb(II) ions in real-life water samples such as tap water and river water. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Amalgam Electrode-Based Electrochemical Detector for On-Site Direct Determination of Cadmium(II) and Lead(II) from Soils.

    Science.gov (United States)

    Nejdl, Lukas; Kynicky, Jindrich; Brtnicky, Martin; Vaculovicova, Marketa; Adam, Vojtech

    2017-08-09

    Toxic metal contamination of the environment is a global issue. In this paper, we present a low-cost and rapid production of amalgam electrodes used for determination of Cd(II) and Pb(II) in environmental samples (soils and wastewaters) by on-site analysis using difference pulse voltammetry. Changes in the electrochemical signals were recorded with a miniaturized potentiostat (width: 80 mm, depth: 54 mm, height: 23 mm) and a portable computer. The limit of detection (LOD) was calculated for the geometric surface of the working electrode 15 mm² that can be varied as required for analysis. The LODs were 80 ng·mL-1 for Cd(II) and 50 ng·mL-1 for Pb(II), relative standard deviation, RSD ≤ 8% (n = 3). The area of interest (Dolni Rozinka, Czech Republic) was selected because there is a deposit of uranium ore and extreme anthropogenic activity. Environmental samples were taken directly on-site and immediately analysed. Duration of a single analysis was approximately two minutes. The average concentrations of Cd(II) and Pb(II) in this area were below the global average. The obtained values were verified (correlated) by standard electrochemical methods based on hanging drop electrodes and were in good agreement. The advantages of this method are its cost and time effectivity (approximately two minutes per one sample) with direct analysis of turbid samples (soil leach) in a 2 M HNO₃ environment. This type of sample cannot be analyzed using the classical analytical methods without pretreatment.

  12. Electrochemical Glucose Oxidation Using Glassy Carbon Electrodes Modified with Au-Ag Nanoparticles: Influence of Ag Content

    Directory of Open Access Journals (Sweden)

    Nancy Gabriela García-Morales

    2015-01-01

    Full Text Available This paper describes the application of glassy carbon modified electrodes bearing Aux-Agy nanoparticles to catalyze the electrochemical oxidation of glucose. In particular, the paper shows the influence of the Ag content on this oxidation process. A simple method was applied to prepare the nanoparticles, which were characterized by transmission electron microscopy, Ultraviolet-Visible spectroscopy, X-ray diffraction spectroscopy, and cyclic voltammetry. These nanoparticles were used to modify glassy carbon electrodes. The effectiveness of these electrodes for electrochemical glucose oxidation was evaluated. The modified glassy carbon electrodes are highly sensitive to glucose oxidation in alkaline media, which could be attributed to the presence of Aux-Agy nanoparticles on the electrode surface. The voltammetric results suggest that the glucose oxidation speed is controlled by the glucose diffusion to the electrode surface. These results also show that the catalytic activity of the electrodes depends on the Ag content of the nanoparticles. Best results were obtained for the Au80-Ag20 nanoparticles modified electrode. This electrode could be used for Gluconic acid (GA production.

  13. Cold starting of fluorescent lamps - part II: experiments on glow times and electrode damaging

    Science.gov (United States)

    Langer, Reinhard; Paul, Irina; Hilscher, Achim; Horn, Siegfried; Tidecks, Reinhard

    2017-01-01

    In the present work we present experiments on cold start and the resulting electrode damaging (reducing lamp life) of AC driven fluorescent lamps. The crucial parameter is the glow time, determined from time resolved measurements of lamp voltage and current. The relation between the energy consumed during glow phase and the glow time is studied. It turns out that there is no common threshold of energy until the glow-to-arc transition takes place, but strong energy input into the lamp yields short glow times. The transient behaviour from the glow to the arc regime is investigated and the stable operation points of the arc discharge are determined, yielding an arc discharge voltage-current characteristics of the lamp type investigated. The electrode damage is investigated as a function of the open source voltage and the ballast resistance. Subsequent cold starts lead to an increase of the glow time due to electrode damaging, i.e., the electrode damage accumulates. Different regeneration procedures and their effectiveness are compared. Regeneration burning turns out to be more effective than heating up the electrode. A criterion for avoiding high electrode damage is obtained, indicating that the average power during glow time should exceed 20 W.

  14. Iron oxide nanostructured electrodes for detection of copper(II) ions.

    Science.gov (United States)

    Santos, J G M; Souza, J R; Letti, C J; Soler, M A G; Morais, P C; Pereira-da-Silva, M A; Paterno, L G

    2014-09-01

    Iron oxide nanostructured (ION) electrodes were assembled layer-by-layer onto ITO-coated glass substrates and their structure, morphology, and electrochemical properties were investigated, the latter aiming at the development of a chemical sensor for Cu2+. The electrodes were built by immersing the substrate alternately into an aqueous colloidal suspension of positively charged magnetite nanoparticles (np-Fe3O4, 8 nm) and an aqueous solution of anionic sodium sulfonated polystyrene (PSS). The adsorbed amount of both materials was monitored ex-situ by UV-vis spectroscopy and it was found to increase linearly with the number of deposition cycles. The resulting films feature a densely-packed structure of magnetite nanoparticles, as suggested by AFM and Raman spectroscopy, respectively. Cyclic voltammograms of electrodes immersed in acetate buffer (pH 4.6) displayed three electrochemical events that were tentatively ascribed to the reduction of Fe(III) oxy-hydroxide to magnetite, reduction of maghemite to magnetite, and finally oxidation of magnetite to maghemite. The effect of np-Fe3O4/PSS bilayers on the ION electrode performance was to increase the anodic and cathodic currents produced during electrochemical oxidation-reduction of the Fe(CN)(3-/4-) redox couple. With more bilayers, the ION electrode provided higher anodic/cathodic currents. Moreover, the redox couple exhibited a quasi-reversible behavior at the ION electrode as already observed with other working electrode systems. Fitting of voltammetry data provided the apparent electron transfer constants, which were found to be higher in ION electrodes for both redox couples (Fe(CN)(3-/4-) and Cu(2+/0)). By means of differential pulsed anodic stripping voltammetry, the ION electrodes were found to respond linearly to the presence of Cu2+ in aqueous samples in the range between 1.0 and 8.0 x 10(-6) mol x L(-1) and displayed a limit of detection of 0.3 x 10(-8) mol x L(-1). The sensitivity was - 0.6μA/μmol x L

  15. Copper(II)-selective membrane electrode based on a recently synthesized naphthol-derivative Schiff's base

    Energy Technology Data Exchange (ETDEWEB)

    Alizadeh, N.; Ershad, S. [Dept. of Chemistry, Tarbiat Moderres Univ., Tehran (Iran); Naeimi, H.; Sharghi, H. [Dept. of Chemistry, Shiraz Univ. (Iran); Shamsipur, M. [Dept. of Chemistry, Razi Univ., Kermanshah (Iran)

    1999-11-01

    A PVC membrane electrode for copper(II) ions based on a recently synthesized naphthol-derivative Schiff's base as membrane carrier was prepared. The sensor exhibits a Nernstian response for Cu{sup 2+} ions over a wide concentration range (5.0 x 10{sup -6}-5.0 x 10{sup -2} mol/L) with a detection limit of 3.1 x 10{sup -6} mol/L (0.2 {mu}g/mL). It has a very short response time of about 5 s and can be used for 3 months without any divergence in potential. The proposed electrode revealed good selectivities over a wide variety of other cations including alkali, alkaline earth, transition and heavy metal ions and could be used in a pH range of 4.0-7.0. It was successfully applied to the direct determination and potentiometric titration of copper ion. (orig.)

  16. Electrochemical Detection of Mn(II and Cd(II Mediated by Carbon Nanotubes and Carbon Nanotubes/Li+ Modified Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Muhammed M. Radhi

    2010-11-01

    Full Text Available Glassy carbon electrode (GCE was modified with carbon nanotubes (CNT with and without a Li+ dopant by using a mechanical attachment method; CNT/Li+/GCE was used as two working electrodes, by doping CNT/GCE with Li+. The nano-structure of the electrodes showed individual voltammetrics of Mn2+ with two reduction peaks at +800 and +100 mV. Two reduction peaks for Cd2+ appeared at +600 V and -800 mV with one oxidation peak at -600 mV. The reduction current of Mn2+ and the redox current of Cd2+ on the CNT/Li+/GCE were largely influenced by a low concentration comparison with GCE and CNT/GCE. It showed that the detection of Mn2+ and Cd2+ by CNT/Li+/GCE in an aqueous solution of 0.1M KCL, with a relative standard deviation (RSD of the electrode being very good CNT/Li+/GCE. The determination of efficiency for the best modified electrode was detected for Mn2+ and Cd2+ on CNT/Li+/GCE; it was also found to have a wide linear range and good repeatability with a relative standard deviation (RSD of ±1.9 % when this electrode was used and the limit of detection was found to be 10-4 to 10-3 mM of Mn2+ and 10-4 to 10-2 mM of Cd2+, while the range of detection was found to be 3x10-4 to 10-3 mM and 10-3 to 10 -2 mM when using the CNT/GCE for Mn2+and Cd2+, respectively, with an RSD of ±3.3 % for Mn2+ and Cd2+.

  17. Simmel's Influence on American Sociology. II

    Science.gov (United States)

    Levine, Donald N.; And Others

    1976-01-01

    This article constitutes the second part of a discussion of the diffusion of Georg Simmel's thought within the American sociological community first initiated in the January issue of this journal (See SO 504 694). His influence is traced with respect to metropolitan mentality, small groups, interpersonal knowledge, conflict, and exchange. (Author)

  18. Copper (II) ion selective liquid membrane electrode based on new Schiff base carrier.

    Science.gov (United States)

    Sadeghi, Susan; Vardini, Mohammad Taghi; Naeimi, Hossein

    2006-01-01

    Cu2+ selective PVC membrane electrode based on new Schiff base 2, 2'-[1,9 nonanediyl bis (nitriloethylidyne)]-bis-(1-naphthol) as a selective carrier was constructed. The electrode exhibited a linear potential response within the activity range of 1.0 x 10(-6) - 5.0 x 10(-3) moll(-1) with a Nernstian slope of 29 +/- 1 mV decade(-1) of Cu2+ activity and a limit of detection 8.0 x 10(-7) mol l(-1). The response time of the electrode was fast, 10 s, and stable potentials were obtained within the pH range of 3.5- 6.5. The potentiometric selectivity coefficients were evaluated using two solution method and revealed no important interferences except for Ag+ ion. The proposed electrode was applied as an indicator electrode to potentiometric titration of Cu2+ ions and determination of Cu2+ content in real samples such as black tea leaves and multivitamin capsule.

  19. Carbon-modified electrode for ultra trace determination of Cd (II) in aqueous solution

    Science.gov (United States)

    Almustapha, Sakinatu; Khan, Aamir Amanat Ali; Omar, Abdul Aziz; Ariwahjoedi, Bambang; Abdullah, Mohd Azmuddin

    2014-10-01

    Increasing contamination of water by trace levels of heavy metals has become major environmental threats leading to an increased demand for the detection and monitoring of metal contaminants. In this work, modification of carbon electrode for Cd2+ detection using square wave anodic stripping voltammetry was reported. The deposition potential of -1.0 V in 0.1M acetate buffer for 240 sec, followed by square wave potential scan from -1.0 to -0.2 V were used. Stripping voltammogram showed current peaks corresponding to Cd2+. The sensitivity and selectivity of the modified electrodes for Cd2+ were also determined.

  20. Simultaneous trace-levels determination of Hg(II) and Pb(II) ions in various samples using a modified carbon paste electrode based on multi-walled carbon nanotubes and a new synthesized Schiff base

    Energy Technology Data Exchange (ETDEWEB)

    Afkhami, Abbas, E-mail: afkhami@basu.ac.ir [Faculty of Chemistry, Bu-Ali Sina University, Hamedan (Iran, Islamic Republic of); Bagheri, Hasan [Department of Chemistry, Takestan Branch, Islamic Azad University, Takestan (Iran, Islamic Republic of); Khoshsafar, Hosein [Faculty of Chemistry, Bu-Ali Sina University, Hamedan (Iran, Islamic Republic of); Saber-Tehrani, Mohammad [Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Tabatabaee, Masoumeh [Department of Chemistry, Yazd Branch, Islamic Azad University, Yazd (Iran, Islamic Republic of); Shirzadmehr, Ali [Faculty of Chemistry, Bu-Ali Sina University, Hamedan (Iran, Islamic Republic of)

    2012-10-09

    Highlights: Black-Right-Pointing-Pointer A new chemically modified carbon paste electrode was constructed and used. Black-Right-Pointing-Pointer A new Schiff base and multi-walled carbon nanotube was used as a modifier. Black-Right-Pointing-Pointer The electrochemical properties of the modified electrode were studied. Black-Right-Pointing-Pointer The electrode was used to the simultaneous determination of Pb{sup 2+} and Hg{sup 2+}. - Abstract: A modified carbon paste electrode based on multi-walled carbon nanotubes (MWCNTs) and 3-(4-methoxybenzylideneamino)-2-thioxothiazolodin-4-one as a new synthesized Schiff base was constructed for the simultaneous determination of trace amounts of Hg(II) and Pb(II) by square wave anodic stripping voltammetry. The modified electrode showed an excellent selectivity and stability for Hg(II) and Pb(II) determinations and for accelerated electron transfer between the electrode and the analytes. The electrochemical properties and applications of the modified electrode were studied. Operational parameters such as pH, deposition potential and deposition time were optimized for the purpose of determination of traces of metal ions at pH 3.0. Under optimal conditions the limits of detection, based on three times the background noise, were 9.0 Multiplication-Sign 10{sup -4} and 6.0 Multiplication-Sign 10{sup -4} {mu}mol L{sup -1} for Hg(II) and Pb(II) with a 90 s preconcentration, respectively. In addition, the modified electrode displayed a good reproducibility and selectivity, making it suitable for the simultaneous determination of Hg(II) and Pb(II) in real samples such as sea water, waste water, tobacco, marine and human teeth samples.

  1. Application of screen-printed carbon electrode modified with lead in stripping analysis of Cd(II

    Directory of Open Access Journals (Sweden)

    Tyszczuk-Rotko Katarzyna

    2017-03-01

    Full Text Available In the work presented, a lead film electrode was prepared in situ on a screen-printed carbon support using a reversibly deposited mediator (Zn and applied to the determination of Cd(II by anodic stripping voltammetry. The electrochemical method for lead film formation is based on a co-deposition of a metal of interest (Pb, with a reversibly deposited zinc mediator, followed by oxidation of zinc, with additional deposition of lead at the appropriate potential. It serves to increase the density of lead particles, promoting lead film growth, and consequently helps to improve the electrochemical properties of the electrode. This was confirmed by microscopic and voltammetric studies. The obtained detection limit of Cd(II is equal to 6.6 × 10−9 mol L−1 (−1.6 V for 180 s and then −0.95 V for 5 s. The presented procedure was successfully applied to cadmium determination in Bystrzyca River water samples.

  2. Influence of electrode spacing on the efficiency of dye-sensitized solar cell

    Science.gov (United States)

    Alfidharisti, S. R.; Nurosyid, F.; Supriyanto, A.; Suryana, R.; Iriani, Y.

    2017-11-01

    This study reported the fabrication of Dye-Sensitized Solar Cell (DSSC) with optimization of electrode spacing. Optimization of electrodes in DSSC will affect the amount of electrolyte solution provided. The DSSC fabrication in this study consisted of coating the TiO2 semiconductor as the working electrode, Platinum as the catalyst on the counter electrode, the Dye Ruthenium Complex as a photosensitizer, and the electrolyte solution as the electron transport media. The spacer between the working electrode and the counter electrode was varied by five variations with the thickness of 38 μm, 76 μm, 114 μm, 152 μm, and 190 μm. The DSSC was characterized using Keithley I-V Meter to know the efficiency of DSSC. The characterization showed that the best DSSC efficiency was at 76 μm electrode spacing.

  3. Influence of carbon electrode material on energy recovery from winery wastewater using a dual-chamber microbial fuel cell.

    Science.gov (United States)

    Penteado, Eduardo D; Fernandez-Marchante, Carmen M; Zaiat, Marcelo; Gonzalez, Ernesto R; Rodrigo, Manuel A

    2017-06-01

    The aim of this work was to evaluate three carbon materials as anodes in microbial fuel cells (MFCs), clarifying their influence on the generation of electricity and on the treatability of winery wastewater, a highly organic-loaded waste. The electrode materials tested were carbon felt, carbon cloth and carbon paper and they were used at the same time as anode and cathode in the tests. The MFC equipped with carbon felt reached the highest voltage and power (72 mV and 420 mW m-2, respectively), while the lowest values were observed when carbon paper was used as electrode (0.2 mV and 8.37·10-6 mW m-2, respectively). Chemical oxygen demand (COD) removal from the wastewater was observed to depend on the electrode material, as well. When carbon felt was used, the MFC showed the highest average organic matter consumption rate (650 mg COD L-1 d-1), whereas by using carbon paper the rate decreased to 270 mg COD L-1 d-1. Therefore, both electricity generation and organic matter removal are strongly related not to the chemical composition of the electrode (which was graphite carbon in the three electrodes), but to its surface features and, consequently, to the amount of biomass adhered to the electrode surface.

  4. Influence of surface states of CuInS{sub 2} quantum dots in quantum dots sensitized photo-electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Zhuoyin; Liu, Yueli [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070 (China); Wu, Lei [School of Electronic and Electrical, Wuhan Railway Vocational College of Technology, Wuhan 430205 (China); Zhao, Yinghan; Chen, Keqiang [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070 (China); Chen, Wen, E-mail: chenw@whut.edu.cn [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070 (China)

    2016-12-01

    Graphical abstract: J–V curves of different ligands capped CuInS{sub 2} QDs sensitized TiO{sub 2} photo-electrodes. - Highlights: • DDT, OLA, MPA, and S{sup 2−} ligand capped CuInS{sub 2} quantum dot sensitized photo-electrodes are prepared. • Surface states of quantum dots greatly influence the electrochemical performance of CuInS{sub 2} quantum dot sensitized photo-electrodes. • S{sup 2−} ligand enhances the UV–vis absorption and electron–hole separation property as well as the excellent charge transfer performance of the photo-electrodes. - Abstract: Surface states are significant factor for the enhancement of electrochemical performance in CuInS{sub 2} quantum dot sensitized photo-electrodes. DDT, OLA, MPA, and S{sup 2−} ligand capped CuInS{sub 2} quantum dot sensitized photo-electrodes are prepared by thermolysis, solvethermal and ligand-exchange processes, respectively, and their optical properties and photoelectrochemical properties are investigated. The S{sup 2−} ligand enhances the UV–vis absorption and electron–hole separation property as well as the excellent charge transfer performance of the photo-electrodes, which is attributed to the fact that the atomic S{sup 2−} ligand for the interfacial region of quantum dots may improve the electron transfer rate. These S{sup 2−}-capped CuInS{sub 2} quantum dot sensitized photo-electrodes exhibit the excellent photoelectrochemical efficiency and IPCE peak value, which is higher than that of the samples with DDT, OLA and MPA ligands.

  5. Conditions pertaining to the influence of electrode surface roughness upon the insulation strength of compressed SF6 systems

    DEFF Research Database (Denmark)

    McAllister, Iain Wilson; Crichton, George C

    1997-01-01

    On the basis of a series of experimental investigations reported in the literature, electrode microscopic surface roughness was dismissed as a factor influencing breakdown levels in compressed SF6, irrespective of field non-uniformity. This conclusion appears to be tenable if one restricts...

  6. Influence of Anode Area and Electrode Gap on the Morphology of TiO2 Nanotubes Arrays

    Directory of Open Access Journals (Sweden)

    Min Wang

    2013-01-01

    Full Text Available In order to fabricate the titanium dioxide (TiO2 nanotubes arrays which were used in the photocatalytic degradation of total volatile organic compounds (TVOC by anodization, the influence of the electrode gap and anode area on the morphology of the titanium dioxide (TiO2 nanotubes was studied. Titanium dioxide (TiO2 nanotube arrays were prepared by anodization with various electrode gaps and anode areas. Field emission scanning electron microscopy was used to investigate the morphology of the TiO2 nanotubes arrays. The results showed that the morphology of TiO2 nanotubes arrays was influenced by electrode gap and anode area. The appropriate anode area and electrode gap were 5 cm × 2 cm and 20 mm, respectively. Thus, TiO2 nanotube arrays with better morphology (with larger dimension and uniform TiO2 nanotubes were successfully fabricated by anodic oxidation with 5 cm × 2 cm anode area and 20 mm electrode gap at 30 V.

  7. Electrochemical detection of Hg (II) ions using EDTA-PANI/SWNTs nanocomposite modified SS electrode

    Science.gov (United States)

    Deshmukh, M. A.; Patil, H. K.; Shirsat, M. D.; Ramanavicius, A.

    2017-05-01

    Detection of Hg (II) ions using EDTA modified polyaniline (PANI) and single walled carbon nanotubes (SWNTs) nanocomposite (PANI/SWNTs) was performed electrochemically via cyclic voltammetry (CV) technique. Dodecyl benzene sulphonic next step, PANI/SWNTs nanocomposite was modified acid sodium salt (DBSA) was used as a surfactant during this synthesis to get uniform suspension SWNTs. In the by EDTA solution containing crosslinking agent 1-ethyl-3(3-(dimethylamino) propyl) - carbodiimide (EDC) utilizing dip coating technique. The sensitivity of EDTA modified PANI/SWNTs nanocomposite towards Hg (II) ions was investigated. Differential pulse voltammetry (DPV) technique was applied for the electrochemical detection of Hg (II) ions.

  8. Non-noble metal graphene oxide-copper (II) ions hybrid electrodes for electrocatalytic hydrogen evolution reaction

    KAUST Repository

    Muralikrishna, S.

    2015-08-25

    Non-noble metal and inexpensive graphene oxide-copper (II) ions (GO-Cu2+) hybrid catalysts have been explored for the hydrogen evolution reaction (HER). We were able to tune the binding abilities of GO toward the Cu2+ ions and hence their catalytic properties by altering the pH. We have utilized the oxygen functional moieties such as carboxylate, epoxide, and hydroxyl groups on the edge and basal planes of the GO for binding the Cu2+ ions through dative bonds. The GO-Cu2+ hybrid materials were characterized by cyclic voltammetry in sodium acetate buffer solution. The morphology of the hybrid GO-Cu2+ was characterized by atomic force microscopy. The GO-Cu2+ hybrid electrodes show good electrocatalytic activity for HER with low overpotential in acidic solution. The Tafel slope for the GO-Cu2+ hybrid electrode implies that the primary discharge step is the rate determining step and HER proceed with Volmer step. © 2015 American Institute of Chemical Engineers Environ Prog.

  9. Influence of electrode site and size on variability of magnetic evoked potentials.

    Science.gov (United States)

    Dunnewold, R J; van der Kamp, W; van den Brink, A M; Stijl, M; van Dijk, J G

    1998-12-01

    Successive magnetic evoked potentials (MEPs) concern varying motor neurons. We investigated whether this MEP-specific source of variability depends on electrode site and size. Amplitude variability (standard deviation) was largest over the center of the hypothenar muscles. Latencies were longer at distal and proximal sites than at the center site. Large electrodes (10 cm2) did not decrease this source of amplitude variability compared with EEG electrodes, in contrast to other sources of variability.

  10. Multiwall Carbon Nanotubes Modified Carbon Paste Electrode for Determination of Copper(II by Potentiometric and Impedimetric Methods

    Directory of Open Access Journals (Sweden)

    M. Mazloum-Ardakani

    2012-09-01

    Full Text Available A chemically modified carbon paste electrode with multiwall carbon nanotube (MWCNT was prepared and used as a sensor for Cu2+  ion. The unique chemical and physical properties of CNT have paved the way  to  new  and  improved  sensing  devices.  A  central  composite chemometrics  design  was  applied  for  multivariate  optimization  of the  effects  of  three  significant  parameters  (Graphite  powder  (X1, MWCNT  (X2  and  Ionophre  (X3  influencing  the  response  of  the electrode.  In  the  optimized  conditions,  the  electrode  exhibits  a Nernstian  slope  of  30.1  mV/decade  in  a  linear  range  between 1.0×10-6   to1.0×10-1  M over a wide pH range (2.0-6.5. Importantly, the  effect  of  the  MWCNT  on  the  performance  of  electrode  was investigated  by  impedance  technique,  that  showed  the  MWCNT helps the transduction of the signal in carbon paste electrode and the charged  transfer  resistance  (Rct  was  reduced.  The  impedimetric results indicated that the linear concentrations range was 1.0×10−7  to 1.0×10−1  M  and  in  comparison  with  potentiometry,  the  pH  range increased to 2.0−7.5.

  11. Influence of Electrode Design and Contacting Layers on Performance of Electrolyte Supported SOFC/SOEC Single Cells

    Directory of Open Access Journals (Sweden)

    Mihails Kusnezoff

    2016-11-01

    Full Text Available The solid oxide cell is a basis for highly efficient and reversible electrochemical energy conversion. A single cell based on a planar electrolyte substrate as support (ESC is often utilized for SOFC/SOEC stack manufacturing and fulfills necessary requirements for application in small, medium and large scale fuel cell and electrolysis systems. Thickness of the electrolyte substrate, and its ionic conductivity limits the power density of the ESC. To improve the performance of this cell type in SOFC/SOEC mode, alternative fuel electrodes, on the basis of Ni/CGO as well as electrolytes with reduced thickness, have been applied. Furthermore, different interlayers on the air side have been tested to avoid the electrode delamination and to reduce the cell degradation in electrolysis mode. Finally, the influence of the contacting layer on cell performance, especially for cells with an ultrathin electrolyte and thin electrode layers, has been investigated. It has been found that Ni/CGO outperform traditional Ni/8YSZ electrodes and the introduction of a ScSZ interlayer substantially reduces the degradation rate of ESC in electrolysis mode. Furthermore, it was demonstrated that, for thin electrodes, the application of contacting layers with good conductivity and adhesion to current collectors improves performance significantly.

  12. Highly selective oxalate-membrane electrode based on 2,2'-[1,4-butandiyle bis(nitrilo propylidine)]bis-1-naphtholato copper(II).

    Science.gov (United States)

    Ardakani, M Mazloum; Jalayer, M; Naeimi, H; Heidarnezhad, A; Zare, H R

    2006-01-15

    A new oxalate-selective electrode based on the complex 2,2'-[1,4-butandiyle bis(nitrilo propylidine)]bis-1-naphtholato copper(II) (CuL) as the membrane carrier was developed. The electrode exhibited a good Nernstian slope of -29.2+/-0.6 mV/decade (mean value+/-standard deviation, n=5) and a linear range of 5.0 x 10(-8) to 1.0 x 10(-1)M for oxalate. The limit of detection was 5.0 x 10(-8)M. This electrode represents a fast response time (i.e. 10-15s) and could be used for more than 3 months. The selectivity coefficients were determined by the fixed interference method (FIM) and could be used in the pH range of 2.0-7.0. It was employed as an indicator electrode for the determination of oxalate in water samples.

  13. Multi-walled carbon nanotubes-ionic liquid-carbon paste electrode as a super selectivity sensor: application to potentiometric monitoring of mercury ion(II).

    Science.gov (United States)

    Khani, Hadi; Rofouei, Mohammad Kazem; Arab, Pezhman; Gupta, Vinod Kumar; Vafaei, Zahra

    2010-11-15

    In this article a super selectivity potentiometric methodology, using an ion-selective electrode, for determination of mercury ion(II) in aqueous solution was investigated. For modification of the electrode a room temperature ionic liquid, 1-n-butyl-3-methylimidazolium tetrafluoroborate (BMIM·BF(4)), was applied as a super conductive binder, and Multi-walled carbon nanotubes (MWCNTs) was used in the composition of the carbon paste to improve conductivity and transduction of chemical signal to electrical signal. Moreover, incorporation of 1-(2-ethoxyphenyl)-3-(3-nitrophenyl)triazene (ENTZ) as an ionophore to this composition caused to significantly enhanced selectivity toward Hg(II) ions over a wide concentration range of 1.0×10(-4) to 5.0×10(-9) M with a lower detection limit of 2.5×10(-9) M (0.5 ppb) and a Nernstian slope of 29.3±(0.2) mV decade(-1) of Hg(II) activity. The electrode has a short response time (∼5s) and can be used for at least 55 days without any considerable divergence in potentials, and the working pH range was 2.0-4.3. Finally, the proposed electrode was successfully used as an indicator for potentiometric determination of Hg(II) in dental amalgam and water samples. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Improving the sensitivity of electrode-separated piezoelectric quartz crystal sensor for copper(II ions by immobilization of the N-2-aminoethyl-3-aminopropylsilane group

    Directory of Open Access Journals (Sweden)

    Jesus Dosil P. de

    2001-01-01

    Full Text Available An electrode-separated piezoelectric quartz crystal sensor with a chemically modified surface was proposed. The modification was carried out by a silanization procedure with N-2-aminoethyl-3-aminopropyltrimethoxysilane, yielding the immobilised N-2-aminoethyl-3-aminopropylsilane group over the surface of a 3.5 MHz piezoelectric quartz crystal. A flow cell was manufactured with poly(methyl methacrylate and brass, instead of noble metals, for the electrodes. In this cell, the solution touches only one side of the crystal and the related electrode is coated with a polyester film, which prevents corrosion and does not disturb the oscillation process. This innovation reduces the cost of the cell and renders an electronics non DCcoupled to the solution. The modified crystal proved to be more sensitive to copper(II ions than magnesium(II, nickel(II, zinc(II, and cobalt(II. For 100muL sample injections, the limit of detection for copper(II was 6 mumol L-1, which is an impressive result when compared with that for an unmodified crystal.

  15. Amino-functionalized mesoporous silica modified glassy carbon electrode for ultra-trace copper(II) determination.

    Science.gov (United States)

    Dai, Xingxin; Qiu, Fagui; Zhou, Xuan; Long, Yumei; Li, Weifeng; Tu, Yifeng

    2014-10-27

    This paper described a facile and direct electrochemical method for the determination of ultra-trace Cu(2+) by employing amino-functionalized mesoporous silica (NH2-MCM-41) as enhanced sensing platform. NH2-MCM-41 was prepared by using a post-grafting process and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and fourier transform infrared (FTIR) spectroscopy. NH2-MCM-41 modified glassy carbon (GC) electrode showed higher sensitivity for anodic stripping voltammetric (ASV) detection of Cu(2+) than that of MCM-41 modified one. The high sensitivity was attributed to synergistic effect between MCM-41 and amino-group, in which the high surface area and special mesoporous morphology of MCM-41 can cause strong physical absorption, and amino-groups are able to chelate copper ions. Some important parameters influencing the sensor response were optimized. Under optimum experimental conditions the sensor linearly responded to Cu(2+) concentration in the range from 5 to 1000 ng L(-1) with a detection limit of 0.9 ng L(-1) (S/N=3). Moreover, the sensor possessed good stability and electrode renewability. In the end, the proposed sensor was applied for determining Cu(2+) in real samples and the accuracy of the results were comparable to those obtained by inductively coupled plasma optical emission spectrometry (ICP-OES) method. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Influence of BaO in perovskite electrodes for the electrochemical reduction of NOx

    DEFF Research Database (Denmark)

    Simonsen, Vibe Louise Ernlund; Johnsen, M.M.; Kammer Hansen, Kent

    2007-01-01

    Using the point electrode method, the effect of BaO on electrochemical reduction of NO (x) was investigated using the perovskites La0.85Sr0.15MnO3 (LSM15) and La0.85Sr0.15CoO3 (LSCo15) as electrode materials. The experiments were carried out in the temperature range 400-600 degrees C in 1% NO and...... favored oxygen reduction compared to reduction of nitric oxide. The LSCO15 electrode containing BaO reacted to form a K2NiF4-structure and was not tested further....

  17. Influence of structure and hydrophobic properties on the characteristics of carbon-air electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Shteinberg, G.V.; Dribinsky, A.V.; Kukushkina, I.A.; Musiliva, M.; Mrha, J.

    1982-07-01

    The electrochemical parameters of carbon-oxygen gas-diffusion electrodes can be controlled over a wide range by varying the structure of the active carbon catalyst and the ratio of lyophilic and lyophobic pores in the catalyst particles. Two typical representatives of active carbon catalysts with significantly different hydrophobic properties have been investigated by mercury-alkali intrusion porosimetry and tested both in model floating electrodes and as the hydrophilic component of the active layer of two-layer, gas-diffusion working electrodes. The optimal electrolyte content in the active layer ensuring the maximum electrical characteristics of working electrodes has been found to depend on the structure and hydrophobic properties of the carbon catalyst. The gas pores in the carbon catalyst have been shown to play an essential role in the oxygen mass transfer process in the active layer.

  18. Determination of heavy metals in mussel and oyster samples with tris (2,2‧-bipyridyl) ruthenium (II)/graphene/Nafion® modified glassy carbon electrodes

    Science.gov (United States)

    Palisoc, Shirley T.; Uy, Donald Jans S.; Natividad, Michelle T.; Lopez, Toni Beth G.

    2017-11-01

    Tris (2,2‧-bipyridyl)ruthenium(II)/graphene/Nafion® modified glassy carbon electrodes (GCEs) were fabricated using the drop coating method. The modified electrode was used as the working electrode in differential pulse voltammetry (DPV) for the determination of lead, cadmium, and copper in mussel and oyster samples. The concentration of Tris (2,2‧-bipyridyl) ruthenium (II) and graphene were varied while those of Nafion®, methanol, and ethanol were held constant in the coating solution. The morphology and elemental composition of the fabricated electrodes were analyzed by scanning electron microscopy and energy-dispersive x-ray spectroscopy. Cyclic voltammetry (CV) was done to investigate the reversibility and stability of the modified electrodes. The modified electrode with the best figures of merit was utilized for the detection of copper (Cu2+), lead (Pb2+) and cadmium (Cd2+) via DPV. This was the electrode modified with 4 mg [Ru (bpy)3]2+ and 3 mg graphene. The anodic current and metal concentration showed linear relationship in the range of 48 ppb–745 ppb for Pb2+, 49 ppb–613 ppb for Cd2+, and 28 ppb–472 ppb for Cu2+. The limits of detection for lead, cadmium, and copper were 48 ppb, 49 ppb, and 28 ppb, respectively. Results from atomic absorption spectrometry (AAS) were compared with those measured with DPV. Lead, cadmium, and copper were in mussels, oysters, and sea water. In addition, DPV was able to detect other metals such as zinc, iron, tin and mercury in sea water samples and some samples of oysters.

  19. Influence of the electrode gap separation on the pseudospark-sourced electron beam generation

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, J., E-mail: junping.zhao@qq.com [High Voltage Division, School of Electrical Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); State Key Laboratory of Electrical Insulation and Power Equipment, West Xianning Road, Xi' an 710049 (China); Department of Physics, SUPA, University of Strathclyde, Glasgow, G4 0NG Scotland (United Kingdom); Yin, H.; Zhang, L.; Shu, G.; He, W.; Phelps, A. D. R.; Cross, A. W. [Department of Physics, SUPA, University of Strathclyde, Glasgow, G4 0NG Scotland (United Kingdom); Zhang, J.; Zhang, Q. [High Voltage Division, School of Electrical Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); State Key Laboratory of Electrical Insulation and Power Equipment, West Xianning Road, Xi' an 710049 (China)

    2016-07-15

    Pseudospark-sourced electron beam is a self-focused intense electron beam which can propagate without any external focusing magnetic field. This electron beam can drive a beam-wave interaction directly or after being post-accelerated. It is especially suitable for terahertz radiation generation due to the ability of a pseudospark discharge to produce small size in the micron range and very high current density and bright electron beams. In this paper, a single-gap pseudospark discharge chamber has been built and tested with several electrode gap separations to explore the dependence of the pseudospark-sourced electron beam current on the discharge voltage and the electrode gap separation. Experimental results show that the beam pulses have similar pulse width and delay time from the distinct drop of the applied voltage for smaller electrode gap separations but longer delay time for the largest gap separation used in the experiment. It has been found that the electron beam only starts to occur when the charging voltage is above a certain value, which is defined as the starting voltage of the electron beam. The starting voltage is different for different electrode gap separations and decreases with increasing electrode gap separation in our pseudospark discharge configuration. The electron beam current increases with the increasing discharge voltage following two tendencies. Under the same discharge voltage, the configuration with the larger electrode gap separation will generate higher electron beam current. When the discharge voltage is higher than 10 kV, the beam current generated at the electrode gap separation of 17.0 mm, is much higher than that generated at smaller gap separations. The ionization of the neutral gas in the main gap is inferred to contribute more to the current increase with increasing electrode gap separation.

  20. FUEL CELL ELECTRODE MATERIALS

    Science.gov (United States)

    FUEL CELL ELECTRODE MATERIALS. RAW MATERIAL SELECTION INFLUENCES POLARIZATION BUT IS NOT A SINGLE CONTROLLING FACTOR. AVAILABLE...DATA INDICATES THAT AN INTERRELATIONSHIP OF POROSITY, AVERAGE PORE VOLUME, AND PERMEABILITY CONTRIBUTES TO ELECTRODE FUEL CELL BEHAVIOR.

  1. A stannum-bismuth composite film electrode for simultaneous determination of zinc(II) and cadmium(II) using differential pulse anodic stripping voltammetry.

    Science.gov (United States)

    Li, Nian Bing; Zhu, Wei Wei; Luo, Jun Hua; Luo, Hong Qun

    2012-02-07

    The development and use of 'green' electrode materials is extremely attractive for the routine use of disposable metal sensors. Bismuth is an environmentally-friendly element and a bismuth film electrode was proposed as an alternative to mercury film electrodes. Compared with bismuth, stannum is a more 'environmentally friendly' material. The stannum-bismuth composite film electrode prepared by the in situ electrodeposition of stannum and bismuth on the glassy carbon substrate is reported for the first time. Compared with bismuth film and stannum film electrodes, the stannum-bismuth composite film electrode revealed better electroanalytical performance, and can be used as a possible alternative electrode for electrochemical stripping analysis of trace heavy metals.

  2. Influence of various metallic oxides on the kinetic of the oxygen evolution reaction on platinum electrodes

    Directory of Open Access Journals (Sweden)

    Kambire Ollo

    2015-08-01

    Full Text Available Pt, 50Pt-50RuO2 and 50Pt-50IrO2 electrodes were prepared on titanium (Ti substrate by thermal decomposition techniques. The micrographs of 50Pt-50RuO2 and 50Pt-50IrO2 have revealed that their surfaces are rough with cracked structures. That of platinum was smooth, compact and homogeneous. The richer the electrode ‘surface in platinum, thinner is the crack size and also more compact is the electrode’surface. The electrodes have also been characterized electrochemically by cyclic voltammetry in acid (HClO4 and in alkaline (KOH electrolytes. These characterizations showed that the surface of the 50Pt-50RuO2 and 50Pt-50IrO2 electrodes were composed by platinum and metal dioxide active sites. The Tafel slope obtained on Pt, 50Pt-50RuO2 and 50Pt-50IrO2 for the oxygen evolution reaction (OER were respectively 120, 90 and 44 mV/dec in acid electrolyte. In the alkaline electrolyte, they were 119, 87 and 42 mV/dec respectively on Pt, 50Pt-50RuO2 and 50Pt-50IrO2 electrodes indicating that for the prepared electrodes, Tafel slopes are the same in acid and in alkaline media. Moreover, in acid and in alkaline media, the kinetic of the oxygen evolution reaction was rapid on 50Pt-50RuO2 and 50Pt-50IrO2 than Pt owing to a synergetic effect of Pt and the oxides. That additional effect of the surface component 50Pt-50RuO2 and 50Pt-50IrO2 electrodes let them possess high electrocatalytic activity towards OER than Pt in the two media. Though the kinetic of the oxygen evolution reaction is practically the same in acidic and alkaline media for all the electrodes, OER occurred at lower overpotential in alkaline electrolyte than in acidic electrolyte on the prepared electrodes.

  3. PT (II AND PD (II COMPLEXES INFLUENCE ON SPHEROIDS GROWTH OF BREAST CANCER CELLS

    Directory of Open Access Journals (Sweden)

    A. A. Bilyuk

    2017-02-01

    Full Text Available The aim of the research was to examine the changes in multi-cellular tumor spheroid growth, adhesion properties and gamma-glutamintranspeptidasic activity in model systems of human breast cancer multicellular spheroid MCF-7 under the influence of Pt(ІІ and Pd(ІІ π-complexes with allyl-containing thioureas. Comparing with cisplatin, Pt(II and Pd(II complexes reduce gamma-glutamintranspeptidasic activity, increase adhesive properties in model system of solid tumor and inhibit the multicellular spheroids’ growth. All changes prove the importance of further investigation and analysis of these compounds as potential analogues of anticancer drugs that possibly do not cause resistance and reduce the level of metastasis in breast cancer.

  4. Influence of electrode microstructure on the reactivity of Cu{sub 2}Sb with lithium

    Energy Technology Data Exchange (ETDEWEB)

    Morcrette, M.; Larcher, D.; Tarascon, J.M. [Laboratoire de Reactivite et Chimie des Solides, Universite de Picardie Jules Verne, CNRS-UMR 6007, 33 rue Saint Leu, 80039 Amiens Cedex (France); Edstroem, K. [Department of Materials Chemistry, Aangstroem Laboratory, Uppsala University, SE-751 21 Uppsala (Sweden); Vaughey, J.T.; Thackeray, M.M. [Electrochemical Technology Program, Chemical Technology Division, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2007-05-05

    The reactivity of lithium with Cu{sub 2}Sb was recently described to be governed by displacement reactions of Cu similar to those occurring in Cu{sub 2.33}V{sub 4}O{sub 11}. In order to complement the earlier work of Fransson et al., we have revisited the electrochemical reactivity of Cu{sub 2}Sb with Li. Through a different arsenal of characterization techniques, we have emphasized the role of the particle size, electrode preparation and temperature on the reversibility of the electrochemical reaction. We have demonstrated that the structural reversibility of the Cu{sub 2}Sb electrode can be obtained in two special cases: (1) when the particle size of Cu{sub 2}Sb is small and when the powders are ball milled with carbon and (2) when Li{sub 2}CuSb is used as the starting material and some Sb is lost from the electrode during charge. (author)

  5. An Influence of Parameters of Micro-Electrical Discharge Machining On Wear of Tool Electrode

    DEFF Research Database (Denmark)

    Puthumana, Govindan

    2017-01-01

    To achieve better precision of features generated using the micro-electrical dischargemachining (micro-EDM), there is a necessity to minimize the wear of the toolelectrode, because a change in the dimensions of the electrode is reflected directly orindirectly on the feature. This paper presents...

  6. Influence of Electrode Density on the Performance of Li-Ion Batteries: Experimental and Simulation Results

    Directory of Open Access Journals (Sweden)

    Jelle Smekens

    2016-02-01

    Full Text Available Lithium-ion battery (LIB technology further enabled the information revolution by powering smartphones and tablets, allowing these devices an unprecedented performance against reasonable cost. Currently, this battery technology is on the verge of carrying the revolution in road transport and energy storage of renewable energy. However, to fully succeed in the latter, a number of hurdles still need to be taken. Battery performance and lifetime constitute a bottleneck for electric vehicles as well as stationary electric energy storage systems to penetrate the market. Electrochemical battery models are one of the engineering tools which could be used to enhance their performance. These models can help us optimize the cell design and the battery management system. In this study, we evaluate the ability of the Porous Electrode Theory (PET to predict the effect of changing positive electrode density in the overall performance of Li-ion battery cells. It can be concluded that Porous Electrode Theory (PET is capable of predicting the difference in cell performance due to a changing positive electrode density.

  7. Determination of ultra-trace mercury(II) by flow-injection/anodic stripping voltammetry using a track-etched microporous membrane electrode.

    Science.gov (United States)

    Mizuguchi, Hitoshi; Numata, Kentaro; Monma, Chiaki; Iiyama, Masamitsu; Tachibana, Kazuhiro; Nishina, Tatsuo; Shida, Junichi

    2013-01-01

    A new flow-injection/anodic stripping voltammetry has been demonstrated to assess ultra-trace mercury(II) using track-etched microporous membrane electrodes. The electrodes were prepared by the sputtering of gold or platinum onto both sides of a membrane filter with a smooth flat surface and with cylindrical pores having uniform diameter. The deposition of mercury from a mercury(II) solution was performed while the sample solution flowed through the membrane electrodes. After the deposition step, an anodic stripping voltammogram was obtained by sweeping the potential from 0 to +0.8 V vs. Ag/AgCl. In this case, the sample solution flowed through the pores of the 10-μm-thick membrane filters. Efficient electrolysis occurred during passage of the sample solution through the electrode, of which the pore size was 0.4 μm. In this study, the voltammetry described above was demonstrated using an FIA system. The continuous-flow mode showed a detection limit of 0.04 μg L(-1) when the experimental conditions of the flow rate and the deposition time were set at 0.5 mL min(-1) and 180 s. In the sample-injection mode equipped with a 1-mL sample loop, a linear relation was found for 0.5-4.0 μg L(-1) of a mercury(II) standard solution (r = 0.995). The detection limit was 0.05 μg L(-1). This method was applied to the ultra-trace determination of mercury(II) in river-water samples.

  8. Au/HClO4 interface: Influence of preparation technique of the electrode surface and specific anion adsorption

    Directory of Open Access Journals (Sweden)

    A HAMMADI

    2007-12-01

    Full Text Available We present electrochemical impedance spectra made on gold alloy containing 30% silver electrodes of various roughnesses in aqueous perchlorate acid solution as supporting electrolyte in the absence and the presence of mM of specifically adsorbed halide ions X (X = Br-, Cl-, I-, at potentials where the dominant electrode process is the adsorption of the above anions. Efforts were mainly concentrated on the importance of surface preparation technique of the electrode and its influence on impedance spectra. Atomic scale inhomogeneities are introduced by mechanical treatment and can be decreased by annealing. Due to the annealing the double layer behaves as (almost an ideal capacitance in the absence of specific adsorption though surface roughness remains the same. A study of the related impedance behaviour in the presence of adsorbates even at very low concentrations (10-4M, revealed capacitance dispersion increasing with the extent of specific anion adsorption at the gold/silver surface.

  9. Influences of Alkyl and Aryl Substituents on Iminopyridine Fe(II- and Co(II-Catalyzed Isoprene Polymerization

    Directory of Open Access Journals (Sweden)

    Lihua Guo

    2016-11-01

    Full Text Available A series of alkyl- and aryl-substituted iminopyridine Fe(II complexes 1a–7a and Co(II complexes 2b, 3b, 5b, and 6b were synthesized. The activator effect, influence of temperature, and, particularly, the alkyl and aryl substituents’ effect on catalytic activity, polymer molecular weight, and regio-/stereoselectivity were investigated when these complexes were applied in isoprene polymerization. All of the Fe(II complexes afforded polyisoprene with high molecular weight and moderate cis-1,4 selectivity. In contrast, the Co(II complexes produced polymers with low molecular weight and relatively high cis-1,4 selectivity. In the iminopyridine Fe(II system, the alkyl and aryl substituents’ effect exhibits significant variation on the isoprene polymerization. In the iminopyridine Co(II system, there is little influence observed on isoprene polymerization by alkyl and aryl substituents.

  10. Influence of ageing in fuel cell on membrane/electrodes interfaces

    Science.gov (United States)

    Danerol, A. S.; Bas, C.; Flandin, L.; Claude, E.; Alberola, N. D.

    The changes in properties within membrane electrode assemblies (MEAs) aged in a stack functioning at constant-power operation (0.12 W cm -2) for several durations (0, 347, 892, and 1397 h) were characterized. An important effort was placed into better understanding interfaces. Two tests were thus developed to investigate the changes in each active layer/membrane interface. Both techniques demonstrated that the mechanical bounding of both cathode and anode to the polymer membrane improve with the functioning time in fuel cell. This phenomenon was further attributed to Pt dissolution and diffusion/precipitation within the polymer membrane and to a diffusion/crystallization of the binding agent in the vicinity of the electrode/membrane interfaces.

  11. Study on the influence of the B4C layer thickness on the neutron flux and energy distribution shape in multi-electrode ionisation chamber.

    Science.gov (United States)

    Tymińska, K; Maciak, M; Ośko, J; Tulik, P; Zielczyński, M; Gryziński, M A

    2014-10-01

    A model of a multi-electrode ionisation chamber, with polypropylene electrodes coated with a thin layer of B4C was created within Monte Carlo N-Particle Transport Code (MCNPX) and Fluktuierende Kaskade (FLUKA) codes. The influence of the layer thickness on neutron absorption in B4C and on the neutron spectra in the consecutive intra-electrode gas volumes has been studied using the MCNPX and FLUKA codes. The results will be used for designing the new type of the ionisation chamber. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Elaboration of modified poly(NiII-DHS films as electrodes by the electropolymerization of Ni(II-[5,5′-dihydroxysalen] onto indium tin oxide surface and study of their electrocatalytic behavior toward aliphatic alcohols

    Directory of Open Access Journals (Sweden)

    Ali Ourari

    2017-11-01

    Full Text Available Nickel(II-DHS complex was obtained from N,N′-bis(2,5-dihydroxybenzylidene-1,2-diaminoethane (H2DHS ligand and nickel acetate tetrahydrated in ethanolic solution with stirring under reflux. This complex, dissolved in an alkaline solution, was oxidized to form electroactive films strongly adhered on the ITO (indium tin oxide electrode surface. In this alkaline solution, the poly-[NiII-DHS]/ITO films showed the typical voltammetric response of (Ni2+/Ni3+ redox couple centers which are immobilized in the polymer-film. The modified electrodes (MEs obtained were also characterized by several techniques such as scanning electronic microscopy, atomic force microscopy and electrochemical methods. The electrocatalytic behavior of these MEs toward the oxidation reaction of some aliphatic alcohols such as methanol, ethanol, 2-Methyl-1-propanol and isopropanol was investigated. The voltammograms recorded with these alcohols showed good electrocatalytic efficiency. The electrocatalytic currents were at least 80 times higher than those obtained for the oxidation of methanol on electrodes modified with nickel hydroxide films in alkaline solutions. We noticed that these electrocatalytic currents are proportional to the concentration of methanol (0.050–0.30 μM. In contrast, those recorded for the oxidation of other aliphatic short chain alcohols such as ethanol, 2-methyl-1-propanol and isopropanol are rather moderately weaker. In all cases the electrocatalytic currents presented a linear dependence with the concentration of alcohol. These modified electrodes could be applied as alcohol sensors.

  13. Determination of vitamin B6 (pyridoxine in pharmaceutical preparations by cyclic voltammetry at a copper(II hexacyanoferrate(III modified carbon paste electrode

    Directory of Open Access Journals (Sweden)

    Teixeira Marcos F. S.

    2003-01-01

    Full Text Available A copper(II hexacyanoferrate(III (CuHCF modified carbon paste electrode was used for the electroanalytical determination of pyridoxine (vitamin B6 in pharmaceutical preparations, using cyclic voltammetry. Diverse parameters were investigated for the optimization of the sensor response, such as composition of the electrode, electrolytic solution, effect of pH, scan rate of potential and interferences. The optimum conditions were found at an electrode composition of 20% CuHCF, 55% graphite and 25% mineral oil (m/m in an acetate buffer (pH 5.5 containing 0.05 mol L-1 of NaCl. The range of determination of pyridoxine was from 1.2 x 10-6 to 6.9 x 10-4 mol L-1. The procedure was successfully applied to the determination of vitamin B6 in formulation preparations. The CuHCF modified carbon paste electrode gave results comparable to those obtained using spectrophotometry.

  14. An electrochemiluminescent biosensor for glucose based on the electrochemiluminescence of luminol on the nafion/glucose oxidase/poly(nickel(II)tetrasulfophthalocyanine)/multi-walled carbon nanotubes modified electrode.

    Science.gov (United States)

    Qiu, Bin; Lin, Zhenyu; Wang, Jian; Chen, Zhihuang; Chen, Jinhua; Chen, Guonan

    2009-04-15

    A poly(nickel(II) tetrasulfophthalocyanine)/multi-walled carbon nanotubes composite modified electrode (polyNiTSPc/MWNTs) was fabricated by electropolymerization of NiTSPc on MWNTs-modified glassy carbon electrode (GCE). The modified electrode was found to be able to greatly improve the emission of luminol electrochemiluminescence (ECL) in a solution containing hydrogen peroxide. Glucose oxidase (GOD) was immobilized on the surface of polyNiTSPc/MWNTs modified GC electrode by Nafion to establish an ECL glucose sensor. Under the optimum conditions, the linear response range of glucose was 1.0x10(-6) to 1.0x10(-4) mol L(-1) with a detection limit of 8.0x10(-8) mol L(-1) (defined as the concentration that could be detected at the signal-to-noise ratio of 3). The ECL sensor showed an outstanding well reproducibility and long-term stability. The established method has been applied to determine the glucose concentrations in real serum samples with satisfactory results.

  15. Preparation and characterization of electrically conducting polypyrrole Sn(IV phosphate cation-exchanger and its application as Mn(II ion selective membrane electrode

    Directory of Open Access Journals (Sweden)

    A.A. Khan

    2011-10-01

    Full Text Available Polypyrrole Sn(IV phosphate, an organic–inorganic composite cation-exchanger was synthesized via sol-gel mixing of an organic polymer, polypyrrole, into the matrices of the inorganic precipitate of Sn(IV phosphate. The physico-chemical properties of the material were determined using Atomic Absorption Spectrometry (AAS, CHN elemental analysis (inductively coupled plasma mass spectrometry, ICP-MS, UV–VIS spectrophotometry, FTIR (Fourier Transform Infra-Red, SEM (Scanning Electron Microscopy, TGA–DTA (Thermogravimetric Analysis–Differential Thermal Analysis, and XRD (X-ray diffraction. Ion-exchange behavior was observed to characterize the material. On the basis of distribution studies, the material was found to be highly selective for toxic heavy metal ion Mn2+. Due to its selective nature, the material was used as an electroactive component for the construction of an ion-selective membrane electrode. The proposed electrode shows fairly good discrimination of mercury ion over several other inorganic ions. The analytical utility of this electrode was established by employing it as an indicator electrode in electrometric titrations for Mn(II in water.

  16. Influence of the implanted pulse generator as reference electrode in finite element model of monopolar deep brain stimulation.

    Science.gov (United States)

    Walckiers, Grégoire; Fuchs, Benjamin; Thiran, Jean-Philippe; Mosig, Juan R; Pollo, Claudio

    2010-01-30

    Electrical deep brain stimulation (DBS) is an efficient method to treat movement disorders. Many models of DBS, based mostly on finite elements, have recently been proposed to better understand the interaction between the electrical stimulation and the brain tissues. In monopolar DBS, clinically widely used, the implanted pulse generator (IPG) is used as reference electrode (RE). In this paper, the influence of the RE model of monopolar DBS is investigated. For that purpose, a finite element model of the full electric loop including the head, the neck and the superior chest is used. Head, neck and superior chest are made of simple structures such as parallelepipeds and cylinders. The tissues surrounding the electrode are accurately modelled from data provided by the diffusion tensor magnetic resonance imaging (DT-MRI). Three different configurations of RE are compared with a commonly used model of reduced size. The electrical impedance seen by the DBS system and the potential distribution are computed for each model. Moreover, axons are modelled to compute the area of tissue activated by stimulation. Results show that these indicators are influenced by the surface and position of the RE. The use of a RE model corresponding to the implanted device rather than the usually simplified model leads to an increase of the system impedance (+48%) and a reduction of the area of activated tissue (-15%). (c) 2009 Elsevier B.V. All rights reserved.

  17. Screen-Printed Electrode Modified by Bismuth /Fe₃O₄ Nanoparticle/Ionic Liquid Composite Using Internal Standard Normalization for Accurate Determination of Cd(II) in Soil.

    Science.gov (United States)

    Wang, Hui; Zhao, Guo; Yin, Yuan; Wang, Zhiqiang; Liu, Gang

    2017-12-21

    The quality and safety of agricultural products are threatened by heavy metal ions in soil, which can be absorbed by the crops, and then accumulated in the human body through the food chain. In this paper, we report a low-cost and easy-to-use screen-printed electrode (SPE) for cadmium ion (Cd(II)) detection based on differential pulse voltammetry (DPV), which decorated with ionic liquid (IL), magnetite nanoparticle (Fe₃O₄), and deposited a bismuth film (Bi). The characteristics of Bi/Fe₃O₄/ILSPE were investigated using scanning electron microscopy, cyclic voltammetry, impedance spectroscopy, and linear sweep voltammetry. We found that the sensitivity of SPE was improved dramatically after functionalized with Bi/Fe₃O₄/IL. Under optimized conditions, the concentrations of Cd(II) are linear with current responses in a range from 0.5 to 40 µg/L with the lowest detection limit of 0.05 µg/L (S/N = 3). Additionally, the internal standard normalization (ISN) was used to process the response signals of Bi/Fe₃O₄/ILSPE and established a new linear equation. For detecting three different Cd(II) concentrations, the root-mean-square error using ISN (0.25) is lower than linear method (0.36). Finally, the proposed electrode was applied to trace Cd(II) in soil samples with the recovery in the range from 91.77 to 107.83%.

  18. Influence of superoxide on myeloperoxidase kinetics measured with a hydrogen peroxide electrode.

    OpenAIRE

    Kettle, A J; Winterbourn, C C

    1989-01-01

    Stimulated neutrophils discharge large quantities of superoxide (O2.-), which dismutates to form H2O2. In combination with Cl-, H2O2 is converted into the potent oxidant hypochlorous acid (HOCl) by the haem enzyme myeloperoxidase. We have used an H2O2 electrode to monitor H2O2 uptake by myeloperoxidase, and have shown that in the presence of Cl- this accurately represents production of HOCl. Monochlorodimedon, which is routinely used to assay production of HOCl, inhibited H2O2 uptake by 95%. ...

  19. Cooperative cathode electrode and in situ deposited copper for subsequent enhanced Cd(II) removal and hydrogen evolution in bioelectrochemical systems.

    Science.gov (United States)

    Wang, Qiang; Huang, Liping; Pan, Yuzhen; Zhou, Peng; Quan, Xie; Logan, Bruce E; Chen, Hongbo

    2016-01-01

    Bioelectrochemical systems (BESs) were first operated in microbial fuel cell mode for recovering Cu(II), and then shifted to microbial electrolysis cells for Cd(II) reduction on the same cathodes of titanium sheet (TS), nickel foam (NF) or carbon cloth (CC). Cu(II) reduction was similar to all materials (4.79-4.88mg/Lh) whereas CC exhibited the best Cd(II) reduction (5.86±0.25mg/Lh) and hydrogen evolution (0.35±0.07m(3)/m(3)d), followed by TS (5.27±0.43mg/Lh and 0.15±0.02m(3)/m(3)d) and NF (4.96±0.48mg/Lh and 0.80±0.07m(3)/m(3)d). These values were higher than no copper controls by factors of 2.0 and 5.0 (TS), 4.2 and 2.0 (NF), and 1.8 and 7.0 (CC). These results demonstrated cooperative cathode electrode and in situ deposited copper for subsequent enhanced Cd(II) reduction and hydrogen production in BESs, providing an alternative approach for efficiently remediating Cu(II) and Cd(II) co-contamination with simultaneous hydrogen production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. The influence of cardiograph design and automated algorithms on the incidence and detection of electrode cable reversals in an academic electrocardiogram laboratory.

    Science.gov (United States)

    Nilsson, Kent R; Sewell, Phyllis M; Blunden-Kasdorf, Patricia; Starkey, Kimberly; Grant, Augustus O; Wagner, Galen S

    2008-01-01

    Medical errors have been increasingly identified as a major source of morbidity and mortality in both outpatient and acute care settings. Central to the evaluation of many medical problems, the 12-lead electrocardiogram (ECG) is susceptible to both technical and interpretative errors. Proper interpretation, however, is dependent on the quality and accuracy of the acquired ECG. We evaluated the impact of both a newly designed electrocardiograph and a newly developed automated computer algorithm on the incidence and detection of electrode cable reversals (lead reversals). The study tested the association of the incidence of electrode cable reversals and the design of the connection terminal. The study was performed during a 7-month period preceding (53,875 ECGs) and after (53,344 ECGs) the implementation of the new system. Electrode cable reversals occurring in various sites of the medical center were tabulated and compared. We then sought to determine if computer detection algorithms could increase point-of-care detection of electrode cable reversals and, thereby, offset the influence of cardiograph design changes. Two commercially available automated detection algorithms were compared for their abilities to identify electrode cable reversals in our study population. During the 7-month postimplementation period, there was a significant increase in the incidence in electrode cable reversals (0.5% vs 0.1%, P algorithm supplied by the manufacturer. Electrode cable reversals are a prevalent source of medical errors that receives very little attention by the clinical community. The association of an increase in electrode cable reversals with an altered electrode cable connection terminal, coupled with an increased ability to detect electrode cable reversals using the manufacturer's recently developed algorithms, emphasizes the importance of ongoing research efforts to identify technical errors in electrocardiography.

  1. A novel voltammetric sensor for sensitive detection of mercury(II) ions using glassy carbon electrode modified with graphene-based ion imprinted polymer

    Energy Technology Data Exchange (ETDEWEB)

    Ghanei-Motlagh, Masoud, E-mail: m.ghaneimotlagh@yahoo.com [Young Researchers and Elite Club, Kerman Branch, Islamic Azad University, Kerman (Iran, Islamic Republic of); Taher, Mohammad Ali; Heydari, Abolfazl [Department of Chemistry, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Ghanei-Motlagh, Reza [Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of); Gupta, Vinod K. [Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667 (India); Department of Applied Chemistry, University of Johannesburg, Johannesburg (South Africa)

    2016-06-01

    In this paper, a novel strategy was proposed to prepare ion-imprinted polymer (IIP) on the surface of reduced graphene oxide (RGO). Polymerization was performed using methacrylic acid (MAA) as the functional monomer, ethylene glycol dimethacrylate (EGDMA) as the cross-linker, 2,2′–((9E,10E)–1,4–dihydroxyanthracene–9,10–diylidene) bis(hydrazine–1–carbothioamide) (DDBHCT) as the chelating agent and ammonium persulfate (APS) as initiator, via surface imprinted technique. The RGO–IIP was characterized by means of Fourier transform infrared spectroscopy (FT–IR), field emission scanning electron microscopy (FE–SEM), transmission electron microscopy (TEM) and thermogravimetric analysis (TGA). The electrochemical procedure was based on the accumulation of Hg(II) ions at the surface of a modified glassy carbon electrode (GCE) with RGO–IIP. The prepared RGO–IIP sensor has higher voltammetric response compared to the non-imprinted polymer (NIP), traditional IIP and RGO. The RGO–IIP modified electrode exhibited a linear relationship toward Hg(II) concentrations ranging from 0.07 to 80 μg L{sup −1}. The limit of detection (LOD) was found to be 0.02 μg L{sup −1} (S/N = 3), below the guideline value from the World Health Organization (WHO). The applicability of the proposed electrochemical sensor to determination of mercury(II) ions in different water samples was reported. - Highlights: • The novel Hg(II)-imprinted polymer was synthesized and characterized. • The resulting RGO–IIP was applied for electrochemical monitoring of Hg(II) ions. • The proposed sensor was successfully applied for determination of Hg(II) in real water samples.

  2. Voltammetric detection of lead (II) and mercury (II) using a carbon paste electrode modified with thiol self-assembled monolayer on mesoporous silica (SAMMS)

    Energy Technology Data Exchange (ETDEWEB)

    Yantasee, Wassana; Lin, Yuehe; Zemanian, Thomas S.; Fryxell, Glen E.

    2003-05-02

    The anodic stripping voltammetry at a carbon paste electrode modified with thiol terminated self-assembled monolayer on mesoporous silica (SH-SAMMS) provides a new sensor for simultaneous detection of lead (Pb2+) and mercury (Hg2+) in aqueous solutions. The overall analysis involved a two-step procedure: an accumulation step at open circuit, followed by medium exchange to a pure electrolyte solution for the stripping analysis. Factors affecting the performance of the SH-SAMMS modified electrodes were investigated, including electrode activation and regeneration, electrode composition, preconcentration time, electrolysis time, and composition of electrolysis and stripping media. The most sensitive and reliable electrode contained 20% SH-SAMMS and 80% carbon paste. The optimal operating conditions were a sequence with a 2-5 minute preconcentration period, then a 60-second electrolysis period of the preconcentrated species in 0.2 M nitric acid, followed by square wave anodic stripping voltammetry from –1.0 V to 0.6 V in 0.2 M nitric acid. The areas of the peak responses were linear with respect to metal ion concentrations in the ranges of 10-1500 ppb Pb2+ and 20-1600 ppb Hg2+. The detection limits for Pb2+ and Hg2+ were 0.5 ppb Pb2+ and 3 ppb Hg2+ after a 20-minute preconcentration period.

  3. Voltammetric detection of lead(II) and mercury(II) using a carbon paste electrode modified with thiol self-assembled monolayer on mesoporous silica (SAMMS).

    Science.gov (United States)

    Yantasee, Wassana; Lin, Yuehe; Zemanian, Thomas S; Fryxell, Glen E

    2003-05-01

    The anodic stripping voltammetry at a carbon paste electrode modified with thiol terminated self-assembled monolayer on mesoporous silica (SH-SAMMS) provides a new sensor for simultaneous detection of lead (Pb2+) and mercury (Hg2+) in aqueous solutions. The overall analysis involved a two-step procedure: an accumulation step at open circuit, followed by medium exchange to a pure electrolyte solution for the stripping analysis. Factors affecting the performance of the SH-SAMMS modified electrodes were investigated, including electrode activation and regeneration, electrode composition, preconcentration time, electrolysis time, and composition of electrolysis and stripping media. The most sensitive and reliable electrode contained 20% SH-SAMMS and 80% carbon paste. The optimal operating conditions were a sequence with a 2 min preconcentration period, then a 60 s electrolysis period of the preconcentrated species in 0.2 M nitric acid, followed by square wave anodic stripping voltammetry from -1.0 V to 0.6 V in 0.2 M nitric acid. The areas of the peak responses were linear with respect to metal ion concentrations in the ranges of 10-1500 ppb Pb2+ and 20-1600 ppb Hg2+. The detection limits for Pb2+ and Hg2+ were 0.5 ppb Pb2+ and 3 ppb Hg2+ after a 20 min preconcentration period.

  4. Nanotribology at single crystal electrodes: Influence of ionic adsorbates on friction forces studied with AFM

    Energy Technology Data Exchange (ETDEWEB)

    Hausen, Florian; Nielinger, Michael; Ernst, Siegfried [Institut fuer Physikalische und Theoretische Chemie, Universitaet Bonn, Roemerstrasse 164, D-53117 Bonn (Germany); Baltruschat, Helmut [Institut fuer Physikalische und Theoretische Chemie, Universitaet Bonn, Roemerstrasse 164, D-53117 Bonn (Germany)], E-mail: baltruschat@uni-bonn.de

    2008-09-01

    We present friction force measurements on Au(1 1 1) single crystal electrode surfaces performed under electrochemical conditions using an atomic force microscope (AFM). At monoatomic steps friction is increased in both scan directions. In 0.05 M sulfuric acid an increase of friction is observed with the increase of adsorbed sulfate. Friction force increases non-linearly with load. Cu UPD also increases friction in presence of sulfate. However, in presence of 4 x 10{sup -4} M chloride friction is much smaller for all deposited Cu coverages - ranging from a submonolayer up to bulk copper compared to the solution without chloride. After dissolution of bulk copper clusters deposited on Au(1 1 1) we observed an area with higher friction forces due to the formation of an alloy between gold and copper.

  5. Electrochemical oxidation of borohydride on platinum electrodes: The influence of thiourea in direct fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Martins, J.I.; Bazzaoui, M. [Departamento de Engenharia Quimica, FEUP, Rua Roberto Frias, 4200-465 Porto (Portugal); Nunes, M.C.; Koch, R. [Departamento de Engenharia Electrotecnica, Laboratorio de Electroquimica, FEUP, Rua Roberto Frias, 4200-465 Porto (Portugal); Martins, L. [Centre de Recherche Public de la Sante, 18 rue Dicks (Luxembourg)

    2007-07-10

    The electrochemical behaviour of sodium borohydride on a platinum electrode in the absence and presence of thiourea (TU) was investigated by cyclic voltammetry. In the absence of thiourea, several overlapping peaks associated with the hydrolysis of BH{sub 4}{sup -} appear in the domain of hydrogen oxidation, i.e., in the potential range of -1.25 to -0.50 V versus Ag/AgCl. As a consequence of secondary reactions, the borohydride oxidation in 3 M NaOH solution shows a four to six-electron process, according to its concentration, in direct fuel cells. A conveyable TU/NaBH{sub 4} concentration ratio of 0.6 inhibits the delivery of hydrogen simultaneously with catalytic hydrolysis of BH{sub 4}{sup -}. Thus, the coulombic efficiency in direct fuel cell discharge was increased showing an about eight-electron process for the oxidation of BH{sub 4}{sup -}. (author)

  6. Influence of air flow parameters on nanosecond repetitively pulsed discharges in a pin-annular electrode configuration

    KAUST Repository

    Heitz, Sylvain A

    2016-03-16

    The effect of various air flow parameters on the plasma regimes of nanosecond repetitively pulsed (NRP) discharges is investigated at atmospheric pressure. The two electrodes are in a pin-annular configuration, transverse to the mean flow. The voltage pulses have amplitudes up to 15 kV, a duration of 10 ns and a repetition frequency ranging from 15 to 30 kHz. The NRP corona to NRP spark (C-S) regime transition and the NRP spark to NRP corona (S-C) regime transition are investigated for different steady and harmonically oscillating flows. First, the strong effect of a transverse flow on the C-S and S-C transitions, as reported in previous studies, is verified. Second, it is shown that the azimuthal flow imparted by a swirler does not affect the regime transition voltages. Finally, the influence of low frequency harmonic oscillations of the air flow, generated by a loudspeaker, is studied. A strong effect of frequency and amplitude of the incoming flow modulation on the NRP plasma regime is observed. Results are interpreted based on the cumulative effect of the NRP discharges and an analysis of the residence times of fluid particles in the inter-electrode region. © 2016 IOP Publishing Ltd.

  7. A Solid-Contact Ion Selective Electrode for Copper(II Using a Succinimide Derivative as Ionophore

    Directory of Open Access Journals (Sweden)

    Mihaela Dana Tutulea-Anastasiu

    2013-04-01

    Full Text Available All-solid-state sensors with polyvinyl chloride (PVC-based membranes using off-the-shelf N-hydroxysuccinimide (NHS and succinimide (Succ ionophores were prepared using DOP (dioctyl phthalate and NPOE (ortho-nitrophenyloctyl ether as plasticizers. Good responses were obtained when NHS was used. The potentiometric response of the proposed electrode is independent of pH over the range 2–6. The electrode shows a fast response time of 0.25 s. The electrode exhibits a Super-Nernstian response, with 37.5 mV/decade, with a potentiometric detection limit of 4.4 µM. The proposed sensor revealed good selectivity towards a group of transition metal ions.

  8. Influence of Arsenic (III, Cadmium (II, Chromium (VI, Mercury (II, and Lead (II Ions on Human Triple Negative Breast Cancer (HCC1806 Cell Cytotoxicity and Cell Viability

    Directory of Open Access Journals (Sweden)

    Tsdale F. Mehari

    2017-01-01

    Full Text Available The hazardous consequences of heavy metal ions (HMIs on human health necessitate the immediate need to probe fundamentally the interactions and cytotoxic effects of HMIs on humans. This study investigated the influence of five toxic HMIs (arsenic (As (III, cadmium (Cd (II, chromium (Cr (VI, mercury (Hg (II, and lead (Pb (II on human TNBC (HCC 1806 cell viability using optical microscopy, trypan blue dye-exclusion assays, and flow cytometry. The TNBC cells were exposed to varying concentrations of HMIs for 24 and 48 hours. We evaluated the influence of the concentrations and duration of HMIs exposure on TNBC cell viability. Light microscopy, cell viability assays, revealed that after 48-hour treatment of TNBC cells with 1 x 10-5 M of As (III, Cd (II, Hg (II, Cr (IV, and Pb (II resulted in cell viabilities of 23%, 34%, 35%, 56%, 91% respectively, suggesting that As (III has the greatest cytotoxicity (77% cell death while Pb (II showed the least (9% cell death. Furthermore, flow cytometry revealed that while Pb (II, As (III and Cr (IV had significant increases in cell death, Hg (II caused a G1 arrest. Together, this study revealed that HMIs cause a differential cytotoxic effect on TNBC cells and suggest that they may have very different genotoxic targets and implications in their mutagenic potential.

  9. Insulation Coordination of Arcing Horns on HVDC Electrode Lines: Protection Performance Evaluation, Influence Factors and Improvement Method

    Directory of Open Access Journals (Sweden)

    Xiandong Li

    2018-02-01

    Full Text Available Arcing horns are widely used in high voltage overhead lines to protect insulator strings from being destroyed by the free burning arcs caused by lightening faults. In this paper, we focus on the insulation coordination of arcing horns on the electrode lines of a 5000 MW, ±800 kV high voltage direct current (HVDC system. The protection performance of arcing horns are determined by the characteristics of not only the external system but also the fault arc. Therefore, the behaviors and characteristics of long free burning arcs are investigated by the experiments at first. In order to evaluate the protection performance of arcing horns, the static stability criterion U-I characteristic method is introduced. The influence factors on the protection performance of arcing horns are analyzed theoretically. Finally, the improvement methods for the protection performance of arcing horns are proposed, and the diversified configuration strategy of arcing horns is recommended for cost saving.

  10. Influence of electrode array stiffness and diameter on hearing in cochlear implanted guinea pig.

    Directory of Open Access Journals (Sweden)

    Mylène Drouillard

    Full Text Available During cochlear implantation, electrode array translocation and trauma should be avoided to preserve residual hearing. The aim of our study was to evaluate the effect of physical parameters of the array on residual hearing and cochlear structures during insertion. Three array prototypes with different stiffnesses or external diameters were implanted in normal hearing guinea pigs via a motorized insertion tool carried on a robot-based arm, and insertion forces were recorded. Array prototypes 0.4 and 0.4R had 0.4 mm external diameter and prototype 0.3 had 0.3 mm external diameter. The axial stiffness was set to 1 for the 0.4 prototype and the stiffnesses of the 0.4R and 0.3 prototypes were calculated from this as 6.8 and 0.8 (relative units, respectively. Hearing was assessed preoperatively by the auditory brainstem response (ABR, and then at day 7 and day 30 post-implantation. A study of the macroscopic anatomy was performed on cochleae harvested at day 30 to examine the scala location of the array. At day 7, guinea pigs implanted with the 0.4R array had significantly poorer hearing results than those implanted with the 0.3 array (26±17.7, 44±23.4, 33±20.5 dB, n = 7, vs 5±8.7, 1±11.6, 12±11.5 dB, n = 6, mean±SEM, respectively, at 8, 16 and 24 kHz, p<0.01 or those implanted with the 0.4 array (44±23.4 dB, n = 7, vs 28±21.7 dB, n = 7, at 16 kHz, p<0.05. Hearing remained stable from day 7 to day 30. The maximal peak of insertion force was higher with the 0.4R array than with the 0.3 array (56±23.8 mN, n = 7, vs 26±8.7 mN, n = 6. Observation of the cochleae showed that an incorrectly positioned electrode array or fibrosis were associated with hearing loss ≥40 dB (at 16 kHz. An optimal position in the scala tympani with a flexible and thin array and prevention of fibrosis should be the primary objectives to preserve hearing during cochlear implantation.

  11. Halogen-free ionic liquid as an additive in zinc(II)-selective electrode: surface analyses as correlated to the membrane activity.

    Science.gov (United States)

    Al-Asousi, Maryam F; Shoukry, Adel F; Bu-Olayan, Abdul Hadi

    2012-05-30

    Two conventional Zn(II) polyvinyl chloride (PVC) membrane electrodes have been prepared and characterized. They were based on dibenzo-24-crown-8 (DBC) as a neutral carrier, dioctyl phthalate (DOP) as a plasticizer, and potassium tetrakis (p-chlorophenyl) borate, KTpClPB or the halogen-free ionic liquid, tetraoctylammonium dodecylbenzene sulfonate [TOA][DBS] as an additive. The use of ionic liquid has been found to enhance the selectivity of the sensor. For each electrode, the surfaces of two membranes were investigated using X-ray photoelectron, ion-scattering spectroscopy and atomic force microscopy. One of the two membranes was conditioned by soaking it for 24 h in a 1.0×10(-3) M Zn(NO(3))(2) solution and the second was soaked in bi-distilled water for the same interval (24 h). Comparing the two surfaces indicated the following: (a) the high selectivity in case of using [TOA][DBS] as an additive is due to the extra mediation caused by the ionic liquid and (b) the working mechanism of the electrode is based on phase equilibrium at the surface of the membrane associated with ion transport through the bulk of the membrane. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Investigation of Cu(II) Binding to Bovine Serum Albumin by Potentiometry with an Ion Selective Electrode

    Science.gov (United States)

    Jie Liu

    2004-01-01

    A laboratory project that investigates Cu(II) bind to bovine serum albumin (BSA) in an aqueous solution is developed to assist undergraduate students in gaining better understanding of the interaction of ligands with biological macromolecule. Thus, students are introduced to investigation of Cu(II) binding to BSA by potentiometry with the Cu(II)…

  13. Influence of metal electrode on the performance of ZnO based resistance switching memories

    Science.gov (United States)

    Wang, Xueting; Qian, Haolei; Guan, Liao; Wang, Wei; Xing, Boran; Yan, Xiaoyuan; Zhang, Shucheng; Sha, Jian; Wang, Yewu

    2017-10-01

    Resistance random access memory (RRAM) is considered a promising candidate for the next generation of non-volatile memory. In this work, we fabricate metal (Ag, Ti, or Pt)/ZnO/Pt RRAM cells and then systematically investigate the effects of different top electrodes and their performance. With the formation and rupture of Ag-bridge and the shapeless oxygen vacancy filaments under a series of positive and negative bias, the set and reset processes have been successfully conducted in the Ag/ZnO/Pt device with very low work voltage, high on-off ratio, and good endurance. When applying the voltage bias to the Ti/ZnO/Pt device, the interfacial oxygen ions' migration causes the redox reaction of the conducting filament's oxygen vacancies, leading to the formation and rupture of the conducting filaments but in a relatively poor endurance. At the same time, for the Pt/ZnO/Pt device, once the filaments in the functional layer consisting of oxygen vacancies are formed, it is difficult to disrupt, resulting in the permanent low resistance state after a forming-like process. The results demonstrated that the devices with a metallic conductive bridge mechanism show much better switching behaviors than those with an oxygen ion/vacancy filament mechanism.

  14. Influence of impurities on the H{sub 2}/H{sub 2}O/Ni/YSZ electrode

    Energy Technology Data Exchange (ETDEWEB)

    Hoegh, J.

    2005-05-15

    The kinetics of the SOFC anode or more specific the H{sub 2}/H{sub 2}O/Ni/SZ electrode (SZ=stabilized zirconia) is widely investigated, but there are large disagreements about the kinetics and mechanisms in the literature. It is reported that impurities from the electrode materials (Ni/SZ) segregate to the surface/interface/TPB (TPB=three phase boundary) and that these impurities have a negative influence on the kinetics. These impurities may be the explanation for the disagreements found in the literature. The purpose of this study is therefore to perform electrochemical measurements in a very clean system to avoid the effects of impurities. This is attempted by using high purity materials, lowering the operation temperature to prevent fast segregation of impurities and by limiting impurities from the environment. A simplified geometry of the real SOFC anode, which is a porous Ni/SZ composite, was studied. The simplified anode was made by pressing a Ni wire against a single crystal of stabilized zirconia. In spite of the efforts of making electrochemical measurements in a very clean system, impurities were still found on the surface of the electrode materials (Ni and SZ) after an electrochemical experiment. The impurities found on the SZ are believed to segregate from the bulk of SZ to the surface. Sulfur was found on the surface of the Ni, but its origin is unclear. A higher impurity level was detected on the surface of the Ni and SZ outside the contact area (between the Ni and YSZ) than inside the contact area. The initial smooth surface of the SZ had developed a hill and valley structure in the contact area after a heat treatment. Also, a ridge around the contact area on the SZ was seen. The polarization resistance at open circuit voltage (500 deg. C, 3% H20/H2) increased by a factor of 5-19 over 10-20 days before leveling out. The increase in polarization resistance is believed to be caused by: 1) Segregated impurities, 2) The built up of a ridge around the

  15. Voltammetric detection of mercury(II) using lead powder-modified thiol-functionalized polysiloxane film electrode

    OpenAIRE

    Tyszczuk-Rotko, Katarzyna; Bęczkowska, Ilona; Barczak, Mariusz

    2014-01-01

    Surfactant-templated silica films functionalized with thiol groups and modified with lead powder have been deposited during one-step process onto glassy carbon electrodes. This strategy was based on co-condensation of tetraethoxysilane and 3- mercaptopropyltrimethoxysilane in the presence of cetyltrimethylammonium bromide, and modification of sol by the appropriate amount of lead powder. After template extraction, the novel lead powder modified thiol-functionalized polysiloxane film electr...

  16. The Influence of Mg(II and Ca(II Ions on Rutin Autoxidation in Weakly Alkaline Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Živanović Slavoljub C.

    2016-09-01

    Full Text Available Rutin (quercetin-3-O-rutinoside is one of the most abundant bioflavonoids with various biological and pharmacological activities. Considering the ubiquitous presence of Mg(II and Ca(II ions in biological systems we decided to investigate their influence on the autoxidation of rutin in weakly alkaline aqueous solutions. Changes in UV-Vis spectra recorded during the rutin autoxidation in aqueous solution at pH 8.4 revealed that this process was very slow in the absence of metal ions. The presence of Mg(II and, especially Ca(II ion, increased the transformation rate of rutin. UV-Vis spectra recorded after prolonged autoxidation indicated the formation of humic acidlike products in the presence of Mg(II and Ca(II ions. Four new compounds formed during the initial stage of rutin autoxidation in the presence of Mg(II and Ca(II ions were detected by HPLCDAD. Based on the analysis of their DAD UV-Vis spectra and comparison of their retention times with the retention time value for rutin, we concluded that the initial rutin transformation products were formed by the water addition on double bond in ring C and hydroxylation of ring B. A very small decrease of the initial rutin concentration (4% was observed by HPLC-DAD in the absence of metal ions for the period of 90 minutes. However, rutin concentration decrease was much larger in the presence of Mg(II and Ca(II ions (14% and 24%, respectively. The more pronounced effect of Ca(II ion on the rutin autoxidation may be explained by the stronger binding of Mg(II ion to rutin and thus greater stabilizing effect on reaction intermediates caused by its higher ionic potential (charge/ionic radius ratio in comparison to Ca(II ion. The results of this study may contribute to the better understanding of interactions of Mg(II and Ca(II ions with natural phenolic antioxidants which are important for their various biological activities.

  17. Oxygen electrodes for energy conversion and storage. Annual report II, 1 October 1978-30 September 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    Progress is reported on the development of high performance oxygen electrodes for a spectrum of applications including industrial electrolysis, metal-air batteries and fuel cells. The research emphasizes the development of more effective electrocatalysts for both O/sub 2/ reduction and electrogeneration and the development of more effective electrode structures (particularly for O/sub 2/ cathodes) for utilizing these catalysts. It also includes the development of a predictive base to guide the search for new catalyst systems. The research has been directed principally to catalysts and electrode structures for O/sub 2/ cathodes operating on air in concentrated caustic under the conditions prevailing in membrane-type chlor-alkali cells. The replacement of the hydrogen gas generating cathodes now used in such cells with air cathodes is expected to save at least 1.0 V and is very attractive when the H/sub 2/ gas is not being used for chemical synthesis. If adopted for a substantial fraction of the chlor-alkali industry nationally, the annual electricity savings would amount to several hundred million dollars. A summary of the research results is presented, and the details of the research and results are given in the appendices, several of which have been submitted to journals for publication. (WHK)

  18. Platinum(II), palladium(II), rhodium(III) and lead(II) voltammetric determination in sites differently influenced by vehicle traffic.

    Science.gov (United States)

    Melucci, Dora; Locatelli, Clinio

    2007-01-01

    The present work reports analytical results relevant to voltammetric determination of Pt(II), Pd(II), Rh(III) [Platinum Group Metals (PGMs)] and Pb(II) in superficial water sampled in sites differently influenced by vehicle traffic, especially considering their temporal behaviour. For all the elements, in addition to detection limits, precision, expressed as relative standard deviation (s(r) %) and accuracy, expressed as percentage recovery (R %) are also reported. In all cases they show to be good, being the former lower than 6% and the latter in the range 94-105%. A critical comparison with spectroscopic measurements is also discussed.

  19. The influence of Ni(II) on brushite structure stabilization

    Science.gov (United States)

    Guerra-López, J. R.; Güida, J. A.; Ramos, M. A.; Punte, G.

    2017-06-01

    Brushite samples doped with Ni(II) in different concentrations, from 5% to 20%, were prepared in aqueous solution at pH = 7 and at two temperatures: 25 and 37 °C. The solid samples were characterized by chemical analysis, infrared spectroscopy (FTIR) and x-ray powder diffraction (XRPD). Chemical analysis has shown Ni(II) almost complete incorporation to the solid phase up to 15%. X-ray diffraction patterns have allowed to identify brushite phase with almost no modification of the line breadth and only small shifts of lines positions with increasing Ni(II) incorporation up to 15%. For larger Ni(II) concentration, in solution, a mixture of phases has been detected. Infrared spectra have supported diffraction results. For Ni(II) 20% and over the characteristic bands of HPO42- anions tend to vanish, and the typical shaped PO43- bands are observed. These results have allowed to establish that the presence of low levels of Ni in the synthetic process not only helps brushite formation; but, also prevents brushite from apatite conversion and, in addition, preserves brushite crystallinity. According to these findings, it is possible to propose that nickel traces present in the urinary system might be a trigger to brushite stone formation and/or growth, rather than the expected brushite conversion to hydroxyapatite. This outcome would explain the recurrent detection of difficult to treat brushite stones, observed in the last three decades.

  20. Electrolyte influence on the Cu nanoparticles electrodeposition onto boron doped diamond electrode; Influencia do eletrolito na eletrodeposicao de nanoparticulas de Cu sobre eletrodo de diamante dopado com boro

    Energy Technology Data Exchange (ETDEWEB)

    Matsushima, Jorge Tadao; Santos, Laura Camila Diniz; Couto, Andrea Boldarini; Baldan, Mauricio Ribeiro; Ferreira, Neidenei Gomes [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil)

    2012-07-01

    This paper presents the electrolyte influence on deposition and dissolution processes of Cu nanoparticles on boron doped diamond electrodes (DDB). Morphological, structural and electrochemical analysis showed BDD films with good reproducibility, quality and reversible in a specific redox system. Electrodeposition of Cu nanoparticles on DDB electrodes in three different solutions was influenced by pH and ionic strength of the electrolytic medium. Analyzing the process as function of the scan rate, it was verified a better efficiency in 0,5 mol L{sup -1} Na{sub 2}SO{sub 4} solution. Under the influence of the pH and ionic strength, Cu nanoparticles on DDB may be obtained with different morphologies and it was important for defining the desired properties. (author)

  1. Nanostructured Iron and Manganese Oxide Electrode Materials for Lithium Batteries: Influence of Chemical and Physical Properties on Electrochemistry

    Science.gov (United States)

    Durham, Jessica L.

    The widespread use of portable electronics and growing interest in electric and hybrid vehicles has generated a mass market for batteries with increased energy densities and enhanced electrochemical performance. In order to address a variety of applications, commercially fabricated secondary lithium-ion batteries employ transition metal oxide based electrodes, the most prominent of which include lithium nickel manganese cobalt oxide (LiNixMn yCo1-x-yO2), lithium iron phosphate (LiFePO4), and lithium manganese oxide (LiMn 2O4). Transition metal oxides are of particular interest as cathode materials due to their robust framework for lithium intercalation, potential for high energy density, and utilization of earth-abundant elements (i.e. iron and manganese) leading to decreased toxicity and cost-effective battery production on industrial scales. Specifically, this research focuses on MgFe2O4, AgxMn8O16, and AgFeO 2 transition metal oxides for use as electrode materials in lithium-based batteries. The electrode materials are prepared via co-precipitation, reflux, and hydrothermal methods and characterized by several techniques (XRD, SEM, BET, TGA, DSC, XPS, Raman, etc.). The low-temperature syntheses allowed for precise manipulation of structural, compositional, and/or functional properties of MgFe2O4, AgxMn8 O16, and AgFeO2 which have been shown to influence electrochemical behavior. In addition, advanced in situ and ex situ characterization techniques are employed to study the lithiation/de-lithiation process and establish valid redox mechanisms. With respect to both chemical and physical properties, the influence of MgFe2O4 particle size and morphology on electrochemical behavior was established using ex situ X-ray absorption spectroscopy (XAS) and transmission electron microscopy (TEM) imaging. Based on composition, tunneled AgxMn8O16 nanorods, prepared with distinct Ag+ contents and crystallite sizes, display dramatic differences in ion-transport kinetics due to

  2. Radiofrequency tissue ablation with cooled-tip electrodes:an experimental study in a bovine liver model on variables influencing lesion size

    Energy Technology Data Exchange (ETDEWEB)

    Han, Hyun Young [Eulgy Univ. Hospital, Seoul (Korea, Republic of); Lee, Jeong Min; Kim, Chong Soo [Chonbuk National Univ. Hospital, Chonju (Korea, Republic of)

    2001-03-01

    The purpose of this study was to determine the influence of various factors on the extent of thermal coagulation necrosis after radiofrequency (RF) tissue ablation using a cooled-tip electrode in bovine liver. RF ablation was induced by a monopolar 500 KHz-RF generator (CC-1; Radionics, Burlington, Mass., U.S.A.) and an 18-G cooled-tip with single or clustered electrodes. The ablation protocol involved a combination of varying current, ablation time, power output, gradual or abrupt increase of this out-put, and pulsed radiofrequency techniques. The maximum diameter of all thermal lesions which showed a color change was measured perpendicular to the electrode axis by two observers who reached their decisions by consensus. Twenty representative lesions were pathologically examined. With increasing current lesion diameter also increased, but above 1500 mA no further increase was induced. Extending the ablation time to 9 minutes for a single electrode and 15 minutes for a clustered electrode increased lesion diameter until a steady state was reached. Higher power levels caused larger lesions, but above 100 W no increase was observed. Ample exposure time coupled with a stepwise increase in power level induced a lesion larger than that resulting from an abrupt increase. Continuous pulsed RF with a high current led to increased coagulation necrosis diameter. These experimental findings may be useful thermotherapy. The data suggest that all involved factors significantly affect lesion size:if the factors are better understood, cancer thermotherapy can be better controlled.

  3. A novel flow battery-A lead-acid battery based on an electrolyte with soluble lead(II). V. Studies of the lead negative electrode

    Science.gov (United States)

    Pletcher, Derek; Zhou, Hantao; Kear, Gareth; Low, C. T. John; Walsh, Frank C.; Wills, Richard G. A.

    The structure of lead deposits (approximately 1 mm thick) formed in conditions likely to be met at the negative electrode during the charge/discharge cycling of a soluble lead-acid flow battery is examined. The quality of the lead deposit could be improved by appropriate additives and the preferred additive was shown to be the hexadecyltrimethylammonium cation, C 16H 33(CH 3) 3N +, at a concentration of 5 mM. In the presence of this additive, thick layers with acceptable uniformity could be formed over a range of current densities (20-80 mA cm -2) and solution compositions. While electrolyte compositions with lead(II) concentrations in the range 0.1-1.5 M and methanesulfonic acid concentrations in the range 0-2.4 M have been investigated, the best quality deposits are formed at lower concentrations of both species. Surprisingly, the acid concentration was more important than the lead(II) concentration; hence a possible initial electrolyte composition is 1.2 M Pb(II) + 5 mM C 16H 33(CH 3) 3N + without added acid.

  4. Experimental Investigation Nano Particles Influence in NPMEDM to Machine Inconel 800 with Electrolyte Copper Electrode

    Science.gov (United States)

    Karunakaran, K.; Chandrasekaran, M.

    2017-05-01

    The recent technology of machining hard materials is Powder mix dielectric electrical Discharge Machining (PMEDM). This research investigates nano sized (about 5Nm) powders influence in machining Inconel 800 nickel based super alloy. This work is motivated for a practical need for a manufacturing industry, which processes various kinds of jobs of Inconel 800 material. The conventional EDM machining also considered for investigation for the measure of Nano powders performances. The aluminum, silicon and multi walled Carbon Nano tubes powders were considered in this investigation along with pulse on time, pulse of time and input current to analyze and optimize the responses of Material Removal Rate, Tool Wear Rate and surface roughness. The Taguchi general Full Factorial Design was used to design the experiments. The most advance equipments employed in conducting experiments and measuring equipments to improve the accuracy of the result. The MWCNT powder mix was out performs than other powders which reduce 22% to 50% of the tool wear rate, gives the surface roughness reduction from 29.62% to 41.64% and improved MRR 42.91% to 53.51% than conventional EDM.

  5. Influences of top electrode reduction potential and operation ambient on the switching characteristics of tantalum oxide resistive switching memories

    Directory of Open Access Journals (Sweden)

    Tse-Ming Ding

    2017-12-01

    Full Text Available Modulation of the oxygen distribution is liable for the electrical performance of oxide-based devices. When the top electrode (TE is deposited on the active layer, an oxygen exchange layer (OEL may be formed at the interface. Oxygen ions can be absorbed and offered in OEL to assist resistive switching (RS. In this study, the impact of different TEs (Al, Zr, Ta and Au on the active layer TaOx is investigated. TEs are chosen based on the reduction potential (E0Al=-2.13V, E0Zr=-1.55V, E0Ta=-0.75V, E0Au=1.52V, which determines whether OEL is formed. Based on TEM micrographs, as the difference of TE reduction potential to E0Ta becomes more negative, a thicker OEL exists. We find that Zr TE device has the most stable I-V characteristic and data retention, while Al TE device suffers from the reset failure, and Au TE device fails to switch. Moreover, we fabricate two different thicknesses (20 nm and 120 nm of Zr TE and alter the operation ambient to vacuum (10-5 Torr to study the influence on RS. The magnitude of reset voltage becomes larger when the devices are measured in vacuum ambient. According to these findings, the RS mechanism with different TE materials, thicknesses and at the different operation ambient is established.

  6. Influence of Electrolyte Modulus on the Local Current Density at a Dendrite Tip on a Lithium Metal Electrode

    Energy Technology Data Exchange (ETDEWEB)

    Harry, KJ; Higa, K; Srinivasan, V; Balsara, NP

    2016-08-10

    Understanding and controlling the electrochemical deposition of lithium is imperative for the safe use of rechargeable batteries with a lithium metal anode. Solid block copolymer electrolyte membranes are known to enhance the stability of lithium metal anodes by mechanically suppressing the formation of lithium protrusions during battery charging. Time-resolved hard X-ray microtomography was used to monitor the internal structure of a symmetric lithium-polymer cell during galvanostatic polarization. The microtomography images were used to determine the local rate of lithium deposition, i.e. local current density, in the vicinity of a lithium globule growing through the electrolyte. Measurements of electrolyte displacement enabled estimation of local stresses in the electrolyte. At early times, the current density was maximized at the globule tip, as expected from simple current distribution arguments. At later times, the current density was maximized at the globule perimeter. We show that this phenomenon is related to the local stress fields that arise as the electrolyte is deformed. The local current density, normalized for the radius of curvature, decreases with increasing compressive stresses at the lithium-polymer interface. To our knowledge, our study provides the first direct measurement showing the influence of local mechanical stresses on the deposition kinetics at lithium metal electrodes.

  7. Influences of top electrode reduction potential and operation ambient on the switching characteristics of tantalum oxide resistive switching memories

    Science.gov (United States)

    Ding, Tse-Ming; Chen, Yi-Ju; Jeng, Jiann-Shing; Chen, Jen-Sue

    2017-12-01

    Modulation of the oxygen distribution is liable for the electrical performance of oxide-based devices. When the top electrode (TE) is deposited on the active layer, an oxygen exchange layer (OEL) may be formed at the interface. Oxygen ions can be absorbed and offered in OEL to assist resistive switching (RS). In this study, the impact of different TEs (Al, Zr, Ta and Au) on the active layer TaOx is investigated. TEs are chosen based on the reduction potential (E0Al=-2.13V, E0Zr=-1.55V, E0Ta=-0.75V, E0Au=1.52V), which determines whether OEL is formed. Based on TEM micrographs, as the difference of TE reduction potential to E0Ta becomes more negative, a thicker OEL exists. We find that Zr TE device has the most stable I-V characteristic and data retention, while Al TE device suffers from the reset failure, and Au TE device fails to switch. Moreover, we fabricate two different thicknesses (20 nm and 120 nm) of Zr TE and alter the operation ambient to vacuum (10-5 Torr) to study the influence on RS. The magnitude of reset voltage becomes larger when the devices are measured in vacuum ambient. According to these findings, the RS mechanism with different TE materials, thicknesses and at the different operation ambient is established.

  8. International preferences for pork appearance: II. Factors influencing consumer choice

    NARCIS (Netherlands)

    Ngapo, T.M.; Martin, J.F.; Dransfield, E.

    2007-01-01

    The preference for pork varying in its fat cover, lean colour, marbling and drip differs among countries, but the influence of socio-demographic factors is unknown. In this study of 11,717 consumers from 22 countries, more than 80% of consumers liked pork, thought that pork quality was at least

  9. Marine modification of terrestrial influences on Gulf hypoxia: Part II

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available This study examines potential marine modification of two classes of terrestrial influence on Gulf hypoxia: (1 the flow of nutrient-rich water from the Mississippi/Atchafalaya River Basin and (2 the massive physical, hydrological, chemical and biological change associated with the Atchafalaya’s partial capture of the Mississippi River. The latter involves repartitioning of a total flow of about 20 000 m3 sec−1, equal to that of 13 Nile Rivers, and a sediment load of 210 million metric tonnes yr−1,nearly 20 times that delivered by all of the rivers of the East Coast of the USA. Also involved is the loss of hundreds-to-thousands of years of stored nutrients and organic matter to the Gulf from enormous coastal wetland loss. This study found that the oceanography of the Gulf minimises the impact of both classes of terrestrial influence from the Mississippi River and its nearby estuaries on Gulf hypoxia. Oceanographic conditions give events associated with the Atchafalaya River a disproportionately large influence on Gulf hypoxia. A truly holistic environmental approach which includes the full effects of this highly dynamic coastal area is recommended to better understand and control Gulf hypoxia.

  10. Influence of electrodes on the 448 kHz electric currents created by radiofrequency: A finite element study.

    Science.gov (United States)

    Spottorno, J; Gonzalez de Vega, C; Buenaventura, M; Hernando, A

    2017-01-01

    Radiofrequency is a technology used in physical rehabilitation by physicians and physiotherapists for more than fifteen years, although there exist doubts on how it works. Indiba is a particular method that applies a voltage difference of 448 KHz between two electrodes, creating an electric current between them. These electrodes are an active one that is placed on different areas of the body and a passive one that is left on the same position during the treatment. There are two different types of active electrodes: the capacitive one and the resistive one. In this paper, it has been studied how the different electrodes affect the current density inside the body and thus how they affect the efficacy of the treatment. It shows how finite element calculations should help physicians in order to better understand its behavior and improve the treatments.

  11. Influence of the oxygen electrode and inter-diffusion barrier on the degradation of solid oxide electrolysis cells

    DEFF Research Database (Denmark)

    Hjalmarsson, Per; Sun, Xiufu; Liu, Yi-Lin

    2013-01-01

    Two Solid Oxide Electrolysis Cells (SOECs) with different oxygen electrodes have been tested in galvanostatic tests carried out at −1.5 Acm−2 and 800 °C converting 60% of a 50:50% mixture of H2O and CO2 (co-electrolysis). One of the cells had an LSM:YSZ oxygen electrode. The other had an CGO inter...

  12. Influence of ITO-Silver Wire Electrode Structure on the Performance of Single-Crystal Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Wern-Dare Jheng

    2012-01-01

    Full Text Available This study aimed to explore the effect of various electrode forms on single-crystal silicon solar cells by changing their front and back electrode structures. The high light penetration depth of the Indium Tin Oxide (ITO and the high conductivity of the silver wire that were coated on the single crystal silicon solar cells increased photoelectron export, thus increasing the efficiency of the solar cell. The experiment utilized a sol-gel solution containing phosphorus that was spin coated on single-crystal silicon wafers; this phosphorus also served as a phosphorus diffusion source. A p-n junction was formed after annealing at high temperature, and the substrate was coated with silver wires and ITO films of various structures to produce the electrodes. This study proposed that applying a heat treatment to the aluminum of back electrodes would result in a higher efficiency for single-crystal silicon solar cells, whereas single-crystal silicon solar cells containing front electrodes with ITO film coated with silver wires would result in efficiencies that are higher than those achieved using pure ITO thin-film electrodes.

  13. Tensegrity II. How structural networks influence cellular information processing networks

    Science.gov (United States)

    Ingber, Donald E.

    2003-01-01

    The major challenge in biology today is biocomplexity: the need to explain how cell and tissue behaviors emerge from collective interactions within complex molecular networks. Part I of this two-part article, described a mechanical model of cell structure based on tensegrity architecture that explains how the mechanical behavior of the cell emerges from physical interactions among the different molecular filament systems that form the cytoskeleton. Recent work shows that the cytoskeleton also orients much of the cell's metabolic and signal transduction machinery and that mechanical distortion of cells and the cytoskeleton through cell surface integrin receptors can profoundly affect cell behavior. In particular, gradual variations in this single physical control parameter (cell shape distortion) can switch cells between distinct gene programs (e.g. growth, differentiation and apoptosis), and this process can be viewed as a biological phase transition. Part II of this article covers how combined use of tensegrity and solid-state mechanochemistry by cells may mediate mechanotransduction and facilitate integration of chemical and physical signals that are responsible for control of cell behavior. In addition, it examines how cell structural networks affect gene and protein signaling networks to produce characteristic phenotypes and cell fate transitions during tissue development.

  14. Influence of the binder nature on the performance and cycle life of activated carbon electrodes in electrolytes containing Li-salt

    Science.gov (United States)

    Tran, Hai Yen; Wohlfahrt-Mehrens, Margret; Dsoke, Sonia

    2017-02-01

    In the current work, the influence of the binder nature on the mechanical and electrochemical stability of activated carbon (AC) electrodes in LiPF6/EC/DMC is shown. Different binders employing water-based preparation route, i.e. poly(acrylic acid), sodium polyacrylate and sodium alginate, are evaluated and compared with the fluorinated binders (i.e. polytetrafluoroethylene, PTFE and polyvinylidene difluoride, PVDF). Results obtained during the investigation show that the rheological behavior of the slurry as well as the electrode porosity can be significantly affected by choice of binder. More precisely, slurries containing AC and alginate can experience the stress relaxation test without breaking down the polymer network due to the multiple bonds between AC surface and the carboxylic group of the pyranose ring of α-L-guluronic acid of the sodium alginate. Moreover, the AC-Alginate electrodes can sustain up to 20 000 cycles (∼902 h) at I = 1.39 A g-1 in LiPF6 without a great increase in total equivalent series resistance (ESR) (ESRAC - Alginate ,20000th cycle = 4 × ESR1st cycle ,while ESRAC - PVDF ,20000th cycle = 6.5 × ESR1st cycle) . The electrochemical impedance spectroscopy analysis on the aged electrodes shows that AC-Alginate can offer sufficient accessible porosity for extended charge/discharge cycles.

  15. Solid phase microbial fuel cell (SMFC) for harnessing bioelectricity from composite food waste fermentation: influence of electrode assembly and buffering capacity.

    Science.gov (United States)

    Mohan, S Venkata; Chandrasekhar, K

    2011-07-01

    Solid phase microbial fuel cells (SMFC; graphite electrodes; open-air cathode) were designed to evaluate the potential of bioelectricity production by stabilizing composite canteen based food waste. The performance was evaluated with three variable electrode-membrane assemblies. Experimental data depicted feasibility of bioelectricity generation from solid state fermentation of food waste. Distance between the electrodes and presence of proton exchange membrane (PEM) showed significant influence on the power yields. SMFC-B (anode placed 5 cm from cathode-PEM) depicted good power output (463 mV; 170.81 mW/m(2)) followed by SMFC-C (anode placed 5 cm from cathode; without PEM; 398 mV; 53.41 mW/m(2)). SMFC-A (PEM sandwiched between electrodes) recorded lowest performance (258 mV; 41.8 mW/m(2)). Sodium carbonate amendment documented marked improvement in power yields due to improvement in the system buffering capacity. SMFCs operation also documented good substrate degradation (COD, 76%) along with bio-ethanol production. The operation of SMFC mimicked solid-sate fermentation which might lead to sustainable solid waste management practices. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Oxygen Transfer on Substituted ZrO2, Bi2O3, and CeO2 Electrolytes with Platinum Electrodes II. A-C Impedance Study

    NARCIS (Netherlands)

    Verkerk, M.J.; Burggraaf, A.J.

    1983-01-01

    An equivalent electrical circuit that describes the electrode processes on different electrolytes, using porous Pt electrodes,is given. Diffusional processes are important and have to be presented by Warburg components in the circuit. Theoverall electrode process is rate limited by diffusion of

  17. Estudo voltamétrico do complexo de cobre(II com o ligante vermelho de alizarina S, adsorvido na superfície do eletrodo de grafite pirolítico Voltammetric study of complex of copper (II with alizarin red S ligand, absorbed on surface of pyrolytic graphite electrode

    Directory of Open Access Journals (Sweden)

    Victor E. Mouchrek Filho

    1999-06-01

    Full Text Available The alizarin red S (ARS has been used as a spectrophotometric reagent of several metals for a long time. Now this alizarin has been used as modifier agent of electrodes, for voltammetric analyses. In this work cyclic voltammetry experiments was accomplished on closed circuit, with the objective of studying the voltammetric behavior of alizarin red S adsorbed and of its copper complex, on the surface of the pyrolytic graphite electrode. These studies showed that ARS strongly adsorbs on the surface of this electrode. This adsorption was used to immobilize ions copper(II from the solution.

  18. Synthesis, spectral characterization, thermal investigation and electrochemical evaluation of benzilbis(carbohydrazone as Cd(II ion selective electrode

    Directory of Open Access Journals (Sweden)

    Sulekh Chandra

    2017-02-01

    Full Text Available Benzil bis(carbohydrazone (BBC has been synthesized and structurally characterized on the basis of IR, 1H NMR, mass, UV spectra and thermogravimetric analyses. BBC has been analysed electrochemically and explored as new N, N Schiff base. It plays the role of an excellent ion carrier in the construction of cadmium(II ion selective membrane sensor. This sensor shows very good selectivity and sensitivity towards cadmium ion over a wide variety of cations, including alkali, alkaline earth, transition and heavy metal ions. The response mechanism was discussed in the view of UV-spectroscopy and Electrochemical impedance spectroscopy (EIS. The proposed sensor was successfully used for the determination of cadmium in different chocolate samples.

  19. The influence of hormone therapies on type I and II endometrial cancer

    DEFF Research Database (Denmark)

    Mørch, Lina S.; Kjær, Susanne K.; Keiding, Niels

    2016-01-01

    The influence of hormone therapy (HT) on risk for endometrial cancer is still casting which type of HT the clinicians recommend. It is unrevealed if HT has a differential influence on Type I versus Type II endometrial tumors, and little is known about the influence of, e.g., different routes...... of administration and about the influence of tibolone. We followed all Danish women aged 50–79 years without previous cancer or hysterectomy (n = 914,595) during 1995–2009. From the National Prescription Register, we computed HT exposures as time-dependent covariates. Incident endometrial cancers (n = 6,202) were...... identified from the National Cancer Registry: 4,972 Type I tumors and 500 Type II tumors. Incidence rate ratios (RRs) and 95% confidence intervals (Cls) were estimated by Poisson regression. Compared with women never on HT, the RR of endometrial cancer was increased with conjugated estrogen: 4.27 (1...

  20. Influence of ionic and nonionic surfactants on analytical parameters of ion-selective electrodes based on chelating active substances

    Energy Technology Data Exchange (ETDEWEB)

    Wardak, Cecylia [Department of Analytical and Instrumental Analysis, Faculty of Chemistry, M. Curie Sklodowska University, 20031 Lublin (Poland)]. E-mail: cwardak@hermes.umcs.lublin.pl; Marczewska, Barbara [Department of Analytical and Instrumental Analysis, Faculty of Chemistry, M. Curie Sklodowska University, 20031 Lublin (Poland); Lenik, Joanna [Department of Analytical and Instrumental Analysis, Faculty of Chemistry, M. Curie Sklodowska University, 20031 Lublin (Poland)

    2006-02-15

    The effects of the cationic (tetrabutylammonium chloride, TBC), anionic (sodium dodecyl sulfate, SDS) and nonionic (TRITON X-100) surfactants on the potentiometric properties of zinc- and cadmium-selective electrodes (ISEs) were investigated. The studies were carried out with plasticized PVC membranes doped with several new acidic chelating ionophores. The electrode basic analytical parameters, such as measurement range, slope characteristics, detection limit, response time and selectivity coefficients in relation to some inorganic cations in the presence and absence of surfactants, were investigated. As follows from the studies, the presence of surfactants in the sample is responsible first of all for the increase in response time and in detection limit, and a decrease in the characteristic slope as well as reduction of electrode selectivity.

  1. The Influence of Titania Electrode Modification with Lanthanide Ions Containing Thin Layer on the Performance of Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Maciej Zalas

    2012-01-01

    Full Text Available The lanthanide and scandium groups ions (except Pm and Ac have been used as dopants of TiO2 film in dye-sensitized solar cells. The X-ray diffraction spectra show that the modification has no influence on the structure of the electrode; however, the diffuse reflectance UV-Vis measurements exhibit significant changes in the electronic properties of modified electrodes. The appearance of energy barrier preventing photoexcited electron back-transfer was confirmed for Sc, Ce, Sm, Tb, Ho, Tm, and Lu modified cells. The best photoconversion performance of 8.88 and 8.80% was found for samples modified with Ce and Yb, respectively, and it was greater by 31.4 and 30.2% than that of a unmodified cell.

  2. Influence of composite resin consistency and placement technique on proximal contact tightness of Class II restorations.

    NARCIS (Netherlands)

    Loomans, B.A.C.; Opdam, N.J.M.; Roeters, F.J.M.; Bronkhorst, E.M.; Plasschaert, A.J.M.

    2006-01-01

    PURPOSE: To investigate the influence of composite resin consistency and placement technique on proximal contact tightness of Class II composite resin restorations. MATERIALS AND METHODS: A manikin model (KaVo Dental) was used with an artificial first molar in which a standardized MO preparation was

  3. INFLUENCE OF TYPE II DIABETES AND OBESITY ON THE DISPOSITION AND ELIMINATION OF TCDD IN MICE

    Science.gov (United States)

    INFLUENCE OF TYPE II DIABETES AND OBESITY ON THE DISPOSTION AND ELIMINATION OF TCDD IN MICE. MJ DeVito', JJ Diliberto', DG Ross', C Emond2, VM Richardson', and LS Birnbaum', 'ETD, NHEERL, ORD, US EPA, RTP, NC, 27711, USA, 2National Research Council.One possible explanation fo...

  4. The Influence of Calcite, Fluorite, and Rutile on the Fusion-Related Behavior of Metal Cored Coated Electrodes for Hardfacing

    Science.gov (United States)

    Cruz-Crespo, Amado; Fuentes, Rafael Fernández; Scotti, Américo

    2010-07-01

    Coated electrodes for SMAW have exhibited their advantages for longer than one century. Means of boosting their performance, particularly for hardfacing, would be a raise in the alloying transfer efficiency and a lowering of the dilution with the substrate, without losing the production capacity. In this study, an evaluation about the operational behavior of a new conception of electrodes for hardfacing is described, i.e., metal cored coated electrodes. Experimental electrodes were produced using metal cored technique to obtain the rods. FeCrMn was used as alloying material at two grain sizes. Using the Mc Lean Anderson experimental design approach, the content ratio of CaCO3:CaF2:TiO2 in the coating was varied. The effect of the coating composition and granulometry of the filling alloying material on the formation a cannon-like end was assessed. Fusion and metal transfer behaviors were evaluated through measurements of fusion and deposition rates, deposition efficiency, and duration and frequencies of short-circuiting. Based on a balance of performances, the most appropriate composition for the coating was determined. It was also observed that a coarser FeCrMn presented better performance.

  5. Influence of diffusion plane orientation on electrochemical properties of thin film LiCoO2 electrodes

    NARCIS (Netherlands)

    Bouwman, P.J.; Boukamp, Bernard A.; Bouwmeester, Henricus J.M.; Notten, P.H.L.

    2002-01-01

    Submicrometer LiCoO2 films have been prepared on silicon substrates with RF sputtering and pulsed laser deposition (PLD). The electrochemical activity of both types of thin film electrodes is compared using scanning cyclic voltammetry, galvanostatic and potentiostatic intermittent titration, and

  6. Influences of Mg Doping on the Electrochemical Performance of TiO2 Nanodots Based Biosensor Electrodes

    Directory of Open Access Journals (Sweden)

    M. S. H. Al-Furjan

    2014-01-01

    Full Text Available Electrochemical biosensors are essential for health monitors to help in diagnosis and detection of diseases. Enzyme adsorptions on biosensor electrodes and direct electron transfer between them have been recognized as key factors to affect biosensor performance. TiO2 has a good protein adsorption ability and facilitates having more enzyme adsorption and better electron transfer. In this work, Mg ions are introduced into TiO2 nanodots in order to further improve electrode performance because Mg ions are considered to have good affinity with proteins or enzymes. Mg doped TiO2 nanodots on Ti substrates were prepared by spin-coating and calcining. The effects of Mg doping on the nanodots morphology and performance of the electrodes were investigated. The density and size of TiO2 nanodots were obviously changed with Mg doping. The sensitivity of 2% Mg doped TiO2 nanodots based biosensor electrode increased to 1377.64 from 897.8 µA mM−1 cm−2 and its KMapp decreases to 0.83 from 1.27 mM, implying that the enzyme achieves higher catalytic efficiency due to better affinity of the enzyme with the Mg doped TiO2. The present work could provide an alternative to improve biosensor performances.

  7. pH matters: The influence of the catalyst ink on the oxygen reduction activity determined in thin film rotating disk electrode measurements

    Science.gov (United States)

    Inaba, Masanori; Quinson, Jonathan; Arenz, Matthias

    2017-06-01

    We investigated the influence of the ink properties of proton exchange membrane fuel cell (PEMFC) catalysts on the oxygen reduction reaction (ORR) activity determined in thin film rotating disk electrode (TF-RDE) measurements. It was found that the adaption of a previously reported ink recipe to home-made catalysts does not lead to satisfying results, although reported work could be reproduced using commercial catalyst samples. It is demonstrated that the pH of the catalyst ink, which has not been addressed in previous TF-RDE studies, is an important parameter that needs to be carefully controlled to determine the intrinsic ORR activity of high surface area catalysts.

  8. Stimulation and recording electrodes for neural prostheses

    CERN Document Server

    Pour Aryan, Naser; Rothermel, Albrecht

    2015-01-01

    This book provides readers with basic principles of the electrochemistry of the electrodes used in modern, implantable neural prostheses. The authors discuss the boundaries and conditions in which the electrodes continue to function properly for long time spans, which are required when designing neural stimulator devices for long-term in vivo applications. Two kinds of electrode materials, titanium nitride and iridium are discussed extensively, both qualitatively and quantitatively. The influence of the counter electrode on the safety margins and electrode lifetime in a two electrode system is explained. Electrode modeling is handled in a final chapter.

  9. Influences of sintering temperature on low-cost carbon paste based counter electrodes for dye-sensitized solar cells

    Science.gov (United States)

    Huang, Chun-Ying; Lin, Guan-You; Lin, Pei-Te; Chen, Jhih-Wei; Chen, Chia-Hao; Shih-Sen Chien, Forest

    2017-08-01

    In this paper we have demonstrated the photovoltaic performance of dye-sensitized solar cells with low-cost carbon paste (CP) based counter electrodes. With sintering CP at 300 °C, the overall conversion efficiency of cells can reach 4.9%, which is comparable to 5.7% of the cells with counter electrode of platinum. After sintering, crystalline quality of CP was improved, resulting in the decrease of series resistance of cells and the increase of the work function of CP. We also showed that the reduction rate of triiodide is significantly enhanced due to the increase of surface area of CP and the energy matching between the reduction potential of triiodide and the work function of CP.

  10. Coronary vasoconstrictor influence of angiotensin II is reduced in remodeled myocardium after myocardial infarction.

    Science.gov (United States)

    Merkus, Daphne; Haitsma, David B; Sorop, Oana; Boomsma, Frans; de Beer, Vincent J; Lamers, Jos M J; Verdouw, Pieter D; Duncker, Dirk J

    2006-11-01

    The renin-angiotensin system plays an important role in cardiovascular homeostasis by contributing to the regulation of blood volume, blood pressure, and vascular tone. Because AT(1) receptors have been described in the coronary microcirculation, we investigated whether ANG II contributes to the regulation of coronary vascular tone and whether its contribution is altered during exercise. Since the renin-angiotensin system is activated after myocardial infarction, resulting in an increase in circulating ANG II, we also investigated whether the contribution of ANG II to the regulation of vasomotor tone is altered after infarction. Twenty-six chronically instrumented swine were studied at rest and while running on a treadmill at 1-4 km/h. In 13 swine, myocardial infarction was induced by ligation of the left circumflex coronary artery. Blockade of AT(1) receptors (irbesartan, 1 mg/kg iv) had no effect on myocardial O(2) consumption but resulted in an increase in coronary venous O(2) tension and saturation both at rest and during exercise, reflecting coronary vasodilation. Despite increased plasma levels of ANG II after infarction and maintained coronary arteriolar AT(1) receptor levels, the vasodilation evoked by irbesartan was significantly reduced both at rest and during exercise. In conclusion, despite elevated plasma levels, the vasoconstrictor influence of ANG II on the coronary circulation in vivo is reduced after myocardial infarction. This reduction in ANG II-induced coronary vasoconstriction may serve to maintain perfusion of the remodeled myocardium.

  11. Remediation of PAH polluted soils using a soil microbial fuel cell: Influence of electrode interval and role of microbial community.

    Science.gov (United States)

    Yu, Bao; Tian, Jing; Feng, Liu

    2017-08-15

    The soil microbial fuel cells (SMFCs) were constructed to remediate soils contaminated by polycyclic aromatic hydrocarbons (PAHs). With a maximum power density of 12.1mWm-2 and an internal resistance of 470Ω, a closed SMFC showed electricity generation comparable to that by an open SMFC after 175days of operation and meanwhile increased the removal rates of anthracene, phenanthrene, and pyrene to 54.2±2.7%, 42.6±1.9% and 27.0±2.1% from 20.8±1.1%, 17.3±1.2% and 11.7±0.9%, respectively, by the open SMFC. Both the electricity generation and the removal of PAHs increased with the decreased electrode interval. When the electrode interval ranged between 4cm and 10cm, the more closely the electrodes were positioned, the more efficient the electricity generation and removal of PAHs became. Dominated by the genus of Geobacter, the SMFC was enriched in electrogenic bacteria at the anode surface, and the growth of certain microbes other than electrogenic bacteria in the soil was improved by electrical stimulation. This finding reveals the critical mechanism underlying electricity generation and improved the removal of PAHs. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Group B streptococcal type II and III conjugate vaccines: physicochemical properties that influence immunogenicity.

    Science.gov (United States)

    Michon, Francis; Uitz, Catherine; Sarkar, Arun; D'Ambra, Anello J; Laude-Sharp, Maryline; Moore, Samuel; Fusco, Peter C

    2006-08-01

    Recent efforts toward developing vaccines against group B streptococci (GBS) have focused on increasing the immunogenicity of GBS polysaccharides by conjugation to carrier proteins. However, partial depolymerization of GBS polysaccharides for the production of vaccines is a difficult task because of their acid-labile, antigenically critical sialic acids. Here we report a method for the partial depolymerization of type II and III polysaccharides by mild deaminative cleavage to antigenic fragments with reducing-terminal 2,5-anhydro-d-mannose residues. Through the free aldehydes of their newly formed end groups, the fragments were conjugated to tetanus toxoid by reductive amination. The resulting conjugates stimulated the production in animals of high-titer type II- and III-specific antibodies which induced opsonophagocytic killing of type II and III strains of group B streptococci. For the type II conjugates, immunogenicity increased as oligosaccharide size decreased, whereas for type III conjugates, the size of the oligosaccharides did not significantly influence immunogenicity. When oligosaccharides of defined size were conjugated through sialic acid residues, the resulting cross-linkages were shown to affect immunogenicity. When oligosaccharides were conjugated through terminal aldehyde groups generated by deamination, modification of the exocyclic chain of sialic acid did not influence immunogenicity.

  13. The influence of hormone therapies on type I and II endometrial cancer: A nationwide cohort study.

    Science.gov (United States)

    Mørch, Lina S; Kjaer, Susanne K; Keiding, Niels; Løkkegaard, Ellen; Lidegaard, Øjvind

    2016-03-15

    The influence of hormone therapy (HT) on risk for endometrial cancer is still casting which type of HT the clinicians recommend. It is unrevealed if HT has a differential influence on Type I versus Type II endometrial tumors, and little is known about the influence of, e.g., different routes of administration and about the influence of tibolone. We followed all Danish women aged 50-79 years without previous cancer or hysterectomy (n = 914,595) during 1995-2009. From the National Prescription Register, we computed HT exposures as time-dependent covariates. Incident endometrial cancers (n = 6,202) were identified from the National Cancer Registry: 4,972 Type I tumors and 500 Type II tumors. Incidence rate ratios (RRs) and 95% confidence intervals (Cls) were estimated by Poisson regression. Compared with women never on HT, the RR of endometrial cancer was increased with conjugated estrogen: 4.27 (1.92-9.52), nonconjugated estrogen: 2.00 (1.87-2.13), long cycle combined therapy: 2.89 (2.27-3.67), cyclic combined therapy: 2.06 (1.88-2.27), tibolone 3.56 (2.94-4.32), transdermal estrogen: 2.77 (2.12-3.62) and vaginal estrogen: 1.96 (1.77-2.17), but not with continuous combined therapy: 1.02 (0.87-1.20). In contrast, the risk of Type II tumors appeared decreased with continuous combined therapy: 0.45 (0.20-1.01), and estrogen therapy implied a nonsignificantly altered risk of 1.43 (0.85-2.41). Our findings support that continuous combined therapy is risk free for Type I tumors, while all other hormone therapies increase risk. In contrast, Type II endometrial cancer was less convincingly associated with hormone use, and continuous combined therapy appeared to decrease the risk. © 2015 UICC.

  14. Extensive Penetration of Evaporated Electrode Metals into Fullerene Films: Intercalated Metal Nanostructures and Influence on Device Architecture.

    Science.gov (United States)

    Zhang, Guangye; Hawks, Steven A; Ngo, Chilan; Schelhas, Laura T; Scholes, D Tyler; Kang, Hyeyeon; Aguirre, Jordan C; Tolbert, Sarah H; Schwartz, Benjamin J

    2015-11-18

    Although it is known that evaporated metals can penetrate into films of various organic molecules that are a few nanometers thick, there has been little work aimed at exploring the interaction of the common electrode metals used in devices with fullerene derivatives, such as organic photovoltaics (OPVs) or perovskite solar cells that use fullerenes as electron transport layers. In this paper, we show that when commonly used electrode metals (e.g., Au, Ag, Al, Ca, etc.) are evaporated onto films of fullerene derivatives (such as [6,6]-phenyl-C61-butyric acid methyl ester (PCBM)), the metal penetrates many tens of nanometers into the fullerene layer. This penetration decreases the effective electrical thickness of fullerene-based sandwich structure devices, as measured by the device's geometric capacitance, and thus significantly alters the device physics. For the case of Au/PCBM, the metal penetrates a remarkable 70 nm into the fullerene, and we see penetration of similar magnitude in a wide variety of fullerene derivative/evaporated metal combinations. Moreover, using transmission electron microscopy to observed cross-sections of the films, we show that when gold is evaporated onto poly(3-hexylthiophene) (P3HT)/PCBM sequentially processed OPV quasi-bilayers, Au nanoparticles with diameters of ∼3-20 nm are formed and are dispersed entirely throughout the fullerene-rich overlayer. The plasmonic absorption and scattering from these nanoparticles are readily evident in the optical transmission spectrum, demonstrating that the interpenetrated metal significantly alters the optical properties of fullerene-rich active layers. This opens a number of possibilities in terms of contact engineering and light management so that metal penetration in devices that use fullerene derivatives could be used to advantage, making it critical that researchers are aware of the electronic and optical consequences of exposing fullerene-derivative films to evaporated electrode metals.

  15. Understanding the Influence of Parkinson Disease on Adolf Hitler's Decision-Making during World War II.

    Science.gov (United States)

    Gupta, Raghav; Kim, Christopher; Agarwal, Nitin; Lieber, Bryan; Monaco, Edward A

    2015-11-01

    Parkinson disease (PD) is a common neurodegenerative disorder characterized by the presence of Lewy bodies and a reduction in the number of dopaminergic neurons in the substantia nigra of the basal ganglia. Common symptoms of PD include a reduction in control of voluntary movements, rigidity, and tremors. Such symptoms are marked by a severe deterioration in motor function. The causes of PD in many cases are unknown. PD has been found to be prominent in several notable people, including Adolf Hitler, the Chancellor of Germany and Führer of Nazi Germany during World War II. It is believed that Adolf Hitler suffered from idiopathic PD throughout his life. However, the effect of PD on Adolf Hitler's decision making during World War II is largely unknown. Here we examine the potential role of PD in shaping Hitler's personality and influencing his decision-making. We purport that Germany's defeat in World War II was influenced by Hitler's questionable and risky decision-making and his inhumane and callous personality, both of which were likely affected by his condition. Likewise his paranoid disorder marked by intense anti-Semitic beliefs influenced his treatment of Jews and other non-Germanic peoples. We also suggest that the condition played an important role in his eventual political decline. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. The influence of electrical effects on device performance of organic solar cells with nano-structured electrodes

    DEFF Research Database (Denmark)

    Mirsafaei, Mina; Hossein Fallahpour, Amir; Lugli, Paolo

    2017-01-01

    counterparts. In this contribution, we exemplarily model the electrical properties of organic solar cells with rectangular-grating structures, as compared to planar reference devices. Based on our numeric results, we demonstrate that, beyond an optical absorption enhancement, the device fill factor improves...... significantly by introducing the grating structures. From the simulations we conclude that enhanced carrier collection efficiency is the main reason for the increased solar cell fill factor. This work contributes towards a more fundamental understanding of the effect of nanostructured electrodes...

  17. Influence of impurities on the H2/H2O/Ni/YSZ electrode

    DEFF Research Database (Denmark)

    Høgh, Jens Valdemar Thorvald

    2005-01-01

    The kinetics of the SOFC anode or more specific the H2/H2O/Ni/SZ electrode (SZ=stabilized zirconia) is widely investigated, but there are large disagreements about the kinetics and mechanisms in the literature. It is reported that impurities from theelectrode materials (Ni/SZ) segregate to the su...... and at anodic overpotentials, but it had no effect at cathodic overpotentials. It was hypothesized that water changes the properties of theimpurities and hereby promote the electrode reaction at OCV and anodic overpotentials. A strong cathodic polarization...... leveling out. The increase in polarization resistance is believed to be caused by: 1) Segregated impurities, 2) The built up of a ridge around the contact area and 3) The sulfur adsorption onthe Ni wire. An increasing water content in the atmosphere was seen to lower the polarization resistance at OCV....... The initial smooth surface of the SZ had developed a hill and valley structure in the contact area after a heat treatment. Also, a ridge around the contact area on the SZ was seen. The polarization resistance at open circuit voltage (500°C,3% H20/H2) increased by a factor of 5-19 over 10-20 days before...

  18. Treatment of highly concentrated tannery wastewater using electrocoagulation: Influence of the quality of aluminium used for the electrode

    Energy Technology Data Exchange (ETDEWEB)

    Elabbas, S.; Ouazzani, N.; Mandi, L. [Laboratoire d’Hydrobiologie, Ecotoxicologie et Assainissement (LHEA, URAC 33), Faculté de Sciences Semlalia, BP 2390, Université Cadi Ayyad, Marrakech (Morocco); Centre National d’Etude et de Recherche sur l’Eau et l’Energie (CNEREE), Université Cadi Ayyad, BP 511, Marrakech (Morocco); Berrekhis, F. [Equipe de Physico-chimie des Matériaux, Ecole Normale Supérieure, Université Cadi Ayyad, BP 2400, 40000 Marrakech (Morocco); Perdicakis, M. [Laboratoire de Chimie Physique et Microbiologie pour l’Environnement (LCPME) UMR 7564, Université de Lorraine—CNRS, 405 rue de Vandoeuvre, F-54602 Villers-lès Nancy Cedex (France); Pontvianne, S.; Pons, M-N.; Lapicque, F. [Laboratoire Réactions et Génie des Procédés (LRGP) UMR 7274, CNRS, Université de Lorraine, 1 rue Grandville, BP 20451, 54001 Nancy cedex (France); Leclerc, J-P, E-mail: jean-pierre.leclerc@univ-lorraine.fr [Laboratoire Réactions et Génie des Procédés (LRGP) UMR 7274, CNRS, Université de Lorraine, 1 rue Grandville, BP 20451, 54001 Nancy cedex (France)

    2016-12-05

    Highlights: • COD and Cr(III) species can be simultaneously removed by electrocoagulation. • Cu-containing Al alloy is more efficient than pure Al as electrodes. • Dilution of too concentrated tannery wastewater is required for efficient treatment. - Abstract: This paper deals with the ability of electrocoagulation (EC) to remove simultaneously COD and chromium from a real chrome tanning wastewater in a batch stirred electro-coagulation cell provided with two aluminium-based electrodes (aluminium/copper/magnesium alloy and pure aluminium). Effects of operating time, current density and initial concentration of Cr(III) and COD have been investigated. The concentrations of pollutants have been successfully reduced to environmentally acceptable levels even if the concentrated effluent requires a long time of treatment of around 6 h with a 400 A/m{sup 2} current density. The aluminium alloy was found to be more efficient than pure aluminium for removal of COD and chromium. Dilution of the waste has been tested for treatment: high abatement levels could be obtained with shorter time of treatment and lower current densities. Energy consumption of the electrocoagulation process was also discussed. The dilution by half of the concentrated waste leads to a higher abatement performance of both COD and chromium with the best energy efficiency.

  19. Synthesis and characterization of poly-o-anisidine Sn(IV tungstate: A new and novel ‘organic–inorganic’ nano-composite material and its electro-analytical applications as Hg(II ion-selective membrane electrode

    Directory of Open Access Journals (Sweden)

    Asif A. Khan

    2012-07-01

    Full Text Available An organic–inorganic nano-composite poly-o-anisidine Sn(IV tungstate was chemically synthesized by sol–gel mixing of the incorporation of organic polymer o-anisidine into the matrices of inorganic ppt of Sn(IV tungstate in different mixing volume ratios. This composite material has been characterized using various analytical techniques like XRD (X-ray diffraction, FTIR (Fourier transform infrared, SEM (Scanning electron microscopy, TEM (Transmission electron microscopy and simultaneous TGA (Thermogravimetric analysis studies. On the basis of distribution studies, the material was found to be highly selective for Hg(II. Using this nano-composite cation exchanger as electro-active material, a new heterogeneous precipitate based on ion-sensitive membrane electrode was developed for the determination of Hg(II ions in solutions. The membrane electrode was mechanically stable, with a quick response time, and can be operated within a wide pH range. The electrode was also found to be satisfactory in electrometric titrations.

  20. RNA polymerases IV and V influence the 3' boundaries of Polymerase II transcription units in Arabidopsis.

    Science.gov (United States)

    McKinlay, Anastasia; Podicheti, Ram; Wendte, Jered M; Cocklin, Ross; Rusch, Douglas B

    2017-12-21

    Nuclear multisubunit RNA polymerases IV and V (Pol IV and Pol V) evolved in plants as specialized forms of Pol II. Their functions are best understood in the context of RNA-directed DNA methylation (RdDM), a process in which Pol IV-dependent 24 nt siRNAs direct the de novo cytosine methylation of regions transcribed by Pol V. Pol V has additional functions, independent of Pol IV and 24 nt siRNA biogenesis, in maintaining the repression of transposons and genomic repeats whose silencing depends on maintenance cytosine methylation. Here we report that Pol IV and Pol V play unexpected roles in defining the 3' boundaries of Pol II transcription units. Nuclear run-on assays reveal that in the absence of Pol IV or Pol V, Pol II occupancy downstream of poly A sites increases for approximately 12% of protein-coding genes. This effect is most pronounced for convergently transcribed gene pairs. Although Pols IV and V are detected near transcript ends of the affected Pol II - transcribed genes, their role in limiting Pol II read-through is independent of siRNA biogenesis or cytosine methylation for the majority of these genes. Interestingly, we observed that splicing was less efficient in pol IV or pol V mutant plants, compared to wild-type plants, suggesting that Pol IV or Pol V might affect pre-mRNA processing. We speculate that Pols IV and V (and/or their associated factors) play roles in Pol II transcription termination and pre-mRNA splicing by influencing polymerase elongation rates and/or release at collision sites for convergent genes.

  1. Influence of B 2O 3 doping on conductivity of LiTiO 2 electrode material

    Science.gov (United States)

    Vijayakumar, M.; Hirankumar, G.; Bhuvaneswari, M. S.; Selvasekarapandian, S.

    Fast ionic conductors X LiTiO 2- Y B 2O 3 with X: Y=90:10 and 80:20 are prepared by the solid-state reaction method and subjected to ac conductivity measurements with silver electrodes in the frequency range 42 Hz to 5 MHz. The ac conductivity values are 6.47×10 -5 and 2.2×10 -7 Ω -1 cm -1, respectively. The ion hopping rate and charge carrier concentration are calculated by fitting the conductance spectra to the power law equation, using Almond and West formalisms. The charge carrier concentration is in the order of 10 25 and is independent of temperature, which supports the strong electrolyte model. The conductivity relaxation time is calculated from the peak frequency of the modulus spectra. The effect of B 2O 3 substitution is discussed.

  2. The influence of electrical effects on device performance of organic solar cells with nano-structured electrodes

    DEFF Research Database (Denmark)

    Mirsafaei, Mina; Rubahn, Horst-Günter; Madsen, Morten

    2017-01-01

    in inorganic devices. While this light-trapping concept can be transferred to organic devices, one has to also consider nanostructure-induced electrical effects on the device performance, due to the fundamental difference in the organic semiconducting material properties compared to their inorganic...... counterparts. In this contribution, we exemplarily model the electrical properties of organic solar cells with rectangular-grating structures, as compared to planar reference devices. Based on our numeric results, we demonstrate that, beyond an optical absorption enhancement, the device fill factor improves...... significantly by introducing the grating structures. From the simulations we conclude that enhanced carrier collection efficiency is the main reason for the increased solar cell fill factor. This work contributes towards a more fundamental understanding of the effect of nanostructured electrodes...

  3. The influence of the corrosion product layer generated on the high strength low-alloy steels welded by underwater wet welding with stainless steel electrodes in seawater

    Science.gov (United States)

    Bai, Qiang; Zou, Yan; Kong, Xiangfeng; Gao, Yang; Dong, Sheng; Zhang, Wei

    2017-02-01

    The high strength low-alloy steels are welded by underwater wet welding with stainless steel electrodes. The micro-structural and electrochemical corrosion study of base metal (BM), weld zone (WZ) and heat affected zone (HAZ) are carried out to understand the influence of the corrosion product layer generated on the high strength low-alloy steels welded by underwater wet welding with stainless steel electrodes, methods used including, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and scanning electron microscope (SEM). The results indicate that the WZ acts as a cathode and there is no corrosion product on it throughout the immersion period in seawater. The HAZ and BM acts as anodes. The corrosion rates of the HAZ and BM change with the immersion time increasing. In the initial immersion period, the HAZ has the highest corrosion rate because it has a coarse tempered martensite structure and the BM exhibites a microstructure with very fine grains of ferrite and pearlite. After a period of immersion, the BM has the highest corrosion rate. The reason is that the corrosion product layer on the HAZ is dense and has a better protective property while that on the BM is loose and can not inhibit the diffusion of oxygen.

  4. Electrode Kinetics and Gas Conversion in Solid Oxide Cells

    DEFF Research Database (Denmark)

    Njodzefon, Jean-Claude

    concentration-related overpotential contribution in the model to account for the CO/CO2 diffusion to the reaction sites as a result of the water gas shift equilibrium reactions. The long-term stability of the system depends on whether the system is operated solely in fuel-, electrolysis-, reversible or dynamic...... that the kinetics at the fuel electrode were exactly the same in both reformates. This means that chemical equilibrium reactions were much faster than the electrochemical reactions. The electrode displayed slightly faster kinetics in hydrogen/steam fuel than in the reformate fuels. To minimize the influence of (i......) joule heating effects as a result of current flow across the electrolyte, (ii) concentration-related effects like gas diffusion, and (iii) overlapping of the characteristic frequencies of processes, the investigations were extended from full cell geometries to a novel pseudo-three electrode cell...

  5. Anodic Oxidation and Amperometric Sensing of Hydrazine at a Glassy Carbon Electrode Modified with Cobalt (II Phthalocyanine–cobalt (II Tetraphenylporphyrin (CoPc- (CoTPP4 Supramolecular Complex

    Directory of Open Access Journals (Sweden)

    Kenneth I. Ozoemena

    2006-08-01

    Full Text Available This paper describes the electrocatalytic behaviour of a glassy carbon electrode (GCEmodified with cobalt(IIphthalocyanine (CoPc complex peripherally tetrasubstituted withcobalt(IItetraphenylporphyrin (CoTPP complexes via ether linkages (i.e., CoPc-(CoTPP4. Thefeatures of the immobilised pentamer were interrogated with cyclic voltammetry andelectrochemical impedance spectroscopy (EIS using [Fe(CN6]3-/4- as redox probe revealedenhanced electron transfer properties with kapp ≈ 18 x 10-6 cms-1 compared to that of the bareGCE (4.7 x 10-6 cms-1. The viability of this supramolecular complex as a redox mediator for theanodic oxidation and sensitive amperometric determination of hydrazine in alkaline conditions isdescribed. The electrocatalytic oxidation of hydrazine by GCE-CoPc-(CoTPP4 was characterisedwith satisfactory catalytic current response with low non-Faradaic current (ca. 30 times lowerthan the bare GCE and at much lower oxidation potential (ca. 300 mV lower than the bareGCE. A mechanism for the studied electrocatalytic reaction was proposed based on thespectrophotometric evidence that revealed the major involvement of the Co(III/Co(II redox coupleof the central CoPc species rather than the CoTPP component of the pentamer. Rate constant forthe anodic oxidation of hydrazine was estimated from chronoamperometry as ~ 3x103 M-1s-1. Theproposed amperometric sensor displayed excellent charateristics towards the determination ofhydrazine in 0.2 M NaOH ; such as low overpotentials ( 100 mV vs Ag|AgCl, very fastamperometric response time (1 s, linear concentration range of up to 230 μM, with micromolardetection limit, high sensitivity and stability.

  6. Influence of testosterone on phase II metabolism and availability of soy isoflavones in male Wistar rats.

    Science.gov (United States)

    Soukup, Sebastian T; Müller, Dennis R; Kurrat, Anne; Diel, Patrick; Kulling, Sabine E

    2017-04-01

    Genistein and daidzein are the main isoflavones in soy. Their potential beneficial or adverse effects in males like the prevention of prostate cancer or the impact on reproductive functions are controversially discussed. Major determinants of their bioactivity are the absorption and biotransformation of isoflavones. In this study, we focused on the influence of testosterone on plasma availability and phase II metabolism of isoflavones. Male Wistar rats, receiving an isoflavones rich diet, were randomized into three groups: Two groups were orchiectomized (ORX) at postnatal day (PND) 80 and treated for 11 days with testosterone propionate (TP) (ORX TP group) or a vehicle (ORX group) after a 7 days lasting hormonal decline. The third group served as control and remained intact. Rats were sacrificed at PND 98. ORX rats had reduced isoflavones plasma levels. Differently regulated mRNA expressions of transporters relevant for transport of phase II metabolites in liver and kidney may be responsible for this reduction, more precisely Slc10a1 and Slc21a1 in kidney as well as Slc22a8 in liver. While main phase II metabolites in intact rats were disulfates and sulfoglucuronides, the amount of sulfate conjugates was significantly diminished by ORX. In accordance with that, mRNA expression of different sulfotransferases was reduced in liver by ORX. The observed effects could be almost restored by TP treatment. In conclusion, testosterone, and likely further androgens, has a huge impact on phase II metabolism and availability of isoflavones by influencing the expression of different sulfotransferases and transporters.

  7. Electrochemical detection of Hg(II in water using self-assembled single walled carbon nanotube-poly(m-amino benzene sulfonic acid on gold electrode

    Directory of Open Access Journals (Sweden)

    Gauta Gold Matlou

    2016-09-01

    Full Text Available This work reports on the detection of mercury using single walled carbon nanotube-poly (m-amino benzene sulfonic acid (SWCNT-PABS modified gold electrode by self-assembled monolayers (SAMs technique. A thiol containing moiety (dimethyl amino ethane thiol (DMAET was used to facilitate the assembly of the SWCNT-PABS molecules onto the Au electrode surface. The successfully assembled monolayers were characterised using atomic force microscopy (AFM. Cyclic voltammetric and electrochemical impedance spectroscopic studies of the modified electrode (Au-DMAET-(SWCNT-PABS showed improved electron transfer over the bare Au electrode and the Au-DMAET in [Fe (CN6]3−/4− solution. The Au-DMAET-(SWCNT-PABS was used for the detection of Hg in water by square wave anodic stripping voltammetry (SWASV analysis at the following optimized conditions: deposition potential of −0.1 V, deposition time of 30 s, 0.1 M HCl electrolyte and pH 3. The sensor showed a good sensitivity and a limit of detection of 0.06 μM with a linear concentration range of 20 ppb to 250 ppb under the optimum conditions. The analytical applicability of the proposed method with the sensor electrode was tested with real water sample and the method was validated with inductively coupled plasma – optical emission spectroscopy.

  8. Electrochemical behavior of Pb (II) on a heparin modified chitosan/graphene nanocomposite film coated glassy carbon electrode and its sensitive detection.

    Science.gov (United States)

    T, Priya; N, Dhanalakshmi; N, Thinakaran

    2017-11-01

    In this study, we developed a novel composite material containing biological macromolecules like heparin and chitosan coated on reduced graphene oxide (rGO) for the modification of glassy carbon electrode (hep/CS-rGO/GC). It can be applied for the sensitive electrochemical detection of Pb2+ by square wave anodic stripping voltammetry (SWASV). The physicochemical analysis such as XRD, FTIR, FESEM and Raman spectroscopy techniques revealed that an effective functionalization occurred at the rGO surface. The consequence of deposition and stripping of metal ions by various electrochemical parameters such as supporting electrolytes, pH value, deposition potential, and deposition time were carefully studied and optimized. Under the optimized conditions, the linear calibration curve was calculated to be from 1.125 to 8.25μgL-1 for Pb2+ with the correlation coefficient (R2) 0.9988. The detection limit and sensitivity achieved for the modified electrode were 0.03μgL-1 and 1.34μA/nM respectively. Furthermore, the electrochemical investigation indicates that the hep/CS-rGO composite electrode exhibits high selectivity, strong adherence to the electrode surface, good stability and reproducibility towards the detection of Pb2+. Finally, hep/CS-rGO/GC electrode was assessed by the quantity of Pb2+ present in the practical samples, and the determined results were consistent with that of AAS. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Construction of new iodide selective electrodes based on bis(trans-cinnamaldehyde)1,3-propanediimine(L) zinc(II) chloride [ZnLCl{sub 2}] and bis(trans-cinnamaldehyde) 1,3-propanediimine(L) cadmium(II) chloride [CdLCl{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Ghaedi, M., E-mail: m_ghaedi@mail.yu.ac.ir; Montazerozohori, M.; Mousavi, A.; Khodadoust, S.; Mansouri, M.

    2012-04-01

    New plasticized PVC membranes iodide selective electrodes have been prepared by incorporating bis(trans-cinnamaldehyde)1,3-propanediimine zinc(II) chloride [ZnLCl2] and bis(trans-cinnamaldehyde) 1,3-propandiimine cadmium(II) chloride [CdLCl2] on the surface of graphite disk electrodes. At optimum value of variables the proposed electrodes have selective response to iodide with respect to a number of inorganic and organic anions with near-Nernstian slopes of - 60 {+-} 1.9 and - 58.5 {+-} 1.9 mV/decade of iodide concentration over the range 1.0 Multiplication-Sign 10{sup -6}-1.0 Multiplication-Sign 10{sup -1} M with detection limits of 4.0 Multiplication-Sign 10{sup -7} and 3.0 Multiplication-Sign 10{sup -7} M for the electrodes based on [ZnLCl{sub 2}] and [CdLCl{sub 2}], respectively. The electrodes based on both ionophores have response times of about (6 s), with stable reproducible response during 2 months, while their responses is independent of pH over the range 2.5-10.5. The proposed electrodes successfully have been applied for evaluation of iodide ion content in real samples with complicated matrices including water and pharmaceutical samples. - Highlights: Black-Right-Pointing-Pointer New ionophores have been synthesized for the first time in our laboratory. Black-Right-Pointing-Pointer The ionophores were made from inexpensive materials. Black-Right-Pointing-Pointer These Schiff bases synthesized for Zn{sup +2}, Cd{sup +2} ions.

  10. Protective influences on experimental autoimmune encephalomyelitis by MHC class I and class II alleles

    DEFF Research Database (Denmark)

    Mustafa, M; Vingsbo, C; Olsson, T

    1994-01-01

    Experimental autoimmune encephalomyelitis (EAE) is influenced by polymorphism of the MHC. We have previously found that Lewis rats with certain MHC haplotypes are susceptible to disease induced with the myelin basic protein (MBP) peptide 63-88, whereas Lewis rats with other MHC haplotypes...... are resistant. Interestingly, rats with the MHC u haplotype develop an immune response to the MBP 63-88, but do not get EAE. In this study we have used intra-MHC recombinant rat strains to compare the influences of the MHC u with the a haplotype. We discovered the following: 1) The class II region of the MHC...... a haplotype permits EAE and a Th1 type of immune response as measured by IFN-gamma production after in vitro challenge of in vivo-primed T cells with MBP 63-88. 2) The class II region of the u haplotype is associated with a disease-protective immune response characterized by production of not only IFN...

  11. Influence of storage condition on properties of MCC II-based pellets with theophylline-monohydrate.

    Science.gov (United States)

    Krueger, Cornelia; Thommes, Markus; Kleinebudde, Peter

    2014-10-01

    Microcrystalline cellulose II (MCC II(1)) is a polymorph of commonly used MCC I; in 2010 it was introduced as new pelletization aid in wet-extrusion/spheronization leading to fast disintegrating pellets. Previous investigations suggested that the storage of the resulting pellets affect the disintegration behavior, the non-hygroscopic substance chloramphenicol that showed no polymorphism or hydrate formation due to relative humidity was used for the investigations. Therefore, theophylline-monohydrate that can dehydrate during storage, but also during manufacturing and drying was used for this study to confirm the results of the previous study and give a more detailed overview of the influence of recrystallization of theophylline monohydrate on disintegration. Storage recommendations should be derived. MCC II-based pellets were prepared of binary mixtures containing 10%, 20% or 50% MCCII as pelletization aid and theophylline-monohydrate as API. These pellets were stored at different relative humidity (0-97%rH; 20°C); the influence on their disintegration and drug release was investigated. The storage conditions had an impact on pellet disintegration. Low relative humidities (⩽ 40%rH) led to a conversion of the monohydrate to the anhydrous form. Newly grown crystals formed a kind of network around the pellet and inhibited the disintegration. High relative humidity (>80%rh) affected the disintegration caused by changes in the MCCII as already seen in the previous study. Due to the changed disintegration behavior also the drug release and release kinetic changed. Therefore, for theophylline containing pellets a storage humidity of 55%rH to 80%rH (20°C) is recommended. All in all, these investigations substantiate the knowledge of MCCII-based pellets providing a better basis for adequate storage conditions of MCCII based pellets. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Development of an electrochemical DNA biosensor for the detection of vitamin B12 (cyanocobalamin at a carbon paste modified electrode with a manganese(II complex

    Directory of Open Access Journals (Sweden)

    Georgia Dimitropoulou

    2017-06-01

    Full Text Available A simple, fast, sensitive and selective electrochemical detection of vitamin B12 (cyanocobalamin has been developed using a DNA electrochemical biosensor and a modified carbon paste electrode. Carbon paste electrode was modified with electrochemically produced polymer of [Mn(thiophenyl-2-carboxylic acid2(triethylonamine] using cyclic voltammetry with a scan rate of 0.01 V/s and three number of scans. Vitamin B12 was immobilized onto the modified electrode. Measurements were carried out using adsorptive transfer square wave voltammetry. Detection was achieved from 3.667 μg/L to 236.0 μg/L, presenting sufficiently low detection (i.e. 1.210 μg/L and quantification (i.e. 3.667 μg/L limits. The precision was tested showing excellent results (i.e. from 5.50 % and 5.35 %. The selectivity towards certain interferences was also investigated and revealed that none of them had significant effect on the detection of vitamin B12. The electrode has been applied in the determination of Vitamin B12 in human urine sample.

  13. The influence of the synthesis method of Ti/RuO{sub 2} electrodes on their stability and catalytic activity for electrochemical oxidation of the pesticide carbaryl

    Energy Technology Data Exchange (ETDEWEB)

    Santos, T.É.S. [Laboratório de Eletroquímica e Nanotecnologia, Instituto de Tecnologia e Pesquisa (ITP)/Programa de Pós-Graduação em Engenharia de Processos, Universidade Tiradentes, 49032–490 Aracaju, SE (Brazil); Silva, R.S. [Laboratório de Materiais Cerâmicos Avançados, Departamento de Física, Universidade Federal de Sergipe, 49.100-000 São Cristóvão, SE (Brazil); Carlesi Jara, C. [Escuela de Ingeniería Química, Pontificia Universidad Católica de Valparaíso, Av. Brasil No 2147, 2362804 Valparaíso (Chile); Eguiluz, K.I.B. [Laboratório de Eletroquímica e Nanotecnologia, Instituto de Tecnologia e Pesquisa (ITP)/Programa de Pós-Graduação em Engenharia de Processos, Universidade Tiradentes, 49032–490 Aracaju, SE (Brazil); Salazar-Banda, G.R., E-mail: gianrsb@gmail.com [Laboratório de Eletroquímica e Nanotecnologia, Instituto de Tecnologia e Pesquisa (ITP)/Programa de Pós-Graduação em Engenharia de Processos, Universidade Tiradentes, 49032–490 Aracaju, SE (Brazil)

    2014-11-14

    In this study, we developed dimensionally stable anodes of titanium covered with ruthenium oxides (Ti/RuO{sub 2}) using sol–gel, Pechini and ionic liquid (IL) methodologies. The electrochemical efficiency of these electrodes was then evaluated regarding electrochemical degradation of the pesticide carbaryl. The UV–visible spectroscopy measurements showed that the electrodes obtained by the IL and Pechini methods were more effective at pesticide degradation compared with the sol–gel electrode, especially at high current density values. Carbaryl degradation after 2 h of electrolysis at 30 mA cm{sup −2} was 96.4% and 95.5% for the electrodes obtained by the IL and Pechini methods, respectively, while the degradation was 65.0% for the electrodes obtained by the sol–gel method. Additionally, the electrodes prepared by the IL and Pechini methods showed greater physical and electrochemical stability when compared to electrodes obtained by the sol–gel method. Electrodes prepared by the IL method with a few covering layers (three) achieved an elevated and constant area in a more efficient way than electrodes prepared by the Pechini and sol–gel methods. This fact can be attributed to the higher viscosity of the ionic liquid-based precursor solution, which transfers a higher amount of Ru in one single layer, compared to the other methods studied, thus reducing the time for synthesis, the number of calcination steps and the production costs of electrodes. - Highlights: • We developed dimensionally stable anodes containing ruthenium oxides. • Sol–gel, Pechini and ionic liquid methodologies were used. • The ionic liquid method covers the surfaces more efficiently and with few layers. • The proposed method reduces the time and production cost for synthesis of electrodes. • The electrodes synthesized present high stability and pesticide degradation activity.

  14. The Graphene/l-Cysteine/Gold-Modified Electrode for the Differential Pulse Stripping Voltammetry Detection of Trace Levels of Cadmium

    Directory of Open Access Journals (Sweden)

    Yu Song

    2016-06-01

    Full Text Available Cadmium(II is a common water pollutant with high toxicity. It is of significant importance for detecting aqueous contaminants accurately, as these contaminants are harmful to human health and environment. This paper describes the fabrication, characterization, and application of an environment-friendly graphene (Gr/l-cysteine/gold electrode to detect trace levels of cadmium (Cd by differential pulse stripping voltammetry (DPSV. The influence of hydrogen overflow was decreased and the current response was enhanced because the modified graphene extended the potential range of the electrode. The Gr/l-cysteine/gold electrode showed high electrochemical conductivity, producing a marked increase in anodic peak currents (vs. the glass carbon electrode (GCE and boron-doped diamond (BDD electrode. The calculated detection limits are 1.15, 0.30, and 1.42 µg/L, and the sensitivities go up to 0.18, 21.69, and 152.0 nA·mm−2·µg−1·L for, respectively, the BDD electrode, the GCE, and the Gr/l-cysteine/gold electrode. It was shown that the Gr/l-cysteine/gold-modified electrode is an effective means for obtaining highly selective and sensitive electrodes to detect trace levels of cadmium.

  15. Doxycycline does not influence established abdominal aortic aneurysms in angiotensin II-infused mice.

    Directory of Open Access Journals (Sweden)

    Xiaojie Xie

    Full Text Available There is no proven medical approach to attenuating expansion and rupture of abdominal aortic aneurysms (AAAs. One approach that is currently being investigated is the use of doxycycline. Despite being primarily used as an antimicrobial drug, doxycycline has been proposed to function in reducing AAA expansion. Doxycycline is effective in reducing the formation in the most commonly used mouse models of AAAs when administered prior to the initiation of the disease. The purpose of the current study was to determine the effects of doxycycline on established AAAs when it was administered at a dose that produces therapeutic serum concentrations.LDL receptor -/- male mice fed a saturated-fat supplemented diet were infused with AngII (1,000 ng/kg/min via mini-osmotic pumps for 28 days. Upon verification of AAA formation by noninvasive high frequency ultrasonography, mice were stratified based on aortic lumen diameters, and continuously infused with AngII while also administered either vehicle or doxycycline (100 mg/kg/day in drinking water for 56 days. Administration of doxycycline led to serum drug concentrations of 2.3 ± 0.6 µg/ml. Doxycycline administration had no effect on serum cholesterol concentrations and systolic blood pressures. Doxycycline administration did not prevent progressive aortic dilation as determined by temporal measurements of lumen dimensions using high frequency ultrasound. This lack of effect on AAA regression and progression was confirmed at the termination of the study by ex vivo measurements of maximal width of suprarenal aortas and AAA volumes. Also, doxycycline did not reduce AAA rupture. Medial and adventitial remodeling was not overtly changed by doxycycline as determined by immunostaining and histological staining.Doxycycline administration did not influence AngII-induced AAA progression and aortic rupture when administered to mice with established AAAs.

  16. Reversible rearrangements of Cu(II) cage complexes: solvent and anion influences.

    Science.gov (United States)

    Bernhardt, Paul V; Font, Helena; Gallego, Carlos; Martínez, Manuel; Rodríguez, Carlos

    2012-11-19

    The macrobicyclic mixed donor cage ligand AMME-N3S3sar (1-methyl-8-amino-3,13,16-trithia-6,10,19-triazabicyclo[6.6.6]eicosane) is capable of binding to Cu(II) as either a hexadentate (N3S3) or tetradentate (N2S2) ligand. The "Cu-in" (hexadentate)/"Cu-out" (tetradendate) equilibrium for the {Cu(AMME-N3S3sar)}(2+) units is strongly influenced by both solvent (DMSO, MeCN, and water) and halide ions (Br(-) and Cl(-)). We have established a crucial role of the solvent in these processes through the formation of intermediate solvato complexes, which are substituted by incoming halide ions triggering a final isomerization reaction. Surprisingly, for reactions carried out in the usually strongly coordinating solvent water, the completely encapsulated N3S3-bound "Cu-in" form is dominant. Furthermore, the small amounts of the "Cu-out" form present in equilibrated DMSO or MeCN solutions revert entirely to the "Cu-in" form in aqueous media, thus preventing reaction with halide anions which otherwise lead to partial or even complete decomposition of the complex. From the kinetic, electrochemical, and EPR results, the existence of an outer-sphere H-bonded network of water molecules interacting with the complex inhibits egress of the Cu(II) ion from the cage ligand. This is extremely relevant in view of outer sphere interactions present in strongly hydrogen bonding solvents and their effects on Cu(II) complexation.

  17. Doxycycline Does Not Influence Established Abdominal Aortic Aneurysms in Angiotensin II-Infused Mice

    Science.gov (United States)

    Xie, Xiaojie; Lu, Hong; Moorleghen, Jessica J.; Howatt, Deborah A.; Rateri, Debra L.; Cassis, Lisa A.; Daugherty, Alan

    2012-01-01

    Background There is no proven medical approach to attenuating expansion and rupture of abdominal aortic aneurysms (AAAs). One approach that is currently being investigated is the use of doxycycline. Despite being primarily used as an antimicrobial drug, doxycycline has been proposed to function in reducing AAA expansion. Doxycycline is effective in reducing the formation in the most commonly used mouse models of AAAs when administered prior to the initiation of the disease. The purpose of the current study was to determine the effects of doxycycline on established AAAs when it was administered at a dose that produces therapeutic serum concentrations. Methods and Results LDL receptor −/− male mice fed a saturated-fat supplemented diet were infused with AngII (1,000 ng/kg/min) via mini-osmotic pumps for 28 days. Upon verification of AAA formation by noninvasive high frequency ultrasonography, mice were stratified based on aortic lumen diameters, and continuously infused with AngII while also administered either vehicle or doxycycline (100 mg/kg/day) in drinking water for 56 days. Administration of doxycycline led to serum drug concentrations of 2.3±0.6 µg/ml. Doxycycline administration had no effect on serum cholesterol concentrations and systolic blood pressures. Doxycycline administration did not prevent progressive aortic dilation as determined by temporal measurements of lumen dimensions using high frequency ultrasound. This lack of effect on AAA regression and progression was confirmed at the termination of the study by ex vivo measurements of maximal width of suprarenal aortas and AAA volumes. Also, doxycycline did not reduce AAA rupture. Medial and adventitial remodeling was not overtly changed by doxycycline as determined by immunostaining and histological staining. Conclusions Doxycycline administration did not influence AngII-induced AAA progression and aortic rupture when administered to mice with established AAAs. PMID:23029514

  18. STAT3 regulates ABCA3 expression and influences lamellar body formation in alveolar type II cells.

    Science.gov (United States)

    Matsuzaki, Yohei; Besnard, Valérie; Clark, Jean C; Xu, Yan; Wert, Susan E; Ikegami, Machiko; Whitsett, Jeffrey A

    2008-05-01

    ATP-Binding Cassette A3 (ABCA3) is a lamellar body associated lipid transport protein required for normal synthesis and storage of pulmonary surfactant in type II cells in the alveoli. In this study, we demonstrate that STAT3, activated by IL-6, regulates ABCA3 expression in vivo and in vitro. ABCA3 mRNA and immunostaining were decreased in adult mouse lungs in which STAT3 was deleted from the respiratory epithelium (Stat3(Delta/Delta) mice). Consistent with the role of STAT3, intratracheal IL-6 induced ABCA3 expression in vivo. Decreased ABCA3 and abnormalities in the formation of lamellar bodies, the intracellular site of surfactant lipid storage, were observed in Stat3(Delta/Delta) mice. Expression of SREBP1a and 1c, SCAP, ABCA3, and AKT mRNAs was inhibited by deletion of Stat3 in type II cells isolated from Stat3(Delta/Delta) mice. The activities of PI3K and AKT were required for normal Abca3 gene expression in vitro. AKT activation induced SREBP expression and increased the activity of the Abca3 promoter in vitro, consistent with the role of STAT3 signaling, at least in part via SREBP, in the regulation of ABCA3. ABCA3 expression is regulated by IL-6 in a pathway that includes STAT3, PI3K, AKT, SCAP, and SREBP. Activation of STAT3 after exposure to IL-6 enhances ABCA3 expression, which, in turn, influences pulmonary surfactant homeostasis.

  19. Influence of endodontic treatment in the post-surgical healing of human Class II furcation defects.

    Science.gov (United States)

    de Miranda, Jose Luis C; Santana, Carolina Miller M; Santana, Ronaldo B

    2013-01-01

    Treatment of molar furcation defects remains a considerable challenge in clinical practice. The degree of success in the management of furcation involvement is highly variable and related to the baseline clinical status of these defects. The identification of clinical parameters influential to the treatment outcomes is critical to optimize the results of surgical periodontal therapy. The impact of the endodontic treatment (ET) of the tooth on the healing potential of the periodontium is controversial. Therefore, the objective of this study is to evaluate the clinical response of buccal Class II furcation defects to open-flap debridement (OFD) and to determine the influence of ET in the clinical outcomes of therapy. Sixty patients were divided into two treatment groups (n = 30): 1) OFD; and 2) OFD in endodontically treated teeth (OFD + ET). The clinical variables evaluated were plaque (full-mouth plaque score), bleeding on probing, gingival recession, probing depth (PD), and vertical (VAL) and horizontal (HAL) attachment levels. Reevaluation was performed 12 months after the surgical procedures. Both treatments resulted in improvements in all the clinical variables evaluated. Postoperative measurements from OFD-treated and OFD + ET-treated sites showed, respectively, 1.2 ± 1.2 and 1.3 ± 1.3 mm reduction in PD, 0.6 ± 0.8 and 0.7 ± 0.6 mm VAL gains, and 0.7 ± 1.1 and 0.8 ± 1.6 mm HAL gains. No significant differences were found between the groups. The present findings demonstrate that adequate endodontic therapy performed ≥6 months before surgical treatment does not significantly influence the clinical parameters of healing of human mandibular buccal Class II furcation defects.

  20. Lead(II) ion selective electrodes with PVC membranes based on two bis-thioureas as ionophores: 1,3-bis(N'-benzoylthioureido)benzene and 1,3-bis(N'-furoylthioureido)benzene.

    Science.gov (United States)

    Wilson, Deivy; Arada, María de los Angeles; Alegret, Salvador; del Valle, Manel

    2010-09-15

    Two PVC membrane ion selective electrodes for Pb(II) ion based on two bis-thioureas: 1,3-bis(N'-benzoylthioureido)benzene and 1,3-bis(N'-furoylthioureido)benzene as ionophores, are reported. A first membrane formulated using 1,3-bis(N'-benzoylthioureido)benzene as carrier exhibited a Nernstian response to Pb(II) over a wide concentration range (4.0x10(-6) to 1.0x10(-2)M) with a slope of 31.5+/-1.6 mV/dec. It showed a fast response time (t(90%)=14 s) and could be used for 10 weeks without any divergence in potentials. The membrane formulated using 1,3-bis(N'-furoylthioureido)benzene as carrier exhibited a Nernstian response in the concentration range (5.0x10(-6) to 1.0x10(-2) M), with a slope of 30.0+/-1.3 mV/dec. Its response time was t(90%)=14 s, and it could be used for 14 weeks without any divergence in potentials. The two proposed potentiometric sensors revealed acceptable selectivities for Pb(II) over a wide variety of other metal ions and could be used in a pH range of 2.2-6.0. Both electrodes were assayed in direct potentiometric determination of lead in soils (10-30 mg/kg range) with very good performance (0.99935 correlation coefficient in the comparison against ICP-MS method). Copyright 2010 Elsevier B.V. All rights reserved.

  1. A novel flow battery: A lead acid battery based on an electrolyte with soluble lead(II). Part IX: Electrode and electrolyte conditioning with hydrogen peroxide

    Science.gov (United States)

    Collins, John; Li, Xiaohong; Pletcher, Derek; Tangirala, Ravichandra; Stratton-Campbell, Duncan; Walsh, Frank C.; Zhang, Caiping

    Extended cycling of a soluble lead acid battery can lead to problems due to an imbalance in the coulombic efficiency leading to deposits of Pb and PbO2 on the electrodes. Periodic addition of hydrogen peroxide to the electrolyte of the soluble lead acid flow battery largely overcomes several operational problems seen during extended cycling, using a 10 cm × 10 cm parallel plate flow cell. It is shown that this treatment greatly extends the number of cycles that can be achieved with a reasonable energy-, voltage-, and charge efficiency of 54-66%, 71%, and 77-91%.

  2. Influence of pH value on Cu (II biosorption by lignocellulose peach shell waste material

    Directory of Open Access Journals (Sweden)

    Lopičić Zorica R.

    2013-01-01

    Full Text Available In the last decade, the pollution made by anthropogenic sources has reached large amounts with special attention on heavy metals because of their high toxicity, persistence and bioaccumulation tendency. Since the conventional methods for their removing are either too expensive or create large quantities of toxic sludge, the great attention has been paid to the new technologies such as biosorption, technology that use cheap, abundant, organic waste for sequestering pollutants from contaminated mediums. Among the other factors that affect biosorption process, pH value is one the most important because it directs both the metal solution chemistry as well as the activity of the biomass functional groups. In this paper the influence of pH value on biosorption of Cu (II by unmodified low-cost lignocellulose biosorbent - peach shell (PS particles, have been studied. The chemical composition of PS, point of zero charge (pHPZC as well as its surface morphology is also presented. Results have showed that this biosorbent contains mainly cellulose and lignin, the components that carry the functional groups responsible for metal binding. Its multilayer surface contains many pores and channels that help diffusion in deeper layers and force biosorption process. Point of zero charge determination was performed with three different KNO3 ionic strengths: 0,1M, 0,01M and 0,001M. The obtained value for pHPZC was 4,75±0,1 and showed that this biosorbent is non-sensitive to ionic strength of electrolyte applied. Biosorption experiments were done with peach shell particles whose diameter was -0,5+0,1mm at 25oC . The initial copper (II concentration was 50 mg/dm3 while the biosorbent concentration was 10g/dm3. Experiments were done with and without keeping pH constant. The influence of pH on biosorption process was examined in 2-6 pH range. The percentage of Cu (II removed by PS, reaches its maximum at pH 6, with the 90,43% removing but this percentage can also be

  3. Hyaluronan Production by Renomedullary Interstitial Cells: Influence of Endothelin, Angiotensin II and Vasopressin

    Directory of Open Access Journals (Sweden)

    Sara Stridh

    2017-12-01

    Full Text Available The content of hyaluronan (HA in the interstitium of the renal medulla changes in relation to body hydration status. We investigated if hormones of central importance for body fluid homeostasis affect HA production by renomedullary interstitial cells in culture (RMICs. Simultaneous treatment with vasopressin and angiotensin II (Ang II reduced HA by 69%. No change occurred in the mRNA expressions of hyaluronan synthase 2 (HAS2 or hyaluronidases (Hyals, while Hyal activity in the supernatant increased by 67% and CD44 expression reduced by 42%. The autocoid endothelin (ET-1 at low concentrations (10−10 and 10−8 M increased HA 3-fold. On the contrary, at a high concentration (10−6 M ET-1 reduced HA by 47%. The ET-A receptor antagonist BQ123 not only reversed the reducing effect of high ET-1 on HA, but elevated it to the same level as low concentration ET-1, suggesting separate regulating roles for ET-A and ET-B receptors. This was corroborated by the addition of ET-B receptor antagonist BQ788 to low concentration ET-1, which abolished the HA increase. HAS2 and Hyal2 mRNA did not alter, while Hyal1 mRNA was increased at all ET-1 concentrations tested. Hyal activity was elevated the most by high ET-1 concentration, and blockade of ET-A receptors by BQ123 prevented about 30% of this response. The present study demonstrates an important regulatory influence of hormones involved in body fluid balance on HA handling by RMICs, thereby supporting the concept of a dynamic involvement of interstitial HA in renal fluid handling.

  4. Influence of Native Microbiota on Survival of Ralstonia solanacearum Phylotype II in River Water Microcosms▿

    Science.gov (United States)

    Álvarez, Belén; López, María M.; Biosca, Elena G.

    2007-01-01

    Ralstonia solanacearum phylotype II biovar 2 causes bacterial wilt in solanaceous hosts, producing severe economic losses worldwide. Waterways can be major dissemination routes of this pathogen, which is able to survive for long periods in sterilized water. However, little is known about its survival in natural water when other microorganisms, such as bacteriophages, other bacteria, and protozoa, are present. This study looks into the fate of a Spanish strain of R. solanacearum inoculated in water microcosms from a Spanish river, containing different microbiota fractions, at 24°C and 14°C, for a month. At both temperatures, R. solanacearum densities remained constant at the initial levels in control microcosms of sterile river water while, by contrast, declines in the populations of the introduced strain were observed in the nonsterile microcosms. These decreases were less marked at 14°C. Lytic bacteriophages present in this river water were involved in the declines of the pathogen populations, but indigenous protozoa and bacteria also contributed to the reduced persistence in water. R. solanacearum variants displaying resistance to phage infection were observed, but only in microcosms without protozoa and native bacteria. In water microcosms, the temperature of 14°C was more favorable for the survival of this pathogen than 24°C, since biotic interactions were slower at the lower temperature. Similar trends were observed in microcosms inoculated with a Dutch strain. This is the first study demonstrating the influence of different fractions of water microorganisms on the survival of R. solanacearum phylotype II released into river water microcosms. PMID:17873071

  5. Influence of the π-coordinated arene on the anticancer activity of ruthenium(II) carbohydrate organometallic complexes

    NARCIS (Netherlands)

    Hanif, Muhammad; Meier, Samuel M; Nazarov, Alexey A; Risse, Julie; Legin, Anton; Casini, Angela; Jakupec, Michael A; Keppler, Bernhard K; Hartinger, Christian G

    2013-01-01

    The synthesis and in vitro cytotoxicity of a series of Ru(II)(arene) complexes with carbohydrate-derived phosphite ligands and various arene co-ligands is described. The arene ligand has a strong influence on the in vitro anticancer activity of this series of compounds, which correlates fairly well

  6. Tracer Studies of the Influence of Foreign Substances at the Surface of the Electrodes. I. Polarization Phenomena; Accion de las sustancias extranas en la superficie de los electrodos. Estudio mediante radiotrazadores

    Energy Technology Data Exchange (ETDEWEB)

    Llopis, J.; Gamboa, J. M.; Arizmendi, L.

    1961-07-01

    Radioactive stearic acid ({sup 1}4C) has been used to determine the number of molecular layers present on copper electrode surfaces and its distribution. The stability of these layers under the experimental conditions has been studied and it has been shown that its presence has no influence on the anodic and cathodic polarization. an increase of these polarizations has been observed with mixed multilayers of stearic acid and sterolamide. (Author) 13 refs.

  7. Microstructure of plastic bonded nickel electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Kulcsar, S.; Agh, J.; Fazekas, A.; Vigh, J.; Bujdoso, Z.

    1982-07-01

    Structure is of great importance in the characteristics of plastic bonded nickel electrodes. On the basis of SEM tests it has been established that in pressed Ni electrodes some tenth of a millimetre-long PTFE fibres can be found with a diameter smaller than 500 nm. These form a net-like structure in the electrode which holds the active material together without any decrease in the conductivity. The formation and arrangement of this structure can be influenced by technological parameters.

  8. Influence of H 2SO 4 concentration on the mechanism of the processes and on the electrochemical activity of the Pb/PbO 2/PbSO 4 electrode

    Science.gov (United States)

    Pavlov, D.; Kirchev, A.; Stoycheva, M.; Monahov, B.

    The aim of the present investigation is to study the influence of H 2SO 4 concentration on the electrochemical activity, the phase composition and the structure and morphology of the PbO 2 particles. The study is performed through cycling (between 700 and 1600 mV versus Hg/Hg 2SO 4 electrode) of a Pb/PbO 2/PbSO 4 electrode immersed in sulfuric acid solutions of various concentrations (ranging within 2 orders of magnitude: 6.0-0.05 M H 2SO 4). In this concentration region, sulfuric acid dissociates in two steps resulting in the formation of HSO 4- and SO 42- ions, respectively. It has been established experimentally that the electrochemical activity of the PbO 2/PbSO 4 electrode depends on the concentration of HSO 4- ions in the solution. Three acid concentration regions can be distinguished: (a) active acid concentration region (5.0 M > CH 2SO 4 > 0.5 M), where the concentration of HSO 4- ions is the highest and a βPbO 2 phase is formed; PbO 2 particles are drop-like in shape and contain large hydrated (gel) zones; the electrode has the highest capacity; (b) passive high concentration region ( CH 2SO 4 > 5.0 M), where the concentration of HSO 4- ions decreases at the expense of formation of H 2SO 4 molecules; crystal-shaped αPbO 2 particles are formed; the capacity of the electrode declines; (c) passive low concentration region ( CH 2SO 4 electrode declines. The above electrochemical behavior of the PbO 2/PbSO 4 electrode is explained by the mechanism of the reactions in the gel zones of the PbO 2 particles and by the influence of HSO 4- ions on the number of electrochemically active particles. On grounds of the obtained experimental results it has been established that the working interval within which the CH 2SO 4 may change on cycling is from 5.0 to 1.5 M, i.e. 3.5 M H 2SO 4 per 1 l of H 2SO 4 solution with s.g. 1.28 takes part in the reactions on both battery plates. This is the maximum amount of H 2SO 4 in the solution that would have no detrimental effect

  9. Influence of the electronic structures on the heterogeneous photoelectrocatalytic performance of Ti/Ru{sub x}Sn{sub 1-x}O{sub 2} electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhijie, E-mail: 1061739408@qq.com [College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108 (China); Zhu, Junqiu, E-mail: zhujunqiu@xmut.edu.com [School of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian 362000 (China); Zhang, Shuai, E-mail: 601314274@qq.com [College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108 (China); Shao, Yanqun, E-mail: yqshao1989@163.com [College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108 (China); Lin, Deyuan, E-mail: lindeyuan_fj@126.com [Electric Power Research Institute of State Grid Fujian Electric Power Co. Ltd., Fuzhou 350007 (China); Zhou, Jianfeng, E-mail: 1277018923@qq.com [College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108 (China); Chen, Yunxiang, E-mail: rogerchen@163.com [Electric Power Research Institute of State Grid Fujian Electric Power Co. Ltd., Fuzhou 350007 (China); Tang, Dian, E-mail: diantang@fzu.edu.cn [College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108 (China)

    2017-07-05

    Highlights: • Ti/Ru{sub x}Sn{sub 1-x}O{sub 2} electrodes possessed photocatalytic and electrocatalytic activity were prepared by thermal decomposition method. • The effect of electronic structure on electronic conductivity, electrocatalytic and photocatalytic activity were studied. • The photoelectric-synergistic catalytic activity of the Ti/Ru{sub x}Sn{sub 1-x}O{sub 2} electrodes was studied upon UV irradiation. • The Ti/Ru{sub 0.05}Sn{sub 0.95}O{sub 2} electrode has good catalytic activity and excellent stability. - Abstract: DSA-type Ti/Ru{sub x}Sn{sub 1-x}O{sub 2} electrodes were prepared by thermal decomposition method as photoelectrocatalysts (PECs) and extensively characterized by various sophisticated techniques. First-principles calculations was employed to study the effects of Ru content on the electronic structures of the Ru{sub x}Sn{sub 1-x}O{sub 2} coatings. The photoelectric-synergistic catalytic activity of the Ti/Ru{sub x}Sn{sub 1-x}O{sub 2} electrodes was evaluated for the degradation of methyl orange (MO) in aqueous solution. The results show that the RuO{sub 2}−SnO{sub 2} solid solution could be formed. The band gaps of the Ru{sub x}Sn{sub 1-x}O{sub 2} coatings gradually decreased and eventually turned into metallic conductivity with the increase of ruthenium content. As a PEC electrode, reducing band gap is helpful to improve electronic conductivity and the electrocatalytic activity, but not always advantageous to increase the photocatalytic activity. Because too narrow band gap will sacrifice the photogenerated charge carriers and thus reduce photocatalytic activity of the electrode. In our experiments, the rate constant of Ti/Ru{sub 0.05}Sn{sub 0.95}O{sub 2} electrode increased with increasing Ru content and exhibited the maximum rate for 5% Ru loading. The stability test showed the photoelectrocatalytic activity of the Ti/Ru{sub 0.05}Sn{sub 0.95}O{sub 2} electrode almost had no attenuation after 100 h photoelectrolysis, revealing

  10. transparent electrode

    Science.gov (United States)

    Li, Fumin; Chen, Chong; Tan, Furui; Li, Chunxi; Yue, Gentian; Shen, Liang; Zhang, Weifeng

    2014-10-01

    We report a new semitransparent inverted polymer solar cell (PSC) with a structure of glass/FTO/nc-TiO2/P3HT:PCBM/MoO3/Ag/MoO3. Because high-temperature annealing which decreased the conductivity of indium tin oxide (ITO) must be handled in the process of preparation of nanocrystalline titanium oxide (nc-TiO2), we replace glass/ITO with a glass/fluorine-doped tin oxide (FTO) substrate to improve the device performance. The experimental results show that the replacing FTO substrate enhances light transmittance between 400 and 600 nm and does not change sheet resistance after annealing treatment. The dependence of device performances on resistivity, light transmittance, and thickness of the MoO3/Ag/MoO3 film was investigated. High power conversion efficiency (PCE) was achieved for FTO substrate inverted PSCs, which showed about 75% increase compared to our previously reported ITO substrate device at different thicknesses of the MoO3/Ag/MoO3 transparent electrode films illuminated from the FTO side (bottom side) and about 150% increase illuminated from the MoO3/Ag/MoO3 side (top side).

  11. Influence of the presence of three typical surfactants on the adsorption of nickel (II) to aerobic activated sludge.

    Science.gov (United States)

    Liu, Dongfang; Tao, Yun; Li, Kexun; Yu, Jie

    2012-12-01

    The effects of different surfactants (SDBS, C(14)BDMA, Tween20) on the sorption of nickel(II) onto aerobic activated sludge were studied. Results showed that the influence of surfactants on the adsorption of nickel(II) strongly depended on the type of the surfactants. The presence of SDBS enhanced nickel(II) sorption, in contrast, the presence of C(14)BDMA and Tween20 both caused a nickel(II) sorption reduction, but Tween20 had a slighter effect. With the presence of individual surfactant, the sorption kinetics and isotherms were good agreement with pseudo-second-order kinetic model and Langmuir isotherm, respectively. The surfactant impelled the nickel(II) adsorption process onto aerobic activated sludge to transform from chemisorption to physisorption, and the existence of SDBS in solution even changed the exothermic nature. From FT-IR measurements and zeta potential measurements, there was competitive relationship between C(14)BDMA and nickel(II) at the adsorption onto sludge. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Influence of different mineral and Organic pesticide treatments on Cd(II), Cu(II), Pb(II), and Zn(II) contents determined by derivative potentiometric stripping analysis in Italian white and red wines.

    Science.gov (United States)

    Salvo, Francesco; La Pera, Lara; Di Bella, Giuseppa; Nicotina, Mariano; Dugo, Giacomo

    2003-02-12

    This paper deals with the use of derivative potentiometric stripping analysis (dPSA) as a rapid and precise method to determine Cd(II), Cu(II), Pb(II), and Zn(II) levels in red and white wine samples from Sicily, Campania, and Tuscany and to investigate the possible connection between the content of these metals and the pesticide treatments used in vine-growing to control plant diseases and pests. dPSA allowed direct quantitation of heavy metals in acidified wines without any sample pretreatment. Mean recoveries of Cd(II), Cu(II), Pb(II), and Zn(II) ranged from 95.5 to 99.2% for white wine samples and from 96.1 to 100.0% for red wine samples. The obtained results showed that Cd(II) was not found in any sample and that Cu(II), Pb(II), and Zn(II) levels were always lower than the toxicity limits in both fungicide- and water-treated wines. Nevertheless, the contents of metals were increased in samples from organic and inorganic pesticides treatment with respect to the water-treated samples. In particular, quinoxyfen, dinocap-penconazole, and dinocap applications considerably increased Cu(II) and Zn(II) contents in white and red wines. The levels of lead were significantly raised by azoxystrobin and sulfur treatments.

  13. Influence of Electrode Interfaces on the Stability of Perovskite Solar Cells: Reduced Degradation Using MoOx/Al for Hole Collection

    Energy Technology Data Exchange (ETDEWEB)

    Sanehira, Erin M.; Tremolet de Villers, Bertrand J.; Schulz, Philip; Reese, Matthew O.; Ferrere, Suzanne; Zhu, Kai; Lin, Lih Y.; Berry, Joseph J.; Luther, Joseph M.

    2016-07-08

    We investigated and characterized the stability of the power output from methylammonium lead iodide perovskite photovoltaic devices produced with various hole-collecting anode configurations consisting of Au, Ag, MoOx/Au, MoOx/Ag, and MoOx/Al. The unencapsulated devices were operated under constant illumination and constant load conditions in laboratory ambient with periodic current-voltage testing. Although the initial efficiencies of devices were comparable across these configurations, the stability of these devices varied significantly due to subtle differences in the electrode structure. Specifically, we found that devices with MoOx/Al electrodes are more stable than devices with more conventional, and more costly, Au and Ag electrodes. We demonstrate that a thin MoOx layer inhibits decomposition of the perovskite films under illumination in ambient laboratory conditions and greater improvements in device stability are achieved specifically with MoOx/Al electrodes. We investigated the role of the MoOx interlayer in the MoOx/Al electrodes by exploring the effect of relative humidity and the MoOx interlayer thickness on the perovskite solar cell stability.

  14. [ECG artefacts after electrode misplacements].

    Science.gov (United States)

    Thaler, T; Rudiger, A

    2009-01-07

    Artefacts due to electrode misplacement occur in 0.4 to 4% of all performed electrocardiograms (ECG). They can lead to the clinically important false diagnosis of myocardial ischemia. Lateral and inferior myocardial ischemia can be mimicked by an electrode exchange between right and left arm and between right arm and left leg, respectively. Misplaced anterior leads suggest damage of the anterior wall. ECG criteria proposed in this review article will help to identify such artefacts. They include abnormal QRS axis (-90 degrees to +180 degrees), positive P-waves in aVR, negative P-waves in I or II, low voltage in lead I, II or III as well as an irregular R-wave progression in V1 to V6.

  15. Influence of Ligand Backbone Structure and Connectivity on the Properties of Phosphine-Sulfonate Pd(II/Ni(II Catalysts

    Directory of Open Access Journals (Sweden)

    Zixia Wu

    2017-05-01

    Full Text Available Phosphine-sulfonate based palladium and nickel catalysts have been extensively studied in ethylene polymerization and copolymerization reactions. Previously, the majority of the research works focused on the modifications of the substituents on the phosphorous atom. In this contribution, we systematically demonstrated that the change of the ligand backbone from benzene to naphthalene could greatly improve the properties of this class of catalysts. In the palladium system, this change could increase catalyst stability and polyethylene molecular weights. In the nickel system, this change could dramatically increase the polyethylene molecular weights. Most interestingly, the change in the connectivity of phosphine and sulfonate moieties to the naphthalene backbone could also significantly influence the catalyst properties.

  16. Influence of second sphere hydrogen bonding interaction on a manganese(II)-aquo complex.

    Science.gov (United States)

    El Ghachtouli, Sanae; Guillot, Régis; Dorlet, Pierre; Anxolabéhère-Mallart, Elodie; Aukauloo, Ally

    2012-02-14

    We have developed a pentadentate N(4)O ligand scaffold with a benzimidazole group placed in a rigid fashion to develop hydrogen bonding interaction with the ligand in the sixth position. The mononuclear Mn(II) complex with a water molecule was isolated and characterized. We discuss the role of the outer sphere ligand in stabilising a Mn(II)-aquo complex.

  17. Influence of the composition and crystalline phase of electrodeposited CoNi films in the preparation of CoNi oxidized surfaces as electrodes for urea electro-oxidation

    Science.gov (United States)

    Vilana, J.; Gómez, E.; Vallés, E.

    2016-01-01

    Oxidized species of CoNi have been obtained by means of electrodeposition of CoNi films and posterior electro-oxidation, to obtain electrodes able to be catalysts of oxidative reactions in alkaline medium. The products of electro-oxidation formed, which depend on the composition and the crystal phase of CoNi deposits, have been identified; for this, Co-fcc, Co-hcp, Co7Ni3-fcc, Co7Ni3-hcp, Co5Ni5-fcc and Ni-fcc films have been electrodeposited and oxidized. The influence of the crystalline phase of the films in the nature of the superficial oxides formed has been demonstrated: the electrodes prepared from CoNi-fcc films contained β-CoxNi(1⿿x)(OH)2, while those prepared from Co7Ni3-hcp films contained Co2NiO4 and β-CoxNi(1⿿x)(OH)2. The catalytic behaviour of the electro-oxidized electrodes for urea electro-oxidation was evaluated. Separate tests were performed to differentiate the influence of the composition and the crystalline structure of the initial films and, therefore, of the different oxidized species formed. The electrodes prepared by electro-oxidation of the Co7Ni3-hcp films show better electro-catalytic performance for urea's oxidation than those obtained by oxidation of the Co7Ni3-fcc, because they induce higher intensity, lower onset potential and lesser simultaneous oxygen evolution, becoming a good anode for urea electro-oxidation in urea electrolysis for hydrogen production or waste water treatment.

  18. Post-test examination of a copper electrode from deposition hole 5 in the Prototype Repository

    Energy Technology Data Exchange (ETDEWEB)

    Rosborg, Bo [Rosborg Consulting, Nykoeping (Sweden)

    2013-04-15

    bentonite. Differences that can have a marked influence on the corrosion behaviour between the exposed small samples and the big components exist. The most convincing is that lubricants were used in manufacturing of the full-size bentonite blocks and rings (so available machines could handle the required pressure); lubricants have neither been used for the copper electrodes in the Prototype Repository, nor for the copper coupons in the LOT test parcels. Based upon the performed corrosion potential measurements and the findings from the post-test examination the following scenario of exposure is envisaged: When installed the copper electrode had merely a very thin cuprite film on the surface from exposure in air. After some length of exposure a corrosion potential was reached that allowed formation of Cu(II) corrosion products. Since the chloride activity in the pore water from start of exposure was low (the bentonite had been conditioned with tap water), malachite rather than paratacamite was formed. Later on the corrosion potential has decreased, influenced by changes in the near-field environment and filming of the surface, and obtained a corrosion potential of -40 mV SHE at the time when part of the concrete plug to the outer section had been removed, which indicates a mildly oxidizing environment. Thus, it is anticipated that the copper electrode has been exposed to oxic conditions all through the exposure period.

  19. Biological low pH Mn(II) oxidation in a manganese deposit influenced by metal-rich groundwater

    Science.gov (United States)

    Bohu, Tsing; Akob, Denise M.; Abratis, Michael; Lazar, Cassandre S.; Küsel, Kirsten

    2016-01-01

    The mechanisms, key organisms, and geochemical significance of biological low-pH Mn(II) oxidation are largely unexplored. Here, we investigated the structure of indigenous Mn(II)-oxidizing microbial communities in a secondary subsurface Mn oxide deposit influenced by acidic (pH 4.8) metal-rich groundwater in a former uranium mining area. Microbial diversity was highest in the Mn deposit compared to the adjacent soil layers and included the majority of known Mn(II)-oxidizing bacteria (MOB) and two genera of known Mn(II)-oxidizing fungi (MOF). Electron X-ray microanalysis showed that romanechite [(Ba,H2O)2(Mn4+,Mn3+)5O10] was conspicuously enriched in the deposit. Canonical correspondence analysis revealed that certain fungal, bacterial, and archaeal groups were firmly associated with the autochthonous Mn oxides. Eight MOB within the Proteobacteria, Actinobacteria, and Bacteroidetes and one MOF strain belonging to Ascomycota were isolated at pH 5.5 or 7.2 from the acidic Mn deposit. Soil-groundwater microcosms demonstrated 2.5-fold-faster Mn(II) depletion in the Mn deposit than adjacent soil layers. No depletion was observed in the abiotic controls, suggesting that biological contribution is the main driver for Mn(II) oxidation at low pH. The composition and species specificity of the native low-pH Mn(II) oxidizers were highly adapted to in situ conditions, and these organisms may play a central role in the fundamental biogeochemical processes (e.g., metal natural attenuation) occurring in the acidic, oligotrophic, and metalliferous subsoil ecosystems.

  20. Parental influences on adolescents' physical activity and sedentary behavior: longitudinal findings from Project EAT-II

    Directory of Open Access Journals (Sweden)

    Bauer Katherine W

    2008-02-01

    Full Text Available Abstract Background The long-term role that parental encouragement and attitudes about fitness and exercise play in adolescents' physical activity and sedentary behavior habits remains unclear. This paper aims to longitudinally examine how parental encouragement to be physically active and parental concern about staying fit are associated with adolescents' physical activity and sedentary behavior habits five years later. Methods Project EAT-II adolescent and young adult participants (1130 male, 1386 female completed surveys while in middle school or high school (1998–1999, and again 5 years later. Participants were asked whether their mother and father encourage them to be physically active and care about staying fit and exercising. Adolescent moderate and vigorous physical activity (MVPA and TV/video watching (hours/week were assessed. Linear regression models adjusted for socio-demographic characteristics and baseline behavior were used to examine the association of Time 1 parental factors with behavioral outcomes among adolescents and young adults five years later (Time 2. Results After adjustment for socio-demographic characteristics and baseline MVPA, adolescent-reported maternal and paternal encouragement to be active, and paternal care for fitness, were positively associated with weekly hours of MVPA after five years in young adult males (p for trend ≤ .01. The positive relationship between maternal encouragement and MVPA approached significance among high-school aged females (p for trend = .06, and paternal encouragement was positively related to MVPA among high-school aged males (p for trend = .02. While maternal encouragement to be active was associated with decreased TV/video time among younger females (p for trend = .02, other parental factors were not associated with lower TV/video time among the other groups. Conclusion Parental encouragement to be active was associated with increased physical activity among males and younger

  1. INFLUENCE OF TYPE II DIABETES, OBESITY, AND EXPOSURE TO 2, 3, 7, 8-TETRACHLORODIBENZO-P-DIOXIN (TCDD) EXPOSURE ON THE EXPRESSION OF HEPATIC CYP1A2 IN A MURIN MODEL OF TYPE II DIABETES

    Science.gov (United States)

    Influence of type II diabetes, obesity and exposure 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure on the expression of hepatic CYPIA2 in a murine model of type II diabetes. SJ Godin', VM Richardson2, JJ Diliberto2, LS Birnbaum', MJ DeVito2; 'Curriculum In Toxicology, UNC-CH...

  2. Electrode reactions of iron oxide-hydroxide colloids.

    Science.gov (United States)

    Mahmoudi, Leila; Kissner, Reinhard

    2014-11-07

    Small-sized FeO(OH) colloids stabilised by sugars, commercially available for the clinical treatment of iron deficiency, show two waves during cathodic polarographic sweeps, or two current maxima with stationary electrodes, in neutral to slightly alkaline aqueous medium. Similar signals are observed with Fe(III) in alkaline media, pH > 12, containing citrate in excess. Voltammetric and polarographic responses reveal a strong influence of fast adsorption processes on gold and mercury. Visible spontaneous accumulation was also observed on platinum. The voltammetric signal at more positive potential is caused by Fe(III)→Fe(II) reduction, while the one at more negative potential has previously been assigned to Fe(II)→Fe(0) reduction. However, the involvement of adsorption phenomena leads us to the conclusion that the second cathodic current is caused again by Fe(III)→Fe(II), of species deeper inside the particles than those causing the first wave. This is further supported by X-ray photoelectron spectra obtained after FeO(OH) particle adsorption and reduction on a gold electrode surface. The same analysis suggests that sucrose stabilising the colloid is still bound to the adsorbed material, despite dilution and rinsing.

  3. Enhancing the response of microbial fuel cell based toxicity sensors to Cu(II) with the applying of flow-through electrodes and controlled anode potentials.

    Science.gov (United States)

    Jiang, Yong; Liang, Peng; Zhang, Changyong; Bian, Yanhong; Yang, Xufei; Huang, Xia; Girguis, Peter R

    2015-08-01

    The application of microbial fuel cell (MFC)-based toxicity sensors to real-world water monitoring is partly impeded by the limited sensitivity. To address this limitation, this study optimized the flow configurations and the control modes. Results revealed that the sensitivity increased by ∼15-41times with the applying of a flow-through anode, compared to those with a flow-by anode. The sensors operated in the controlled anode potential (CP) mode delivered better sensitivity than those operated in the constant external resistance (ER) mode over a broad range of anode potentials from -0.41V to +0.1V. Electrodeposition of Cu(II) was found to bias the toxicity measurement at low anode potentials. The optimal anode potential was approximately -0.15V, at which the sensor achieved an unbiased measurement of toxicity and the highest sensitivity. This value was greater than those required for electrodeposition while smaller than those for power overshoot. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Spectroscopic properties of a series of Co(II) coordination polymers and the influence of Co(II) coordination environment on photoelectric property.

    Science.gov (United States)

    Jin, Jing; Gong, Yuanyuan; Li, Lei; Han, Xiao; Meng, Qin; Liu, Yonghua; Niu, Shuyun

    2015-02-25

    Four Co(II) coordination polymers, [Co(suc)]n 1, [Co(pdc)]n 2, {[Co7(suc)4(OH)6(H2O)3]·8H2O}n 3, {[Co(bdc)(phen)(H2O)]·H2O}n 4 (H2suc=succinic acid, H2pdc=pyridine-3,4-dicarboxylic acid, H2bdc=1,2-benzenedicarboxylic acid, phen=1,10-phenanthroline) were hydrothermally synthesized and characterized by X-ray single-crystal diffraction, surface photovoltage spectroscopy (SPS), electrical conductivity, thermogravimetric analysis (TG), ultraviolet visible and near-infrared absorption spectrum (UV-Vis-NIR), infrared spectrum (IR), and elemental analysis. The structural analyses indicate that the coordination numbers of the Co(II) ions are 4, 5, 6 and 6 for the polymers 1-4, respectively. And polymers 1 and 2 exhibit 3D structure formed by suc(2-) and pdc(2-) anions bridging Co(II) ions, respectively. Polymer 3 exhibits a 2D structure with suc(2-) anions bridging seven-nuclear [Co7(OH)6(H2O)3](3-) unit and polymer 4 is a 1D structure bridged by bdc(2-) anions. The surface photoelectric properties of the cobalt polymers were mainly studied by SPS. The results of SPS reveal that all polymers possess certain photoelectric conversion property in the range of 300-800 nm. The influences of the structure, coordination micro-environment of central metal ion and structural dimensionality on response bands of SPS were discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Influence of nickel (II) and chromium (VI) on the laboratory scale rotating biological contactor.

    Science.gov (United States)

    Taşeli, B K; Gökçay, C F; Gürol, A

    2008-09-01

    High concentration of heavy metals is toxic for most microorganisms and cause strict damage in wastewater treatment operations and often a physico-chemical pretreatment prior to biological treatment is considered necessary. However, in this study it has been shown that biological systems can adapt to Ni (II) and Cr (VI) when their concentration is below 10 and 20 mg/L, respectively. The aim of this study was to evaluate the effect of Ni (II) and Cr (VI) on the lab-scale rotating biological contactor process. It was found that, addition of Ni (II) up to 10 mg/L did not reduce the chemical oxygen demand removal efficiency and on the contrary concentrations below 10 mg/L improved the performance. The influent Ni (II) concentration of 1 mg/L was the concentration where the treatment efficiency produced a maximum COD removal of 86.5%. Moreover, Ni (II) concentration above 10 mg/L was relatively toxic to the system and produced lower treatment efficiencies than the baseline study without Ni (II). Turbidity and suspended solids removals were not stimulated to a great extent with nickel. Addition of Ni (II) did not seem to affect the pH of the system during treatment. The dissolved oxygen concentration did not drop below 4 mg/L at all concentrations of Ni (II) indicating aerobic conditions prevailed in the system. Experiments conducted with Cr (VI) revealed that addition of Cr (VI) up to 20 mg/L did not reduce the COD removal efficiency and on the contrary concentrations below 20 mg/L improved the performance. The influent Cr (VI) concentration of 1 mg/L was the concentration where the treatment efficiency produced a maximum COD removal of 88%. Turbidity and SS removals were more efficient at 5 mg/L Cr (VI) concentration, rather than 1 mg/L, which lead to the conclusion that 5 mg/L Cr (VI) concentration is the optimum concentration, in terms of COD, turbidity and SS removals. Similar with Ni (II) experiments, addition of Cr (VI) did not significantly affect the pH value of

  6. Ni (II) adsorption onto Chrysanthemum indicum: Influencing factors, isotherms, kinetics, and thermodynamics.

    Science.gov (United States)

    Vilvanathan, Sowmya; Shanthakumar, S

    2016-10-02

    The study explores the adsorption potential of Chrysanthemum indicum biomass for nickel ion removal from aqueous solution. C. indicum flowers in raw (CIF-I) and biochar (CIF-II) forms were used as adsorbents in this study. Batch experiments were conducted to ascertain the optimum conditions of solution pH, adsorbent dosage, contact time, and temperature for varying initial Ni(II) ion concentrations. Surface area, surface morphology, and functionality of the adsorbents were characterized by Brunauer, Emmett, and Teller (BET) surface analysis, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and Fourier transform infrared spectroscopy (FTIR). Adsorption kinetics were modeled using pseudo-first order, pseudo-second order, Elovich, intraparticle diffusion, Bangham's, and Boyd's plot. The equilibrium data were modeled using Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich (D-R) isotherm models. Experimental data provided the best fit to pseudo-second-order kinetic model and Langmuir isotherm model for the adsorption of Ni(II) ion on both CIF-I and CIF-II with maximum adsorption capacities of 23.97 and 44.02 mg g(-1), respectively. Thermodynamic analysis of the data proved the process to be spontaneous and endothermic in nature. Desorption studies were conducted to evaluate the possibility of reusing the adsorbents. Findings of the present study provide substantial evidence for the use of C. indicum flower as an eco-friendly and potential adsorbent for the removal of Ni(II) ions from aqueous solution.

  7. Factors influencing the ability of Pseudomonas putida strains epI and II to degrade the organophosphate ethoprophos.

    Science.gov (United States)

    Karpouzas, D G; Walker, A

    2000-07-01

    Two strains of Pseudomonas putida (epI and epII), isolated previously from ethoprophos-treated soil, were able to degrade ethoprophos (10 mg 1(-1)) in a mineral salts medium plus nitrogen (MSMN) in less than 50 h with a concurrent population growth. Addition of glucose or succinate to MSMN did not influence the degrading ability of Ps. putida epI, but increased the lag phase before rapid degradation commenced with Ps. putida epII. The degrading ability of the two isolates was lost when the pesticide provided the sole source of phosphorus. Degradation of ethoprophos was most rapid when bacterial cultures were incubated at 25 and 37 degrees C. Pseudomonas putida epI was capable of completely degrading ethoprophos at a slow rate at 5 degrees C, compared with Ps. putida epII which could not completely degrade ethoprophos at the same time. Pseudomonas putida epI was capable of degrading ethoprophos when only 60 cells ml(-1) were used as initial inoculum. In contrast, Ps. putida epII was able to totally degrade ethoprophos when inoculum densities of 600 cells ml(-1) or higher were used. In general, longer lag phases accompanied the lower inoculum levels. Both isolates rapidly degraded ethoprophos in MSMN at pHs ranging from 5.5 to 7.6, but not at pH 5 or below.

  8. The influence of the electrode anode sizes of the microbial fuel cell (MFC) on the electrical property and COD removal with the electroplating wastewater to be the cathode

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y.; Guo, D.P.; Li, Y.Y.; Wang, Z.C. [Northeast Forestry Univ., Harbin (China). Forestry School; Li, Y.F. [Shanghai Univ. of Engineering Science (China); Northeast Forestry Univ., Harbin (China). Forestry School

    2010-07-01

    Microbial fuel cells (MFCs) can use organic wastes as a means of generating power. This study investigated the effects of different electrode sizes on electricity generation performance and COD removal in a dual-chambered MFC. The S-MFC had an electrode anode size of 74.15 cm{sup 2}, while the L-MFC had an electrode anode size of 81.5 cm{sup 2}. The study showed that with the external resistor at 300 ohms, the maximum power density of the S-MFC was 0.205mW/cm{sup 2}, while the maximum power density of the L-MFC was 0.364mW/cm{sup 2}. The S-MFC reached a maximum voltage of 67.6mV in 70 hours with a maximum current of 180.8 {mu}A. The anode solution COD remove in the L-MFC varied from 0.17 to 9.96 per cent. The faster removal rate for the S-MFC was attributed to an electric wire added to the surface of the S-MFC anode reactor used to ensure that the microorganisms grew in a suitable environment.

  9. Final Technical Report: SISGR: The Influence of Electrolyte Structure and Electrode Morphology on the Performance of Ionic-Liquid Based Supercapacitors: A Combined Experimental and Simulation Study

    Energy Technology Data Exchange (ETDEWEB)

    Bedrov, Dmitry [University of Utah

    2013-08-15

    Obtaining fundamental understanding and developing predictive modeling capabilities of electrochemical interfaces can significantly shorten the development cycles of electrical double layer capacitors (EDLCs). A notable improvement in EDLC performance has been achieved due to recent advances in understanding charge storage mechanisms, development of advanced nanostructured electrodes and electrochemically stable electrolytes. The development of new generation of EDLCs is intimately linked to that of nanostructured carbon materials which have large surface area, good adsorption/desorption properties, good electrical conductivity and are relatively inexpensive. To address these scientific challenges the efforts of an interdisciplinary team of modelers and experimentalists were combined to enhance our understanding of molecular level mechanisms controlling the performance of EDLCs comprised of room temperature ionic liquid (RTIL) electrolytes and nanostructured carbon-based electrodes and to utilize these knowledge in the design of a new generation of materials and devices for this energy storage application. Specifically our team efforts included: atomistic molecular dynamics simulations, materials science and electrode/device assembly, and synthesis and characterization of RTIL electrolytes.

  10. Aspects of the Influence of Light on the Adsorption and Electrooxidation of Allyl Alcohol on Pt/Pt Electrodes in Perchloric Acid Solutions

    Directory of Open Access Journals (Sweden)

    Barin Claudia Smaniotto

    1998-01-01

    Full Text Available The electrooxidation of the adsorbed species produced by allyl alcohol adsorption on platinized platinum electrode has been studied in 1.0 M HClO4 medium. The maximum amount of adsorbed intermediates formed during allyl alcohol adsorption on the electrode surface, was observed at the adsorption potential, Eads = 0.00 V (SCE. Chronoamperometric studies at this potential confirm that the current associated with the hydrogen adsorption process decreases in the presence of the organic compound. Allyl alcohol displaces adsorbed hydrogen at the active sites. The incidence of polychromatic light on the electrode improves this effect as shown by comparison with the same experiments in the darkness. However, the electrooxidation of the adsorbed species comprise a monoelectronic charge transfer step. The anodic current associated with this process was higher under illumination than in the dark. This difference was attributed to a light-induced effect: either on the adsorption process of allyl alcohol on Pt/Pt, or on the electrooxidation of the adsorbed species. The electrooxidation of the adsorbed species formed during allyl alcohol adsorption demands apparent activation energies equivalent to 33.3 kJ mol-1 and 24.9 kJ mol-1 in the dark and under illumination, respectively.

  11. The House of Infanta of Spain in the Monarchy of Philip II: Some Questions about its Origin, Development and Influence

    Directory of Open Access Journals (Sweden)

    María ALBALADEJO MARTÍNEZ

    2014-12-01

    Full Text Available During the sixteenth century there were many attempts to regulate and establish a conduct code for space management and the staff serving the monarchs and their children, creating the structure of the Infanta of Spain’s House. Isabel Clara Eugenia and Catalina Micaela, daughters of Philip II and Isabel of valois were the first to own staff governed by their own ordinances, creating a very useful pattern, from 1579 to the House of the princesses later in their lineage. Accordingly, and throughout the documents found at the National Library of Madrid and in the General Archives of Simancas Palace, this article discusses the origin, the formation and the structure of the House of the daughters of Philip II and his influence on the princesses of the dynasty of Habsburg.

  12. Influence of Different Patellofemoral Design Variations Based on Genesis II Total Knee Endoprosthesis on Patellofemoral Pressure and Kinematics.

    Science.gov (United States)

    Leichtle, Ulf G; Lange, Barbara; Herzog, Yvonne; Schnauffer, Peter; Leichtle, Carmen I; Wülker, Nikolaus; Lorenz, Andrea

    2017-01-01

    In total knee arthroplasty (TKA), patellofemoral groove design varies greatly and likely has a distinct influence on patellofemoral biomechanics. To analyse the selective influence, five patellofemoral design variations were developed based on Genesis II total knee endoprosthesis (original design, being completely flat, being laterally elevated, being medially elevated, and both sides elevated) and made from polyamide using rapid prototyping. Muscle-loaded knee flexion was simulated on 10 human knee specimens using a custom-made knee simulator, measuring the patellofemoral pressure distribution and tibiofemoral and patellofemoral kinematics. The measurements were carried out in the native knee as well as after TKA with the 5 design prototypes. The overall influence of the different designs on the patellofemoral kinematics was small, but we found detectable effects for mediolateral tilt (p < 0.05 for 35°-80° flexion) and translation of the patella (p < 0.045 for 20°-65° and 75°-90°), especially for the completely flat design. Considering patellofemoral pressures, major interindividual differences were seen between the designs, which, on average, largely cancelled each other out. These results suggest that the elevation of the lateral margin of the patellofemoral groove is essential for providing mediolateral guidance, but smooth contouring as with original Genesis II design seems to be sufficient. The pronounced interindividual differences identify a need for more patellofemoral design options in TKA.

  13. Influence of pesticide exposure on carbonic anhydrase II from sheep stomach.

    Science.gov (United States)

    Kılınç, Namık; İşgör, Mehmet Mustafa; Şengül, Bülent; Beydemir, Şükrü

    2015-09-01

    Carbonic anhydrase (CA) is a widely distributed enzyme and has a crucial role in the cells, tissues and organs of living organisms. It is found that CA-II is one of the most abundant CA isoenzymes in the gastrointestinal system. It plays an important role in the gastric acid secretion in stomach. In this study, we purified CA-II isoenzyme from sheep stomach with a 615.2 purification fold, 78% purification yield and 5562.02 specific activity. Moreover, the in vitro effects of some commonly used pesticides including chlorpyrifos, cypermethrin, dichlorvos, glyphosate isopropylamine and lambda cyhalomethrin on the enzyme activity were investigated. Of these compounds, glyphosate isopropylamine and dichlorvos showed an inhibition on CA-II esterase activity. They have IC50 values of 0.155 µM and 2.690 µM and Ki values of 0.329 µM and 3.654 µM, respectively. Both glyphosate isopropylamine and dichlorvos inhibited CA-II isoenzyme in a noncompetitive manner. © The Author(s) 2013.

  14. A Simple Hydrogen Electrode

    Science.gov (United States)

    Eggen, Per-Odd

    2009-01-01

    This article describes the construction of an inexpensive, robust, and simple hydrogen electrode, as well as the use of this electrode to measure "standard" potentials. In the experiment described here the students can measure the reduction potentials of metal-metal ion pairs directly, without using a secondary reference electrode. Measurements…

  15. Microresonator electrode design

    Energy Technology Data Exchange (ETDEWEB)

    Olsson, III, Roy H.; Wojciechowski, Kenneth; Branch, Darren W.

    2016-05-10

    A microresonator with an input electrode and an output electrode patterned thereon is described. The input electrode includes a series of stubs that are configured to isolate acoustic waves, such that the waves are not reflected into the microresonator. Such design results in reduction of spurious modes corresponding to the microresonator.

  16. Fuel cell electrodes

    Science.gov (United States)

    Strmcnik, Dusan; Cuesta, Angel; Stamenkovic, Vojislav; Markovic, Nenad

    2015-06-23

    A process includes patterning a surface of a platinum group metal-based electrode by contacting the electrode with an adsorbate to form a patterned platinum group metal-based electrode including platinum group metal sites blocked with adsorbate molecules and platinum group metal sites which are not blocked.

  17. The influence of APACHE II score on the average noise level in an intensive care unit: an observational study.

    Science.gov (United States)

    Park, Munhum; Vos, Pieter; Vlaskamp, Björn N S; Kohlrausch, Armin; Oldenbeuving, Annemarie W

    2015-01-01

    Noise levels in hospitals, especially in intensive care units (ICUs) are known to be high, potentially affecting not only the patients' well-being but also their clinical outcomes. In an observational study, we made a long-term measurement of noise levels in an ICU, and investigated the influence of various factors on the noise level, including the acute physiology and chronic health evaluation II (APACHE II) score. The average noise level was continuously measured for three months in all (eight) patient rooms in an ICU, while the patient data were also registered, including the APACHE II score. The 24-hour trend of the noise level was obtained for the patients of length-of-stay (LOS) ≥1 day, which was compared to the timeline of the ICU routine events. For the patients with LOS ≥4 days, the average noise levels in the first four days were analyzed, and regression models were established using the stepwise search method based on the Akaike information criterion. Features identified in the 24-hour trends (n = 55) agreed well with the daily routine events in the ICU, where regular check-ups raised the 10-minute average noise level by 2~3 dBA from the surrounding values at night, and the staff shift changes consistently increased the noise level by 3~5 dBA. When analyzed in alignment with the patient's admission (n=22), the daytime acoustic condition improved from Day 1 to 2, but worsened from Day 2 to 4, most likely in relation to the various phases of patient's recovery. Regression analysis showed that the APACHE II score, room location, gender, day of week and the ICU admission type could explain more than 50% of the variance in the daily average noise level, LAeq,24h. Where these factors were argued to have causal relations to LAeq,24h, the APACHE II score was found to be most strongly correlated: LAeq,24h increased by 1.3~1.5 dB when the APACHE II score increased by 10 points. Patient's initial health condition is one important factor that influences the

  18. Mechanical characterization of Cu-Zn wire electrode base used in EDM and study of influence of the process of machining on its properties

    Science.gov (United States)

    Sedjal, H.; Amirat, B.; Aichour, M.; Marouf, T.; Chitroub, M.

    2015-03-01

    This work is part of a Research National project (PNR) carried out by the group of research of the engineering and material sciences laboratory of the polytechnic national school at Algiers in collaboration with company BCR, which relates to "the characterization of the wire intended for the EDM of matrices metal. The goal of this work is to bring metallographic explanations on the wire electrode used by the machine ROBOFIL 290P, mechanically characterized this wire as of knowing of advantage about the process of its manufacturing (wiredrawing, .) The methods of studies used are it micro Vickers pyramid hardness, the tensile test, optical microscopy and scan electronic microscopy SEM.

  19. Cycle life evaluation of 3 Ah Li{sub x}Mn{sub 2}O{sub 4}-based lithium-ion secondary cells for low-earth-orbit satellites. II. Harvested electrode examination

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Shelley; Lindbergh, Goeran [School of Chemical Science and Engineering, Department of Chemical Engineering and Technology, Teknikringen 42, Royal Institute of Technology, Stockholm SE-100 44 (Sweden); Ogawa, Keita [Advanced Engineering Services Co., Ltd., 1-6-1 Takezono, Tsukuba, Ibaraki 305-0032 (Japan); Kumeuchi, Youichi; Enomoto, Shinsuke [NEC-Tokin Corporation, 1120 Shimokuzawa, Sagamihara, Kanagawa 229-1198 (Japan); Uno, Masatoshi; Saito, Hirobumi; Sone, Yoshitsugu [Japan Aerospace Exploration Agency, Institute of Space and Astronautical Science, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 229-8510 (Japan); Abraham, Daniel [Chemical Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    2008-12-01

    Lithium-ion batteries are a candidate for the energy storage system onboard low-earth-orbit satellites. Terrestrial experiments are able to capture the performance degradation of cells in orbit, therefore providing the opportunity for lifetime investigations. The lifetime performance of 3 Ah commercial Li{sub x}Mn{sub 2}O{sub 4}-based pouch cells was evaluated in a matrix of different cycling depths-of-discharge (DODs: 0, 20, 40%) and temperatures (25, 45 C). Aged cells were disassembled and the electrochemical performance of harvested electrodes investigated with two- and three-electrode pouch cells. The positive electrode had a larger decrease in capacity than the negative electrode. Both the positive and negative electrode contributed to the increase of cell impedance measured at high states-of-charge (SOCs). The data at low SOCs indicated that the increase of cell impedance was associated with the positive electrode, which showed a significant increase in the magnitude of the high-frequency semi-circle. This SOC-dependence was observed for cells cycled for either extended periods of time or at higher temperatures with a 40% DOD swing. Low-current cycling of positive electrodes revealed a change in the second potential plateau, possibly reflecting a structural change of the Li{sub x}Mn{sub 2}O{sub 4}. This could impact on the electrode kinetics and provide a possible explanation for the SOC-dependent change of the impedance. (author)

  20. Cycle life evaluation of 3Ah Li{sub x}Mn{sub 2}O{sub 4}-based lithium-ion secondary cells for low-earth-orbit satellites. II. Harvested electrode examination.

    Energy Technology Data Exchange (ETDEWEB)

    Brown, S.; Ogawa, K.; Kumeuchi, Y.; Enomoto, S.; Uno, M.; Saito, H.; Sone, Y.; Abraham, D.; Lindbergh, G.; Chemical Sciences and Engineering Division; Royal Inst. of Tech.; Advanced Engineering Services Co.; NEC-Tokin Corp.; Inst .of Space and Astronautical Science

    2008-01-01

    Lithium-ion batteries are a candidate for the energy storage system onboard low-earth-orbit satellites. Terrestrial experiments are able to capture the performance degradation of cells in orbit, therefore providing the opportunity for lifetime investigations. The lifetime performance of 3 Ah commercial Li{sub x}Mn{sub 2}O{sub 4}-based pouch cells was evaluated in a matrix of different cycling depths-of-discharge (DODs: 0, 20, 40%) and temperatures (25, 45 C). Aged cells were disassembled and the electrochemical performance of harvested electrodes investigated with two- and three-electrode pouch cells. The positive electrode had a larger decrease in capacity than the negative electrode. Both the positive and negative electrode contributed to the increase of cell impedance measured at high states-of-charge (SOCs). The data at low SOCs indicated that the increase of cell impedance was associated with the positive electrode, which showed a significant increase in the magnitude of the high-frequency semi-circle. This SOC-dependence was observed for cells cycled for either extended periods of time or at higher temperatures with a 40% DOD swing. Low-current cycling of positive electrodes revealed a change in the second potential plateau, possibly reflecting a structural change of the Li{sub x}Mn{sub 2}O{sub 4}. This could impact on the electrode kinetics and provide a possible explanation for the SOC-dependent change of the impedance.

  1. Factors influencing soft tissue profile changes following orthodontic treatment in patients with Class II Division 1 malocclusion

    Directory of Open Access Journals (Sweden)

    Suhatcha Maetevorakul

    2016-05-01

    Full Text Available Abstract Background Several studies have shown soft tissue profile changes after orthodontic treatment in Class II Division 1 patients. However, a few studies have described factors influencing the soft tissue changes. The purpose of this study was to investigate the factors influencing the soft tissue profile changes following orthodontic treatment in Class II Division 1 patients. Methods The subjects comprised 104 Thai patients age 8–16 years who presented Class II Division 1 malocclusions and were treated with different orthodontic modalities comprising cervical headgear, Class II traction and extraction of the four first premolars. The profile changes were evaluated from the lateral cephalograms before and after treatment by means of the X-Y coordinate system. Significant soft tissue profile changes were evaluated by paired t test at a 0.05 significance level. The correlations among significant soft tissue changes and independent variables comprising treatment modality, age, sex, pretreatment skeletal, dental and soft tissue morphology were evaluated by stepwise multiple regression analysis at a 0.05 significance level. Results The multiple regression analysis indicated that different treatment modalities, age, sex, pretreatment skeletal, dental and soft tissue morphology were related to the profile changes. The predictive power of these variables on the soft tissue profile changes ranged from 9.9 to 40.3 %. Conclusions Prediction of the soft tissue profile changes following treatment of Class II Division 1 malocclusion from initial patient morphology, age, sex and types of treatment was complicated and required several variables to explain their variations. Upper lip change in horizontal direction could be found only at the stomion superius and was less predictable than those of the lower lip. Variations in upper lip retraction at the stomion superius were explained by types of treatment (R 2 = 0.099, whereas protrusion of the lower

  2. Factors influencing soft tissue profile changes following orthodontic treatment in patients with Class II Division 1 malocclusion.

    Science.gov (United States)

    Maetevorakul, Suhatcha; Viteporn, Smorntree

    2016-01-01

    Several studies have shown soft tissue profile changes after orthodontic treatment in Class II Division 1 patients. However, a few studies have described factors influencing the soft tissue changes. The purpose of this study was to investigate the factors influencing the soft tissue profile changes following orthodontic treatment in Class II Division 1 patients. The subjects comprised 104 Thai patients age 8-16 years who presented Class II Division 1 malocclusions and were treated with different orthodontic modalities comprising cervical headgear, Class II traction and extraction of the four first premolars. The profile changes were evaluated from the lateral cephalograms before and after treatment by means of the X-Y coordinate system. Significant soft tissue profile changes were evaluated by paired t test at a 0.05 significance level. The correlations among significant soft tissue changes and independent variables comprising treatment modality, age, sex, pretreatment skeletal, dental and soft tissue morphology were evaluated by stepwise multiple regression analysis at a 0.05 significance level. The multiple regression analysis indicated that different treatment modalities, age, sex, pretreatment skeletal, dental and soft tissue morphology were related to the profile changes. The predictive power of these variables on the soft tissue profile changes ranged from 9.9 to 40.3%. Prediction of the soft tissue profile changes following treatment of Class II Division 1 malocclusion from initial patient morphology, age, sex and types of treatment was complicated and required several variables to explain their variations. Upper lip change in horizontal direction could be found only at the stomion superius and was less predictable than those of the lower lip. Variations in upper lip retraction at the stomion superius were explained by types of treatment (R(2) = 0.099), whereas protrusion of the lower lip at the labrale inferius was correlated with initial inclination of

  3. Analysis of polypyrrole-coated stainless steel electrodes ...

    Indian Academy of Sciences (India)

    WINTEC

    of this Communication are (i) to prepare polypyrrole coated stainless steel electrodes using p-toluene sul- phonic acid as dopant; (ii) to analyse the perform- ance of ..... roughness of the electrode and dynamic disorder re- lated with diffusion. Since the best set of parameters arise from the built-in function of MATLAB, these.

  4. Lability criteria for metal complexes in micro-electrode voltammetry

    NARCIS (Netherlands)

    Leeuwen, van H.P.; Pinheiro, J.P.

    1999-01-01

    Theoretical expressions are derived for the voltammetric lability criteria of metal complexes in the micro-electrode regime. The treatment includes three limiting situations: (i) the macro-electrode limit, where both the diffusion layer and the dissociation reaction layer are linear; (ii) an

  5. Electrode erosion properties of gas spark switches for fast linear transformer drivers

    Science.gov (United States)

    Li, Xiaoang; Pei, Zhehao; Zhang, Yuzhao; Liu, Xuandong; Li, Yongdong; Zhang, Qiaogen

    2017-12-01

    Fast linear transformer drivers (FLTDs) are a popular and potential route for high-power devices employing multiple "bricks" in series and parallel, but they put extremely stringent demands on gas switches. Electrode erosion of FLTD gas switches is a restrictive and unavoidable factor that degrades performance and limits stability. In this paper, we systematically investigated the electrode erosion characteristics of a three-electrode field distortion gas switch under the typical working conditions of FLTD switches, and the discharge current was 7-46 kA with 46-300 ns rise time. A high speed frame camera and a spectrograph were used to capture the expansion process and the spectral emission of the spark channel was used to estimate the current density and the spark temperature, and then the energy fluxes and the external forces on the electrode surface were calculated. A tens of kilo-ampere nanosecond pulse could generate a 1011 W/m2 energy flux injection and 1.3-3.5 MPa external pressure on the electrode surface, resulting in a millimeter-sized erosion crater with the maximum peak height Rz reaching 100 μm magnitude. According to the morphological images by a laser scanning confocal microscope, the erosion crater of a FLTD switch contained three kinds of local morphologies, namely a center boiling region, an overflow region and a sputtering region. In addition, the crater size, the surface roughness, and the mass loss were highly dependent on the current amplitude and the transferred charge. We also observed Morphology Type I and Type II, respectively, with different pulse parameters, which had an obvious influence on surface roughness and mass loss. Finally, the quantitative relationship between the electrode mass loss and the pulse parameter was clarified. The transferred charge and the current amplitude were proved to be the main factors determining the electrode mass loss of a FLTD switch, and a least squares fitting expression for mass loss was also obtained.

  6. 21 CFR 890.1385 - Diagnostic electromyograph needle electrode.

    Science.gov (United States)

    2010-04-01

    ... electromyography (recording the intrinsic electrical properties of skeletal muscle). (b) Classification. Class II... needle electrode is a monopolar or bipolar needle intended to be inserted into muscle or nerve tissue to...

  7. Accreditation of Veterinary Medical Education: Part II--Influence of the American Veterinary Medical Association

    Science.gov (United States)

    Bauer, Elizabeth K.

    1975-01-01

    Traces the development, since its founding in 1863, of the American Veterinary Medical Association (AVMA) influence over the standards of training required in the veterinary profession. Attention is focused on the roles of the U.S. Department of Agriculture, the military, and the land-grant colleges in that development. (JT)

  8. Influence of Pt Gate Electrode Thickness on the Hydrogen Gas Sensing Characteristics of Pt/In2O3/SiC Hetero-Junction Devices

    Directory of Open Access Journals (Sweden)

    S. Kandasamy

    2007-09-01

    Full Text Available Hetero-junction Pt/In2O3/SiC devices with different Pt thickness (30, 50 and 90nm were fabricated and their hydrogen gas sensing characteristics have been studied. Pt and In2O3 thin films were deposited by laser ablation. The hydrogen sensitivity was found to increase with decreasing Pt electrode thickness. For devices with Pt thickness of 30 nm, the sensitivity gradually increased with increasing temperature and reached a maximum of 390 mV for 1% hydrogen in air at 530°C. Atomic force microscopy (AFM analysis revealed a decrease in Pt grain size and surface roughness for increasing Pt thickness. The relationship between the gas sensing performance and the Pt film thickness and surface morphology is discussed.

  9. Influence of different restorative techniques on marginal seal of class II composite restorations

    Directory of Open Access Journals (Sweden)

    Sinval Adalberto Rodrigues Junior

    2010-02-01

    Full Text Available OBJECTIVE: To evaluate the gingival marginal seal in class II composite restorations using different restorative techniques. MATERIAL AND METHODS: Class II box cavities were prepared in both proximal faces of 32 sound human third molars with gingival margins located in either enamel or dentin/cementum. Restorations were performed as follows: G1 (control: composite, conventional light curing technique; G2: composite, soft-start technique; G3: amalgam/composite association (amalcomp; and G4: resin-modified glass ionomer cement/composite, open sandwich technique. The restored specimens were thermocycled. Epoxy resin replicas were made and coated for scanning electron microscopy examination. For microleakage evaluation, teeth were coated with nail polish and immersed in dye solution. Teeth were cut in 3 slices and dye penetration was recorded (mm, digitized and analyzed with Image Tool software. Microleakage data were analyzed statistically by non-parametric Kruskal-Wallis and Mann-Whitney tests. RESULTS: Leakage in enamel was lower than in dentin (p<0.001. G2 exhibited the lowest leakage values (p<0.05 in enamel margins, with no differences between the other groups. In dentin margins, groups G1 and G2 had similar behavior and both showed less leakage (p<0.05 than groups G3 and G4. SEM micrographs revealed different marginal adaptation patterns for the different techniques and for the different substrates. CONCLUSION: The soft-start technique showed no leakage in enamel margins and produced similar values to those of the conventional (control technique for dentin margins.

  10. Influence of Social Support on Treatment of Type II Diabetes in Yazd

    Directory of Open Access Journals (Sweden)

    A Zare Shahabadi

    2010-08-01

    Full Text Available Introduction: Social support can be defined as the interactive process through which emotional and instrumental support is obtained. Social support has been found to be a relevant factor in diabetes self-management. Diabetes refers to complex chronic metabolic conditions that are characterized by elevated levels of blood glucose if untreated. Diabetes is one of the biggest health care problems facing Yazd with regards to prevalence, cost, and the onus it places on patients and its high morbidity rates. The purpose of this study was to examine the relationships among social factors on the control and treatment of type II diabetes. Methods: The population under study included 4990 diabetes type II patients referring to Yazd Diabetes Research Center and a sample of 256 cases was selected by simple random sampling method through statistical society. This study was based on survey method and the instrument for collecting data was a questionnaire. Results: About 65.4% of the patients were women and 35.6 were men. The mean age of patients was 56 years. Significant correlations were found between perceived social support (r= 0.193, p= 0.001, positive reinforcing behaviors (r= 0.455, p= 0.000, and adherence to self-care activities. Misguided support behaviors did not show a significant correlation with adherence to self-care activities. A total of 25% of variance in self-care behavior can be explained by positive reinforcing behaviors and misguided support behaviors. Conclusion: The findings of this study showed that by increasing the positive reinforcing behaviors and perceived social support and decreasing the misguided support behaviors, the diabetic patients can adhere better to self-care activities.

  11. Influence of Mixed Mode I-Mode II Loading on Fatigue Delamination Growth Characteristics of a Graphite Epoxy Tape Laminate

    Science.gov (United States)

    Ratcliffe, James G.; Johnston, William M., Jr.

    2014-01-01

    Mixed mode I-mode II interlaminar tests were conducted on IM7/8552 tape laminates using the mixed-mode bending test. Three mixed mode ratios, G(sub II)/G(sub T) = 0.2, 0.5, and 0.8, were considered. Tests were performed at all three mixed-mode ratios under quasi-static and cyclic loading conditions, where the former static tests were used to determine initial loading levels for the latter fatigue tests. Fatigue tests at each mixed-mode ratio were performed at four loading levels, Gmax, equal to 0.5G(sub c), 0.4G(sub c), 0.3G(sub c), and 0.2G(sub c), where G(sub c) is the interlaminar fracture toughness of the corresponding mixed-mode ratio at which a test was performed. All fatigue tests were performed using constant-amplitude load control and delamination growth was automatically documented using compliance solutions obtained from the corresponding quasi-static tests. Static fracture toughness data yielded a mixed-mode delamination criterion that exhibited monotonic increase in Gc with mixed-mode ratio, G(sub II)/G(sub T). Fatigue delamination onset parameters varied monotonically with G(sub II)/G(sub T), which was expected based on the fracture toughness data. Analysis of non-normalized data yielded a monotonic change in Paris law exponent with mode ratio. This was not the case when normalized data were analyzed. Fatigue data normalized by the static R-curve were most affected in specimens tested at G(sub II)/G(sub T)=0.2 (this process has little influence on the other data). In this case, the normalized data yielded a higher delamination growth rate compared to the raw data for a given loading level. Overall, fiber bridging appeared to be the dominant mechanism, affecting delamination growth rates in specimens tested at different load levels and differing mixed-mode ratios.

  12. Handbook of reference electrodes

    CERN Document Server

    Inzelt, György; Scholz, Fritz

    2013-01-01

    Reference Electrodes are a crucial part of any electrochemical system, yet an up-to-date and comprehensive handbook is long overdue. Here, an experienced team of electrochemists provides an in-depth source of information and data for the proper choice and construction of reference electrodes. This includes all kinds of applications such as aqueous and non-aqueous solutions, ionic liquids, glass melts, solid electrolyte systems, and membrane electrodes. Advanced technologies such as miniaturized, conducting-polymer-based, screen-printed or disposable reference electrodes are also covered. Essen

  13. Influences of Mn(II) and V(IV) on Bacterial Surface Chemistry and Metal Reactivity

    Science.gov (United States)

    French, S.; Fakra, S.; Glasauer, S.

    2009-05-01

    Microorganisms in terrestrial and marine environments are typically bathed in solutions that contain a range of metal ions, toxic and beneficial. Bacteria such as Shewanella putrefaciens CN32 are metabolically versatile in their respiration, and the reductive dissolution of widely dispersed metals such as Fe(III), Mn(IV), or V(V) can present unique challenges if nearby bodies of water are used for irrigation or drinking. In redox transition zones, dissimilatory metal reduction (DMR) by bacteria can lead to generation of high concentrations of soluble metals. It has been shown that metals will associate with negatively charged bacterial membranes, and the mechanisms of metal reduction are well defined for many species of bacteria. The interaction of metals with the cell wall during DMR is, however, not well documented; very little is known about the interaction of respired transition metals with membrane lipids. Furthermore, bacterial surfaces tend to change in response to their immediate environments. Variations in conditions such as oxygen or metal presence may affect surface component composition, including availability of metal reactive sites. Our research seeks to characterize the biochemical nature of metal-membrane interactions, as well as identify the unique changes at the cell surface that arise as a result of metal presence in their environments. We have utilized scanning transmission X-ray microscopy (STXM) to examine the dynamics of soluble Mn(II) and V(IV) interactions with purified bacterial membranes rather than whole cells. This prevents intracellular interferences, and allows for near edge X-ray absorption fine structure (NEXAFS) spectroscopic analyses of cell surface and surface-associated components. NEXAFS spectra for carbon, nitrogen, and oxygen edges indicate that Mn(II) and V(IV) induce biological modifications of the cell membrane in both aerobic and anaerobic conditions. These changes depend not only on the metal, but also on the presence of

  14. The influence of quorum sensing in compartment II of the MELiSSA loop

    Science.gov (United States)

    Condori, Sandra; Mastroleo, Felice; Wattiez, Ruddy; Leys, Natalie

    MELiSSA (Micro-Ecological Life Support System Alternative) has been conceived as a 5 compartments microorganisms and higher plants recycling system for long haul space flights. Rhodospirillum rubrum S1H colonizes compartment II. Previous work reported that continuous culture of the bacterium in a photobioreactor could lead to thick biofilm formation, leading to bioreactor arrest. Our aim is to investigate the unknown quorum sensing (QS) system of R. rubrum S1H, specifically under MELiSSA relevant culture conditions meaning light anaerobic (LAN) and using acetate as carbon source. In that purpose an autoinducer synthase gene (Rru_A3396) knockout mutant was constructed by allelic exchange generating strain M68. In addition phenotypic comparison between wild type (WT) and M68 was performed. Results of thin layer chromatography assay where Agrobacterium tumefaciens NT1 have been used as reporter strain showed that WT produces acyl-homoserine lactones (AHLs) from C4 to C12 acyl carbon chain length; however, in M68 no AHLs were detected confirming that gene Rru_A3396 (named rruI) encodes an autoinducer synthase. Interestingly under a low shear or static environment M68 showed cell aggregation similar as reported in a closely related bacterium Rhodobacter sphaeroides (cerI mutant). In contrast to WT, M68 did not form biofilm and exhibited a decreased motility and pigment content. M68 vs wild type transcriptomics results showed that 326 genes were statistically significant differentially expressed. Downregulation of genes related to photosynthesis e.g., reaction center subunits, light harvesting complex and photosynthetic assembly proteins was observed. Similar results were obtained for preliminary proteomic analysis. Results obtained showed that in R. rubrum S1H the AHL-based QS system regulates almost 8% of the genome which is linked to biofilm formation among other biological processes described above. Since strain M68 could not be used in compartment II due to its less

  15. Mapping the fine structure of cortical activity with different micro-ECoG electrode array geometries

    Science.gov (United States)

    Wang, Xi; Gkogkidis, C. Alexis; Iljina, Olga; Fiederer, Lukas D. J.; Henle, Christian; Mader, Irina; Kaminsky, Jan; Stieglitz, Thomas; Gierthmuehlen, Mortimer; Ball, Tonio

    2017-10-01

    Objective. Innovations in micro-electrocorticography (µECoG) electrode array manufacturing now allow for intricate designs with smaller contact diameters and/or pitch (i.e. inter-contact distance) down to the sub-mm range. The aims of the present study were: (i) to investigate whether frequency ranges up to 400 Hz can be reproducibly observed in µECoG recordings and (ii) to examine how differences in topographical substructure between these frequency bands and electrode array geometries can be quantified. We also investigated, for the first time, the influence of blood vessels on signal properties and assessed the influence of cortical vasculature on topographic mapping. Approach. The present study employed two µECoG electrode arrays with different contact diameters and inter-contact distances, which were used to characterize neural activity from the somatosensory cortex of minipigs in a broad frequency range up to 400 Hz. The analysed neural data were recorded in acute experiments under anaesthesia during peripheral electrical stimulation. Main results. We observed that µECoG recordings reliably revealed multi-focal cortical somatosensory response patterns, in which response peaks were often less than 1 cm apart and would thus not have been resolvable with conventional ECoG. The response patterns differed by stimulation site and intensity, they were distinct for different frequency bands, and the results of functional mapping proved independent of cortical vascular. Our analysis of different frequency bands exhibited differences in the number of activation peaks in topographical substructures. Notably, signal strength and signal-to-noise ratios differed between the two electrode arrays, possibly due to their different sensitivity for variations in spatial patterns and signal strengths. Significance. Our findings that the geometry of µECoG electrode arrays can strongly influence their recording performance can help to make informed decisions that maybe

  16. Influence of the π-coordinated arene on the anticancer activity of ruthenium(II carbohydrate organometallic complexes

    Directory of Open Access Journals (Sweden)

    Muhammad eHanif

    2013-10-01

    Full Text Available The synthesis and in vitro cytotoxicity of a series of RuII(arene complexes with carbohydrate-derived phosphite ligands and various arene co-ligands is described. The arene ligand has a strong influence on the in vitro anticancer activity of this series of compounds, which correlates fairly well with cellular accumulation. The most lipophilic compound bearing a biphenyl moiety and a cyclohexylidene-protected carbohydrate is the most cytotoxic with unprecedented IC50 values for the compound class in three human cancer cell lines. This compound shows reactivity to the DNA model nucleobase 9-ethylguanine, but does not alter the secondary structure of plasmid DNA indicating that other biological targets are responsible for its cytotoxic effect.

  17. Screening of factors influencing Cu(II) extraction by soybean oil-based organic solvents using fractional factorial design.

    Science.gov (United States)

    Chang, Siu Hua; Teng, Tjoon Tow; Ismail, Norli

    2011-10-01

    This study aimed to identify the significant factors that give large effects on the efficiency of Cu(II) extraction from aqueous solutions by soybean oil-based organic solvents using fractional factorial design. Six factors (mixing time (t), di-2-ethylhexylphosphoric acid concentration ([D2EHPA]), organic to aqueous phase ratio (O:A), sodium sulfate concentration ([Na(2)SO(4)]), equilibrium pH (pH(eq)) and tributylphosphate concentration ([TBP])) affecting the percentage extraction (%E) of Cu(II) were investigated. A 2(6-1) fractional factorial design was applied and the results were analyzed statistically. The results show that only [D2EHPA], pH(eq) and their second-order interaction ([D2EHPA] × pH(eq)) influenced the %E significantly. Regression models for %E were developed and the adequacy of the reduced model was examined. The results of this study indicate that fractional factorial design is a useful tool for screening a large number of variables and reducing the number of experiments. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Factors influencing the severity of Escherichia coli and avian adenovirus group II infections in chickens.

    Science.gov (United States)

    Gross, W B; Domermuth, C H

    1988-01-01

    Chickens from lines selectively bred for either a high (HH) or low (LL) antibody response to sheep erythrocytes were challenged intravenously with avian adenovirus group II (AA). Spleen size was determined 6 days later. In some experiments the responses of chickens to AA and Escherichia coli infections were compared. The level of corticosterone in the feed (15 mg/kg) which resulted in the lowest incidence of pericarditis in response to E. coli resulted in the greatest incidence of large spleens in response to AA infection. Incidence of enlarged spleens in response to AA infection was increased in fasted chickens and reduced in socialized LL-line chickens. Among ignored chickens harshly treated for 2 weeks before challenge, LL-line chickens had a higher incidence of enlarged spleens than HH-line chickens. Socialized HH-line chickens subjected to social stress 1 day before challenge had more severely affected spleens than socialized LL-line chickens. The HL cross was more severely affected by AA than the LH cross but was less severely affected by E. coli. Antibody responsiveness to sheep erythrocytes did not affect the severity of AA infection. Factors that increased the severity of AA infection seemed to result in a decreased severity of E. coli infection.

  19. Nitrate uptake across biomes and the influence of elemental stoichiometry: A new look at LINX II

    Science.gov (United States)

    Wymore, Adam S.; Coble, Ashley A.; Rodríguez-Cardona, Bianca; McDowell, William H.

    2016-08-01

    Considering recent increases in anthropogenic N loading, it is essential to identify the controls on N removal and retention in aquatic ecosystems because the fate of N has consequences for water quality in streams and downstream ecosystems. Biological uptake of nitrate (NO3-) is a major pathway by which N is removed from these ecosystems. Here we used data from the second Lotic Intersite Nitrogen eXperiment (LINX II) in a multivariate analysis to identify the primary drivers of variation in NO3- uptake velocity among biomes. Across 69 study watersheds in North America, dissolved organic carbon:NO3- ratios and photosynthetically active radiation were identified as the two most important predictor variables in explaining NO3- uptake velocity. However, within a specific biome the predictor variables of NO3- uptake velocity varied and included various physical, chemical, and biological attributes. Our analysis demonstrates the broad control of elemental stoichiometry on NO3- uptake velocity as well as the importance of biome-specific predictors. Understanding this spatial variation has important implications for biome-specific watershed management and the downstream export of NO3-, as well as for development of spatially explicit global models that describe N dynamics in streams and rivers.

  20. The influence of certain molecular descriptors of fecal elimination of angiotensin II receptor antagonists

    Directory of Open Access Journals (Sweden)

    Trbojević-Stanković Jasna B.

    2015-01-01

    Full Text Available Angiotensin II receptor antagonists (ARBs modulate the function of the renin-angiotensin-aldosterone system and are commonly prescribed antihypertensive drugs, especially in patients with renal failure. In this study, the relationship between several molecular properties of seven ARBs (candesartan, eprosartan, irbesartan, losartan, olmesartan, telmisartan, valsartan and their fecal elimination data obtained from the literature were investigated. The ARB molecular descriptors were calculated using three software packages. Simple linear regression analysis showed the best 2 correlation between fecal elimination data and lipophilicity descriptor, ClogP values (R2 = 0.725. Multiple linear regression was applied to examine the correlation of ARBs’ fecal elimination data with their lipophilicity and one additional, calculated descriptor. The best correlation (R2 = 0.909 with an acceptable probability value, P <0.05 was established between the ARB fecal elimination data and their lipophilicity and aqueous solubility data. Applying computed molecular descriptors for evaluating drug elimination is of great importance in drug research.

  1. Influence of the cranial base flexion on Class I, II and III malocclusions: a systematic review

    Science.gov (United States)

    de Almeida, Kélei Cristina Mathias; Raveli, Taísa Boamorte; Vieira, Camila Ivini Viana; dos Santos-Pinto, Ary; Raveli, Dirceu Barnabé

    2017-01-01

    ABSTRACT Objective: The aim of this study was to perform a systematic review on the morphological characteristics of the skull base (flexion, anterior length and posterior length) and the concomitant development of malocclusions, by comparing differences in dimorphism, ethnicity and age. Methods: The articles were selected by means of electronic search on BBO, MEDLINE and LILACS databases from 1966 to 2016. A qualitative evaluation of the methodologies used on the articles was also performed. Results: Although the literature on this topic is abundant, only 16 articles were selected for the present systematic review. The cranial base angle itself does not seem to play a significant role in the development of malocclusions. In fact, the cranial base angle is relatively stable at the ages of 5 to 15 years. Conclusions: A more obtuse angle at the skull base, in association or not with a greater anterior length of the cranial base, can contribute to the development of Class II division 1 malocclusions. On the other hand, a more acute angle at the skull base can contribute to a more anterior positioning of the mandible and to the development of Class III malocclusions. PMID:29160345

  2. Influence of NiCr/Au electrodes and multilayer thickness on the electrical properties of PANI/PVS ultrathin film grown by Lbl deposition

    Energy Technology Data Exchange (ETDEWEB)

    Santos, M.C. [Department of Physics, Federal University of Vicosa, CEP 36570-000, Vicosa, MG (Brazil); Laboratory of Polymers and Electronic Properties of Materials, Department of Physics, Federal University of Ouro Preto, CEP 35400-000, Ouro Preto, MG (Brazil); Munford, M.L. [Department of Physics, Federal University of Vicosa, CEP 36570-000, Vicosa, MG (Brazil); Bianchi, R.F., E-mail: bianchi@eecs.berkeley.edu [Laboratory of Polymers and Electronic Properties of Materials, Department of Physics, Federal University of Ouro Preto, CEP 35400-000, Ouro Preto, MG (Brazil)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Electrical transport properties of nanostructured PANI-PVS multilayers (Lbl PANI-PVS). Black-Right-Pointing-Pointer Effect of interfacial layer properties on the performance of Lbl PANI-PVS films. Black-Right-Pointing-Pointer Ac conductivity of Lbl PANI-PVS presents an almost universal behavior. Black-Right-Pointing-Pointer A hopping model is found to be more appropriate for explaining the ac conductivity. Black-Right-Pointing-Pointer Hopping distance (30 nm) and hopping energy (35 MeV) were obtained for Lbl PANI-PVS films. - Abstract: In the present work, we concentrate on the study of effects of metallic electrodes, multilayer thickness and temperature in ac and dc electrical conductivity of polyaniline/poly(vinyl sulfonic acid) (PANI/PVS) ultrathin films. The polymer system was obtained from layer-by-layer (Lbl) self-assembly technique on a glass substrate with an electrode array of adhesion layer of NiCr (20 nm) covered with Au (180 nm). We observed a significant and abrupt increase in the value of dc conductivity and a change of ac conductivity behavior of NiCr/Au-PANI/PVS-NiCr/Au structure when the thickness of PANI/PVS system reaches the Au layer. These effects were ascribed to the ideal contact of Au-PANI/PVS and the relative high interfacial contact resistance between PANI/PVS and NiCr, thus reducing the parallel resistance of NiCr/Au-PANI/PVS interfacial layer in an ideal parallel plate capacitor structure. Atomic Force Microscopy images confirm this assumption. Furthermore, the ac conductivity of Au-PANI/PVS-Au structure was typical of solid disordered materials. A model based on carrier hopping in a medium with randomly varying energy barriers was presented for the ac conductivity of the polymer system, which also encompasses the high dielectric constant of PANI/PVS blended films, the neutral contact Au-PANI/PVS, and the electrical resistance of NiCr-PANI/PVS interfacial layer. The model allowed separating the

  3. Thin metal electrodes for semitransparent organic photovoltaics

    KAUST Repository

    Lee, Kyusung

    2013-08-01

    We demonstrate semitransparent organic photovoltaics (OPVs) based on thin metal electrodes and polymer photoactive layers consisting of poly(3-hexylthiophene) and [6,6]-phenyl C61 butyric acid methyl ester. The power conversion efficiency of a semitransparent OPV device comprising a 15-nm silver (Ag) rear electrode is 1.98% under AM 1.5-G illumination through the indium-tin-oxide side of the front anode at 100 mW/cm2 with 15.6% average transmittance of the entire cell in the visible wavelength range. As its thickness increases, a thin Ag electrode mainly influences the enhancement of the short circuit current density and fill factor. Its relatively low absorption intensity makes a Ag thin film a viable option for semitransparent electrodes compatible with organic layers. © 2013 ETRI.

  4. Studies on Solid Wood. II. The Influence of Chemical Modifications on Viscoelastic Properties

    DEFF Research Database (Denmark)

    Bjørkmann, Anders; Salmén, Lennart

    2000-01-01

    The relation between the properties of wood polymers and those of the composite material of wood is a subject that has been of interest for a long time. In order to increase oar knowledge in this matter, changes of wood properties have been studied on samples of spruce and birch, subjected...... to various chemical treatments. Three properties were measured on completely dry samples: stiffness, creep and axial compression strength, using previously developed methods, tailored to slim axial samples, which allow complete impregnation with liquids. On native and treated samples, fully saturated...... with water, the glass transition was measured by applying sinusoidal vibrations with frequencies of 0.05-20 Hz, giving a transition for each frequency and an apparent activation energy of frequency changes. In wet wood, these quantities characterise the influence of a certain treatment on the properties...

  5. Generational influences in academic emergency medicine: structure, function, and culture (Part II).

    Science.gov (United States)

    Mohr, Nicholas M; Smith-Coggins, Rebecca; Larrabee, Hollynn; Dyne, Pamela L; Promes, Susan B

    2011-02-01

    Strategies for approaching generational issues that affect teaching and learning, mentoring, and technology in emergency medicine (EM) have been reported. Tactics to address generational influences involving the structure and function of the academic emergency department (ED), organizational culture, and EM schedule have not been published. Through a review of the literature and consensus by modified Delphi methodology of the Society for Academic Emergency Medicine Aging and Generational Issues Task Force, the authors have developed this two-part series to address generational issues present in academic EM. Understanding generational characteristics and mitigating strategies can address some common issues encountered in academic EM. By understanding the differences and strengths of each of the cohorts in academic EM departments and considering simple mitigating strategies, faculty leaders can maximize their cooperative effectiveness and face the challenges of a new millennium. © 2011 by the Society for Academic Emergency Medicine.

  6. ZOMG - II. Does the halo assembly history influence central galaxies and gas accretion?

    Science.gov (United States)

    Romano-Díaz, Emilio; Garaldi, Enrico; Borzyszkowski, Mikolaj; Porciani, Cristiano

    2017-08-01

    The growth rate and the internal dynamics of galaxy-sized dark-matter haloes depend on their location within the cosmic web. Haloes that sit at the nodes grow in mass till the present time and are dominated by radial orbits. Conversely, haloes embedded in prominent filaments do not change much in size and are dominated by tangential orbits. Using zoom hydrodynamical simulations including star formation and feedback, we study how gas accretes on to these different classes of objects, which, for simplicity, we dub 'accreting' and 'stalled' haloes. We find that all haloes get a fresh supply of newly accreted gas in their inner regions, although this slowly decreases with time, in particular for the stalled haloes. The inflow of new gas is always higher than (but comparable with) that of recycled material. Overall, the cold-gas fraction increases (decreases) with time for the accreting (stalled) haloes. In all cases, a stellar disc and a bulge form at the centre of the simulated haloes. The total stellar mass is in excellent agreement with expectations based on the abundance-matching technique. Many properties of the central galaxies do not seem to correlate with the large-scale environment in which the haloes reside. However, there are two notable exceptions that characterize stalled haloes with respect to their accreting counterparts: (I) The galaxy disc contains much older stellar populations. (II) Its vertical scaleheight is larger by a factor of 2 or more. This thickening is likely due to the heating of the long-lived discs by mergers and close flybys.

  7. Amperometric enzyme electrodes

    OpenAIRE

    Calvo,E.J.; Danilowicz, C.

    1997-01-01

    Recent advances on amperometric enzyme electrodes are reviewed with particular emphasis on biosensors based on Glucose Oxidase and Horseradish Peroxidase. Redox mediation by artificial soluble and polymer attached redox mediators is discussed in terms of recent theoretical developments and experimental verification. The dependence of the amperometric response on substrate and mediator concentration, enzyme concentration, electrode potential and film thickness are analyzed. Possible applicatio...

  8. Durable fuel electrode

    DEFF Research Database (Denmark)

    2017-01-01

    the composite. The invention also relates to the use of the composite as a fuel electrode, solid oxide fuel cell, and/or solid oxide electrolyser. The invention discloses a composite for an electrode, comprising a three-dimensional network of dispersed metal particles, stabilised zirconia particles and pores...

  9. Membrane Bioprobe Electrodes

    Science.gov (United States)

    Rechnitz, Garry A.

    1975-01-01

    Describes the design of ion selective electrodes coupled with immobilized enzymes which operate either continuously or on drop-sized samples. Cites techniques for urea, L-phenylalanine and amygdalin. Micro size electrodes for use in single cells are discussed. (GH)

  10. Characterization of Pd catalyst-electrodes deposited on YSZ: Influence of the preparation technique and the presence of a ceria interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez-Borja, Carmen, E-mail: Carmen.JBorja@uclm.es [Departamento de Ingenieria Quimica, Facultad de Ciencias Quimicas, Universidad de Castilla-La Mancha. Avenida Camilo Jose Cela 12, 13071 Ciudad Real (Spain); Matei, Florina [Department of Petroleum Processing Engineering and Environmental Protection, Petroleum - Gas University of Ploiesti (Romania); Dorado, Fernando; Valverde, Jose Luis [Departamento de Ingenieria Quimica, Facultad de Ciencias Quimicas, Universidad de Castilla-La Mancha. Avenida Camilo Jose Cela 12, 13071 Ciudad Real (Spain)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Impregnation of palladium over YSZ led to more dispersed films. Black-Right-Pointing-Pointer XPS spectra indicated electron deficient Pd{sup 2+} species on the surface of palladium films. Black-Right-Pointing-Pointer Impregnated palladium films were more active than those prepared by paste deposition Black-Right-Pointing-Pointer The addition of a CeO{sub 2} interlayer enhanced the catalytic rate for the impregnated samples. - Abstract: Palladium catalyst-electrodes supported on Y{sub 2}O{sub 3}-stabilized-ZrO{sub 2} (YSZ) prepared either by paste deposition or wet impregnation technique were characterized using X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It was found a strong dependence of the catalytic film preparation technique as well as of the presence of a ceria interlayer between the palladium film and the solid electrolyte on the catalytic activity towards methane oxidation. Impregnated palladium films were found to be more active than films prepared by paste deposition. Besides, the addition of ceria allowed stabilizing the palladium active phase for methane oxidation.

  11. The Behavioral Effects of tDCS on Visual Search Performance Are Not Influenced by the Location of the Reference Electrode

    Directory of Open Access Journals (Sweden)

    Amanda Ellison

    2017-09-01

    Full Text Available We investigated the role of reference electrode placement (ipsilateral v contralateral frontal pole on conjunction visual search task performance when the transcranial direct current stimulation (tDCS cathode is placed over right posterior parietal cortex (rPPC and over right frontal eye fields (rFEF, both of which have been shown to be causally involved in the processing of this task using TMS. This resulted in four experimental manipulations in which sham tDCS was applied in week one followed by active tDCS the following week. Another group received sham stimulation in both sessions to investigate practice effects over 1 week in this task. Results show that there is no difference between effects seen when the anode is placed ipsi or contralaterally. Cathodal stimulation of rPPC increased search times straight after stimulation similarly for ipsi and contralateral references. This finding does not extend to rFEF stimulation. However, for both sites and both montages, practice effects as seen in the sham/sham condition were negated. This can be taken as evidence that for this task, reference placement on either frontal pole is not important, but also that care needs to be taken when contextualizing tDCS “effects” that may not be immediately apparent particularly in between-participant designs.

  12. The influence of membrane electrode assembly water content on the performance of a polymer electrolyte membrane fuel cell as investigated by 1H NMR microscopy.

    Science.gov (United States)

    Feindel, Kirk W; Bergens, Steven H; Wasylishen, Roderick E

    2007-04-21

    The relation between the performance of a self-humidifying H(2)/O(2) polymer electrolyte membrane fuel cell and the amount and distribution of water as observed using (1)H NMR microscopy was investigated. The integrated (1)H NMR image signal intensity (proportional to water content) from the region of the polymer electrolyte membrane between the catalyst layers was found to correlate well with the power output of the fuel cell. Several examples are provided which demonstrate the sensitivity of the (1)H NMR image intensity to the operating conditions of the fuel cell. Changes in the O(2)(g) flow rate cause predictable trends in both the power density and the image intensity. Higher power densities, achieved by decreasing the resistance of the external circuit, were found to increase the water in the PEM. An observed plateau of both the power density and the integrated (1)H NMR image signal intensity from the membrane electrode assembly and subsequent decline of the power density is postulated to result from the accumulation of H(2)O(l) in the gas diffusion layer and cathode flow field. The potential of using (1)H NMR microscopy to obtain the absolute water content of the polymer electrolyte membrane is discussed and several recommendations for future research are provided.

  13. Potentiometric behaviour of ion selective electrodes based on iron porphyrins: the influence of porphyrin substituents on the response properties and analytical determination of diclofenac in pharmaceutical formulations.

    Science.gov (United States)

    Santos, Emília M G; Araújo, Alberto N; Couto, Cristina M C M; Montenegro, M Conceição B S M

    2006-11-16

    The potentiometric response characteristics of diclofenac selective electrodes based on Fe(III) tetraphenylporphyrin-chloride (Fe(III)TPP-Cl) and Fe(III) tetrakis(pentafluorophenyl)porphyrin-chloride (Fe(III)TPFPP-Cl) in different mediator solvents and ionic additives are compared. The sensitivity, working range, detection limit, response mechanism, and selectivity of the membrane sensor show a significant dependence on the type of carrier substituent and on the pH value of the sample solution. Studies performed with different amounts of cationic additive (tetra-n-octylammoniumbromide (TOABr)) and anionic additive (sodium tetraphenylborate (NaTPB)) in the membranes allowed the determination of the potentiometric mechanism of action of the used metalloporphyrins. For the analysis of real samples, Fe(III)TPFPP-Cl (type G), prepared in o-NPOE, incorporating 10 mol% of TOABr, was used. This potentiometric unit presented a linear response towards diclofenac concentrations between 10(-5) and 10(-2)mol l(-1) ( I=0.1 mol l(-1)) and slopes of about -59 mV dec(-1), exhibiting a response time of 10s in a buffered solution of ammonia-ammonium sulphate with pH 9.9. The potentiometric analysis of sodium diclofenac in pharmaceutical formulations was carried out by direct potentiometry and the obtained results were compared to those provided by HPLC, presenting relative errors inferior to 1.0%.

  14. Transport properties of magnetic tunnel junctions with Co2MnSi electrode: influence of temperature-dependent interface magnetization and electronic band structure

    Energy Technology Data Exchange (ETDEWEB)

    Schmalhorst, Jan; Thomas, Andy; Schebaum, Oliver; Ebke, Daniel; Sacher, Marc; Huetten, Andreas; Reiss, Guenter [Thin Films and Nano Structures, Department of Physics, Bielefeld University (Germany); Turchanin, Andrej; Goelzhaeuser, Armin [Department of Physics, Bielefeld University (Germany); Arenholz, Elke [Lawrence Berkeley National Laboratory, Berkeley, CA (United States)

    2007-07-01

    The investigation of the temperature-dependent magnetic and chemical properties of the Co{sub 2}MnSi/Al-O interface in Co{sub 2}MnSi/Al-O/Co-Fe MTJs showed, that with increasing degree of disorder, interfacial magnetic moments are reduced and their temperature dependences are more pronounced. Magnon excitation is stronger at the Co{sub 2}MnSi/Al-O interface compared with Co-Fe-B based tunnel junctions and bulk Co{sub 2}MnSi. We suggest, that mainly this contributes to the larger bias voltage and temperature dependence of the TMR in the Co{sub 2}MnSi based junctions by means of enhanced magnon-assisted tunneling. Furthermore, several fingerprints of the ideal Co2MnSi bandstructure of atomically ordered Co{sub 2}MnSi films are revealed by the XAS-, XMCD- and XPS-investigations in accordance with SPR-KKR calculations. Finally, we suggest that the observed inversion of the TMR effect occuring when electrons are tunneling from the Co-Fe into the atomically ordered Co{sub 2}MnSi electrode is the most striking bandstructure effect.

  15. Cyanex based uranyl sensitive polymeric membrane electrodes.

    Science.gov (United States)

    Badr, Ibrahim H A; Zidan, W I; Akl, Z F

    2014-01-01

    Novel uranyl selective polymeric membrane electrodes were prepared using three different low-cost and commercially available Cyanex extractants namely, bis(2,4,4-trimethylpentyl) phosphinic acid [L1], bis(2,4,4-trimethylpentyl) monothiophosphinic acid [L2] and bis(2,4,4-trimethylpentyl) dithiophosphinic acid [L3]. Optimization and performance characteristics of the developed Cyanex based polymer membrane electrodes were determined. The influence of membrane composition (e.g., amount and type of ionic sites, as well as type of plasticizer) on potentiometric responses of the prepared membrane electrodes was studied. Optimized Cyanex-based membrane electrodes exhibited Nernstian responses for UO₂(2+) ion over wide concentration ranges with fast response times. The optimized membrane electrodes based on L1, L2 and L3 exhibited Nernstian responses towards uranyl ion with slopes of 29.4, 28.0 and 29.3 mV decade(-1), respectively. The optimized membrane electrodes based on L1-L3 showed detection limits of 8.3 × 10(-5), 3.0 × 10(-5) and 3.3 × 10(-6) mol L(-1), respectively. The selectivity studies showed that the optimized membrane electrodes exhibited high selectivity towards UO₂(2+) ion over large number of other cations. Membrane electrodes based on L3 exhibited superior potentiometric response characteristics compared to those based on L1 and L2 (e.g., widest linear range and lowest detection limit). The analytical utility of uranyl membrane electrodes formulated with Cyanex extractant L3 was demonstrated by the analysis of uranyl ion in different real samples for nuclear safeguards verification purposes. The results obtained using direct potentiometry and flow-injection methods were compared with those measured using the standard UV-visible and inductively coupled plasma spectroscopic methods. © 2013 Published by Elsevier B.V.

  16. DM influences the abundance of major histocompatibility complex class II alleles with low affinity for class II-associated invariant chain peptides via multiple mechanisms.

    Science.gov (United States)

    Rinderknecht, Cornelia H; Roh, Sujin; Pashine, Achal; Belmares, Michael P; Patil, Namrata S; Lu, Ning; Truong, Phi; Hou, Tieying; Macaubas, Claudia; Yoon, Taejin; Wang, Nan; Busch, Robert; Mellins, Elizabeth D

    2010-09-01

    DM catalyses class II-associated invariant chain peptide (CLIP) release, edits the repertoire of peptides bound to major histocompatibility complex (MHC) class II molecules, affects class II structure, and thereby modulates binding of conformation-sensitive anti-class II antibodies. Here, we investigate the ability of DM to enhance the cell surface binding of monomorphic antibodies. We show that this enhancement reflects increases in cell surface class II expression and total cellular abundance, but notably these effects are selective for particular alleles. Evidence from analysis of cellular class II levels after cycloheximide treatment and from pulse-chase experiments indicates that DM increases the half-life of affected alleles. Unexpectedly, the pulse-chase experiments also revealed an early effect of DM on assembly of these alleles. The allelically variant feature that correlates with susceptibility to these DM effects is low affinity for CLIP; DM-dependent changes in abundance are reduced by invariant chain (CLIP) mutants that enhance CLIP binding to class II. We found evidence that DM mediates rescue of peptide-receptive DR0404 molecules from inactive forms in vitro and evidence suggesting that a similar process occurs in cells. Thus, multiple mechanisms, operating along the biosynthetic pathway of class II molecules, contribute to DM-mediated increases in the abundance of low-CLIP-affinity alleles.

  17. Carbon Nanotubes Counter Electrode for Dye-Sensitized Solar Cells Application

    National Research Council Canada - National Science Library

    A. Drygała; L. A. Dobrzański; M. Szindler; M. Prokopiuk vel Prokopowicz; M. Pawlyta; K. Lukaszkowicz

    2016-01-01

    The influence of the carbon nanotubes counter electrode deposited on the FTO glass substrates on the structure and optoelectrical properties of dye-sensitized solar cells counter electrode (CE) was analysed...

  18. The Influence of Environment Geometry on Injury Outcome: II. Lumbosacral Spine

    Science.gov (United States)

    Shaibani, Saami J.

    2006-03-01

    It is widely agreed that the type of motor vehicle in which an occupant is situated can sometimes make a noticeable difference in injury potential even when the insult suffered is the same. A simple example might be the same occupant being in a sports car as opposed to a minivan, but such anecdotal experience does not usually help to distinguish the effect of particular features within the same category of vehicle. Other research has addressed the role of environment geometry in neck injury,[1] and this paper adopts the same methodology for the low back. The heights, lengths and angles of the seat cushion and seat back (including head rest) are all examined as descriptors of passenger compartment geometry, and any changes caused by these are determined. Useful results are feasible with the large patient population available even if clear patterns in these are not always present. As in earlier work, there is still the option of finding individual outcomes on a case-by-case basis. [1] The influence of environment geometry on injury outcome: I. Cervical spine, Bull Am Phys Soc, in press (2006).

  19. Fluorescence Enhancement from Self-Assembled Aggregates II: Factors Influencing Florescence Color from Azobenzene Aggregates

    Science.gov (United States)

    Han, Mina

    2013-09-01

    We have chosen two types of azobenzene derivatives to elucidate the correlation between molecular structure and fluorescence color of light-driven azobenzene-based aggregates. The fluorescence color from azobenzene molecules (1 and 2), adopting a planar structure, was obviously red-shifted from that of the corresponding twisted ortho-alkylated azobenzene 3. The steric hindrance resulting from bulky alkyl groups at the ortho position of the azo linkage was considered to lessen the intermolecular π - π stacking between aromatic rings, leading to the relatively smaller spectral shift in fluorescence from the absorption band of the initial azobenzene solution. The substitution of electron-withdrawing groups into the azobenzene core gave rise to a blue-shift in fluorescence wavelength. That is, the extended π-conjugated system consisting of a planar azobenzene core as well as the electronic properties of the substituents are key factors influencing the fluorescence color from the light-driven azobenzene aggregates. Moreover, we could prepare fluorescent polymer films by mixing fluorescent azobenzene aggregates with polymers. The fluorescence colors from the polymer films were comparable to those from the azobenzene aggregates.

  20. Surface modification of recording electrodes

    Directory of Open Access Journals (Sweden)

    Iaci Miranda Pereira

    2013-01-01

    Full Text Available Waterborne Polyurethanes (PUs are a family of polymers that contains urethane linkages synthesized in an aqueous environment and are thus free of organic solvents. Recently, waterborne PUs have been extensively studied for biomedical applications because of their biocompatibility. The present work investigates the following: (1 the impact on electrical performance of electrode materials (platinum and silicon modified chemically by a layer of waterborne PU, and (2 the behavior of rat cardiac fibroblasts and rat cardiomyocytes when in contact with an electrode surface. Diisocyanate and poly(caprolactone diol were the main reagents for producing PUs. The electrochemical impedance of the electrode/electrolyte interface was accessed by electrochemical impedance spectroscopy. The cellular viability, proliferation, and morphology changes were investigated using an MTT assay. Cardiomyocyte adherence was observed by scanning electron microscopy. The obtained surface was uniform, flat, and transparent. The film showed good adhesion, and no peeling was detected. The electrochemical impedance decreased over time and was influenced by the ionic permeability of the PU layer. The five samples did not show cytotoxicity when in contact with neonatal rat cells.

  1. Parameters affecting the determination of mercury by anodic stripping voltammetry using a gold electrode.

    Science.gov (United States)

    Giacomino, Agnese; Abollino, Ornella; Malandrino, Mery; Mentasti, Edoardo

    2008-03-15

    The electrochemical determination of aqueous Hg(II) by anodic stripping voltammetry (ASV) at a solid gold electrode is described. The aim of this work is to optimise all factors that can influence this determination. Potential wave forms (linear sweep, differential pulse, square wave), potential scan parameters, deposition time, deposition potential and surface cleaning procedures were examined for their effect on the mercury peak shape and intensity. Five supporting electrolytes were tested. The best responses were obtained with square wave potential wave form and diluted HCl as supporting electrolyte. Electrochemical and mechanical surface cleaning, aimed at removing the amount of mercury deposited onto the gold surface, were necessary for obtaining a good performance of the electrode. Response linearity, repeatability, accuracy and detection limit were also evaluated.

  2. Apolipoprotein A-II influences apolipoprotein E-linked cardiovascular disease risk in women with high levels of HDL cholesterol and C-reactive protein.

    Directory of Open Access Journals (Sweden)

    James P Corsetti

    Full Text Available BACKGROUND: In a previous report by our group, high levels of apolipoprotein E (apoE were demonstrated to be associated with risk of incident cardiovascular disease in women with high levels of C-reactive protein (CRP in the setting of both low (designated as HR1 subjects and high (designated as HR2 subjects levels of high-density lipoprotein cholesterol (HDL-C. To assess whether apolipoprotein A-II (apoA-II plays a role in apoE-associated risk in the two female groups. METHODOLOGY/PRINCIPAL: Outcome event mapping, a graphical data exploratory tool; Cox proportional hazards multivariable regression; and curve-fitting modeling were used to examine apoA-II influence on apoE-associated risk focusing on HDL particles with apolipoprotein A-I (apoA-I without apoA-II (LpA-I and HDL particles with both apoA-I and apoA-II (LpA-I:A-II. Results of outcome mappings as a function of apoE levels and the ratio of apoA-II to apoA-I revealed within each of the two populations, a high-risk subgroup characterized in each situation by high levels of apoE and additionally: in HR1, by a low value of the apoA-II/apoA-I ratio; and in HR2, by a moderate value of the apoA-II/apoA-I ratio. Furthermore, derived estimates of LpA-I and LpA-I:A-II levels revealed for high-risk versus remaining subjects: in HR1, higher levels of LpA-I and lower levels of LpA-I:A-II; and in HR2 the reverse, lower levels of LpA-I and higher levels of LpA-I:A-II. Results of multivariable risk modeling as a function of LpA-I and LpA-I:A-II (dichotomized as highest quartile versus combined three lower quartiles revealed association of risk only for high levels of LpA-I:A-II in the HR2 subgroup (hazard ratio 5.31, 95% CI 1.12-25.17, p = 0.036. Furthermore, high LpA-I:A-II levels interacted with high apoE levels in establishing subgroup risk. CONCLUSIONS/SIGNIFICANCE: We conclude that apoA-II plays a significant role in apoE-associated risk of incident CVD in women with high levels of HDL-C and CRP.

  3. Electroanalytical studies on Cu (II) ion-selective sensor of coated pyrolytic graphite electrodes based on N2S2O2 and N2S2O3 heterocyclic benzothiazol ligands.

    Science.gov (United States)

    Singh, A K; Sahani, Manoj Kumar; Bandi, Koteswara Rao; Jain, A K

    2014-08-01

    Benzothiazol based chelating ionophores such as 1,3-bis[2-(1,3-benzothiazol-2-yl)-phenoxy]propane (L1) and 1,2'-bis[2-(1,3-benzothiazol-2-yl)-phenoxy]2-ethoxyethane(L2) were synthesized and explored as neutral ionophores in the fabrication of Cu(2+) ion-selective electrodes. Variety of PVC-based electrodes i.e., polymeric membrane electrodes (PME), coated graphite electrodes (CGE) and coated pyrolytic graphite electrodes (CPGE) were prepared. The membranes having composition L1:PVC:1-CN:NaTPB≡5:38:55:2 (w/w; mg) and L2:PVC:1-CN:NaTPB in the ratio of 6:39:53:2 are found to be exhibit the best potentiometric characteristics. The comparative studies of PME, CGE and CPGE based on L2 reveals that the CPGE is superior in terms of low detection limit of 6.30×10(-9) mol L(-1) with a Nernstian slope of 29.5 mV decade(-1) of activity between pH2.0 to 8.5 with a fast response time of 9s and could be used over a period of 5 months without any significant divergence in its potentiometric characteristics. The sensor has been employed for the estimation of Cu(2+) ion in real samples viz., water, soil and herbal medicinal plants and besides this, the sensor was also used as an indicator electrode in the potentiometric determination of Cu(2+) with EDTA. Copyright © 2014. Published by Elsevier B.V.

  4. The Composite Insertion Electrode

    DEFF Research Database (Denmark)

    Atlung, Sven; Zachau-Christiansen, Birgit; West, Keld

    1984-01-01

    . The theoretical basis for such electrodes is discussedand, using a simplified model, equations are derived to describe the distribution of potential and current duringdischarge/charge operation. Under the assumption that the insertion compound particles are small enough to ensureequilibrium, and that the local...... electrode potential depends linearly on the degree of insertion, these equations are solvedto obtain analytical expressions for the discharge curve. It is shown that the parameters which determine the dischargebehavior for a given discharge current are simply related to the effective ionic and electronic...... conductivities, the thicknessof the electrode, the volume fractions, and the slope of the potential curve....

  5. Adsorption of iron(III), cobalt(II), and nickel(II) on activated carbon derived from Xanthoceras Sorbifolia Bunge hull: mechanisms, kinetics and influencing parameters.

    Science.gov (United States)

    Zhang, Xiaotao; Hao, Yinan; Wang, Ximing; Chen, Zhangjing

    2017-04-01

    Xanthoceras Sorbifolia Bunge hull activated carbon (XSA) was prepared and characterized by Brunauer-Emmett-Teller analysis, scanning electron microscopy and energy dispersive X-ray (EDX) spectroscopy. The ability of XSA as an adsorbent was investigated for the removal of the iron group ions Fe(III), Co(II), and Ni(II) from aqueous solution. Optimum adsorption parameters were determined based on the initial concentrations of the iron group ions, pH, adsorption temperature, and adsorption time in adsorption studies. The maximum monolayer adsorption capacities were 241.13 mg/g for Fe(III), 126.05 mg/g for Co(II), and 187.96 mg/g for Ni(II), respectively. Adsorption kinetics and isotherms showed that the adsorption process best fitted the nonlinear pseudo-second-order and Langmuir models, and the affinity of the ions for XSA decreased as follows: Fe(III) > Ni(II) > Co(II). Regeneration studies indicated that XSA could be used after several consecutive adsorption/desorption cycles using HNO3. Fourier transform infrared and EDX spectra revealed the chemical adsorption value of XSA as an adsorbent for removing iron group ions from aqueous solutions.

  6. HLA class II alleles influence rheumatoid arthritis susceptibility and autoantibody status in South Indian Tamil population.

    Science.gov (United States)

    Mariaselvam, C M; Fortier, C; Charron, D; Krishnamoorthy, R; Tamouza, R; Negi, V S

    2016-11-01

    Rheumatoid arthritis (RA) is a complex multifactorial autoimmune disease characterized by inflammatory arthritis. The precise etiology and pathogenesis of RA remains elusive but evidence points towards stochastic interactions between genetic and environmental factors. This study investigated the distribution of human leucocyte antigen (HLA)-DRB1/DQB1 alleles in South Indian patients with rheumatoid arthritis (RA) and their influence on RA susceptibility and clinical phenotype. Low resolution HLA-DRB1 and -DQB1 typing was performed in 271 RA patients and 233 healthy controls by polymerase chain reaction (PCR) using sequence-specific primers (SSP). HLA-DRB1*10 was found to be more frequent in patients (Pc = 0.004, OR = 2.23, 95% CI = 1.5-3.34) than controls. This difference persisted in RF positive (Pc = 9 × 10(-6) , OR = 2.45, 95% CI = 1.62-3.74), ACPA positive (Pc = 0.007, OR = 2.10, 95% CI = 1.35-3.29), ACPA negative (Pc = 0.001, OR = 2.45, 95% CI = 1.50-3.97) and both RF and ACPA positive subgroup of patients (Pc = 0.003, OR = 2.22, 95% CI = 1.41-3.51). On the contrary, the HLA-DRB1*13 (Pc = 0.01, OR = 0.43, 95% CI = 0.25-0.73) and HLA-DRB1*14 (Pc = 0.003, OR = 0.43, 95% CI = 0.26-0.69) alleles were over-represented in controls than patients. Further, distribution of the prominent Caucasian RA risk allele DRB1*04 did not differ between patients and controls in our study population. We did not find any association between DQB1 alleles and RA susceptibility or autoantibody status. The haplotypes DQB1*05-DRB1*10 (P = 6.8 × 10(-6) , OR = 2.46, 95% CI = 1.63-3.79) and DQB1*06-DRB1*15 (P = 0.03, OR = 1.41, 95% CI = 1.02-1.96) were more frequent in patients while DQB1*05-DRB1*14 (P = 8.4 × 10(-4) , OR = 0.44, 95% CI = 0.26-0.74) and DQB1*06-DRB1*13 (P = 9.5 × 10(-4) , OR = 0.40, 95% CI = 0.21-0.72) were higher in controls. To conclude, HLA-DRB1*10 is associated with RA while HLA-DRB1*13 and HLA-DRB1*14 alleles confer protection in south Indian Tamils. © 2016 John

  7. Influence of Oxygen Concentration on the Performance of Ultra-Thin RF Magnetron Sputter Deposited Indium Tin Oxide Films as a Top Electrode for Photovoltaic Devices

    Directory of Open Access Journals (Sweden)

    Jephias Gwamuri

    2016-01-01

    Full Text Available The opportunity for substantial efficiency enhancements of thin film hydrogenated amorphous silicon (a-Si:H solar photovoltaic (PV cells using plasmonic absorbers requires ultra-thin transparent conducting oxide top electrodes with low resistivity and high transmittances in the visible range of the electromagnetic spectrum. Fabricating ultra-thin indium tin oxide (ITO films (sub-50 nm using conventional methods has presented a number of challenges; however, a novel method involving chemical shaving of thicker (greater than 80 nm RF sputter deposited high-quality ITO films has been demonstrated. This study investigates the effect of oxygen concentration on the etch rates of RF sputter deposited ITO films to provide a detailed understanding of the interaction of all critical experimental parameters to help create even thinner layers to allow for more finely tune plasmonic resonances. ITO films were deposited on silicon substrates with a 98-nm, thermally grown oxide using RF magnetron sputtering with oxygen concentrations of 0, 0.4 and 1.0 sccm and annealed at 300 °C air ambient. Then the films were etched using a combination of water and hydrochloric and nitric acids for 1, 3, 5 and 8 min at room temperature. In-between each etching process cycle, the films were characterized by X-ray diffraction, atomic force microscopy, Raman Spectroscopy, 4-point probe (electrical conductivity, and variable angle spectroscopic ellipsometry. All the films were polycrystalline in nature and highly oriented along the (222 reflection. Ultra-thin ITO films with record low resistivity values (as low as 5.83 × 10−4 Ω·cm were obtained and high optical transparency is exhibited in the 300–1000 nm wavelength region for all the ITO films. The etch rate, preferred crystal lattice growth plane, d-spacing and lattice distortion were also observed to be highly dependent on the nature of growth environment for RF sputter deposited ITO films. The structural, electrical

  8. ESR Process Instabilities while Melting Pipe Electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Melgaard, D.K.; Shelmidine, G.J.

    1999-01-06

    With the demonstration of the viability of using the electroslag remelting process for the decontamination of radionuclides, interest has increased in examining the unique aspects associated with melting steel pipe electrodes. These electrodes consist of several nested pipes, welded concentrically to atop plate. Since these electrodes can be half as dense as a solid electrode, they present unique challenges to the standard algorithms used in controlling the melting process. Naturally the electrode must be driven down at a dramatically increased speed. However, since the heat transfer is greatly influenced and enhanced with the increased area to volume ratio, considerable variation in the melting rate of the pipes has been found. Standard control methods can become unstable as a result of the variation at increased speeds, particularly at shallow immersion depths. The key to good control lies in the understanding of the melting process. Several experiments were conducted to observe the characteristics of the melting using two different control modes. By using a pressure transducer to monitor the pressure inside the pipes, the venting of the air trapped inside the electrode was observed. The measurements reveal that for a considerable amount of time. the pipes are not completely immersed in the slag, allowing the gas inside to escape without the formation of bubbles. This result has implications for the voltage swing as well as for the decontamination reactions.

  9. Porous graphite electrodes for rechargeable ion-transfer batteries

    Energy Technology Data Exchange (ETDEWEB)

    Novak, P.; Scheifele, W.; Haas, O. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    The influence of preparation pressure and pore-forming additives on the properties of graphite-based, Li{sup +}-intercalating electrodes for ion-transfer batteries have been investigated. The electrochemical performance of graphite electrodes could be improved by adjusting the porosity. Specific charge of >300 Ah/kg (with respect to the graphite mass) could be achieved. (author) 4 figs., 2 refs.

  10. Durable phosphate-selective electrodes based on uranyl salophenes

    NARCIS (Netherlands)

    Wroblewski, Wojciech; Wojciechowski, Kamil; Dybko, Artur; Brzozka, Zbigniew; Egberink, Richard J.M.; Ruel, Bianca H.M.; Reinhoudt, David

    2001-01-01

    Lipophilic uranyl salophenes derivatives were used as ionophores in durable phosphate-selective electrodes. The influence of the ionophore structure and membrane composition (polarity of plasticizer, the amount of incorporated ionic sites) on the electrode selectivity and long-term stability were

  11. Influence of volumetric shrinkage and curing light intensity on proximal contact tightness of class II resin composite restorations: in vitro study.

    NARCIS (Netherlands)

    El-Shamy, H.; Saber, M.H.; Dorfer, C.E.; El-Badrawy, W.; Loomans, B.A.C.

    2012-01-01

    BACKGROUND : Proximal contact tightness of class II resin composite restorations is influenced by a myriad of factors. Previous studies investigated the role of matrix band type and thickness, consistency of resin composite, and technique of placement. However, the effect of volumetric shrinkage of

  12. The influence of low job control on ambulatory blood pressure and perceived stress over the working day in men and women from the Whitehall II cohort.

    NARCIS (Netherlands)

    Steptoe, A.; Willemsen, A.H.M.

    2004-01-01

    Objective: Work stress contributes to risk of coronary heart disease and hypertension. This study tested the influence of job control on ambulatory blood pressure, and ratings of perceived stress and happiness in men and women systematically sampled by socio-economic status from the Whitehall II

  13. The Influence of Injection Pockets on the Performance of Tilting-Pad Thrust Bearings - Part II: Comparison Between Theory and Experiment

    DEFF Research Database (Denmark)

    Heinrichson, Niels; Fuerst, Axel; Santos, Ilmar

    2007-01-01

    This is Part II of a two-part series of papers describing the effects of high-pressure injection pockets on the operating conditions of tilting-pad thrust bearings. The paper has two main objectives. One is an experimental investigation of the influence of an oil injection pocket on the pressure...

  14. Fabric-Based Wearable Dry Electrodes for Body Surface Biopotential Recording.

    Science.gov (United States)

    Yokus, Murat A; Jur, Jesse S

    2016-02-01

    A flexible and conformable dry electrode design on nonwoven fabrics is examined as a sensing platform for biopotential measurements. Due to limitations of commercial wet electrodes (e.g., shelf life, skin irritation), dry electrodes are investigated as the potential candidates for long-term monitoring of ECG signals. Multilayered dry electrodes are fabricated by screen printing of Ag/AgCl conductive inks on flexible nonwoven fabrics. This study focuses on the investigation of skin-electrode interface, form factor design, electrode body placement of printed dry electrodes for a wearable sensing platform. ECG signals obtained with dry and wet electrodes are comparatively studied as a function of body posture and movement. Experimental results show that skin-electrode impedance is influenced by printed electrode area, skin-electrode interface material, and applied pressure. The printed electrode yields comparable ECG signals to wet electrodes, and the QRS peak amplitude of ECG signal is dependent on printed electrode area and electrode on body spacing. Overall, fabric-based printed dry electrodes present an inexpensive health monitoring platform solution for mobile wearable electronics applications by fulfilling user comfort and wearability.

  15. Temperature-controlled radiofrequency ablation of cardiac tissue: an in vitro study of the impact of electrode orientation, electrode tissue contact pressure and external convective cooling

    DEFF Research Database (Denmark)

    Petersen, H H; Chen, X; Pietersen, A

    1999-01-01

    A variety of basic factors such as electrode tip pressure, flow around the electrode and electrode orientation influence lesion size during radiofrequency ablation, but importantly is dependent on the chosen mode of ablation. However, only little information is available for the frequently used...... temperature-controlled mode. The purpose of the present experimental study was to evaluate the impact during temperature-controlled radiofrequency ablation of three basic factors regarding electrode-tissue contact and convective cooling on lesion size....

  16. The influence of the rate of electrical stimulation on the effects of the Anemonia sulcata Toxin ATX II in guinea pig papillary muscle.

    Science.gov (United States)

    Beress, L; Ritter, R; Ravens, U

    1982-04-23

    In guinea pig papillary muscle, the rate of electrical stimulation (0.1-2 Hz) strongly influenced the effects of the Anemonia sulcata toxin ATX II on action potential duration (APD) and contractile force. In the concentration range studied (10-8-10-7 M), ATX II always produced a larger prolongation in APD at low rates of stimulation. At 0.1 Hz there was a temporal dissociation between the onset of the APD-prolonging and the positive inotropic effect. However, under equilibrium conditions there was a positive relationship between the APD expressed as a fraction of the time during which the membrane was depolarized, and the contractile force irrespective of the change in experimental conditions being variation of stimulation frequency or the addition of ATX II. The results suggest that the positive inotropic effects of both ATX II and increased stimulation frequency could be induced by a similar mechanism, e.g. an increase in sodium of the heart muscle.

  17. The length of proximal margin does not influence the prognosis of Siewert type II/III adenocarcinoma of esophagogastric junction after transhiatal curative gastrectomy.

    Science.gov (United States)

    Feng, Fan; Tian, Yangzi; Xu, Guanghui; Liu, Shushang; Liu, Zhen; Zheng, Gaozan; Guo, Man; Lian, Xiao; Fan, Daiming; Zhang, Hongwei

    2016-01-01

    The optimal length of proximal margin for Siewert type II/III adenocarcinoma of the esophagogastric junction (AEJ) is still need to be clarified. The aim of the present study was to investigate the appropriate length of proximal margin for Siewert type II/III AEJ through transhiatal approach. From September 2009 to December 2014, a total of 693 consecutive patients with Siewert type II/III AEJ were retrospectively analyzed. All patients received transhiatal R0 resection. The proximal margin length was measured immediately after resection. The prognostic value of proximal margin length on Siewert type II/III AEJ with transhiatal approach was analyzed. There were 404 cases of Siewert type II AEJ (58.3 %) and 289 cases of Siewert type III AEJ (41.7 %). Total gastrectomy was performed in 526 patients (75.9 %), and proximal gastrectomy was performed in 167 patients (24.1 %). The median length of the gross proximal margin was 2.4 (range 0.1-5.0) cm. Lymph node metastasis was the only independent prognostic predictor for Siewert type II AEJ. Tumor size and lymph node metastasis were independent prognostic predictors for Siewert type III AEJ. For Siewert type II/III AEJ with esophageal invasion of 3 cm or less, proximal margin length does not influence the prognosis of patients after transhiatal curative gastrectomy.

  18. Sensor employing internal reference electrode

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention concerns a novel internal reference electrode as well as a novel sensing electrode for an improved internal reference oxygen sensor and the sensor employing same.......The present invention concerns a novel internal reference electrode as well as a novel sensing electrode for an improved internal reference oxygen sensor and the sensor employing same....

  19. Polystyrene Based Silver Selective Electrodes

    Directory of Open Access Journals (Sweden)

    Shiva Agarwal

    2002-06-01

    Full Text Available Silver(I selective sensors have been fabricated from polystyrene matrix membranes containing macrocycle, Me6(14 diene.2HClO4 as ionophore. Best performance was exhibited by the membrane having a composition macrocycle : Polystyrene in the ratio 15:1. This membrane worked well over a wide concentration range 5.0×10-6–1.0×10-1M of Ag+ with a near-Nernstian slope of 53.0 ± 1.0 mV per decade of Ag+ activity. The response time of the sensor is <15 s and the membrane can be used over a period of four months with good reproducibility. The proposed electrode works well in a wide pH range 2.5-9.0 and demonstrates good discriminating power over a number of mono-, di-, and trivalent cations. The sensor has also been used as an indicator electrode in the potentiometric titration of silver(II ions against NaCl solution. The sensor can also be used in non-aqueous medium with no significant change in the value of slope or working concentration range for the estimation of Ag+ in solution having up to 25% (v/v nonaqueous fraction.

  20. Influence of the concentration of borohydride towards hydrogen production and escape for borohydride oxidation reaction on Pt and Au electrodes - experimental and modelling insights

    Science.gov (United States)

    Olu, Pierre-Yves; Bonnefont, Antoine; Braesch, Guillaume; Martin, Vincent; Savinova, Elena R.; Chatenet, Marian

    2018-01-01

    The Borohydride Oxidation Reaction (BOR), the anode reaction in a Direct borohydride fuel cell (DBFC), is complex and still poorly understood, which impedes the development and deployment of the DBFC technology. In particular, no practical electrocatalyst is capable to prevent gaseous hydrogen generation and escape from its anode upon operation, which lowers the fuel-efficiency of the DBFC and raises safety issues in operation. The nature of the anode electrocatalysts strongly influences the hydrogen escape characteristics of the DBFC, which demonstrates how important it is to isolate the BOR mechanism in conditions relevant to DBFC operation. In this paper, from a selected literature review and BOR experiments performed in differential electrochemical mass spectrometry (DEMS) in a wide range of NaBH4 concentration (5-500 mM), a microkinetic model of the BOR for both Pt and Au surfaces is proposed; this model takes into account the hydrogen generation and escape.

  1. Capacitive de-ionization electrode

    Science.gov (United States)

    Daily, III, William D.

    2013-03-19

    An electrode "cell" for use in a capacitive deionization (CDI) reactor consists of the electrode support structure, a non-reactive conductive material, the electrode accompaniment or substrate and a flow through screen/separator. These "layers" are repeated and the electrodes are sealed together with gaskets between two end plates to create stacked sets of alternating anode and cathode electrodes in the CDI reactor.

  2. Transparent Electrodes with Nanotubes and Graphene for Printed Optoelectronic Applications

    Directory of Open Access Journals (Sweden)

    Marcin Słoma

    2014-01-01

    Full Text Available We report here on printed electroluminescent structures containing transparent electrodes made of carbon nanotubes and graphene nanoplatelets. Screen-printing and spray-coating techniques were employed. Electrodes and structures were examined towards optical parameters using spectrophotometer and irradiation meter. Electromechanical properties of transparent electrodes are exterminated with cyclical bending test. Accelerated aging process was conducted according to EN 62137 standard for reliability tests of electronics. We observed significant negative influence of mechanical bending on sheet resistivity of ITO, while resistivity of nanotube and graphene based electrodes remained stable. Aging process has also negative influence on ITO based structures resulting in delamination of printed layers, while those based on carbon nanomaterials remained intact. We observe negligible changes in irradiation for structures with carbon nanotube electrodes after accelerated aging process. Such materials demonstrate a high application potential in general purpose electroluminescent devices.

  3. Glycerol electro-oxidation over glassy-carbon-supported Au nanoparticles: direct influence of the carbon support on the electrode catalytic activity.

    Science.gov (United States)

    Gomes, Janaina F; Gasparotto, Luiz H S; Tremiliosi-Filho, Germano

    2013-07-07

    Glycerol is at present abundantly co-produced in the biodiesel fabrication and can be used as fuel in Direct Glycerol Fuel Cells (DGFC) for cogeneration of electricity, value-added chemicals and heat. With this motivation, in the present work, we investigated at a fundamental level the oxidation of glycerol over glassy carbon (GC) supported Au nanoparticles in alkaline medium using cyclic voltammetry. By controlling the Au deposition time, we varied the GC supported Au coverage from 0.4% to 30% maintaining a regular particle size distribution with a mean particle size of about 200 nm. An influence of the carbon support on the activity of the GC-supported Au nanoparticles was evidenced. Results from studies on the oxidation of glycerol and ethylene glycol on Au and Pt nanoparticles supported on a glassy carbon, highly ordered pyrolytic graphite and dimensionally stable anode under different pH conditions indicate that the carbon support participates actively in the oxidation of glycerol and other alcohols. We propose that active oxygenated species are gradually formed on the glassy carbon by potential cycling (up to the saturation of the carbon area) and these oxygenated species are additional oxygen suppliers for the oxidation of glycerol residues adsorbed on the Au particles, following a mechanism consisting of the synergism of two active elements: gold and carbon.

  4. Optimal Pulse Voltage Waveform for a Xenon Barrier Discharge Lamp using both an Inner Electrode and an External Electrode

    National Research Council Canada - National Science Library

    JINNO, Masafumi; TANIUCHI, Hidefumi; WATANABE, Masashi; MOTOMURA, Hideki

    2006-01-01

    .... The timing of the second discharge can be changed by controlling the pulse width. In this study the influence of the pulse width on the luminance of the barrier discharge lamp with an inner electrode is investigated...

  5. ANALISA ELECTRODE CONSUMABLE TYPE OK AUTROD 12.10 PENGELASAN SUBMERGED ARC WELDING PADA BLOK-BLOK KAPAL DCV 18500 DWT DI PT. JASA MARINA INDAH UNIT II SEMARANG

    Directory of Open Access Journals (Sweden)

    Sukanto Jatmiko

    2012-07-01

    Full Text Available In this globalization era technological advances growed very fast. In shipping industry of development process shipbuilding of principal feedstock to used steel plate, with construction tacking on using welder method.In this research purpose of lifted is know number of requirement (consumable electrode for welder SAW at block-block ship DCV 18500 DWT in PT. Jasa Marina Indah Semarang.At this experiment specimen applied is low carbon steel of type ST 42 with thickness of 12, 13, 14, 17, 19 dan 24 mm. Research is done by the way of making specimen at every plate thickness. Then is done path measurement of length, used electrode length, and weight flux applied at the welder.From result of gauging and data calculation welder at block DB 5(p/c/s, SS5A(p/s, SS 5B(p/s, UD 5C, and TB 102 (p/c/s will be known number of electrodes applied in welder SAW and number of flux used.

  6. Influence of Dual-Bt Protein Corn on Bollworm, Helicoverpa zea (Boddie), Survivorship on Bollgard II Cotton

    Science.gov (United States)

    Gore, J.; Catchot, A.; Cook, D.; Musser, F.; Caprio, M.

    2016-01-01

    Similar Cry proteins are expressed in both Bt corn, Zea mays L., and cotton, Gossypium hirsutum (L.), commercial production systems. At least one generation of corn earworm, Helicoverpa zea (Boddie), completes development on field corn in the Mid-South before dispersing across the landscape into other crop hosts like cotton. A concern is that Bt corn hybrids may result in selection for H. zea populations with a higher probability of causing damage to Bt cotton. The objective of this study was to determine the susceptibility of H. zea offspring from moths that developed on non-Bt and VT Triple Pro (VT3 PRO) field corn to lyophilized Bollgard II cotton tissue expressing Cry1Ac and Cry2Ab. Offspring of individuals reared on VT3 PRO expressing Cry1A.105 and Cry2Ab had a significantly higher LC50 two out of the three years this study was conducted. Excess larvae were placed on artificial diet and allowed to pupate to determine if there were any inheritable fitness costs associated with parental development on VT3 PRO corn. Offspring resulting from males collected from VT3 PRO had significantly lower pupal weight and longer pupal duration compared with offspring of individuals collected from non-Bt corn. However, offspring from females collected from VT3 PRO were not different from non-Bt offspring. Paternal influence on offspring in insects is not commonly observed, but illustrates the side effects of development on a transgenic plant expressing less than a high dose, 25 times the concentration needed to kill susceptible larvae. PMID:26809264

  7. Exploring the Influence of the Aromaticity on the Anticancer and Antivascular Activities of Organoplatinum(II) Complexes.

    Science.gov (United States)

    Zamora, Ana; Pérez, Sergio A; Rothemund, Matthias; Rodríguez, Venancio; Schobert, Rainer; Janiak, Christoph; Ruiz, José

    2017-04-24

    A series of new organometallic PtII complexes of the type [Pt(C^N)Cl(DMSO)] (C^N=N,N-dimethyl-1-(2-aryl)methanamine-κ2 C2,N; aryl=phenyl 2 a, biphenyl 2 b, p-terphenyl 2 c, naphthyl 2 d, anthracenyl 2 e, or pyrenyl 2 f) have been synthesized to explore the influence of the aromaticity on their anticancer activity. The best performers, 2 b and d, are more active than cisplatin (CDDP) in epithelial ovarian carcinoma cells A2780, with 2 d having a higher selectivity factor than CDDP in all the tested cell lines. In addition, all the new compounds overcome the acquired resistance in A2780cisR cells and interestingly, show low micromolar IC50 values towards the triple negative breast cancer cell line MDA-MB-231 and the highly metastatic 518A2 melanoma cells. This study shows that the hydrophobicity, accumulation into cells, and metal levels on nuclear DNA for the complexes are consistent with their cytotoxicity. Complexes 2 b and d induce apoptosis in a caspase-independent manner and suppress the intracellular ROS generation without modifying the mitochondria membrane potential. In addition, 2 a-f effectively inhibit angiogenesis in the endothelial cell line EA.hy926 at sub-cytotoxic concentrations and 2 b and d show in vivo antivascular effects on the chorioallantoic membrane (CAM) of fertilized SPF-eggs (SPF=specific-pathogen-free). Inhibition of tubulin polymerization and degeneration of cytoskeleton organization in 518A2 melanoma cells are presented as a preliminary mechanism of its antimetastatic activity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Influence of Dual-Bt Protein Corn on Bollworm, Helicoverpa zea (Boddie), Survivorship on Bollgard II Cotton.

    Science.gov (United States)

    Von Kanel, M B; Gore, J; Catchot, A; Cook, D; Musser, F; Caprio, M

    2016-04-01

    Similar Cry proteins are expressed in both Bt corn, Zea mays L., and cotton, Gossypium hirsutum (L.), commercial production systems. At least one generation of corn earworm, Helicoverpa zea (Boddie), completes development on field corn in the Mid-South before dispersing across the landscape into other crop hosts like cotton. A concern is that Bt corn hybrids may result in selection for H. zea populations with a higher probability of causing damage to Bt cotton. The objective of this study was to determine the susceptibility of H. zea offspring from moths that developed on non-Bt and VT Triple Pro (VT3 PRO) field corn to lyophilized Bollgard II cotton tissue expressing Cry1Ac and Cry2Ab. Offspring of individuals reared on VT3 PRO expressing Cry1A.105 and Cry2Ab had a significantly higher LC50 two out of the three years this study was conducted. Excess larvae were placed on artificial diet and allowed to pupate to determine if there were any inheritable fitness costs associated with parental development on VT3 PRO corn. Offspring resulting from males collected from VT3 PRO had significantly lower pupal weight and longer pupal duration compared with offspring of individuals collected from non-Bt corn. However, offspring from females collected from VT3 PRO were not different from non-Bt offspring. Paternal influence on offspring in insects is not commonly observed, but illustrates the side effects of development on a transgenic plant expressing less than a high dose, 25 times the concentration needed to kill susceptible larvae.

  9. Composite carbon foam electrode

    Science.gov (United States)

    Mayer, S.T.; Pekala, R.W.; Kaschmitter, J.L.

    1997-05-06

    Carbon aerogels used as a binder for granulated materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy. 1 fig.

  10. Influence of divalent metal on the decomposition products of hydrotalcite-like ternary systems M{sup II}-Al-Cr (M{sup II} = Zn, Cd)

    Energy Technology Data Exchange (ETDEWEB)

    Perez, M.R.; Crespo, I.; Ulibarri, M.A.; Barriga, C. [Departamento de Quimica Inorganica e Ingenieria Quimica, Campus de Rabanales, Universidad de Cordoba, Cordoba (Spain); Rives, V. [GIR-QUESCAT, Departamento de Quimica Inorganica, Universidad de Salamanca, Salamanca (Spain); Fernandez, J.M., E-mail: um1feroj@uco.es [Departamento de Quimica Inorganica e Ingenieria Quimica, Campus de Rabanales, Universidad de Cordoba, Cordoba (Spain)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer LDHs M{sup II}-Al-Cr (M = Zn, Cd) with Cr in the layer or interlayer have been prepared. Black-Right-Pointing-Pointer LDHs Zn-Al or Zn-Cr decompose by heating forming ZnO and ZnAl{sub 2}O{sub 4} or ZnO and ZnCr{sub 2}O{sub 4}. Black-Right-Pointing-Pointer LDHs Zn-Al-Cr give rise to the formation of ZnO and the mixed spinel ZnAl{sub 2-x}Cr{sub x}O{sub 4}. Black-Right-Pointing-Pointer LDH Cd-Al-Cr shows the formation of CdO, CdCr{sub 2-x}Al{sub x}O{sub 4}, and (Al, Cr){sub 2}O{sub 3} mixed oxide. Black-Right-Pointing-Pointer Calcination of the CdAl-CrO{sub 4} give rise to (Al, Cr){sub 2}O{sub 3} as the majority phase. - Abstract: Layered double hydroxides (LDHs) containing M{sup II}, Al{sup III}, and Cr{sup III} in the brucite-like layers (M = Cd, Zn) with different starting Al/Cr molar ratios and nitrate/carbonate as the interlayer anion have been prepared following the coprecipitation method at a constant pH: Zn{sup II}-Al{sup III}-Cr{sup III}-CO{sub 3}{sup 2-} at pH = 10, and Cd{sup II}-Al{sup III}-Cr{sup III}-NO{sub 3}{sup -} at pH = 8. Two additional M{sup II},Al{sup III}-LDH samples (M = Cd, Zn) with chromate ions (CrO{sub 4}{sup 2-}) in the interlayer have been prepared by ionic exchange at pH = 9 and 8, respectively, starting from M{sup II}-Al{sup III}-NO{sub 3}{sup -}. The samples have been characterised by absorption atomic spectrometry, powder X-ray diffraction (PXRD), FT-IR spectroscopy and transmission electron microscopy (TEM). Their thermal stability has been assessed by DTA-TG and mass spectrometric analysis of the evolved gases. The PXRD patterns of the solids calcined at 800 Degree-Sign C show diffraction lines corresponding to ZnO and ZnAl{sub 2-x}Cr{sub x}O{sub 4} for the Zn-containing samples, and diffraction lines attributed to CdO and CdCr{sub 2}O{sub 4} and (Al,Cr){sub 2}O{sub 3} for the Cd-containing ones. Additionally a minority oxide, Cd{sub 2}CrO{sub 5}, is observed to Cd{sup II}-Al{sup III

  11. Ion-selective electrodes

    CERN Document Server

    Mikhelson, Konstantin N

    2013-01-01

    Ion-selective electrodes (ISEs) have a wide range of applications in clinical, environmental, food and pharmaceutical analysis as well as further uses in chemistry and life sciences. Based on his profound experience as a researcher in ISEs and a course instructor, the author summarizes current knowledge for advanced teaching and training purposes with a particular focus on ionophore-based ISEs. Coverage includes the basics of measuring with ISEs, essential membrane potential theory and a comprehensive overview of the various classes of ion-selective electrodes. The principles of constructing I

  12. Platinum porphyrins as ionophores in polymeric membrane electrodes

    DEFF Research Database (Denmark)

    Lvova, Larisa; Verrelli, Giorgio; Nardis, Sara

    2011-01-01

    A comparative study of Pt(II)- and Pt(IV)-porphyrins as novel ionophores for anion-selective polymeric membrane electrodes is performed. Polymeric membranes of different compositions, prepared by varying plasticizers, cationic and anionic additives and Pt porphyrins, have been examined by potenti......A comparative study of Pt(II)- and Pt(IV)-porphyrins as novel ionophores for anion-selective polymeric membrane electrodes is performed. Polymeric membranes of different compositions, prepared by varying plasticizers, cationic and anionic additives and Pt porphyrins, have been examined...... within the electrode membranes, while those based on Pt(IV)TPPCl2 operate via a mixed mode carrier mechanism, evidencing also a partial reduction of the starting ionophore to Pt(II)TPP. Spectrophotometric measurements of thin polymeric films indicate that no spontaneous formation of hydroxide ion bridged...... correlation between calculated and measured ionophore selectivity....

  13. The relative influence of secondary versus primary prevention using the national cholesterol education program adult treatment panel II guidelines

    NARCIS (Netherlands)

    Goldman, L; Coxson, P; Hunink, MGM; Goldman, PA; Tosteson, ANA; Mittleman, M; Williams, L; Weinstein, MC

    OBJECTIVES This study was undertaken to project the population-wide effect of full implementation of the Adult Treatment Panel (ATP) II guidelines of the National Cholesterol Education Program (NCEP). BACKGROUND The ATP II has proposed guidelines for cholesterol reduction, but the long-term

  14. Influence of collagen type II and nucleus pulposus cells on aggregation and differentiation of adipose tissue-derived stem cells

    NARCIS (Netherlands)

    Lu, Z.F.; Zandieh Doulabi, B.; Wuisman, P.I.; Bank, R.A.; Helder, M.N.

    2008-01-01

    Tissue microenvironment plays a critical role in guiding local stem cell differentiation. Within the intervertebral disc, collagen type II and nucleus pulposus (NP) cells are two major components. This study aimed to investigate how collagen type II and NP cells affect adipose tissue-derived stem

  15. Influence of unilateral maxillary first molar extraction treatment on second and third molar inclination in Class II subdivision patients

    NARCIS (Netherlands)

    Livas, Christos; Pandis, Nikolaos; Booij, Johan Willem; Halazonetis, Demetrios J.; Katsaros, Christos; Ren, Yijin

    Objective: To assess the maxillary second molar (M2) and third molar (M3) inclination following orthodontic treatment of Class II subdivision malocclusion with unilateral maxillary first molar (M1) extraction. Materials and Methods: Panoramic radiographs of 21 Class II subdivision adolescents (eight

  16. Metal/Diamond Composite Thin-Film Electrodes: New Carbon Supported Catalytic Electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Greg M. Swain, PI

    2009-03-10

    The DOE-funded research conducted by the Swain group was focused on (i) understanding structure-function relationships at boron-doped diamond thin-film electrodes, (ii) understanding metal phase formation on diamond thin films and developing electrochemical approaches for producing highly dispersed electrocatalyst particles (e.g., Pt) of small nominal particle size, (iii) studying the electrochemical activity of the electrocatalytic electrodes for hydrogen oxidation and oxygen reduction and (iv) conducting the initial synthesis of high surface area diamond powders and evaluating their electrical and electrochemical properties when mixed with a Teflon binder. (Note: All potentials are reported versus Ag/AgCl (sat'd KCl) and cm{sup 2} refers to the electrode geometric area, unless otherwise stated).

  17. Virtual electrodes for high-density electrode arrays

    Science.gov (United States)

    Cela, Carlos J.; Lazzi, Gianluca

    2015-10-13

    The present embodiments are directed to implantable electrode arrays having virtual electrodes. The virtual electrodes may improve the resolution of the implantable electrode array without the burden of corresponding complexity of electronic circuitry and wiring. In a particular embodiment, a virtual electrode may include one or more passive elements to help steer current to a specific location between the active electrodes. For example, a passive element may be a metalized layer on a substrate that is adjacent to, but not directly connected to an active electrode. In certain embodiments, an active electrode may be directly coupled to a power source via a conductive connection. Beneficially, the passive elements may help to increase the overall resolution of the implantable array by providing additional stimulation points without requiring additional wiring or driver circuitry for the passive elements.

  18. Potentiometric Flow Injection Analysis of Bromhexine Hydrochloride and its Pharmaceutical Preparation Using Conventional and Coated Wire Ion-Selective Electrodes

    OpenAIRE

    Nour T. Abdel-Ghani; Issa, Yousry M.; Ahmed, Howayda M.

    2006-01-01

    Bromhexine hydrochloride ion-selective electrodes (conventional type) based on bromhexinium tetraphenyl borate (I) and bromhexinium-phosphotungstate (II) were prepared. The electrodes exhibited mean slopes of calibration graphs of 59.4 mV and 59.8 mV per decade of bromhexine concentration at 25°C for electrode (I) and (II), respectively. Both electrodes could be used within the concentration range 3.16x10-5-1.00x10-2 M bromhexine within the pH range 2.0-4.5. The standard electrodes potentials...

  19. EFFECTS OF ELECTRODE DEFORMATION OF RESISTANCE SPOT WELDING ON 304 AUSTENITIC STAINLESS STEEL WELD GEOMETRY

    Directory of Open Access Journals (Sweden)

    Nachimani Charde

    2012-12-01

    Full Text Available The resistance spot welding process is accomplished by forcing huge amounts of current flow from the upper electrode tip through the base metals to the lower electrode tip, or vice versa or in both directions. A weld joint is established between the metal sheets through fusion, resulting in a strong bond between the sheets without occupying additional space. The growth of the weld nugget (bond between sheets is therefore determined from the welding current density; sufficient time for current delivery; reasonable electrode pressing force; and the area provided for current delivery (electrode tip. The welding current and weld time control the root penetration, while the electrode pressing force and electrode tips successfully accomplish the connection during the welding process. Although the welding current and weld time cause the heat generation at the areas concerned (electrode tip area, the electrode tips’ diameter and electrode pressing forces also directly influence the welding process. In this research truncated-electrode deformation and mushrooming effects are observed, which result in the welded areas being inconsistent due to the expulsion. The copper to chromium ratio is varied from the tip to the end of the electrode whilst the welding process is repeated. The welding heat affects the electrode and the electrode itself influences the shape of the weld geometry.

  20. Electrochemistry on nanopillared electrodes

    Directory of Open Access Journals (Sweden)

    Chandni Lotwala

    2017-02-01

    Full Text Available The addition of nanopillars to electrodes increases their electrochemical capabilities through an increase in electroactive surface area. The nanopillars can be applied on either cathodes or anodes to engage in reduction-oxidation reactions. This minireview summaries some work on cyclic voltammetry, chronoamperometry, impedance change on nanopillared surface and compared their electrochemistry behavior on planar surfaces.

  1. Dry EEG Electrodes

    Science.gov (United States)

    Lopez-Gordo, M. A.; Sanchez-Morillo, D.; Valle, F. Pelayo

    2014-01-01

    Electroencephalography (EEG) emerged in the second decade of the 20th century as a technique for recording the neurophysiological response. Since then, there has been little variation in the physical principles that sustain the signal acquisition probes, otherwise called electrodes. Currently, new advances in technology have brought new unexpected fields of applications apart from the clinical, for which new aspects such as usability and gel-free operation are first order priorities. Thanks to new advances in materials and integrated electronic systems technologies, a new generation of dry electrodes has been developed to fulfill the need. In this manuscript, we review current approaches to develop dry EEG electrodes for clinical and other applications, including information about measurement methods and evaluation reports. We conclude that, although a broad and non-homogeneous diversity of approaches has been evaluated without a consensus in procedures and methodology, their performances are not far from those obtained with wet electrodes, which are considered the gold standard, thus enabling the former to be a useful tool in a variety of novel applications. PMID:25046013

  2. Single Electrode Heat Effects

    DEFF Research Database (Denmark)

    Jacobsen, Torben; Broers, G. H. J.

    1977-01-01

    The heat evolution at a single irreversibly working electrode is treated onthe basis of the Brønsted heat principle. The resulting equation is analogous to the expression for the total heat evolution in a galvanic cellwith the exception that –DeltaS is substituted by the Peltier entropy, Delta...

  3. Nickel hydroxide modified electrodes for urea determination

    Directory of Open Access Journals (Sweden)

    Luiz Henrique Dall´Antonia

    2007-03-01

    Full Text Available Nickel hydroxide films were prepared by electrodeposition from a solution Ni(NO32 0,05 mol L ?¹ on ITO electrodes (Tin oxide doped with Indium on PET-like plastic film, applying a current of - 0,1 A cm ?² during different time intervals between 1800 and 7200 s. The electrochemical behavior of the nickel hydroxide electrode was investigated through a cyclic voltammogram, in NaOH 1,0 mol L ?¹, where it was observed two peaks in the profile in 0,410 and 0,280 V, corresponding to redox couple Ni(II/Ni(III. A sensor for urea presenting a satisfactory answer can be obtained when, after the deposit of the film of Ni(OH2 on the electrode of nickel, it is immersed in a solution of NaOH 1,0 mol L ?¹ and applying a potential of + 0,435 V, where the maximum of the anodic current occurs in the cyclic voltammogram. Analyzing the results it can be observed that, for a range of analite concentration between 5 to 50 m mol L ?¹, the behavior is linear and the sensibility found was of 20,3 mA cm?² (mol L?¹?¹, presenting reproducibility confirming the nickel hydroxide electrodes utilization for the determination of urea.

  4. Influence of ovarian cancer type I and type II microenvironment on the phenotype and function of monocyte-derived dendritic cells.

    Science.gov (United States)

    Surówka, J; Wertel, I; Okła, K; Bednarek, W; Tarkowski, R; Kotarski, J

    2017-12-01

    The aim of this study was to evaluate the influence of ovarian cancer cell lysates isolated from type I or type II ovarian cancer (OC) on the phenotype of monocyte-derived dendritic cells (Mo-DCs) and the cytokine profile. We also determined whether the Mo-DCs and tumor microenvironment, reflected by peritoneal fluid (PF) from type I or II ovarian cancer, could promote regulatory T cell (Tregs) differentiation from naive CD4+ lymphocytes in vitro. Our results show a significant role of the ovarian cancer microenvironment reflected by PF from type I or II OC in the inhibition of the DC differentiation process. Interestingly, the percentage of cells co-expressing CD45 and CD14 antigens in the cultures stimulated with PF from both type I and type II OC was higher than in the control. Furthermore, the percentage of cells expressing CD1a, i.e., a marker of immature DCs, was significantly reduced in the cultures stimulated with PF from type I and type II OC. The results obtained show that ovarian cancer type II lysates induce differentiation of monocytes into macrophage-like cells with a CD1a+/HLA-DR+/CD83- phenotype and significantly higher CD86/HLA-DR expression. We show that ovarian cancer type II Mo-DCs are able to prevent an immune response by release of IL-10, whereas OC type I Mo-DCs can promote the generation of Tregs. We demonstrate that each type of ovarian cancer can induce a unique phenotype of DCs and differentiation of Tregs, both associated with immune-suppressive function, which may be an obstacle while developing effective anticancer dendritic cell vaccination.

  5. Ion-selective electrode reviews

    CERN Document Server

    Thomas, J D R

    1985-01-01

    Ion-Selective Electrode Reviews, Volume 7 is a collection of papers that covers the applications of electrochemical sensors, along with the versatility of ion-selective electrodes. The coverage of the text includes solid contact in membrane ion-selective electrodes; immobilized enzyme probes for determining inhibitors; potentiometric titrations based on ion-pair formation; and application of ion-selective electrodes in soil science, kinetics, and kinetic analysis. The text will be of great use to chemists and chemical engineers.

  6. Nitrogen-Doped Carbon Nanotube/Graphite Felts as Advanced Electrode Materials for Vanadium Redox Flow Batteries.

    Science.gov (United States)

    Wang, Shuangyin; Zhao, Xinsheng; Cochell, Thomas; Manthiram, Arumugam

    2012-08-16

    Nitrogen-doped carbon nanotubes have been grown, for the first time, on graphite felt (N-CNT/GF) by a chemical vapor deposition approach and examined as an advanced electrode for vanadium redox flow batteries (VRFBs). The unique porous structure and nitrogen doping of N-CNT/GF with increased surface area enhances the battery performance significantly. The enriched porous structure of N-CNTs on graphite felt could potentially facilitate the diffusion of electrolyte, while the N-doping could significantly contribute to the enhanced electrode performance. Specifically, the N-doping (i) modifies the electronic properties of CNT and thereby alters the chemisorption characteristics of the vanadium ions, (ii) generates defect sites that are electrochemically more active, (iii) increases the oxygen species on CNT surface, which is a key factor influencing the VRFB performance, and (iv) makes the N-CNT electrochemically more accessible than the CNT.

  7. Determination of mercury(ii) in water at sub-nanomolar levels by laser ablation-ICPMS analysis of screen printed electrodes used as a portable voltammetric preconcentration system.

    Science.gov (United States)

    Abrego, Zuriñe; Unceta, Nora; Sánchez, Alicia; Gómez-Caballero, Alberto; Berrio-Ochoa, Luis Maria; Aranzazu Goicolea, M; Barrio, Ramón J

    2017-03-27

    Environmental pollution by mercury in ambient water samples is a recognized problem worldwide. Sample preservation and transport to the laboratory lead to uncertain analytical results. This study outlines the development of a procedure for on-site electrodeposition of mercury from water samples on a screen-printed gold electrode (SPGE) using portable voltammetric techniques. Once in the laboratory, Hg is analyzed by laser ablation inductively coupled plasma-mass spectrometry (LA-ICPMS) in order to ensure that the required sensitivity and precision levels for environmental sample analysis are reached. A new ablation chamber was intentionally designed for the analysis of SPGE's gold electrode. This cell has a small internal volume of 15 cm(3) and the SPGE device perfectly fits inside. This design assures signal stability, avoids elemental fractionation and reduces wash-out time to a few seconds, reducing the analysis time considerably. The proposed method is capable of measuring dissolved mercury at the ng L(-1) level (quantification limit 200 ng L(-1)) with good precision (RSD < 7.6%). The proposed method was tested with the NCS ZC 76303 (NIM-GBW08603) Mercury in water Certified Reference Material.

  8. Charge injection through nanocomposite electrode in microfluidic channel for electrical lysis of biological cells

    Science.gov (United States)

    Mishra, Madhusmita; Krishna, Anil; Chandra, Aman; Shenoy, B. M.; Hegde, G. M.; Mahapatra, D. Roy

    2013-03-01

    Several concepts have been developed in the recent years for nanomaterial based integrated MEMS platform in order to accelerate the process of biological sample preparation followed by selective screening and identification of target molecules. In this context, there exist several challenges which need to be addressed in the process of electrical lysis of biological cells. These are due to (i) low resource settings while achieving maximal lysis (ii) high throughput of target molecules to be detected (iii) automated extraction and purification of relevant molecules such as DNA and protein from extremely small volume of sample (iv) requirement of fast, accurate and yet scalable methods (v) multifunctionality toward process monitoring and (vi) downward compatibility with already existing diagnostic protocols. This paper reports on the optimization of electrical lysis process based on various different nanocomposite coated electrodes placed in a microfluidic channel. The nanocomposites are synthesized using different nanomaterials like Zinc nanorod dispersion in polymer. The efficiency of electrical lysis with various different electrode coatings has been experimentally verified in terms of DNA concentration, amplification and protein yield. The influence of the coating thickness on the injection current densities has been analyzed. We further correlate experimentally the current density vs. voltage relationship with the extent of bacterial cell lysis. A coupled multiphysics based simulation model is used to predict the cell trajectories and lysis efficiencies under various electrode boundary conditions as estimated from experimental results. Detailed in-situ fluorescence imaging and spectroscopy studies are performed to validate various hypotheses.

  9. Lead ion-selective electrodes based on polyphenylenediamine as unique solid ionophores.

    Science.gov (United States)

    Huang, Mei-Rong; Rao, Xue-Wu; Li, Xin-Gui; Ding, Yong-Bo

    2011-09-15

    A novel membrane electrode for Pb(II) ion detection based on semi-conducting poly(m-phenylenediamine) microparticles as a unique solid ionophore was fabricated. The electrode exhibited significantly enhanced response towards Pb(II) over the concentration range from 3.16×10(-6) to 0.0316 M at pH 3.0-5.0 with a low detection limit of 6.31×10(-7) M, a high sensitivity displaying a near-Nernstian slope of 29.8 mV decade(-1) for Pb(II). The electrode showed a long lifetime of 5 months and a short response time of 14s. A systematical investigation on the effect of anion excluder and various foreign ions on the selectivity of the electrode by a fixed interference method suggests that all other metal ions hardly ever interfere with the determination of Pb(II) except high concentration Hg(II). The electrode was successfully used as an indicator electrode in the potentiometric titration of Pb(II) with EDTA. Furthermore, the electrode has been used to satisfactorily analyze four types of real-world samples like spiked human urine, spiked tap water, and river water containing interfering ions like Na(I), Ca(II), Mg(II), Zn(II), Pd(II), Fe(III), K(I), Cu(II) and Hg(II) up to 8.04×10(-4) M, demonstrating fast response, high selectivity, good recovery (96.6-121.4%), good repeatability (RSD 0.31-6.45%), and small relative error (5.0%). Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Characterization of Transition-Metal Oxide Deposition on Carbon Electrodes of a Supercapacitor

    Directory of Open Access Journals (Sweden)

    Ying-Chung Chen

    2016-12-01

    Full Text Available In order to fabricate the composite electrodes of a supercapacitor, transition-metal oxide materials NiO and WO3 were deposited on carbon electrodes by electron beam evaporation. The influences of various transition-metal oxides, scan rates of cyclic voltammograms (CVs, and galvanostatic charge/discharge tests on the characteristics of supercapacitor were studied. The charge/discharge efficiency and the lifetime of the composite electrodes were also investigated. It was found that the composite electrodes exhibited more favorable capacitance properties than those of the carbon electrodes at high scan rates. The results revealed the promotion of the capacitance property of the supercapacitor with composite electrode and the improving of the decay property in capacitance at high scan rate. In addition, the charge/discharge efficiency is close to 100% after 5000 cycles, and the composite electrode retains strong adhesion between the electrode material and the substrate.

  11. Ion-selective electrode reviews

    CERN Document Server

    Thomas, J D R

    1983-01-01

    Ion-Selective Electrode Reviews, Volume 5 is a collection of articles that covers ion-speciation. The book aims to present the advancements of the range and capabilities of selective ion-sensors. The topics covered in the selection are neutral carrier based ion-selective electrodes; reference electrodes and liquid junction effects in ion-selective electrode potentiometry; ion transfer across water/organic phase boundaries and analytical; and carbon substrate ion-selective electrodes. The text will be of great use to chemists and chemical engineers.

  12. Ice electrode electrolytic cell

    Science.gov (United States)

    Glenn, D.F.; Suciu, D.F.; Harris, T.L.; Ingram, J.C.

    1993-04-06

    This invention relates to a method and apparatus for removing heavy metals from waste water, soils, or process streams by electrolytic cell means. The method includes cooling a cell cathode to form an ice layer over the cathode and then applying an electric current to deposit a layer of the heavy metal over the ice. The metal is then easily removed after melting the ice. In a second embodiment, the same ice-covered electrode can be employed to form powdered metals.

  13. Electrostatic Levitator Electrode Layout

    Science.gov (United States)

    1998-01-01

    Schematic of Electrostatic Levitator (ESL) electrodes and controls system. The ESL uses static electricity to suspend an object (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials science program.

  14. Fuel cell oxygen electrode

    Science.gov (United States)

    Shanks, H.R.; Bevolo, A.J.; Danielson, G.C.; Weber, M.F.

    An oxygen electrode for a fuel cell utilizing an acid electrolyte has a substrate of an alkali metal tungsten bronze of the formula: A/sub x/WO/sub 3/ where A is an alkali metal and x is at least 0.2, which is covered with a thin layer of platinum tungsten bronze of the formula: Pt/sub y/WO/sub 3/ where y is at least 0.8.

  15. Shielded capacitive electrode

    Science.gov (United States)

    Kireeff Covo, Michel

    2013-07-09

    A device is described, which is sensitive to electric fields, but is insensitive to stray electrons/ions and unlike a bare, exposed conductor, it measures capacitively coupled current while rejecting currents due to charged particle collected or emitted. A charged particle beam establishes an electric field inside the beam pipe. A grounded metallic box with an aperture is placed in a drift region near the beam tube radius. The produced electric field that crosses the aperture generates a fringe field that terminates in the back surface of the front of the box and induces an image charge. An electrode is placed inside the grounded box and near the aperture, where the fringe fields terminate, in order to couple with the beam. The electrode is negatively biased to suppress collection of electrons and is protected behind the front of the box, so the beam halo cannot directly hit the electrode and produce electrons. The measured signal shows the net potential (positive ion beam plus negative electrons) variation with time, as it shall be observed from the beam pipe wall.

  16. Investigations of products of copper electrode erosion in an AC plasmatron

    Science.gov (United States)

    Subbotin, D. I.; Kuznetsov, V. E.; Litvyakova, A. I.; Cherepkova, I. A.; Surov, A. V.; Nakonechnyi, G. V.; Spodobin, V. A.

    2017-11-01

    The products of the erosion of a hollow copper electrode of an ac plasmatron operating in air have been examined. It has been shown using elemental analysis, IR spectroscopy, X-ray phase analysis, and differential thermal analysis that the main components of the erosion products are copper trihydroxide nitrate (II), copper oxide (II), copper oxide (I), and copper hydroxide carbonate (II).

  17. Class I and Class II restorations of resin composite: an FE analysis of the influence of modulus of elasticity on stresses generated by occlusal loading

    DEFF Research Database (Denmark)

    Asmussen, Erik; Peutzfeldt, Anne

    2008-01-01

    OBJECTIVES: It was the aim of the study to analyze by the FE method stresses generated in tooth and restoration by occlusal loading of Class I and Class II restorations of resin composite. On the basis of available information on the influence of the modulus of elasticity, the research hypothesis...... was that the marginal stresses would decrease with increasing modulus of elasticity of the restoration. METHODS: A cylindrical tooth was modelled in enamel and dentin and fitted with a Class I or a Class II restoration of resin composite. In one scenario the restoration was bonded to the tooth, in another...... the restoration was left nonbonded. The resin composite was modelled with a modulus of elasticity of 5, 10, 15 or 20 GPa and loaded occlusally with 100 N. By means of the soft-ware program ABAQUS the von Mises stresses in enamel and dentin were calculated. RESULTS: In the bonded scenario, the maximum stresses...

  18. ZEOLITE-MODIFIED CARBON PASTE ELECTRODE FOR DETERMINATION OF COPPER USING ANODIC STRIPPING VOLTAMMETRY METHOD

    Directory of Open Access Journals (Sweden)

    Irdhawati

    2017-03-01

    Full Text Available In this research, the unmodified and modified carbon paste electrode with zeolite has been prepared, for determination of Cu(II using anodic stripping voltammetry method. The parameters observed involved deposition time, scan rates, zeolite composition in carbon paste, and validation of working electrode. The optimum performance of carbon paste electrode modified with zeolite was applied for determination of Cu(II in wastewater of the gong fabrication. The results of this research showed the optimum of deposition time and scan rates obtained at 410 s and 7.5 mV/s for unmodified carbon paste electrode, respectively. The optimum composition of zeolite-modifier is 20 % from total graphite, with deposition time 380 s and scan rates 10 mV/s. The detection limit of the measurement of Cu(II standard solution using unmodified carbon paste electrode is 46.13 ppb, is lower than unmodified carbon paste electrode, 99.93 ppb. Zeolite-modified carbon paste electrode has good precision and accuration. The concentration of Cu(II in waste water of gong fabrication , using carbon paste electrode modified with zeolite is 93.54 ± 0.87 ppb.

  19. Influence of pH of the H 2SO 4 solution on the phase composition of the PbO 2 active mass and of the PbO 2 anodic layer formed during cycling of lead electrodes

    Science.gov (United States)

    Monahov, B.; Pavlov, D.; Kirchev, A.; Vasilev, S.

    During charge and discharge of lead-acid batteries the concentration of the H 2SO 4 solution in the pores of the active material and in the interface grid/active mass varies widely. In this investigation, the influence of pH of the H 2SO 4 solution on the phase composition of the positive active mass (PAM) and of the interface PAM/grid is studied. The influence of pH on the phase composition of the interface is determined indirectly by cycling Pb electrodes between 0.70 and 1.60 V (versus Hg/Hg 2SO 4) in H 2SO 4 solutions of various concentrations and determining the phase composition and the structure of the anodic layer formed. The influence of pH on the phase composition of the PAM is investigated by immersing fully charged PAM samples into H 2SO 4 solutions of various concentrations and determining the phase composition of the PAM and the size of the α-PbO 2, β-PbO 2 and PbSO 4 crystals. It has been found that the outer sub-layer of the anodic layer participates in the cycling processes and its phase composition depends on the pH of the solution and on the potential scan rate. The reduction rate of PbO 2 in this sub-layer depends on the solution pH. If the reduction of PbO 2 proceeds in solutions with pH between -1.0 and -0.50, the rate of the processes is high. When it proceeds at pH>-0.50 the reduction rate is lower. This behaviour of the PbO 2/PbSO 4 electrode influences the power performance of the lead-acid battery when the positive plates are the power limiting component. The rate of oxidation of PbSO 4 to PbO 2 is determined by the pH of the solution because the solubility of PbSO 4 depends on pH. In concentrated solutions the solubility of PbSO 4 is low, the charge process is slow and some unoxidised PbSO 4 may remain in the charged plate. In diluted H 2SO 4 solutions, the solubility of PbSO 4 is high and PbSO 4 crystals are oxidised fully during charge. It has been found that the phase composition of the PAM depends on the pH of the solution since

  20. Major histocompatibility (MH) class II ß gene polymorphism influences disease resistance of common carp (Cyprinus carpio L.)

    NARCIS (Netherlands)

    Rakus, K.L.; Wiegertjes, G.F.; Jurecka, P.M.; Walker, P.D.; Pilarczyk, A.; Irnazarow, I.

    2009-01-01

    Genes of the major histocompatibility complex (MHC) are crucial elements of adaptive immunity. High polymorphism renders the MHC genes highly suitable for studies on association with disease resistance. In common carp (Cyprinus carpio L.), there are two paralogous groups of MH class II B genes,

  1. Advancing from Rules of Thumb: Quantifying the Effects of Small Density Changes in Mass Transport to Electrodes. Understanding Natural Convection.

    Science.gov (United States)

    Ngamchuea, Kamonwad; Eloul, Shaltiel; Tschulik, Kristina; Compton, Richard G

    2015-07-21

    Understanding mass transport is prerequisite to all quantitative analysis of electrochemical experiments. While the contribution of diffusion is well understood, the influence of density gradient-driven natural convection on the mass transport in electrochemical systems is not. To date, it has been assumed to be relevant only for high concentrations of redox-active species and at long experimental time scales. If unjustified, this assumption risks misinterpretation of analytical data obtained from scanning electrochemical microscopy (SECM) and generator-collector experiments, as well as analytical sensors utilizing macroelectrodes/microelectrode arrays. It also affects the results expected from electrodeposition. On the basis of numerical simulation, herein it is demonstrated that even at less than 10 mM concentrations and short experimental times of tens of seconds, density gradient-driven natural convection significantly affects mass transport. This is evident from in-depth numerical simulation for the oxidation of hexacyanoferrate (II) at various electrode sizes and electrode orientations. In each case, the induced convection and its influence on the diffusion layer established near the electrode are illustrated by maps of the velocity fields and concentration distributions evolving with time. The effects of natural convection on mass transport and chronoamperometric currents are thus quantified and discussed for the different cases studied.

  2. The processes of lipid peroxidation in the cells of Chlorobium limicola IMV K-8 under the influence of copper (II sulphate

    Directory of Open Access Journals (Sweden)

    T. B. Segin

    2015-12-01

    Full Text Available The effect of stressors, including heavy metal ions such as Cu2+, promotes activation of free radical processes in the cells of microorganisms, which causes changes in their physiological and biochemical properties and the structure of bacterial membranes. The aim of this work was to assess the influence of copper (II sulphate on intensity of lipid peroxidation (LPO of Chlorobium limicola IMV K-8 by measuring the content of primary (conjugated dienes and lipid hydroperoxides and secondary lipid peroxidation products (TBA-reactive products. Microorganisms were cultivated at a temperature of 28 °C in GSB cultivation medium with exposure to light of wavelength 700–800 nm and intensity 40 lux. A suspension of C. limicola ІМV К-8 cells in the phase of exponential growth was treated for one hour with metal salt solution in concentrations 0.05–0.50 mM for investigation of the influence of copper (II sulphate on its physiological and biochemical properties. The control samples did not contain any copper (II sulphate. Biomass was determined by turbidity of diluted cell suspension by application of photoelectric colorimeter KFK-3. A mixture of n-heptane and isopropyl alcohol was added into cell-free extract for conjugated dienes determination. The samples were incubated at room temperature and centrifuged. Water was added into the supernatant and the samples were stirred. Ethanol was added to the heptanes phase and adsorption was measured at 233 nm. The content of lipid hydroperoxides was determined by a method based on protein precipitation by trichloroacetic acid followed by addition of ammonium thiocyanate. The concentration of TBA-reactive products in the cell-free extracts was determined by color reaction with malondialdehyde and thiobarbituric acid exposed to high temperature and acidity of the medium, which causes formation of trimetinic adduct with maximal absorption at 532 nm. It was shown that when CuSO4 was added to the incubation

  3. Spark Gap Electrode Erosion

    Science.gov (United States)

    1984-12-01

    Graduate Students : A. Donaldson B. M~aas C. Yeh* * Paid by the Republic of China (Taiwan) ~rYC -i"."." V, " .~ *.-,........ A...addressed here but is being considered for future work. -2- 29 0 Numerous studies 2 - 6 have shown that the choice of gas, electrode, and insulator material...obtained in C4Pmr-tunwqt, (-33) Air 9.5 0.20 1.2 0.4 this experiment are in generally good agreement with the inea- Caeer -tt,.esn Air 11.5 0.24 1., U.3

  4. Transparent Electrodes for Efficient Optoelectronics

    KAUST Repository

    Morales-Masis, Monica

    2017-03-30

    With the development of new generations of optoelectronic devices that combine high performance and novel functionalities (e.g., flexibility/bendability, adaptability, semi or full transparency), several classes of transparent electrodes have been developed in recent years. These range from optimized transparent conductive oxides (TCOs), which are historically the most commonly used transparent electrodes, to new electrodes made from nano- and 2D materials (e.g., metal nanowire networks and graphene), and to hybrid electrodes that integrate TCOs or dielectrics with nanowires, metal grids, or ultrathin metal films. Here, the most relevant transparent electrodes developed to date are introduced, their fundamental properties are described, and their materials are classified according to specific application requirements in high efficiency solar cells and flexible organic light-emitting diodes (OLEDs). This information serves as a guideline for selecting and developing appropriate transparent electrodes according to intended application requirements and functionality.

  5. Influence of EDTA on the electrochemical removal of mercury (II) in soil from San Joaquin, Queretaro, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Robles, I.; Serrano, T.; Perez, J. J.; Bustos, E. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, S. C., Parque Tecnologico Queretaro, Sanfandila, Pedro Escobedo, 76703 Queretaro (Mexico); Hernandez, G.; Solis, S. [UNAM, Campus Juriquilla, Centro de Geociencias, Boulevard Juriquilla 3001, 76230 Queretaro (Mexico); Garcia, R. [UNAM, Centro de Ciencias de la Atmosfera, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Pi, T., E-mail: ebustos@cideteq.mx [UNAM, Instituto de Geologia, Ciudad Universitaria, 04510 Mexico D. F. (Mexico)

    2014-07-01

    The removal of mercury from soil and Ca-bentonite was performed using electrochemical treatment adding ethylendiamine-tetra acetic acid (EDTA) as a complexing agent to improve the electrochemical removal of Hg (II) in soil from San Joaquin, Queretaro, Mexico. During the electrokinetic treatment in the presence of 0.1 M EDTA, most of Hg (II) migrates toward the anode obtaining the highest removal efficiencies close to 70% in bentonite after 9 h. Using 0.1 M HCl only 65% efficiency was attained after 13 h in the cathodic side. EDTA formed a negatively charged stable complex that migrates to the cathode by the application of the electrokinetic treatment across Hg - EDTA synthesized complex. Finally, the predominant crystallographic structures of the samples were examined using X-ray diffraction. (Author)

  6. Electrocatalytic reduction of nitrite on tetraruthenated metalloporphyrins/Nafion glassy carbon modified electrode

    Energy Technology Data Exchange (ETDEWEB)

    Calfuman, Karla [Facultad de Ciencias, Departamento de Quimica, Universidad de Chile, Las Palmeras 3425, Casilla 653, Nunoa, Santiago (Chile); Aguirre, Maria Jesus [Facultad de Quimica y Biologia, Departamento de Quimica de los Materiales, Universidad de Santiago de Chile, Santiago (Chile); Canete-Rosales, Paulina; Bollo, Soledad [Facultad de Ciencias Quimicas y Farmaceuticas, Departamento de Quimica Farmacologica y Toxicologica, Universidad de Chile, Santiago (Chile); Llusar, Rosa [Departamento de Quimica Fisica y Analitica, Universidad de Jaume I, Castellon (Spain); Isaacs, Mauricio, E-mail: misaacs@uchile.cl [Facultad de Ciencias, Departamento de Quimica, Universidad de Chile, Las Palmeras 3425, Casilla 653, Nunoa, Santiago (Chile)

    2011-10-01

    Highlights: > Preparation and characterization of modified electrodes with M(II) Tetraruthenated porphyrins onto a Nafion film. > The electrodes were characterized by SEM, TEM, AFM and SECM techniques. > The modified electrodes are active in the electrochemical reduction of nitrite at -660 mV vs Ag/AgCl. > GC/Nf/CoTRP modified electrode is more electrochemically active than their Ni and Zn analogues. - Abstract: This paper describes the electrochemical reduction of nitrite ion in neutral aqueous solution mediated by tetraruthenated metalloporphyrins (Co(II), Ni(II) and Zn(II)) electrostatically assembled onto a Nafion film previously adsorbed on glassy carbon or ITO electrodes. Scanning electron microscope (SEM-EDX) and transmission electron microscopy (TEM) results have shown that on ITO electrodes the macrocycles forms multiple layers with a disordered stacking orientation over the Nafion film occupying hydrophobic and hydrophilic sites in the polyelectrolyte. Atomic force microscopy (AFM) results demonstrated that the Nafion film is 35 nm thick and tetraruthenated metalloporphyrins layers 190 nm thick presenting a thin but compacted morphology. Scanning electrochemical microscopy (SECM) images shows that the Co(II) tetraruthenated porphyrins/Nf/GC modified electrode is more electrochemically active than their Ni and Zn analogues. These modified electrodes are able to reduce nitrite at -660 mV showing enhanced reduction current and a decrease in the required overpotential compared to bare glassy carbon electrode. Controlled potential electrolysis experiments verify the production of ammonia, hydrazine and hydroxylamine at potentials where reduction of solvent is plausible demonstrating some selectivity toward the nitrite ion. Rotating disc electrode voltammetry shows that the factor that governs the kinetics of nitrite reduction is the charge propagation in the film.

  7. Discharge electrode configuration effects on the performance of a plasma sparker

    Science.gov (United States)

    Pei, Yanliang; Zhang, Liancheng; Huang, Yifan; Yan, Hui; Zhu, Xinlei; Liu, Zhen; Yan, Keping

    2017-09-01

    A multi-electrode array is commonly applied in a plasma sparker to generate stable acoustic pulses. In this paper, the effects of the electrode configuration on the performance of a plasma sparker have been investigated. In terms of the load electrical characteristics, the electrode radius and distance have negligible influence on the electric characteristics, whereas a larger electrode number results in a smaller voltage and a larger current but has little effect on the load energy. Regarding the acoustic characteristics, both the expansion and collapse pulses can be increased by decreasing the electrode tip radius. the influence of the electrode number and electrode gap distance on the amplitude of the expansion pulse was found to be negligible. And the amplitude of the collapse pulse decreases significantly with increasing electrode number. Increasing the electrode number decreases the energy efficiency for intense bubble interactions, thus, a small electrode tip radius and a small electrode number are preferred for the design of a plasma sparker if the total discharge energy is given.

  8. Influence of sulfur-crosslinking in vulcanized rubber chips on mercury(II) removal from contaminated water.

    Science.gov (United States)

    Danwanichakul, Panu; Dechojarasrri, Duangkamol; Meesumrit, Salina; Swangwareesakul, Suporn

    2008-06-15

    The adsorption of Hg(II) by natural rubber chips was investigated. First, the effect of chip size (5 mmx5 mm and 10 mmx10 mm) on the adsorption kinetics was studied. The pseudo-second-order modeling was found to explain the kinetics well. The smaller chips had higher adsorption rate so they were used for the rest of the research. Next the effects of sulfur, zinc oxide and carbon black on the adsorption capacity of Hg(II) at equilibrium conditions were investigated. The effect of sulfur was studied through different standard vulcanizing systems. The amount of zinc oxide was varied to be 3, 4 and 5 part per hundred parts of rubber (phr) while the carbon black (N-330) loading was varied to be 0, 30 and 50 phr, respectively. It was found that adsorption capacity increased with the degree of crosslink density, generated by sulfur reacting with rubber molecules. In addition, the adsorption capacities of various amounts of zinc oxide corresponded with their crosslink densities while the addition of carbon black seemed to obstruct Hg(II) adsorption.

  9. Electrodynamic Arrays Having Nanomaterial Electrodes

    Science.gov (United States)

    Trigwell, Steven (Inventor); Biris, Alexandru S. (Inventor); Calle, Carlos I. (Inventor)

    2013-01-01

    An electrodynamic array of conductive nanomaterial electrodes and a method of making such an electrodynamic array. In one embodiment, a liquid solution containing nanomaterials is deposited as an array of conductive electrodes on a substrate, including rigid or flexible substrates such as fabrics, and opaque or transparent substrates. The nanomaterial electrodes may also be grown in situ. The nanomaterials may include carbon nanomaterials, other organic or inorganic nanomaterials or mixtures.

  10. Characterization of competitive binding of Eu(III)/Cu(II) and Eu(III)/Ca(II) to Gorleben humic acid

    Energy Technology Data Exchange (ETDEWEB)

    Marang, L.; Reiller, P.E. [CEA Saclay, Lab Speciat Radionucledies and Mol, DEN, DANS, DPC, SECR, 91 - Gif sur Yvette (France); Marang, L.; Benedetti, M.F. [Univ Paris Diderot, Lab Geochim Eaux, IPGP, F-75251 Paris 05 (France); Marang, L.; Benedetti, M.F. [CNRS, UMR 71574, F-75251 Paris 05 (France); Eidner, S.; Kumke, M. [Univ Potsdam, Inst Chem, D-14476 Potsdam (Germany)

    2009-06-15

    Complete text of publication follows: In an area that contains high concentrations of natural organic matter, it is expected to play an important role on the speciation of trivalent radionuclides. Competitive interactions with H{sup +} and major cations, e.g. Ca{sup 2+} or Mg{sup 2+}, could influence these metals transport and bioavailability. Competitive experiments between Eu{sup 3+} and cations which can bind differently to humic substances, would bring an improved understanding of the competitive mechanisms. The aim of this study is to acquire data for Eu(III)/Cu(II) and Eu(III)/Ca(II) competitive binding to a sedimentary-originated humic acid (Gorleben, Germany). The NICA-Donnan parameters [1] for Ca(II), Cu(II), and Eu(III) obtained from competitive binding experiments using Ca{sup 2+} or Cu{sup 2+} ion selective electrodes (ISE), were used to model time-resolved luminescence spectroscopy (TRLS) measurements. Then the TRL spectra and decay times were interpreted to check the consistency of the modelling. From ISE data, Eu(III) and Cu(II) are in direct competition for the same type of sites, whereas Ca(II) has an indirect influence through electrostatic binding. The spectroscopic interpretation of the competition experiments showed two strikingly different environments for the Eu(III)/Cu(II) and Eu(III)/Ca(II) systems. Cu(II) seems to expel more effectively Eu(III) into an aqueous like environment within the humic acid structure, i.e., the Donnan phase, and to the aqueous phase as free Eu{sup 3+}. This is evidenced both from the spectra as well as from the decrease in the luminescence decay times. Moreover, Ca(II) causes a slighter modification of the chemical environment of the humic-complexed Eu(III). [1] Kinniburgh et al. (1999) Colloids Surf. A 151, 147-166

  11. Ion-selective electrode reviews

    CERN Document Server

    Thomas, J D R

    1982-01-01

    Ion-Selective Electrode Reviews, Volume 3, provides a review of articles on ion-selective electrodes (ISEs). The volume begins with an article on methods based on titration procedures for surfactant analysis, which have been developed for discrete batch operation and for continuous AutoAnalyser use. Separate chapters deal with detection limits of ion-selective electrodes; the possibility of using inorganic ion-exchange materials as ion-sensors; and the effect of solvent on potentials of cells with ion-selective electrodes. Also included is a chapter on advances in calibration procedures, the d

  12. Influence of pre-orthodontic trainer treatment on the perioral and masticatory muscles in patients with Class II division 1 malocclusion.

    Science.gov (United States)

    Uysal, Tancan; Yagci, Ahmet; Kara, Sadik; Okkesim, Sukru

    2012-02-01

    The aim of this follow-up study was to evaluate the effects of Pre-Orthodontic Trainer (POT) appliance on the anterior temporal, mental, orbicularis oris, and masseter muscles through electromyography (EMG) evaluations in subjects with Class II division 1 malocclusion and incompetent lips. Twenty patients (mean age: 9.8 ± 2.2 years) with a Class II division 1 malocclusion were treated with POT (Myofunctional Research Co., Queensland, Australia). A group of 15 subjects (mean age: 9.2 ± 0.9 years) with untreated Class II division 1 malocclusions was used as a control. EMG recordings of treatment group were taken at the beginning and at the end of the POT therapy (mean treatment period: 7.43 ± 1.06 months). Follow-up records of the control group were taken after 8 months of the first records. Recordings were taken during different oral functions: clenching, sucking, and swallowing. Statistical analyses were undertaken with Wilcoxon and Mann-Whitney U-tests. During the POT treatment, activity of anterior temporal, mental, and masseter muscles was decreased and orbicularis oris activity was increased during clenching and these differences were found statistically significant when compared to control. Orbicularis oris activity during sucking was increased in the treatment group (P muscle at clenching and orbicularis oris (P muscle at swallowing during observation period. Present findings indicated that treatment with POT appliance showed a positive influence on the masticatory and perioral musculature.

  13. Host Factors Influencing the Retrohoming Pathway of Group II Intron RmInt1, Which Has an Intron-Encoded Protein Naturally Devoid of Endonuclease Activity.

    Directory of Open Access Journals (Sweden)

    Rafael Nisa-Martínez

    Full Text Available Bacterial group II introns are self-splicing catalytic RNAs and mobile retroelements that have an open reading frame encoding an intron-encoded protein (IEP with reverse transcriptase (RT and RNA splicing or maturase activity. Some IEPs carry a DNA endonuclease (En domain, which is required to cleave the bottom strand downstream from the intron-insertion site for target DNA-primed reverse transcription (TPRT of the inserted intron RNA. Host factors complete the insertion of the intron. By contrast, the major retrohoming pathway of introns with IEPs naturally lacking endonuclease activity, like the Sinorhizobium meliloti intron RmInt1, is thought to involve insertion of the intron RNA into the template for lagging strand DNA synthesis ahead of the replication fork, with possible use of the nascent strand to prime reverse transcription of the intron RNA. The host factors influencing the retrohoming pathway of such introns have not yet been described. Here, we identify key candidates likely to be involved in early and late steps of RmInt1 retrohoming. Some of these host factors are common to En+ group II intron retrohoming, but some have different functions. Our results also suggest that the retrohoming process of RmInt1 may be less dependent on the intracellular free Mg2+ concentration than those of other group II introns.

  14. Quantitative Microstructure Characterization of a NMC Electrode

    Energy Technology Data Exchange (ETDEWEB)

    Usseglio-Viretta, François Laurent Emilien; Smith, Kandler

    2017-07-07

    Performance of lithium-ion batteries (LIBs) is strongly influenced by the porous microstructure of their electrodes. In this work, 3D microstructures of calendared and un-calendared positive electrode LiNi1/3Mn1/3Co1/3O2 (NMC) have been investigated in order to extract relevant properties useful for battery modeling. Transport (volume fraction, connectivity, particle size and tortuosity) and electrochemical (specific surface area) properties have been calculated for the pore and the active material. Special attention has been paid to determine the size of the so-called representative volume element (RVE) required to be statistically representative of the heterogeneous medium. Several parameters have been calculated using a panel of different numerical methods in order to compare their results. Besides, the image level of detail has been evaluated (using original criteria based upon edge detection) to assess the overall data quality available for the study.

  15. Quantitative Microstructure Characterization of a NMC Electrode

    Energy Technology Data Exchange (ETDEWEB)

    Usseglio Viretta, Francois L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Smith, Kandler A [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-28

    Performance of lithium-ion batteries (LIBs) is strongly influenced by the porous microstructure of their electrodes. In this work, 3D microstructures of calendared and un-calendared positive electrode LiNi1/3Mn1/3Co1/3O2 (NMC) have been investigated in order to extract relevant properties useful for battery modeling. Transport (volume fraction, connectivity, particle size and tortuosity) and electrochemical (specific surface area) properties have been calculated for the pore and the active material. Special attention has been paid to determine the size of the so-called representative volume element (RVE) required to be statistically representative of the heterogeneous medium. Several parameters have been calculated using a panel of different numerical methods in order to compare their results. Besides, the image level of detail has been evaluated (using original criteria based upon edge detection) to assess the overall data quality available for the study.

  16. A Nafion-coated bismuth film electrode for the determination of heavy metals in vegetable using differential pulse anodic stripping voltammetry: An alternative to mercury-based electrodes.

    Science.gov (United States)

    Xu, He; Zeng, Liping; Huang, Dekun; Xian, Yuezhong; Jin, Litong

    2008-08-15

    Mercury electrodes have been traditionally employed for achieving high reproducibility and sensitivity of the stripping technique. However, new alternative electrode materials are highly desired because of the toxicity of mercury. Bismuth is an electrode material characterized by its low toxicity and its ability to form alloys with some metals such as cadmium, lead and zinc, allowing their preconcentration at the electrode surface. In this work, we reported the simultaneous determination of Pb(II), Cd(II) and Zn(II) at the low μg/l concentration levels by differential pulse anodic stripping voltammetry (DPASV) on a Nafion-coated bismuth film electrode (NCBFE) plated in situ, and investigated the application of NCBFE to heavy metals analysis in vegetable samples. The analytical performance of NCBFE was evaluated for simultaneous determination of Pb(II), Cd(II) and Zn(II) in non-deaerated solution, with the limits of determination of 0.30μg/l for Zn, 0.17μg/l for Cd and Pb at a preconcentration time of 180s. High reproducibility for NCBFE was indicated from the relative standard deviations of 2.4% for Pb, 2.0% for Cd and 3.4% for Zn at the 15μg/l level (n=15). The NCBFE was successfully applied to determine Pb and Cd in vegetable samples, and the results were in agreement with those of graphite furnace atomic absorption spectrometry (GFAAS). Copyright © 2008 Elsevier Ltd. All rights reserved.

  17. Functioning of antimony film electrode in acid media under cyclic and anodic stripping voltammetry conditions.

    Science.gov (United States)

    Sebez, Bine; Ogorevc, Bozidar; Hocevar, Samo B; Veber, Marjan

    2013-06-27

    New insights into the functioning, i.e. electrochemical behaviour and analytical performance, of in situ prepared antimony film electrodes (SbFEs) under square-wave anodic stripping (SW-ASV) and cyclic (CV) voltammetry conditions are presented by studying several key operational parameters using Pb(II), Cd(II) and Zn(II) as model analyte ions. Five different carbon- and metal-based substrate transducer electrodes revealed a clear advantage of the former ones while the concentration of the precursor Sb(III) ion exhibited a distinct influence on the ASV functioning of the SbFE. Among six acids examined as potential supporting electrolytes the HNO3 was demonstrated to yield nearly identical results in conducting ASV experiments with SbFE as so far almost exclusively used HCl. This is extremely important as HNO3 is commonly employed acidifying agent in trace metal analysis, especially in elemental mass spectrometry measurements. By carrying out a systematic CV and ASV investigation using a medium exchange protocol, we confirmed the formation of poorly soluble oxidized Sb species at the substrate electrode surface at the end of each stripping step, i.e. at the potentials beyond the anodic dissolution of the antimony film. Hence, the significance of the cleaning and initializing the surface of a substrate electrode after accomplishing a stripping step was thoroughly studied in order to find conditions for a complete removal of the adhered Sb-oxides and thus to assure a memory-free functioning of the in situ prepared SbFE. Finally, the practical analytical application of the proposed ASV method was successfully tested and evaluated by measuring the three metal analytes in ground (tap) and surface (river) water samples acidified with HNO3. Our results approved the appropriateness of the SbFE and the proposed method for measuring low μg L(-1) levels of some toxic metals, particularly taking into account the possibility of on-field testing and the use of low cost

  18. Influence of Pitting Corrosion on Fatigue and Corrosion Fatigue of Ship and Offshore Structures, Part II: Load - Pit - Crack Interaction

    Directory of Open Access Journals (Sweden)

    Jakubowski Marek

    2015-09-01

    Full Text Available In the paper has been discussed influence of stresses on general corrosion rate and corrosion pit nucleation rate and growth , whose presence has been questioned by some authors but accepted by most of them. Influence of roughness of pit walls on fatigue life of a plate suffering pit corrosion and presence of the so called „ non-damaging” pits which never lead to initiation of fatigue crack, has been presented. Possibility of prediction of pit-to-crack transition moment by two different ways, i.e. considering a pit a stress concentrator or an equivalent crack, has been analyzed. Also, influence of statistical distribution of depth of corrosion pits as well as anticorrosion protection on fatigue and corrosion fatigue has been described.

  19. Multiple Bistability in Quinonoid-Bridged Diiron(II) Complexes: Influence of Bridge Symmetry on Bistable Properties.

    Science.gov (United States)

    van der Meer, Margarethe; Rechkemmer, Yvonne; Breitgoff, Frauke D; Marx, Raphael; Neugebauer, Petr; Frank, Uta; van Slageren, Joris; Sarkar, Biprajit

    2016-11-21

    Quinonoid bridges are well-suited for generating dinuclear assemblies that might display various bistable properties. In this contribution we present two diiron(II) complexes where the iron(II) centers are either bridged by the doubly deprotonated form of a symmetrically substituted quinonoid bridge, 2,5-bis[4-(isopropyl)anilino]-1,4-benzoquinone (H2L2') with a [O,N,O,N] donor set, or with the doubly deprotonated form of an unsymmetrically substituted quinonoid bridge, 2-[4-(isopropyl)anilino]-5-hydroxy-1,4-benzoquinone (H2L5') with a [O,O,O,N] donor set. Both complexes display temperature-induced spin crossover (SCO). The nature of the SCO is strongly dependent on the bridging ligand, with only the complex with the [O,O,O,N] donor set displaying a prominent hysteresis loop of about 55 K. Importantly, only the latter complex also shows a pronounced light-induced spin state change. Furthermore, both complexes can be oxidized to the mixed-valent iron(II)-iron(III) form, and the nature of the bridge determines the Robin and Day classification of these forms. Both complexes have been probed by a battery of electrochemical, spectroscopic, and magnetic methods, and this combined approach is used to shed light on the electronic structures of the complexes and on bistability. The results presented here thus show the potential of using the relatively new class of unsymmetrically substituted bridging quinonoid ligands for generating intriguing bistable properties and for performing site-specific magnetic switching.

  20. Titulações potenciométricas de cátions metálicos tendo como eletrodo indicador o sistema Cu/Cu(II-EDTA Potentiometric titrations of metal cations with edta using the Cu/Cu(II-EDTA system as indicator electrode

    Directory of Open Access Journals (Sweden)

    Paulo H. Pereira da Silva

    2008-01-01

    Full Text Available In potentiometric titrations of metal cations with EDTA the Hg/HgY2- system is usually used to detect the end point. However, the use of mercury has been discouraged in analytical procedures due to its toxicity. In this work the Cu/CuY2- system was used as indicator electrode for potentiometric titrations of some metal cations with EDTA. The solutions of Cu2+, Cd2+, Mn2+, Co2+ and Zn2+ were titrated with Na2EDTA solution in the presence of a small concentration of the CuY2- complex using a copper wire as indicator electrode. The potentiometric titrations with the Cu/CuY2- system showed good correlation when compared with an Hg/HgY2- system.

  1. Determination of Zinc, Cadmium, Lead, Copper and Silver Using a Carbon Paste Electrode and a Screen Printed Electrode Modified with Chromium(III Oxide

    Directory of Open Access Journals (Sweden)

    Zuzana Koudelkova

    2017-08-01

    Full Text Available In this study, the preparation and electrochemical application of a chromium(III oxide modified carbon paste electrode (Cr-CPE and a screen printed electrode (SPE, made from the same material and optimized for the simple, cheap and sensitive simultaneous determination of zinc, cadmium, lead, copper and the detection of silver ions, is described. The limits of detection and quantification were 25 and 80 µg·L−1 for Zn(II, 3 and 10 µg·L−1 for Cd(II, 3 and 10 µg·L−1 for Pb(II, 3 and 10 µg·L−1 for Cu(II, and 3 and 10 µg·L−1 for Ag(I, respectively. Furthermore, this promising modification was transferred to the screen-printed electrode. The limits of detection for the simultaneous determination of zinc, cadmium, copper and lead on the screen printed electrodes were found to be 350 µg·L−1 for Zn(II, 25 µg·L−1 for Cd(II, 3 µg·L−1 for Pb(II and 3 µg·L−1 for Cu(II. Practical usability for the simultaneous detection of these heavy metal ions by the Cr-CPE was also demonstrated in the analyses of wastewaters.

  2. Depletion of endothelial or smooth muscle cell-specific angiotensin II type 1a receptors does not influence aortic aneurysms or atherosclerosis in LDL receptor deficient mice.

    Directory of Open Access Journals (Sweden)

    Debra L Rateri

    Full Text Available Whole body genetic deletion of AT1a receptors in mice uniformly reduces hypercholesterolemia and angiotensin II-(AngII induced atherosclerosis and abdominal aortic aneurysms (AAAs. However, the role of AT1a receptor stimulation of principal cell types resident in the arterial wall remains undefined. Therefore, the aim of this study was to determine whether deletion of AT1a receptors in either endothelial cells or smooth muscle cells influences the development of atherosclerosis and AAAs.AT1a receptor floxed mice were developed in an LDL receptor -/- background. To generate endothelial or smooth muscle cell specific deficiency, AT1a receptor floxed mice were bred with mice expressing Cre under the control of either Tie2 or SM22, respectively. Groups of males and females were fed a saturated fat-enriched diet for 3 months to determine effects on atherosclerosis. Deletion of AT1a receptors in either endothelial or smooth muscle cells had no discernible effect on the size of atherosclerotic lesions. We also determined the effect of cell-specific AT1a receptor deficiency on atherosclerosis and AAAs using male mice fed a saturated fat-enriched diet and infused with AngII (1,000 ng/kg/min. Again, deletion of AT1a receptors in either endothelial or smooth muscle cells had no discernible effects on either AngII-induced atherosclerotic lesions or AAAs.Although previous studies have demonstrated whole body AT1a receptor deficiency diminishes atherosclerosis and AAAs, depletion of AT1a receptors in either endothelial or smooth muscle cells did not affect either of these vascular pathologies.

  3. On the importance of electrode parameters for shaping electric field patterns generated by tDCS

    DEFF Research Database (Denmark)

    B. Saturnino, Guilherme; Antunes, André; Thielscher, Axel

    2015-01-01

    Transcranial direct current stimulation (tDCS) uses electrode pads placed on the head to deliver weak direct current to the brain and modulate neuronal excitability. The effects depend on the intensity and spatial distribution of the electric field. This in turn depends on the geometry and electric...... properties of the head tissues and electrode pads. Previous numerical studies focused on providing a reasonable level of detail of the head anatomy, often using simplified electrode models. Here, we explore via finite element method (FEM) simulations based on a high-resolution head model how detailed...... electrode modeling influences the calculated electric field in the brain. We take into account electrode shape, size, connector position and conductivities of different electrode materials (including saline solutions and electrode gels). These factors are systematically characterized to demonstrate...

  4. 3D printed electrodes for a dielectric barrier discharge

    Science.gov (United States)

    Albertson, Robert; Gershman, Sophia; Zwicker, Andrew

    2013-10-01

    The affordability and advancements in 3D printing technology make it the method of choice for prototyping and development. We investigate how the thickness and density of 3D printed electrodes affects the formation of microdischarges inside a dielectric barrier discharge (DBD) surface modification reactor. We use a Makerbot Replicator II 3D printer to manufacture the electrodes by encasing thin pieces of copper tape in PLA plastic. The DBD setup consists of a cylindrical aluminum HV electrode which is surrounded by a layer of 5mm thick Alumina and is connected to a 15 kV, 75-300 kHz, AC power supply. The printed electrodes are grounded and held 5mm beneath the Alumina, forming a discharge gap. The DBD is operated with Ar/Air and Ar/O2/Air mixtures at atmospheric pressure. A PI-MAX 3 ICCD camera is used to image the microdischarges at various stages of their development. The image analysis suggests that the printed electrodes with a thicker plastic layer and a greater infill density have more uniform discharges. Quickfield electric field simulations suggest that the field inside the discharge gap is distorted near the surface of the electrodes due to irregularities in the printed material. These results can be used to guide the future design of 3D printed electrical components.

  5. Single camera photogrammetry system for EEG electrode identification and localization.

    Science.gov (United States)

    Baysal, Uğur; Sengül, Gökhan

    2010-04-01

    In this study, photogrammetric coordinate measurement and color-based identification of EEG electrode positions on the human head are simultaneously implemented. A rotating, 2MP digital camera about 20 cm above the subject's head is used and the images are acquired at predefined stop points separated azimuthally at equal angular displacements. In order to realize full automation, the electrodes have been labeled by colored circular markers and an electrode recognition algorithm has been developed. The proposed method has been tested by using a plastic head phantom carrying 25 electrode markers. Electrode locations have been determined while incorporating three different methods: (i) the proposed photogrammetric method, (ii) conventional 3D radiofrequency (RF) digitizer, and (iii) coordinate measurement machine having about 6.5 mum accuracy. It is found that the proposed system automatically identifies electrodes and localizes them with a maximum error of 0.77 mm. It is suggested that this method may be used in EEG source localization applications in the human brain.

  6. Light addressable gold electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Khalid, Waqas

    2011-07-01

    The main objective carried out in this dissertation was to fabricate Light Amplified Potentiometric sensors (LAPS) based upon the semiconductor nanoparticles (quantum dots) instead of its bulk form. Quantum dots (QDs) were opted for this device fabrication because of their superior fluorescent, electric and catalytic properties. Also in comparison to their bulk counterparts they will make device small, light weighted and power consumption is much lower. QDs were immobilized on a Au substrate via 1,4 benzene dithiol (BDT) molecule. Initially a self-assembled monolayer (SAM) of BDT was established on Au substrate. Because of SAM, the conductivity of Au substrate decreased dramatically. Furthermore QDs were anchored with the help of BDT molecule on Au substrate. When QDs immobilized on Au substrate (QD/Au) via BDT molecule were irradiated with UV-visible light, electron-hole pairs were generated in QDs. The surface defect states in QDs trapped the excited electrons and long lived electron-hole pairs were formed. By the application of an appropriate bias potential on Au substrate the electrons could be supplied or extracted from the QDs via tunneling through BDT. Thus a cathodic or anodic current could be observed depending upon bias potential under illumination. However without light illumination the QD/Au electrode remained an insulator. To improve the device different modifications were made, including different substrates (Au evaporated on glass, Au evaporated on mica sheets and Au sputtered on SiO{sub 2}/Si) and different dithiol molecules (capped and uncapped biphenyl 4,4' dithiol and capped and uncapped 4,4' dimercaptostilbenes) were tried. Also different QD immobilization techniques (normal incubation, spin coating, layer by layer assembly (LbL) of polyelectrolytes and heat immobilization) were employed. This device was able to detect electrochemically different analytes depending upon the QDs incorporated. For example CdS QDs were able to detect 4

  7. Electrode materials for microbial fuel cells: nanomaterial approach

    KAUST Repository

    Mustakeem, Mustakeem

    2015-11-05

    Microbial fuel cell (MFC) technology has the potential to become a major renewable energy resource by degrading organic pollutants in wastewater. The performance of MFC directly depends on the kinetics of the electrode reactions within the fuel cell, with the performance of the electrodes heavily influenced by the materials they are made from. A wide range of materials have been tested to improve the performance of MFCs. In the past decade, carbon-based nanomaterials have emerged as promising materials for both anode and cathode construction. Composite materials have also shown to have the potential to become materials of choice for electrode manufacture. Various transition metal oxides have been investigated as alternatives to conventional expensive metals like platinum for oxygen reduction reaction. In this review, different carbon-based nanomaterials and composite materials are discussed for their potential use as MFC electrodes.

  8. Secondary-Phase Stochastics in Lithium-Ion Battery Electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kandler A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Mistry, Aashutosh N. [Purdue University; Mukherjee, Partha P. [Purdue University

    2018-01-12

    Lithium-ion battery electrodes exhibit complex interplay among multiple electrochemically coupled transport processes, which rely on the underlying functionality and relative arrangement of different constituent phases. The electrochemically inactive solid phases (e.g., conductive additive and binder, referred to as the secondary phase), while beneficial for improved electronic conductivity and mechanical integrity, may partially block the electrochemically active sites and introduce additional transport resistances in the pore (electrolyte) phase. In this work, the role of mesoscale interactions and inherent stochasticity in porous electrodes is elucidated in the context of short-range (interface) and long-range (transport) characteristics. The electrode microstructure significantly affects kinetically and transport-limiting scenarios and thereby the cell performance. The secondary-phase morphology is also found to strongly influence the microstructure-transport-kinetics interactions. Apropos, strategies have been proposed for performance improvement via electrode microstructural modifications.

  9. The BaLROG project - II. Quantifying the influence of bars on the stellar populations of nearby galaxies

    NARCIS (Netherlands)

    Seidel, M. K.; Falcón-Barroso, J.; Martínez-Valpuesta, I.; Sánchez-Blázquez, P.; Pérez, I.; Peletier, R.; Vazdekis, A.

    2016-01-01

    We continue the exploration of the BaLROG (Bars in Low Redshift Optical Galaxies) sample: 16 large mosaics of barred galaxies observed with the integral field unit Spectrographic Areal Unit for Research on Optical Nebulae. We quantify the influence of bars on the composition of the stellar

  10. Pylorus-preserving pancreatoduodenectomy: influence of a Billroth I versus a Billroth II type of reconstruction on gastric emptying

    NARCIS (Netherlands)

    Goei, T. H.; van Berge Henegouwen, M. I.; Slooff, M. J.; van Gulik, T. M.; Gouma, D. J.; Eddes, E. H.

    2001-01-01

    BACKGROUND/AIM: Delayed gastric emptying (DGE) is a frequent problem after pylorus-preserving pancreatoduodenectomy. Important risk factors are the presence of intra-abdominal complications. Searching for other causes, this study evaluates the influence of the type of reconstruction after a

  11. Pylorus-preserving pancreatoduodenectomy : Influence of a Billroth I versus a Billroth II type of reconstruction on gastric emptying

    NARCIS (Netherlands)

    Goei, TH; Henegouwen, MIV; Slooff, MJH; van Gulik, TM; Gouma, DJ; Eddes, EH

    2001-01-01

    Background/Aim: Delayed gastric emptying (DGE) is a frequent problem after pylorus-preserving pancreatoduodenectomy. Important risk factors are the presence of intra-abdominal complications. Searching for other causes, this study evaluates the influence of the type of reconstruction after a

  12. Factors influencing dentists' choice of amalgam and tooth-colored restorative materials for Class II preparations in younger patients.

    Science.gov (United States)

    Vidnes-Kopperud, Simen; Tveit, Anne Bjørg; Gaarden, Torunn; Sandvik, Leiv; Espelid, Ivar

    2009-01-01

    To identify factors associated with dentists' decisions on choice of restorative material in children and adolescents. In the period 2001-2004, 27 dentists in the Public Dental Health Service in Norway placed 4030 Class II restorations in 1912 patients. The reason for placement, previous caries experience (DMFT), oral hygiene, and characteristics of the cavity were recorded. The most frequently used material was resin composite (81.5%), followed by compomer (12.7%), amalgam (4.6%), and glass ionomer cement (1.2%). Tooth-colored restorations were more frequently placed than amalgam in younger patients (p=0.017). Female patients received fewer amalgam restorations than male patients (p=0.006). Amalgam was more often used in patients with high DMFT (pAmalgam was more frequently placed in molars than in premolars (pamalgam in more challenging restorations with respect to caries activity, lesion depth, and tooth type. The findings indicate that in a period when the use of amalgam was phasing out, resin composite was the predominant material of choice for Class II restorations in children and adolescents.

  13. Gel electrolytes and electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Fleischmann, Sven; Bunte, Christine; Mikhaylik, Yuriy V.; Viner, Veronika G.

    2017-09-05

    Gel electrolytes, especially gel electrolytes for electrochemical cells, are generally described. In some embodiments, the gel electrolyte layers comprise components a) to c). Component a) may be at least one layer of at least one polymer comprising polymerized units of: a1) at least one monomer containing an ethylenically unsaturated unit and an amido group and a2) at least one crosslinker. Component b) may be at least one conducting salt and component c) may be at least one solvent. Electrodes may comprise the components a), d) and e), wherein component a) may be at least one layer of at least one polymer as described herein. Component d) may be at least one electroactive layer and component e) may be at least one ceramic layer. Furthermore, electrochemical cells comprising component a) which may be at least one layer of at least one polymer as described herein, are also provided.

  14. Rapid determination of trace level copper in tea infusion samples by solid contact ion selective electrode

    Directory of Open Access Journals (Sweden)

    Aysenur Birinci

    2016-07-01

    Full Text Available A new solid contact copper selective electrode with a poly (vinyl chloride (PVC membrane consisting of o-xylylenebis(N,N-diisobutyldithiocarbamate as ionophore has been prepared. The main novelties of constructed ion selective electrode concept are the enhanced robustness, cheapness, and fastness due to the use of solid contacts. The electrode exhibits a rapid (< 10 seconds and near-Nernstian response to Cu2+ activity from 10−1 to 10−6 mol/L at the pH range of 4.0–6.0. No serious interference from common ions was found. The electrode characterizes by high potential stability, reproducibility, and full repeatability. The electrode was used as an indicator electrode in potentiometric titration of Cu(II ions with EDTA and for the direct assay of tea infusion samples by means of the calibration graph technique. The results compared favorably with those obtained by the atomic absorption spectroscopy (AAS.

  15. Electrochemical photovoltaic cells and electrodes

    Science.gov (United States)

    Skotheim, Terje A.

    1984-01-01

    Improved electrochemical photovoltaic cells and electrodes for use therein, particularly electrodes employing amorphous silicon or polyacetylene coating are produced by a process which includes filling pinholes or porous openings in the coatings by electrochemical oxidation of selected monomers to deposit insulating polymer in the openings.

  16. Erosion on spark plug electrodes; Funkenerosion an Zuendkerzenelektroden

    Energy Technology Data Exchange (ETDEWEB)

    Rager, J.

    2006-07-01

    Durability of spark plugs is mainly determined by spark gap widening, caused by electrode wear. Knowledge about the erosion mechanisms of spark plug materials is of fundamental interest for the development of materials with a high resistance against electrode erosion. It is therefore crucial to identify those parameters which significantly influence the erosion behaviour of a material. In this work, a reliable and reproducible testing method is presented which produces and characterizes electrode wear under well-defined conditions and which is capable of altering parameters specifically. Endurance tests were carried out to study the dependence of the wear behaviour of pure nickel and platinum on the electrode temperature, gas, electrode gap, electrode diameter, atmospheric pressure, and partial pressure of oxygen. It was shown that erosion under nitrogen is negligible, irrespective of the material. This disproves all common mechanism discussed in the literature explaining material loss of spark plug electrodes. Based on this observation and the variation of the mentioned parameters a new erosion model was deduced. This relies on an oxidation of the electrode material and describes the erosion of nickel and platinum separately. For nickel, electrode wear is caused by the removal of an oxide layer by the spark. In the case of platinum, material loss occurs due to the plasma-assisted formation and subsequent evaporation of volatile oxides in the cathode spot. On the basis of this mechanism a new composite material was developed whose erosion resistance is superior to pure platinum. Oxidation resistant metal oxide particles were added to a platinum matrix, thus leading to a higher erosion resistance of the composite. However, this can be decreased by a side reaction, the separation of oxygen from the metal oxides, which effectively assists the oxidation of the matrix. This reaction can be suppressed by using highly stable oxides, characterized by a large negative Gibbs

  17. Electrode for a lithium cell

    Science.gov (United States)

    Thackeray, Michael M [Naperville, IL; Vaughey, John T [Elmhurst, IL; Dees, Dennis W [Downers Grove, IL

    2008-10-14

    This invention relates to a positive electrode for an electrochemical cell or battery, and to an electrochemical cell or battery; the invention relates more specifically to a positive electrode for a non-aqueous lithium cell or battery when the electrode is used therein. The positive electrode includes a composite metal oxide containing AgV.sub.3O.sub.8 as one component and one or more other components consisting of LiV.sub.3O.sub.8, Ag.sub.2V.sub.4O.sub.11, MnO.sub.2, CF.sub.x, AgF or Ag.sub.2O to increase the energy density of the cell, optionally in the presence of silver powder and/or silver foil to assist in current collection at the electrode and to improve the power capability of the cell or battery.

  18. Susceptibility to amoxicillin-clavulanate-induced liver injury is influenced by multiple HLA class I and II alleles.

    Science.gov (United States)

    Lucena, M Isabel; Molokhia, Mariam; Shen, Yufeng; Urban, Thomas J; Aithal, Guruprasad P; Andrade, Raúl J; Day, Christopher P; Ruiz-Cabello, Francisco; Donaldson, Peter T; Stephens, Camilla; Pirmohamed, Munir; Romero-Gomez, Manuel; Navarro, Jose Maria; Fontana, Robert J; Miller, Michael; Groome, Max; Bondon-Guitton, Emmanuelle; Conforti, Anita; Stricker, Bruno H C; Carvajal, Alfonso; Ibanez, Luisa; Yue, Qun-Ying; Eichelbaum, Michel; Floratos, Aris; Pe'er, Itsik; Daly, Mark J; Goldstein, David B; Dillon, John F; Nelson, Matthew R; Watkins, Paul B; Daly, Ann K

    2011-07-01

    Drug-induced liver injury (DILI), especially from antimicrobial agents, is an important cause of serious liver disease. Amoxicillin-clavulanate (AC) is a leading cause of idiosyncratic DILI, but little is understood about genetic susceptibility to this adverse reaction. We performed a genome-wide association study using 822,927 single nucleotide polymorphism (SNP) markers from 201 White European and US cases of DILI following AC administration (AC-DILI) and 532 population controls, matched for genetic background. AC-DILI was associated with many loci in the major histocompatibility complex. The strongest effect was with an HLA class II SNP (rs9274407, P=4.8×10(-14)), which correlated with rs3135388, a tag SNP of HLA-DRB1*1501-DQB1*0602 that was previously associated with AC-DILI. Conditioned on rs3135388, rs9274407 is still significant (P=1.1×10(-4)). An independent association was observed in the class I region (rs2523822, P=1.8×10(-10)), related to HLA-A*0201. The most significant class I and II SNPs showed statistical interaction (P=.0015). High-resolution HLA genotyping (177 cases and 219 controls) confirmed associations of HLA-A*0201 (P=2×10(-6)) and HLA-DQB1*0602 (P=5×10(-10)) and their interaction (P=.005). Additional, population-dependent effects were observed in HLA alleles with nominal significance. In an analysis of autoimmune-related genes, rs2476601 in the gene PTPN22 was associated (P=1.3×10(-4)). Class I and II HLA genotypes affect susceptibility to AC-DILI, indicating the importance of the adaptive immune response in pathogenesis. The HLA genotypes identified will be useful in studies of the pathogenesis of AC-DILI but have limited utility as predictive or diagnostic biomarkers because of the low positive predictive values. Copyright © 2011 AGA Institute. Published by Elsevier Inc. All rights reserved.

  19. Individual and simultaneous determination of lead, cadmium, and zinc by anodic stripping voltammetry at a bismuth bulk electrode.

    Science.gov (United States)

    Armstrong, Kristie C; Tatum, Clarissa E; Dansby-Sparks, Royce N; Chambers, James Q; Xue, Zi-Ling

    2010-07-15

    A bismuth bulk electrode (BiBE) has been investigated as an alternative electrode for the anodic stripping voltammetric (ASV) analysis of Pb(II), Cd(II), and Zn(II). The BiBE, which is fabricated in-house, shows results comparable to those of similar analyses at other Bi-based electrodes. Metal accumulation is achieved by holding the electrode potential at -1.4V (vs. Ag/AgCl) for 180 s followed by a square wave voltammetric stripping scan from -1.4 to -0.35 V. Calibration plots are obtained for all three metals, individually and simultaneously, in the 10-100 microg L(-1) range, with a detection limit of 93, 54, and 396 ng L(-1) for Pb(II), Cd(II), Zn(II), respectively. A slight reduction in slope is observed for Cd(II) and Pb(II) when the three metals are calibrated simultaneously vs. individually. Comparing the sensitivities of the metals when calibrated individually vs. in a mixture reveals that Zn(II) is not affected by stripping in a mixture. However, Pb(II) and Cd(II) have decreasing sensitivities in a mixture. The optimized method has been successfully used to test contaminated river water by standard addition. The results demonstrate the ability of the BiBE as an alternative electrode material in heavy metal analysis. Copyright 2010 Elsevier B.V. All rights reserved.

  20. Advantage of four-electrode over two-electrode defibrillators

    Science.gov (United States)

    Bragard, J.; Šimić, A.; Laroze, D.; Elorza, J.

    2015-12-01

    Defibrillation is the standard clinical treatment used to stop ventricular fibrillation. An electrical device delivers a controlled amount of electrical energy via a pair of electrodes in order to reestablish a normal heart rate. We propose a technique that is a combination of biphasic shocks applied with a four-electrode system rather than the standard two-electrode system. We use a numerical model of a one-dimensional ring of cardiac tissue in order to test and evaluate the benefit of this technique. We compare three different shock protocols, namely a monophasic and two types of biphasic shocks. The results obtained by using a four-electrode system are compared quantitatively with those obtained with the standard two-electrode system. We find that a huge reduction in defibrillation threshold is achieved with the four-electrode system. For the most efficient protocol (asymmetric biphasic), we obtain a reduction in excess of 80% in the energy required for a defibrillation success rate of 90%. The mechanisms of successful defibrillation are also analyzed. This reveals that the advantage of asymmetric biphasic shocks with four electrodes lies in the duration of the cathodal and anodal phase of the shock.

  1. On the importance of electrode parameters for shaping electric field patterns generated by tDCS.

    Science.gov (United States)

    Saturnino, Guilherme B; Antunes, André; Thielscher, Axel

    2015-10-15

    Transcranial direct current stimulation (tDCS) uses electrode pads placed on the head to deliver weak direct current to the brain and modulate neuronal excitability. The effects depend on the intensity and spatial distribution of the electric field. This in turn depends on the geometry and electric properties of the head tissues and electrode pads. Previous numerical studies focused on providing a reasonable level of detail of the head anatomy, often using simplified electrode models. Here, we explore via finite element method (FEM) simulations based on a high-resolution head model how detailed electrode modeling influences the calculated electric field in the brain. We take into account electrode shape, size, connector position and conductivities of different electrode materials (including saline solutions and electrode gels). These factors are systematically characterized to demonstrate their impact on the field distribution in the brain. The goals are to assess the effect of simplified electrode models; and to develop practical rules-of-thumb to achieve a stronger stimulation of the targeted brain regions underneath the electrode pads. We show that for standard rectangular electrode pads, lower saline and gel conductivities result in more homogeneous fields in the region of interest (ROI). Placing the connector at the center of the electrode pad or farthest from the second electrode substantially increases the field strength in the ROI. Our results highlight the importance of detailed electrode modeling and of having an adequate selection of electrode pads/gels in experiments. We also advise for a more detailed reporting of the electrode montages when conducting tDCS experiments, as different configurations significantly affect the results. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Finite difference time domain (FDTD) modeling of implanted deep brain stimulation electrodes and brain tissue.

    Science.gov (United States)

    Gabran, S R I; Saad, J H; Salama, M M A; Mansour, R R

    2009-01-01

    This paper demonstrates the electromagnetic modeling and simulation of an implanted Medtronic deep brain stimulation (DBS) electrode using finite difference time domain (FDTD). The model is developed using Empire XCcel and represents the electrode surrounded with brain tissue assuming homogenous and isotropic medium. The model is created to study the parameters influencing the electric field distribution within the tissue in order to provide reference and benchmarking data for DBS and intra-cortical electrode development.

  3. Feedback in Clinical Education, Part II: Approved Clinical Instructor and Student Perceptions of and Influences on Feedback

    Science.gov (United States)

    Nottingham, Sara; Henning, Jolene

    2014-01-01

    Context: Approved Clinical Instructors (ACIs; now known as preceptors) are expected to provide feedback to athletic training students (ATSs) during clinical education experiences. Researchers in other fields have found that clinical instructors and students often have different perceptions of actual and ideal feedback and that several factors may influence the feedback exchanges between instructors and students. However, understanding of these issues in athletic training education is minimal. Objective: To investigate the current characteristics and perceptions of and the influences on feedback exchanges between ATSs and ACIs. Design: Qualitative study. Setting: One entry-level master's degree program accredited by the Commission on Accreditation of Athletic Training Education. Patients or Other Participants: Four ACIs and 4 second-year ATSs. Data Collection and Analysis: Individual, semistructured interviews were conducted with participants and integrated with field notes and observations for analysis. We used the constant comparative approach to inductively analyze data and develop codes and categories. Member checking, triangulation, and peer debriefing were used to promote trustworthiness of the study. Results: Participants described that feedback plays an important role in clinical education and has several purposes related to improving performance. The ACIs and ATSs also discussed several preferred characteristics of feedback. Participants identified 4 main influences on their feedback exchanges, including the ACI, the ATS, personalities, and the learning environment. Conclusions: The ACIs and ATSs had similar perceptions of ideal feedback in addition to the actual feedback that was provided during their clinical education experiences. Most of the preferences for feedback were aligned with recommendations in the literature, suggesting that existing research findings are applicable to athletic training clinical education. Several factors influenced the

  4. THE INFLUENCE OF INDIVIDUAL FACTORS ON THE EFFECTIVENESS OF JUICE PURIFICATION IN THE PROCESS OF II SATURATION

    Directory of Open Access Journals (Sweden)

    V. A. Golybin

    2014-01-01

    Full Text Available Summary. The effect of reducing substances in the final stage of lime - carbon dioxide purification of raw juice is studied in the article. The presence of significant amounts of reducing substances in the juice of the I saturation increases chroma and calcium salts in the purified product. It is actual to apply additional techniques and methods of cleaning of production sugar-containing solutions at the final stage of lime -carbon dioxide cleaning - II saturation, that will increase the completeness of precipitation of organic and mineral non-sugars, improve the quality of the purified juice, increase the yield of white sugar and improve its quality. The effect filtroperlit as seed material for forming the structure of particles of calcium carbonate precipitate with a larger surface adsorption is studied. The effect of phosphate input for further improvement of the efficiency of adsorption in the juice purification process was also studied. The effect of flow of activated filtroperlit on II saturation filtration speed was studied. It was found out that the more non-sugars are present in the juice, the smaller electrokinetic potential has the surface sediment. Rational consumption of reagents depending on the quality of the feedstock is calculated. In the process of cleaning the juice of various technological quality, it is necessary to control the reagents flow. It was found out that for cleaning juice of satisfactory technological quality the flow of filtroperlit is 0.015 - 0.033% by weight of juice and 15% РО4 3- . When cleaning the juice obtained from sugar beet of poor quality, it is necessary to increase the filtroperlit flow up to 0.050% and phosphate up to 20 %. It is necessary to control permanently the main liming process, the maximum decomposition of reducing substances to obtain thermally stable juice.

  5. The influence of micrometastases on prognosis and survival in stage I-II colon cancer patients: the Enroute⊕ Study

    Directory of Open Access Journals (Sweden)

    Pruijt Hans FM

    2011-05-01

    Full Text Available Abstract Background The presence of lymph node metastases remains the most reliable prognostic predictor and the gold indicator for adjuvant treatment in colon cancer (CC. In spite of a potentially curative resection, 20 to 30% of CC patients testing negative for lymph node metastases (i.e. pN0 will subsequently develop locoregional and/or systemic metastases within 5 years. The presence of occult nodal isolated tumor cells (ITCs and/or micrometastases (MMs at the time of resection predisposes CC patients to high risk for disease recurrence. These pN0micro+ patients harbouring occult micrometastases may benefit from adjuvant treatment. The purpose of the present study is to delineate the subset of pN0 patients with micrometastases (pN0micro+ and evaluate the benefits from adjuvant chemotherapy in pN0micro+ CC patients. Methods/design EnRoute+ is an open label, multicenter, randomized controlled clinical trial. All CC patients (age above 18 years without synchronous locoregional lymph node and/or systemic metastases (clinical stage I-II disease and operated upon with curative intent are eligible for inclusion. All resected specimens of patients are subject to an ex vivo sentinel lymph node mapping procedure (SLNM following curative resection. The investigation for micrometastases in pN0 patients is done by extended serial sectioning and immunohistochemistry for pan-cytokeratin in sentinel lymph nodes which are tumour negative upon standard pathological examination. Patients with ITC/MM-positive sentinel lymph nodes (pN0micro+ are randomized for adjuvant chemotherapy following the CAPOX treatment scheme or observation. The primary endpoint is 3-year disease free survival (DFS. Discussion The EnRoute+ study is designed to improve prognosis in high-risk stage I/II pN0 micro+ CC patients by reducing disease recurrence by adjuvant chemotherapy. Trial Registration ClinicalTrials.gov: NCT01097265

  6. Influence of ionic liquids as electrolyte additives on chiral separation of dansylated amino acids by using Zn(II) complex mediated chiral ligand exchange CE.

    Science.gov (United States)

    Zhang, Haizhi; Qi, Li; Mu, Xiaoyu; Zhou, Xiaoping; Li, Dan; Mao, Lanqun

    2013-03-01

    In this work, investigation of the comparative influence of diverse ionic liquids (ILs) as electrolyte additives on the chiral separation of dansylated amino acids by using Zn(II)-L-arginine complex mediated chiral ligand exchange CE (CLE-CE) was conducted. It has been found that not only the varied substituted group number, but also the alkyl chain length of the substituted group on imidazole ring in the structure of ILs show different influence on chiral separation of the analytes in the CLE-CE system, which could be understood by their direct influence on EOF. Meanwhile, the variation of anion in the structure of ILs displayed remarkably changed performance and the ILs with Cl(-) showed the most obvious promoting effect on the chiral separation performance. Among the investigated seven ILs, 1-butyl-3-methylimidazolium chloride was validated to be the proper electrolyte additive in the CLE-CE system. Moreover, it has been observed that 1-butyl-3-methylimidazolium chloride also has obvious promotive effect on the labeling performance. The results have demonstrated that the ILs with different structures have important relation to their performance in CLE-CE and to their labeling efficiency in dansylation of the analytes. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Functionalized macroporous copolymer of glycidyl methacrylate: The type of ligand and porosity parameters influence on Cu(II ion sorption from aqueous solutions

    Directory of Open Access Journals (Sweden)

    Sandić Zvjezdana P.

    2009-01-01

    Full Text Available The removal of heavy metals from hydro-metallurgical and other industries' wastewaters, their safe storage and possible recovery from waste- water streams is one of the greater ecological problems of modern society. Conventional methods, like precipitation, adsorption and biosorption, electrowinning, membrane separation, solvent extraction and ion exchange are often ineffective, expensive and can generate secondary pollution. On the other hand, chelating polymers, consisting of crosslinked copolymers as a solid support and functional group (ligand, are capable of selectively loading different metal ions from aqueous solutions. In the relatively simple process, the chelating copolymer is contacted with the contaminated solution, loaded with metal ions, and stripped with the appropriate eluent. Important properties of chelating polymers are high capacity, high selectivity and fast kinetics combined with mechanical stability and chemical inertness. Macroporous hydrophilic copolymers of glycidyl methacrylate and ethylene glycol dimethacrylate modified by different amines show outstanding efficiency and selectivity for the sorption of precious and heavy metals from aqueous solutions. In this study poly(GMA-co-EGDMA copolymers were synthesized with different porosity parameters and functionalized in reactions with ethylene diamine (EDA, diethylene triamine (DETA and triethylene tetramine (TETA. Under non-competitive conditions, in batch experiments at room temperature, the rate of sorption of Cu(II ions from aqueous solutions and the influence of pH on it was determined for four samples of amino-functionalized poly(GMA-co-EGDMA. The sorption of Cu(II for both amino-functionalized samples was found to be very rapid. The sorption half time, t1/2, defined as the time required to reach 50% of the total sorption capacity, was between 1 and 2 min. The maximum sorption capacity for copper (2.80 mmol/g was obtained on SGE-10/12-deta sample. The sorption

  8. Cochlear Dummy Electrodes for Insertion Training and Research Purposes: Fabrication, Mechanical Characterization, and Experimental Validation

    Directory of Open Access Journals (Sweden)

    Jan-Philipp Kobler

    2015-01-01

    Full Text Available To develop skills sufficient for hearing preservation cochlear implant surgery, surgeons need to perform several electrode insertion trials in ex vivo temporal bones, thereby consuming relatively expensive electrode carriers. The objectives of this study were to evaluate the insertion characteristics of cochlear electrodes in a plastic scala tympani model and to fabricate radio opaque polymer filament dummy electrodes of equivalent mechanical properties. In addition, this study should aid the design and development of new cochlear electrodes. Automated insertion force measurement is a new technique to reproducibly analyze and evaluate the insertion dynamics and mechanical characteristics of an electrode. Mechanical properties of MED-EL’s FLEX28, FLEX24, and FLEX20 electrodes were assessed with the help of an automated insertion tool. Statistical analysis of the overall mechanical behavior of the electrodes and factors influencing the insertion force are discussed. Radio opaque dummy electrodes of comparable characteristics were fabricated based on insertion force measurements. The platinum-iridium wires were replaced by polymer filament to provide sufficient stiffness to the electrodes and to eradicate the metallic artifacts in X-ray and computed tomography (CT images. These low-cost dummy electrodes are cheap alternatives for surgical training and for in vitro, ex vivo, and in vivo research purposes.

  9. Investigation of electrode distance impact on PEO coating formation assisted by simulation

    Science.gov (United States)

    Ma, Xun; Blawert, Carsten; Höche, Daniel; Zheludkevich, Mikhail L.; Kainer, Karl U.

    2016-12-01

    The influence of electrode distance between anode and cathode during plasma electrolytic oxidation (PEO) process on the coating formation was investigated by combining experiments and simulation. Firstly a model was built to simulate the effect of electrode distance on the anodic current distribution using finite element analyses. Complementary, PEO coatings were fabricated on AM50 magnesium alloy in an alkaline electrolyte with different electrode distances applying constant voltage. Phase composition, coating morphology and thickness were studied for both the front and back sides of the PEO coating depending on the electrode distance. For paralleled plate-like electrodes, based on coating uniformity, an optimum electrode distance of 60-80 mm was identified under the chosen experimental conditions. Via correlation of simulation and experimental results, the influence of electrode distance on coating formation is explored. It is demonstrated that under constant voltage mode, PEO coating formation is affected by electrode distance on both front and back sides of magnesium substrates. This effect is ascribed to the influence of electrode distance on the current distribution in the bath and to the related average current density on the surfaces.

  10. Electrons in feldspar II: A consideration of the influence of conduction band-tail states on luminescence processes

    DEFF Research Database (Denmark)

    Poolton, H.R.J.; Ozanyan, K.B.; Wallinga, J.

    2002-01-01

    consider what influence the band tails have on the luminescence properties of feldspar, where electrons travel through the sample prior to recombination. The work highlights the dominant role that 0.04-0.05-eV phonons play in both the luminescence excitation and emission processes of these materials...... electrons can travel, but with reduced mobility: transport through these states is expected to be thermally activated. The purpose of this article is twofold. Firstly, we consider what kind of lattice perturbations could give rise to both localized and extended conduction band-tail states. Secondly. we...

  11. Copper(II) complexes of mono-anionic glutamate: anionic influence in the variations of molecular and supramolecular structures.

    Science.gov (United States)

    Biswas, Chaitali; Drew, Michael G B; Estrader, Marta; Ghosh, Ashutosh

    2009-07-07

    Three new polynuclear copper(II) complexes of singly deprotonated L-glutamic acid (L-glu), {[Cu(bipy)2][Cu(bipy)(L-glu)H2O]2(BF4)4 x (H2O)3}n (1), {[Cu(bipy)(L-glu)H2O][Cu(bipy)(L-glu)(ClO4)](ClO4) x (H2O)2}n (2) and [Cu(phen)(L-glu)H2O]2(NO3)2 x (H2O)4 (3) (bipy = 2,2-bipyridine, phen = 1,10-phenanthroline), were synthesized in acidic pH (ca. 2.5) and characterized structurally. In all the complexes, L-glutamic acid acts as a bidentate chelating ligand, leaving the protonated carboxylic acid free. Both in 1 and 2, two different types of species [Cu(bipy)2](BF4)2 and [Cu(bipy)(L-glu)H2O]BF4 for 1 and [Cu(bipy)(L-glu)H2O]ClO4 and [Cu(bipy)(L-glu)(ClO4)] for 2 coexist in the solid state. In complex 1, the [Cu(bipy)(L-glu)H2O]+ units are joined together by syn-anti carboxylate bridges to form an enantiopure (M) helical chain and the [Cu(bipy)2]2+ presents a very rare example of the four-coordinate distorted tetrahedral geometry of Cu(II). In complex 2, the [Cu(bipy)(L-glu)(ClO4)] units are joined together by weakly coordinating perchlorate ions to form a 1D polymeric chain while the [Cu(bipy)(L-glu)H2O]+ units remain as mononuclear species. The different coordinating ability of the two counter anions along with their involvement in the H-bonding network seems likely to be responsible for the difference in the final polymeric structures in the two compounds. Variable-temperature (2-300 K) magnetic susceptibility measurements show negligible coupling for both the complexes. The structure of 3 consists of two independent monomeric [Cu(phen)(L-glu)H2O]+ cations, two nitrate anions and four water molecules. The copper atom occupies a five-coordinate square pyramidal environment with a water molecule in the axial position.

  12. MHD Electrode and wall constructions

    Science.gov (United States)

    Way, Stewart; Lempert, Joseph

    1984-01-01

    Electrode and wall constructions for the walls of a channel transmitting the hot plasma in a magnetohydrodynamic generator. The electrodes and walls are made of a plurality of similar modules which are spaced from one another along the channel. The electrodes can be metallic or ceramic, and each module includes one or more electrodes which are exposed to the plasma and a metallic cooling bar which is spaced from the plasma and which has passages through which a cooling fluid flows to remove heat transmitted from the electrode to the cooling bar. Each electrode module is spaced from and electrically insulated from each adjacent module while interconnected by the cooling fluid which serially flows among selected modules. A wall module includes an electrically insulating ceramic body exposed to the plasma and affixed, preferably by mechanical clips or by brazing, to a metallic cooling bar spaced from the plasma and having cooling fluid passages. Each wall module is, similar to the electrode modules, electrically insulated from the adjacent modules and serially interconnected to other modules by the cooling fluid.

  13. Nitrate reduction by mixed iron(II-III) hydroxycarbonate green rust in the presence of phosphate anions: the key parameters influencing the ammonium selectivity.

    Science.gov (United States)

    Etique, Marjorie; Zegeye, Asfaw; Grégoire, Brian; Carteret, Cédric; Ruby, Christian

    2014-10-01

    The reduction of nitrate anions by a mixed Fe(II)-Fe(III) carbonated green rust (GR) in aqueous medium is studied as a function of the initial pH and the initial concentrations of iron, phosphate and nitrate. The influence of these parameters on the fraction of nitrate removed and the production of ammonium is investigated by the help of statistical experimental designs. The goal is to determine experimental conditions that maximize the fraction of NO3(-) removed and concomitantly minimize the production of NH4(+). Increasing the phosphate concentration relatively to the initial Fe(II) concentration inhibits the reduction of nitrate probably due to a surface saturation of the lateral sites of the GR crystals. The kinetics of the reaction is greatly enhanced by increasing the initial pH at 10.5, however it leads to a global increase of the NH4(+) production. A partial saturation of the surface sites by phosphate leads to a global decrease of selectivity of the reaction towards ammonium. The evolution of the ratio of the NH4(+) concentration to the Fe(II) concentration confirms that the NO3(-) species are only partially transformed into ammonium. Interestingly at an initial pH of 7.5, the selectivity of the reaction towards NH4(+) is often lower than ∼30%. The reduction of nitrate by carbonated GR differs from the behavior of other GRs incorporating Cl(-), F(-) and SO4(2-) anions that fully transform nitrate into ammonium. Finally, if GR is intended to be used during a passive water denitrification process, complementary dephosphatation and ammonium treatments should be considered. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. New electrodes for biofuel cells

    Science.gov (United States)

    Stom, D. I.; Zhdanova, G. O.; Lashin, A. F.

    2017-11-01

    Two new types of electrodes for biofuel elements (BFC) are proposed. One of them is based on a microchannel plate (MCP). Its peculiarity is a special structure with a large number of glass channels being 6-10 μm in diameter with an internal semiconducting surface. The MCP operation is based on the principle of the channel secondary emission multiplication of the electrons. The second type of electrode presented in the work is made of silicon carbide. This type of electrodes has a developed porous structure. The electrode pores account for at least 30% of the total volume. The pore size varies from 10 to 100 μm. Such porosity greatly increases the anode area and volume. This allows us to achieve sorption of a larger number of microorganisms interacting with the anode and transformed by electron donors. The work of the electrodes developed in BFC was tested, their effectiveness was estimated. A comparison is made with electrodes made of carbon cloth, the most widely used material for working with BFC. It is shown that the MCP based electrode is not inferior to the power characteristics of carbon cloth. The generated power when using silicon carbide was slightly lower than the other two electrodes. However, the stability of silicon carbide to aggressive media (alkalis, acids, strong oxidants, etc.), as well as to mechanical damages gives additional advantages to such electrodes compared to the materials that are commonly used in BFC. The noted features are extremely important for the BFC to work in harsh conditions of treatment facilities and to utilize wastewater components.

  15. Influence of synthesis conditions on complexation of Cu (II) with O,N,O tridentate hydrazone ligand. X-ray diffraction and spectroscopic investigations

    Science.gov (United States)

    Repich, H. H.; Orysyk, S. I.; Orysyk, V. V.; Zborovskii, Yu. L.; Melnyk, A. K.; Trachevskyi, V. V.; Pekhnyo, V. I.; Vovk, M. V.

    2017-10-01

    Four novel Cu2+ coordination compounds with a (E)-N‧-(2-hydroxybenzylidene)-2-phenylacetohydrazide (HBPAH, H2L) have been synthesized and characterized by single crystal X-ray diffraction method, IR, UV-Vis and EPR spectroscopy. In all obtained compounds the ligand is coordinated in typical O,N,O-tridentate chelate manner. It has been shown that synthesis conditions have a great influence on a structure of resulting complex compounds. Depending on starting Cu2+ compounds, concentration of reagents, pH and the presence of secondary ligands the HBPAH coordinates as a neutral molecule, mono- or dianion with formation of four different complexes: [Cu(HL)(H2L)]NO3 (I), [Cu(HL)Cl] (II), [Cu2(HL)2Cl2] (III) and [Cu2(L)2Py2] (IV). Complex I is interesting by the presence of two differently coordinated ligand molecules. Mononuclear complex compound II and its dimeric analogue III were obtained from the same reagents: CuCl2 and HBPAH but in different reaction conditions. In dimeric complex IV the HBPAH molecules are coordinated as dianions in imidol tautomeric form, the pyridine molecules act as secondary ligands complementing the coordination polyhedra of Cu2+ ions. Study of UV-Vis and EPR spectra of complex compounds I-IV in solutions showed that all the complexes undergo partial solvolysis upon dissolution.

  16. Interdigitated electrodes as impedance and capacitance biosensors: A review

    Science.gov (United States)

    Mazlan, N. S.; Ramli, M. M.; Abdullah, M. M. A. B.; Halin, D. S. C.; Isa, S. S. M.; Talip, L. F. A.; Danial, N. S.; Murad, S. A. Z.

    2017-09-01

    Interdigitated electrodes (IDEs) are made of two individually addressable interdigitated comb-like electrode structures. IDEs are one of the most favored transducers, widely utilized in technological applications especially in the field of biological and chemical sensors due to their inexpensive, ease of fabrication process and high sensitivity. In order to detect and analyze a biochemical molecule or analyte, the impedance and capacitance signal need to be obtained. This paper investigates the working principle and influencer of the impedance and capacitance biosensors. The impedance biosensor depends on the resistance and capacitance while the capacitance biosensor influenced by the dielectric permittivity. However, the geometry and structures of the interdigitated electrodes affect both impedance and capacitance biosensor. The details have been discussed in this paper.

  17. The influence of the quencher concentration on the rate of simple bimolecular reaction: molecular dynamics study. II.

    Science.gov (United States)

    Litniewski, Marek

    2006-03-21

    In this paper new results of the simulations [M. Litniewski, J. Chem. Phys. 123, 124506 (2005)] on the influence of the quencher concentration on the reaction A+B-->C+B for the identical soft sphere system are presented. The problem is generalized by considering also the case when the spheres are immersed in the Brownian medium. A significant difference between simple deterministic systems and the Brownian ones is found: the excess in the rate coefficient for the Brownian system is constant and positive, except for very short times. The reaction has been simulated for a very long time, but any tendency to decrease the excess has not been noted. It is also shown that the relative excess in the surviving probability is a universal quadratic function of the quencher concentration for the range of time much longer than the result from the previous simulations. A very strong correlation between the excess in the relative value of spatial correlations between the reagents and the excess in the rate coefficient is shown. It is also shown that the A-A and A-C interactions have some influence on the excess values. A simple model for this effect is presented.

  18. Hollow platinum alloy tailored counter electrodes for photovoltaic applications

    Science.gov (United States)

    Li, Pinjiang; Zhang, Yange; Fa, Wenjun; Yang, Xiaogang; Wang, Liang

    2017-08-01

    Without sacrifice of photovoltaic performances, low-platinum alloy counter electrodes (CEs) are promising in bringing down the fabrication cost of dye-sensitized solar cells (DSSCs). We present here the realization of ZnO nanostructure assisted hollow platinum-nickel (PtNi) alloy microstructure CEs with a simple hydrothermal methods and maximization of electrocatalytic behaviors by tuning Zn precursors. The maximal power conversion efficiency is up to 8.74% for the liquid-junction dye-sensitized solar cells with alloyed PtNi0.41 electrode, yielding a 37.6% cell efficiency enhancement in comparison with pristine solar cell from planar Pt electrode. Moreover, the dissolution-resistant and charge-transfer abilities toward I-/I3- redox electrolyte have also been markedly enhanced due to competitive dissolution reactions and alloying effects.

  19. Temperature influence on silver nanoparticles inhibitory effect on photosystem II photochemistry in two green algae, Chlorella vulgaris and Dunaliella tertiolecta.

    Science.gov (United States)

    Oukarroum, Abdallah; Polchtchikov, Stephanie; Perreault, François; Popovic, Radovan

    2012-06-01

    In this study, the effect of silver nanoparticles (AgNPs) on the photosynthetic performance of two green algae, Chlorella vulgaris and Dunaliella tertiolecta, was investigated at 25°C and 31°C. To induce AgNPs effect, algal cells were exposed for 24 h to concentrations varying from 0 to 10 mg/L. The polyphasic OJIP fluorescence transient was used to evaluate photosystem II (PSII). We show that growth media and temperature had different effects in AgNPs agglomerates formation and Zeta potential. When temperature conditions change, inhibitory effect of AgNPs also undergoes changes. Increase of temperature induced higher altering effects to PSII quantum yield, primary photosynthetic electron transport, and consequently higher decrease of total photosynthetic performance if compared to AgNPs effect alone. AgNPs has a negative effect on D. tertiolecta compared to C. vulgaris. We conclude that temperature tends to enhance the toxic effects on aquatic alga and these alterations might have serious consequences on ecosystem equilibrium and aquatic plant communities.

  20. Class I and Class II restorations of resin composite: an FE analysis of the influence of modulus of elasticity on stresses generated by occlusal loading.

    Science.gov (United States)

    Asmussen, Erik; Peutzfeldt, Anne

    2008-05-01

    It was the aim of the study to analyze by the FE method stresses generated in tooth and restoration by occlusal loading of Class I and Class II restorations of resin composite. On the basis of available information on the influence of the modulus of elasticity, the research hypothesis was that the marginal stresses would decrease with increasing modulus of elasticity of the restoration. A cylindrical tooth was modelled in enamel and dentin and fitted with a Class I or a Class II restoration of resin composite. In one scenario the restoration was bonded to the tooth, in another the restoration was left nonbonded. The resin composite was modelled with a modulus of elasticity of 5, 10, 15 or 20 GPa and loaded occlusally with 100 N. By means of the soft-ware program ABAQUS the von Mises stresses in enamel and dentin were calculated. In the bonded scenario, the maximum stresses in the enamel were located at the occlusal margins (range 7-11 MPa), and in the dentin centrally at the pulpal floor (range 3.4-5.5MPa). The stresses decreased with increasing modulus of elasticity of the resin composite. In the nonbonded scenario, the stresses were higher in the dentin and lower in the enamel than in the bonded cases, and the influence of the modulus of elasticity was less pronounced. The marginal stresses in the restoration were below 6 MPa in the bonded scenario and below 3 MPa in the nonbonded scenario. Occlusal restorations of resin composite should have a high modulus of elasticity in order to reduce the risk of marginal deterioration.

  1. Effect of Experimental Parameters on Nanofiber Diameter from Electrospinning with Wire Electrodes

    Science.gov (United States)

    Zhu, Guocheng; Zhao, L. Y.; Zhu, L. T.; Deng, X. Y.; Chen, W. L.

    2017-09-01

    Polyvinylidene Fluoride (PVDF) nanofibers were electrospun by Nanospider equipment with wire electrodes. The parameters which would influence the fiber diameter were investigated in terms of solution concentration, cartridge speed (feed rate of solution), voltage, electrode distance, rotating wire speed, winding speed and slit diameter. The morphology and diameter of fibers were observed by scanning electron microscope. The results revealed that the solution concentration had significant influence on both fiber morphology and fiber diameter; the cartridge speed, voltage, electrode distance and slit diameter had slight effect on fiber diameter since the standard deviations were large; the rotating wire speed and the winding speed had insignificant influence on fiber diameter.

  2. Dynamics of plasma electrode coupling in fluorescent lamp discharges

    Science.gov (United States)

    Garner, R.

    2008-07-01

    A time dependent model of a low pressure, mercury-rare gas discharge with thermionic electrode is presented. The model is applicable to ac-operated fluorescent lamps, which is the focus of this work. The model describes a one-dimensional negative glow plasma that is bounded on one side by a thermionic electrode and a sheath, and on the other by a positive column plasma. The electrode/sheath component of the model, together with the mutually interacting negative glow plasma, allows for self-consistent calculation of the electrode sheath potential. The model describes a smooth transition in the plasma parameters from electrode to positive column and thus reveals the spatial extent of the influence of the electrode and sheath processes. A detailed description of the model is presented, as well as results of calculations pertaining to a standard fluorescent lamp. Also shown are measurements from a 2 mm interferometer and an internal floating probe, both of which compare favourably with the calculations.

  3. Dynamics of plasma-electrode coupling in fluorescent lamp discharges

    Energy Technology Data Exchange (ETDEWEB)

    Garner, R [Central Research and Services Laboratory, OSRAM SYLVANIA, 71 Cherry Hill Drive, Beverly, MA 01915 (United States)], E-mail: richard.garner@sylvania.com

    2008-07-21

    A time dependent model of a low pressure, mercury-rare gas discharge with thermionic electrode is presented. The model is applicable to ac-operated fluorescent lamps, which is the focus of this work. The model describes a one-dimensional negative glow plasma that is bounded on one side by a thermionic electrode and a sheath, and on the other by a positive column plasma. The electrode/sheath component of the model, together with the mutually interacting negative glow plasma, allows for self-consistent calculation of the electrode sheath potential. The model describes a smooth transition in the plasma parameters from electrode to positive column and thus reveals the spatial extent of the influence of the electrode and sheath processes. A detailed description of the model is presented, as well as results of calculations pertaining to a standard fluorescent lamp. Also shown are measurements from a 2 mm interferometer and an internal floating probe, both of which compare favourably with the calculations.

  4. Counter electrodes in dye-sensitized solar cells.

    Science.gov (United States)

    Wu, Jihuai; Lan, Zhang; Lin, Jianming; Huang, Miaoliang; Huang, Yunfang; Fan, Leqing; Luo, Genggeng; Lin, Yu; Xie, Yimin; Wei, Yuelin

    2017-10-02

    Dye-sensitized solar cells (DSSCs) are regarded as prospective solar cells for the next generation of photovoltaic technologies and have become research hotspots in the PV field. The counter electrode, as a crucial component of DSSCs, collects electrons from the external circuit and catalyzes the redox reduction in the electrolyte, which has a significant influence on the photovoltaic performance, long-term stability and cost of the devices. Solar cells, dye-sensitized solar cells, as well as the structure, principle, preparation and characterization of counter electrodes are mentioned in the introduction section. The next six sections discuss the counter electrodes based on transparency and flexibility, metals and alloys, carbon materials, conductive polymers, transition metal compounds, and hybrids, respectively. The special features and performance, advantages and disadvantages, preparation, characterization, mechanisms, important events and development histories of various counter electrodes are presented. In the eighth section, the development of counter electrodes is summarized with an outlook. This article panoramically reviews the counter electrodes in DSSCs, which is of great significance for enhancing the development levels of DSSCs and other photoelectrochemical devices.

  5. Protrusion of the Rod Electrode in the Electrospinning Process

    Directory of Open Access Journals (Sweden)

    Jan Valtera

    2015-01-01

    Full Text Available The paper focuses on the influence of the protrusion of the rod electrode on critical voltage in the DC electrospinning process. On the testing and industrial DC electrospinning devices, electrodes of any kind are extended towards the counter electrode. This provides the maximal, that is, supercritical, electric field intensity on the spinning-electrode orifice that is found to be higher than on the other supplementary parts. The principal study and experiments with basic apparatus were carried out and presented by Taylor in 1966. This study is focused on the arrangement closely related to the design of the real electrospinning device with respect to the safety and technological aspects. Results of the carried out experiments of the rod spinning-electrode are compared with the electrostatic simulation and analytical calculation. The presented effect of the electrode protrusion on the potential difference and the critical field strength introduces valuable information for the designers of electrospinning machines as well as for the setting up of the optimal technological parameters for producing modern nonwoven textile products.

  6. Electroenzymatic Reactions With Oxygen on Laccase-Modified Electrodes in Anhydrous (Pure) Organic Solvent

    DEFF Research Database (Denmark)

    Yarapolov, A.; Shleev, S.; Zaitseva, E.

    2007-01-01

    glassy carbon and graphite electrodes with adsorbed laccase. The influence of the time for drying the laccase solution at the electrode surface on the electroreduction of oxygen was studied. Investigating the electroenzymatic oxidation reaction of catechol and hydroquinone in DMSO reveals the formation...

  7. A viable electrode material for use in microbial fuel cells for tropical regions

    DEFF Research Database (Denmark)

    Offei, Felix; Thygesen, Anders; Mensah, Moses

    2016-01-01

    Electrode materials are critical for microbial fuel cells (MFC) since they influence the construction and operational costs. This study introduces a simple and efficient electrode material in the form of palm kernel shell activated carbon (AC) obtained in tropical regions. The novel introduction...

  8. Muscle ceramide content in man is higher in type I than type II fibers and not influenced by glycogen content

    DEFF Research Database (Denmark)

    Nordby, P; Prats, C; Kristensen, D

    2010-01-01

    Human muscle is studied during glycogen depletion and repletion to understand the influence of exercise and muscle glycogen on total ceramide content. In addition, fiber-type-specific ceramide storage is investigated. Ten healthy males (26.4 +/- 0.9 years, BMI 24.4 +/- 0.7 kg m(-2) and VO2max 57...... +/- 2 mL O2 min(-1) kg(-1)) participated in the study. On the first day, one leg was glycogen-depleted (DL) by exhaustive intermittent exercise followed by low carbohydrate diet. Next day, in the overnight fasted condition, muscle biopsies were excised from vastus lateralis before and after exhaustive...... exercise from both DL and control leg (CL). Muscle glycogen was analyzed biochemically and total muscle ceramide content by 2D quantitative lipidomic approach. Furthermore, fiber-type ceramide content was determined by fluorescence immunohistochemistry. Basal muscle glycogen was decreased (P

  9. The BaLROG project - II. Quantifying the influence of bars on the stellar populations of nearby galaxies

    Science.gov (United States)

    Seidel, M. K.; Falcón-Barroso, J.; Martínez-Valpuesta, I.; Sánchez-Blázquez, P.; Pérez, I.; Peletier, R.; Vazdekis, A.

    2016-08-01

    We continue the exploration of the BaLROG (Bars in Low Redshift Optical Galaxies) sample: 16 large mosaics of barred galaxies observed with the integral field unit Spectrographic Areal Unit for Research on Optical Nebulae. We quantify the influence of bars on the composition of the stellar component. We derive line-strength indices of H β, Fe5015 and Mgb. Based on single stellar population (SSP) models, we calculate ages, metallicities and [Mg/Fe] abundances and their gradients along the bar major and minor axes. The high spatial resolution of our data allows us to identify breaks among index and SSP profiles, commonly at 0.13 ± 0.06 bar length, consistent with kinematic features. Inner gradients are about 10 times steeper than outer gradients and become larger when there is a central rotating component, implying that the gradients are not independent of dynamics and orbits. Central ages appear to be younger for stronger bars. Yet, the bar regions are usually old. We find a flattening of the iron (Fe5015) and magnesium (Mgb) outer gradients along the bar major axis, translating into a flattening of the metallicity gradient. This gradient is found to be 0.03 ± 0.07 dex kpc-1 along the bar major axis while the mean value of the bar minor axis compares well with that of an unbarred control sample and is significantly steeper, namely -0.20 ± 0.04 dex kpc-1. These results confirm recent simulations and discern the important localized influence of bars. The elevated [Mg/Fe] abundances of bars and bulges compared to the lower values of discs suggest an early formation, in particular for early-type galaxies.

  10. Molecular magnetism of a linear Fe(III)-Mn(II)-Fe(III) complex. Influence of long-range exchange interaction

    Science.gov (United States)

    Lengen, M.; Bill, E.; Butzlaff, C.; Trautwein, A. X.; Winter, M.; Chaudhuri, P.

    1994-12-01

    The magnetic properties of [L-Fe(III)-dmg3Mn(II)-Fe(III)-L] (ClO4)2 have been characterized by magnetic susceptibility, EPR, and Mössbauer studies. L represents 1,4,7-trimethyl-, 1,4,7-triazacyclononane and dmg represents dimethylglyoxime. X-ray diffraction measurements yield that the arrangement of the three metal centers is strictly linear with atomic distances d Fe-Mn=0.35 nm and d Fe-Fe=0.7 nm. Magnetic susceptibility measurements (3 295 K) were analyzed in the framework of the spin-Hamiltonian formalism considering Heisenberg exchange and Zeeman interaction: Ĥ= J Fe-Mn( S Fe1+ S Fe2) S Mn + J Fe-Fe( S Fe1 S Fe2) +gΜB S total B. The spins S Fe1= S Fe2 = S Mn=5/2 of the complex are antiferromagnetically coupled, yielding a total spin of S total=5/2 with exchange coupling constants F Fe-Mn=13.4 cm-1 and J Fe-Fe= 4.5 cm-1. Magnetically split Mössbauer spectra were recorded at 1.5 K under various applied fields (20 m T, 170 mT, 4T). The spin-Hamiltonian analysis of these spectra yields isotropic magnetic hyperfine coupling with A total/( g N Μ N)=-18.5 T. The corresponding local component A Fe is related to A total via spin-projection: A total=(6/7)AFe. The resulting A Fe/( g NΜN)=-21.6 T is in agreement with standard values of ferric high-spin complexes. Spin-Hamiltonian parameters as obtained from Mössbauer studies and exchange coupling constants as derived from susceptibility measurements are corroborated by temperature-dependent EPR studies.

  11. Substitution of Carbazole Modified Fluorenes as π-Extension in Ru(II Complex-Influence on Performance of Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Malapaka Chandrasekharam

    2011-01-01

    Full Text Available A new high molar extinction coefficient ruthenium(II bipyridyl complex “cis-Ru(4,4-bis(9,9-dibutyl-7-(3,6-di-tert-butyl-9H-carbazol-9-yl-9H-fluoren-2-yl-2,2-bipyridine(2,2-bipyridine-4,4-dicarboxylic acid(NCS2, BPFC” has been synthesized and characterized by FT-IR, 1H-NMR, and ESI-MASS spectroscopes. The sensitizer showed molar extinction coefficient of 18.5×103 M−1cm−1, larger as compared to the reference N719, which showed 14.4×103 M−1cm−1. The test cells fabricated using BPFC sensitizer employing high performance volatile electrolyte, (E01 containing 0.05 M I2, 0.1 M LiI, 0.6 M 1,2-dimethyl-3-n-propylimidazolium iodide, 0.5 M 4-tert-butylpyridine in acetonitrile solvent, exhibited solar-to-electric energy conversion efficiency (η of 4.65% (short-circuit current density (SC = 11.52 mA/cm2, open-circuit voltage (OC = 566 mV, fill factor = 0.72 under Air Mass 1.5 sunlight, lower as compared to the reference N719 sensitized solar cell, fabricated under similar conditions, which exhibited η-value of 6.5% (SC = 14.3 mA/cm2, OC = 640 mV, fill factor = 0.71. UV-Vis measurements conducted on TiO2 films showed decreased film absorption ratios for BPFC as compared to those of reference N719. Staining TiO2 electrodes immediately after sonication of dye solutions enhanced film absorption ratios of BPFC relative to those of N719. Time-dependent density functional theory (TD-DFT calculations show higher oscillation strengths for 4,4-bis(9,9-dibutyl-7-(3,6-di-tert-butyl-9H-carbazol-9-yl-9H-fluoren-2-yl-2,2-bipyridine relative to 2,2-bipyridine-4,4-dicarboxylic acid and increased spectral response for the corresponding BPFC complex.

  12. APPLICATION OF FLOW-THROUGH THREE-DIMENSIONAL ELECTRODES FOR REGENERATION OF PLATING IRON ELECTROLYTES: 1. MATHEMATICAL MODEL

    Directory of Open Access Journals (Sweden)

    Alexandr Kоshev

    2014-12-01

    Full Text Available The mathematical model of electrochemical processes distribution within the three-dimensional flow-through electrode for the system Fe(III/Fe(II/Fe is described in this paper, considering also the electrochemical reactions of hydrogen and molecular oxygen reduction. Possible dynamic changes in the parameters of electrode, electrolyte and the process are taken into account in the mathematical model, such as electro-conductivity of electrode material, electrolyte flow rate, material porosity and specific electrode surface, concentrations of electro-active substances and other characteristics within the local volume of electrode. Electrode and process characteristics are treated as time and coordinate functions within the electrode volume. The results of calculations and experimental studies of iron electro-reduction are given, the analysis of the numerical modeling is provided.

  13. Processing of signals from an ion-elective electrode array by a neural network

    NARCIS (Netherlands)

    Bos, M.; Bos, A.; van der Linden, W.E.

    1990-01-01

    Neural network software is described for processing the signals of arrays of ion-selective electrodes. The performance of the software was tested in the simultaneous determination of calcium and copper(II) ions in binary mixtures of copper(II) nitrate and calcium chloride and the simultaneous

  14. Temporal interactions during paired-electrode stimulation in two retinal prosthesis subjects.

    Science.gov (United States)

    Horsager, Alan; Boynton, Geoffrey M; Greenberg, Robert J; Fine, Ione

    2011-01-01

    Since 2002, six blind patients have undergone implantation of an epiretinal 4 × 4 electrode array designed to directly stimulate the remaining cells of the retina after severe photoreceptor degeneration due to retinitis pigmentosa. This study was conducted to investigate how the brightness of percepts is affected by pulse timing across electrodes in two of these patients. Subjects compared the perceived brightness of a standard stimulus (synchronous pulse trains presented across pairs of electrodes) to the perceived brightness of a test stimulus (pulse trains across the electrode pair phase shifted by 0.075, 0.375, 1.8, or 9 ms). The current amplitude necessary for each phase-shifted test stimulus to match the brightness of the standard was determined. Depending on the electrode pair, interactions between electrodes were either facilitatory (the perceived brightness produced by stimulating the pair of electrodes was greater than that produced by stimulating either electrode alone) or suppressive (the perceived brightness produced by stimulating the pair of electrodes was less than that produced by stimulating either electrode alone). The amount of interaction between electrodes decreased as a function of increased separation both in time (the phase-shift between pulse trains) and space (center-to-center distance between the electrode pair). For visual prostheses to represent visual scenes that are changing in both space and time requires the development of spatiotemporal models describing the effects of stimulation across multiple electrodes. During multielectrode stimulation, interactions between electrodes have a significant influence on subjective brightness that includes both facilitatory and suppressive effects, and these interactions can be described with a simple computational model. (ClinicalTrials.gov number, NCT00279500.).

  15. Advances in Studies of Electrode Kinetics and Mass Transport in AMTEC Cells (abstract)

    Science.gov (United States)

    Williams, R. M.; Jeffries-Nakamura, B.; Ryan, M. A.; Underwood, M. L.; Kisor, A.; O'Connor, D.; Kikkert, S.

    1993-01-01

    Previous work reported from JPL has included characterization of electrode kinetics and alkali atom transport from electrodes including Mo, W, WRh(sub x), WPt(sub x)(Mn), in sodium AMTEC cells and vapor exposure cells, and Mo in potassium vapor exposure cells. These studies were generally performed in cells with small area electrodes (about 1 to 5 cm(sup 2)), and device geometry had little effect on transport. Alkali diffusion coefficients through these electrodes have been characterized, and approximate surface diffusion coefficients derived in cases of activated transport. A basic model of electrode kinetic at the alkali metal vapor/porous metal electrode/alkali beta'-alumina solid electrolyte three phase boundary has been proposed which accounts for electrochemical reaction rates with a collision frequency near the three phase boundary and tunneling from the porous electrode partially covered with adsorbed alkali metal atoms. The small electrode effect in AMTEC cells has been discussed in several papers, but quantitative investigations have described only the overall effect and the important contribution of electrolyte resistance. The quantitative characterization of transport losses in cells with large area electrodes has been limited to simulations of large area electrode effects, or characterization of transport losses from large area electrodes with significant longitudinal temperature gradients. This paper describes new investigations of electrochemical kinetics and transport, particularily with WPt(sub 3.5) electrodes, including the influence of electrode size on the mass transport loss in the AMTEC cell. These electrodes possess excellent sodium transport properties making verification of device limitations on transport much more readily attained.

  16. [Influence of BMP-7 on chondrocyte secretion and expression of Col-II,AGG and Sox9 mRNA in porous tantalum-chondrocyte composites in vitro].

    Science.gov (United States)

    Zhang, H; Li, L; Wang, Q; Gan, H Q; Wang, H; Bi, C; Li, Q J; Wang, Z Q

    2015-04-18

    To study the influence of bone morphogenetic protein-7 (BMP-7) on chondrocyte secretion and expression of type II collagen (Col-II), aggrecan (AGG) and SRY-related high mobility group-box gene 9 (Sox9) mRNA in porous tantalum-chondrocyte composites. The articular chondrocytes were isolated from 3-week-old New Zealand immature rabbits and identified. The 2nd generation of chondrocytes with 1×10(6)/mL inoculate concentration was seeded in porous tantalum and divided into 4 groups, and control group (tantalum/chondrocyte), 50 μg/L BMP-7 group (50 μg/L BMP-7/tantalum/chondrocyte), 100 μg/L BMP-7 group (100 μg/L BMP-7/tantalum/chondrocyte), and 200 μg/L BMP-7 group (200 μg/L BMP-7/tantalum/chondrocyte). The proliferation of chondrocytes was measured by CCK-8 assay. The chondrocyte growth and morphology were observed by scanning electron microscopy (SEM). The synthesis of glycosaminoglycan (GAG) in chondrocytes was tested by dimethyl methylene blue (DMMB) colorimetric quantification method. Col-II, AGG and Sox9 mRNA in chondrocytes were detected by real-time PCR. The chondrocytes were spindle-shaped in 24 hours of primary cell culture and most cells became polygonal shaped in 4 days. The chondrocytes were affirmed by alcian blue, safranin O and Col-II immunocytochemistry staining. The result of CCK-8 assay showed that the level of cell proliferation in 100 μg/L BMP-7 groups were higher than those in the other groups (Ptantalum scaffolds with BMP-7 had better functions, by which cytoplasmic processes developed and extended to the surface and inner of porous tantalum by SEM observation. DMMB quantitative determination of GAG showed that GAG amount of chondrocytes in 100 μg/L BMP-7 groups was significantly higher than those in the other groups (Ptantalum/chondrocytes composites enhanced in vitro chondrocyte proliferation and extracellular matrix greatly, and can promote chondrogenic gene expression.

  17. Expression of intercellular and vascular cell adhesion molecules and class II major histocompatibility antigens in human lungs: lack of influence by conditions of organ preservation.

    Science.gov (United States)

    Hasegawa, S; Ritter, J H; Patterson, A; Ockner, D M; Sawa, H; Mohanakumar, T; Cooper, J D; Wick, M R

    1995-01-01

    -dextran-glucose solution were compared; this was also true of organs preserved at 1 degree C versus 10 degrees C. These results suggest that, in the immediate post-harvest period, modulations in the expression of intercellular adhesion molecule-1, vascular cell adhesion molecule-1, or class II major histocompatibility complex antigens in pulmonary allografts are not attributable to the influences of preservation conditions.

  18. ECG artefacts after electrode misplacements

    National Research Council Canada - National Science Library

    Thaler, T; Rudiger, A

    2009-01-01

    ...). They can lead to the clinically important false diagnosis of myocardial ischemia. Lateral and inferior myocardial ischemia can be mimicked by an electrode exchange between right and left arm and between right arm and left leg, respectively...

  19. Electrode materials for rechargeable batteries

    Science.gov (United States)

    Abouimrane, Ali; Amine, Khalil

    2015-04-14

    Selenium or selenium-containing compounds may be used as electroactive materials in electrodes or electrochemical devices. The selenium or selenium-containing compound is mixed with a carbon material.

  20. Boundary element analysis of the directional sensitivity of the concentric EMG electrode

    DEFF Research Database (Denmark)

    Henneberg, Kaj-åge; R., Plonsey

    1993-01-01

    Assessment of the motor unit architecture based on concentric electrode motor unit potentials requires a thorough understanding of the recording characteristics of the concentric EMG electrode. Previous simulation studies have attempted to include the effect of EMG electrodes on the recorded...... as the mutual electrical influence between the electrode surfaces. A three-dimensional sensitivity function is defined from which information about the preferential direction of sensitivity, blind spots, phase changes, rate of attenuation, and range of pick-up radius can be derived. The study focuses...

  1. Evaluación de la calidad del agua del futuro Embalse Porce III por la influencia de la descarga del Embalse Porce II: Modelo de simulación de calidad del agua del futuro embalse Porce III Water quality evaluation of Porce II future dam due to the influence of Porce II dam unloading: Water Quality Simulation Model of Future Porce II Dam

    Directory of Open Access Journals (Sweden)

    Sandra Milena Silva Arroyave

    2008-07-01

    Full Text Available Este trabajo plantea evaluar la calidad del agua del futuro embalse Porce III por la influencia de la descarga del embalse Porce II, empleando un modelo matemático de simulación. La metodología consistió en recolectar información básica, seleccionar el modelo, realizar el montaje del mismo, diseñar los escenarios a simular, analizar los resultados y formular recomendaciones y conclusiones. El modelo seleccionado para realizar la simulación fue el CE-QUALW2. Los escenarios que se simularon fueron: Escenario 0, o escenario de control; escenario 1: sin considerar el aporte de la descarga de Porce II; escenario 2: efecto de la concentración de nutrientes aportados por la descarga de Porce II en la calidad del agua (nivel trófico de Porce III. Los principales resultados fueron: posiblemente el futuro embalse Porce III presentará eutrofia con una probabilidad superior al 50%. Con una disminución en el 20% de la concentración inicial de fosfatos (PO4, que ingresa al embalse proveniente de la descarga de Porce II, se logra que Porce III llegue a un estado de mesotrofia. Se encontró que el embalse en general no presentará estratificación térmica o será débilmente estratificado en la superficie. La calidad del agua de este embalse está determinada por la calidad de la descarga del embalse Porce II.This project considers evaluating water quality of Future Porce III Dam due to the influence of Porce II dam discharge, using a mathematical simulation model. The methodology consisted in gathering basic information, selecting the model, making its assembly, designing the scenarios to be simulated, analyzing the results, and formulating recommendations and conclusions. CE-QUALW2. was the selected model for the simulation. Simulated scenarios were: Scenario 0, or control scenario; scenario 1: without considering the contribution of Porce II discharge; scenario 2: effect of the nutrient concentrations - contributed by the Porce II discharge

  2. Influence of chloride in mortar made of Portland cement types II, III, and V on the near-field microwave reflection properties

    Science.gov (United States)

    Hu, Cairong; Benally, Aaron D.; Case, Tobias; Zoughi, Reza; Kurtis, Kimberly

    2000-07-01

    Corrosion of steel rebar in reinforced concrete structures, can be induced by the presence of chloride in the structure. Corrosion of steel rebar is a problematic issue in the construction industry as it compromises the strength and integrity of the structure. Although techniques exist for chloride detection and its migration into a structure, they are destructive, time consuming and cannot be used for the interrogation of large surfaces. In this investigation three different portland cement types; namely, ASTM types II, III and V were used, and six cubic (8' X 8' X 8') mortar specimens were produced all with water-to-cement (w/c) ratio of 0.6 and sand-to-cement (s/c) ratio of 1.5. Tap water was used when producing three of these specimens (one of each cement type). For the other three specimens calcium chloride was added to the mixing tap water resulting in a salinity of 2.5%. These specimens were placed in a hydration room for one day and thereafter left it the room temperature with low humidity. The reflection properties of these specimens, using an open-ended rectangular waveguide probe, were monitored daily at 3 GHz (S-band) and 10 GHz (X-band). The results show the influence of cement type on the reflection coefficient as well as the influence of chloride on the curing process and setting time.

  3. Electrode materials for rechargeable battery

    Science.gov (United States)

    Johnson, Christopher; Kang, Sun-Ho

    2015-09-08

    A positive electrode is disclosed for a non-aqueous electrolyte lithium rechargeable cell or battery. The electrode comprises a lithium containing material of the formula Na.sub.yLi.sub.xNi.sub.zMn.sub.1-z-z'M.sub.z'O.sub.d, wherein M is a metal cation, x+y>1, 0replace sodium ions of a precursor material with lithium ions.

  4. New conventional coated-wire ion-selective electrodes for flow-injection potentiometric determination of chlordiazepoxide.

    Science.gov (United States)

    Issa, Y M; Abdel-Ghani, N T; Shoukry, A F; Ahmed, Howayda M

    2005-09-01

    New chlordiazepoxide hydrochloride (Ch-Cl) ion-selective electrodes (conventional type) based on ion associates, chlordiazepoxidium-phosphomolybdate (I) and chlordiazepoxidium-phosphotungstate (II), were prepared. The electrodes exhibited mean slopes of calibration graphs of 59.4 mV and 60.8 mV per decade of (Ch-Cl) concentration at 25 degrees C for electrodes (I) and (II), respectively. Both electrodes could be used within the concentration range 3.16 x 10(-6)-1 x 10(-2) M (Ch-Cl) within the pH range 2.0-4.5. The standard electrode potentials were determined at different temperatures and used to calculate the isothermal coefficients of the electrodes, which were 0.00139 and 0.00093 V degrees C(-1) for electrodes (I) and (II), respectively. The electrodes showed a very good selectivity for Ch-Cl with respect to the number of inorganic cations, amino acids and sugars. The electrodes were applied to the potentiometric determination of the chlordiazepoxide ion and its pharmaceutical preparation under batch and flow injection conditions. Also, chlordiazepoxide was determined by conductimetric titrations. Graphite, copper and silver coated wires were prepared and characterized as sensors for the drug under investigation.

  5. Molecular magnetism of a linear Fe(III)-Mn(II)-Fe(III) complex. Influence of long-range exchange interaction

    Energy Technology Data Exchange (ETDEWEB)

    Lengen, M. [Medizinische Univ. Luebeck (Germany). Inst. fuer Physik; Bill, E. [Medizinische Univ. Luebeck (Germany). Inst. fuer Physik; Butzlaff, C. [Medizinische Univ. Luebeck (Germany). Inst. fuer Physik; Trautwein, A.X. [Medizinische Univ. Luebeck (Germany). Inst. fuer Physik; Winter, M. [Anorganische Chemie 1, Ruhr-Univ., Bochum (Germany); Chaudhuri, P. [Anorganische Chemie 1, Ruhr-Univ., Bochum (Germany)

    1994-11-01

    The magnetic properties of [L-Fe(III)-dmg{sub 3}Mn(II)-Fe(III)-L] (ClO{sub 4}){sub 2} have been characterized by magnetic susceptibility, EPR, and Moessbauer studies. L represents 1,4,7-trimethyl-,1,4,7-triazacyclononane and dmg represents dimethylglyoxime. X-ray diffraction measurements yield that the arrangement of the three metal centers is strictly linear with atomic distances d{sub Fe-Mn} = 0.35 nm and d{sub Fe-Fe} = 0.7 nm. Magnetic susceptibility measurements (3-295 K) were analyzed in the framework of the spin-Hamiltonian formalism considering Heisenberg exchange and Zeeman interaction: H = J{sub Fe-Mn} (S{sub Fe1} + S{sub Fe2})S{sub Mn} + J{sub Fe-Fe}S{sub Fe1}S{sub Fe2} + g{mu}{sub B}S{sub total}B. The spins S{sub Fe1} = S{sub Fe2} = S{sub Mn} = 5/2 of the complex are antiferromagnetically coupled, yielding a total spin of S{sub total} = 5/2 with exchange coupling constants F{sub Fe-Mn} = 13.4 cm{sup -1} and J{sub Fe-Fe} = 4.5 cm{sup -1}. Magnetically split Moessbauer spectra were recorded at 1.5 K under various applied fields (20 mT, 170 mT, 4 T). The spin-Hamiltonian analysis of these spectra yields isotropic magnetic hyperfine coupling with A{sub total}/(g{sub N}{mu}{sub N}) = -18.5 T. The corresponding local component A{sub Fe} is related to A{sub total} via spin-projection: A{sub total} = (6/7)A{sub Fe}. The resulting A{sub Fe}/(g{sub N}{mu}{sub N}) = -21.6 T is in agreement with standard values of ferric high-spin complexes. Spin-Hamiltonian parameters as obtained from Moessbauer studies and exchange coupling constants as derived from susceptibility measurements are corroborated by temperature-dependent EPR studies. (orig.)

  6. Simulation of Dual-Electrode Capacitively Coupled Plasma Discharges

    Science.gov (United States)

    Lu, Yijia; Ji, Linhong; Cheng, Jia

    2016-12-01

    Dual-electrode capacitively coupled plasma discharges are investigated here to lower the non-uniformity of plasma density. The dual-electrode structure proposed by Jung splits the electrode region and increases the flexibility of fine tuning non-uniformity. Different RF voltages, frequencies, phase-shifts and electrode areas are simulated and the influences are discussed. RF voltage and electrode area have a non-monotonic effect on non-uniformity, while frequency has a monotonic effect. Phase-shift has a cyclical influence on non-uniformity. A special combination of 224 V voltage and 11% area ratio with 10 MHz lowers the non-uniformity of the original set (200 V voltage and 0% area ratio with 10 MHz) by 46.5%. The position of the plasma density peak at the probe line has been tracked and properly tuning the phase-shift can obtain the same trace as tuning frequency or voltage. supported by National Natural Science Foundation of China (No. 51405261)

  7. Novel compliant electrodes based on platinum salt reduction

    Science.gov (United States)

    Delille, Remi; Urdaneta, Mario; Hsieh, Kuangwen; Smela, Elisabeth

    2006-03-01

    A compliant electrode material is presented that was inspired by the electroding process used to manufacture ionic polymer-metal composites (IPMCs). However, instead of an ion-exchange membrane, a UV-curable acrylated urethane elastomer is employed. The electrode material consists of the UV-curable elastomer (Loctite 3108) loaded with tetraammineplatinum(II) chloride salt particles through physical mixing and homogenization. The composite material is made conductive by immersion in a reducing agent, sodium borohydride, which reduces the salt to platinum metal on the surface of the elastomer film. Because the noble metal is mixed into the elastomer precursor as a salt, the amount of UV light absorbed by the precursor is not significantly reduced, and the composite loses little photopatternability. As a result meso-scale electrodes of varying geometries can be formed by exposing the precursor/salt mixture through a mask. The materials are mechanically and electrically characterized. The percolation threshold of the composite is estimated to be 9 vol. % platinum salt, above which the compliant electrode material exhibits a maximum conductivity of 1 S/cm. The composite maintains its electrical conductivity under axial tensile strains of up to 40%.

  8. Influence of geomagnetic storms of September 26-30, 2011, on the ionosphere and HF radiowave propagation. II. radiowave propagation

    Science.gov (United States)

    Kotova, D. S.; Klimenko, M. V.; Klimenko, V. V.; Zakharov, V. E.

    2017-05-01

    A study of HF wave propagation in the three-dimensional inhomogeneous ionosphere has been carried out in an approximation of geometrical optics. The three-dimensional medium of radio wave propagation is considered to be inhomogeneous, absorbing, and anisotropic due to the influence of the geomagnetic field. The parameters of the medium are described by the results of calculations on the basis of the Global Self-Consistent Model of the Thermosphere, Ionosphere, and Protonosphere (GSM TIP). The propagation of radio waves in the equatorial, middle-, and high-latitude ionosphere was studied. Comparisons of the ray trajectories, integral attenuation, deviations of the projection of radio wave trajectories onto the Earth's surface from the great-circle arc, and the behavior of the angle between the wave phase and wave energy directions, as well as the angle between the direction of propagation and the external magnetic field obtained for quiet and disturbed conditions, have been performed. We consider a geomagnetic storm that occurred in 2011, with the main storm phase occurring on September 26, and the day after geomagnetic disturbances, September 29, as disturbed conditions in the ionosphere.

  9. The Impact of Enzyme Orientation and Electrode Topology on the Catalytic Activity of Adsorbed Redox Enzymes

    Science.gov (United States)

    McMillan, Duncan G. G.; Marritt, Sophie J.; Kemp, Gemma L.; Gordon-Brown, Piers; Butt, Julea N.; Jeuken, Lars J. C.

    2014-01-01

    It is well established that the structural details of electrodes and their interaction with adsorbed enzyme influences the interfacial electron transfer rate. However, for nanostructured electrodes, it is likely that the structure also impacts on substrate flux near the adsorbed enzymes and thus catalytic activity. Furthermore, for enzymes converting macro-molecular substrates it is possible that the enzyme orientation determines the nature of interactions between the adsorbed enzyme and substrate and therefore catalytic rates. In essence the electrode may impede substrate access to the active site of the enzyme. We have tested these possibilities through studies of the catalytic performance of two enzymes adsorbed on topologically distinct electrode materials. Escherichia coli NrfA, a nitrite reductase, was adsorbed on mesoporous, nanocrystalline SnO2 electrodes. CymA from Shewanella oneidensis MR-1 reduces menaquinone-7 within 200 nm sized liposomes and this reaction was studied with the enzyme adsorbed on SAM modified ultra-flat gold electrodes. PMID:24634538

  10. Electrolyte effects on electrochemical properties of osmium complex polymer modified electrodes.

    Science.gov (United States)

    Ju, H; Gong, Y; Zhu, H

    2001-01-01

    The electrolyte effects on the electrochemical behaviors of osmium complex polymer modified electrodes were investigated by a comparison between two osmium complexes, [Os(bpy)2(PVI)10Cl]Cl (Os-PVI10) and [Os(bpy)2(PVP)10Cl]Cl (Os-PVP10). The electrode process at Os-PVI10 modified electrodes is reaction-controlled, while a diffusion-controlled electrode process exists at Os-PVP10 modified electrodes. Both the cation and anion in supporting electrolytes strongly affect their electrochemical behaviors, such as the redox potential, wave shape and peak current. These phenomena are attributed to a change in the film structure and polymer swelling in various supporting electrolytes. The influence of electrolyte anions on the electrochemical behaviors is related to their hydrophobicity. The electrode process of Os-PVP10 depends on the pH value of solutions, exhibiting different electron transfer mechanisms.

  11. Spike Pattern Structure Influences Synaptic Efficacy Variability under STDP and Synaptic Homeostasis. II: Spike Shuffling Methods on LIF Networks

    Science.gov (United States)

    Bi, Zedong; Zhou, Changsong

    2016-01-01

    Synapses may undergo variable changes during plasticity because of the variability of spike patterns such as temporal stochasticity and spatial randomness. Here, we call the variability of synaptic weight changes during plasticity to be efficacy variability. In this paper, we investigate how four aspects of spike pattern statistics (i.e., synchronous firing, burstiness/regularity, heterogeneity of rates and heterogeneity of cross-correlations) influence the efficacy variability under pair-wise additive spike-timing dependent plasticity (STDP) and synaptic homeostasis (the mean strength of plastic synapses into a neuron is bounded), by implementing spike shuffling methods onto spike patterns self-organized by a network of excitatory and inhibitory leaky integrate-and-fire (LIF) neurons. With the increase of the decay time scale of the inhibitory synaptic currents, the LIF network undergoes a transition from asynchronous state to weak synchronous state and then to synchronous bursting state. We first shuffle these spike patterns using a variety of methods, each designed to evidently change a specific pattern statistics; and then investigate the change of efficacy variability of the synapses under STDP and synaptic homeostasis, when the neurons in the network fire according to the spike patterns before and after being treated by a shuffling method. In this way, we can understand how the change of pattern statistics may cause the change of efficacy variability. Our results are consistent with those of our previous study which implements spike-generating models on converging motifs. We also find that burstiness/regularity is important to determine the efficacy variability under asynchronous states, while heterogeneity of cross-correlations is the main factor to cause efficacy variability when the network moves into synchronous bursting states (the states observed in epilepsy). PMID:27555816

  12. Development of snake-directed antipredator behavior by wild white-faced capuchin monkeys: II. Influence of the social environment.

    Science.gov (United States)

    Meno, Whitney; Coss, Richard G; Perry, Susan

    2013-03-01

    Young animals are known to direct alarm calls at a wider range of animals than adults. If social cues are safer and/or more reliable to use than asocial cues for learning about predators, then it is expected that the development of this behavior will be affected by the social environment. Our study examined the influence of the social environment on antipredator behavior in infant, juvenile, and adult wild white-faced capuchin monkeys (Cebus capucinus) at Lomas Barbudal Biological Reserve in Costa Rica during presentations of different species of model snakes and novel models. We examined (a) the alarm calling behavior of the focal animal when alone versus in the vicinity of conspecific alarm callers and (b) the latency of conspecifics to alarm call once the focal animal alarm called. Focal animals alarm called more when alone than after hearing a conspecific alarm call. No reliable differences were found in the latencies of conspecifics to alarm call based on age or model type. Conspecifics were more likely to alarm call when focal individuals alarm called at snake models than when they alarm called at novel models. Results indicate (a) that alarm calling may serve to attract others to the predator's location and (b) that learning about specific predators may begin with a generalized response to a wide variety of species, including some nonthreatening ones, that is winnowed down via Pavlovian conditioned inhibition into a response directed toward specific dangerous species. This study reveals that conspecifics play a role in the development of antipredator behavior in white-faced capuchins. © 2012 Wiley Periodicals, Inc.

  13. The research progress in mechanism and influence of biosorption between lactic acid bacteria and Pb(II): A review.

    Science.gov (United States)

    Lin, Derong; Ji, Ran; Wang, Dan; Xiao, Mengshi; Zhao, Jingjing; Zou, Jinpeng; Li, Yutong; Qin, Tao; Xing, Baoshan; Chen, Yuan; Liu, Peng; Wu, Zhijun; Wang, Lilin; Zhang, Qing; Chen, Hong; Qin, Wen; Wu, Dingtao; Liu, Yuntao; Liu, Yaowen; Li, Suqing

    2017-09-08

    ), lactobacillus surface-layers, enzymes and so on. Many factors can greatly affect adsorption process, different factors have different influence and the effects of pretreatment, pH and temperature are relatively greater. Desorption is not a fully reversible process of biosorption, but could not only achieve the goal of the recycle of microorganism, but also contribute to release of trace metal elements. Also the technologies for observation of biosorbents characterics and effect on the metal binding process are reviewed.

  14. Influência do molibdênio em propriedades do metal de solda na soldagem molhada com eletrodos óxi-rutílicos Influence of molybdenum in metal weld properties in welding wet with oxy-rutillic electrodes

    Directory of Open Access Journals (Sweden)

    Luciana Ferreira Silva

    2013-06-01

    Full Text Available A técnica de soldagem subaquática molhada com eletrodos revestidos apresenta um crescente potencial de aplicação para reparos submarinos em elementos estruturais de unidades flutuantes de produção de petróleo (profundidade até 20 m. Porém, ela apresenta problemas tais como o maior risco de fissuração a frio e de formação acentuada de porosidade. O presente trabalho tem como objetivo melhorar a resistência mecânica do metal de solda de um eletrodo experimental do tipo oxi-rutílico. Foram estudadas as influências de adições de Mo (até 0,4% no metal de solda na microestrutura e em propriedades mecânicas. As soldas foram realizadas em simulador de soldagem subaquática em profundidade equivalente de 10m utilizando um sistema de soldagem por gravidade. As análises das micrografias mostrou que o aumento do teor de Mo no metal de solda diminui significantemente o tamanho médio de grão da região reaquecida de grãos finos. O aumento do teor de Mo no metal de solda resultou, ainda, em aumento do limite de resistência à tração sem perdas de tenacidade e ductilidade até aproximadamente 0,25%Mo.the underwater wet welding with coated electrodes technique is undergoing an important use growth in underwater repairs of oil production floating unit's structural elements (up to 20 m depth. However, it presents problems such as increased risk of cold cracking and sharp porosity formation. This work aims to improve the weld metal's mechanical strength through the addition of molybdenum to experimental oxy-rutilic type electrodes. Both the microstructure and the mechanical properties of weld metals were studied while electrodes would receive additional Mo (up to 0.4%. The welds were done using a gravity welding system placed in an underwater welding simulator with an equivalent depth of 10 m. Analyses of micrographics shown that the increased level of Mo in weld metal (a decreases significantly the average grain size of fine

  15. Effect of N-acetylcysteine on the accuracy of the prothrombin time assay of plasma coagulation factor II plus VII plus X activity in subjects infused with the drug. Influence of time and temperature

    DEFF Research Database (Denmark)

    Thorsen, S.; Teisner, A.; Jensen, S.A.

    2009-01-01

    Objectives: The prothrombin time (PT) assay of factor II+VII+X activity is an important predictor of liver damage in paracetamol poisoned patients. It complicates interpretation of results that the antidote, acetylcysteine (NAC) depresses this activity. The aim was to investigate if NAC influences...

  16. Effect of N-acetylcysteine on the accuracy of the prothrombin time assay of plasma coagulation factor II+VII+X activity in subjects infused with the drug. Influence of time and temperature

    DEFF Research Database (Denmark)

    Thorsen, Sixtus; Teisner, Ane; Jensen, Søren Astrup

    2009-01-01

    OBJECTIVES: The prothrombin time (PT) assay of factor II+VII+X activity is an important predictor of liver damage in paracetamol poisoned patients. It complicates interpretation of results that the antidote, acetylcysteine (NAC) depresses this activity. The aim was to investigate if NAC influences...

  17. Development of high temperature reference electrodes for in-pile application: Part I. Feasibility study of the external pressure balanced Ag/AgCl reference electrode (EPBRE) and the cathodically charged Palladium hydrogen electrode

    Energy Technology Data Exchange (ETDEWEB)

    Bosch, R.W.; Van Nieuwenhove, R

    1998-10-01

    The main problems connected with corrosion potential measurements at elevated temperatures and pressures are related to the stability and lifetime of the reference electrode and the correct estimation of the potential related to the Standard Hydrogen Scale (SHE). Under Pressurised Water Reactor (PWR) conditions of 300 degrees Celsius and 150 bar, the choice of materials is also a limiting factor due to the influence of radiation. Investigations on two reference electrodes that can be used under PWR conditions are reported: the cathodically charged palladium hydrogen electrode, and the external pressure balanced silver/silver chloride electrode. Preliminary investigations with the Pd-electrode were focused on the calculation of the required charging time and the influence of dissolved oxygen. High temperature applications are discussed on the basis of results reported in the literature. Investigations with the silver/silver chloride reference electrode mainly dealt with the salt bridge which is necessary to connect the reference electrode with the testing solution. It is shown that the thermal junction potential is independent of the length of the salt bridge. In addition, the high temperature contributes to an increase of the conductivity of the solution, which is beneficial for the salt bridge connection.

  18. A Novel AED Electrode Design Significantly Improves Laypersons Abillities to Correctly Place AED Electrodes

    DEFF Research Database (Denmark)

    Bødtker, Henrik; Stærk, Mathilde; Glerup Lauridsen, Kasper

    2017-01-01

    Introduction: Defibrillation with an automated external defibrillator (AED) improves survival after cardiac arrest. Laypersons rarely place the left apical AED electrodes according to international guidelines. Incorrect electrode placement may reduce the chance of successful defibrillation.......Hypothesis: Novel AED electrodes with pictures of correct electrode placement on a human improves left apical AED electrode placement compared with conventional AED electrodes with standard pictograms.Methods: Untrained laypersons were randomized to apply A) Novel AED electrodes with pictures of correct electrode...... placement on a human (Figure), or B) conventional AED electrodes with pictograms on a resuscitation manikin. Positioning of AED electrodes was compared to the recommended electrode position. Time to AED electrode placement was measured. Participants were asked to rate the user-friendliness of the two...

  19. Composite Electrodes for Electrochemical Supercapacitors

    Directory of Open Access Journals (Sweden)

    Yang QuanMin

    2010-01-01

    Full Text Available Abstract Manganese dioxide nanofibers with length ranged from 0.1 to 1 μm and a diameter of about 4–6 nm were prepared by a chemical precipitation method. Composite electrodes for electrochemical supercapacitors were fabricated by impregnation of the manganese dioxide nanofibers and multiwalled carbon nanotubes (MWCNT into porous Ni plaque current collectors. Obtained composite electrodes, containing 85% of manganese dioxide and 15 mass% of MWCNT, as a conductive additive, with total mass loading of 7–15 mg cm−2, showed a capacitive behavior in 0.5-M Na2SO4 solutions. The decrease in stirring time during precipitation of the nanofibers resulted in reduced agglomeration and higher specific capacitance (SC. The highest SC of 185 F g−1 was obtained at a scan rate of 2 mV s−1 for mass loading of 7 mg cm−2. The SC decreased with increasing scan rate and increasing electrode mass.

  20. RETGEM with polyvinylchloride (PVC) electrodes

    CERN Document Server

    Razin, V I; Reshetin, A I; Filippov, S N

    2009-01-01

    This paper presents a new design of the RETGEM (Resistive Electrode Thick GEM) based on electrodes made of a polyvinylchloride material (PVC). Our device can operate with gains of 10E5 as a conventional TGEM at low counting rates and as RPC in the case of high counting rates without of the transit to the violent sparks. The distinct feature of present RETGEM is the absent of the metal coating and lithographic technology for manufacturing of the protective dielectric rms. The electrodes from PVC permit to do the holes by a simple drilling machine. Detectors on a RETGEM basis could be useful in many fields of an application requiring a more cheap manufacturing and safe operation, for example, in a large neutrino experiments, in TPC, RICH systems.

  1. Determinação voltamétrica por redissolução anódica de Cu(II em águas residuárias empregando um eletrodo de pasta de carbono modificado com quitosana Anodic stripping voltammetric determination of copper (II in wastewaters using a carbon paste electrode modified with chitosan

    Directory of Open Access Journals (Sweden)

    Bruno Campos Janegitz

    2007-01-01

    Full Text Available The electrochemical applications of a CPE modified with chitosan for the determination of Cu(II in wastewater samples using anodic stripping voltammetry are described. The best voltammetric response was observed for a paste containing 25% m/m of chitosan. A 0.10 mol L-1 NaNO3 solution (pH 6.5 as supporting electrolyte, a pre-concentration potential of -0.20 V, pre-concentration time of 270 s and a scan rate of 25 mV s-1 were selected. The calibration graph was linear in the Cu(II concentration range from 2.0 x 10-7 to 7.4 x 10-6 mol L-1, with a detection limit of 8.3 x 10-8 mol L-1.

  2. Preparation and characterization of carbon paste electrode modified with tin and hexacyanoferrate ions

    Directory of Open Access Journals (Sweden)

    REZA E. SABZI

    2007-10-01

    Full Text Available A carbon paste electrode was modified chemically using Sn(II or Sn(IV chlorides and hexacyanoferrate(II or hexacyanoferrate(III. The electrochemical behavior of such SnHCF carbon paste electrodes was studied by cyclic voltammetry. The study revealed that Sn(IV and hexacyanoferrate(II yield the best results. This electrode showed one pair of peaks: the anodic and cathodic peak at the potentials of 0.195 and 0.154 V vs. SCE, respectively, at a scan rate of 20 mV s-1 in a 0.5 M phosphate buffer as the supporting electrolyte. The SnHCF modified electrodes were very stable under potential scanning. The effects of pH and alkali metal cations of the supporting electrolyte on the electrochemical characteristics of the modified electrode were studied. The results showed that cations have a considerable effect on the electrochemical behavior of the modified electrode. The diffusion coefficients of hydrated K+ and Na+ in the film, the transfer coefficient and the electron transfer rate constant were determined.

  3. The influence of seasonalness on the structural characteristics of aquatic humic substances extracted from Negro River (Amazon State) waters: interactions with Hg(II)

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Luciana C. de; Rocha, Julio C. [Universidade Estadual Paulista (UNESP), Araraquara, SP (Brazil). Inst. de Quimica]. E-mail: jrocha@iq.unesp.br; Sargentini Junior, Ezio; Serudo, Ricardo L. [Instituto Nacional de Pesquisas da Amazonia (INPA), Manaus, AM, (Brazil); Rosa, Andre H. [Universidade Estadual Paulista (UNESP), Sorocaba, SP (Brazil). Dept. de Engenharia Ambiental; Simoes, Marcelo L.; Martin-Neto, Ladislau; Silva, Wilson T. L. da [EMBRAPA Instrumentacao Agropecuaria, Sao Carlos, SP (Brazil)

    2007-07-01

    In this work, humic substances were extracted from water samples collected monthly from the Negro River basin in the Amazon state (Brazil) to study their properties in the Amazonian environment and interactions with the mercury ion considering the influence of seasonalness in this formation. The C/H, C/N and C/O atomic ratio parameters, functional groups, concentration of semiquinone-type free radicals, pH, pluviometric and fluviometric indices, and mercury concentrations were interpreted using hierarchical cluster analysis (HCA) and principal component analysis (PCA). The statistical analyses showed that when the pluviometric index was greater and the fluviometric index was smaller, the degree of humification of aquatic substances was greater. The following decreasing order of the degree of humification of the AHS collected monthly was established: Nov/02 to Feb/03 > Mar/02 to May/02 > Jun/02 to Oct/02. The greatest concentrations of mercury were detected in more humidified samples. These results suggest that due to inter and/or intra-molecular rearrangements, the degree of humification of aquatic humic substances is related to its affinity for Hg(II) ions. (author)

  4. Influence of electrolyte on the photovoltaic performance of a dye-sensitized TiO{sub 2} solar cell based on a Ru (II) terpyridyl complex photosensitizer

    Energy Technology Data Exchange (ETDEWEB)

    Hara, K.; Kurashige, M.; Sayama, K.; Arakawa, H. [National Institute of Advanced Industrial Science and Technology, Ibaraki (Japan). Photoreaction Control Research Center; Nishikawa, T.; Aika, K. [Tokyo Institute of Technology, Yokohama (Japan). Department of Environmental Chemistry and Engineering; Kawauchi, H.; Kashima, T. [Materials Research Laboratory, Furukawa Co. Ltd., Ibaraki (Japan)

    2005-01-01

    We have investigated the influence of electrolyte composition on the photovoltaic performance of a dye-sensitized nanocrystalline TiO{sub 2} solar cell (DSSC) based on a Ru(II) terpyridyl complex photosensitizer (the black dye). We have also spectroscopically investigated the interaction between the electrolyte components and the adsorbed dye. The absorption peaks attributed to the metal-to-ligand charge transfer transitions of the black in solution and adsorbed on a TiO{sub 2} film, were red-shifted in the presence of Li cations, which led to an expansion of the spectral response of the solar cell toward the near-IR region. The photovoltaic performance of the DSSC based on the black dye depended remarkably on the electrolyte composition. We developed a novel efficient organic liquid electrolyte containing an imidazolium iodide such as 1,2-dimethyl-3-n-propylimidazolium iodide or 1-ethyl-3-methylimidazolium iodide (EMImI) for a DSSC based on the black dye. A high solar energy-to-electricity conversion efficiency of 9.2% (J{sub sc}=19.0 mA cm{sup -2}, V{sub oc}=0.67 V, and FF=0.72) was attained under AM 1.5 irradiation (100 mW cm{sup -2}) using a novel electrolyte consisting of 1.5 M EMImI, 0.05 M iodine, and acetonitrile as a solvent with an antireflection film. (author)

  5. Influence of electrolyte on the photovoltaic performance of a dye-sensitized TiO{sub 2} solar cell based on a Ru(II) terpyridyl complex photosensitizer

    Energy Technology Data Exchange (ETDEWEB)

    Hara, Kohjiro; Kurashige, Mitsuhiko; Sayama, Kazuhiro; Arakawa, Hironori [Photoreaction Control Research Center, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565 (Japan); Nishikawa, Takeshi; Aika, Kenichi [Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan); Kawauchi, Hiroshi; Kashima, Takeo [Materials Research Laboratory, Furukawa Co. Ltd., 1-25-13 Kannondai, Tsukuba, Ibaraki 305-0856 (Japan)

    2005-01-01

    We have investigated the influence of electrolyte composition on the photovoltaic performance of a dye-sensitized nanocrystalline TiO{sub 2} solar cell (DSSC) based on a Ru(II) terpyridyl complex photosensitizer (the black dye). We have also spectroscopically investigated the interaction between the electrolyte components and the adsorbed dye. The absorption peaks attributed to the metal-to-ligand charge transfer transitions of the black dye in solution and adsorbed on a TiO{sub 2} film, were red-shifted in the presence of Li cations, which led to an expansion of the spectral response of the solar cell toward the near-IR region. The photovoltaic performance of the DSSC based on the black dye depended remarkably on the electrolyte composition. We developed a novel efficient organic liquid electrolyte containing an imidazolium iodide such as 1,2-dimethyl-3-n-propylimidazolium iodide or 1-ethyl-3-methylimidazolium iodide (EMImI) for a DSSC based on the black dye. A high solar energy-to-electricity conversion efficiency of 9.2% (J{sub sc}=19.0mAcm{sup -2}, V{sub oc}=0.67V, and FF=0.72) was attained under AM 1.5 irradiation (100mWcm{sup -2}) using a novel electrolyte consisting of 1.5M EMImI, 0.05M iodine, and acetonitrile as a solvent with an antireflection film.

  6. Nanofiber membrane-electrode-assembly and method of fabricating same

    Energy Technology Data Exchange (ETDEWEB)

    Pintauro, Peter N.; Ballengee, Jason; Brodt, Matthew

    2016-02-02

    In one aspect of the present invention, a fuel cell membrane-electrode-assembly (MEA) has an anode electrode, a cathode electrode, and a membrane disposed between the anode electrode and the cathode electrode. At least one of the anode electrode, the cathode electrode and the membrane is formed of electrospun nanofibers.

  7. Electrode structures of polymer-electrolyte fuel cells (PEFC). An electron microscopy approach to the characterization of the electrode structure of polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Scheiba, Frieder

    2009-01-28

    Polymer electrolyte fuel cells (PEFC) have a complex electrode structure, which usually consists of a catalyst, a catalyst support, a polymer electrolyte and pores. The materials used are largely amorphous, have a strong defective structure or have particle diameter of only a few nanometers. In the electrode the materials form highly disordered aggregated structures. Both aspects complicate a systematic structural analysis significantly. However, thorough knowledge of the electrode structure, is needed for systematic advancement of fuel cell technology and to obtain a better understanding of mass and charge carrier transport processes in the electrode. Because of the complex structure of the electrode, an approach based on the examination of electrode thin-sections by electron microscopy was chosen in this work to depicting the electrode structure experimentally. The present work presents these studies of the electrode structure. Some fundamental issues as the influence of the polymer electrolyte concentration and the polarity of the solvent used in the electrode manufacturing process were addressed. During the analysis particular attention was payed to the distribution and structure of the polymer electrolyte. A major problem to the investigations, were the low contrast between the polymer electrolyte, the catalyst support material and the embedding resin. Therefore, dilerent techniques were investigated in terms of their ability to improve the contrast. In this context, a computer-assisted acquisition procedure for energy filtered transmission electron microscopy (EF-TEM) was developed. The acquisition procedure permits a significant extension of the imageable sample. At the same time, it was possible to substantially reduce beam damage of the specimen and to minimize drift of the sample considerably. This allowed unambiguous identification of the polymer electrolyte in the electrode. It could further be shown, that the polymer electrolyte not only coats the

  8. Electrodes for Semiconductor Gas Sensors

    Science.gov (United States)

    Lee, Sung Pil

    2017-01-01

    The electrodes of semiconductor gas sensors are important in characterizing sensors based on their sensitivity, selectivity, reversibility, response time, and long-term stability. The types and materials of electrodes used for semiconductor gas sensors are analyzed. In addition, the effect of interfacial zones and surface states of electrode–semiconductor interfaces on their characteristics is studied. This study describes that the gas interaction mechanism of the electrode–semiconductor interfaces should take into account the interfacial zone, surface states, image force, and tunneling effect. PMID:28346349

  9. Ceramic components for MHD electrode

    Science.gov (United States)

    Marchant, D.D.

    A ceramic component which exhibits electrical conductivity down to near room temperatures has the formula: Hf/sub x/In/sub y/A/sub z/O/sub 2/ where x = 0.1 to 0.4, y = 0.3 to 0.6, z = 0.1 to 0.4 and A is a lanthanide rare earth or yttrium. The component is suitable for use in the fabrication of MHD electrodes or as the current leadout portion of a composite electrode with other ceramic components.

  10. Nanoengineered membrane electrode assembly interface

    Science.gov (United States)

    Song, Yujiang; Shelnutt, John A

    2013-08-06

    A membrane electrode structure suitable for use in a membrane electrode assembly (MEA) that comprises membrane-affixed metal nanoparticles whose formation is controlled by a photochemical process that controls deposition of the metal nanoparticles using a photocatalyst integrated with a polymer electrolyte membrane, such as an ionomer membrane. Impregnation of the polymer membrane with the photocatalyst prior to metal deposition greatly reduces the required amount of metal precursor in the deposition reaction solution by restricting metal reduction substantially to the formation of metal nanoparticles affixed on or near the surface of the polymer membrane with minimal formation of metallic particles not directly associated with the membrane.

  11. Progress in understanding SOFC electrodes

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Hansen, Karin Vels; Jørgensen, M.J.

    2002-01-01

    The literature of SOFC electrode kinetics and mechanisms is full of contradicting details in case of both the SOFC anode and cathode processes. Only weak patterns may be identified. One interpretation is that each of the reported data sets reflects a laboratory specific nature of each of the elec......The literature of SOFC electrode kinetics and mechanisms is full of contradicting details in case of both the SOFC anode and cathode processes. Only weak patterns may be identified. One interpretation is that each of the reported data sets reflects a laboratory specific nature of each...

  12. On the noise performance of pt electrodes.

    Science.gov (United States)

    Liu, Xiao; Demosthenous, Andreas; Donaldson, Nick

    2007-01-01

    We measured the noise and impedance from Pt electrode pairs in a frequency band from 100 Hz to 10 kHz, containing the ENG band (500 Hz 5 kHz). The results show that the Pt electrode noise is the same as the thermal noise from the real part of the electrode impedance, which is a summation of the polarisation resistance and the access resistance. This differs from Ag-AgCl electrodes for which the electrode noise has been reported to be higher than the thermal noise. Our study shows that Pt electrodes are suitable for neural recording.

  13. Nanofiber membrane-electrode-assembly and method of fabricating same

    Energy Technology Data Exchange (ETDEWEB)

    Pintauro, Peter N.; Ballengee, Jason; Brodt, Matthew

    2018-01-23

    In one aspect of the present invention, a method of fabricating a fuel cell membrane-electrode-assembly (MEA) having an anode electrode, a cathode electrode, and a membrane disposed between the anode electrode and the cathode electrode, includes fabricating each of the anode electrode, the cathode electrode, and the membrane separately by electrospinning; and placing the membrane between the anode electrode and the cathode electrode, and pressing then together to form the fuel cell MEA.

  14. Engineering and Optimization of Silicon-Iron-Manganese Nanoalloy Electrode for Enhanced Lithium-Ion Battery

    Science.gov (United States)

    Alaboina, Pankaj K.; Cho, Jong-Soo; Cho, Sung-Jin

    2017-10-01

    The electrochemical performance of a battery is considered to be primarily dependent on the electrode material. However, engineering and optimization of electrodes also play a crucial role, and the same electrode material can be designed to offer significantly improved batteries. In this work, Si-Fe-Mn nanomaterial alloy (Si/alloy) and graphite composite electrodes were densified at different calendering conditions of 3, 5, and 8 tons, and its influence on electrode porosity, electrolyte wettability, and long-term cycling was investigated. The active material loading was maintained very high ( 2 mg cm-2) to implement electrode engineering close to commercial loading scales. The densification was optimized to balance between the electrode thickness and wettability to enable the best electrochemical properties of the Si/alloy anodes. In this case, engineering and optimizing the Si/alloy composite electrodes to 3 ton calendering (electrode densification from 0.39 to 0.48 g cm-3) showed enhanced cycling stability with a high capacity retention of 100% over 100 cycles. [Figure not available: see fulltext.

  15. Surface-treated carbon electrodes with modified potential of zero charge for capacitive deionization.

    Science.gov (United States)

    Wu, Tingting; Wang, Gang; Zhan, Fei; Dong, Qiang; Ren, Qidi; Wang, Jianren; Qiu, Jieshan

    2016-04-15

    The potential of zero charge (Epzc) of electrodes can greatly influence the salt removal capacity, charge efficiency and cyclic stability of capacitive deionization (CDI). Thus optimizing the Epzc of CDI electrodes is of great importance. A simple strategy to negatively shift the Epzc of CDI electrodes by modifying commercial activated carbon with quaternized poly (4-vinylpyridine) (AC-QPVP) is reported in this work. The Epzc of the prepared AC-QPVP composite electrode is as negative as -0.745 V vs. Ag/AgCl. Benefiting from the optimized Epzc of electrodes, the asymmetric CDI cell which consists of the AC-QPVP electrode and a nitric acid treated activated carbon (AC-HNO3) electrode exhibits excellent CDI performance. For inverted CDI, the working potential window of the asymmetric CDI cell can reach 1.4 V, and its salt removal capacity can be as high as 9.6 mg/g. For extended voltage CDI, the salt removal capacity of the asymmetric CDI cell at 1.2/-1.2 V is 20.6 mg/g, which is comparable to that of membrane CDI using pristine activated carbon as the electrodes (19.5 mg/g). The present work provides a simple method to prepare highly positively charged CDI electrodes and may pave the way for the development of high-performance CDI cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Analytical investigations of varying cross section microstructures on charge transfer in solid oxide fuel cell electrodes

    Science.gov (United States)

    Nelson, George J.; Peracchio, Aldo A.; Chiu, Wilson K. S.

    2011-05-01

    An extended surface modeling concept (electrochemical fin) is applied to charge transport within the SOFC electrode microstructure using an analytical modeling approach analogous to thermal fin analysis. This model is distinct from similar approaches applied to SOFC electrode microstructure in its application of a governing equation that allows for variable cross-section geometry. The model presented is capable of replicating experimentally observed electrode behavior inclusive of sensitivity to microstructural geometry, which stands in contrast to existing models that apply governing equations analogous to a constant cross-section thermal fin equation. Insights learned from this study include: the establishment of a suite of dimensionless parameters and performance metrics that can be applied to assess electrode microstructure, the definition of microstructure-related transport regimes relevant to electrode design, and correlations that allow performance predictions for electrodes that provide cell structural support. Of particular note, the variable cross-section modeling approach motivates the definition of a sintering quality parameter that quantifies the degree of constriction within the conducting network of the electrode, a phenomenon that exerts influence over electrode polarization. One-dimensional models are presented for electrochemical fins of several cross-sectional geometries with the ultimate goal of developing a general tool that enables the prompt performance evaluation of electrode microstructures. Such a tool would facilitate SOFC microstructural design by focusing more detailed modeling efforts on the most promising microstructures.

  17. An Electrode-based approach for monitoring in situ microbial activity during subsurface bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Williams, K.H.; Nevin, K.P.; Franks, A.; Englert, A.; Long, P.E.; Lovley, D.R.

    2009-11-15

    Current production by microorganisms colonizing subsurface electrodes and its relationship to substrate availability and microbial activity was evaluated in an aquifer undergoing bioremediation. Borehole graphite anodes were installed downgradient from a region of acetate injection designed to stimulate bioreduction of U(VI); cathodes consisted of graphite electrodes embedded at the ground surface. Significant increases in current density ({<=}50 mA/m{sup 2}) tracked delivery of acetate to the electrodes, dropping rapidly when acetate inputs were discontinued. An upgradient control electrode not exposed to acetate produced low, steady currents ({<=}0.2 mA/m{sup 2}). Elevated current was strongly correlated with uranium removal but minimal correlation existed with elevated Fe(II). Confocal laser scanning microscopy of electrodes revealed firmly attached biofilms, and analysis of 16S rRNA gene sequences indicated the electrode surfaces were dominated (67-80%) by Geobacter species. This is the first demonstration that electrodes can produce readily detectable currents despite long-range (6 m) separation of anode and cathode, and these results suggest that oxidation of acetate coupled to electron transfer to electrodes by Geobacter species was the primary source of current. Thus it is expected that current production may serve as an effective proxy for monitoring in situ microbial activity in a variety of subsurface anoxic environments.

  18. Indicator electrodes from d-elements for application in different types of potentiometric analytical methods

    Directory of Open Access Journals (Sweden)

    Z. Kunasheva

    2012-05-01

    Full Text Available The article covers the use of metal electrodes from titanium, tungsten, molybdenum as indicator electrodes at potentiometric method of analysis. The condition of measuring operation in dependence on pH, ionic strength of solutions is described in the article. Electrode potential of testing electrodes are measured in the interval of concentration of salts from 0,1∙10-1 mole/l till 0,1∙10-6 mole/l. The results of testing of electrical-analytical description of metal electrodes made of d-elements, in particular, titanium, tungsten, molybdenum in solutions of cations of some metals and anions were mentioned. As ions of metal cations Cu2+, Cd2+, Zn2+, Pb2+ and anions Cl-, I-, F- were chosen.It is identified that titanic electrode has different response to ions of copper (II, zinc and cadmium. However, dependence of electrode potential on concentration of ions of metal is rectilinear, that is vequired of indicator electrodes in the direct potential metrics.  

  19. Sensitivity and Resolution Capacity of Electrode Configurations

    Directory of Open Access Journals (Sweden)

    Cyril Chibueze Okpoli

    2013-01-01

    Full Text Available This paper reviews the geological conditions, data density, and acquisition geometry that have direct influence on the sensitivity and resolution capacity of several electrode configurations. The parameters appreciate the effectiveness of automated multichannel system which has evolved several electrode arrays that are cost effective, reduction in survey time, high sensitivity, and resolution capacity in 2D and 3D resistivity tomographies. The arrays are pole-pole, pole-dipole, pole-bipole, dipole-dipole, Wenner, Wenner-, , gradient, midpoint-potential-referred, Schlumberger, square, and Lee-partition arrays. The gradient array and midpoint-potential-referred are well suited for multichannel surveying and gradient array images are comparable to dipole-dipole and pole-dipole. 2D electrical resistivity surveys can produce out-of-plane anomaly of the subsurface which could be misleading in the interpretation of subsurface features. Hence, a 3D interpretation model should give more accurate results, because of the increase in the reliability of inversion images and complete elimination of spurious features. Therefore, the reduction of anomaly effects and damping factor due to signal to noise ratio result in better spatial resolution image, thus enhancing its usage in environmental and engineering research.

  20. Analysis of SOFCs Using Reference Electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Finklea, H.; Chen, X.; Gerdes, K.; Pakalapati, S.; Celik, I.

    2013-01-01

    Reference electrodes are frequently applied to isolate the performance of one electrode in a solid oxide fuel cell. However, reference electrode simulations raise doubt to veracity of data collected using reference electrodes. The simulations predict that the reported performance for the one electrode will frequently contain performance of both electrodes. Nonetheless, recent reports persistently treat data so collected as ideally isolated. This work confirms the predictions of the reference electrode simulations on two SOFC designs, and to provides a method of validating the data measured in the 3-electrode configuration. Validation is based on the assumption that a change in gas composition to one electrode does not affect the impedance of the other electrode at open circuit voltage. This assumption is supported by a full physics simulation of the SOFC. Three configurations of reference electrode and cell design are experimentally examined using various gas flows and two temperatures. Impedance data are subjected to deconvolution analysis and equivalent circuit fitting and approximate polarization resistances of the cathode and anode are determined. The results demonstrate that the utility of reference electrodes is limited and often wholly inappropriate. Reported impedances and single electrode polarization values must be scrutinized on this basis.

  1. Rough Gold Electrodes for Decreasing Impedance at the Electrolyte/Electrode Interface

    Science.gov (United States)

    Koklu, Anil; Sabuncu, Ahmet C.; Beskok, Ali

    2016-01-01

    Electrode polarization at the electrolyte/electrode interface is often undesirable for bio-sensing applications, where charge accumulated over an electrode at constant potential causes large potential drop at the interface and low measurement sensitivity. In this study, novel rough electrodes were developed for decreasing electrical impedance at the interface. The electrodes were fabricated using electrochemical deposition of gold and sintering of gold nanoparticles. The performances of the gold electrodes were compared with platinum black electrodes. A constant phase element model was used to describe the interfacial impedance. Hundred folds of decrease in interfacial impedance were observed for fractal gold electrodes and platinum black. Biotoxicity, contact angle, and surface morphology of the electrodes were investigated. Relatively low toxicity and hydrophilic nature of the fractal and granulated gold electrodes make them suitable for bioimpedance and cell electromanipulation studies compared to platinum black electrodes which are both hydrophobic and toxic. PMID:27695132

  2. Multiple input electrode gap controller

    Science.gov (United States)

    Hysinger, C.L.; Beaman, J.J.; Melgaard, D.K.; Williamson, R.L.

    1999-07-27

    A method and apparatus for controlling vacuum arc remelting (VAR) furnaces by estimation of electrode gap based on a plurality of secondary estimates derived from furnace outputs. The estimation is preferably performed by Kalman filter. Adaptive gain techniques may be employed, as well as detection of process anomalies such as glows. 17 figs.

  3. Luminescence studies of semiconductor electrodes

    NARCIS (Netherlands)

    Kelly, J.J.; Kooij, Ernst S.; Meulenkamp, E.A.

    1999-01-01

    In this paper we review our recent results of in-situ luminescence studies of semiconductor electrodes. Three classes of materials are considered: single crystal compound semiconductors, porous silicon and semiconducting oxides doped with luminescent ions. We show how photoluminescence (PL) and

  4. Integral skin electrode for electrocardiography is expendable

    Science.gov (United States)

    1966-01-01

    Inexpensive, expendable skin electrode for use in electrocardiography combines an electrical contact, conductive paste, and a skin-attachment adhesive. Application of the electrode requires only degreasing of the skin area.

  5. Influence of HLA class I, HLA class II and KIRs on vertical transmission and chronicity of hepatitis C virus in children.

    Science.gov (United States)

    Ruiz-Extremera, A; Pavón-Castillero, E J; Florido, M; Muñoz de Rueda, P; Muñoz-Gámez, J A; Casado, J; Carazo, A; Quiles, R; Jiménez-Ruiz, S M; Gila, A; Luna, J D; León, J; Salmerón, J

    2017-01-01

    There is evidence that maternal viral load of HCV during delivery influences the risk for Mother-to-child transmission (MTCT), but this does not explain all cases. We study the role of the immunogenetic profile (HLA, KIRs and KIR-ligand binding) of mothers and children in HCV-MTCT and in chronicity in the children. 79 HCV-RNA (+) mothers and their 98 children were included. 24 children were infected, becoming chronic in 8 cases and clearing in 16. HLA-class-I and II and KIRs were determined by Luminex. MTCT study: The presence of HLA-C1-ligand in mothers and/or their children reduces the risk of transmission (mothers: Pc = 0.011, children: P = 0.033), whereas the presence of HLA-C2C2-ligand in mothers increases it (Pc = 0.011). In children KIR2DL3-HLA-C1 is a protector factor (Pc = 0.011). Chronicity in children study: Maternal DQA1*01 allele (Pc = 0.027), KIR2DS1 (Pc = 0.011) or KIR3DS1 (Pc = 0.011) favours chronicity in the child. The presence of the DQB1*03 allele (Pc = 0.027) and KIR2DS3 (P = 0.056) in the child and homozygosity for KIR3DL1/3DL1 (Pc = 0.011) and for the HLA-Bw4/Bw4 ligand (P = 0.027) is associated with viral clearance, whereas the presence of HLA-Bw6 ligand (P = 0.027), the binding of KIR3DS1-HLA-Bw4 (P = 0.037) and heterozygosity for KIR3DL1/3DS1 (Pc = 0.011) favour viral chronicity. Mother/child allele matching: In the joint HLA analysis, matching was greater between mothers and children with chronic infection vs those who had cleared the virus (67%±4.1 vs 57%±1.2, P = 0.003). The HLA-C1 ligand in the mother is related to MTCT, while several genetic factors of the mother or child are involved in the chronification or clearance of infection in the child. Matching allelic data is considered to be an indicator of HCV chronicity in the child and can be used as a potential prognostic test. This implies that NK cells may play a previously undocumented role in protecting against MTCT and that both NK cell immunity and adaptive T-cell responses may

  6. Influence of HLA class I, HLA class II and KIRs on vertical transmission and chronicity of hepatitis C virus in children.

    Directory of Open Access Journals (Sweden)

    A Ruiz-Extremera

    Full Text Available There is evidence that maternal viral load of HCV during delivery influences the risk for Mother-to-child transmission (MTCT, but this does not explain all cases. We study the role of the immunogenetic profile (HLA, KIRs and KIR-ligand binding of mothers and children in HCV-MTCT and in chronicity in the children.79 HCV-RNA (+ mothers and their 98 children were included. 24 children were infected, becoming chronic in 8 cases and clearing in 16. HLA-class-I and II and KIRs were determined by Luminex.MTCT study: The presence of HLA-C1-ligand in mothers and/or their children reduces the risk of transmission (mothers: Pc = 0.011, children: P = 0.033, whereas the presence of HLA-C2C2-ligand in mothers increases it (Pc = 0.011. In children KIR2DL3-HLA-C1 is a protector factor (Pc = 0.011. Chronicity in children study: Maternal DQA1*01 allele (Pc = 0.027, KIR2DS1 (Pc = 0.011 or KIR3DS1 (Pc = 0.011 favours chronicity in the child. The presence of the DQB1*03 allele (Pc = 0.027 and KIR2DS3 (P = 0.056 in the child and homozygosity for KIR3DL1/3DL1 (Pc = 0.011 and for the HLA-Bw4/Bw4 ligand (P = 0.027 is associated with viral clearance, whereas the presence of HLA-Bw6 ligand (P = 0.027, the binding of KIR3DS1-HLA-Bw4 (P = 0.037 and heterozygosity for KIR3DL1/3DS1 (Pc = 0.011 favour viral chronicity. Mother/child allele matching: In the joint HLA analysis, matching was greater between mothers and children with chronic infection vs those who had cleared the virus (67%±4.1 vs 57%±1.2, P = 0.003.The HLA-C1 ligand in the mother is related to MTCT, while several genetic factors of the mother or child are involved in the chronification or clearance of infection in the child. Matching allelic data is considered to be an indicator of HCV chronicity in the child and can be used as a potential prognostic test. This implies that NK cells may play a previously undocumented role in protecting against MTCT and that both NK cell immunity and adaptive T-cell responses may

  7. Influence of both the composition of impregnation solution and impregnation method on copper(II, chromium(VI and silver(I deposition on activated carbon

    Directory of Open Access Journals (Sweden)

    Ivanović Slavica

    2003-01-01

    Full Text Available The composition of a solution for impregnating activated carbon (AC for use in a gas filter was investigated. The solution components were tetraaminocop-per(II complex, chromium(VI, silver(l and carbonate ions. Two methods of impregnation were investigated: ion adsorption from aqueous solution in excess and the incipient wetness method. Copper, chromium and silver con-tents on AC Were determined by atomic absorption spectrometry. The largest copper contents (4.38 and 5.00 % (w/w for two AC samples were achieved at: c([Cu(NH34]2+ = 1.0 mol/L; M(Cu i M(Cr = 3.75: 1; M(Cu i M(Ag = 62: 1 and M(Cu: M(CO3 = 2: 1, using two fold impregnation by the incipient wetness method with 2.4 mL of solution per 3 g AC. The contents of chromium and silver on the same AC samples Were 1.06 and 0.0098 % for the first and 1.14 and 0.009 % for the second AC. A larger Cr content (1.57 % was achieved from an impregnation solution in excess (c([Cu(NH34]2+ = 1.25 mol/L; M(Cu i M(Cr = 3: 1; without Ag. The largest Ag content (0.17 % was obtained using two fold impregnation by the incipient wetness method (c([Cu(NH34]2+ = 0.8 mol/L; M(Cu: M(Cr = 3.75: 1<; M(Cu i M(Ag ( 80: 1 and M(Cu i M(CO3 = 1 i 1.32. Larger metal contents were obtained using two fold impregnation by the incipient wetness method. Further work is needed on the determination of the influence of carbonate ions both on the solution stability and metal deposition on AC.

  8. Efecto sobre la dilución de la granulometría de la ferroaleación en el alma de electrodos tubulares revestidos bajo la influencia de la composición del revestimiento The effect on the dilution of the ferroalloy granulometry in metal cored coated electrodes under the influence of the coating composition

    Directory of Open Access Journals (Sweden)

    Amado Cruz-Crespo

    2011-03-01

    known that the grain size of the filling alloy elements plays important role in the exothermic oxidation process, reflecting on the operational characteristics of the electrode. However, one can suppose that such process is dependent of the composition ratio of the slag-former compounds from the coating. The present work describes the evaluation of the filling alloy granulometry, present in metal core coated electrodes, on the dilution and deposition rate, taking into account the influence of the coating. The study was carried out using two types of electrodes with FeCrMn as alloying component, distinguished by the granulometry of the ferroalloy. Different coating compositions were employed with systematic variations in the ratio Calcite:Fluorite:Rutile. Bead dimensions were measured after bead-on-plate welds. It was concluded that the electrode with coarser ferroalloying presents better performance from the dilution and deposition efficiency points of view. The coating composition of the highest performance was established.

  9. An ionization chamber with magnetic levitated electrodes

    CERN Document Server

    Kawaguchi, T

    1999-01-01

    A new type of ionization chamber which has magnetically levitated electrodes has been developed. The electrodes are supplied voltages for the repelling of ions by a battery which is also levitated with the electrodes. The characteristics of this ionization chamber are investigated in this paper.

  10. Membrane electrode assembly for a fuel cell

    Science.gov (United States)

    Prakash, Surya (Inventor); Narayanan, Sekharipuram R. (Inventor); Atti, Anthony (Inventor); Olah, George (Inventor); Smart, Marshall C. (Inventor)

    2006-01-01

    A catalyst ink for a fuel cell including a catalytic material and poly(vinylidene fluoride). The ink may be applied to a substrate to form an electrode, or bonded with other electrode layers to form a membrane electrode assembly (MEA).

  11. Electrode placement during electro-desalination of

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Andersson, Lovisa C. H.

    2017-01-01

    , where the most fragile parts thus can be desalinated without physically placing electrodes on them. The Cl removal rate was higher in the areas closest to the electrodes and slowest in the part, which was not placed directly between the electrodes. This is important to incorporate in the monitoring...

  12. Point Electrode Studies of the Solid Electrolyte-Electrode Interface

    DEFF Research Database (Denmark)

    Jacobsen, Torben

    In the development of new electrode materials for high temperature Solid Oxide Fuel Cells methods are needed for the electrochemical evaluation of the catalytic properties of the materials. A major problem in the comparison of materials is how to determine the geometry and the effective length of......$mm diameter) platinum electrodes mounted in a thin alumina tube resting on a polished 8 mol\\% yttria stabilized zirconia electrolyte at $1000^\\circ$C in air. The results where analysed in terms of the equivalent circuit $R_{YSZ}(R_r Q)$ in the frequency range 0.5MHz--1kHz. Fig.\\,1 shows...... capacities calculated from CPA elements can be questioned, this indicates a change in the interfacial structure. It is noted that after the strong activation in step 11-12 the interface slowly (timescale of days) relaxes toward the equilibrium....

  13. 21 CFR 870.1220 - Electrode recording catheter or electrode recording probe.

    Science.gov (United States)

    2010-04-01

    ... recording probe. 870.1220 Section 870.1220 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH... Devices § 870.1220 Electrode recording catheter or electrode recording probe. (a) Identification. An electrode recording catheter or an electrode recording probe is a device used to detect an intracardiac...

  14. Electric Field Analysis of Space Charge Injection from a Conductive Nano-Filler Electrode

    Science.gov (United States)

    Xiao, Chun; Zhang, Ye-Wen; Zheng, Fei-Hu; Wei, Wen-Jie; An, Zhen-Lian

    2010-07-01

    A simulation on the electric field distribution near the electrode is proposed to explain the reason for using nanosized carbon black mixed with ethylene vinyl acetate, as the electrode could lead to more charge injection into the polymer than using a deposited metal electrode. The electrode is simplified to a layer of conductive semi-spheres with fixed size and constant electric potential. By using the finite element method, it is found that both the size of the semi-spheres and the distance between adjacent semi-spheres could dramatically influence the electric field near the surface of the spheres; these are considered to be the two decisive factors for the charge injecting rate at electrodes of various materials.

  15. Low-energy plasma-cathode electron gun with a perforated emission electrode

    Science.gov (United States)

    Burdovitsin, Victor; Kazakov, Andrey; Medovnik, Alexander; Oks, Efim; Tyunkov, Andrey

    2017-11-01

    We describe research of influence of the geometric parameters of perforated electrode on emission parameters of a plasma cathode electron gun generating continuous electron beams at gas pressure 5-6 Pa. It is shown, that the emission current increases with increasing the hole diameters and decreasing the thickness of the perforated emission electrode. Plasma-cathode gun with perforated electron can provide electron extraction with an efficiency of up to 72 %. It is shown, that the current-voltage characteristic of the electron gun with a perforated emission electrode differs from that of similar guns with fine mesh grid electrode. The plasma-cathode electron gun with perforated emission electrode is used for electron beam welding and sintering.

  16. Studying the Performance of Conductive Polymer Films as Textile Electrodes for Electrical Bioimpedance Measurements

    Science.gov (United States)

    Cunico, F. J.; Marquez, J. C.; Hilke, H.; Skrifvars, M.; Seoane, F.

    2013-04-01

    With the goal of finding novel biocompatible materials suitable to replace silver in the manufacturing of textile electrodes for medical applications of electrical bioimpedance spectroscopy, three different polymeric materials have been investigated. Films have been prepared from different polymeric materials and custom bracelets have been confectioned with them. Tetrapolar total right side electrical bioimpedance spectroscopy (EBIS) measurements have been performed with polymer and with standard gel electrodes. The performance of the polymer films was compared against the performance of the gel electrodes. The results indicated that only the polypropylene 1380 could produce EBIS measurements but remarkably tainted with high frequency artefacts. The influence of the electrode mismatch, stray capacitances and large electrode polarization impedance are unclear and they need to be clarified with further studies. If sensorized garments could be made with such biocompatible polymeric materials the burden of considering textrodes class III devices could be avoided.

  17. In-situ formed Ce0.8Gd0.2O1.9 barrier layers on yttria stabilized zirconia backbones by infiltration - A promising path to high performing oxygen electrodes of solid oxide cell

    DEFF Research Database (Denmark)

    Ovtar, Simona; Chen, Ming; Samson, Alfred Junio

    2017-01-01

    of the following parameters on the microstructure of the formed CGO barrier layer and on the electrochemical performance of the cells were studied: i) surfactants and wetting agents, ii) ceria/gadolinia coverage, iii) calcination profiles and iv) exposure temperature during testing. The infiltration process......Oxygen electrodes for solid oxide cells were prepared by a consecutive infiltration of a gadolinium doped ceria (Ce0.8Gd0.2O1.9, CGO) barrier layer and a lanthanum cobalt nickelate (La0.95Co0.4Ni0.6O3, LCN) electro catalyst layer into a porous yttrium doped zirconia (YSZ) backbone. The influences...

  18. Powder processing of hybrid titanium neural electrodes

    Science.gov (United States)

    Lopez, Jose Luis, Jr.

    A preliminary investigation into the powder production of a novel hybrid titanium neural electrode for EEG is presented. The rheological behavior of titanium powder suspensions using sodium alginate as a dispersant are examined for optimal slip casting conditions. Electrodes were slip cast and sintered at 950°C for 1 hr, 1000°C for 1, 3, and 6 hrs, and 1050°C for 1 hr. Residual porosities from sintering are characterized using Archimedes' technique and image analysis. The pore network is gel impregnated by submerging the electrodes in electrically conductive gel and placing them in a chamber under vacuum. Gel evaporation of the impregnated electrodes is examined. Electrodes are characterized in the dry and gelled states using impedance spectrometry and compared to a standard silver- silver chloride electrode. Power spectral densities for the sensors in the dry and gelled state are also compared. Residual porosities for the sintered specimens were between 50.59% and 44.81%. Gel evaporation tests show most of the impregnated gel evaporating within 20 min of exposure to atmospheric conditions with prolonged evaporation times for electrodes with higher impregnated gel mass. Impedance measurements of the produced electrodes indicate the low impedance of the hybrid electrodes are due to the increased contact area of the porous electrode. Power spectral densities of the titanium electrode behave similar to a standard silver-silver chloride electrode. Tests suggest the powder processed hybrid titanium electrode's performance is better than current dry contact electrodes and comparable to standard gelled silver-silver chloride electrodes.

  19. Space Suit Electrocardiographic Electrode Selection: Are commercial electrodes better than the old Apollo technology?

    Science.gov (United States)

    Redmond, M.; Polk, J. D.; Hamilton, D.; Schuette, M.; Guttromson, J.; Guess, T.; Smith, B.

    2005-01-01

    The NASA Manned Space Program uses an electrocardiograph (ECG) system to monitor astronauts during extravehicular activity (EVA). This ECG system, called the Operational Bioinstrumentation System (OBS), was developed during the Apollo era. Throughout the Shuttle program these electrodes experienced failures during several EVAs performed from the Space Shuttle and International Space Station (ISS) airlocks. An attempt during Shuttle Flight STS-109 to replace the old electrodes with new commercial off-the-shelf (COTS) disposable electrodes proved unsuccessful. One assumption for failure of the STS-109 COTS electrodes was the expansion of trapped gases under the foam electrode pad, causing the electrode to be displaced from the skin. Given that our current electrodes provide insufficient reliability, a number of COTS ECG electrodes were tested at the NASA Altitude Manned Chamber Test Facility. Methods: OBS disposable electrodes were tested on human test subjects in an altitude chamber simulating an Extravehicular Mobility Unit (EMU) operating pressure of 4.3 psia with the following goals: (1) to confirm the root cause of the flight certified, disposable electrode failure during flight STS-109. (2) to identify an adequate COTS replacement electrode and determine if further modifications to the electrodes are required. (3) to evaluate the adhesion of each disposable electrode without preparation of the skin with isopropyl alcohol. Results: There were several electrodes that failed the pressure testing at 4.3psia, including the electrodes used during flight STS-109. Two electrodes functioned well throughout all testing and were selected for further testing in an EMU at altitude. A vent hole placed in all electrodes was also tested as a possible solution to prevent gas expansion from causing electrode failures. Conclusions: Two failure modes were identified: (1) foam-based porous electrodes entrapped air bubbles under the pad (2) poor adhesion caused some electrodes to

  20. Long life lithium batteries with stabilized electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Amine, Khalil [Downers Grove, IL; Liu, Jun [Naperville, IL; Vissers, Donald R [Naperville, IL; Lu, Wenquan [Darien, IL

    2009-03-24

    The present invention relates to non-aqueous electrolytes having electrode stabilizing additives, stabilized electrodes, and electrochemical devices containing the same. Thus the present invention provides electrolytes containing an alkali metal salt, a polar aprotic solvent, and an electrode stabilizing additive. In some embodiments the additives include a substituted or unsubstituted cyclic or spirocyclic hydrocarbon containing at least one oxygen atom and at least one alkenyl or alkynyl group. When used in electrochemical devices with, e.g., lithium manganese oxide spinel electrodes or olivine or carbon-coated olivine electrodes, the new electrolytes provide batteries with improved calendar and cycle life.

  1. Control of electrode depth in electroslag remelting

    Energy Technology Data Exchange (ETDEWEB)

    Melgaard, David K. (Albuquerque, NM); Shelmidine, Gregory J. (Tijeras, NM); Damkroger, Brian K. (Albuquerque, NM)

    2002-01-01

    A method of and apparatus for controlling an electroslag remelting furnace by driving the electrode at a nominal speed based upon melting rate and geometry while making minor proportional adjustments based on a measured metric of the electrode immersion depth. Electrode drive speed is increased if a measured metric of electrode immersion depth differs from a set point by a predetermined amount, indicating that the tip is too close to the surface of a slag pool. Impedance spikes are monitored to adjust the set point for the metric of electrode immersion depth based upon one or more properties of the impedance spikes.

  2. Preparation and Evaluation of Acetabularia-Modified Carbon Paste Electrode in Anodic Stripping Voltammetry of Copper and Lead Ions

    Directory of Open Access Journals (Sweden)

    Muhammad Raziq Rahimi Kooh

    2013-01-01

    Full Text Available Seaweed is well known about for potential in chelating heavy metals. In this study, carbon paste electrodes were fabricated with siphonous seaweed Acetabularia acetabulum as the modifiers to sense lead (II and copper (II by square-wave anodic stripping voltammetry. Various scan rates and deposition potentials were measured to obtain the optimal peak current for Pb(II and Cu(II. Optimum conditions of Acetabularia-CPE for sensing Pb(II were at the scan rate of 75 mV/s and deposition potential of −800 mV, while for Cu(II sensing were at 100 mV/s and −300 mV, respectively. The electrodes were characterized by the duration of accumulation time, preconcentration over a range of standards, supporting electrolyte, and standard solutions of various pH values. Interference studies were carried out. Both Zn(II and Cu(II were found to interfere with Pb(II sensing, whereas only Zn(II causes interference with Cu(II sensing. The electrode was found to have good regeneration ability via electrochemical cleaning. Preliminary testing of complex samples such as NPK fertilisers, black soil, and sea salt samples was included.

  3. Quantitative detection of Amino Acid, Organic Acid and Sugar using an Electrode-separated Piezoelectric Quartz Crystal

    Science.gov (United States)

    Nomura, Toshiaki; Yamamura, Satoshi; Arikawa, Yukihiko

    An electrode-separated piezoelectric quartz crystal (electrode-separated PQC) is constructed with no electrode attached to either side of the quartz plate, but electrodes are separately inserted in the electrolyte solution on both sides of the quartz plate, and are connected to an oscillator. The frequency shifts due to the solution properties and the mass change on the quartz plate is just the same as for a normal piezoelectric quartz crystal (normal PQC) having two electrodes. The electrode-separated PQC will be more useful than the normal PQC because it can be made smaller, higher frequency, and then cheaper. Amino acid, organic acid and sugar are important substances in the alcoholic beverage made by fermentation, such as sake. The Amino acids were determined using electrode-separated PQC coated with chitosan in copper (II) solution. Formation of complex with chitosan on the quartz plate, Cu(II) and amino acid in the sample solution induced the frequency shift of PQC. On the other hand, using non-coated electrode-separated PQC, concentration of organic acid and sugar in the liquid were determined, because the frequency of the crystal filled with the liquid containing organic acid and sugar was shifted with the viscosity and conductivity, respectively.

  4. Heat and water transport in a polymer electrolyte fuel cell electrode

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Partha P [Los Alamos National Laboratory; Mukundan, Rangachary [Los Alamos National Laboratory; Borup, Rod L [Los Alamos National Laboratory; Ranjan, Devesh [TEXAS A& M UNIV

    2010-01-01

    In the present scenario of a global initiative toward a sustainable energy future, the polymer electrolyte fuel cell (PEFC) has emerged as one of the most promising alternative energy conversion devices for various applications. Despite tremendous progress in recent years, a pivotal performance limitation in the PEFC comes from liquid water transport and the resulting flooding phenomena. Liquid water blocks the open pore space in the electrode and the fibrous diffusion layer leading to hindered oxygen transport. The electrode is also the only component in the entire PEFC sandwich which produces waste heat from the electrochemical reaction. The cathode electrode, being the host to several competing transport mechanisms, plays a crucial role in the overall PEFC performance limitation. In this work, an electrode model is presented in order to elucidate the coupled heat and water transport mechanisms. Two scenarios are specifically considered: (1) conventional, Nafion{reg_sign} impregnated, three-phase electrode with the hydrated polymeric membrane phase as the conveyer of protons where local electro-neutrality prevails; and (2) ultra-thin, two-phase, nano-structured electrode without the presence of ionomeric phase where charge accumulation due to electro-statics in the vicinity of the membrane-CL interface becomes important. The electrode model includes a physical description of heat and water balance along with electrochemical performance analysis in order to study the influence of electro-statics/electro-migration and phase change on the PEFC electrode performance.

  5. A novel method of fabricating carbon nanotubes-polydimethylsiloxane composite electrodes for electrocardiography.

    Science.gov (United States)

    Liu, Benyan; Chen, Yingmin; Luo, Zhangyuan; Zhang, Wenzan; Tu, Quan; Jin, Xun

    2015-01-01

    Polymer-based flexible electrodes are receiving much attention in medical applications due to their good wearing comfort. The current fabrication methods of such electrodes are not widely applied. In this study, polydimethylsiloxane (PDMS) and conductive additives of carbon nanotubes (CNTs) were employed to fabricate composite electrodes for electrocardiography (ECG). A three-step dispersion process consisting of ultrasonication, stirring, and in situ polymerization was developed to yield homogenous CNTs-PDMS mixtures. The CNTs-PDMS mixtures were used to fabricate CNTs-PDMS composite electrodes by replica technology. The influence of ultrasonication time and CNT concentration on polymer electrode performance was evaluated by impedance and ECG measurements. The signal amplitude of the electrodes prepared using an ultrasonication time of 12 h and CNT content of 5 wt% was comparable to that of commercial Ag/AgCl electrodes. The polymer electrodes were easily fabricated by conventional manufacturing techniques, indicating a potential advantage of reduced cost for mass production.

  6. High voltage performance of a dc photoemission electron gun with centrifugal barrel-polished electrodes

    Science.gov (United States)

    Hernandez-Garcia, C.; Bullard, D.; Hannon, F.; Wang, Y.; Poelker, M.

    2017-09-01

    The design and fabrication of electrodes for direct current (dc) high voltage photoemission electron guns can significantly influence their performance, most notably in terms of maximum achievable bias voltage. Proper electrostatic design of the triple-point junction shield electrode minimizes the risk of electrical breakdown (arcing) along the insulator-cable plug interface, while the electrode shape is designed to maintain interior surface of superconducting radio frequency cavities but implemented here for the first time to polish electrodes for dc high voltage photoguns. The technique reduced polishing time from weeks to hours while providing surface roughness comparable to that obtained with diamond-paste polishing and with unprecedented consistency between different electrode samples. We present electrode design considerations and high voltage conditioning results to 360 kV (˜11 MV/m), comparing barrel-polished electrode performance to that of diamond-paste polished electrodes. Tests were performed using a dc high voltage photogun with an inverted-geometry ceramic insulator design.

  7. Organoclay-enzyme film electrodes.

    Science.gov (United States)

    Mbouguen, Justin Kemmegne; Ngameni, Emmanuel; Walcarius, Alain

    2006-09-25

    This paper aims at showing the interest of organoclays (clay minerals containing organic groups covalently attached to the inorganic particles) as suitable host matrices likely to immobilize enzymes onto electrode surfaces for biosensing applications. The organoclays used in this work were natural Cameroonian smectites grafted with either aminopropyl (AP) or trimethylpropylammonium (TMPA) groups. The first ones were exploited for their ability to anchor biomolecules by covalent bonding while the second category exhibited favorable electrostatic interactions with negatively charged enzymes due to ion exchange properties that were pointed out here by means of multisweep cyclic voltammetry. AP-clay materials were applied to the immobilization of glucose oxidase (GOD) and TMPA-clays for polyphenol oxidase (PPO) anchoring. When deposited onto the surface of platinum or glassy carbon electrodes as enzyme/organoclay films, these systems were evaluated as biosensing electrochemical devices for detection of glucose and catechol chosen as model analytes. The advantageous features of these organoclays were discussed by comparison to the performance of related film electrodes made of non-functionalized clays. It appeared that organoclays provide a favorable environment to enzymes activity, as highlighted from the biosensors characteristics and determination of Michaelis-Menten constants.

  8. Stretchable Micro-Electrode Array

    Energy Technology Data Exchange (ETDEWEB)

    Maghribi, M; Hamilton, J; Polla, D; Rose, K; Wilson, T; Krulevitch, P

    2002-03-08

    This paper focuses on the design consideration, fabrication processes and preliminary testing of the stretchable micro-electrode array. We are developing an implantable, stretchable micro-electrode array using polymer-based microfabrication techniques. The device will serve as the interface between an electronic imaging system and the human eye, directly stimulating retinal neurons via thin film conducting traces and electroplated electrodes. The metal features are embedded within a thin ({approx}50 micron) substrate fabricated using poly (dimethylsiloxane) (PDMS), a biocompatible elastomeric material that has very low water permeability. The conformable nature of PDMS is critical for ensuring uniform contact with the curved surface of the retina. To fabricate the device, we developed unique processes for metalizing PDMS to produce robust traces capable of maintaining conductivity when stretched (5%, SD 1.5), and for selectively passivating the conductive elements. An in situ measurement of residual strain in the PDMS during curing reveals a tensile strain of 10%, explaining the stretchable nature of the thin metalized devices.

  9. Electrode materials for rechargeable battery

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Christopher; Kang, Sun-Ho

    2015-09-08

    A positive electrode is disclosed for a non-aqueous electrolyte lithium rechargeable cell or battery. The electrode comprises a lithium containing material of the formula Na.sub.yLi.sub.xNi.sub.zMn.sub.1-z-z'M.sub.z'O.sub.d, wherein M is a metal cation, x+y>1, 0electrode material can be synthesized using an ion-exchange reaction with a lithium salt in an organic-based solvent to partially replace sodium ions of a precursor material with lithium ions.

  10. Modeling of Changing Electrode Profiles

    Energy Technology Data Exchange (ETDEWEB)

    Prentice, Geoffrey Allen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials and Molecular Research Division; Univ. of California, Berkeley, CA (United States). Dept. of Chemical Engineering

    1980-12-01

    A model for simulating the transient behavior of solid electrodes undergoing deposition or dissolution has been developed. The model accounts for ohmic drop, charge transfer overpotential, and mass transport limitations. The finite difference method, coupled with successive overrelaxation, was used as the basis of the solution technique. An algorithm was devised to overcome the computational instabilities associated with the calculations of the secondary and tertiary current distributions. Simulations were performed on several model electrode profiles: the sinusoid, the rounded corner, and the notch. Quantitative copper deposition data were obtained in a contoured rotating cylinder system, Sinusoidal cross-sections, machined on stainless steel cylinders, were used as model geometries, Kinetic parameters for use in the simulation were determined from polarization curves obtained on copper rotating cylinders, These parameters, along with other physical property and geometric data, were incorporated in simulations of growing sinusoidal profiles. The copper distributions on the sinusoidal cross-sections were measured and found to compare favorably with the simulated results. At low Wagner numbers the formation of a slight depression at the profile peak was predicted by the simulation and observed on the profile. At higher Wagner numbers, the simulated and experimental results showed that the formation of a depression was suppressed. This phenomenon was shown to result from the competition between ohmic drop and electrode curvature.

  11. Increased sensitivity of anodic stripping voltammetry at the hanging mercury drop electrode by ultracathodic deposition.

    Science.gov (United States)

    Rodrigues, José A; Rodrigues, Carlos M; Almeida, Paulo J; Valente, Inês M; Gonçalves, Luís M; Compton, Richard G; Barros, Aquiles A

    2011-09-09

    An improved approach to the anodic stripping voltammetric (ASV) determination of heavy metals, using the hanging mercury drop electrode (HMDE), is reported. It was discovered that using very cathodic accumulation potentials, at which the solvent reduction occurs (overpotential deposition), the voltammetric signals of zinc(II), cadmium(II), lead(II) and copper(II) increase. When compared with the classical methodology a 5 to 10-fold signal increase is obtained. This effect is likely due to both mercury drop oscillation at such cathodic potentials and added local convection at the mercury drop surface caused by the evolution of hydrogen bubbles. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Reproducible, stable and fast electrochemical activity from easy to make graphene on copper electrodes.

    Science.gov (United States)

    Bosch-Navarro, Concha; Laker, Zachary P L; Rourke, Jonathan P; Wilson, Neil R

    2015-11-28

    The electrochemical activity of graphene is of fundamental importance to applications from energy storage to sensing, but has proved difficult to unambiguously determine due to the challenges innate to fabricating well defined graphene electrodes free from contamination. Here, we report the electrochemical activity of chemical vapour deposition (CVD) graphene grown on copper foil without further treatment, through appropriate choice of electrolyte. Fast electron transfer kinetics are observed for both inner and outer sphere redox couples with fully covered graphene on copper electrodes (k° = 0.014 ± 0.001 cm s(-1) or k° = 0.012 ± 0.001 cm s(-1) for potassium ferrocyanide(II) and hexaamineruthenium(III) chloride, respectively). Unlike highly oriented pyrolytic graphite electrodes, the electrochemical response of the graphene on copper electrodes is stable, with no apparent electrode fouling even with inner sphere redox couples, and reproducible independent of the time between growth and measurement. Comparison between fully covered electrodes, and partial coverage of graphene with varying graphene grain sizes (from roughly 50 μm to graphene is electrochemically active. These CVD grown graphene on copper electrodes are quick, cheap and reproducible to make and hence provide a convenient platform for further investigation of graphene electrochemistry and the effect of covalent and non-covalent modification.

  13. Electrode Surface Composition of Dual-Intercalation, All-Graphite Batteries

    Directory of Open Access Journals (Sweden)

    Boris Dyatkin

    2017-02-01

    Full Text Available Dual-intercalation batteries implement graphite electrodes as both cathodes and anodes and offer high specific energy, inexpensive and environmentally sustainable materials, and high operating voltages. Our research investigated the influence of surface composition on capacities and cycling efficiencies of chemically functionalized all-graphite battery electrodes. We subjected coreshell spherical particles and synthetic graphite flakes to high-temperature air oxidation, and hydrogenation to introduce, respectively, –OH, and –H surface functional groups. We identified noticeable influences of electrode surface chemistry on first-cycle efficiencies and charge storage densities of anion and cation intercalation into graphite electrodes. We matched oxidized cathodes and hydrogenated anodes in dual-ion batteries and improved their overall performance. Our approach provides novel fundamental insight into the anion intercalation process and suggests inexpensive and environmentally sustainable methods to improve performance of these grid-scale energy storage systems

  14. Activation and discharge kinetics of metal hydride electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Johnsen, Stein Egil

    2003-07-01

    Potential step chronoamperometry and Electrochemical Impedance Spectroscopy (eis) measurements were performed on single metal hydride particles. For the {alpha}-phase, the bulk diffusion coefficient and the absorption/adsorption rate parameters were determined. Materials produced by atomisation, melt spinning and conventional casting were investigated. The melt spun and conventional cast materials were identical and the atomised material similar in composition. The particles from the cast and the melt spun material were shaped like parallelepipeds. A corresponding equation, for this geometry, for diffusion coupled to an absorption/adsorption reaction was developed. It was found that materials produced by melt spinning exhibited lower bulk diffusion (1.7E-14 m2/s) and absorption/adsorption reaction rate (1.0E-8 m/s), compared to materials produced by conventionally casting (1.1E-13 m2/s and 5.5E-8 m/s respectively). In addition, the influence of particle active surface and relative diffusion length were discussed. It was concluded that there are uncertainties connected to these properties, which may explain the large distribution in the kinetic parameters measured on metal hydride particles. Activation of metal hydride forming materials has been studied and an activation procedure, for porous electrodes, was investigated. Cathodic polarisation of the electrode during a hot alkaline surface treatment gave the maximum discharge capacity on the first discharge of the electrode. The studied materials were produced by gas atomisation and the spherical shape was retained during the activation. Both an AB{sub 5} and an AB{sub 2} alloy was successfully activated and discharge rate properties determined. The AB{sub 2} material showed a higher maximum discharge capacity, but poor rate properties, compared to the AB{sub 5} material. Reduction of surface oxides, and at the same time protection against corrosion of active metallic nickel, can explain the satisfying results of

  15. A Robust Electrode Configuration for Bioimpedance Measurement of Respiration

    Directory of Open Access Journals (Sweden)

    Hong-bin Wang

    2014-01-01

    Full Text Available Electrode configuration is an important issue in the continuous measurement of respiration using impedance pneumography (IP. The robust configuration is usually confirmed by comparing the amplitude of the IP signals acquired with different electrode configurations, while the relative change in waveform and the effects of body posture and respiratory pattern are ignored. In this study, the IP signals and respiratory volume are simultaneously acquired from 8 healthy subjects in supine, left lying, right lying and prone postures, and the subjects are asked to perform four respiratory patterns including free breathing, thoracic breathing, abdominal breathing and apnea. The IP signals are acquired with four different chest electrode configurations, and the volume are measured using pneumotachograph (PNT. Differences in correlation and absolute deviation between the IP-derived and PNT-derived respiratory volume are assessed. The influences of noise, respiratory pattern and body posture on the IP signals of different configurations have significant difference (p < 0.05. The robust electrode configuration is found on the axillary midline, which is suitable for long term respiration monitoring.

  16. A novel coated platinum electrode for oseltamivir determination in pharmaceuticals.

    Science.gov (United States)

    Jebali, Ikram; Belgaied, Jamel-Eddine

    2014-04-01

    New coated platinum selective electrodes have been prepared and used for the determination of oseltamivir phosphate (OSL) in bulk drug solutions and in pharmaceutical preparations. Electrodes were using plasticized PVC membranes doped with ion-pair complexes based on drug-phosphomolybdate and drug-tetraphenylborate as electroactive materials. The influence of membrane composition (plasticizers and ion-pair complexes) has been investigated. Optimum performance was obtained for two polymeric membranes: PVC:o-NPPE:OSL-TPB in the ratio of 30:68:2 (%, w:w:w) and PVC:DPP:OSL-PMA in the ratio of 30:68:2 (%, w:w:w). The electrodes exhibited linear responses over large concentration ranges (1.0×10(-5)-1.0×10(-2) and 5.0×10(-5)-5.0×10(-2)M, respectively) with near-Nernstian responses (58.9 and 57.3mV/decade, respectively). The selectivity coefficients indicated good selectivity for OSL drug over a large number of organic compounds and some inorganic cations. The proposed electrodes were successfully applied to the determination of OSL in raw material and in pharmaceutical formulations. The results were validated by comparison with a capillary electrophoresis method. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Characterization and electrocatalytic application of silver modified polypyrrole electrodes

    Directory of Open Access Journals (Sweden)

    A. DEKANSKI

    2005-02-01

    Full Text Available Silver modified polypyrrole electrodeswere preparedwith the aim of testing them for the electrooxidation of formaldehyde in alkaline solution. The modification of polypyrrole by immersion in aqueous AgNO3 solution was studied by cyclic voltammetry and vacuum techniques (AES and XPS. The influence of time of immersion and the thickness of the polypyrrole film, prepared by electrochemical polymerization, on the modification of the polymer were examined. The results acquired from both electrochemical and spectroscopic examinations show that immersion of a polypyrrole electrode in a AgNO3 solution results in its modificationwith silver, which is deposited in the elemental state on the surface. The quantity of silver deposited depends not only on the immersion time but also on the thickness of the polymer film. A modified PPy/Ag electrode exhibits catalytic activity for the electrooxidation of CH2O in NaOH. In spite of the low quantity of silver, the activity of the electrode for this reaction is comparable to that of a polycrystalline silver electrode.

  18. A robust electrode configuration for bioimpedance measurement of respiration.

    Science.gov (United States)

    Wang, Hong-Bin; Yen, Chen-Wen; Liang, Jing-Tao; Wang, Qian; Liu, Guan-Zheng; Song, Rong

    2014-01-01

    Electrode configuration is an important issue in the continuous measurement of respiration using impedance pneumography (IP). The robust configuration is usually confirmed by comparing the amplitude of the IP signals acquired with different electrode configurations, while the relative change in waveform and the effects of body posture and respiratory pattern are ignored. In this study, the IP signals and respiratory volume are simultaneously acquired from 8 healthy subjects in supine, left lying, right lying and prone postures, and the subjects are asked to perform four respiratory patterns including free breathing, thoracic breathing, abdominal breathing and apnea. The IP signals are acquired with four different chest electrode configurations, and the volume are measured using pneumotachograph (PNT). Differences in correlation and absolute deviation between the IP-derived and PNT-derived respiratory volume are assessed. The influences of noise, respiratory pattern and body posture on the IP signals of different configurations have significant difference (p < 0.05). The robust electrode configuration is found on the axillary midline, which is suitable for long term respiration monitoring.

  19. Schiff Base modified on CPE electrode and PCB gold electrode for selective determination of silver ion

    Science.gov (United States)

    Leepheng, Piyawan; Suramitr, Songwut; Phromyothin, Darinee

    2017-09-01

    The schiff base was synthesized by 2,5-thiophenedicarboxaldehyde and 1,2,4-thiadiazole-3,5-diamine with condensation method. There was modified on carbon paste electrode (CPE) and Printed circuit board (PCB) gold electrode for determination silver ion. The schiff base modified electrodes was characterized by atomic force microscopy (AFM) and scanning electron microscopy (SEM), respectively. The electrochemical study was reported by cyclic voltammetry method and impedance spectroscopy using modified electrode as working electrode, platinum wire and Ag/AgCl as counter electrode and reference electrode, respectively. The modified electrodes have suitable detection for Ag+. The determination of silver ions using the modified electrodes depended linearly on Ag+ concentration in the range 1×10-10 M to 1×10-7 M, with cyclic voltammetry sensitivity were 2.51×108 μAM-1 and 1.88×108 μAM-1 for PCB gold electrode and CPE electrode, respectively, limits of detection were 5.33×10-9 M and 1.99×10-8 M for PCB gold electrode and CPE electrode, respectively. The modified electrodes have high accuracy, inexpensive and can applied to detection Ag+ in real samples.

  20. A simultaneous comparison of acupuncture needle and insulated needle sphenoidal electrodes for detection of anterior temporal spikes.

    Science.gov (United States)

    Chu, N S

    1992-01-01

    Uninsulated acupuncture needles have been used as sphenoidal electrodes, but the issue of insulation has not been adequately addressed. In this report, acupuncture needles and insulated needle sphenoidal electrodes were simultaneously used to compare the rate of spike detection, spike amplitude and distribution of maximal spikes from eight spike foci in seven patients with temporal lobe epilepsy. When compared to the insulated needle electrode, the acupuncture needle electrode was equally effective in spike detection, but spike amplitudes tended to be smaller and maximal spikes were less frequently encountered. Thus, insulation has an influence on the spikes recorded by the acupuncture needle sphenoidal electrode. However, the overall effect appears to be not sufficiently different from the insulated needle electrode for the purpose of detecting anterior temporal spikes in outpatient EEG recordings for the diagnosis of temporal lobe epilepsy.

  1. Impulse space charge and dielectric characteristics of an Al2O3 nanoparticle suspension in propylene carbonate using various electrode materials

    Directory of Open Access Journals (Sweden)

    Qing Yang

    2016-09-01

    Full Text Available We tested the impulse breakdown voltage of Al2O3 “nano-modified” propylene carbonate between different electrode materials. At any given concentration, the breakdown voltage was highest with stainless steel electrodes, followed by copper, and then aluminum. The space charge and electric field distributions were measured too. Results show that less space charge was injected by the electrodes, and the electric field was less distorted, than in pure propylene carbonate. However, the hoped-for reduction of the influence of the electrodes did not take place. Substantial differences in the space charge density and electric field distortion remained between the different electrode materials.

  2. Voltammetric Detection of S100B Protein Using His-Tagged Receptor Domains for Advanced Glycation End Products (RAGE Immobilized onto a Gold Electrode Surface

    Directory of Open Access Journals (Sweden)

    Edyta Mikuła

    2014-06-01

    Full Text Available In this work we report on an electrochemical biosensor for the determination of the S100B protein. The His-tagged VC1 domains of Receptors for Advanced Glycation End (RAGE products used as analytically active molecules were covalently immobilized on a monolayer of a thiol derivative of pentetic acid (DPTA complex with Cu(II deposited on a gold electrode surface. The recognition processes between the RAGE VC1 domain and the S100B protein results in changes in the redox activity of the DPTA-Cu(II centres which were measured by Osteryoung square-wave voltammetry (OSWV. In order to verify whether the observed analytical signal originates from the recognition process between the His6–RAGE VC1 domains and the S100B protein, the electrode modified with the His6–RAGE C2 and His6–RAGE VC1 deleted domains which have no ability to bind S100B peptides were applied. The proposed biosensor was quite sensitive, with a detection limit of 0.52 pM recorded in the buffer solution. The presence of diluted human plasma and 10 nM Aβ1-40 have no influence on the biosensor performance.

  3. 3D Printed Dry EEG Electrodes

    Directory of Open Access Journals (Sweden)

    Sammy Krachunov

    2016-10-01

    Full Text Available Electroencephalography (EEG is a procedure that records brain activity in a non-invasive manner. The cost and size of EEG devices has decreased in recent years, facilitating a growing interest in wearable EEG that can be used out-of-the-lab for a wide range of applications, from epilepsy diagnosis, to stroke rehabilitation, to Brain-Computer Interfaces (BCI. A major obstacle for these emerging applications is the wet electrodes, which are used as part of the EEG setup. These electrodes are attached to the human scalp using a conductive gel, which can be uncomfortable to the subject, causes skin irritation, and some gels have poor long-term stability. A solution to this problem is to use dry electrodes, which do not require conductive gel, but tend to have a higher noise floor. This paper presents a novel methodology for the design and manufacture of such dry electrodes. We manufacture the electrodes using low cost desktop 3D printers and off-the-shelf components for the first time. This allows quick and inexpensive electrode manufacturing and opens the possibility of creating electrodes that are customized for each individual user. Our 3D printed electrodes are compared against standard wet electrodes, and the performance of the proposed electrodes is suitable for BCI applications, despite the presence of additional noise.

  4. Optimal Pulse Voltage Waveform for a Xenon Barrier Discharge Lamp using both an Inner Electrode and an External Electrode

    Science.gov (United States)

    Jinno, Masafumi; Taniuchi, Hidefumi; Watanabe, Masashi; Motomura, Hideki

    When applying a pulsed voltage to a discharge tube using dielectric barrier discharge, discharge occurs two times in a pulse at a rising and a falling edge of a voltage pulse. The timing of the second discharge can be changed by controlling the pulse width. In this study the influence of the pulse width on the luminance of the barrier discharge lamp with an inner electrode is investigated. The lamp used in this study has two electrodes, one is set in the lamp and the other is set on the outside surface of the lamp. Internal electrode is connected to the high voltage side and the external electrode is connected to the ground side. Luminance is observed under the condition of pulse repetition frequency of 10 kHz, peak voltage from 1 kV to 3 kV and pulse width from 2 μs to 98 μs. Luminance took almost same value from 30 μs to 90 μs, whereas it decreased by both deceasing the pulse width less than 30 μs and increasing it more than 90 μs. It means that the higher luminance is obtained by avoiding the overlap of the two radiations at rising and falling edge of applied voltage.

  5. Influence of solution pH on the electron transport of the self-assembled nanoarrays of single-walled carbon nanotube-cobalt tetra-aminophthalocyanine on gold electrodes: Electrocatalytic detection of epinephrine

    Energy Technology Data Exchange (ETDEWEB)

    Ozoemena, Kenneth I. [Chemistry Department, University of Pretoria, Pretoria 0002 (South Africa)], E-mail: kenneth.ozoemena@up.ac.za; Nkosi, Dudu; Pillay, Jeseelan [Chemistry Department, University of Pretoria, Pretoria 0002 (South Africa)

    2008-02-15

    This paper provides first evidence of the impact of solution pH on the heterogeneous electron transfer rate constants of self-assembled films of single-walled carbon nanotubes (SWCNT) and SWCNT integrated to cobalt(II)tetra-aminophthalocyanine (SWCNT-CoTAPc) by sequential self-assembly. Using cyclic voltammetry and electrochemical impedance spectroscopy, we proved that both SAMs exhibit notable differences in their response to different buffered solution pH, with and without the presence of redox probe, [Fe(CN){sub 6}]{sup 4-}/[Fe(CN){sub 6}]{sup 3-}. Surface pK{sub a} value for the Au-Cys-SWCNT-CoTAPc was estimated as ca. 7.8, compared to that of the Au-Cys-SWCNT of about 5.5. Interestingly, both redox-active SAMs gave similar analytical response for epinephrine, giving well-resolved square wave voltammograms, with linear concentration range up to 130 {mu}M, sensitivity of ca. 9.4 x 10{sup -3} AM{sup -1}, and limit of detection ca. 6 {mu}M. This analytical result implies that there is no detectable advantage of one of the SAMs over the other in the electrocatalytic detection of this neurotransmitter.

  6. Electroactive polymeric material with condensed structure on the basis of magnesium(II) polyporphine

    Energy Technology Data Exchange (ETDEWEB)

    Vorotyntsev, Mikhail A., E-mail: mv@u-bourgogne.f [Institut de Chimie Moleculaire de l' Universite de Bourgogne, Universite de Bourgogne, CNRS UMR 5260, 21078 Dijon (France); Konev, Dmitry V. [Institut de Chimie Moleculaire de l' Universite de Bourgogne, Universite de Bourgogne, CNRS UMR 5260, 21078 Dijon (France); Devillers, Charles H., E-mail: charles.devillers@u-bourgogne.f [Institut de Chimie Moleculaire de l' Universite de Bourgogne, Universite de Bourgogne, CNRS UMR 5260, 21078 Dijon (France); Bezverkhyy, Igor; Heintz, Olivier [Institut Carnot de Bourgogne, Universite de Bourgogne, CNRS UMR 5209, 21078 Dijon (France)

    2011-04-01

    Previous publication of the authors presented evidences that electrochemical oxidation of Mg(II) porphine (fully unsubstituted porphyrin, MgP) in acetonitrile (AN) at a very low potential leads to deposition of films at electrode surface corresponding to typical electroactive polymers, with their reversible transition between the electron-conducting and insulating states depending on the electrode potential/oxidation level ('film of type I'). It is demonstrated in the actual publication that these films in contact with a monomer-free solution are subject to an irreversible transformation to quite a different material ('film of type II') under the influence of a higher positive potential (above 0.5-0.6 V vs. Ag/Ag{sup +} in AN). Films with the same properties may also be obtained directly by electrooxidation of the monomer, MgP, at a sufficiently high potential. Films of type II possess a high redox activity and electronic conductivity within the whole potential interval of above 3 V in the width. Their grayish color is related to a constant absorption intensity within the whole range of wavelengths studied (320-1000 nm). On the basis of a combination of experimental observations (ATR IR and XPS) and literature data the molecular structure of this new material is assumed to be polymer chains of directly linked porphine units (with a partial loss of Mg cations), probably with multiple bonds (meso-meso and {beta}-{beta} types) between neighboring units.

  7. A flatline lead I results from bilateral arm-to-leg electrode exchange.

    Science.gov (United States)

    Hoffman, Irwin

    2008-01-01

    A flatline lead I plus P and T inversions in leads II, III, and aVF in a 31-year-old male patient suggested interchange of the arm and leg electrodes bilaterally. Prompt repetition of the ECG with corrected lead placement resulted in a normal ECG and prevented incorrect diagnosis, workup, and treatment.

  8. Prussian Blue-coated interdigitated array electrodes for possible analytical application

    NARCIS (Netherlands)

    Hartmann, M.; Grabner, E.W.; Bergveld, Piet

    1991-01-01

    Thin films of iron(III) hexacyanoferrate(II) (Prussian Blue) were electrochemically deposited on interdigitated array (IDA) electrodes, yielding systems which can be considered as chemiresistors in sensing alkali metal ion concentrations in an adjacent electrolyte. This is due to the fact that the

  9. Silver selective electrodes based on thioether functionalized calix[4]arenes as ionophores

    NARCIS (Netherlands)

    Malinowska, Elz˙bieta; Brzozka, Zbigniew; Kasiura, Krzysztof; Egberink, Richard J.M.; Reinhoudt, David

    1994-01-01

    Silver selective electrodes based on thioether functionalized calix[4]arenes 1 and 2 as ionophores were investigated. For both ionophores the selectivity coefficients (log kAg,M) were lower than −2.2 for Hg(II) and lower than −4.6 for other cations tested. The best results were obtained with

  10. Lead selective electrodes based on thioamide functionalized calix[4]arenes as ionophores

    NARCIS (Netherlands)

    Malinowska, Elz˙bieta; Brzozka, Zbigniew; Kasiura, Krzysztof; Egberink, Richard J.M.; Reinhoudt, David

    1994-01-01

    Lead selective electrodes based on a di- and tetrathioamide functionalized calix [4] arene as ionophores were investigated. The Pb(II)-response functions exhibited almost theoretical Nernstian slopes in the activity range 10¿6¿10¿2M of lead ions. For both ionophores a preference for lead over other

  11. Cobalt Phthalocyanine Modified Electrodes Utilised in Electroanalysis: Nano-Structured Modified Electrodes vs. Bulk Modified Screen-Printed Electrodes

    Directory of Open Access Journals (Sweden)

    Christopher W. Foster

    2014-11-01

    Full Text Available Cobalt phthalocyanine (CoPC compounds have been reported to provide electrocatalytic performances towards a substantial number of analytes. In these configurations, electrodes are typically constructed via drop casting the CoPC onto a supporting electrode substrate, while in other cases the CoPC complex is incorporated within the ink of a screen-printed sensor, providing a one-shot economical and disposable electrode configuration. In this paper we critically compare CoPC modified electrodes prepared by drop casting CoPC nanoparticles (nano-CoPC onto a range of carbon based electrode substrates with that of CoPC bulk modified screen-printed electrodes in the sensing of the model analytes L-ascorbic acid, oxygen and hydrazine. It is found that no “electrocatalysis” is observed towards L-ascorbic acid using either of these CoPC modified electrode configurations and that the bare underlying carbon electrode is the origin of the obtained voltammetric signal, which gives rise to useful electroanalytical signatures, providing new insights into literature reports where “electrocatalysis” has been reported with no clear control experiments undertaken. On the other hand true electrocatalysis is observed towards hydrazine, where no such voltammetric features are witnessed on the bare underlying electrode substrate.

  12. Influence of aerobic training on the reduced vasoconstriction to angiotensin II in rats exposed to intrauterine growth restriction: possible role of oxidative stress and AT2 receptor of angiotensin II.

    Directory of Open Access Journals (Sweden)

    Vanessa Oliveira

    Full Text Available Intrauterine growth restriction (IUGR is associated with impaired vascular function, which contributes to the increased incidence of chronic disease. The aim of this study was to investigate whether aerobic training improves AngII-induced vasoconstriction in IUGR rats. Moreover, we assess the role of superoxide dismutase (SOD isoforms and NADPH oxidase-derived superoxide anions in this improvement. Female Wistar rats were randomly divided into two groups on day 1 of pregnancy. A control group was fed standard chow ad libitum, and a restricted group was fed 50% of the ad libitum intake throughout gestation. At 8 weeks of age, male offspring from both groups were randomly assigned to 4 experimental groups: sedentary control (SC, trained control (TC, sedentary restricted (SRT, and trained restricted (TRT. The training protocol was performed on a treadmill and consisted of a continuous 60-min session 5 days/week for 10 weeks. Following aerobic training, concentration-response curves to AngII were obtained in endothelium-intact aortic rings. Protein expression of SOD isoforms, AngII receptors and the NADPH oxidase component p47phox was assessed by Western blot analysis. The dihydroethidium was used to evaluate the in situ superoxide levels under basal conditions or in the presence of apocynin, losartan or PD 123,319. Our results indicate that aerobic training can prevent IUGR-associated increases in AngII-dependent vasoconstriction and can restore basal superoxide levels in the aortic rings of TRT rats. Moreover, we observed that aerobic training normalized the increased p47phox protein expression and increased MnSOD and AT2 receptor protein expression in thoracic aortas of SRT rats. In summary, aerobic training can result in an upregulation of antioxidant defense by improved of MnSOD expression and attenuation of NADPH oxidase component p47phox. These effects are accompanied by increased expression of AT2 receptor, which provide positive effects

  13. Ni (II) decorated nano silicoaluminophosphate molecular sieves ...

    Indian Academy of Sciences (India)

    Ni(II) decorated nano silicoaluminophosphate molecular sieves-modified carbon paste electrode as an electrocatalyst for electrooxidation of methanol ... of Science, Babol University of Technology, Babol 47148-71167, Iran; Biofuel & Renewable Energy Research Center, Faculty of Chemical Engineering, Babol University ...

  14. Sensitive electrochemical sensor using a graphene–polyaniline nanocomposite for simultaneous detection of Zn(II), Cd(II), and Pb(II)

    Energy Technology Data Exchange (ETDEWEB)

    Ruecha, Nipapan [Program in Macromolecular Science, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330 (Thailand); Rodthongkum, Nadnudda [Metallurgy and Materials Science Research Institute, Chulalongkorn University, Soi Chula 12, Phayathai Road, Patumwan, Bangkok 10330 (Thailand); Cate, David M. [Department of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523 (United States); Volckens, John [Department of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523 (United States); Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado 80523 (United States); Chailapakul, Orawon, E-mail: orawon@chula.ac.th [Electrochemistry and Optical Spectroscopy Research Unit (EOSRU), Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330 (Thailand); National Center of Excellence for Petroleum, Petrochemicals, Advanced Materials, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330 (Thailand); Henry, Charles S., E-mail: chuck.henry@colostate.edu [Department of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523 (United States); Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523 (United States)

    2015-05-18

    Highlights: • Detection limits for Zn, Pb, and Cd using ASV were 1, 0.1, and 0.1 μg L{sup −1}, respectively. • G/PANI-modification led to a 3× improvement in signal vs. unmodified electrodes. • ASV on a plastic substrate exhibited better sensitivity than on a paper substrate. • Zn, Pb, and Cd were measured in human serum using method of standard addition. - Abstract: This work describes the development of an electrochemical sensor for simultaneous detection of Zn(II), Cd(II), and Pb(II) using a graphene–polyaniline (G/PANI) nanocomposite electrode prepared by reverse-phase polymerization in the presence of polyvinylpyrrolidone (PVP). Two substrate materials (plastic film and filter paper) and two nanocomposite deposition methods (drop-casting and electrospraying) were investigated. Square-wave anodic stripping voltammetry currents were higher for plastic vs. paper substrates. Performance of the G/PANI nanocomposites was characterized by scanning electron microscopy (SEM) and cyclic voltammetry. The G/PANI-modified electrode exhibited high electrochemical conductivity, producing a three-fold increase in anodic peak current (vs. the unmodified electrode). The G/PANI-modified electrode also showed evidence of increased surface area under SEM. Square-wave anodic stripping voltammetry was used to measure Zn(II), Cd(II), and Pb(II) in the presence of Bi(III). A linear working range of 1–300 μg L{sup −1} was established between anodic current and metal ion concentration with detection limits (S/N = 3) of 1.0 μg L{sup −1} for Zn(II), and 0.1 μg L{sup −1} for both Cd(II) and Pb(II). The G/PANI-modified electrode allowed selective determination of the target metals in the presence of common metal interferences including Mn(II), Cu(II), Fe(III), Fe(II), Co(III), and Ni(II). Repeat assays on the same device demonstrated good reproducibility (%RSD < 11) over 10 serial runs. Finally, this system was utilized for determining Zn(II), Cd(II), and Pb(II) in

  15. Silver manganese oxide electrodes for lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Thackeray, Michael M.; Vaughey, John T.; Dees, Dennis W.

    2006-05-09

    This invention relates to electrodes for non-aqueous lithium cells and batteries with silver manganese oxide positive electrodes, denoted AgxMnOy, in which x and y are such that the manganese ions in the charged or partially charged electrodes cells have an average oxidation state greater than 3.5. The silver manganese oxide electrodes optionally contain silver powder and/or silver foil to assist in current collection at the electrodes and to improve the power capability of the cells or batteries. The invention relates also to a method for preparing AgxMnOy electrodes by decomposition of a permanganate salt, such as AgMnO4, or by the decomposition of KMnO4 or LiMnO4 in the presence of a silver salt.

  16. Silver manganese oxide electrodes for lithium batteries

    Science.gov (United States)

    Thackeray, Michael M.; Vaughey, John T.; Dees, Dennis W.

    2006-05-09

    This invention relates to electrodes for non-aqueous lithium cells and batteries with silver manganese oxide positive electrodes, denoted AgxMnOy, in which x and y are such that the manganese ions in the charged or partially charged electrodes cells have an average oxidation state greater than 3.5. The silver manganese oxide electrodes optionally contain silver powder and/or silver foil to assist in current collection at the electrodes and to improve the power capability of the cells or batteries. The invention relates also to a method for preparing AgxMnOy electrodes by decomposition of a permanganate salt, such as AgMnO4, or by the decomposition of KMnO4 or LiMnO4 in the presence of a silver salt.

  17. Amperometric noise at thin film band electrodes.

    Science.gov (United States)

    Larsen, Simon T; Heien, Michael L; Taboryski, Rafael

    2012-09-18

    Background current noise is often a significant limitation when using constant-potential amperometry for biosensor application such as amperometric recordings of transmitter release from single cells through exocytosis. In this paper, we fabricated thin-film electrodes of gold and conductive polymers and measured the current noise in physiological buffer solution for a wide range of different electrode areas. The noise measurements could be modeled by an analytical expression, representing the electrochemical cell as a resistor and capacitor in series. The studies revealed three domains; for electrodes with low capacitance, the amplifier noise dominated, for electrodes with large capacitances, the noise from the resistance of the electrochemical cell was dominant, while in the intermediate region, the current noise scaled with electrode capacitance. The experimental results and the model presented here can be used for choosing an electrode material and dimensions and when designing chip-based devices for low-noise current measurements.

  18. Optimization of Stripping Voltammetric Sensor by a Back Propagation Artificial Neural Network for the Accurate Determination of Pb(II) in the Presence of Cd(II)

    OpenAIRE

    Guo Zhao; Hui Wang; Gang Liu; Zhiqiang Wang

    2016-01-01

    An easy, but effective, method has been proposed to detect and quantify the Pb(II) in the presence of Cd(II) based on a Bi/glassy carbon electrode (Bi/GCE) with the combination of a back propagation artificial neural network (BP-ANN) and square wave anodic stripping voltammetry (SWASV) without further electrode modification. The effects of Cd(II) in different concentrations on stripping responses of Pb(II) was studied. The results indicate that the presence of Cd(II) will reduce the predictio...

  19. Influência da cooperação no planejamento e tempo de tratamento da má oclusão de Classe II Patient compliance influence in treatment planning and treatment time of Class II malocclusions

    OpenAIRE

    Fábio Rogério Torres Maria; Guilherme Janson; Marcos Roberto de Freitas; José Fernando Castanha Henriques

    2005-01-01

    As alternativas de tratamento ortodôntico em casos apresentando Classe II completa bilateral são bastante variadas e podem ou não incluir extrações. Quando a opção é por extrações,o protocolo incluindo apenas dois pré-molares facilita enormemente a correção sagital da Classe II. Ao optarmos pela correção por meio da distalização bilateral dos segmentos posteriores, fica bastante evidente uma maior demanda mecânica e principalmente uma exigência muito maior por cooperação para que o sucesso do...

  20. Influência da cooperação no planejamento e tempo de tratamento da má oclusão de Classe II Patient compliance influence in treatment planning and treatment time of Class II malocclusions

    Directory of Open Access Journals (Sweden)

    Fábio Rogério Torres Maria

    2005-04-01

    Full Text Available As alternativas de tratamento ortodôntico em casos apresentando Classe II completa bilateral são bastante variadas e podem ou não incluir extrações. Quando a opção é por extrações,o protocolo incluindo apenas dois pré-molares facilita enormemente a correção sagital da Classe II. Ao optarmos pela correção por meio da distalização bilateral dos segmentos posteriores, fica bastante evidente uma maior demanda mecânica e principalmente uma exigência muito maior por cooperação para que o sucesso do tratamento seja alcançado. Desta forma, decidiu-se avaliar e comparar o nível de cooperação apresentado por 73 pacientes apresentando Classe II completa, planejados sem extrações ou com duas extrações no arco dentário superior, e assim verificar se a conduta terapêutica inicial, associada à cooperação, teve influência nos resultados finais. Os resultados demonstraram que a decisão terapêutica baseada na correção sagital da Classe II sem extrações, baseada em mecânicas distalizadoras extrabucais, ficou nitidamente refém da cooperação dos pacientes, forçando este grupo a um replanejamento para que o sucesso terapêutico pudesse ser alcançado, prolongando significativamente o tempo de tratamento ortodôntico.Orthodontic treatment alternatives in cases presenting a complete bilateral Class II malocclusion are varied and may include extractions or not. When the option includes extractions, sagital correction of Class II malocclusion is enormously facilitated by the choice of two upper premolar extractions. When the choice excludes extractions and priorize posterior dental distalization, it seems evident a greater mechanical need and mainly a greater demand for patient cooperation so that the expected results can be reached. Therefore it was decided to evaluate and compare the level of cooperation demonstrated by 73 patients showing a complete bilateral Class II, planned without extractions in group 1 or with 2 upper