WorldWideScience

Sample records for electrochemical studies simulating

  1. First Principle simulations of electrochemical interfaces - a DFT study

    DEFF Research Database (Denmark)

    Ahmed, Rizwan

    for the whole system to qualify as a proper electrochemical interface. I have also contributed to the model, which accounts for pH in the first principle electrode-electrolyte interface simulations. This is an important step forward, since electrochemical reaction rate and barrier for charge transfer can......In this thesis, I have looked beyond the computational hydrogen electrode (CHE) model, and focused on the first principle simulations which treats the electrode-electrolyte interfaces explicitly. Since obtaining a realistic electrode-electrolyte interface was difficult, I aimed to address various...... challenges regarding first principle electrochemical interface modeling in order to bridge the gap between the model interface used in simulations and real catalyst at operating conditions. Atomic scale insight for the processes and reactions that occur at the electrochemical interface presents a challenge...

  2. Electrochemical Study of Esculetin Nitration by Digital Simulation of Cyclic Voltammograms

    Directory of Open Access Journals (Sweden)

    Lida Khalafi

    2013-01-01

    Full Text Available The reaction of electrochemically generated o-quinones from oxidation of esculetin as Michael acceptor with nitrite ion as nucleophile has been studied using cyclic voltammetry. The reaction mechanism is believed to be EC, including oxidation of catechol moiety of esculetin followed by Michael addition of nitrite ion. The observed homogeneous rate constants (obs for reactions were estimated by comparing the experimental voltammetric responses with the digitally simulated results based on the proposed mechanism. Also the effects of pH and nucleophile concentration on voltammetric behavior and the rate constants of chemical reactions were described.

  3. In-situ electrochemical study of interaction of tribology and corrosion in artificial hip prosthesis simulators.

    Science.gov (United States)

    Yan, Yu; Dowson, Duncan; Neville, Anne

    2013-02-01

    The second generation Metal-on-Metal (MoM) hip replacements have been considered as an alternative to commonly used Polyethylene-on-Metal (PoM) joint prostheses due to polyethylene wear debris induced osteolysis. However, the role of corrosion and the biofilm formed under tribological contact are still not fully understood. Enhanced metal ion concentrations have been reported widely from hair, blood and urine samples of patients who received metal hip replacements and in isolated cases when abnormally high levels have caused adverse local tissue reactions. An understanding of the origin of metal ions is really important in order to design alloys for reduced ion release. Reciprocating pin-on-plate wear tester is a standard instrument to assess the interaction of corrosion and wear. However, more realistic hip simulator can provide a better understanding of tribocorrosion process for hip implants. It is very important to instrument the conventional hip simulator to enable electrochemical measurements. In this study, simple reciprocating pin-on-plate wear tests and hip simulator tests were compared. It was found that metal ions originated from two sources: (a) a depassivation of the contacting surfaces due to tribology (rubbing) and (b) corrosion of nano-sized wear particles generated from the contacting surfaces. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Preparation, characterization and simulation studies of carbon nanotube electrodes for electrochemical energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Meissner, Frank; Endler, Ingolf [Fraunhofer-Institut fuer Keramische Technologien und Systeme (IKTS), Dresden (Germany); Lorrmann, Henning [Fraunhofer-Institut fuer Silicatforschung (ISC), Wuerzburg (Germany); Pastewka, Lars [Fraunhofer-Institut fuer Werkstoffmechanik (IWM), Freiburg im Breisgau (Germany)

    2010-07-01

    Chemical Vapor Deposition (CVD) was employed to synthesize multiwalled carbon nanotubes (MWCNT) on different carrier materials for electrode applications. In the field of electrochemical energy storage it is essential to grow MWCNT on conducting substrates. For this reason titanium nitride (TiN) layers as well as a copper foil were used as substrates. The MWCNT grown on TiN layers show diameters of about 20 nm and lengths up to 13 {mu}m. In the case of copper foil substrates a remarkably higher nanotube diameter of several tens of nanometers was found. First electrochemical characterization via cyclic voltammetry shows the potential of MWCNT as electrodes for energy storage applications. The CNT were measured in an organic carbonate electrolyte vs. a lithium counter electrode with various scan rates. Until now the preliminary investigations by cyclic voltammetry for electrodes consisting of aligned MWCNT on TiN showed a capacity of around 130 F g{sup -1} in the range of 1 - 3 V vs. Li/Li{sup +}. In support of the experiments we construct a one dimensional Poisson-Nernst-Planck (PNP) continuum model that has been shown to yield agreement with corresponding molecular dynamics simulations to model ion transport into these types of electrodes. Our simulations show that first the ions accumulate at the tips of the tubes because the inner volume of the electrodes is initially field-free. A homogeneous charge distribution is then established through diffusion. The PNP model is used to compute cyclic voltammograms which show qualitative agreement with the experiments. (orig.)

  5. A new simulation model for electrochemical metal deposition

    International Nuclear Information System (INIS)

    Schmickler, W.; Poetting, K.; Mariscal, M.

    2006-01-01

    A new atomistic simulation model for electrochemical systems is presented. It combines microcanonical molecular dynamics for the electrode with stochastic dynamics for the solution, and allows the simulation of electrochemical deposition and dissolution for specific electrode potentials. As first applications the deposition of silver and platinum on Au(1 1 1) have been studied; both flat surfaces and surfaces with islands have been considered. The two systems behave quite differently: Ag on Au(1 1 1) grows layer by layer, while Pt forms a surface alloy on Au(1 1 1), which is followed by three-dimensional growth

  6. BEPLATE emdash simulation of electrochemical plating

    Energy Technology Data Exchange (ETDEWEB)

    Giles, G.E. (Oak Ridge K-25 Site, TN (USA)); Gray, L.J. (Oak Ridge National Lab., TN (USA)); Bullock, J.S. IV (Oak Ridge Y-12 Plant, TN (USA))

    1990-09-01

    BEPLATE is a FORTRAN code that uses the boundary element method to simulate the electrochemical plating of material on parts, primarily rotating axisymmetric parts. A boundary element technique is used to solve for the local current density and thus the plating rate on the part, which is used to calculate the growth in the plated layer over a user-specified time step. The surface is moved to reflect this growth, and the new surface is used to generate the local current density. This cycle is repeated until the final time specified by the analyst, producing the final plated thickness. BEPLATE includes models for the polarization effects at both the part (cathode) and anode and allows the use of symmetry planes and nonconducting shields. For electroplating simulations, the part shape is normally assumed to be axisymmetric with a centerline along the z-axis. More general part shapes can be analyzed by BEPLATE if the surface growth simulation is not needed. In either case, the shield, anode, and tank geometries are not restricted to specific shapes. This report includes the information required to run BEPLATE, specifically, a brief description of the BEPLATE system including hardware and software requirements, a description of the complete simulation process, discussion of rules for generating models, and additional reference material. This system of codes consists of model generators (PIGS or PATRAN), input processor (BEPIN), the simulation code (BEPLATE) and postprocessing codes (PATRAN or CONPLOT).

  7. X-ray photoelectron spectroscopy and electrochemical studies of mild steel FeE500 passivation in concrete simulated water

    Science.gov (United States)

    Miserque, F.; Huet, B.; Azou, G.; Bendjaballah, D.; L'Hostis, V.

    2006-11-01

    In the context of the prediction of the long-term behaviour of reinforced concrete structures involved in the nuclear waste storage, the corrosion mechanisms of steels have to be assessed. When mild steel rebars are embedded in concrete, the chemical environment of the reinforcement is progressively modified, due to the carbonation of the concrete matrix. This modification leads to the variation of iron oxides properties formed at the steel/concrete interface, and the active corrosion can be initiated. The aim of this study is to evaluate the passivation behaviour and to provide insights into the depassivation of mild steel in concrete pore solution. In a young concrete, due to the alkalinity of the interstitial solution, steel reinforcement remains passive. Immersion tests of mild steel substrate in various alkaline solutions (from pH 13 to 10) have been performed. Due to the low thickness of the corrosion layers formed, X-ray photoelectron spectroscopy has been used to characterize them. In the passive domain, the corrosion products are similar for the various solutions. The corrosion layer is composed of a mixture of Fe3+ and Fe2+. A similar approach is used to determine the depassivation mechanism. The effect of various components such as carbonates, sulfates and silicates resulting from the dissolution of minerals of cement during the carbonation process is investigated. In addition to the surface analysis, the evolution of the electrochemical behaviour as function of the solution nature (pH) is evaluated with the help of electrochemical measurements (free corrosion potential, cyclic voltamperometry).

  8. Practical study on the electrochemical simultaneous removal of copper and zinc from simulated binary-metallic industrial wastewater using a packed-bed cathode

    Directory of Open Access Journals (Sweden)

    Meshaal F. Alebrahim

    2017-06-01

    Full Text Available In this work, electrochemical-simultaneous removal of copper and zinc from simulated binary-metallic industrial wastewater containing different ratios of copper to zinc was studied using a packed-bed continuous-recirculation flow electrolytic reactor. The total nominal initial concentration of both metals, circulating rate of flow and nominal initial pH were held constant. Parameters affecting the removal percent and current efficiency of removal, such as applied current and time of electrolysis were investigated. Results revealed that increased current intensity accelerated the removal of metals and diminish current efficiency. It was also observed that selective removal of both metals is possible when the applied current was of small intensity. Moreover, the factors that led to loss of faradaic efficiency were discussed.

  9. pH in atomic scale simulations of electrochemical interfaces

    DEFF Research Database (Denmark)

    Rossmeisl, Jan; Chan, Karen; Ahmed, Rizwan

    2013-01-01

    Electrochemical reaction rates can strongly depend on pH, and there is increasing interest in electrocatalysis in alkaline solution. To date, no method has been devised to address pH in atomic scale simulations. We present a simple method to determine the atomic structure of the metal......|solution interface at a given pH and electrode potential. Using Pt(111)|water as an example, we show the effect of pH on the interfacial structure, and discuss its impact on reaction energies and barriers. This method paves the way for ab initio studies of pH effects on the structure and electrocatalytic activity...

  10. Porphyrins as Corrosion Inhibitors for N80 Steel in 3.5% NaCl Solution: Electrochemical, Quantum Chemical, QSAR and Monte Carlo Simulations Studies

    Directory of Open Access Journals (Sweden)

    Ambrish Singh

    2015-08-01

    Full Text Available The inhibition of the corrosion of N80 steel in 3.5 wt. % NaCl solution saturated with CO2 by four porphyrins, namely 5,10,15,20-tetrakis(4-hydroxyphenyl-21H,23H-porphyrin (HPTB, 5,10,15,20-tetra(4-pyridyl-21H,23H-porphyrin (T4PP, 4,4′,4″,4‴-(porphyrin-5,10,15,20-tetrayltetrakis(benzoic acid (THP and 5,10,15,20-tetraphenyl-21H,23H-porphyrin (TPP was studied using electrochemical impedance spectroscopy (EIS, potentiodynamic polarization, scanning electrochemical microscopy (SECM and scanning electron microscopy (SEM techniques. The results showed that the inhibition efficiency, η% increases with increasing concentration of the inhibitors. The EIS results revealed that the N80 steel surface with adsorbed porphyrins exhibited non-ideal capacitive behaviour with reduced charge transfer activity. Potentiodynamic polarization measurements indicated that the studied porphyrins acted as mixed type inhibitors. The SECM results confirmed the adsorption of the porphyrins on N80 steel thereby forming a relatively insulated surface. The SEM also confirmed the formation of protective films of the porphyrins on N80 steel surface thereby protecting the surface from direct acid attack. Quantum chemical calculations, quantitative structure activity relationship (QSAR were also carried out on the studied porphyrins and the results showed that the corrosion inhibition performances of the porphyrins could be related to their EHOMO, ELUMO, ω, and μ values. Monte Carlo simulation studies showed that THP has the highest adsorption energy, while T4PP has the least adsorption energy in agreement with the values of σ from quantum chemical calculations.

  11. Voltage equilibration for reactive atomistic simulations of electrochemical processes

    International Nuclear Information System (INIS)

    Onofrio, Nicolas; Strachan, Alejandro

    2015-01-01

    We introduce electrochemical dynamics with implicit degrees of freedom (EChemDID), a model to describe electrochemical driving force in reactive molecular dynamics simulations. The method describes the equilibration of external electrochemical potentials (voltage) within metallic structures and their effect on the self-consistent partial atomic charges used in reactive molecular dynamics. An additional variable assigned to each atom denotes the local potential in its vicinity and we use fictitious, but computationally convenient, dynamics to describe its equilibration within connected metallic structures on-the-fly during the molecular dynamics simulation. This local electrostatic potential is used to dynamically modify the atomic electronegativities used to compute partial atomic changes via charge equilibration. Validation tests show that the method provides an accurate description of the electric fields generated by the applied voltage and the driving force for electrochemical reactions. We demonstrate EChemDID via simulations of the operation of electrochemical metallization cells. The simulations predict the switching of the device between a high-resistance to a low-resistance state as a conductive metallic bridge is formed and resistive currents that can be compared with experimental measurements. In addition to applications in nanoelectronics, EChemDID could be useful to model electrochemical energy conversion devices

  12. Degradation of graphene coated copper in simulated proton exchange membrane fuel cell environment: Electrochemical impedance spectroscopy study

    Science.gov (United States)

    Ren, Y. J.; Anisur, M. R.; Qiu, W.; He, J. J.; Al-Saadi, S.; Singh Raman, R. K.

    2017-09-01

    Metallic materials are most suitable for bipolar plates of proton exchange membrane fuel cell (PEMFC) because they possess the required mechanical strength, durability, gas impermeability, acceptable cost and are suitable for mass production. However, metallic bipolar plates are prone to corrosion or they can passivate under PEMFC environment and interrupt the fuel cell operation. Therefore, it is highly attractive to develop corrosion resistance coating that is also highly conductive. Graphene fits these criteria. Graphene coating is developed on copper by chemical vapor deposition (CVD) with an aim to improving corrosion resistance of copper under PEMFC condition. The Raman Spectroscopy shows the graphene coating to be multilayered. The electrochemical degradation of graphene coated copper is investigated by electrochemical impedance spectroscopy (EIS) in 0.5 M H2SO4 solution at room temperature. After exposure to the electrolyte for up to 720 h, the charge transfer resistance (Rt) of the graphene coated copper is ∼3 times greater than that of the bare copper, indicating graphene coatings could improve the corrosion resistance of copper bipolar plates.

  13. The Passive Film Growth Mechanism of New Corrosion-Resistant Steel Rebar in Simulated Concrete Pore Solution: Nanometer Structure and Electrochemical Study.

    Science.gov (United States)

    Jiang, Jin-Yang; Wang, Danqian; Chu, Hong-Yan; Ma, Han; Liu, Yao; Gao, Yun; Shi, Jinjie; Sun, Wei

    2017-04-14

    An elaborative study was carried out on the growth mechanism and properties of the passive film for a new kind of alloyed corrosion-resistant steel (CR steel). The passive film naturally formed in simulated concrete pore solutions (pH = 13.3). The corrosion resistance was evaluated by various methods including open circuit potential (OCP), linear polarization resistance (LPR) measurements, and electrochemical impedance spectroscopy (EIS). Meanwhile, the 2205 duplex stainless steel (SS steel) was evaluated for comparison. Moreover, the passive film with CR steel was studied by means of X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), Atomic Force Microscope (AFM), and the Mott‑Schottky approach. The results showed that the excellent passivity of CR steel could be detected in a high alkaline environment. The grain boundaries between the fine passive film particles lead to increasing Cr oxide content in the later passivation stage. The filling of cation vacancies in the later passivation stage as well as the orderly crystalized inner layer contributed to the excellent corrosion resistance of CR steel. A passive film growth model for CR steel was proposed.

  14. Electrochemical studies of the corrosion behavior of a low-carbon steel in aqueous chloride solutions simulating accident conditions of radioactive waste disposal

    International Nuclear Information System (INIS)

    Farvaque-Bera, A.M.; Leistikow, S.

    1991-01-01

    The fine-grained structural steel DIN W.Nr. 1.0566 was exposed to various sulfate and chloride-containing aqueous solutions, the latter ones simulating the potential accidental environment of water intrusion into a salt mine. By electrochemical measurements in salt brines, the following results were achieved: (1) The corrosion rate is highly dependent on salt brine composition, pH and temperature. (2) Active metal dissolution led to formation of shallow pits as surface corrosion phenomenon. Thus, the application of electrochemical techniques - under non-polarized as well as under potentiodynamic conditions - proved to be suitable for fast qualitative testing of the influence of various environmental parameters on steel corrosion. (orig.)

  15. Three dimensional electrochemical system for neurobiological studies

    DEFF Research Database (Denmark)

    Vazquez, Patricia; Dimaki, Maria; Svendsen, Winnie Edith

    2009-01-01

    In this work we report a novel three dimensional electrode array for electrochemical measurements in neuronal studies. The main advantage of working with these out-of-plane structures is the enhanced sensitivity of the system in terms of measuring electrochemical changes in the environment...

  16. Electrochemical noise study on 2024-T3 Aluminum alloy corrosion in simulated acid rain under cyclic wet-dry condition

    International Nuclear Information System (INIS)

    Shi Yanyan; Zhang Zhao; Su Jingxin; Cao Fahe; Zhang Jianqing

    2006-01-01

    Potential noise records have been collected for 2024-T3 aluminum alloy, which was exposed to simulated acid rain with different pH value for 15 wet-dry cycles. Meanwhile, Potentiodynamic polarization and SEM techniques were also used as assistant measurements. Three mathematic methods including average, standard deviation and wavelet transformation have been employed to analyze the records. The results showed that each single wet-dry cycle can be divided into three regions with respect to the change of the cathodic reaction rate, and with the increase of pH value the main cathodic reaction changes from the reduction of protons to that of oxygen molecules. The analysis of the EDP versus time evolution clearly indicates that the whole corrosion process can be divided into three segments for the case of pH 3.5 and only one for the cases of pH 4.5 and 6.0, which have been theoretically interpreted according to the corrosion theory and experimentally proved by SEM. The results also showed that the corrosion in the case of pH 3.5 was much more rigorous than that in the cases of pH 4.5 and 6.0. It may due to synergistic effects of that, the characteristic of hydrogen ions which is much more active than that of oxygen molecules, the high diffusion/migration rate of hydrogen ions in solution or through surface films and the lower stability of surface passive film at low pH value system

  17. ELECTROCHEMICAL STUDIES OF N'-FERROCENYLMETHYL-N ...

    African Journals Online (AJOL)

    2011-12-31

    Phenylbenzohydrazide. FcX was studied in acetonitrile with tetrabutylammonium hexafluorophosphate as the supporting electrolyte and aqueous ethanol using the electrochemical technique. This study using cyclic (CV) and rotating ...

  18. Electrochemical Impedance Studies of SOFC Cathodes

    DEFF Research Database (Denmark)

    Hjelm, Johan; Søgaard, Martin; Wandel, Marie

    2007-01-01

    Mixed ion- and electron-conducting composite electrodes consisting of doped ceria and perovskite have been studied by electrochemical impedance spectroscopy (EIS) at different temperatures and oxygen partial pressures. This paper aims to describe the different contributions to the polarisation...

  19. Electrochemical studies of ruthenium compounds

    International Nuclear Information System (INIS)

    Kumar Ghosh, B.; Chakravorty, A.

    1989-01-01

    In many ways the chemistry of transition metals is the chemistry of multiple oxidation states and the associated redox phenomena. If a particular element were to be singeld out to illustrate this viewpoint, a model choice would be ruthenium - an element that is directly or indirectly the active centre of a plethora of redox phenomena encompassing ten different oxidation states and a breathtaking diversity of structure and bonding. In the present review the authors are primarily concerned with the oxidation states of certain ligands coordinated to ruthenium. This choice is deliberate since this is one area where the unique power of electrochemical methods is splendidly revealed. Without these methods, development in this area would have been greatly hampered. A brief summary of metal oxidation states is also included as a prelude to the main subject of this review. The authors have generally emphasize the information derived which is of chemical interest leaving the details of formal electrochemical arguments in the background. The authors have reviewed the pattern and systematics of ligand redox in ruthenium complexes. The synergistic combination of electrochemical and spectroscopic methods have vastly increased our understanding of ligand phenomena during the last 15 years or so. This in turn has led to better understanding and new developments in other fields. Photophysics and photochemistry could be cited as examples. (author). 176 refs.; 10 figs.; 10 tabs

  20. Simulation of electrochemical behavior in Lithium ion battery during discharge process.

    Science.gov (United States)

    Chen, Yong; Huo, Weiwei; Lin, Muyi; Zhao, Li

    2018-01-01

    An electrochemical Lithium ion battery model was built taking into account the electrochemical reactions. The polarization was divided into parts which were related to the solid phase and the electrolyte mass transport of species, and the electrochemical reactions. The influence factors on battery polarization were studied, including the active material particle radius and the electrolyte salt concentration. The results showed that diffusion polarization exist in the positive and negative electrodes, and diffusion polarization increase with the conducting of the discharge process. The physicochemical parameters of the Lithium ion battery had the huge effect on cell voltage via polarization. The simulation data show that the polarization voltage has close relationship with active material particle size, discharging rate and ambient temperature.

  1. Effect of soil compositions on the electrochemical corrosion behavior of carbon steel in simulated soil solution

    Energy Technology Data Exchange (ETDEWEB)

    Liu, T.M. [College of Materials Science and Engineering, Chongqing University (China); Luo, S.X. [Department of Chemistry, Zunyi Normal College, Zunyi (China); Sun, C. [State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang (China); Wu, Y.H.

    2010-04-15

    In this study, effect of cations, Ca{sup 2+}, Mg{sup 2+}, K{sup +}, and anions, SO{sub 4}{sup 2-}, HCO{sub 3}{sup -}, NO{sub 3}{sup -} on electrochemical corrosion behavior of carbon steel in simulated soil solution was investigated through potentiodynamic polarization curves and electrochemical impedance spectroscopy. The results indicate that the Ca{sup 2+}and Mg{sup 2+} can decrease the corrosion current density of carbon steel in simulated soil solution, and K{sup +}, SO{sub 4}{sup 2-}, HCO{sub 3}{sup -}, and NO{sub 3}{sup -} can increase the corrosion density. All the above ions in the simulated soil solution can decrease its resistivity, but they have different effect on the charge transfer resistivity. This finding can be useful in evaluating the corrosivity of certain soil through chemical analysis, and provide data for construction engineers. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  2. Electrochemical deposition on surface nanometric defects: Thermodynamics and grand canonical Monte Carlo simulations

    International Nuclear Information System (INIS)

    Luque, Noelia B.; Reinaudi, Luis; Serra, Pablo; Leiva, Ezequiel P.M.

    2009-01-01

    A thermodynamic analysis is performed on electrochemical metal deposition in the cavity of a foreign substrate. In particular, the deposition of Cu and Ag in nanometer-sized holes on Au(1 1 1) is studied by means of off-lattice atomistic Grand Canonical Monte Carlo simulations, using embedded atom method potentials. The present simulation conditions emulate experiments of electrochemical metal deposition in nanocavities, as performed in the literature. Depending on the system, remarkable differences are found in the way in which the defects are decorated, as well as in their energetics. When the interaction of the adsorbate atoms with the substrate is less favorable than the bulk interaction of the adsorbate, clusters are found that grow stepwise over the level of the surface. In the opposite case, the filling of the cavity occurs stepwise, without the occurrence of cluster growth above the surface level. The results of the simulations present a good qualitative agreement with experimental results from the literature

  3. Electrochemical treatment of simulated sugar industrial effluent: Optimization and modeling using a response surface methodology

    Directory of Open Access Journals (Sweden)

    P. Asaithambi

    2016-11-01

    Full Text Available The removal of organic compounds from a simulated sugar industrial effluent was investigated through the electrochemical oxidation technique. Effect of various experimental parameters such as current density, concentration of electrolyte and flow rate in a batch electrochemical reactor was studied on the percentage of COD removal and power consumption. The electrochemical reactor performance was analyzed based on with and without recirculation of the effluent having constant inter-electrodes distance. It was found out that the percentage removal of COD increased with the increase of electrolyte concentration and current density. The maximum percentage removal of COD was achieved at 80.74% at a current density of 5 A/dm2 and 5 g/L of electrolyte concentration in the batch electrochemical reactor. The recirculation electrochemical reactor system parameters like current density, concentration of COD and flow rate were optimized using response surface methodology, while COD removal percents were maximized and power consumption minimized. It has been observed from the present analysis that the predicted values are in good agreement with the experimental data with a correlation coefficient of 0.9888.

  4. Spectro-electrochemical and DFT study of tenoxicam metabolites formed by electrochemical oxidation

    International Nuclear Information System (INIS)

    Ramírez-Silva, M.T.; Guzmán-Hernández, D.S.; Galano, A.; Rojas-Hernández, A.; Corona-Avendaño, S.; Romero-Romo, M.; Palomar-Pardavé, M.

    2013-01-01

    Highlights: • Tenoxicam deprotonation and electrochemical oxidation were studied. • Both spectro-electrochemical and theoretical DFT studies were considered. • It was found that the ampholitic species of tenoxicam is a zwitterion. • Electrochemical oxidation of tenoxicam yields two non-electroactive products. • The nature of these fragments was further confirmed by a chromatography study. -- Abstract: From experimental (spectro-electrochemical) and theoretical (DFT) studies, the mechanisms of tenoxicam deprotonation and electrochemical oxidation were assessed. From these studies, new insights on the nature of the ampholitic species involved during tenoxicam's deprotonation in aqueous solution are presented; see scheme A. Moreover, it is shown that, after the analysis of two different reaction schemes that involve up to 10 different molecules and 12 reaction paths, the electrochemical oxidation of tenoxicam, yields two non-electroactive products that are predominately formed by its fragmentation, after the loss of two electrons. The nature of these fragments was further confirmed by a chromatography study

  5. Molten salt engineering for thorium cycle. Electrochemical studies as examples

    International Nuclear Information System (INIS)

    Ito, Yasuhiko

    1998-01-01

    A Th-U nuclear energy system utilizing accelerator driven subcritical molten salt breeder reactor has several advantages compared to conventional U-Pu nuclear system. In order to obtain fundamental data on molten salt engineering of Th-U system, electrochemical study was conducted. As the most primitive simulated study of beam irradiation of molten salt, discharge electrolysis was investigated in molten LiCl-KCl-AgCl system. Stationary discharge was generated under atmospheric argon gas and fine Ag particles were obtained. Hydride ion (H - ) behavior in molten salts was also studied to predict the behavior of tritide ion (T - ) in molten salt fuel. Finally, hydrogen behavior in metals at high temperature was investigated by electrochemical method, which is considered to be important to confine and control tritium. (author)

  6. Electrochemical impedance spectroscopic characterization of titanium during alkali treatment and apatite growth in simulated body fluid

    International Nuclear Information System (INIS)

    Raman, V.; Tamilselvi, S.; Rajendran, N.

    2007-01-01

    Alkali treatment of titanium with subsequent heat treatment has been adapted as an important pre-treatment procedure for hydroxyapatite formation in orthopaedic applications. The electrochemical study during the alkali treatment process has not been explored yet. In the present work, electrochemical impedance spectroscopic (EIS) studies have been employed to analyse the electrochemical behaviour of titanium during the alkali treatment. The open circuit potential and potentiodynamic polarisation measurements were carried out in simulated body fluid (SBF) solution. Scanning electron microscopy and energy dispersive X-ray analysis were used to characterize the surface morphology and to correlate the results obtained from the electrochemical studies. An optimum growth of the passive film was found to occur at the end of 17th hour of treatment by alkali treatment. The alkali treated titanium immersed in SBF solution for various durations exhibited the formation of a duplex layer structure due to an inner barrier layer and an outer gel layer during the initial periods of immersion. However, with increase in immersion time to 10 days, a stable apatite layer was formed over the barrier layer and this was confirmed from the equivalent circuit fitted for the impedance data

  7. Electrochemical impedance spectroscopic characterization of titanium during alkali treatment and apatite growth in simulated body fluid

    Energy Technology Data Exchange (ETDEWEB)

    Raman, V.; Tamilselvi, S. [Department of Chemistry, MIT Campus, Anna University, Chennai 600 044 (India); Rajendran, N. [Department of Chemistry, MIT Campus, Anna University, Chennai 600 044 (India)], E-mail: nrajendran@annauniv.edu

    2007-09-30

    Alkali treatment of titanium with subsequent heat treatment has been adapted as an important pre-treatment procedure for hydroxyapatite formation in orthopaedic applications. The electrochemical study during the alkali treatment process has not been explored yet. In the present work, electrochemical impedance spectroscopic (EIS) studies have been employed to analyse the electrochemical behaviour of titanium during the alkali treatment. The open circuit potential and potentiodynamic polarisation measurements were carried out in simulated body fluid (SBF) solution. Scanning electron microscopy and energy dispersive X-ray analysis were used to characterize the surface morphology and to correlate the results obtained from the electrochemical studies. An optimum growth of the passive film was found to occur at the end of 17th hour of treatment by alkali treatment. The alkali treated titanium immersed in SBF solution for various durations exhibited the formation of a duplex layer structure due to an inner barrier layer and an outer gel layer during the initial periods of immersion. However, with increase in immersion time to 10 days, a stable apatite layer was formed over the barrier layer and this was confirmed from the equivalent circuit fitted for the impedance data.

  8. Electrochemical and corrosion properties of carbon steel in simulated geological disposal environments

    International Nuclear Information System (INIS)

    Sugimoto, Katsuhisa

    2011-01-01

    This paper reviews electrochemical and corrosion studies on the application of carbon steel to an overpack container, which is used for the geological disposal of radioactive wastes. Deaerated alkaline Na 2 SO 4 -NaHCO 3 - NaCl solutions and bentonite soaked with the solutions are used as simulated geological disposal environments. Electrochemical studies show the corrosion of the steel in an early stage is the activation control. Corrosion rates are controlled by the composition of the solutions, alloying elements, and the structure of the steel. The rates decrease with time due to the formation of FeCO 3 (siderite) film on the steel. Immersion corrosion tests show general corrosion morphology. Average corrosion rates of long duration have been evaluated. Clear proofs of the initiation of localized corrosion, such as pitting, crevice corrosion, hydrogen embrittlement and stress-corrosion cracking, have not been reported. (author)

  9. Electrochemical behaviour of iron and AISI 304 stainless steel in simulated acid rain solution

    Energy Technology Data Exchange (ETDEWEB)

    Pilic, Zora; Martinovic, Ivana [Mostar Univ. (Bosnia and Herzegovina). Dept. of Chemistry

    2016-10-15

    The growth mechanism and properties of the oxide films on iron and AISI 304 stainless steel were studied in simulated acid rain (pH 4.5) by means of electrochemical techniques and atomic absorption spectrometry. The layer-pore resistance model was applied to explain a potentiodynamic formation of surface oxides. It was found that the growth of the oxide film on iron takes place by the low-field migration mechanism, while that on the stainless steel takes place by the high-field mechanism. Kinetic parameters were determined. Impedance measurements revealed that Fe surface film has no protective properties at the open circuit potential, while the resistance of stainless steel oxide film is very high. The concentration of the metallic ions released into solution and measured by atomic absorption spectroscopy was in accordance with the results obtained from the electrochemical techniques.

  10. Comparison of TiO2 photocatalysis, electrochemically assisted Fenton reaction and direct electrochemistry for simulation of phase I metabolism reactions of drugs

    NARCIS (Netherlands)

    Ruokolainen, Miina; Gül, Turan; Permentier, Hjalmar; Sikanen, Tiina; Kostiainen, Risto; Kotiaho, Tapio

    2016-01-01

    The feasibility of titanium dioxide (TiO2) photocatalysis, electrochemically assisted Fenton reaction (EC-Fenton) and direct electrochemical oxidation (EC) for simulation of phase I metabolism of drugs was studied by comparing the reaction products of buspirone, promazine, testosterone and

  11. Simulation of electrochemical processes in cardiac tissue based on cellular automaton

    International Nuclear Information System (INIS)

    Avdeev, S A; Bogatov, N M

    2014-01-01

    A new class of cellular automata using special accumulative function for nonuniformity distribution is presented. Usage of this automata type for simulation of excitable media applied to electrochemical processes in human cardiac tissue is shown

  12. Physical multiscale modeling and numerical simulation of electrochemical devices for energy conversion and storage from theory to engineering to practice

    CERN Document Server

    Franco, Alejandro A; Bessler, Wolfgang G

    2015-01-01

    This book reviews the use of innovative physical multiscale modeling methods to deeply understand the electrochemical mechanisms and numerically simulate the structure and properties of electrochemical devices for energy storage and conversion.

  13. Decolourisation of simulated reactive dyebath effluents by electrochemical oxidation assisted by UV light.

    Science.gov (United States)

    López-Grimau, V; Gutiérrez, M C

    2006-01-01

    This study is focused on the optimisation of the electrochemical decolourisation of textile effluents containing reactive dyes with the aim of making feasible-technically and economically-this method at industrial scale. Coloured waters were treated in continuous at low current density, to reduce the electrical consumption. Ti/PtO(x) electrodes were used to oxidize simulated dyebaths prepared with an azo/dichlorotriazine reactive dye (C.I. Reactive Orange 4). The decolourisation yield was dependent on the dyeing electrolyte (NaCl or Na(2)SO(4)). Dyeing effluents which contained from 0.5 to 20 gl(-1) of NaCl reached a high decolourisation yield, depending on the current density, immediately after the electrochemical process. These results were improved when the effluents were stored for several hours under solar light. After the electrochemical treatment the effluents were stored in a tank and exposed under different lighting conditions: UV light, solar light and darkness. The evolution of the decolourisation versus the time of storage was reported and kinetic constants were calculated. The time of storage was significantly reduced by the application of UV light. A dye mineralization study was also carried out on a concentrated dyebath. A TOC removal of 81% was obtained when high current density was applied for a prolonged treatment with recirculation. This treatment required a high electrical consumption.

  14. Studies on mass transfer in electrochemical systems

    Energy Technology Data Exchange (ETDEWEB)

    Sundstroem, L.G.

    1997-10-01

    The first part is of an introductory nature. It contains a description of the methods used, a discussion of the physics of electrochemical cells with a liquid electrolyte, and a summary of the different studies made, including both those which have been reported in papers, and those which have not. Contributions with novel aspects include (* a derivation of the electro-neutrality condition from Maxwell`s equations of electrodynamics, and **) an argument in favour of the use of mass-averaged velocity in ion transport expressions. The second part focuses on specific cases. It consists of seven research papers which give a more detailed presentation of the main studies 40 refs, 6 figs

  15. Simulation and experimental investigation of inner-jet electrochemical grinding of GH4169 alloy

    Directory of Open Access Journals (Sweden)

    Hansong LI

    2018-03-01

    Full Text Available GH4169 alloy is one of the most commonly used materials in aero engine turbine blades, but its machinability is poor because of its excellent strength at high temperatures. Electrochemical machining (ECM has become a common method for machining this alloy and other difficult-to-machine materials. Electrochemical grinding (ECG is a hybrid process combining ECM and conventional grinding. In this paper, investigations conducted on inner-jet ECG of GH4169 alloy are described. Two types of inner-jet ECG grinding wheels were used to machine a flat bottom surface. The machining process was simulated using COMSOL software, and machining gaps under different machining parameters were obtained. In addition, maximum feed rates and maximum material removal rates under different machining parameters were studied experimentally. The maximum sizes and the uniformity of the distributions of the gaps machined by the two grinding wheels were compared. The effects of different applied voltages on the machining results were also investigated. Keywords: Electrochemical grinding, GH4169 alloy, Inner-jet, Material removal rate, Maximum feed rate

  16. Corrosion Study Using Electrochemical Impedance Spectroscopy

    Science.gov (United States)

    Farooq, Muhammad Umar

    2003-01-01

    Corrosion is a common phenomenon. It is the destructive result of chemical reaction between a metal or metal alloy and its environment. Stainless steel tubing is used at Kennedy Space Center for various supply lines which service the orbiter. The launch pads are also made of stainless steel. The environment at the launch site has very high chloride content due to the proximity to the Atlantic Ocean. Also, during a launch, the exhaust products in the solid rocket boosters include concentrated hydrogen chloride. The purpose of this project was to study various alloys by Electrochemical Impedance Spectroscopy in corrosive environments similar to the launch sites. This report includes data and analysis of the measurements for 304L, 254SMO and AL-6XN in primarily neutral 3.55% NaCl. One set of data for 304L in neutral 3.55%NaCl + 0.1N HCl is also included.

  17. Electrochemical studies on plutonium in molten salts

    International Nuclear Information System (INIS)

    Bourges, G.; Lambertin, D.; Rochefort, S.; Delpech, S.; Picard, G.

    2007-01-01

    Electrochemical studies on plutonium have been supporting the development of pyrochemical processes involving plutonium at CEA. The electrochemical properties of plutonium have been studied in molten salts - ternary eutectic mixture NaCl-KCl-BaCl 2 , equimolar mixture NaCl-KCl and pure CaCl 2 - and in liquid gallium at 1073 K. The formal, or apparent, standard potential of Pu(III)/Pu redox couple in eutectic mixture of NaCl-KCl-BaCl 2 at 1073 K determined by potentiometry is equal to -2.56 V (versus Cl 2 , 1 atm/Cl - reference electrode). In NaCl-KCl eutectic mixture and in pure CaCl 2 the formal standard potentials deduced from cyclic voltammetry are respectively -2.54 V and -2.51 V. These potentials led to the calculation of the activity coefficients of Pu(III) in the molten salts. Chronoamperometry on plutonium in liquid gallium using molten chlorides - CaCl 2 and equimolar NaCl/KCl - led to the determination of the activity coefficient of Pu in liquid Ga, log γ = -7.3. This new data is a key parameter to assess the thermodynamic feasibility of a process using gallium as solvent metal. By comparing gallium with other solvent metals - cadmium, bismuth, aluminum - gallium appears to be, with aluminum, more favorable for the selectivity of the separation at 1073 K of plutonium from cerium. In fact, compared with a solid tungsten electrode, none of these solvent liquid metals is a real asset for the selectivity of the separation. The role of a solvent liquid metal is mainly to trap the elements

  18. Studies on direct and indirect electrochemical immunoassays

    OpenAIRE

    Buckley, Eileen

    1989-01-01

    Two approaches to electrochemical immunoassay are reported. The first approach was an indirect method, involving an electroactive, enzyme-catalysed, substrate to product reaction. Conditions were optimised for the amperometric detection of para-aminophenol, the electroactive product of the alkaline phosphatase catalysed hydrolysis of a new substrate, p-aminophenylphosphate, after separation by HPLC. The second approach involved the direct electrochemical detection of an immunoglo...

  19. Simulating cyclic voltammetry under advection for electrochemical cantilevers

    DEFF Research Database (Denmark)

    Adesokan, Bolaji James; Evgrafov, Anton; Sørensen, Mads Peter

    2015-01-01

    We present a mathematical model describing an electrochemical system involving electrode–electrolyte interaction. The model is governed by a system of advection–diffusion equations with a nonlinear reaction term at the boundary. Our calculations based on such model demonstrate the dynamics of ionic...

  20. Electrokinetic and electrochemical corrosion studies related to crud formation

    International Nuclear Information System (INIS)

    Scenini, Fabio; Palumbo, Gaetano; Stevens, Nicholas; Cook, Tony; Banks, Andrew

    2012-09-01

    A potentially important mechanism for the flow-induced deposition of CRUD from pressurised high temperature primary water is the effect of 'streaming potentials' that develop across the electrochemical double layer of a metallic surface as a result of fluid flow across a pressure gradient or orifice. Thus, under such conditions, streaming currents develop normal to a surface and may result in preferential oxidation, for example of dissolved ferrous to ferric ions with their subsequent deposition as an oxide. The approach presented in this paper was to consider the electrokinetic problem is to firstly consider the magnitude of currents that can be developed under a given set of flow/mass transport conditions and, secondly, to consider the way in which these relatively small currents might give rise to oxide deposition. Electrochemical measurements on 304L samples were carried out over a range of temperatures in hydrogenated, alkaline water. The test conditions were chosen in order to simulate PWR primary water conditions. Furthermore, in order to facilitate the electrochemical studies, the ferrous ion concentration in the solution was also enhanced by the presence of a mild steel plate left in the autoclave to corrode. By employing the cyclic voltammetry technique interpreted using the Randles-Sevcik equation it was possible to calculate the concentration of ferrous ions and their diffusion coefficient. A miniature flow cell was designed for the purpose of creating regions of accelerated flow with consequent formation of anodic and cathodic regions so as to be able to measure the streaming currents. A study was carried out in order to better understand the potential which is associated with the streaming potential as function of the velocity and temperature at fixed pH. (authors)

  1. Theoretical analysis and simulation study of low-power CMOS electrochemical impedance spectroscopy biosensor in 55 nm deeply depleted channel technology for cell-state monitoring

    Science.gov (United States)

    Itakura, Keisuke; Kayano, Keisuke; Nakazato, Kazuo; Niitsu, Kiichi

    2018-01-01

    We present an impedance-detection complementary metal oxide semiconductor (CMOS) biosensor circuit for cell-state observation. The proposed biosensor can measure the expected impedance values encountered by a cell-state observation measurement system within a 0.1-200 MHz frequency range. The proposed device is capable of monitoring the intracellular conditions necessary for real-time cell-state observation, and can be fabricated using a 55 nm deeply depleted channel CMOS process. Operation of the biosensor circuit with 0.9 and 1.7 V supply voltages is verified via a simulated program with integrated circuit emphasis (SPICE) simulation. The power consumption is 300 µW. Further, the standby power consumption is 290 µW, indicating that this biosensor is a low-power instrument suitable for use in Internet of Things (IoT) devices.

  2. Disintegration of graphite matrix from the simulative high temperature gas-cooled reactor fuel element by electrochemical method

    International Nuclear Information System (INIS)

    Tian Lifang; Wen Mingfen; Li Linyan; Chen Jing

    2009-01-01

    Electrochemical method with salt as electrolyte has been studied to disintegrate the graphite matrix from the simulative high temperature gas-cooled reactor fuel elements. Ammonium nitrate was experimentally chosen as the appropriate electrolyte. The volume average diameter of disintegrated graphite fragments is about 100 μm and the maximal value is less than 900 μm. After disintegration, the weight of graphite is found to increase by about 20% without the release of a large amount of CO 2 probably owing to the partial oxidation to graphite in electrochemical process. The present work indicates that the improved electrochemical method has the potential to reduce the secondary nuclear waste and is a promising option to disintegrate graphite matrix from high temperature gas-cooled reactor spent fuel elements in the head-end of reprocessing.

  3. Electrochemical impedance spectroscopic study of passive zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Ai Jiahe; Chen Yingzi [Center for Electrochemical Science and Technology, Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 (United States); Urquidi-Macdonald, Mirna [Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802 (United States); Macdonald, Digby D. [Center for Electrochemical Science and Technology, Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 (United States)], E-mail: ddm2@psu.edu

    2008-09-30

    Spent, unreproccessed nuclear fuel is generally contained within the operational fuel sheathing fabricated from a zirconium alloy (Zircaloy 2, Zircaloy 4, or Zirlo) and is then stored in a swimming pool and/or dry storage facilities until permanent disposal in a licensed repository. During this period, which begins with irradiation of the fuel in the reactor during operation, the fuel sheathing is exposed to various, aggressive environments. The objective of the present study was to characterize the nature of the passive film that forms on pure zirconium in contact with an aqueous phase [0.1 M B(OH){sub 3} + 0.001 M LiOH, pH 6.94] at elevated temperatures (in this case, 250 deg. C), prior to storage, using electrochemical impedance spectroscopy (EIS) with the data being interpreted in terms of the point defect model (PDM). The results show that the corrosion resistance of zirconium in high temperature, de-aerated aqueous solutions is dominated by the outer layer. The extracted model parameter values can be used in deterministic models for predicting the accumulation of general corrosion damage to zirconium under a wide range of conditions that might exist in some repositories.

  4. Magnetic, catalytic, EPR and electrochemical studies on binuclear ...

    Indian Academy of Sciences (India)

    Magnetic, catalytic, EPR and electrochemical studies on binuclear copper(II) complexes ... to the oxidation of 3,5-di--butylcatechol to the corresponding quinone. ... EPR spectral studies in methanol solvent show welldefined four hyperfine ...

  5. Atomic-Scale Simulation of Electrochemical Processes at Electrode/Water Interfaces under Referenced Bias Potential.

    Science.gov (United States)

    Bouzid, Assil; Pasquarello, Alfredo

    2018-04-19

    Based on constant Fermi-level molecular dynamics and a proper alignment scheme, we perform simulations of the Pt(111)/water interface under variable bias potential referenced to the standard hydrogen electrode (SHE). Our scheme yields a potential of zero charge μ pzc of ∼0.22 eV relative to the SHE and a double layer capacitance C dl of ≃19 μF cm -2 , in excellent agreement with experimental measurements. In addition, we study the structural reorganization of the electrical double layer for bias potentials ranging from -0.92 eV to +0.44 eV and find that O down configurations, which are dominant at potentials above the pzc, reorient to favor H down configurations as the measured potential becomes negative. Our modeling scheme allows one to not only access atomic-scale processes at metal/water interfaces, but also to quantitatively estimate macroscopic electrochemical quantities.

  6. Status of test results of electrochemical organic oxidation of a tank 241-SY-101 simulated waste

    International Nuclear Information System (INIS)

    Colby, S.A.

    1994-06-01

    This report presents scoping test results of an electrochemical waste pretreatment process to oxidize organic compounds contained in the Hanford Site's radioactive waste storage tanks. Electrochemical oxidation was tested on laboratory scale to destroy organics that are thought to pose safety concerns, using a nonradioactive, simulated tank waste. Minimal development work has been applied to alkaline electrochemical organic destruction. Most electrochemical work has been directed towards acidic electrolysis, as in the metal purification industry, and silver catalyzed oxidation. Alkaline electrochemistry has traditionally been associated with the following: (1) inefficient power use, (2) electrode fouling, and (3) solids handling problems. Tests using a laboratory scale electrochemical cell oxidized surrogate organics by applying a DC electrical current to the simulated tank waste via anode and cathode electrodes. The analytical data suggest that alkaline electrolysis oxidizes the organics into inorganic carbonate and smaller carbon chain refractory organics. Electrolysis treats the waste without adding chemical reagents and at ambient conditions of temperature and pressure. Cell performance was not affected by varying operating conditions and supplemental electrolyte additions

  7. Electrochemical study of stress corrosion cracking of copper alloys

    International Nuclear Information System (INIS)

    Malki, Brahim

    1999-01-01

    This work deals with the electrochemical study of stress corrosion of copper alloys in aqueous environment. Selective dissolution and electrochemical oxidation are two key-points of the stress corrosion of these alloys. The first part of this thesis treats of these aspects applied to Cu-Au alloys. Measurements have been performed using classical electrochemical techniques (in potentio-dynamic, potentio-static and galvano-static modes). The conditions of occurrence of an electrochemical noise is analysed using signal processing techniques. The impact on the behavior of Cu 3 Au are discussed. In the second part, the stress corrosion problem is addressed in the case of surface oxide film formation, in particular for Cu-Zn alloys. We have found useful to extend this study to mechanical stress oxidation mechanisms in the presence of an oscillating potential electrochemical system. The aim is to examine the influence of these new electrochemical conditions (galvano-static mode) on the behavior of stressed brass. Finally, the potential distribution at crack tip is calculated in order to compare the different observations [fr

  8. Development of simulation code for MOX dissolution using silver-mediated electrochemical method (Contract research)

    Energy Technology Data Exchange (ETDEWEB)

    Kida, Takashi; Umeda, Miki; Sugikawa, Susumu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    MOX dissolution using silver-mediated electrochemical method will be employed for the preparation of plutonium nitrate solution in the criticality safety experiments in the Nuclear Fuel Cycle Safety Engineering Research Facility (NUCEF). A simulation code for the MOX dissolution has been developed for the operating support. The present report describes the outline of the simulation code, a comparison with the experimental data and a parameter study on the MOX dissolution. The principle of this code is based on the Zundelevich's model for PuO{sub 2} dissolution using Ag(II). The influence of nitrous acid on the material balance of Ag(II) is taken into consideration and the surface area of MOX powder is evaluated by particle size distribution in this model. The comparison with experimental data was carried out to confirm the validity of this model. It was confirmed that the behavior of MOX dissolution could adequately be simulated using an appropriate MOX dissolution rate constant. It was found from the result of parameter studies that MOX particle size was major governing factor on the dissolution rate. (author)

  9. Electrochemical studies of the corrosion behavior of the fine-grained structural steel DIN W.Nr. 1.0566 between 55 and 90deg C in simulated salt brine repository environments

    International Nuclear Information System (INIS)

    Farvaque-Bera, A.M.; Leistikow, S.

    1991-05-01

    The electrochemical corrosion of the fine-grained structural steel DIN W. Nr. 1.0566 was tested between 55 and 90deg C in three simulated salt brines of similar compositions as analyzed for the Gorleben repository environment. As test parameters the temperature, the salt brine composition, the stirring velocity and the oxygen content as well as the state of the steel surface were varied. As experimental results are presented: (1) the free corrosion potentials of the steel in three brines, (2) Tafel plots of current densities as measured potentiodynamically in the anodic and cathodic vicinity of the corrosion potentials and being representative for the rate of metal dissolution, (3) the surface morphology of the corroded specimens. As mechanisms - in the absence of oxygen - the cathodic reduction of water and the anodic dissolution of iron are considered to prevail the corrosion reaction. It is shown that the applied electrochemical techniques are able to determine within an accelerated procedure the most important corrosion parameters in respect to their influence on rate of metal dissolution and morphology of corrosion attack. (orig.) [de

  10. Pyrite Passivation by Triethylenetetramine: An Electrochemical Study

    Directory of Open Access Journals (Sweden)

    Yun Liu

    2013-01-01

    Full Text Available The potential of triethylenetetramine (TETA to inhibit the oxidation of pyrite in H2SO4 solution had been investigated by using the open-circuit potential (OCP, cyclic voltammetry (CV, potentiodynamic polarization, and electrochemical impedance (EIS, respectively. Experimental results indicate that TETA is an efficient coating agent in preventing the oxidation of pyrite and that the inhibition efficiency is more pronounced with the increase of TETA. The data from potentiodynamic polarization show that the inhibition efficiency (η% increases from 42.08% to 80.98% with the concentration of TETA increasing from 1% to 5%. These results are consistent with the measurement of EIS (43.09% to 82.55%. The information obtained from potentiodynamic polarization also displays that the TETA is a kind of mixed type inhibitor.

  11. A kinetic study of the electrochemical hydrogenation of ethylene

    International Nuclear Information System (INIS)

    Sedighi, S.; Gardner, C.L.

    2010-01-01

    In this study, we have examined the kinetics of the electrochemical hydrogenation of ethylene in a PEM reactor. While in itself this reaction is of little industrial interest, this reaction can be looked upon as a model reaction for many of the important hydrogenation processes including the refining of heavy oils and the hydrogenation of vegetable oils. To study the electrochemical hydrogenation of ethylene, several experimental techniques have been used including polarization measurements, measurement of the composition of the exit gases and potential step, transient measurements. The results show that the hydrogenation reaction proceeds rapidly and essentially to completion. By fitting the experimental transient data to the results from a zero-dimensional mathematical model of the process, a set of kinetic parameters for the reactions has been obtained that give generally good agreement with the experimental results. It seems probable that similar experimental techniques could be used to study the electrochemical hydrogenation of other unsaturated organic molecules of more industrial significance.

  12. Simulation of electrochemical nucleation in the presence of additives under galvanostatic and pulsed plating conditions

    International Nuclear Information System (INIS)

    Emekli, Ugur; West, Alan C.

    2010-01-01

    Galvanostatic nucleation of copper onto pretreated ruthenium is investigated using experimental methods and numerical simulations in the presence of two different suppressor molecules; polyethylene glycol (PEG) and ethylene glycol-propylene glycol-ethylene glycol block copolymer (EPE). The model parameters have been largely determined from electrochemical characterization. Results suggest that a fast adsorption rate of the suppressor results in higher nucleus densities. Simulation results provide insight why EPE is more effective than PEG at increasing nucleus density. In addition, the simulations are used to predict the impact of pulse plating paramaters, showing that both the properties of the additive and the waveform need to be considered to optimize nucleus density enhancement.

  13. Electrochemical and spectroscopic study on thiolation of polyaniline

    International Nuclear Information System (INIS)

    Blomquist, Maija; Bobacka, Johan; Ivaska, Ari; Levon, Kalle

    2013-01-01

    Highlights: ► We have thiolated and characterized polyaniline films in order to verify that the thiolation process has taken place. ► Such extensive characterization of thiolation of polyaniline has not previously been reported. ► Thiolation alters the electrochemical properties of polyaniline and the process should be understood. ► Through thiolation many reactive groups may covalently be bound to the polymer backbone. ► Possibility of covalent binding makes polyaniline films an attractive substrate for, e.g., biosensors. -- Abstract: Polyaniline (PANI) is a conducting polymer, easily synthesized and lucrative for many electrochemical applications like ion-selective sensors and biosensors. Thiolated molecules, including biological ones, can be bound by nucleophilic attachment to the polyaniline backbone. These covalently bound thiols add functionality to PANI, but also cause changes in the electrochemical properties of PANI. Polyaniline studied in this work was electropolymerized on glassy carbon electrodes. 2-Mercaptoethanol (MCE) and 6-(ferrocenyl)hexanethiol (FCHT) were used as the thiols to form functionalized films. The films were characterized by cyclic voltammetry (CV), ex situ FTIR and Raman spectroscopies, electrochemical impedance spectroscopy (EIS) and X-ray photoelectron spectroscopy (XPS). The goal of this work was to confirm the thiolation by spectroscopic methods and to study the impact of thiolation on the electrochemical properties of PANI. Our study showed that thiolated PANI has different electrochemical properties than PANI. Although the thiolation partially reduced the PANI backbone it still remained conductive after the thiolation. Detailed understanding of the thiolation process can be very useful for future applications of PANI

  14. Passivation and electrochemical behavior of 316L stainless steel in chlorinated simulated concrete pore solution

    Science.gov (United States)

    Luo, Hong; Su, Huaizhi; Dong, Chaofang; Li, Xiaogang

    2017-04-01

    In this paper, the passivation and electrochemical behavior of 316L stainless steel in chlorinated simulated concrete pore solutions at different pH was evaluated by potentiodynamic measurements, electrochemical impedance spectroscopy. The composition of the passive film and surface morphology were investigated by X-ray photoelectron spectroscopy (XPS), secondary ion mass spectrometry (SIMS), and scanning electron microscopy, respectively. The results reveal that metastable pitting susceptibility, stable pitting corrosion, and composition of the passive film are influenced by pH value. After long time immersion, a bilayer structure passive film can be formed in this environment. The appearance of molybdates on the outermost surface layer, further enhancing the stability of the passive film. Moreover, the good pitting corrosion resistance of 316L stainless steel in simulated concrete pore solution without carbonated is mainly due to the presence of high Cr/Fe ratio and molybdates ions within the passive film.

  15. Development of Advanced Electrochemical Emission Spectroscopy for Monitoring Corrosion in Simulated DOE Liquid Waste

    Energy Technology Data Exchange (ETDEWEB)

    Digby Macdonald; Brian Marx; Balaji Soundararajan; Morgan Smith

    2005-07-28

    events in stress corrosion cracking, and the determination of kinetic parameters for the generation and annihilation of point defects in the passive film on iron. The existence of coupling between the internal crack environment and the external cathodic environment, as predicted by the coupled environment fracture model (CEFM), has also been indisputably established for the AISI 4340/NaOH system. It is evident from the studies that analysis of coupling current noise is a very sensitive tool for studying the crack tip processes in relation to the chemical, mechanical, electrochemical, and microstructural properties of the system. Experiments are currently being carried out to explore these crack tip processes by simultaneous measurement of the acoustic activity at the crack tip in an effort to validate the coupling current data. These latter data are now being used to deterministically predict the accumulation of general and localized corrosion damage on carbon in prototypical DOE liquid waste storage tanks. Computer simulation of the cathodic and anodic activity on the steel surfaces is also being carried out in an effort to simulate the actual corrosion process. Wavelet analysis of the coupling current data promises to be a useful tool to differentiate between the different corrosion mechanisms. Hence, wavelet analysis of the coupling current data from the DOE waste containers is also being carried out to extract data pertaining to general, pitting and stress corrosion processes, from the overall data which is bound to contain noise fluctuations due to any or all of the above mentioned processes.

  16. Structural, spectroscopic and electrochemical study of V substituted ...

    Indian Academy of Sciences (India)

    Administrator

    Electrochemical impedance studies showed that ionic conductivity is high for x = 0∙10 composition. a.c. and ... ground in an agate mortar in the presence of methanol for .... tion peaks are stabilized at 2∙41 V. The oxidation peaks are observed ...

  17. Mechanical-Electrochemical-Thermal Simulation of Lithium-Ion Cells

    Energy Technology Data Exchange (ETDEWEB)

    Santhanagopalan, Shriram; Zhang, Chao; Sprague, Michael A.; Pesaran, Ahmad

    2016-06-01

    Models capture the force response for single-cell and cell-string levels to within 15%-20% accuracy and predict the location for the origin of failure based on the deformation data from the experiments. At the module level, there is some discrepancy due to poor mechanical characterization of the packaging material between the cells. The thermal response (location and value of maximum temperature) agrees qualitatively with experimental data. In general, the X-plane results agree with model predictions to within 20% (pending faulty thermocouples, etc.); the Z-plane results show a bigger variability both between the models and test-results, as well as among multiple repeats of the tests. The models are able to capture the timing and sequence in voltage drop observed in the multi-cell experiments; the shapes of the current and temperature profiles need more work to better characterize propagation. The cells within packaging experience about 60% less force under identical impact test conditions, so the packaging on the test articles is robust. However, under slow-crush simulations, the maximum deformation of the cell strings with packaging is about twice that of cell strings without packaging.

  18. Electrochemical destruction of organics and nitrates in simulated and actual radioactive Hanford tank waste

    International Nuclear Information System (INIS)

    Elmore, M.R.; Lawrence, W.E.

    1996-09-01

    Pacific Northwest National Laboratory has conducted an evaluation of electrochemical processing for use in radioactive tank waste cleanup activities. An electrochemical organic destruction (ECOD) process was evaluated, with the main focus being the destruction of organic compounds (especially organic complexants of radionuclides) in simulated and actual radioactive Hanford tank wastes. A primary reason for destroying the organic species in the complexant concentrate tank waste is to decomplex/defunctionalize species that chelate radionuclides. the separations processes required to remove the radionuclides are much less efficient when chelators are present. A second objective, the destruction of nitrates and nitrites in the wastes, was also assessed. Organic compounds, nitrates, and nitrites may affect waste management and safety considerations, not only at Hanford but at other US Department of Energy sites that maintain high- level waste storage tanks

  19. Modeling and simulation of the fluid flow in wire electrochemical machining with rotating tool (wire ECM)

    Science.gov (United States)

    Klocke, F.; Herrig, T.; Zeis, M.; Klink, A.

    2017-10-01

    Combining the working principle of electrochemical machining (ECM) with a universal rotating tool, like a wire, could manage lots of challenges of the classical ECM sinking process. Such a wire-ECM process could be able to machine flexible and efficient 2.5-dimensional geometries like fir tree slots in turbine discs. Nowadays, established manufacturing technologies for slotting turbine discs are broaching and wire electrical discharge machining (wire EDM). Nevertheless, high requirements on surface integrity of turbine parts need cost intensive process development and - in case of wire-EDM - trim cuts to reduce the heat affected rim zone. Due to the process specific advantages, ECM is an attractive alternative manufacturing technology and is getting more and more relevant for sinking applications within the last few years. But ECM is also opposed with high costs for process development and complex electrolyte flow devices. In the past, few studies dealt with the development of a wire ECM process to meet these challenges. However, previous concepts of wire ECM were only suitable for micro machining applications. Due to insufficient flushing concepts the application of the process for machining macro geometries failed. Therefore, this paper presents the modeling and simulation of a new flushing approach for process assessment. The suitability of a rotating structured wire electrode in combination with an axial flushing for electrodes with high aspect ratios is investigated and discussed.

  20. Catalytic and electrochemical behaviour of solid oxide fuel cell operated with simulated-biogas mixtures

    Science.gov (United States)

    Dang-Long, T.; Quang-Tuyen, T.; Shiratori, Y.

    2016-06-01

    Being produced from organic matters of wastes (bio-wastes) through a fermentation process, biogas mainly composed of CH4 and CO2 and can be considered as a secondary energy carrier derived from solar energy. To generate electricity from biogas through the electrochemical process in fuel cells is a state-of-the-art technology possessing higher energy conversion efficiency without harmful emissions compared to combustion process in heat engines. Getting benefits from high operating temperature such as direct internal reforming ability and activation of electrochemical reactions to increase overall system efficiency, solid oxide fuel cell (SOFC) system operated with biogas becomes a promising candidate for distributed power generator for rural applications leading to reductions of environmental issues caused by greenhouse effects and bio-wastes. CO2 reforming of CH4 and electrochemical oxidation of the produced syngas (H2-CO mixture) are two main reaction processes within porous anode material of SOFC. Here catalytic and electrochemical behavior of Ni-ScSZ (scandia stabilized-zirconia) anode in the feed of CH4-CO2 mixtures as simulated-biogas at 800 °C were evaluated. The results showed that CO2 had strong influences on both reaction processes. The increase in CO2 partial pressure resulted in the decrease in anode overvoltage, although open-circuit voltage was dropped. Besides that, the simulation result based on a power-law model for equimolar CH4-CO2 mixture revealed that coking hazard could be suppressed along the fuel flow channel in both open-circuit and closed-circuit conditions.

  1. Catalytic and electrochemical behaviour of solid oxide fuel cell operated with simulated-biogas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Dang-Long, T., E-mail: 3TE14098G@kyushu-u.ac.jp [Department of Hydrogen Energy Systems, Faculty of Engineering, Kyushu University Motooka 744, Nishiku, Fukuoka, 810-0395 (Japan); Quang-Tuyen, T., E-mail: tran.tuyen.quang.314@m.kyushu-u.ac.jp [International Research Center for Hydrogen Energy, Kyushu University Motooka 744, Nishiku, Fukuoka, 810-0395 (Japan); Shiratori, Y., E-mail: shiratori.yusuke.500@m.kyushu-u.ac.jp [Department of Hydrogen Energy Systems, Faculty of Engineering, Kyushu University Motooka 744, Nishiku, Fukuoka, 810-0395 (Japan); International Research Center for Hydrogen Energy, Kyushu University Motooka 744, Nishiku, Fukuoka, 810-0395 (Japan)

    2016-06-03

    Being produced from organic matters of wastes (bio-wastes) through a fermentation process, biogas mainly composed of CH{sub 4} and CO{sub 2} and can be considered as a secondary energy carrier derived from solar energy. To generate electricity from biogas through the electrochemical process in fuel cells is a state-of-the-art technology possessing higher energy conversion efficiency without harmful emissions compared to combustion process in heat engines. Getting benefits from high operating temperature such as direct internal reforming ability and activation of electrochemical reactions to increase overall system efficiency, solid oxide fuel cell (SOFC) system operated with biogas becomes a promising candidate for distributed power generator for rural applications leading to reductions of environmental issues caused by greenhouse effects and bio-wastes. CO{sub 2} reforming of CH{sub 4} and electrochemical oxidation of the produced syngas (H{sub 2}–CO mixture) are two main reaction processes within porous anode material of SOFC. Here catalytic and electrochemical behavior of Ni-ScSZ (scandia stabilized-zirconia) anode in the feed of CH{sub 4}–CO{sub 2} mixtures as simulated-biogas at 800 °C were evaluated. The results showed that CO{sub 2} had strong influences on both reaction processes. The increase in CO{sub 2} partial pressure resulted in the decrease in anode overvoltage, although open-circuit voltage was dropped. Besides that, the simulation result based on a power-law model for equimolar CH{sub 4}−CO{sub 2} mixture revealed that coking hazard could be suppressed along the fuel flow channel in both open-circuit and closed-circuit conditions.

  2. Study of electrochemical phosphate conversion coating of metallic surfaces

    International Nuclear Information System (INIS)

    Gougelin, Patrick

    1985-01-01

    After an overview on phosphate conversion coating processes, on models of iron electrochemical dissolution, on the passivation phenomenon, and on the phosphate conversion coating treatment, this research thesis reports a detailed study of this last process. The author presents the experimental method, reports the study of this process and of passivation under constant polarization. He reports the use of various techniques and conditions: chrono-amperometry, chrono-potentiometry, cyclic volt-amperometry

  3. Advances in Electrochemical Models for Predicting the Cycling Performance of Traction Batteries: Experimental Study on Ni-MH and Simulation Développement de modèles électrochimiques de batteries de traction pour la prédiction de performances : étude expérimentale de batteries NiMH et simulations

    Directory of Open Access Journals (Sweden)

    Bernard J.

    2009-11-01

    Full Text Available Rigorous electrochemical models to simulate the cycling performance of batteries have been successfully developed and reported in the literature. They constitute a very promising approach for State-of-Charge (SoC estimation based on the physics of the cell with regards to other methods since SoC is an internal parameter of these physical models. However, the computational time needed to solve electrochemical battery models for online applications requires to develop a simplified physics-based battery model. In this work, our goal is to present and validate an advanced 0D-electrochemical model of a Ni-MH cell, as an example. This lumped-parameter model will be used to design an extended Kalman filter to predict the SoC of a Ni-MH pack. It is presented, followed by an extensive experimental study conducted on Ni-MH cells to better understand the mechanisms of physico-chemical phenomena occurring at both electrodes and support the model development. The last part of the paper focuses on the evaluation of the model with regards to experimental results obtained on Ni-MH sealed cells but also on the related commercial HEV battery pack. Des modèles électrochimiques fins permettant de simuler le comportement de batteries ont été développés avec succès et reportés dans la littérature. Ils constituent une alternative aux méthodes classiques pour estimer l’état de charge (SoC pour State of Charge des batteries, cette variable étant ici un paramètre interne du modèle physique. Cependant, pour les applications embarquées, il est nécessaire de développer des modèles simplifiés sur la base de ces modèles physiques afin de diminuer le temps de calcul nécessaire à la résolution des équations. Ici, nous présenterons à titre d’exemple un modèle électrochimique 0D avancé d’un accumulateur NiMH et sa validation. Ce modèle à paramètres concentrés sera utilisé pour réaliser un filtre de Kalman qui permettra la prédiction de l

  4. Simulated body-fluid tests and electrochemical investigations on biocompatibility of metallic glasses

    International Nuclear Information System (INIS)

    Lin, C.H.; Huang, C.H.; Chuang, J.F.; Lee, H.C.; Liu, M.C.; Du, X.H.; Huang, J.C.; Jang, J.S.C.; Chen, C.H.

    2012-01-01

    This paper presents the in-vitro and electrochemical investigations of four metallic glasses (MGs) for finding potential MG-based bio-materials. The simulation body-fluid Hanks solution is utilized for testing the corrosion resistance of MGs, and microorganisms of Escherichia coli are used in testing the bio-toxicity. In addition, a simple cyclic voltammetry method is used for rapid verification of the potential electrochemical responses. It is found that the Zr-based MG can sustain in the body-fluid, exhibiting the best corrosion resistance and electrochemical stability. The microbiologic test shows that E. coli can grow on the surface of the Zr-based metallic glass, confirming the low cell toxicity of this Zr-based MG. Highlights: ► Vanadium is added in Cu–Zr–Al alloy to induce B2-CuZr formation. ► The more induced B2-CuZr phase can improve compressive plasticity. ► The plasticity improvement might be caused by B2 phase dynamic coarsening.

  5. Electrochemical disinfection of simulated ballast water on PbO2/graphite felt electrode

    International Nuclear Information System (INIS)

    Chen, Shuiping; Hu, Weidong; Hong, Jianxun; Sandoe, Steve

    2016-01-01

    A novel PbO 2 /graphite felt electrode was constructed by electrochemical deposition of PbO 2 on graphite felt and characterized by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM) analysis. The prepared electrode is a viable technology for inactivation of Escherichia coli, Enterococcus faecalis, and Artemia salina as indicator organisms in simulated ballast water treatment, which meets the International Maritime Organization (IMO) Regulation D-2. The effects of contact time and current density on inactivation were investigated. An increase in current density generally had a beneficial effect on the inactivation of the three species. E.faecalis and A.salina were more resistant to electrochemical disinfection than E. coli. The complete disinfection of E.coli was achieved in <8 min at an applied current density of 253 A/m 2 . Complete inactivation of E. faecalis and A.salina was achieved at the same current density after 60 and 40 min of contact time, respectively. A. salina inactivation follows first-order kinetics. - Highlights: •A novel PbO 2 /graphite felt anode was developed for the electrochemical treatment of the simulated ballast water. •The technology meets the IMO D‐2 regulation and provides a high degree of removal of the microorganisms of ballast water without any additional chemical substances. •E.faecalis, E.coli, and A.salina cells in simulated ballast water were completely inactivated after 60, 8 and 40 min of contact time at 253 A/m 2 of current density, respectively.

  6. ELECTROCHEMICAL FINGERPRINT STUDIES OF SELECTED MEDICINAL PLANTS RICH IN FLAVONOIDS.

    Science.gov (United States)

    Konieczyński, Paweł

    2015-01-01

    The combination of a size-exclusion column (SEC) with electrochemical (voltammetric) detection at a boron-doped diamond electrode (BDDE) was applied for studying the correlations between electroactive Cu and Fe species with phenolic groups of flavonoids. For comparison with electrochemical results, SEC-HPLC-DAD detection was used. The studied plant material comprised of: Betula verrucosa Ehrh., Equisetun arvense L., Polygonum aviculare L., Viola tricolor L., Crataegus oxyacantha L., Sambucus nigra L. and Helichrysum arenarium (L.) Moench. Based upon the results, high negative correlation was found for the chromatographic peak currents at 45 min with the sum of Cu and Fe for the aqueous extracts of Sambucus, Crataegus and Betula species, and for the peak currents at 65 min of the aqueous extracts of Sambucus, Crataegus, Helichrysum and Betula botanical species. This behavior confirms that it is mainly the flavonoids with easily oxidizable phenolic groups which are strongly influenced by the presence of Cu and Fe. Moreover, the electrochemical profiles obtained thanks to the use of HPLC hyphenated with voltammetric detection can be potentially applied for fingerprint studies of the plant materials used in medicine.

  7. Simulating Linear Sweep Voltammetry from First-Principles: Application to Electrochemical Oxidation of Water on Pt(111) and Pt3Ni(111)

    DEFF Research Database (Denmark)

    Viswanathan, Venkatasubramanian; Hansen, Heine Anton; Rossmeisl, Jan

    2012-01-01

    Cyclic voltammetry is a fundamental experimental method for characterizing adsorbates on electrochemical surfaces. We present a model for the electrochemical solid–liquid interface, and we simulate the linear sweep voltammogram of the electrochemical oxidation of H2O on Pt(111) and Pt3Ni(111...

  8. Comparative DEMS study on the electrochemical oxidation of carbon blacks

    DEFF Research Database (Denmark)

    Ashton, Sean James; Arenz, Matthias

    2012-01-01

    Publication year: 2012 Source:Journal of Power Sources, Volume 217 Sean J. Ashton, Matthias Arenz The intention of the study presented here is to compare the electrochemical oxidation tendencies of a pristine Ketjen Black EC300 high surface area (HSA) carbon black, and four graphitised counterparts...... heat-treated between 2100 and 3200 °C, such as those typically used as corrosion resistant carbon (CRC) supports for polymer electrolyte membrane fuel cell (PEMFC) catalysts. A methodology combining cyclic voltammetry (CV) and differential electrochemical mass spectrometry (DEMS) is used, which allows......; however, CRC samples graphitised =2800 °C did not exhibit this same behaviour. Highlights ¿ We quantitatively determine electrooxidation of carbon support materials. ¿ We can distinguish between the total and partial electrooxidation. ¿ Non or mildly heat treated carbon forms passivating layer. ¿ Heat...

  9. Electrochemical, surface analytical and quantum chemical studies ...

    Indian Academy of Sciences (India)

    subject of numerous studies due to their high technological value and wide range .... Mulliken population analysis of atoms in triazole derivatives, depending on the ... 2102–0003) with an accelerating voltage of 20 kV, at a scan speed=slow 5 and ... the corrosion rate can also be determined by Tafel extra- polation of either ...

  10. Design of an electrochemical cell for in situ XAS studies

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, N. [Instituto de Quimica, Universidade Estadual de Campinas (UNICAMP), Box 6154, CEP 13083-970, Campinas, SP (Brazil); Morais, J. [Instituto de Fisica, Universidade Federal do Rio Grande do Sul (UFRGS), Avenida Bento Goncalves, 9500, Bairro Agronomia, CP 15051, CEP 91501-970, Porto Alegre, RS (Brazil); Alves, M.C.M. [Instituto de Quimica, Universidade Federal do Rio Grande do Sul (UFRGS), Avenida Bento Goncalves, 9500, Bairro Agronomia, CP 15003, CEP 91501-970, Porto Alegre, RS (Brazil)], E-mail: maria@iq.ufrgs.br

    2007-05-15

    In situ X-ray absorption spectroscopy (XAS) studies have been carried out on the electrochemical insertion of Co metal particles in polypyrrole. This has become possible due to the development of an electrochemical cell to allow XAS studies in fluorescence geometry under steady-state conditions. The experimental set-up allows the in situ monitoring of the structural and electronic changes of the selected atom in a matrix. The project of the electrochemical cell is presented with the results obtained at different stages of the electrochemical process. XANES and EXAFS results showed that the initial stage of the cobalt insertion in polypyrrole took place in an ionic form, like [-[(C{sub 4}H{sub 2}N){sub 3}CH{sub 3}(CH{sub 2}){sub 11}OSO{sub 3}{sup -}]{sub 6}Co{sup 2+}] with posterior reduction to a metallic form. The quantitative analysis of the first shell shows that, at -0.60 V, the cobalt atoms are surrounded by 6 ({+-}0.5) atoms located at 2.12 ({+-}0.05) A with a large Debye-Waller factor ({sigma}{sup 2}) value of 0.0368 ({+-}0.0074). At -0.80 V, two distances of R = 1.99 ({+-}0.01) and R = 2.50 ({+-}0.01) A show the coexistence of cobalt in the oxidized and reduced (Co{sup 0}) forms. The Co-Co distance corresponds to that of bulk cobalt. At -1.20 V, the obtained values of N = 12 ({+-}0.5) and R = 2.56 ({+-}0.01) A and a Debye-Waller factor of 0.0176 ({+-}0.0004) suggest the formation of metallic cobalt in a quite disordered form.

  11. Electrochemical studies in molten sodium fluoroborate

    International Nuclear Information System (INIS)

    Brigaudeau, M.; Wagner, J.F.

    1979-01-01

    Physical properties of sodium fluoroborate are recalled and first results obtained during experimental study of molten NaBF 4 are exposed. The system Cu/CuF is used as an indicator of fluoride ion activity and dissociation constant of the solvent is determined by adding NaF to NaBF 4 saturated with BF 3 at a pressure of 1 atm and found equal to 2.7x10 -3 [fr

  12. Synthesis and electrochemical study of Pt-based nanoporous materials

    International Nuclear Information System (INIS)

    Wang Jingpeng; Holt-Hindle, Peter; MacDonald, Duncan; Thomas, Dan F.; Chen Aicheng

    2008-01-01

    In the present work, a variety of Pt-based bimetallic nanostructured materials including nanoporous Pt, Pt-Ru, Pt-Ir, Pt-Pd and Pt-Pb networks have been directly grown on titanium substrates via a facile hydrothermal method. The as-fabricated electrodes were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction and electrochemical methods. The active surface areas of these nanoporous Pt-based alloy catalysts are increased by over 68 (Pt-Pd), 69 (Pt-Ru) and 113 (Pt-Ir) fold compared to a polycrystalline Pt electrode. All these synthesized nanoporous electrodes exhibit superb electrocatalytic performance towards electrochemical oxidation of methanol and formic acid. Among the five nanoporous Pt-based electrodes, the Pt-Ir shows the highest peak current density at +0.50 V, with 68 times of enhancement compared to the polycrystalline Pt for methanol oxidation, and with 86 times of enhancement in formic acid oxidation; whereas the catalytic activity of the nanoporous Pt-Pb electrode outperforms the other materials in formic acid oxidation at the low potential regions, delivering an enhanced current density by 280-fold compared to the polycrystalline Pt at +0.15 V. The new approach described in this study is suitable for synthesizing a wide range of bi-metallic and tri-metallic nanoporous materials, desirable for electrochemical sensor design and potential application in fuel cells

  13. Synthesis and electrochemical study of Pt-based nanoporous materials

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jingpeng [Department of Chemistry, Lakehead University, Thunder Bay, Ontario P7B 5E1 (Canada); Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1 (Canada); Holt-Hindle, Peter; MacDonald, Duncan [Department of Chemistry, Lakehead University, Thunder Bay, Ontario P7B 5E1 (Canada); Thomas, Dan F. [Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1 (Canada); Chen Aicheng [Department of Chemistry, Lakehead University, Thunder Bay, Ontario P7B 5E1 (Canada)], E-mail: aicheng.chen@lakeheadu.ca

    2008-10-01

    In the present work, a variety of Pt-based bimetallic nanostructured materials including nanoporous Pt, Pt-Ru, Pt-Ir, Pt-Pd and Pt-Pb networks have been directly grown on titanium substrates via a facile hydrothermal method. The as-fabricated electrodes were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction and electrochemical methods. The active surface areas of these nanoporous Pt-based alloy catalysts are increased by over 68 (Pt-Pd), 69 (Pt-Ru) and 113 (Pt-Ir) fold compared to a polycrystalline Pt electrode. All these synthesized nanoporous electrodes exhibit superb electrocatalytic performance towards electrochemical oxidation of methanol and formic acid. Among the five nanoporous Pt-based electrodes, the Pt-Ir shows the highest peak current density at +0.50 V, with 68 times of enhancement compared to the polycrystalline Pt for methanol oxidation, and with 86 times of enhancement in formic acid oxidation; whereas the catalytic activity of the nanoporous Pt-Pb electrode outperforms the other materials in formic acid oxidation at the low potential regions, delivering an enhanced current density by 280-fold compared to the polycrystalline Pt at +0.15 V. The new approach described in this study is suitable for synthesizing a wide range of bi-metallic and tri-metallic nanoporous materials, desirable for electrochemical sensor design and potential application in fuel cells.0.

  14. Synthesis and electrochemical study of Pt-based nanoporous materials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jingpeng [Department of Chemistry, Lakehead University, Thunder Bay, Ontario P7B 5E1 (Canada); Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1 (Canada); Holt-Hindle, Peter; MacDonald, Duncan; Chen, Aicheng [Department of Chemistry, Lakehead University, Thunder Bay, Ontario P7B 5E1 (Canada); Thomas, Dan F. [Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1 (Canada)

    2008-10-01

    In the present work, a variety of Pt-based bimetallic nanostructured materials including nanoporous Pt, Pt-Ru, Pt-Ir, Pt-Pd and Pt-Pb networks have been directly grown on titanium substrates via a facile hydrothermal method. The as-fabricated electrodes were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction and electrochemical methods. The active surface areas of these nanoporous Pt-based alloy catalysts are increased by over 68 (Pt-Pd), 69 (Pt-Ru) and 113 (Pt-Ir) fold compared to a polycrystalline Pt electrode. All these synthesized nanoporous electrodes exhibit superb electrocatalytic performance towards electrochemical oxidation of methanol and formic acid. Among the five nanoporous Pt-based electrodes, the Pt-Ir shows the highest peak current density at +0.50 V, with 68 times of enhancement compared to the polycrystalline Pt for methanol oxidation, and with 86 times of enhancement in formic acid oxidation; whereas the catalytic activity of the nanoporous Pt-Pb electrode outperforms the other materials in formic acid oxidation at the low potential regions, delivering an enhanced current density by 280-fold compared to the polycrystalline Pt at +0.15 V. The new approach described in this study is suitable for synthesizing a wide range of bi-metallic and tri-metallic nanoporous materials, desirable for electrochemical sensor design and potential application in fuel cells. (author)

  15. Microfluidic platform for studying the electrochemical reduction of carbon dioxide

    Science.gov (United States)

    Whipple, Devin Talmage

    Diminishing supplies of conventional energy sources and growing concern over greenhouse gas emissions present significant challenges to supplying the world's rapidly increasing demand for energy. The electrochemical reduction of carbon dioxide has the potential to address many of these issues by providing a means of storing electricity in chemical form. Storing electrical energy as chemicals is beneficial for leveling the output of clean, but intermittent renewable energy sources such as wind and solar. Electrical energy stored as chemicals can also be used as carbon neutral fuels for portable applications allowing petroleum derived fuels in the transportation sector to be replaced by more environmentally friendly energy sources. However, to be a viable technology, the electrochemical reduction of carbon dioxide needs to have both high current densities and energetic efficiencies (Chapter 1). Although many researchers have studied the electrochemical reduction of CO2 including parameters such as catalysts, electrolytes and temperature, further investigation is needed to improve the understanding of this process and optimize the performance (Chapter 2). This dissertation reports the development and validation of a microfluidic reactor for the electrochemical reduction of CO2 (Chapter 3). The design uses a flowing liquid electrolyte instead of the typical polymer electrolyte membrane. In addition to other benefits, this flowing electrolyte gives the reactor great flexibility, allowing independent analysis of each electrode and the testing of a wide variety of conditions. In this work, the microfluidic reactor has been used in the following areas: • Comparison of different metal catalysts for the reduction of CO2 to formic acid and carbon monoxide (Chapter 4). • Investigation of the effects of the electrolyte pH on the reduction of CO2 to formic acid and carbon monoxide (Chapter 5). • Study of amine based electrolytes for lowering the overpotentials for CO2

  16. Electrochemical reduction behavior of simplified simulants of vitrified radioactive waste in molten CaCl2

    Science.gov (United States)

    Katasho, Yumi; Yasuda, Kouji; Nohira, Toshiyuki

    2018-05-01

    The electrochemical reduction of two types of simplified simulants of vitrified radioactive waste, simulant 1 (glass component only: SiO2, B2O3, Na2O, Al2O3, CaO, Li2O, and ZnO) and simulant 2 (also containing long-lived fission product oxides, ZrO2, Cs2O, PdO, and SeO2), was investigated in molten CaCl2 at 1103 K. The behavior of each element was predicted from the potential-pO2- diagram constructed from thermodynamic data. After the immersion of simulant 1 into molten CaCl2 without electrolysis, the dissolution of Na, Li, and Cs was confirmed by inductively coupled plasma atomic emission spectrometry and mass spectrometry analysis of the samples. The scanning electron microscopy/energy dispersive X-ray and X-ray diffraction analyses of simulants 1 and 2 electrolyzed at 0.9 V vs. Ca2+/Ca confirmed that most of SiO2 had been reduced to Si. After the electrolysis of simulants 1 and 2, Al, Zr, and Pd remained in the solid phase. In addition, SeO2 was found to remain partially in the solid phase and partially evaporate, although a small quantity dissolved into the molten salt.

  17. Passivation and electrochemical behavior of 316L stainless steel in chlorinated simulated concrete pore solution

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Hong, E-mail: luohong@hhu.edu.cn [College of Mechanics and Materials, Hohai University, Nanjing 210098 (China); Su, Huaizhi [State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098,China (China); Dong, Chaofang; Li, Xiaogang [Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083,China (China)

    2017-04-01

    Highlights: • The pH value play an important role on passive mechanism of stainless steel. • The relationship between Cr/Fe ratio within the passive film and pH is non-linear. • Better corrosion resistance due to high Cr/Fe ratio and molybdates ions. - Abstract: In this paper, the passivation and electrochemical behavior of 316L stainless steel in chlorinated simulated concrete pore solutions at different pH was evaluated by potentiodynamic measurements, electrochemical impedance spectroscopy. The composition of the passive film and surface morphology were investigated by X-ray photoelectron spectroscopy (XPS), secondary ion mass spectrometry (SIMS), and scanning electron microscopy, respectively. The results reveal that metastable pitting susceptibility, stable pitting corrosion, and composition of the passive film are influenced by pH value. After long time immersion, a bilayer structure passive film can be formed in this environment. The appearance of molybdates on the outermost surface layer, further enhancing the stability of the passive film. Moreover, the good pitting corrosion resistance of 316L stainless steel in simulated concrete pore solution without carbonated is mainly due to the presence of high Cr/Fe ratio and molybdates ions within the passive film.

  18. Passivation and electrochemical behavior of 316L stainless steel in chlorinated simulated concrete pore solution

    International Nuclear Information System (INIS)

    Luo, Hong; Su, Huaizhi; Dong, Chaofang; Li, Xiaogang

    2017-01-01

    Highlights: • The pH value play an important role on passive mechanism of stainless steel. • The relationship between Cr/Fe ratio within the passive film and pH is non-linear. • Better corrosion resistance due to high Cr/Fe ratio and molybdates ions. - Abstract: In this paper, the passivation and electrochemical behavior of 316L stainless steel in chlorinated simulated concrete pore solutions at different pH was evaluated by potentiodynamic measurements, electrochemical impedance spectroscopy. The composition of the passive film and surface morphology were investigated by X-ray photoelectron spectroscopy (XPS), secondary ion mass spectrometry (SIMS), and scanning electron microscopy, respectively. The results reveal that metastable pitting susceptibility, stable pitting corrosion, and composition of the passive film are influenced by pH value. After long time immersion, a bilayer structure passive film can be formed in this environment. The appearance of molybdates on the outermost surface layer, further enhancing the stability of the passive film. Moreover, the good pitting corrosion resistance of 316L stainless steel in simulated concrete pore solution without carbonated is mainly due to the presence of high Cr/Fe ratio and molybdates ions within the passive film.

  19. Electrochemical Corrosion Studies for Modeling Metallic Waste Form Release Rates

    International Nuclear Information System (INIS)

    Poineau, Frederic; Tamalis, Dimitri

    2016-01-01

    The isotope 99 Tc is an important fission product generated from nuclear power production. Because of its long half-life (t 1/2 = 2.13 ∙ 105 years) and beta-radiotoxicity (β - = 292 keV), it is a major concern in the long-term management of spent nuclear fuel. In the spent nuclear fuel, Tc is present as an alloy with Mo, Ru, Rh, and Pd called the epsilon-phase, the relative amount of which increases with fuel burn-up. In some separation schemes for spent nuclear fuel, Tc would be separated from the spent fuel and disposed of in a durable waste form. Technetium waste forms under consideration include metallic alloys, oxide ceramics and borosilicate glass. In the development of a metallic waste form, after separation from the spent fuel, Tc would be converted to the metal, incorporated into an alloy and the resulting waste form stored in a repository. Metallic alloys under consideration include Tc–Zr alloys, Tc–stainless steel alloys and Tc–Inconel alloys (Inconel is an alloy of Ni, Cr and iron which is resistant to corrosion). To predict the long-term behavior of the metallic Tc waste form, understanding the corrosion properties of Tc metal and Tc alloys in various chemical environments is needed, but efforts to model the behavior of Tc metallic alloys are limited. One parameter that should also be considered in predicting the long-term behavior of the Tc waste form is the ingrowth of stable Ru that occurs from the radioactive decay of 99 Tc ( 99 Tc → 99 Ru + β - ). After a geological period of time, significant amounts of Ru will be present in the Tc and may affect its corrosion properties. Studying the effect of Ru on the corrosion behavior of Tc is also of importance. In this context, we studied the electrochemical behavior of Tc metal, Tc-Ni alloys (to model Tc-Inconel alloy) and Tc-Ru alloys in acidic media. The study of Tc-U alloys has also been performed in order to better understand the nature of Tc in metallic spent fuel. Computational modeling

  20. Electrochemical Corrosion Studies for Modeling Metallic Waste Form Release Rates

    Energy Technology Data Exchange (ETDEWEB)

    Poineau, Frederic [Univ. of Nevada, Las Vegas, NV (United States); Tamalis, Dimitri [Florida Memorial Univ., Miami Gardens, FL (United States)

    2016-08-01

    The isotope 99Tc is an important fission product generated from nuclear power production. Because of its long half-life (t1/2 = 2.13 ∙ 105 years) and beta-radiotoxicity (β⁻ = 292 keV), it is a major concern in the long-term management of spent nuclear fuel. In the spent nuclear fuel, Tc is present as an alloy with Mo, Ru, Rh, and Pd called the epsilon-phase, the relative amount of which increases with fuel burn-up. In some separation schemes for spent nuclear fuel, Tc would be separated from the spent fuel and disposed of in a durable waste form. Technetium waste forms under consideration include metallic alloys, oxide ceramics and borosilicate glass. In the development of a metallic waste form, after separation from the spent fuel, Tc would be converted to the metal, incorporated into an alloy and the resulting waste form stored in a repository. Metallic alloys under consideration include Tc–Zr alloys, Tc–stainless steel alloys and Tc–Inconel alloys (Inconel is an alloy of Ni, Cr and iron which is resistant to corrosion). To predict the long-term behavior of the metallic Tc waste form, understanding the corrosion properties of Tc metal and Tc alloys in various chemical environments is needed, but efforts to model the behavior of Tc metallic alloys are limited. One parameter that should also be considered in predicting the long-term behavior of the Tc waste form is the ingrowth of stable Ru that occurs from the radioactive decay of 99Tc (99Tc → 99Ru + β⁻). After a geological period of time, significant amounts of Ru will be present in the Tc and may affect its corrosion properties. Studying the effect of Ru on the corrosion behavior of Tc is also of importance. In this context, we studied the electrochemical behavior of Tc metal, Tc-Ni alloys (to model Tc-Inconel alloy) and Tc-Ru alloys in acidic media. The study of Tc-U alloys has also been performed in order to better understand the

  1. Development of Advanced Electrochemical Emission Spectroscopy for Monitoring Corrosion in Simulated DOE Liquid Waste

    Energy Technology Data Exchange (ETDEWEB)

    Digby D. Macdonald; Brian M. Marx; Sejin Ahn; Julio de Ruiz; Balaji Soundararaja; Morgan Smith; and Wendy Coulson

    2008-01-15

    . It is evident from the studies that analysis of coupling current noise is a very sensitive tool for studying the crack tip processes in relation to the chemical, mechanical, electrochemical and microstructural properties of the system. Experiments are currently being carried out to explore these crack tip processes by simultaneous measurement of the acoustic activity at the crack tip in an effort to validate the coupling current data. These latter data are now being used to deterministically predict the accumulation of general and localized corrosion damage on carbon in prototypical DOE liquid waste storage tanks. Computer simulation of the cathodic and anodic activity on the steel surfaces is also being carried out in an effort to simulate the actual corrosion process. Wavelet analysis of the coupling current data promises to be a useful tool to differentiate between the different corrosion mechanisms.

  2. Study on electrochemical corrosion mechanism of steel foot of insulators for HVDC lines

    Science.gov (United States)

    Zheng, Weihua; Sun, Xiaoyu; Fan, Youping

    2017-09-01

    The main content of this paper is the mechanism of electrochemical corrosion of insulator steel foot in HVDC transmission line, and summarizes five commonly used artificial electrochemical corrosion accelerated test methods in the world. Various methods are analyzed and compared, and the simulation test of electrochemical corrosion of insulator steel feet is carried out by water jet method. The experimental results show that the experimental environment simulated by water jet method is close to the real environment. And the three suspension modes of insulators in the actual operation, the most serious corrosion of the V type suspension hardware, followed by the tension string suspension, and the linear string corrosion rate is the slowest.

  3. Detailed dynamic solid oxide fuel cell modeling for electrochemical impedance spectra simulation

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, Ph. [Laboratory of Steam Boilers and Thermal Plants, School of Mechanical Engineering, Thermal Engineering Section, National Technical University of Athens, Heroon Polytechniou 9, 15780 Athens (Greece); Panopoulos, K.D. [Institute for Solid Fuels Technology and Applications, Centre for Research and Technology Hellas, 4th km. Ptolemais-Mpodosakeio Hospital, Region of Kouri, P.O. Box 95, GR 502, 50200 Ptolemais (Greece)

    2010-08-15

    This paper presents a detailed flexible mathematical model for planar solid oxide fuel cells (SOFCs), which allows the simulation of steady-state performance characteristics, i.e. voltage-current density (V-j) curves, and dynamic operation behavior, with a special capability of simulating electrochemical impedance spectroscopy (EIS). The model is based on physico-chemical governing equations coupled with a detailed multi-component gas diffusion mechanism (Dusty-Gas Model (DGM)) and a multi-step heterogeneous reaction mechanism implicitly accounting for the water-gas-shift (WGS), methane reforming and Boudouard reactions. Spatial discretization can be applied for 1D (button-cell approximation) up to quasi-3D (full size anode supported cell in cross-flow configuration) geometries and is resolved with the finite difference method (FDM). The model is built and implemented on the commercially available modeling and simulations platform gPROMS trademark. Different fuels based on hydrogen, methane and syngas with inert diluents are run. The model is applied to demonstrate a detailed analysis of the SOFC inherent losses and their attribution to the EIS. This is achieved by means of a step-by-step analysis of the involved transient processes such as gas conversion in the main gas chambers/channels, gas diffusion through the porous electrodes together with the heterogeneous reactions on the nickel catalyst, and the double-layer current within the electrochemical reaction zone. The model is an important tool for analyzing SOFC performance fundamentals as well as for design and optimization of materials' and operational parameters. (author)

  4. Electrochemical disinfection of simulated ballast water on PbO2/graphite felt electrode.

    Science.gov (United States)

    Chen, Shuiping; Hu, Weidong; Hong, Jianxun; Sandoe, Steve

    2016-04-15

    A novel PbO2/graphite felt electrode was constructed by electrochemical deposition of PbO2 on graphite felt and characterized by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM) analysis. The prepared electrode is a viable technology for inactivation of Escherichia coli, Enterococcus faecalis, and Artemia salina as indicator organisms in simulated ballast water treatment, which meets the International Maritime Organization (IMO) Regulation D-2. The effects of contact time and current density on inactivation were investigated. An increase in current density generally had a beneficial effect on the inactivation of the three species. E.faecalis and A.salina were more resistant to electrochemical disinfection than E. coli. The complete disinfection of E.coli was achieved in <8min at an applied current density of 253A/m(2). Complete inactivation of E. faecalis and A.salina was achieved at the same current density after 60 and 40min of contact time, respectively. A. salina inactivation follows first-order kinetics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. A pneumatic bellows-driven setup for controlled-distance electrochemical impedance measurements of Zircaloy-2 in simulated BWR conditions

    International Nuclear Information System (INIS)

    Arilahti, E.; Bojinov, M.; Hansson-Lyyra, L.

    2004-01-01

    This paper describes a novel pneumatic bellows-driven arrangement designed for controlled distance electrochemistry (CDE) measurements. The feasibility of the new arrangement has been verified by performing contact electric impedance measurements to study corrosion of Zircaloy-2 in a re-circulation loop simulating the BWR conditions. Until now, the measurements have been carried out using a step-motor driven controlled-distance electrochemistry (CDE) arrangement. The electrical and electrochemical properties of the pre transition oxide on Zircaloy-2 determined from these measurements were in good agreement with those estimated from measurements with a step-motor driven CDE. Furthermore, the results indicate that the bellows-driven CDE device is less sensitive to the contact pressure variation than the step-motor driven arrangement. This property combined with the bellows driven displacement mechanism provides a clear advantage for future in-core corrosion studies of fuel cladding materials. (Author)

  6. Numerical Study of the Buoyancy-Driven Flow in a Four-Electrode Rectangular Electrochemical Cell

    Science.gov (United States)

    Sun, Zhanyu; Agafonov, Vadim; Rice, Catherine; Bindler, Jacob

    2009-11-01

    Two-dimensional numerical simulation is done on the buoyancy-driven flow in a four-electrode rectangular electrochemical cell. Two kinds of electrode layouts, the anode-cathode-cathode-anode (ACCA) and the cathode-anode-anode-cathode (CAAC) layouts, are studied. In the ACCA layout, the two anodes are placed close to the channel outlets while the two cathodes are located between the two anodes. The CAAC layout can be converted from the ACCA layout by applying higher electric potential on the two middle electrodes. Density gradient was generated by the electrodic reaction I3^-+2e^- =3I^-. When the electrochemical cell is accelerated axially, buoyancy-driven flow occurs. In our model, electro-neutrality is assumed except at the electrodes. The Navier-Stokes equations with the Boussinesq approximation and the Nernst-Planck equations are employed to model the momentum and mass transports, respectively. It is found that under a given axial acceleration, the electrolyte density between the two middle electrodes determines the bulk flow through the electrochemical cell. The cathodic current difference is found to be able to measure the applied acceleration. Other important electro-hydrodynamic characteristics are also discussed.

  7. Use of UO 2 films for electrochemical studies

    Science.gov (United States)

    Miserque, F.; Gouder, T.; Wegen, D. H.; Bottomley, P. D. W.

    2001-10-01

    UO 2 films have been prepared by dc reactive sputtering of a uranium metal target in an Ar/O 2 atmosphere. We have used the films deposited on gold substrates as working electrodes for electrochemical investigations as simulating the surfaces of fuel pellets. Film composition was determined by photoelectron spectroscopy (XPS and UPS) and X-ray diffraction (XRD). The oxide stoichiometry as a function of deposition conditions was determined and the appropriate conditions for UO 2.0 formation established. AC impedance and cyclic voltammetry measurements were performed. A double RC electrical equivalent circuit was used to fit the data from impedance measurements, similar to those used in unirradiated UO 2 or spent fuel pellets. However due to the porosity or adhesion defects on the thin films that permitted a direct contact between the solution and the gold substrate, we were obliged to add a contribution simulating the water-gold system. Cyclic voltammetry measurements show the influence of pH on the dissolution mechanism. Alkaline solutions permit the formation of an oxidised layer (UO 2.33) which is not present in the acidic solutions. In both pH=2 and pH=6 solutions, a U VI species layer is formed.

  8. Laser irradiation of Mg-Al-Zn alloy: Reduced electrochemical kinetics and enhanced performance in simulated body fluid.

    Science.gov (United States)

    Florian, David C; Melia, Michael A; Steuer, Fritz W; Briglia, Bruce F; Purzycki, Michael K; Scully, John R; Fitz-Gerald, James M

    2017-05-11

    As a lightweight metal with mechanical properties similar to natural bone, Mg and its alloys are great prospects for biodegradable, load bearing implants. However, rapid degradation and H 2 gas production in physiological media has prevented widespread use of Mg alloys. Surface heterogeneities in the form of intermetallic particles dominate the corrosion response. This research shows that surface homogenization significantly improved the biological corrosion response observed during immersion in simulated body fluid (SBF). The laser processed Mg alloy exhibited a 50% reduction in mass loss and H 2 evolution after 24 h of immersion in SBF when compared to the wrought, cast alloy. The laser processed samples exhibited increased wettability as evident from wetting angle studies, further suggesting improved biocompatibility. Electrochemical analysis by potentiodynamic polarization measurements showed that the anodic and cathodic kinetics were reduced following laser processing and are attributed to the surface chemical homogeneity.

  9. Permeability, strength and electrochemical studies on ceramic multilayers for solid-state electrochemical cells

    DEFF Research Database (Denmark)

    Andersen, Kjeld Bøhm; Charlas, Benoit; Stamate, Eugen

    2017-01-01

    An electrochemical reactor can be used to purify flue gasses. Such a reactor can be a multilayer structure consisting of alternating layers of porous electrodes and electrolytes (a porous cell stack). In this work optimization of such a unit has been done by changing the pore former composition...

  10. Electrochemical and micro-gravimetric corrosion studies on spent fuel provide relevant source term data for a repository performance assessment

    International Nuclear Information System (INIS)

    Wegen, Detlef H.; Bottomley, Paul D. W.; Glatz, Jean-Paul

    2004-01-01

    Various electrochemical methods (corrosion potential monitoring, AC impedance analysis and electrochemical noise monitoring) were used in the investigation of UO 2 samples: natural and doped with two different levels of 238 Pu (0.1 and 10 wt%) simulating the increasing α-intensities seen with time in the repository. The results were compared and were able to show the intense, but also the very local nature of the radiolysis and to demonstrate that corrosion rates were proportional to α-radiolysis and hence the 238 Pu content; the corrosion rates were in accordance with earlier work at ITU. By contrast it was seen that the redox potentials only gave information as to the bulk solution that did not reflect the true conditions at the electrode interface that were driving the corrosion processes of UO 2 dissolution in groundwaters. The study shows how electrochemical techniques can provide vital information on the corrosion mechanism at the UO 2 /solution interface

  11. An electrochemical study of neutral red-DNA interaction

    International Nuclear Information System (INIS)

    Heli, H.; Bathaie, S.Z.; Mousavi, M.F.

    2005-01-01

    Electrochemical methods were used to investigate the interaction of neutral red (NR) with double-stranded calf thymus DNA, in solution as well as using a DNA-modified glassy carbon (GC-DNA) electrode. The results were compared with those obtained from bare glassy carbon (GC) electrode. The formal potential of NR was more positive when GC-DNA electrode was used although the rate of heterogeneous electron transfer is as high as that of using GC electrode. GC-DNA electrode enables preconcentration of NR for chosen times on the electrode surface, despite the fact that the mass transfer effects in the thin DNA layer adsorbed on the surface was still observed using cyclic voltammetry and electrochemical impedance spectroscopy techniques. Parameters, such as the diffusion coefficient of NR, binding site size in base pairs and the ratio of the binding constants for the oxidized and reduced forms of the bound species were obtained. A binding isotherm for NR at GC-DNA electrode was obtained from coulometric titrations and gave an affinity constant equal to 2.76 x 10 4 L mol -1 . From the studies of the interaction in solution, the diffusion coefficient of free and DNA-bound NR, binding constant and binding site size of the DNA-NR complex was also obtained simultaneously by non-linear fitting analysis of voltammetric data

  12. Spectroscopic and electrochemical study of polynuclear clusters from ruthenium acetate

    International Nuclear Information System (INIS)

    Cipriano, C.

    1989-01-01

    The chemistry of the trinuclear clusters [Ru sub(3) O (CH sub(3) CO sub(2)) sub(4) L sub(3)] where L = imidazole, pyridine or pyrazine type of ligands, was investigated based on spectroscopic and electrochemical techniques. These complexes are of great interest from the point of view of their electronic and redox properties, providing multisite species for electron transfer processes. They were isolated in solid state, and characterized by means of elementary analyses and infrared spectra. The electrochemical behaviour in acetonitrile solution was typically reversible; the cyclic voltammograms exhibited a series of four or five mono electronic waves ascribed to the sucessive Ru sup(IV) Ru sup(III) Ru sup(III) / Ru sup(III) Ru sup(III) Ru sup(III)/ --- Ru sup(II) Ru sup(II) Ru sup(II) redox couples. The differences between the successive redox potentials were about 1 V, indicating strong metal-metal interaction in the trinuclear Ru sub(3) centre. The E values were strongly sensitive to the nature of the N-heterocyclic ligand, increasing with the pi-acceptor properties of the pyridine and pyrazine derivatives, but in a much less pronounced way in the case of the imidazole derivatives. Resonance Raman studies for the pyrazine cluster showed selective intensification of the vibrational modes of the Ru-pyrazine chromophore, and the trinuclear centre, using excitation wavelengths coinciding with the metal-to-pyrazine and metal-metal bands, respectively. (author)

  13. Electrochemical and weight-loss study of carbon steel corrosion

    International Nuclear Information System (INIS)

    Thomas, V.J.; Olive, R.P.

    2007-01-01

    The Point Lepreau Generating Station (PLGS) will undergo an 18 month refurbishment project beginning in April, 2008. During this time, most of the carbon steel piping in the primary loop will be drained of water and dried. However, some water will remain during the shutdown due to the lack of drains in some lower points in the piping system. As a result, it is necessary to examine the effect of corrosion during the refurbishment. This study examined the effect of several variables on the corrosion rate of clean carbon steel. Specifically, the effect of oxygen in the system and the presence of chloride ions were evaluated. Corrosion rates were determined using both a weight-loss technique and electrochemical methods. The experiment was conducted at room temperature. The corrosion products from the experiment were analyzed using a Raman microscope. The results of the weight-loss measurements show that the corrosion rate of polished carbon steel is independent of both the presence of oxygen and chloride ions. The electrochemical method failed to yield meaningful results due to the lack of clearly interpretable data and the inherent subjectivity in the analysis. Lepidocricite was found to be the main corrosion product using the Raman microscope. (author)

  14. Electrochemical study in molten sodium fluoroborate at 4200C

    International Nuclear Information System (INIS)

    Wagner, J.F.

    1983-06-01

    By analysing the behavior of the electrochemical system Cu (I)/Cu it was possible to study the acid-base properties of molten sodium fluoroborate. The anion of the solvent BF 4 - is shown to undergo a strong dissociation according to the equilibrium BF 4 - BF 3 (g) + F - , the Ki constant at 420 0 C being evaluated at 1.58 x 10 -2 mol kg -1 atm. The acidity variations of sodium fluoroborate at this temperature are limited to about two pF units (pKi=1.8). A potentiometric study of the copper, silver and nickel systems showed that the corresponding metallic cations are little complexed by fluoride ions in spite of the strong dissociation of the solvent [fr

  15. Morphological and electrochemical studies of spherical boron doped diamond electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Mendes de Barros, R.C. [IQ/USP, Av. Lineu Prestes, 748, Bloco 2 Superior, Cidade Universitaria, Sao Paulo/SP, 05508-900 (Brazil); Ferreira, N.G. [LAS/INPE, Av. dos Astronautas, 1758, Jardim da Granja, Sao Jose dos Campos/SP, 12245-970 (Brazil); Azevedo, A.F. [LAS/INPE, Av. dos Astronautas, 1758, Jardim da Granja, Sao Jose dos Campos/SP, 12245-970 (Brazil); Corat, E.J. [LAS/INPE, Av. dos Astronautas, 1758, Jardim da Granja, Sao Jose dos Campos/SP, 12245-970 (Brazil); Sumodjo, P.T.A. [IQ/USP, Av. Lineu Prestes, 748, Bloco 2 Superior, Cidade Universitaria, Sao Paulo/SP, 05508-900 (Brazil); Serrano, S.H.P. [IQ/USP, Av. Lineu Prestes, 748, Bloco 2 Superior, Cidade Universitaria, Sao Paulo/SP, 05508-900 (Brazil)]. E-mail: shps@iq.usp.br

    2006-08-14

    Morphological and electrochemical characteristics of boron doped diamond electrode in new geometric shape are presented. The main purpose of this study is a comparison among voltammetric behavior of planar glassy carbon electrode (GCE), planar boron doped diamond electrode (PDDE) and spherical boron doped diamond electrode (SDDE), obtained from similar experimental parameters. SDDE was obtained by the growth of boron doped film on textured molybdenum tip. This electrode does not present microelectrode characteristics. However, its voltammetric peak current, determined at low scan rates, is largest associated to the smallest {delta}E {sub p} values for ferrocyanide system when compared with PDDE or GCE. In addition, the capacitance is about 200 times smaller than that for GCE. These results show that the analytical performance of boron doped diamond electrodes can be implemented just by the change of sensor geometry, from plane to spherical shape.

  16. A study of passivation/depassivation of carbon steel; electrochemical impedance spectrocopy vs. potential noise fluctuations

    International Nuclear Information System (INIS)

    Roberge, P.R.; Halliop, E.; Sastri, V.S.

    1992-01-01

    A technique based on recording corrosion potential fluctuations generated by corroding electrodes was used under open-circuit conditions to study passivation and depassivation of carbon steel. Quantification of the electrochemical signal in terms of the pitting corrosion rate has been attempted. The amplitude of electrochemical noise signals was analyzed under different pitting conditions and correlated to polarization resistance values obtained from the electrochemical impedance spectra. The automatic statistical data analysis of electrochemical impedance data points has been successfully applied to calculate polarization resistance values and other interesting characteristics of such measurements

  17. Electrochemical characterization of AISI 316L stainless steel in contact with simulated body fluid under infection conditions.

    Science.gov (United States)

    López, Danián Alejandro; Durán, Alicia; Ceré, Silvia Marcela

    2008-05-01

    Titanium and cobalt alloys, as well as some stainless steels, are among the most frequently used materials in orthopaedic surgery. In industrialized countries, stainless steel devices are used only for temporary implants due to their lower corrosion resistance in physiologic media when compared to other alloys. However, due to economical reasons, the use of stainless steel alloys for permanent implants is very common in developing countries. The implantation of foreign bodies is sometimes necessary in the modern medical practice. However, the complex interactions between the host and the can implant weaken the local immune system, increasing the risk of infections. Therefore, it is necessary to further study these materials as well as the characteristics of the superficial film formed in physiologic media in infection conditions in order to control their potential toxicity due to the release of metallic ions in the human body. This work presents a study of the superficial composition and the corrosion resistance of AISI 316L stainless steel and the influence of its main alloying elements when they are exposed to an acidic solution that simulates the change of pH that occurs when an infection develops. Aerated simulated body fluid (SBF) was employed as working solution at 37 degrees C. The pH was adjusted to 7.25 and 4 in order to reproduce normal body and disease state respectively. Corrosion resistance was measured by means of electrochemical impedance spectroscopy (EIS) and anodic polarization curves.

  18. Cycle aging studies of lithium nickel manganese cobalt oxide-based batteries using electrochemical impedance spectroscopy

    NARCIS (Netherlands)

    Maheshwari, Arpit; Heck, Michael; Santarelli, Massimo

    2018-01-01

    The cycle aging of a commercial 18650 lithium-ion battery with graphite anode and lithium nickel manganese cobalt (NMC) oxide-based cathode at defined operating conditions is studied by regular electrochemical characterization, electrochemical impedance spectroscopy (EIS) and post-mortem analysis.

  19. DFT based study of transition metal nano-clusters for electrochemical NH3 production

    DEFF Research Database (Denmark)

    Howalt, Jakob Geelmuyden; Bligaard, Thomas; Rossmeisl, Jan

    2013-01-01

    Theoretical studies of the possibility of producing ammonia electrochemically at ambient temperature and pressure without direct N2 dissociation are presented. Density functional theory calculations were used in combination with the computational standard hydrogen electrode to calculate the free...... for electrochemical ammonia production. The competing hydrogen evolution reaction has also been analyzed for comparison....

  20. A dual-electrochemical cell to study the biocorrosion of stainless steel.

    Science.gov (United States)

    Lopes, F A; Perrin, S; Féron, D

    2007-01-01

    The presence of microorganisms on metal surfaces can alter the local physical/chemical conditions and lead to microbiologically influenced corrosion (MIC). The goal of the present work was to study the effect of a mixed aerobic-anaerobic biofilm on the behaviour of stainless steel (316 L) in underground conditions. Rather than testing different bacteria or consortia, investigations were based on the mechanisms of MIC. Mixed biofilms were simulated by the addition of glucose oxidase to reproduce the aerobic conditions and by sulphide or sulphate-reducing bacteria (SRB) for the anaerobic conditions. A double thermostated electrochemical cell has been developed to study the coupling between aerobic and anaerobic conditions. Results suggested a transfer of electrons from the stainless steel sample of the anaerobic cell to the stainless steel sample of the aerobic one. Inorganic sulphide was replaced by SRB in the anaerobic cell revealing an increase of the galvanic current which may be explained by an effect of lactate and/or acetate on the anodic reaction or by a high sulphide concentration in the biofilm. The results of this study underline that the dual-electrochemical cell system is representative of phenomena present in natural environments and should be considered as an option when studying MIC.

  1. Electrochemical studies of redox probes in self-organized lyotropic ...

    Indian Academy of Sciences (India)

    Administrator

    quinone|hydroquinone, methyl viologen and ferrocenemethanol probes in a lyotropic hexagonal columnar phase (H1 phase) using cyclic voltammetry and electrochemical impedance ..... hydrogen bond of hydroquinone during oxidation is.

  2. Kinetic study on electrochemical oxidation of catechols in the ...

    Indian Academy of Sciences (India)

    glassy carbon electrode in different experimental conditions. The electrogenerated ... cancer activities.5 Catechols can be easily oxidized electrochemically to ... from unity and approaches to zero in basic solution. This behavior is related to the ...

  3. Electrochemical characterization of corrosion in materials of grounding systems, simulating conditions of synthetic soils with characteristics of local soils

    Science.gov (United States)

    Salas, Y.; Guerrero, L.; Vera-Monroy, S. P.; Blanco, J.; Jimenez, C.

    2017-12-01

    The integrity of structures buried in earthing becomes relevant when analysing maintenance and replacement costs of these systems, as the deterioration is mainly due to two factors, namely: the failures caused in the electrical systems, which are due to the system. Failure in earthing due to corrosion at the interface cause an alteration in the structure of the component material and generates an undesirable resistivity that cause malfunction in this type of protection systems. Two local soils were chosen that were categorized as sandy loam and clay loam type, whose chemical characteristics were simulated by means of an electrolyte corresponding to the amount of ions present determined by a soil characterization based on the CICE (effective cation exchange coefficient), which allows us to deduce the percentage of chloride and sulphate ions present for the different levels established in the experimental matrix. The interaction of these soils with grounding electrodes is a complex problem involving many factors to consider. In this study, the rates and corrosion currents of the different soils on two types of electrodes, one copper and the other AISI 304 stainless steel, were approximated by electrochemical techniques such as potentiodynamic curves and electrochemical impedance spectra. Considerably higher speeds were determined for copper-type electrodes when compared to those based on steel. However, from the Nyquist diagrams, it was noted that copper electrodes have better electrical performance than steel ones. The soil with the highest ionic activity turned out to be the sandy loam. The clay loam soil presents a tendency to water retention and this may be the reason for the different behaviour with respect to ionic mobility. The diffusion control in the steel seems to alter the ionic mobility because its corrosion rates proved to be very similar regardless of the type of soil chemistry. In general, corrosion rates fell since tenths of a millimetre every year to

  4. Electrochemical corrosion of carbon steel exposed to biodiesel/simulated seawater mixture

    Energy Technology Data Exchange (ETDEWEB)

    Wang Wei [College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100 (China); Department of Civil Engineering, University of Colorado Denver, Denver, CO 80217 (United States); Jenkins, Peter E. [Department of Mechanical Engineering, University of Colorado Denver, Denver, CO 80217 (United States); Ren Zhiyong, E-mail: zhiyong.ren@ucdenver.edu [Department of Civil Engineering, University of Colorado Denver, Denver, CO 80217 (United States)

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Characterized the unique corrosion behaviour of carbon steel in the biodiesel/seawater environment. Black-Right-Pointing-Pointer Illustrated the in situ anode and cathode distribution using a wire beam electrode approach. Black-Right-Pointing-Pointer Elucidated the corrosion mechanisms based on ion transfer and oxygen concentration gradient. - Abstract: The electrochemical corrosion of carbon steel exposed to a mixture of biodiesel and 3.5% NaCl solution simulated seawater was characterized using wire beam electrode (WBE) technique. Both optical images and in situ potential and current measurements showed that all the anodes and most cathodes formed in the water phase, but the cathodes were mainly located along the water/biodiesel interface. Due to oxygen concentration gradient and cross-phase ion transfer, low corrosion currents were also detected in biodiesel phase. Further anode reaction was partially blocked by iron rust, but the alkali residual in biodiesel may interact with corrosion and deteriorate biodiesel quality.

  5. Electrochemical Corrosion Behavior of Low Carbon I-Beam Steels In Simulated Yucca Mountain Repository Environment

    Energy Technology Data Exchange (ETDEWEB)

    Arjunan, Venugopal; Lamb, Joshua; Chandra, Dhanesh; Daemen, Jack; Jones, Denny A.; Engelhard, Mark H.; Lea, Alan S.

    2005-04-01

    The electrochemical corrosion behavior of low carbon steel was examined in a simulated Yucca Mountain (YM) ground water by varying the electrolyte concentration and temperature under aerated and deaerated conditions. The results show that in deaerated conditions, the corrosion rate is low in the order of 0.6 to 4.5mpy, between 25 to 85 C, respectively. However, in aerated conditions the measured rates were expectedly very high, in the order of 3-55mpy in the above mentioned temperature levels. The rates initially increased up to 45 C, and a decreasing trend was observed with further increase in temperature from 65 to 85 C. The maximum corrosion rate was occurred at 45 C (54.5mpy). The low corrosion rates observed in all deaerated conditions, and in aerated solutions at higher temperatures were due to the preferential adsorption of Mg-species on the steel surface, as identified by XPS analyses. The results also indicate possible localized corrosion behavior of carbon steel in aerated conditions up to 45 C.

  6. Electrochemical Corrosion Behavior of Low Carbon I-Beam Steels In Simulated Yucca Mountain Repository Environment

    International Nuclear Information System (INIS)

    Arjunan, Venugopal; Lamb, Joshua; Chandra, Dhanesh; Daemen, Jack; Jones, Denny A.; Engelhard, Mark H.; Lea, Alan S.

    2005-01-01

    The electrochemical corrosion behavior of low carbon steel was examined in a simulated Yucca Mountain (YM) ground water by varying the electrolyte concentration and temperature under aerated and deaerated conditions. The results show that in deaerated conditions, the corrosion rate is low in the order of 0.6 to 4.5mpy, between 25 to 85 C, respectively. However, in aerated conditions the measured rates were expectedly very high, in the order of 3-55mpy in the above mentioned temperature levels. The rates initially increased up to 45 C, and a decreasing trend was observed with further increase in temperature from 65 to 85 C. The maximum corrosion rate was occurred at 45 C (54.5mpy). The low corrosion rates observed in all deaerated conditions, and in aerated solutions at higher temperatures were due to the preferential adsorption of Mg-species on the steel surface, as identified by XPS analyses. The results also indicate possible localized corrosion behavior of carbon steel in aerated conditions up to 45 C

  7. Studies of the corrosion and cracking behavior of steels in high temperature water by electrochemical techniques

    International Nuclear Information System (INIS)

    Cheng, Y.F.; Bullerwell, J.; Steward, F.R.

    2003-01-01

    Electrochemical methods were used to study the corrosion and cracking behavior of five Fe-Cr alloy steels and 304L stainless steel in high temperature water. A layer of magnetite film forms on the metal surface, which decreases the corrosion rate in high temperature water. Passivity can be achieved on A-106 B carbon steel with a small content of chromium, which cannot be passivated at room temperature. The formation rate and the stability of the passive film (magnetite film) increased with increasing Cr-content in the steels. A mechanistic model was developed to simulate the corrosion and cracking processes of steels in high temperature water. The crack growth rate on steels was calculated from the maximum current of the repassivation current curves according to the slip-oxidation model. The highest crack growth rate was found for 304L stainless steel in high temperature water. Of the four Fe-Cr alloys, the crack growth rate was lower on 0.236% Cr- and 0.33% Cr-steels than on 0.406% Cr-steel and 2.5% Cr-1% Mo steel. The crack growth rate on 0.33% Cr-steel was the smallest over the tested potential range. A higher temperature of the electrolyte led to a higher rate of electrochemical dissolution of steel and a higher susceptibility of steel to cracking, as shown by the positive increase of the electrochemical potential. An increase in Cr-content in the steel is predicted to reduce the corrosion rate of steel at high temperatures. However, this increase in Cr-content is predicted not to reduce the susceptibility of steel to cracking at high temperatures. (author)

  8. Shadow corrosion phenomenon. An out-of-pile study on electrochemical effects

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Nadine

    2017-04-28

    galvanic current could be decreased by a CrN coating layer on Inconel 718. Objectives including a deeper knowledge about the corrosion mechanism with its influencing parameters and driving forces by studying Shadow Corrosion with out-of-pile autoclave experiments are listed in chapter 4. A further aim was to test the effectiveness of a possible spacer coating to reduce the corrosion or even to prevent the reactor plant components against Shadow Corrosion. Chapter 5 gives an overview of the experimental part with a description of the materials and chemicals, like Zircaloy and Inconel 718, as well as the specimen preparation techniques, such as etching, pre-oxidation or coating with CrN. Moreover, the three experimental test set-ups used to simulate the different conditions as a function of temperature and water chemistry parameters are depicted. The electrochemical measuring methods including electrochemical corrosion potential (ECP), galvanic corrosion (GC), electrochemical impe-dance spectroscopy (EIS) and conductometry are described. Further methods for surface analyses comprising microscopy, scanning electron microscopy (SEM), focused ion beam (FIB), transmission electron microscopy (TEM), ellipsometry, ion coupled plasma optical emission spectroscopy (ICP-OES) and spectrophotometry are presented. Results and corresponding discussions are summarized in chapter 6, which is divided into three subchapters. Chapter 6.1 deals with electrochemical parameters, like electrochemical corrosion potential, galvanic potential, and galvanic current as well as parameters obtained from electrochemical impedance spectroscopy as a function of different water chemistry parameters. The focus was on the concentration of hydrogen peroxide, the presence of impurities in the form of nitrate, and the exposure to UV-light. Furthermore, surface analyses via the focused ion beam technique and the transmission electron microscopy were gathered to visualize the oxide layer structure, composition

  9. Shadow corrosion phenomenon. An out-of-pile study on electrochemical effects

    International Nuclear Information System (INIS)

    Weber, Nadine

    2017-01-01

    N coating layer on Inconel 718. Objectives including a deeper knowledge about the corrosion mechanism with its influencing parameters and driving forces by studying Shadow Corrosion with out-of-pile autoclave experiments are listed in chapter 4. A further aim was to test the effectiveness of a possible spacer coating to reduce the corrosion or even to prevent the reactor plant components against Shadow Corrosion. Chapter 5 gives an overview of the experimental part with a description of the materials and chemicals, like Zircaloy and Inconel 718, as well as the specimen preparation techniques, such as etching, pre-oxidation or coating with CrN. Moreover, the three experimental test set-ups used to simulate the different conditions as a function of temperature and water chemistry parameters are depicted. The electrochemical measuring methods including electrochemical corrosion potential (ECP), galvanic corrosion (GC), electrochemical impe-dance spectroscopy (EIS) and conductometry are described. Further methods for surface analyses comprising microscopy, scanning electron microscopy (SEM), focused ion beam (FIB), transmission electron microscopy (TEM), ellipsometry, ion coupled plasma optical emission spectroscopy (ICP-OES) and spectrophotometry are presented. Results and corresponding discussions are summarized in chapter 6, which is divided into three subchapters. Chapter 6.1 deals with electrochemical parameters, like electrochemical corrosion potential, galvanic potential, and galvanic current as well as parameters obtained from electrochemical impedance spectroscopy as a function of different water chemistry parameters. The focus was on the concentration of hydrogen peroxide, the presence of impurities in the form of nitrate, and the exposure to UV-light. Furthermore, surface analyses via the focused ion beam technique and the transmission electron microscopy were gathered to visualize the oxide layer structure, composition, and thickness after exposure to oxygenated

  10. Simultaneously Coupled Mechanical-Electrochemical-Thermal Simulation of Lithium-Ion Cells: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chao; Santhanagopalan, Shriram; Sprague, Michael A.; Pesaran, Ahmad A.

    2016-08-01

    Understanding the combined electrochemical-thermal and mechanical response of a system has a variety of applications, for example, structural failure from electrochemical fatigue and the potential induced changes of material properties. For lithium-ion batteries, there is an added concern over the safety of the system in the event of mechanical failure of the cell components. In this work, we present a generic multi-scale simultaneously coupled mechanical-electrochemical-thermal model to examine the interaction between mechanical failure and electrochemical-thermal responses. We treat the battery cell as a homogeneous material while locally we explicitly solve for the mechanical response of individual components using a homogenization model and the electrochemical-thermal responses using an electrochemical model for the battery. A benchmark problem is established to demonstrate the proposed modeling framework. The model shows the capability to capture the gradual evolution of cell electrochemical-thermal responses, and predicts the variation of those responses under different short-circuit conditions.

  11. Electrochemical and Thermal Studies of Prepared Conducting Chitosan Biopolymer Film

    International Nuclear Information System (INIS)

    Hlaing Hlaing Oo; Kyaw Naing; Kyaw Myo Naing; Tin Tin Aye; Nyunt Wynn

    2005-09-01

    In this paper, chitosan based conducting bipolymer films were prepared by casting and solvent evaporating technique. All prepared chitosan films were of pale yellow colour, transparent, and smooth. Sulphuric acid was chosen as the cross-linking agent. It enhanced conduction pathway in cross-linked chitosan films. Mechanical properties, solid-state, and thermal behavior of prepared chitosan fimls were studied by means of a material testing machine, powder X-ray diffractometry (XRD), thermogravimetric analysis (TG-DTG), and differential scanning calorimetry (DSC). By the XRD diffraction pattern, high molecular weight of chitosan product indicates the semi-crystalline nature, but the prepared chitosan film and doped chitosan film indicate significantly lower in crystallinity prove which of the amorphous characteristics. In addition, DSC thermogram of pure chitosan film exhibited exothermic peak around at 300 C, indicating polymer decomposition of chitosan molecules in chitosan films. Furthermore, these DSC thermograms clearly showed that while pure chitosan film display exothermal decomposition, the doped chitosan films mainly endothermic characteristics. The ionic conductivity of doped chitosan films were in the order of 10 to 10 S cm , which is in the range of semi-conductor. These results showed that cross-linked chitoson films may be used as polymer electrolyte film to fabricate solid state electrochemical cells

  12. MECHANISTIC STUDY OF COLCHICINE’s ELECTROCHEMICAL OXIDATION

    International Nuclear Information System (INIS)

    Bodoki, Ede; Chira, Ruxandra; Zaharia, Valentin; Săndulescu, Robert

    2015-01-01

    Colchicine, as one of the most ancient drugs of human kind, is still in the focal point of the current research due to its multimodal mechanism of action. The elucidation of colchicine’s still unknown redox properties may play an important role in deciphering its beneficial and harmful implications over the human body. Therefore, a systematic mechanistic study of colchicine’s oxidation has been undertaken by electrochemistry coupled to mass spectrometry using two different types of electrolytic cells, in order to clarify the existing inconsistencies with respect to this topic. At around 1 V vs. Pd/H 2 , initiated by a one-electron transfer, the oxidation of colchicine sets off leading to a cation radical, whose further oxidation may evolve on several different pathways. The main product of the anodic electrochemical reaction, regardless of the carrier solution’s pH is represented by a 7-hydroxy derivative of colchicine. At more anodic potentials (above 1.4 V vs. Pd/H 2 ) compounds arising from epoxidation and/or multiple hydroxylation occur. No di- or tridemethylated quinone structures, as previously suggested in the literature for the electrolytic oxidation of colchicine, has been detected in the mass spectra.

  13. Experimental characterization of electrochemically polymerized polycarbazole film and study of its behavior with different metals contacts

    Science.gov (United States)

    Srivastava, Aditi; Chakrabarti, P.

    2017-12-01

    In this paper, we present the method of fabrication, experimental characterization, and comparison of electrical parameters of semiconducting polycarbazole film with different rectifying metals contacts. Electrochemical polymerization and deposition of organic semiconductor, i.e., polycarbazole on ITO-coated glass substrate, were performed using an electrochemical workstation. Experimental characterization of the prepared polymer film was done in respect of morphology, absorption, bandgap, and thickness. The stability and electro-activity of polycarbazole film were verified by the cyclic voltammetric method. Study of the behavior of prepared polycarbazole film with the different metals contacts such as Aluminum, Copper, Tungsten, and Tin has been done using semiconductor device analyzer. Various electrical parameters such as barrier height, ideality factor, and reverse saturation current have been extracted with different metal contacts, and the values were compared and contrasted. The nature of I- V characteristic of polycarbazole film in non-contact mode has also been analyzed using scanning tunneling microscope. The rectifying I- V characteristics obtained with different metals contacts have also been validated by the simulation on Deckbuild platform of the of ATLAS® software tool from Silvaco Inc.

  14. Development of a new approach to simulate a particle track under electrochemical etching in polymeric detectors

    International Nuclear Information System (INIS)

    Mostofizadeh, Ali; Huang, Yudong; Kardan, M. Reza; Babakhani, Asad; Sun Xiudong

    2012-01-01

    A numerical approach based on image processing was developed to simulate a particle track in a typical polymeric detector, e.g., polycarbonate, under electrochemical etching. The physical parameters such as applied voltage, detector thickness, track length, the radii of curvature at the tip of track, and the incidence angle of the particle were considered, and then the boundary condition of the problem was defined. A numerical method was developed to solve Laplace equation, and then the distribution of the applied voltage was obtained through the polymer volume. Subsequently, the electric field strengths in the detector elements were computed. In each step of the computation, an image processing technique was applied to convert the computed values to grayscale images. The results showed that a numerical solution to Laplace equation is dedicatedly an attractive approach to provide us the accurate values of electric field strength through the polymeric detector volume as well as the track area. According to the results, for a particular condition of the detector thickness equal to 445 μm, track length of 21 μm, the radii of 2.5 μm at track tip, the incidence angle of 90°, and the applied voltage of 2080 V, after computing Laplace equation for an extremely high population of 4000 × 4000 elements of detector, the average field strength at the tip of track was computed equal to 0.31 MV cm −1 which is in the range of dielectric strength for polymers. The results by our computation confirm Smythe’s model for estimating the ECE-tracks.

  15. Electrochemical impedance spectrometry using 316L steel, hastelloy, maraging, Inconel 600, Elgiloy, carbon steel, TiN and NiCr. Simulation in tritiated water. 2 volumes

    International Nuclear Information System (INIS)

    Bellanger, G.

    1994-03-01

    Polarization and electrochemical impedance spectrometry curves are presented and discussed. These curves make it possible to ascertain the corrosion domains and to compare the slow and fast kinetics (voltammetry) of different stainless steel alloys. These corrosion kinetics, the actual or simulated tritiated water redox potentials, and the corrosion potentials provide a classification of the steels studied here: 316L, Hastelloy, Maraging, Inconel 600, Elgiloy, carbon steel and TiN and NiCr deposits. From the results it can be concluded that Hastelloy and Elgiloy have the best corrosion resistance. (author). 49 refs., 695 figs., tabs

  16. Physical and electrochemical study of cobalt oxide nano- and microparticles

    Energy Technology Data Exchange (ETDEWEB)

    Alburquenque, D. [Dpto. de Química de los Materiales, USACh, Av. L.B.O.‘Higgins 3363, 9170022 Santiago (Chile); Dpto. de Metalurgia, USACh, Av. Ecuador 3469, 9170124, Santiago (Chile); Vargas, E. [Dpto. de Física, USACh and CEDENNA, Av. Ecuador 3493, 9170124 Santiago (Chile); Dpto. de Metalurgia, USACh, Av. Ecuador 3469, 9170124, Santiago (Chile); Denardin, J.C.; Escrig, J. [Dpto. de Física, USACh and CEDENNA, Av. Ecuador 3493, 9170124 Santiago (Chile); Marco, J.F. [Instituto de Química Física “Rocasolano”, CSIC, c/Serrano 119, 28006 Madrid (Spain); Ortiz, J. [Dpto. de Química de los Materiales, USACh, Av. L.B.O.‘Higgins 3363, 9170022 Santiago (Chile); Gautier, J.L., E-mail: juan.gautier@usach.cl [Dpto. de Química de los Materiales, USACh, Av. L.B.O.‘Higgins 3363, 9170022 Santiago (Chile)

    2014-07-01

    Cobalt oxide nanocrystals of size 17–21 nm were synthesized by a simple reaction between cobalt acetate (II) and dodecylamine. On the other hand, micrometric Co{sub 3}O{sub 4} was prepared using the ceramic method. The structural examination of these materials was performed using powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM and HRTEM). XRD studies showed that the oxides were pure, well-crystallized, spinel cubic phases with a-cell parameter of 0.8049 nm and 0.8069 nm for the nano and micro-oxide, respectively. The average particle size was 19 nm (nano-oxide) and 1250 μm (micro-oxide). Morphological studies carried out by SEM and TEM analyses have shown the presence of octahedral particles in both cases. Bulk and surface properties investigated by X-ray photoelectron spectroscopy (XPS), point zero charge (pzc), FTIR and cyclic voltammetry indicated that there were no significant differences in the composition on both materials. The magnetic behavior of the samples was determined using a vibrating sample magnetometer. The compounds showed paramagnetic character and no coercivity and remanence in all cases. Galvanostatic measurements of electrodes formed with nanocrystals showed better performance than those built with micrometric particles. - Highlights: • Spinel Co{sub 3}O{sub 4} nanoparticles and microparticles with same structure but with different cell parameters, particle size and surface area were synthesized. • Oxide nanoparticles showed better electrochemical behavior than micrometric ones due to area effect.

  17. Electrochemical Impedance Study of Reduction Kinetics of the Pesticide Vinclozoline

    Czech Academy of Sciences Publication Activity Database

    Pospíšil, Lubomír; Sokolová, Romana; Colombini, M. P.; Giannarelli, S.; Fuoco, R.

    2000-01-01

    Roč. 67, - (2000), s. 305-312 ISSN 0026-265X R&D Projects: GA MŠk OC D15.10; GA ČR GA203/97/1048 Institutional research plan: CEZ:AV0Z4040901 Keywords : electrochemical impedance * pesticide s * vinclozoline Subject RIV: CG - Electrochemistry Impact factor: 0.884, year: 2000

  18. Hydrodynamics studies of cyclic voltammetry for electrochemical micro biosensors

    DEFF Research Database (Denmark)

    Adesokan, Bolaji James; Quan, Xueling; Evgrafov, Anton

    2015-01-01

    We investigate the effect of flow rate on the electrical current response to the applied voltage in a micro electrochemical system. To accomplish this, we considered an ion-transport model that is governed by the Nernst-Planck equation coupled to the Navier-Stokes equations for hydrodynamics...

  19. A microfluidic chip for electrochemical conversions in drug metabolism studies

    NARCIS (Netherlands)

    Odijk, Mathieu; Baumann, A.; Lohmann, W.; van den Brink, Floris Teunis Gerardus; Olthuis, Wouter; Karst, U.; van den Berg, Albert

    2009-01-01

    We have designed a microfluidic microreactor chip for electrochemical conversion of analytes, containing a palladium reference electrode and platinum working and counter electrodes. The counter electrode is placed in a separate side-channel on chip to prevent unwanted side-products appearing in the

  20. Modelling and simulation of a direct ethanol fuel cell considering multistep electrochemical reactions, transport processes and mixed potentials

    International Nuclear Information System (INIS)

    Meyer, Marco; Melke, Julia; Gerteisen, Dietmar

    2011-01-01

    Highlights: → A DEFC model considering the mixed potential formation at cathode and anode. → The low cell voltage at open circuit is due to the parasitic reaction of ethanol and oxygen. → Under load, only the parasitic oxidation of ethanol is significant. → Inhibiting the parasitic reactions can approximately double the current density. - Abstract: In this work a one-dimensional mathematical model of a direct ethanol fuel cell (DEFC) is presented. The electrochemical oxidation of ethanol in the catalyst layers is described by several reaction steps leading to surface coverage with adsorbed intermediates (CH 3 CO, CO, CH 3 and OH) and to the final products acetaldehyde, acetic acid and CO 2 . A bifunctional reaction mechanism is assumed for the activation of water on a binary catalyst favouring the further oxidation of adsorbates blocking active catalyst sites. The chemical reactions are highly coupled with the charge and reactant transport. The model accounts for crossover of the reactants through the membrane leading to the phenomenon of cathode and anode mixed potentials due to the parasitic oxidation and reduction of ethanol and oxygen, respectively. Polarisation curves of a DEFC were recorded for various ethanol feed concentrations and were used as reference data for the simulation. Based on one set of model parameters the characteristic of electronic and protonic potential, the relative surface coverage and the parasitic current densities in the catalyst layers were studied.

  1. Electrochemically adsorbed Pb on Ag (111) studied with grazing- incidence x-ray scattering

    International Nuclear Information System (INIS)

    Kortright, J.B.; Ross, P.N.; Melroy, O.R.; Toney, M.F.; Borges, G.L.; Samant, M.G.

    1989-04-01

    Grazing-incidence x-ray scattering studies of the evolution of electrochemically deposited layers of lead on silver (111) as a function of applied electrochemical potential are presented. Measurements were made with the adsorbed layers in contact with solution in a specially designed sample cell. The observed lead structures are a function of the applied potential and range from an incommensurate monolayer, resulting from underpotential deposition, to randomly oriented polycrystalline bulk lead, resulting from lower deposition potentials. These early experiments demonstrate the ability of in situ x-ray diffraction measurements to determine structures associated with electrochemical deposition. 6 refs., 4 figs

  2. Optimization of the use of carbon paste electrodes (CPE for electrochemical study of the chalcopyrite

    Directory of Open Access Journals (Sweden)

    Daniela G. Horta

    2009-01-01

    Full Text Available The use of carbon paste electrodes (CPE of mineral sulfides can be useful for electrochemical studies to overcome problems by using massive ones. Using CPE-chalcopyrite some variables were electrochemically evaluated. These variables were: (i the atmosphere of preparation (air or argon of CPE and elapsed time till its use; (ii scan rate for voltammetric measurements and (iii chalcopyrite concentration in the CPE. Based on cyclic voltammetry, open-circuit potential and electrochemical impedance results the recommendations are: oxygen-free atmosphere to prepare and kept the CPE until around two ours, scan rates from 10 to 40 mV s-1, and chalcopyrite concentrations > 20%.

  3. Electrochemical impedance study of copper in phosphate buffered solution

    International Nuclear Information System (INIS)

    Salimon, J.; Mohamad, M.; Yamin, B.M.; Kalaji, M.

    2003-01-01

    The processes occurring on the copper electrode surface in phosphate buffered solution were investigated using the Electrochemical Impedance Spectroscopy. The electrochemical behaviors of copper through their charge transfer resistance and double-layer capacitance at the onset of the hydrogen evolution region and the anodic passivation layer formation and diffusion of copper species at anodic potential regions are discussed. The specific adsorption of anions (hydroxide and/or H/sub 2/PO/sub 4/) occurred at potential less negative than -0.9V. Adsorbed hydrogen appeared at hydrogen evolution region at potential range of -1.5 to -1.0 V. The deposition of insoluble copper species occurred at anodic potential regions. (author)

  4. Electrochemical Studies of Camptothecin and Its Interaction with Human Serum Albumin

    OpenAIRE

    Zhao, Jing; Zheng, Xiaofeng; Xing, Wei; Huang, Junyi; Li, Genxi

    2007-01-01

    Camptothecin, an anticancer component from Camptotheca acuminate, may interact with human serum albumin (HSA) at the subdomain IIA (site I), and then convert to its inactive form(carboxylate form). In this paper, the detailed electrochemical behaviors of camptothecin at a pyrolytic graphite electrode is presented. The interaction between camptothecin and HSA is also studied by electrochemical technique. By comparing with bovine serum albumin (BSA), which is highly homologous to HSA, we prove ...

  5. Electrochemical Studies of Benzophenone and Fluorenone Imines, Amines and Diphenyldiazomethane.

    Science.gov (United States)

    1982-01-01

    exhaustive, controlled-potential electrolyses has also been described. 2 Cells. electrodes. and electrolysis procedures. All electrochemical experiments...scale electrolyses was monitored periodically by cyclic voltammetry. At the conclusion of the experiment, the electrolysis mixture was protonated in a...stainless steel * column packed with LiChrosorb RP8 or LiChrosorb RP18, 10-pm mean particle size. The eluting solvent was a mixture of methanol and water

  6. Electrochemical Study of Bromide in the Presence of 1,3-Indandione. Application to the Electrochemical Synthesis of Bromo Derivatives of 1,3-Indandione

    OpenAIRE

    Nematollahi, D.; Akaberi, N.

    2001-01-01

    The electrochemical oxidation of bromide in the presence of 1,3-indandione (1) in water/acetic acid and methanol/acetic acid mixtures has been studied by cyclic voltammetry and controlled-potential coulometry. The results indicate the participation of 1,3-indandione in the bromination reaction. On the basis of the electroanalytical and preparative results a reaction mechanism including electron transfer, chemical reaction and regeneration of bromide was discussed. The electrochemical synthesi...

  7. Electrochemical performance studies of MnO2 nanoflowers recovered from spent battery

    International Nuclear Information System (INIS)

    Ali, Gomaa A.M.; Tan, Ling Ling; Jose, Rajan; Yusoff, Mashitah M.; Chong, Kwok Feng

    2014-01-01

    Highlights: • MnO 2 is recovered from spent zinc–carbon batteries as nanoflowers structure. • Recovered MnO 2 nanoflowers show high specific capacitance. • Recovered MnO 2 nanoflowers show stable electrochemical cycling up to 900 cycles. • Recovered MnO 2 nanoflowers show low resistance in EIS data. - Abstract: The electrochemical performance of MnO 2 nanoflowers recovered from spent household zinc–carbon battery is studied by cyclic voltammetry, galvanostatic charge/discharge cycling and electrochemical impedance spectroscopy. MnO 2 nanoflowers are recovered from spent zinc–carbon battery by combination of solution leaching and electrowinning techniques. In an effort to utilize recovered MnO 2 nanoflowers as energy storage supercapacitor, it is crucial to understand their structure and electrochemical performance. X-ray diffraction analysis confirms the recovery of MnO 2 in birnessite phase, while electron microscopy analysis shows the MnO 2 is recovered as 3D nanostructure with nanoflower morphology. The recovered MnO 2 nanoflowers exhibit high specific capacitance (294 F g −1 at 10 mV s −1 ; 208.5 F g −1 at 0.1 A g −1 ) in 1 M Na 2 SO 4 electrolyte, with stable electrochemical cycling. Electrochemical data analysis reveal the great potential of MnO 2 nanoflowers recovered from spent zinc–carbon battery in the development of high performance energy storage supercapacitor system

  8. Comparison of TiO2 photocatalysis, electrochemically assisted Fenton reaction and direct electrochemistry for simulation of phase I metabolism reactions of drugs.

    Science.gov (United States)

    Ruokolainen, Miina; Gul, Turan; Permentier, Hjalmar; Sikanen, Tiina; Kostiainen, Risto; Kotiaho, Tapio

    2016-02-15

    The feasibility of titanium dioxide (TiO2) photocatalysis, electrochemically assisted Fenton reaction (EC-Fenton) and direct electrochemical oxidation (EC) for simulation of phase I metabolism of drugs was studied by comparing the reaction products of buspirone, promazine, testosterone and 7-ethoxycoumarin with phase I metabolites of the same compounds produced in vitro by human liver microsomes (HLM). Reaction products were analysed by UHPLC-MS. TiO2 photocatalysis simulated the in vitro phase I metabolism in HLM more comprehensively than did EC-Fenton or EC. Even though TiO2 photocatalysis, EC-Fenton and EC do not allow comprehensive prediction of phase I metabolism, all three methods produce several important metabolites without the need for demanding purification steps to remove the biological matrix. Importantly, TiO2 photocatalysis produces aliphatic and aromatic hydroxylation products where direct EC fails. Furthermore, TiO2 photocatalysis is an extremely rapid, simple and inexpensive way to generate oxidation products in a clean matrix and the reaction can be simply initiated and quenched by switching the UV lamp on/off. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Development of techniques for electrochemical studies in power plant environments

    International Nuclear Information System (INIS)

    Maekelae, K.

    2000-01-01

    The properties of the oxide films on the engineering alloys used as construction materials in power plants change as a result of exposure to aqueous environments. The susceptibility of the materials to different forms of corrosion is influenced by the properties of these oxide films. The structure and electrochemical properties of the oxide films are in turn dependent on the applied water chemistry. Therefore, water chemistry control has been used in minimising the impact of different corrosion phenomena in operating power plants. Since there is not only one ideal operational specification for all light water reactors, individually designed water chemistry programs are needed to take into account plant-specific design features and particular problem areas. The applicability of alternative water chemistry practices require fast and reliable in-line electrochemical techniques to monitor possible changes in the oxidation behaviour of nuclear power plant materials. This thesis summarises the work done at the Technical Research Centre of Finland over the past 10 years to increase the knowledge of factors affecting the oxidation behaviour of construction materials in aqueous coolants at high temperatures. The work started with the development of electrodes for measurement of high temperature water chemistry parameters such as pH and the corrosion potential of construction materials. After laboratory testing these electrodes were used both in test reactors and in operating nuclear power plants. These measurements showed that high temperature water chemistry monitoring may be more accurate than corresponding room temperature measurements, particularly during transient situations. However, it was also found that understanding the processes taking place within and on oxide films requires a combination of electrochemical techniques enabling characterisation of the electronic properties of these films. This conclusion resulted in development of a controlled

  10. Detection of localized and general corrosion of mild steel in simulated defense nuclear waste solutions using electrochemical noise analysis

    International Nuclear Information System (INIS)

    Edgemon, G.L.; Ohl, P.C.; Bell, G.E.C.; Wilson, D.F.

    1995-12-01

    Underground waste tanks fabricated from mild steel store more than 60 million gallons of radioactive waste from 50 years of weapons production. Leaks are suspected in a significant number of tanks. The probable modes of corrosion failures are reported to be localized corrosion (e.g. nitrate stress corrosion cracking and pitting). The use of electrochemical noise (EN) for the monitoring and detection of localized corrosion processes has received considerable attention and application over the last several years. Proof of principle laboratory tests were conducted to verify the capability of EN evaluation to detect localized corrosion and to compare the predictions of general corrosion obtained from EN with those derived from other sources. Simple, pre-fabricated flat and U-bend specimens of steel alloys A516-Grade 60 (UNS K02100) and A537-CL 1 (UNS K02400) were immersed in temperature controlled simulated waste solutions. The simulated waste solution was either 5M NaNO 3 with 0.3M NaOH at 90 C or 11M NaNO 3 with 0.15M NaOH at 95 C. The electrochemical noise activity from the specimens was monitored and recorded for periods ranging between 140 and 240 hours. At the end of each test period, the specimens were metallographically examined to correlated EN data with corrosion damage

  11. Electrochemical Study of Hydrocarbon-Derived Electrolytes for Supercapacitors

    Science.gov (United States)

    Noorden, Zulkarnain A.; Matsumoto, Satoshi

    2013-10-01

    In this paper, we evaluate the essential electrochemical properties - capacitive and resistive behaviors - of hydrocarbon-derived electrolytes for supercapacitor application using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The electrolytes were systematically prepared from three hydrocarbon-derived compounds, which have different molecular structures and functional groups, by treatment with high-concentration sulfuric acid (H2SO4) at room temperature. Two-electrode cells were assembled by sandwiching an electrolyte-containing glass wool separator with two active electrodes of activated carbon sheets. The dc electrical properties of the tested cells in terms of their capacitive behavior were investigated by CV, and in order to observe the frequency characteristics of the constructed cells, EIS was carried out. Compared with the tested cell with only high-concentration H2SO4 as the electrolyte, the cell with the derived electrolytes exhibit a capacitance as high as 135 F/g with an improved overall internal resistance of 2.5 Ω. Through the use of a simple preparation method and low-cost precursors, hydrocarbon-derived electrolytes could potentially find large-scale and higher-rating supercapacitor applications.

  12. Electrochemical and computational studies, in protic medium, of Morita-Baylis-Hillman adducts and correlation with leishmanicidal activity

    International Nuclear Information System (INIS)

    Paiva, Yen G. de; Pinho Júnior, Waldomiro; Souza, Antonio A. de; Costa, Cícero O.; Silva, Fábio P.L.; Lima-Junior, Cláudio G.; Vasconcellos, Mario L.A.A.; Goulart, Marília O.F.

    2014-01-01

    Highlights: • Twelve Morita-Baylis-Hillman adducts (MBHA) with significant leishmanicidal activity were studied by electrochemical and computational techniques, in protic media. • Ortho compounds for each series showed more negative reduction potentials than their positional isomers. • Less stable hydroxylamines were formed for ortho derivatives. • There is an inverse correlation between electrochemical parameters and bioactivity. - Abstract: Enzymatic bioreduction of nitro groups plays an important role on the activity of biologically active nitroaromatic compounds. Electrochemical methods are useful tools to simulate in vivo metabolic processes. This work presents electrochemical studies, in protic media (EtOH + phosphate buffer 4:6), using cyclic voltammetry (CV) of twelve Morita-Baylis-Hillman adducts (MBHA) with significant leishmanicidal activity. To facilitate the analysis, the molecules were grouped in four classes according to their side chains. Cyclic voltammograms display, in all cases, only one cathodic wave related to the formation of the correspondent hydroxylamines, which suffer further oxidation generating the nitroso derivatives in a sequential cycle. Ortho compounds exhibit more negative reduction potentials compared to the other isomers, in the same chemical class. This phenomenon could be related not only to structural effects but also to the presence of solvation spheres during the electroreduction process and/or stabilization of the resulting hydroxylamine. A proposal to explain the higher leishmanicidal activity of the ortho compounds compared with the meta and para compounds was suggested based on theoretical calculations (HF/6-31 + G */PCM, water, as a calculation level) that indicated lower thermodynamic stability for the ortho, in comparison to the corresponding meta and para hydroxylamines, fact that may suggest the easier transformation of the electrogenerated compounds into reactive electrophilic intermediates or final products

  13. In situ electrochemical atomic force microscope study on graphite electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Hirasawa, K.A.; Sato, Tomohiro; Asahina, Hitoshi; Yamaguchi, Shoji; Mori, Shoichiro [Mitsubishi Chemical Corp., Inashiki, Ibaraki (Japan). Tsukuba Research Center

    1997-04-01

    Interest in the formation of the solid electrolyte interphase (SEI) film on graphite electrodes has increased recently in the quest to improve the performance of lithium-ion batteries. Topographic and frictional changes on the surface of a highly oriented pyrolytic graphite electrode in 1 M LiCiO{sub 4} ethylene carbonate/ethylmethyl carbonate (1:1) electrolyte were examined during charge and discharge by in situ electrochemical atomic force microscopy and friction force microscopy simultaneously in real-time. Solid electrolyte interphase film formation commenced at approximately 2 V vs. Li/Li{sup +} and stable film formation with an island-like morphology was observed below approximately 0.9 V vs. Li/Li{sup +}. Further experiments on a KS-44 graphite/polyvinylidene difluoride binder composite electrode showed similar phenomena.

  14. Studies on electrochemical treatment of wastewater contaminated with organotin compounds

    Energy Technology Data Exchange (ETDEWEB)

    Arevalo, Eduardo [Hamburg University of Technology, Institute of Environmental Technology and Energy Economics, Eissendorfer Strasse 40, D-21073 Hamburg (Germany); Calmano, Wolfgang [Hamburg University of Technology, Institute of Environmental Technology and Energy Economics, Eissendorfer Strasse 40, D-21073 Hamburg (Germany)]. E-mail: calmano@tuhh.de

    2007-07-31

    Different anode materials were tested to evaluate their suitability to eliminate organotin compounds electrochemically from shipyard process waters. The capacity of two types of anode materials was investigated: niobium coated with boron-doped diamond (BDD) and titanium coated with iridium dioxide (Ti/IrO{sub 2}). The aim of this work was to characterize the performance of the process using both anode materials at different current densities, and also to evaluate the generation of by-products. A further objective of this work was to evaluate if operating at low potentials with BDD anodes (to avoid the generation of elemental oxygen) the consumption of energy for degradation of pollutants could be minimized. The processes were tested on synthetic and real shipyard water containing approximately 25,000 ng L{sup -1} of tributyltin (TBT) (as Sn) and 5000 ng L{sup -1} dibutyltin. The range of current densities was between 6 and 70 mA cm{sup -2}. The results showed that electrochemical treatment is suitable to eliminate organotins down to very low concentrations following a stepwise debutylation mechanism. Both anode materials exhibited a similar performance with energy consumption in the range of 7-10 kWh m{sup -3} in order to decrease organotins down to 100 ng L{sup -1} (as Sn). For the water composition tested, BDD did not outperform Ti/IrO{sub 2} as initially expected, most probably because organotins were not only oxidized by {center_dot}OH, but also by active chlorine compounds generated by the oxidation of chloride present in the wastewater (1.6 g L{sup -1}, Cl{sup -}) with both anode materials. It was also found that the residual oxidants remaining in the treated effluent had to be eliminated if the water is to be discharged safely in the aquatic environment.

  15. Studies on electrochemical treatment of wastewater contaminated with organotin compounds

    International Nuclear Information System (INIS)

    Arevalo, Eduardo; Calmano, Wolfgang

    2007-01-01

    Different anode materials were tested to evaluate their suitability to eliminate organotin compounds electrochemically from shipyard process waters. The capacity of two types of anode materials was investigated: niobium coated with boron-doped diamond (BDD) and titanium coated with iridium dioxide (Ti/IrO 2 ). The aim of this work was to characterize the performance of the process using both anode materials at different current densities, and also to evaluate the generation of by-products. A further objective of this work was to evaluate if operating at low potentials with BDD anodes (to avoid the generation of elemental oxygen) the consumption of energy for degradation of pollutants could be minimized. The processes were tested on synthetic and real shipyard water containing approximately 25,000 ng L -1 of tributyltin (TBT) (as Sn) and 5000 ng L -1 dibutyltin. The range of current densities was between 6 and 70 mA cm -2 . The results showed that electrochemical treatment is suitable to eliminate organotins down to very low concentrations following a stepwise debutylation mechanism. Both anode materials exhibited a similar performance with energy consumption in the range of 7-10 kWh m -3 in order to decrease organotins down to 100 ng L -1 (as Sn). For the water composition tested, BDD did not outperform Ti/IrO 2 as initially expected, most probably because organotins were not only oxidized by ·OH, but also by active chlorine compounds generated by the oxidation of chloride present in the wastewater (1.6 g L -1 , Cl - ) with both anode materials. It was also found that the residual oxidants remaining in the treated effluent had to be eliminated if the water is to be discharged safely in the aquatic environment

  16. Electrochemical studies of Copper, Tantalum and Tantalum Nitride surfaces in aqueous solutions for applications in chemical-mechanical and electrochemical-mechanical planarization

    Science.gov (United States)

    Sulyma, Christopher Michael

    This report will investigate fundamental properties of materials involved in integrated circuit (IC) manufacturing. Individual materials (one at a time) are studied in different electrochemical environmental solutions to better understand the kinetics associated with the polishing process. Each system tries to simulate a real CMP environment in order to compare our findings with what is currently used in industry. To accomplish this, a variety of techniques are used. The voltage pulse modulation technique is useful for electrochemical processing of metal and alloy surfaces by utilizing faradaic reactions like electrodeposition and electrodissolution. A theoretical framework is presented in chapter 4 to facilitate quantitative analysis of experimental data (current transients) obtained in this approach. A typical application of this analysis is demonstrated for an experimental system involving electrochemical removal of copper surface layers, a relatively new process for abrasive-free electrochemical mechanical planarization of copper lines used in the fabrication of integrated circuits. Voltage pulse modulated electrodissolution of Cu in the absence of mechanical polishing is activated in an acidic solution of oxalic acid and hydrogen peroxide. The current generated by each applied voltage step shows a sharp spike, followed by a double-exponential decay, and eventually attains the rectangular shape of the potential pulses. For the second system in chapter 5, open-circuit potential measurements, cyclic voltammetry and Fourier transform impedance spectroscopy have been used to study pH dependent surface reactions of Cu and Ta rotating disc electrodes (RDEs) in aqueous solutions of succinic acid (SA, a complexing agent), hydrogen peroxide (an oxidizer), and ammonium dodecyl sulfate (ADS, a corrosion inhibitor for Cu). The surface chemistries of these systems are relevant for the development of a single-slurry approach to chemical mechanical planarization (CMP) of Cu

  17. A perspective on the structural studies of inner membrane electrochemical potential-driven transporters.

    Science.gov (United States)

    Lemieux, M Joanne

    2008-09-01

    Electrochemical potential-driven transporters represent a vast array of proteins with varied substrate specificities. While diverse in size and substrate specificity, they are all driven by electrochemical potentials. Over the past five years there have been increasing numbers of X-ray structures reported for this family of transporters. Structural information is available for five subfamilies of electrochemical potential-driven transporters. No structural information exists for the remaining 91 subfamilies. In this review, the various subfamilies of electrochemical potential-driven transporters are discussed. The seven reported structures for the electrochemical potential-driven transporters and the methods for their crystallization are also presented. With a few exceptions, overall crystallization trends have been very similar for the transporters despite their differences in substrate specificity and topology. Also discussed is why the structural studies on these transporters were successful while others are not as fruitful. With the plethora of transporters with unknown structures, this review provides incentive for crystallization of transporters in the remaining subfamilies for which no structural information exists.

  18. Studies on room temperature electrochemical oxidation and its effect on the transport properties of TBCCO films

    International Nuclear Information System (INIS)

    Shirage, P M; Shivagan, D D; Pawar, S H

    2004-01-01

    A novel room temperature electrochemical process for the synthesis of single-phase Tl 2 Ba 2 Ca 2 Cu 3 O 10 (TBCCO/Tl-2223) superconducting films has been developed. Electrochemical parameters were optimized by studying linear sweep voltammetry (LSV), cyclic voltammetry (CV) and chronoamperometry (CA) for the deposition of Tl-Ba-Ca-Cu alloy at room temperature. The superconducting films of the TBCCO were obtained by two oxidation techniques. In the first technique, the electrodeposited Tl-Ba-Ca-Cu alloyed films were oxidized at various temperatures in flowing oxygen atmosphere. In the second technique, stoichiometric electrocrystallization to get Tl 2 Ba 2 Ca 2 Cu 3 O 10 (Tl-2223) was completed by electrochemically intercalating oxygen species into Tl-Ba-Ca-Cu alloy at room temperature for various lengths of time. The oxygen content in the samples was varied by varying the electrochemical oxidation period, and the changes in the crystal structure, superconducting transition temperature (T c ) and critical current density (J c ) were recorded. The high temperature furnace oxidation technique was replaced by the room temperature electrochemical oxidation technique. The dependence of superconducting parameters on oxygen content is correlated with structure-property relations

  19. Nature of the Electrochemical Properties of Sulphur Substituted LiMn2O4 Spinel Cathode Material Studied by Electrochemical Impedance Spectroscopy

    Directory of Open Access Journals (Sweden)

    Monika Bakierska

    2016-08-01

    Full Text Available In this work, nanostructured LiMn2O4 (LMO and LiMn2O3.99S0.01 (LMOS1 spinel cathode materials were comprehensively investigated in terms of electrochemical properties. For this purpose, electrochemical impedance spectroscopy (EIS measurements as a function of state of charge (SOC were conducted on a representative charge and discharge cycle. The changes in the electrochemical performance of the stoichiometric and sulphur-substituted lithium manganese oxide spinels were examined, and suggested explanations for the observed dependencies were given. A strong influence of sulphur introduction into the spinel structure on the chemical stability and electrochemical characteristic was observed. It was demonstrated that the significant improvement in coulombic efficiency and capacity retention of lithium cell with LMOS1 active material arises from a more stable solid electrolyte interphase (SEI layer. Based on EIS studies, the Li ion diffusion coefficients in the cathodes were estimated, and the influence of sulphur on Li+ diffusivity in the spinel structure was established. The obtained results support the assumption that sulphur substitution is an effective way to promote chemical stability and the electrochemical performance of LiMn2O4 cathode material.

  20. Studies of electrochemical interfaces by TOF neutron reflectometry at the IBR-2 reactor

    Science.gov (United States)

    Petrenko, V. I.; Gapon, I. V.; Rulev, A. A.; Ushakova, E. E.; Kataev, E. Yu; Yashina, L. V.; Itkis, D. M.; Avdeev, M. V.

    2018-03-01

    The operation performance of electrochemical energy conversion and storage systems such as supercapacitors and batteries depends on the processes occurring at the electrochemical interfaces, where charge separation and chemical reactions occur. Here, we report about the tests of the neutron reflectometry cells specially designed for operando studies of structural changes at the electrochemical interfaces between solid electrodes and liquid electrolytes. The cells are compatible with anhydrous electrolytes with organic solvents, which are employed today in all lithium ion batteries and most supercapacitors. The sensitivity of neutron reflectometry applied at the time-of-flight (TOF) reflectometer at the pulsed reactor IBR-2 is discussed regarding the effect of solid electrolyte interphase (SEI) formation on metal electrode surface.

  1. Spectro-electrochemical Studies of Europium and Uranium Ions in LiCl-KCl Eutectic

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Sang Eun; Park, Yong Joon; Cho, Young Hwan; Song, Kyu Seok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-05-15

    Pyrochemical processing of nuclear fuels using a molten salt as a solvent is regarded as one of the promising options for future spent nuclear fuel management. Molten salts are known as suitable media for electrorefining and electrowinning of metal in the Pyrochemical process. There are complicated chemical and electrochemical reactions in the molten salt of the Pyrochemical process. In order to reach a better understanding and control of these metal deposition processes, accurate knowledge of the reaction mechanism is essential. Spectroscopic methods, such as fluorescence and UV-VIS spectroscopy, are considered to be one of powerful tools to investigate the chemical elements and its oxidation state. In this work, the spectroscopic studies have been performed under the electrochemical control to investigate the reaction mechanisms in the molten salt at high temperature during the electrochemical reactions

  2. Spectro-electrochemical Studies of Europium and Uranium Ions in LiCl-KCl Eutectic

    International Nuclear Information System (INIS)

    Bae, Sang Eun; Park, Yong Joon; Cho, Young Hwan; Song, Kyu Seok

    2010-01-01

    Pyrochemical processing of nuclear fuels using a molten salt as a solvent is regarded as one of the promising options for future spent nuclear fuel management. Molten salts are known as suitable media for electrorefining and electrowinning of metal in the Pyrochemical process. There are complicated chemical and electrochemical reactions in the molten salt of the Pyrochemical process. In order to reach a better understanding and control of these metal deposition processes, accurate knowledge of the reaction mechanism is essential. Spectroscopic methods, such as fluorescence and UV-VIS spectroscopy, are considered to be one of powerful tools to investigate the chemical elements and its oxidation state. In this work, the spectroscopic studies have been performed under the electrochemical control to investigate the reaction mechanisms in the molten salt at high temperature during the electrochemical reactions

  3. Use of electrochemical techniques to study the corrosion of metals in model fluoride melts

    Energy Technology Data Exchange (ETDEWEB)

    Fabre, S. [EDF R and D, Département MMC, Groupe Chimie et Corrosion, 77818 Moret-sur-Loing Cedex (France); Cabet, C., E-mail: celine.cabet@cea.fr [CEA, DEN, DPC, SCCME, Laboratoire d’Etude de la Corrosion Non Aqueuse, F-91191 Gif-sur-Yvette (France); Cassayre, L.; Chamelot, P. [Université Toulouse, INPT, UPS, Laboratoire de Génie Chimique, Département Procédés Electrochimiques, F-31062 Toulouse Cedex 09 (France); Delepech, S. [ENSCP, Laboratoire d’Électrochimie, de Chimie des Interface et Modélisation pour l’Energie, UMR 7575, 11 rue Pierre et Marie Curie, 75232 Paris Cedex 5 (France); Finne, J. [EDF R and D, Département MMC, Groupe Chimie et Corrosion, 77818 Moret-sur-Loing Cedex (France); Massot, L. [Université Toulouse, INPT, UPS, Laboratoire de Génie Chimique, Département Procédés Electrochimiques, F-31062 Toulouse Cedex 09 (France); Noel, D. [EDF R and D, Département MMC, Groupe Chimie et Corrosion, 77818 Moret-sur-Loing Cedex (France)

    2013-10-15

    Molten fluorides are appealing coolants for innovative nuclear systems but structural alloys may undergo corrosion at high temperature. Because corrosion primarily occurs via electrochemical reactions, electrochemical techniques are ideal for the study of corrosion thermochemistry and kinetics. Examples are given. An electrochemical series was established using voltammetry in LiF–NaF at 1173 K. Stability increases in the following order: Na, Cr, Fe, Ni, Mo/W, Ag, Au. Various alloys were also classified according to their oxidation resistance. A cathodic protection method was developed to curb the intergranular attack of some nickel alloys in molten LiF–CaF{sub 2}–MgF{sub 2}–ZrF{sub 4} containing tellurium vapor at 953 K. Voltammetry and polarization resistance measurement were used to estimate the rate of chromium selective dissolution for nickel base alloys immersed in LiF–NaF at 1073 K and 1173 K.

  4. Conducting Simulation Studies in Psychometrics

    Science.gov (United States)

    Feinberg, Richard A.; Rubright, Jonathan D.

    2016-01-01

    Simulation studies are fundamental to psychometric discourse and play a crucial role in operational and academic research. Yet, resources for psychometricians interested in conducting simulations are scarce. This Instructional Topics in Educational Measurement Series (ITEMS) module is meant to address this deficiency by providing a comprehensive…

  5. An electrochemical study of the flow rate effect on the oxide film of SA106 Gr.C piping

    International Nuclear Information System (INIS)

    Hong, S. M.; Kim, J. H.; Kim, I. S.

    2002-01-01

    Effect of water flow rate on the oxide film of SA106 Gr.C piping was evaluated quantitatively through electrochemical method. It was carried out with weight change experiments, polarization tests, and EIS tests with rig that simulates water flow. Without water flow, the oxide film is so stable that it effectively blocks current exchange. With water flow, the oxide film was damaged and electrochemical current density and oxide film properties, C dl and R p were significantly changed

  6. Small-angle neutron scattering and cyclic voltammetry study on electrochemically oxidized and reduced pyrolytic carbon

    International Nuclear Information System (INIS)

    Braun, A.; Kohlbrecher, J.; Baertsch, M.; Schnyder, B.; Koetz, R.; Haas, O.; Wokaun, A.

    2004-01-01

    The electrochemical double layer capacitance and internal surface area of a pyrolytic carbon material after electrochemical oxidation and subsequent reduction was studied with cyclic voltammetry and small-angle neutron scattering. Oxidation yields an enhanced internal surface area (activation), and subsequent reduction causes a decrease of this internal surface area. The change of the Porod constant, as obtained from small-angle neutron scattering, reveals that the decrease in internal surface area is not caused merely by a closing or narrowing of the pores, but by a partial collapse of the pore network

  7. In situ anodization of aluminum surfaces studied by x-ray reflectivity and electrochemical impedance spectroscopy

    International Nuclear Information System (INIS)

    Bertram, F.; Evertsson, J.; Messing, M. E.; Mikkelsen, A.; Lundgren, E.; Zhang, F.; Pan, J.; Carlà, F.; Nilsson, J.-O.

    2014-01-01

    We present results from the anodization of an aluminum single crystal [Al(111)] and an aluminum alloy [Al 6060] studied by in situ x-ray reflectivity, in situ electrochemical impedance spectroscopy and ex situ scanning electron microscopy. For both samples, a linear increase of oxide film thickness with increasing anodization voltage was found. However, the slope is much higher in the single crystal case, and the break-up of the oxide film grown on the alloy occurs at a lower anodization potential than on the single crystal. The reasons for these observations are discussed as are the measured differences observed for x-ray reflectivity and electrochemical impedance spectroscopy.

  8. Electrochemical and DFT studies of {beta}-amino-alcohols as corrosion inhibitors for brass

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Guo [State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116012 (China)]. E-mail: gaogaoguoguo@yahoo.com.cn; Liang, Chenghao [State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116012 (China); Electromechanics and Materials Engineering College, Dalian Maritime University, Dalian 116026 (China)

    2007-03-20

    The electrochemical performance of 1-diethylamino-propan-2-ol (EAP) and 1,3-bis-diethylamino-propan-2-ol (DEAP) for brass in simulated atmospheric water is evaluated by potentiodynamic curves and electrochemical impedance spectroscopy (EIS). The experimental results show that the investigated compounds, which can effectively retard the anodic dissolution of brass, are anodic inhibitors. Furthermore, the inhibition efficiency of DEAP is higher than that of EAP at the same concentration. This observation is supported by density functional theoretical (DFT) parameters such as the highest occupied molecule energy level (E {sub HOMO}), the lowest unoccupied molecule energy level (E {sub LUMO}), the energy difference ({delta}E) between E {sub HOMO} and E {sub LUMO}, Mulliken charges and the HOMO orbital.

  9. Simulation in International Studies

    Science.gov (United States)

    Boyer, Mark A.

    2011-01-01

    Social scientists have long worked to replicate real-world phenomena in their research and teaching environments. Unlike our biophysical science colleagues, we are faced with an area of study that is not governed by the laws of physics and other more predictable relationships. As a result, social scientists, and international studies scholars more…

  10. An Electrochemical Study of Two Self-Dopable Water-Soluble Aniline Derivatives: Electrochemical Deposition of Copolymers

    Directory of Open Access Journals (Sweden)

    Loredana Vacareanu

    2012-01-01

    Full Text Available An electrochemical study of two water-soluble aniline derivatives, N-(3-sulfopropyl aniline (AnPS and N-(3-sulfopropyl p-aminodiphenylamine (DAnPS, in aqueous acidic electrolytic solutions containing different kinds of doping anions (Cl −, SO4 2−, and ClO4 − was carried out. At sufficiently high anodic potential, the sulfonated aniline derivatives undergo oxidation processes yielding cation-radical and dimer intermediates, but no polymer deposition was observed on the working electrode surface. Experimental results showed that both aniline derivatives are electroactive compounds exhibiting redox behaviour in the range of potential of −0.2 V–1.6 V. Due to the self-doping effect induced by sulfonic groups, AnPS and DAnPS compounds have good electroactivity even in neat water solution. By adding a small amount of aniline into electrolytic system, thin layers of copolymers were deposited on the working electrode surface. The copolymer layers formed on the electrodes show a highly orientational and positional order, confirmed by AFM and XRD spectroscopic techniques. During the anodic oxidation processes some distinct colour changes were observed.

  11. Electrochemical Study of Bromide in the Presence of 1,3-Indandione. Application to the Electrochemical Synthesis of Bromo Derivatives of 1,3-Indandione

    Directory of Open Access Journals (Sweden)

    N. Akaberi

    2001-06-01

    Full Text Available The electrochemical oxidation of bromide in the presence of 1,3-indandione (1 in water/acetic acid and methanol/acetic acid mixtures has been studied by cyclic voltammetry and controlled-potential coulometry. The results indicate the participation of 1,3-indandione in the bromination reaction. On the basis of the electroanalytical and preparative results a reaction mechanism including electron transfer, chemical reaction and regeneration of bromide was discussed. The electrochemical synthesis of bromo derivatives of 1,3-indandione (2-3 has been successfully performed at constant current, in an undivided cell, in good yield and purity.

  12. The use of odd random phase electrochemical impedance spectroscopy to study lithium-based corrosion inhibition by active protective coatings

    NARCIS (Netherlands)

    Meeusen, M.; Visser, P.; Fernández Macía, L.; Hubin, A.; Terryn, H.A.; Mol, J.M.C.

    2018-01-01

    In this work, the study of the time-dependent behaviour of lithium carbonate based inhibitor technology for the active corrosion protection of aluminium alloy 2024-T3 is presented. Odd random phase electrochemical impedance spectroscopy (ORP-EIS) is selected as the electrochemical tool to study

  13. DISPOSAL OF POISONOUS ORGANIC HALIDES BY USING THE ELECTROCHEMICAL METHOD: DFT SIMULATION

    Directory of Open Access Journals (Sweden)

    Tudor Spataru

    2016-12-01

    Full Text Available Geometry optimizations at the UBP86/6-311++G** level of electronic structure theory have been performed for DDT, β-hexachlorocyclohexane, and heptachlor organic polychlorides as well for their positive and negative ions. The HOMO composition of these neutral molecules show no participation of the carbon-chlorine atomic orbitals, while LUMO of the calculated molecules include a major contribution of the anti-bonding character atomic orbitals from the two or three carbon-chloride bonds of each calculated molecule. Consequently, the negative ions were the most sensitive structure during the geometry optimization, showing the carbon-chloride bonds cleaving during the electronic structure calculations. Further geometry optimization of the obtained neutral intermediate molecules after the fi rst and second reducing by two electrons show that the electrochemical dehalogenation of the organic poychlorides is sequential.

  14. Simulation of electrorefining process using time-dependent multi-component electrochemical model: REFIN

    Energy Technology Data Exchange (ETDEWEB)

    Park, Byung Gi; Hwang, Il Soon [Seoul National Univ., Seoul (Korea, Republic of)

    1999-10-01

    REFIN model is applied to analyze a series of experiments that had been conducted by Tomczuk, et al. at Argonne National Laboratory (ANL) in the U.S.A.. Predicted results from REFIN model for the electrorefining experiment are compared with the published experimental results. It is demonstrated that REFIN model can predict faradic current of each element and electrochemical potential as a function of time over the entire campaign of the electrorefining experiment. The elemental concentration changes agree with the experimental results well. Elemental concentration changes during an open-circuit equilibration period are revealed to suggest that the electrorefining process could not be adequately described by the equilibrium model often applied for an electrode surface. Surface potential drop is changed according to equilibrium potential of chemical species with high activity in liquid metal.

  15. Electrochemical studies on nanometal oxide-activated carbon composite electrodes for aqueous supercapacitors

    Science.gov (United States)

    Ho, Mui Yen; Khiew, Poi Sim; Isa, Dino; Chiu, Wee Siong

    2014-11-01

    In present study, the electrochemical performance of eco-friendly and cost-effective titanium oxide (TiO2)-based and zinc oxide-based nanocomposite electrodes were studied in neutral aqueous Na2SO3 electrolyte, respectively. The electrochemical properties of these composite electrodes were studied using cyclic voltammetry (CV), galvanostatic charge-discharge (CD) and electrochemical impedance spectroscopy (EIS). The experimental results reveal that these two nanocomposite electrodes achieve the highest specific capacitance at fairly low oxide loading onto activated carbon (AC) electrodes, respectively. Considerable enhancement of the electrochemical properties of TiO2/AC and ZnO/AC nanocomposite electrodes is achieved via synergistic effects contributed from the nanostructured metal oxides and the high surface area mesoporous AC. Cations and anions from metal oxides and aqueous electrolyte such as Ti4+, Zn2+, Na+ and SO32- can occupy some pores within the high-surface-area AC electrodes, forming the electric double layer at the electrode-electrolyte interface. Additionally, both TiO2 and ZnO nanoparticles can provide favourable surface adsorption sites for SO32- anions which subsequently facilitate the faradaic processes for pseudocapacitive effect. These two systems provide the low cost material electrodes and the low environmental impact electrolyte which offer the increased charge storage without compromising charge storage kinetics.

  16. Kinetic studies of electrochemical generation of Ag(II) ion and catalytic oxidation of selected organics

    International Nuclear Information System (INIS)

    Zawodzinski, C.; Smith, W.H.; Martinez, K.R.

    1993-01-01

    The goal of this research is to develop a method to treat mixed hazardous wastes containing selected organic compounds and heavy metals, including actinide elements. One approach is to destroy the organic via electrochemical oxidation to carbon dioxide, then recover the metal contaminants through normally accepted procedures such as ion exchange, precipitation, etc. The authors have chosen to study the electrochemical oxidation of a simple alcohol, iso-propanol. Much of the recent work reported involved the use of an electron transfer mediator, usually the silver(I)/(II) redox couple. This involved direct electrochemical generation of the mediator at the anode of a divided cell followed by homogeneous reaction of the mediator with the organic compound. In this study the authors have sought to compare the mediated reaction with direct electrochemical oxidation of the organic. In addition to silver(I)/(II) they also looked at the cobalt(II)/(III) redox coupled. In the higher oxidation state both of these metal ions readily hydrolyze in aqueous solution to ultimately form insoluble oxide. The study concluded that in a 6M nitric acid solution at room temperature iso-propanol can be oxidized to carbon dioxide and acetic acid. Acetic acid is a stable intermediate and resists further oxidation. The presence of Co(III) enhances the rate or efficiency of the reaction

  17. Electrochemical and DFT study of an anticancer and active anthelmintic drug at carbon nanostructured modified electrode

    International Nuclear Information System (INIS)

    Ghalkhani, Masoumeh; Beheshtian, Javad; Salehi, Maryam

    2016-01-01

    The electrochemical response of mebendazole (Meb), an anticancer and effective anthelmintic drug, was investigated using two different carbon nanostructured modified glassy carbon electrodes (GCE). Although, compared to unmodified GCE, both prepared modified electrodes improved the voltammetric response of Meb, the carbon nanotubes (CNTs) modified GCE showed higher sensitivity and stability. Therefore, the CNTs-GCE was chosen as a promising candidate for the further studies. At first, the electrochemical behavior of Meb was studied by cyclic voltammetry and differential pulse and square wave voltammetry. A one step reversible, pH-dependent and adsorption-controlled process was revealed for electro-oxidation of Meb. A possible mechanism for the electrochemical oxidation of Meb was proposed. In addition, electronic structure, adsorption energy, band gap, type of interaction and stable configuration of Meb on the surface of functionalized carbon nanotubes were studied by using density functional theory (DFT). Obtained results revealed that Meb is weakly physisorbed on the CNTs and that the electronic properties of the CNTs are not significantly changed. Notably, CNTs could be considered as a suitable modifier for preparation of the modified electrode for Meb analysis. Then, the experimental parameters affecting the electrochemical response of Meb were optimized. Under optimal conditions, high sensitivity (b(Meb) = dI p,a (Meb) / d[Meb] = 19.65 μA μM −1 ), a low detection limit (LOD (Meb) = 19 nM) and a wide linear dynamic range (0.06–3 μM) was resulted for the voltammetric quantification of Meb. - Highlights: • Electrochemical oxidation mechanism of Meb was investigated. • A carbon nanostructure modified electrode was developed for the determination of Meb. • The modified electrode surface was characterized by SEM and impedance studies. • This study provides an effective chemically modified electrode with satisfactory repeatability and reproducibility

  18. Feasibility studies on electrochemical separation and recovery of uranium by using domestic low grade uranium resources

    International Nuclear Information System (INIS)

    Oh, Won Zin; Jung, Chong Hun; Lee, Kune Woo; Won, Hui Jun; Choi, Wang Kyu; Kim, Gye Nam; Lee, Yu Ri; Lee, Joong Moung

    2005-12-01

    The up-to-date electrochemical uranium separation technology has been developed for uranium sludge waste treatment funded by a long term national nuclear technology development program. The objective of the studies is to examine applicability of the uranium separation technology to making use of the low grade uranium resources in the country. State of the arts of uranium separation and recovery from the low grade national uranium resources. - The amount of the high grade uranium resources(0.1 % U 3 O 8 contents) in the world is 1,750,000MTU and that of the low grade uranium resources(0.04 % U 3 O 8 contents) in the country is 340,000MTU. - The world uranium price will be increase to more than 30$/l0b in 10 years, so that the low grade uranium in the country become worth while to recover. - The conventional uranium recovery technologies are based on both acidic - The ACF electrochemical uranium separation technology is the state of the art technology in the world and the adsorption capability of 690 mgU/g is several ten times higher than that of a conventional zeolite and the uranium stripping efficiency by desorption is more than 99%. So, this technology is expected to replace the existing solvent extraction technology. Feasibility of the ACF electrochemical uranium separation technology as an uranium recovery method. Lab scale demonstration of uranium separation and recovery technologies have been carried out by using an ACF electrochemical method

  19. Regeneration of phenolic antioxidants from phenoxyl radicals: An ESR and electrochemical study of antioxidant hierarchy

    DEFF Research Database (Denmark)

    Jørgensen, Lars V.; Madsen, Helle L.; Thomsen, Marianne K.

    1999-01-01

    Radicals from the flavonoids quercetin, (+)-catechin, (+/-)-taxifolin and luteolin, and from all-rac-alpha-tocopherol have been generated electrochemically by one-electron oxidation in deaerated dimethylformamide (DMF), and characterised by electron spin resonance spectroscopy (ESR) after spin......-trapping by 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). Simulations of the ESR spectrum based on estimated coupling constants of the spin-trapped quercetin radical, confirmed that this antioxidant radical is oxygen-centered. The complex mixture of radicals, quinoid intermediates and stable two-electron oxidation...

  20. Synthesis and electrochemical study of a hybrid structure based on PDMS-TEOS and titania nanotubes for biomedical applications

    International Nuclear Information System (INIS)

    Castro, António G B; Bastos, Alexandre C; Miranda Salvado, Isabel M; Galstyan, Vardan; Faglia, Guido; Sberveglieri, Giorgio

    2014-01-01

    Metallic implants and devices are widely used in the orthopedic and orthodontic clinical areas. However, several problems regarding their adhesion with the living tissues and inflammatory responses due to the release of metallic ions to the medium have been reported. The modification of the metallic surfaces and the use of biocompatible protective coatings are two approaches to solve such issues. In this study, in order to improve the adhesion properties and to increase the corrosion resistance of metallic Ti substrates we have obtained a hybrid structure based on TiO 2 nanotubular arrays and PDMS-TEOS films. TiO 2 nanotubes have been prepared with two different diameters by means of electrochemical anodization. PDMS-TEOS films have been prepared by the sol–gel method. The morphological and the elemental analysis of the structures have been investigated by scanning electron microscopy and energy dispersive spectroscopy (EDS). Electrochemical impedance spectroscopy (EIS) and polarization curves have been performed during immersion of the samples in Kokubo’s simulated body fluid (SBF) at 37 °C to study the effect of structure layers and tube diameter on the protective properties. The obtained results show that the modification of the surface structure of TiO 2 and the application of PDMS-TEOS film is a promising strategy for the development of implant materials. (paper)

  1. NICKEL HYDROXIDE FILMS IN CONTACT WITH AN ELECTROACTIVE SOLUTION. A STUDY EMPLOYING ELECTROCHEMICAL IMPEDANCE MEASUREMENTS

    OpenAIRE

    RICARDO TUCCERI

    2018-01-01

    The deactivation of nickel hydroxide films after prolonged storage times without use was studied. This study was carried out in the context of the Rotating Disc Electrode Voltammetry (RDEV) and Electrochemical Impedance Spectroscopy (EIS) when the nickel hydroxide film contacts an electroactive solution and a redox reaction occurs at the Au-Ni(OH)2|electrolyte interface. Deferasirox (4-(3,5-bis(2- hydroxyphenyl)-1,2,4-triazol-1-yl) benzoic acid) was employed as redox species in solution. Limi...

  2. Surface analytical and electrochemical characterization of oxide films formed on Incoloy-800 and carbon steel in simulated secondary water chemistry conditions of PHWRs

    International Nuclear Information System (INIS)

    Rangarajan, S.; Sinu, C.; Balaji, V.; Narasimhan, S.V.

    2010-01-01

    The water chemistry in the Steam Generator (SG) Circuits of Indian Pressurized Heavy Water Reactors (PHWRs) is controlled by the all volatile treatment (AVT) procedure, wherein volatile amines are used to maintain the alkaline pH required for minimizing the corrosion of the structural materials. Earlier, Monel and morpholine were used as the Steam Generator material and the alkalizing agent respectively. However, currently they are replaced by Incoloy-800 and Ethanolamine (ETA). ETA was chosen because of its beneficial effects due to low pK b and K d values, loading behaviour on condensate polishing unit (CPU) and also on cost comparison with other amines. Since we have Incoloy-800 on the tube side and Carbon steel(CS) on the shell side in the SG circuits, efforts were taken to study the nature of the oxide films formed on these surfaces and to evaluate the corrosion resistance and electrochemical properties of the same, under simulated secondary water chemistry conditions of PHWRs containing different dissolved oxygen (DO) concentration. In this context, experiments were carried out by exposing finely polished CS and Incoloy -800 coupons to ETA based medium in the presence and absence of Hydrazine (pH: 9.2) at 240 o C under two different DO conditions (< 10 ppb and 200 ppb) for 24 hours. Oxide films formed under these conditions were characterized using SEM, Raman spectroscopy, electrochemical impedance, polarization and Mott-Schottky techniques. Further, studies at a controlled DO level ( < 10 ppb) were carried out for different time durations viz., 7- and 30- days. The composition, surface morphology, oxide thickness, resistance, type of semi-conductivity and defect density of the oxide films were evaluated and correlated with the DO levels and discussed elaborately in this paper. (author)

  3. An electrochemical study of U(VI) and Cr(VI) in molten borates

    International Nuclear Information System (INIS)

    Brigaudeau, M.; Gregori de Pinochet, I. de

    1977-01-01

    The electrochemical reduction of U(VI) and Cr(VI), in molten Na 2 B 4 O 7 at 800 deg C was studied by means of linear sweep voltammetry, and chronopotentiometry. The reduction of U(VI) to U(V) proceeded reversibly at a platinum electrode. The diffusion coefficient for the U(VI) species at 800 deg C was 4.10 -7 cm 2 .s -1 . The activation energy of diffusion was (34,8 +- 0,8) kcal. mole -1 . Electrochemical studies of Cr(VI) at 800 0 C reveal a two-step reduction process at a platinum electrode. Only the voltammogram for the first step charge transfer process was studied. Analysis indicated that Cr(VI) is reversibly reduced to Cr(III) at a platinum electrode. The diffusion coefficient for Cr(VI) at 800 0 C is 1,9.10 -7 cm 2 .s -1 [fr

  4. Electrochemical ion transfer across liquid/liquid interfaces confined within solid-state micropore arrays--simulations and experiments.

    Science.gov (United States)

    Strutwolf, Jörg; Scanlon, Micheál D; Arrigan, Damien W M

    2009-01-01

    Miniaturised liquid/liquid interfaces provide benefits for bioanalytical detection with electrochemical methods. In this work, microporous silicon membranes which can be used for interface miniaturisation were characterized by simulations and experiments. The microporous membranes possessed hexagonal arrays of pores with radii between 10 and 25 microm, a pore depth of 100 microm and pore centre-to-centre separations between 99 and 986 microm. Cyclic voltammetry was used to monitor ion transfer across arrays of micro-interfaces between two immiscible electrolyte solutions (microITIES) formed at these membranes, with the organic phase present as an organogel. The results were compared to computational simulations taking into account mass transport by diffusion and encompassing diffusion to recessed interfaces and overlapped diffusion zones. The simulation and experimental data were both consistent with the situation where the location of the liquid/liquid (l/l) interface was on the aqueous side of the silicon membrane and the pores were filled with the organic phase. While the current for the forward potential scan (transfer of the ion from the aqueous phase to the organic phase) was strongly dependent on the location of the l/l interface, the current peak during the reverse scan (transfer of the ion from the organic phase to the aqueous phase) was influenced by the ratio of the transferring ion's diffusion coefficients in both phases. The diffusion coefficient of the transferring ion in the gelified organic phase was ca. nine times smaller than in the aqueous phase. Asymmetric cyclic voltammogram shapes were caused by the combined effect of non-symmetrical diffusion (spherical and linear) and by the inequality of the diffusion coefficient in both phases. Overlapping diffusion zones were responsible for the observation of current peaks instead of steady-state currents during the forward scan. The characterisation of the diffusion behaviour is an important requirement

  5. Effects of water plasma immersion ion implantation on surface electrochemical behavior of NiTi shape memory alloys in simulated body fluids

    International Nuclear Information System (INIS)

    Liu, X.M.; Wu, S.L.; Chu, Paul K.; Chung, C.Y.; Chu, C.L.; Yeung, K.W.K.; Lu, W.W.; Cheung, K.M.C.; Luk, K.D.K.

    2007-01-01

    Water plasma immersion ion implantation (PIII) was conducted on orthopedic NiTi shape memory alloy to enhance the surface electrochemical characteristics. The surface composition of the NiTi alloy before and after H 2 O-PIII was determined by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) was utilized to determine the roughness and morphology of the NiTi samples. Potentiodynamic polarization tests and electrochemical impedance spectroscopy (EIS) were carried out to investigate the surface electrochemical behavior of the control and H 2 O-PIII NiTi samples in simulated body fluids (SBF) at 37 deg. C as well as the mechanism. The H 2 O-PIII NiTi sample showed a higher breakdown potential (E b ) than the control sample. Based on the AFM results, two different physical models with related equivalent electrical circuits were obtained to fit the EIS data and explain the surface electrochemical behavior of NiTi in SBF. The simulation results demonstrate that the higher resistance of the oxide layer produced by H 2 O-PIII is primarily responsible for the improvement in the surface corrosion resistance

  6. Electrochemical Study of Modified Glassy Carbon Electrode with Carboxyphenyl Diazonium Salt in Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Mariem BOUROUROU

    2014-05-01

    Full Text Available The covalent grafting of carboxyphenyl functionalities to planar carbon substrates by reaction with 2-carboxybenezenediazonium salt has been studied in aqueous acid solution. The surface was characterized, before and after the functionnalization process, by cyclic voltammetry, electrochemical impedance spectroscopy and linear sweep voltammetry (LSV in order to control and to prove the formation of a coating on the carbon surface. The results indicate the presence of substituted phenyl groups on the investigated surface. Electrochemical impedance measurements show that the slowing down of the electron transfer kinetics was more evident by increasing the number of cycles resulting to higher DEp and RCT parameters. Besides, the effect of the pH on the electron transfer processes of the Fe(CN63-/4- at the modified electrode is studied. By changing the solution pH the terminal group’s charge state would vary, based on which the surface pKa value is estimated.

  7. Electrochemical study of lithium insertion into carbon-rich polymer-derived silicon carbonitride ceramics

    International Nuclear Information System (INIS)

    Kaspar, Jan; Mera, Gabriela; Nowak, Andrzej P.; Graczyk-Zajac, Magdalena; Riedel, Ralf

    2010-01-01

    This paper presents the lithium insertion into carbon-rich polymer-derived silicon carbonitride (SiCN) ceramic synthesized by the thermal treatment of poly(diphenylsilylcarbodiimide) at three temperatures, namely 1100, 1300, and 1700 o C under 0.1 MPa Ar atmosphere. At lower synthesis temperatures, the material is X-ray amorphous, while at 1700 o C, the SiCN ceramic partially crystallizes. Anode materials prepared from these carbon-rich SiCN ceramics without any fillers and conducting additives were characterized using cyclic voltammetry and chronopotentiometric charging/discharging. We found that the studied silicon carbonitride ceramics demonstrate a promising electrochemical behavior during lithium insertion/extraction in terms of capacity and cycling stability. The sample synthesized at 1300 o C exhibits a reversible capacity of 392 mAh g -1 . Our study confirms that carbon-rich SiCN phases are electrochemically active materials in terms of Li inter- and deintercalation.

  8. The study of optimal conditions of electrochemical etching of tunnel electron microscopy tungsten tips

    International Nuclear Information System (INIS)

    Anguiano, E.; Aguilar, M.; Olivar, A.I.

    1996-01-01

    We present the experimental results obtained during the study made in the electrochemical etching of tunneling electron microscopy tungsten tips. The experiments was made using DC and two usual electrolytes: KOH and NaOH. For the tip preparation we used a electrochemical cell with stainless steel cathode and the tungsten wire as anode. the electrodes was introduced in a glass recipient containing the electrolytic solution. We study the effects of applied voltage, polish time, tip length and electrolyte concentration as process relevant parameters. The best condition for tip preparation was obtained with a metallurgical microscope and with a SEM.EDX and Auger analysis was made. The results shown the better tips was made with KOH as electrolyte with a limited concentration range (2-4 normal) and applied voltage (2-6 volts) (Author) 20 refs

  9. Electrochemical Corrosion and In Vitro Bioactivity of Nano-Grained Biomedical Ti-20Nb-13Zr Alloy in a Simulated Body Fluid

    Directory of Open Access Journals (Sweden)

    Mohamed A. Hussein

    2017-12-01

    Full Text Available The bioactivity and the corrosion protection for a novel nano-grained Ti-20Nb-13Zr at % alloy were examined in a simulated body fluid (SBF. The effect of the SPS’s temperature on the corrosion performance was investigated. The phases and microstructural details of the developed alloy were analyzed by XRD (X-ray Diffraction, SEM (Scanning Electron Microscopy, and TEM (Transmission Electron Microscope. The electrochemical study was investigated using linear potentiodynamic polarization and electrochemical impedance spectroscopy in a SBF, and the bioactivity was examined by immersing the developed alloy in a SBF for 3, 7, and 14 days. The morphology of the depositions after immersion was examined using SEM. Alloy surface analysis after immersion in the SBF was characterized by XPS (X-ray Photoelectron Spectroscopy. The results of the bioactivity test in SBF revealed the growth of a hydroxyapatite layer on the surface of the alloy. The analysis of XPS showed the formation of protective oxides of TiO2, Ti2O3, ZrO2, Nb2O5, and a Ca3(PO42 compound (precursor of hydroxyapatite deposited on the alloy surface, indicating that the presented alloy can stimulate bone formation. The corrosion resistance increased by increasing the sintering temperature and the highest corrosion resistance was obtained at 1200 °C. The improved corrosion protection was found to be related to the alloy densification. The bioactivity and the corrosion resistance of the developed nanostructured alloy in a SBF renders the nanostructured Ti-20Nb-13Zr alloy a promising candidate as an implant material.

  10. Study of electrochemical properties of thin film materials obtained using plasma technologies for production of electrodes for pacemakers

    International Nuclear Information System (INIS)

    Obrezkov, O I; Vinogradov, V P; Krauz, V I; Mozgrin, D V; Guseva, I A; Andreev, E S; Zverev, A A; Starostin, A L

    2016-01-01

    Studies of thin film materials (TFM) as coatings of tips of pacemaker electrodes implanted into the human heart have been performed. TFM coatings were deposited in vacuum by arc magnetron discharge plasma, by pulsed discharge of “Plasma Focus”, and by electron beam evaporation. Simulation of electric charge transfer to the heart in physiological blood- imitator solution and determination of electrochemical properties of the coatings were carried out. TFM of highly developed surface of contact with tissue was produced by argon plasma spraying of titanium powder with subsequent coating by titanium nitride in vacuum arc assisted by Ti ion implantation. The TFM coatings of pacemaker electrode have passed necessary clinical tests and were used in medical practice. They provide low voltage myocardium stimulation thresholds within the required operating time. (paper)

  11. Electrochemical reduction study of Eu3+ in perchlorid media by cyclic chronopotentiometry

    International Nuclear Information System (INIS)

    Brotto, M.E.; Rabockai, T.

    1990-01-01

    The electrochemical reduction of Eu 3+ in perchloric media was studied by means of cyclic chronopotentiometry. It is shown that the charge transfer reaction is followed by a chemical reaction in which Eu 2+ ion reoxydized to the trivalent ion (catalytic reaction scheme). The mean value of the homogeneous reaction rate constant is (2,43 +- 0,24) x 10 -2 dm 3 .mol -1 . (author)

  12. Simultaneous electrochemical-electron spin resonance studies of carotenoid cation radicals and dications

    International Nuclear Information System (INIS)

    Khaled, M.; Hadjipetrou, A.; Xinhai Chen; Kispert, L.

    1989-01-01

    Carotenoids are present in the chloroplasts of photosynthetic green plants and serve as photoprotect devices and antenna pigments, and active role in the photosynthetic electron-transport chain with the carotenoid cation radical as an integral part of the electron-transfer process. The research reported herein has confirmed that carotenoid cation radicals have a lifetime that is sensitive to solvent, being longest in CH 2 Cl 2 and are best prepared electrochemically. Semiempirical AM1 and INDO calculations of the trans and cis isomers of β-carotene, canthaxanthin and β-apo-8'-carotenal cation radicals predicted the unresolved EPR line whose linewidth varies to a measurable degree with carotenoid, which subsequent experimental observations affirmed. Simultaneous electrochemical - electron spin resonance studies of carotenoid cation radicals and dications have shown the radicals detected by EPR are formed by the one electron oxidation of the carotenoid, that dimers are not formed upon decay of the radical cations and an estimate of the rate of comproportionation as a function of carotenoid can be given. The formal rate constant K' for heterogenous electron transfer rate at the electrode surface has been deduced from rotating disc experiments. Upon deuteration, and in the presence of excess β-carotene, the half-life for decay of the carotenoid radical cation increased an order of magnitude due to the reaction between diffusion carotenoid dications and carotenoids to form additional radical cations. The carotenoid diffusion coefficients deduced by chronocoulometry substantiates this measurement. The produces formed upon electrochemical studies are being studied by HPLC and the isomers formed thermally are being separated. Additional radical reactions are currently being studied by EPR and electrochemical methods

  13. The electrochemical impedance spectroscopy of silver doped hydroxyapatite coating in simulated body fluid used as corrosive agent

    Directory of Open Access Journals (Sweden)

    Mišković-Stanković Vesna

    2012-01-01

    Full Text Available Titanium is a key biomedical material due its good biocompatibility, mechanical properties and corrosion stability, but infections of the implantation site still pose serious threat. One approach to prevent infection is to improve antimicrobial ability of the coating material. Silver doped hydroxyapatite (Ag/HAP nanoparticles were synthesized by new modified precipitation method. The synthesized powder was used for preparation of Ag/HAP coating on titanium by electrophoretic deposition. The coating was characterized in terms of phase composition and structure by Attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR and X-ray diffraction (XRD; surface morphology and chemical composition was assessed using scanning electron microscopy (SEM and energy dispersive spectroscopy (EDS. Research focused on evaluation of the corrosion behaviour of Ag/HAP coating in simulated body fluid (SBF at 37 ºC during prolonged immersion time by electrochemical impedance spectroscopy (EIS. Silver doped HAP coating provided good corrosion protection in SBF solution. [Acknowledgements. This research was financed by the Ministry of Education, Science and Technological Development of the Republic of Serbia, contracts No. III 45019 and by National Sciences and Engineering Research Council of Canada (NSERC. Dr Ana Jankovic was financed by the FP7 Nanotech FTM Grant Agreement 245916

  14. First principles simulation of the electrochemical behaviour of lithium battery materials; Modelisation du comportement electrochimique de materiaux pour batteries au lithium a partir de calculs de premiers principes

    Energy Technology Data Exchange (ETDEWEB)

    Rocquefelte, X.

    2001-10-01

    The functioning of a positive electrode in a lithium battery is based on the reversible intercalation of lithium. In some cases, such a reaction can lead to important structural modifications and therefore to an amorphization of the material. A theoretical approach is presented here that leads to structural predictions and simulations of electrochemical behaviour of positive electrode materials. In the first part, DFT (Density Functional Theory) formalisms and the respective advantages of FLAPW (Full potential Linearized Augmented Plane Waves) and PP/PW (Pseudopotential / Plane Waves) methods are discussed. In the second part are given some fundamental electrochemistry considerations related to the intercalation process, thermodynamics aspects and relationships with electronic structure. Then, an approach combining experimental data and geometry optimisation of structural hypotheses is given. This approach was first applied to a model compound LiMoS{sub 2}, and has been then generalised to systems of industrial interest such as Li{sub x}V{sub 2}O{sub 5} (0 {<=} x {<=} 3). The simulated X-ray diagrams of the optimised structures for LiMoS{sub 2} and {omega} - Li{sub 3}V{sub 2}O{sub 5} are in good agreement with experimental data. In the case of Li{sub x}V{sub 2}O{sub 5}, the first discharge curves starting from {alpha} - V{sub 2}O{sub 5} and {gamma}' - V{sub 2}O{sub 5} were then successfully simulated. A chemical bond analysis was carried out to help understand the origin of the distortion in LiMoS{sub 2} and the voltage variations in the electrochemical curves of Li{sub x}V{sub 2}O{sub 5}. This study clearly demonstrates that an approach combining first-principle calculations and available experimental data is invaluable in the structure determination of poorly crystallized compounds. Such a procedure contributes to the understanding of the phase transitions induced by the lithium intercalation in vanadium oxide compounds and can really be used in the research

  15. First principles simulation of the electrochemical behaviour of lithium battery materials; Modelisation du comportement electrochimique de materiaux pour batteries au lithium a partir de calculs de premiers principes

    Energy Technology Data Exchange (ETDEWEB)

    Rocquefelte, X

    2001-10-01

    The functioning of a positive electrode in a lithium battery is based on the reversible intercalation of lithium. In some cases, such a reaction can lead to important structural modifications and therefore to an amorphization of the material. A theoretical approach is presented here that leads to structural predictions and simulations of electrochemical behaviour of positive electrode materials. In the first part, DFT (Density Functional Theory) formalisms and the respective advantages of FLAPW (Full potential Linearized Augmented Plane Waves) and PP/PW (Pseudopotential / Plane Waves) methods are discussed. In the second part are given some fundamental electrochemistry considerations related to the intercalation process, thermodynamics aspects and relationships with electronic structure. Then, an approach combining experimental data and geometry optimisation of structural hypotheses is given. This approach was first applied to a model compound LiMoS{sub 2}, and has been then generalised to systems of industrial interest such as Li{sub x}V{sub 2}O{sub 5} (0 {<=} x {<=} 3). The simulated X-ray diagrams of the optimised structures for LiMoS{sub 2} and {omega} - Li{sub 3}V{sub 2}O{sub 5} are in good agreement with experimental data. In the case of Li{sub x}V{sub 2}O{sub 5}, the first discharge curves starting from {alpha} - V{sub 2}O{sub 5} and {gamma}' - V{sub 2}O{sub 5} were then successfully simulated. A chemical bond analysis was carried out to help understand the origin of the distortion in LiMoS{sub 2} and the voltage variations in the electrochemical curves of Li{sub x}V{sub 2}O{sub 5}. This study clearly demonstrates that an approach combining first-principle calculations and available experimental data is invaluable in the structure determination of poorly crystallized compounds. Such a procedure contributes to the understanding of the phase transitions induced by the lithium intercalation in vanadium oxide compounds and can really be used in the research of

  16. Electrochemical and DFT study of an anticancer and active anthelmintic drug at carbon nanostructured modified electrode.

    Science.gov (United States)

    Ghalkhani, Masoumeh; Beheshtian, Javad; Salehi, Maryam

    2016-12-01

    The electrochemical response of mebendazole (Meb), an anticancer and effective anthelmintic drug, was investigated using two different carbon nanostructured modified glassy carbon electrodes (GCE). Although, compared to unmodified GCE, both prepared modified electrodes improved the voltammetric response of Meb, the carbon nanotubes (CNTs) modified GCE showed higher sensitivity and stability. Therefore, the CNTs-GCE was chosen as a promising candidate for the further studies. At first, the electrochemical behavior of Meb was studied by cyclic voltammetry and differential pulse and square wave voltammetry. A one step reversible, pH-dependent and adsorption-controlled process was revealed for electro-oxidation of Meb. A possible mechanism for the electrochemical oxidation of Meb was proposed. In addition, electronic structure, adsorption energy, band gap, type of interaction and stable configuration of Meb on the surface of functionalized carbon nanotubes were studied by using density functional theory (DFT). Obtained results revealed that Meb is weakly physisorbed on the CNTs and that the electronic properties of the CNTs are not significantly changed. Notably, CNTs could be considered as a suitable modifier for preparation of the modified electrode for Meb analysis. Then, the experimental parameters affecting the electrochemical response of Meb were optimized. Under optimal conditions, high sensitivity (b(Meb)=dIp,a(Meb)/d[Meb]=19.65μAμM(-1)), a low detection limit (LOD (Meb)=19nM) and a wide linear dynamic range (0.06-3μM) was resulted for the voltammetric quantification of Meb. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. SPECTROSCOPIC STUDIES OF MATERIALS FOR ELECTROCHEMICAL ENERGY STORAGE

    Energy Technology Data Exchange (ETDEWEB)

    Greenbaum, Steven G.

    2014-03-01

    Several battery materials research projects were undertaken, suing NMR spectroscopy as a primary analytical tool. These include transport proerties of liquid and solid electrolytes and structural studies of Li ion electrodes.

  18. A combined electrochemical and theoretical study of pyridine-based ...

    Indian Academy of Sciences (India)

    PARUL DOHARE

    2018-02-01

    Feb 1, 2018 ... diamine (DAP-3) were synthesized, characterized, and their corrosion inhibition performance was studied on ... inhibition efficiencies of various organic compounds on ...... 5 alkyl 1,3,4 thiadiazole compounds on the corrosion ...

  19. Inclusion of pH and potential in atomic-scale simulations of the electrochemical interface

    DEFF Research Database (Denmark)

    Björketun, Mårten; Rossmeisl, Jan; Chan, Karen

    2013-01-01

    interest in the development of efficient electrocatalysts for alkaline environments [2]. Consideration of pH is thus a crucial challenge in ab initio simulations. Here we present a generalization of the computational hydrogen electrode to explicitly capture the respective pH and potential effects...... on the interface structure and its corresponding free energy. Using simple thermodynamic arguments, the method determines ground state interface structures as a function of pH and potential. As an example, we apply the method to a set of Pt(111)| water structures and determine the corresponding Pourbaix diagram...

  20. Corrosion behaviour of Ni in aprotic solvents an electrochemical, XPS and AFM study

    International Nuclear Information System (INIS)

    Bellucci, F.; Monetta, T.; Capobianco, G.; Deganello, A.; Glisenti, A.; Moretti, G.

    1998-01-01

    Electrochemical and X-ray photoelectron spectroscopic (XPS) techniques have been used to study the passivation of nickel in 0.1 M H 2 SO 4 DMF and ACN solutions with different water content. Electrochemical results indicate the anodic formation of a thin, poor protective layer and the possibility of salt precipitation onto the metallic surface. ARXPS results indicate that while in the anodic film formed in DMF, Ni(OH) 2 constitute the superficial component under which a discontinuous layer of NiO and NiSO 4 is present. Ni(OH) 2 and NiSO 4 are the more superficial constituents in the passivation layer formed in ACN, while NiO becomes prevalent in the underlying layers. AFM images show that in both the solvents the sample surface is very dishomogeneous with flakes and fractures. (orig.)

  1. Synthesis of fully and partially sulfonated polyanilines derived from ortanilic acid: An electrochemical and electromicrogravimetric study

    International Nuclear Information System (INIS)

    Cano Marquez, Abraham Guadalupe; Torres Rodriguez, Luz Maria; Montes Rojas, Antonio

    2007-01-01

    The electrochemical polymerization of 2-aminobenzene sulfonic acid, also called ortanilic acid (o-ASA), on a gold electrode precoated with polyaniline (PANI), has been carried out. We proved that the electropolymerization of o-ASA is enhanced on PANI electrodes, resulting in thicker films obtained in aqueous media at room temperature. The electrosynthesized film (P(o-ASA)) was characterized by cyclic voltammetry, FTIR and nuclear magnetic resonance. The compensation of P(o-ASA) charge was evaluated using electrochemical quartz crystal microbalance combined with cyclic voltammetry, which showed that the electroneutralization process mainly involves cations. Additionally, copolymers of aniline and o-ASA were electrosynthesized, using a metallic electrode modified with PANI also as a working electrode. The degree of sulfanation of copolymers has been modulated with the proportions of monomers in the electrosynthesis solution. The studies reveal a more important participation of cations in fully sulfonated polyaniline than in partially sulfonated polyaniline

  2. Three dimensional electrochemical simulation of solid oxide fuel cell cathode based on microstructure reconstructed by marching cubes method

    Science.gov (United States)

    He, An; Gong, Jiaming; Shikazono, Naoki

    2018-05-01

    In the present study, a model is introduced to correlate the electrochemical performance of solid oxide fuel cell (SOFC) with the 3D microstructure reconstructed by focused ion beam scanning electron microscopy (FIB-SEM) in which the solid surface is modeled by the marching cubes (MC) method. Lattice Boltzmann method (LBM) is used to solve the governing equations. In order to maintain the geometries reconstructed by the MC method, local effective diffusivities and conductivities computed based on the MC geometries are applied in each grid, and partial bounce-back scheme is applied according to the boundary predicted by the MC method. From the tortuosity factor and overpotential calculation results, it is concluded that the MC geometry drastically improves the computational accuracy by giving more precise topology information.

  3. Laboratory Experiments on the Electrochemical Remediation of Environment. Part 4: Color Removal of Simulated Wastewater by Electrocoagulation-Electroflotation

    Science.gov (United States)

    Ibanez, Jorge G.; Singh, M. M.; Szafran, Z.

    1998-08-01

    Due to the large production of aqueous waste streams from textile mills and dye production plants, several processes have been under intense study. Electrochemical processes offer some distinctive advantages, including effects due to: 1) the production of electrolysis gases, and 2) the production of polyvalent cations from the oxidation of corrodible anodes (like Fe and Al). The gas bubbles can carry the pollutant to the top of the solution where it can be more easily concentrated, collected and removed. The metallic ions can react with the OH- ions produced at the cathode during the evolution of H2 gas to yield insoluble hydroxides that will adsorb pollutants out of the solution and also contribute to coagulation by neutralizing any negatively charged colloidal particles that might be present. In this experiment an iron electrode (paper clip) is used in conjunction with pH indicator dyes, so dramatic color changes will be noticed.

  4. Simulation of an electrostatic soot-filter with continuous electrochemical conversion during the stages of development

    International Nuclear Information System (INIS)

    Muri, M.

    1996-04-01

    The dissertation describes the simulation of an electrostatic Diesel-Soot-Converter during its stages of development. This simulation is not only necessary for the interpretation of the experimental results, it also shows results for assumptions that cannot be received experimentally. The Diesel-Soot-Converter consists of a charging electrode, which charges the particles by a high-voltage and a ceramic monolith, where the particles are precipitated in the open channels because of an electric field created also by a high-voltage. Afterwards the particles are burned by a plasma. The filter-function of the Diesel-Soot-Converter was formulated and the efficiency for a vehicle was calculated. In the first part of the calculation the mass flow of a BMW 318tds and a BMW 325tds was determined for an US-FTP75-testcycle and for fuel load. In the second part the efficiency of different Diesel-Soot-Converter-types was calculated for the US-FTP75-testcycle and for full load. The use of the program with other testcycles is possible. The results of the calculations show the best configuration of the Diesel-Soot-Converter for the corresponding vehicle. Therefore with the help of this program time and money for the production of the ceramic can be saved. (author)

  5. Study of chemical and electrochemical properties of some elements in molten NaAlCl

    International Nuclear Information System (INIS)

    Bermond, Alain

    1976-01-01

    We describe a study of the electrochemical and chemical properties in molten mixtures of Aluminium Chloride-Sodium chloride, at 210 deg. C and the concept of acidity, related to chloride activity, is previously summarized. In a first part, the study of Mercury and Cadmium by means of electro-analytical techniques, states the Hg 2+ 2 , Hg 2+ , Cd 2+ 2 and Cd 2+ ions and their acid properties. Some diagrams Equilibrium potential vs acidity are the synthesis of these results. In a second part, it is shown that a nickel electrode is an indicator of the presence of oxide ions; from interpretation of electrochemical results, O 2 appears to behave, in terms of the chloro-acido-basicity concept, as a strong di-base, giving the solvated form AlOCl - 2 , or a strong tri-base giving AlOCl. A saturation effect by Al 2 O 3 appears when the oxide concentration is increased; the solubility of Al 2 O 3 versus acidity is determined from the electrochemical results. In a third part, results for the Ni/Ni(II) or HCl/H 2 O systems are related to dissolved oxide ion presence in chloroaluminate melts; elimination of oxide ions, through H 2 O formation, by reaction with HCl is noteworthy. (author) [fr

  6. Real-time studies of battery electrochemical reactions inside a transmission electron microscope.

    Energy Technology Data Exchange (ETDEWEB)

    Leung, Kevin; Hudak, Nicholas S.; Liu, Yang; Liu, Xiaohua H.; Fan, Hongyou; Subramanian, Arunkumar; Shaw, Michael J.; Sullivan, John Patrick; Huang, Jian Yu

    2012-01-01

    We report the development of new experimental capabilities and ab initio modeling for real-time studies of Li-ion battery electrochemical reactions. We developed three capabilities for in-situ transmission electron microscopy (TEM) studies: a capability that uses a nanomanipulator inside the TEM to assemble electrochemical cells with ionic liquid or solid state electrolytes, a capability that uses on-chip assembly of battery components on to TEM-compatible multi-electrode arrays, and a capability that uses a TEM-compatible sealed electrochemical cell that we developed for performing in-situ TEM using volatile battery electrolytes. These capabilities were used to understand lithiation mechanisms in nanoscale battery materials, including SnO{sub 2}, Si, Ge, Al, ZnO, and MnO{sub 2}. The modeling approaches used ab initio molecular dynamics to understand early stages of ethylene carbonate reduction on lithiated-graphite and lithium surfaces and constrained density functional theory to understand ethylene carbonate reduction on passivated electrode surfaces.

  7. Study of electrochemical corrosion parameters in the detection of fission fragments in solid state trace detectors (SSTD)

    International Nuclear Information System (INIS)

    Silva Oliveira, S. da; Rogers, J.D.

    1980-01-01

    The basic properties of the electrochemical corrosion method, for the Makrofol E plastic, irradiated with fission fragments from a 252 Cf source were studied and discussed in this paper. (A.C.A.S.) [pt

  8. ELECTROCHEMICAL STUDY OF RHENIUM-TELLURIUM-COPPER SYSTEM

    OpenAIRE

    E.A.Salakhova*1, D.B.Tagiyev2, P.E.Kalantarova3 and A.M.Askerova4

    2017-01-01

    The formation of the triple alloys Re-Te-Cu on the platinum electrode at volt amperemetric cycling has been studied. The investigation was carried out from chloride acidic solution containing tellurium acid, potassium perrhenate, chloride copper. The kinetics of the processes was controlled using the measurements by the method of cyclic volt-amperometry on the device İVİUMSTAT. For the analysis of composition and structure the methods of XRD (X-ray diffraction analysis) were used, and the inv...

  9. Mechanism of the electrochemical oligomerization of thionaphteneindole: a spectroscopic study

    Science.gov (United States)

    Poggi, Gabriella; Casalbore Miceli, Giuseppe; Beggiato, Giancarlo; Emmi, Salvatore S.

    1997-10-01

    The UV, visible and NIR spectra recorded during electrolysis of TNI in CH 2Cl 2 have been studied as a function of electrolysis time and of the quantity of charge exchanged. Among the oligomeric species that might be responsible for the behaviour observed, particular attention has been devoted to dimers of TNI characterized by different charges, presence of unpaired electrons, and deprotonation of the amino hydrogens. A sample of these species has been described theoretically by means of the PM3 semiempirical hamiltonian and their spectra have been computed giving results in reasonable agreement with the observed transitions.

  10. An electrochemical study of natural and chemically controlled eumelanin

    Directory of Open Access Journals (Sweden)

    Ri Xu

    2017-12-01

    Full Text Available Eumelanin is the most common form of the pigment melanin in the human body, with functions including antioxidant behavior, metal chelation, and free radical scavenging. This biopigment is of interest for biologically derived batteries and supercapacitors. In this work, we characterized the voltammetric properties of chemically controlled eumelanins produced from 5,6-dihydroxyindole (DHI and 5,6-dihydroxyindole-2-carboxylic acid (DHICA building blocks, namely, DHI-melanin, DHICA-melanin, and natural eumelanin, extracted from the ink sac of cuttlefish, Sepia melanin. Eumelanin electrodes were studied for their cyclic voltammetric properties in acidic buffers including Na+, K+, NH4+, and Cu2+ ions.

  11. An electrochemical study of natural and chemically controlled eumelanin

    Science.gov (United States)

    Xu, Ri; Prontera, Carmela Tania; Di Mauro, Eduardo; Pezzella, Alessandro; Soavi, Francesca; Santato, Clara

    2017-12-01

    Eumelanin is the most common form of the pigment melanin in the human body, with functions including antioxidant behavior, metal chelation, and free radical scavenging. This biopigment is of interest for biologically derived batteries and supercapacitors. In this work, we characterized the voltammetric properties of chemically controlled eumelanins produced from 5,6-dihydroxyindole (DHI) and 5,6-dihydroxyindole-2-carboxylic acid (DHICA) building blocks, namely, DHI-melanin, DHICA-melanin, and natural eumelanin, extracted from the ink sac of cuttlefish, Sepia melanin. Eumelanin electrodes were studied for their cyclic voltammetric properties in acidic buffers including Na+, K+, NH4+, and Cu2+ ions.

  12. Electrochemical Studies of Lead Telluride Behavior in Acidic Nitrate Solutions

    Directory of Open Access Journals (Sweden)

    Rudnik E.

    2015-04-01

    Full Text Available Electrochemistry of lead telluride stationary electrode was studied in nitric acid solutions of pH 1.5-3.0. E-pH diagram for Pb-Te-H2O system was calculated. Results of cyclic voltammetry of Pb, Te and PbTe were discussed in correlation with thermodynamic predictions. Anodic dissolution of PbTe electrode at potential approx. -100÷50 mV (SCE resulted in tellurium formation, while above 300 mV TeO2 was mainly produced. The latter could dissolve to HTeO+2 under acidic electrolyte, but it was inhibited by increased pH of the bath.

  13. Optical and electrochemical studies of polyaniline/SnO2 fibrous nanocomposites

    International Nuclear Information System (INIS)

    Manivel, P.; Ramakrishnan, S.; Kothurkar, Nikhil K.; Balamurugan, A.; Ponpandian, N.; Mangalaraj, D.; Viswanathan, C.

    2013-01-01

    Graphical abstract: Fiber with porous like structure of PANI/SnO 2 nanocomposites were prepared by simplest in situ chemical polymerization method. The PL emission spectra revealed that the band from 404 and 436 nm which is related with oxygen vacancies. The excellent electrochemical properties of composite electrode show the specific capacitance of 173 F/g at a scan rate of 25 m V/s. Display Omitted Highlights: ► Self assembled PANI/SnO 2 nanocomposites were synthesized by simple polymerization method. ► Electrochemical behavior of PANI/SnO 2 nanocomposites electrode was analyzed by CV. ► Nanocomposites exhibit a higher specific capacitance of 173 F/g, compared with pure SnO 2 . -- Abstract: Polyaniline (PANI)/tin oxide (SnO 2 ) fibrous nanocomposites were successfully prepared by an in situ chemical polymerization method with suitable conditions. The obtained composites were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy, photoluminescence (PL), electrical conductivity and cyclic voltammetry studies (CV). The XRD pattern of the as-prepared sample shows the presence of tetragonal SnO 2 and the crystalline structure of SnO 2 was not affected with the incorporation of PANI. The FTIR analysis confirms the uniform attachment of PANI on the surface of SnO 2 nanostructures. SEM images show a fibrous agglomerated structure of PANI/SnO 2 . The PL emission spectra revealed that the band from 404 and 436 nm which is related with oxygen vacancies. The electrochemical behavior of the PANI/SnO 2 composite electrode was evaluated in a H 2 SO 4 solution using cyclic voltammetry. The composite electrode exhibited a specific capacitance of 173 F/g at a scan rate 25 mV/s. Thus the as-prepared PANI/SnO 2 composite shows excellent electrochemical properties, suggesting that this composite is a promising material for supercapacitors.

  14. Electrochemical study on the cationic promotion of the catalytic SO2 oxidation in pyrosulfate melts

    DEFF Research Database (Denmark)

    Petrushina, Irina; Bjerrum, Niels; Cappeln, Frederik Vilhelm

    1998-01-01

    The electrochemical behavior of the molten V2O5-M2S2O7 (M = K, Cs, or Na) system was studied using a gold working electrode at 440 degrees C in argon and air atmosphere. The aim of the present investigation was to find a possible correlation between the promoting effect of Cs+ and Na+ ions...... on the catalytic oxidation of SO2 in the V2O5-M2S2O7 system and the effect of these alkali cations on the electrochemical behavior of V2O5 in the alkali pyrosulfate melts It has been shown that Na+ ions had a promoting effect on the V(V) reversible arrow V(IV) electrochemical reaction. Sodium ions accelerate both...... in the catalytic SO, oxidation most likely is the oxidation of V(IV) to V(V) and the Na+ and Cs+ promoting effect is based on the acceleration of this stage. It has also been proposed that voltammetric measurements can be used for fast optimization of the composition of the vanadium catalyst (which...

  15. ELECTROCHEMICAL CORROSION STUDY VIA LINEAR POLARIZATION IN PEAS CAN

    Directory of Open Access Journals (Sweden)

    I. M. Costa

    2016-09-01

    Full Text Available The aim of this work is to study the corrosion of tinplate can for peas. Firstly, the characterization of canning solution was made. The values of pH, conductivity, Brix, viscosity, density and content of Fe were, respectively, 5.88; 32.6 mS/cm; 6.6%; 3,42cP; 1.026 g/ml; 12.05 mg/kg. The corrosion rate in the cans was determined by linear polarization technique. The electrodes with and without varnish were analyzed in the first and fifth day of the experiment for the 3 parts of the can. The corrosion rate increased significantly when the coating was removed and the body showed a higher corrosion rate, reaching 1.7 mm/year in the absence of varnish. The microstructure of the samples was evaluated by scanning electron microscopy (SEM coupled with energy dispersive spectroscopy (EDS. The increase of iron on the surface, evidenced by energy dispersive spectroscopy (EDS may have contributed to the corrosion in the samples without varnish.

  16. Surface analysis and electrochemical behavior of Ti–20Zr alloy in simulated physiological fluids

    Energy Technology Data Exchange (ETDEWEB)

    Calderon Moreno, Jose Maria; Vasilescu, Ecaterina; Drob, Paula; Osiceanu, Petre; Vasilescu, Cora; Drob, Silviu Iulian, E-mail: sidrob@chimfiz.icf.ro; Popa, Monica

    2013-11-01

    Highlights: • The advanced Ti–20Zr alloy shows fully lamellar α + β microstructure. • The alloy passive film improves its properties by deposition of HA (XPS, SEM, EDX, Raman, FT-IR). • Alloy revealed lower corrosion rates and higher polarization resistances than Ti. • EIS spectra depicted a more protective passive film on the alloy surface than on Ti. • The passive film is formed by two layers: an inner barrier and an outer porous layer. -- Abstract: An advanced Ti–20Zr alloy was obtained by double vacuum melting in a semi-levitation furnace with cold crucible. The alloy shows fully lamellar α + β microstructure. Cyclic potentiodynamic polarization curves revealed that the alloy passivated easier, more rapid than Ti, having a more stable passive film in Ringer solutions of different pH values, simulating severe functional conditions of an implant. In neutral and alkaline Ringer solutions, the alloy passive film improved its properties in time (1500 h) by the deposition of protective hydroxyapatite, as was demonstrated by XPS, SEM, EDX, Raman and FT-IR measurements. Alloy presented lower corrosion rates and higher polarization resistances (from linear polarization measurements) than those of Ti (tens of times) proving a more resistant passive film. Alloy open circuit potentials had more electropositive values in comparison with Ti and tended to nobler values in time, which denote better passive state and its enhancement in time, due to the new depositions from the physiological solutions. Nyquist and Bode spectra depicted a more protective passive film on the alloy surface than on Ti surface. The passive film is formed by two layers: an inner barrier layer and an outer porous layer. An electric equivalent circuit with two time constants was modeled.

  17. Surface analysis and electrochemical behavior of Ti–20Zr alloy in simulated physiological fluids

    International Nuclear Information System (INIS)

    Calderon Moreno, Jose Maria; Vasilescu, Ecaterina; Drob, Paula; Osiceanu, Petre; Vasilescu, Cora; Drob, Silviu Iulian; Popa, Monica

    2013-01-01

    Highlights: • The advanced Ti–20Zr alloy shows fully lamellar α + β microstructure. • The alloy passive film improves its properties by deposition of HA (XPS, SEM, EDX, Raman, FT-IR). • Alloy revealed lower corrosion rates and higher polarization resistances than Ti. • EIS spectra depicted a more protective passive film on the alloy surface than on Ti. • The passive film is formed by two layers: an inner barrier and an outer porous layer. -- Abstract: An advanced Ti–20Zr alloy was obtained by double vacuum melting in a semi-levitation furnace with cold crucible. The alloy shows fully lamellar α + β microstructure. Cyclic potentiodynamic polarization curves revealed that the alloy passivated easier, more rapid than Ti, having a more stable passive film in Ringer solutions of different pH values, simulating severe functional conditions of an implant. In neutral and alkaline Ringer solutions, the alloy passive film improved its properties in time (1500 h) by the deposition of protective hydroxyapatite, as was demonstrated by XPS, SEM, EDX, Raman and FT-IR measurements. Alloy presented lower corrosion rates and higher polarization resistances (from linear polarization measurements) than those of Ti (tens of times) proving a more resistant passive film. Alloy open circuit potentials had more electropositive values in comparison with Ti and tended to nobler values in time, which denote better passive state and its enhancement in time, due to the new depositions from the physiological solutions. Nyquist and Bode spectra depicted a more protective passive film on the alloy surface than on Ti surface. The passive film is formed by two layers: an inner barrier layer and an outer porous layer. An electric equivalent circuit with two time constants was modeled

  18. ''In-situ'' spectro-electrochemical studies of radionuclide-contaminated surface films on metals

    International Nuclear Information System (INIS)

    Melendres, C.A.; Mini, S.; Mansour, A.N.

    2000-01-01

    The incorporation of heavy metal ions and radioactive contaminants into hydrous oxide films has been investigated in order to provide fundamental knowledge that could lead to the technological development of cost-effective processes and techniques for the decontamination of storage tanks, piping systems, surfaces, etc., in DOE nuclear facilities. The formation of oxide/hydroxide films was simulated by electrodeposition onto a graphite substrate from solutions of the appropriate metal salt. Synchrotron X-ray Absorption Spectroscopy (XAS), supplemented by Laser Raman Spectroscopy (LRS), was used to determine the structure and composition of the host oxide film, as well as the impurity ion. Results have been obtained for the incorporation of Ce, Sr, Cr, Fe, and U into hydrous nickel oxide films. Ce and Sr oxides/hydroxides are co-precipitated with the nickel oxides in separate phase domains. Cr and Fe, on the other hand, are able to substitute into Ni lattice sites or intercalate in the interlamellar positions of the brucite structure of Ni(OH) 2 . U was found to co-deposit as a U(VI) hydroxide. The mode of incorporation of metal ions depends both on the size and charge of the metal ion. The structure of iron oxide (hydroxide) films prepared by both anodic and cathodic deposition has also been extensively studied. The structure of Fe(OH) 2 was determined to be similar to that of α-Ni(OH) 2 . Anodic deposition from solutions containing Fe 2+ results in a film with a structure similar to γ-FeOOH. From the knowledge gained from the present studies, principles and methods for decontamination have become apparent. Contaminants sorbed on oxide surfaces or co-precipitated may be removed by acid wash and selective dissolution or complexation. Ions incorporated into lattice sites and interlamellar layers will require more drastic cleaning procedures. Electropolishing and the use of an electrochemical brush are among concepts that should be considered seriously for the latter

  19. ELECTROCHEMICAL STUDIES OF CARBON STEEL CORROSION IN HANFORD DOUBLE SHELL TANK (DST) WASTE

    Energy Technology Data Exchange (ETDEWEB)

    DUNCAN, J.B.; WINDISCH, C.F.

    2006-10-13

    This paper reports on the electrochemical scans for the supernatant of Hanford double-shell tank (DST) 241-SY-102 and the electrochemical scans for the bottom saltcake layer for Hanford DST 241-AZ-102. It further reports on the development of electrochemical test cells adapted to both sample volume and hot cell constraints.

  20. Study of the degradation of liquid-organic radioactive wastes by electrochemical methods

    International Nuclear Information System (INIS)

    Hernandez A, J. I.

    2015-01-01

    In this study degradation studies were performed on blank samples, in which two electrochemical cells with different electrodes were used, the first is constituted by mesh electrodes Ti/Ir-Ta/Ti and the second by rod electrodes Ti/Ddb, using as reference an electrolytic medium of scintillation liquid and scintillation liquid more water, applying different potentials ranging from 1 to 25 V. After obtaining the benchmarks, the treatment was applied to samples containing organic liquid radioactive waste, in this case a short half-life radioisotope as Sulfur-35, the degradation characterization of organic compounds was performed in infrared spectrometry. (Author)

  1. Chernobyl reactor transient simulation study

    International Nuclear Information System (INIS)

    Gaber, F.A.; El Messiry, A.M.

    1988-01-01

    This paper deals with the Chernobyl nuclear power station transient simulation study. The Chernobyl (RBMK) reactor is a graphite moderated pressure tube type reactor. It is cooled by circulating light water that boils in the upper parts of vertical pressure tubes to produce steam. At equilibrium fuel irradiation, the RBMK reactor has a positive void reactivity coefficient. However, the fuel temperature coefficient is negative and the net effect of a power change depends upon the power level. Under normal operating conditions the net effect (power coefficient) is negative at full power and becomes positive under certain transient conditions. A series of dynamic performance transient analysis for RBMK reactor, pressurized water reactor (PWR) and fast breeder reactor (FBR) have been performed using digital simulator codes, the purpose of this transient study is to show that an accident of Chernobyl's severity does not occur in PWR or FBR nuclear power reactors. This appears from the study of the inherent, stability of RBMK, PWR and FBR under certain transient conditions. This inherent stability is related to the effect of the feed back reactivity. The power distribution stability in the graphite RBMK reactor is difficult to maintain throughout its entire life, so the reactor has an inherent instability. PWR has larger negative temperature coefficient of reactivity, therefore, the PWR by itself has a large amount of natural stability, so PWR is inherently safe. FBR has positive sodium expansion coefficient, therefore it has insufficient stability it has been concluded that PWR has safe operation than FBR and RBMK reactors

  2. Technological study of electrochemical uranium fuel reprocessing in fused chloride bath

    International Nuclear Information System (INIS)

    Fernandes, Damaris

    2002-01-01

    This study is applied to metallic fuels recycling, concerning advanced reactor concept, which was proposed and tested in LMR type reactors. Conditions for electrochemical non-irradiated uranium fuel reprocessing in fused chloride bath in laboratory scale were established. Experimental procedures and parameters for dehydration treatment of LiCl-KCl eutectic mixture and for electrochemical study of U 3+ /U system in LiCl-KCl were developed and optimized. In the voltammetric studies many working electrodes were tested. As auxiliary electrodes, graphite and stainless steels crucibles were verified, with no significant impurities inclusions in the system. Ag/AgCl in Al 2 O 3 with 1 w% in AgCl were used as reference electrode. The experimental set up developed for electrolyte treatment as well as for the study of the system U 3+ /U in LiCl-KCl showed to be adequate and efficient. Thermogravimetric Techniques, Scanning Electron Microscopy with Energy Dispersive X-Ray Spectrometry and cyclic voltametry showed an efficient dehydration method by using HCl gas and than argon flux for 12 h. Scanning Electron Microscopy, with Energy Dispersive X-Ray Spectrometry and Inductively Coupled Plasma Emission Spectrometry and DC Arc Emission Spectrometry detected the presence of uranium in the cadmium phase. X-ray Diffraction and also Inductively Coupled Plasma Emission Spectrometry and DC Arc Emission Spectrometry were used for uranium detection in the salt phase. The obtained results for the system U 3+ /U in LiCl-KCl showed the viability of the electrochemical reprocessing process based on the IFR advanced fuel cycle. (author)

  3. Electrochemical Evaluation of Hydroxyapatite/ZrN Coated Magnesium Biodegradable Alloy in Ringer Solution as a Simulated Body Fluid

    Directory of Open Access Journals (Sweden)

    Seyed Rahim Kiahosseini

    2015-02-01

    Full Text Available Magnesium alloys as biodegradable materials can be used in body as an implant materials but since they have poor corrosion resistance, it is required to decrease their corrosion rate by biocompatible coatings. In this study, hydroxyapatite (HA coatings in the presence of an intermediate layer of ZrN as a biocompatible material, deposited on AZ91 magnesium alloy by ion beam sputtering method at 300 °C temperature and at different times 180, 240, 300, 360 and 420 min. Then changes in corrosion resistance of samples in Ringer's solution as a solution similar to the human body was evaluated in two ways, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS. To investigate the causes of the destruction of the samples, the surface of samples was studied by scanning electron microscopy (SEM. The results showed that because of porous coatings created, the corrosion potential of the samples was about +55mV higher than the uncoated substrate that by changing the deposition time, was not observed the significant change But with increasing deposition time to 360 min, corrosion current decreased which represents an increase of corrosion resistance of magnesium alloy in body solution. However, a further increase in deposition time to 420 min, due to increase thickness and stress in the layer, the corrosion resistance of the samples was reduced. The results of the EIS confirm the corrosion behavior of the polarization method, too.   

  4. Reflection-mode x-ray powder diffraction cell for in situ studies of electrochemical reactions

    International Nuclear Information System (INIS)

    Roberts, G.A.; Stewart, K.D.

    2004-01-01

    The design and operation of an electrochemical cell for reflection-mode powder x-ray diffraction experiments are discussed. The cell is designed for the study of electrodes that are used in rechargeable lithium batteries. It is designed for assembly in a glove box so that air-sensitive materials, such as lithium foil electrodes and carbonate-based electrolytes with lithium salts, can be used. The cell uses a beryllium window for x-ray transmission and electrical contact. A simple mechanism for compressing the electrodes is included in the design. Sample results for the cell are shown with a Cu Kα source and a position-sensitive detector

  5. TXRF study of electrochemical deposition of metals on glass-ceramic carbon electrode surfaces

    International Nuclear Information System (INIS)

    Alov, N.; Oskolok, K.; Wittershagen, A.; Mertens, M.; Rittmeyer, C.; Kolbesen, B.O.

    2000-01-01

    Nowadays the methods of solid surface analysis are widely used to study the thermodynamic and kinetic aspects of joint electrochemical deposition of metals on solid substrates. In this work the surfaces of some binary and ternary metal electrodeposits on disc glass-ceramic carbon electrodes were studied by total-reflection x-ray fluorescence spectroscopy (TXRF). Metal alloys were obtained as a result of electrochemical co-deposition of copper, cadmium and lead from n x 10 -4 M (Cu, Cd, Pb)(NO 3 ) 2 + 0.01 M HNO 3 solutions under mixing. TXRF measurements were performed with an ATOMIKA EXTRA II A spectrometer using Mo K α and W (Brems) primary excitation. The serious advantage of TXRF as a method of near-surface analysis is very high element sensitivity. Apart from main elements (Cu, Cd, Pb) we have detected trace elements (Cl, Ag, Pt, Hg) which are present in working solution and has an effect to the electrodeposit formation. The comparison of TXRF data with information obtained by X-ray photoelectron spectroscopy and electron-probe x-ray microanalysis permits to realize depth profiling electrochemical alloys. In particular it was found that in binary systems Cu-Pb and Cu-Cd the relative lead and cadmium content on the electrodeposit surface is considerably greater than in the bulk. These phenomena are due to the features of metal nucleation and growth mechanisms. High sensitivity of TXRF to surface morphology and the correlation of TXRF and scanning electron microscopy data allow to determine the area of prevailing location of metal in the heterogeneous alloy surface. So we have established that in Cu-Pb and Cu-Cd-Pb systems solid solution of copper and lead is formed: significant part of lead is deposited not only in specific 3D-clusters but also in copper thin film. It was demonstrated that the near-surface TXRF analysis of metal electrodeposits on solid electrodes is highly effective to study the mechanisms of metal nucleation, metal cluster and thin film

  6. Electrochemical sensors applied to pollution monitoring: Measurement error and gas ratio bias - A volcano plume case study

    Science.gov (United States)

    Roberts, T. J.; Saffell, J. R.; Oppenheimer, C.; Lurton, T.

    2014-06-01

    There is an increasing scientific interest in the use of miniature electrochemical sensors to detect and quantify atmospheric trace gases. This has led to the development of ‘Multi-Gas' systems applied to measurements of both volcanic gas emissions, and urban air pollution. However, such measurements are subject to uncertainties introduced by sensor response time, a critical issue that has received limited attention to date. Here, a detailed analysis of output from an electrochemical SO2 sensor and two H2S sensors (contrasting in their time responses and cross-sensitivities) demonstrates how instrument errors arise under the conditions of rapidly fluctuating (by dilution) gas abundances, leading to scatter and importantly bias in the reported gas ratios. In a case study at Miyakejima volcano (Japan), electrochemical sensors were deployed at both the crater-rim and downwind locations, thereby exposed to rapidly fluctuating and smoothly varying plume gas concentrations, respectively. Discrepancies in the H2S/SO2 gas mixing ratios derived from these measurements are attributed to the sensors' differing time responses to SO2 and H2S under fluctuating plume conditions, with errors magnified by the need to correct for SO2 interference in the H2S readings. Development of a sensor response model that reproduces sensor t90 behaviour (the time required to reach 90% of the final signal following a step change in gas abundance) during calibration enabled this measurement error to be simulated numerically. The sensor response times were characterised as SO2 sensor (t90 ~ 13 s), H2S sensor without interference (t90 ~ 11 s), and H2S sensor with interference (t90 ~ 20 s to H2S and ~ 32 s to SO2). We show that a method involving data integration between periods of episodic plume exposure identifiable in the sensor output yields a less biased H2S/SO2 ratio estimate than that derived from standard analysis approaches. For the Miyakejima crater-rim dataset this method yields highly

  7. Electrochemical study of chemical properties in ethanolamine and its mixtures with water

    International Nuclear Information System (INIS)

    Grall, M.

    1964-12-01

    This work is concerned with the study of acid-base reactions and of complex formation in ethanolamine and its mixtures with water. The ionic product of the solvent has been determined by an electro-chemical study of the H + /H 2 system. The reduction curves for ethanolamine-water mixtures, for different acidities, have made it possible to follow the variations in the size of the pH domain as a function of the composition of the solvent. The form of this variation has been explained on the basis of the dielectric constant and the solvation of the proton by the ethanolamine. In the second part, the electrochemical systems of mercury have been studied by anodic polarography. In order to establish a parallel between the acid-base reactions and complex formation reactions, we have studied the stability of Hg (CN) 2 in water-ethanolamine mixtures. It has been possible to deduce the law for the variation of pK c with solvent composition. The representative graph of this function passes through a minimum for a proportion of about 50 per cent of ethanolamine as in the case of acids. This variation has been explained by the predominating influence of ε for ethanolamine propositions of over 50 per cent and by that of the solvation of Hg 2+ for proportions of under 50 per cent. (author) [fr

  8. A study of intergranular corrosion of austenitic stainless steel by electrochemical potentiodynamic reactivation, electron back-scattering diffraction and cellular automaton

    Energy Technology Data Exchange (ETDEWEB)

    Yu Xiaofei [Department of Chemistry, Shandong University, Jinan 250100 (China); Chen Shenhao [Department of Chemistry, Shandong University, Jinan 250100 (China); State Key Laboratory for Corrosion and Protection, Shenyang 110016 (China)], E-mail: shchen@sdu.edu.cn; Liu Ying; Ren Fengfeng [Department of Chemistry, Shandong University, Jinan 250100 (China)

    2010-06-15

    The impact of solution and sensitization treatments on the intergranular corrosion (IGC) of austenitic stainless steel (316) was studied by electrochemical potentiodynamic reactivation (EPR) test, and the results showed the degree of sensitization (DOS) decreased as solution treatment temperature and time went up, but it increased as sensitization temperature prolonged. Factors that affected IGC were investigated by field emission scanning electron microscope (FE-SEM) and electron back-scattering diffraction (EBSD). Furthermore, the precipitation evolution of Cr-rich carbides and the distribution of chromium concentration were simulated by cellular automaton (CA), clearly showing the effects of solution and sensitization treatments on IGC.

  9. A study of the electrochemical behaviour of electrodes in operating solid-state supercapacitors

    International Nuclear Information System (INIS)

    Staiti, P.; Lufrano, F.

    2007-01-01

    The electrochemical behaviour of electrodes and of complete solid-state supercapacitors has been studied by cyclic voltammetry (CV) and galvanostatic charge/discharge (CD) measurements using two independent electrochemical equipments. The first one controlled the execution of the test and recorded the voltage and current values of the complete supercapacitor while the other one recorded the potential changes of the single electrodes. In this work, two different types of capacitors were studied: (a) a symmetric supercapacitor using carbon electrodes, and (b) a hybrid (asymmetric) supercapacitor with ruthenium oxide/carbon in the positive electrode and carbon in the negative electrode. The studies evidenced that in the symmetric capacitors the positive electrode controlled the capacitive performance and an optimal mass ratio from 1.2:1 to 1.3:1 between the positive and the negative electrodes was found in the investigated conditions. For the hybrid supercapacitor it was observed that the ruthenium-based positive electrode influenced the capacitive performance of carbon-based negative electrode and that an accurate balance of carbon loading in the negative electrode was necessary

  10. Pullulan as a potent green inhibitor for corrosion mitigation of aluminum composite: Electrochemical and surface studies.

    Science.gov (United States)

    B P, Charitha; Rao, Padmalatha

    2018-06-01

    This work emphasizes the corrosion inhibition ability of pullulan, an environmentally benign fungal polysaccharide on acid corrosion of 6061Aluminum-15% (v) SiC (P) composite material (Al-CM). The electrochemical measurements such as potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS) studies were carried out for the corrosion inhibition studies. Conditions were optimized to obtain maximum inhibition efficiency, by performing the experiment at varying concentrations of inhibitor, in the temperature range of 308K- 323K. Surface morphology studies were done to reaffirm the adsorption of inhibitor on the surface of composite material. Pullulan acted as mixed type of inhibitor with a maximum efficiency of 89% at 303K for the addition of 1.0 gL -1 of inhibitor. Evaluation of kinetic and thermodynamic parameters revealed that inhibitor underwent physical adsorption onto the surface of Al-CM and obeyed Freundlich adsorption isotherm. The surface characterization like SEM-EDX, AFM confirmed the adsorption of pullulan molecule. Pullulan can be considered as effective, eco friendly green inhibitor for the corrosion control of Al-CM. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Optical and electrochemical studies of polyaniline/SnO{sub 2} fibrous nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Manivel, P. [Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641 046, Tamil Nadu (India); Ramakrishnan, S.; Kothurkar, Nikhil K. [Department of Chemical Engineering and Material Science, Amrita Vishwa Vidyapeetham, Coimbatore 641 112, Tamil Nadu (India); Balamurugan, A.; Ponpandian, N.; Mangalaraj, D. [Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641 046, Tamil Nadu (India); Viswanathan, C., E-mail: viswanathan@buc.edu.in [Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641 046, Tamil Nadu (India)

    2013-02-15

    Graphical abstract: Fiber with porous like structure of PANI/SnO{sub 2} nanocomposites were prepared by simplest in situ chemical polymerization method. The PL emission spectra revealed that the band from 404 and 436 nm which is related with oxygen vacancies. The excellent electrochemical properties of composite electrode show the specific capacitance of 173 F/g at a scan rate of 25 m V/s. Display Omitted Highlights: ► Self assembled PANI/SnO{sub 2} nanocomposites were synthesized by simple polymerization method. ► Electrochemical behavior of PANI/SnO{sub 2} nanocomposites electrode was analyzed by CV. ► Nanocomposites exhibit a higher specific capacitance of 173 F/g, compared with pure SnO{sub 2}. -- Abstract: Polyaniline (PANI)/tin oxide (SnO{sub 2}) fibrous nanocomposites were successfully prepared by an in situ chemical polymerization method with suitable conditions. The obtained composites were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy, photoluminescence (PL), electrical conductivity and cyclic voltammetry studies (CV). The XRD pattern of the as-prepared sample shows the presence of tetragonal SnO{sub 2} and the crystalline structure of SnO{sub 2} was not affected with the incorporation of PANI. The FTIR analysis confirms the uniform attachment of PANI on the surface of SnO{sub 2} nanostructures. SEM images show a fibrous agglomerated structure of PANI/SnO{sub 2}. The PL emission spectra revealed that the band from 404 and 436 nm which is related with oxygen vacancies. The electrochemical behavior of the PANI/SnO{sub 2} composite electrode was evaluated in a H{sub 2}SO{sub 4} solution using cyclic voltammetry. The composite electrode exhibited a specific capacitance of 173 F/g at a scan rate 25 mV/s. Thus the as-prepared PANI/SnO{sub 2} composite shows excellent electrochemical properties, suggesting that this composite is a promising material for supercapacitors.

  12. Preliminary results of the comparison of the electrochemical behavior of a thioether and biphenyl

    Science.gov (United States)

    Morales, W.; Jones, W. R.

    1983-01-01

    An electrochemical cell was constructed to explore the feasibility of using electrochemical techniques to simulate the tribochemistry of various substances. The electrochemical cell was used to study and compare the behavior of a thioether 1,3-bis(phenylthio) benzene and biphenyl. It is found that under controlled conditions biphenyl undergoes a reversible reduction to a radical anion whereas the thioether undergoes an irreversible reduction yielding several products. The results are discussed in relationship to boundary lubrication.

  13. Technetium electrodeposition from aqueous formate solutions at graphite electrode: electrochemical study

    International Nuclear Information System (INIS)

    Maslennikov, A.; Peretroukhine, V.; Masson, M.; Lecomte, M.

    1999-01-01

    Recovery of technetium from aqueous formate buffer solutions of ionic strength μ = 1.0 was studied in the pH interval from 1.6 to 7.5 at graphite cathode in an electrolytic cell with separated compartments was studied, using cyclic voltammetry (CV) and inverse stripping voltammetry (ISV) techniques. It has been shown that Tc electrodeposition process becomes possible at the potentials of graphite cathode E cath. 1/2 = -0.72±0.02 V/SCE and was pH independent in the interval pH = 3.46-7.32. Mechanism of electrodeposition, including Tc(VII)/Tc(IV) reduction in the solution followed by Tc(IV) hydrolysis at the electrode surface with formation of hydrated Tc oxide cathodic deposit has been proposed. The further precision of the Tc(VII) electrochemical reduction mechanism in formate buffer media and optimization of the electrodeposition process seems to be possible using additional analytical facilities except electrochemical methods. (orig.)

  14. Service water electrochemical monitoring development at Ontario Hydro

    International Nuclear Information System (INIS)

    Brennenstuhl, A.M.

    1994-01-01

    Ontario Hydro (OH) is currently investigating the feasibility of using electrochemical techniques for the corrosion monitoring of service water systems. To date all evaluations have been carried out in a field simulator. The studies include examining the effects of; system startup after periods of stagnation, sodium hypochlorite injection, and zebra mussel settlement on metallic surfaces. Carbon steel and Type 304L stainless steel have been evaluated. Electrochemical potential noise (EPN), electrochemical current noise (ECN) potential and coupling current were semi-continuously monitored over a period of up to one year. Data obtained from the electrochemical noise monitoring has given OH valuable insights into the mechanisms of degradation in service water systems. The high sensitivity of the electrochemical noise technique, particularly to localized corrosion has proved to be the major attraction of the system

  15. Electrochemical studies of CNT/Si–SnSb nanoparticles for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Nithyadharseni, P. [Department of Physics, Bannari Amman Institute of Technology, Sathyamangalam 638402 (India); Department of Physics, Advanced Batteries Lab, National University of Singapore, 117542 (Singapore); Reddy, M.V., E-mail: phymvvr@nus.edu.sg [Department of Physics, Advanced Batteries Lab, National University of Singapore, 117542 (Singapore); Nalini, B., E-mail: lalin99@rediffmail.com [Department of Physics, Avinashilingam University for Women, Coimbatore 641043 (India); Ravindran, T.R. [Centre for Research in Nanotechnology, Karunya University, Coimbatore 641114 (India); Pillai, B.C.; Kalpana, M. [Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam 603102 (India); Chowdari, B.V.R. [Department of Physics, Advanced Batteries Lab, National University of Singapore, 117542 (Singapore)

    2015-10-15

    Highlights: • Si added SnSb and CNT exhibits very low particle size of below 30 nm • A strong PL quenching due to the addition of Si to SnSb. • Electrochemical studies show CNT added SnSb shows good capacity retention. - Abstract: Nano-structured SnSb, SnSb–CNT, Si–SnSb and Si–SnSb–CNT alloys were synthesized from metal chlorides of Sn, Sb and Si via reductive co-precipitation technique using NaBH{sub 4} as reducing agent. The as prepared compounds were characterized by various techniques such as X-ray diffraction (XRD), scanning electron microscope (SEM), Raman, Fourier transform infra-red (FTIR) and photoluminescence (PL) spectroscopy. The electrochemical performances of the compounds were characterized by galvanostatic cycling (GC) and cyclic voltammetry (CV). The Si–SnSb–CNT compound shows a high reversible capacity of 1200 mAh g{sup −1}. However, the rapid capacity fading was observed during cycling. In contrast, SnSb–CNT compound showed a high reversible capacity of 568 mAh g{sup −1} at 30th cycles with good cycling stability. The improved reversible capacity and cyclic performance of the SnSb–CNT compound could be attributed to the nanosacle dimension of SnSb particles and the structural advantage of CNTs.

  16. An electrochemical and high-speed imaging study of micropore decontamination by acoustic bubble entrapment.

    Science.gov (United States)

    Offin, Douglas G; Birkin, Peter R; Leighton, Timothy G

    2014-03-14

    Electrochemical and high-speed imaging techniques are used to study the abilities of ultrasonically-activated bubbles to clean out micropores. Cylindrical pores with dimensions (diameter × depth) of 500 μm × 400 μm (aspect ratio 0.8), 125 μm × 350 μm (aspect ratio 2.8) and 50 μm × 200 μm (aspect ratio 4.0) are fabricated in glass substrates. Each pore is contaminated by filling it with an electrochemically inactive blocking organic material (thickened methyl salicylate) before the substrate is placed in a solution containing an electroactive species (Fe(CN)6(3-)). An electrode is fabricated at the base of each pore and the Faradaic current is used to monitor the decontamination as a function of time. For the largest pore, decontamination driven by ultrasound (generated by a horn type transducer) and bulk fluid flow are compared. It is shown that ultrasound is much more effective than flow alone, and that bulk fluid flow at the rates used cannot decontaminate the pore completely, but that ultrasound can. In the case of the 125 μm pore, high-speed imaging is used to elucidate the cleaning mechanisms involved in ultrasonic decontamination and reveals that acoustic bubble entrapment is a key feature. The smallest pore is used to explore the limits of decontamination and it is found that ultrasound is still effective at this size under the conditions employed.

  17. Reactivity study of silicon electrode modified by grafting using electrochemical reduction of diazonium salts

    International Nuclear Information System (INIS)

    Kaiber, A.; Cherkkaoui, M.; Chazalviel, J.N.

    2015-01-01

    The use of the hydrogenated surface of silicon is hampered by its chemical instability by surface oxidation. The researchers have attempted to modify this surface by direct grafting through the establishment of covalent silicon-carbon bonds from the reaction of chemical species on the surface. Different grafting methods can be implemented for the preparation of grafted surfaces. The choice of an electrochemical reaction allows fast grafting from the hydrogenated surface. We studied the formation of a phenyl layer by electrochemical reduction of aryl diazonium salts (BF4-,+N2-ph-OCH3) on a p-Si-H (111) electrode in an aqueous medium (0.05M H/sub 2/SO/sub 4/ + 0.05M HF). The grafting of an organic layer by reduction is confirmed by the observation of a cyclic voltammetry peak around -0.3V/SCE. In-situ infrared spectroscopy (IR) analysis allows to identify the chemical functions present on the grafted surface, allowing a direct monitoring of the grafting reaction. (author)

  18. Defect studies of ZnO single crystals electrochemically doped with hydrogen

    Science.gov (United States)

    Čížek, J.; Žaludová, N.; Vlach, M.; Daniš, S.; Kuriplach, J.; Procházka, I.; Brauer, G.; Anwand, W.; Grambole, D.; Skorupa, W.; Gemma, R.; Kirchheim, R.; Pundt, A.

    2008-03-01

    Various defect studies of hydrothermally grown (0001) oriented ZnO crystals electrochemically doped with hydrogen are presented. The hydrogen content in the crystals is determined by nuclear reaction analysis and it is found that already 0.3at.% H exists in chemically bound form in the virgin ZnO crystals. A single positron lifetime of 182ps is detected in the virgin crystals and attributed to saturated positron trapping at Zn vacancies surrounded by hydrogen atoms. It is demonstrated that a very high amount of hydrogen (up to ˜30at.%) can be introduced into the crystals by electrochemical doping. More than half of this amount is chemically bound, i.e., incorporated into the ZnO crystal lattice. This drastic increase of the hydrogen concentration is of marginal impact on the measured positron lifetime, whereas a contribution of positrons annihilated by electrons belonging to O-H bonds formed in the hydrogen doped crystal is found in coincidence Doppler broadening spectra. The formation of hexagonal shape pyramids on the surface of the hydrogen doped crystals by optical microscopy is observed and discussed.

  19. Electrochemical synthesis of hydrogen peroxide: Rotating disk electrode and fuel cell studies

    International Nuclear Information System (INIS)

    Lobyntseva, Elena; Kallio, Tanja; Alexeyeva, Nadezda; Tammeveski, Kaido; Kontturi, Kyoesti

    2007-01-01

    The electrochemical reduction of oxygen on various catalysts was studied using the thin-layer rotating disk electrode (RDE) method. High-surface-area carbon was modified with an anthraquinone derivative and gold nanoparticles. Polytetrafluoroethylene (PTFE) and cationic polyelectrolyte (FAA) were used as binders in the preparation of thin-film electrodes. Our primary goal was to find a good electrocatalyst for the two-electron reduction of oxygen to hydrogen peroxide. All electrochemical measurements were carried out in 0.1 M KOH. Cyclic voltammetry was used in order to characterise the surface processes of the modified electrodes in O 2 -free electrolyte. The RDE results revealed that the carbon-supported gold nanoparticles are active catalysts for the four-electron reduction of oxygen in alkaline solution. Anthraquinone-modified high-area carbon catalyses the two-electron reduction at low overpotentials, which is advantageous for hydrogen peroxide production. In addition, the polymer electrolyte fuel cell technology was used for the generation of hydrogen peroxide. The cell was equipped with a bipolar membrane which consisted of commercial Nafion 117 as a cation-exchange layer and FT-FAA as an anion-exchange layer. The bipolar membranes were prepared by a hot pressing method. Use of the FAA ionomer as a binder for the anthraquinone-modified carbon catalyst resulted in production of hydrogen peroxide

  20. Study and optimisation of manganese oxide-based electrodes for electrochemical supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Staiti, P.; Lufrano, F. [CNR-ITAE, Istituto di Tecnologie Avanzate per l' Energia ' ' Nicola Giordano' ' , Via Salita S. Lucia n. 5, 98126 S. Lucia, Messina (Italy)

    2009-02-01

    A manganese oxide material was synthesised by an easy precipitation method based on reduction of potassium permanganate(VII) with a manganese(II) salt. The material was treated at different temperatures to study the effect of thermal treatment on capacitive property. The best capacitive performance was obtained with the material treated at 200 C. This material was used to prepare electrodes with different amounts of polymer binder, carbon black and graphite fibres to individuate the optimal composition that gave the best electrochemical performances. It was found that graphite fibres improve the electrochemical performance of electrodes. The highest specific capacitance (267 F g{sup -1} MnO{sub x}) was obtained with an electrode containing 70% of MnO{sub x}, 15% of carbon black, 10% of graphite fibres and 5% of PVDF. This electrode, with CB/GF ratio of 1.5, showed a higher utilization of manganese oxide. The results reported in the present paper further confirmed that manganese oxide is a very interesting material for supercapacitor application. (author)

  1. Microwave synthesis of molybdenum doped LiFePO4/C and its electrochemical studies.

    Science.gov (United States)

    Naik, Amol; P, Sajan C

    2016-05-10

    A Mo-doped LiFePO4 composite was prepared successfully from an iron carbonyl complex by adopting a facile and rapid microwave assisted solid state method. The evolution of gases from the iron precursor produces a highly porous product. The formation and substitution of Mo in LiFePO4 were confirmed by X-ray diffraction; surface analysis was carried out by scanning electron microscopy, field emission scanning electron microscopy, and transmission electron microscopy. The electrochemical properties of the substituted LiFePO4 were examined by cyclic voltammetry, electrochemical impedance spectroscopy and by recording charge-discharge cycles. It was observed that the as prepared composites consisted of a single phase orthorhombic olivine-type structure, where Mo(6+) was successfully introduced into the M2(Fe) sites. Incorporation of supervalent Mo(6+) introduced Li(+) ion vacancies in LiFePO4. The synthesized material facilitated lithium ion diffusion during charging/discharging due to the charge compensation effect and porosity. The battery performance studies showed that LiMo0.05Fe0.095PO4 exhibited a maximum capacity of 169.7 mA h g(-1) at 0.1 C current density, with admirable stability retention. Even at higher current densities, the retention of the specific capacity was exceptional.

  2. Electrochemical and conversion electron Moessbauer study of corrosion induced by acid rain

    International Nuclear Information System (INIS)

    Vertes, C.; Lakatos-Varsanyi, M.; Vertes, A.; Meisel, W.; Guetlich, P.

    1993-01-01

    The passivation of low carbon steel was studied in aqueous solution of 0.5M Na 2 SO 4 +0.001M NaHSO 3 (pH 3.5, 6.5 and 8.5) which can be considered as a model of acid rain. The used conversion electron Moessbauer spectroscopy (CEMS) with the complementary electrochemical investigations proved that the sulfite ions induce pitting corrosion at pH 3.5 and 6.5, while the measurements showed much weaker pitting at pH 8.5. The compositions and thicknesses of the passive films formed during the electrochemical treatments are determined from the CEM spectra. Only γ-FeOOH was found on the surface of the samples at pH 6.5 and 8.5. Nevertheless, at pH 3.5 the sextet belonging to Fe 3 C appears in the spectra, and also FeSO 4 .H 2 O could be detected in low concentration. (orig.)

  3. Electrochemical Studies on Important Elements for Zirconium Recovery Form Irradiated Zircaloy-4 Cladding

    International Nuclear Information System (INIS)

    Park, J.; Sohn, S.; Hwang, I.S.

    2015-01-01

    Since Zircaloy cladding accounts for about 16 wt. % of used nuclear fuel assembly, decontamination process is required to reduce the final waste volume from spent nuclear fuel. To develop Zircaloy-4 electrorefining process as an irradiated Zircaloy cladding decontamination process, electrochemical studies on Sn, Cr, Fe and Co which are major or important elements in the irradiated cladding were conducted based on cyclic voltammetry in LiCl-KCl at 500 deg. C. Cyclic voltammetry for Sn, Fe, Cr and Co elements that should be eliminated was conducted and revealed that redox reactions of these ions are much simpler than Zr and more reductive than Zr. The reliability of cyclic voltammetry was verified by comparing diffusion coefficients and formal reduction potentials of these ions obtained in this study to previous studies. (authors)

  4. Fundamental Studies on the Electrochemical Behaviour of Carbon Steel Exposed in Sulphide and Sulphate-Reducing Environments

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel

    The aim of the report is to give a fundamental understanding of the response of different electrochemical techniques on carbon steel in a sulphide environment as well as in a biologically active sulphate-reducing environment (SRB). This will form the basis for further studies and for recommendati......The aim of the report is to give a fundamental understanding of the response of different electrochemical techniques on carbon steel in a sulphide environment as well as in a biologically active sulphate-reducing environment (SRB). This will form the basis for further studies...

  5. Electrochemical studies of Pu on prussian blue (PB)-gold nanoparticles (AuNPs) functionalized glassy carbon (GC) electrode

    International Nuclear Information System (INIS)

    Sharma, Manoj K.; Ambolikar, Arvind S.; Aggarwal, Suresh K.

    2011-01-01

    In electrochemical processes, electron transfer across the solid-liquid interface is the elementary step and electron transfer kinetics is significantly influenced by the interfacial properties. Therefore, preparation of well-defined electrochemical interface with highly controllable properties - larger effective surface area, increased mass transport, and better electronic interaction between the analyte and electrode - is significant for both fundamental and applied studies in electrochemistry. In the present work electrochemistry of Pu(IV)/Pu(III) is studied on multilayered AuNPs-PB-AuNPs functionalized electrode

  6. Electrochemical Study on Newly Synthesized Chlorocurcumin as an Inhibitor for Mild Steel Corrosion in Hydrochloric Acid

    Directory of Open Access Journals (Sweden)

    Ahmed A. Al-Amiery

    2013-11-01

    Full Text Available A new curcumin derivative, i.e., (1E,4Z,6E-5-chloro-1,7-bis(4-hydroxy-3-methoxyphenylhepta-1,4,6-trien-3-one (chlorocurcumin, was prepared starting with the natural compound curcumin. The newly synthesized compound was characterized by elemental analysis and spectral studies (IR, 1H-NMR and 13C-NMR. The corrosion inhibition of mild steel in 1 M HCl by chlorocurcumin has been studied using potentiodynamic polarization (PDP measurements and electrochemical impedance spectroscopy (EIS. The inhibition efficiency increases with the concentration of the inhibitor but decreases with increases in temperature. The potentiodynamic polarization reveals that chlorocurcumin is a mixed-type inhibitor. The kinetic parameters for mild steel corrosion were determined and discussed.

  7. Electrochemical Study on Newly Synthesized Chlorocurcumin as an Inhibitor for Mild Steel Corrosion in Hydrochloric Acid

    Science.gov (United States)

    Al-Amiery, Ahmed A.; Kadhum, Abdul Amir H.; Mohamad, Abu Bakar; Musa, Ahmed Y.; Li, Cheong Jiun

    2013-01-01

    A new curcumin derivative, i.e., (1E,4Z,6E)-5-chloro-1,7-bis(4-hydroxy-3-methoxyphenyl)hepta-1,4,6-trien-3-one (chlorocurcumin), was prepared starting with the natural compound curcumin. The newly synthesized compound was characterized by elemental analysis and spectral studies (IR, 1H-NMR and 13C-NMR). The corrosion inhibition of mild steel in 1 M HCl by chlorocurcumin has been studied using potentiodynamic polarization (PDP) measurements and electrochemical impedance spectroscopy (EIS). The inhibition efficiency increases with the concentration of the inhibitor but decreases with increases in temperature. The potentiodynamic polarization reveals that chlorocurcumin is a mixed-type inhibitor. The kinetic parameters for mild steel corrosion were determined and discussed. PMID:28788402

  8. Graphene derived carbon confined sulfur cathodes for lithium-sulfur batteries: Electrochemical impedance studies

    International Nuclear Information System (INIS)

    Ganesan, Aswathi; Varzi, Alberto; Passerini, Stefano; Shaijumon, Manikoth M.

    2016-01-01

    Highlights: • Graphene-derived carbon (GDC) with distinctive porosity characteristics are prepared. • Effect of micro-/mesoporosity of GDC for improved Li-S battery performance is studied. • Impedance studies reveal insights into Li-S redox reactions and capacity fading phenomena. - Abstract: Sulfur nanocomposites are prepared by using graphene derived carbon (GDC), with controlled porosity characteristics, as confining matrix and are studied as efficient cathodes for lithium-sulfur (Li-S) batteries. To understand the effect of micro-/mesoporosity in porous carbon for the effective encapsulation of sulfur and polysulfides towards improved Li-S battery performance, two different GDC samples with controlled porosity characteristics, one with predominantly micropores (GDC-1) and a surface area of 1970 m 2 g −1 and the other with a surface area of 3239 m 2 g −1 , having more or less equal contribution of micro- and mesopores (GDC-2), are used to synthesize nanocomposite sulfur electrodes following melt diffusion process. Electrochemical studies are carried out by using cyclic voltammetry, galvanostatic charge/discharge cycling and electrochemical impedance spectroscopy (EIS). EIS spectra collected at different depth of discharge (DOD) in the first cycle as well as upon cycling give valuable insights into the Li-S redox reactions and capacity fading phenomena in these electrodes. The impedance response of GDC-S electrodes suggests a detrimental effect of the mesopores, where insoluble reaction products can easily accumulate, resulting in the loss of active material leading to capacity fading of Li-S cells.

  9. Superficial and electrochemical study of stainless steel 304l with an inhibitory protective coating (TiO2 and ZrO2)

    International Nuclear Information System (INIS)

    Davila N, M. L.; Contreras R, A.; Arganis J, C. R.

    2014-10-01

    The degradation mechanisms in the boiling water reactors (BWR) have been an alert focus for owners, especially the cracking by stress corrosion cracking (SCC), therefore different techniques have been studied to inhibit this problem inside which is the water injection of hydrogen feeding (HWC, Hydrogen Water Chemistry), together with the noble metals injection (NMCA, Nobel Metal Chemical Addition) and the ceramic materials injection that form an inhibitory protective coating (Ipc). In this work the Ipc was simulated, for which were carried out hydro-thermals deposits starting from suspensions of 1000 ppm of zirconium oxide in its crystalline phase baddeleyite and titanium oxides in its anatase and rutile phases, on test tubes of stainless steel 304l previously rusty under simulated conditions of pressure and temperature of a BWR (288 C and 8 MPa). The superficial characterization was realized by scanning electron microscopy, energy-dispersive of X-ray and X-ray diffraction. The capacity to mitigate the corrosion was studied with the electrochemical technique of Tafel polarization (288 C and 8 MPa). The steel presents the formation of two oxide coatings formed by magnetite and hematite. The baddeleyite presents a deposit more thick and homogeneous it also presents the most negative electrochemical potential of corrosion, what indicates that it has the bigger capacity to mitigate the SCC. (Author)

  10. Electrochemical study of the AISI 409 ferritic stainless steel: passive film stability and pitting nucleation and growth

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Juliana Sarango de [Universidade Federal de São Paulo (UNIFESP), Diadema, SP (Brazil). Departamento de Ciências Exatas e da Terra; Oliveira, Leandro Antônio de; Antunes, Renato Altobelli, E-mail: renato.antunes@ufabc.edu.br [Universidade Federal do ABC (CECS/UFABC), Santo André, SP (Brazil). Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas; Sayeg, Isaac Jamil [Universidade de São Paulo (USP), SP (Brazil). Instituto de Geociências

    2017-11-15

    The aim of the present work was to study the passive film stability and pitting corrosion behavior of the AISI 409 stainless steel. The electrochemical tests were carried out in 0.1 M NaCl solution at room temperature. The general electrochemical behavior was assessed using electrochemical impedance spectroscopy (EIS) measurements whereas the semiconducting properties of the passive film were evaluated by the Mott-Schottky approach. Pitting corrosion was investigated using potentiodynamic and potentiostatic polarization tests. Surface morphology was examined using confocal laser scanning microscopy and scanning electron microscopy (SEM). Energy dispersive X-ray spectroscopy (EDS) analyses were carried out to identify the composition of precipitates that could act as preferential sites for the onset of pitting corrosion. The results showed that the passive film presents n-type semiconductive behavior. Grain boundaries played an important role as pitting initiation sites for the AISI 409 stainless steel. (author)

  11. Electrochemical study of the AISI 409 ferritic stainless steel: passive film stability and pitting nucleation and growth

    International Nuclear Information System (INIS)

    Souza, Juliana Sarango de; Oliveira, Leandro Antônio de; Antunes, Renato Altobelli; Sayeg, Isaac Jamil

    2017-01-01

    The aim of the present work was to study the passive film stability and pitting corrosion behavior of the AISI 409 stainless steel. The electrochemical tests were carried out in 0.1 M NaCl solution at room temperature. The general electrochemical behavior was assessed using electrochemical impedance spectroscopy (EIS) measurements whereas the semiconducting properties of the passive film were evaluated by the Mott-Schottky approach. Pitting corrosion was investigated using potentiodynamic and potentiostatic polarization tests. Surface morphology was examined using confocal laser scanning microscopy and scanning electron microscopy (SEM). Energy dispersive X-ray spectroscopy (EDS) analyses were carried out to identify the composition of precipitates that could act as preferential sites for the onset of pitting corrosion. The results showed that the passive film presents n-type semiconductive behavior. Grain boundaries played an important role as pitting initiation sites for the AISI 409 stainless steel. (author)

  12. Electrochemical Study of Welded AISI 304 and 904L Stainless Steel in Seawater in View of Corrosion

    Directory of Open Access Journals (Sweden)

    Richárd Székely

    2010-10-01

    Full Text Available This is a comparative study of the corrosion behaviour of welds in AISI 304 and AISI 904L stainless steels carried out in seawater model solution in the temperature range 5-35°C and the standard of corrosion testing of welds was followed. The corrosion rate and corrosion attack characteristics were determined for welds of the examined steels with several type of treatment. The aim of this work was to compare the steels based on their resistance against the corrosion in terms of pitting potential (Epit and repassivation potential (Erepass. Seawater is an electrochemically aggressive medium, which can initiate localised corrosion in welded stainless steels. Different electrochemical and testing methods were used, including cyclic voltammetry, chronopotentiometry, electrochemical impedance spectroscopy (EIS, pH measuring and penetration tests.

  13. Electrochemical studies of quinine in surfactant media using hanging mercury drop electrode: a cyclic voltammetric study.

    Science.gov (United States)

    Dar, Riyaz Ahmad; Brahman, Pradeep Kumar; Tiwari, Sweety; Pitre, Krishna Sadashiv

    2012-10-01

    The electrochemical behavior of quinine was investigated by cyclic voltammetry (CV) and square wave voltammetry (SWV) using surfactant. The reduction peak current of quinine increases remarkably in presence of 1% CTAB. Its electrochemical behavior is quasi-reversible in the Britton-Robinson buffers of pH 10.38 by exhibiting the well-defined single cathodic and anodic waves and the ratio of I(p)(a)/I(p)(c) approaching one at the scan rate of 500 mVs(-1). On the basis of CV, SWV and Coulometry, electrochemical reduction mechanism of quinine has been proposed which has shown that protonation occurs on the nitrogen of the quinoline moiety. Linearity was obtained when the peak currents (I(p)) were plotted against concentrations of quinine in the range of 30.0-230.0 ng mL(-1) with a detection limit of 0.132 ng mL(-1) in SWV and 90.0-630.0 ng mL(-1) with a detection limit of 0.238 ng mL(-1) in DPV. Fast and sensitive SWV has been applied for the quantitative analysis of quinine in bark of Cinchona sp. and in soft drinks and a good recovery was obtained. The accuracy and precision of the method are determined and validated statistically. No interferences from other food additives were observed. The relative standard deviation for intraday and interday assay was 0.89 and 0.73% (n=3) respectively. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. A Comparative Electrochemical Study of AZ31 and AZ91 Magnesium Alloy

    Directory of Open Access Journals (Sweden)

    S. A. Salman

    2010-01-01

    Full Text Available A comparative study has been carried out on AZ31 and AZ91 magnesium alloys in order to understand the electrochemical behavior in both alkaline and chloride containing solutions. The open circuit potential (OCP was examined in 1 M NaOH and 3.5 mass % NaCl solutions. AZ31 magnesium alloy shows several potential drops throughout the immersion in 1 M NaOH solution, though AZ91 does not show this phenomenon. The specimens were anodized at a constant potential of 3 V for 30 minutes at 298 K in 1 M NaOH solution. The anticorrosion behavior of the anodized specimens was better than those of nonanodized specimens. The anodized AZ91 has better corrosion resistance compared to nonanodized specimen and anodized AZ31 magnesium alloy.

  15. CONDUCTIVITY STUDIES OF (PEO +KHCO3 SOLID ELECTROLYTE SYSTEM AND ITS APPLICATION AS AN ELECTROCHEMICAL CELL

    Directory of Open Access Journals (Sweden)

    K. VIJAY KUMAR

    2010-06-01

    Full Text Available Solid polymer electrolyte system, polyethylene oxide (PEO complexed with potassium bicarbonate (KHCO3 salt was prepared by solution-cast technique. Several experimental techniques such as infrared radiation (IR, differential scanning calorimeter (DSC, and composition dependence conductivity, temperature dependence conductivity in the temperature range of 308–368 K and transport number measurements were employed to characterize this polymer electrolyte system. The conductivity of the (PEO+KHCO3 electrolyte was found to be about 3 times larger than that of pure PEO at room temperature. The transference data indicated that the charge transport in these polymer electrolyte systems is predominantly due to K+ ions. Using this polymer electrolyte an electrochemical cell with configuration K+/(PEO+KHCO3/(I2+C+electrolyte was fabricated and its discharge characteristics are studied. A number of other cell parameters associated with the cell were evaluated and are reported in this paper.

  16. Comparative Study of the Electrochemical, Biomedical, and Thermal Properties of Natural and Synthetic Nanomaterials

    Science.gov (United States)

    Ghaemi, Ferial; Abdullah, Luqman Chuah; Kargarzadeh, Hanieh; Abdi, Mahnaz M.; Azli, Nur Farhana Waheeda Mohd; Abbasian, Maryam

    2018-04-01

    In this research, natural nanomaterials including cellulose nanocrystal (CNC), nanofiber cellulose (NFC), and synthetic nanoparticles such as carbon nanofiber (CNF) and carbon nanotube (CNT) with different structures, sizes, and surface areas were produced and analyzed. The most significant contribution of this study is to evaluate and compare these nanomaterials based on the effects of their structures and morphologies on their electrochemical, biomedical, and thermal properties. Based on the obtained results, the natural nanomaterials with low dimension and surface area have zero cytotoxicity effects on the living cells at 12.5 and 3.125 μg/ml concentrations of NFC and CNC, respectively. Meanwhile, synthetic nanomaterials with the high surface area around 15.3-21.1 m2/g and significant thermal stability (480 °C-600 °C) enhance the output of electrode by creating a higher surface area and decreasing the current flow resistance.

  17. Electrochemical impedance spectroscopy and Surface Studies of Steel Corrosion by Sulphate-Reducing Bacteria

    International Nuclear Information System (INIS)

    Fathul Karim Sahrani; Zaharah Ibrahim; Madzlan Aziz; Adibah Yahya

    2009-01-01

    Sulphate-reducing bacteria (SRB), implicated in microbiologically influenced corrosion were isolated from the deep subsurface at the vicinity of Pasir Gudang, Johor, Malaysia. Electrochemical impedance spectroscopic (EIS) study was carried out to determine the polarization resistance in various types of culturing solutions, with SRB1, SRB2, combination of SRB1 and SRB2 and without SRBs inoculated (control). EIS results showed that in the presence of SRB1, SRB2 and mixed culture SRB1 and SRB2, polarisation resistance values were 7170, 6370 and 7190 ohms respectively compared to that of control, 92400 ohm. X-ray analysis (EDS) of the specimens indicated high sulphur content in the medium containing SRBs. Localized corrosion was observed on the metal surface which was associated with the SRB activity. (author)

  18. Study on Electrochemical Insulin Sensing Utilizing a DNA Aptamer-Immobilized Gold Electrode

    Directory of Open Access Journals (Sweden)

    Izumi Kubo

    2015-07-01

    Full Text Available We investigated an insulin-sensing method by utilizing an insulin-binding aptamer IGA3, which forms an anti-parallel G-quadruplex with folded single strands. Spectroscopic observation indicates that some anti-parallel G-quadruplex bind hemin and show peroxidase activity. In this study, the peroxidase activity of IGA3 with hemin was confirmed by spectrophotometric measurements, i.e., the activity was three-times higher than hemin itself. IGA3 was then immobilized onto a gold electrode to determine its electrochemical activity. The peroxidase activity of the immobilized IGA3-hemin complex was determined by cyclic voltammetry, and a cathodic peak current of the electrode showed a dependence on the concentration of H2O2. The cathodic peak current of the IGA3-hemin complex decreased by binding it to insulin, and this decrease depended on the concentration of insulin.

  19. Study of electrochemical behaviour of tantalum in molten alkali metal chlorides

    International Nuclear Information System (INIS)

    Bajmakov, A.N.; Ezrokhina, A.M.; Sashinina, O.A.; Shkol'nikov, S.N.

    1985-01-01

    Equilibrium potentials of metallic tantalum in the melt TaCl 5 +KCl-NaCl are studied. Are average degree of tantalum ion oxidation, which are in equilibrium with metallic tantalum, is determined. Anodic behaviour of tantalum in equimolar mixture of potassium and sodium chlorides with Ta and F ion additions is considered. An average degree of oxidation of Ta ions, which transfer into the melt, depending on current density, is determined. It is established that tantalum is dissolved in the regime of diffusional kinetics. It is shown that tantalum corrodes in equimolar mixture of potassium and sodiUm chlorides, at that, corrosion rate increases with introdUction of Ta and F ions into solution. The corrosion is of electrochemical nature and it proceeds in the regime of diffusional kinetics

  20. A series of nickel(II complexes derived from hydrazide derivatives, electrochemical, thermal and spectral studies

    Directory of Open Access Journals (Sweden)

    Gamil A.A. Al-Hazmi

    2017-02-01

    Full Text Available A series of Ni(II–hydrazide complexes were prepared using derivatives of hydrazide ligands. The variation of organic ligand elaborates the mode of coordination of the organic compound referring to the addition of coordinating sites besides the NH–NH–CO group. The octahedral configuration is the major form proposed with most isolated complexes. Mass spectra were used to assure the molecular formula proposed based on the elemental analysis data for most investigated compounds. Thermal analysis as well as kinetic data supports the formula of all investigated complexes especially the presence of coordinating water molecules with most of them. Electrochemical measurements assert the stability of Ni(II oxidation state during the complexation which may be affected during the coordination reaction. pH metric studies as well as the molecular modeling optimization reflect a shadow on the stability of the isolated complexes in solution or in solid state, respectively.

  1. Novel electrochemical approach to study corrosion mechanism of Al-Au wire-bond pad interconnections

    DEFF Research Database (Denmark)

    Elisseeva, O. V.; Bruhn, A.; Cerezo, J.

    2013-01-01

    A gold-aluminium material combination is typically employed as an interconnection for microelectronic devices. One of the reliability risks of such devices is that of corrosion of aluminium bond pads resulting from the galvanic coupling between an aluminium bond pad and a gold wire. The research...... presented in this manuscript focuses on studying bond pad corrosion by selecting an appropriate model system and a dedicated set of electrochemical and analytical experimental tools. Taking into account the complex three-dimensional structure and the small dimensions of Au-Al interconnections (around 50......-100 μm), a dedicated and novel experimental approach was developed. Au-Al covered silicon chips were developed under clean room conditions. Three-dimensional electrodes were mimicked as flat, two-dimensional bond pad model systems, allowing the use of microelectrochemical local probe techniques. Thin...

  2. A study of the electrochemical hydrogenation of o-xylene in a PEM hydrogenation reactor

    International Nuclear Information System (INIS)

    Fonocho, R.; Gardner, C.L.; Ternan, M.

    2012-01-01

    In this study, we investigate the electrochemical hydrogenation of o-xylene in a proton exchange membrane hydrogenation reactor (PEMHR). The reactor was operated isothermally over the temperature range 20–68 °C and at a pressure of 1 atm in a semi-batch mode. Hydrogen was fed into the anode compartment and o-xylene into the cathode. The hydrogenation efficiency was investigated at different current densities and temperatures. Results obtained show that the hydrogenation efficiency increases with temperature but decreases with current density. At low current densities the hydrogenation efficiency approaches 100%. A zero dimensional model was used to fit the data and extract a rate constant for the hydrogenation reaction. The activation energy for this reaction was found to be 28 kJ/mole.

  3. Study on micro fabricated stainless steel surface to anti-biofouling using electrochemical fabrication

    Science.gov (United States)

    Hwang, Byeong Jun; Lee, Sung Ho

    2017-12-01

    Biofilm formed on the surface of the object by the microorganism resulting in fouling organisms. This has led to many problems in daily life, medicine, health and industrial community. In this study, we tried to prevent biofilm formation on the stainless steel (SS304) sheet surface with micro fabricated structure. After then forming the microscale colloid patterns on the surface of stainless steel by using an electrochemical etching forming a pattern by using a FeCl3 etching was further increase the surface roughness. Culturing the Pseudomonas aeruginosa on the stainless steel fabricated with a micro structure on the surface was observed a relationship between the surface roughness and the biological fouling of the micro structure. As a result, the stainless steel surface with a micro structure was confirmed to be the biological fouling occurs less. We expect to be able to solve the problems caused by biological fouling in various fields such as medicine, engineering, using this research.

  4. Electrochemical impedance spectroscopy study of the metal hydride alloy/electrolyte junction

    International Nuclear Information System (INIS)

    Khaldi, Chokri; Mathlouthi, Hamadi; Lamloumi, Jilani

    2009-01-01

    The behaviour of the LaNi 3.55 Mn 0.4 Al 0.3 Co 0.75 alloy, used as a negative electrode in the Ni-MH batteries, was studied by the electrochemical impedance spectroscopy (EIS), measured at different potentials. The modeling of the EIS spectra allows us to model the interface electrolyte/Ni-MH electrode by a succession of interfaces electrolyte/corrosion film/alloy particles. The various processes and the physics parameters of each interface are discussed and evaluated. When the potential shifts to more negative values, two reactions are in competition: the hydrogen molecular evolution and the hydrogen atomic absorption. The hydrogen diffuses in the bulk of the alloy and the diffusion is not the limiting factor for the hydrogen absorption.

  5. An electrochemical study of the corrosion behavior of primer coated 2219-T87 aluminum

    Science.gov (United States)

    Danford, M. D.; Higgins, R. H.

    1985-01-01

    The corrosion behavior for 2219-T87 aluminum coated with various primers, including those used for the external tank and solid rocket boosters of the Space Shuttle Transportation System, were investigated using electrochemical techniques. Corrosion potential time, polarization resistance time, electrical resistance time, and corrosion rate time measurements were all investigated. It was found that electrical resistance time and corrosion rate time measurement were most useful for studying the corrosion behavior of painted aluminum. Electrical resistance time determination give useful information concerning the porosity of paint films, while corrosion rate time curves give important information concerning overall corrosion rates and corrosion mechanisms. In general, the corrosion rate time curves all exhibited at least one peak during the 30 day test period, which was attributed, according to the proposed mechanisms, to the onset of the hydrogen evolution reaction and the beginning of destruction of the protective properties of the paint film.

  6. Electrochemical Impedance Study of Zinc Yellow Polypropylene-Coated Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Zhi-hua Sun

    2010-01-01

    Full Text Available Performance of zinc yellow polypropylene-coated aluminum alloy 7B04 during accelerated degradation test is studied using electrochemical impedance spectroscopy (EIS. It has been found that the zinc yellow polypropylene paint has few flaw and acts as a pure capacitance before accelerated test. After 336-hour exposure to the test, the impedance spectroscopy shows two time constants, and water has reached to the aluminum alloy/paint interface and forms corrosive microcell. For the scratched samples, the reaction of metal corrosion and the hydrolysis of zinc yellow ion can occur simultaneously. The impedance spectroscopy indicates inductance after 1008-hour exposure to the test, but the inductance disappears after 1344-hour exposure and the passivation film has pitting corrosion.

  7. Corrosion behaviour of Alloy 800 in high temperature aqueous solutions: Electrochemical studies

    International Nuclear Information System (INIS)

    Olmedo, A.M.; Villegas, M.; Alvarez, M.G.

    1996-01-01

    The anodic behaviour and passivity breakdown of Alloy 800 in aqueous solutions of sodium chloride, sodium sulphate and sodium bicarbonate were studied by electrochemical techniques in the temperature range from 60 C to 280 C. The pitting resistance and pitting morphology of the alloy in chloride plus sulphate and chloride plus bicarbonate mixtures, at 60 C and 280 C, were also examined. Increasing bicarbonate or sulphate additions to chloride solutions shift the characteristic pitting potential of Alloy 800 to higher values, both at low and high temperatures. Changes in pitting morphology were observed in sulphate containing solutions while the morphology of the attack found in bicarbonate containing solutions was similar to that in pure chloride solutions. Finally, no localized or substantial generalized corrosion was detected in pure sulphate or bicarbonate solutions at any temperature. (orig.)

  8. Electrochemical studies of the effect of H2 on UO2 dissolution

    International Nuclear Information System (INIS)

    King, F.; Shoesmith, D.W.

    2004-09-01

    This report summarises evidence for the effect of H 2 on the oxidation and dissolution of UO 2 derived from electrochemical studies. In the presence of γ-radiation or with SIMFUEL electrodes containing ε-particles, the corrosion potential (E CORR ) of UO 2 is observed to be suppressed in the presence of H 2 by up to several hundred milli volts. This effect has been observed at room temperature with 5 MPa H 2 (in the case of γ-irradiated solutions) and at 60 deg C with a H 2 partial pressure of only 0.002-0.014 MPa H 2 with the SIMFUEL electrode. The suppression of E CORR in the presence of H 2 indicates that the degree of surface oxidation and the rate of dissolution of UO 2 is lower in the presence of H 2 .The precise mechanism of the effect of H 2 is unclear at this time. The mechanism appears to involve a surface heterogeneous process, rather than a homogeneous solution process. Under some circumstances the value of E CORR approaches the equilibrium potential for the H 2 /H + couple, suggesting galvanic coupling between sites on which this electrochemical process is catalysed and the rest of the UO 2 surface. It is also possible that H* radical species, either produced radiolytically from H 2 O or by dissociation of H 2 on ε-particles or surface-active UO 2+x sites, reduce oxidised U(V)/U(VI) surface states to U(IV). The effect of H 2 on reducing the degree of surface oxidation is only partially reversible, since surfaces reduced in H 2 atmospheres (re-)oxidise more slowly and to a lesser degree than surfaces not previously exposed to H 2 . Homogeneous reactions between dissolved H 2 and either oxidants or dissolved U(VI) cannot explain the observed effects.Regardless of the precise mechanism, the suppression of the degree of surface oxidation results in lower UO 2 dissolution rates in the presence of H 2 . Application of an electro-chemical dissolution model to the observed E CORR values suggests that the fractional dissolution rate of used fuel in the

  9. Study of swelling by simulation

    International Nuclear Information System (INIS)

    Gilbon, D.; Le Naour, L.; Didout, G.

    1983-06-01

    Fuel cans and hexagonal tubes containing the pins must withstand high irradiation doses (220 or even 275 dpa) with a low swelling. Qualification of a new alloy for claddings requires several years of irradiation on a reactor. For a fast first selection simulation by 1MeV electron or heavy ions enhance radiation damages. Principles of these techniques are recalled and some examples mainly with steel 316 are given. Results are compared with results obtained in reactor to determine simulation limits. The method is not valid in the case of a structural instability of the irradiated material in a reactor [fr

  10. High resolution scanning optical imaging of a frozen planar polymer light-emitting electrochemical cell: an experimental and modelling study

    Institute of Scientific and Technical Information of China (English)

    Faleh AlTal; Jun Gao

    2017-01-01

    Light-emitting electrochemical cells (LECs) are organic photonic devices based on a mixed electronic and ionic conductor.The active layer of a polymer-based LEC consists of a luminescent polymer,an ion-solvating/transport polymer,and a compatible salt.The LEC p-n or p-i-n junction is ultimately responsible for the LEC performance.The LEC junction,however,is still poorly understood due to the difficulties of characterizing a dynamic-junction LEC.In this paper,we present an experimental and modeling study of the LEC junction using scanning optical imaging techniques.Planar LECs with an interelectrode spacing of 560 μm have been fabricated,activated,frozen and scanned using a focused laser beam.The optical-beam-induced-current (OBIC) and photoluminescence (PL) data have been recorded as a function of beam location.The OBIC profile has been simulated in COMSOL that allowed for the determination of the doping concentration and the depletion width of the LEC junction.

  11. An extensive study of electrochemical behavior of brimonidine and its determination at glassy carbon electrode

    International Nuclear Information System (INIS)

    Aleksić, Mara M.; Radulović, Valentina; Agbaba, Danica; Kapetanović, Vera

    2013-01-01

    Highlights: • The electrochemical behavior of BRIM was investigated by CV, DPV and SWV at GCE. • The effects of pH, scan rate and BRIM concentriation was studied. • The nature of the electrode process, and the mechanism scheme was proposed. • DPV method was developed for the estimation of BRIM in the Alphagan eye drops. -- Abstract: The electrochemical behavior of brimonidine (BRIM), an antiglaucoma agent applied in therapy for lowering high intraocular pressure, was investigated by cyclic voltammetry, differential pulse voltammetry and square wave voltammetry using a glassy carbon electrode (GCE). The reduction of BRIM occurs as one-step quasi-reversible reaction in acid and neutral medium, reaching the full reversibility in alkaline solutions. Reduction process involves the transfer of two electrons and two protons at the pyrazine ring of quinoxaline moiety, forming a dihydro-derivative. In acid and neutral solutions, brimonidine reduction product is partly oxidized to its hydroxy-derivative. BRIM is also oxidized irreversibly with the transfer of one electron and one proton at secondary amine moiety. The effects of pH of the electrolyte solution, scan rate and BRIM concentration were monitored. The nature of the electrode process was found to be controlled by the adsorption at pH > 6 and the total surface concentration of brimonidine adsorbed onto the GCE surface at pH 7, Γ BRIM = 1.35 × 10 −10 mol cm −2 was obtained. Based on this study, differential pulse voltammetric method was developed, validated and suggested for rapid electroanalytical determination of the low concentration of brimonidine. The linearity was achieved within the concentration range from 5 × 10 −7 to 5 × 10 −6 M with LOD = 1.6 × 10 −7 M and LOQ = 5.3 × 10 −7 M. The method was applied for brimonidine determination in pharmaceutical dosage form, eye drops

  12. Electrochemical studies on electroless ternary and quaternary Ni-P based alloys

    International Nuclear Information System (INIS)

    Balaraju, J.N.; Selvi, V. Ezhil; Grips, V.K. William; Rajam, K.S.

    2006-01-01

    The autocatalytic (electroless) deposition of Ni-P based alloys is a well-known commercial process that has found numerous applications because of their excellent anticorrosive, wear, magnetic, solderable properties, etc. It is a barrier coating, protecting the substrate by sealing it off from the corrosive environments, rather than by sacrificial action. The corrosion resistance varies with the phosphorus content of the deposit: relatively high for a high-phosphorus electroless nickel deposit but low for a low-phosphorus electroless nickel deposit. In the present investigation ternary Ni-W-P alloy films were prepared using alkaline citrate-based bath. Quaternary Ni-W-Cu-P films were deposited by the addition of 3 mM copper ions in ternary Ni-W-P bath. X-ray diffraction (XRD) studies indicated that all the deposits were nanocrystalline, i.e. 1.2, 2.1 and 6.0 nm, respectively, for binary, ternary and quaternary alloys. Corrosion resistance of the films was evaluated in 3.5% sodium chloride solution in non-deaerated and deaerated conditions by potentiodynamic polarization and electrochemical impedance (EIS) methods. Lower corrosion current density values were obtained for the coatings tested in deaerated condition. EIS studies showed that higher charge transfer resistance values were obtained for binary Ni-P coatings compared to ternary or quaternary coatings. For all the coatings a gradual increase in the anodic current density had been observed beyond 740 mV. In deaerated condition all the reported coatings exhibited a narrow passive region and all the values of E p , E tp and i pass were very close showing no major changes in the electrochemical behavior. In the non-deaerated conditions no passivation behavior had been observed for all these coatings

  13. Concentric-Electrode Organic Electrochemical Transistors: Case Study for Selective Hydrazine Sensing

    Directory of Open Access Journals (Sweden)

    Sébastien Pecqueur

    2017-03-01

    Full Text Available We report on hydrazine-sensing organic electrochemical transistors (OECTs with a design consisting of concentric annular electrodes. The design engineering of these OECTs was motivated by the great potential of using OECT sensing arrays in fields such as bioelectronics. In this work, poly(3,4-ethylenedioxythiophene:poly(styrenesulfonate (PEDOT:PSS-based OECTs have been studied as aqueous sensors that are specifically sensitive to the lethal hydrazine molecule. These amperometric sensors have many relevant features for the development of hydrazine sensors, such as a sensitivity down to 10−5 M of hydrazine in water, an order of magnitude higher selectivity for hydrazine than for nine other water-soluble common analytes, the capability to entirely recover its base signal after water flushing, and a very low operation voltage. The specificity for hydrazine to be sensed by our OECTs is caused by its catalytic oxidation at the gate electrode, and enables an increase in the output current modulation of the devices. This has permitted the device-geometry study of the whole series of 80 micrometric OECT devices with sub-20-nm PEDOT:PSS layers, channel lengths down to 1 µm, and a specific device geometry of coplanar and concentric electrodes. The numerous geometries unravel new aspects of the OECT mechanisms governing the electrochemical sensing behaviours of the device—more particularly the effect of the contacts which are inherent at the micro-scale. By lowering the device cross-talk, micrometric gate-integrated radial OECTs shall contribute to the diminishing of the readout invasiveness and therefore further promote the development of OECT biosensors.

  14. Boron-doped Diamond Electrodes: Electrochemical, Atomic Force Microscopy and Raman Study towards Corrosion-modifications at Nanoscale

    International Nuclear Information System (INIS)

    Kavan, Ladislav; Vlckova Zivcova, Zuzana; Petrak, Vaclav; Frank, Otakar; Janda, Pavel; Tarabkova, Hana; Nesladek, Milos; Mortet, Vincent

    2015-01-01

    Highlights: • B-doped diamond is nanostructured by corrosion-driven modifications occurring at carbonaceous impurity sites (sp 2 -carbons). • The electrochemical oxidation partly transforms a hydrogen-terminated diamond surface to O-terminated one, but the electrocatalytic activity of plasmatically O-terminated diamond is not achieved. • In contrast to all usual sp 2 carbons, the Raman spectra of B-doped diamond electrodes do not change upon electrochemical charging/discharging. - Abstract: Comparative studies of boron-doped diamonds electrodes (polycrystalline, single-crystalline, H-/O-terminated, and with different sp 3 /sp 2 ratios) indicate morphological modifications of diamond which are initiated by corrosion at nanoscale. In-situ electrochemical AFM imaging evidences that the textural changes start at non-diamond carbonaceous impurity sites treated at high positive potentials (>2.2 V vs. Ag/AgCl). The primary perturbations subsequently develop into sub-micron-sized craters. Raman spectroscopy shows that the primary erosion site is graphite-like (sp 2 -carbon), which is preferentially removed by anodic oxidation. Other non-diamond impurity, viz. tetrahedral amorphous carbon (t-aC), is less sensitive to oxidative decomposition. The diamond-related Raman features, including the B-doping-assigned modes, are intact during reversible electrochemical charging/discharging, which is a salient difference from all usual sp 2 -carbons. The electrochemical oxidation partly transforms a hydrogen-terminated diamond surface to O-terminated one, but the electrocatalytic activity of plasmatically O-terminated diamond is not achieved for a model redox couple, Fe 3+/2+ . Electrochemical impedance spectra were fitted to six different equivalent circuits. The determination of acceptor concentrations is feasible even for highly-doped diamond electrodes.

  15. Electrochemical behavior of antioxidants: Part 3. Electrochemical studies of caffeic Acid–DNA interaction and DNA/carbon nanotube biosensor for DNA damage and protection

    Directory of Open Access Journals (Sweden)

    Refat Abdel-Hamid

    2016-05-01

    Full Text Available Multi-walled carbon nanotubes-modified glassy carbon electrode biosensor was used for electrochemical studies of caffeic acid–dsDNA interaction in phosphate buffer solution at pH 2.12. Caffeic acid, CAF, shows a well-defined cyclic voltammetric wave. Its anodic peak current decreases and the peak potential shifts positively on the addition of dsDNA. This behavior was ascribed to an interaction of CAF with dsDNA giving CAF–dsDNA complex by intercalative binding mode. The apparent binding constant of CAF–dsDNA complex was determined using amperometric titrations. The oxidative damage caused to DNA was detected using the biosensor. The damage caused by the reactive oxygen species, hydroxyl radical (·−OH generated by the Fenton system on the DNA-biosensor was detected. It was found that CAF has the capability of scavenging the hydroxide radical and protecting the DNA immobilized on the GCE surface.

  16. Biochemical activity of a fluorescent dye rhodamine 6G: Molecular modeling, electrochemical, spectroscopic and thermodynamic studies.

    Science.gov (United States)

    Al Masum, Abdulla; Chakraborty, Maharudra; Ghosh, Soumen; Laha, Dipranjan; Karmakar, Parimal; Islam, Md Maidul; Mukhopadhyay, Subrata

    2016-11-01

    Interaction of CT DNA with Rhodamine 6G (R6G) has been studied using molecular docking, electrochemical, spectroscopic and thermodynamic methods. From the study, it was illustrated that Rhodamine 6G binds to the minor groove of CT DNA. The binding was cooperative in nature. Circular voltametric study showed significant change in peak current and peak potential due to complexation. All the studies showed that the binding constant was in the order of 10 6 M -1 . Circular dichroic spectra showed significant conformational change on binding and DNA unwind during binding. Thermodynamic study showed that binding was favored by negative enthalpy and positive entropy change. From thermodynamic study it was also observed that several positive and negative free energies played significant role during binding and the unfavorable conformational free energy change was overcame by highly negative hydrophobic and salt dependent free energy changes. The experimental results were further validated using molecular docking study and the effect of structure on binding has been studied theoretically. From docking study it was found that the hydrophobic interaction and hydrogen bonds played a significant role during binding. The dye was absorbed by cell and this phenomenon was studied using fluorescent microscope. Cell survivability test showed that the dye active against Human Breast Cancer cells MDA-MB 468. ROS study showed that the activity is due to the production of reactive oxygen. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. An electrochemical study in aqueous solutions on the binding of dopamine to a sulfonated cyclodextrin host

    International Nuclear Information System (INIS)

    Hendy, Gillian M.; Breslin, Carmel B.

    2012-01-01

    Highlights: ► DA and Sβ-CD form an Inclusion complex. ► Electrochemical techniques demonstrated this inclusion complex. ► The association constant, K, was computed as 331.3. ► 1:1 stoichiometry for the inclusion complex was deduced from a Job's plot analysis. ► NMR studies confirmed the structural information on the inclusion complex. - Abstract: Clear evidence for the formation of a weak inclusion complex between dopamine (DA) and a sulfonated β-CD host in aqueous solution was obtained using a combination of electrochemical approaches. Using cyclic voltammetry, a distinct increase in the oxidation potential of DA and a reduction in the peak oxidation current were observed on adding an excess concentration of the sulfonated β-CD to the electrolyte solution. Equally, a clear increase in the half-wave oxidation potential of DA was observed in the presence of the sulfonated β-CD using rotating disc voltammetry. The association constant, K, was computed as 331.3 ± 5.8, indicating the formation of a weak inclusion complex, while a 1:1 stoichiometry for the inclusion complex was deduced from a Job's plot analysis. The rate constant for the oxidation of DA was found to decrease on formation of the inclusion complex. This was attributed to higher reorganization energy for the oxidation of the included DA. These changes in the electrochemistry of DA were not observed when an excess of the smaller sulfonated α-CD was added to the electrolyte, indicating that these variations are not connected with simple electrostatic interactions between the protonated DA and the anionic sulfonated groups. It is proposed that the aromatic ring of the DA molecule includes within the cyclodextrin cavity, while the protonated amine group remains outside the cavity, bound electrostatically with the anionic sulfonated groups.

  18. Electrochemical oxidation of COD from real textile wastewaters: Kinetic study and energy consumption.

    Science.gov (United States)

    Zou, Jiaxiu; Peng, Xiaolan; Li, Miao; Xiong, Ying; Wang, Bing; Dong, Faqin; Wang, Bin

    2017-03-01

    In the present study, the electrochemical oxidation of real wastewaters discharged by textile industry was carried out using a boron-doped diamond (BDD) anode. The effect of operational variables, such as applied current density (20-100 mA·cm -2 ), NaCl concentration added to the real wastewaters (0-3 g·L -1 ), and pH value (2.0-10.0), on the kinetics of COD oxidation and on the energy consumption was carefully investigated. The obtained experimental results could be well matched with a proposed kinetic model, in which the indirect oxidation mediated by electrogenerated strong oxidants would be described through a pseudo-first-order kinetic constant k. Values of k exhibited a linear increase with increasing applied current density and decreasing pH value, and an exponential increase with NaCl concentration. Furthermore, high oxidation kinetics resulted in low specific energy consumption, but this conclusion was not suitable to the results obtained under different applied current density. Under the optimum operational conditions, it only took 3 h to complete remove the COD in the real textile wastewaters and the specific energy consumption could be as low as 11.12 kWh·kg -1  COD. The obtained results, low energy consumption and short electrolysis time, allowed to conclude that the electrochemical oxidation based on BDD anodes would have practical industrial application for the treatment of real textile wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Optimization studies of HgSe thin film deposition by electrochemical atomic layer epitaxy (EC-ALE)

    CSIR Research Space (South Africa)

    Venkatasamy, V

    2006-06-01

    Full Text Available Studies of the optimization of HgSe thin film deposition using electrochemical atomic layer epitaxy (EC-ALE) are reported. Cyclic voltammetry was used to obtain approximate deposition potentials for each element. These potentials were then coupled...

  20. Electrochemical stability and postmortem studies of Pt/SiC catalysts for polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    Stamatin, Serban Nicolae; Spéder, József; Dhiman, Rajnish

    2015-01-01

    In the presented work, the electrochemical stability of platinized silicon carbide is studied. Postmortem transmission electron microscopy and X-ray photoelectron spectroscopy were used to document the change in the morphology and structure upon potential cycling of Pt/SiC catalysts. Two differen......, silicon carbide undergoes at least mild oxidation if not even silicon leaching....

  1. Electrochemical biosensors

    CERN Document Server

    Cosnier, Serge

    2015-01-01

    "This is an excellent book on modern electrochemical biosensors, edited by Professor Cosnier and written by leading international experts. It covers state-of-the-art topics of this important field in a clear and timely manner."-Prof. Joseph Wang, UC San Diego, USA  "This book covers, in 13 well-illustrated chapters, the potential of electrochemical methods intimately combined with a biological component for the assay of various analytes of biological and environmental interest. Particular attention is devoted to the description of electrochemical microtools in close contact with a biological cell for exocytosis monitoring and to the use of nanomaterials in the electrochemical biosensor architecture for signal improvement. Interestingly, one chapter describes the concept and design of self-powered biosensors derived from biofuel cells. Each topic is reviewed by experts very active in the field. This timely book is well suited for providing a good overview of current research trends devoted to electrochemical...

  2. Electrochemical impedance spectrometry using 316L steel, hastelloy, maraging, Inconel 600, Elgiloy, carbon steel, TiN and NiCr. Simulation in tritiated water. 2 volumes; Spectrometrie d`impedance electrochimique sur acier 316L, hastelloy, maraging inconel 600, elgiloy, acier au carbone, TiN, NiCr. Simulations en eau tritiee. 2 volumes

    Energy Technology Data Exchange (ETDEWEB)

    Bellanger, G.

    1994-03-01

    Polarization and electrochemical impedance spectrometry curves are presented and discussed. These curves make it possible to ascertain the corrosion domains and to compare the slow and fast kinetics (voltammetry) of different stainless steel alloys. These corrosion kinetics, the actual or simulated tritiated water redox potentials, and the corrosion potentials provide a classification of the steels studied here: 316L, Hastelloy, Maraging, Inconel 600, Elgiloy, carbon steel and TiN and NiCr deposits. From the results it can be concluded that Hastelloy and Elgiloy have the best corrosion resistance. (author). 49 refs., 695 figs., tabs.

  3. Bioactivity and electrochemical behavior of hydroxyapatite-silicon-multi walled carbon nano-tubes composite coatings synthesized by EPD on NiTi alloys in simulated body fluid

    Energy Technology Data Exchange (ETDEWEB)

    Khalili, V., E-mail: V_khalili@sut.ac.ir [Department of Materials Engineering, Engineering Faculty, University of Bonab, Bonab (Iran, Islamic Republic of); Khalil-Allafi, J. [Research Center for Advanced Materials and Mineral Processing, Faculty of Materials Engineering, Sahand University of Technology, Tabriz (Iran, Islamic Republic of); Frenzel, J.; Eggeler, G. [Institute for Materials, Faculty of Mechanical Engineering, Ruhr-University Bochum, 44801 Bochum (Germany)

    2017-02-01

    In order to improve the surface bioactivity of NiTi bone implant and corrosion resistance, hydroxyapatite coating with addition of 20 wt% silicon, 1 wt% multi walled carbon nano-tubes and both of them were deposited on a NiTi substrate using a cathodic electrophoretic method. The apatite formation ability was estimated using immersion test in the simulated body fluid for 10 days. The SEM images of the surface of coatings after immersion in simulated body fluid show that the presence of silicon in the hydroxyapatite coatings accelerates in vitro growth of apatite layer on the coatings. The Open-circuit potential and electrochemical impedance spectroscopy were measured to evaluate the electrochemical behavior of the coatings in the simulated body fluid at 37 °C. The results indicate that the compact structure of hydroxyapatite-20 wt% silicon and hydroxyapatite-20 wt% silicon-1 wt% multi walled carbon nano-tubes coatings could efficiently increase the corrosion resistance of NiTi substrate. - Highlights: • The composite coatings of HA, Si and MWCNTs was prepared using electrophoretic deposition. • The presence of 1 wt.% MWCNTs in the HA coating provides more nucleation cites of apatite crystallites in SBF. • The presence of Si in HA coating increases the growth rate of apatite crystallites with the Ca/P atomic ratio of 1.67. • The EIS indicate the compact HA-20%Si and HA-20%Si-1%MWCNTs coatings efficiently increase corrosion resistance of NiTi. • The porous HA and HA-1%MWCNTs do not increase significantly corrosion resistance due to the easy diffusion path.

  4. Operations planning simulation: Model study

    Science.gov (United States)

    1974-01-01

    The use of simulation modeling for the identification of system sensitivities to internal and external forces and variables is discussed. The technique provides a means of exploring alternate system procedures and processes, so that these alternatives may be considered on a mutually comparative basis permitting the selection of a mode or modes of operation which have potential advantages to the system user and the operator. These advantages are measurements is system efficiency are: (1) the ability to meet specific schedules for operations, mission or mission readiness requirements or performance standards and (2) to accomplish the objectives within cost effective limits.

  5. Structural and electrochemical study of the reaction of lithium with silicon nanowires

    KAUST Repository

    Chan, Candace K.; Ruffo, Riccardo; Hong, Seung Sae; Huggins, Robert A.; Cui, Yi

    2009-01-01

    The structural transformations of silicon nanowires when cycled against lithium were evaluated using electrochemical potential spectroscopy and galvanostatic cycling. During the charge, the nanowires alloy with lithium to form an amorphous Lix

  6. In-situ electrochemical study of Zr1nb alloy corrosion in high temperature Li{sup +} containing water

    Energy Technology Data Exchange (ETDEWEB)

    Krausová, Aneta [University of Chemistry and Technology, Technická 3, 166 28 Prague 6 (Czech Republic); Macák, Jan, E-mail: macakj@vscht.cz [University of Chemistry and Technology, Technická 3, 166 28 Prague 6 (Czech Republic); Sajdl, Petr [University of Chemistry and Technology, Technická 3, 166 28 Prague 6 (Czech Republic); Novotný, Radek [JRC-IET, Westerduinveg 3, 1755 LE Petten (Netherlands); Renčiuková, Veronika [University of Chemistry and Technology, Technická 3, 166 28 Prague 6 (Czech Republic); Vrtílková, Věra [ÚJP a.s., Nad Kamínkou 1345, 156 10 Prague 5 (Czech Republic)

    2015-12-15

    Long-term in-situ corrosion tests were performed in order to evaluate the influence of lithium ions on the corrosion of zirconium alloy. Experiments were carried out in a high-pressure high-temperature loop (280 °C, 8 MPa) in a high concentration water solution of LiOH (70 and 200 ppm Li{sup +}) and in a simulated WWER primary coolant environment. The kinetic parameters characterising the oxidation process have been explored using in-situ electrochemical impedance spectroscopy and slow potentiodynamic polarization. Also, a suitable equivalent circuit was suggested, which would approximate the impedance characteristics of the corrosion of Zr–1Nb alloy. The Mott–Schottky approach was used to determine the semiconducting character of the passive film. - Highlights: • Zr1Nb alloy was tested in WWER coolant and in LiOH solutions at 280 °C. • Corrosion rates were estimated in-situ from electrochemical data. • Electrochemical data agreed well with weight gains and metallography data. • Increase of corrosion rate in LiOH appeared after short exposure (300–500 h). • Very high donor densities (1.1–1.2 × 10{sup 20} cm{sup −3}) of Zr oxide grown in LiOH were found.

  7. Study on the electrochemical of the metal deposition from ionic liquids for lithium, titanium and dysprosium

    International Nuclear Information System (INIS)

    Berger, Claudia A.

    2017-01-01

    The thesis was aimed to the characterization of electrochemically deposited film of lithium, titanium and dysprosium on Au(111) from different ionic liquids, finally dysprosium on neodymium-iron-boron magnate for industrial applications. The investigation of the deposits were performed using cyclic voltametry, in-situ scanning tunneling microscopy, electrochemical quartz microbalance, XPS and Auger electron spectroscopy. The sample preparation is described in detail. The deposition rate showed a significant temperature dependence.

  8. Electrochemical study of the tarnish layer of silver deposited on glass

    OpenAIRE

    Ben Amor , Yasser; Sutter , Eliane; Takenouti , Hisasi; Tribollet , Bernard; Boinet , M.; Faure , R.; Balencie , J.; Durieu , G.

    2014-01-01

    International audience; Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to characterize the tarnished thin layer of silver deposited on glass. Instead of natural tarnishing in air environment, an acceleration of tarnishing process was realized by immersion of Ag covered glass in 10 μM K2S medium. The X-ray photoelectron spectroscopy (XPS) shows that tarnishing product formed on the silver surface consisted of Ag2S and Ag2O. As electrochemical characterizatio...

  9. Study of the bipolar electrolysis of the tritiated water applied to the hydrogen isotopes separation by electrochemical permeation threw Pd-Ag alloy membranes

    International Nuclear Information System (INIS)

    Heinze, S.

    2000-01-01

    The objective of the study is to enrich waters of poor tritium concentration, by electrolysis in the same time of an hydrogen emission of low activity. In this framework the hydrogen electrochemical permeation threw Pd-Ag alloy membranes has been used. The first part of the study concerns the hydrogen and the deuterium diffusion threw these membranes. The activation and the thermal treatments influence have been studied. A relation between the membrane microstructure and the diffusion mechanism has been proposed. The second part of the study is devoted to the hydrogen gate mechanism determination in the membrane by impedance spectroscopy. The last part concerns the determination of the isotopic separation factor hydrogen-deuterium. Experimental results agree the calculated theoretical data. The operation of an operational membrane cell has been simulated and the process feasibility has been proved. (A.L.B.)

  10. Dynamics of electrochemical lithiation/delithiation of graphene-encapsulated silicon nanoparticles studied by in-situ TEM.

    Science.gov (United States)

    Luo, Langli; Wu, Jinsong; Luo, Jiayan; Huang, Jiaxing; Dravid, Vinayak P

    2014-01-24

    The incorporation of nanostructured carbon has been recently reported as an effective approach to improve the cycling stability when Si is used as high-capacity anodes for the next generation Li-ion battery. However, the mechanism of such notable improvement remains unclear. Herein, we report in-situ transmission electron microscopy (TEM) studies to directly observe the dynamic electrochemical lithiation/delithiation processes of crumpled graphene-encapsulated Si nanoparticles to understand their physical and chemical transformations. Unexpectedly, in the first lithiation process, crystalline Si nanoparticles undergo an isotropic to anisotropic transition, which is not observed in pure crystalline and amorphous Si nanoparticles. Such a surprising phenomenon arises from the uniformly distributed localized voltage around the Si nanoparticles due to the highly conductive graphene sheets. It is observed that the intimate contact between graphene and Si is maintained during volume expansion/contraction. Electrochemical sintering process where small Si nanoparticles react and merge together to form large agglomerates following spikes in localized electric current is another problem for batteries. In-situ TEM shows that graphene sheets help maintain the capacity even in the course of electrochemical sintering. Such in-situ TEM observations provide valuable phenomenological insights into electrochemical phenomena, which may help optimize the configuration for further improved performance.

  11. Dual-energy mammography: simulation studies

    International Nuclear Information System (INIS)

    Bliznakova, K; Kolitsi, Z; Pallikarakis, N

    2006-01-01

    This paper presents a mammography simulator and demonstrates its applicability in feasibility studies in dual-energy (DE) subtraction mammography. This mammography simulator is an evolution of a previously presented x-ray imaging simulation system, which has been extended with new functionalities that are specific for DE simulations. The new features include incident exposure and dose calculations, the implementation of a DE subtraction algorithm as well as amendments to the detector and source modelling. The system was then verified by simulating experiments and comparing their results against published data. The simulator was used to carry out a feasibility study of the applicability of DE techniques in mammography, and more precisely to examine whether this modality could result in better visualization and detection of microcalcifications. Investigations were carried out using a 3D breast software phantom of average thickness, monoenergetic and polyenergetic beam spectra and various detector configurations. Dual-shot techniques were simulated. Results showed the advantage of using monoenergetic in comparison with polyenergetic beams. Optimization studies with monochromatic sources were carried out to obtain the optimal low and high incident energies, based on the assessment of the figure of merit of the simulated microcalcifications in the subtracted images. The results of the simulation study with the optimal energies demonstrated that the use of the DE technique can improve visualization and increase detectability, allowing identification of microcalcifications of sizes as small as 200 μm. The quantitative results are also verified by means of a visual inspection of the synthetic images

  12. The pharmacokinetic study of rutin in rat plasma based on an electrochemically reduced graphene oxide modified sensor

    Directory of Open Access Journals (Sweden)

    Pei Zhang

    2016-04-01

    Full Text Available An electrochemical method based on a directly electrochemically reduced graphene oxide (ERGO film coated on a glassy carbon electrode (GCE was developed for the rapid and convenient determination of rutin in plasma. ERGO was modified on the surface of GCE by one-step electro-deposition method. Electrochemical behavior of rutin on ERGO/GCE indicated that rutin underwent a surface-controlled quasi-reversible process and the electrochemical parameters such as charge transfer coefficient (α, electron transfer number (n and electrode reaction standard rate constant (ks were 0.53, 2 and 3.4 s−1, respectively. The electrochemical sensor for rutin in plasma provided a wide linear response range of 4.70×10−7−1.25×10−5 M with the detection limit (s/n=3 of 1.84×10−8 M. The assay was successfully used to the pharmacokinetic study of rutin. The pharmacokinetic parameters such as elimination rate half-life (t1/2, area under curve (AUC, and plasma clearance (CL were calculated to be 3.345±0.647 min, 5750±656.0 µg min/mL, and 5.891±0.458 mL/min/kg, respectively. The proposed method utilized a small sample volume of 10 μL and had no complicated sample pretreatment (without deproteinization, which was simple, eco-friendly, and time- and cost-efficient for rutin pharmacokinetic studies.

  13. Study of the electrochemical oxidation of Am with lacunary heteropolyanions and silver nitrate

    International Nuclear Information System (INIS)

    Chartier, D.

    1999-01-01

    Electrochemical oxidation of Am(III) with certain lacunary heteropolyanions (LHPA α 2 -P 2 W 17 O 61 10- or αSiW 11 O 39 8- ) and silver nitrate is an efficient way to prepare Am(VI). This document presents bibliographic data and an experimental study of the process. Thus, it has been established that Am(IV) is an intermediate species in the reaction and occurs in 1:1 (Amt IV LHPA) or 1:2 (Am IV (LHAP) 2 ) complexes with the relevant LHPA. These 1:1 complexes of Am(IV) have been identified and isolated in this work whereas 1:2 complexes were known from previous studies. The reactivity of these complexes in oxidation shows that 1:1 complexes of Am(IV) are oxidised much more quickly than 1:2 complexes. Apparent stability constants of Am(III) and Am(IV) complexes with the relevant LHPA have been measured for a 1 M nitric acid medium. Thermodynamic data of the reaction are then assessed: redox potentials of Am pairs are computed for a 1 M nitric acid medium containing various amount of LHPA ligands. Those results show that the role of LHPA is to stabilize the intermediate species Am(IV) by lowering the Am(IV)/Am(III) pair potential of about 1 Volt. Nevertheless, if this stabilisation is too strong (i.e. of tungsto-silicate), the oxidation of Am(IV) requires high anodic potential (more than 2 V/ENH). Then, the faradic yield of the oxidation of americium is poor because of water oxidation. This study has also shown that the main role of silver is to catalyze the electrochemical oxidation of Am IV (LHPA) X complexes. Indeed, these oxidations without silver are extremely slow. An oxygen tracer experiment has been performed during the oxidation of Am(III) in Am(VI). It has been shown that the oxygen atoms of Am(VI) (AMO 2 2+ ) come from water molecules of the solvent and not from the complexing oxygen atoms of the ligands. (author)

  14. Electrochemical supercapacitor studies of porous MnO{sub 2} nanoparticles in neutral electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Srither, S.R.; Karthik, A.; Arunmetha, S. [Centre for Nano Science and Technology, K. S. Rangasamy College of Technology, Tiruchengode 637 215, Tamil Nadu (India); Murugesan, D. [Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641 046, Tamil Nadu (India); Rajendran, V., E-mail: veerajendran@gmail.com [Centre for Nano Science and Technology, K. S. Rangasamy College of Technology, Tiruchengode 637 215, Tamil Nadu (India)

    2016-11-01

    In this study, porous MnO{sub 2} nanoparticles (sample A and sample B) with higher active surface area were synthesized using sonochemical and soft template methods. To determine the crystalline phase, the samples were characterized to study their microstructure, chemical composition, and physical properties. X-ray diffraction results showed that both the samples were amorphous. Microstructure study confirmed that the sample A is spherical, existing with rod-shaped morphology whereas sample B shows flake-like morphology. The Brunauer–Emmett–Teller results showed the value obtained for sample B to be 1559 m{sup 2} g{sup −1}, which is effectively high when compared to that of sample A. The electrochemical capacitor behavior of the prepared nanoparticles was investigated in 0.1 M Li{sub 2}SO{sub 4} and Na{sub 2}SO{sub 4} electrolytes. The cyclic voltammogram result showed that both the sample electrodes behave as an ideal capacitor in both electrolytes. The charge–discharge test result indicated that the highest specific capacitance value of 280 F g{sup −1} was obtained for sample B electrode in Na{sub 2}SO{sub 4} electrolyte with good capacity retention of 92.31% after 500 cycles. The electrochemical impedance spectroscopy measurements confirm that sample B electrode has a lower R{sub ct} value in Na{sub 2}SO{sub 4} electrolyte when compared to that in Li{sub 2}SO{sub 4} electrolyte. - Highlights: • Porous MnO{sub 2} nanoparticles are synthesized using two different methods. • Spherical with rod-shaped and flake-like morphology is observed for sample A and B. • Specific capacitance of 280 F g{sup −1} is obtained for sample B in Na{sub 2}SO{sub 4} electrolyte. • EIS confirms that sample B has a lower R{sub ct} value in Na{sub 2}SO{sub 4} electrolyte.

  15. Electrochemical Analysis of Neurotransmitters

    Science.gov (United States)

    Bucher, Elizabeth S.; Wightman, R. Mark

    2015-07-01

    Chemical signaling through the release of neurotransmitters into the extracellular space is the primary means of communication between neurons. More than four decades ago, Ralph Adams and his colleagues realized the utility of electrochemical methods for the study of easily oxidizable neurotransmitters, such as dopamine, norepinephrine, and serotonin and their metabolites. Today, electrochemical techniques are frequently coupled to microelectrodes to enable spatially resolved recordings of rapid neurotransmitter dynamics in a variety of biological preparations spanning from single cells to the intact brain of behaving animals. In this review, we provide a basic overview of the principles underlying constant-potential amperometry and fast-scan cyclic voltammetry, the most commonly employed electrochemical techniques, and the general application of these methods to the study of neurotransmission. We thereafter discuss several recent developments in sensor design and experimental methodology that are challenging the current limitations defining the application of electrochemical methods to neurotransmitter measurements.

  16. Single Nanostructure Electrochemical Devices for Studying Electronic Properties and Structural Changes in Lithiated Si Nanowires

    KAUST Repository

    McDowell, Matthew T.; Cui, Yi

    2011-01-01

    Nanostructured Si is a promising anode material for the next generation of Li-ion batteries, but few studies have focused on the electrical properties of the Li-Si alloy phase, which are important for determining power capabilities and ensuring sufficient electrical conduction in the electrode structure. Here, we demonstrate an electrochemical device framework suitable for testing the electrical properties of single Si nanowires (NWs) at different lithiation states and correlating these properties with structural changes via transmission electron microscopy (TEM). We fi nd that single Si NWs usually exhibit Ohmic I - V response in the lithiated state, with conductivities two to three orders of magnitude higher than in the delithiated state. After a number of sequential lithiation/delithiation cycles, the single NWs show similar conductivity after each lithiation step but show large variations in conductivity in the delithiated state. Finally, devices with groups of NWs in physical contact were fabricated, and structural changes in the NWs were observed after lithiation to investigate how the electrical resistance of NW junctions and the NWs themselves affect the lithiation behavior. The results suggest that electrical resistance of NW junctions can limit lithiation. Overall, this study shows the importance of investigating the electronic properties of individual components of a battery electrode (single nanostructures in this case) along with studying the nature of interactions within a collection of these component structures. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Single Nanostructure Electrochemical Devices for Studying Electronic Properties and Structural Changes in Lithiated Si Nanowires

    KAUST Repository

    McDowell, Matthew T.

    2011-07-19

    Nanostructured Si is a promising anode material for the next generation of Li-ion batteries, but few studies have focused on the electrical properties of the Li-Si alloy phase, which are important for determining power capabilities and ensuring sufficient electrical conduction in the electrode structure. Here, we demonstrate an electrochemical device framework suitable for testing the electrical properties of single Si nanowires (NWs) at different lithiation states and correlating these properties with structural changes via transmission electron microscopy (TEM). We fi nd that single Si NWs usually exhibit Ohmic I - V response in the lithiated state, with conductivities two to three orders of magnitude higher than in the delithiated state. After a number of sequential lithiation/delithiation cycles, the single NWs show similar conductivity after each lithiation step but show large variations in conductivity in the delithiated state. Finally, devices with groups of NWs in physical contact were fabricated, and structural changes in the NWs were observed after lithiation to investigate how the electrical resistance of NW junctions and the NWs themselves affect the lithiation behavior. The results suggest that electrical resistance of NW junctions can limit lithiation. Overall, this study shows the importance of investigating the electronic properties of individual components of a battery electrode (single nanostructures in this case) along with studying the nature of interactions within a collection of these component structures. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Electrochemical studies of ferrocene in a lithium ion conducting organic carbonate electrolyte

    International Nuclear Information System (INIS)

    Laoire, Cormac O.; Plichta, Edward; Hendrickson, Mary; Mukerjee, Sanjeev; Abraham, K.M.

    2009-01-01

    We carried out a detailed study of the kinetics of oxidation of ferrocene (Fc) to ferrocenium ion (Fc + ) in the non-aqueous lithium ion conducting electrolyte composed of a solution of 1 M LiPF 6 in 1:1 EC:EMC solvent mixture. This study using cyclic (CV) and rotating disk electrode (RDE) voltammetry showed that the Fc 0 /Fc + redox couple is reversible in this highly concentrated electrolyte. The ferrocene and ferrocenium ion diffusion coefficients (D) were calculated from these results. In addition, the electron transfer rate constant (k 0 ) and the exchange current density for the oxidation of ferrocene were determined. A comparison of the kinetic data obtained from the two electrochemical techniques appears to show that the data from the RDE experiments are more reliable because they are collected under strict mass transport control. A Tafel slope of c.a. 79 mV/decade and a transfer coefficient α of 0.3 obtained from analysis of the RDE data for ferrocene oxidation suggest that the structure of the activated complex is closer to that of the oxidized specie due to strong interactions with the carbonate solvents. The experiments reported here are relevant to the study of redox reagents for the chemical overcharge protection of Li-ion batteries.

  19. Electrochemical study of corrosion inhibition of stainless steel in phosphoric medium

    Energy Technology Data Exchange (ETDEWEB)

    Hnini, K.; Chtaini, A. [Laboratoire d' Electrochimie et de Bio Corrosion, Faculte des Sciences et Techniques, Beni-Mellal (Morocco); Khouili, M.; Elbouadili, A. [Laboratoire de Chimie Organique et Analytique, Faculte des Sciences et Techniques, Beni-Mellal (Morocco)

    2004-07-01

    The corrosion of metals represents a terrible waste of both natural resources and money, the failure of some stainless steel resulting from pitting corrosion is some times considered a technological problem, consequently, much effort has been expended in attempting to understand and overcome the corrosion therefore, many stainless steel/ environment combinations have been studied. The use of heterocyclic compounds as inhibitors is one of the most practical methods for protection against corrosion in acidic media. In continuation of our work on development of macrocyclic compounds as corrosion inhibitors we report in our study the corrosion inhibiting behaviour of organic compound Methoxy-2-Allyl-4 Phenol (MAP) containing coordinating and conjugation groups, at three forms (natural, polymerized and chemically treated) on the corrosion of stainless steel in phosphoric acid. This study focused on the comparison for corrosion inhibition proprieties of these different applications using potentiodynamic polarization, electrochemical impedance spectroscopy and SEM. The specimen was evaluated to determine change in his corrosion potential and resistance polarization; These MAP products have exhibited corrosion inhibition by maintaining a high resistance polarization (low corrosion rate) in each application. These results reveal that this compound is efficient inhibitor in all forms; the most inhibition efficiency is obtained with polymerized form. To further evaluate the test data, the steel surfaces were analyzed using scanning electron microscopy, SEM observations of surface treated concrete confirmed presence of inhibitor on the steel surfaces. (authors)

  20. Electrochemical Processes

    DEFF Research Database (Denmark)

    Bech-Nielsen, Gregers

    1997-01-01

    The notes describe in detail primary and secondary galvanic cells, fuel cells, electrochemical synthesis and electroplating processes, corrosion: measurments, inhibitors, cathodic and anodic protection, details of metal dissolution reactions, Pourbaix diagrams and purification of waste water from...

  1. Photocatalytic studies of electrochemically synthesized polysaccharide-functionalized ZnO nanoparticles

    Science.gov (United States)

    Kaur, Simranjeet; Kaur, Harpreet

    2018-05-01

    The present work reports the electrochemical synthesis of polysaccharide-functionalized ZnO nanoparticles using sodium hydroxide, starch, and zinc electrodes for the degradation of cationic dye (Rhodamine-B) under sunlight. Physiochemical properties of synthesized sample have been characterized by different techniques such as XRD, TEM, FESEM, EDS, IR, and UV-visible spectroscopic techniques. The influence of various factors such as effect of dye concentration, contact time, amount of photocatalyst, and pH has been studied. The results obtained from the photodegradation study showed that degradation rate of Rhodamine-B dye has been increased with increase of amount of photocatalyst and decreased with increase in initial dye concentration. Furthermore, the kinetics of the degradation has been investigated. It has been found that the photodegradation of Rhodamine-B dye follows pseudo-first-order kinetics and prepared photocatalyst can effectively degrade the cationic dye. Thus, this ecofriendly and efficient photocatalyst can be used for the treatment of dye-contaminated water. This catalyst also showed the antibacterial activity against Bacillus pumilus and Escherichia coli bacterial strains, so the synthesized nanoparticles also have the pharmaceutical properties.

  2. Electrochemical study of varenicline adsorptive behaviour and its interaction with DNA

    Directory of Open Access Journals (Sweden)

    Radulović Valentina

    2012-01-01

    Full Text Available The electrochemical behaviour of novel nicotinic α4β2 subtype receptor partial agonist varenicline (VAR which is used for smoking cessation, was investigated in Britton-Robinson buffers (pH 2.0-12.0 by cyclic, differential pulse and square wave voltammetry at a hanging mercury drop elctrode. The influence of pH, scan rate, concentration, accumulation potential and time on peak current and potential suggested that in alkaline media the redox process was adsorption controlled. Also, the experimental value of surface coverage, G = 1.03´10-10 mol cm-2, was used to determine the conditions when VAR was fully adsorbed at the electrode surface. Having in mind potential high toxicity of VAR due to the presence of quinoxaline structure, its interaction with DNA was postulated, and studied when both compounds were in the adsorbed state at modified HMDE. Using adsorptive transfer technique, the changes in potential and decrease in normalized peak currents were observed. The estimated value of the ratio of surface-binding constants indicated that the reduced form of VAR interacted with dsDNA more strongly than the oxidized form. Subtle DNA damage under conditions of direct DNA-VAR interaction at room temperature was observed. The proposed type of interaction was an intercalation. This study used simple electroanalytical methodology and showed the potential of DNA/HMDE biosensor for investigation of genotoxic effects.

  3. Electrochemical study in the molten sodium acid sulphate - potassium acid sulphate eutectic

    International Nuclear Information System (INIS)

    Le Ber, F.

    1964-01-01

    The general properties of the NaHSO 4 - KHSO 4 molten eutectic resemble those of neutral sulphates and those of concentrated H 2 SO 4 . We have been able to show the existence in solution of the ions HSO - 4 SO 2- 4 , and H 3 O + , these last being formed by the action of the HSO - 4 ions on dissolved H 2 O. The electro-active zone with a polished platinum electrode is limited in oxidation by the ions H 3 O + and SO 2- 4 , and in reduction by the protons of HSO - 4 . We have compared the electro-active zones obtained with different electrodes (Ag-Au-graphite-mercury). We have considered the dissolution of a few metallic oxides and halides. This work shows the role as O 2- ion acceptors of HSO - 4 ions. We have undertaken an electro-chemical study of a few oxido-reduction Systems: H + / H 2 , Ag↓ / Ag (1), the vanadium and uranium Systems, those of mercury Hg↓ / Hg 2- 2 and of gold Au/Au 3+ , then of the attack by the solvent of a few common metals such as aluminium, iron, copper and nickel. The study of silver Systems has made it possible to obtain the solubility products of AgCl and AgBr and to consider the possibility of coulometric titration Cl - ions with Ag + ions. We have shown the existence of various chemical species of vanadium which may exist in the molten eutectic. (author) [fr

  4. Electrochemical study of the increased antioxidant capacity of flavonoids through complexation with iron(II) ions

    International Nuclear Information System (INIS)

    Porfírio, Demóstenes Amorim; Ferreira, Rafael de Queiroz; Malagutti, Andréa Renata; Valle, Eliana Maíra Agostini

    2014-01-01

    Highlights: • Metal-Flavonoid complexes exhibit greater antioxidant capacity than the free flavonoid;. • Voltammetric profile is an additional information for determining antioxidant capacity;. • Pyrogallol group is a stronger complex-forming group than the catechol;. • Morin, quercetin and fisetin increased their antioxidant capacity in 15%, 32% and 28%, respectively. - Abstract: Flavonoids are polyphenolic compounds that act as natural antioxidants in the human body through various mechanisms, with an emphasis on suppressing reactive oxygen species (ROS) formation by inhibiting enzymes, the direct capture of ROS, and the regulation/protection of antioxidant defenses. Additionally, flavonoids can coordinate with transition metals to catalyze electron transport and promote free radical capture. Recently, metal ion chelation mechanisms have generated considerable interest, as experimental data show that flavonoids in metal complexes exhibit greater antioxidant activity than free flavonoids. However, few studies have correlated the complexing properties of flavonoids with their antioxidant capacity. Thus, the aim of this study was to use the CRAC (Ceric Reducing Antioxidant Capacity) electrochemical assay to measure the antioxidant capacity of five free flavonoids and Fe 2+ -flavonoid complexes. In addition, the interactions between the flavonoids and Fe 2+ were analyzed based on the oxidation peaks formed in their cyclic voltammograms

  5. To study the effect of different electrolytes and their concentrations on electrochemical micromachining

    Science.gov (United States)

    Singh, Ramandeep

    2018-04-01

    The machining of materials on micro-meter and sub-micrometre is considered the technology of future. Due to challenging applications of biomedical and aerospace industries, the traditional manufacturing techniques lacks in dimensional accuracy. Thus for such industries, the technique that can control micron tolerances is Electrochemical Micromachining (EMM). Hard metals and alloys can also be machined by this technique. Thus to develop a novel EMM system setup and to investigate the effect of three different electrolytes i.e NaCl, NaNO3 and HCl with their different concentrations, the current study was conducted. Stainless Steel-304 and copper were chosen as the work piece material in the present study. Taguchi L18 orthogonal array was used for the best combination of experiment. According to the present investigation most prominent factor affecting the material removal (MR) comes out was electrolyte. HCl provides the better MR among other electrolytes i.e. NaNO3 and NaCl. The amount of MR increased with the increase in the concentration of electrolyte.

  6. ELECTROCHEMICAL STUDIES OF URANIUM METAL CORROSION MECHANISM AND KINETICS IN WATER

    International Nuclear Information System (INIS)

    Boudanova, Natalya; Maslennikov, Alexander; Peretroukhine, Vladimir F.; Delegard, Calvin H.

    2006-01-01

    During long-term underwater storage of low burn-up uranium metal fuel, a corrosion product sludge forms containing uranium metal grains, uranium dioxide, uranates and, in some cases, uranium peroxide. Literature data on the corrosion of non-irradiated uranium metal and its alloys do not allow unequivocal prediction of the paragenesis of irradiated uranium in water. The goal of the present work conducted under the program 'CORROSION OF IRRADIATED URANIUM ALLOYS FUEL IN WATER' is to study the corrosion of uranium and uranium alloys and the paragenesis of the corrosion products during long-term underwater storage of uranium alloy fuel irradiated at the Hanford Site. The elucidation of the physico-chemical nature of the corrosion of irradiated uranium alloys in comparison with non-irradiated uranium metal and its alloys is one of the most important aspects of this work. Electrochemical methods are being used to study uranium metal corrosion mechanism and kinetics. The present part of work aims to examine and revise, where appropriate, the understanding of uranium metal corrosion mechanism and kinetics in water

  7. Synthesis and Electrochemical Studies of ReO3 Type Phase Nb3O7F

    Directory of Open Access Journals (Sweden)

    D. Saritha

    2018-04-01

    Full Text Available In latest era, explore for alternative materials to carbonaceous negative electrodes working at higher potential in lithium ion batteries is given enormous significance to avoid lithium plating and electrolyte decomposition. Niobium based oxides show enhanced results as choice to carbonaceous anodes and also Nb5+/4+ redox couple working at approximately 1.5V vs. lithium.The redox potential of the niobium metal ion (~1.5V and the structure of Nb3O7F encourage us lithium insertion studies. Nb3O7F compound has been synthesized through a simple solid state method to explore as anode material. A structural and electrochemical property of this compound is studied in detail.The charge-discharge curves are obtained galvanostatically at C/5 rate. In first discharge step, 5.3 Li can be inserted into four step process between 3.0 – 1.0 V with a specific capacity of 350 mAhg-1. Four plateaus are observed at 1.65, 1.3,1.2 and 1.1V. During charge 1.3 Li can be extracted with an irreversible capacity loss. The total first-charge capacity is 86 mAhg-1 corresponding to the extraction of 1.3 Li. These cells show a reversible capacity 86 mAhg-1 after 25 cycles. The detailed results will be described and discussed.

  8. Spectral, thermal, electrochemical and analytical studies on Cd(II) and Hg(II) thiosemicarbazone complexes

    Science.gov (United States)

    El-Asmy, A. A.; El-Gammal, O. A.; Saleh, H. S.

    2008-11-01

    The coordination characteristic of the investigated thiosemicarbazones towards hazard pollutants, Cd(II) and Hg(II), becomes the first goal. Their complexes have been studied by microanalysis, thermal, electrochemical and spectral (electronic, IR and MS) studies. The substitutent (salicylaldehyde, acetophenone, benzophenone, o-hydroxy- p-methoxybenzophenone or diacetylmonoxime) plays an important role in the complex formation. The coordination sites were the S for thiosemicarbazide (HTS); NN for benzophenone thiosemicarbazone (HBTS); NS for acetophenone thiosemicarbazone (HATS) and salicylaldehyde thiosemicarbazone (H 2STS); NNS or NSO for diacetylmonoxime thiosemicarbazone (H 2DMTS). The stability constants of Hg(II) complexes were higher than Cd(II). The kinetic and thermodynamic parameters for the different thermal decomposition steps in the complexes have been evaluated. The activation energy values of the first step ordered the complexes as: [Cd(H 2STS)Cl 2]H 2O > [Cd(H 2DAMTS)Cl 2] > [Cd(HBTS) 2Cl 2]2H 2O > [Cd(HATS) 2Cl 2]. The CV of [Cd(H 2STS)Cl 2]H 2O and [Hg(HBTS)Cl 2] were recorded. The use of H 2DMTS as a new reagent for the separation and determination of Cd(II) ions from water and some synthetic samples using flotation technique is aimed to be discussed.

  9. Comparative study between two austenitic steels with the EPR (Electrochemical Potentiokinetic Reactivation) technique

    International Nuclear Information System (INIS)

    Guillen M, A.N.

    1997-01-01

    In the mid 19704s, the intergranular corrosion with stress corrosion cracking (IGSCC) have been identified as a greater problem in Boiling Water Reactors BWR in several places of the world. The Electrochemical Potentiokinetic Reactivation - Single Loop (EPR-SL) test and the Double Loop (EPR-DL) test, were developed as methods for measuring the Degree of Sensitization (DOS), show sensitised materials at subject to Intergranular Corrosion. In Mexico, the Laguna Verde4s reactor is BWR type and many of its principal components was built with AISI 304 stainless steels, while that in VVER reactors as well as Juragua4s reactor in Cuba is used 321 Stainless stell in its Russian equivalent designation 08Ch18N10T. In this work, were studied 304 and 08Ch18N10T stainless steels by means of EPR-SL, EPR-DL and ASTM A-262 techniques, they have been found a good correlation for 304 steel but not in 08Ch18N10T steel and was proposed one modification in the criterion by the evaluation on the sensitisation in this steels. Finally, both materials were welded with procedures used in the nuclear industry, by Slow Strain Rate Test (SSRT) to determine the Stress Corrosion Cracking SCC susceptibility, and subsequently the susceptibility to localized corrosion was studied by means of Cyclic Polarization test and the uniform corrosion rate in a solution with chlorides by the Tafel plot, Potentiodynamic Anodic Polarization Resistance. (Author)

  10. Study of vanadium(IV) species and corresponding electrochemical performance in concentrated sulfuric acid media

    International Nuclear Information System (INIS)

    Wu Xuewen; Wang Jinjin; Liu Suqin; Wu Xiongwei; Li Sha

    2011-01-01

    Highlights: → Two new UV/Vis absorbance peaks are found in V(IV) sulfuric acid solutions. → We give the structural information on the new corresponding V(IV) species. → Reaction route is given with increasing sulfuric acid and V(IV) concentrations. → We find V(IV) species corresponding to the reversible electrochemical reaction. → A mixed-valence intermediate is invoked in the reversible reaction. - Abstract: The vanadium(IV) ion is found to form the [VO(SO 4 )(H 2 O) 4 ].H 2 O complex, as well as the dimer, [VO(H 2 O) 3 ] 2 (μ-SO 4 ) 2 , in concentrated H 2 SO 4 media. Their formation mechanisms were investigated by UV-Visible spectroscopy (UV-Vis), Raman spectroscopy, X-ray diffraction (XRD), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). UV-Vis spectroscopy study showed that [VO(SO 4 )(H 2 O) 4 ].H 2 O concentration in H 2 SO 4 solution was proportional to concentrations of VO 2+ and SO 4 2- . The increased deviation from the near centrosymmetry of the octahedral complexes is due to the replacement of an equatorial water oxygen in [VO(H 2 O) 5 ]SO 4 by a sulfate oxygen in [VO(SO 4 )(H 2 O) 4 ].H 2 O. The dimer shows symmetrical structure, which correlates very well with non-activity in UV-Vis spectroscopic analysis. Structural information on both vanadium(IV) species can be confirmed by Raman and XRD measurements of crystals from the supersaturated solution of VOSO 4 in 1 M, 6 M and 12 M sulfuric acid. A solution of vanadium(IV) (0.05 M) in 12 M H 2 SO 4 , in which the vanadium(IV) species is [VO(H 2 O) 3 ] 2 (μ-SO 4 ) 2 , exhibits a reversible redox behavior near 1.14 V (vs. SCE) on the carbon paper electrode.

  11. Electrochemical analysis

    International Nuclear Information System (INIS)

    Hwang, Hun

    2007-02-01

    This book explains potentiometry, voltametry, amperometry and basic conception of conductometry with eleven chapters. It gives the specific descriptions on electrochemical cell and its mode, basic conception of electrochemical analysis on oxidation-reduction reaction, standard electrode potential, formal potential, faradaic current and faradaic process, mass transfer and overvoltage, potentiometry and indirect potentiometry, polarography with TAST, normal pulse and deferential pulse, voltammetry, conductometry and conductometric titration.

  12. Materials for electrochemical capacitors

    Science.gov (United States)

    Simon, Patrice; Gogotsi, Yury

    2008-11-01

    Electrochemical capacitors, also called supercapacitors, store energy using either ion adsorption (electrochemical double layer capacitors) or fast surface redox reactions (pseudo-capacitors). They can complement or replace batteries in electrical energy storage and harvesting applications, when high power delivery or uptake is needed. A notable improvement in performance has been achieved through recent advances in understanding charge storage mechanisms and the development of advanced nanostructured materials. The discovery that ion desolvation occurs in pores smaller than the solvated ions has led to higher capacitance for electrochemical double layer capacitors using carbon electrodes with subnanometre pores, and opened the door to designing high-energy density devices using a variety of electrolytes. Combination of pseudo-capacitive nanomaterials, including oxides, nitrides and polymers, with the latest generation of nanostructured lithium electrodes has brought the energy density of electrochemical capacitors closer to that of batteries. The use of carbon nanotubes has further advanced micro-electrochemical capacitors, enabling flexible and adaptable devices to be made. Mathematical modelling and simulation will be the key to success in designing tomorrow's high-energy and high-power devices.

  13. Electrochemical Dissolution of Iridium and Iridium Oxide Particles in Acidic Media: Transmission Electron Microscopy, Electrochemical Flow Cell Coupled to Inductively Coupled Plasma Mass Spectrometry, and X-ray Absorption Spectroscopy Study.

    Science.gov (United States)

    Jovanovič, Primož; Hodnik, Nejc; Ruiz-Zepeda, Francisco; Arčon, Iztok; Jozinović, Barbara; Zorko, Milena; Bele, Marjan; Šala, Martin; Šelih, Vid Simon; Hočevar, Samo; Gaberšček, Miran

    2017-09-13

    Iridium-based particles, regarded as the most promising proton exchange membrane electrolyzer electrocatalysts, were investigated by transmission electron microscopy and by coupling of an electrochemical flow cell (EFC) with online inductively coupled plasma mass spectrometry. Additionally, studies using a thin-film rotating disc electrode, identical location transmission and scanning electron microscopy, as well as X-ray absorption spectroscopy have been performed. Extremely sensitive online time-and potential-resolved electrochemical dissolution profiles revealed that Ir particles dissolve well below oxygen evolution reaction (OER) potentials, presumably induced by Ir surface oxidation and reduction processes, also referred to as transient dissolution. Overall, thermally prepared rutile-type IrO 2 particles are substantially more stable and less active in comparison to as-prepared metallic and electrochemically pretreated (E-Ir) analogues. Interestingly, under OER-relevant conditions, E-Ir particles exhibit superior stability and activity owing to the altered corrosion mechanism, where the formation of unstable Ir(>IV) species is hindered. Due to the enhanced and lasting OER performance, electrochemically pre-oxidized E-Ir particles may be considered as the electrocatalyst of choice for an improved low-temperature electrochemical hydrogen production device, namely a proton exchange membrane electrolyzer.

  14. Studi Electrochemical Impedance Spectroscopy dari Lembaran Polyvinyl Alcohol dengan Penambahan Liclo4 sebagai Bahan Elektolit Baterai Li-ion

    OpenAIRE

    Gunawan, Indra; Wahyudianingsih, Wahyudianingsih; Sudaryanto, Sudaryanto

    2016-01-01

    ELECTROCHEMICALIMPEDANCE SPECTROSCOPY STUDY OF POLYVINYL ALCOHOL SHEETWITHADDITION OFLiClO4AS ELECTROLYTE MATERIAL OF Li-ION BATTERAY. Solid polymer electrolyte materials for Li ion battery have been prepared using polyvinyl alcohol (PVA) added by lithium perchlorate (LiClO4) salt with various concentration. Electrochemical Impedance Spectroscopy (EIS) study of the material was done by making a Nyquist plot of the measurement with a LCR meter. These electrolyte materials prepared by using PVA...

  15. Electrochemical study of nickel from urea-acetamide-LiBr low-temperature molten salt

    International Nuclear Information System (INIS)

    Li, Min; Gao, Bingliang; Shi, Zhongning; Hu, Xianwei; Wang, Shixing; Li, Liangxing; Wang, Zhaowen; Yu, Jiangyu

    2015-01-01

    Highlights: • CV results show that the charge transfer process of Ni(II)/Ni in urea-acetamide-LiBr is irreversible. • The reduction process is a single step two-electron transfer process. • Chronoamperometry indicates that the reaction on tungsten electrode involves progressive nucleation. • EDS and XRD analyses confirm that the obtained deposits are pure nickel. -- Abstract: The electrochemical behavior of nickel was studied by cyclic voltammetry and chronoamperometry techniques at 353 K using a tungsten electrode in urea-acetamide-LiBr low-temperature molten salt. The cyclic voltammograms indicate that the reduction of Ni(II) to Ni proceeds via a single-step, two-electron transfer process. Chronoamperometric measurements show that the electrodeposition of nickel on the tungsten electrode involves three-dimensional (3D) progressive nucleation under diffusion-controlled growth at 353 K. Nickel coatings were prepared at different cathodic potentials (−0.70 to −0.85 V) and different temperatures (343–373 K) in urea-acetamide-LiBr molten salt. The deposits were characterized by scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD). The SEM images reveal that uniform, dense, and compact deposits were obtained at more positive cathodic potentials within the temperature range of 343–363 K. The EDS and XRD analyses confirm that the obtained deposits are pure nickel

  16. Electrochemical and dissolution studies on coated film and magnetite pellet in PDCA and NTA based formulations

    International Nuclear Information System (INIS)

    Srinivasan, M.P.; Sumathi, S.; Rangarajan, S.; Narasimhan, S.V.

    2000-01-01

    In water cooled nuclear reactors magnetite often exists as both mobile particulate protective film on the inner surface of the PHT system. To determine the mechanism and kinetics of dissolution from a film coated on carbon steel (CS) and magnetite pellet electrochemical measurements were carried out in 2,6-pyridine dicarboxylic acid (PDCA) and nitrilo-triacetic acid (NTA) based formulations containing ascorbic acid (AA) and citric acid (CA) at 28 degC and 60 degC. The solution redox potential arises based on the release of relative amounts of Fe 2+ and Fe 3+ . Complexation, adsorption and reduction affect the concentration of these species in solutions. On coated specimen, the pore size and rate of formation via auto reduction contribute to the observed potential. In PDCA based formulation higher percentage of magnetite dissolution with lower base metal corrosion was observed as compared to that in NTA based formulation. The base metal aided dissolution due to the pores and microcracks in the film (Auto reduction) was observed for coated film. The dominant role of surface adsorption characteristics of PDCA, AA and CA were evident in magnetite pellet dissolution studies. (author)

  17. Electrochemical mechanism and kinetics studies of haloperidol and its assay in commercial formulations

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Francisco W.P. [Departamento de Quimica Analitica e Fisico-Quimica, Centro de Ciencias, Universidade Federal do Ceara, Bloco 940 Campus do Pici 60455-970, Fortaleza, CE (Brazil); Soares, Janete E.S. [Departamento de Farmacia, Faculdade de Farmacia, Odontologia e Enfermagem, Universidade Federal do Ceara, Rua Capitao Francisco Pedro, 1210 Rodolfo Teofilo 60430-370, Fortaleza, CE (Brazil); Becker, Helena; De Souza, Djenaine; Lima-Neto, Pedro de [Departamento de Quimica Analitica e Fisico-Quimica, Centro de Ciencias, Universidade Federal do Ceara, Bloco 940 Campus do Pici 60455-970, Fortaleza, CE (Brazil); Correia, Adriana N., E-mail: adriana@ufc.b [Departamento de Quimica Analitica e Fisico-Quimica, Centro de Ciencias, Universidade Federal do Ceara, Bloco 940 Campus do Pici 60455-970, Fortaleza, CE (Brazil)

    2011-02-01

    The kinetics and mechanism for electrochemical reduction of haloperidol, a psychotherapeutic drug used in the treatment of schizophrenia, were studied using square wave and cyclic voltammetries allied to a hanging mercury drop electrode. The experimental and voltammetric parameters were optimized at 0.04 mol L{sup -1} Brinton-Robinson buffer (pH 10), with a pulse potential frequency of 100 s{sup -1}, a pulse amplitude of 30 mV and scan increment of 2 mV. Two well-defined peaks were observed, which exhibited properties of fast electron transfer with a strong adsorption process of reactants and products on the electrode surface. The first peak was related to a fast and reversible anion-radical formation originating from the reduction of the carbonyl group, and the second was related to the irreversible reduction of the anion-radical previously formed. Analytical parameters such as: linearity range, equation of the analytical curves, correlation coefficients, detection and quantification limits, recovery efficiency, and relative standard deviation for intraday and interday were compared to similar results obtained by use of the UV-vis spectrophotometry technique, and the analytical results obtained in commercial formulations show that the voltammetric procedure using a hanging mercury drop electrode is suitable for analyzing haloperidol in complex commercial formulation samples.

  18. Study on temperature dependence of output voltage of electrochemical detector for environmental neutrinos

    International Nuclear Information System (INIS)

    Halim, Md Abdul; Ishibashi, Kenji; Arima, Hidehiko; Terao, Norichika

    2006-01-01

    An electrochemical detector with biological material has been applied for the detection of neutrinos on the basis of a new hypothesis. The detector consisted of two electrodes with raw silk and purified water, and gave an appreciable output voltage. The reproducibility of the experimental results was as good as 99.4% at temperature of 300 K. The temperature dependence of the voltage of the detector was studied at 280, 290, 300 and 310 K. Among them, the detector at 310 K produced the highest output voltage and reached 104 mV in 16 days, whereas that at 280 K generated the lowest voltage and it was as low as 1.2 mV in 16 days. The detectors working at 290 and 300 K produced the voltages 18 and 57 mV in 16 days, respectively. The output voltages of the detector increased with temperature and were in good agreement in spite of the history of temperature. The internal resistance and electromotive force (internal voltage) of the experimental detector were obtained at each temperature by individual analysis and least square fitting method. It was found that the electromotive force was almost constant for these temperatures while the internal resistance showed a large dependence on temperature. The reduction of the output voltage with temperature is dominated by this behavior of internal resistance. (author)

  19. Electrochemical & osteoblast adhesion study of engineered TiO2 nanotubular surfaces on titanium alloys

    International Nuclear Information System (INIS)

    Rahman, Zia Ur; Haider, Waseem; Pompa, Luis; Deen, K.M.

    2016-01-01

    TiO 2 nanotubes were grafted on the surface of cpTi, Ti6Al4V and Ti6Al4V-ELI with the aim to provide a new podium for human pre-osteoblast cell (MC3T3) adhesion and proliferation. The surface morphology and chemistry of these alloys were examined with scanning electron microscopy and energy dispersive x-ray spectroscopy. TiO 2 nanotubes were further characterized by cyclic potentiodynamic polarization tests and electrochemical impedance spectroscopy. The vertically aligned nanotubes were subjected to pre-osteoblast cell proliferation in order to better understand cell–material interaction. The study demonstrated that these cells interact differently with nanotubes of different titanium alloys. The significant acceleration in the growth rate of pre-osteoblast cell adhesion and proliferation is also witnessed. Additionally, the cytotoxicity of the leached metal ions was evaluated by using a tetrazolium-based bio-assay, MTS. Each group of data was operated for p < 0.05, concluded one way ANOVA to investigate the significance difference. - Highlights: • TiO 2 nanotubes were grafted on cpTi, Ti6Al4V and Ti6Al4V-ELI via anodization. • MC3T3 cells interact differently with nanotubes of different titanium alloys. • TiO 2 nanotubes have a positive impact on the osteoblast cell viability.

  20. Structural and electrochemical study of the reaction of lithium with silicon nanowires

    KAUST Repository

    Chan, Candace K.

    2009-04-01

    The structural transformations of silicon nanowires when cycled against lithium were evaluated using electrochemical potential spectroscopy and galvanostatic cycling. During the charge, the nanowires alloy with lithium to form an amorphous LixSi compound. At potentials <50 mV, a structural transformation occurs. In studies on micron-sized particles previously reported in the literature, this transformation is a crystallization to a metastable Li15Si4 phase. X-ray diffraction measurements on the Si nanowires, however, show that they are amorphous, suggesting that a different amorphous phase (LiySi) is formed. Lithium is removed from this phase in the discharge to form amorphous silicon. We have found that limiting the voltage in the charge to 70 mV results in improved efficiency and cyclability compared to charging to 10 mV. This improvement is due to the suppression of the transformation at low potentials, which alloys for reversible cycling of amorphous silicon nanowires. © 2008 Elsevier B.V. All rights reserved.

  1. Study and Electrochemical Determination of Tyrosine at Graphene Nanosheets Composite Film Modified Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    M. Behpour

    2013-06-01

    Full Text Available A graphene nanosheets (GNS film coated glassy carbon electrode (GCE was fabricated for sensitive determination of tyrosine (Tyr. The GNS-based sensor was characterized by scanning electron microscope and electrochemical impedance spectroscopy. The voltammetric techniques were employed to study electro-oxidation of Tyr. The results revealed that the modified electrode showed an electrocatalytic activity toward the anodic oxidation of Tyr by a marked enhancement in the current intensity and the shift in the oxidation potential to lower values (50 mV in comparison with the bare GCE. Some kinetic parameters such as the electron transfer coefficient (α were also determined for the Tyr oxidation. The detection limit  for Tyr was found to be 2.0×10-8 M (n=9, and the peak current increases linearly with the Tyr concentration within the molar concentration ranges of 5.0 ×10-6 to 1.2 ×10-4 M. The modified electrode shows good sensitivity, selectivity and stability. The prepared electrode was applied for the determination of Tyr in real sample.

  2. Study crevice corrosion alloys C-22 and 625 by electrochemical noise

    International Nuclear Information System (INIS)

    Ungaro, María L.; Carranza, Ricardo M.; Rodríguez, Martín A.

    2013-01-01

    C-22 and 625 alloys are two of the Ni –Cr-Mo alloys considered as candidate materials to form the corrosion resistance engineered barriers for nuclear waste repositories. The corrosion resistance of these alloys is remarkable in a wide variety of environments. Despite of their resistance these alloys are susceptible to crevice corrosion in a certain aggressive environments. This work presents the use of electrochemical noise technique to study crevice corrosion susceptibility of alloys C-22 and 625 in 1M NaCl acidic solutions at 60ºC and 90ºC. Asymmetrical electrodes and a complementary platinum electrode were used to assess the influence of cathodic reaction in crevice process. The obtained records were analyzed directly and through statistical parameters. The potential drop and the simultaneous increment of the current records indicated the occurrence of crevice corrosion. The alternative use of a platinum electrode resulted in higher currents and higher potentials and reduced the induction time to crevice formation. The reason for this behavior is that platinum surface allows faster cathodic reactions than C-22 and 625 alloys. The standard deviation of the current records was responsive to the crevice corrosion intensity. C-22 alloy had better crevice corrosion performance than 625 alloy. (author)

  3. Electrochemical mechanism and kinetics studies of haloperidol and its assay in commercial formulations

    International Nuclear Information System (INIS)

    Ribeiro, Francisco W.P.; Soares, Janete E.S.; Becker, Helena; De Souza, Djenaine; Lima-Neto, Pedro de; Correia, Adriana N.

    2011-01-01

    The kinetics and mechanism for electrochemical reduction of haloperidol, a psychotherapeutic drug used in the treatment of schizophrenia, were studied using square wave and cyclic voltammetries allied to a hanging mercury drop electrode. The experimental and voltammetric parameters were optimized at 0.04 mol L -1 Brinton-Robinson buffer (pH 10), with a pulse potential frequency of 100 s -1 , a pulse amplitude of 30 mV and scan increment of 2 mV. Two well-defined peaks were observed, which exhibited properties of fast electron transfer with a strong adsorption process of reactants and products on the electrode surface. The first peak was related to a fast and reversible anion-radical formation originating from the reduction of the carbonyl group, and the second was related to the irreversible reduction of the anion-radical previously formed. Analytical parameters such as: linearity range, equation of the analytical curves, correlation coefficients, detection and quantification limits, recovery efficiency, and relative standard deviation for intraday and interday were compared to similar results obtained by use of the UV-vis spectrophotometry technique, and the analytical results obtained in commercial formulations show that the voltammetric procedure using a hanging mercury drop electrode is suitable for analyzing haloperidol in complex commercial formulation samples.

  4. Mass-transfer studies in an electrochemical reactor with a small interelectrode gap

    International Nuclear Information System (INIS)

    Colli, A.N.; Toelzer, R.; Bergmann, M.E.H.; Bisang, J.M.

    2013-01-01

    Highlights: • Turbulence promoters increase from two to eight times the mass-transfer coefficients. • Turbulence promoters become more uniform the mass-transfer distribution. • Expanded plastics with an open structure are appropriate as turbulence promoters. -- Abstract: This paper reports the distribution of the local mass-transfer coefficient along the electrode length for an electrochemical reactor with parallel-plate electrodes and narrow interelectrode gaps of 1 and 2.2 mm, using the reduction of ferricyanide as a test reaction. The studies were performed at different flow rates, Reynolds numbers ranging from 370 to 3700, with the empty reactor and also the interelectrode gap was filled with two types of expanded plastics and a woven plastic mesh as turbulence promoters. The effect of both the interelectrode gap and the partial placing of the turbulence promoter along the electrode length on the mass-transfer behaviour was also analyzed. In all cases the pressure drop across the reactor was measured. A more uniform distribution of the local mass-transfer coefficient, ±15% related to its mean value, and an important increase of the mean mass-transfer coefficient, enhancement factor ranging from 2 to 8, were observed, depending on the type of turbulence promoter, the volumetric flow rate, and the interelectrode gap

  5. Electrochemical Investigation of Catechol at Poly(niacinamide Modified Carbon Paste Electrode: A Voltammetric Study

    Directory of Open Access Journals (Sweden)

    A. B. Teradale

    2016-01-01

    Full Text Available A polymeric thin film modified electrode, that is, poly(niacinamide modified carbon paste electrode (MCPE, was developed for the electrochemical determination of catechol (CC by using cyclic voltammetric technique. Compared to bare carbon paste electrode (BCPE, the poly(niacinamide MCPE shows good electrocatalytic activity towards the oxidation of catechol in phosphate buffer solution (PBS of physiological pH 7.4. All experimental parameters were optimized. Poly(niacinamide modified carbon paste electrode gave a linear response between concentration of CC and its anodic peak current in the range within 20.6–229.0 μM. The limit of detection (3S/M and limit of quantification (10S/M were 1.497 μM and 4.99 μM, respectively. From the study of scan rate variation, the electrode process was found to be adsorption-controlled. The involvement of protons and electrons in the oxidation of CC was found to be equal. The probable electropolymerisation mechanism of niacinamide was proposed. Finally, this method can be used in development of a sensor for sensitive determination of CC.

  6. Electrochemical Impedance and Polarization Corrosion Studies of Tantalum Surface Modified by DC Plasma Electrolytic Oxidation

    Directory of Open Access Journals (Sweden)

    Maciej Sowa

    2018-04-01

    Full Text Available Tantalum has recently become an actively researched biomaterial for the bone reconstruction applications because of its excellent corrosion resistance and successful clinical records. However, a bare Ta surface is not capable of directly bonding to the bone upon implantation and requires some method of bioactivation. In this study, this was realized by direct current (DC plasma electrolytic oxidation (PEO. Susceptibility to corrosion is a major factor determining the service-life of an implant. Therefore, herein, the corrosion resistance of the PEO coatings on Ta was investigated in Ringer’s solution. The coatings were formed by galvanostatic anodization up to 200, 300 and 400 V, after which the treatment was conducted potentiostatically until the total process time amounted to 5 min. Three solutions containing Ca(H2PO22, Ca(HCOO2 and Mg(CH3COO2 were used in the treatment. For the corrosion characterization, electrochemical impedance spectroscopy and potentiodynamic polarization techniques were chosen. The coatings showed the best corrosion resistance at voltages low enough so that the intensive sparking was absent, which resulted in the formation of thin films. The impedance data were fitted to the equivalent electrical circuits with two time constants, namely R(Q[R(QR] and R(Q[R(Q[RW

  7. Electrochemical Studies of Monoterpenic Thiosemicarbazones as Corrosion Inhibitor for Steel in 1 M HCl

    Directory of Open Access Journals (Sweden)

    R. Idouhli

    2018-01-01

    Full Text Available We have studied the inhibitory effect of some Monoterpenic Thiosemicarbazones on steel corrosion in 1 M HCl solution. The potentiodynamic polarization and electrochemical impedance spectroscopy were used. The Monoterpenic Thiosemicarbazones have inhibited significantly the dissolution of steel. The inhibition efficiency increased with increasing inhibitor concentration and also with the increase in temperature (293–323 K. Furthermore, the results obtained revealed that the adsorption of inhibitor on steel surface obeys Langmuir adsorption model and the thermodynamic parameters such as enthalpy and activation energy were determined. The scanning electron microscopy combined with dispersive X-ray spectroscopy examinations were used to see the shape of the surface morphology and to determine the elemental composition. Scanning electron microscope (SEM images show that the surface damage decreases when the inhibitor is added. The quantum chemical calculations using density functional theory (DFT were performed in order to provide some insights into the electronic density distribution as well as the nature of inhibitor-steel interaction.

  8. DNA binding studies of Sunset Yellow FCF using spectroscopy, viscometry and electrochemical techniques

    Science.gov (United States)

    Asaadi, Sara; Hajian, Reza

    2017-10-01

    Color is one of the important factors in food industry. All food companies use synthetic pigments to improve the aesthetic of products. Studies on the interaction between deoxyribonucleic acid (DNA) and food dye molecules is important because DNA is responsible for some processes including replication and transcription of cells, mutations, genetic diseases, and some synthetic chemical nucleases. In this study, the molecular interaction between Sunset Yellow FCF (SY) as a common food coloring additive and calf thymus DNA (ct-DNA) has been studied using UV-Vis spectrophotometry, spectrofluorometry, Fourier transform infrared (FTIR) spectroscopy, cyclic voltammetry and viscometry techniques. The binding constant between ct-DNA and SY in phosphate buffer solution (pH 7.4) was calculated as 2.09 × 103 L mol-1. The non-electrostatic bonding constant (K0t) was almost consistent and the ratio of K0t/Kb increased by increasing the ionic strength in the range of 0.01-0.1 mol L-1 of KCl. This observation shows that, the molecular bonding of SY to ct-DNA is a combination of electrostatic and intercalation interactions. In the electrochemical studies, an oxidation peak at 0.71 V and a reduction peak at about 0.63 V was observed with the peak potential difference (ΔEp) of 0.08 V, showing a reversible process. The oxidation and reduction peaks were significantly decreased in the presence of ct-DNA and the reduction peak current shifted to negative values. In spectrofluorometric study, the fluorescence intensity of SY increased dramatically after successive addition of DNA due to the increasing of molecular surface area and decreasing of impact frequency between solvent and SY-DNA adduct. Moreover, viscometric study shows that the increasing of viscosity for SY solution in the presence of DNA is due to the intercalation mechanism with double strand DNA (ds-DNA).

  9. Electrochemical study in molten potassium thiocyanate; Etude electrochimique dans le thiocyanate de potassium fondu

    Energy Technology Data Exchange (ETDEWEB)

    Metzger, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    We have studied in this work the electrochemical properties of molten potassium thiocyanate. The melting point of this salt is 173 deg C and we have chosen to work at 195 deg C. The molten salted is dissociated into K{sup +} and SCN{sup -} ions; since the K{sup +} ions are very difficult to reduce it is the oxido-reduction reaction of the SCN{sup -} ion which limits the electro-active zone of the solvent. We have shown that SCN{sup -} behaves as an addition compound of S{sup 0} and CN{sup -}.analysis of the products formed during the oxidation and the coulometric reduction of the bath shows that the electrochemical reactions which limit the electro-active zone of the solvent are the following: SCN{sup -} + 2 e {yields} S{sup 2-} + CN{sup -} SCN{sup -} + 2 e {yields} S{down_arrow} + 1/2 (CN){sup -}{sub 2} We have shown that it is possible also to carry out the chemical oxidation of the thiocyanate by introducing an oxidising cation such as Fe{sup 3+} or Cu{sup 2+}. This reaction leads to the same chemical species as the electrochemical oxidation. With respect to the Ag{down_arrow} / Ag 0.1 M electrode taken as reference, the electro-active limits are the following: from - 1.050 V to + 0.750 V for a platinum electrode from - 1.350 V to + 0.050 V for a mercury drop electrode. We have studied the electrochemical behaviour of a certain number of ions in the molten salt; by plotting the intensity-potential curves it has been possible to determine the half-wave potentials of several cations: Pb{sup 2+}, Sn{sup 2+}, Fe{sup 2+}, Cd{sup 2+}, Zn{sup 2+}, Hg{sup 2+}{sub 2}, Hg{sup 2+}, Cu{sup +}, Co{sup 2+}, Ni{sup 2+}, Cr{sup 3+}. A comparison of the potential values found in the thiocyanate with those which are already known for other molten solvents has made it possible for us to find parallels between the properties of the thiocyanate and those of certain salts such as molten chlorides or nitrates. Thus the complexing properties of SCN{sup -} with respect to Cu

  10. Synergy of Nyquist and Bode electrochemical impedance spectroscopy studies to particle size effect on the electrochemical properties of LiNi0.5Co0.2Mn0.3O2

    International Nuclear Information System (INIS)

    Liang, Chenghao; Liu, Lianbao; Jia, Zheng; Dai, Changsong; Xiong, Yueping

    2015-01-01

    To study the mechanism of material particle size effects on the electrochemical properties of LiNi 0.5 Co 0.2 Mn 0.3 O 2 , two kinds of materials with particle size of 300 nm and 1 μm were prepared, based on the electrospinning method and sol-gel method, respectively. The capacity differences of the two materials at 20 mA/g discharge current were unapparent, in the potential range of 2.8V–4.3 V, but become gigantic at 1000 mA/g discharge current. Electrochemical impedance spectroscopy (EIS) was employed to analysis the differences caused by particle size, and frequency responses of every electrochemical process were analyzed in detail through Bode plots, which proved the electrospinning material had an excellent performance caused by a shorter lithium ion and electron diffusion distance.

  11. Electrochemical Study of Delta-9-Tetrahydrocannabinol by Cyclic Voltammetry Using Screen Printed Electrode, Improvements in Forensic Analysis

    Directory of Open Access Journals (Sweden)

    Marco Antonio BALBINO

    2016-12-01

    Full Text Available Rapid screening of seized drugs is a continuing problem for governmental laboratories and customs agents. Recently new and cheaper methods based on electrochemical sensing have been developed for the detection of illicit drugs. Screen printed electrodes are particularly useful in this regard and can provide excellent sensitivity. In this study, a carbon screen printed electrode for the voltammetric analysis of D9-THC was developed. The analysis was performed using cyclic voltammetry with 0.15 mol×L-1 potassium nitrate as a supporting electrolyte. In the analysis, a D9-THC standard solution was added to the surface electrode by a drop coating method. A study of scan rate, time of pre-concentration, and concentration influence parameters showed versatility during the investigation. The high sensitivity, quantitative capability and low limit of detection (1.0 µmol×L-1 demonstrate that this electrochemical method should be an attractive alternative in forensic investigations of seized samples.

  12. Crop micrometeorology : a simulation study

    NARCIS (Netherlands)

    Goudriaan, J.

    1977-01-01

    This monograph presents the results of a detailed study in micrometeorology; one of the sciences that play an important role in production ecology. The purpose is to explain the microweather as a function of the properties of plant and soil, and of the weather conditions prevalent at some

  13. Electrochemical, interfacial, and surface studies of the conversion of carbon dioxide to liquid fuels on tin electrodes

    Science.gov (United States)

    Wu, Jingjie

    The electrochemical reduction of carbon dioxide (CO2) into liquid fuels especially coupling with the intermittent renewable electricity offers a promising means of storing electricity in chemical form, which reduces the dependence on fossil fuels and mitigates the negative impact of anthropogenic CO2 emissions on the planet. Although converting CO2 to fuels is not in itself a new concept, the field has not substantially advanced in the last 30 years primarily because of the challenge of discovery of structural electrocatalysts and the development of membrane architectures for efficient collection of reactants and separation of products. An efficient catalyst for the electrochemical conversion of CO2 to fuels must be capable of mediating a proton-coupled electron transfer reaction at low overpotentials, reducing CO2 in the presence of water, selectively converting CO 2 to desirable chemicals, and sustaining long-term operations (Chapter 1). My Ph.D. research was an investigation of the electroreduction of CO2 on tin-based electrodes and development of an electrochemical cell to convert CO2 to liquid fuels. The initial study focused on understanding the CO2 reduction reaction chemistry in the electrical double layer with an emphasis on the effects of electrostatic adsorption of cations, specific adsorption of anion and electrolyte concentration on the potential and proton concentration at outer Helmholtz plane at which reduction reaction occurs. The variation of potential and proton concentration at outer Helmholtz plane accounts for the difference in activity and selectivity towards CO2 reduction when using different electrolytes (Chapter 2). Central to the highly efficient CO2 reduction is an optimum microstructure of catalyst layer in the Sn gas diffusion electrode (GDE) consisting of 100 nm Sn nanoparticles to facilitate gas diffusion and charge transfer. This microstructure in terms of the proton conductor fraction and catalyst layer thickness was optimized to

  14. Effect of replacement of vanadium by iron on the electrochemical behaviour of titanium alloys in simulated physiological media

    Directory of Open Access Journals (Sweden)

    Mareci, D.

    2009-02-01

    Full Text Available The electrochemical behaviour of Ti6Al4V, Ti6Al3.5Fe and Ti5Al2.5Fe alloys has been evaluated in Ringer’s solution at 25 °C. The effect of the substitution of vanadium in Ti6Al4V alloy has been specifically addressed. The evaluation of the corrosion resistance was carried out through the analysis of the open circuit potential variation with time, potentiodynamic polarization curves, and electrochemical impedance spectroscopy (EIS tests. Very low current densities were obtained (order of nA/cm2 from the polarization curves and EIS, indicating a typical passive behaviour for all investigated alloys. The EIS results exhibited relative capacitive behaviour (large corrosion resistance with phase angle close to –80° and relative high impedance values (order of 105 Ω•cm2 at low and medium frequencies, which are indicative of the formation of a highly stable film on these alloys in Ringer’s solution. In conclusion, the electrochemical behaviour of Ti6Al4V is not affected by the substitution of vanadium with iron.

    El comportamiento electroquímico de las aleaciones Ti6Al4V, Ti6Al3.5Fe y Ti5Al2.5Fe fue evaluado en una disolución Ringer a 25 °C. Se ha estudiado especialmente el efecto de la sustitución del vanadio en la aleación Ti6Al4V. La evaluación de la resistencia a la corrosión se ha llevado a cabo a través del análisis de la variación del potencial de un circuito abierto con el tiempo, las curvas de polarización potenciodinámicas y los ensayos de espectroscopía de impedancia electroquímica (EIS. Se han obtenido densidades de corriente muy bajas (del orden de nA/cm2 en las curvas de polarización y EIS, indicando un comportamiento pasivo típico para todas las aleaciones investigadas. Los resultados de la EIS mostraron un comportamiento capacitivo relativo (gran resistencia a la corrosión con ángulos de fase próximos a –80° y valores de impedancia relativamente altos (del orden de

  15. Studies on sildenafil citrate (Viagra) interaction with DNA using electrochemical DNA biosensor.

    Science.gov (United States)

    Rauf, Sakandar; Nawaz, Haq; Akhtar, Kalsoom; Ghauri, Muhammad A; Khalid, Ahmad M

    2007-05-15

    The interaction of sildenafil citrate (Viagra) with DNA was studied by using an electrochemical DNA biosensor. The binding mechanism of sildenafil citrate was elucidated by using constant current potentiometry and differential pulse voltammetry at DNA-modified glassy carbon electrode. The decrease in the guanine oxidation peak area or peak current was used as an indicator for the interaction in 0.2M acetate buffer (pH 5). The binding constant (K) values obtained were 2.01+/-0.05 x 10(5) and 1.97+/-0.01 x 10(5)M(-1) with constant current potentiometry and differential pulse voltammetry, respectively. A linear dependence of the guanine peak area or peak current was observed within the range of 1-40 microM sildenafil citrate with slope=-2.74 x 10(-4)s/microM, r=0.989 and slope=-2.78 x 10(-3)microA/microM, r=0.995 by using constant current potentiometry and differential pulse voltammetry, respectively. Additionally, binding constant values for sildenafil citrate-DNA interaction were determined for the pH range of 4-8 and in biological fluids (serum and urine) at pH 5. The influence of sodium and calcium ions was also studied to elucidate the mechanism of sildenafil citrate-DNA interaction under different solution conditions. The present study may prove to be helpful in extending our understanding of the anticancer activity of sildenafil citrate from cellular to DNA level.

  16. Electrochemical corrosion study of Mg–Al–Zn–Mn alloy in aqueous ethylene glycol containing chloride ions

    Directory of Open Access Journals (Sweden)

    Harish Medhashree

    2017-01-01

    Full Text Available Nowadays most of the automobiles use magnesium alloys in the components of the engine coolant systems. These engine coolants used are mainly composed of aqueous ethylene glycol along with some inhibitors. Generally the engine coolants are contaminated by environmental anions like chlorides, which would enhance the rate of corrosion of the alloys used in the coolant system. In the present study, the corrosion behavior of Mg–Al–Zn–Mn alloy in 30% (v/v aqueous ethylene glycol containing chloride anions at neutral pH was investigated. Electrochemical techniques, such as potentiodynamic polarization method, cyclic polarization and electrochemical impedance spectroscopy (EIS were used to study the corrosion behavior of Mg–Al–Zn–Mn alloy. The surface morphology, microstructure and surface composition of the alloy were studied by using the scanning electron microscopy (SEM, optical microscopy and energy dispersion X-ray (EDX analysis, respectively. Electrochemical investigations show that the rate of corrosion increases with the increase in chloride ion concentration and also with the increase in medium temperature.

  17. Application of electrochemical optical waveguide lightmode spectroscopy for studying the effect of different stress factors on lactic acid bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Adanyi, Nora [Central Food Research Institute, H-1537 Budapest, P.O. Box 393 (Hungary)]. E-mail: n.adanyi@cfri.hu; Nemeth, Edina [Central Food Research Institute, H-1537 Budapest, P.O. Box 393 (Hungary); Halasz, Anna [Central Food Research Institute, H-1537 Budapest, P.O. Box 393 (Hungary); Szendro, Istvan [MicroVacuum Ltd., H-1147 Budapest, Kerekgyarto u. 10 (Hungary); Varadi, Maria [Central Food Research Institute, H-1537 Budapest, P.O. Box 393 (Hungary)

    2006-07-28

    Electrochemical optical waveguide lightmode spectroscopy (EC-OWLS) has been developed to combine evanescent-field optical sensing with electrochemical control of surface adsorption processes. For bioanalytical sensing, a layer of indium tin oxide (ITO) served as both a high-refractive index waveguide and a conductive electrode. In addition, an electrochemical flow-through fluid cuvette was applied, which incorporated working, reference, and counter electrodes, and was compatible with the constraints of optical sensing. The subject of our study was to monitor how the different stress factors (lactic acid, acetic acid and hydrogen peroxide) influence the survival of lactic acid bacteria. The advantage of EC-OWLS technique is that we could carry out kinetic studies on the behaviour of bacteria under stress conditions, and after exposure of lactobacilli to acid and oxidative stress we get faster results about the status of bacteria compared to the traditional quantitative methods. After optimization of the polarization potential used, calibration curve was determined and the sensor response of different rate of living and damaged cells was studied. The bacterial cells were adsorbed in native form on the surface of the sensor by ensuring polarizing potential (1 V) and were exposed to different concentration of acetic acid and hydrogen peroxide solution to 1 h, respectively and the behaviour of bacteria was monitored. Results were compared to traditional micro-assay method.

  18. Application of electrochemical optical waveguide lightmode spectroscopy for studying the effect of different stress factors on lactic acid bacteria

    International Nuclear Information System (INIS)

    Adanyi, Nora; Nemeth, Edina; Halasz, Anna; Szendro, Istvan; Varadi, Maria

    2006-01-01

    Electrochemical optical waveguide lightmode spectroscopy (EC-OWLS) has been developed to combine evanescent-field optical sensing with electrochemical control of surface adsorption processes. For bioanalytical sensing, a layer of indium tin oxide (ITO) served as both a high-refractive index waveguide and a conductive electrode. In addition, an electrochemical flow-through fluid cuvette was applied, which incorporated working, reference, and counter electrodes, and was compatible with the constraints of optical sensing. The subject of our study was to monitor how the different stress factors (lactic acid, acetic acid and hydrogen peroxide) influence the survival of lactic acid bacteria. The advantage of EC-OWLS technique is that we could carry out kinetic studies on the behaviour of bacteria under stress conditions, and after exposure of lactobacilli to acid and oxidative stress we get faster results about the status of bacteria compared to the traditional quantitative methods. After optimization of the polarization potential used, calibration curve was determined and the sensor response of different rate of living and damaged cells was studied. The bacterial cells were adsorbed in native form on the surface of the sensor by ensuring polarizing potential (1 V) and were exposed to different concentration of acetic acid and hydrogen peroxide solution to 1 h, respectively and the behaviour of bacteria was monitored. Results were compared to traditional micro-assay method

  19. Electrochemical Behavior and Hydrophobic Properties of CrN and CrNiN Coatings in Simulated Proton Exchange Membrane Fuel Cell Environment

    Directory of Open Access Journals (Sweden)

    JIN Jie

    2016-10-01

    Full Text Available The CrN and CrNiN coatings were prepared on the surface of 304 stainless steel by closed field unbalanced magnetron sputtering.X ray diffraction and field emission scanning electron microscopy were used to characterize the structure and morphology of the coatings.The electrochemical corrosion properties under the simulated proton exchange membrane fuel cell(PEMFC environment, interfacial contact resistance and hydrophobic properties of the two kinds of different coatings were investigated by electrochemical methods,contact resistance test and hydrophobic test,respectively.The results indicate that CrN coating mainly consists of CrN and Cr2N phase,CrN and Cr2N phases in the CrNiN coating are less compared to CrN film, and Ni exist as element in CrNiN coating; dynamic polarization tests show the coating is of better corrosion resistance,whereas the corrosion resistance of CrNiN coating is worse than that of CrN coating,constant potential polarization test shows the corrosion current density of CrN and CrNiN coatings are equivalent; CrN and CrNiN coatings significantly reduce the interfacial contact resistance of the 304 stainless steel,among which CrN coating has the smallest contact resistance; and CrNiN coating which has better hydrophobicity than that of CrN coating is more beneficial for the water management in proton exchange membrane fuel cell.

  20. A study on electrochemical redox behavior of nitric acid by using a glassy carbon fiber column electrode system

    International Nuclear Information System (INIS)

    Kim, K. W.; Song, K. C.; Lee, I. H.; Choi, I. K.; You, J. H.

    1999-01-01

    Electrochemical redox behaviors of nitric acid were studied by using a glassy carbon fiber column electrode system, and its reaction mechanism was analyzed in several ways. The electrochemical reaction in less than 2.0 M nitric acid was not observed, but in more than 2.0 M nitric acid, the reduction rate of nitric acid to produce nitrous acid was slow so that the nitric acid solution had to be contacted with electrode enough in order for a apparent reduction current of nitric acid to nitrous acid be to observed. The nitrous acid generated in more than 2.0 M nitric acid was rapidly and easily reduced to NOx through an autocatalytic reaction. Sulfamic acid was confirmed to be effective to destroy the nitrous acid. The sulfamic acid of at least 0.05M was necessary to remove the nitrous acid generated in 3.5 M nitric acid

  1. Electrochemical and SEM studies of tetra-ammine platinum (II) (Pt(NH3)4)(OH)2 solution

    International Nuclear Information System (INIS)

    Wan Jeffrey Basirun

    2002-01-01

    Electrochemical studies include cyclic voltammetry with microelectrodes were done on a solution of tetra-ammine platinum (II) (Pt(NH 3 ) 4 )(OH) 2 at pH 13 and showed that the electrochemical reduction of this compound was no different from the tetra-ammine platinum (II) (Pt(NH 3 ) 4 )(HPO 4 ) at pH 10.4. The solution was instable to high temperatures and results have shown that electroplating can be done at a limited temperature range for longer periods of time or at higher temperatures for short periods of time. Scanning electron microscopy was done on some of the constant current electrodeposited samples at high temperatures and result obtained was satisfactory. (Authors)

  2. Screen-printed carbon electrode modified on its surface with amorphous carbon nitride thin film: Electrochemical and morphological study

    Energy Technology Data Exchange (ETDEWEB)

    Ghamouss, F. [Universite de Nantes, UMR 6006-CNRS, FR-2465-CNRS, Laboratoire d' Analyse isotopique et Electrochimique de Metabolismes (LAIEM) (France); Tessier, P.-Y. [Universite de Nantes, UMR CNRS 6502, Institut des Materiaux Jean Rouxel - IMN Faculte des Sciences and des Techniques de Nantes, 2 rue de la Houssiniere, 44322 Nantes Cedex 3 (France); Djouadi, A. [Universite de Nantes, UMR CNRS 6502, Institut des Materiaux Jean Rouxel - IMN Faculte des Sciences and des Techniques de Nantes, 2 rue de la Houssiniere, 44322 Nantes Cedex 3 (France); Besland, M.-P. [Universite de Nantes, UMR CNRS 6502, Institut des Materiaux Jean Rouxel - IMN Faculte des Sciences and des Techniques de Nantes, 2 rue de la Houssiniere, 44322 Nantes Cedex 3 (France); Boujtita, M. [Universite de Nantes, UMR 6006-CNRS, FR-2465-CNRS, Laboratoire d' Analyse isotopique et Electrochimique de Metabolismes (LAIEM) (France)]. E-mail: mohammed.boujtita@univ-nantes.fr

    2007-04-20

    The surface of a screen-printed carbon electrode (SPCE) was modified by using amorphous carbon nitride (a-CN {sub x}) thin film deposited by reactive magnetron sputtering. Scanning electron microscopy and photoelectron spectroscopy measurements were used to characterise respectively the morphology and the chemical structure of the a-CN {sub x} modified electrodes. The incorporation of nitrogen in the amorphous carbon network was demonstrated by X ray photoelectron spectroscopy. The a-CN {sub x} layers were deposited on both carbon screen-printed electrode (SPCE) and silicon (Si) substrates. A comparative study showed that the nature of substrate, i.e. SPCE and Si, has a significant effect on both the surface morphology of deposited a-CN {sub x} film and their electrochemical properties. The improvement of the electrochemical reactivity of SPCE after a-CN {sub x} film deposition was highlighted both by comparing the shapes of voltammograms and calculating the apparent heterogeneous electron transfer rate constant.

  3. Electrochemical Studies of Interactions Between Fe(II/Fe(III and Amino Acids Using Ferrocene-Modified Carbon Paste Electrode

    Directory of Open Access Journals (Sweden)

    Vatrál Jaroslav

    2014-12-01

    Full Text Available The electrochemical behavior of an Fe(II/Fe(III redox couple in the presence of various selected amino acids has been studied using ferrocene-modified carbon paste electrode at pH = 7.4. Because of Fe(II/Fe(III solubility issues at physiological pH, ferrocene was used as a source of iron. Anodic oxidation of iron (pH = 7.2 occurred at 0.356 V and cathodic oxidation at 0.231 V, both vs Ag|AgCl. Treatment of the voltammetric data showed that it was a purely diffusion-controlled reaction with the involvement of one electron. After addition of amino acids, potential shifts and current changes can be observed on the voltammograms. Cyclic voltammetry experiments revealed the capability of amino acids to change the electrochemical behavior of the Fe(II/Fe(III redox couple.

  4. Spectrophotometric and electrochemical studies of the interaction of cryptand 222 with DDQ and I2 in ethanol solution

    Directory of Open Access Journals (Sweden)

    Abolfazl Semnani

    2006-12-01

    Full Text Available Spectrophotometric and electrochemical studies concerning the interaction of cryptand 222 with DDQ and I2 have been performed in ethanol solution. In the case of DDQ, the results are indicative of the formation of C222¬+ and DDQ- through an equilibrium reaction. The results of I2 indicate the formation of I2-ethanol complex and I3- in the absence of C222. In the presence of C222, the formation of C222I¬+ and I3- through a non-equilibrium reaction is confirmed. The equilibrium constant of the redox reaction between DDQ and C222 has been calculated from the absorbance mole ratio data, using the nonlinear least square program “KINFIT”. The electrochemical reversibility of I-/I2 couple and irreversibility of DDQ/DDQ- is indicated by amperometry. The behavior of DDQ and I2 has been compared. A comparison with aprotic solvents has also been made.

  5. Electrochemical impedance spectroscopy for study of electronic structure in disordered organic semiconductors—Possibilities and limitations

    Science.gov (United States)

    Schauer, F.; Nádaždy, V.; Gmucová, K.

    2018-04-01

    There is potential in applying conjugated polymers in novel organic optoelectronic devices, where a comprehensive understanding of the fundamental processes and energetics involved during transport and recombination is still lacking, limiting further device optimization. The electronic transport modeling and its optimization need the energy distribution of transport and defect states, expressed by the energy distribution of the Density of States (DOS) function, as input/comparative parameters. We present the Energy Resolved-Electrochemical Impedance Spectroscopy (ER-EIS) method for the study of transport and defect electronic states in organic materials. The method allows mapping over unprecedentedly wide energy and DOS ranges. The ER-EIS spectroscopic method is based on the small signal interaction between the surface of the organic film and the liquid electrolyte containing reduction-oxidation (redox) species, which is similar to the extraction of an electron by an acceptor and capture of an electron by a donor at a semiconductor surface. The desired DOS of electronic transport and defect states can be derived directly from the measured redox response signal to the small voltage perturbation at the instantaneous position of the Fermi energy, given by the externally applied voltage. The theory of the ER-EIS method and conditions for its validity for solid polymers are presented in detail. We choose four case studies on poly(3-hexylthiophene-2,5-diyl) and poly[methyl(phenyl)silane] to show the possibilities of the method to investigate the electronic structure expressed by DOS of polymers with a high resolution of about 6 orders of magnitude and in a wide energy range of 6 eV.

  6. Application of Elimination Voltammetry to the Study of Electrochemical Reduction and Determination of the Herbicide Metribuzin

    Czech Academy of Sciences Publication Activity Database

    Skopalová, J.; Navrátil, Tomáš

    2007-01-01

    Roč. 52, č. 6 (2007), s. 961-977 ISSN 0009-2223 R&D Projects: GA ČR GA203/07/1195 Institutional research plan: CEZ:AV0Z40400503 Keywords : Elimination voltammetry with linear scan (EVLS) * metribuzin * electrochemical reduction * mercury electrodes Subject RIV: CG - Electrochemistry Impact factor: 0.529, year: 2007

  7. X-ray studies on electrochemical systems. Synchrotron methods for energy materials

    Energy Technology Data Exchange (ETDEWEB)

    Braun, Artur [Empa. Eidgenoessische Materialpruefungs- und Forschungsanstalt, Duebendorf (Switzerland)

    2017-07-01

    This book is your graduate level entrance into battery, fuel cell and solar cell research at synchrotron X-ray sources. Materials scientists find numerous examples for the combination of electrochemical experiments with simple and with highly complex X-ray scattering and spectroscopy methods. Physicists and chemists can link applied electrochemistry with fundamental concepts of condensed matter physics, physical chemistry and surface science.

  8. Study of electrochemical processes for separation of the actinides and lanthanides in molten fluoride media

    International Nuclear Information System (INIS)

    Zvejskova, R.; Chuchvalcova Bimova, K.; Lisy, F.; Soucek, P.

    2005-01-01

    The technology of the Molten Salt Reactors (MSR) is developed for two possible applications: For one thing as the Molten Salt Transmutation Reactor (MSTR) incinerating plutonium and minor actinides within reprocessing of spent fuel from PWR or FBR and for another thing as electricity generating MSR working under thorium uranium fuel cycle. Electrochemical separation processes are one of promising pyrochemical techniques that should enable the on-line reprocessing of circulating fuel salt in MSR (fuel cycle back-end). The former application represents the Czech P and T concept, in which framework the electrolytic separation can be applied both in the front-end and back-end of the MSTR fuel cycle. Within the front-end electro separation should follow the Fluoride Volatility Method (FVM), which should separate 95 % of uranium from the spent fuel in the form of volatile uranium hexafluoride. The residual uranium and fission products (FP) are supposed to be separated among others also by electrochemical methods. The presented work comprises the results reached within development of electrochemical separation of the actinides and fission products from each other by electrolytic deposition method on solid cathode in molten fluoride media, that represent he carrier salts of MSR technology. The knowledge of electrochemical properties (red-ox potentials, mainly of deposition potentials) is necessary for determination of separation possibilities of individual components by electrolysis. (authors)

  9. An ac impedance study of the corrosion behaviour of mild steel coated with electrochemically synthesized polyoxyphenylenes

    Energy Technology Data Exchange (ETDEWEB)

    Musiani, M.M.; Mengoli, G.; Pagura, C.

    1985-04-01

    Electrochemically synthesized polyoxphenylene coatings on mild steel exposed to NaCl or H2SO4 solutions were investigated by ac impedance measurements. The influence of coating cohesion, adhesion to substrate, and surface pretreatment on the corrosion behaviour of the samples is clarified.

  10. Structure sensitivity of methanol electrooxidation pathways on platinum : an on-line electrochemical mass spectrometry study

    NARCIS (Netherlands)

    Housmans, T.H.M.; Wonders, A.H.; Koper, M.T.M.

    2006-01-01

    By monitoring the mass fractions of CO2 (m/z 44) and methylformate (m/z 60, formed from CH3OH + HCOOH) with on-line electrochemical mass spectrometry (OLEMS), the selectivity and structure sensitivity of the methanol oxidation pathways were investigated on the basal planesPt(111), Pt(110), and

  11. An Electrochemical Impedance Spectroscopy Study on a Lithium Sulfur Pouch Cell

    DEFF Research Database (Denmark)

    Stroe, Daniel Loan; Knap, Vaclav; Swierczynski, Maciej Jozef

    2016-01-01

    The impedance behavior of a 3.4 Ah pouch Lithium-Sulfur cell was extensively characterized using the electrochemical impedance spectroscopy (EIS) technique. EIS measurements were performed at various temperatures and over the entire state-of-charge (SOC) interval without applying a superimposed DC...

  12. Technical feasibility study for the electrochemical treatment of Phaeozem soil contaminated with radioactive organic liquids

    International Nuclear Information System (INIS)

    Valdovinos G, V.

    2014-01-01

    The application of radioisotopes in medicine and research generates radioactive waste. A large part of these wastes are composed by scintillation liquid (mixtures of organic solvents, as toluene and xylene, fluorescent materials and surfactants) contaminated with radioisotopes such as 3 H (12.3 y), 14 C (5730 y), 238 U (4.468 x 10 9 y), 232 Th (1.41 x 10 10 y), 204 Tl (3.7 y) or 22 Na (2.6 y). In Mexico during the 80 s, these wastes were absorbed on soil to decrease their hazardous behavior during interim storage. However, these wastes must be removed for reprocessing and final landscaping. Therefore, the objective of this thesis is to study the technical feasibility of the electrochemical treatment of soils types Phaeozem contaminated with radioactive organic liquid waste (ROLW). For this study, an electrochemical treatment at laboratory level was applied, giving it an electrokinetic tracking. Control samples were prepared with different scintillation liquid (INSTAL Gel- XF, ULTIMA Gold AB TM and ULTIMA Gold XR TM as support electrolyte and polarization curves were constructed to select the current with the highest mass transfer. An analysis of the liquids and solids, before and after the application of the different potentials; the liquid phase was characterized by Gas Chromatography coupled with Flame Ionized Detector (GC-FID) and Fourier Transform Infrared Spectrometry (Ft-Irs), and the solids by Ft-Irs. From the fourteen supports electrolytes studied, eleven did not have a stable diffusion current and the other three showed a diffusion current plateau in 0.02, 0.04 and 0.06 m A·cm -2 . From polarization curves, the following experimental conditions were chosen for the treatment: electrodes (meshes of titanium as anode and rod of stainless steel as cathode), scintillation liquid (ULTIMA Gold XR TM : water, 1:1) and a current of 0.06 m A·cm -2 . Subsequently, radioactive control samples were prepared with soil-scintillation liquid, labeled with 24 Na, 99m Tc

  13. Synthesis, crystal structure and electrochemical and DNA binding studies of oxygen bridged-copper(II) carboxylate

    Science.gov (United States)

    Iqbal, Muhammad; Ali, Saqib; Tahir, Muhammad Nawaz; Muhammad, Niaz; Shah, Naseer Ali; Sohail, Manzar; Pandarinathan, Vedapriya

    2015-08-01

    A new binuclear O-bridged Cu(II) complex with 4-chlorophenyl acetate and 2,2‧-bipyridine has been synthesized and characterized using FT-IR, powder and single crystal XRD and electrochemical solution studies. The results revealed that the two penta-coordinated Cu(II) centers are linked by two carboxylate ligands in end-on bonding fashion. The coordination geometry is slightly distorted square pyramidal (SP) with bridging oxygen atoms occupying the apical position and other ligands lying in the equatorial plane. The striking difference in Cu-O bond distance of the bridging oxygen atom in the complex may be responsible for the SP geometry of Cu(II) ion. The complex gave rise to metal centered irreversible electro-activity where one electron Cu(II)/Cu(III) oxidation process and a single step two electron Cu(II)/Cu(0) reduction process was observed. The redox processes were found predominantly adsorption controlled. The values of diffusion coefficient and heterogeneous rate constant for oxidation process were 6.98 × 10-7 cm2 s-1 and 4.60 × 10-5 cm s-1 while the corresponding values for reduction were 5.30 × 10-8 cm2 s-1 and 5.41 × 10-6 cm s-1, respectively. The formal potential and charge transfer coefficient were also calculated. The DNA-binding ability was explored through cyclic voltammetry and UV-Visible spectroscopy. Diminution in the value of Do for oxidation indicated the binding of the complex with DNA corresponding to Kb = 8.58 × 104 M-1. UV-Visible spectroscopy yielded ε = 49 L mol-1 cm-1 and Kb = 2.96 × 104 M-1. The data of both techniques support each other. The self-induced redox activation of the complex, as indicated by cyclic voltammetry heralds its potential applications in redox catalysis and anticancer activity.

  14. Study on Treatment of Landfill Leachate by Electrochemical, Flocculation and Photocatalysis

    Science.gov (United States)

    Yang, Yue; Jin, Xiuping; Pan, Yunbo; Zuo, Xiaoran

    2018-01-01

    In this study, the landfill leachate of different seasons in Liaoyang City is as the research object, and COD removal rate is as the main indicator. The electrochemical section’s results show that the optimal treatment conditions for the water of 2016 summer are as follows: voltage is 7.0V, current density is 40.21 A/m2, pH is equal to the raw water, electrolysis time is 1h, and the COD removal rate is 80.41%. The optimal treatment conditions for the 2017 fall’s water are: electrolysis voltage is 7.0 V, current density is 45.06 A/m2, electrolysis time is 4 hours, and COD removal rate is 28.03%. The flow rate of continuous electrolysis is 6.4 L/h using the water of 2016 fall, and the COD removal rate is 10.28%. The results of the flocculation process show that the optimal treatment conditions are as follows: pH is equal to the raw water; the optimal flocculant species is Fe-Al composite flocculant, wherein the optimal ratio of Fe-Al is n (Fe):n (Al)=0.5:1; the best dosage of flocculant is 2.0 g/L and COD removal rate is of 21.11%. The results of photocatalytic show that the optimal conditions are: pH is 4.5, Al2(SO4)3 is 1.0 g/L, FeSO4.7H2O is 700mg/L, H2O2(30%) is 4 mL/L, stirring and standing UV lamp light irradiation 3 hours, and adjusting pH to 6.0 or so, COD removal rate is 36.15%. +

  15. A Study on the Performance and Electrochemistry of Bryophyllum pinnatum Leaf (BPL) Electrochemical Cell

    Science.gov (United States)

    Al Mamun, Mohammad; Khan, M. I.; Sarker, M. H.; Khan, K. A.; Shajahan, M.; Professor K. A. Khan Team

    2017-01-01

    The study was carried out to investigate on an innovative invention, Pathor Kuchi Leaf (PKL) electrochemical cell, which is fueled with PKL sap of widely available plant called Bryophyllum pinnatum as an energy source for use in PKL battery to generate electricity. This battery, a primary source of electricity, has several order of magnitude longer shelf-lives than the traditional Galvanic cell battery, is still under investigation. In this regard, we have conducted some experiments using various instruments including Atomic Absorption Spectrophotometer (AAS), Ultra-Violet Visible spectrophotometer (UV-Vis), pH meter, Ampere-Volt-Ohm Meter (AVO Meter) etc. The AAS, UV-Vis and pH metric analysis data provided that the potential and current were produced as the Zn electrode itself acts as reductant while Cu2+ and H+ ions are behaving as oxidant. The significant influence of secondary salt on current and potential leads to the dissociation of weak organic acids in PKL juice, and subsequent enrichment to the reactant ions by the secondary salt effects. However, the liquid junction potential was not as great as minimized with the opposite transference of organic acid anions and H+ ions as their dissimilar ionic mobilities. Moreover, the large value of equilibrium constant (K) implies the big change in Gibbs free energy (ΔG), revealed the additional electrical work in presence of PKL sap. This easily fabricated high performance PKL battery can show an excellent promise during the off-peak across the country-side. Dept. of Physics and Dept. of Chemistry.

  16. Combined Photoemission Spectroscopy and Electrochemical Study of a Mixture of (Oxy)carbides as Potential Innovative Supports and Electrocatalysts.

    Science.gov (United States)

    Calvillo, Laura; Valero-Vidal, Carlos; Agnoli, Stefano; Sezen, Hikmet; Rüdiger, Celine; Kunze-Liebhäuser, Julia; Granozzi, Gaetano

    2016-08-03

    Active and stable non-noble metal materials, able to substitute Pt as catalyst or to reduce the Pt amount, are vitally important for the extended commercialization of energy conversion technologies, such as fuel cells and electrolyzers. Here, we report a fundamental study of nonstoichiometric tungsten carbide (WxC) and its interaction with titanium oxycarbide (TiOxCy) under electrochemical working conditions. In particular, the electrochemical activity and stability of the WxC/TiOxCy system toward the ethanol electrooxidation reaction (EOR) and hydrogen evolution reaction (HER) are investigated. The chemical changes caused by the applied potential are established by combining photoemission spectroscopy and electrochemistry. WxC is not active toward the ethanol electrooxidation reaction at room temperature but it is highly stable under these conditions thanks to the formation of a passive thin film on the surface, consisting mainly of WO2 and W2O5, which prevents the full oxidation of WxC. In addition, WxC is able to adsorb ethanol, forming ethoxy groups on the surface, which constitutes the first step for the ethanol oxidation. The interaction between WxC and TiOxCy plays an important role in the electrochemical stability of WxC since specific orientations of the substrate are able to stabilize WxC and prevent its corrosion. The beneficial interaction with the substrate and the specific surface chemistry makes tungsten carbide a good electrocatalyst support or cocatalyst for direct ethanol fuel cells. However, WxC is active toward the HER and chemically stable under hydrogen reduction conditions, since no changes in the chemical composition or dissolution of the film are observed. This makes tungsten carbide a good candidate as electrocatalyst support or cocatalyst for the electrochemical production of hydrogen.

  17. A Study on Electrochemical Reduction of Rare Earth Oxides in Molten LiCl-Li{sub 2}O Salt

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Min Woo; Jeong, Sang Mun; Lee, See Hoon [Chungbook National University, Chungju (Korea, Republic of); Sohn, Jung Min [Chonbuk National University, Jeonju (Korea, Republic of)

    2016-05-15

    In this study, the electrochemical reduction of RE{sub 2}O{sub 3} (RE = Nd or Ce) has been conducted via co-reduction NiO to increase the reduction degree of the rare earth oxides in molten molten LiCl containing 1wt% Li{sub 2}O. The electrochemical reduction behavior of the mixed RE{sub 2}O{sub 3}-NiO oxide has been investigated and the reduction path of RE{sub 2}O{sub 3} has been proposed. An electorchemical spent fuel processing technology, pyroprocessing, has been developed for recycling of spent fuel to be applied to a sodium-cooled fast reactor. The spent fuel is reduced in the oxide reduction process. It is well known that the rare earth oxides are hardly reduced due to their electrochemical and thermodynamic stability. The rare earth oxides unreduced in the reduction process can cause problems via reaction with UCl{sub 3} in the electrorefiner. To tackle those problems, the electrochemical reduction of rare earth oxide has been conducted via co-reduction of NiO in LiCl molten salt containing 1 wt% Li{sub 2}O. The reduction of the oxide mixture starts from the reduction of NiO to Ni, followed by that of RE{sub 2}O{sub 3} on the produced Ni to form intermetallic RENi{sub 5}. The mixed oxide pellets were successfully reduced to the RENi5 alloy by constant electrolysis at 3.0 V at 650 .deg. C. The crucial aspect to these results is that the thermodynamically stable rare-earth oxide, Nd{sub 2}O{sub 3} was successfully converted to the metal in the presence of NiO.

  18. A Study on Electrochemical Reduction of Rare Earth Oxides in Molten LiCl-Li2O Salt

    International Nuclear Information System (INIS)

    Lee, Min Woo; Jeong, Sang Mun; Lee, See Hoon; Sohn, Jung Min

    2016-01-01

    In this study, the electrochemical reduction of RE 2 O 3 (RE = Nd or Ce) has been conducted via co-reduction NiO to increase the reduction degree of the rare earth oxides in molten molten LiCl containing 1wt% Li 2 O. The electrochemical reduction behavior of the mixed RE 2 O 3 -NiO oxide has been investigated and the reduction path of RE 2 O 3 has been proposed. An electorchemical spent fuel processing technology, pyroprocessing, has been developed for recycling of spent fuel to be applied to a sodium-cooled fast reactor. The spent fuel is reduced in the oxide reduction process. It is well known that the rare earth oxides are hardly reduced due to their electrochemical and thermodynamic stability. The rare earth oxides unreduced in the reduction process can cause problems via reaction with UCl 3 in the electrorefiner. To tackle those problems, the electrochemical reduction of rare earth oxide has been conducted via co-reduction of NiO in LiCl molten salt containing 1 wt% Li 2 O. The reduction of the oxide mixture starts from the reduction of NiO to Ni, followed by that of RE 2 O 3 on the produced Ni to form intermetallic RENi 5 . The mixed oxide pellets were successfully reduced to the RENi5 alloy by constant electrolysis at 3.0 V at 650 .deg. C. The crucial aspect to these results is that the thermodynamically stable rare-earth oxide, Nd 2 O 3 was successfully converted to the metal in the presence of NiO.

  19. Experimental study of a solar-driven photo-electrochemical hybrid system for the decolorization of Acid Red 26

    International Nuclear Information System (INIS)

    Wang, Yiping; Chen, Miao; Huang, Qunwu; Cui, Yong; Jin, Yanchao; Cui, Lingyun; Wen, Chen

    2017-01-01

    Highlights: • A solar-driven photo-electrochemical system (S/EC/PS) was first constructed. • Solar spectrum was fully used for the dye decolorization, power supply and thermal. • The electricity needed for EC was offered by the hybrid system. • In comparison with S/PS, decolorization time of S/EC/PS shorten 50%. • PV panels has lower working temperature due to the water cooling. - Abstract: This study presents a new solar-driven hybrid system that integrated a photo-electrochemical reactor with a photovoltaics (PV) panel for azo dyes’ decolorization and electricity generation. Full spectrum of sunlight is utilized to optimize the color removal of Acid Red 26 (AR26) in this hybrid system. Persulfate (PS, S 2 O 4 2− ) was selected as the photochemical oxidant and Ti/IrO 2 -Ta 2 O 5 electrode was used as the anode. Experiments were made to evaluate the efficiency of decolorization and the performance of PV panels in different reaction conditions outdoors. The results showed that the synergistic effect of two processes was observed for the AR26 decolorization. Comparing with the solar/persulfate process or the electrochemical process alone, the complete color removal time by the hybrid system decreased up to 50% and 44.4% respectively. In this system, the water layer in the flow channel cooled PV panels by absorbing the far infrared spectrum of sunlight, and the increased temperature of wastewater from 7 °C to 16 °C enhanced the decolorization efficiency of AR26. Moreover, the generated electricity by PV panels could satisfy the energy demand of electrochemical oxidation.

  20. Operando Soft X-ray Absorption Spectroscopic Study on a Solid Oxide Fuel Cell Cathode during Electrochemical Oxygen Reduction.

    Science.gov (United States)

    Nakamura, Takashi; Oike, Ryo; Kimura, Yuta; Tamenori, Yusuke; Kawada, Tatsuya; Amezawa, Koji

    2017-05-09

    An operando soft X-ray absorption spectroscopic technique, which enabled the analysis of the electronic structures of the electrode materials at elevated temperature in a controlled atmosphere and electrochemical polarization, was established and its availability was demonstrated by investigating the electronic structural changes of an La 2 NiO 4+δ dense-film electrode during an electrochemical oxygen reduction reaction. Clear O K-edge and Ni L-edge X-ray absorption spectra could be obtained below 773 K under an atmospheric pressure of 100 ppm O 2 /He, 0.1 % O 2 /He, and 1 % O 2 /He gas mixtures. Considerable spectral changes were observed in the O K-edge X-ray absorption spectra upon changing the PO2 and application of electrical potential, whereas only small spectral changes were observed in Ni L-edge X-ray absorption spectra. A pre-edge peak of the O K-edge X-ray absorption spectra, which reflects the unoccupied partial density of states of Ni 3d-O 2p hybridization, increased or decreased with cathodic or anodic polarization, respectively. The electronic structural changes of the outermost orbital of the electrode material due to electrochemical polarization were successfully confirmed by the operando X-ray absorption spectroscopic technique developed in this study. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Study on the Electrochemical Property of Microporous Cobalt Phosphite[Co_11(HPO_3)_8(OH)_6

    International Nuclear Information System (INIS)

    Lee, Dong Heon; Kang, Myunggoo; Jung, Hyun; Paek, Seung-Min

    2016-01-01

    Crystalline microporous cobalt phosphite, Co_11(HPO_3)_8(OH)_6, was prepared via facile hydrothermal route without the use of any templates or surfactants. The cobalt chloride hexahydrate (CoCl_2·6H_2O) and sodium hypophosphite monohydrate (NaH_2PO_2·H_2O) were employed as reactants, and sodium bicarbonate(NaHCO_3) was added to adjust the pH. The resultant Co_11(HPO_3)_8(OH)_6 shows dumbbell-like shape witha size of several micrometers. The obtained materials were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, thermal gravimetric analysis (TGA), field-emission scanning electron microscopy (FE-SEM), and energy dispersive spectrometry (EDS). The Co_11(HPO_3)_8(OH)_6 is applied as electrochemical energy storage electrode material because of its unique microporous nature. Different aqueous electrolytes (LiOH, NaOH, and KOH) have been tested in order to study the effect of electrolyte cations on electrochemical behavior. To investigate the capacity and stability of Co_11(HPO_3)_8(OH)_6 electrode, cyclic voltammetry (CV), galvanostatic charge-discharge (GC), and cycle stability were performed in aqueous electrolytes with different cations at room temperature. We found that the electrochemical behavior of these materials is strongly dependent on the species of electrolyte cations (Li"+,Na"+, and K"+).

  2. Flow-induced corrosion of absorbable magnesium alloy: In-situ and real-time electrochemical study

    International Nuclear Information System (INIS)

    Wang, Juan; Jang, Yongseok; Wan, Guojiang; Giridharan, Venkataraman; Song, Guang-Ling; Xu, Zhigang; Koo, Youngmi; Qi, Pengkai; Sankar, Jagannathan; Huang, Nan; Yun, Yeoheung

    2016-01-01

    Highlights: • An in-situ and real-time electrochemical monitoring of flow-induced corrosion of Mg alloy is designed in a vascular bioreactor. • Effect of hydrodynamics on corrosion kinetics, types, rates and products is analyzed. • Flow accelerates mass and electron transfer, leading to an increase in uniform and localized corrosions. • Flow increases not only the thickness of uniform corrosion product layer, but the removal rate of localized corrosion products. • Electrochemical impedance spectroscopy and linear polarization-measured polarization resistances provide a consistent correlation to corrosion rate calculated by computed tomography. - Abstract: An in-situ and real-time electrochemical study in a vascular bioreactor was designed to analyze corrosion mechanism of magnesium alloy (MgZnCa) under mimetic hydrodynamic conditions. Effect of hydrodynamics on corrosion kinetics, types, rates and products was analyzed. Flow-induced shear stress (FISS) accelerated mass and electron transfer, leading to an increase in uniform and localized corrosions. FISS increased the thickness of uniform corrosion layer, but filiform corrosion decreased this layer resistance at high FISS conditions. FISS also increased the removal rate of localized corrosion products. Impedance-estimated and linear polarization-measured polarization resistances provided a consistent correlation to corrosion rate calculated by computed tomography.

  3. Structural and electrochemical study of positive electrode materials for rechargeable lithium ion batteries

    Science.gov (United States)

    Jiang, Meng

    The research presented in this dissertation focuses on a combined study of the electrochemistry and the structure of positive electrode materials for Li ion batteries. Li ion batteries are one of the most advanced energy storage systems and have been the subject of numerous scientific studies in recent decades. They have been widely used for various mobile devices such as cell phones, laptop computers and power tools. They are also promising candidates as power sources for automotive applications. Although intensive research has been done to improve the performance of Li ion batteries, there are still many remaining challenges to overcome so that they can be used in a wider range of applications. In particular, cheaper and safer electrodes are required with much higher reversible capacity. The series of layered nickel manganese oxides [NixLi 1/3-2x/3Mn2/3- x/3]O2 (0 reversible in the following cycles. A combined X-ray diffraction, solid state nuclear magnetic resonance and X-ray absorption spectroscopy study is performed to investigate the effect of synthetic methods on the structure, to probe the structural change of the materials during cycling and to understand the electrochemical reaction mechanism. The conversion compounds are also investigated because of their high capacities. Since the various compounds have different voltage windows, they can have potential applications as both cathodes and anodes. Solid state nuclear magnetic resonance is used to study the change in the local environment of the structure during the cycling process. Two systems are included in this work, including iron fluorides and Cu-containing materials. A comparison study has been performed on FeF3 and FeF2. Different discharge reaction mechanisms are clarified for each compound, and possible phase transitions are proposed as well. As for the Cu-containing systems, three compounds were chosen with different anions: CuS, CuO and CuF2. The reaction mechanisms are studied by 63Cu, 7Li and

  4. A Study of the Mechanism of the Hydrogen Evolution Reaction on Nickel by Surface Interrogation Scanning Electrochemical Microscopy.

    Science.gov (United States)

    Liang, Zhenxing; Ahn, Hyun S; Bard, Allen J

    2017-04-05

    The hydrogen evolution reaction (HER) on Ni in alkaline media was investigated by scanning electrochemical microscopy under two operating modes. First, the substrate generation/tip collection mode was employed to extract the "true" cathodic current associated with the HER from the total current in the polarization curve. Compared to metallic Ni, the electrocatalytic activity of the HER is improved in the presence of the low-valence-state oxide of Ni. This result is in agreement with a previous claim that the dissociative adsorption of water can be enhanced at the Ni/Ni oxide interface. Second, the surface-interrogation scanning electrochemical microscopy (SI-SECM) mode was used to directly measure the coverage of the adsorbed hydrogen on Ni at given potentials. Simulation indicates that the hydrogen coverage follows a Frumkin isotherm with respect to the applied potential. On the basis of the combined analysis of the Tafel slope and surface hydrogen coverage, the rate-determining step is suggested to be the adsorption of hydrogen (Volmer step) in the investigated potential window.

  5. Updated (BP3) Technical and Economic Feasibility Study - Electrochemical Membrane for Carbon Dioxide Capture and Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Ghezel-Ayagh, Hossein

    2016-10-12

    This topical report summarizes the results of an updated Technical & Economic Feasibility Study (T&EFS) which was conducted in Budget Period 3 of the project to evaluate the performance and cost of the Electrochemical Membrane (ECM)-based CO2 capture system. The ECM technology is derived from commercially available inorganic membranes; the same used in FuelCell Energy’s commercial fuel cell power plants and sold under the trade name Direct FuelCell® (DFC®). The ECM stacks are utilized in the Combined Electric Power (generation) And Carbon dioxide Separation (CEPACS) systems which can be deployed as add-ons to conventional power plants (Pulverized Coal, Combined Cycle, etc.) or industrial facilities to simultaneously produce power while capturing >90% of the CO2 from the flue gas. In this study, an ECM-based CEPACS plant was designed to capture and compress >90% of the CO2 (for sequestration or beneficial use) from the flue gas of a reference 550 MW (nominal, net AC) Pulverized Coal (PC) Rankine Cycle (Subcritical steam) power plant. ECM performance was updated based on bench scale ECM stack test results. The system process simulations were performed to generate the CEPACS plant performance estimates. The performance assessment included estimation of the parasitic power consumption for CO2 capture and compression, and the efficiency impact on the PC plant. While the ECM-based CEPACS system for the 550 MW PC plant captures 90% of CO2 from the flue gas, it generates additional (net AC) power after compensating for the auxiliary power requirements of CO2 capture and compression. An equipment list, ECM stacks packaging design, and CEPACS plant layout were developed to facilitate the economic analysis. Vendor quotes were also solicited. The economic feasibility study included estimation of CEPACS plant capital cost, cost of electricity (COE) analyses and estimation of cost per ton of CO2 captured. The incremental COE for the ECM-based CO2 capture is expected to meet

  6. Updated (BP3) Technical and Economic Feasibility Study - Electrochemical Membrane for Carbon Dioxide Capture and Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Ghezel-Ayagh, Hossein [FuelCell Energy, Inc., Danbury, CT (United States)

    2017-12-21

    This topical report summarizes the results of an updated Technical & Economic Feasibility Study (T&EFS) which was conducted in Budget Period 3 of the project to evaluate the performance and cost of the Electrochemical Membrane (ECM)-based CO2 capture system. The ECM technology is derived from commercially available inorganic membranes; the same used in FuelCell Energy’s commercial fuel cell power plants and sold under the trade name Direct FuelCell® (DFC®). The ECM stacks are utilized in the Combined Electric Power (generation) And Carbon dioxide Separation (CEPACS) systems which can be deployed as add-ons to conventional power plants (Pulverized Coal, Combined Cycle, etc.) or industrial facilities to simultaneously produce power while capturing >90% of the CO2 from the flue gas. In this study, an ECM-based CEPACS plant was designed to capture and compress >90% of the CO2 (for sequestration or beneficial use) from the flue gas of a reference 550 MW (nominal, net AC) Pulverized Coal (PC) Rankine Cycle (Subcritical steam) power plant. ECM performance was updated based on bench scale ECM stack test results. The system process simulations were performed to generate the CEPACS plant performance estimates. The performance assessment included estimation of the parasitic power consumption for CO2 capture and compression, and the efficiency impact on the PC plant. While the ECM-based CEPACS system for the 550 MW PC plant captures 90% of CO2 from the flue gas, it generates additional (net AC) power after compensating for the auxiliary power requirements of CO2 capture and compression. An equipment list, ECM stacks packaging design, and CEPACS plant layout were developed to facilitate the economic analysis. Vendor quotes were also solicited. The economic feasibility study included estimation of CEPACS plant capital cost, cost of electricity (COE) analyses and estimation of cost per ton of CO2

  7. Preliminary simulation study of doppler reflectometry

    International Nuclear Information System (INIS)

    Ishii, Yuta; Hojo, Hitoshi; Yoshikawa, Masashi; Ichimura, Makoto; Haraguchi, Yusuke; Imai, Tsuyoshi; Mase, Atsushi

    2010-01-01

    A preliminary simulation study of Doppler reflectometry is performed. The simulations solve Maxwell's equations by a finite difference time domain (FDTD) code method in two dimensions. A moving corrugated metal target is used as a plasma cutoff layer to study the basic features of Doppler reflectometry. We examined the effects of the full width at half maximum (FWHM) of the electromagnetic waves and the corrugation depth of the metal target. Furthermore, the effect of a nonuniform plasma is studied using this FDTD analysis. The Doppler shift and velocity are compared with those obtained from FDTD analysis of a uniform plasma. (author)

  8. Electrochemical and spectroscopic studies of some less stable oxidation states of selected lanthanide and actinide elements

    International Nuclear Information System (INIS)

    Hobart, D.E.

    1981-06-01

    Simultaneous observation of electrochemical and spectroscopic properties (spectroelectrochemistry) at optically transparent electrodes (OTE's) was used to study some less stable oxidation states of selected lanthanide and actinide elements. Cyclic voltammetry at microelectrodes was used in conjunction with spectroelectrochemistry for the study of redox couples. Additional analytical techniques were used. The formal reduction potential (E 0 ') values of the M(III)/M(II) redox couples in 1 M KCl at pH 6 were -0.34 +- 0.01 V for Eu, -1.18 +- 0.01 V for Yb, and -1.50 +- 0.01 V for Sm. Spectropotentiostatic determination of E 0 ' for the Eu(III)/Eu(II) redox couple yielded a value of -0.391 +- 0.005 V. Spectropotentiostatic measurement of the Ce(IV)/Ce(III) redox couple in concentrated carbonate solution gave E 0 ' equal to 0.051 +- 0.005 V, which is about 1.7 V less positive than the E 0 ' value in noncomplexing solution. This same difference in potential was observed for the E 0 ' values of the Pr(IV)/Pr(III) and Tb(IV)/Tb(III) redox couples in carbonate solution, and thus Pr(IV) and Tb(IV) were stabilized in this medium. The U(VI)/U(V)/U(IV) and U(IV)/U(III) redox couples were studied in 1 M KCl at OTE's. Spectropotentiostatic measurement of the Np(VI)/Np(V) redox couple in 1 M HClO 4 gave an E 0 ' value of 1.140 +- 0.005 V. An E 0 ' value of 0.46 +- 0.01 V for the Np(VII)/Np(VI) couple was found by voltammetry. Oxidation of Am(III) was studied in concentrated carbonate solution, and a reversible cyclic voltammogram for the Am(IV)/Am(III) couple yielded E 0 ' = 0.92 +- 0.01 V in this medium; this value was used to estimate the standard reduction potential (E 0 ) of the couple as 2.62 +- 0.01 V. Attempts to oxidize Cm(III) in concentrated carbonate solution were not successful which suggests that the predicted E 0 value for the Cm(IV)/Cm(III) redox couple may be in error

  9. Electrochemical capacitor

    Science.gov (United States)

    Anderson, Marc A.; Liu, Kuo -Chuan; Mohr, Charles M.

    1999-10-05

    An inexpensive porous metal oxide material having high surface area, good conductivity and high specific capacitance is advantageously used in an electrochemical capacitor. The materials are formed in a sol-gel process which affords control over the properties of the resultant metal oxide materials.

  10. Electrochemical construction

    Science.gov (United States)

    Einstein, Harry; Grimes, Patrick G.

    1983-08-23

    An electrochemical cell construction features a novel co-extruded plastic electrode in an interleaved construction with a novel integral separator-spacer. Also featured is a leak and impact resistant construction for preventing the spill of corrosive materials in the event of rupture.

  11. Electrochemical device

    Science.gov (United States)

    Grimes, Patrick G.; Einstein, Harry; Bellows, Richard J.

    1988-01-12

    A tunnel protected electrochemical device features channels fluidically communicating between manifold, tunnels and cells. The channels are designed to provide the most efficient use of auxiliary power. The channels have a greater hydraulic pressure drop and electrical resistance than the manifold. This will provide a design with the optimum auxiliary energy requirements.

  12. Electrochemical Cell

    DEFF Research Database (Denmark)

    1999-01-01

    The invention relates to a rechargeable electrochemical cell comprising a negative electrode, an electrolyte and a positive electrode in which the positive electrode structure comprises a lithium cobalt manganese oxide of the composition Li¿2?Co¿y?Mn¿2-y?O¿4? where 0 ... for capacity losses in lithium ion cells and lithium-alloy cells....

  13. Digital Simulation Games for Social Studies Classrooms

    Science.gov (United States)

    Devlin-Scherer, Roberta; Sardone, Nancy B.

    2010-01-01

    Data from ten teacher candidates studying teaching methods were analyzed to determine perceptions toward digital simulation games in the area of social studies. This research can be used as a conceptual model of how current teacher candidates react to new methods of instruction and determine how education programs might change existing curricula…

  14. Electrochemical noise evaluation of anodized aluminum. Comparative study against corrosion behaviour in the atmosphere

    International Nuclear Information System (INIS)

    Betancourt, N.; Corvo, F.; Mendoza, A.; Simancas, J.; Morcillo, M.; Gonzalez, J. A.; Fragata, F.; Pena, J. J.; Sanchez de Villalaz, M.; Flores, S.; Almeida, E.; Rivero, S.; Rincon, O. T. de.

    2003-01-01

    The present work reports the evaluation of aluminum and anodized aluminum by electrochemical noise, as a part of the PATINE/CYTED project of the working group NS5. A visual examination is also made. The samples were exposed at several Ibero-American atmospheres up to 2 years of exposure. Different thickness of anodized aluminum were evaluated. The electrochemical potential noise of the 5 μm unexposed sample (pattern) showed a different behaviour to that showed by the other anodized specimens. This could be due to a slower sealed of the samples of higher thickness. The same behavior was observed on the samples exposed at the rural station. el Pardo. According to the visual examination, the samples of bare aluminum and those of anodized 5 μm thickness were the most affected by pitting corrosion in the highly polluted atmospheres. A good correlation between corrosion behaviour determined by visual examination and EN was obtained. (Author) 4 refs

  15. Bioactivation of diclofenac in vitro and in vivo: correlation to electrochemical studies

    DEFF Research Database (Denmark)

    Madsen, Kim G; Skonberg, Christian; Jurva, Ulrik

    2008-01-01

    Diclofenac is widely used in the treatment of, for example, arthritis and muscle pain. The use of diclofenac has been associated with hepatotoxicity, which has been linked to the formation of reactive metabolites. Diclofenac can be metabolized to 4'-OH- and 5-OH-diclofenac, both of which are able...... oxidation of diclofenac to a +16 Da metabolite was shown to be identical to a synthetic standard of 5-OH-diclofenac. Furthermore, two different experimental designs were investigated with respect to the electrochemical oxidation of 4'-OH- and 5-OH-diclofenac. In the first approach, the oxidized sample...... was collected in an aqueous solution of GSH, whereas in the other approach, GSH was added to the sample before the oxidation was performed. From these electrochemical oxidations, a range of GSH conjugates of 4'-OH- and 5-OH-diclofenac were observed and characterized by MS/MS. This allowed the development...

  16. Electrochemical and spectroscopic studies of tungstencarbonyl complexes containing nitrogen and phosphorous ligands

    Directory of Open Access Journals (Sweden)

    Haddad Paula S.

    2000-01-01

    Full Text Available The present work deals with the synthesis, spectroscopic investigation and electrochemical behaviour of the compounds [W(CO4(bipy] (1, [W(CO3(bipy(dppm] (2 and [W(CO3(bipy(dppf] (3, bipy = 2,2'-bipyridine; dppm = bis(diphenylphosphinomethane; dppf = 1,1'-bis(diphenylphosphinoferrocene. The IR and 31P{¹H} NMR spectroscopic data have shown an octahedral coordination geometry for the tungsten atom with the diphosphines acting as monodentate ligands. The electrochemical behaviour of the complexes was investigated by cyclic voltammetry and controlled potential coulometry. Cyclic voltammograms have indicated that the compounds containing diphosphines ligands are more stable towards oxidation than compound (1.

  17. Electrochemical study of uranium cations in LiCl-KCl melt using a rotating disk electrode

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Sang-Eun; Kim, Dae-Hyun; Kim, Jong-Yoon; Park, Tae-Hong; Cho, Young Hwan; Yeon, Jei-Won; Song, Kyuseok [Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute,989-111 Daedeok-daero, Yuseong-gu, Daejeon, 305-353 (Korea, Republic of)

    2013-07-01

    A rotating disk electrode (RDE) measurement technique was employed to investigate the electrochemical REDOX reactions of actinide (An) and lanthanide (Ln) ions in LiCl-KCl molten salt. By using RDE, it is possible to access more exact values of the diffusion coefficient, Tafel slope, and exchange current density. In this work, we constructed RDE setup and electrodes for RDE measurements in high temperature molten salt and measured the electrochemical parameters of the An and Ln ions. The RDE setup is composed of a Pine model MSRX rotator equipped with a rod type of W electrode. The active electrode area was confined to the planar part of the W rod by making meniscus at the LiCl-KCl melt surface.

  18. Electrochemical studies of UO22+ in 1-octyl 3- methylimidazolium hexafluorophosphate (omimPF6) room temperature ionic liquid

    International Nuclear Information System (INIS)

    Kamat, J.V.; Gopinath, N.; Lohithakshan, K.V.; Aggarwal, S.K.

    2007-01-01

    The effect of the degraded products on the Electrochemical Window (EW) of l-octyl 3- methylimidazolium hexafluorophosphate (OmimPF 6 ) were studied. Studies were also carried to optimize conditions for extraction of UO 2 2+ to investigate its redox behavior in OmimPF6 and determine the number of electrons involved in the redox chemistry. The Chronoamperometric technique of evaluating n without knowing diffusion coefficient, D, was devised by Kakihana et al. and has been applied in the present work. The number of electrons involved was determined from the values of slope and intercept of the Cottrell plot. The results of these studies are presented in this paper

  19. Electrochemical reduction of NOx

    DEFF Research Database (Denmark)

    Traulsen, Marie Lund

    NO and NO2 (collectively referred to as NOx) are air pollutants, and the largest single contributor to NOx pollution is automotive exhaust. This study investigates electrochemical deNOx, a technology which aims to remove NOx from automotive diesel exhaust by electrochemical reduction of NOx to N2...... and O2. The focus in this study is on improving the activity and selectivity of solid oxide electrodes for electrochemical deNOx by addition of NOx storage compounds to the electrodes. Two different composite electrodes, La0.85Sr0.15MnO3-δ-Ce0.9Gd0.1O1.95 (LSM15-CGO10) and La0.85Sr0.15FeO3-δ-Ce0.9Gd0.1O......1.95 (LSF15-CGO10), have been investigated in combination with three different NOx storage compounds: BaO, K2O and MnOx. The main focus in the investigation has been on conversion measurements and electrochemical characterization, the latter by means of electrochemical impedance spectroscopy...

  20. Electrochemical Study on Ligand Substitution Reactions in Oxofluoro Boron Containing Melts

    DEFF Research Database (Denmark)

    Polyakova, L.P.; Bukatova, G.A.; Polyakov, E.G.

    1997-01-01

    to the formation of borate complexes.BO2- data obtained allowed to explain a difference in the electrochemical behaviour of two sorts of borate compounds - NaBO2 and Na4B4O7 in fluoride melts. Only BO2- species give arise in the melt when NaBO2 dissolve. At the same time both BOF2- and BO2- species coexist...

  1. Electrochemical study of heavy metals and metallothionein in yeast Yarrowia lipolytica

    Czech Academy of Sciences Publication Activity Database

    Strouhal, M.; Kizek, René; Vacek, Jan; Trnková, L.; Němec, M.

    2003-01-01

    Roč. 60, 1-2 (2003), s. 29-36 ISSN 1567-5394 R&D Projects: GA AV ČR IAA4004110; GA ČR GA203/02/0422 Institutional research plan: CEZ:AV0Z5004920; CEZ:MSM 143100005 Keywords : electrochemical determination of metallothionein and heavy metals * yeast * Yarrowia lipolytica Subject RIV: BO - Biophysics Impact factor: 1.482, year: 2003

  2. Column study on electrochemical separation of cesium ions from wastewater using copper hexacyanoferrate film

    International Nuclear Information System (INIS)

    Chen, Rongzhi; Tanaka, Hisashi; Asai, Miyuki; Fukushima, Chikako; Kawamoto, Tohru; Kurihara, Masato; Ishizaki, Manabu; Arisaka, Makoto; Nankawa, Takuya; Watanabe, Masayuki

    2013-01-01

    We coated the copper hexacyanoferrate (CuHCF) on the gold electrodes, and then performed the Cs removal by electrochemical separation (ES). The prepared CuHCF nanoparticles can be simply and uniformly coated on electrodes by wet process like conventional printing methods, so any sizes or patterns are feasible at low cost, which indicated the potential as a promising sorption electrode of large size in the columns for sequential removal and recycle of Cs from wastewater. (author)

  3. Development of new corrosion inhibitor tested on mild steel supported by electrochemical study

    Directory of Open Access Journals (Sweden)

    Hussein Jwad Habeeb

    2018-03-01

    Full Text Available Mild steel is a metal which is commonly used in industrials and manufacturing of equipment for most industries round the world. It is cheaper cost compared with the other metals and its durable, hard and easy-to-wear physical properties make it a major choice in the manufacture of equipment parts. The main problem through the uses of mild steel in industry is its resistance against corrosion, especially in acidic solutions. This case led to raise the cost of maintenance of equipment that used mild steel and as a result increased costs for the company. Organic corrosive inhibitors that also act as green chemicals, 4-hydroxybenzylideneaminomethyl-5-ethyl-1,3,4-thiadiazol have been synthesized. This inhibitor is tested as corrosion inhibitor on a mild steel sample MS in 1 M hydrochloric acid solution (HCl using electrochemical measurements test includes PD (Potentiodynamic, EIS (Electrochemical impedance spectroscopy, OCP (Open circuit potential and EFM (electrochemical frequency modulation. The obtained results indicate that 4-hydroxybenzylideneaminomethyl-5-ethyl-1,3,4-thiadiazol acts as a good corrosion inhibitor for mild steel sample in HCl solution with efficiency above 90%. Changes in the impedance parameters postulated adsorption on the mild steel specimens' surfaces of, which it going to the formation of protective coating layer. It also shows that 4-hydroxybenzylideneaminomethyl-5-ethyl-1,3,4-thiadiazol corrosion inhibitors are effective in helping to reduce and slow down the corrosion process that occurs on mild steel surface in hydrochloric acid solution. Increase of corrosion inhibitor concentration provides a protective layer of mild steel. However, this protective layer becomes weak when the temperature of the solution increases. Keywords: Hydroxybenzylideneaminomethy, Potentiodynamic, Electrochemical frequency modulation, Impedance

  4. Study of the zirconium passive layer in nitric medium, by the means of electrochemical impedance spectrometry

    International Nuclear Information System (INIS)

    Musy, C.

    1996-01-01

    Although zirconium exhibits a very low corrosion rate in nitric medium at 100 C, electrochemical impedance spectrometry enabled the in-situ monitoring of the zirconium oxide growth in theses conditions. The growth curve shows a very clear deceleration of the oxide growth kinetics after the first hundred hours of immersion in hot nitric medium. The initial thickness of the native oxide film is also examined

  5. Electrochemical study of nitrobenzene reduction using novel Pt nanoparticles/macroporous carbon hybrid nanocomposites

    International Nuclear Information System (INIS)

    Zhang Yufan; Zeng Lijun; Bo Xiangjie; Wang Huan; Guo Liping

    2012-01-01

    Graphical abstract: A one-step microwave-assisted route for rapidly synthesizing Pt nanoparticles ensemble on macroporous carbon hybrid nanocomposites (PNMPC) has been reported. As a novel electrode material, the excellent electrochemical behavior of nitrobenzene was investigated thoroughly at the PNMPC modified glassy carbon electrode. And moreover, the modified electrode was successfully applied to the determination of nitrobenzene in real samples. Highlights: ► One-step microwave-assisted heating synthesis Pt nanoparticles/macroporous carbon hybrid nanocomposites (PNMPC). ► Catalytic rate constant being 3.14 × 10 4 M −1 s −1 for NB in pH 7.0. ► Sensitive electrochemical detection of NB at the PNMPC/Nafion/GC electrode. ► The electrode showing excellent anti-interference ability and good stability for NB. - Abstract: Novel Pt nanoparticles (PN) ensemble on macroporous carbon (MPC) hybrid nanocomposites (PNMPC) were prepared through a rapidly and simple one-step microwave-assisted heating procedure. The obtained PNMPC was characterized by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA) and electrochemical methods. The electrochemical reduction of nitrobenzene (NB) was thoroughly investigated at the PNMPC modified glassy carbon (GC) electrode, and the catalytic rate constant was calculated to be 3.14 × 10 4 M −1 s −1 for NB. A sensitive NB sensor was developed based on the PNMPC/GC electrode, which showed a wide linear range (1–200 μM), low detection limit (50 nM), high sensitivity (6.93 μA μM −1 ), excellent anti-interference ability and good stability. And moreover, the electrode was successfully applied to the determination of NB in real samples.

  6. Study on the Efficient Disintegration of HTGR Fuel Elements by Electrochemical Method

    International Nuclear Information System (INIS)

    Piao Nan; Chen Ji; Xiao Cuiping; We Mingfen; Che Jing

    2014-01-01

    The spent fuel elements in High- temperature gas-cooled reactor (HTGR) have a special structure, so the head-end process of the spent fuel reprocessing is different from the process of water reactor spent fuel. The first step of head-end process of the HTGR spent fuel reprocessing process is disintegration of the graphite matrix and separation of the coated fuel particles. Electrochemical method with nitrate solution as an electrolyte for fuel element disintegration has been conducted by the Institute of Nuclear and New Energy Technology in Tsinghua University. This method allows a total disintegration of graphite matrix, while still preserving the integrity of TRISO particles. The influences of the pretreatment methods such as heating oxidation of graphite, hydrothermal and oxidants oxidation were investigated in the present work. The experimental results showed that there were no significant effects on increasing the disintegration rate when pretreatment methods were used ahead of electrochemical disintegration. This phenomenon indicated that the fuel elements which were calcined at 1073 K and pressed under 300 MPa are too compact to be broken by these pretreatment methods. And the electrochemical disintegration is an effective but slow method in breaking the graphite matrix. (author)

  7. Voltammetric studies on the electrochemical determination of methylmercury in chloride medium at carbon microelectrodes

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, F. [Centro de Electroquimica e Cinetica da Universidade de Lisboa, Departamento de Quimica e Bioquimica, Faculdade de Ciencias, Universidade de Lisboa, Campo Grande, Ed. C8, 1749-016 Lisbon (Portugal); Neto, M.M.M. [Centro de Electroquimica e Cinetica da Universidade de Lisboa, Departamento de Quimica e Bioquimica, Faculdade de Ciencias, Universidade de Lisboa, Campo Grande, Ed. C8, 1749-016 Lisbon (Portugal) and Departamento de Quimica Agricola e Ambiental, Instituto Superior de Agronomia, Tapada da Ajuda, 1349-017 Lisbon (Portugal)]. E-mail: mm.neto@netcabo.pt; Rocha, M.M. [Centro de Electroquimica e Cinetica da Universidade de Lisboa, Departamento de Quimica e Bioquimica, Faculdade de Ciencias, Universidade de Lisboa, Campo Grande, Ed. C8, 1749-016 Lisbon (Portugal); Fonseca, I.T.E. [Centro de Electroquimica e Cinetica da Universidade de Lisboa, Departamento de Quimica e Bioquimica, Faculdade de Ciencias, Universidade de Lisboa, Campo Grande, Ed. C8, 1749-016 Lisbon (Portugal)

    2006-10-10

    Electroanalytical techniques have been used to determine methylmercury at low levels in environmental matrices. The electrochemical behaviour of methylmercury at carbon microelectrodes in a hydrochloric acid medium using cyclic, square wave and fast-scan linear-sweep voltammetric techniques has been investigated. The analytical utility of the methylmercury reoxidation peak has been explored, but the recorded peak currents were found to be poorly reproducible. This is ascribed to two factors: the adsorption of insoluble chloromercury compounds on the electrode surface, which appears to be an important contribution to hinder the voltammetric signal of methylmercury; and the competition between the reoxidation of the methylmercury radical and its dimerization reaction, which limits the reproducibility of the methylmercury peak. These problems were successfully overcome by adopting the appropriate experimental conditions. Fast-scan rates were employed and an efficient electrochemical regeneration procedure of the electrode surface was achieved, under potentiostatic conditions in a mercury-free solution containing potassium thiocyanate-a strong complexing agent. The influence of chloride ion concentration was analysed. Interference by metals, such as lead and cadmium, was considered. Calibration plots were obtained in the micromolar and submicromolar concentration ranges, allowing the electrochemical determination of methylmercury in trace amounts. An estuarine water sample was analysed using the new method with a glassy carbon microelectrode.

  8. A study of the characteristics of indium tin oxide after chlorine electro-chemical treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Moonsoo; Kim, Jongmin; Cho, Jaehee; Kim, Hyunwoo; Lee, Nayoung; Choi, Byoungdeog, E-mail: bdchoi@skku.edu

    2016-10-15

    Graphical abstract: The presence of Chlorine in the outer surface resulted in a highly electro-negative surface states and an increase in the vacuum energy level. - Highlights: • We investigated the influence of chlorine surface treatment on ITO properties. • Chlorination induced the change of the electro-static potential in the outer surface. • Chlorine electro-chemical treatment of ITO is a simple, fast and effective technique. - Abstract: In this work, we investigate the influence of a chlorine-based electro-chemical surface treatment on the characteristics of indium tin oxide (ITO) including the work function, chemical composition, and phase transition. The treated ITOs were characterized using X-ray photoelectron spectroscopy (XPS), ultra-violet photoelectron spectroscopy (UPS), 4-point probe measurements, and grazing incidence X-ray diffraction (GI-XRD). We confirmed a change of the chemical composition in the near-surface region of the ITO and the formation of indium-chlorine (In-Cl) bonds and surface dipoles (via XPS). In particular, the change of the electro-static potential in the outer surface was caused by chlorination. Due to the vacuum-level shift after the electro-chemical treatment in a dilute hydrochloric acid, the ITO work function was increased by ∼0.43 eV (via UPS); furthermore, the electro-negativity of the chlorine anions attracted electrons to emit them from the hole transport layer (HTL) to the ITO anodes, resulting in an increase of the hole-injection efficiency.

  9. Preparation and property study of MnO2/CNPs as electrode materials of electrochemical supercapacitors

    Directory of Open Access Journals (Sweden)

    JIANG Chao

    2016-12-01

    Full Text Available MnO2 nanorods deposited on carbon nanospheres (MnO2/CNPs as electrode materials of electrochemical supercapacitors have been synthesized via a hydrothermal synthesis.The micro morphologies and phases of the as-prepared MnO2/CNPs were characterized by field emission scanning electro microscopy(FESEM and X-ray diffraction(XRD.The electrochemical properties of nanomaterials were tested by cyclic voltammetry and galvanostatic charge-discharge.At a current density of 0.1 A/g using 1 mol/L Na2SO4 as electrolyte,the as-prepared MnO2/CNPs exhibit excellent specific capacitance of 305.6 F/g,far larger than carbon nanospheres (49.3 F/g.At a current density of 5 A/g,the specific capacitance of MnO2/CNPs is 235 F/g,which is 76.9% of the specific capacitance under 1 A/g current density.These results demonstrated that MnO2/CNPs may show potential application for electrode materials in electrochemical supercapacitors.

  10. Voltammetric studies on the electrochemical determination of methylmercury in chloride medium at carbon microelectrodes

    International Nuclear Information System (INIS)

    Ribeiro, F.; Neto, M.M.M.; Rocha, M.M.; Fonseca, I.T.E.

    2006-01-01

    Electroanalytical techniques have been used to determine methylmercury at low levels in environmental matrices. The electrochemical behaviour of methylmercury at carbon microelectrodes in a hydrochloric acid medium using cyclic, square wave and fast-scan linear-sweep voltammetric techniques has been investigated. The analytical utility of the methylmercury reoxidation peak has been explored, but the recorded peak currents were found to be poorly reproducible. This is ascribed to two factors: the adsorption of insoluble chloromercury compounds on the electrode surface, which appears to be an important contribution to hinder the voltammetric signal of methylmercury; and the competition between the reoxidation of the methylmercury radical and its dimerization reaction, which limits the reproducibility of the methylmercury peak. These problems were successfully overcome by adopting the appropriate experimental conditions. Fast-scan rates were employed and an efficient electrochemical regeneration procedure of the electrode surface was achieved, under potentiostatic conditions in a mercury-free solution containing potassium thiocyanate-a strong complexing agent. The influence of chloride ion concentration was analysed. Interference by metals, such as lead and cadmium, was considered. Calibration plots were obtained in the micromolar and submicromolar concentration ranges, allowing the electrochemical determination of methylmercury in trace amounts. An estuarine water sample was analysed using the new method with a glassy carbon microelectrode

  11. Resistance of Cementitious Binders to Chloride Induced Corrosion of Embedded Steel by Electrochemical and Microstructural Studies

    International Nuclear Information System (INIS)

    Song, Ha Won; Ann, Ki Yong; Kim, Tae Sang

    2009-01-01

    The high alkaline property in the concrete pore solution protects the embedded steel in concrete from corrosion due to aggressive ions attack. However, a continuous supply of those ions, in particular, chlorides altogether with a pH fall in electrochemical reaction on the steel surface eventually depassivate the steel to corrode. To mitigate chloride-induced corrosion in concrete structures, finely grained mineral admixtures, for example, pulverized fuel ash (PFA), ground granulated blast furnace slag (GGBS) and silica fume (SF) have been often advised to replace ordinary Portland cement (OPC) partially as binder. A consistent assessment of those partial replacements has been rarely performed with respect to the resistance of each binder to corrosion, although the studies for each binder were extensively looked into in a way of measuring the corrosion rate, influence of microstructure or chemistry of chlorides ions with cement hydrations. The paper studies the behavior of steel corrosion, chloride transport, pore structure and buffering capacity of those cementitious binders. The corrosion rate of steel in mortars of OPC, 30% PFA, 60% GGBS and 10% SF respectively, with chloride in cast ranging from 0.0 to 3.0% by weight of binder was measured at 7, 28 and 150 days to determine the chloride threshold level and the rate of corrosion propagation, using the anodic polarization technique. Mercury intrusion porosimetry was also applied to cement pastes of each binder at 7 and 28 days to ensure the development of pore structure. Finally, the release rate of bound chlorides (I.e. buffering capacity) was measured at 150 days. The chloride threshold level was determined assuming that the corrosion rate is beyond 1-2 mA/m 3 at corrosion and the order of the level was OPC > 10% SF > 60% GGBS > 30% PFA. Mercury intrusion porosimetry showed that 10% SF paste produced the most dense pore structure, followed by 60% GGBS, 30% PFA and OPC pastes, respectively. It was found that OPC

  12. Density functional theory and surface enhanced Raman spectroscopy studies of tautomeric hypoxanthine and its adsorption behaviors in electrochemical processes

    International Nuclear Information System (INIS)

    Huang, Wei; Jiang, Jin-Zhi; Chen, Liang; Zhang, Bi-Qi; Deng, Shu-Fen; Sun, Jian Jun; Chen, Wen-Kai

    2015-01-01

    ABSTRACT: Hypoxanthine, a purine heterocyclic compound with N and O atoms, has capability to combine metal ions or adsorb on metals. By using density functional theory (DFT) method calculation, the energy, charge distribution, molecular orbital and vibration spectra information of tautomeric hypoxanthine were given. Combined with these DFT results, the influence of pH on the structure of tautomeric hypoxanthine was studied by surface enhanced Raman spectroscopy (SERS). Electrochemical SERS was applied to study the properties of hypoxanthine/gold interface. It is found that the structure of adsorbed hypoxanthine was changed from slightly tilted to upright with negatively moving of potentials

  13. Electrochemical behaviour of the Eu3+/Eu2+ system in propionic media studied by cyclic chrono potentiometry

    International Nuclear Information System (INIS)

    Brotto, M.E.

    1989-01-01

    The electrochemical behaviour of the Eu 3 + / Eu 2 + system in propionic media was studied by means of current reversal chrono potentiometry and cyclic chrono potentiometry. Sodium perchlorate was employed as supporting electrolyte. The experiments were carried out at (25.0 ± 0.1) 0 C. The studied variables were the concentration of the electro active species, the composition of the solution and the current density. The cyclic chrono potentiometry results reveal that the charge transfer reaction is followed by the (H 3 O) + ion assisted irreversible catalytic reaction in which the Eu 3 + species is regenerated. (author)

  14. The Electrochemical Behavior of SnSb as an Anode for Li-ion Batteries Studied by Electrochemical Impedance Spectroscopy and Electron Microscopy

    International Nuclear Information System (INIS)

    Tesfaye, Alexander T.; Yücel, Yasemin D.; Barr, Maïssa K.S.; Santinacci, Lionel; Vacandio, Florence; Dumur, Frédéric; Maria, Sébastien; Monconduit, Laure; Djenizian, Thierry

    2017-01-01

    Highlights: •Electrochemical behavior of SnSb is investigated by EIS, SEM and TEM. •Formation of SEI and cracks occurs during cycling experiments. •The capacity fading as a result of the electrode modifications is discussed. -- Abstract: Evolution of the electrical and morphological properties of micron-sized SnSb has been investigated to understand the electrochemical behavior observed during cycling experiments. Electron microscopy techniques (scanning electron microscopy and transmission electron microscopy) and electrochemical impedance spectroscopy have been combined to evidence the electrode modifications and particularly the formation of a solid electrolyte interphase (SEI) layer. Evolution of the SEI resistance and the charge transfer resistance with the cell voltage can be explained by the electrolyte degradation and expansion/contraction of the electrode. Furthermore, we show that the SEI formation is not limited at the first discharge/charge of the battery. The continuous growth of the SEI layer up to 50 cycles associated to the electrode pulverization caused by the large volume variations are responsible for the capacity fading.

  15. Simulator Studies of the Deep Stall

    Science.gov (United States)

    White, Maurice D.; Cooper, George E.

    1965-01-01

    Simulator studies of the deep-stall problem encountered with modern airplanes are discussed. The results indicate that the basic deep-stall tendencies produced by aerodynamic characteristics are augmented by operational considerations. Because of control difficulties to be anticipated in the deep stall, it is desirable that adequate safeguards be provided against inadvertent penetrations.

  16. Preliminary simulation studies of accelerator cavity loading

    International Nuclear Information System (INIS)

    Faehl, R.J.

    1980-06-01

    Two-dimensional simulations of loading effects in a 350 MHz accelerator cavity have been performed. Electron currents of 1-10 kA have been accelerated in 5 MV/m fields. Higher order cavity modes induced by the beam may lead to emittance growth. Operation in an autoaccelerator mode has been studied

  17. Electrochemical impedance spectrometry using Inconel 690, zircaloy 4, 316Ti steel, 17-4-PH, UR52N et URSB8. Simulation in tritiated water. Tome 2

    International Nuclear Information System (INIS)

    Bellanger, G.

    1994-11-01

    The redox potential of 3 H 2 O, as well as the corrosion potentials in this medium are found, abnormally, in the trans-passive region. This is completely different from behavior in the chemical industry or in the water in nuclear powers. With such behavior, there will be breakdowns of the protective oxide layers, and in the presence of chloride there will be immediate pitting. Polarization and electrochemical impedance spectrometry curves are presented and discussed. These curves make it possible to ascertain the corrosion domains and to compare the kinetics of different stainless steel alloys. These corrosion kinetics and the corrosion potentials provide a classification of the steels studied here: Inconel 690, zircaloy 4, 316 Ti steel, 17-4-PH, UR52N et URSB8. From the results it can be concluded that URSB8 has the best corrosion resistance. (author). 13 refs., 522 figs., tabs

  18. Electrochemical impedance spectrometry using Inconel 690, zircaloy 4, 316Ti steel, 17-4-PH, UR52N et URSB8. Simulation in tritiated water. Tome 1

    International Nuclear Information System (INIS)

    Bellanger, G.

    1994-11-01

    The redox potential of 3 H 2 O, as well as the corrosion potentials in this medium are found, abnormally, in the trans-passive region. This is completely different from the behavior in the chemical industry or in the water in nuclear powers. With such behavior, there will be breakdowns of the protective oxide layers, and in the presence of chloride there will be immediate pitting. Polarization and electrochemical impedance spectrometry curves are presented and discussed. These curves make it possible to ascertain the corrosion domains and to compare the kinetics of different stainless alloys. These corrosion kinetics and the corrosion potentials provide a classification of the steels studied here: Inconel 690, zircaloy 4, 316 Ti steel, 17-4-PH, UR52N et URSB8. From the results it can be concluded that URSB8 has the best corrosion resistance. (author). 279 figs., tabs

  19. New 1H-pyrrole-2,5-dione derivatives as efficient organic inhibitors of carbon steel corrosion in hydrochloric acid medium: Electrochemical, XPS and DFT studies

    International Nuclear Information System (INIS)

    Zarrouk, A.; Hammouti, B.; Lakhlifi, T.; Traisnel, M.; Vezin, H.; Bentiss, F.

    2015-01-01

    Highlights: • 1H-pyrrole derivatives act as good corrosion inhibitors for carbon steel in 1 M HCl. • Adsorption of the inhibitors on carbon steel surface obeys Langmuir’s isotherm. • XPS showed that the inhibitors are chemisorbed on the metal surface. • Quantum chemical parameters were correlated with experimental results. - Abstract: New 1H-pyrrole-2,5-dione derivatives, namely 1-phenyl-1H-pyrrole-2,5-dione (PPD) and 1-(4-methylphenyl)-1H-pyrrole-2,5-dione (MPPD) were synthesised and their inhibitive action against the corrosion of carbon steel in 1 M HCl solution were investigated at 308 K by weight loss, potentiodynamic polarization curves, and electrochemical impedance spectroscopy (EIS) methods. The results showed that the investigated 1H-pyrrole-2,5-dione derivatives are good corrosion inhibitors for carbon steel in 1 M HCl medium, their inhibition efficiency increased with inhibitor concentration, and MPPD is slightly more effective than PPD. Potentiostatic polarization study showed that PPD and MPPD are mixed-type inhibitors in 1 M HCl. Impedance experimental data revealed a frequency distribution of the capacitance, simulated as constant phase element. The results obtained from electrochemical and weight loss studies were in reasonable agreement. The adsorption of MPPD and PPD on steel surface obeyed Langmuir’s adsorption isotherm. Thermodynamic data and XPS analysis clearly indicated that the adsorption mechanism of 1H-pyrrole-2,5-dione derivatives on carbon steel surface in 1 M HCl solution is mainly controlled by a chemisorption process. Quantum chemical calculations using the Density Functional Theory (DFT) were performed on 1H-pyrrole-2,5-dione derivatives to determine the relationship between molecular structures and their inhibition efficiencies

  20. Driving Simulator Development and Performance Study

    OpenAIRE

    Juto, Erik

    2010-01-01

    The driving simulator is a vital tool for much of the research performed at theSwedish National Road and Transport Institute (VTI). Currently VTI posses three driving simulators, two high fidelity simulators developed and constructed by VTI, and a medium fidelity simulator from the German company Dr.-Ing. Reiner Foerst GmbH. The two high fidelity simulators run the same simulation software, developed at VTI. The medium fidelity simulator runs a proprietary simulation software. At VTI there is...

  1. Flow-induced corrosion of absorbable magnesium alloy: In-situ and real-time electrochemical study.

    Science.gov (United States)

    Wang, Juan; Jang, Yongseok; Wan, Guojiang; Giridharan, Venkataraman; Song, Guang-Ling; Xu, Zhigang; Koo, Youngmi; Qi, Pengkai; Sankar, Jagannathan; Huang, Nan; Yun, Yeoheung

    2016-03-01

    An in-situ and real-time electrochemical study in a vascular bioreactor was designed to analyze corrosion mechanism of magnesium alloy (MgZnCa) under mimetic hydrodynamic conditions. Effect of hydrodynamics on corrosion kinetics, types, rates and products was analyzed. Flow-induced shear stress (FISS) accelerated mass and electron transfer, leading to an increase in uniform and localized corrosions. FISS increased the thickness of uniform corrosion layer, but filiform corrosion decreased this layer resistance at high FISS conditions. FISS also increased the removal rate of localized corrosion products. Impedance-estimated and linear polarization-measured polarization resistances provided a consistent correlation to corrosion rate calculated by computed tomography.

  2. Electrochemical corrosion studies of the TStE 355 fine-grained structural steel in sulfide containing brine

    International Nuclear Information System (INIS)

    Farvaque-Bera, A.M.; Berg, H. von.

    1994-04-01

    Previous corrosion studies have shown that the unalloyed fine-grained steel TStE 355 (Material No. 1.0566) is a promising material for the manufacturing of long-lived high-level waste (HLW) containers that could act as a barrier in a rock-salt repository. Considering this fact, further electrochemical corrosion tests were performed in order to determine the influence of sulfide ions (1 -200 ppm), present as salt impurities in disposal relevant NaCl-brine (T = 55 -90 C), on the corrosion behaviour of this steel grade. For comparison, tests were carried out in the sulfide-free brine, too. (orig.) [de

  3. Comparative study of the influence of antimony oxide additives (III) and nickel hydroxide (II) on electrochemical behavior of cadmium electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Kadnikova, N.V.; Lvova, L.A.; Ryabskaya, I.A.

    1983-01-01

    Comparative study of the influence of additives indicated that with partial or complete replacement in the active mass of the cadmium electrode of nickel hydroxide (II) by antimony oxide (III), the electrochemical characteristics do not significantly change. During prolonged storage of charged cadmium electrodes the presence of nickel hydroxide (II) and intermetal compound (IMC) of cadmium with nickel is formed and the specific surface increases. In the case of adding antimony (III) formation of noticeable quantities of IMC of cadmium with antimony is not observed. The specific surface is reduced during storage.

  4. Electrochemical Studies of Graphene-like materials Synthesized by the Thermolyzed Asphalt Reaction

    Science.gov (United States)

    Xie, Yuqun

    Developing a facile and cost effective synthetic method for producing graphene materials has been an attractive research topic in several disciplines. Chapter 3 demenstrates sheets of multilayered graphene-like paper materials more than 10 cm2 in area were synthesized in the "Thermolyzed Asphalt Reaction (TAR)". TAR is processed within open containers at 650 °C under atmospheric pressure without the need to exclude oxygen, which is the lowest reported temperature for chemical vapor deposition of graphene-based materials. It was found that multilayered graphene-like materials can be grown on amorphous substrates without catalysts. In chapter 4, further studies of the TAR mechanism have allowed sulfur to be identified as an important co-factor in multilayer graphene-like materials formation. Graphene-like material was produced from simple precursors such as elemental sulfur and cyclohexanol. A proposed scheme illustrates sulfur's role in the growth of graphene-like material based on thermogravimetric analyses. We hypothesize that elemental sulfur is involved with the dehydration/dehydrogenation and eventual crosslinking of cyclohexanol between 100-140 °C. In the range of 240-400 °C further dehydrogenation steps occur yielding an unidentified intermediate with a sharp Raman peak at 1450 cm-1 At 550 °C graphene-like Raman D and G bands appear along with the 1450 cm band of the intermediate. At 600 °C and higher temperatures, the intermediate peak is lost with only bands characteristic of graphene-like material being seen in the spectrum of the material synthesized from the University of Idaho Thermolyzed Asphalt Reaction (GUITAR). Sulfur as a key co-factor for GUITAR synthesis is reinforced by results found with other hydrocarbons. Other organics succeeded or failed in GUITAR formation based on melting and boiling considerations. The failure of the compounds with a boiling point below -89°C, melting point above 300°C is reasoned with the volatility of the

  5. Neptunium carbonato complexes in aqueous solution: an electrochemical, spectroscopic, and quantum chemical study.

    Science.gov (United States)

    Ikeda-Ohno, Atsushi; Tsushima, Satoru; Takao, Koichiro; Rossberg, André; Funke, Harald; Scheinost, Andreas C; Bernhard, Gert; Yaita, Tsuyoshi; Hennig, Christoph

    2009-12-21

    The electrochemical behavior and complex structure of Np carbonato complexes, which are of major concern for the geological disposal of radioactive wastes, have been investigated in aqueous Na(2)CO(3) and Na(2)CO(3)/NaOH solutions at different oxidation states by using cyclic voltammetry, X-ray absorption spectroscopy, and density functional theory calculations. The end-member complexes of penta- and hexavalent Np in 1.5 M Na(2)CO(3) with pH = 11.7 have been determined as a transdioxo neptunyl tricarbonato complex, [NpO(2)(CO(3))(3)](n-) (n = 5 for Np(V), and 4 for Np(VI)). Hence, the electrochemical reaction of the Np(V/VI) redox couple merely results in the shortening/lengthening of bond distances mainly because of the change of the cationic charge of Np, without any structural rearrangement. This explains the observed reversible-like feature on their cyclic voltammograms. In contrast, the electrochemical oxidation of Np(V) in a highly basic carbonate solution of 2.0 M Na(2)CO(3)/1.0 M NaOH (pH > 13) yielded a stable heptavalent Np complex of [Np(VII)O(4)(OH)(2)](3-), indicating that the oxidation reaction from Np(V) to Np(VII) in the carbonate solution involves a drastic structural rearrangement from the transdioxo configuration to a square-planar-tetraoxo configuration, as well as exchanging the coordinating anions from carbonate ions (CO(3)(2-)) to hydroxide ions (OH(-)).

  6. Development of new corrosion inhibitor tested on mild steel supported by electrochemical study

    Science.gov (United States)

    Habeeb, Hussein Jwad; Luaibi, Hasan Mohammed; Dakhil, Rifaat Mohammed; Kadhum, Abdul Amir H.; Al-Amiery, Ahmed A.; Gaaz, Tayser Sumer

    2018-03-01

    Mild steel is a metal which is commonly used in industrials and manufacturing of equipment for most industries round the world. It is cheaper cost compared with the other metals and its durable, hard and easy-to-wear physical properties make it a major choice in the manufacture of equipment parts. The main problem through the uses of mild steel in industry is its resistance against corrosion, especially in acidic solutions. This case led to raise the cost of maintenance of equipment that used mild steel and as a result increased costs for the company. Organic corrosive inhibitors that also act as green chemicals, 4-hydroxybenzylideneaminomethyl-5-ethyl-1,3,4-thiadiazol have been synthesized. This inhibitor is tested as corrosion inhibitor on a mild steel sample MS in 1 M hydrochloric acid solution (HCl) using electrochemical measurements test includes PD (Potentiodynamic), EIS (Electrochemical impedance spectroscopy), OCP (Open circuit potential) and EFM (electrochemical frequency modulation). The obtained results indicate that 4-hydroxybenzylideneaminomethyl-5-ethyl-1,3,4-thiadiazol acts as a good corrosion inhibitor for mild steel sample in HCl solution with efficiency above 90%. Changes in the impedance parameters postulated adsorption on the mild steel specimens' surfaces of, which it going to the formation of protective coating layer. It also shows that 4-hydroxybenzylideneaminomethyl-5-ethyl-1,3,4-thiadiazol corrosion inhibitors are effective in helping to reduce and slow down the corrosion process that occurs on mild steel surface in hydrochloric acid solution. Increase of corrosion inhibitor concentration provides a protective layer of mild steel. However, this protective layer becomes weak when the temperature of the solution increases.

  7. Electrochemical study of nanometric Si on carbon for lithium ion secondary batteries

    Energy Technology Data Exchange (ETDEWEB)

    Doh, Chil-Hoon; Lee, Jung-Hoon; Lee, Duck-Jun; Kim, Ju-Seok; Jin, Bong-Soo; Moon, Seong-In [Korea Electrotechnology Research Institute, Changwon 641-120 (Korea, Republic of); Hwang, Young-Ki [Kyungnam University, Masan 631-701 (Korea, Republic of); Park, Cheol-Wan, E-mail: chdoh@keri.re.k [Sodiff Advanced Materials Co. Ltd, Youngju 750-080 (Korea, Republic of)

    2010-05-01

    The electrochemical and thermochemical properties of a silicon-graphite composite anode for lithium ion batteries were evaluated. The electrochemical properties were varied by the condition of pretreatment. The electrochemical pretreatment of constant current (C/10) and constant potential for 24 h showed specific discharge and charge capacities of 941 and 781 mA h g{sup -1} to give a specific irreversible capacity of 161 mA h g{sup -1} and a coulombic efficiency of 83%. The initial cycle as the next cycle of pretreatment showed a specific charge capacity (Li desertion) of 698 mA h g{sup -1} and a coulombic efficiency of 95%. Coulombic efficiency at the fifth cycle was 97% to clear up almost all of the irreversible capacity. During the pretreatment cycle to the fourth cycle, the average specific charge capacity was 683 mA h g{sup -1} and the cumulative irreversible capacity was 264 mA h g{sup -1}. Exothermic heat values based on the specific capacity of the discharged (Li insertion) electrode of silicon-graphite composite for the temperature range of 50-300 {sup 0}C were 2.09 and 2.21 J mA{sup -1}h{sup -1} for 0 and 2 h as time of pretreatment in the case of just disassembled wet electrodes and 1.43 and 1.01 J mA{sup -1}h{sup -1} for 12 and 24 h as time of pretreatment in the case of dried electrodes, respectively.

  8. Electrochemical studies of iron/carbonates system applied to the formation of thin layers of siderite on inert substrates

    International Nuclear Information System (INIS)

    Ithurbide, A.; Peulon, S.; Mandin, Ph.; Beaucaire, C.; Chausse, A.

    2007-01-01

    In order to understand the complex mechanisms of the reactions occurring, a methodology is developed. It is based on the use of compounds electrodeposited under the form of thin layers and which are used then as electrodes to study their interactions with the toxic species. It is in this framework that is studied the electrodeposition of siderite on inert substrates. At first, have been studied iron electrochemical systems in carbonated solutions. These studies have been carried out with classical electrochemical methods (cyclic voltametry, amperometry) coupled to in-situ measurements: quartz microbalance, pH. Different compounds have been obtained under the form of homogeneous and adherent thin layers. The analyses of these depositions, by different ex-situ characterizations (XRD, IR, SEM, EDS..) have revealed particularly the presence of siderite. Then, the influence of several experimental parameters (substrate, potential, medium composition, temperature) on the characteristics of siderite thin layers has been studied. From these experimental results, models have been proposed. (O.M.)

  9. Electrochemical Control of Peptide Self-Organization on Atomically Flat Solid Surfaces: A Case Study with Graphite.

    Science.gov (United States)

    Seki, Takakazu; So, Christopher R; Page, Tamon R; Starkebaum, David; Hayamizu, Yuhei; Sarikaya, Mehmet

    2018-02-06

    The nanoscale self-organization of biomolecules, such as proteins and peptides, on solid surfaces under controlled conditions is an important issue in establishing functional bio/solid soft interfaces for bioassays, biosensors, and biofuel cells. Electrostatic interaction between proteins and surfaces is one of the most essential parameters in the adsorption and self-assembly of proteins on solid surfaces. Although the adsorption of proteins has been studied with respect to the electrochemical surface potential, the self-assembly of proteins or peptides forming well-organized nanostructures templated by lattice structure of the solid surfaces has not been studied in the relation to the surface potential. In this work, we utilize graphite-binding peptides (GrBPs) selected by the phage display method to investigate the relationship between the electrochemical potential of the highly ordered pyrolytic graphite (HOPG) and peptide self-organization forming long-range-ordered structures. Under modulated electrical bias, graphite-binding peptides form various ordered structures, such as well-ordered nanowires, dendritic structures, wavy wires, amorphous (disordered) structures, and islands. A systematic investigation of the correlation between peptide sequence and self-organizational characteristics reveals that the presence of the bias-sensitive amino acid modules in the peptide sequence has a significant effect on not only surface coverage but also on the morphological features of self-assembled structures. Our results show a new method to control peptide self-assembly by means of applied electrochemical bias as well as peptide design-rules for the construction of functional soft bio/solid interfaces that could be integrated in a wide range of practical implementations.

  10. Electrochemical studies for an acid fuel cell; Estudos eletroquimicos de uma celula a combustivel acida

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, E.R.; Avaca, L.A.; Ticianelli, E.A.; Ferreira, A.C.; Oliveira, J.C.T. de [Sao Paulo Univ., Sao Carlos, SP (Brazil). Inst. de Fisica e Quimica

    1984-12-31

    This work describes the main steps for the development of the components of an one-kilowatt phosphoric acid H{sub 2}/O{sub 2} fuel cell stack. The electrochemical characteristics of fundamental components-electrodes and electrolyte-matrix have been evaluated in unitary fuel cell prototype by stationary polarization curves and continuous operation curves. The results confirmed the better efficiency of the hydrogen electrode and anticipated a very fair performance for the one-kilowatt stack. (author). 4 figs., 5 refs

  11. Ionic liquids as electrolytes for Li-ion batteries-An overview of electrochemical studies

    Science.gov (United States)

    Lewandowski, Andrzej; Świderska-Mocek, Agnieszka

    The paper reviews properties of room temperature ionic liquids (RTILs) as electrolytes for lithium and lithium-ion batteries. It has been shown that the formation of the solid electrolyte interface (SEI) on the anode surface is critical to the correct operation of secondary lithium-ion batteries, including those working with ionic liquids as electrolytes. The SEI layer may be formed by electrochemical transformation of (i) a molecular additive, (ii) RTIL cations or (iii) RTIL anions. Such properties of RTIL electrolytes as viscosity, conductivity, vapour pressure and lithium-ion transport numbers are also discussed from the point of view of their influence on battery performance.

  12. Study on Electrochemical Performance of Carbonnanotubes/Fey 04 Composite Electrode Material

    Directory of Open Access Journals (Sweden)

    WANG Fang--yong

    2017-02-01

    Full Text Available For single super capacitor materials,each material has its own unique advantages and defects. In this paper, the synthesis of complex multi walled carbon nanotubes with Fe304 nanoparticles by simple hydrothermal method. Composite performance for Fe3 OQ nanoparticles adsorbed on carbon nano tube wall composed of reticular structure morphology. Synergy of two component,provides the binary nanometer compound larger specific capacity, excellent properties and good cycle stability. The experimental results proved that the improvement effects of CNT carbon materials on the electrochemical properties of pseudocapacitive electrode material,and CNT/Fe3 OQ nano- composites applied to supercapacitor electrode material.

  13. Electrochemical studies for an acid fuel cell; Estudos eletroquimicos de uma celula a combustivel acida

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, E R; Avaca, L A; Ticianelli, E A; Ferreira, A C; Oliveira, J C.T. de [Sao Paulo Univ., Sao Carlos, SP (Brazil). Inst. de Fisica e Quimica

    1985-12-31

    This work describes the main steps for the development of the components of an one-kilowatt phosphoric acid H{sub 2}/O{sub 2} fuel cell stack. The electrochemical characteristics of fundamental components-electrodes and electrolyte-matrix have been evaluated in unitary fuel cell prototype by stationary polarization curves and continuous operation curves. The results confirmed the better efficiency of the hydrogen electrode and anticipated a very fair performance for the one-kilowatt stack. (author). 4 figs., 5 refs

  14. Electrochemical and theoretical complexation studies for Zn and Cu with individual polyphenols

    International Nuclear Information System (INIS)

    Esparza, I.; Salinas, I.; Santamaria, C.; Garcia-Mina, J.M.; Fernandez, J.M.

    2005-01-01

    Zn and Cu interactions with three selected flavonoids (catechin, quercetin and rutin) have been electrochemically monitored. It has been shown that catechin takes one atom of metal per molecule; quercetin takes two atoms, and rutin is able to take up to three atoms. Not all ligands bind metals equally strong, and weakly bonded metals can be distinguished. Zn shows a sluggish kinetics and, at the same time, the highest conditional formation constants. The method could be applied to a real sample. Theoretical models are proposed for the most favourable compounds

  15. Oxidation of Natural Bioactive Flavonolignan 2,3-Dehydrosilybin: An Electrochemical and Spectral Study

    Czech Academy of Sciences Publication Activity Database

    Sokolová, Romana; Kocábová, Jana; Marhol, Petr; Fiedler, Jan; Biedermann, David; Vacek, J.; Křen, Vladimír

    2017-01-01

    Roč. 121, č. 28 (2017), s. 6841-6846 ISSN 1520-6106 R&D Projects: GA ČR(CZ) GA15-03037S Grant - others:Rada Programu interní podpory projektů mezinárodní spolupráce AV ČR M200401201 Program:M Institutional support: RVO:61388955 ; RVO:61388971 Keywords : Electrochemical oxidation * Chemical bonds * Electrochemistry Subject RIV: CG - Electrochemistry OBOR OECD: Physical chemistry Impact factor: 3.177, year: 2016

  16. Development of model for studies on momentum transfer in electrochemical cells with entry region coil as turbulence promoter

    Science.gov (United States)

    Penta Rao, Tamarba; Rajendra Prasad, P.

    2018-04-01

    Entry region swirl promoters gain importance in industry because of its effectiveness in augmentation of mass and heat transfer augmentation. Design of equipment needs momentum transfer data along with mass or heat transfer data. Hence an experimental investigation was carried out with coaxially placed entry region spiral coil as turbulence promoters on momentum transfer in forced convection flow of electrolyte in circular conduits. Aqueous solution of sodium hydroxide and 0.01 M equimolal Ferri-ferro cyanide system was chosen for the study. The study covered parameters like effect of pitch of the coil, effect of length of the coil, diameter of the coil, diameter of the coil wire, diameter of the annular rod. The promoter is measured by limiting current technique using diffusion controlled electrochemical reactions. The study comprises of evaluation of momentum transfer rates at the outer wall of the electrochemical cell. Pressure drop measurements were also made to obtain the energy consumption pattern. Within the range of variables covered. The results are correlated by the momentum transfer similarity function. Momentum transfer coefficients were evaluated from measured limiting currents. Effect of each parameter was studied in terms of friction factor. A model was developed for momentum transfer. The experimental data on momentum transfer was modeled in terms of momentum transfer function and Reynolds number, geometric parameters.

  17. Study of Electrochemical Oxidation and Quantification of the Pesticide Pirimicarb Using a Boron-Doped Diamond Electrode

    International Nuclear Information System (INIS)

    Selva, Thiago Matheus Guimarães; De Araujo, William Reis; Bacil, Raphael Prata; Paixão, Thiago Regis Longo Cesar

    2017-01-01

    Highlights: •A complete electro-oxidation mechanism of the pesticide Pirimicarb was proposed. •The electrochemical mechanism was supported by voltammetry techniques and mass spectrometry data. •An electroanalytical method using boron-doped diamond electrode was proposed to quantify Pirimicarb in natural waters. •The proposed analytical method is simple, low-cost, accurate and portable. -- Abstract: An electrochemical study of the carbamate pesticide pirimicarb (PMC), which acts on the central nervous system, was performed using a boron-doped diamond working electrode. Cyclic, differential pulse, and square-wave voltammetry experiments across a wide pH range (2.0 to 8.0) showed three irreversible oxidation processes in the voltammetric behavior of PMC. The two first processes were pH-dependent, while the third was not. The three oxidation process were independent of each other, and each involved the transfer of one electron. A reaction proposal for the electrochemical oxidation of PMC is shown, and it is supported by mass spectrometry experiments. After this, an analytical method for PMC quantification in water samples by differential pulse (DP) voltammetry is proposed. The optimal DP voltammetric parameters (step potential, amplitude potential, and scan rate) were optimized using experimental design, and an analytical curve was obtained from 2.0 to 219 μmol L −1 with an estimated detection limit of 1.24 μmol L −1 . The accuracy of the proposed method was evaluated by the addition and recovery method, with recoveries ranging from 88.6 to 96.3%. Some highlights of the proposed analytical method are its simplicity, reliability, and portability.

  18. Electrochemical, Polarization, and Crevice Corrosion Testing of Nitinol 60, A Supplement to the ECLSS Sustaining Materials Compatibility Study

    Science.gov (United States)

    Lee, R. E.

    2016-01-01

    In earlier trials, electrochemical test results were presented for six noble metals evaluated in test solutions representative of waste liquids processed in the Environmental Control and Life Support System (ECLSS) aboard the International Space Station (ISS). Subsequently, a seventh metal, Nitinol 60, was added for evaluation and subjected to the same test routines, data analysis, and theoretical methodologies. The previous six test metals included three titanium grades, (commercially pure, 6Al-4V alloy and 6Al-4V low interstitial alloy), two nickel-chromium alloys (Inconel(RegisteredTrademark) 625 and Hastelloy(RegisteredTrademark) C276), and one high-tier stainless steel (Cronidur(RegisteredTrademark) 30). The three titanium alloys gave the best results of all the metals, indicating superior corrosive nobility and galvanic protection properties. For this current effort, the results have clearly shown that Nitinol 60 is almost as noble as titanium, being very corrosion-resistant and galvanically compatible with the other six metals electrochemically and during long-term exposure. is also quite noble as it is very corrosion resistant and galvanically compatible with the other six metals from both an electrochemical perspective and long-term crevice corrosion scenario. This was clearly demonstrated utilizing the same techniques for linear, Tafel and cyclic polarization, and galvanic coupling of the metal candidate as was done for the previous study. The high nobility and low corrosion susceptibility for Nitinol 60 appear to be intermediate to the nickel/chromium alloys and the titanium metals with indications that are more reflective of the titanium metals in terms of general corrosion and pitting behavior.

  19. Synthesis and Electrochemical Study of a TCAA Derivative – A potential bipolar redox-active material

    International Nuclear Information System (INIS)

    Hagemann, Tino; Winsberg, Jan; Wild, Andreas; Schubert, Ulrich S.

    2017-01-01

    The 2,3,7,8-tetracyano-1,4,5,6,9,10-hexazaanthracene (TCAA) derivatives represent an interesting substance class for future research on organic electronic devices, such as solar cells, organic batteries or redox-flow batteries (RFBs). Because of their multivalent redox behavior they are potentially “bipolar”, usable both as cathode and anode activ charge-storage materials. Furthermore, they show a strong absorption and fluorescence behavior both in solution and solid state, rendering them a promising emitter for electroluminescence devices, like lamps or displays. In order to evaluate a TCAA for electrochemical applications the derivative 2,3,7,8-tetracyano-5,10-diphenyl-5,10-dihydrodipyrazino[2,3-b:2′,3′-e] pyrazine (2) was synthesized in two straightforward synthesis steps. The electrochemical behavior of 2 was initially determined by density functional theory (DFT) calculation and afterwards investigated via rotating disc electrode (RDE), UV–vis–NIR spectroelectrochemical as well as cyclic voltammetry (CV) measurements. It features a quasi-reversible oxidation and re-reduction at E ½ = 1.42 V vs. Fc + /Fc with a peak split of 96 mV and a quasi-reversible reduction and re-oxidation at E ½ = −1.49 V vs. Fc + /Fc with a peak split of 174 mV, which lead to a theoretical potential difference of 2.91 V.

  20. Carbonization-dependent nitrogen-doped hollow porous carbon nanospheres synthesis and electrochemical study for supercapacitors

    Science.gov (United States)

    Zhou, Lingyun; Xie, Guohong; Chen, Xiling

    2018-05-01

    In this paper, a nitrogen-doped hollow microporous carbon nanospheres was synthesized via the combination of hyper-crosslinking mediated self-assembly and further pyrolysis using polylactide-b-polystyrene (PLA-b-PS) copolymers and aniline monomers as precursor. The pore structure and the correlative electrochemical performance of nitrogen-doped hollow microporous carbon nanospheres were affected by the molar mass ratio of aniline and PS in block copolymers and the carbonization conditions. The electrochemical measurements results showed that the obtained PLA150-PS250-N4-900-10H sample with nitrogen content of 3.57% and the BET surface area of 945 m2 g-1 displays the best capacitance performance. At a current density of 1.0 Ag-1, the resultant specific capacitance is 250 Fg-1. In addition, it also exhibits high capacitance retention of 98% after charging-discharging 1500 times at 25 Ag-1. The results demonstrate the nitrogen-doped hollow microporous carbon nanospheres can be used as promising supercapacitor electrode materials for high performance energy storage devices.

  1. Electrochemical methods to study hydrogen production during interaction of copper with deoxygenated aqueous solution

    International Nuclear Information System (INIS)

    Lilja, Christina; Betova, Iva; Bojinov, Martin

    2016-01-01

    In some countries, spent nuclear fuel is planned to be encapsulated in canisters with a copper shell for corrosion protection, for further disposal in geologic repositories. The possibilities for corrosion after oxygen depletion must be evaluated, even if copper is considered to be immune in oxygen-free water. To follow the interaction of copper with deoxygenated aqueous solution, open-circuit potentiometric and electrochemical impedance measurements have been coupled to in-situ detection of cupric ion, dissolved molecular hydrogen and oxygen concentrations using electrochemical sensors. A kinetic model that considers the production of hydrogen as a catalytic process, the rate of which is proportional to the surface coverage of an intermediate species formed during interaction between copper and the solution is used to interpret the results. Kinetic parameters are estimated by a simultaneous fit of the experimental impedance spectra, the open circuit potential and cupric ion concentration as depending on temperature (22–70 °C) and exposure time (up to 720 h) to the model equations. Using the obtained values and a balance equation of hydrogen production on copper and its diffusion out of the cell through its walls, the kinetic parameters of this process are estimated by fitting dissolved molecular hydrogen concentration vs. time data at the three temperatures.

  2. Electrochemical and Spectroscopic Study of Mononuclear Ruthenium Water Oxidation Catalysts: A Combined Experimental and Theoretical Investigation

    KAUST Repository

    de Ruiter, J. M.

    2016-09-20

    One of the key challenges in designing light-driven artificial photosynthesis devices is the optimization of the catalytic water oxidation process. For this optimization it is crucial to establish the catalytic mechanism and the intermediates of the catalytic cycle, yet a full description is often difficult to obtain using only experimental data. Here we consider a series of mononuclear ruthenium water oxidation catalysts of the form [Ru(cy)(L)(H2O)](2+) (cy = p-cymene, L = 2,2\\'-bipyridine and its derivatives). The proposed catalytic cycle and intermediates are examined using density functional theory (DFT), radiation chemistry, spectroscopic techniques, and electrochemistry to establish the water oxidation mechanism. The stability of the catalyst is investigated using online electrochemical mass spectrometry (OLEMS). The comparison between the calculated absorption spectra of the proposed intermediates with experimental spectra, as well as free energy calculations with electrochemical data, provides strong evidence for the proposed pathway: a water oxidation catalytic cycle involving four proton-coupled electron transfer (PCET) steps. The thermodynamic bottleneck is identified as the third PCET step, which involves O-O bond formation. The good agreement between the optical and thermodynamic data and DFT predictions further confirms the general applicability of this methodology as a powerful tool in the characterization of water oxidation catalysts and for the interpretation of experimental observables.

  3. Spectroscopic and electrochemical study of the polynuclear clusters of ruthenium acetate

    International Nuclear Information System (INIS)

    Cipriano, C.

    1989-01-01

    The chemistry of the trinuclear clusters (Ru 3 O (C H 3 CO 2 ) 4 L 3 ) where L = imidazole, pyridine or pyrazine type of ligands, was investigated based on spectroscopic and electrochemical techniques. These complexes are of great interest from the point of view of their electronic and redox properties, providing multi site species for electron transfer processes. They were isolated in solid state, and characterized by means of elementary analyses and infrared spectra. The electrochemical behaviour in acetonitrile solution was typically reversible; the cyclic voltamograms exhibited a series of four or five mono electronic waves ascribed to the successive Ru I V Ru I I I Ru I I I / Ru I I I Ru I I I Ru I I I / ... Ru I I Ru I I Ru I I redox couples. The differences between the successive redox potentials were about 1 V, indicating strong metal-metal interaction in the trinuclear Ru 3 O centre. The E values were strongly sensitive to the nature of the N-heterocyclic ligand, increasing with the pi-acceptor properties of the pyridine and pyrazine derivatives, but in a much less pronounced way in the case of the imidazole derivatives. (author)

  4. STUDYING THE STRUCTURAL, OPTICAL, CHEMICAL AND ELECTROCHEMICAL ETCHING CHANGES OF CR-39 FOR DOSEMETRIC APPLICATIONS.

    Science.gov (United States)

    Zaki, M F; Elshaer, Y H; Taha, Doaa H

    2017-12-01

    The present work shows the induced modification of the structural, optical, chemical etching and electrochemical etching parameters of CR-39 irradiated with alpha-particles. CR-39 polymer track detectors were irradiated with different fluences (1.62 × 106, 2.72 × 106, 3.82 × 106 and 5.21 × 106 particles/cm2) of alpha-particles using 241Am source. The structural and optical properties were measured by FT-IR spectroscopy, X-ray diffraction and UV/Vis spectroscopy, respectively. The FT-IR spectra reveal that no major changes in the typical functional groups of irradiated polymer detectors. The X-ray diffraction patterns show that a broad band in the region of 12° 27°, which refers to the presence of the combination of amorphous and crystalline phases. UV/Vis responses of irradiated polymer track detectors exhibit a single absorption band in the range of 254-352 nm that is correlated to the occurrence of electronic transition. Also, the changes in the chemical and electrochemical parameters due to alpha-irradiation are examined and thoroughly discussed. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Electrochemical treatment of wastewater: A case study of reduction of DNT and oxidation of chlorinated phenols

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, J.D.; Bunce, N.J.; Jedral, W.

    1999-07-01

    Electrochemical treatment is under consideration as a treatment option for several recalcitrant compounds. In this work the authors investigate the oxidation of chlorophenols and the reduction of nitroaromatics. In the case of chlorinated phenols, they explore the problem of anode fouling which has hampered electrolytic treatment of phenolic compounds by examining phenols differing in the extent of chlorination, according to the mechanism of oxidation at different electrode types. Linear sweep voltammograms at a Pt anode were interpreted in terms of deposition of oligomers on the anode surface. Passivation increased in parallel with the uncompensated resistance of the solution and occurred only at potentials at which water is oxidized, suggesting that the formation of the oligomer film involves attack of hydroxyl radicals on electrochemically oxidized substrate. Relative reactivities of congeners were anode-dependent, due to different mechanisms of oxidation: direct electron transfer oxidation at PbO{sub 2} and hydroxyl radical attack at SnO{sub 2} and IrO{sub 2}. Voltammetry of 2,6-dinitrotoluene (DNT) was consistent with literature values. DNT was reduced at several cathodes with the most promising result at Ni-plated Ni wire. At current densities {lt} 0.1 mA cm{sup {minus}2}, current efficiencies {gt} 50% could be achieved with 4-chlorophenol at all three anodes and for 2,6-DNT at Ni-plated Ni wire.

  6. Electrochemical study of the tarnish layer of silver deposited on glass

    International Nuclear Information System (INIS)

    Amor, Y. Ben; Sutter, E.; Takenouti, H.; Tribollet, B.; Boinet, M.; Faure, R.; Balencie, J.; Durieu, G.

    2014-01-01

    Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to characterize the tarnished thin layer of silver deposited on glass. Instead of natural tarnishing in air environment, an acceleration of tarnishing process was realized by immersion of Ag covered glass in 10 μM K 2 S medium. The X-ray photoelectron spectroscopy (XPS) shows that tarnishing product formed on the silver surface consisted of Ag 2 S and Ag 2 O. As electrochemical characterization, the measurements were carried out in aerated 0.5 M Na 2 SO 4 solution adjusted at pH 10. The impedance spectra collected in sulphate medium at the open-circuit potential show one capacitive loop in parallel with a high resistance, which reflects a blocking electrode behaviour. However, the equivalent electrical circuit, R s -(CPE//R) is insufficient to reproduce the experimental results correctly. To minimize the dispersion between the experimental and fitted data, the CPE contribution is replaced by two normal power-law distributions of the local resistivity to interpret the tarnishing process in K 2 S medium with respect to the immersion time. These distributions are associated with the Ag 2 S and Ag 2 O layers

  7. Oxidative stabilization of polyacrylonitrile nanofibers and carbon nanofibers containing graphene oxide (GO: a spectroscopic and electrochemical study

    Directory of Open Access Journals (Sweden)

    İlknur Gergin

    2017-08-01

    Full Text Available In this study, a precursor for carbon nanofibers (CNF was fabricated via electrospinning and carbonized through a thermal process. Before carbonization, oxidative stabilization should be applied, and the oxidation mechanism also plays an important role during carbonization. Thus, the understanding of the oxidation mechanism is an essential part of the production of CNF. The oxidation process of polyacrylonitrile was studied and nanofiber webs containing graphene oxide (GO are obtained to improve the electrochemical properties of CNF. Structural and morphological characterizations of the webs are carried out by using attenuated total reflectance Fourier transform infrared spectroscopy and Raman spectroscopy, scanning electron microscopy, atomic force microscopy and transmission electron microscopy. Mechanical tests are performed with a dynamic mechanical analyzer, and thermal studies are conducted by using thermogravimetric analysis. Electrochemical impedance spectroscopy, and cyclic voltammetry are used to investigate capacitive behavior of the products. The proposed equivalent circuit model was consistent with charge-transfer processes taking place at interior pores filled with electrolyte.

  8. Studies on the permeation of hydrogen through steam generator tubes at high temperatures using an electrochemical method

    International Nuclear Information System (INIS)

    Giraudeau, F.; Yang, L.; Steward, F.R.; DeBouvier, O.

    1998-01-01

    The permeation of hydrogen through steam generator tubes at high temperatures (∼ 300 degrees C) has been studied using an electrochemical technique. With this technique, hydrogen is generated on one side of the tube and monitored on the other side. The time for the hydrogen to reach the other side is used to determine the diffusion coefficient of hydrogen in the tube. Boundary conditions at the entry and exit sides have been investigated separately. Preliminary studies were performed on Stainless Steel 316 and Nickel Alloy 800 to better understand the influence of the solution chemistry on the electrochemical evolution of hydrogen. The surface phenomena effect and the trapping effect are discussed to account for differences observed in the permeation response. The hydrogen permeation through oxides at the exit side has been studied. Two nickel alloys (Alloy 800 and Alloy 600), materials widely used for steam generator tubes, have been investigated. The tubes were prefilmed using two different treatments. The oxides were formed in dry air at high temperatures (300 degrees C to 600 degrees C), or in humid gas at 300 degrees C. The diffusion coefficients at 300 degrees C in Stainless Steel 316 and Alloy 800 were determined to be of the order of 10 -6 - 10 -7 cm 2 /s for the bare metal. This is in agreement with results obtained by gas phase permeation techniques in the literature. (author)

  9. Electrochemical degradation of PAH compounds in process water: A kinetic study on model solutions and a proof of concept study on runoff water from harbour sediment purification

    DEFF Research Database (Denmark)

    Muff, Jens; Søgaard, Erik Gydesen

    2010-01-01

    The present study has investigated the possibility to apply electrochemical oxidation in the treatment of polycyclic aromatic hydrocarbon (PAHs) pollutants in water. The reaction kinetics of naphthalene, fluoranthene, and pyrene oxidation have been studied in a batch recirculation experimental...... oxidation side reaction at lower applied voltages. A proof of concept study in real polluted water demonstrated the applicability of the electrochemical oxidation technique for larger scale use, where especially the indirect chloride mediated oxidation approach was a promising technique. However, the risk....... Decreased current densities from 200 to 15 mA cm-2 in the NaCl electrolyte also decreased the removal rates, but significantly enhanced the current efficiencies of the PAH oxidation, based on a defined current efficiency constant, kq. This observation is believed to be due to the suppression of the water...

  10. Studies on electrochemical hydrodebromination mechanism of 2,5-dibromobenzoic acid on Ag electrode by in situ FTIR spectroscopy

    International Nuclear Information System (INIS)

    Li Meichao; Bao Dandan; Ma Chunan

    2011-01-01

    Research highlights: → Silver is a good catalyst for the hydrodebromination of 2,5-dibromobenzoic acid. → 3-Bromobenzoic acid as main intermediate product. → The finally product is benzoic acid. → In situ FTIR is useful to study the electrochemical hydrodebromination mechanism. - Abstract: Cyclic voltammetry and in situ FTIR were employed to study the electrochemical hydrodebromination (EHB) mechanism of 2,5-dibromobenzoic acid (2,5-DBBA) in NaOH solution. Compared with titanium and graphite electrodes, silver electrode exhibited a high electrocatalytic activity for the hydrodebromination reaction of 2,5-DBBA. On the basis of in situ FTIR data, EHB reaction of 2,5-DBBA on Ag cathode might be represented as a sequence of electron additions and bromine expulsions. Firstly, from potential at approximately -1100 mV, 2,5-DBBA received an electron to form 2,5-DBBA radical anion, which lost a bromine ion in the 2-position to form 3-bromobenzoic acid (3-BBA) free radical. Then the free radical received a proton to give 3-BBA. Finally, 3-BBA further took off another bromine ion to produce benzoic acid free radical and the end product benzoic acid was obtained by receiving another electron and a proton with the potential shifting to more negative values.

  11. Studies on Me/Al-layered double hydroxides (Me = Ni and Co) as electrode materials for electrochemical capacitors

    International Nuclear Information System (INIS)

    Liu Xianming; Zhang Yihe; Zhang Xiaogang; Fu Shaoyun

    2004-01-01

    Me/Al-layered double hydroxides (Me=Ni and Co) prepared by the chemical co-precipitation method have been shown to be outstanding novel materials for electrochemical capacitors. The crystalline structure and the electrochemical properties of the electrodes have been studied by considering the effect of the mole ratio of nickel/cobalt. X-ray diffraction analysis shows that the materials belong to hexagonal system with layered structure. Cyclic voltammetric measurements indicate that Me/Al-layered double hydroxides with the Ni/Co mole ratio of 4:6 exhibit excellent capacitive properties within the potential range of 0.0-0.6 V versus Hg/HgO in 6 mol/L KOH electrolyte. Charge/discharge behaviors have been observed with the highest specific capacitance values of 960 F/g at the current density of 400 mA/g. Impedance studies show that the enhanced electrical properties and high frequency response are attributed to the presence of Co oxides

  12. Electrochemical Study of Carbon Nanotubes/Nanohybrids for Determination of Metal Species Cu2+ and Pb2+ in Water Samples

    Directory of Open Access Journals (Sweden)

    Andréa Claudia Oliveira Silva

    2016-01-01

    Full Text Available The use of nanomaterials, such as nanoparticles and nanotubes, for electrochemical detection of metal species has been investigated as a way of modifying electrodes by electrochemical stripping analysis. The present study develops a new methodology based on a comparative study of nanoparticles and nanotubes with differential pulse anodic stripping voltammetry (DPASV and examines the simultaneous determination of copper and lead. The glassy carbon electrode modified by gold nanoparticles demonstrated increased sensitivity and decreased detection limits, among other improvements in analytical performance data. Under optimized conditions (deposition potential −0.8 V versus Ag/AgCl; deposition time, 300 s; resting time, 10 s; pulse amplitude, 50 mV; and voltage step height, 4 mV, the detection limits were 0.2279 and 0.3321 ppb, respectively, for determination of Pb2+ and Cu2+. The effects of cations and anions on the simultaneous determination of metal ions do not exhibit significant interference, thereby demonstrating the selectivity of the electrode for simultaneous determination of Pb2+ and Cu2+. The same method was also used to determine Cu2+ in water samples.

  13. Electrochemical Studies of the Inhibition and Activation Effects of Al (III on the Activity of Bovine Liver Glutamate Dehydrogenase

    Directory of Open Access Journals (Sweden)

    Shuping Bi

    2005-04-01

    Full Text Available Since the study of Al3+ ion on the enzyme activity by using of electrochemical techniques was rarely found in available literatures, the differential-pulse polarography (DPP technique was applied to study the effects of Al3+ ion on the glutamate dehydrogenase (GDH activity in the catalytical reaction of α-KG +NADH+NH4 + ⇔ L-Glu+NAD++H2O by monitoring the DPP reduction current of NAD+. At the plant and animal physiologically relevant pH values (pH=6.5 and 7.5, the GDH enzyme activities were strongly depended on the concentrations of the metal ion in the assay mixture solutions. In the lower Al (III concentration solutions (80μM, the inhibition effects of Al (III were shown again. The cyclic voltammetry of NAD+ and NAD+-GDH in the presence of Al (III can help to explain some biological phenomena. According to the differential-pulse polarography and cyclic voltammetry experiments, the present research confirmed that the electrochemical technique is a convenient and reliable sensor for accurate determination of enzyme activity in biological and environmental samples.

  14. Electrochemical study and flow injection analysis of paracetamol in pharmaceutical formulations based on screen-printed electrodes and carbon nanotubes

    International Nuclear Information System (INIS)

    Fanjul-Bolado, Pablo; Lamas-Ardisana, Pedro Jose; Hernandez-Santos, David; Costa-Garcia, Agustin

    2009-01-01

    Acetaminophenol or paracetamol is one of the most commonly used analgesics in pharmaceutical formulations. Acetaminophen is electroactive and voltammetric mechanistic studies for the electrode processes of the acetaminophenol/N-acetyl-p-quinoneimine redox system are presented. Carbon nanotubes modified screen-printed electrodes with enhanced electron transfer properties are used for the study of the electrochemical-chemical oxidation mechanism of paracetamol at pH 2.0. Quantitative analysis of paracetamol by using its oxidation process (in a Britton-Robinson buffer solution pH 10.0) at +0.20 V (vs. an Ag pseudoreference electrode) on an untreated screen-printed carbon electrode (SPCE) was carried out. Thus, a cyclic voltammetric based reproducible determination of acetaminophen (R.S.D., 2.2%) in the range 2.5 x 10 -6 M to 1 x 10 -3 M, was obtained. However, when SPCEs are used as amperometric detectors coupled to a flow injection analysis (FIA) system, the detection limit achieved for paracetamol was 1 x 10 -7 M, one order of magnitude lower than that obtained by voltammetric analysis. The repeatability of the amperometric detection with the same SPCE is 2% for 15 successive injections of 10 -5 M acetaminophen and do not present any memory effect. Finally, the applicability of using screen-printed carbon electrodes for the electrochemical detection of paracetamol (i.e. for quality control analysis) was demonstrated by using two commercial pharmaceutical products.

  15. Corrosion Behavior of Surface-Treated Implant Ti-6Al-4V by Electrochemical Polarization and Impedance Studies

    Science.gov (United States)

    Paul, Subir; Yadav, Kasturi

    2011-04-01

    Implant materials for orthopedic and heart surgical services demand a better corrosion resistance material than the presently used titanium alloys, where protective oxide layer breaks down on a prolonged stay in aqueous physiological human body, giving rise to localized corrosion of pitting, crevice, and fretting corrosion. A few surface treatments on Ti alloy, in the form of anodization, passivation, and thermal oxidation, followed by soaking in Hank solution have been found to be very effective in bringing down the corrosion rate as well as producing high corrosion resistance surface film as reflected from electrochemical polarization, cyclic polarization, and Electrochemical Impedance Spectroscopy (EIS) studies. The XRD study revealed the presence of various types of oxides along with anatase and rutile on the surface, giving rise to high corrosion resistance film. While surface treatment of passivation and thermal oxidation could reduce the corrosion rate by 1/5th, anodization in 0.3 M phosphoric acid at 16 V versus stainless steel cathode drastically brought down the corrosion rate by less than ten times. The mechanism of corrosion behavior and formation of different surface films is better understood from the determination of EIS parameters derived from the best-fit equivalent circuit.

  16. Electrochemical study and flow injection analysis of paracetamol in pharmaceutical formulations based on screen-printed electrodes and carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Fanjul-Bolado, Pablo [DropSens, S.L., Edificio Severo Ochoa, Campus El Cristo, 33006 Oviedo, Asturias (Spain); Lamas-Ardisana, Pedro Jose [Departamento de Quimica Fisica y Analitica, Universidad de Oviedo, Julian Claveria 8, 33006 Oviedo, Asturias (Spain); Hernandez-Santos, David [DropSens, S.L., Edificio Severo Ochoa, Campus El Cristo, 33006 Oviedo, Asturias (Spain); Costa-Garcia, Agustin, E-mail: costa@fq.uniovi.es [Departamento de Quimica Fisica y Analitica, Universidad de Oviedo, Julian Claveria 8, 33006 Oviedo, Asturias (Spain)

    2009-04-13

    Acetaminophenol or paracetamol is one of the most commonly used analgesics in pharmaceutical formulations. Acetaminophen is electroactive and voltammetric mechanistic studies for the electrode processes of the acetaminophenol/N-acetyl-p-quinoneimine redox system are presented. Carbon nanotubes modified screen-printed electrodes with enhanced electron transfer properties are used for the study of the electrochemical-chemical oxidation mechanism of paracetamol at pH 2.0. Quantitative analysis of paracetamol by using its oxidation process (in a Britton-Robinson buffer solution pH 10.0) at +0.20 V (vs. an Ag pseudoreference electrode) on an untreated screen-printed carbon electrode (SPCE) was carried out. Thus, a cyclic voltammetric based reproducible determination of acetaminophen (R.S.D., 2.2%) in the range 2.5 x 10{sup -6} M to 1 x 10{sup -3} M, was obtained. However, when SPCEs are used as amperometric detectors coupled to a flow injection analysis (FIA) system, the detection limit achieved for paracetamol was 1 x 10{sup -7} M, one order of magnitude lower than that obtained by voltammetric analysis. The repeatability of the amperometric detection with the same SPCE is 2% for 15 successive injections of 10{sup -5} M acetaminophen and do not present any memory effect. Finally, the applicability of using screen-printed carbon electrodes for the electrochemical detection of paracetamol (i.e. for quality control analysis) was demonstrated by using two commercial pharmaceutical products.

  17. Behaviour of zirconium oxidation and is oxide films in alkali halide solutions as studied by electrochemical techniques

    International Nuclear Information System (INIS)

    Saleh, H.E.M.

    1996-01-01

    Study of the properties of Zr electrode and the oxide films that cover the metal surface is of extreme importance due to their wide applications in chemical and nuclear industry. In this thesis the electrochemical behaviour of Zr electrode in alkali halide solutions and with various surface conditions was studied, Also the galvanostatic oxidation of the metal in addition to the open circuit and impedance measurements were employed. Chapter I is a literature survey of the electrochemistry of Zr metal with particular emphasis on the stability and growth process of Zr in different media. Chapter II contains the experimental part, including details of the electrochemical techniques used in the measurements. The electrode impedance was always balanced as a series capacitance Cs and resistance Rs.Chapter III includes the experimental results and discussion. It is divide into sections, A and B. Section A includes the results of some experimental parameters which affect the reactivity of the oxide growth process on the zirconium surface, such as surface pre - treatment, electrolyte composition, the effect of different alkali halide anions, as well as the triiodide ion. 9 tabs.,26 figs.,67 refs

  18. Corrosion studies using potentiodynamic and EIS electrochemical techniques of welded lean duplex stainless steel UNS S82441

    Science.gov (United States)

    Brytan, Z.; Niagaj, J.; Reiman, Ł.

    2016-12-01

    The corrosion characterisation of lean duplex stainless steel (1.4662) UNS S82441 welded joints using the potentiodynamic test and electrochemical impedance spectroscopy in 1 M NaCl solution are discussed. The influence of autogenous TIG welding parameters (amount of heat input and composition of shielding gases like Ar and Ar-N2 and an Ar-He mixture), as well as A-TIG welding was studied. The influence of welding parameters on phase balance, microstructural changes and the protective properties of passive oxide films formed at the open circuit potential or during the anodic polarisation were studied. From the results of the potentiodynamic test and electrochemical impedance spectroscopy of TIG and A-TiG, welded joints show a lower corrosion resistance compared to non-welded parent metal, but introducing heat input properly during welding and applying shielding gases rich in nitrogen or helium can increase austenitic phase content, which is beneficial for corrosion resistance, and improves surface oxide layer resistance in 1 M NaCl solution.

  19. Electrochemical cell

    Science.gov (United States)

    Kaun, T.D.

    An improved secondary electrochemical cell is disclosed having a negative electrode of lithium aluminum, a positive electrode of iron sulfide, a molten electrolyte of lithium chloride and potassium chloride, and the combination that the fully charged theoretical capacity of the negative electrode is in the range of 0.5 to 1.0 that of the positive electrode. The cell thus is negative electrode limiting during discharge cycling. Preferably, the negative electrode contains therein, in the approximate range of 1 to 10 volume % of the electrode, an additive from the materials of graphitized carbon, aluminum-iron alloy, and/or magnesium oxide.

  20. Electrochemical studies of nevirapine, an anti-HIV drug, and its assay in tablets and biological samples

    Directory of Open Access Journals (Sweden)

    JALDAPPAGARI SEETHARAMAPPA

    2012-06-01

    Full Text Available The electrochemical oxidation of nevirapine, an anti-HIV drug, at a glassy carbon electrode has been studied by voltammetric techniques. Nevirapine showed one well defined irreversible oxidation peak with a potential of 0.749 V in phosphate buffer at pH 10. The effects of different electrolytes, pH and scan rate on the electrochemical behaviour of nevira¬pine were examined to determine the optimum reaction conditions. The oxidation peak current was found to vary linearly with the concentration of nevirapine in the range of 5.0 – 350 µM. The limit of detection and limit of quantification values were calculated and found to be 1.026 µM and 3.420 µM, respectively. The low relative standard deviation values of inter-day and intra-day assays highlighted the good reproducibility of the proposed m¬ethod for assay of nevirapine. Further, a sensitive and accurate differential pulse voltammetric method was developed for the determination of nevirapine concentrations in pharma¬ceutical formulations.

  1. Study on the molecular interaction of graphene quantum dots with human serum albumin: Combined spectroscopic and electrochemical approaches

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Shan; Qiu, Hangna; Lu, Shuangyan; Zhu, Fawei [College of Chemistry and Material Science, Guangxi Teachers Education University, Nanning 530001 (China); Xiao, Qi, E-mail: qi.xiao@whu.edu.cn [College of Chemistry and Material Science, Guangxi Teachers Education University, Nanning 530001 (China); State Key Laboratory of Virology, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China)

    2015-03-21

    Highlights: • The interactions between GQDs and HSA were systematically investigated. • GQDs could quench the intrinsic fluorescence of HSA via static mode. • The binding site of GQDs was mainly located in site I of HSA. • The potential toxicity of GQDs resulted in the structural damage of HSA. - Abstract: Graphene quantum dots (GQDs) have attracted great attention in biological and biomedical applications due to their super properties, but their potential toxicity investigations are rarely involved. Since few studies have addressed whether GQDs could bind and alter the structure and function of human serum albumin (HSA), the molecular interaction between GQDs and HSA was systematically characterized by the combination of multispectroscopic and electrochemical approaches. GQDs could quench the intrinsic fluorescence of HSA via static mode. The competitive binding fluorescence assay revealed that the binding site of GQDs was site I of HSA. Some thermodynamic parameters suggested that GQDs interacted with HSA mainly through van der Waals interactions and hydrogen bonding interactions, and protonation might also participate in the process. As further revealed by FT-IR spectroscopy and circular dichroism technique, GQDs could cause the global and local conformational change of HSA, which illustrated the potential toxicity of GQDs that resulted in the structural damage of HSA. Electrochemical techniques demonstrated the complex formation between GQDs and HSA. Our results offered insights into the binding mechanism of GQDs with HSA and provided important information for possible toxicity risk of GQDs to human health.

  2. Electrochemical study of quinone redox cycling: A novel application of DNA-based biosensors for monitoring biochemical reactions.

    Science.gov (United States)

    Ensafi, Ali A; Jamei, Hamid Reza; Heydari-Bafrooei, Esmaeil; Rezaei, B

    2016-10-01

    This paper presents the results of an experimental investigation of voltammetric and impedimetric DNA-based biosensors for monitoring biological and chemical redox cycling reactions involving free radical intermediates. The concept is based on associating the amounts of radicals generated with the electrochemical signals produced, using differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). For this purpose, a pencil graphite electrode (PGE) modified with multiwall carbon nanotubes and poly-diallydimethlammonium chloride decorated with double stranded fish sperm DNA was prepared to detect DNA damage induced by the radicals generated from a redox cycling quinone (i.e., menadione (MD; 2-methyl-1,4-naphthoquinone)). Menadione was employed as a model compound to study the redox cycling of quinones. A direct relationship was found between free radical production and DNA damage. The relationship between MD-induced DNA damage and free radical generation was investigated in an attempt to identify the possible mechanism(s) involved in the action of MD. Results showed that DPV and EIS were appropriate, simple and inexpensive techniques for the quantitative and qualitative comparisons of different reducing reagents. These techniques may be recommended for monitoring DNA damages and investigating the mechanisms involved in the production of redox cycling compounds. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Electrochemical oxidation of chlorpheniramine at polytyramine film doped with ruthenium (II) complex: Measurement, kinetic and thermodynamic studies

    International Nuclear Information System (INIS)

    Khudaish, Emad A.; Al-Hinaai, Mohammed; Al-Harthy, Salim; Laxman, Karthik

    2014-01-01

    Highlights: • XPS data confirm doping of ruthenium onto the polytyramine moiety. • Doping of Ru decreases the Pty resistivity and increases the electron transfer kinetics. • The resulting sensor is stable for a large range of CPM concentration. • Estimated values of thermodynamic and kinetic parameters were comparable. • Application to commercial dosage forms was excellent and satisfactory. - Abstract: A solid-state sensor based on polytyramine film deposited at glassy carbon electrode doped with tris(2,2′-bipyridyl)Ru(II) complex (Ru/Pty/GCE) was constructed electrochemically. A redox property represented by [Ru(bpy) 3 ] 3+/2+ couple immobilized at the Pty moiety was characterized using typical voltammetric techniques. The XPS data and AFM images confirm the grafting of Ru species on the top of Pty while the electrochemical impedance spectroscopy (EIS) data supports the immobilization of both surface modifiers onto the GCE. The constructed sensor exhibits a substantial reactivity, stability and high sensitivity to chlorpheniramine maleate (CPM) oxidation. The detection limit (S/N = 3) was brought down to 338 nM using differential pulse voltammetry method. Thermodynamic and kinetic parameters were evaluated using hydrodynamic method. The apparent diffusion coefficient and the heterogeneous electron transfer rate constant for the CPM oxidation were 2.67 × 10 −5 cm 2 s −1 and 3.21 × 10 −3 cm s −1 , respectively. Interference studies and real sample analysis were conducted with excellent performance and satisfactory results

  4. The electrochemical behaviour study of La3+ ion in fused chlorides bath. The LaNi5 formation

    International Nuclear Information System (INIS)

    Dias, Cristiane

    2002-01-01

    The electrochemical behaviour of La 3+ ion was studied in fused chlorides bath, with purpose to obtain LaNi 5 formation parameters. The lanthanum reduction/reoxidation mechanism and intermetallic compound formation were investigated by cyclic voltammetry, chronopotentiommetry and galvanostatic electrodeposition. The electrolyte employed was eutectic mixture NaCl-KCl (1:1) with anhydrous LaCl 3 as solute, since 0,25 mol. L -1 up to 2 mol. L -1 , between 700 deg C and 800 deg C. The anhydrous LaCl 3 was prepared by lanthanum chloride slow dehydration with HCl flow and heating until 300 deg C. Over molybdenum, results depicted that lanthanum electrochemical behaviour was quasi-reversible and electrodeposition occurred in a charge transfer step with three electrons. In nickel, intermetallic compound formation was observed by interdiffusion. The scanning electronic microscopy (SEM-EDS) and X ray diffraction analysis indicated that layers composition depend on temperature and solute concentration in fused bath. Mainly LaNi 5 intermetallic compound was formed with LaCl 3 anhydrous concentration of 2 mol. L -1 at 750 deg C, with cathodic current density until 100 mA.cm -2 . (author)

  5. Study of the electrodeposition of rhenium thin films by electrochemical quartz microbalance and X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Schrebler, R.; Cury, P.; Suarez, C.; Munoz, E.; Vera, F.; Cordova, R.; Gomez, H.; Ramos-Barrado, J.R.; Leinen, D.; Dalchiele, E.A.

    2005-01-01

    Rhenium thin films were prepared by electrodeposition from an aqueous solution containing 0.1 M Na 2 SO 4 +H 2 SO 4 , pH 2 in presence of y mM HReO 4 . As substrates polycrystalline gold (y=0.75 mM HReO 4 ) and monocrystalline n-Si(100) (y=40 mM HReO 4 ) were used. The electrochemical growth of rhenium was studied by cyclic voltammetry and electrochemical quartz microbalance on gold electrodes. The results found in the potential region before the hydrogen evolution reaction (her) showed that ReO 3 , ReO 2 and Re 2 O 3 with different hydration grades can be formed. In the potential region where the her is occurring, either on gold or n-Si(100) the electrodeposition of metallic rhenium takes place. On both substrates, rhenium films were formed by electrolysis at constant potential and X-ray photoelectron spectroscopy technique was used to characterise these deposits. It was concluded that the electrodeposited films were of metallic rhenium and only the uppermost atomic layer contained rhenium oxide species

  6. Stabilization of the initial electrochemical potential for a metal-based potentiometric titration study of a biosorption process.

    Science.gov (United States)

    Naja, Ghinwa; Mustin, Christian; Volesky, Bohumil; Berthelin, Jacques

    2006-01-01

    An interactive metal-based potentiometric titration method has been developed using an ion selective electrode for studying the sorption of metal cations. The accuracy of this technique was verified by analyzing the metal sorption mechanism for the biomass of Rhizopus arrhizus fungus and diatomite, two dissimilar materials (organic and mineral, strong sorbent and weak sorbent) of a different order of cation exchange capacity. The problem of the initial electrochemical potential was addressed identifying the usefulness of a Na-sulfonic resin as a strong chelating agent applied before the beginning of sorption titration experiments so that the titration curves and the sorption uptake could be quantitatively compared. The resin stabilized the initial electrochemical potential to -405+/-5 mV corresponding to 2 micro gl(-1) of lead concentration in solution. The amounts of lead sorbed by R. arrhizus biomass and diatomite were 0.9 mmol g(-1) (C(e)=5.16 x 10(-2)mM) and 0.052 mmol g(-1) (C(e)=5.97 x 10(-2) mM), respectively. Lead sorption by the fungal biomass was pinpointed to at least two types of chemical active sites. The first type was distinguished by high reactivity and a low number of sites whereas the other was characterized by their higher number and lower reactivity.

  7. Electrochemical studies on the redox behavior of zirconium in the LiF-NaF eutectic melt

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Liang [School of Metallurgy, Northeastern University, Shenyang 110004 (China); Xiao, Yanping [School of Metallurgical Engineering, Anhui University of Technology, Ma' anshan 243002 (China); Zr-Hf-Ti Metallurgie B.V., Den Haag 2582 SB (Netherlands); Xu, Qian, E-mail: qianxu@shu.edu.cn [State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200072 (China); Sandwijk, Anthonie van [Zr-Hf-Ti Metallurgie B.V., Den Haag 2582 SB (Netherlands); Zhao, Zhuo [School of Metallurgical Engineering, Anhui University of Technology, Ma' anshan 243002 (China); Song, Qiushi; Cai, Yanqing [School of Metallurgy, Northeastern University, Shenyang 110004 (China); Yang, Yongxiang [School of Metallurgical Engineering, Anhui University of Technology, Ma' anshan 243002 (China); Department of Materials Science and Engineering, Delft University of Technology, 2628 CD Delft (Netherlands)

    2017-05-15

    In the present paper, a detailed study of the redox behavior of zirconium in the eutectic LiF-NaF system was carried out on an inert molybdenum electrode at 750 °C. Several transient electrochemical methods were used such as cyclic voltammetry, square wave voltammetry, chronopotentiometry, and open circuit voltammetry. The reduction of Zr (IV) was found to follow a two-step mechanism of Zr (IV)/Zr (II) and Zr (II)/Zr at the potentials of about −1.10 and −1.50 V versus Pt, respectively. The theoretical evaluations of the number of transferred electrons according to both cyclic voltammetry and square wave voltammetry further confirmed the Zr reduction mechanism. The estimations of Zr (IV) diffusion coefficient in the LiF-NaF eutectic melt at 750 °C through cyclic voltammetry and chronopotentiometry are in fair agreement, as to be approximately 1.13E-5 and 2.42E-5 cm{sup 2}/s, respectively. - Highlights: •The redox mechanism of zirconium in a fluoride salt system was investigated. •A multi-step redox process of Zr was found with various electrochemical methods. •Perspectives on zirconium electro-refining process were proposed.

  8. Effect of exopolymers on oxidative dissolution of natural rhodochrosite by Pseudomonas putida strain MnB1: An electrochemical study

    International Nuclear Information System (INIS)

    Wang, Huawei; Zhang, Daoyong; Song, Wenjuan; Pan, Xiangliang; Al-Misned, Fahad A.; Golam Mortuza, M.

    2015-01-01

    Highlights: • The biogeochemical behavior of natural rhodochrosite was investigated by electrochemical methods. • Bacterial exopolymers contributed to the increasing dissolution of natural rhodochrosite. • Oxidative dissolution of natural rhodochrosite was well explained by Tafel and EIS analysis. - Abstract: Oxidative dissolution of natural rhodochrosite by the Mn(II) oxidizing bacterium Pseudomonas putida strain MnB1 was investigated based on batch and electrochemical experiments using natural rhodochrosite as the working electrode. Tafel curves and batch experiments revealed that bacterial exopolymers (EPS) significantly increased dissolution of natural rhodochrosite. The corrosion current significantly increased with reaction time for EPS treatment. However, the corrosion process was blocked in the presence of cells plus extra EPS due to formation of the passivation layer. Moreover, the scanning electron microscopy and the energy dispersive spectroscopy (SEM–EDS) results showed that the surface of the natural rhodochrosite was notably changed in the presence of EPS alone or/and bacterial cells. This study is helpful for understanding the role of EPS in bacterially oxidation of Mn(II). It also indicates that the Mn(II) oxidizing bacteria may exert their effects on Mn(II) cycle and other biological and biogeochemical processes much beyond their local ambient environment because of the catalytically dissolution of solid Mn(II) by EPS and the possible long distance transport of the detached EPS

  9. A study of electrochemically-induced corrosion of low carbon steel in a medium modelling acid rain

    International Nuclear Information System (INIS)

    Vertes, C.; Lakatos-Varsanyi, M.; Vertes, A.; Meisel, W.; Guetlich, P.

    1994-01-01

    Complementary electrochemical, spectrophotometric and electron microsopic investigations were made in addition to the conversion electron Moessbauer spectroscopic (CEMS) measurements to learn more about the mechanism of corrosion of low carbon steel samples in aqueous sulfate and sulfite containing sulfate solutions (pH 3.5, 6.5 and 8.5). Passivation of iron in pure sulfate solution was studied in detail in earlier papers. In the present work, we used a solution containing both sulfate and sulfite anions to obtain more information about the effect of acid rain on low carbon steel samples. The compositions and thicknesses of the passive films formed due to the electrochemical treatments were determined from the CEM spectra. γ-FeOOH was found in each case on the surface of the samples; nevertheless, at pH 3.5 the sextet belonging to Fe 3 C appears in the CEM spectra, and also FeSO 4 . H 2 O was detected in low concentration after the shortest polarization time (90 min). The results of the applied methods proved that the sulfite ions induce pitting corrosion at pH 3.5 and 6.5, while the measurements referred to suppressed pitting at pH 8.5. (orig.)

  10. A Comprehensive Pitting Study of High Velocity Oxygen Fuel Inconel 625 Coating by Using Electrochemical Testing Techniques

    Science.gov (United States)

    Niaz, Akbar; Khan, Sajid Ullah

    2016-01-01

    In the present work, Inconel 625 was coated on a mild steel substrate using a high velocity oxygen fuel coating process. The pitting propensity of the coating was tested by using open circuit potential versus time, potentiodynamic polarization, electrochemical potentiokinetic reactivation, and scanning electrochemical microscopy. The pitting propensity of the coating was compared with bulk Inconel 625 alloy. The results confirmed that there were regions of different electrochemical activities on the coating which have caused pitting corrosion.

  11. Electrochemical Studies for Cation Recognition with Diazo-Coupled Calix[4]arenes

    Directory of Open Access Journals (Sweden)

    Bongsu Kim

    2015-01-01

    Full Text Available The electrochemical properties of diazophenylcalix[4]arenes bearing ortho-carboxyl group (o-CAC and ortho-ester group (o-EAC, respectively, in the presence of various metal ions were investigated by voltammetry in CH3CN. o-CAC and o-EAC showed voltammetric changes toward divalent metal ions and no significant changes with monovalent alkali metal ions. However, o-CAC preferentially binds with alkaline earth and transition metal ions, whereas no significant changes in voltammetric signals are observed in o-EAC with alkaline earth metal ions. o-EAC only binds with other transition metal ions. This can be explained on metal ion complexation-induced release of proton from the azophenol to the quinone-hydrazone tautomer followed by internal complexation of the metal ion with aid of nitrogen atoms and ortho-carbonyl groups in the diazophenylazocalix[4]arenes.

  12. Evaluation study between the chemical and electrochemical etching for solid state nuclear track detectors

    International Nuclear Information System (INIS)

    Ramos, S.; Espinosa, G.; Golzarri, J.I.

    1991-01-01

    Since there are several methods of etching in the solid state nuclear track detectors (SSNTD) it is necessary to know which gives the best results for a specific problem. The purpose of this work is to analyze and compare both the chemical etching and the electrochemical etching. The SSNTD has a preferential response to certain kinds of particles and energies, according to the material used as detector. On the other hand the efficiency is a function of the incidence angle of the radiation and some other parameters such as temperature, concentration and type of solvent used in the etching process, and the method used for the etching. Therefore, it is necessary to extend as much as possible our knowledge of such parameters in order to choose the more efficient one for a specific problem

  13. Laboratory and pilot plant scale study on the electrochemical oxidation of landfill leachate

    International Nuclear Information System (INIS)

    Anglada, Angela; Urtiaga, Ana M.; Ortiz, Inmaculada

    2010-01-01

    Kinetic data regarding COD oxidation were measured in a laboratory scale cell and used to scale-up an electro-oxidation process for landfill leachate treatment by means of boron-doped diamond anodes. A pilot-scale reactor with a total BDD anode area of 1.05 m 2 was designed. Different electrode gaps in the laboratory and pilot plant cells resulted in dissimilar reactor hydrodynamics. Consequently, generalised dimensionless correlations concerning mass transfer were developed in order to define the mass transfer conditions in both electrochemical systems. These correlations were then used in the design equations to validate the scale-up procedure. A series of experiments with biologically pre-treated landfill leachate were done to accomplish this goal. The evolution of ammonia and COD concentration could be well predicted.

  14. Characterization and electrochemical studies of Nafion/nano-TiO2 film modified electrodes

    International Nuclear Information System (INIS)

    Yuan Shuai; Hu Shengshui

    2004-01-01

    A nano-TiO 2 film from stable aqueous dispersion has been modified on a glassy carbon electrode (GCE), and was characterized by scanning electron microscopy (SEM) and surface-enhanced Raman spectroscopy (SERS). This nanostructured film exhibits an ability to improve the electron-transfer rate between electrode and dopamine (DA), and electrocatalyze the redox of DA. The electrocatalytical behavior of DA was examined by cyclic voltammetry (CV). Combined with Nafion, the bilayer-modified electrode (N/T/GCE) gives a sensitive voltammetric response of DA regardless of excess ascorbic acid (AA). Electrochemical impedance spectroscopy (EIS) at a fixed potential was performed at variously treated GCEs. The mechanism of the electrode reaction of DA at N/T/GCE and the equivalent circuits of different GCEs have been proposed

  15. Electrochemical studies of novel corrosion inhibitor for mild steel in 1 M hydrochloric acid

    Directory of Open Access Journals (Sweden)

    Ahmed A. Al-Amiery

    2018-06-01

    Full Text Available The electrochemical performance of a novel organic corrosion inhibitor 6-(4-hydroxyphenyl-3-mercapto-7,8-dihydro-[1,2,4]triazolo[4,3-b][1,2,4,5]tetrazine [HT3], for mild steel in 1 M hydrochloric acid is evaluated by potentiodynamic curves. The experimental results show that the investigated inhibitor [HT3], which can effectively retard the corrosion process that occurs to mild steel with a hydrochloric acid solution by providing a protective coating for the mild steel that, can be weakened by increasing the temperature. Furthermore, the inhibition efficiency of [HT3] increased with increasing the concentrations of the inhibitors and decreased with increasing temperature. Keywords: Corrosion, Inhibitor, Mild steel, Potentiodynamic polarization, HT3, NMR, FT-IR

  16. Mobile-ip Aeronautical Network Simulation Study

    Science.gov (United States)

    Ivancic, William D.; Tran, Diepchi T.

    2001-01-01

    NASA is interested in applying mobile Internet protocol (mobile-ip) technologies to its space and aeronautics programs. In particular, mobile-ip will play a major role in the Advanced Aeronautic Transportation Technology (AATT), the Weather Information Communication (WINCOMM), and the Small Aircraft Transportation System (SATS) aeronautics programs. This report presents the results of a simulation study of mobile-ip for an aeronautical network. The study was performed to determine the performance of the transmission control protocol (TCP) in a mobile-ip environment and to gain an understanding of how long delays, handoffs, and noisy channels affect mobile-ip performance.

  17. Controllably annealed CuO-nanoparticle modified ITO electrodes: Characterisation and electrochemical studies

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Tong; Su, Wen; Fu, Yingyi [College of Chemistry, Beijing Normal University, Beijing 100875 (China); Hu, Jingbo, E-mail: hujingbo@bnu.edu.cn [College of Chemistry, Beijing Normal University, Beijing 100875 (China); Key Laboratory of Beam Technology and Material Modification of Ministry of Education, Beijing Normal University, Beijing 100875 (China)

    2016-12-30

    Graphical abstract: We report a simple and controllable synthesis of CuO-nanoparticle-modified ITO by employing a combination of ion-implantation and annealing methods for the first time. The optimum CuO/ITO electrode shows uniform morphology, highly accessible surface area, long-term stability and excellent electrochemical performance towards biomolecules such as glucose in alkaline solution. - Highlights: • Controllably annealed CuO/ITO electrode was synthesized for the first time. • The generation mechanism of CuO nanoparticles is revealed. • The optimum CuO/ITO electrode shows excellent electrochemical performance. • A reference for the controllable preparation of other metal oxide nanoparticles. - Abstract: In this paper, we report a facile and controllable two-step approach to produce indium tin oxide electrodes modified by copper(II) oxide nanoparticles (CuO/ITO) through ion implantation and annealing methods. After annealing treatment, the surface morphology of the CuO/ITO substrate changed remarkably and exhibited highly electroactive sites and a high specific surface area. The effects of annealing treatment on the synthesis of CuO/ITO were discussed based on various instruments’ characterisations, and the possible mechanism by which CuO nanoparticles were generated was also proposed in this work. Cyclic voltammetric results indicated that CuO/ITO electrodes exhibited effective catalytic responses toward glucose in alkaline solution. Under optimal experimental conditions, the proposed CuO/ITO electrode showed sensitivity of 450.2 μA cm{sup −2} mM{sup −1} with a linear range of up to ∼4.4 mM and a detection limit of 0.7 μM (S/N = 3). Moreover, CuO/ITO exhibited good poison resistance, reproducibility, and stability properties.

  18. DWPF Simulant CPC Studies For SB8

    Energy Technology Data Exchange (ETDEWEB)

    Newell, J. D.

    2013-09-25

    Prior to processing a Sludge Batch (SB) in the Defense Waste Processing Facility (DWPF), flowsheet studies using simulants are performed. Typically, the flowsheet studies are conducted based on projected composition(s). The results from the flowsheet testing are used to 1) guide decisions during sludge batch preparation, 2) serve as a preliminary evaluation of potential processing issues, and 3) provide a basis to support the Shielded Cells qualification runs performed at the Savannah River National Laboratory (SRNL). SB8 was initially projected to be a combination of the Tank 40 heel (Sludge Batch 7b), Tank 13, Tank 12, and the Tank 51 heel. In order to accelerate preparation of SB8, the decision was made to delay the oxalate-rich material from Tank 12 to a future sludge batch. SB8 simulant studies without Tank 12 were reported in a separate report.1 The data presented in this report will be useful when processing future sludge batches containing Tank 12. The wash endpoint target for SB8 was set at a significantly higher sodium concentration to allow acceptable glass compositions at the targeted waste loading. Four non-coupled tests were conducted using simulant representing Tank 40 at 110-146% of the Koopman Minimum Acid requirement. Hydrogen was generated during high acid stoichiometry (146% acid) SRAT testing up to 31% of the DWPF hydrogen limit. SME hydrogen generation reached 48% of of the DWPF limit for the high acid run. Two non-coupled tests were conducted using simulant representing Tank 51 at 110-146% of the Koopman Minimum Acid requirement. Hydrogen was generated during high acid stoichiometry SRAT testing up to 16% of the DWPF limit. SME hydrogen generation reached 49% of the DWPF limit for hydrogen in the SME for the high acid run. Simulant processing was successful using previously established antifoam addition strategy. Foaming during formic acid addition was not observed in any of the runs. Nitrite was destroyed in all runs and no N2O was detected

  19. Electrochemical attosyringe.

    Science.gov (United States)

    Laforge, François O; Carpino, James; Rotenberg, Susan A; Mirkin, Michael V

    2007-07-17

    The ability to manipulate ultrasmall volumes of liquids is essential in such diverse fields as cell biology, microfluidics, capillary chromatography, and nanolithography. In cell biology, it is often necessary to inject material of high molecular weight (e.g., DNA, proteins) into living cells because their membranes are impermeable to such molecules. All techniques currently used for microinjection are plagued by two common problems: the relatively large injector size and volume of injected fluid, and poor control of the amount of injected material. Here we demonstrate the possibility of electrochemical control of the fluid motion that allows one to sample and dispense attoliter-to-picoliter (10(-18) to 10(-12) liter) volumes of either aqueous or nonaqueous solutions. By changing the voltage applied across the liquid/liquid interface, one can produce a sufficient force to draw solution inside a nanopipette and then inject it into an immobilized biological cell. A high success rate was achieved in injections of fluorescent dyes into cultured human breast cells. The injection of femtoliter-range volumes can be monitored by video microscopy, and current/resistance-based approaches can be used to control injections from very small pipettes. Other potential applications of the electrochemical syringe include fluid dispensing in nanolithography and pumping in microfluidic systems.

  20. A simulation study on garment manufacturing process

    Science.gov (United States)

    Liong, Choong-Yeun; Rahim, Nur Azreen Abdul

    2015-02-01

    Garment industry is an important industry and continues to evolve in order to meet the consumers' high demands. Therefore, elements of innovation and improvement are important. In this work, research studies were conducted at a local company in order to model the sewing process of clothes manufacturing by using simulation modeling. Clothes manufacturing at the company involves 14 main processes, which are connecting the pattern, center sewing and side neating, pockets sewing, backside-sewing, attaching the front and back, sleeves preparation, attaching the sleeves and over lock, collar preparation, collar sewing, bottomedge sewing, buttonholing sewing, removing excess thread, marking button, and button cross sewing. Those fourteen processes are operated by six tailors only. The last four sets of processes are done by a single tailor. Data collection was conducted by on site observation and the probability distribution of processing time for each of the processes is determined by using @Risk's Bestfit. Then a simulation model is developed using Arena Software based on the data collected. Animated simulation model is developed in order to facilitate understanding and verifying that the model represents the actual system. With such model, what if analysis and different scenarios of operations can be experimented with virtually. The animation and improvement models will be presented in further work.

  1. Electrochemical Evaluation of Hydroxyapatite/ZrN Coated Magnesium Biodegradable Alloy in Ringer Solution as a Simulated Body Fluid

    OpenAIRE

    Seyed Rahim Kiahosseini; Abdollah Afshar; Majid Mojtahedzadeh Larijani; Mardali Yousefpour

    2015-01-01

    Magnesium alloys as biodegradable materials can be used in body as an implant materials but since they have poor corrosion resistance, it is required to decrease their corrosion rate by biocompatible coatings. In this study, hydroxyapatite (HA) coatings in the presence of an intermediate layer of ZrN as a biocompatible material, deposited on AZ91 magnesium alloy by ion beam sputtering method at 300 °C temperature and at different times 180, 240, 300, 360 and 420 min. Then changes in corrosion...

  2. Long-term in situ corrosion investigation of Zr alloys in simulated PWR environment by electrochemical measurements

    International Nuclear Information System (INIS)

    Goehr, H.; Schaller, J.; Ruhmann, H.; Garzarolli, F.

    1996-01-01

    The corrosion behavior of Zircaloy-type alloys with different tin contents of 1.55, 0.70, and 0.55 wt% was studied at 350 C and 17 MPa in an environment similar to PWR primary water. Impedance spectra were taken at time intervals and evaluated for thickness and morphology of the oxide layer as well as for its electrical resistance. The tests without any temperature and pressure cycling showed similar oxidation behavior with repeated transitions as in discontinuously performed standard autoclave tests. Early in the pre-transition range, a dense oxide layer is formed, and fast changes of corrosion potential and electrical resistance are observed. The dense layer increases in thickness and homogeneity up to the transition, where a sudden breakdown occurs. Abrupt changes of the corrosion potential and electrical resistance were observed also at those points. After transition, a new dense layer is built up. The corrosion potential changes are caused by a decrease of the electrical corrosion current with increasing oxide layer thickness, by the formation of a potential drop over the high-resistance dense oxide layer, and by structural changes at the transition points. In general, alloys with different tin contents show similar behavior. However, they show differences in the time to transition, the kinetic constants deduced from their impedance spectra, and in the ionic and electronic resistance of the dense inner layer controlling corrosion

  3. One-dimensional plasma simulation studies

    International Nuclear Information System (INIS)

    Friberg, Ari; Virtamo, Jorma

    1976-01-01

    Some basic plasma phenomena are studied by a one-dimensional electrostatic simulation code. A brief description of the code and its application to a test problem is given. The experiments carried out include Landau damping of an excited wave, particle retardation by smoothed field and beam-plasma instability. In each case, the set-up of the experiment is described and the results are compared with theoretical predictions. In the theoretical discussions, the oscillatory behaviour found in the Landau damping experiment is explained, an explicit formula for the particle retardation rate is derived and a rudimentary picture of the beam-plasma instability in terms of quasilinear theory is given. (author)

  4. Electrochemical and XPS studies of decylamides of α-amino acids adsorption on carbon steel in acidic environment

    International Nuclear Information System (INIS)

    Olivares, O.; Likhanova, N.V.; Gomez, B.; Navarrete, J.; Llanos-Serrano, M.E.; Arce, E.; Hallen, J.M.

    2006-01-01

    Corrosion inhibition of steel in hydrochloric acid by decylamides of α-amino acids derivatives was studied using gravimetric and electrochemical techniques. Protection efficiencies of 90% were obtained with 100 ppm of tyrosine and glycine derivatives, while alanine and valine derivatives reached only 80%. The order of increasing inhibition efficiency was correlated with the modification of the molecular structure of inhibitors. Potentiodynamic polarization curves indicated that both the decylamide of tyrosine and glycine acted primarily as anodic type inhibitors, whereas the decylamide of alanine and valine were of the cathodic type. Thermodynamic parameters and Flory-Huggins adsorption isotherms described the experimental findings. The number of active sites, equilibrium constant, enthalpy and change of free energy were computed for all inhibitors studied. This information suggested that organic molecules were adsorbed and displaced water molecules from the steel surface. X-ray photoelectron spectroscopy confirmed that species of N, C and O interacted with steel to form a continuous protective film

  5. Electrochemical impedance spectroscopy on Co-Cr-Mo alloy in two media simulating physiological liquid. Caractérisation par spectroscopie d'impédance électrochimique d'un alliage de Co-Cr-Mo dans différents milieux simulant le liquide physiologique.

    OpenAIRE

    Geringer , Jean; Normand , Bernard; Diemiaszonek , Robert; Alémany-Dumont , Catherine; Mary , Nicolas

    2007-01-01

    National audience; Co-Cr-Mo is an alloy which allows manufacturing orthopedic implants, especially hip total joint prostheses. This alloy has good tribological and biocompatibility properties. This work aims at studying electrochemical behavior of this alloy. Moreover, measurements reproductibility has been improved: polarization and electrochemical impedance spectroscopy. Measurements have been carried out with phosphate buffered solution and this one containing albumin, 1 g.L-1. Three diffe...

  6. Electrochemical noise evaluation of anodized aluminum. Comparative study against corrosion behaviour in the atmosphere

    Directory of Open Access Journals (Sweden)

    Betancourt, N.

    2003-12-01

    Full Text Available The present work reports the evaluation of aluminum and anodized aluminum by electrochemical noise, as a part of the PATINA/CYTED project of the working group Nº 5. A visual examination is also made. The samples were exposed at several Ibero-American atmospheres up to 2 years of exposure. Different thickness of anodized aluminum were evaluated. The electrochemical potential noise of the 5 μm unexposed sample (pattern showed a different behaviour to that showed by the other anodized specimens. This could be due to a slower sealed of the samples of higher thickness. The same behaviour was observed on the samples exposed at the rural station El Pardo. According to the visual examination, the samples of bare aluminum and those of anodized 5 μm thickness were the most affected by pitting corrosion in the highly polluted atmospheres. A good correlation between corrosion behaviour determined by visual examination and EN was obtained.

    Como parte de las investigaciones de la Red PATINA el grupo de trabajo Nº 5 dedicó su atención al comportamiento del aluminio desnudo y anodizado con diferentes espesores en diferentes atmósferas de Iberoamérica. En el presente trabajo se presenta una evaluación de patrones de aluminio 99,5 % de pureza desnudo y anodizado con espesores de 15 y 25 μm, mediante ruido electroquímico. Los resultados obtenidos se comparan con el comportamiento determinado en diferentes atmósferas durante un período de 2 años. El ruido de voltaje del patrón de 5 μm de espesor presenta un comportamiento diferente al de los restantes espesores, lo que coincide con una mayor susceptibilidad a la corrosión picadura de este primer anodizado. Se reportan también algunas diferencias en el ruido de corriente. Se concluye que mediante la utilización del ruido electroquímico es posible caracterizar el aluminio con respecto a su sensibilidad a la corrosión picadura en condiciones atmosféricas.

  7. Study of the electrochemical behaviour of technetium on mercury in an acetic buffer medium

    International Nuclear Information System (INIS)

    Courson, Olivier

    1997-01-01

    Technetium 99, produced with a high yield as fission product of 235 U in nuclear reactors constitutes an important issue in the nuclear waste management. The rich and complex solution chemistry leads up to now to an insufficient knowledge of its behaviour in PUREX process and in environment. In order to understand the reduction mechanism of pertechnetate on mercury electrode, we have developed electrochemical techniques which use an additional time parameter to classical techniques used on mercury electrode. On micro-electrode, we have observed, for long time measurements (3D polarography), a split of the first polarographic wave into two waves, which characterizes the reduction of Tc(VII) in Tc(III) as well as a modification of the catalytic peak associated with technetium metal formation. moreover, differential capacitance determination of electrode/solution interface brings to the fore the existence of species (Tc(IV), T(0)) on mercury in the reduction zone corresponding to the following reductions: Tc(VII) -> T(III) and T(III) -> Tc(0). Moreover the Tc(III)/Tc(0) reduction brings the intermediary Tc(I) and Tc(II) which are present only for rates faster than the scan. Results obtained on microelectrodes have been confirmed on macro-electrode; the insoluble species Tc(IV) and Tc are formed during the reduction of Tc(VII) on metal. Thus, in acetate buffer media (pH=4.6), the pertechnetate reduction is characterized by the presence of absorbable species (Tc O 2 hydrated,Tc). Moreover, the different electrochemical responses obtained with our techniques like 3D-polarography (waves and catalytic peaks) can be attributed to the following steps: Tc(VII)->Tc(V), Tc(IV) -> Tc(III), Tc(III) -> Tc(I) and Tc(I) -> Tc(0). The Tc(V) formation is followed by the rapid disproportionation of Tc(V) and Tc(VI) and Tc(I) reduction is associated with the proton reduction. (author)

  8. Separation and purification of carrier-free cobalt-58 from neutron irradiated nickel foil for electrochemical studies

    International Nuclear Information System (INIS)

    Egamediev, S.; Nurbaeva, D.; Rakhmanov, A.

    2004-01-01

    Full text: Cobalt-58 will be used for tracer studies of the behaviour of cobalt radionuclides in no- carrier-added form during electrochemical deposition on metal backing. The 58 Co can be produced by using 58 Ni(n,p) 58 Co nuclear reaction in nuclear reactor. 58 Co (T 1/2 =71 days) decays by positron emitting (15%) and electron capture (85%) with simultaneous γ -irradiation. In this study, we have developed the simple method for separation and purification of 58 Co in no- carrier-added form from neutron irradiated nickel foil. Previously, we have studied the dissolution of nickel foil in various media to find best conditions for rapid dissolution of nickel target. It was found that nickel foil dissolved completely without heating in 6.3 M hydrobromic acid with addition a few drops of hydrogen peroxide. After dissolution of the target material, the cobalt-58 is separated from nickel, copper, iron and other elements by extraction chromatography. The solution in 6.3 M hydrobromic acid is passed through a column containing suspension of polytetrafluoroethylene powder with 0.5 M trioctylamine in xylene, equilibrated with the same acid. Nickel is not extracted and passed through column. Cobalt is retained and finally eluted with 3 M HBr in the one free column volume. The cobalt fraction is percolated through a column filled with suspension of pure polytetrafluoroethylene powder to purify from the admixture of extractant. The obtained solution is evaporated to dryness and the dry residue is treated by evaporation with aqua regia. After treatment the damp residue is dissolved in electrolyte and the obtained solution is used to study of 58 Co electrochemical deposition procedure. The yield of cobalt-58 was higher than 93% and the radiochemical purity was more than 99%. This method will be used for separation and purification of cobalt-57 to make of sealed sources for X-ray fluorescence analysis

  9. Biocorrosion studies of TiO2 nanoparticle-coated Ti-6Al-4V implant in simulated biofluids

    International Nuclear Information System (INIS)

    Zaveri, Nikita; McEwen, Gerald D.; Karpagavalli, Ramji; Zhou Anhong

    2010-01-01

    The corrosion behaviors of the TiO 2 nanoparticles coated bioimplant Ti-6Al-4V exposed to three different simulated biofluids (SBF), namely, (1) NaCl solution, (2) Hank's solution, and (3) Cigada solution, were studied by using micro-Raman spectroscopy, electrochemical techniques, and scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS). The different electrochemical impedance spectroscopy models were applied to fit the data obtained from the implants before and after the coating of TiO 2 nanoparticles (50-100 nm). It was found that the TiO 2 nanoparticle coatings increased the thickness of the pre-existing oxide layer on the Ti-6Al-4V surface, serving to improve the bioimplant corrosion resistance.

  10. Biocorrosion studies of TiO2 nanoparticle-coated Ti-6Al-4V implant in simulated biofluids

    Science.gov (United States)

    Zaveri, Nikita; McEwen, Gerald D.; Karpagavalli, Ramji; Zhou, Anhong

    2010-06-01

    The corrosion behaviors of the TiO2 nanoparticles coated bioimplant Ti-6Al-4V exposed to three different simulated biofluids (SBF), namely, (1) NaCl solution, (2) Hank's solution, and (3) Cigada solution, were studied by using micro-Raman spectroscopy, electrochemical techniques, and scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS). The different electrochemical impedance spectroscopy models were applied to fit the data obtained from the implants before and after the coating of TiO2 nanoparticles (50-100 nm). It was found that the TiO2 nanoparticle coatings increased the thickness of the pre-existing oxide layer on the Ti-6Al-4V surface, serving to improve the bioimplant corrosion resistance.

  11. Biocorrosion studies of TiO{sub 2} nanoparticle-coated Ti-6Al-4V implant in simulated biofluids

    Energy Technology Data Exchange (ETDEWEB)

    Zaveri, Nikita; McEwen, Gerald D.; Karpagavalli, Ramji; Zhou Anhong, E-mail: Anhong.Zhou@usu.ed [Utah State University, Biological Engineering Program (United States)

    2010-06-15

    The corrosion behaviors of the TiO{sub 2} nanoparticles coated bioimplant Ti-6Al-4V exposed to three different simulated biofluids (SBF), namely, (1) NaCl solution, (2) Hank's solution, and (3) Cigada solution, were studied by using micro-Raman spectroscopy, electrochemical techniques, and scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS). The different electrochemical impedance spectroscopy models were applied to fit the data obtained from the implants before and after the coating of TiO{sub 2} nanoparticles (50-100 nm). It was found that the TiO{sub 2} nanoparticle coatings increased the thickness of the pre-existing oxide layer on the Ti-6Al-4V surface, serving to improve the bioimplant corrosion resistance.

  12. On the contribution of electrochemical methods in the study of corrosion mechanisms in automotive body steel sheets

    International Nuclear Information System (INIS)

    Massinon, D.; Dauchelle, D.; Charbonnier, J.C.

    1989-01-01

    Complex mechanisms and interactions seem to govern the degradation of automotive body panels. The multimaterial nature of the system (steel, coating, conversion layer and paint), together with the variety of agressions it can encounter makes it a difficult task to characterize the corrosion mechanism(s). To this aim, physical analysis of corroded surfaces have recently yielded new insights on the role of some parameters and especially the quality of the interfaces, i.e. paint/coating and coating/steel. Electrochemistry, on the other hand, has given much information on phenomena such as selective dissolution, galvanic protection of steel by a coating, or oxygen diffusion through an organic coating. More and more is being known about the role of the paint and the mechanisms of its adhesion on a metallic substrate. However, a link between those theories is still missing and a full understanding of the corrosion phenomenon has not been achieved yet. We have developed original techniques in order to look into the corroded specimens with the most sophisticated physical analysis tools. The observed phenomena can be simulated and, whenever possible, quantified. This approach requires the use of different electrochemical techniques which will be presented in this paper. (author) 8 refs., 15 figs

  13. Polylactic acid coating on a biodegradable magnesium alloy: An in vitro degradation study by electrochemical impedance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Alabbasi, Alyaa; Liyanaarachchi, S.; Kannan, M. Bobby, E-mail: bobby.mathan@jcu.edu.au

    2012-09-30

    Polylactic acid (PLA) was coated on a biodegradable magnesium alloy, AZ91, using spin coating technique for temporary implant applications. The degradation behaviour of the coated alloy samples was evaluated using electrochemical impedance spectroscopy (EIS) method in simulated body fluid (SBF). EIS results suggested that the PLA coating enhanced the degradation resistance of the alloy significantly. Increase in the PLA coating thickness was found to increase the degradation resistance, but resulted in poor adhesion. Long-term EIS experiments of the PLA coated samples suggested that their degradation resistance gradually decreased with increase in SBF exposure time. However, the degradation resistance of the PLA coated samples was significantly higher than that of the bare metal even after a 48 h exposure to SBF. - Highlights: Black-Right-Pointing-Pointer Polylactic acid (PLA) was coated on a magnesium-based alloy. Black-Right-Pointing-Pointer PLA coating enhanced the in vitro degradation resistance of the alloy. Black-Right-Pointing-Pointer Increase in the PLA coating thickness improved the alloy degradation resistance. Black-Right-Pointing-Pointer Thin film PLA coating exhibited both good degradation resistance and adhesion.

  14. Polylactic acid coating on a biodegradable magnesium alloy: An in vitro degradation study by electrochemical impedance spectroscopy

    International Nuclear Information System (INIS)

    Alabbasi, Alyaa; Liyanaarachchi, S.; Kannan, M. Bobby

    2012-01-01

    Polylactic acid (PLA) was coated on a biodegradable magnesium alloy, AZ91, using spin coating technique for temporary implant applications. The degradation behaviour of the coated alloy samples was evaluated using electrochemical impedance spectroscopy (EIS) method in simulated body fluid (SBF). EIS results suggested that the PLA coating enhanced the degradation resistance of the alloy significantly. Increase in the PLA coating thickness was found to increase the degradation resistance, but resulted in poor adhesion. Long-term EIS experiments of the PLA coated samples suggested that their degradation resistance gradually decreased with increase in SBF exposure time. However, the degradation resistance of the PLA coated samples was significantly higher than that of the bare metal even after a 48 h exposure to SBF. - Highlights: ► Polylactic acid (PLA) was coated on a magnesium-based alloy. ► PLA coating enhanced the in vitro degradation resistance of the alloy. ► Increase in the PLA coating thickness improved the alloy degradation resistance. ► Thin film PLA coating exhibited both good degradation resistance and adhesion.

  15. The electrochemical oxidation of organic waste and activated graphite by Ag2+ in nitric acid: a literature study

    International Nuclear Information System (INIS)

    Van Alsenoy, V.; Rahier, A.

    1996-08-01

    Organic wastes and activated moderator graphite can be processed by means of combustion, but the incineration of organic waste poses emission problems. The Belgian Nuclear Research Centre SCK-CEN has experience with the treatment of organic wastes. Moreover, the treatment of radioactive graphite will be required since the BR-1 reactor is moderated with 492 tons of graphite. The strong oxidising properties of Ag 2+ are already used in the chemical and nuclear industry to destroy organic waste. We aim to apply the process on radioactive graphite, organic resins and effluents. The reaction mechanisms will be studied, taking into account the thermodynamic and kinetic properties of the different reactions involved. As a first step, this document gives a literature study of the electrochemical oxidation using Ag 2+ . This document presents a thorough literature study, and shows that the oxidative properties of the Ag 2+ ion, which can easily be formed in nitric acid by means of electrolysis, make it an ideal candidate to oxidize organic molecules into carbon dioxide and water on a perfectly well controlled manner. The process has already been used to destroy explosives and toxic organic waste in the nuclear and chemical industry. Chemical, thermodynamic and kinetic aspects of some of the reactions involved are already known and described, other reaction mechanisms are still unknown. On the basis of the information collected so far, the Research and Development group of the Radioactive Waste and Cleanup unit has proposed to start a research programme to define, test, demonstrate and finally apply a safe process for the treatment of radioactive organic material and graphite by electrochemical oxidation using Ag 2+ . Available data confirm that the oxidation of organic material can be carried out safely, leading to the formation of water and carbon dioxide

  16. The electrochemical oxidation of organic waste and activated graphite by Ag{sup 2+} in nitric acid: a literature study

    Energy Technology Data Exchange (ETDEWEB)

    Van Alsenoy, V.; Rahier, A.

    1996-08-01

    Organic wastes and activated moderator graphite can be processed by means of combustion, but the incineration of organic waste poses emission problems. The Belgian Nuclear Research Centre SCK-CEN has experience with the treatment of organic wastes. Moreover, the treatment of radioactive graphite will be required since the BR-1 reactor is moderated with 492 tons of graphite. The strong oxidising properties of Ag{sup 2+} are already used in the chemical and nuclear industry to destroy organic waste. We aim to apply the process on radioactive graphite, organic resins and effluents. The reaction mechanisms will be studied, taking into account the thermodynamic and kinetic properties of the different reactions involved. As a first step, this document gives a literature study of the electrochemical oxidation using Ag{sup 2+}. This document presents a thorough literature study, and shows that the oxidative properties of the Ag{sup 2+} ion, which can easily be formed in nitric acid by means of electrolysis, make it an ideal candidate to oxidize organic molecules into carbon dioxide and water on a perfectly well controlled manner. The process has already been used to destroy explosives and toxic organic waste in the nuclear and chemical industry. Chemical, thermodynamic and kinetic aspects of some of the reactions involved are already known and described, other reaction mechanisms are still unknown. On the basis of the information collected so far, the Research and Development group of the Radioactive Waste and Cleanup unit has proposed to start a research programme to define, test, demonstrate and finally apply a safe process for the treatment of radioactive organic material and graphite by electrochemical oxidation using Ag{sup 2+}. Available data confirm that the oxidation of organic material can be carried out safely, leading to the formation of water and carbon dioxide.

  17. Destructive impact of molecular noise on nanoscale electrochemical oscillators

    Science.gov (United States)

    Cosi, Filippo G.; Krischer, Katharina

    2017-06-01

    We study the loss of coherence of electrochemical oscillations on meso- and nanosized electrodes with numeric simulations of the electrochemical master equation for a prototypical electrochemical oscillator, the hydrogen peroxide reduction on Pt electrodes in the presence of halides. On nanoelectrodes, the electrode potential changes whenever a stochastic electron-transfer event takes place. Electrochemical reaction rate coefficients depend exponentially on the electrode potential and become thus fluctuating quantities as well. Therefore, also the transition rates between system states become time-dependent which constitutes a fundamental difference to purely chemical nanoscale oscillators. Three implications are demonstrated: (a) oscillations and steady states shift in phase space with decreasing system size, thereby also decreasing considerably the oscillating parameter regions; (b) the minimal number of molecules necessary to support correlated oscillations is more than 10 times as large as for nanoscale chemical oscillators; (c) the relation between correlation time and variance of the period of the oscillations predicted for chemical oscillators in the weak noise limit is only fulfilled in a very restricted parameter range for the electrochemical nano-oscillator.

  18. Electrochemical organic destruction in support of Hanford tank waste pretreatment

    International Nuclear Information System (INIS)

    Lawrence, W.E.; Surma, J.E.; Gervais, K.L.; Buehler, M.F.; Pillay, G.; Schmidt, A.J.

    1994-10-01

    The US Department of Energy's Hanford Site in Richland, Washington, has 177 underground storage tanks that contain approximately 61 million gallons of radioactive waste. The current cleanup strategy is to retrieve the waste and separate components into high-level and low-level waste. However, many of the tanks contain organic compounds that create concerns associated with tank safety and efficiency of anticipated separation processes. Therefore, a need exists for technologies that can safely and efficiently destroy organic compounds. Laboratory-scale studies conducted during FY 93 have shown proof-of-principle for electrochemical destruction of organics. Electrochemical oxidation is an inherently safe technology and shows promise for treating Hanford complexant concentrate aqueous/ slurry waste. Therefore, in support of Hanford tank waste pretreatment needs, the development of electrochemical organic destruction (ECOD) technology has been undertaken. The primary objective of this work is to develop an electrochemical treatment process for destroying organic compounds, including tank waste complexants. Electroanalytical analyses and bench-scale flow cell testing will be conducted to evaluate the effect of anode material and process operating conditions on the rate of organic destruction. Cyclic voltammetry will be used to identify oxygen overpotentials for the anode materials and provide insight into reaction steps for the electrochemical oxidation of complexants. In addition, a bench-scale flow cell evaluation will be conducted to evaluate the influence of process operating conditions and anode materials on the rate and efficiency of organic destruction using the nonradioactive a Hanford tank waste simulant

  19. [Studies on the degradation of paracetamol in sono-electrochemical oxidation].

    Science.gov (United States)

    Dai, Qi-Zhou; Ma, Wen-Jiao; Shen, Hong; Chen, Jun; Chen, Jian-Meng

    2012-07-01

    A novel lead dioxide electrodes co-doped with rare earth and polytetrafluoroethylene (PTFE) were prepared by the electrode position method and applied as anodes in sono-electrochemical oxidation for pharmaceutical wastewater degradation. The results showed that the APAP removal and the mineralization efficiency reached an obvious increase, which meant that the catalytic efficiency showed a significant improvement in the use of rare-earth doped electrode. The effects of process factors showed that the condition of the electrode had the best degradation efficiency with doped with Ce2O3 under electrolyte concentration of 14.2 g x L(-1), 49.58 W x cm(-2), 50 Hz, pH = 3, 71.43 mA x cm(-2). The APAP of 500 mg x L(-1) removal rate reached 92.20% and its COD and TOC values declined to 79.95% and 58.04%, the current efficiency reached 45.83% after degradation process for 2.0 h. The intermediates were monitored by the methods of GC-MS, HPLC, and IC. The main intermediates of APAP were p-benzoquinone, benzoic acid, acetic acid, maleic acid, oxalic acid, formic acid etc, and the final products were carbon dioxide and water. The goal of completely degradation of pollutant was achieved and a possible degradation way was proposed.

  20. Study on the Electrochemical Behavior of Iodide at Platinum Electrode in Potassium Chlorate Solution

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Sang Hyuk; Yeon, Jei Won; Song, Kyu Seok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    Radioactive iodine-131, is one of the most hazardous fission products which could be released from fuels of nuclear reactors during the severe accident of nuclear power plants. Due to its high radioactivity, high fission yield (2.8%) and hazardous biological effects, the behavior of iodine has been taken interests in many research groups. Iodine is known to be released from the fuels as a cesium iodide form, CsI. And, as nuclear fuels are mostly placed in the water pool, it is easily dissolved in the water after released from the fuels. In water, iodide anion could be oxidized into molecular iodine. As the molecular iodine is a volatile species and the oxidizing rate is affected by many environmental facts such as pH, radiolysis products and temperature, the oxidation reaction of the iodide ion has been considered as an important chemical reaction related to the severe accident of nuclear power plants In present work, the electrochemical behavior of iodide anion was observed by using cyclic voltammetric technique in potassium chlorate solutions. We observed two different oxidation waves in the oxidation potential region. From the comparison with the previous reported results, one is regarded as the oxidation of iodide into molecular iodine. The other is evaluated to be the formation of high-valent iodine-containing compounds

  1. Characterization of Desulfovibrio desulfuricans biofilm on high-alloyed stainless steel: XPS and electrochemical studies

    Energy Technology Data Exchange (ETDEWEB)

    Dec, Weronika [Institute of Industrial Organic Chemistry, Branch Pszczyna, Doświadczalna Street 27, 43-200 Pszczyna (Poland); Mosiałek, Michał; Socha, Robert P. [Jerzy Haber Institute of Catalysis and Surface Chemistry PAS, Niezapominajek Street 8, 30-239 Kraków (Poland); Jaworska-Kik, Marzena [Department of Biopharmacy, Medical University of Silesia, Jedności Street 8, 41-200 Sosnowiec (Poland); Simka, Wojciech [Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6 Street, 44-100 Gliwice (Poland); Michalska, Joanna, E-mail: joanna.k.michalska@polsl.pl [Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6 Street, 44-100 Gliwice (Poland)

    2017-07-01

    Results on D. desulfuricans biofilm formation on austenitic-ferritic duplex (2205 DSS) and superaustenitic (904L) stainless steels are presented. Surface characterization including the structure, configuration and chemical composition of biofilms were carried out using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Electrochemical impedance spectroscopy (EIS) measurements were used to monitor the attachment activity of bacteria on the steels' surface and to determine the effect of bacteria on passivity. It was proved that investigated steels are rapidly colonized by bacteria. The presence of biofilm caused significant ennoblement of 904L steel surface, while retarded the attainment of high passive state of 2205 DSS. XPS analysis revealed significant sulphidation of the biofilm and its layered structure. Accumulation of sulphides and hydroxides was proved in the outermost layer, while the increasing contents of disulphides, organometallic and C-N bonds were detected in the internal part of the biofilm. Irreversible bondings between steel matrix and biofilm had also been observed. - Highlights: • High-alloyed steels are rapidly colonized by sulphate-reducing bacteria. • Higher Ni content stimulates more intensive biofilm growth. • Extracellular polymeric substances indelibly bind to the high-alloyed steels. • Sulphate-reducing bacteria caused irreversible sulphidation of passive films.

  2. Comparative Study of Commercial Oxide Electrodes Performance in Electrochemical Degradation of Organics in Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Pelegrino Rosângela L.

    2002-01-01

    Full Text Available In this paper the potentiality of two types of DSAâ commercial electrodes, for electrochemical treatment of effluents, is investigated. Oxide anodes, with nominal composition of 70TiO2/30RuO2 and 45IrO2/55Ta2O5, were used in a flow-cell reactor for the electrooxidation of phenol. Comparative results were presented as phenol concentration decay as a function of electrolysis time, as well as COD and TOC concentration reduction. The cell reactor was operated at current densities, ranging from 15 to 150 mA cm-2 and solution linear velocity was 0.24 m s-1. Results reported in this paper showed that phenol and quinones were degraded to a very low concentration, besides only a small portion of the organic carbon is reduced. Starting from 100 mg L-1, after five hours of electrolysis at 100 mA cm-2, concentrations reached 0.4 mg L-1 of phenol, 1 mg L-1 of hydroquinone, 7 mg L-1 of benzoquinone and TOC was reduced by 35%.

  3. Material Testing in Support of the ISS Electrochemical Disinfection Feasibility Study

    Science.gov (United States)

    Clements, Anna; Shindo, David; Modica, Cathy

    2011-01-01

    The International Space Station Program recognizes the risk of microbial contamination in their potable and non-potable water sources. With the end of the Space Shuttle Program, the ability to send up shock-kits of biocides in the event of an outbreak becomes even more difficult. Currently, the US Segment water system relies primarily on iodine to mitigate contamination concerns. To date, several small cases of contamination have occurred which have been remediated. NASA, however, realizes that having a secondary method of combating a microbial outbreak is a prudent investment. NASA is looking into developing hardware that can generate biocides electrochemically, and potentially deploying that hardware. The specific biocides that the technology could generate include: hydrogen peroxide, oxone, hypochlorite and peracetic acid. In order to use these biocides on deployed water systems, the project must determine that all the materials in the potential application are compatible with the biocides at their anticipated administered concentrations. This paper will detail the materials test portion of the feasibility assessment including the plan for both metals and non-metals along with results to date.

  4. Robust electrochemical analysis of As(III) integrating with interference tests: A case study in groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhong-Gang [Nanomaterials and Environmental Detection Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031 (China); Department of Chemistry, University of Science and Technology of China, Hefei 230026 (China); Chen, Xing; Liu, Jin-Huai [Nanomaterials and Environmental Detection Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031 (China); Huang, Xing-Jiu, E-mail: xingjiuhuang@iim.ac.cn [Nanomaterials and Environmental Detection Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031 (China); Department of Chemistry, University of Science and Technology of China, Hefei 230026 (China)

    2014-08-15

    Graphical abstract: - Highlights: • Robust determination of As(III) in Togtoh water samples has been demonstrated. • The results were comparable to that obtained by ICP–AES. • No obvious interference was observed after a series of interference tests. • Robust stability was obtained in long-term measurements. - Abstract: In Togtoh region of Inner Mongolia, northern China, groundwater encountered high concentrations As contamination (greater than 50 μg L{sup −1}) causes an increasing concern. This work demonstrates an electrochemical protocol for robust (efficient and accurate) determination of As(III) in Togtoh water samples using Au microwire electrode without the need of pretreatment or clean-up steps. Considering the complicated conditions of Togtoh water, the efficiency of Au microwire electrode was systematically evaluated by a series of interference tests, stability and reproducibility measurements. No obvious interference on the determination of As(III) was observed. Especially, the influence of humic acid (HA) was intensively investigated. Electrode stability was also observed with long-term measurements (70 days) in Togtoh water solution and under different temperatures (0–35 °C). Excellent reproducibility (RSD:1.28%) was observed from different batches of Au microwire electrodes. The results obtained at Au microwire electrode were comparable to that obtained by inductively coupled plasma atomic emission spectroscopy (ICP–AES), indicating a good accuracy. These evaluations (efficiency, robustness, and accuracy) demonstrated that the Au microwire electrode was able to determine As(III) in application to real environmental samples.

  5. Characterization of Desulfovibrio desulfuricans biofilm on high-alloyed stainless steel: XPS and electrochemical studies

    International Nuclear Information System (INIS)

    Dec, Weronika; Mosiałek, Michał; Socha, Robert P.; Jaworska-Kik, Marzena; Simka, Wojciech; Michalska, Joanna

    2017-01-01

    Results on D. desulfuricans biofilm formation on austenitic-ferritic duplex (2205 DSS) and superaustenitic (904L) stainless steels are presented. Surface characterization including the structure, configuration and chemical composition of biofilms were carried out using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Electrochemical impedance spectroscopy (EIS) measurements were used to monitor the attachment activity of bacteria on the steels' surface and to determine the effect of bacteria on passivity. It was proved that investigated steels are rapidly colonized by bacteria. The presence of biofilm caused significant ennoblement of 904L steel surface, while retarded the attainment of high passive state of 2205 DSS. XPS analysis revealed significant sulphidation of the biofilm and its layered structure. Accumulation of sulphides and hydroxides was proved in the outermost layer, while the increasing contents of disulphides, organometallic and C-N bonds were detected in the internal part of the biofilm. Irreversible bondings between steel matrix and biofilm had also been observed. - Highlights: • High-alloyed steels are rapidly colonized by sulphate-reducing bacteria. • Higher Ni content stimulates more intensive biofilm growth. • Extracellular polymeric substances indelibly bind to the high-alloyed steels. • Sulphate-reducing bacteria caused irreversible sulphidation of passive films.

  6. Charge Carrier Conduction Mechanism in PbS Quantum Dot Solar Cells: Electrochemical Impedance Spectroscopy Study.

    Science.gov (United States)

    Wang, Haowei; Wang, Yishan; He, Bo; Li, Weile; Sulaman, Muhammad; Xu, Junfeng; Yang, Shengyi; Tang, Yi; Zou, Bingsuo

    2016-07-20

    With its properties of bandgap tunability, low cost, and substrate compatibility, colloidal quantum dots (CQDs) are becoming promising materials for optoelectronic applications. Additionally, solution-processed organic, inorganic, and hybrid ligand-exchange technologies have been widely used in PbS CQDs solar cells, and currently the maximum certified power conversion efficiency of 9.9% has been reported by passivation treatment of molecular iodine. Presently, there are still some challenges, and the basic physical mechanism of charge carriers in CQDs-based solar cells is not clear. Electrochemical impedance spectroscopy is a monitoring technology for current by changing the frequency of applied alternating current voltage, and it provides an insight into its electrical properties that cannot be measured by direct current testing facilities. In this work, we used EIS to analyze the recombination resistance, carrier lifetime, capacitance, and conductivity of two typical PbS CQD solar cells Au/PbS-TBAl/ZnO/ITO and Au/PbS-EDT/PbS-TBAl/ZnO/ITO, in this way, to better understand the charge carriers conduction mechanism behind in PbS CQD solar cells, and it provides a guide to design high-performance quantum-dots solar cells.

  7. Electrochemical specific adsorption of halides on Cu 111, 100, and 211: A Density Functional Theory study

    International Nuclear Information System (INIS)

    McCrum, Ian T.; Akhade, Sneha A.; Janik, Michael J.

    2015-01-01

    The specific adsorption of ions onto electrode surfaces can affect electrocatalytic reactions. Density functional theory is used to investigate the specific adsorption of aqueous F − , Cl − , Br − , and I − onto Cu (111), (100), and (211) surfaces. The adsorption is increasingly favorable in the order of F − < Cl − < Br − < I − . The adsorption has a weak dependence on the surface facet, with adsorption most favorable on Cu (100) and least favorable on Cu (111). Potential ranges where specific adsorption would be expected on each facet are reported. The thermodynamics of bulk copper halide (CuX, CuX 2 ) formation are also investigated as a function of potential. CuX formation occurs at potentials slightly more positive of halide specific adsorption and of copper oxidation in aqueous electrolytes. Specifically adsorbed halides and bulk CuX may be present during a variety of electrochemical reactions carried out over a Cu electrode in halide containing electrolyte solutions

  8. Study of caffeine as corrosion inhibitors of carbon steel in chloride solution containing hydrogen sulfide using electrochemical impedance spectroscopy (EIS)

    Science.gov (United States)

    Solehudin, Agus; Berman, Ega Taqwali; Nurdin, Isdiriayani

    2015-09-01

    The corrosion behaviour of steel surface in the absence and presence of caffeine in 3.5% NaCl solution containing dissolved H2S gas is studied using electrochemical impedance spectroscopy (EIS). The experimental results of carbon steel corrosion in 3.5% NaCl solution containing 500 mg/l H2S at different caffeine concentrations showed that corrosion rate of carbon steel decreases with increasing of caffeine concentrations from 0 to 0,1 mmol/l. Whereas, the corrosion rate increase with increasing of caffeine concentrations from 1 to 10 mmol/l. It is clear that no inhibition efficiency increases with increasing inhibitor concentration. The optimum value of inhibition efficiency was 90% at a caffeine concentration of 0.1 mmol/l. This suggests that caffeine's performance as a corrosion inhibitor is more effective at a concentration of 0.1 mmol/l.

  9. Spectral, Electrochemical, Fluorescence, Kinetic and Anti-microbial Studies of Acyclic Schiff-base Gadolinium(III) Complexes

    International Nuclear Information System (INIS)

    Vijayaraj, A.; Prabu, R.; Suresh, R.; Narayanan, V.; Sangeetha Kumari, R.; Kaviyarasan, V.

    2012-01-01

    A new series of acyclic mononuclear gadolinium(III) complexes have been prepared by Schiff-base condensation derived from 5-methylsalicylaldehyde, diethylenetriamine, tris(2-aminoethyl) amine, triethylenetetramine, N,N-bis(3-aminopropyl)ethylene diamine, N,N-bis(aminopropyl) piperazine, and gadolinium nitrate. All the complexes were characterized by elemental and spectral analyses. Electronic spectra of the complexes show azomethine (CH=N) within the range of 410-420 nm. The fluorescence efficiency of Gd(III) ion in the cavity was completely quenched by the higher chain length ligands. Electrochemical studies of the complexes show irreversible one electron reduction process around -2.15 to -1.60 V. The reduction potential of gadolinium(III) complexes shifts towards anodic directions respectively upon increasing the chain length. The catalytic activity of the gadolinium(III) complexes on the hydrolysis of 4-nitrophenylphosphate was determined. All gadolinium(III) complexes were screened for antibacterial activity

  10. Spectral, Electrochemical, Fluorescence, Kinetic and Anti-microbial Studies of Acyclic Schiff-base Gadolinium(III) Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Vijayaraj, A.; Prabu, R.; Suresh, R.; Narayanan, V.; Sangeetha Kumari, R.; Kaviyarasan, V. [Univ. of Madras, Madras (India)

    2012-11-15

    A new series of acyclic mononuclear gadolinium(III) complexes have been prepared by Schiff-base condensation derived from 5-methylsalicylaldehyde, diethylenetriamine, tris(2-aminoethyl) amine, triethylenetetramine, N,N-bis(3-aminopropyl)ethylene diamine, N,N-bis(aminopropyl) piperazine, and gadolinium nitrate. All the complexes were characterized by elemental and spectral analyses. Electronic spectra of the complexes show azomethine (CH=N) within the range of 410-420 nm. The fluorescence efficiency of Gd(III) ion in the cavity was completely quenched by the higher chain length ligands. Electrochemical studies of the complexes show irreversible one electron reduction process around -2.15 to -1.60 V. The reduction potential of gadolinium(III) complexes shifts towards anodic directions respectively upon increasing the chain length. The catalytic activity of the gadolinium(III) complexes on the hydrolysis of 4-nitrophenylphosphate was determined. All gadolinium(III) complexes were screened for antibacterial activity.

  11. Flow-induced corrosion of absorbable magnesium alloy: In-situ and real-time electrochemical study

    Science.gov (United States)

    Wang, Juan; Jang, Yongseok; Wan, Guojiang; Giridharan, Venkataraman; Song, Guang-Ling; Xu, Zhigang; Koo, Youngmi; Qi, Pengkai; Sankar, Jagannathan; Huang, Nan; Yun, Yeoheung

    2016-01-01

    An in-situ and real-time electrochemical study in a vascular bioreactor was designed to analyze corrosion mechanism of magnesium alloy (MgZnCa) under mimetic hydrodynamic conditions. Effect of hydrodynamics on corrosion kinetics, types, rates and products was analyzed. Flow-induced shear stress (FISS) accelerated mass and electron transfer, leading to an increase in uniform and localized corrosions. FISS increased the thickness of uniform corrosion layer, but filiform corrosion decreased this layer resistance at high FISS conditions. FISS also increased the removal rate of localized corrosion products. Impedance-estimated and linear polarization-measured polarization resistances provided a consistent correlation to corrosion rate calculated by computed tomography. PMID:28626241

  12. Electrochemical study on the effect of Schiff base and its cobalt complex on the acid corrosion of steel

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Gaber, A.M. [Chemistry Department, Faculty of Science, Alexandria University, Ibrahimia, P.O. Box 426, Alexandria 21321 (Egypt)], E-mail: ashrafmoustafa@yahoo.com; Masoud, M.S.; Khalil, E.A.; Shehata, E.E. [Chemistry Department, Faculty of Science, Alexandria University, Ibrahimia, P.O. Box 426, Alexandria 21321 (Egypt)

    2009-12-15

    The effect of the Schiff base N,N'-bis (salicylaldehyde)-1,3-diaminopropane (Salpr) and its corresponding cobalt complex on the corrosion behaviour of steel in 1 M sulphuric acid solution were studied by electrochemical impedance spectroscopy (EIS), and potentiodynamic polarization techniques. Spectrophotometry measurements were employed to investigate the stability of the complex in acid media. The inhibitive effect of Salpr and its stable octahedral cobalt complex is argued to their adsorption over the steel surface. Theoretical fitting of different isotherms, Langmuir, Flory-Huggins and the kinetic-thermodynamic model were tested to clarify the nature of adsorption. The data revealed that there might be non-ideal behaviour in the adsorption processes of Co(Salpr) complex on the steel surface. The Co(Salpr) could displace more water molecules from the steel surface than the corresponding Salpr. The bulky Co(Salpr) molecule could cover more than one active site.

  13. Electrochemical study of oxidation process of promethazine using sensor based on carbon nanotubes paste containing immobilized DNA on inorganic matrix

    Directory of Open Access Journals (Sweden)

    João Paulo Marco

    2014-10-01

    Full Text Available In the present work the voltammetric behavior and the oxidation process of promethazine (PHZ in electrochemical sensor based on carbon nanotubes paste containing DNA immobilized on the inorganic matrix prepared by sol-gel process (SiO2/Al2O3/Nb2O5. The method of Laviron verified that the system is irreversible and high speed of electron transfer between the electrode and DNA. The study of the oxidation of PHZ and influence of pH showed slope of 0.054 V / pH (near the nernstian system: 0.0592 V / pH suggesting that it involves the transfer of two protons and two electrons.

  14. Mechano-electrochemical study of stress corrosion crack tip area: Case of Zircaloy-4 in halide solution

    International Nuclear Information System (INIS)

    Durif, E.

    2012-01-01

    Stress corrosion cracking (SCC) is a damage phenomenon which results from the synergy between corrosion process (dissolution, adsorption) and mechanical fracture (crack propagation). Although this phenomenon is well known, its modelling is still a challenging issue, especially concerning mechano-electrochemical coupling mechanisms at crack tip, because it depends on model system (metal/aggressive media) and large number of mechanical and electrochemical factors. In this thesis, mutual interactions between dissolution and the stress state around the crack tip (stress intensity factor) are studied in the case of Zircaloy-4 in aqueous halide solution. Samples are first pre-cracked in air by using fatigue load-shedding procedure to control the stress intensity factor. Then, pre-oxidation is used to produce a thin protective passive layer on their surface. The electro-chemical reactions are thus concentrated at the crack tip which also induces a concentration of the mechanical effect. During the test, digital images of the sample surface are acquired. Digital Image Correlation is performed a posteriori in order to obtain the evolution of the crack length and the stress intensity factors. Further, a specific procedure is developed in order to perform the DIC analysis while the test is running. This allows to control the load so that a given value of the stress intensity factor is prescribed. With this innovative experimental technique, we perform experimental tests that allow to discriminate the effects between different stress corrosion cracking mechanisms. It is suggested that once a critical anodic polarization is exceeded, the crack growth rate depends on the stress intensity factor but also on its time derivative. Indeed, a threshold effect is obtained on the stress intensity factor, meaning that plasticity must increase for the dissolution reaction to occur, but also on its rate meaning that time for plasticity to produce new dislocations must not exceed the

  15. DWPF simulant CPC studies for SB8

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D. C.; Zamecnik, J. R.

    2013-06-25

    The Savannah River National Laboratory (SRNL) accepted a technical task request (TTR) from Waste Solidification Engineering to perform simulant tests to support the qualification of Sludge Batch 8 (SB8) and to develop the flowsheet for SB8 in the Defense Waste Processing Facility (DWPF). These efforts pertained to the DWPF Chemical Process Cell (CPC). Separate studies were conducted for frit development and glass properties (including REDOX). The SRNL CPC effort had two primary phases divided by the decision to drop Tank 12 from the SB8 constituents. This report focuses on the second phase with SB8 compositions that do not contain the Tank 12 piece. A separate report will document the initial phase of SB8 testing that included Tank 12. The second phase of SB8 studies consisted of two sets of CPC studies. The first study involved CPC testing of an SB8 simulant for Tank 51 to support the CPC demonstration of the washed Tank 51 qualification sample in the SRNL Shielded Cells facility. SB8-Tank 51 was a high iron-low aluminum waste with fairly high mercury and moderate noble metal concentrations. Tank 51 was ultimately washed to about 1.5 M sodium which is the highest wash endpoint since SB3-Tank 51. This study included three simulations of the DWPF Sludge Receipt and Adjustment Tank (SRAT) cycle and Slurry Mix Evaporator (SME) cycle with the sludge-only flowsheet at nominal DWPF processing conditions and three different acid stoichiometries. These runs produced a set of recommendations that were used to guide the successful SRNL qualification SRAT/SME demonstration with actual Tank 51 washed waste. The second study involved five SRAT/SME runs with SB8-Tank 40 simulant. Four of the runs were designed to define the acid requirements for sludge-only processing in DWPF with respect to nitrite destruction and hydrogen generation. The fifth run was an intermediate acid stoichiometry demonstration of the coupled flowsheet for SB8. These runs produced a set of processing

  16. DWPF simulant CPC studies for SB8

    International Nuclear Information System (INIS)

    Koopman, D. C.; Zamecnik, J. R.

    2013-01-01

    The Savannah River National Laboratory (SRNL) accepted a technical task request (TTR) from Waste Solidification Engineering to perform simulant tests to support the qualification of Sludge Batch 8 (SB8) and to develop the flowsheet for SB8 in the Defense Waste Processing Facility (DWPF). These efforts pertained to the DWPF Chemical Process Cell (CPC). Separate studies were conducted for frit development and glass properties (including REDOX). The SRNL CPC effort had two primary phases divided by the decision to drop Tank 12 from the SB8 constituents. This report focuses on the second phase with SB8 compositions that do not contain the Tank 12 piece. A separate report will document the initial phase of SB8 testing that included Tank 12. The second phase of SB8 studies consisted of two sets of CPC studies. The first study involved CPC testing of an SB8 simulant for Tank 51 to support the CPC demonstration of the washed Tank 51 qualification sample in the SRNL Shielded Cells facility. SB8-Tank 51 was a high iron-low aluminum waste with fairly high mercury and moderate noble metal concentrations. Tank 51 was ultimately washed to about 1.5 M sodium which is the highest wash endpoint since SB3-Tank 51. This study included three simulations of the DWPF Sludge Receipt and Adjustment Tank (SRAT) cycle and Slurry Mix Evaporator (SME) cycle with the sludge-only flowsheet at nominal DWPF processing conditions and three different acid stoichiometries. These runs produced a set of recommendations that were used to guide the successful SRNL qualification SRAT/SME demonstration with actual Tank 51 washed waste. The second study involved five SRAT/SME runs with SB8-Tank 40 simulant. Four of the runs were designed to define the acid requirements for sludge-only processing in DWPF with respect to nitrite destruction and hydrogen generation. The fifth run was an intermediate acid stoichiometry demonstration of the coupled flowsheet for SB8. These runs produced a set of processing

  17. High resolution scanning optical imaging of a frozen planar polymer light-emitting electrochemical cell:an experimental and modelling study

    Institute of Scientific and Technical Information of China (English)

    Faleh AlTal; Jun Gao

    2017-01-01

    Light-emitting electrochemical cells(LECs) are organic photonic devices based on a mixed electronic and ionic conductor.The active layer of a polymer-based LEC consists of a luminescent polymer,an ion-solvating/transport polymer,and a compatible salt.The LEC p-n or p-i-n junction is ultimately responsible for the LEC performance.The LEC junction,however,is still poorly understood due to the difficulties of characterizing a dynamic-junction LEC.In this paper,we present an experimental and modeling study of the LEC junction using scanning optical imaging techniques.Planar LECs with an interelectrode spacing of 560μm have been fabricated,activated,frozen and scanned using a focused laser beam.The optical-beam-induced-current(OBIC)and photoluminescence(PL) data have been recorded as a function of beam location.The OBIC profile has been simulated in COMSOL that allowed for the determination of the doping concentration and the depletion width of the LEC junction.

  18. A computation study on the interplay between surface morphology and electrochemical performance of patterned thin film electrodes for Li-ion batteries

    Science.gov (United States)

    Gur, Sourav; Frantziskonis, George N.; Aifantis, Katerina E.

    2017-08-01

    Recent experiments illustrate that the morphology of the electrode surface impacts the voltage - capacity curves and long term cycling performance of Li-ion batteries. The present study systematically explores the role of the electrode surface morphology and uncertainties in the reactions that occur during electrochemical cycling, by performing kinetic Monte Carlo (kMC) simulations using the lattice Boltzmann method (LBM). This allows encoding of the inherent stochasticity at discrete microscale reaction events over the deterministic mean field reaction dynamics that occur in Li-ion cells. The electrodes are taken to be dense thin films whose surfaces are patterned with conical, trapezoidal, dome-shaped, or pillar-shaped structures. It is shown that the inherent perturbations in the reactions together with the characteristics of the electrode surface configuration can significantly improve battery performance, mainly because patterned surfaces, as opposed to flat surfaces, result in a smaller voltage drop. The most efficient pattern was the trapezoidal, which is consistent with experimental evidence on Si patterned electrodes.

  19. Electrochemical treatment of phenolic waters in presence of chloride with boron-doped diamond (BDD) anodes: Experimental study and mathematical model

    International Nuclear Information System (INIS)

    Mascia, Michele; Vacca, Annalisa; Polcaro, Anna Maria; Palmas, Simonetta; Ruiz, Jesus Rodriguez; Da Pozzo, Anna

    2010-01-01

    This work deals with an experimental and numerical study on the electrochemical treatment of waters containing phenolic compounds with boron-doped diamond (BDD) anodes. Anodic oxidation of m-cresol, as a model of phenolic compound, was investigated by galvanostatic electrolyses. The electrolyses were carried out under different experimental conditions by using an impinging-jet flow cell inserted in a hydraulic circuit in a closed loop. On the basis of the experimental results a mathematical model was implemented to simulate the effect of the chemistry of organic compounds and solution on the process, in particular the effect of chlorides on the kinetics of m-cresol oxidation. The effect of hydrodynamics of the cell on the mass transfer towards the electrode surface was also considered. The model was validated through comparison with experimental data: the results showed that the proposed model well interpreted the complex effect on removal efficiency of such operative parameters as current density, hydrodynamic of the reactor and chemistry of the solution. The model predictions were utilised to obtain quantitative information on the reaction mechanism, as well as to predict the performance of the process under different operative conditions, by calculating some relevant figures of merit.

  20. An electrochemical study on the positive electrode side of the zinc–cerium hybrid redox flow battery

    International Nuclear Information System (INIS)

    Nikiforidis, Georgios; Berlouis, Léonard; Hall, David; Hodgson, David

    2014-01-01

    Highlights: •Elevated temperatures favoured the Ce 3+/4+ reaction on the Pt, Pt–Ir and carbon substrates. •j o increased with temperature over the range 25 °C to 60 °C for all substrates. •Non-porous carbon substrates showed higher reversibility on the Ce 3+/4+ reaction. •Surface degradation of the carbon electrodes occurred due to the high positive potentials. •The Pt–Ir coatings gave the largest j o at 60 °C and appear best suited for use as the positive electrode in the Zn–Ce RFB. -- Abstract: In this study, the electrochemical behaviour of the Ce 3+/4+ redox couple in methanesulfonic acid medium on various electrode substrates was investigated as a function of temperature. Carbon composite electrodes as well as platinum and platinum iridium coated electrodes were studied for their suitability in carrying out the Ce 3+/4+ redox reaction. Cyclic voltammetry in 0.8 mol dm −3 cerium and 4.5 mol dm −3 methanesulfonic acid solution showed that elevated temperatures favoured the Ce 3+ /Ce 4+ reaction on the various platinum and platinum–iridium coated substrates as well as on carbon composite surfaces. The latter electrodes showed better kinetics than the metal coatings but deteriorated badly under the high positive potentials required for the cerium reaction. The exchange current density (j o ), obtained through Tafel extrapolation, polarisation resistance and electrochemical impedance spectroscopy measurements, increased with temperature over the range 25 °C to 60 °C. The Pt–Ir coatings gave the largest j o at 60 °C and appear best suited for use as the positive electrode in the Zn–Ce redox flow battery

  1. Electrochemical growth and studies of CuInSe2 thin films

    International Nuclear Information System (INIS)

    Prasher, Dixit; Chandel, Tarun; Rajaram, Poolla

    2014-01-01

    Thin films of CuInSe 2 were grown on fluorine doped tin oxide (<10 Ω/□) coated glass using the electrodeposition technique. The electrodeposition was carried out potentiostatically using an aqueous bath consisting of solutions of CuCl 2 , InCl 3 and SeO 2 with ethylenediamine-dihydrochloride (EDC) added for complexation. CuInSe 2 films were also deposited without using any complexing agent in the bath. To improve the crystallinity the CuInSe 2 films were annealed in vaccum at 300 °C for one hour. The annealed films were analyzed by x-ray diffraction, transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive analysis of x-rays (EDAX), atomic force microscopy (AFM) and optical spectra. The results obtained in this work show that by adding a suitable complexing agent to the electrochemical bath, nanocrystalline CuInSe 2 , 20 nm to 30 nm in size, can be grown. The composition of the CuInSe 2 films can be controlled by means of the bath composition and stoichiometric films can be obtained for a bath with ionic Cu:In:Se composition close to 1:4:2. AFM micrographs show that the particles are generally oval shaped for near stoichiometric compositions. However for extreme copper rich layers, the morphology is completely different, the particles in this case appearing in the form of nanoflakes. Each flake has a thickness in the nano range, but the surface extends to a length of several microns. (papers)

  2. XPS and electrochemical studies of the dissolution and passivation of molybdenum-implanted austenitic stainless steels

    International Nuclear Information System (INIS)

    De Vito, E.; Marcus, P.

    1993-01-01

    X-ray Photoelectron Spectroscopy (XPS) was used to investigate the chemical composition and the chemical states of the passive film formed on austenitic stainless steels (Fe-19Cr-10Ni (at.%)) which have been implanted with molybdenum (Mo + , 100 keV, 2.5 x 10 16 at./cm 2 ). Prior to passivation the implanted alloy was characterized by RBS (Rutherford Backscattering Spectroscopy) and XPS. Alloys with well-defined surface concentrations of molybdenum were prepared by ion sputtering the implanted alloy in the preparation chamber of the spectrometer, to a fixed point in the implantation profile. The samples were then transferred without air exposure to a glove box with inert gas in which the electrochemical measurements were performed. After passivation, return transfer of the passivated samples was done with the same transfer device to avoid exposure to air. In 0.5 M H 2 SO 4 , the anodic dissolution current density decreases with increasing Mo content on the alloy surface. Surface analysis by XPS showed that the surface is enriched with molybdenum in the Mo 4+ chemical state. The current density in the passive state is similar for both the non-implanted and the implanted alloys. Surface analysis by XPS showed that the passive film has a bilayer structure (inner oxide and outer hydroxide) and that the hydroxide layer present on the surface of the passive film is markedly enriched with molybdenum in the Mo 6+ chemical state. The XPS measurements indicate that the presence of molybdenum favors the formation of chromium hydroxide at the expense of chromium oxide. A significant enrichment of the alloyed (Cr, Ni) and implanted (Mo) elements was also observed in the metallic phase under the passive film. The possible mechanisms of the effect of molybdenum on the corrosion resistance of stainless steels are discussed in light of the obtained surface analytical results

  3. Unfolding of cytochrome c immobilized on self-assembled monolayers. An electrochemical study

    International Nuclear Information System (INIS)

    Monari, Stefano; Ranieri, Antonio; Bortolotti, Carlo Augusto; Peressini, Silvia; Tavagnacco, Claudio; Borsari, Marco

    2011-01-01

    Highlights: → Denaturation involves intermediate and partially unfolded forms. → An unfolded species displaying the haem with Fe coordinated by two His is observed. → Under unfolding conditions the nature of the SAM influences conformation of protein. → Concentration of the unfolding agent affects redox properties of immobilized protein. - Abstract: The electron transfer (ET) process of progressively unfolded bovine cytochrome c immobilized on different self-assembled monolayers (SAMs) was investigated. Insight is gained on the role of the SAM surface on the functionality of the partially unfolded and non-native forms of the adsorbed protein. Direct electrochemical measurements were performed on cytochrome c adsorbed on mercaptopyridine (MP) and mixed 11-mercapto-1-undecanoic acid/11-mercapto-1-undecanol (MUA/MU) at varying temperature, in the presence of urea as unfolding agent. Under strongly unfolding conditions, a non-native form of cytochrome c, in which the methionine ligand is replaced by a histidine, was observed on both MP and MUA/MU SAMs. The E o ' of the native form, in which the haem is axially coordinated by methionine and histidine, slightly shifts to negative values upon increasing urea concentration. However, the non-native bis-histidinate species shows a much lower E o ' value (by approximately 0.4 V) which is by far enthalpic in origin and largely determined by axial ligand swapping. Analysis of the reduction enthalpies and entropies and of the ET rate constants indicate that the nature of the SAM (hydrophilic or anionic) results in changes in the conformational rearrangement of the cytochrome c under unfolding conditions.

  4. Unfolding of cytochrome c immobilized on self-assembled monolayers. An electrochemical study

    Energy Technology Data Exchange (ETDEWEB)

    Monari, Stefano; Ranieri, Antonio; Bortolotti, Carlo Augusto; Peressini, Silvia [Department of Chemistry, University of Modena and Reggio Emilia, via Campi 183, 41125 Modena (Italy); Tavagnacco, Claudio [Department of Chemistry, University of Trieste, via Giorgieri 1, 34127 Trieste (Italy); Borsari, Marco, E-mail: marco.borsari@unimore.it [Department of Chemistry, University of Modena and Reggio Emilia, via Campi 183, 41125 Modena (Italy)

    2011-08-01

    Highlights: > Denaturation involves intermediate and partially unfolded forms. > An unfolded species displaying the haem with Fe coordinated by two His is observed. > Under unfolding conditions the nature of the SAM influences conformation of protein. > Concentration of the unfolding agent affects redox properties of immobilized protein. - Abstract: The electron transfer (ET) process of progressively unfolded bovine cytochrome c immobilized on different self-assembled monolayers (SAMs) was investigated. Insight is gained on the role of the SAM surface on the functionality of the partially unfolded and non-native forms of the adsorbed protein. Direct electrochemical measurements were performed on cytochrome c adsorbed on mercaptopyridine (MP) and mixed 11-mercapto-1-undecanoic acid/11-mercapto-1-undecanol (MUA/MU) at varying temperature, in the presence of urea as unfolding agent. Under strongly unfolding conditions, a non-native form of cytochrome c, in which the methionine ligand is replaced by a histidine, was observed on both MP and MUA/MU SAMs. The E{sup o}' of the native form, in which the haem is axially coordinated by methionine and histidine, slightly shifts to negative values upon increasing urea concentration. However, the non-native bis-histidinate species shows a much lower E{sup o}' value (by approximately 0.4 V) which is by far enthalpic in origin and largely determined by axial ligand swapping. Analysis of the reduction enthalpies and entropies and of the ET rate constants indicate that the nature of the SAM (hydrophilic or anionic) results in changes in the conformational rearrangement of the cytochrome c under unfolding conditions.

  5. The study of Zn–Co alloy coatings electrochemically deposited by pulse current

    Directory of Open Access Journals (Sweden)

    Tomić Milorad V.

    2012-01-01

    Full Text Available The electrochemical deposition by pulse current of Zn-Co alloy coatings on steel was examined, with the aim to find out whether pulse plating could produce alloys that could offer a better corrosion protection. The influence of on-time and the average current density on the cathodic current efficiency, coating morphology, surface roughness and corrosion stability in 3% NaCl was examined. At the same Ton/Toff ratio the current efficiency was insignificantly smaller for deposition at higher average current density. It was shown that, depending on the on-time, pulse plating could produce more homogenous alloy coatings with finer morphology, as compared to deposits obtained by direct current. The surface roughness was the greatest for Zn-Co alloy coatings deposited with direct current, as compared with alloy coatings deposited with pulse current, for both examined average current densities. It was also shown that Zn-Co alloy coatings deposited by pulse current could increase the corrosion stability of Zn-Co alloy coatings on steel. Namely, alloy coatings deposited with pulse current showed higher corrosion stability, as compared with alloy coatings deposited with direct current, for almost all examined cathodic times, Ton. Alloy coatings deposited at higher average current density showed greater corrosion stability as compared with coatings deposited by pulse current at smaller average current density. It was shown that deposits obtained with pulse current and cathodic time of 10 ms had the poorest corrosion stability, for both investigated average deposition current density. Among all investigated alloy coatings the highest corrosion stability was obtained for Zn-Co alloy coatings deposited with pulsed current at higher average current density (jav = 4 A dm-2.

  6. Anderson-Type Polyoxometalates Functionalized by Tetrathiafulvalene Groups: Synthesis, Electrochemical Studies, and NLO Properties.

    Science.gov (United States)

    Boulmier, Amandine; Vacher, Antoine; Zang, Dejin; Yang, Shu; Saad, Ali; Marrot, Jérôme; Oms, Olivier; Mialane, Pierre; Ledoux, Isabelle; Ruhlmann, Laurent; Lorcy, Dominique; Dolbecq, Anne

    2018-04-02

    Three polyoxometalates (POMs) functionalized by tetrathiafulvalene (TTF) molecules have been synthesized by a coupling reaction between the Anderson-type POMs [MnMo 6 O 18 {(OCH 2 ) 3 CNH 2 } 2 ] 3- or [AlMo 6 O 18 (OH) 3 {(OCH 2 ) 3 CNH 2 }] 3- and the TTF carboxylic acid derivative (MeS) 3 TTF(S-CH 2 -CO 2 H). The monofunctionalized TTF-AlMo 6 POM contains one TTF group covalently grafted on an Al Anderson platform. The symmetrical TTF-MnMo 6 -TTF POM possesses two TTF groups grafted on each side of a Mn Anderson derivative while the asymmetrical TTF-MnMo 6 -SP POM contains a TTF and a spiropyran groups. These three trianionic species have been characterized by elemental analysis, 1 H and 13 C NMR, FT-IR spectroscopy, ESI-MS spectrometry, and single-crystal X-ray diffraction (for TTF-MnMo 6 -TTF). In the solid state, the grafted TTF molecules of TTF-MnMo 6 -TTF POMs interact via S···S and π···π interactions and form chains. The electrochemical properties of the complexes reflect the contributions of both the inorganic POM and the TTF moieties. Despite adsorption of the oxidized hybrid species on the Pt grid working electrode, UV-vis-NIR spectroelectrochemical investigations evidence peaks characteristic of the oxidation of the TTF units. Finally, hyper-Rayleigh scattering (HRS) measurements show that the three novel TTF derivatives exhibit β values between 20 and 37 × 10 -30 esu. Moreover it is observed that the oxidation of the TTF moieties by Fe 3+ ions increases the NLO response. These values are in the order of magnitude of that found for the well-known 4-dimethylamino- N-methyl-4-stilbazolium (DAS + ) cation (β = 60 × 10 -30 esu).

  7. Study of electrochemical properties of the Prussian blue obtained via pentacyanidoferrate complex

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro, Marcio Cristiano; Toledo, Kalil Cristhian Figueiredo; Pires, Bruno Morandi; Bonacin, Juliano Alves, E-mail: monteiromarcioc@gmail.com [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Instituto de Quimica; Wick, Rene [University of Zurich (Switzerland)

    2016-07-01

    Full text: Prussian blue (PB) is one the most important compounds used in electrochemical sensing of molecular targets as H{sub 2}O{sub 2}. Many diseases or biochemical abnormalities can be diagnosed by analysis of H{sub 2}O{sub 2}. The properties found in PB comes from the electronic structure of this material which is formed by Fe{sup 2+} bonded to iron Fe{sup 3+} by cyanide bridged arranged in a 3D structure. Furthermore, the intervalence observed allows to achieve different levels of oxidation in the same process[1]. The challenge in this area is how to control and modulate specific features of PB. Because of this, we are interested in evaluating how the ligand Nmethylpyrazinium affects the structure and reactivity of the N-methylpyraziniumpentacyanidoferrate(II)(PCF) and its PB corresponding. According to XRD, the PB obtained from PCF produces an amorphous structure instead of the highly ordered structure of PB obtained by classical methods. The stoichiometry of formation of the PB(classic) obtained by the Job's method is 1: 1 (Fe(III): [Fe(CN){sub 6}]{sup 4-}), on the other hand, in PB-PCF the stoichiometry is 1: 2 (Fe(III):PCF). The reported features cause differences in the oxidation potential of the films, PB(classic) Eox=0.167V and PB-PCF Eox=0.219V. In terms of sensing of H{sub 2}O{sub 2}, the PB(classic) presented LOD= 1.2 10{sup -4} M and PB-mpz LOD= 5.8 10{sup -5}M. We have concluded that different sources of iron complexes cause alterations in the organization and electronic structure of the PB. Reference: [1] B. M. Pires, S. A. V. Jannuzzi, A. L. B. Formiga, J. A. Bonacin, Eur J Inorg Chem, 5812, (2014). (author)

  8. Heat load material studies: Simulated tokamak disruptions

    International Nuclear Information System (INIS)

    Gahl, J.M.; McDonald, J.M.; Zakharov, A.; Tserevitinov, S.; Barabash, V.; Guseva, M.

    1991-01-01

    It is clear that an improved understanding of the effects of tokamak disruptions on plasma facing component materials is needed for the ITER program. very large energy fluxes are predicted to be deposited in ITER and could be very damaging to the machine. During 1991, Sandia National Laboratories and the University of New Mexico conducted cooperative tokamak disruption simulation experiments at several Soviet facilities. These facilities were located at the Efremov Institute in Leningrad, the Kurchatov Atomic Energy Institute (Troisk and Moscow) and the Institute for Physical Chemistry of the Soviet Adademy of Sciences in Moscow. Erosion of graphite from plasma stream impact is seen to be much less than that observed with laser or electron beams with similar energy fluxes. This, along with other data obtained, seem to suggest that the ''vapor shielding'' effect is a very important phenomenon in the study of graphite erosion during tokamak disruption

  9. Molecular dynamic simulation study of molten cesium

    Directory of Open Access Journals (Sweden)

    Yeganegi Saeid

    2017-01-01

    Full Text Available Molecular dynamics simulations were performed to study thermodynamics and structural properties of expanded caesium fluid. Internal pressure, radial distribution functions (RDFs, coordination numbers and diffusion coefficients have been calculated at temperature range 700–1600 K and pressure range 100–800 bar. We used the internal pressure to predict the metal–non-metal transition occurrence region. RDFs were calculated at wide ranges of temperature and pressure. The coordination numbers decrease and positions of the first peak of RDFs slightly increase as the temperature increases and pressure decreases. The calculated self-diffusion coefficients at various temperatures and pressures show no distinct boundary between Cs metallic fluid and its expanded fluid where it continuously increases with temperature.

  10. Kinetic mechanism for modeling of electrochemical reactions.

    Science.gov (United States)

    Cervenka, Petr; Hrdlička, Jiří; Přibyl, Michal; Snita, Dalimil

    2012-04-01

    We propose a kinetic mechanism of electrochemical interactions. We assume fast formation and recombination of electron donors D- and acceptors A+ on electrode surfaces. These mediators are continuously formed in the electrode matter by thermal fluctuations. The mediators D- and A+, chemically equivalent to the electrode metal, enter electrochemical interactions on the electrode surfaces. Electrochemical dynamics and current-voltage characteristics of a selected electrochemical system are studied. Our results are in good qualitative agreement with those given by the classical Butler-Volmer kinetics. The proposed model can be used to study fast electrochemical processes in microsystems and nanosystems that are often out of the thermal equilibrium. Moreover, the kinetic mechanism operates only with the surface concentrations of chemical reactants and local electric potentials, which facilitates the study of electrochemical systems with indefinable bulk.

  11. The study of electrochemical cell taught by problem-based learning

    Science.gov (United States)

    Srichaitung, Paisan

    2018-01-01

    According to the teaching activity of Chemistry, researcher found that students were not able to seek self knowledge even applied knowledge to their everyday life. Therefore, the researcher is interested in creating an activity to have students constructed their knowledge, science process skills, and can apply knowledge in their everyday life. The researcher presented form of teaching activity of electrochemical cell by using problem-based learning for Mathayom five students of Thai Christian School. The teaching activity focused on electron transfer in galvanic cell. In this activity, the researcher assigned students to design the electron transfer in galvanic cell using any solution that could light up the bulb. Then students were separated into a group of two, which were total seven groups. Each group of students searched the information about the electron transfer in galvanic cell from books, internet, or other sources of information. After students received concepts, or knowledge they searched for, Students designed and did the experiment. Finally, the students in each groups had twenty minutes to give a presentation in front of the classroom about the electron transfer in galvanic using any solution to light up the bulb with showing the experiment, and five minutes to answer their classmates' questions. Giving the presentation took four periods with total seven groups. After students finished their presentation, the researcher had students discussed and summarized the teaching activity's main idea of electron transfer in galvanic. Then, researcher observed students' behavior in each group found that 85.7 percentages of total students developed science process skills, and transferred their knowledge through presentation completely. When students done the post test, the researcher found that 92.85 percentages of total students were able to explain the concept of galvanic cell, described the preparation and the selection of experimental equipment. Furthermore

  12. Quench Simulation Studies: Program documentation of SPQR

    CERN Document Server

    Sonnemann, F

    2001-01-01

    Quench experiments are being performed on prototypes of the superconducting magnets and busbars to determine the adequate design and protection. Many tests can only be understood correctly with the help of quench simulations that model the thermo-hydraulic and electrodynamic processes during a quench. In some cases simulations are the only method to scale the experimental results of prototype measurements to match the situation of quenching superconducting elements in the LHC. This note introduces the theoretical quench model and the use of the simulation program SPQR (Simulation Program for Quench Research), which has been developed to compute the quench process in superconducting magnets and busbars. The model approximates the heat balance equation with the finite difference method including the temperature dependence of the material parameters. SPQR allows the simulation of longitudinal quench propagation along a superconducting cable, the transverse propagation between adjacent conductors, heat transfer i...

  13. The Binding Effect of Proteins on Medications and Its Impact on Electrochemical Sensing: Antipsychotic Clozapine as a Case Study

    Directory of Open Access Journals (Sweden)

    George E. Banis

    2017-08-01

    Full Text Available Clozapine (CLZ, a dibenzodiazepine, is demonstrated as the optimal antipsychotic for patients suffering from treatment-resistant schizophrenia. Like many other drugs, understanding the concentration of CLZ in a patient’s blood is critical for managing the patients’ symptoms, side effects, and overall treatment efficacy. To that end, various electrochemical techniques have been adapted due to their capabilities in concentration-dependent sensing. An open question associated with electrochemical CLZ monitoring is whether drug–protein complexes (i.e., CLZ bound to native blood proteins, such as serum albumin (SA or alpha-1 acid-glycoprotein (AAG contribute to electrochemical redox signals. Here, we investigate CLZ-sensing performance using fundamental electrochemical methods with respect to the impact of protein binding. Specifically, we test the activity of bound and free fractions of a mixture of CLZ and either bovine SA or human AAG. Results suggest that bound complexes do not significantly contribute to the electrochemical signal for mixtures of CLZ with AAG or SA. Moreover, the fraction of CLZ bound to protein is relatively constant at 31% (AAG and 73% (SA in isolation with varying concentrations of CLZ. Thus, electrochemical sensing can enable direct monitoring of only the unbound CLZ, previously only accessible via equilibrium dialysis. The methods utilized in this work offer potential as a blueprint in developing electrochemical sensors for application to other redox-active medications with high protein binding more generally. This demonstrates that electrochemical sensing can be a new tool in accessing information not easily available previously, useful toward optimizing treatment regimens.

  14. Simulation study of pixel detector charge digitization

    Science.gov (United States)

    Wang, Fuyue; Nachman, Benjamin; Sciveres, Maurice; Lawrence Berkeley National Laboratory Team

    2017-01-01

    Reconstruction of tracks from nearly overlapping particles, called Tracking in Dense Environments (TIDE), is an increasingly important component of many physics analyses at the Large Hadron Collider as signatures involving highly boosted jets are investigated. TIDE makes use of the charge distribution inside a pixel cluster to resolve tracks that share one of more of their pixel detector hits. In practice, the pixel charge is discretized using the Time-over-Threshold (ToT) technique. More charge information is better for discrimination, but more challenging for designing and operating the detector. A model of the silicon pixels has been developed in order to study the impact of the precision of the digitized charge distribution on distinguishing multi-particle clusters. The output of the GEANT4-based simulation is used to train neutral networks that predict the multiplicity and location of particles depositing energy inside one cluster of pixels. By studying the multi-particle cluster identification efficiency and position resolution, we quantify the trade-off between the number of ToT bits and low-level tracking inputs. As both ATLAS and CMS are designing upgraded detectors, this work provides guidance for the pixel module designs to meet TIDE needs. Work funded by the China Scholarship Council and the Office of High Energy Physics of the U.S. Department of Energy under contract DE-AC02-05CH11231.

  15. Deep Space Storm Shelter Simulation Study

    Science.gov (United States)

    Dugan, Kathryn; Phojanamongkolkij, Nipa; Cerro, Jeffrey; Simon, Matthew

    2015-01-01

    Missions outside of Earth's magnetic field are impeded by the presence of radiation from galactic cosmic rays and solar particle events. To overcome this issue, NASA's Advanced Exploration Systems Radiation Works Storm Shelter (RadWorks) has been studying different radiation protective habitats to shield against the onset of solar particle event radiation. These habitats have the capability of protecting occupants by utilizing available materials such as food, water, brine, human waste, trash, and non-consumables to build short-term shelters. Protection comes from building a barrier with the materials that dampens the impact of the radiation on astronauts. The goal of this study is to develop a discrete event simulation, modeling a solar particle event and the building of a protective shelter. The main hallway location within a larger habitat similar to the International Space Station (ISS) is analyzed. The outputs from this model are: 1) the total area covered on the shelter by the different materials, 2) the amount of radiation the crew members receive, and 3) the amount of time for setting up the habitat during specific points in a mission given an event occurs.

  16. Simulation study of the high intensity S-Band photoinjector

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiongwei; Nakajima, Kazuhisa [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan)

    2001-10-01

    In this paper, we report the results of simulation study of the high intensity S-Band photoinjector. The aim of the simulation study is to transport high bunch charge with low emittance evolution. The simulation result shows that 7nC bunch with rms emittance 22.3 {pi} mm mrad can be outputted at the exit of photoinjector. (author)

  17. Simulation study of the high intensity S-Band photoinjector

    International Nuclear Information System (INIS)

    Zhu, Xiongwei; Nakajima, Kazuhisa

    2001-01-01

    In this paper, we report the results of simulation study of the high intensity S-Band photoinjector. The aim of the simulation study is to transport high bunch charge with low emittance evolution. The simulation result shows that 7nC bunch with rms emittance 22.3 π mm mrad can be outputted at the exit of photoinjector. (author)

  18. Highly conductive alumina/NCN composites electrodes fabricated by gelcasting and reduction-sintering-An electrochemical behavior study in aggressive environments

    International Nuclear Information System (INIS)

    Liu Jingjun; Menchavez, Ruben L.; Watanabe, Hideo; Fuji, Masayoshi; Takahashi, Minoru

    2008-01-01

    A novel highly conductive alumina/nano-carbon network composites (alumina/NCN composites) was fabricated by gelcasting and reduction-sintering method under argon atmosphere. The electrochemical behaviors of the alumina/NCN composites were studied systematically in some aggressive solutions (HCl, H 2 SO 4 , HNO 3 , NaOH, and KOH), using potentiodynamic polarization and chronoamperometry and X-ray diffraction and SEM observations. The results showed that the electrochemical stability and reproducibility of the composite electrodes in these diluted acids and alkalis were very good and had, in some extent, an electro-catalytic activity toward formation of hydrogen evolution and reduction of dissolved oxygen in aqueous solutions in comparison with a commercial graphite electrode. In addition, the pyrolyzed nano-carbon contents, size, and shape in the alumina matrix, have greatly effects on the electrochemical performances and electrode reactions in these solutions. It is found that the minimal residual carbon content of 0.62 wt.% in the matrix is enough to improve electrochemical performances and avoid to loss the ceramics physical properties at the same time. When the additional potential in all the tested electrolytes was at +1700 mV (vs. SCE), alumina particles at the electrode surface were not observed to dissolve into solution in this case, indicating the material being suitable for electrodes in aggressive solutions

  19. Study of the aqueous synthesis, optical and electrochemical characterization of alloyed Zn{sub x}Cd{sub 1-x}Te nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Matos, Charlene Regina Santos [Postgraduate Program in Materials Science and Engineering, Federal University of Sergipe, São Cristóvão, SE (Brazil); Candido, Luan P.M.; Souza, Helio Oliveira [Department of Chemistry, Federal University of Sergipe, São Cristóvão, SE (Brazil); Pereira da Costa, Luiz [Institute of Technology and Research (ITP), Tiradentes University, Aracaju, SE (Brazil); Sussuchi, Eliana Midori [Department of Chemistry, Federal University of Sergipe, São Cristóvão, SE (Brazil); Gimenez, Iara F., E-mail: gimenez@ufs.br [Postgraduate Program in Materials Science and Engineering, Federal University of Sergipe, São Cristóvão, SE (Brazil); Department of Chemistry, Federal University of Sergipe, São Cristóvão, SE (Brazil); Postgraduate Program in Chemistry, Federal University of Sergipe, São Cristóvão, SE (Brazil)

    2016-08-01

    The effects of experimental factors such as initial reaction pH, capping ligand, and heating method on the optical and electrochemical properties of aqueous alloyed Zn{sub x}Cd{sub 1-x}Te nanocrystals were evaluated. Here the type of capping ligand (glutathione GSH and 3-mercaptopropionic acid MPA) was found to be the most significant factor in controlling the range of photoluminescence emission. Also a pronounced pH effect on the emission wavelength has been verified in the presence of GSH, in contrast to MPA for which only a minor pH effect was observed. The heating method (microwave or hydrothermal) was found to be irrelevant for the emission wavelength at the conditions studied. The electrochemical characterization in aqueous medium (cyclic voltammetry and differential pulse voltammetry) evidenced a good correlation between electrochemical and optical band gap values and allowed estimation of band edge positions. - Highlights: • ZnCdTe quantum dots were obtained by aqueous synthesis. • Nature of capping ligand was the most relevant factor. • Optical and electrochemical band gaps were well correlated.

  20. Development and Study of Electrochemical Promotion Systems for CO2 Capture and Valorization in Combustion Gases. PROMOCAP Project Final Report

    International Nuclear Information System (INIS)

    Ruiz, E.; Cillero, D.; Martinez, P. J.; Morales, A.; San Vicente, G.; Diego, G. de; Sanchez, J. M.

    2014-01-01

    The ultimate goal of the project PROMOCAP was the development and study of electrochemical promotion systems for the capture and valorization of CO 2 in combustion flue gases. To achieve this objective, electrocatalysts consisting of tubes or monoliths of solid electrolyte (K-βAl 2 O 3 or YSZ), coated by the corresponding active metal (Pt, Pd, Ni, Cu, Fe-TiO 2 , Pt-Ru - C, Pt-C, etc.), were prepared using both conventional (painting) and improved (dip-coating, electroless or spray-coating) procedures. Both physico-chemical and volt amperometric characterization of the electrocatalysts was carried out both as prepared and after use in electro promoted CO 2 capture and valorization processes (study of chemisorption, reaction, inhibition, deactivation phenomena, etc.). Pilot plant studies were carried out under realistic conditions for identifying the best electro catalyst and the operating conditions more suitable for CO 2 electro promoted capture and valorization. Finally, the electrocatalysts identified as the most promising for electro promoted CO 2 capture (Pt/K-βAl 2 O 3 ) and valorization (Cu/K-βAl 2 O 3 ) were prepared using the developed optimized procedures and their behavior over multiple cycles of electro promoted CO 2 capture and in long term operation against electro promoted CO 2 hydrogenation, respectively, was studied under real or realistic conditions. (Author)