WorldWideScience

Sample records for electrochemical sensors biosensors

  1. Electrochemical sensors and biosensors based on less aggregated graphene.

    Science.gov (United States)

    Bo, Xiangjie; Zhou, Ming; Guo, Liping

    2017-03-15

    As a novel single-atom-thick sheet of sp 2 hybridized carbon atoms, graphene (GR) has attracted extensive attention in recent years because of its unique and remarkable properties, such as excellent electrical conductivity, large theoretical specific surface area, and strong mechanical strength. However, due to the π-π interaction, GR sheets are inclined to stack together, which may seriously degrade the performance of GR with the unique single-atom layer. In recent years, an increasing number of GR-based electrochemical sensors and biosensors are reported, which may reflect that GR has been considered as a kind of hot and promising electrode material for electrochemical sensor and biosensor construction. However, the active sites on GR surface induced by the irreversible GR aggregations would be deeply secluded inside the stacked GR sheets and therefore are not available for the electrocatalysis. So the alleviation or the minimization of the aggregation level for GR sheets would facilitate the exposure of active sites on GR and effectively upgrade the performance of GR-based electrochemical sensors and biosensors. Less aggregated GR with low aggregation and high dispersed structure can be used in improving the electrochemical activity of GR-based electrochemical sensors or biosensors. In this review, we summarize recent advances and new progress for the development of electrochemical sensors based on less aggregated GR. To achieve such goal, many strategies (such as the intercalation of carbon materials, surface modification, and structural engineering) have been applied to alleviate the aggregation level of GR in order to enhance the performance of GR-based electrochemical sensors and biosensors. Finally, the challenges associated with less aggregated GR-based electrochemical sensors and biosensors as well as related future research directions are discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Environmental analysis by electrochemical sensors and biosensors fundamentals

    CERN Document Server

    Moretto, Ligia Maria

    2014-01-01

    This book presents an exhaustive overview of electrochemical sensors and biosensors for the analysis and monitoring of the most important analytes in the environmental field, in industry, in treatment plants and in environmental research. The chapters give the reader a comprehensive, state-of-the-art picture of the field of electrochemical sensors suitable to environmental analytes, from the theoretical principles of their design to their implementation, realization and application. The first three chapters discuss fundamentals, and the last three chapters cover the main groups of analytes of environmental interest.

  3. Electrochemical Biosensors - Sensor Principles and Architectures

    Science.gov (United States)

    Grieshaber, Dorothee; MacKenzie, Robert; Vörös, Janos; Reimhult, Erik

    2008-01-01

    Quantification of biological or biochemical processes are of utmost importance for medical, biological and biotechnological applications. However, converting the biological information to an easily processed electronic signal is challenging due to the complexity of connecting an electronic device directly to a biological environment. Electrochemical biosensors provide an attractive means to analyze the content of a biological sample due to the direct conversion of a biological event to an electronic signal. Over the past decades several sensing concepts and related devices have been developed. In this review, the most common traditional techniques, such as cyclic voltammetry, chronoamperometry, chronopotentiometry, impedance spectroscopy, and various field-effect transistor based methods are presented along with selected promising novel approaches, such as nanowire or magnetic nanoparticle-based biosensing. Additional measurement techniques, which have been shown useful in combination with electrochemical detection, are also summarized, such as the electrochemical versions of surface plasmon resonance, optical waveguide lightmode spectroscopy, ellipsometry, quartz crystal microbalance, and scanning probe microscopy. The signal transduction and the general performance of electrochemical sensors are often determined by the surface architectures that connect the sensing element to the biological sample at the nanometer scale. The most common surface modification techniques, the various electrochemical transduction mechanisms, and the choice of the recognition receptor molecules all influence the ultimate sensitivity of the sensor. New nanotechnology-based approaches, such as the use of engineered ion-channels in lipid bilayers, the encapsulation of enzymes into vesicles, polymersomes, or polyelectrolyte capsules provide additional possibilities for signal amplification. In particular, this review highlights the importance of the precise control over the delicate

  4. A Review on the Electrochemical Sensors and Biosensors Composed of Nanowires as Sensing Material

    Directory of Open Access Journals (Sweden)

    Shen-Ming Chen

    2008-01-01

    Full Text Available The development and application of nanowires for electrochemical sensors and biosensors are reviewed in this article. Next generation sensor platforms will require significant improvements in sensitivity, specificity and parallelism in order to meet the future needs in variety of fields. Sensors made of nanowires exploit some fundamental nanoscopic effect in order to meet these requirements. Nanowires are new materials, which have the characteristic of low weight with extraordinary mechanical, electrical, thermal and multifunctional properties. The advantages such as size scale, aspect ratio and other properties of nanowires are especially apparent in the use of electrical sensors such as electrochemical sensors and in the use of field-effect transistors. The preparation methods of nanowires and their properties are discussed along with their advantages towards electrochemical sensors and biosensors. Some key results from each article are summarized, relating the concept and mechanism behind each sensor, with experimental conditions as well as their behavior at different conditions.

  5. CMOS Electrochemical Instrumentation for Biosensor Microsystems: A Review

    Directory of Open Access Journals (Sweden)

    Haitao Li

    2016-12-01

    Full Text Available Modern biosensors play a critical role in healthcare and have a quickly growing commercial market. Compared to traditional optical-based sensing, electrochemical biosensors are attractive due to superior performance in response time, cost, complexity and potential for miniaturization. To address the shortcomings of traditional benchtop electrochemical instruments, in recent years, many complementary metal oxide semiconductor (CMOS instrumentation circuits have been reported for electrochemical biosensors. This paper provides a review and analysis of CMOS electrochemical instrumentation circuits. First, important concepts in electrochemical sensing are presented from an instrumentation point of view. Then, electrochemical instrumentation circuits are organized into functional classes, and reported CMOS circuits are reviewed and analyzed to illuminate design options and performance tradeoffs. Finally, recent trends and challenges toward on-CMOS sensor integration that could enable highly miniaturized electrochemical biosensor microsystems are discussed. The information in the paper can guide next generation electrochemical sensor design.

  6. Electrochemical sensors and biosensors based on redox polymer/carbon nanotube modified electrodes: a review.

    Science.gov (United States)

    Barsan, Madalina M; Ghica, M Emilia; Brett, Christopher M A

    2015-06-30

    The aim of this review is to present the contributions to the development of electrochemical sensors and biosensors based on polyphenazine or polytriphenylmethane redox polymers together with carbon nanotubes (CNT) during recent years. Phenazine polymers have been widely used in analytical applications due to their inherent charge transport properties and electrocatalytic effects. At the same time, since the first report on a CNT-based sensor, their application in the electroanalytical chemistry field has demonstrated that the unique structure and properties of CNT are ideal for the design of electrochemical (bio)sensors. We describe here that the specific combination of phenazine/triphenylmethane polymers with CNT leads to an improved performance of the resulting sensing devices, because of their complementary electrical, electrochemical and mechanical properties, and also due to synergistic effects. The preparation of polymer/CNT modified electrodes will be presented together with their electrochemical and surface characterization, with emphasis on the contribution of each component on the overall properties of the modified electrodes. Their importance in analytical chemistry is demonstrated by the numerous applications based on polymer/CNT-driven electrocatalytic effects, and their analytical performance as (bio) sensors is discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Electrochemical Sensors Based on Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Md. Aminur Rahman

    2009-03-01

    Full Text Available This review focuses on recent contributions in the development of the electrochemical sensors based on carbon nanotubes (CNTs. CNTs have unique mechanical and electronic properties, combined with chemical stability, and behave electrically as a metal or semiconductor, depending on their structure. For sensing applications, CNTs have many advantages such as small size with larger surface area, excellent electron transfer promoting ability when used as electrodes modifier in electrochemical reactions, and easy protein immobilization with retention of its activity for potential biosensors. CNTs play an important role in the performance of electrochemical biosensors, immunosensors, and DNA biosensors. Various methods have been developed for the design of sensors using CNTs in recent years. Herein we summarize the applications of CNTs in the construction of electrochemical sensors and biosensors along with other nanomaterials and conducting polymers.

  8. Recent advances in synthesis of three-dimensional porous graphene and its applications in construction of electrochemical (bio)sensors for small biomolecules detection.

    Science.gov (United States)

    Lu, Lu

    2018-07-01

    Electrochemical (bio)sensors have attracted much attention due to their high sensitivity, fast response time, biocompatibility, low cost and easy miniaturization. Specially, ever-growing necessity and interest have given rise to the fast development of electrochemical (bio)sensors for the detection of small biomolecules. They play enormous roles in the life processes with various biological function, such as life signal transmission, genetic expression and metabolism. Moreover, their amount in body can be used as an indicator for diagnosis of many diseases. For example, an abnormal concentration of blood glucose can indicate hyperglycemia or hypoglycemia. Graphene (GR) shows great applications in electrochemical (bio)sensors. Compared with two-dimensional (2D) GR that is inclined to stack together due to the strong π-π interaction, monolithic 3D porous GR has larger specific area, superior mechanical strength, better stability, higher conductivity and electrocatalytic activity. So they attracted more and increasing attention as sensing materials for small biomolecules. This review focuses on the recent advances and strategies in the fabrication methods of 3D porous GR and the development of various electrochemical (bio)sensors based on porous GR and its nanocomposites for the detection of small biomolecules. The challenges and future efforts direction of high-performance electrochemical (bio)sensors based on 3D porous GR for more sensitive analysis of small biomolecules are discussed and proposed. It will give readers an overall understanding of their progress and provide some theoretical guidelines for their future efforts and development. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Synthesis and utilization of carbon nanotubes for fabrication of electrochemical biosensors

    International Nuclear Information System (INIS)

    Lawal, Abdulazeez T.

    2016-01-01

    Graphical abstract: Carbon nanotubes. - Highlights: • This review discusses synthesis and applications of carbon nanotubes sensors. • The review summarizes contributions of carbon nanotube to electrochemical biosensor. • Good electrical conductivity makes carbon nanotubes a good material for biosensors. • Carbon nanotubes promotes electron transfer that aids biosensing of biomolecules. - Abstract: This review summarizes the most recent contributions in the fabrication of carbon nanotubes-based electrochemical biosensors in recent years. It discusses the synthesis and application of carbon nanotubes to the assembly of carbon nanotube-based electrochemical sensors, its analytical performance and future expectations. An increasing number of reviews and publications involving carbon nanotubes sensors have been reported ever since the first design of carbon nanotube electrochemical biosensors. The large surface area and good electrical conductivity of carbon nanotubes allow them to act as “electron wire” between the redox center of an enzyme or protein and an electrode's surface, which make them very excellent material for the design of electrochemical biosensors. Carbon nanotubes promote the different rapid electron transfers that facilitate accurate and selective detection of cytochrome-c, β-nicotinamide adenine dinucleotide, hemoglobin and biomolecules, such as glucose, cholesterol, ascorbic acid, uric acid, dopamine pesticides, metals ions and hydrogen peroxide.

  10. Synthesis and utilization of carbon nanotubes for fabrication of electrochemical biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Lawal, Abdulazeez T., E-mail: abdul.lawal@yahoo.com

    2016-01-15

    Graphical abstract: Carbon nanotubes. - Highlights: • This review discusses synthesis and applications of carbon nanotubes sensors. • The review summarizes contributions of carbon nanotube to electrochemical biosensor. • Good electrical conductivity makes carbon nanotubes a good material for biosensors. • Carbon nanotubes promotes electron transfer that aids biosensing of biomolecules. - Abstract: This review summarizes the most recent contributions in the fabrication of carbon nanotubes-based electrochemical biosensors in recent years. It discusses the synthesis and application of carbon nanotubes to the assembly of carbon nanotube-based electrochemical sensors, its analytical performance and future expectations. An increasing number of reviews and publications involving carbon nanotubes sensors have been reported ever since the first design of carbon nanotube electrochemical biosensors. The large surface area and good electrical conductivity of carbon nanotubes allow them to act as “electron wire” between the redox center of an enzyme or protein and an electrode's surface, which make them very excellent material for the design of electrochemical biosensors. Carbon nanotubes promote the different rapid electron transfers that facilitate accurate and selective detection of cytochrome-c, β-nicotinamide adenine dinucleotide, hemoglobin and biomolecules, such as glucose, cholesterol, ascorbic acid, uric acid, dopamine pesticides, metals ions and hydrogen peroxide.

  11. Nanotechnology: A Tool for Improved Performance on Electrochemical Screen-Printed (BioSensors

    Directory of Open Access Journals (Sweden)

    Elena Jubete

    2009-01-01

    Full Text Available Screen-printing technology is a low-cost process, widely used in electronics production, especially in the fabrication of disposable electrodes for (biosensor applications. The pastes used for deposition of the successive layers are based on a polymeric binder with metallic dispersions or graphite, and can also contain functional materials such as cofactors, stabilizers and mediators. More recently metal nanoparticles, nanowires and carbon nanotubes have also been included either in these pastes or as a later stage on the working electrode. This review will summarize the use of nanomaterials to improve the electrochemical sensing capability of screen-printed sensors. It will cover mainly disposable sensors and biosensors for biomedical interest and toxicity monitoring, compiling recent examples where several types of metallic and carbon-based nanostructures are responsible for enhancing the performance of these devices.

  12. From electrochemical biosensors to biomimetic sensors based on molecularly imprinted polymers in environmental determination of heavy metals

    Science.gov (United States)

    Malitesta, Cosimino; Di Masi, Sabrina; Mazzotta, Elisabetta

    2017-07-01

    Recent work relevant to heavy metal determination by inhibition-enzyme electrochemical biosensors and by selected biomimetic sensors based on molecularly imprinted polymers has been reviewed. General features and peculiar aspects have been evidenced. The replace of biological component by artificial receptors promises higher selectivity and stability, while biosensors keep their capability of producing an integrated response directly related to toxicity of the samples.

  13. From Electrochemical Biosensors to Biomimetic Sensors Based on Molecularly Imprinted Polymers in Environmental Determination of Heavy Metals

    Directory of Open Access Journals (Sweden)

    Cosimino Malitesta

    2017-07-01

    Full Text Available Recent work relevant to heavy metal determination by inhibition-enzyme electrochemical biosensors and by selected biomimetic sensors based on molecularly imprinted polymers has been reviewed. General features and peculiar aspects have been evidenced. The replace of biological component by artificial receptors promises higher selectivity and stability, while biosensors keep their capability of producing an integrated response directly related to biological toxicity of the samples.

  14. Electrochemical biosensors

    CERN Document Server

    Cosnier, Serge

    2015-01-01

    "This is an excellent book on modern electrochemical biosensors, edited by Professor Cosnier and written by leading international experts. It covers state-of-the-art topics of this important field in a clear and timely manner."-Prof. Joseph Wang, UC San Diego, USA  "This book covers, in 13 well-illustrated chapters, the potential of electrochemical methods intimately combined with a biological component for the assay of various analytes of biological and environmental interest. Particular attention is devoted to the description of electrochemical microtools in close contact with a biological cell for exocytosis monitoring and to the use of nanomaterials in the electrochemical biosensor architecture for signal improvement. Interestingly, one chapter describes the concept and design of self-powered biosensors derived from biofuel cells. Each topic is reviewed by experts very active in the field. This timely book is well suited for providing a good overview of current research trends devoted to electrochemical...

  15. Recent Progress in Electrochemical Biosensors for Glycoproteins

    Directory of Open Access Journals (Sweden)

    Uichi Akiba

    2016-12-01

    Full Text Available This review provides an overview of recent progress in the development of electrochemical biosensors for glycoproteins. Electrochemical glycoprotein sensors are constructed by combining metal and carbon electrodes with glycoprotein-selective binding elements including antibodies, lectin, phenylboronic acid and molecularly imprinted polymers. A recent trend in the preparation of glycoprotein sensors is the successful use of nanomaterials such as graphene, carbon nanotube, and metal nanoparticles. These nanomaterials are extremely useful for improving the sensitivity of glycoprotein sensors. This review focuses mainly on the protocols for the preparation of glycoprotein sensors and the materials used. Recent improvements in glycoprotein sensors are discussed by grouping the sensors into several categories based on the materials used as recognition elements.

  16. Electrochemical biosensors for hormone analyses.

    Science.gov (United States)

    Bahadır, Elif Burcu; Sezgintürk, Mustafa Kemal

    2015-06-15

    Electrochemical biosensors have a unique place in determination of hormones due to simplicity, sensitivity, portability and ease of operation. Unlike chromatographic techniques, electrochemical techniques used do not require pre-treatment. Electrochemical biosensors are based on amperometric, potentiometric, impedimetric, and conductometric principle. Amperometric technique is a commonly used one. Although electrochemical biosensors offer a great selectivity and sensitivity for early clinical analysis, the poor reproducible results, difficult regeneration steps remain primary challenges to the commercialization of these biosensors. This review summarizes electrochemical (amperometric, potentiometric, impedimetric and conductometric) biosensors for hormone detection for the first time in the literature. After a brief description of the hormones, the immobilization steps and analytical performance of these biosensors are summarized. Linear ranges, LODs, reproducibilities, regenerations of developed biosensors are compared. Future outlooks in this area are also discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Electrochemical Sensors for Clinic Analysis

    Directory of Open Access Journals (Sweden)

    Guang Li

    2008-03-01

    Full Text Available Demanded by modern medical diagnosis, advances in microfabrication technology have led to the development of fast, sensitive and selective electrochemical sensors for clinic analysis. This review addresses the principles behind electrochemical sensor design and fabrication, and introduces recent progress in the application of electrochemical sensors to analysis of clinical chemicals such as blood gases, electrolytes, metabolites, DNA and antibodies, including basic and applied research. Miniaturized commercial electrochemical biosensors will form the basis of inexpensive and easy to use devices for acquiring chemical information to bring sophisticated analytical capabilities to the non-specialist and general public alike in the future.

  18. Carbon Nanomaterials Based Electrochemical Sensors/Biosensors for the Sensitive Detection of Pharmaceutical and Biological Compounds

    Directory of Open Access Journals (Sweden)

    Bal-Ram Adhikari

    2015-09-01

    Full Text Available Electrochemical sensors and biosensors have attracted considerable attention for the sensitive detection of a variety of biological and pharmaceutical compounds. Since the discovery of carbon-based nanomaterials, including carbon nanotubes, C60 and graphene, they have garnered tremendous interest for their potential in the design of high-performance electrochemical sensor platforms due to their exceptional thermal, mechanical, electronic, and catalytic properties. Carbon nanomaterial-based electrochemical sensors have been employed for the detection of various analytes with rapid electron transfer kinetics. This feature article focuses on the recent design and use of carbon nanomaterials, primarily single-walled carbon nanotubes (SWCNTs, reduced graphene oxide (rGO, SWCNTs-rGO, Au nanoparticle-rGO nanocomposites, and buckypaper as sensing materials for the electrochemical detection of some representative biological and pharmaceutical compounds such as methylglyoxal, acetaminophen, valacyclovir, β-nicotinamide adenine dinucleotide hydrate (NADH, and glucose. Furthermore, the electrochemical performance of SWCNTs, rGO, and SWCNT-rGO for the detection of acetaminophen and valacyclovir was comparatively studied, revealing that SWCNT-rGO nanocomposites possess excellent electrocatalytic activity in comparison to individual SWCNT and rGO platforms. The sensitive, reliable and rapid analysis of critical disease biomarkers and globally emerging pharmaceutical compounds at carbon nanomaterials based electrochemical sensor platforms may enable an extensive range of applications in preemptive medical diagnostics.

  19. Applications of Ionic Liquids in Electrochemical Sensors and Biosensors

    Directory of Open Access Journals (Sweden)

    Virendra V. Singh

    2012-01-01

    Full Text Available Ionic liquids (ILs are salt that exist in the liquid phase at and around 298 K and are comprised of a bulky, asymmetric organic cation and the anion usually inorganic ion but some ILs also with organic anion. ILs have attracted much attention as a replacement for traditional organic solvents as they possess many attractive properties. Among these properties, intrinsic ion conductivity, low volatility, high chemical and thermal stability, low combustibility, and wide electrochemical windows are few. Due to negligible or nonzero volatility of these solvents, they are considered “greener” for the environment as they do not evaporate like volatile organic compounds (VOCs. ILs have been widely used in electrodeposition, electrosynthesis, electrocatalysis, electrochemical capacitor, lubricants, plasticizers, solvent, lithium batteries, solvents to manufacture nanomaterials, extraction, gas absorption agents, and so forth. Besides a brief discussion of the introduction, history, and properties of ILs the major purpose of this review paper is to provide an overview on the advantages of ILs for the synthesis of conducting polymer and nanoparticle when compared to conventional media and also to focus on the electrochemical sensors and biosensors based on IL/composite modified macrodisk electrodes. Subsequently, recent developments and major strategies for enhancing sensing performance are discussed.

  20. Electrochemical sensor for detection of carcinoma

    International Nuclear Information System (INIS)

    Thakur, Bhawana; Sawant, Shilpa N.; Jayakumar, S.

    2012-01-01

    Detection of carcinoma in early stage is very important for its effective treatment. Although considerable advancement has been made in its detection and treatment, there is a significant need for rapid, low-cost, sensitive, and selective biosensors for detection of cancer. In recent years, electrochemical detection techniques have received much attention due to their rapid response, high sensitivity, and inherent selectivity. They can provide an inexpensive platform for detection of analytes in clinical diagnostics. Conducting polymers are a versatile material for development of electrochemical biosensors. Due to the conducting nature of these polymers, they act as a transducer to convert the biological signal into electrical signal. These polymers also exhibit good biocompatibility, hence are ideal for immobilisation of biological recognition element during the development of the sensor film. Recently author have demonstrated a whole cell based electrochemical biosensor for detection of the pesticide Lindane at very low concentrations. In the present study, we have tried to develop polyaniline based electrochemical sensor for detection of carcinoma. Polyaniline was deposited on gold interdigitated electrodes by electropolymerization using potentiodynamic method. The polymer film was suitably modified to obtain the sensor film for recognition of the tumour cells. Response of the sensor to various tumour cells such as lung cancer cells, human fibrosarcoma cells, prostate cancer cells, breast cancer cells was studied and was compared to that of normal cells. The sensor electrode could detect tumour cells based on the nature of response obtained

  1. GOX-functionalized nanodiamond films for electrochemical biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Villalba, Pedro [Department of Chemical and Biomedical Engineering, University of South Florida (United States); Departamento de Medicina, Universidad del Norte, Barranquilla (Colombia); Ram, Manoj K., E-mail: mkram@usf.edu [Department of Mechanical Engineering, University of South Florida, 4202 E Fowler Avenue, Tampa, FL, 33620-5350 (United States); Nanotechnology Research and Education Center, University of South Florida (United States); Gomez, Humberto [Department of Mechanical Engineering, University of South Florida, 4202 E Fowler Avenue, Tampa, FL, 33620-5350 (United States); Departamento de Medicina, Universidad del Norte, Barranquilla (Colombia); Kumar, Amrita [Department of Physiology, Emory University. Atlanta GA (United States); Bhethanabotla, Venkat [Department of Chemical and Biomedical Engineering, University of South Florida (United States); Kumar, Ashok [Department of Mechanical Engineering, University of South Florida, 4202 E Fowler Avenue, Tampa, FL, 33620-5350 (United States); Nanotechnology Research and Education Center, University of South Florida (United States)

    2011-07-20

    The importance of nanodiamond in biological and technological applications has been recognized recently, and applied in drug delivery, biochip, sensors and biosensors. Under this investigation, nanodiamond (ND) and nitrogen doped nanodiamond (NND) were deposited on n-type silicon films, and later functionalized with enzyme Glucose oxidase (GOX). The GOX functionalized doped and undoped ND films were characterized using combination of several techniques; i.e. FTIR spectroscopy, Raman spectroscopy, atomic force microscopy (AFM) and electrochemical techniques. ND/GOX and NND/GOX thin films on n-type silicon have been found to provide sensitive glucose sensor. GOX has been chosen as a model enzyme system to functionalize with ND at molecular level to understand the glucose biosensor. - Research highlights: {yields} Nanodiamond (ND) films were used as an enzyme electrode for glucose quantification. {yields} Electrochemical behavior of doped and intrinsic films was analyzed. {yields} Electrode demonstrates sensitivity to glucose concentration in dynamic condition. {yields} Linear behavior was observed upto 8mM before saturation condition.

  2. GOX-functionalized nanodiamond films for electrochemical biosensor

    International Nuclear Information System (INIS)

    Villalba, Pedro; Ram, Manoj K.; Gomez, Humberto; Kumar, Amrita; Bhethanabotla, Venkat; Kumar, Ashok

    2011-01-01

    The importance of nanodiamond in biological and technological applications has been recognized recently, and applied in drug delivery, biochip, sensors and biosensors. Under this investigation, nanodiamond (ND) and nitrogen doped nanodiamond (NND) were deposited on n-type silicon films, and later functionalized with enzyme Glucose oxidase (GOX). The GOX functionalized doped and undoped ND films were characterized using combination of several techniques; i.e. FTIR spectroscopy, Raman spectroscopy, atomic force microscopy (AFM) and electrochemical techniques. ND/GOX and NND/GOX thin films on n-type silicon have been found to provide sensitive glucose sensor. GOX has been chosen as a model enzyme system to functionalize with ND at molecular level to understand the glucose biosensor. - Research highlights: → Nanodiamond (ND) films were used as an enzyme electrode for glucose quantification. → Electrochemical behavior of doped and intrinsic films was analyzed. → Electrode demonstrates sensitivity to glucose concentration in dynamic condition. → Linear behavior was observed upto 8mM before saturation condition.

  3. Surfactant Sensors in Biotechnology; Part 1 – Electrochemical Sensors

    Directory of Open Access Journals (Sweden)

    Milan Sak-Bosnar

    2004-01-01

    Full Text Available An overview on electrochemical surfactant sensors is given with special attention to papers published since 1993. The importance of surfactants in modern biotechnology is stressed out. Electrochemical sensors are usually divided according to the measured physical quantity to potentiometric, amperometric, conductometric and impedimetric surfactant sensors. The last ones are very few. Potentiometric surfactant sensors are the most numerous due to their simplicity and versatility. They can be used either as end-point titration sensors or as direct EMF measurement sensors, in batch or flow-through mode. Some amperometric surfactant sensors are true biosensors that use microorganisms or living cells.

  4. Microfabricated Electrochemical Cell-Based Biosensors for Analysis of Living Cells In Vitro

    Directory of Open Access Journals (Sweden)

    Jun Wang

    2012-04-01

    Full Text Available Cellular biochemical parameters can be used to reveal the physiological and functional information of various cells. Due to demonstrated high accuracy and non-invasiveness, electrochemical detection methods have been used for cell-based investigation. When combined with improved biosensor design and advanced measurement systems, the on-line biochemical analysis of living cells in vitro has been applied for biological mechanism study, drug screening and even environmental monitoring. In recent decades, new types of miniaturized electrochemical biosensor are emerging with the development of microfabrication technology. This review aims to give an overview of the microfabricated electrochemical cell-based biosensors, such as microelectrode arrays (MEA, the electric cell-substrate impedance sensing (ECIS technique, and the light addressable potentiometric sensor (LAPS. The details in their working principles, measurement systems, and applications in cell monitoring are covered. Driven by the need for high throughput and multi-parameter detection proposed by biomedicine, the development trends of electrochemical cell-based biosensors are also introduced, including newly developed integrated biosensors, and the application of nanotechnology and microfluidic technology.

  5. Development of an electrochemical DNA biosensor for detection of ...

    Indian Academy of Sciences (India)

    2.4 million of deaths.1,2 Southern hybridization tech- niques, radiographic .... Electrochemical DNA sensors can be greatly affected .... 3.5 Diagnostic performance of the biosensor ... Silva M M S, Cavalcanti I T, Barroso M F, Sales M G F.

  6. Electrochemical sensors based on polyconjugated conducting polymers

    Energy Technology Data Exchange (ETDEWEB)

    Zotti, G. (Ist. di Polarografia ed Elettrochimica Preparativa, Consiglio Nazionale delle Ricerche, Padua (Italy))

    1992-09-01

    An overview of the applications of polyconjugated conducting polymers to electrochemical sensors is given. Gas sensors, ion sensors, and biosensors (non-enzyme and enzyme sensors) are presented and discussed. The role of the polymer as enzyme host and mediator of charge transfer is particularly emphasized in the light of recent results. (orig.).

  7. Smart electrochemical biosensors: From advanced materials to ultrasensitive devices

    Energy Technology Data Exchange (ETDEWEB)

    Sadik, Omowunmi A., E-mail: osadik@binghamton.ed [Department of Chemistry, Center for Advanced Sensors and Environmental Monitoring (CASE), State University of New York-Binghamton, P.O. Box 6000, Binghamton, NY 13902 (United States); Mwilu, Samuel K.; Aluoch, Austin [Department of Chemistry, Center for Advanced Sensors and Environmental Monitoring (CASE), State University of New York-Binghamton, P.O. Box 6000, Binghamton, NY 13902 (United States)

    2010-05-30

    The specificity, simplicity, and inherent miniaturization afforded by advances in modern electronics have allowed electrochemical sensors to rival the most advanced optical protocols. One major obstacle in implementing electrochemistry for studying biomolecular reaction is its inadequate sensitivity. Recent reports however showed unprecedented sensitivities for biomolecular recognition using enhanced electronic amplification provided by new classes of electrode materials (e.g. carbon nanotubes, metal nanoparticles, and quantum dots). Biosensor technology is one area where recent advances in nanomaterials are pushing the technological limits of electrochemical sensitivities, thus allowing for the development of new sensor chemistries and devices. This work focuses on our recent work, based on metal-enhanced electrochemical detection, and those of others in combining advanced nanomaterials with electrochemistry for the development of smart sensors for proteins, nucleic acids, drugs and cancer cells.

  8. Smart electrochemical biosensors: From advanced materials to ultrasensitive devices

    International Nuclear Information System (INIS)

    Sadik, Omowunmi A.; Mwilu, Samuel K.; Aluoch, Austin

    2010-01-01

    The specificity, simplicity, and inherent miniaturization afforded by advances in modern electronics have allowed electrochemical sensors to rival the most advanced optical protocols. One major obstacle in implementing electrochemistry for studying biomolecular reaction is its inadequate sensitivity. Recent reports however showed unprecedented sensitivities for biomolecular recognition using enhanced electronic amplification provided by new classes of electrode materials (e.g. carbon nanotubes, metal nanoparticles, and quantum dots). Biosensor technology is one area where recent advances in nanomaterials are pushing the technological limits of electrochemical sensitivities, thus allowing for the development of new sensor chemistries and devices. This work focuses on our recent work, based on metal-enhanced electrochemical detection, and those of others in combining advanced nanomaterials with electrochemistry for the development of smart sensors for proteins, nucleic acids, drugs and cancer cells.

  9. Electrochemical Biosensors - Sensor Principles and Architectures

    Directory of Open Access Journals (Sweden)

    Erik Reimhult

    2008-03-01

    Full Text Available Quantification of biological or biochemical processes are of utmost importancefor medical, biological and biotechnological applications. However, converting the biologicalinformation to an easily processed electronic signal is challenging due to the complexity ofconnecting an electronic device directly to a biological environment. Electrochemical biosensorsprovide an attractive means to analyze the content of a biological sample due to thedirect conversion of a biological event to an electronic signal. Over the past decades severalsensing concepts and related devices have been developed. In this review, the most commontraditional techniques, such as cyclic voltammetry, chronoamperometry, chronopotentiometry,impedance spectroscopy, and various field-effect transistor based methods are presented alongwith selected promising novel approaches, such as nanowire or magnetic nanoparticle-basedbiosensing. Additional measurement techniques, which have been shown useful in combinationwith electrochemical detection, are also summarized, such as the electrochemical versionsof surface plasmon resonance, optical waveguide lightmode spectroscopy, ellipsometry,quartz crystal microbalance, and scanning probe microscopy.The signal transduction and the general performance of electrochemical sensors are often determinedby the surface architectures that connect the sensing element to the biological sampleat the nanometer scale. The most common surface modification techniques, the various electrochemicaltransduction mechanisms, and the choice of the recognition receptor moleculesall influence the ultimate sensitivity of the sensor. New nanotechnology-based approaches,such as the use of engineered ion-channels in lipid bilayers, the encapsulation of enzymesinto vesicles, polymersomes, or polyelectrolyte capsules provide additional possibilities forsignal amplification.In particular, this review highlights the importance of the precise control over the

  10. Electrochemical Aptamer Scaffold Biosensors for Detection of Botulism and Ricin Proteins.

    Science.gov (United States)

    Daniel, Jessica; Fetter, Lisa; Jett, Susan; Rowland, Teisha J; Bonham, Andrew J

    2017-01-01

    Electrochemical DNA (E-DNA) biosensors enable the detection and quantification of a variety of molecular targets, including oligonucleotides, small molecules, heavy metals, antibodies, and proteins. Here we describe the design, electrode preparation and sensor attachment, and voltammetry conditions needed to generate and perform measurements using E-DNA biosensors against two protein targets, the biological toxins ricin and botulinum neurotoxin. This method can be applied to generate E-DNA biosensors for the detection of many other protein targets, with potential advantages over other systems including sensitive detection limits typically in the nanomolar range, real-time monitoring, and reusable biosensors.

  11. Disease-Related Detection with Electrochemical Biosensors: A Review.

    Science.gov (United States)

    Huang, Ying; Xu, Jin; Liu, Junjie; Wang, Xiangyang; Chen, Bin

    2017-10-17

    Rapid diagnosis of diseases at their initial stage is critical for effective clinical outcomes and promotes general public health. Classical in vitro diagnostics require centralized laboratories, tedious work and large, expensive devices. In recent years, numerous electrochemical biosensors have been developed and proposed for detection of various diseases based on specific biomarkers taking advantage of their features, including sensitivity, selectivity, low cost and rapid response. This article reviews research trends in disease-related detection with electrochemical biosensors. Focus has been placed on the immobilization mechanism of electrochemical biosensors, and the techniques and materials used for the fabrication of biosensors are introduced in details. Various biomolecules used for different diseases have been listed. Besides, the advances and challenges of using electrochemical biosensors for disease-related applications are discussed.

  12. Electrochemical and AFM Characterization of G-Quadruplex Electrochemical Biosensors and Applications

    Science.gov (United States)

    2018-01-01

    Guanine-rich DNA sequences are able to form G-quadruplexes, being involved in important biological processes and representing smart self-assembling nanomaterials that are increasingly used in DNA nanotechnology and biosensor technology. G-quadruplex electrochemical biosensors have received particular attention, since the electrochemical response is particularly sensitive to the DNA structural changes from single-stranded, double-stranded, or hairpin into a G-quadruplex configuration. Furthermore, the development of an increased number of G-quadruplex aptamers that combine the G-quadruplex stiffness and self-assembling versatility with the aptamer high specificity of binding to a variety of molecular targets allowed the construction of biosensors with increased selectivity and sensitivity. This review discusses the recent advances on the electrochemical characterization, design, and applications of G-quadruplex electrochemical biosensors in the evaluation of metal ions, G-quadruplex ligands, and other small organic molecules, proteins, and cells. The electrochemical and atomic force microscopy characterization of G-quadruplexes is presented. The incubation time and cations concentration dependence in controlling the G-quadruplex folding, stability, and nanostructures formation at carbon electrodes are discussed. Different G-quadruplex electrochemical biosensors design strategies, based on the DNA folding into a G-quadruplex, the use of G-quadruplex aptamers, or the use of hemin/G-quadruplex DNAzymes, are revisited. PMID:29666699

  13. Recent Advances in Electrochemical Biosensors Based on Fullerene-C60 Nano-Structured Platforms.

    Science.gov (United States)

    Pilehvar, Sanaz; De Wael, Karolien

    2015-11-23

    Nanotechnology is becoming increasingly important in the field of (bio)sensors. The performance and sensitivity of biosensors is greatly improved with the integration of nanomaterials into their construction. Since its first discovery, fullerene-C60 has been the object of extensive research. Its unique and favorable characteristics of easy chemical modification, conductivity, and electrochemical properties has led to its tremendous use in (bio)sensor applications. This paper provides a concise review of advances in fullerene-C60 research and its use as a nanomaterial for the development of biosensors. We examine the research work reported in the literature on the synthesis, functionalization, approaches to nanostructuring electrodes with fullerene, and outline some of the exciting applications in the field of (bio)sensing.

  14. Development of an electrochemical biosensor for vitamin B12 using D-phenylalanine nanotubes

    Science.gov (United States)

    Moazeni, Maryam; Karimzadeh, Fathallah; Kermanpur, Ahmad; Allafchian, Alireza

    2018-01-01

    In the past decades, biosensors are one of the most interesting topics among researchers and scientist. The biosensors are used in several applications such as determining food quality, control and diagnose clinical problems and metabolic control. Therefore, many efforts have been carried out to design and develop a new generation of these systems. On the other hand nanotechnology by improving the performance of sensors has created an excellent outlook. Using nanomaterials such as nanoparticles, nanotubes, nanowires, and nanorods in diagnostic tools has been significantly increased accuracy, sensitivity and improved detection limits in sensors. In this study, the one-dimensional morphology of the D-phenylalanine was assembled on the surface of the gold electrode. In the next step electrochemical performance of the modified electrode was investigated by Cyclic Voltammetry (CV), Electrochemical Impedance Spectroscopy (EIS) and Differential Pals Voltammograms (DPV). Finally, by measuring the different concentrations of vitamin B12, the detection limit of the biosensor was obtained 1.6 µM.

  15. Gold nanoparticle-based electrochemical biosensors

    International Nuclear Information System (INIS)

    Pingarron, Jose M.; Yanez-Sedeno, Paloma; Gonzalez-Cortes, Araceli

    2008-01-01

    The unique properties of gold nanoparticles to provide a suitable microenvironment for biomolecules immobilization retaining their biological activity, and to facilitate electron transfer between the immobilized proteins and electrode surfaces, have led to an intensive use of this nanomaterial for the construction of electrochemical biosensors with enhanced analytical performance with respect to other biosensor designs. Recent advances in this field are reviewed in this article. The advantageous operational characteristics of the biosensing devices designed making use of gold nanoparticles are highlighted with respect to non-nanostructured biosensors and some illustrative examples are commented. Electrochemical enzyme biosensors including those using hybrid materials with carbon nanotubes and polymers, sol-gel matrices, and layer-by-layer architectures are considered. Moreover, electrochemical immunosensors in which gold nanoparticles play a crucial role in the electrode transduction enhancement of the affinity reaction as well as in the efficiency of immunoreagents immobilization in a stable mode are reviewed. Similarly, recent advances in the development of DNA biosensors using gold nanoparticles to improve DNA immobilization on electrode surfaces and as suitable labels to improve detection of hybridization events are considered. Finally, other biosensors designed with gold nanoparticles oriented to electrically contact redox enzymes to electrodes by a reconstitution process and to the study of direct electron transfer between redox proteins and electrode surfaces have also been treated

  16. Gold nanoparticle-based electrochemical biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Pingarron, Jose M.; Yanez-Sedeno, Paloma; Gonzalez-Cortes, Araceli [Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040 Madrid (Spain)

    2008-08-01

    The unique properties of gold nanoparticles to provide a suitable microenvironment for biomolecules immobilization retaining their biological activity, and to facilitate electron transfer between the immobilized proteins and electrode surfaces, have led to an intensive use of this nanomaterial for the construction of electrochemical biosensors with enhanced analytical performance with respect to other biosensor designs. Recent advances in this field are reviewed in this article. The advantageous operational characteristics of the biosensing devices designed making use of gold nanoparticles are highlighted with respect to non-nanostructured biosensors and some illustrative examples are commented. Electrochemical enzyme biosensors including those using hybrid materials with carbon nanotubes and polymers, sol-gel matrices, and layer-by-layer architectures are considered. Moreover, electrochemical immunosensors in which gold nanoparticles play a crucial role in the electrode transduction enhancement of the affinity reaction as well as in the efficiency of immunoreagents immobilization in a stable mode are reviewed. Similarly, recent advances in the development of DNA biosensors using gold nanoparticles to improve DNA immobilization on electrode surfaces and as suitable labels to improve detection of hybridization events are considered. Finally, other biosensors designed with gold nanoparticles oriented to electrically contact redox enzymes to electrodes by a reconstitution process and to the study of direct electron transfer between redox proteins and electrode surfaces have also been treated. (author)

  17. Electrochemical biosensors in pharmaceutical analysis

    Directory of Open Access Journals (Sweden)

    Eric de Souza Gil

    2010-09-01

    Full Text Available Given the increasing demand for practical and low-cost analytical techniques, biosensors have attracted attention for use in the quality analysis of drugs, medicines, and other analytes of interest in the pharmaceutical area. Biosensors allow quantification not only of the active component in pharmaceutical formulations, but also the analysis of degradation products and metabolites in biological fluids. Thus, this article presents a brief review of biosensor use in pharmaceutical analysis, focusing on enzymatic electrochemical sensors.Em virtude do aumento da demanda por técnicas analíticas simples e de baixo custo, os biossensores têm atraído a atenção para a análise de fármacos, medicamentos e outros analitos de interesse em controle de qualidade de medicamentos. Os biossensores permitem a quantificação não somente de princípio ativo em formulações farmacêuticas, mas também de produtos de degradação e metabólitos em fluídos biológicos, bem como análise de amostras de interesse clínico e industrial, além de possibilitar a determinação de enantiômeros. Desta forma, este artigo objetiva fazer uma breve revisão a respeito do emprego de biossensores em análise farmacêutica, com ênfase em sensores eletroquímicos enzimáticos.

  18. Disease-Related Detection with Electrochemical Biosensors: A Review

    Directory of Open Access Journals (Sweden)

    Ying Huang

    2017-10-01

    Full Text Available Rapid diagnosis of diseases at their initial stage is critical for effective clinical outcomes and promotes general public health. Classical in vitro diagnostics require centralized laboratories, tedious work and large, expensive devices. In recent years, numerous electrochemical biosensors have been developed and proposed for detection of various diseases based on specific biomarkers taking advantage of their features, including sensitivity, selectivity, low cost and rapid response. This article reviews research trends in disease-related detection with electrochemical biosensors. Focus has been placed on the immobilization mechanism of electrochemical biosensors, and the techniques and materials used for the fabrication of biosensors are introduced in details. Various biomolecules used for different diseases have been listed. Besides, the advances and challenges of using electrochemical biosensors for disease-related applications are discussed.

  19. Electrochemical paper-based peptide nucleic acid biosensor for detecting human papillomavirus

    Energy Technology Data Exchange (ETDEWEB)

    Teengam, Prinjaporn [Program in Petrochemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10330 (Thailand); Siangproh, Weena [Department of Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok, 10110 (Thailand); Tuantranont, Adisorn [Nanoelectronics and MEMS Laboratory, National Electronics and Computer Technology Center, Pathumthani, 12120 (Thailand); Henry, Charles S. [Department of Chemistry, Colorado State University, Fort Collins, CO, 80523 (United States); Vilaivan, Tirayut [Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10330 (Thailand); Chailapakul, Orawon, E-mail: corawon@chula.ac.th [Electrochemistry and Optical Spectroscopy Research Unit, Department of Chemistry, Chulalongkorn University, Pathumwan, Bangkok, 10330 (Thailand); Nanotec-CU Center of Excellence on Food and Agriculture, Bangkok, 10330 (Thailand)

    2017-02-01

    A novel paper-based electrochemical biosensor was developed using an anthraquinone-labeled pyrrolidinyl peptide nucleic acid (acpcPNA) probe (AQ-PNA) and graphene-polyaniline (G-PANI) modified electrode to detect human papillomavirus (HPV). An inkjet printing technique was employed to prepare the paper-based G-PANI-modified working electrode. The AQ-PNA probe baring a negatively charged amino acid at the N-terminus was immobilized onto the electrode surface through electrostatic attraction. Electrochemical impedance spectroscopy (EIS) was used to verify the AQ-PNA immobilization. The paper-based electrochemical DNA biosensor was used to detect a synthetic 14-base oligonucleotide target with a sequence corresponding to human papillomavirus (HPV) type 16 DNA by measuring the electrochemical signal response of the AQ label using square-wave voltammetry before and after hybridization. It was determined that the current signal significantly decreased after the addition of target DNA. This phenomenon is explained by the rigidity of PNA-DNA duplexes, which obstructs the accessibility of electron transfer from the AQ label to the electrode surface. Under optimal conditions, the detection limit of HPV type 16 DNA was found to be 2.3 nM with a linear range of 10–200 nM. The performance of this biosensor on real DNA samples was tested with the detection of PCR-amplified DNA samples from the SiHa cell line. The new method employs an inexpensive and disposable device, which easily incinerated after use and is promising for the screening and monitoring of the amount of HPV-DNA type 16 to identify the primary stages of cervical cancer. - Highlights: • A paper-based DNA biosensor using AQ-PNA probe and G-PANI modified electrode was first developed. • This developed DNA biosensor was highly specific over the non-complementary DNA. • This sensor was successfully applied to detect the HPV-DNA type 16 obtained from cancer cell lines. • This sensor is inexpensive and

  20. A paper-based nanomodified electrochemical biosensor for ethanol detection in beers

    International Nuclear Information System (INIS)

    Cinti, Stefano; Basso, Mattia; Moscone, Danila; Arduini, Fabiana

    2017-01-01

    Herein, we report the first example of a paper-based screen-printed biosensor for the detection of ethanol in beer samples. Common office paper was adopted to fabricate the analytical device. The properties of this paper-based screen-printed electrode (SPE) were investigated by cyclic voltammetry, electrochemical impedance spectroscopy, and scanning electron microscopy, and they were compared with the well-established polyester-based SPEs as well. Paper demonstrated similar properties when compared with polyester, highlighting suitability towards its utilization in sensor development, with the advantages of low cost and simple disposal by incineration. A nanocomposite formed by Carbon Black (CB) and Prussian Blue nanoparticles (PBNPs), namely CB/PBNPs, was utilized as an electrocatalyst to detect the hydrogen peroxide generated by the enzymatic reaction between alcohol oxidase (AOx) and ethanol. After optimizing the analytical parameters, such as pH, enzyme, concentration, and working potential, the developed biosensor allowed a facile quantification of ethanol up to 10 mM (0.058 %_v_o_l), with a sensitivity of 9.13 μA/mM cm"2 (1574 μA/%_v_o_l cm"2) and a detection limit equal to 0.52 mM (0.003%_v_o_l). These satisfactory performances rendered the realized paper-based biosensor reliable over the analysis of ethanol contained in four different types of beers, including Pilsner, Weiss, Lager, and alcohol-free. The proposed manufacturing approach offers an affordable and sustainable tool for food quality control and for the realization of different electrochemical sensors and biosensors as well. - Highlights: • Novel ethanol biosensor fabricated onto office paper. • Enhanced hydrogen peroxide detection using Carbon black/Prussian blue nanoparticles. • Only 100 μL required to perform measurements. • Paper-based electrochemical device coupled with a portable potentiostat. • Rapid quantification of ethanol in beer samples.

  1. A paper-based nanomodified electrochemical biosensor for ethanol detection in beers

    Energy Technology Data Exchange (ETDEWEB)

    Cinti, Stefano, E-mail: stefano.cinti@uniroma2.it; Basso, Mattia; Moscone, Danila; Arduini, Fabiana, E-mail: fabiana.arduini@uniroma2.it

    2017-04-01

    Herein, we report the first example of a paper-based screen-printed biosensor for the detection of ethanol in beer samples. Common office paper was adopted to fabricate the analytical device. The properties of this paper-based screen-printed electrode (SPE) were investigated by cyclic voltammetry, electrochemical impedance spectroscopy, and scanning electron microscopy, and they were compared with the well-established polyester-based SPEs as well. Paper demonstrated similar properties when compared with polyester, highlighting suitability towards its utilization in sensor development, with the advantages of low cost and simple disposal by incineration. A nanocomposite formed by Carbon Black (CB) and Prussian Blue nanoparticles (PBNPs), namely CB/PBNPs, was utilized as an electrocatalyst to detect the hydrogen peroxide generated by the enzymatic reaction between alcohol oxidase (AOx) and ethanol. After optimizing the analytical parameters, such as pH, enzyme, concentration, and working potential, the developed biosensor allowed a facile quantification of ethanol up to 10 mM (0.058 %{sub vol}), with a sensitivity of 9.13 μA/mM cm{sup 2} (1574 μA/%{sub vol} cm{sup 2}) and a detection limit equal to 0.52 mM (0.003%{sub vol}). These satisfactory performances rendered the realized paper-based biosensor reliable over the analysis of ethanol contained in four different types of beers, including Pilsner, Weiss, Lager, and alcohol-free. The proposed manufacturing approach offers an affordable and sustainable tool for food quality control and for the realization of different electrochemical sensors and biosensors as well. - Highlights: • Novel ethanol biosensor fabricated onto office paper. • Enhanced hydrogen peroxide detection using Carbon black/Prussian blue nanoparticles. • Only 100 μL required to perform measurements. • Paper-based electrochemical device coupled with a portable potentiostat. • Rapid quantification of ethanol in beer samples.

  2. Electrochemical Biosensors: A Solution to Pollution Detection with Reference to Environmental Contaminants

    Directory of Open Access Journals (Sweden)

    Gustavo Hernandez-Vargas

    2018-03-01

    Full Text Available The increasing environmental pollution with particular reference to emerging contaminants, toxic heavy elements, and other hazardous agents is a serious concern worldwide. Considering this global issue, there is an urgent need to design and develop strategic measuring techniques with higher efficacy and precision to detect a broader spectrum of numerous contaminants. The development of precise instruments can further help in real-time and in-process monitoring of the generation and release of environmental pollutants from different industrial sectors. Moreover, real-time monitoring can also reduce the excessive consumption of several harsh chemicals and reagents with an added advantage of on-site determination of contaminant composition prior to discharge into the environment. With key scientific advances, electrochemical biosensors have gained considerable attention to solve this problem. Electrochemical biosensors can be an excellent fit as an analytical tool for monitoring programs to implement legislation. Herein, we reviewed the current trends in the use of electrochemical biosensors as novel tools to detect various contaminant types including toxic heavy elements. A particular emphasis was given to screen-printed electrodes, nanowire sensors, and paper-based biosensors and their role in the pollution detection processes. Towards the end, the work is wrapped up with concluding remarks and future perspectives. In summary, electrochemical biosensors and related areas such as bioelectronics, and (bio-nanotechnology seem to be growing areas that will have a marked influence on the development of new bio-sensing strategies in future studies.

  3. Electrochemical Biosensors: A Solution to Pollution Detection with Reference to Environmental Contaminants.

    Science.gov (United States)

    Hernandez-Vargas, Gustavo; Sosa-Hernández, Juan Eduardo; Saldarriaga-Hernandez, Sara; Villalba-Rodríguez, Angel M; Parra-Saldivar, Roberto; Iqbal, Hafiz M N

    2018-03-24

    The increasing environmental pollution with particular reference to emerging contaminants, toxic heavy elements, and other hazardous agents is a serious concern worldwide. Considering this global issue, there is an urgent need to design and develop strategic measuring techniques with higher efficacy and precision to detect a broader spectrum of numerous contaminants. The development of precise instruments can further help in real-time and in-process monitoring of the generation and release of environmental pollutants from different industrial sectors. Moreover, real-time monitoring can also reduce the excessive consumption of several harsh chemicals and reagents with an added advantage of on-site determination of contaminant composition prior to discharge into the environment. With key scientific advances, electrochemical biosensors have gained considerable attention to solve this problem. Electrochemical biosensors can be an excellent fit as an analytical tool for monitoring programs to implement legislation. Herein, we reviewed the current trends in the use of electrochemical biosensors as novel tools to detect various contaminant types including toxic heavy elements. A particular emphasis was given to screen-printed electrodes, nanowire sensors, and paper-based biosensors and their role in the pollution detection processes. Towards the end, the work is wrapped up with concluding remarks and future perspectives. In summary, electrochemical biosensors and related areas such as bioelectronics, and (bio)-nanotechnology seem to be growing areas that will have a marked influence on the development of new bio-sensing strategies in future studies.

  4. LDHs as electrode materials for electrochemical detection and energy storage: supercapacitor, battery and (bio)-sensor.

    Science.gov (United States)

    Mousty, Christine; Leroux, Fabrice

    2012-11-01

    From an exhaustive overview based on applicative academic literature and patent domain, the relevance of Layered Double Hydroxide (LDHs) as electrode materials for electrochemical detection of organic molecules having environmental or health impact and energy storage is evaluated. Specifically the focus is driven on their application as supercapacitor, alkaline or lithium battery and (bio)-sensor. Inherent to the high versatility of their chemical composition, charge density, anion exchange capability, LDH-based materials are extensively studied and their performances for such applications are reported. Indeed the analytical characteristics (sensitivity and detection limit) of LDH-based electrodes are scrutinized, and their specific capacity or capacitance as electrode battery or supercapacitor materials, are detailed.

  5. Embroidered electrochemical sensors on gauze for rapid quantification of wound biomarkers.

    Science.gov (United States)

    Liu, Xiyuan; Lillehoj, Peter B

    2017-12-15

    Electrochemical sensors are an attractive platform for analytical measurements due to their high sensitivity, portability and fast response time. These attributes also make electrochemical sensors well suited for wearable applications which require excellent flexibility and durability. Towards this end, we have developed a robust electrochemical sensor on gauze via a unique embroidery fabrication process for quantitative measurements of wound biomarkers. For proof of principle, this biosensor was used to detect uric acid, a biomarker for wound severity and healing, in simulated wound fluid which exhibits high specificity, good linearly from 0 to 800µM, and excellent reproducibility. Continuous sensing of uric acid was also performed using this biosensor which reveals that it can generate consistent and accurate measurements for up to 7h. Experiments to evaluate the robustness of the embroidered gauze sensor demonstrate that it offers excellent resilience against mechanical stress and deformation, making it a promising wearable platform for assessing and monitoring wound status in situ. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Innovative configurations of electrochemical DNA biosensors (a review)

    OpenAIRE

    Girousi, Stella; Karastogianni, Sofia; Serpi, Constantina

    2011-01-01

    In the field of electrochemical biosensing, transition metal complexes achieved a significant importance as hybridization indicators or electroactive markers of DNA. Their incorporation in electro-chemical DNA biosensors enables to offer a promising perspective in understanding of the biological activity of some chemical compounds. In this context, the development of innovative configurations of electrochemical DNA biosensors applied to life sciences during the last years were reviewed ...

  7. A lactate electrochemical biosensor with a titanate nanotube as direct electron transfer promoter

    International Nuclear Information System (INIS)

    Yang Mingli; Wang Jin; Li Huaqing; Wu Nianqiang Nick; Zheng Jianguo

    2008-01-01

    Hydrogen titanate (H 2 Ti 3 O 7 ) nanotubes (TNTs) have been synthesized by a one-step hydrothermal processing. Lactate oxidase (LOx) enzyme has been immobilized on the three-dimensional porous TNT network to make an electrochemical biosensor for lactate detection. Cyclic voltammetry and amperometry tests reveal that the LOx enzyme, which is supported on TNTs, maintains their substrate-specific catalytic activity. The nanotubes offer the pathway for direct electron transfer between the electrode surface and the active redox centers of LOx, which enables the biosensor to operate at a low working potential and to avoid the influence of the presence of O 2 on the amperometric current response. The biosensor exhibits a sensitivity of 0.24 μA cm -2 mM -1 , a 90% response time of 5 s, and a linear response in the range from 0.5 to 14 mM and the redox center of enzyme obviates the need of redox mediators for electrochemical enzymatic sensors, which is attractive for the development of reagentless biosensors

  8. A lactate electrochemical biosensor with a titanate nanotube as direct electron transfer promoter

    Science.gov (United States)

    Yang, Mingli; Wang, Jin; Li, Huaqing; Zheng, Jian-Guo; Wu, Nianqiang Nick

    2008-02-01

    Hydrogen titanate (H2Ti3O7) nanotubes (TNTs) have been synthesized by a one-step hydrothermal processing. Lactate oxidase (LOx) enzyme has been immobilized on the three-dimensional porous TNT network to make an electrochemical biosensor for lactate detection. Cyclic voltammetry and amperometry tests reveal that the LOx enzyme, which is supported on TNTs, maintains their substrate-specific catalytic activity. The nanotubes offer the pathway for direct electron transfer between the electrode surface and the active redox centers of LOx, which enables the biosensor to operate at a low working potential and to avoid the influence of the presence of O2 on the amperometric current response. The biosensor exhibits a sensitivity of 0.24 µA cm-2 mM-1, a 90% response time of 5 s, and a linear response in the range from 0.5 to 14 mM and the redox center of enzyme obviates the need of redox mediators for electrochemical enzymatic sensors, which is attractive for the development of reagentless biosensors.

  9. Recent advances in transition-metal dichalcogenides based electrochemical biosensors: A review.

    Science.gov (United States)

    Wang, Yi-Han; Huang, Ke-Jing; Wu, Xu

    2017-11-15

    Layered transition metal dichalcogenides (TMDCs) comprise a category of two-dimensional (2D) materials that offer exciting properties, including large surface area, metallic and semi-conducting electrical capabilities, and intercalatable morphologies. Biosensors employ biological molecules to recognize the target and utilize output elements which can translate the biorecognition event into electrical, optical or mass-sensitive signals to determine the quantities of the target. TMDCs nanomaterials have been widely applied in various electrochemical biosensors with high sensitivity and selectivity. The marriage of TMDCs and electrochemical biosensors has created many productive sensing strategies for applications in the areas of clinical diagnosis, environmental monitoring and food safety. In recent years, an increasing number of TMDCs-based electrochemical biosensors are reported, suggesting TMDCs offers new possibilities of improving the performance of electrochemical biosensors. This review summarizes recent advances in electrochemical biosensors based on TMDCs for detection of various inorganic and organic analytes in the last five years, including glucose, proteins, DNA, heavy metal, etc. In addition, we also point out the challenges and future perspectives related to the material design and development of TMDCs-based electrochemical biosensors. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Characterization of immobilization methods of antiviral antibodies in serum for electrochemical biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Huy, Tran Quang, E-mail: huytq@nihe.org.vn [National Institute of Hygiene and Epidemiology (NIHE), No1 Yersin St., Hanoi (Viet Nam); International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST), No1 Dai Co Viet, Hanoi (Viet Nam); Hanh, Nguyen Thi Hong; Van Chung, Pham; Anh, Dang Duc; Nga, Phan Thi [National Institute of Hygiene and Epidemiology (NIHE), No1 Yersin St., Hanoi (Viet Nam); Tuan, Mai Anh, E-mail: tuanma-itims@mail.hut.edu.vn [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST), No1 Dai Co Viet, Hanoi (Viet Nam)

    2011-06-01

    In this paper, we describes different methods to immobilize Japanese encephalitis virus (JEV) antibodies in human serum onto the interdigitated surface of a microelectrode sensor for optimizing electrochemical detection: (1) direct covalent binding to the silanized surface, (2) binding to the silanized surface via a cross-linker of glutaraldehyde (GA), (3) binding to glutaraldehyde/silanized surface via goat anti-human IgG polyclonal antibody and (4) binding to glutaraldehyde/silanized surface via protein A (PrA). Field emission scanning electron microscopy, Fourier transform infrared spectrometry, and fluorescence microscopy are used to verify the characteristics of antibodies on the interdigitated surface after the serum antibodies immobilization. The analyzed results indicate that the use of protein A is an effective choice for immobilization and orientation of antibodies in serum for electrochemical biosensors. This study provides an advantageous immobilization method of serum containing antiviral antibodies to develop electrochemical biosensors for preliminary screening of viruses in clinical samples from outbreaks.

  11. Nucleic Acids and Enzymes at Electrodes: Electrochemical Nanomedical Biosensors and Biofuel Cell Development

    DEFF Research Database (Denmark)

    Ferapontova, Elena

    Starting from the development of the first electrochemical biosensor for glucose, as far as in 1962, the electrochemical biosensor research area underwent a dramatic evolution both in scientific and commercial directions. At present, electrochemical biosensors are widely used in medical practice,...... perspectives of the biosensor research and such biotechnological applications as enzyme electrodes for sustainable energy production (6) will be discussed.......Starting from the development of the first electrochemical biosensor for glucose, as far as in 1962, the electrochemical biosensor research area underwent a dramatic evolution both in scientific and commercial directions. At present, electrochemical biosensors are widely used in medical practice......, by offering extremely sensitive and accurate yet simple, rapid, and inexpensive biosensing platforms (1). In this talk, I will discuss the developed at iNANO reagentless enzymatic biosensors, in which the enzyme is directly electronically coupled to the electrode (1-3), and advanced genosensor platforms...

  12. Recent advances in electrochemical biosensors based on graphene two-dimensional nanomaterials.

    Science.gov (United States)

    Song, Yang; Luo, Yanan; Zhu, Chengzhou; Li, He; Du, Dan; Lin, Yuehe

    2016-02-15

    Graphene as a star among two-dimensional nanomaterials has attracted tremendous research interest in the field of electrochemistry due to their intrinsic properties, including the electronic, optical, and mechanical properties associated with their planar structure. The marriage of graphene and electrochemical biosensors has created many ingenious biosensing strategies for applications in the areas of clinical diagnosis and food safety. This review provides a comprehensive overview of the recent advances in the development of graphene based electrochemical biosensors. Special attention is paid to graphene-based enzyme biosensors, immunosensors, and DNA biosensors. Future perspectives on high-performance graphene-based electrochemical biosensors are also discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Electrochemical DNA Hybridization Sensors Based on Conducting Polymers

    Science.gov (United States)

    Rahman, Md. Mahbubur; Li, Xiao-Bo; Lopa, Nasrin Siraj; Ahn, Sang Jung; Lee, Jae-Joon

    2015-01-01

    Conducting polymers (CPs) are a group of polymeric materials that have attracted considerable attention because of their unique electronic, chemical, and biochemical properties. This is reflected in their use in a wide range of potential applications, including light-emitting diodes, anti-static coating, electrochromic materials, solar cells, chemical sensors, biosensors, and drug-release systems. Electrochemical DNA sensors based on CPs can be used in numerous areas related to human health. This review summarizes the recent progress made in the development and use of CP-based electrochemical DNA hybridization sensors. We discuss the distinct properties of CPs with respect to their use in the immobilization of probe DNA on electrode surfaces, and we describe the immobilization techniques used for developing DNA hybridization sensors together with the various transduction methods employed. In the concluding part of this review, we present some of the challenges faced in the use of CP-based DNA hybridization sensors, as well as a future perspective. PMID:25664436

  14. Electrochemical DNA Hybridization Sensors Based on Conducting Polymers

    Directory of Open Access Journals (Sweden)

    Md. Mahbubur Rahman

    2015-02-01

    Full Text Available Conducting polymers (CPs are a group of polymeric materials that have attracted considerable attention because of their unique electronic, chemical, and biochemical properties. This is reflected in their use in a wide range of potential applications, including light-emitting diodes, anti-static coating, electrochromic materials, solar cells, chemical sensors, biosensors, and drug-release systems. Electrochemical DNA sensors based on CPs can be used in numerous areas related to human health. This review summarizes the recent progress made in the development and use of CP-based electrochemical DNA hybridization sensors. We discuss the distinct properties of CPs with respect to their use in the immobilization of probe DNA on electrode surfaces, and we describe the immobilization techniques used for developing DNA hybridization sensors together with the various transduction methods employed. In the concluding part of this review, we present some of the challenges faced in the use of CP-based DNA hybridization sensors, as well as a future perspective.

  15. Electrochemical affinity biosensors for detection of mycotoxins: A review.

    Science.gov (United States)

    Vidal, Juan C; Bonel, Laura; Ezquerra, Alba; Hernández, Susana; Bertolín, Juan R; Cubel, Carlota; Castillo, Juan R

    2013-11-15

    This review discusses the current state of electrochemical biosensors in the determination of mycotoxins in foods. Mycotoxins are highly toxic secondary metabolites produced by molds. The acute toxicity of these results in serious human and animal health problems, although it has been only since early 1960s when the first studied aflatoxins were found to be carcinogenic. Mycotoxins affect a broad range of agricultural products, most important cereals and cereal-based foods. A majority of countries, mentioning especially the European Union, have established preventive programs to control contamination and strict laws of the permitted levels in foods. Official methods of analysis of mycotoxins normally requires sophisticated instrumentation, e.g. liquid chromatography with fluorescence or mass detectors, combined with extraction procedures for sample preparation. For about sixteen years, the use of simpler and faster analytical procedures based on affinity biosensors has emerged in scientific literature as a very promising alternative, particularly electrochemical (i.e., amperometric, impedance, potentiometric or conductimetric) affinity biosensors due to their simplicity and sensitivity. Typically, electrochemical biosensors for mycotoxins use specific antibodies or aptamers as affinity ligands, although recombinant antibodies, artificial receptors and molecular imprinted polymers show potential utility. This article deals with recent advances in electrochemical affinity biosensors for mycotoxins and covers complete literature from the first reports about sixteen years ago. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Electrochemical DNA biosensor based on grafting-to mode of terminal deoxynucleoside transferase-mediated extension.

    Science.gov (United States)

    Chen, Jinyuan; Liu, Zhoujie; Peng, Huaping; Zheng, Yanjie; Lin, Zhen; Liu, Ailin; Chen, Wei; Lin, Xinhua

    2017-12-15

    Previously reported electrochemical DNA biosensors based on in-situ polymerization approach reveal that terminal deoxynucleoside transferase (TdTase) has good amplifying performance and promising application in the design of electrochemical DNA biosensor. However, this method, in which the background is significantly affected by the amount of TdTase, suffers from being easy to produce false positive result and poor stability. Herein, we firstly present a novel electrochemical DNA biosensor based on grafting-to mode of TdTase-mediated extension, in which DNA targets are polymerized in homogeneous solution and then hybridized with DNA probes on BSA-based DNA carrier platform. It is surprising to find that the background in the grafting-to mode of TdTase-based electrochemical DNA biosensor have little interference from the employed TdTase. Most importantly, the proposed electrochemical DNA biosensor shows greatly improved detection performance over the in-situ polymerization approach-based electrochemical DNA biosensor. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Pyrrolidinyl PNA polypyrrole/silver nanofoam electrode as a novel label-free electrochemical miRNA-21 biosensor.

    Science.gov (United States)

    Kangkamano, Tawatchai; Numnuam, Apon; Limbut, Warakorn; Kanatharana, Proespichaya; Vilaivan, Tirayut; Thavarungkul, Panote

    2018-04-15

    A label-free electrochemical miRNA biosensor was developed based on a pyrrolidinyl peptide nucleic acid (acpcPNA)/polypyrrole (PPy)/silver nanofoam (AgNF) modified electrode. The AgNF was electrodeposited as redox indicator on a gold electrode, which was then functionalized with an electropolymerized layer of PPy, a conducting polymer, to immobilize the PNA probes. The fabrication process was investigated by electrochemical impedance spectroscopy. The biosensor was used to detect miRNA-21, a biomarker abnormally expressed in most cancers. The signal was monitored by the change in current of the AgNF redox reaction before and after hybridization using cyclic voltammetry. Two PNA probe lengths were investigated and the longer probe exhibited a better performance. Nucleotide overhangs on the electrode side affected the signal more than overhangs on the solution side due to the greater insulation of the sensing surface. Under optimal conditions, the electrochemical signal was proportional to miRNA-21 concentrations between 0.20fM and 1.0nM, with a very low detection limit of 0.20fM. The biosensor showed a high specificity which could discriminate between complementary, single-, doubled-base mismatched, and non-complementary targets. Three out of the seven tested plasma samples provided detectable concentrations (63 ± 4, 111 ± 4 and 164 ± 7fM). The sensor also showed good recoveries (81-119%). The results indicated the possibilities of this biosensor for analysis without RNA extraction and/or amplification, making the sensor potentially useful for both the prognosis and diagnosis of cancer in clinical application. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Development of electrochemical sensor for the determination of toxic gases

    International Nuclear Information System (INIS)

    Ahmed, R.

    1997-01-01

    Monitoring release of flue and toxic gases and vapours of volatile organic toxic substances into the atmosphere is one of the most important problems in environmental pollution control studies particularly in industrial installations in order to avoid poisoning and other health hazards. In industrial areas continuous monitoring of toxic gases and vapours is required for the safety of workers and for this purpose different types of sensors and available such as thermal sensors mass sensors, biosensors, optical sensors and electrochemical sensors. Among all of these sensors electrochemical sensors are most cost-effective, accurate and very good for continuous monitoring. They can be categorized into potentiometric, conductometric, amperometric and voltammetric sensors. Applications of different types of electrochemical sensors are briefly reviewed. Development of polymer membrane and conducting polymers are most important for fabrication of electrochemical sensors, which can analyse up to twenty two gases and vapours simultaneously. Some of the commercially used electrochemical sensors are described. For the determination of hydrogen sulfide an electrochemical sensor was developed. Teflon based conduction polymer membrane was treated with some electrolytes and then silver metal was deposited on one side of the membrane. Metal part side was exposed to gases and the other side was deposited on one side of the membrane metal part side was exposed to gasses and the other side was connected with two electrodes including reference and counter electrodes, whereas metal part acted as working electrode. This system can also me used for the analysis of their gases like SO/sub 2/ etc; because they react at different potentials with the metal to generate the signals. (author)

  19. Engineering the bioelectrochemical interface using functional nanomaterials and microchip technique toward sensitive and portable electrochemical biosensors.

    Science.gov (United States)

    Jia, Xiaofang; Dong, Shaojun; Wang, Erkang

    2016-02-15

    Electrochemical biosensors have played active roles at the forefront of bioanalysis because they have the potential to achieve sensitive, specific and low-cost detection of biomolecules and many others. Engineering the electrochemical sensing interface with functional nanomaterials leads to novel electrochemical biosensors with improved performances in terms of sensitivity, selectivity, stability and simplicity. Functional nanomaterials possess good conductivity, catalytic activity, biocompatibility and high surface area. Coupled with bio-recognition elements, these features can amplify signal transduction and biorecognition events, resulting in highly sensitive biosensing. Additionally, microfluidic electrochemical biosensors have attracted considerable attention on account of their miniature, portable and low-cost systems as well as high fabrication throughput and ease of scaleup. For example, electrochemical enzymetic biosensors and aptamer biosensors (aptasensors) based on the integrated microchip can be used for portable point-of-care diagnostics and environmental monitoring. This review is a summary of our recent progress in the field of electrochemical biosensors, including aptasensors, cytosensors, enzymatic biosensors and self-powered biosensors based on biofuel cells. We presented the advantages that functional nanomaterials and microfluidic chip technology bring to the electrochemical biosensors, together with future prospects and possible challenges. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Printable Electrochemical Biosensors: A Focus on Screen-Printed Electrodes and Their Application

    Directory of Open Access Journals (Sweden)

    Keiichiro Yamanaka

    2016-10-01

    Full Text Available In this review we present electrochemical biosensor developments, focusing on screen-printed electrodes (SPEs and their applications. In particular, we discuss how SPEs enable simple integration, and the portability needed for on-field applications. First, we briefly discuss the general concept of biosensors and quickly move on to electrochemical biosensors. Drawing from research undertaken in this area, we cover the development of electrochemical DNA biosensors in great detail. Through specific examples, we describe the fabrication and surface modification of printed electrodes for sensitive and selective detection of targeted DNA sequences, as well as integration with reverse transcription-polymerase chain reaction (RT-PCR. For a more rounded approach, we also touch on electrochemical immunosensors and enzyme-based biosensors. Last, we present some electrochemical devices specifically developed for use with SPEs, including USB-powered compact mini potentiostat. The coupling demonstrates the practical use of printable electrode technologies for application at point-of-use. Although tremendous advances have indeed been made in this area, a few challenges remain. One of the main challenges is application of these technologies for on-field analysis, which involves complicated sample matrices.

  1. Combining Electrochemical Sensors with Miniaturized Sample Preparation for Rapid Detection in Clinical Samples

    Science.gov (United States)

    Bunyakul, Natinan; Baeumner, Antje J.

    2015-01-01

    Clinical analyses benefit world-wide from rapid and reliable diagnostics tests. New tests are sought with greatest demand not only for new analytes, but also to reduce costs, complexity and lengthy analysis times of current techniques. Among the myriad of possibilities available today to develop new test systems, amperometric biosensors are prominent players—best represented by the ubiquitous amperometric-based glucose sensors. Electrochemical approaches in general require little and often enough only simple hardware components, are rugged and yet provide low limits of detection. They thus offer many of the desirable attributes for point-of-care/point-of-need tests. This review focuses on investigating the important integration of sample preparation with (primarily electrochemical) biosensors. Sample clean up requirements, miniaturized sample preparation strategies, and their potential integration with sensors will be discussed, focusing on clinical sample analyses. PMID:25558994

  2. How cutting-edge technologies impact the design of electrochemical (bio)sensors for environmental analysis. A review.

    Science.gov (United States)

    Arduini, Fabiana; Cinti, Stefano; Scognamiglio, Viviana; Moscone, Danila; Palleschi, Giuseppe

    2017-03-22

    Through the years, scientists have developed cutting-edge technologies to make (bio)sensors more convenient for environmental analytical purposes. Technological advancements in the fields of material science, rational design, microfluidics, and sensor printing, have radically shaped biosensor technology, which is even more evident in the continuous development of sensing systems for the monitoring of hazardous chemicals. These efforts will be crucial in solving some of the problems constraining biosensors to reach real environmental applications, such as continuous analyses in field by means of multi-analyte portable devices. This review (with 203 refs.) covers the progress between 2010 and 2015 in the field of technologies enabling biosensor applications in environmental analysis, including i) printing technology, ii) nanomaterial technology, iii) nanomotors, iv) biomimetic design, and (v) microfluidics. Next section describes futuristic cutting-edge technologies that are gaining momentum in recent years, which furnish highly innovative aspects to biosensing devices. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Electrochemical Biosensor Based on Boron-Doped Diamond Electrodes with Modified Surfaces

    Directory of Open Access Journals (Sweden)

    Yuan Yu

    2012-01-01

    Full Text Available Boron-doped diamond (BDD thin films, as one kind of electrode materials, are superior to conventional carbon-based materials including carbon paste, porous carbon, glassy carbon (GC, carbon nanotubes in terms of high stability, wide potential window, low background current, and good biocompatibility. Electrochemical biosensor based on BDD electrodes have attracted extensive interests due to the superior properties of BDD electrodes and the merits of biosensors, such as specificity, sensitivity, and fast response. Electrochemical reactions perform at the interface between electrolyte solutions and the electrodes surfaces, so the surface structures and properties of the BDD electrodes are important for electrochemical detection. In this paper, the recent advances of BDD electrodes with different surfaces including nanostructured surface and chemically modified surface, for the construction of various electrochemical biosensors, were described.

  4. Electrochemical miRNA Biosensors: The Benefits of Nanotechnology

    Directory of Open Access Journals (Sweden)

    Mostafa Azimzadeh

    2017-02-01

    Full Text Available The importance of nanotechnology in medical technologies, especially biomedical diagnostics, is indubitable. By taking advantages of nanomaterials, many medical diagnostics methods have been developed so far, including electrochemical nanobiosensors. They have been used for quantification of different clinical biomarkers for detecting, screening, or follow up a disease. microRNAs (miRNAs are one of the most recent and reliable biomarkers used for biomedical diagnosis of various diseases including different cancer types. In addition, there are many electrochemical nanobiosensors explained in publications, patents, and/or a commercial device which have been fabricated for detection or quantification of valuable miRNAs. The aim of this article is to review the concept of medical diagnostics, biosensors, electrochemical biosensors and to emphasize the role of nanotechnology in nanobiosensor development and performance for application in microRNAs detection for biomedical diagnosis. We have also summarized recent ideas and advancements in the field of electrochemical nanobiosensors for miRNA detection, and the important breakthroughs are also explained.

  5. Electrochemical, morphological and microstructural characterization of carbon film resistor electrodes for application in electrochemical sensors

    International Nuclear Information System (INIS)

    Gouveia-Caridade, Carla; Soares, David M.; Liess, Hans-Dieter; Brett, Christopher M.A.

    2008-01-01

    The electrochemical and microstructural properties of carbon film electrodes made from carbon film electrical resistors of 1.5, 15, 140 Ω and 2.0 kΩ nominal resistance have been investigated before and after electrochemical pre-treatment at +0.9 V vs SCE, in order to assess the potential use of these carbon film electrodes as electrochemical sensors and as substrates for sensors and biosensors. The results obtained are compared with those at electrodes made from previously investigated 2 Ω carbon film resistors. Cyclic voltammetry was performed in acetate buffer and phosphate buffer saline electrolytes and the kinetic parameters of the model redox system Fe(CN) 6 3-/4- obtained. The 1.5 Ω resistor electrodes show the best properties for sensor development with wide potential windows, similar electrochemical behaviour to those of 2 Ω and close-to-reversible kinetic parameters after electrochemical pre-treatment. The 15 and 140 Ω resistor electrodes show wide potential windows although with slower kinetics, whereas the 2.0 kΩ resistor electrodes show poor cyclic voltammetric profiles even after pre-treatment. Electrochemical impedance spectroscopy related these findings to the interfacial properties of the electrodes. Microstructural and morphological studies were carried out using contact mode Atomic Force Microscopy (AFM), Confocal Raman spectroscopy and X-ray diffraction. AFM showed more homogeneity of the films with lower nominal resistances, related to better electrochemical characteristics. X-ray diffraction and Confocal Raman spectroscopy indicate the existence of a graphitic structure in the carbon films

  6. Development of Electrochemical Biosensors for Ultrasensitive Detection of Bacteria in the Environment

    DEFF Research Database (Denmark)

    Fapyane, Deby

    2018-01-01

    to those conventional methods, are intensively studied. Biosensor technology is one of the strategies for rapid monitoring of pathogens such as bacteria, virus, and parasites in the environment. Among them, the electrochemical biosensor offers simple, rapid, cost-effective and possibility...... for ultrasensitive detection of bacterial cells, DNA and rRNA. Several key operational parameters were assessed such as the optimization of probe design and labeling molecules. Here, more specifically we used two novel labels for the development of the electrochemical biosensor for bacteria detection; cellulase...

  7. Electrochemical Affinity Biosensors Based on Disposable Screen-Printed Electrodes for Detection of Food Allergens

    Science.gov (United States)

    Vasilescu, Alina; Nunes, Gilvanda; Hayat, Akhtar; Latif, Usman; Marty, Jean-Louis

    2016-01-01

    Food allergens are proteins from nuts and tree nuts, fish, shellfish, wheat, soy, eggs or milk which trigger severe adverse reactions in the human body, involving IgE-type antibodies. Sensitive detection of allergens in a large variety of food matrices has become increasingly important considering the emergence of functional foods and new food manufacturing technologies. For example, proteins such as casein from milk or lysozyme and ovalbumin from eggs are sometimes used as fining agents in the wine industry. Nonetheless, allergen detection in processed foods is a challenging endeavor, as allergen proteins are degraded during food processing steps involving heating or fermentation. Detection of food allergens was primarily achieved via Enzyme-Linked Immuno Assay (ELISA) or by chromatographic methods. With the advent of biosensors, electrochemical affinity-based biosensors such as those incorporating antibodies and aptamers as biorecognition elements were also reported in the literature. In this review paper, we highlight the success achieved in the design of electrochemical affinity biosensors based on disposable screen-printed electrodes towards detection of protein allergens. We will discuss the analytical figures of merit for various disposable screen-printed affinity sensors in relation to methodologies employed for immobilization of bioreceptors on transducer surface. PMID:27827963

  8. Introduction to Biosensors From Electric Circuits to Immunosensors

    CERN Document Server

    Yoon, Jeong-Yeol

    2013-01-01

    Introduction to Biosensors: From Electric Circuits to Immunosensors discusses underlying circuitry of sensors for biomedical and biological engineers as well as biomedical sensing modalities for electrical engineers while providing an applications-based approach to the study of biosensors with over 13 extensive, hands-on labs. The material is presented using a building-block approach, beginning with the fundamentals of sensor design and temperature sensors and ending with more complicated biosensors. This book also: Provides electrical engineers with the specific knowledge they need to understand biological sensing modalities Provides biomedical engineers with a solid background in circuits and systems Includes complete coverage of temperature sensors, electrochemical sensors, DNA and immunosensors, piezoelectric sensors and immunosensing in a micofluidic device Introduction to Biosensors: From Electric Circuits to Immunosensors aims to provide an interdisciplinary approach to biosensors that will be apprecia...

  9. Immobilization techniques in the fabrication of nanomaterial-based electrochemical biosensors: a review.

    Science.gov (United States)

    Putzbach, William; Ronkainen, Niina J

    2013-04-11

    The evolution of 1st to 3rd generation electrochemical biosensors reflects a simplification and enhancement of the transduction pathway. However, in recent years, modification of the transducer with nanomaterials has become increasingly studied and imparts many advantages. The sensitivity and overall performance of enzymatic biosensors has improved tremendously as a result of incorporating nanomaterials in their fabrication. Given the unique and favorable qualities of gold nanoparticles, graphene and carbon nanotubes as applied to electrochemical biosensors, a consolidated survey of the different methods of nanomaterial immobilization on transducer surfaces and enzyme immobilization on these species is beneficial and timely. This review encompasses modification of enzymatic biosensors with gold nanoparticles, carbon nanotubes, and graphene.

  10. Immobilization Techniques in the Fabrication of Nanomaterial-Based Electrochemical Biosensors: A Review

    Directory of Open Access Journals (Sweden)

    Niina J. Ronkainen

    2013-04-01

    Full Text Available The evolution of 1st to 3rd generation electrochemical biosensors reflects a simplification and enhancement of the transduction pathway. However, in recent years, modification of the transducer with nanomaterials has become increasingly studied and imparts many advantages. The sensitivity and overall performance of enzymatic biosensors has improved tremendously as a result of incorporating nanomaterials in their fabrication. Given the unique and favorable qualities of gold nanoparticles, graphene and carbon nanotubes as applied to electrochemical biosensors, a consolidated survey of the different methods of nanomaterial immobilization on transducer surfaces and enzyme immobilization on these species is beneficial and timely. This review encompasses modification of enzymatic biosensors with gold nanoparticles, carbon nanotubes, and graphene.

  11. Direct electron transfer: an approach for electrochemical biosensors with higher selectivity and sensitivity

    Directory of Open Access Journals (Sweden)

    Freire Renato S.

    2003-01-01

    Full Text Available The most promising approach for the development of electrochemical biosensors is to establish a direct electrical communication between the biomolecules and the electrode surface. This review focuses on advances, directions and strategies in the development of third generation electrochemical biosensors. Subjects covered include a brief description of the fundamentals of the electron transfer phenomenon and amperometric biosensor development (different types and new oriented enzyme immobilization techniques. Special attention is given to different redox enzymes and proteins capable of electrocatalyzing reactions via direct electron transfer. The analytical applications and future trends for third generation biosensors are also presented and discussed.

  12. Flexible electrochemical biosensors based on graphene nanowalls for the real-time measurement of lactate

    Science.gov (United States)

    Chen, Qianwei; Sun, Tai; Song, Xuefen; Ran, Qincui; Yu, Chongsheng; Yang, Jun; Feng, Hua; Yu, Leyong; Wei, Dapeng

    2017-08-01

    We demonstrate a flexible biosensor for lactate detection based on l-lactate oxidase immobilized by chitosan film cross-linked with glutaraldehyde on the surface of a graphene nanowall (GNW) electrode. The oxygen-plasma technique was developed to enhance the wettability of the GNWs, and the strength of the sensor’s oxidation response depended on the concentration of lactate. First, in order to eliminate interference from other substances, biosensors were primarily tested in deionized water and displayed good electrochemical reversibility at different scan rates (20-100 mV s-1), a large index range (1.0 μM to 10.0 mM) and a low detection limit (1.0 μM) for lactate. Next, these sensors were further examined in phosphate buffer solution (to mimick human body fluids), and still exhibited high sensitivity, stability and flexibility. These results show that the GNW-based lactate biosensors possess important potential for application in clinical analysis, sports medicine and the food industry.

  13. Self-cleaned electrochemical protein imprinting biosensor basing on a thermo-responsive memory hydrogel.

    Science.gov (United States)

    Wei, Yubo; Zeng, Qiang; Hu, Qiong; Wang, Min; Tao, Jia; Wang, Lishi

    2018-01-15

    Herein, the self-cleaned electrochemical protein imprinting biosensor basing on a thermo-responsive memory hydrogel was constructed on a glassy carbon electrode (GCE) with a free radical polymerization method. Combining the advantages of thermo-responsive molecular imprinted polymers and electrochemistry, the resulted biosensor presents a novel self-cleaned ability for bovine serum albumin (BSA) in aqueous media. As a temperature controlled gate, the hydrogel film undergoes the adsorption and desorption of BSA basing on a reversible structure change with the external temperature stimuli. In particular, these processes have been revealed by the response of cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) of electroactive [Fe(CN) 6 ] 3-/4- . The results have been supported by the evidences of scanning electron microscopy (SEM) and contact angles measurements. Under the optimal conditions, a wide detection range from 0.02μmolL -1 to 10μmolL -1 with a detection limit of 0.012 μmolL -1 (S/N = 3) was obtained for BSA. This proposed BSA sensor also possesses high selectivity, excellent stability, acceptable recovery and good reproducibility in its practical applications. Copyright © 2017. Published by Elsevier B.V.

  14. Nanomaterial-based Electrochemical Sensors for the Detection of Glucose and Cholesterol

    Science.gov (United States)

    Ahmadalinezhad, Asieh

    designed glucose biosensor exhibits a wide linear range, up to 18 mM glucose, as well as high sensitivity and selectivity. Glucose measurements of human serum using the developed biosensor showed excellent agreement with the data recorded by a commercial blood glucose monitoring assay. Finally, we fabricated an enzyme-free glucose sensor based on nanoporous palladium-cadmium (PdCd) networks. A hydrothermal method was applied in the synthesis of PdCd nanomaterials. The effect of the composition of the PdCd nanomaterials on the performance of the electrode was investigated by cyclic voltammetry (CV). Amperometric studies showed that the nanoporous PdCd electrode was responsive to the direct oxidation of glucose with high electrocatalytic activity. The sensitivity of the sensor for continuous glucose monitoring was 146.21 microAmM--1cm--2, with linearity up to 10 mM and a detection limit of 0.05 mM. In summary, the electrochemical biosensors proposed in my PhD study exhibited high sensitivity and selectivity for the continuous monitoring of analytes in the presence of common interference species. Our results have shown that the performance of the biosensors is significantly dependent on the dimensions and morphologies of nanostructured materials. The unique nanomaterials-based platforms proposed in this dissertation open the door to the design and fabrication of high-performance electrochemical biosensors for medical diagnostics.

  15. A Study of Wearable Bio-Sensor Technologies and Applications in Healthcare

    Directory of Open Access Journals (Sweden)

    Amir Mehmood

    2017-06-01

    Full Text Available In today’s world the rapid advancements in Micro-Electromechanical Systems (MEMS and Nano technology have improved almost all the aspects of daily life routine with the help of different smart devices such as smart phones, compact electronic devices etc. The prime example of these emerging developments is the development of wireless sensors for healthcare procedures. One kind of these sensors is wearable bio-sensors. In this paper, the technologies of two types of bio-sensors (ECG, EMG are investigated and also compared with traditional ECG, EMG equipment. We have taken SHIMMERTM wireless sensor platform as an example of wearable biosensors technology. We have investigated the systems developed for analysis techniques with SHIMMERTM ECG and EMG wearable bio-sensors and these biosensors are used in continuous remote monitoring. For example, applications in continuous health monitoring of elderly people, critical chronic patients and Fitness & Fatigue observations. Nevertheless, early fall detection in older adults and weak patients, treatment efficacy assessment. This study not only provides the basic concepts of wearable wireless bio-sensors networks (WBSN, but also provides basic knowledge of different sensor platforms available for patient’s remote monitoring. Also various healthcare applications by using bio-sensors are discussed and in last comparison with traditional ECG and EMG is presented.

  16. An Oxidase-Based Electrochemical Fluidic Sensor with High-Sensitivity and Low-Interference by On-Chip Oxygen Manipulation

    Directory of Open Access Journals (Sweden)

    Chang-Soo Kim

    2012-06-01

    Full Text Available Utilizing a simple fluidic structure, we demonstrate the improved performance of oxidase-based enzymatic biosensors. Electrolysis of water is utilized to generate bubbles to manipulate the oxygen microenvironment close to the biosensor in a fluidic channel. For the proper enzyme reactions to occur, a simple mechanical procedure of manipulating bubbles was developed to maximize the oxygen level while minimizing the pH change after electrolysis. The sensors show improved sensitivities based on the oxygen dependency of enzyme reaction. In addition, this oxygen-rich operation minimizes the ratio of electrochemical interference signal by ascorbic acid during sensor operation (i.e., amperometric detection of hydrogen peroxide. Although creatinine sensors have been used as the model system in this study, this method is applicable to many other biosensors that can use oxidase enzymes (e.g., glucose, alcohol, phenol, etc. to implement a viable component for in-line fluidic sensor systems.

  17. Biosensor. Seitai sensa

    Energy Technology Data Exchange (ETDEWEB)

    Karube, I [The Univ. of Tokyo, Tokyo (Japan). Research Center for Advanced Science and Technology

    1993-06-15

    Present state of the art of biosensors is described by taking taste sensors and odor sensors as examples. Bio-devices that response only to specific chemical substances are made using membranes that recognize particular molecules. Biosensors are constructed in combination of bio-devices with electronics devices that transduce the response of bio-devices to electric signals. Enzymes are used often as bio-devices to recognize molecules. They recognize strictly chemical substances and promote chemical reactions. Devices to measure electrochemically substances consumed or produced in the reactions serve as sensors. For taste sensors, inosinic acid or glutamic acid that is a component of taste, is recognized and measured. Combination of various bio-devices other than enzymes with various transducers makes it possible to produce biosensors based on a variety of principles. Odor sensors recognize odors by measuring frequency change of the electrode of quartz oscillator. The change occurs with weight change due to odorous substances absorbed on the oscillator electrode coated with lipids which exist in olfactory cells. 1 ref., 1 fig.

  18. Preparation and electrochemical application of a new biosensor ...

    Indian Academy of Sciences (India)

    The electrocatalytic behaviour of oxidized acetaminophen was studied at the surface of the biosensor, using various electrochemical methods. The advantages of this ..... each case, a few ml of methanol was added to sample, and then it was ...

  19. Electrochemical sensors in breast cancer diagnostics and follow-up

    Directory of Open Access Journals (Sweden)

    Raquel Marques

    2015-12-01

    Full Text Available Purpose: The detection of tumor biomarkers can have a major contribution to the management of breast cancer. So far the only serum biomarker in current use in breast cancer is the cancer antigen 15-3 (CA15-3. This biomarker is used in advanced breast cancer to monitor patients and to help to identify treatment failure. The human epidermal growth factor receptor 2 (HER 2 is another biomarker whose characterization is usually made in tissue samples from primary tumour or metastasis and has been used as a prognostic factor but mainly as a target in immunotherapy treatment. Some previous studies suggest that the detection of the extracellular domain of HER2 (HER2-ECD in blood can be a prognostic factor, with even better results than its detection in tissue. Recent techniques for circulating protein biomarker detection use immunoassays, but some are, for example, not sufficiently sensitive for the detection of low biomarker concentrations. To overcome some of these problems, electrochemical (biosensors, and especially the ones using voltammetric detection, can be adequate alternatives because of their high selectivity and sensitivity which allows early detection of many diseases. Furthermore, electrochemical (biosensors are excellent to be included into point-of-care devices due to their fast response, simplicity, low cost, easy miniaturization and integration into automatic systems. Another advantage is the possibility of combining individual sensors into multiplexed detection systems. Like this they can provide fast recording of biomarker profiles of tumours which can play an important role in early detection and personalized medicine.Methods: Both individual as well as multiplexed electrochemical immunosensors were developed for the detection of CA15-3 and HER2-ECD. For this purpose a sandwich immunoassay was employed and the analytical signal was based on the voltammetric detection of enzymatically deposited silver. Screen-printed carbon

  20. Development of electrochemical biosensors with various types of zeolites

    Science.gov (United States)

    Soldatkina, O. V.; Kucherenko, I. S.; Soldatkin, O. O.; Pyeshkova, V. M.; Dudchenko, O. Y.; Akata Kurç, B.; Dzyadevych, S. V.

    2018-03-01

    In the work, different types of zeolites were used for the development of enzyme-based electrochemical biosensors. Zeolites were added to the biorecognition elements of the biosensors and served as additional components of the biomembranes or adsorbents for enzymes. Three types of biosensors (conductometric, amperometric and potentiometric) were studied. The developed biosensors were compared with the similar biosensors without zeolites. The biosensors contained the following enzymes: urease, glucose oxidase, glutamate oxidase, and acetylcholinesterase and were intended for the detection of urea, glucose, glutamate, and acetylcholine, respectively. Construction of the biosensors using the adsorption of enzymes on zeolites has several advantages: simplicity, good reproducibility, quickness, absence of toxic compounds. These benefits are particularly important for the standardization and further mass production of the biosensors. Furthermore, a biosensor for the sucrose determination contained a three-enzyme system (invertase/mutatorase/glucose oxidase), immobilized by a combination of adsorption on silicalite and cross-linking via glutaraldehyde; such combined immobilization demonstrated better results as compared with adsorption or cross-linking separately. The analysis of urea and sucrose concentrations in the real samples was carried out. The results, obtained with biosensors, had high correlation with the results of traditional analytical methods, thus the developed biosensors are promising for practical applications.

  1. Applications of polymers for biomolecule immobilization in electrochemical biosensors

    International Nuclear Information System (INIS)

    Teles, F.R.R.; Fonseca, L.P.

    2008-01-01

    Polymers are becoming inseparable from biomolecule immobilization strategies and biosensor platforms. Their original role as electrical insulators has been progressively substituted by their electrical conductive abilities, which opens a new and broad scope of applications. In addition, recent advances in diagnostic chips and microfluidic systems, together with the requirements of mass-production technologies, have raised the need to replace glass by polymeric materials, which are more suitable for production through simple manufacturing processes. Conducting polymers (CPs), in particular, are especially amenable for electrochemical biosensor development for providing biomolecule immobilization and for rapid electron transfer. It is expected that the combination of known polymer substrates, but also new transducing and biocompatible interfaces, with nanobiotechnological structures, like nanoparticles, carbon nanotubes (CNTs) and nanoengineered 'smart' polymers, may generate composites with new and interesting properties, providing higher sensitivity and stability of the immobilized molecules, thus constituting the basis for new and improved analytical devices for biomedical and other applications. This review covers the state-of-the-art and main novelties about the use of polymers for immobilization of biomolecules in electrochemical biosensor platforms

  2. Electrodeposition of enzymes-integrated mesoporous composite films by interfacial templating: A paradigm for electrochemical biosensors

    International Nuclear Information System (INIS)

    Wang, Dongming; Tan, Yiwei

    2014-01-01

    The development of nanostructured electrodes for electrochemical biosensors is of significant interest for modern detection, portable devices, and enhanced performance. However, development of such sensors still remains challenging due to the time-consuming, detriment-to-nature, and costly modifications of both electrodes and enzymes. In this work, we report a simple one-step approach to fabricating high-performance, direct electron transfer (DET) based nanoporous enzyme-embedded electrodes by electrodeposition coupled with recent progress in potential-controlled interfacial surfactant assemblies. In contrast to those previously electrodeposited mesoporous materials that are not bioactive, we imparted the biofunctionality to electrodeposited mesoporous thin films by means of the amphiphilic phospholipid templates strongly interacting with enzymes. Thus, phospholipid-templated mesoporous ZnO films covalently inlaid with the pristine enzymes were prepared by simple one-step electrodeposition. We further demonstrate two examples of such hybrid film electrodes embedded with alcohol dehydrogenase (ADH) and glucose oxidase (GOx), which are effectively employed as electrochemical biosensors for amperometric sensing of ethanol and glucose without using any electron relays. The favorable mass transport and large contact surface area provided by nanopores play an important role in improving the performance of these two biosensors, such as excellent sensitivities, low detection limits, and fast response. The matrix mesoporous films acting as effective electronic bridges are responsible for DET between enzyme molecules and metal electrode

  3. Functionalized polypyrrole nanotube arrays as electrochemical biosensor for the determination of copper ions

    International Nuclear Information System (INIS)

    Lin Meng; Hu Xiaoke; Ma Zhaohu; Chen Lingxin

    2012-01-01

    Highlights: ► PPy nanotube arrays were electropolymerized using ZnO nanowire arrays as templates. ► PPy nanotube arrays were anchored onto ITO glass without any chemical linker. ► Using SWV, the biosensor was found to be highly sensitive and selective to Cu 2+ . ► The biosensor was successfully applied for the determination of Cu 2+ in drinking water. - Abstract: A novel electrochemical biosensor based on functionalized polypyrrole (PPy) nanotube arrays modified with a tripeptide (Gly-Gly-His) proved to be highly effective for electrochemical analysis of copper ions (Cu 2+ ). The vertically oriented PPy nanotube arrays were electropolymerized by using modified zinc oxide (ZnO) nanowire arrays as templates which were electrodeposited on indium–tin oxide (ITO) coated glass substrates. The electrodes were functionalized by appending pyrrole-α-carboxylic acid onto the surface of polypyrrole nanotube arrays by electrochemical polymerization. The carboxylic groups of the polymer were covalently coupled with the amine groups of the tripeptide, and its structural features were confirmed by attenuated total reflection infrared (ATR-IR) spectroscopy. The tripeptide modified PPy nanotube arrays electrode was used for the electrochemical analysis of various trace copper ions by square wave voltammetry. The electrode was found to be highly sensitive and selective to Cu 2+ in the range of 0.1–30 μM. Furthermore, the developed biosensor exhibited a high stability and reproducibility, despite the repeated use of the biosensor electrode.

  4. A highly sensitive electrochemical glucose sensor structuring with nickel hydroxide and enzyme glucose oxidase

    International Nuclear Information System (INIS)

    Mathew, Manjusha; Sandhyarani, N.

    2013-01-01

    Graphical abstract: A combination of Ni 2+ /Ni 3+ redox couple and glucose oxidase has successfully been exploited for the realization of a highly sensitive glucose sensor for the first time. -- Highlights: • A multilayered glucose biosensor with enhanced sensitivity was fabricated. • Combination of Ni 2+ /Ni 3+ redox couple and glucose oxidase has been exploited for the first time. • Exhibits a lower detection limit of 100 nM with a high sensitivity of 16,840 μA mM −1 cm −2 . • The surface shows a low Michaelis–Menten constant value of 2.4 μM. • Detailed mechanism of sensing was proposed and justified. -- Abstract: A multilayered glucose biosensor with enhanced electron transport was fabricated via the sequential electrodeposition of chitosan gold nanocomposite (CGNC) and nickel hydroxide (Ni(OH) 2 ) on a bare gold electrode and subsequent immobilization of glucose oxidase. A thin film of Ni(OH) 2 deposited on CGNC modified gold electrode serves as an electrochemical redox probe as well as a matrix for the immobilization of glucose oxidase retaining its activity. Electron transport property of CGNC has been exploited to enhance the electron transport between the analyte and electrode. Electrochemical characteristics of the biosensor were studied by cyclic voltammetry and chronoamperometry. Under optimal conditions the biosensor exhibits a linear range from 1 μM to 100 μM with a limit of detection (lod) down to 100 nM. The sensor shows a low Michaelis-Menten constant value of 2.4 μM indicates the high affinity of enzyme to the analyte points to the retained activity of enzyme after immobilization. The present glucose sensor with the high selectivity, sensitivity and stability is promising for practical clinical applications

  5. Electronically type-sorted carbon nanotube-based electrochemical biosensors with glucose oxidase and dehydrogenase.

    Science.gov (United States)

    Muguruma, Hitoshi; Hoshino, Tatsuya; Nowaki, Kohei

    2015-01-14

    An electrochemical enzyme biosensor with electronically type-sorted (metallic and semiconducting) single-walled carbon nanotubes (SWNTs) for use in aqueous media is presented. This research investigates how the electronic types of SWNTs influence the amperometric response of enzyme biosensors. To conduct a clear evaluation, a simple layer-by-layer process based on a plasma-polymerized nano thin film (PPF) was adopted because a PPF is an inactive matrix that can form a well-defined nanostructure composed of SWNTs and enzyme. For a biosensor with the glucose oxidase (GOx) enzyme in the presence of oxygen, the response of a metallic SWNT-GOx electrode was 2 times larger than that of a semiconducting SWNT-GOx electrode. In contrast, in the absence of oxygen, the response of the semiconducting SWNT-GOx electrode was retained, whereas that of the metallic SWNT-GOx electrode was significantly reduced. This indicates that direct electron transfer occurred with the semiconducting SWNT-GOx electrode, whereas the metallic SWNT-GOx electrode was dominated by a hydrogen peroxide pathway caused by an enzymatic reaction. For a biosensor with the glucose dehydrogenase (GDH; oxygen-independent catalysis) enzyme, the response of the semiconducting SWNT-GDH electrode was 4 times larger than that of the metallic SWNT-GDH electrode. Electrochemical impedance spectroscopy was used to show that the semiconducting SWNT network has less resistance for electron transfer than the metallic SWNT network. Therefore, it was concluded that semiconducting SWNTs are more suitable than metallic SWNTs for electrochemical enzyme biosensors in terms of direct electron transfer as a detection mechanism. This study makes a valuable contribution toward the development of electrochemical biosensors that employ sorted SWNTs and various enzymes.

  6. Electrochemical H2O2 biosensor composed of myoglobin on MoS2 nanoparticle-graphene oxide hybrid structure.

    Science.gov (United States)

    Yoon, Jinho; Lee, Taek; Bapurao G, Bharate; Jo, Jinhee; Oh, Byung-Keun; Choi, Jeong-Woo

    2017-07-15

    In this research, the electrochemical biosensor composed of myoglobin (Mb) on molybdenum disulfide nanoparticles (MoS 2 NP) encapsulated with graphene oxide (GO) was fabricated for the detection of hydrogen peroxide (H 2 O 2 ). Hybrid structure composed of MoS 2 NP and GO (GO@MoS 2 ) was fabricated for the first time to enhance the electrochemical signal of the biosensor. As a sensing material, Mb was introduced to fabricate the biosensor for H 2 O 2 detection. Formation and immobilization of GO@MoS 2 was confirmed by transmission electron microscopy, ultraviolet-visible spectroscopy, scanning electron microscopy, and scanning tunneling microscopy. Immobilization of Mb, and electrochemical property of biosensor were investigated by cyclic voltammetry and amperometric i-t measurements. Fabricated biosensor showed the electrochemical signal enhanced redox current as -1.86μA at an oxidation potential and 1.95μA at a reduction potential that were enhanced relative to those of electrode prepared without GO@MoS 2 . Also, this biosensor showed the reproducibility of electrochemical signal, and retained the property until 9 days from fabrication. Upon addition of H 2 O 2 , the biosensor showed enhanced amperometric response current with selectivity relative to that of the biosensor prepared without GO@MoS 2 . This novel hybrid material-based biosensor can suggest a milestone in the development of a highly sensitive detecting platform for biosensor fabrication with highly sensitive detection of target molecules other than H 2 O 2 . Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Emerging synergy between nanotechnology and implantable biosensors: a review.

    Science.gov (United States)

    Vaddiraju, Santhisagar; Tomazos, Ioannis; Burgess, Diane J; Jain, Faquir C; Papadimitrakopoulos, Fotios

    2010-03-15

    The development of implantable biosensors for continuous monitoring of metabolites is an area of sustained scientific and technological interests. On the other hand, nanotechnology, a discipline which deals with the properties of materials at the nanoscale, is developing as a potent tool to enhance the performance of these biosensors. This article reviews the current state of implantable biosensors, highlighting the synergy between nanotechnology and sensor performance. Emphasis is placed on the electrochemical method of detection in light of its widespread usage and substantial nanotechnology based improvements in various aspects of electrochemical biosensor performance. Finally, issues regarding toxicity and biocompatibility of nanomaterials, along with future prospects for the application of nanotechnology in implantable biosensors, are discussed. (c) 2009 Elsevier B.V. All rights reserved.

  8. Fabrication strategies, sensing modes and analytical applications of ratiometric electrochemical biosensors.

    Science.gov (United States)

    Jin, Hui; Gui, Rijun; Yu, Jianbo; Lv, Wei; Wang, Zonghua

    2017-05-15

    Previously developed electrochemical biosensors with single-electric signal output are probably affected by intrinsic and extrinsic factors. In contrast, the ratiometric electrochemical biosensors (RECBSs) with dual-electric signal outputs have an intrinsic built-in correction to the effects from system or background electric signals, and therefore exhibit a significant potential to improve the accuracy and sensitivity in electrochemical sensing applications. In this review, we systematically summarize the fabrication strategies, sensing modes and analytical applications of RECBSs. First, the different fabrication strategies of RECBSs were introduced, referring to the analytes-induced single- and dual-dependent electrochemical signal strategies for RECBSs. Second, the different sensing modes of RECBSs were illustrated, such as differential pulse voltammetry, square wave voltammetry, cyclic voltammetry, alternating current voltammetry, electrochemiluminescence, and so forth. Third, the analytical applications of RECBSs were discussed based on the types of target analytes. Finally, the forthcoming development and future prospects in the research field of RECBSs were also highlighted. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. An ultrasensitive electrochemical DNA biosensor based on a copper oxide nanowires/single-walled carbon nanotubes nanocomposite

    International Nuclear Information System (INIS)

    Chen, Mei; Hou, Changjun; Huo, Danqun; Yang, Mei; Fa, Huanbao

    2016-01-01

    Graphical abstract: A novel and sensitive electrochemical biosensor based on hybrid nanocomposite consisting of copper oxide nanowires (CuO NWs) and carboxyl-functionalized single-walled carbon nanotubes (SWCNTs-COOH) was first developed for the detection of the specific-sequence target DNA. This schematic represents the fabrication procedure of our DNA biosensor. - Highlights: • An ultrasensitive DNA electrochemical biosensor was developed. • CuO NWs entangled with the SWCNTs formed a mesh structure with good conductivity. • It is the first time use of CuONWs-SWCNTs hybrid nanocomposite for DNA detection. • The biosensor is simple, selective, stable, and sensitive. • The biosensor has great potential for use in analysis of real samples. - Abstract: Here, we developed a novel and sensitive electrochemical biosensor to detect specific-sequence target DNA. The biosensor was based on a hybrid nanocomposite consisting of copper oxide nanowires (CuO NWs) and carboxyl-functionalized single-walled carbon nanotubes (SWCNTs-COOH). The resulting CuO NWs/SWCNTs layers exhibited a good differential pulse voltammetry (DPV) current response for the target DNA sequences, which we attributed to the properties of CuO NWs and SWCNTs. CuO NWs and SWCNTs hybrid composites with highly conductive and biocompatible nanostructure were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and cyclic voltammetry (CV). Immobilization of the probe DNA on the electrode surface was largely improved due to the unique synergetic effect of CuO NWs and SWCNTs. DPV was applied to monitor the DNA hybridization event, using adriamycin as an electrochemical indicator. Under optimal conditions, the peak currents of adriamycin were linear with the logarithm of target DNA concentrations (ranging from 1.0 × 10"−"1"4 to 1.0 × 10"−"8 M), with a detection limit of 3.5 × 10"−"1"5 M (signal/noise ratio of 3). The biosensor also showed high selectivity to

  10. An ultrasensitive electrochemical DNA biosensor based on a copper oxide nanowires/single-walled carbon nanotubes nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Mei [Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); Hou, Changjun, E-mail: houcj@cqu.edu.cn [Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); National Key Laboratory of Fundamental Science of Micro/Nano-Device and System Technology, Chongqing University, Chongqing 400044 (China); Huo, Danqun [Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); National Key Laboratory of Fundamental Science of Micro/Nano-Device and System Technology, Chongqing University, Chongqing 400044 (China); Yang, Mei [Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); Fa, Huanbao [College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China)

    2016-02-28

    Graphical abstract: A novel and sensitive electrochemical biosensor based on hybrid nanocomposite consisting of copper oxide nanowires (CuO NWs) and carboxyl-functionalized single-walled carbon nanotubes (SWCNTs-COOH) was first developed for the detection of the specific-sequence target DNA. This schematic represents the fabrication procedure of our DNA biosensor. - Highlights: • An ultrasensitive DNA electrochemical biosensor was developed. • CuO NWs entangled with the SWCNTs formed a mesh structure with good conductivity. • It is the first time use of CuONWs-SWCNTs hybrid nanocomposite for DNA detection. • The biosensor is simple, selective, stable, and sensitive. • The biosensor has great potential for use in analysis of real samples. - Abstract: Here, we developed a novel and sensitive electrochemical biosensor to detect specific-sequence target DNA. The biosensor was based on a hybrid nanocomposite consisting of copper oxide nanowires (CuO NWs) and carboxyl-functionalized single-walled carbon nanotubes (SWCNTs-COOH). The resulting CuO NWs/SWCNTs layers exhibited a good differential pulse voltammetry (DPV) current response for the target DNA sequences, which we attributed to the properties of CuO NWs and SWCNTs. CuO NWs and SWCNTs hybrid composites with highly conductive and biocompatible nanostructure were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and cyclic voltammetry (CV). Immobilization of the probe DNA on the electrode surface was largely improved due to the unique synergetic effect of CuO NWs and SWCNTs. DPV was applied to monitor the DNA hybridization event, using adriamycin as an electrochemical indicator. Under optimal conditions, the peak currents of adriamycin were linear with the logarithm of target DNA concentrations (ranging from 1.0 × 10{sup −14} to 1.0 × 10{sup −8} M), with a detection limit of 3.5 × 10{sup −15} M (signal/noise ratio of 3). The biosensor also showed high

  11. Carbohydrate-based electrochemical biosensor for detection of a cancer biomarker in human plasma.

    Science.gov (United States)

    Devillers, Marion; Ahmad, Lama; Korri-Youssoufi, Hafsa; Salmon, Laurent

    2017-10-15

    Autocrine motility factor (AMF) is a tumor-secreted cytokine that stimulates tumor cell motility in vitro and metastasis in vivo. AMF could be detected in serum or urine of cancer patients with worse prognosis. Reported as a cancer biomarker, AMF secretion into body fluids might be closely related to metastases formation. In this study, a sensitive and specific carbohydrate-based electrochemical biosensor was designed for the detection and quantification of a protein model of AMF, namely phosphoglucose isomerase from rabbit muscle (RmPGI). Indeed, RmPGI displays high homology with AMF and has been shown to have AMF activity. The biosensor was constructed by covalent binding of the enzyme substrate d-fructose 6-phosphate (F6P). Immobilization was achieved on a gold surface electrode following a bottom-up approach through an aminated surface obtained by electrochemical patterning of ethylene diamine and terminal amine polyethylene glycol chain to prevent non-specific interactions. Carbohydrate-protein interactions were quantified in a range of 10 fM to 100nM. Complex formation was analyzed through monitoring of the redox couple Fe 2+ /Fe 3+ by electrochemical impedance spectroscopy and square wave voltammetry. The F6P-biosensor demonstrates a detection limit of 6.6 fM and high selectivity when compared to other non-specific glycolytic proteins such as d-glucose-6-phosphate dehydrogenase. Detection of protein in spiked plasma was demonstrated and accuracy of 95% is obtained compared to result obtained in PBS (phosphate buffered saline). F6P-biosensor is a very promising proof of concept required for the design of a carbohydrate-based electrochemical biosensor using the enzyme substrate as bioreceptor. Such biosensor could be generalized to detect other protein biomarkers of interest. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Electrochemical and optical biosensors based on nanomaterials and nanostructures: a review.

    Science.gov (United States)

    Li, Ming; Li, Rui; Li, Chang Ming; Wu, Nianqiang

    2011-06-01

    Nanomaterials and nanostructures exhibit unique size-tunable and shape-dependent physicochemical properties that are different from those of bulk materials. Advances of nanomaterials and nanostructures open a new door to develop various novel biosensors. The present work has reviewed the recent progress in electrochemical, surface plasmon resonance (SPR), surface-enhanced Raman scattering (SERS) and fluorescent biosensors based on nanomaterials and nanostructures. An emphasis is put on the research that demonstrates how the performance of biosensors such as the limit of detection, sensitivity and selectivity is improved by the use of nanomaterials and nanostructures.

  13. Detection of parathyroid hormone using an electrochemical impedance biosensor based on PAMAM dendrimers.

    Science.gov (United States)

    Özcan, Hakkı Mevlüt; Sezgintürk, Mustafa Kemal

    2015-01-01

    This paper presents a novel hormone-based impedimetric biosensor to determine parathyroid hormone (PTH) level in serum for diagnosis and monitoring treatment of hyperparathyroidism, hypoparathyroidism and thyroid cancer. The interaction between PTH and the biosensor was investigated by an electrochemical method. The biosensor was based on the gold electrode modified by 12-mercapto dodecanoic (12MDDA). Antiparathyroid hormone (anti-PTH) was covalently immobilized on to poly amidoamine dendrimer (PAMAM) which was bound to a 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide/N-hydroxysuccinimide (EDC/NHS) couple, self-assembled monolayer structure from one of the other NH2 sites. The immobilization of anti-PTH was monitored by electrochemical impedance spectroscopy, cyclic voltammetry and scanning electron microscope techniques. After the optimization studies of immobilization materials such as 12MDDA, EDC-NHS, PAMAM, and glutaraldehyde, the performance of the biosensor was investigated in terms of linearity, sensitivity, repeatability, and reproducibility. PTH was detected within a linear range of 10-60 fg/mL. Finally the described biosensor was used to monitor PTH levels in artificial serum samples. © 2015 American Institute of Chemical Engineers.

  14. Electrodeposited nickel oxide and graphene modified carbon ionic liquid electrode for electrochemical myglobin biosensor

    International Nuclear Information System (INIS)

    Sun, Wei; Gong, Shixing; Deng, Ying; Li, Tongtong; Cheng, Yong; Wang, Wencheng; Wang, Lei

    2014-01-01

    By using ionic liquid 1-hexylpyridinium hexafluorophosphate based carbon ionic liquid electrode (CILE) as the substrate electrode, graphene (GR) and nickel oxide (NiO) were in situ electrodeposited step by step to get a NiO/GR nanocomposite modified CILE. Myoglobin (Mb) was further immobilized on the surface of NiO/GR/CILE with a Nafion film to get the electrochemical sensor denoted as Nafion/Mb/NiO/GR/CILE. Cyclic voltammetric experiments indicated that a pair of well-defined quasi-reversible redox peaks appeared in pH 3.0 phosphate buffer solution with the formal peak potential (E 0′ ) located at − 0.188 V (vs. SCE), which was the typical characteristics of Mb Fe(III)/Fe(II) redox couples. So the direct electron transfer of Mb was realized and promoted due to the presence of the NiO/GR nanocomposite on the electrode. Based on the cyclic voltammetric data, the electrochemical parameters of Mb on the modified electrode were calculated. The Mb modified electrode showed an excellent electrocatalytic activity towards the reduction of different substrates including trichloroacetic acid and H 2 O 2 . Therefore a third-generation electrochemical Mb biosensor based on NiO/GR/CILE was constructed with good stability and reproducibility. - Highlights: • Graphene and nickel oxide nanocomposites were prepared by electrodeposition. • Electrochemical myoglobin sensor was prepared on a nanocomposite modified electrode. • Direct electrochemistry and electrocatalysis of myglobin were realized

  15. Electrochemical bisphenol A sensor based on N-doped graphene sheets

    International Nuclear Information System (INIS)

    Fan Haixia; Li Yan; Wu Dan; Ma Hongmin; Mao Kexia; Fan Dawei; Du Bin; Li He; Wei Qin

    2012-01-01

    Highlights: ► N-doped graphene sheets have catalytic activity towards the BPA oxidation. ► The biosensor based on N-doped graphene sheets and chitosan. ► This method was proposed for determination of BPA utilizing N-doped graphene sheets. - Abstract: Bisphenol A (BPA), which could disrupt endocrine system and cause cancer, has been considered as an endocrine disruptor. Therefore, it is very important and necessary to develop a sensitive and selective method for detection of BPA. Herein, nitrogen-doped graphene sheets (N-GS) and chitosan (CS) were used to prepare electrochemical BPA sensor. Compared with graphene, N-GS has favorable electron transfer ability and electrocatalytic property, which could enhance the response signal towards BPA. CS also exhibits excellent film forming ability and improves the electrochemical behavior of N-GS modified electrode. The sensor exhibits a sensitive response to BPA in the range of 1.0 × 10 −8 –1.3 × 10 −6 mol L −1 with a low detection limit of 5.0 × 10 −9 mol L −1 under the optimal conditions. Finally, this proposed sensor was successfully employed to determine BPA in water samples with satisfactory results.

  16. Electrochemical DNA biosensors based on platinum nanoparticles combined carbon nanotubes

    International Nuclear Information System (INIS)

    Zhu Ningning; Chang Zhu; He Pingang; Fang Yuzhi

    2005-01-01

    Platinum nanoparticles were used in combination with multi-walled carbon nanotubes (MWCNTs) for fabricating sensitivity-enhanced electrochemical DNA biosensor. Multi-walled carbon nanotubes and platinum nanoparticles were dispersed in Nafion, which were used to fabricate the modification of the glassy carbon electrode (GCE) surface. Oligonucleotides with amino groups at the 5' end were covalently linked onto carboxylic groups of MWCNTs on the electrode. The hybridization events were monitored by differential pulse voltammetry (DPV) measurement of the intercalated daunomycin. Due to the ability of carbon nanotubes to promote electron-transfer reactions, the high catalytic activities of platinum nanoparticles for chemical reactions, the sensitivity of presented electrochemical DNA biosensors was remarkably improved. The detection limit of the method for target DNA was 1.0 x 10 -11 mol l -1

  17. Gold and TiO2 Nanostructure Surfaces for Assembling of Electrochemical Biosensors

    International Nuclear Information System (INIS)

    Curulli, A.; Zane, D.

    2008-01-01

    Devices based on nano materials are emerging as a powerful and general class of ultrasensitive sensors for the direct detection of biological and chemical species. In this work, we report the preparation and the full characterization of nano materials such as gold nano wires and TiO 2 nano structured films to be used for assembling of electrochemical biosensors. Gold nano wires were prepared by electroless deposition within the pores of polycarbonate particle track-etched membranes (PMS). Glucose oxidase was deposited onto the nano wires using self-assembling monolayer as an anchor layer for the enzyme molecules. Finally, cyclic voltammetry was performed for different enzymes to test the applicability of gold nano wires as biosensors. Considering another interesting nano material, the realization of functionalized TiO 2 thin films on Si substrates for the immobilization of enzymes is reported. Glucose oxidase and horseradish peroxidase immobilized onto TiO 2 -based nano structured surfaces exhibited a pair of well-defined and quasi reversible voltammetric peaks. The electron exchange between the enzyme and the electrodes was greatly enhanced in the TiO 2 nano structured environment. The electrocatalytic activity of HRP and GOD embedded in TiO 2 electrodes toward H 2 O 2 and glucose, respectively, may have a potential perspective in the fabrication of third-generation biosensors based on direct electrochemistry of enzymes.

  18. Electrochemical biosensors for Salmonella: State of the art and challenges in food safety assessment.

    Science.gov (United States)

    Silva, Nádia F D; Magalhães, Júlia M C S; Freire, Cristina; Delerue-Matos, Cristina

    2018-01-15

    According to the recent statistics, Salmonella is still an important public health issue in the whole world. Legislated reference methods, based on counting plate methods, are sensitive enough but are inadequate as an effective emergency response tool, and are far from a rapid device, simple to use out of lab. An overview of the commercially available rapid methods for Salmonella detection is provided along with a critical discussion of their limitations, benefits and potential use in a real context. The distinguished potentialities of electrochemical biosensors for the development of rapid devices are highlighted. The state-of-art and the newest technologic approaches in electrochemical biosensors for Salmonella detection are presented and a critical analysis of the literature is made in an attempt to identify the current challenges towards a complete solution for Salmonella detection in microbial food control based on electrochemical biosensors. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Electrochemical and optical sugar sensors based on phenylboronic acid and its derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Egawa, Yuya; Seki, Toshinobu [Faculty of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado, Saitama 350-0295 (Japan); Takahashi, Shigehiro [Graduate School of Pharmaceutical Sciecnes, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578 (Japan); Anzai, Jun-ichi, E-mail: junanzai@mail.pharm.tohoku.ac.jp [Graduate School of Pharmaceutical Sciecnes, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578 (Japan)

    2011-10-10

    Recent progress in electrochemical and optical sugar sensors based on phenylboronic acid (PBA) and its derivatives as recognition components is reviewed. PBAs are known to bind diol compounds including sugars to form cyclic boronate esters that are negatively charged as a result of the addition of OH{sup -} ions from solution. Based on the formation of PBA charged species, sugars and their derivatives can be detected by means of electrochemical and optical techniques. For the development of PBA-based electrochemical sensing systems or sensors, PBA is modified with a redox-active marker, because PBA itself is electrochemically inactive, and ferrocene derivatives are often employed for this purpose. Ferrocene-modified PBAs have been used as redox-active additives in solution for the electrochemical detection of sugars and derivatives. PBA-modified electrodes have also been constructed as reagentless electrochemical sensors, where PBAs are immobilized on the surface of metal and carbon electrodes through mainly two routes: as a self-assembled monolayer film and as a polymer thin film. PBA-modified electrodes can be successfully used to detect sugars and derivatives through potentiometric and voltammetric responses. In addition, PBA-modified electrodes can be used for the immobilization of glycoenzymes on an electrode surface by the formation of boronate esters with carbohydrate chains in the glycoenzymes, thus resulting in enzyme biosensors. For the development of PBA-based optical sensors, a variety of chromophores and fluorophores have been coupled with PBA. Azobenzene dyes have been most frequently used for the preparation of colorimetric sugar sensors, in which the absorption wavelength and intensity of the dye are dependent on the type and concentration of added sugars. The sensitivity of the sensors is significantly improved based on multi-component systems in which alizalin red S, pyrocatechol violet, starch-iodine complex, and cyclodextrin are employed as

  20. Electrochemical and optical sugar sensors based on phenylboronic acid and its derivatives

    International Nuclear Information System (INIS)

    Egawa, Yuya; Seki, Toshinobu; Takahashi, Shigehiro; Anzai, Jun-ichi

    2011-01-01

    Recent progress in electrochemical and optical sugar sensors based on phenylboronic acid (PBA) and its derivatives as recognition components is reviewed. PBAs are known to bind diol compounds including sugars to form cyclic boronate esters that are negatively charged as a result of the addition of OH - ions from solution. Based on the formation of PBA charged species, sugars and their derivatives can be detected by means of electrochemical and optical techniques. For the development of PBA-based electrochemical sensing systems or sensors, PBA is modified with a redox-active marker, because PBA itself is electrochemically inactive, and ferrocene derivatives are often employed for this purpose. Ferrocene-modified PBAs have been used as redox-active additives in solution for the electrochemical detection of sugars and derivatives. PBA-modified electrodes have also been constructed as reagentless electrochemical sensors, where PBAs are immobilized on the surface of metal and carbon electrodes through mainly two routes: as a self-assembled monolayer film and as a polymer thin film. PBA-modified electrodes can be successfully used to detect sugars and derivatives through potentiometric and voltammetric responses. In addition, PBA-modified electrodes can be used for the immobilization of glycoenzymes on an electrode surface by the formation of boronate esters with carbohydrate chains in the glycoenzymes, thus resulting in enzyme biosensors. For the development of PBA-based optical sensors, a variety of chromophores and fluorophores have been coupled with PBA. Azobenzene dyes have been most frequently used for the preparation of colorimetric sugar sensors, in which the absorption wavelength and intensity of the dye are dependent on the type and concentration of added sugars. The sensitivity of the sensors is significantly improved based on multi-component systems in which alizalin red S, pyrocatechol violet, starch-iodine complex, and cyclodextrin are employed as

  1. Electrochemical Glucose Biosensor Based on Glucose Oxidase Displayed on Yeast Surface.

    Science.gov (United States)

    Wang, Hongwei; Lang, Qiaolin; Liang, Bo; Liu, Aihua

    2015-01-01

    The conventional enzyme-based biosensor requires chemical or physical immobilization of purified enzymes on electrode surface, which often results in loss of enzyme activity and/or fractions immobilized over time. It is also costly. A major advantage of yeast surface display is that it enables the direct utilization of whole cell catalysts with eukaryote-produced proteins being displayed on the cell surface, providing an economic alternative to traditional production of purified enzymes. Herein, we describe the details of the display of glucose oxidase (GOx) on yeast cell surface and its application in the development of electrochemical glucose sensor. In order to achieve a direct electrochemistry of GOx, the entire cell catalyst (yeast-GOx) was immobilized together with multiwalled carbon nanotubes on the electrode, which allowed sensitive and selective glucose detection.

  2. Wireless Distribution and Use of Bio-sensor Data

    DEFF Research Database (Denmark)

    Kyng, Morten; Kristensen, Margit; Christensen, Erika Frischknecht

    2007-01-01

    consists of small bio-monitors - with sensors and a unique ID - which are placed on the victims. The bio-monitors communicate wirelessly with one or more base-stations, which distribute the signals locally at the incident site and to remote coordination centres and emergency departments. Ongoing...... data you are looking at? And, when an alarm goes off because the bio-sensor data of a patient reaches a critical threshold, how do you find the patient? In order to support medical responders on site and at coordination centres/ emergency departments, we are supplementing the bio-sensor data...

  3. Electrochemical Biosensor Based on Boron-Doped Diamond Electrodes with Modified Surfaces

    OpenAIRE

    Yu, Yuan; Zhou, Yanli; Wu, Liangzhuan; Zhi, Jinfang

    2012-01-01

    Boron-doped diamond (BDD) thin films, as one kind of electrode materials, are superior to conventional carbon-based materials including carbon paste, porous carbon, glassy carbon (GC), carbon nanotubes in terms of high stability, wide potential window, low background current, and good biocompatibility. Electrochemical biosensor based on BDD electrodes have attracted extensive interests due to the superior properties of BDD electrodes and the merits of biosensors, such as specificity, sensitiv...

  4. Estrone specific molecularly imprinted polymeric nanospheres: synthesis, characterization and applications for electrochemical sensor development.

    Science.gov (United States)

    Congur, Gulsah; Senay, Hilal; Turkcan, Ceren; Canavar, Ece; Erdem, Arzum; Akgol, Sinan

    2013-06-28

    The aim of this study is (i) to prepare estrone-imprinted nanospheres (nano-EST-MIPs) and (ii) to integrate them into the electrochemical sensor as a recognition layer. N-methacryloyl-(l)-phenylalanine (MAPA) was chosen as the complexing monomer. Firstly, estrone (EST) was complexed with MAPA and the EST-imprinted poly(2-hyroxyethylmethacrylate-co-N-methacryloyl-(l)-phenylalanine) [EST-imprinted poly(HEMA-MAPA)] nanospheres were synthesized by surfactant- free emulsion polymerization method. The specific surface area of the EST-imprinted poly(HEMA-MAPA) nanospheres was found to be 1275 m2/g with a size of 163.2 nm in diameter. According to the elemental analysis results, the nanospheres contained 95.3 mmole MAPA/g nanosphere. The application of EST specific MIP nanospheres for the development of an electrochemical biosensor was introduced for the first time in our study by using electrochemical impedance spectroscopy (EIS) technique. This nano-MIP based sensor presented a great specificity and selectivity for EST.

  5. Novel electrochemical xanthine biosensor based on chitosan–polypyrrole–gold nanoparticles hybrid bio-nanocomposite platform

    Directory of Open Access Journals (Sweden)

    Muamer Dervisevic

    2017-07-01

    Full Text Available The aim of this study was the electrochemical detection of the adenosine-3-phosphate degradation product, xanthine, using a new xanthine biosensor based on a hybrid bio-nanocomposite platform which has been successfully employed in the evaluation of meat freshness. In the design of the amperometric xanthine biosensor, chitosan–polypyrrole–gold nanoparticles fabricated by an in situ chemical synthesis method on a glassy carbon electrode surface was used to enhance electron transfer and to provide good enzyme affinity. Electrochemical studies were carried out by the modified electrode with immobilized xanthine oxidase on it, after which the biosensor was tested to ascertain the optimization parameters. The Biosensor exhibited a very good linear range of 1–200 μM, low detection limit of 0.25 μM, average response time of 8 seconds, and was not prone to significant interference from uric acid, ascorbic acid, glucose, and sodium benzoate. The resulting bio-nanocomposite xanthine biosensor was tested with fish, beef, and chicken real-sample measurements.

  6. Skin-like biosensor system via electrochemical channels for noninvasive blood glucose monitoring

    OpenAIRE

    Chen, Yihao; Lu, Siyuan; Zhang, Shasha; Li, Yan; Qu, Zhe; Chen, Ying; Lu, Bingwei; Wang, Xinyan; Feng, Xue

    2017-01-01

    Currently, noninvasive glucose monitoring is not widely appreciated because of its uncertain measurement accuracy, weak blood glucose correlation, and inability to detect hyperglycemia/hypoglycemia during sleep. We present a strategy to design and fabricate a skin-like biosensor system for noninvasive, in situ, and highly accurate intravascular blood glucose monitoring. The system integrates an ultrathin skin-like biosensor with paper battery–powered electrochemical twin channels (ETCs). The ...

  7. A Multiwell Electrochemical Biosensor for Real-Time Monitoring of the Behavioural Changes of Cells in Vitro

    Directory of Open Access Journals (Sweden)

    Daman J. Adlam

    2010-04-01

    Full Text Available We report the development of a multiwell biosensor for detecting changes in the electrochemical open circuit potential (OCP generated by viable human cells in vitro. The instrument features eight culture wells; each containing three gold sensors around a common silver/silver chloride reference electrode, prepared using screen-printed conductive inks. The potential applications of the device were demonstrated by monitoring rheumatoid synovial fibroblasts (RSF and HepG2 hepatocarcinoma cells in response to chemical and biological treatments. This technology could provide an alternative to conventional end-point assays used in the fields of chemotherapy, toxicology and drug discovery.

  8. Characterization of an electrochemical mercury sensor using alternating current, cyclic, square wave and differential pulse voltammetry

    International Nuclear Information System (INIS)

    Guerreiro, Gabriela V.; Zaitouna, Anita J.; Lai, Rebecca Y.

    2014-01-01

    Graphical abstract: -- Highlights: •An electrochemical Hg(II) sensor based on T–Hg(II)–T sensing motif was fabricated. •A methylene blue-modified DNA probe was used to fabricate the sensor. •Sensor performance was evaluated using ACV, CV, SWV, and DPV. •The sensor behaves as a “signal-off” sensor in ACV and CV. •The sensor behaves as either a “signal-on” or “signal-off” sensor in SWV and DPV. -- Abstract: Here we report the characterization of an electrochemical mercury (Hg 2+ ) sensor constructed with a methylene blue (MB)-modified and thymine-containing linear DNA probe. Similar to the linear probe electrochemical DNA sensor, the resultant sensor behaved as a “signal-off” sensor in alternating current voltammetry and cyclic voltammetry. However, depending on the applied frequency or pulse width, the sensor can behave as either a “signal-off” or “signal-on” sensor in square wave voltammetry (SWV) and differential pulse voltammetry (DPV). In SWV, the sensor showed “signal-on” behavior at low frequencies and “signal-off” behavior at high frequencies. In DPV, the sensor showed “signal-off” behavior at short pulse widths and “signal-on” behavior at long pulse widths. Independent of the sensor interrogation technique, the limit of detection was found to be 10 nM, with a linear dynamic range between 10 nM and 500 nM. In addition, the sensor responded to Hg 2+ rather rapidly; majority of the signal change occurred in 2+ , which has not been previously reported. More importantly, the observed “switching” behavior in SWV and DPV is potentially generalizable and should be applicable to most sensors in this class of dynamics-based electrochemical biosensors

  9. One-step electrodeposition of Au-Pt bimetallic nanoparticles on MoS2 nanoflowers for hydrogen peroxide enzyme-free electrochemical sensor

    International Nuclear Information System (INIS)

    Zhou, Juan; Zhao, Yanan; Bao, Jing; Huo, Danqun; Fa, Huanbao; Shen, Xin; Hou, Changjun

    2017-01-01

    The rationally designed sensor architecture is very important to improve the sensitivity and selectivity for H 2 O 2 enzyme-free electrochemical sensor. In this work, a sensitive H 2 O 2 biosensor was fabricated by electrochemical deposition of Au-Pt bimetallic nanoparticles (NPs) on molybdenum disulfide nanoflowers (MoS 2 NFs). Au-Pt NPs was dispersed or stabilized by the effective support matrix of MoS 2 nanosheets, which was effectively enhance the conductivity, catalytic performance and long-term stability. The experimental results show that MoS 2 -Au/Pt nanocomposites exhibit excellent catalytic activity for specific detection of H 2 O 2, and electrochemical measurement results show that the enzyme-free electrochemical sensor has large linear range of 10 μM to 19.07 mM with high sensitivity of 142.68 μA mM −1 cm −2 . This novel sensor produced satisfactory reproducibility and stability, and exhibited superior potential for the practical quantitative analysis of H 2 O 2 in serum samples.

  10. Tin Oxide Nanorod Array-Based Electrochemical Hydrogen Peroxide Biosensor

    Directory of Open Access Journals (Sweden)

    Liu Jinping

    2010-01-01

    Full Text Available Abstract SnO2 nanorod array grown directly on alloy substrate has been employed as the working electrode of H2O2 biosensor. Single-crystalline SnO2 nanorods provide not only low isoelectric point and enough void spaces for facile horseradish peroxidase (HRP immobilization but also numerous conductive channels for electron transport to and from current collector; thus, leading to direct electrochemistry of HRP. The nanorod array-based biosensor demonstrates high H2O2 sensing performance in terms of excellent sensitivity (379 μA mM−1 cm−2, low detection limit (0.2 μM and high selectivity with the apparent Michaelis–Menten constant estimated to be as small as 33.9 μM. Our work further demonstrates the advantages of ordered array architecture in electrochemical device application and sheds light on the construction of other high-performance enzymatic biosensors.

  11. New advances in electrochemical biosensors for the detection of toxins: Nanomaterials, magnetic beads and microfluidics systems. A review

    International Nuclear Information System (INIS)

    Reverté, Laia; Prieto-Simón, Beatriz; Campàs, Mònica

    2016-01-01

    The use of nanotechnology in bioanalytical devices has special advantages in the detection of toxins of interest in food safety and environmental applications. The low levels to be detected and the small size of toxins justify the increasing number of publications dealing with electrochemical biosensors, due to their high sensitivity and design versatility. The incorporation of nanomaterials in their development has been exploited to further increase their sensitivity, providing simple and fast devices, with multiplexed capabilities. This paper gives an overview of the electrochemical biosensors that have incorporated carbon and metal nanomaterials in their configurations for the detection of toxins. Biosensing systems based on magnetic beads or integrated into microfluidics systems have also been considered because of their contribution to the development of compact analytical devices. The roles of these materials, the methods used for their incorporation in the biosensor configurations as well as the advantages they provide to the analyses are summarised. - Highlights: • Nanomaterials improve the performance of electrochemical biosensors. • Carbon nanomaterials can act as electrocatalysts or label supports in biosensors. • Metal nanomaterials can act as nanostructured supports or labels in biosensors. • Magnetic beads are exploited as immobilisation supports and/or label carriers.

  12. New advances in electrochemical biosensors for the detection of toxins: Nanomaterials, magnetic beads and microfluidics systems. A review

    Energy Technology Data Exchange (ETDEWEB)

    Reverté, Laia [IRTA, Carretera Poble Nou km. 5.5, 43540 Sant Carles de la Ràpita, Tarragona (Spain); Prieto-Simón, Beatriz [ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, University of South Australia, SA 5095 (Australia); Campàs, Mònica, E-mail: monica.campas@irta.cat [IRTA, Carretera Poble Nou km. 5.5, 43540 Sant Carles de la Ràpita, Tarragona (Spain)

    2016-02-18

    The use of nanotechnology in bioanalytical devices has special advantages in the detection of toxins of interest in food safety and environmental applications. The low levels to be detected and the small size of toxins justify the increasing number of publications dealing with electrochemical biosensors, due to their high sensitivity and design versatility. The incorporation of nanomaterials in their development has been exploited to further increase their sensitivity, providing simple and fast devices, with multiplexed capabilities. This paper gives an overview of the electrochemical biosensors that have incorporated carbon and metal nanomaterials in their configurations for the detection of toxins. Biosensing systems based on magnetic beads or integrated into microfluidics systems have also been considered because of their contribution to the development of compact analytical devices. The roles of these materials, the methods used for their incorporation in the biosensor configurations as well as the advantages they provide to the analyses are summarised. - Highlights: • Nanomaterials improve the performance of electrochemical biosensors. • Carbon nanomaterials can act as electrocatalysts or label supports in biosensors. • Metal nanomaterials can act as nanostructured supports or labels in biosensors. • Magnetic beads are exploited as immobilisation supports and/or label carriers.

  13. Electrochemical DNA biosensor based on the BDD nanograss array electrode.

    Science.gov (United States)

    Jin, Huali; Wei, Min; Wang, Jinshui

    2013-04-10

    The development of DNA biosensor has attracted considerable attention due to their potential applications, including gene analysis, clinical diagnostics, forensic study and more medical applications. Using electroactive daunomycin as an indicator, the hybridization detection was measured by differential pulse voltammetry in this study. Electrochemical DNA biosensor was developed based on the BDD film electrode (fBDD) and BDD nanograss array electrode (nBDD). In comparison with fBDD and AuNPs/CA/fBDD electrode, the lower semicircle diameter of electrochemical impedance spectroscopy obtained on nBDD and AuNPs/CA/nBDD electrode indicated that the presence of nanograss array improved the reactive site, reduced the interfacial resistance, and made the electron transfer easier. Using electroactive daunomycin as an indicator, the hybridization detection was measured by differential pulse voltammetry. The experimental results demonstrated that the prepared AuNPs/CA/nBDD electrode was suitable for DNA hybridization with favorable performance of faster response, higher sensitivity, lower detection limit and satisfactory selectivity, reproducibility and stability.

  14. A novel bi-enzyme electrochemical biosensor for selective and sensitive determination of methyl salicylate.

    Science.gov (United States)

    Fang, Yi; Umasankar, Yogeswaran; Ramasamy, Ramaraja P

    2016-07-15

    An amperometric sensor based on a bi-enzyme modified electrode was fabricated to detect methyl salicylate, a volatile organic compound released by pathogen-infected plants via systemic response. The detection is based on cascadic conversion reactions that result in an amperometric electrochemical signal. The bi-enzyme electrode is made of alcohol oxidase and horseradish peroxidase enzymes immobilized on to a carbon nanotube matrix through a molecular tethering method. Methyl salicylate undergoes hydrolysis to form methanol, which is consumed by alcohol oxidase to form formaldehyde while simultaneously reducing oxygen to hydrogen peroxide. The hydrogen peroxide will be further reduced to water by horseradish peroxidase, which results in an amperometric signal via direct electron transfer. The bi-enzyme biosensor was evaluated by cyclic voltammetry and constant potential amperometry using hydrolyzed methyl salicylate as the analyte. The sensitivity of the bi-enzyme biosensor as determined by cyclic voltammetry and constant potential amperometry were 112.37 and 282.82μAcm(-2)mM(-1) respectively, and the corresponding limits of detection were 22.95 and 0.98μM respectively. Constant potential amperometry was also used to evaluate durability, repeatability and interference from other compounds. Wintergreen oil was used for real sample study to establish the application of the bi-enzyme sensor for selective determination of plant pathogen infections. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Microbial fuel cell-based biosensor for toxic carbon monoxide monitoring

    DEFF Research Database (Denmark)

    Zhou, Shaofeng; Huang, Shaobin; Li, Yi

    2018-01-01

    This study presents an innovative microbial fuel cell-based biosensor for carbon monoxide (CO) monitoring. The hypothesis for the function of the biosensor is that CO inhibits bacterial activity in the anode and thereby reduces electricity production. A mature electrochemically active biofilm...... increasing CO concentration over 70%. Besides, the response time of the biosensor was 1 h. The compact design and simple operation of the biosensor makes it easy to be integrated in existing CO-based industrial facilities either as a forewarning sensor for CO toxicity or even as an individual on...

  16. Preparing cuprous oxide nanomaterials by electrochemical method for non-enzymatic glucose biosensor

    Science.gov (United States)

    Nguyen, Thu-Thuy; Huy, Bui The; Hwang, Seo-Young; Vuong, Nguyen Minh; Pham, Quoc-Thai; Nghia, Nguyen Ngoc; Kirtland, Aaron; Lee, Yong-Ill

    2018-05-01

    Cuprous oxide (Cu2O) nanostructure has been synthesized using an electrochemical method with a two-electrode system. Cu foils were used as electrodes and NH2(OH) was utilized as the reducing agent. The effects of pH and applied voltages on the morphology of the product were investigated. The morphology and optical properties of Cu2O particles were characterized using scanning electron microscopy, x-ray diffraction, and diffuse reflectance spectra. The synthesized Cu2O nanostructures that formed in the vicinity of the anode at 2 V and pH = 11 showed high uniform distribution, small size, and good electrochemical sensing. These Cu2O nanoparticles were coated on an Indium tin oxide substrate and applied to detect non-enzyme glucose as excellent biosensors. The non-enzyme glucose biosensors exhibited good performance with high response, good selectivity, wide linear detection range, and a low detection limit at 0.4 μM. Synthesized Cu2O nanostructures are potential materials for a non-enzyme glucose biosensor.

  17. A nanoparticle label/immunochromatographic electrochemical biosensor for rapid and sensitive detection of prostate-specific antigen

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Ying-Ying; Wang, Jun; Liu, Guodong; Wu, Hong; Wai, Chien M.; Lin, Yuehe

    2008-06-15

    We present a nanoparticle (NP) label/immunochromatographic electrochemical biosensor (IEB) for rapid and sensitive detection of prostate-specific antigen (PSA) in human serum. This IEB integrates the immunochromatographic strip with the electrochemical detector for transducing quantitative signals. The NP label, made of CdSe@ZnS, serves as a signal-amplifier vehicle. A sandwich immunoreaction was performed on the immunochromatographic strip. The captured NP labels in the test zone were determined by highly sensitive stripping voltammetric measurement of the dissolved metallic component (cadmium) with a disposable-screen-printed electrode, which is embedded underneath the membrane of the test zone. Experimental parameters (e.g., immunoreaction time, the amount of anti-PSA-NP conjugations applied) and electrochemical detection conditions (e.g., preconcentration potential and time) were optimized using this biosensor for PSA detection. The analytical performance of this biosensor was evaluated with serum PSA samples according to the “figure-of-merits” (e.g., dynamic range, reproducibility, and detection limit). The results were validated with enzyme-linked immunosorbent assay (ELISA) and show high consistency. It is found that this biosensor is very sensitive with the detection limit of 0.02 ng/mL PSA and is quite reproducible. This method is rapid, clinically accurate, and less expensive than other diagnosis tools for PSA; therefore, this IEB coupled with a portable electrochemical analyzer shows great promise for simple, sensitive, quantitative point-of-care testing of disease-related protein biomarkers.

  18. Detection of methyl salicylate using bi-enzyme electrochemical sensor consisting salicylate hydroxylase and tyrosinase.

    Science.gov (United States)

    Fang, Yi; Bullock, Hannah; Lee, Sarah A; Sekar, Narendran; Eiteman, Mark A; Whitman, William B; Ramasamy, Ramaraja P

    2016-11-15

    Volatile organic compounds have been recognized as important marker chemicals to detect plant diseases caused by pathogens. Methyl salicylate has been identified as one of the most important volatile organic compounds released by plants during a biotic stress event such as fungal pathogen infection. Advanced detection of these marker chemicals could help in early identification of plant diseases and has huge significance for agricultural industry. This work describes the development of a novel bi-enzyme based electrochemical biosensor consisting of salicylate hydroxylase and tyrosinase enzymes immobilized on carbon nanotube modified electrodes. The amperometric detection using the bi-enzyme platform was realized through a series of cascade reactions that terminate in an electrochemical reduction reaction. Electrochemical measurements revealed that the sensitivity of the bi-enzyme sensor was 30.6±2.7µAcm(-2)µM(-1) and the limit of detection and limit of quantification were 13nM (1.80ppb) and 39nM (5.39ppb) respectively. Interference studies showed no significant interference from the other common plant volatile compounds. Synthetic analyte studies revealed that the bi-enzyme based biosensor can be used to reliably detect methyl salicylate released by unhealthy plants. Copyright © 2016. Published by Elsevier B.V.

  19. Lignin and silicate based hydrogels for biosensor applications

    Science.gov (United States)

    Burrs, S. L.; Jairam, S.; Vanegas, D. C.; Tong, Z.; McLamore, E. S.

    2013-05-01

    Advances in biocompatible materials and electrocatalytic nanomaterials have extended and enhanced the field of biosensors. Immobilization of biorecognition elements on nanomaterial platforms is an efficient technique for developing high fidelity biosensors. Single layer (i.e., Langmuir-Blodgett) protein films are efficient, but disadvantages of this approach include high cost, mass transfer limitations, and Vromer competition for surface binding sites. There is a need for simple, user friendly protein-nanomaterial sensing membranes that can be developed in laboratories or classrooms (i.e., outside of the clean room). In this research, we develop high fidelity nanomaterial platforms for developing electrochemical biosensors using sustainable biomaterials and user-friendly deposition techniques. Catalytic nanomaterial platforms are developed using a combination of self assembled monolayer chemistry and electrodeposition. High performance biomaterials (e.g., nanolignin) are recovered from paper pulp waste and combined with proteins and nanomaterials to form active sensor membranes. These methods are being used to develop electrochemical biosensors for studying physiological transport in biomedical, agricultural, and environmental applications.

  20. Graphene-Paper Based Electrochemical Sensors

    DEFF Research Database (Denmark)

    Zhang, Minwei; Halder, Arnab; Cao, Xianyi

    2017-01-01

    in electrochemical sensors and energy technologies amongothers. In this chapter, we present some examples to overview recent advances in theresearch and development of two-dimensional (2D) graphene papers as new materialsfor electrochemical sensors. The chapter covers the design, fabrication, functionalizationand...... functionalization ofgraphene papers with polymer and nanoscale functional building blocks for electrochemical-sensing purposes. In terms of electrochemical-sensing applications, the emphasis ison enzyme-graphene and nanoparticle-graphene paper-based systems for the detectionof glucose. We finally conclude...

  1. Recent Advances in Electrochemical Biosensors Based on Enzyme Inhibition for Clinical and Pharmaceutical Applications.

    Science.gov (United States)

    El Harrad, Loubna; Bourais, Ilhame; Mohammadi, Hasna; Amine, Aziz

    2018-01-09

    A large number of enzyme inhibitors are used as drugs to treat several diseases such as gout, diabetes, AIDS, depression, Parkinson's and Alzheimer's diseases. Electrochemical biosensors based on enzyme inhibition are useful devices for an easy, fast and environment friendly monitoring of inhibitors like drugs. In the last decades, electrochemical biosensors have shown great potentials in the detection of different drugs like neostigmine, ketoconazole, donepezil, allopurinol and many others. They attracted increasing attention due to the advantage of being high sensitive and accurate analytical tools, able to reach low detection limits and the possibility to be performed on real samples. This review will spotlight the research conducted in the past 10 years (2007-2017) on inhibition based enzymatic electrochemical biosensors for the analysis of different drugs. New assays based on novel bio-devices will be debated. Moreover, the exploration of the recent graphical approach in diagnosis of reversible and irreversible inhibition mechanism will be discussed. The accurate and the fast diagnosis of inhibition type will help researchers in further drug design improvements and the identification of new molecules that will serve as new enzyme targets.

  2. Recent Advances in Electrochemical Biosensors Based on Enzyme Inhibition for Clinical and Pharmaceutical Applications

    Directory of Open Access Journals (Sweden)

    Loubna El Harrad

    2018-01-01

    Full Text Available A large number of enzyme inhibitors are used as drugs to treat several diseases such as gout, diabetes, AIDS, depression, Parkinson’s and Alzheimer’s diseases. Electrochemical biosensors based on enzyme inhibition are useful devices for an easy, fast and environment friendly monitoring of inhibitors like drugs. In the last decades, electrochemical biosensors have shown great potentials in the detection of different drugs like neostigmine, ketoconazole, donepezil, allopurinol and many others. They attracted increasing attention due to the advantage of being high sensitive and accurate analytical tools, able to reach low detection limits and the possibility to be performed on real samples. This review will spotlight the research conducted in the past 10 years (2007–2017 on inhibition based enzymatic electrochemical biosensors for the analysis of different drugs. New assays based on novel bio-devices will be debated. Moreover, the exploration of the recent graphical approach in diagnosis of reversible and irreversible inhibition mechanism will be discussed. The accurate and the fast diagnosis of inhibition type will help researchers in further drug design improvements and the identification of new molecules that will serve as new enzyme targets.

  3. Development of Biosensors From Graphene

    Institute of Scientific and Technical Information of China (English)

    高瑞红; 孙红; 李霄寒; 于冲

    2017-01-01

    Graphene's success has stimulated great interest and research in the synthesis and characterization of graphene -like 2D materials, single and few -atom -thick layers of van der Waals materials, which show fascinating and technologically useful properties.This review presents an overview of recent electrochemical sensors and biosensors based on graphene and on graphene-like 2D materials.

  4. Nanomolar detection of methylparaben by a cost-effective hemoglobin-based biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Hajian, A., E-mail: ali.hajian@fmf.uni-freiburg.de [Freiburg Materials Research Center, FMF, University of Freiburg, Stefan-Meier-Str.21, 79104 Freiburg (Germany); Laboratory for Sensors, Department of Microsystems Engineering, IMTEK, University of Freiburg, 79110 Freiburg (Germany); Ghodsi, J.; Afraz, A. [Department of Physical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, 65174, Hamedan (Iran, Islamic Republic of); Yurchenko, O. [Freiburg Materials Research Center, FMF, University of Freiburg, Stefan-Meier-Str.21, 79104 Freiburg (Germany); Urban, G. [Freiburg Materials Research Center, FMF, University of Freiburg, Stefan-Meier-Str.21, 79104 Freiburg (Germany); Laboratory for Sensors, Department of Microsystems Engineering, IMTEK, University of Freiburg, 79110 Freiburg (Germany)

    2016-12-01

    This work describes the development of a new biosensor for methylparaben determination using electrocatalytic properties of hemoglobin in the presence of hydrogen peroxide. The voltammetric oxidation of methylparaben by the proposed biosensor in phosphate buffer (pH = 7.0), a physiological pH, was studied and it was confirmed that methylparaben undergoes a one electron-one proton reaction in a diffusion-controlled process. The biosensor was fabricated by carbon paste electrode modified with hemoglobin and multiwalled carbon nanotube. Based on the excellent electrochemical properties of the modified electrode, a sensitive voltammetric method was used for determination of methylparaben within a linear range from 0.1 to 13 μmol L{sup −1} and detection limit of 25 nmol L{sup −1}. The developed biosensor possessed accurate and rapid response to methylparaben and showed good sensitivity, stability, and repeatability. Finally, the applicability of the proposed biosensor was verified by methylparaben evaluation in various real samples. - Highlights: • A new methylparaben biosensor was constructed by modification of carbon paste electrode with hemoglobin and MWCNTs. • The electrochemical properties of the modified electrode and electrochemical behavior of the methylparaben on the electrode surface were studied. • The response of modified GCE was analyzed by voltammetry technique (CV and DPV). • The electrode was used to the determination of methylparaben in real samples • The performance of the fabricated biosensor was satisfactorily compared to the previously reported electrochemical sensors for methylparaben determination.

  5. Nanomolar detection of methylparaben by a cost-effective hemoglobin-based biosensor

    International Nuclear Information System (INIS)

    Hajian, A.; Ghodsi, J.; Afraz, A.; Yurchenko, O.; Urban, G.

    2016-01-01

    This work describes the development of a new biosensor for methylparaben determination using electrocatalytic properties of hemoglobin in the presence of hydrogen peroxide. The voltammetric oxidation of methylparaben by the proposed biosensor in phosphate buffer (pH = 7.0), a physiological pH, was studied and it was confirmed that methylparaben undergoes a one electron-one proton reaction in a diffusion-controlled process. The biosensor was fabricated by carbon paste electrode modified with hemoglobin and multiwalled carbon nanotube. Based on the excellent electrochemical properties of the modified electrode, a sensitive voltammetric method was used for determination of methylparaben within a linear range from 0.1 to 13 μmol L −1 and detection limit of 25 nmol L −1 . The developed biosensor possessed accurate and rapid response to methylparaben and showed good sensitivity, stability, and repeatability. Finally, the applicability of the proposed biosensor was verified by methylparaben evaluation in various real samples. - Highlights: • A new methylparaben biosensor was constructed by modification of carbon paste electrode with hemoglobin and MWCNTs. • The electrochemical properties of the modified electrode and electrochemical behavior of the methylparaben on the electrode surface were studied. • The response of modified GCE was analyzed by voltammetry technique (CV and DPV). • The electrode was used to the determination of methylparaben in real samples • The performance of the fabricated biosensor was satisfactorily compared to the previously reported electrochemical sensors for methylparaben determination.

  6. Electrochemical DNA biosensor based on avidin-biotin conjugation for influenza virus (type A) detection

    Science.gov (United States)

    Chung, Da-Jung; Kim, Ki-Chul; Choi, Seong-Ho

    2011-09-01

    An electrochemical DNA biosensor (E-DNA biosensor) was fabricated by avidin-biotin conjugation of a biotinylated probe DNA, 5'-biotin-ATG AGT CTT CTA ACC GAG GTC GAA-3', and an avidin-modified glassy carbon electrode (GCE) to detect the influenza virus (type A). An avidin-modified GCE was prepared by the reaction of avidin and a carboxylic acid-modified GCE, which was synthesized by the electrochemical reduction of 4-carboxyphenyl diazonium salt. The current value of the E-DNA biosensor was evaluated after hybridization of the probe DNA and target DNA using cyclic voltammetry (CV). The current value decreased after the hybridization of the probe DNA and target DNA. The DNA that was used follows: complementary target DNA, 5'-TTC GAC CTC GGT TAG AAG ACT CAT-3' and two-base mismatched DNA, 5'-TTC GAC AGC GGT TAT AAG ACT CAT-3'.

  7. Antibody functionalized graphene biosensor for label-free electrochemical immunosensing of fibrinogen, an indicator of trauma induced coagulopathy.

    Science.gov (United States)

    Saleem, Waqas; Salinas, Carlos; Watkins, Brian; Garvey, Gavin; Sharma, Anjal C; Ghosh, Ritwik

    2016-12-15

    An antibody, specific to fibrinogen, has been covalently attached to graphene and deposited onto screen printed electrodes using a chitosan hydrogel binder to prepare an inexpensive electrochemical fibrinogen biosensor. Fourier Transform Infrared (FT-IR) spectroscopy has been utilized to confirm the presence of the antibody on the graphene scaffold. Electrochemical Impedance Spectroscopy (EIS) has been utilized to demonstrate that the biosensor responds in a selective manner to fibrinogen in aqueous media even in the presence of plasminogen, a potentially interfering molecule in the coagulopathy cascade. Furthermore, the biosensor was shown to reliably sense fibrinogen in the presence of high background serum albumin levels. Finally, we demonstrated detection of clinically relevant fibrinogen concentrations (938-44,542μg/dL) from human serum and human whole blood samples using this biosensor. This biosensor can potentially be used in a point-of-care device to detect the onset of coagulopathy and monitor response following therapeutic intervention in trauma patients. Thus this biosensor may improve the clinical management of patients with trauma-induced coagulopathy. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Characterization of an electrochemical mercury sensor using alternating current, cyclic, square wave and differential pulse voltammetry

    Energy Technology Data Exchange (ETDEWEB)

    Guerreiro, Gabriela V.; Zaitouna, Anita J.; Lai, Rebecca Y., E-mail: rlai2@unl.edu

    2014-01-31

    Graphical abstract: -- Highlights: •An electrochemical Hg(II) sensor based on T–Hg(II)–T sensing motif was fabricated. •A methylene blue-modified DNA probe was used to fabricate the sensor. •Sensor performance was evaluated using ACV, CV, SWV, and DPV. •The sensor behaves as a “signal-off” sensor in ACV and CV. •The sensor behaves as either a “signal-on” or “signal-off” sensor in SWV and DPV. -- Abstract: Here we report the characterization of an electrochemical mercury (Hg{sup 2+}) sensor constructed with a methylene blue (MB)-modified and thymine-containing linear DNA probe. Similar to the linear probe electrochemical DNA sensor, the resultant sensor behaved as a “signal-off” sensor in alternating current voltammetry and cyclic voltammetry. However, depending on the applied frequency or pulse width, the sensor can behave as either a “signal-off” or “signal-on” sensor in square wave voltammetry (SWV) and differential pulse voltammetry (DPV). In SWV, the sensor showed “signal-on” behavior at low frequencies and “signal-off” behavior at high frequencies. In DPV, the sensor showed “signal-off” behavior at short pulse widths and “signal-on” behavior at long pulse widths. Independent of the sensor interrogation technique, the limit of detection was found to be 10 nM, with a linear dynamic range between 10 nM and 500 nM. In addition, the sensor responded to Hg{sup 2+} rather rapidly; majority of the signal change occurred in <20 min. Overall, the sensor retains all the characteristics of this class of sensors; it is reagentless, reusable, sensitive, specific and selective. This study also highlights the feasibility of using a MB-modified probe for real-time sensing of Hg{sup 2+}, which has not been previously reported. More importantly, the observed “switching” behavior in SWV and DPV is potentially generalizable and should be applicable to most sensors in this class of dynamics-based electrochemical biosensors.

  9. Recent Progress in Lectin-Based Biosensors

    Directory of Open Access Journals (Sweden)

    Baozhen Wang

    2015-12-01

    Full Text Available This article reviews recent progress in the development of lectin-based biosensors used for the determination of glucose, pathogenic bacteria and toxins, cancer cells, and lectins. Lectin proteins have been widely used for the construction of optical and electrochemical biosensors by exploiting the specific binding affinity to carbohydrates. Among lectin proteins, concanavalin A (Con A is most frequently used for this purpose as glucose- and mannose-selective lectin. Con A is useful for immobilizing enzymes including glucose oxidase (GOx and horseradish peroxidase (HRP on the surface of a solid support to construct glucose and hydrogen peroxide sensors, because these enzymes are covered with intrinsic hydrocarbon chains. Con A-modified electrodes can be used as biosensors sensitive to glucose, cancer cells, and pathogenic bacteria covered with hydrocarbon chains. The target substrates are selectively adsorbed to the surface of Con A-modified electrodes through strong affinity of Con A to hydrocarbon chains. A recent topic in the development of lectin-based biosensors is a successful use of nanomaterials, such as metal nanoparticles and carbon nanotubes, for amplifying output signals of the sensors. In addition, lectin-based biosensors are useful for studying glycan expression on living cells.

  10. Functional Conducting Polymers in the Application of SPR Biosensors

    Directory of Open Access Journals (Sweden)

    Rapiphun Janmanee

    2012-01-01

    Full Text Available In recent years, conducting polymers have emerged as one of the most promising transducers for both chemical, sensors and biosensors owing to their unique electrical, electrochemical and optical properties that can be used to convert chemical information or biointeractions into electrical or optical signals, which can easily be detected by modern techniques. Different approaches to the application of conducting polymers in chemo- or biosensing applications have been extensively studied. In order to enhance the application of conducting polymers into the area of biosensors, one approach is to introduce functional groups, including carboxylic acid, amine, sulfonate, or thiol groups, into the conducting polymer chain and to form a so-called “self-doped” or by doping with negatively charged polyelectrolytes. The functional conducting polymers have been successfully utilized to immobilize enzymes for construction of biosensors. Recently, the combination of SPR and electrochemical, known as electrochemical-surface plasmon resonance (EC-SPR, spectroscopy, has been used for in situ investigation of optical and electrical properties of conducting polymer films. Moreover, EC-SPR spectroscopy has been applied for monitoring the interaction between biomolecules and electropolymerized conjugated polymer films in biosensor and immunosensor applications. In this paper, recent development and applications on EC-SPR in biosensors will be reviewed.

  11. Analytical modeling of glucose biosensors based on carbon nanotubes.

    Science.gov (United States)

    Pourasl, Ali H; Ahmadi, Mohammad Taghi; Rahmani, Meisam; Chin, Huei Chaeng; Lim, Cheng Siong; Ismail, Razali; Tan, Michael Loong Peng

    2014-01-15

    In recent years, carbon nanotubes have received widespread attention as promising carbon-based nanoelectronic devices. Due to their exceptional physical, chemical, and electrical properties, namely a high surface-to-volume ratio, their enhanced electron transfer properties, and their high thermal conductivity, carbon nanotubes can be used effectively as electrochemical sensors. The integration of carbon nanotubes with a functional group provides a good and solid support for the immobilization of enzymes. The determination of glucose levels using biosensors, particularly in the medical diagnostics and food industries, is gaining mass appeal. Glucose biosensors detect the glucose molecule by catalyzing glucose to gluconic acid and hydrogen peroxide in the presence of oxygen. This action provides high accuracy and a quick detection rate. In this paper, a single-wall carbon nanotube field-effect transistor biosensor for glucose detection is analytically modeled. In the proposed model, the glucose concentration is presented as a function of gate voltage. Subsequently, the proposed model is compared with existing experimental data. A good consensus between the model and the experimental data is reported. The simulated data demonstrate that the analytical model can be employed with an electrochemical glucose sensor to predict the behavior of the sensing mechanism in biosensors.

  12. Developing a high performance superoxide dismutase based electrochemical biosensor for radiation dosimetry of thallium 201

    International Nuclear Information System (INIS)

    Salem, Fatemeh; Tavakoli, Hassan; Sadeghi, Mahdi; Riazi, Abbas

    2014-01-01

    To develop a new biosensor for measurement of superoxide free radical generated in radiolysis reaction, three combinations of SOD-based biosensors including Au/Cys/SOD, Au/GNP/Cys/SOD and Au/GNP/Cys/SOD/Chit were fabricated. In these biosensors Au, GNP, Cys, SOD and Chit represent gold electrode, gold nano-particles, cysteine, superoxide dismutase and chitosan, respectively. For biosensors fabrication, SOD, GNP, Cys and Chit were immobilized at the surface of gold electrode. Cyclic voltametry and chronoamperometry were utilized for evaluation of biosensors performances. The results showed that Au/GNP/Cys/SOD/Chit has significantly better responses compared to Au/Cys/SOD and Au/GNP/Cys/SOD. As a result, this biosensor was selected for dosimetry of ionizing radiation. For this purpose, thallium 201 at different volumes was added to buffer phosphate solution in electrochemical cell. To obtain analytical parameters of Au/GNP/Cys/SOD/Chit, calibration curve was sketched. The results showed that this biosensor has a linear response in the range from 0.5 to 4 Gy, detection limit 0.03 μM. It also has a proper sensitivity (0.6038 nA/Gy), suitable long term stability and cost effective as well as high function for radiation dosimetry. - highlights: • Our biosensor is able to measure produced superoxide radical during water radiolysis. • It has suitable linearity range, good detection limit and long term stability. • It also has proper sensitivity and high performance for low LET ionizing radiation. • The electrochemical method is as good as traditional methods for radiation dosimetry

  13. Microfabricated electrochemical sensor for the detection of radiation-induced DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.; Rivas, G.; Ozsoz, M.; Grant, D.H.; Cai, X.; Parrado, C. [New Mexico State Univ., Las Cruces, NM (United States)

    1997-04-01

    An electrochemical biosensor protocol for the detection of radiation-induced DNA damage is described. The procedure employs a dsDNA-coated screen-printed electrode and relies on changes in the guanine-DNA oxidation signal upon exposure to ultraviolet radiation. The decreased signal is ascribed primarily to conformational changes in the DNA and to the photoconversion of the guanine-DNA moiety to a nonelectroactive monomeric base product. Factors influencing the response of these microfabricated DNA sensors, such as irradiation time, wavelength, and distance, are explored, and future prospects are discussed. Similar results are given for the use of bare strip electrodes in connection with irradiated DNA solutions. 8 refs., 4 figs.

  14. Fiber-Optic Chemical Sensors and Fiber-Optic Bio-Sensors

    Science.gov (United States)

    Pospíšilová, Marie; Kuncová, Gabriela; Trögl, Josef

    2015-01-01

    This review summarizes principles and current stage of development of fiber-optic chemical sensors (FOCS) and biosensors (FOBS). Fiber optic sensor (FOS) systems use the ability of optical fibers (OF) to guide the light in the spectral range from ultraviolet (UV) (180 nm) up to middle infrared (IR) (10 µm) and modulation of guided light by the parameters of the surrounding environment of the OF core. The introduction of OF in the sensor systems has brought advantages such as measurement in flammable and explosive environments, immunity to electrical noises, miniaturization, geometrical flexibility, measurement of small sample volumes, remote sensing in inaccessible sites or harsh environments and multi-sensing. The review comprises briefly the theory of OF elaborated for sensors, techniques of fabrications and analytical results reached with fiber-optic chemical and biological sensors. PMID:26437407

  15. Fiber-Optic Chemical Sensors and Fiber-Optic Bio-Sensors.

    Science.gov (United States)

    Pospíšilová, Marie; Kuncová, Gabriela; Trögl, Josef

    2015-09-30

    This review summarizes principles and current stage of development of fiber-optic chemical sensors (FOCS) and biosensors (FOBS). Fiber optic sensor (FOS) systems use the ability of optical fibers (OF) to guide the light in the spectral range from ultraviolet (UV) (180 nm) up to middle infrared (IR) (10 μm) and modulation of guided light by the parameters of the surrounding environment of the OF core. The introduction of OF in the sensor systems has brought advantages such as measurement in flammable and explosive environments, immunity to electrical noises, miniaturization, geometrical flexibility, measurement of small sample volumes, remote sensing in inaccessible sites or harsh environments and multi-sensing. The review comprises briefly the theory of OF elaborated for sensors, techniques of fabrications and analytical results reached with fiber-optic chemical and biological sensors.

  16. Ultra-sensitive bio-sensor based on GMR in self-suspended-membrane-type germanium grating

    International Nuclear Information System (INIS)

    Ma, Jianyong; Zhang, Dawei

    2012-01-01

    In this paper, an ultra-sensitive bio-sensor based on the GMR effect in self-suspended-membrane-type gratings (SSGs) is proposed using multilayer plane waveguide theory. It is demonstrated from our calculations that the sensitivity of our bio-sensor is near the theoretical limit compared with a conventional GMR sensor. Based on the normalized eigenfunction of a single-layer homogeneous grating, the resonance curves with respect to different refractive indices of surrounding media are calculated, which confirm the estimated sensitivity. In addition, we design a highly sensitive bio-sensor in the near- and mid-IR wavelength region for liquid and gas detection respectively, the sensor can deliver a resolution over 1 × 10 −5 in the near-IR region in a large refractive index (1.3–1.7) range and provide better than 1 × 10 −6 in the mid-IR region, which is enough for various bio-material detections. Therefore, the bio-sensor we proposed is one or two orders more sensitive than conventional GMR sensors. (paper)

  17. Nanomaterials for electrochemical sensing and biosensing

    CERN Document Server

    Pumera, Martin

    2014-01-01

    Part 1: Nanomaterial-Based ElectrodesCarbon Nanotube-Based Electrochemical Sensors and Biosensors, Martin Pumera, National Institute for Materials Science, JapanElectrochemistry on Single Carbon Nanotube, Pat Collier, Caltech, USATheory of Voltammetry at Nanoparticle-Modified Electrodes, Richard G. Compton, Oxford University, UKMetal Oxide Nanoparticle-Modified Electrodes, Frank Marken, University of Bath, UKSemiconductor Quantum Dots for Electrochemical Bioanalysis, Eugenii Katz, Clarkson University, USAN

  18. Biosensors and environmental health

    National Research Council Canada - National Science Library

    Preedy, Victor R; Patel, Vinood B

    2012-01-01

    ..., bacterial biosensors, antibody-based biosensors, enzymatic, amperometric and electrochemical aspects, quorum sensing, DNA-biosensors, cantilever biosensors, bioluminescence and other methods and applications...

  19. A reduced graphene oxide based electrochemical biosensor for tyrosine detection

    Science.gov (United States)

    Wei, Junhua; Qiu, Jingjing; Li, Li; Ren, Liqiang; Zhang, Xianwen; Chaudhuri, Jharna; Wang, Shiren

    2012-08-01

    In this paper, a ‘green’ and safe hydrothermal method has been used to reduce graphene oxide and produce hemin modified graphene nanosheet (HGN) based electrochemical biosensors for the determination of l-tyrosine levels. The as-fabricated HGN biosensors were characterized by UV-visible absorption spectra, fluorescence spectra, Fourier transform infrared spectroscopy (FTIR) spectra and thermogravimetric analysis (TGA). The experimental results indicated that hemin was successfully immobilized on the reduced graphene oxide nanosheet (rGO) through π-π interaction. TEM images and EDX results further confirmed the attachment of hemin on the rGO nanosheet. Cyclic voltammetry tests were carried out for the bare glass carbon electrode (GCE), the rGO electrode (rGO/GCE), and the hemin-rGO electrode (HGN/GCE). The HGN/GCE based biosensor exhibits a tyrosine detection linear range from 5 × 10-7 M to 2 × 10-5 M with a detection limitation of 7.5 × 10-8 M at a signal-to-noise ratio of 3. The sensitivity of this biosensor is 133 times higher than that of the bare GCE. In comparison with other works, electroactive biosensors are easily fabricated, easily controlled and cost-effective. Moreover, the hemin-rGO based biosensors demonstrate higher stability, a broader detection linear range and better detection sensitivity. Study of the oxidation scheme reveals that the rGO enhances the electron transfer between the electrode and the hemin, and the existence of hemin groups effectively electrocatalyzes the oxidation of tyrosine. This study contributes to a widespread clinical application of nanomaterial based biosensor devices with a broader detection linear range, improved stability, enhanced sensitivity and reduced costs.

  20. Fiber-Optic Chemical Sensors and Fiber-Optic Bio-Sensors

    Directory of Open Access Journals (Sweden)

    Marie Pospíšilová

    2015-09-01

    Full Text Available This review summarizes principles and current stage of development of fiber-optic chemical sensors (FOCS and biosensors (FOBS. Fiber optic sensor (FOS systems use the ability of optical fibers (OF to guide the light in the spectral range from ultraviolet (UV (180 nm up to middle infrared (IR (10 μm and modulation of guided light by the parameters of the surrounding environment of the OF core. The introduction of OF in the sensor systems has brought advantages such as measurement in flammable and explosive environments, immunity to electrical noises, miniaturization, geometrical flexibility, measurement of small sample volumes, remote sensing in inaccessible sites or harsh environments and multi-sensing. The review comprises briefly the theory of OF elaborated for sensors, techniques of fabrications and analytical results reached with fiber-optic chemical and biological sensors.

  1. Electrochemical nano biosensor alarm devices for the determination of endocrine disruptor agents

    International Nuclear Information System (INIS)

    Iwuoha, E.; Hendricks, N.; Baker, P.

    2009-01-01

    The role of cytochrome P450 (CYP) enzyme systems in the detoxification of bioactive and hydrophobic xenobiotics, such as drugs, environmental pollutants, food supplements, steroids and endocrine disruptors, cannot be over-emphasized. In this study we present the development and amperometric transduction of cytochromal biosensor alarm device for the determination of endocrine disruptors. As a class II microsomal b-type heme enzyme, CYP3A4 requires the obligatory presence of electron transfer donor redox protein, NAD(P)H, and cytochrome b5 for its physiological reactivity. Optimal reconstitution assays preferably involves vesicle forming phospholipids, detergents and specialized reducing agents. Biosensor offers the possibility of observing direct electron transfer reaction of cytochrome P450-3A4 (CYP3A4) without the requirement of the enzyme's physiological redox partners (1,2). In this study, a nanobiosensor alarm device for the determination of 2,4-dichlorophenol (an endocrine disruptor and hepatocarcinogen) was developed with genetically engineered CYP3A4 imprinted on carbon electrode chips that was modified with polypyrrole-gold nanoparticles. The sensor amperometric signals resulted from the two-electron monooxygenation reaction between the ferri-heme CYP3A4 enzyme and the endocrine disruptor compound. The biosensor was interrogated electrochemically for its ability to detect and report the presence of the endocrine disruptor compound in real time. Accordingly, the response time, sensitivity, storage stability, dynamic linear range and detection limits of the device were evaluated. The biosensor alarm device had a detection limit of 43 ng/L for 2,4-dichlorophenol which is lower than the European Union limit of 300 ng/L for pesticide compounds in ground water; as well as the USA Environmental Protection Agency's drinking water equivalent level (DWEL) of 2000 ng/L (3,4). Chromatographic studies despite their tedious sample preparation and time-consuming pre

  2. Biosensors for DNA sequence detection

    Science.gov (United States)

    Vercoutere, Wenonah; Akeson, Mark

    2002-01-01

    DNA biosensors are being developed as alternatives to conventional DNA microarrays. These devices couple signal transduction directly to sequence recognition. Some of the most sensitive and functional technologies use fibre optics or electrochemical sensors in combination with DNA hybridization. In a shift from sequence recognition by hybridization, two emerging single-molecule techniques read sequence composition using zero-mode waveguides or electrical impedance in nanoscale pores.

  3. Improved electrochemical nucleic acid biosensor based on polyaniline-polyvinyl sulphonate

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakar, Nirmal [Biomolecular Electronics and Conducting Polymer Research Group, National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi-110012 (India); Centre for Biomedical Engineering, Indian Institute of Technology, Hauz Khas, New Delhi-110016 (India); Sumana, G.; Arora, Kavita [Biomolecular Electronics and Conducting Polymer Research Group, National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi-110012 (India); Singh, Harpal [Centre for Biomedical Engineering, Indian Institute of Technology, Hauz Khas, New Delhi-110016 (India); Malhotra, B.D. [Biomolecular Electronics and Conducting Polymer Research Group, National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi-110012 (India)], E-mail: bansi.malhotra@gmail.com

    2008-05-01

    DNA biosensor based on polyaniline (PANI)-polyvinyl sulphonate (PVS) has been fabricated using electrochemical entrapment technique for detection of organophosphorus pesticides (chlorpyrifos and malathion). These double stranded calf thymus DNA (dsCT-DNA) entrapped PANI-PVS/indium-tin-oxide (ITO) bioelectrodes have been characterized using square wave voltammetry (SWV), Fourier transform infra-red spectroscopy (FT-IR), scanning electron microscopy (SEM) and electrochemical impedance techniques, respectively. These dsCT-DNA entrapped PANI-PVS/ITO bioelectrodes have been found to have response time of 30 s, stability of about 6 months and detection limit for chlorpyrifos and malathion as 0.5 ppb and 0.01 ppm, respectively.

  4. Improved electrochemical nucleic acid biosensor based on polyaniline-polyvinyl sulphonate

    International Nuclear Information System (INIS)

    Prabhakar, Nirmal; Sumana, G.; Arora, Kavita; Singh, Harpal; Malhotra, B.D.

    2008-01-01

    DNA biosensor based on polyaniline (PANI)-polyvinyl sulphonate (PVS) has been fabricated using electrochemical entrapment technique for detection of organophosphorus pesticides (chlorpyrifos and malathion). These double stranded calf thymus DNA (dsCT-DNA) entrapped PANI-PVS/indium-tin-oxide (ITO) bioelectrodes have been characterized using square wave voltammetry (SWV), Fourier transform infra-red spectroscopy (FT-IR), scanning electron microscopy (SEM) and electrochemical impedance techniques, respectively. These dsCT-DNA entrapped PANI-PVS/ITO bioelectrodes have been found to have response time of 30 s, stability of about 6 months and detection limit for chlorpyrifos and malathion as 0.5 ppb and 0.01 ppm, respectively

  5. Graphene-metallic nanocomposites as modifiers in electrochemical glucose biosensor transducers

    Science.gov (United States)

    Altuntas, Derya Bal; Tepeli, Yudum; Anik, Ulku

    2016-09-01

    Graphene sheets and three different graphene-metallic nanocomposites including graphene-copper (graphene-Cu), graphene-nickel (graphene-Ni) and graphene-platinum (graphene-Pt) were prepared and characterized in the first place. Then the electrochemical performances of these nanocomposites were tested in glucose biosensor transducers, which were formed by combining these metallic nanocomposites with glucose oxidase enzyme and glassy carbon paste electrode (GCPE). This is the first work that includes the usage of these graphene-Me nanocomposites as a part of glucose biosensor transducer. Fabricated amperometric biosensors linear ranges were obtained as follow: For the plain graphene, the linear range was found in the concentration range between 50 μM and 800 μM with the RSD (n = 3 for 50 μM glucose) value of 12.86% and LOD value of 7.2 μM. For graphene-Pt modified glucose biosensor, the linear range was between 10 μM and 600 μM with the RSD (n = 3 for 50 μM glucose) value of 3.45% and LOD value of 3.06 μM. In the case of graphene-Ni modified glucose biosensor, the values were 25 μM to 600 μM with the RSD (n = 3 for 50 μM glucose) value of 8.76% and LOD value of 24.71 μM and for graphene-Cu modified glucose biosensor linear range was 25 μM to 400 μM with the RSD (n = 3 for 50 μM glucose) value of 3.93% and LOD value of 2.87 μM.

  6. Integrated multienzyme electrochemical biosensors for the determination of glycerol in wines.

    Science.gov (United States)

    Gamella, M; Campuzano, S; Reviejo, A J; Pingarrón, J M

    2008-02-25

    The construction and performance of integrated amperometric biosensors for the determination of glycerol are reported. Two different biosensor configurations have been evaluated: one based on the glycerol dehydrogenase/diaphorase (GDH/DP) bienzyme system, and another using glycerol kinase/glycerol-3-phosphate oxidase/peroxidase (GK/GPOx/HRP). Both enzyme systems were immobilized together with the mediator tetrathiafulvalene (TTF) on a 3-mercaptopropionic acid (MPA) self-assembled monolayer (SAM)-modified gold electrode by using a dialysis membrane. The electrochemical oxidation of TTF at +150mV (vs. Ag/AgCl), and the reduction of TTF(+) at 0mV were used for the monitoring of the enzyme reactions for the bienzyme and trienzyme configurations, respectively. Experimental variables concerning both the biosensors composition and the working conditions were optimized for each configuration. A good repeatability of the measurements with no need of cleaning or pretreatment of the biosensors was obtained in both cases. After 51 days of use, the GDH/DP biosensor still exhibited 87% of the original sensitivity, while the GK/GPOx/HRP biosensor yielded a 46% of the original response after 8 days. Calibration graphs for glycerol with linear ranges of 1.0x10(-6) to 2.0x10(-5) or 1.0x10(-6) to 1.0x10(-5)M glycerol and sensitivities of 1214+/-21 or 1460+/-34microAM(-1) were obtained with GDH/DP and GK/GPOx/HRP biosensors, respectively. The calculated detection limits were 4.0x10(-7) and 3.1x10(-7)M, respectively. The biosensors exhibited a great sensitivity with no significant interferences in the analysis of wines. The biosensors were applied to the determination of glycerol in 12 different wines and the results advantageously compared with those provided by a commercial enzyme kit.

  7. Electrochemical co-reduction synthesis of graphene/nano-gold composites and its application to electrochemical glucose biosensor

    International Nuclear Information System (INIS)

    Wang, Xiaolin; Zhang, Xiaoli

    2013-01-01

    Graphical abstract: - Highlights: • Graphene/nano-Au composite was synthesized by electrochemical co-reduction method in one step. • Glucose oxidase achieves direct electrochemistry on the graphene/nano-Au composite film. • The glucose biosensor shows a high sensitivity of 56.93 μA mM −1 cm −2 toward glucose. • Glucose was detected with a wide linear range and low detection limit. - Abstract: A simple, green and controllable approach was employed for electrochemical synthesize of the graphene/nano-Au composites. The process was that graphene oxide and HAuCl 4 was electrochemically co-reduced onto the glassy carbon electrode (GCE) by cyclic voltammetry in one step. The obtained graphene/nano-Au/GCE exhibited high electrocatalytic activity toward H 2 O 2 , which resulted in a remarkable decrease in the overpotential of H 2 O 2 electrochemical oxidation compared with bare GCE. Such electrocatalytic behavior of the graphene/nano-Au/GCE permitted effective low-potential amperometric biosensing of glucose via the incorporation of glucose oxidase (GOD) with graphene/nano-Au. An obvious advantage of this enzyme electrode (graphene/nano-Au/GOD/GCE) was that the graphene/nano-Au nanocomposites provided a favorable microenvironment for GOD and facilitated the electron transfer between the active center of GOD and electrode. The immobilized GOD showed a direct, reversible redox reaction. Furthermore, the graphene/nano-Au/GOD/GCE was used as a glucose biosensor, displaying a low detection limit of 17 μM (S/N = 3), a high sensitivity of 56.93 μA mM −1 cm −2 , acceptable reproducibility, very good stability, selectivity and anti-interference ability

  8. Impedimetric biosensors for medical applications current progress and challenges

    CERN Document Server

    Rushworth, Jo V; Goode, Jack A; Pike, Douglas J; Ahmed, Asif; Millner, Paul

    2014-01-01

    In this monograph, the authors discuss the current progress in the medical application of impedimetric biosensors, along with the key challenges in the field. First, a general overview of biosensor development, structure and function is presented, followed by a detailed discussion of impedimetric biosensors and the principles of electrochemical impedance spectroscopy. Next, the current state-of-the art in terms of the science and technology underpinning impedance-based biosensors is reviewed in detail. The layer-by-layer construction of impedimetric sensors is described, including the design of electrodes, their nano-modification, transducer surface functionalization and the attachment of different bioreceptors. The current challenges of translating lab-based biosensor platforms into commercially-available devices that function with real patient samples at the POC are presented; this includes a consideration of systems integration, microfluidics and biosensor regeneration. The final section of this monograph ...

  9. Molecularly imprinted electrochemical biosensor based on Fe@Au nanoparticles involved in 2-aminoethanethiol functionalized multi-walled carbon nanotubes for sensitive determination of cefexime in human plasma.

    Science.gov (United States)

    Yola, Mehmet Lütfi; Eren, Tanju; Atar, Necip

    2014-10-15

    The molecular imprinting technique depends on the molecular recognition. It is a polymerization method around the target molecule. Hence, this technique creates specific cavities in the cross-linked polymeric matrices. In present study, a sensitive imprinted electrochemical biosensor based on Fe@Au nanoparticles (Fe@AuNPs) involved in 2-aminoethanethiol (2-AET) functionalized multi-walled carbon nanotubes (f-MWCNs) modified glassy carbon (GC) electrode was developed for determination of cefexime (CEF). The results of X-ray photoelectron spectroscopy (XPS) and reflection-absorption infrared spectroscopy (RAIRS) confirmed the formation of the developed surfaces. CEF imprinted film was constructed by cyclic voltammetry (CV) for 9 cycles in the presence of 80 mM pyrrole in phosphate buffer solution (pH 6.0) containing 20mM CEF. The developed electrochemical biosensor was validated according to the International Conference on Harmonisation (ICH) guideline and found to be linear, sensitive, selective, precise and accurate. The linearity range and the detection limit were obtained as 1.0 × 10(-10)-1.0 × 10(-8)M and 2.2 × 10(-11)M, respectively. The developed CEF imprinted sensor was successfully applied to real samples such as human plasma. In addition, the stability and reproducibility of the prepared molecular imprinted electrode were investigated. The excellent long-term stability and reproducibility of the prepared CEF imprinted electrodes make them attractive in electrochemical sensors. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Zinc oxide inverse opal electrodes modified by glucose oxidase for electrochemical and photoelectrochemical biosensor.

    Science.gov (United States)

    Xia, Lei; Song, Jian; Xu, Ru; Liu, Dali; Dong, Biao; Xu, Lin; Song, Hongwei

    2014-09-15

    The ZnO inverse opal photonic crystals (IOPCs) were synthesized by the sol-gel method using the polymethylmethacrylate (PMMA) as a template. For glucose detection, glucose oxidase (GOD) was further immobilized on the inwall and surface of the IOPCs. The biosensing properties toward glucose of the Nafion/GOD/ZnO IOPCs modified FTO electrodes were carefully studied and the results indicated that the sensitivity of ZnO IOPCs modified electrode was 18 times than reference electrode due to the large surface area and uniform porous structure of ZnO IOPCs. Moreover, photoelectrochemical detection for glucose using the electrode was realized and the sensitivity approached to 52.4 µA mM(-1) cm(-2), which was about four times to electrochemical detection (14.1 µA mM(-1) cm(-2)). It indicated that photoelectrochemical detection can highly improve the sensor performance than conventional electrochemical method. It also exhibited an excellent anti-interference property and a good stability at the same time. This work provides a promising approach for realizing excellent photoelectrochemical biosensor of similar semiconductor photoelectric material. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. REMOTE BIOSENSOR FOR IN SITU MONITORING OF ORGANOPHOSPHATE NERVE AGENTS. (R823663)

    Science.gov (United States)

    A remote electrochemical biosensor for field monitoring of organophosphate nerve agents is described. The new sensor relies on the coupling of the effective biocatalytic action of organophosphorus hydrolase (OPH) with a submersible amperometric probe design. This combination resu...

  12. Synthesis and characterization of poly aniline for electrochemical biosensor construction

    International Nuclear Information System (INIS)

    Magalhaes, Gleice S.L.; Southgate, Erica F.; Alhadeff, Eliana M.; Guimaraes, Maria Jose O.C.

    2011-01-01

    Conductors polymers have many attractive interests to the industry due their highly technological applications. This work treats specially of polyaniline because it's large electrical conductivity, electrochemical properties, associate to the chemical stability in environmental conditions and synthesis facility. The main of this work is the application in a construction of an electrochemical biosensor for ethanol detection and quantification. Different conditions of synthesis of the conductor emeraldine polyaniline form were studied, investigated the influence of the dopant agent and the reactional environment conditions temperature on the reaction yield and conductivities. The polyaniline that showed the best conductivity were characterized by differential and thermal gravimetric analysis, infrared spectroscopy, X ray diffraction, and cycle voltammetry, comparing with the commercial polyaniline. (author)

  13. Development of electrochemical biosensor for detection of pathogenic microorganism in Asian dust events.

    Science.gov (United States)

    Yoo, Min-Sang; Shin, Minguk; Kim, Younghun; Jang, Min; Choi, Yoon-E; Park, Si Jae; Choi, Jonghoon; Lee, Jinyoung; Park, Chulhwan

    2017-05-01

    We developed a single-walled carbon nanotubes (SWCNTs)-based electrochemical biosensor for the detection of Bacillus subtilis, one of the microorganisms observed in Asian dust events, which causes respiratory diseases such as asthma and pneumonia. SWCNTs plays the role of a transducer in biological antigen/antibody reaction for the electrical signal while 1-pyrenebutanoic acid succinimidyl ester (1-PBSE) and ant-B. subtilis were performed as a chemical linker and an acceptor, respectively, for the adhesion of target microorganism in the developed biosensor. The detection range (10 2 -10 10  CFU/mL) and the detection limit (10 2  CFU/mL) of the developed biosensor were identified while the response time was 10 min. The amount of target B. subtilis was the highest in the specificity test of the developed biosensor, compared with the other tested microorganisms (Staphylococcus aureus, Flavobacterium psychrolimnae, and Aquabacterium commune). In addition, target B. subtilis detected by the developed biosensor was observed by scanning electron microscope (SEM) analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. A miniaturized electrochemical toxicity biosensor based on graphene oxide quantum dots/carboxylated carbon nanotubes for assessment of priority pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiaolin; Wu, Guanlan; Lu, Nan [School of Environment, Northeast Normal University, Changchun 130117 (China); Yuan, Xing, E-mail: yuanx@nenu.edu.cn [School of Environment, Northeast Normal University, Changchun 130117 (China); Li, Baikun, E-mail: baikun@engr.uconn.edu [Department of Civil and Environmental Engineering, University of Connecticut, Storrs, CT 06269 (United States)

    2017-02-15

    Highlights: • Graphene oxide quantum dots/carboxylated carbon nanotubes hybrid was developed. • The cytotoxicity detection vessel was miniaturized to the 96-well plate. • The electrochemical behavior of HepG2 cell was investigated for the first time. • The mixture signal of adenine and hypoxanthine was separated successfully. • The biosensor was used to assess the toxicity of heavy metals and phenols. - Abstract: The study presented a sensitive and miniaturized cell-based electrochemical biosensor to assess the toxicity of priority pollutants in the aquatic environment. Human hepatoma (HepG2) cells were used as the biological recognition agent to measure the changes of electrochemical signals and reflect the cell viability. The graphene oxide quantum dots/carboxylated carbon nanotubes hybrid was developed in a facile and green way. Based on the hybrid composite modified pencil graphite electrode, the cell culture and detection vessel was miniaturized to a 96-well plate instead of the traditional culture dish. In addition, three sensitive electrochemical signals attributed to guanine/xanthine, adenine, and hypoxanthine were detected simultaneously. The biosensor was used to evaluate the toxicity of six priority pollutants, including Cd, Hg, Pb, 2,4-dinitrophenol, 2,4,6-trichlorophenol, and pentachlorophenol. The 24 h IC{sub 50} values obtained by the electrochemical biosensor were lower than those of conventional MTT assay, suggesting the enhanced sensitivity of the electrochemical assay towards heavy metals and phenols. This platform enables the label-free and sensitive detection of cell physiological status with multi-parameters and constitutes a promising approach for toxicity detection of pollutants. It makes possible for automatical and high-throughput analysis on nucleotide catabolism, which may be critical for life science and toxicology.

  15. Novel trends in affinity biosensors: current challenges and perspectives

    International Nuclear Information System (INIS)

    Arugula, Mary A; Simonian, Aleksandr

    2014-01-01

    Molecular biorecognition processes facilitate physical and biochemical interactions between molecules in all crucial metabolic pathways. Perhaps the target analyte and the biorecognition element interactions have the most impactful use in biosensing applications. Traditional analytical sensing systems offer excellent biorecognition elements with the ability to detect and determine the presence of analytes. High affinity antibodies and DNA play an important role in the development of affinity biosensors based on electrochemical, optical and mass sensitive approaches. Advancements in this area routinely employ labels, label free, nanoparticles, multifunctional matrices, carbon nanotubes and other methods to meet the requirements of its own application. However, despite increasing affinity ceilings for conventional biosensors, the field draws back in meeting specifically important demands, such as long-term stability, ultrasensitivity, rapid detection, extreme selectivity, strong biological base, calibration, in vivo measurements, regeneration, satisfactory performance and ease of production. Nevertheless, recent efforts through this line have produced novel high-tech nanosensing systems such as ‘aptamers’ and ‘phages’ which exhibit high-throughput sensing. Aptamers and phages are powerful tools that excel over antibodies in sensibility, stability, multi-detection, in vivo measurements and regeneration. Phages are superior in stability, screening for affinity-based target molecules ranging from small to proteins and even cells, and easy production. In this review, we focus mainly on recent developments in affinity-based biosensors such as immunosensors, DNA sensors, emphasizing aptasensors and phage-based biosensors basing on novel electrochemical, optical and mass sensitive detection techniques. We also address enzyme inhibition-based biosensors and the current problems associated with the above sensors and their future perspectives. (topical review)

  16. Bioelectrochemical biosensor for water toxicity detection: generation of dual signals for electrochemical assay confirmation.

    Science.gov (United States)

    Yang, Yuan; Wang, Yan-Zhai; Fang, Zhen; Yu, Yang-Yang; Yong, Yang-Chun

    2018-02-01

    Toxicity assessment of water is of great important to the safety of human health and to social security because of more and more toxic compounds that are spilled into the aquatic environment. Therefore, the development of fast and reliable toxicity assessment methods is of great interest and attracts much attention. In this study, by using the electrochemical activity of Shewanella oneidensis MR-1 cells as the toxicity indicator, 3,5-dichlorophenol (DCP) as the model toxic compound, a new biosensor for water toxicity assessment was developed. Strikingly, the presence of DCP in the water significantly inhibited the maximum current output of the S. oneidensis MR-1 in a three-electrode system and also retarded the current evolution by the cells. Under the optimized conditions, the maximum current output of the biosensor was proportional to the concentration of DCP up to 30 mg/L. The half maximal inhibitory concentration of DCP determined by this biosensor is about 14.5 mg/L. Furthermore, simultaneous monitoring of the retarded time (Δt) for current generation allowed the identification of another biosensor signal in response to DCP which could be employed to verify the electrochemical result by dual confirmation. Thus, the present study has provided a reliable and promising approach for water quality assessment and risk warning of water toxicity.

  17. Molecular Biosensors for Electrochemical Detection of Infectious Pathogens in Liquid Biopsies: Current Trends and Challenges.

    Science.gov (United States)

    Campuzano, Susana; Yáñez-Sedeño, Paloma; Pingarrón, José Manuel

    2017-11-03

    Rapid and reliable diagnosis of infectious diseases caused by pathogens, and timely initiation of appropriate treatment are critical determinants to promote optimal clinical outcomes and general public health. Conventional in vitro diagnostics for infectious diseases are time-consuming and require centralized laboratories, experienced personnel and bulky equipment. Recent advances in electrochemical affinity biosensors have demonstrated to surpass conventional standards in regards to time, simplicity, accuracy and cost in this field. The tremendous potential offered by electrochemical affinity biosensors to detect on-site infectious pathogens at clinically relevant levels in scarcely treated body fluids is clearly stated in this review. The development and application of selected examples using different specific receptors, assay formats and electrochemical approaches focusing on the determination of specific circulating biomarkers of different molecular (genetic, regulatory and functional) levels associated with bacterial and viral pathogens are critically discussed. Existing challenges still to be addressed and future directions in this rapidly advancing and highly interesting field are also briefly pointed out.

  18. Electrochemical lactate biosensor based upon chitosan/carbon nanotubes modified screen-printed graphite electrodes for the determination of lactate in embryonic cell cultures.

    Science.gov (United States)

    Hernández-Ibáñez, Naiara; García-Cruz, Leticia; Montiel, Vicente; Foster, Christopher W; Banks, Craig E; Iniesta, Jesús

    2016-03-15

    l-lactate is an essential metabolite present in embryonic cell culture. Changes of this important metabolite during the growth of human embryo reflect the quality and viability of the embryo. In this study, we report a sensitive, stable, and easily manufactured electrochemical biosensor for the detection of lactate within embryonic cell cultures media. Screen-printed disposable electrodes are used as electrochemical sensing platforms for the miniaturization of the lactate biosensor. Chitosan/multi walled carbon nanotubes composite have been employed for the enzymatic immobilization of the lactate oxidase enzyme. This novel electrochemical lactate biosensor analytical efficacy is explored towards the sensing of lactate in model (buffer) solutions and is found to exhibit a linear response towards lactate over the concentration range of 30.4 and 243.9 µM in phosphate buffer solution, with a corresponding limit of detection (based on 3-sigma) of 22.6 µM and exhibits a sensitivity of 3417 ± 131 µAM(-1) according to the reproducibility study. These novel electrochemical lactate biosensors exhibit a high reproducibility, with a relative standard deviation of less than 3.8% and an enzymatic response over 82% after 5 months stored at 4 °C. Furthermore, high performance liquid chromatography technique has been utilized to independently validate the electrochemical lactate biosensor for the determination of lactate in a commercial embryonic cell culture medium providing excellent agreement between the two analytical protocols. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Electrochemical sensors: a powerful tool in analytical chemistry

    Directory of Open Access Journals (Sweden)

    Stradiotto Nelson R.

    2003-01-01

    Full Text Available Potentiometric, amperometric and conductometric electrochemical sensors have found a number of interesting applications in the areas of environmental, industrial, and clinical analyses. This review presents a general overview of the three main types of electrochemical sensors, describing fundamental aspects, developments and their contribution to the area of analytical chemistry, relating relevant aspects of the development of electrochemical sensors in Brazil.

  20. Highly sensitive amperometric biosensor based on electrochemically-reduced graphene oxide-chitosan/hemoglobin nanocomposite for nitromethane determination.

    Science.gov (United States)

    Wen, Yunping; Wen, Wei; Zhang, Xiuhua; Wang, Shengfu

    2016-05-15

    Nitromethane (CH3NO2) is an important organic chemical raw material with a wide variety of applications as well as one of the most common pollutants. Therefore it is pretty important to establish a simple and sensitive detection method for CH3NO2. In our study, a novel amperometric biosensor for nitromethane (CH3NO2) based on immobilization of electrochemically-reduced graphene oxide (rGO), chitosan (CS) and hemoglobin (Hb) on a glassy carbon electrode (GCE) was constructed. Scanning electron microscopy, infrared spectroscopy and electrochemical methods were used to characterize the Hb-CS/rGO-CS composite film. The effects of scan rate and pH of phosphate buffer on the biosensor have been studied in detail and optimized. Due to the graphene and chitosan nanocomposite, the developed biosensor demonstrating direct electrochemistry with faster electron-transfer rate (6.48s(-1)) and excellent catalytic activity towards CH3NO2. Under optimal conditions, the proposed biosensor exhibited fast amperometric response (<5s) to CH3NO2 with a wide linear range of 5 μM~1.46 mM (R=0.999) and a low detection limit of 1.5 μM (S/N=3). In addition, the biosensor had high selectivity, reproducibility and stability, providing the possibility for monitoring CH3NO2 in complex real samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Autonomous electrochemical biosensors: A new vision to direct methanol fuel cells.

    Science.gov (United States)

    Sales, M Goreti F; Brandão, Lúcia

    2017-12-15

    A new approach to biosensing devices is demonstrated aiming an easier and simpler application in routine health care systems. Our methodology considered a new concept for the biosensor transducing event that allows to obtain, simultaneously, an equipment-free, user-friendly, cheap electrical biosensor. The use of the anode triple-phase boundary (TPB) layer of a passive direct methanol fuel cell (DMFC) as biosensor transducer is herein proposed. For that, the ionomer present in the anode catalytic layer of the DMFC is partially replaced by an ionomer with molecular recognition capability working as the biorecognition element of the biosensor. In this approach, fuel cell anode catalysts are modified with a molecularly imprinted polymer (plastic antibody) capable of protein recognition (ferritin is used as model protein), inserted in a suitable membrane electrode assembly (MEA) and tested, as initial proof-of-concept, in a non-passive fuel cell operation environment. The anchoring of the ionomer-based plastic antibody on the catalyst surface follows a simple one-step grafting from approach through radical polymerization. Such modification increases fuel cell performance due to the proton conductivity and macroporosity characteristics of the polymer on the TPB. Finally, the response and selectivity of the bioreceptor inside the fuel cell showed a clear and selective signal from the biosensor. Moreover, such pioneering transducing approach allowed amplification of the electrochemical response and increased biosensor sensitivity by 2 orders of magnitude when compared to a 3-electrodes configuration system. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Electrochemical non-enzymatic glucose sensors

    International Nuclear Information System (INIS)

    Park, Sejin; Boo, Hankil; Chung, Taek Dong

    2006-01-01

    The electrochemical determination of glucose concentration without using enzyme is one of the dreams that many researchers have been trying to make come true. As new materials have been reported and more knowledge on detailed mechanism of glucose oxidation has been unveiled, the non-enzymatic glucose sensor keeps coming closer to practical applications. Recent reports strongly imply that this progress will be accelerated in 'nanoera'. This article reviews the history of unraveling the mechanism of direct electrochemical oxidation of glucose and making attempts to develop successful electrochemical glucose sensors. The electrochemical oxidation of glucose molecules involves complex processes of adsorption, electron transfer, and subsequent chemical rearrangement, which are combined with the surface reactions on the metal surfaces. The information about the direct oxidation of glucose on solid-state surfaces as well as new electrode materials will lead us to possible breakthroughs in designing the enzymeless glucose sensing devices that realize innovative and powerful detection. An example of those is to introduce nanoporous platinum as an electrode, on which glucose is oxidized electrochemically with remarkable sensitivity and selectivity. Better model of such glucose sensors is sought by summarizing and revisiting the previous reports on the electrochemistry of glucose itself and new electrode materials

  3. Engineering carbon nanomaterials for future applications: energy and bio-sensor

    Science.gov (United States)

    Das, Santanu; Lahiri, Indranil; Kang, Chiwon; Choi, Wonbong

    2011-06-01

    This paper presents our recent results on carbon nanomaterials for applications in energy storage and bio-sensor. More specifically: (i) A novel binder-free carbon nanotubes (CNTs) structure as anode in Li-ion batteries. The interfacecontrolled CNT structure, synthesized through a two-step chemical vapor deposition (CVD) and directly grown on copper current collector, showed very high specific capacity - almost three times as that of graphite, excellent rate capability. (ii) A large scale graphene film was grown on Cu foil by thermal chemical vapor deposition and transferred to various substrates including PET, glass and silicon by using hot press lamination and etching process. The graphene/PET film shows high quality, flexible transparent conductive structure with unique electrical-mechanical properties; ~88.80 % light transmittance and ~ 100 Ω/sq sheet resistance. We demonstrate application of graphene/PET film as flexible and transparent electrode for field emission displays. (iii) Application of individual carbon nanotube as nanoelectrode for high sensitivity electrochemical sensor and device miniaturization. An individual CNT is split into a pair of nanoelectrodes with a gap between them. Single molecular-level detection of DNA hybridization was studied. Hybridization of the probe with its complementary strand results in an appreciable change in the electrical output signal.

  4. Nanomaterials in electrochemical biosensors for pesticide detection: advances and challenges in food analysis

    International Nuclear Information System (INIS)

    Arduini, Fabiana; Moscone, Danila; Cinti, Stefano; Scognamiglio, Viviana

    2016-01-01

    This overview (with 114 refs.) covers the progress made between 2010 and 2015 in the field of nanomaterial based electrochemical biosensors for pesticides in food. Its main focus is on strategies to analyze real samples. The review first gives a short introduction into the most often used bio recognition elements. These include (a) enzymes (resulting in inhibition-based and direct catalytic biosensors), (b) antibodies (resulting in immunosensors), and (c) aptamers (resulting in aptasensors). The next main section covers the various kinds of nanomaterials for use in biosensors and includes carbonaceous species (carbon nanotubes, graphene, carbon black and others), and non-carbonaceous species in the form of nanoparticles, rods, or porous materials. Aspects of sample treatment and real sample analysis are treated next before discussing vanguard technologies in tailor-made food analysis. (author)

  5. The Development of Non-Enzymatic Glucose Biosensors Based on Electrochemically Prepared Polypyrrole–Chitosan–Titanium Dioxide Nanocomposite Films

    Directory of Open Access Journals (Sweden)

    Ali M. A. Abdul Amir AL-Mokaram

    2017-05-01

    Full Text Available The performance of a modified electrode of nanocomposite films consisting of polypyrrole–chitosan–titanium dioxide (Ppy-CS-TiO2 has been explored for the developing a non-enzymatic glucose biosensors. The synergy effect of TiO2 nanoparticles (NPs and conducting polymer on the current responses of the electrode resulted in greater sensitivity. The incorporation of TiO2 NPs in the nanocomposite films was confirmed by X-ray photoelectron spectroscopy (XPS spectra. FE-SEM and HR-TEM provided more evidence for the presence of TiO2 in the Ppy-CS structure. Glucose biosensing properties were determined by amperommetry and cyclic voltammetry (CV. The interfacial properties of nanocomposite electrodes were studied by electrochemical impedance spectroscopy (EIS. The developed biosensors showed good sensitivity over a linear range of 1–14 mM with a detection limit of 614 μM for glucose. The modified electrode with Ppy-CS nanocomposite also exhibited good selectivity and long-term stability with no interference effect. The Ppy-CS-TiO2 nanocomposites films presented high electron transfer kinetics. This work shows the role of nanomaterials in electrochemical biosensors and describes the process of their homogeneous distribution in composite films by a one-step electrochemical process, where all components are taken in a single solution in the electrochemical cell.

  6. Hydrogen peroxide biosensor based on DNA-Hb modified gold electrode

    International Nuclear Information System (INIS)

    Kafi, A.K.M.; Fan Yin; Shin, Hoon-Kyu; Kwon, Young-Soo

    2006-01-01

    A hydrogen peroxide (H 2 O 2 ) biosensor based on DNA-hemoglobin (Hb) modified electrode is described in this paper. The sensor was designed by DNA and hemoglobin dropletting onto gold electrode surface layer by layer. The sensor based on the direct electron transfer of iron of hemoglobin showed a well electrocatalytic response to the reduction of the H 2 O 2 . This sensor offered an excellent electrochemical response for H 2 O 2 concentration below micromole level with high sensitivity and selectivity and short response time. Experimental conditions influencing the biosensor performance such as, pH, potential were optimized and assessed. The levels of the RSD's ( 2 O 2 was observed from 10 to 120 μM with the detection limit of 0.4 μM (based on the S/N = 3)

  7. Polymer based biosensor for rapid electrochemical detection of virus infection of human cells

    DEFF Research Database (Denmark)

    Kiilerich-Pedersen, Katrine; Poulsen, Claus R.; Jain, Titoo

    2011-01-01

    The demand in the field of medical diagnostics for simple, cost efficient and disposable devices is growing. Here, we present a label free, all-polymer electrochemical biosensor for detection of acute viral disease. The dynamics of a viral infection in human cell culture was investigated in a mic...

  8. A Micro-Platinum Wire Biosensor for Fast and Selective Detection of Alanine Aminotransferase

    Directory of Open Access Journals (Sweden)

    Tran Nguyen Thanh Thuy

    2016-05-01

    Full Text Available In this study, a miniaturized biosensor based on permselective polymer layers (overoxidized polypyrrole (Ppy and Nafion® modified and enzyme (glutamate oxidase (GlutOx immobilized micro-platinum wire electrode for the detection of alanine aminotransferase (ALT was fabricated. The proposed ALT biosensor was measured electrochemically by constant potential amperometry at +0.7 V vs. Ag/AgCl. The ALT biosensor provides fast response time (~5 s and superior selectivity towards ALT against both negatively and positively charged species (e.g., ascorbic acid (AA and dopamine (DA, respectively. The detection range of the ALT biosensor is found to be 10–900 U/L which covers the range of normal ALT levels presented in the serum and the detection limit and sensitivity are found to be 8.48 U/L and 0.059 nA/(U/L·mm2 (N = 10, respectively. We also found that one-day storage of the ALT biosensor at −20 °C right after the sensor being fabricated can enhance the sensor sensitivity (1.74 times higher than that of the sensor stored at 4 °C. The ALT biosensor is stable after eight weeks of storage at −20 °C. The sensor was tested in spiked ALT samples (ALT activities: 20, 200, 400, and 900 U/L and reasonable recoveries (70%~107% were obtained.

  9. A miniaturized electrochemical toxicity biosensor based on graphene oxide quantum dots/carboxylated carbon nanotubes for assessment of priority pollutants.

    Science.gov (United States)

    Zhu, Xiaolin; Wu, Guanlan; Lu, Nan; Yuan, Xing; Li, Baikun

    2017-02-15

    The study presented a sensitive and miniaturized cell-based electrochemical biosensor to assess the toxicity of priority pollutants in the aquatic environment. Human hepatoma (HepG2) cells were used as the biological recognition agent to measure the changes of electrochemical signals and reflect the cell viability. The graphene oxide quantum dots/carboxylated carbon nanotubes hybrid was developed in a facile and green way. Based on the hybrid composite modified pencil graphite electrode, the cell culture and detection vessel was miniaturized to a 96-well plate instead of the traditional culture dish. In addition, three sensitive electrochemical signals attributed to guanine/xanthine, adenine, and hypoxanthine were detected simultaneously. The biosensor was used to evaluate the toxicity of six priority pollutants, including Cd, Hg, Pb, 2,4-dinitrophenol, 2,4,6-trichlorophenol, and pentachlorophenol. The 24h IC 50 values obtained by the electrochemical biosensor were lower than those of conventional MTT assay, suggesting the enhanced sensitivity of the electrochemical assay towards heavy metals and phenols. This platform enables the label-free and sensitive detection of cell physiological status with multi-parameters and constitutes a promising approach for toxicity detection of pollutants. It makes possible for automatical and high-throughput analysis on nucleotide catabolism, which may be critical for life science and toxicology. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Skin-like biosensor system via electrochemical channels for noninvasive blood glucose monitoring.

    Science.gov (United States)

    Chen, Yihao; Lu, Siyuan; Zhang, Shasha; Li, Yan; Qu, Zhe; Chen, Ying; Lu, Bingwei; Wang, Xinyan; Feng, Xue

    2017-12-01

    Currently, noninvasive glucose monitoring is not widely appreciated because of its uncertain measurement accuracy, weak blood glucose correlation, and inability to detect hyperglycemia/hypoglycemia during sleep. We present a strategy to design and fabricate a skin-like biosensor system for noninvasive, in situ, and highly accurate intravascular blood glucose monitoring. The system integrates an ultrathin skin-like biosensor with paper battery-powered electrochemical twin channels (ETCs). The designed subcutaneous ETCs drive intravascular blood glucose out of the vessel and transport it to the skin surface. The ultrathin (~3 μm) nanostructured biosensor, with high sensitivity (130.4 μA/mM), fully absorbs and measures the glucose, owing to its extreme conformability. We conducted in vivo human clinical trials. The noninvasive measurement results for intravascular blood glucose showed a high correlation (>0.9) with clinically measured blood glucose levels. The system opens up new prospects for clinical-grade noninvasive continuous glucose monitoring.

  11. Nanomaterials-based enzyme electrochemical biosensors operating through inhibition for biosensing applications.

    Science.gov (United States)

    Kurbanoglu, Sevinc; Ozkan, Sibel A; Merkoçi, Arben

    2017-03-15

    In recent years great progress has been made in applying nanomaterials to design novel biosensors. Use of nanomaterials offers to biosensing platforms exceptional optical, electronic and magnetic properties. Nanomaterials can increase the surface of the transducing area of the sensors that in turn bring an increase in catalytic behaviors. They have large surface-to-volume ratio, controlled morphology and structure that also favor miniaturization, an interesting advantage when the sample volume is a critical issue. Biosensors have great potential for achieving detect-to-protect devices: devices that can be used in detections of pollutants and other treating compounds/analytes (drugs) protecting citizens' life. After a long term focused scientific and financial efforts/supports biosensors are expected now to fulfill their promise such as being able to perform sampling and analysis of complex samples with interest for clinical or environment fields. Among all types of biosensors, enzymatic biosensors, the most explored biosensing devices, have an interesting property, the inherent inhibition phenomena given the enzyme-substrate complex formation. The exploration of such phenomena is making remarkably important their application as research and applied tools in diagnostics. Different inhibition biosensor systems based on nanomaterials modification has been proposed and applied. The role of nanomaterials in inhibition-based biosensors for the analyses of different groups of drugs as well as contaminants such as pesticides, phenolic compounds and others, are discussed in this review. This deep analysis of inhibition-based biosensors that employ nanomaterials will serve researchers as a guideline for further improvements and approaching of these devices to real sample applications so as to reach society needs and such biosensor market demands. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Analytical solution using computer algebra of a biosensor for detecting toxic substances in water

    Science.gov (United States)

    Rúa Taborda, María. Isabel

    2014-05-01

    In a relatively recent paper an electrochemical biosensor for water toxicity detection based on a bio-chip as a whole cell was proposed and numerically solved and analyzed. In such paper the kinetic processes in a miniaturized electrochemical biosensor system was described using the equations for specific enzymatic reaction and the diffusion equation. The numerical solution shown excellent agreement with the measured data but such numerical solution is not enough to design efficiently the corresponding bio-chip. For this reason an analytical solution is demanded. The object of the present work is to provide such analytical solution and then to give algebraic guides to design the bio-sensor. The analytical solution is obtained using computer algebra software, specifically Maple. The method of solution is the Laplace transform, with Bromwich integral and residue theorem. The final solution is given as a series of Bessel functions and the effective time for the bio-sensor is computed. It is claimed that the analytical solutions that were obtained will be very useful to predict further current variations in similar systems with different geometries, materials and biological components. Beside of this the analytical solution that we provide is very useful to investigate the relationship between different chamber parameters such as cell radius and height; and electrode radius.

  13. Design of nanostructured-based glucose biosensors

    Science.gov (United States)

    Komirisetty, Archana; Williams, Frances; Pradhan, Aswini; Konda, Rajini B.; Dondapati, Hareesh; Samantaray, Diptirani

    2012-04-01

    This paper presents the design of glucose sensors that will be integrated with advanced nano-materials, bio-coatings and electronics to create novel devices that are highly sensitive, inexpensive, accurate, and reliable. In the work presented, a glucose biosensor and its fabrication process flow have been designed. The device is based on electrochemical sensing using a working electrode with bio-functionalized zinc oxide (ZnO) nano-rods. Among all metal oxide nanostructures, ZnO nano-materials play a significant role as a sensing element in biosensors due to their properties such as high isoelectric point (IEP), fast electron transfer, non-toxicity, biocompatibility, and chemical stability which are very crucial parameters to achieve high sensitivity. Amperometric enzyme electrodes based on glucose oxidase (GOx) are used due to their stability and high selectivity to glucose. The device also consists of silicon dioxide and titanium layers as well as platinum working and counter electrodes and a silver/silver chloride reference electrode. Currently, the biosensors are being fabricated using the process flow developed. Once completed, the sensors will be bio-functionalized and tested to characterize their performance, including their sensitivity and stability.

  14. A single-surface electrochemical biosensor for the detection of DNA triplet repeat expansion

    Czech Academy of Sciences Publication Activity Database

    Fojta, Miroslav; Horáková Brázdilová, Petra; Cahová, Kateřina; Pečinka, Petr

    2006-01-01

    Roč. 18, č. 2 (2006), s. 141-151 ISSN 1040-0397 R&D Projects: GA MPO(CZ) 1H-PK/42; GA AV ČR(CZ) IAA4004402 Institutional research plan: CEZ:AV0Z50040507 Keywords : DNA hybridization * electrochemical biosensor * enzyme-linked assay Subject RIV: BO - Biophysics Impact factor: 2.444, year: 2006

  15. Disposable chemical sensors and biosensors made on cellulose paper.

    Science.gov (United States)

    Kim, Joo-Hyung; Mun, Seongcheol; Ko, Hyun-U; Yun, Gyu-Young; Kim, Jaehwan

    2014-03-07

    Most sensors are based on ceramic or semiconducting substrates, which have no flexibility or biocompatibility. Polymer-based sensors have been the subject of much attention due to their ability to collect molecules on their sensing surface with flexibility. Beyond polymer-based sensors, the recent discovery of cellulose as a smart material paved the way to the use of cellulose paper as a potential candidate for mechanical as well as electronic applications such as actuators and sensors. Several different paper-based sensors have been investigated and suggested. In this paper, we review the potential of cellulose materials for paper-based application devices, and suggest their feasibility for chemical and biosensor applications.

  16. Challenges in wireless bio-sensor based health development

    CSIR Research Space (South Africa)

    Nkosi, MT

    2011-06-01

    Full Text Available ]. The research carried out at Roviera i Virgili University on bio- sensor development has shown that biosensors can detect bacteria at levels as low as 1 cell per 5 ml of water, allowing water to be tested for typhoid fever bacteria in only a few seconds [25...

  17. Electrochemical biosensors in pharmaceutical analysis

    OpenAIRE

    Gil, Eric de Souza; Melo, Giselle Rodrigues de

    2010-01-01

    Given the increasing demand for practical and low-cost analytical techniques, biosensors have attracted attention for use in the quality analysis of drugs, medicines, and other analytes of interest in the pharmaceutical area. Biosensors allow quantification not only of the active component in pharmaceutical formulations, but also the analysis of degradation products and metabolites in biological fluids. Thus, this article presents a brief review of biosensor use in pharmaceutical analysis, fo...

  18. Ultrasensitive electrochemical biosensor for detection of DNA from Bacillus subtilis by coupling target-induced strand displacement and nicking endonuclease signal amplification.

    Science.gov (United States)

    Hu, Yuhua; Xu, Xueqin; Liu, Qionghua; Wang, Ling; Lin, Zhenyu; Chen, Guonan

    2014-09-02

    A simple, ultrasensitive, and specific electrochemical biosensor was designed to determine the given DNA sequence of Bacillus subtilis by coupling target-induced strand displacement and nicking endonuclease signal amplification. The target DNA (TD, the DNA sequence from the hypervarient region of 16S rDNA of Bacillus subtilis) could be detected by the differential pulse voltammetry (DPV) in a range from 0.1 fM to 20 fM with the detection limit down to 0.08 fM at the 3s(blank) level. This electrochemical biosensor exhibits high distinction ability to single-base mismatch, double-bases mismatch, and noncomplementary DNA sequence, which may be expected to detect single-base mismatch and single nucleotide polymorphisms (SNPs). Moreover, the applicability of the designed biosensor for detecting the given DNA sequence from Bacillus subtilis was investigated. The result obtained by electrochemical method is approximately consistent with that by a real-time quantitative polymerase chain reaction detecting system (QPCR) with SYBR Green.

  19. Electrochemical Detection in Stacked Paper Networks.

    Science.gov (United States)

    Liu, Xiyuan; Lillehoj, Peter B

    2015-08-01

    Paper-based electrochemical biosensors are a promising technology that enables rapid, quantitative measurements on an inexpensive platform. However, the control of liquids in paper networks is generally limited to a single sample delivery step. Here, we propose a simple method to automate the loading and delivery of liquid samples to sensing electrodes on paper networks by stacking multiple layers of paper. Using these stacked paper devices (SPDs), we demonstrate a unique strategy to fully immerse planar electrodes by aqueous liquids via capillary flow. Amperometric measurements of xanthine oxidase revealed that electrochemical sensors on four-layer SPDs generated detection signals up to 75% higher compared with those on single-layer paper devices. Furthermore, measurements could be performed with minimal user involvement and completed within 30 min. Due to its simplicity, enhanced automation, and capability for quantitative measurements, stacked paper electrochemical biosensors can be useful tools for point-of-care testing in resource-limited settings. © 2015 Society for Laboratory Automation and Screening.

  20. Thick-film textile-based amperometric sensors and biosensors.

    Science.gov (United States)

    Yang, Yang-Li; Chuang, Min-Chieh; Lou, Shyh-Liang; Wang, Joseph

    2010-06-01

    The incorporation of amperometric sensors into clothing through direct screen-printing onto the textile substrate is described. Particular attention is given to electrochemical sensors printed directly on the elastic waist of underwear that offers tight direct contact with the skin. The textile-based printed carbon electrodes have a well-defined appearance with relatively smooth conductor edges and no apparent defects or cracks. Convenient voltammetric and chronoamperometric measurements of 0-3 mM ferrocyanide, 0-25 mM hydrogen peroxide, and 0-100 muM NADH have been documented. The favorable electrochemical behavior is maintained under folding or stretching stress, relevant to the deformation of clothing. The electrochemical performance and tolerance to mechanical stress are influenced by the physical characteristics of the textile substrate. The results indicate the potential of textile-based screen-printed amperometric sensors for future healthcare, sport or military applications. Such future applications would benefit from tailoring the ink composition and printing conditions to meet the specific requirements of the textile substrate.

  1. Bio-inspired patterned networks (BIPS) for development of wearable/disposable biosensors

    Science.gov (United States)

    McLamore, E. S.; Convertino, M.; Hondred, John; Das, Suprem; Claussen, J. C.; Vanegas, D. C.; Gomes, C.

    2016-05-01

    Here we demonstrate a novel approach for fabricating point of care (POC) wearable electrochemical biosensors based on 3D patterning of bionanocomposite networks. To create Bio-Inspired Patterned network (BIPS) electrodes, we first generate fractal network in silico models that optimize transport of network fluxes according to an energy function. Network patterns are then inkjet printed onto flexible substrate using conductive graphene ink. We then deposit fractal nanometal structures onto the graphene to create a 3D nanocomposite network. Finally, we biofunctionalize the surface with biorecognition agents using covalent bonding. In this paper, BIPS are used to develop high efficiency, low cost biosensors for measuring glucose as a proof of concept. Our results on the fundamental performance of BIPS sensors show that the biomimetic nanostructures significantly enhance biosensor sensitivity, accuracy, response time, limit of detection, and hysteresis compared to conventional POC non fractal electrodes (serpentine, interdigitated, and screen printed electrodes). BIPs, in particular Apollonian patterned BIPS, represent a new generation of POC biosensors based on nanoscale and microscale fractal networks that significantly improve electrical connectivity, leading to enhanced sensor performance.

  2. Hemin immobilized into metal-organic frameworks as an electrochemical biosensor for 2,4,6-trichlorophenol

    Science.gov (United States)

    Zhang, Ting; Wang, Lu; Gao, Congwei; Zhao, Chaoyue; Wang, Yang; Wang, Jianmin

    2018-02-01

    Hemin immobilized into copper-based metal-organic frameworks was successfully prepared and used as a new electrode material for sensitive electrochemical biosensing. X-ray diffraction patterns, Fourier transform infrared spectra, scanning electron microscopy, UV-vis absorption spectroscopy, and cyclic voltammetry were used to characterize the resultant composites. Due to the interaction between the copper atom groups and hemin, the constrained environment in Cu-MOF-74 acts as a matrix to avoid the dimerization of enzyme molecules and retain its biological activity. The hemin/Cu-MOF composites demonstrated enhanced electrocatalytical activity and high stability towards the oxidation of 2,4,6-trichlorophenol. Under optimum experimental conditions, the sensor showed a wide linear relationship over the range of 0.01-9 μmol L-1 with a detection limit (3σ) of 0.005 μmol L-1. The relative standard deviations were 4.6% and 3.5% for five repeated measurements of 0.5 and 5 μmol L-1 2,4,6-trichlorophenol, respectively. The detection platforms for 2,4,6-trichlorophenol developed here not only indicate that hemin/Cu-MOF-74 possesses intrinsic biological reactivity, but also enable further work to be conducted towards the application of enzyme-containing metal-organic frameworks in electrochemical biosensors.

  3. Effective Surface Area of Electrochemical Sensors

    Czech Academy of Sciences Publication Activity Database

    Krejčí, J.; Sajdlová, Z.; Neděla, Vilém; Flodrová, Eva; Šejnohová, R.; Vránová, H.; Plička, R.

    2014-01-01

    Roč. 161, č. 6 (2014), B147-B150 ISSN 0013-4651 R&D Projects: GA MPO FR-TI1/118 Institutional support: RVO:68081731 Keywords : scanning electron microscopy * glassy-carbon electrode * gold electrodes * biosensors Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 3.266, year: 2014

  4. The utilization of SiNWs/AuNPs-modified indium tin oxide (ITO) in fabrication of electrochemical DNA sensor

    Energy Technology Data Exchange (ETDEWEB)

    Rashid, Jahwarhar Izuan Abdul [Institute of Advanced Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Department of Chemistry and Biology, Centre for Defense Foundation Studies, National Defense University of Malaysia, Sungai Besi Camp, 57000 Kuala Lumpur (Malaysia); Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Yusof, Nor Azah, E-mail: azahy@upm.edu.my [Institute of Advanced Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Abdullah, Jaafar [Institute of Advanced Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Hashim, Uda [Institute of Nanoelectronic Engineering, Universiti Malaysia Perlis, 01000 Kangar, Perlis (Malaysia); Hajian, Reza, E-mail: rezahajian@upm.edu.my [Institute of Advanced Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia)

    2014-12-01

    This work describes the incorporation of SiNWs/AuNPs composite as a sensing material for DNA detection on indium tin-oxide (ITO) coated glass slide. The morphology of SiNWs/AuNPs composite as the modifier layer on ITO was studied by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). The morphological studies clearly showed that SiNWs were successfully decorated with 20 nm-AuNPs using self-assembly monolayer (SAM) technique. The effective surface area for SiNWs/AuNPs-modified ITO enhanced about 10 times compared with bare ITO electrode. SiNWs/AuNPs nanocomposite was further explored as a matrix for DNA probe immobilization in detection of dengue virus as a bio-sensing model to evaluate its performance in electrochemical sensors. The hybridization of complementary DNA was monitored by differential pulse voltammetry (DPV) using methylene blue (MB) as the redox indicator. The fabricated biosensor was able to discriminate significantly complementary, non-complementary and single-base mismatch oligonucleotides. The electrochemical biosensor was sensitive to target DNA related to dengue virus in the range of 9.0–178.0 ng/ml with detection limit of 3.5 ng/ml. In addition, SiNWs/AuNPs-modified ITO, regenerated up to 8 times and its stability was up to 10 weeks at 4 °C in silica gel. - Highlights: • A sensitive biosensor is presented for detection of dengue virus. • SiNWs and AuNPs used as nanocomposite layers on ITO for construction of biosensor • The detection mechanism is based on the interaction of MB with DNA bonded on AuNPs. • The reduction signal of MB decreases upon complementary hybridization.

  5. The utilization of SiNWs/AuNPs-modified indium tin oxide (ITO) in fabrication of electrochemical DNA sensor

    International Nuclear Information System (INIS)

    Rashid, Jahwarhar Izuan Abdul; Yusof, Nor Azah; Abdullah, Jaafar; Hashim, Uda; Hajian, Reza

    2014-01-01

    This work describes the incorporation of SiNWs/AuNPs composite as a sensing material for DNA detection on indium tin-oxide (ITO) coated glass slide. The morphology of SiNWs/AuNPs composite as the modifier layer on ITO was studied by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). The morphological studies clearly showed that SiNWs were successfully decorated with 20 nm-AuNPs using self-assembly monolayer (SAM) technique. The effective surface area for SiNWs/AuNPs-modified ITO enhanced about 10 times compared with bare ITO electrode. SiNWs/AuNPs nanocomposite was further explored as a matrix for DNA probe immobilization in detection of dengue virus as a bio-sensing model to evaluate its performance in electrochemical sensors. The hybridization of complementary DNA was monitored by differential pulse voltammetry (DPV) using methylene blue (MB) as the redox indicator. The fabricated biosensor was able to discriminate significantly complementary, non-complementary and single-base mismatch oligonucleotides. The electrochemical biosensor was sensitive to target DNA related to dengue virus in the range of 9.0–178.0 ng/ml with detection limit of 3.5 ng/ml. In addition, SiNWs/AuNPs-modified ITO, regenerated up to 8 times and its stability was up to 10 weeks at 4 °C in silica gel. - Highlights: • A sensitive biosensor is presented for detection of dengue virus. • SiNWs and AuNPs used as nanocomposite layers on ITO for construction of biosensor • The detection mechanism is based on the interaction of MB with DNA bonded on AuNPs. • The reduction signal of MB decreases upon complementary hybridization

  6. A Highly Sensitive Electrochemical DNA Biosensor from Acrylic-Gold Nano-composite for the Determination of Arowana Fish Gender

    Science.gov (United States)

    Rahman, Mahbubur; Heng, Lee Yook; Futra, Dedi; Chiang, Chew Poh; Rashid, Zulkafli A.; Ling, Tan Ling

    2017-08-01

    The present research describes a simple method for the identification of the gender of arowana fish ( Scleropages formosus). The DNA biosensor was able to detect specific DNA sequence at extremely low level down to atto M regimes. An electrochemical DNA biosensor based on acrylic microsphere-gold nanoparticle (AcMP-AuNP) hybrid composite was fabricated. Hydrophobic poly(n-butylacrylate-N-acryloxysuccinimide) microspheres were synthesised with a facile and well-established one-step photopolymerization procedure and physically adsorbed on the AuNPs at the surface of a carbon screen printed electrode (SPE). The DNA biosensor was constructed simply by grafting an aminated DNA probe on the succinimide functionalised AcMPs via a strong covalent attachment. DNA hybridisation response was determined by differential pulse voltammetry (DPV) technique using anthraquinone monosulphonic acid redox probe as an electroactive oligonucleotide label (Table 1). A low detection limit at 1.0 × 10-18 M with a wide linear calibration range of 1.0 × 10-18 to 1.0 × 10-8 M ( R 2 = 0.99) can be achieved by the proposed DNA biosensor under optimal conditions. Electrochemical detection of arowana DNA can be completed within 1 hour. Due to its small size and light weight, the developed DNA biosensor holds high promise for the development of functional kit for fish culture usage.

  7. RNA aptamer-based electrochemical biosensor for selective and label-free analysis of dopamine

    DEFF Research Database (Denmark)

    Farjami, Elahe; Campos, Rui; Nielsen, Jesper Sejrup

    2013-01-01

    , including dopamine precursors and metabolites and other neurotransmitters (NT). Here we report an electrochemical RNA aptamer-based biosensor for analysis of dopamine in the presence of other NT. The biosensor exploits a specific binding of dopamine by the RNA aptamer, immobilized at a cysteamine......, norepinephrine, 3,4-dihydroxy-phenylalanine (l-DOPA), 3,4-dihydroxyphenylacetic acid (DOPAC), methyldopamine, and tyramine, which gave negligible signals under conditions of experiments (electroanalysis at 0.185 V vs Ag/AgCl). The interference from ascorbic and uric acids was eliminated by application...... as a general strategy not to restrict the conformational freedom and binding properties of surface-bound aptamers and, thus, be applicable for the development of other aptasensors...

  8. Disposable chemical sensors and biosensors made on cellulose paper

    International Nuclear Information System (INIS)

    Kim, Joo-Hyung; Mun, Seongcheol; Ko, Hyun-U; Yun, Gyu-Young; Kim, Jaehwan

    2014-01-01

    Most sensors are based on ceramic or semiconducting substrates, which have no flexibility or biocompatibility. Polymer-based sensors have been the subject of much attention due to their ability to collect molecules on their sensing surface with flexibility. Beyond polymer-based sensors, the recent discovery of cellulose as a smart material paved the way to the use of cellulose paper as a potential candidate for mechanical as well as electronic applications such as actuators and sensors. Several different paper-based sensors have been investigated and suggested. In this paper, we review the potential of cellulose materials for paper-based application devices, and suggest their feasibility for chemical and biosensor applications. (topical review)

  9. Effect of immobilization technique on performance ZnO nanorods based enzymatic electrochemical glucose biosensor

    Science.gov (United States)

    Shukla, Mayoorika; Pramila; Palani, I. A.; Singh, Vipul

    2017-11-01

    In this paper, ZnO Nanorods (ZNR) have been synthesized over Platinum (Pt) coated glass substrate with in-situ addition KMnO4 during hydrothermal growth process. Significant variation in ZnO nanostructures was observed by KMnO4 addition during the growth. Glucose oxidase was later immobilized over ZNRs. The as-prepared ZNRs were further utilized for glucose detection by employing amperometric electrochemical transduction method. In order to optimize the performance of the prepared biosensor two different immobilization techniques i.e. physical adsorption and cross linking have been employed and compared. Further investigations suggest that immobilization via cross linking method resulted in the improvement of the biosensor performance, thereby significantly affecting the sensitivity and linear range of the fabricated biosensor. Among the two types of biosensors fabricated using ZNR, the best performance was shown by cross linked electrodes. The sensitivity for the same was found to be 17.7 mA-cm-2-M-1, along with a wide linear range of 0.5-8.5 mM.

  10. pH-dependence of the optical bio-sensor based on DNA-carbon nanotube

    International Nuclear Information System (INIS)

    Vu Thuy Huong; Quach Kha Quang; Tran Thanh Thuy; Phan Duc Anh; Ngo Van Thanh; Nguyen Ai Viet

    2010-01-01

    In 2006, Daniel A. Heller et al. [1] demonstrated that carbon nanotubes (CNNTs) wrapped with DNA can be placed inside living cells and detect trace amounts of harmful contaminants using near infrared light. This discovery could lead to new types of optical sensors and biomarkers at the sub cellular level. The working principle of this optical bio-sensor from DNA and CNNTs can be explained by a simple theoretical model which was introduced in [3]. In this paper, the pH-dependence of DNA and the pH-dependence of solution around CNNTs are shown by using data analysis method. By substituting them into the same model, the pH-dependence of DNA-wrapped CNNTs was elicited in this paper. The range of parameters for workable conditions of this bio-sensor was indicated that the solution should have pH from 6 to 9 and the concentration of ions should be more than a critical value. These results are according to the experimental data and the deduction about pH and salt concentration in solution. They are very useful as using such a new bio-sensor like this in living environment. (author)

  11. Carbon Nanotubes-Based Potentiometric Bio-Sensors for Determination of Urea

    Directory of Open Access Journals (Sweden)

    Ewa Jaworska

    2015-07-01

    Full Text Available The possibility of using disposable plastic-carbon potentiometric sensors as enzyme biosensors was examined. Urease enzyme was immobilized on poly(vinyl chloride based H+- or NH4+-selective membranes using cellulose acetate. This approach has resulted in a potentiometric response on changing the pH of the solution or NH4+ ion content due to an enzymatic reaction that occurs between urease and urea. Both types of potentiometric biosensors for urea were characterized by good analytical parameters as high sensitivity and fast response time.

  12. A review study of (bio)sensor systems based on conducting polymers.

    Science.gov (United States)

    Ates, Murat

    2013-05-01

    This review article concentrates on the electrochemical biosensor systems with conducting polymers. The area of electro-active polymers confined to different electrode surfaces has attracted great attention. Polymer modified carbon substrate electrodes can be designed through polymer screening to provide tremendous improvements in sensitivity, selectivity, stability and reproducibility of the electrode response to detect a variety of analytes. The electro-active films have been used to entrap different enzymes and/or proteins at the electrode surface, but without obvious loss of their bioactivity for the development of biosensors. Electropolymerization is a well-known technique used to immobilize biomaterials to the modified electrode surface. Polymers might be covalently bonding to enzymes or proteins; therefore, thickness, permeation and charge transport characteristics of the polymeric films can be easily and precisely controlled by modulating the electrochemical parameters for various electrochemical techniques, such as chronoamperometry, chronopotentiometry, cyclic voltammetry, and differential pulse voltammetry. This review article is divided into three main parts as given in the table of contents related to the immobilization process of some important conducting polymers, polypyrrole, polythiophene, poly(3,4-ethylenedioxythiophene), polycarbazole, polyaniline, polyphenol, poly(o-phenylenediamine), polyacetylene, polyfuran and their derivatives. A total of 216 references are cited in this review article. The literature reviewed covers a 7 year period beginning from 2005. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Development and Electrochemical Investigations of an EIS- (Electrolyte-Insulator-Semiconductor based Biosensor for Cyanide Detection

    Directory of Open Access Journals (Sweden)

    Michael J. Schöning

    2007-08-01

    Full Text Available A cyanide biosensor based on a pH-sensitive p-doped electrolyte-insulator-semiconductor (EIS structure with an immobilised enzyme (cyanidase is realised at thelaboratory scale. The immobilisation of the cyanidase is performed in two distinct steps:first, the covalent coupling of cyanidase to an N-hydroxysuccinimide- (NHS activatedSepharoseTM gel and then, the physical entrapment of NHS-activated SepharoseTM with theimmobilised cyanidase in a dialysis membrane onto the EIS structure. The immobilisationof the cyanidase to the NHS-activated SepharoseTM is studied by means of gelelectrophoresis measurements and investigations using an ammonia- (NH3 selectiveelectrode. For the electrochemical characterisation of the cyanide biosensor,capacitance/voltage and constant capacitance measurements, respectively, have beencarried out. A differential measurement procedure is presented to evaluate the cyanideconcentration-dependent biosensor signals.

  14. A Fast, Sensitive and Label Free Electrochemical DNA Sensor

    International Nuclear Information System (INIS)

    Chen Yu; Elling; Lee Yokeling; Chong Serchoong

    2006-01-01

    A label free and sensitive DNA/RNA silicon based electrochemical microsensor array was developed by using thin film of the conducting polymer polypyrrole doped with an oligonucleotide probe. The electrochemical potential pulse amperometry technique was used for a biowarfare pathogen target DNA detection. The electrical potential assistanted DNA hybridisation method was applied. The sensor signal was increased by increasing the electrical potential assistanted DNA hybridisation time. It was possible to detect 0.34pmol and 0.072fmol of complementary oligonucleotide target in 0.1ml in seconds by using unpolished and polished gold electrode respectively. The probe preparation was also in seconds time, comparing indirect electrochemical DNA sensor, it has a fast sensor preparation as well as sensor response and label free advantages. The silicon microfabrication technique was used for this sensor array fabrication, which holds the potential to integrate with sensor electrical circuits. The conducting polymer polypyrrole was electrochemically deposited on each electrode respectively which has a possibility to dope the different DNA probe into the individual electrode to form a sensor array

  15. Electrochemically active functionalization of graphene for development of prototype biosensing devices

    DEFF Research Database (Denmark)

    Halder, Arnab; Ulstrup, Jens; Chi, Qijin

    nanosheets, (2) loading of different enzymes on functionalized graphene matrix, and (3) electrochemical performances of the functionalized nanaohybrid materials based prototype sensors. These latest advancements could be crucial for the design and fabrication of low-cost, flexible and disposable biosensors....

  16. Diabetes mellitus: biosensors for research and management.

    Science.gov (United States)

    Turner, A P; Pickup, J C

    1985-01-01

    The condition of diabetes mellitus is described with particular reference to the parameters that it would be desirable to monitor in order to improve management and understanding of the disease. Previous attention has largely focused on analysis of glucose, but many other intermediates of carbohydrate, fat and protein metabolism are deranged in diabetes and may be alternative measures of control. The need for laboratory analysers, self-monitoring, closed-loop devices and alarms are detailed and the problems associated with implantable sensors discussed. Progress in the development of biosensors is reviewed using glucose sensors as the main example. Electrochemical, optoelectronic and calorimetric approaches to sensing are considered and it is concluded that configurations based either on hydrogen peroxide detection or on mediated electron transfer are most likely to provide a raid route to in vivo monitoring. The extension of biosensor technology to tackle other important substrates is discussed, the principal hurdle to success being seen as the lack of long-term stability of the biological component.

  17. Preparation of Electrochemical Biosensor for Detection of Organophosphorus Pesticides

    Directory of Open Access Journals (Sweden)

    Ashish Gothwal

    2014-01-01

    Full Text Available Polyvinyl chloride (PVC can be used to develop reaction beaker which acts as electrochemical cell for the measurement of OP pesticides. Being chemically inert, corrosion resistant, and easy in molding to various shapes and size, PVC can be used for the immobilization of enzyme. Organophosphorus hydrolase was immobilized covalently onto the chemically activated inner surface of PVC beaker by using glutaraldehyde as a coupling agent. The carbon nanotubes paste working electrode was constructed for amperometric measurement at a potential of +0.8 V. The biosensor showed optimum response at pH 8.0 with incubation temperature of 40°C. Km and Imax for substrate (methyl parathion were 322.58 µM and 1.1 µA, respectively. Evaluation study showed a correlation of 0.985, which was in agreement with the standard method. The OPH biosensor lost 50% of its initial activity after its regular use for 25 times over a period of 50 days when stored in 0.1 M sodium phosphate buffer, pH 8.0 at 4°C. No interference was observed by interfering species.

  18. Electrochemical Biosensors Based on Enzymatic Reactor of Silver Solid Amalgam Powder for Measurements in Flow Systems

    Czech Academy of Sciences Publication Activity Database

    Josypčuk, Oksana; Barek, J.; Josypčuk, Bohdan

    2014-01-01

    Roč. 26, č. 8 (2014), s. 1729-1738 ISSN 1040-0397 R&D Projects: GA ČR GAP206/11/1638 Institutional support: RVO:61388955 Keywords : Electrochemical biosensors * flow systems * Amperometry Subject RIV: CG - Electrochemistry Impact factor: 2.138, year: 2014

  19. Functional graphene-gold nano-composite fabricated electrochemical biosensor for direct and rapid detection of bisphenol A.

    Science.gov (United States)

    Pan, Daodong; Gu, Yuanyuan; Lan, Hangzhen; Sun, Yangying; Gao, Huiju

    2015-01-01

    In this research, the graphene with excellent dispersity is prepared successfully by introducing gold nanoparticle to separate the individual sheets. Various techniques are adopted to characterize the prepared graphene and graphene-gold nanoparticle composite materials. This fabricated new composite material is used as the support material to construct a novel tyrosinase based biosensor for detection of bisphenol A (BPA). The electrochemical performances of the proposed new enzyme biosensor were investigated by differential pulse voltammetry (DPV) method. The proposed biosensor exhibited excellent performance for BPA determination with a wide linear range (2.5×10(-3)-3.0 μM), a highly reproducible response (RSD of 2.7%), low interferences and long-term stability. And more importantly, the calculated detection limit of the proposed biosensor was as low as 1 nM. Compared with other detection methods, this graphene-gold nanoparticle composite based tyrosinase biosensor is proved to be a promising and reliable tool for rapid detection of BPA for on-site analysis of emergency BPA related pollution affairs. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Utilization of biosensors and chemical sensors for space applications

    Science.gov (United States)

    Bonting, S. L.

    1992-01-01

    There will be a need for a wide array of chemical sensors for biomedical experimentation and for the monitoring of water and air recycling processes on Space Station Freedom. The infrequent logistics flights of the Space Shuttle will necessitate onboard analysis. The advantages of biosensors and chemical sensors over conventional analysis onboard spacecraft are manifold. They require less crew time, space, and power. Sample treatment is not needed. Real time or near-real time monitoring is possible, in some cases on a continuous basis. Sensor signals in digitized form can be transmitted to the ground. Types and requirements for chemical sensors to be used in biomedical experimentation and monitoring of water recycling during long-term space missions are discussed.

  1. Biosensor for detection of dissolved chromium in potable water: A review.

    Science.gov (United States)

    Biswas, Puja; Karn, Abhinav Kumar; Balasubramanian, P; Kale, Paresh G

    2017-08-15

    The unprecedented deterioration rate of the environmental quality due to rapid urbanization and industrialization causes a severe global health concern to both ecosystem and humanity. Heavy metals are ubiquitous in nature and being used extensively in industrial processes, the exposure to excessive levels could alter the biochemical cycles of living systems. Hence the environmental monitoring through rapid and specific detection of heavy metal contamination in potable water is of paramount importance. Various standard analytical techniques and sensors are used for the detection of heavy metals include spectroscopy and chromatographic methods along with electrochemical, optical waveguide and polymer based sensors. However, the mentioned techniques lack the point of care application as it demands huge capital cost as well as the attention of expert personnel for sample preparation and operation. Recent advancements in the synergetic interaction among biotechnology and microelectronics have advocated the biosensor technology for a wide array of applications due to its characteristic features of sensitivity and selectivity. This review paper has outlined the overview of chromium toxicity, conventional analytical techniques along with a particular emphasis on electrochemical based biosensors for chromium detection in potable water. This article emphasized porous silicon as a host material for enzyme immobilization and elaborated the working principle, mechanism, kinetics of an enzyme-based biosensor for chromium detection. The significant characteristics such as pore size, thickness, and porosity make the porous silicon suitable for enzyme entrapment. Further, several schemes on porous silicon-based immobilized enzyme biosensors for the detection of chromium in potable water are proposed. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Biosensor and chemical sensor probes for calcium and other metal ions

    Science.gov (United States)

    Vo-Dinh, Tuan; Viallet, Pierre

    1996-01-01

    The present invention relates to chemical sensor and biosensor probes for measuring low concentration of metals and metal ions in complex samples such as biological fluids, living cells, and environmental samples. More particularly the present invention relates to a gel-based Indo-1 and Fura-2 chemical sensor probes for the measurement of low concentrations of calcium, cadmium, magnesium and the like. Also disclosed is a detector device using the sensors of the present invention.

  3. 2D nanomaterials based electrochemical biosensors for cancer diagnosis.

    Science.gov (United States)

    Wang, Lu; Xiong, Qirong; Xiao, Fei; Duan, Hongwei

    2017-03-15

    Cancer is a leading cause of death in the world. Increasing evidence has demonstrated that early diagnosis holds the key towards effective treatment outcome. Cancer biomarkers are extensively used in oncology for cancer diagnosis and prognosis. Electrochemical sensors play key roles in current laboratory and clinical analysis of diverse chemical and biological targets. Recent development of functional nanomaterials offers new possibilities of improving the performance of electrochemical sensors. In particular, 2D nanomaterials have stimulated intense research due to their unique array of structural and chemical properties. The 2D materials of interest cover broadly across graphene, graphene derivatives (i.e., graphene oxide and reduced graphene oxide), and graphene-like nanomaterials (i.e., 2D layered transition metal dichalcogenides, graphite carbon nitride and boron nitride nanomaterials). In this review, we summarize recent advances in the synthesis of 2D nanomaterials and their applications in electrochemical biosensing of cancer biomarkers (nucleic acids, proteins and some small molecules), and present a personal perspective on the future direction of this area. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. An intimately bonded titanate nanotube–polyaniline–gold nanoparticle ternary composite as a scaffold for electrochemical enzyme biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaoqiang, E-mail: liuxiaoqiang@henu.edu.cn [Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan Province, 475004 (China); Zhu, Jie; Huo, Xiaohe; Yan, Rui [Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan Province, 475004 (China); Wong, Danny K.Y., E-mail: Danny.Wong@mq.edu.au [Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109 (Australia)

    2016-03-10

    In this work, titanate nanotubes (TNTs), polyaniline (PANI) and gold nanoparticles (GNPs) were assembled to form a ternary composite, which was then applied on an electrode as a scaffold of an electrochemical enzyme biosensor. The scaffold was constructed by oxidatively polymerising aniline to produce an emeraldine salt of PANI on TNTs, followed by gold nanoparticle deposition. A novel aspect of this scaffold lies in the use of the emeraldine salt of PANI as a molecular wire between TNTs and GNPs. Using horseradish peroxidase (HRP) as a model enzyme, voltammetric results demonstrated that direct electron transfer of HRP was achieved at both TNT-PANI and TNT-PANI-GNP-modified electrodes. More significantly, the catalytic reduction current of H{sub 2}O{sub 2} by HRP was ∼75% enhanced at the TNT-PANI-GNP-modified electrode, compared to that at the TNT-PANI-modified electrode. The heterogeneous electron transfer rate constant of HRP was found to be ∼3 times larger at the TNT-PANI-GNP-modified electrode than that at the TNT-PANI-modified electrode. Based on chronoamperometric detection of H{sub 2}O{sub 2}, a linear range from 1 to 1200 μM, a sensitivity of 22.7 μA mM{sup −1} and a detection limit of 0.13 μM were obtained at the TNT-PANI-GNP-modified electrode. The performance of the biosensor can be ascribed to the superior synergistic properties of the ternary composite. - Highlights: • A ternary TiO{sub 2} nanotube–polyaniline–gold nanoparticle composite was developed. • New synthetic route for ternary composite with a polyaniline molecular wire between TiO{sub 2} nanotubes and gold nanoparticles. • An electrochemical biosensor with ternary composite as a scaffold. • Ternary composite facilitated improved analytical performance of electrochemical biosensor.

  5. Glucose biosensor based on disposable electrochemical paper-based transducers fully fabricated by screen-printing.

    Science.gov (United States)

    Lamas-Ardisana, P J; Martínez-Paredes, G; Añorga, L; Grande, H J

    2018-06-30

    This paper describes a new approach for the massive production of electrochemical paper-based analytical devices (ePADs). These devices are fully fabricated by screen-printing technology and consist of a lineal microfluidic channel delimited by hydrophobic walls (patterned with diluted ultraviolet screen-printing ink in chromatographic paper grade 4) and a three-electrode system (printed with carbon and/or Ag/AgCl conductive inks). The printing process was characterised and optimized for pattern each layer with only one squeeze sweep. These ePADs were used as transducers to develop a glucose biosensor. Ionic strength/pH buffering salts, electrochemical mediator (ferricyanide) and enzyme (glucose dehydrogenase FAD-dependent) were separately stored along the microfluidic channel in order to be successively dissolved and mixed after the sample dropping at the entrance. The analyses required only 10 µl and the biosensors showed good reproducibility (RSD = 6.2%, n = 10) and sensitivity (0.426 C/M cm 2 ), wide linear range (0.5-50 mM; r 2 = 0.999) and low limit of detection (0.33 mM). Furthermore, the new biosensor was applied for glucose determination in five commercial soft-drinks without any sample treatment before the analysis. These samples were also analysed with a commercial enzymatic-kit assay. The results indicated that both methods provide accurate results. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. All-Polymer Electrochemical Sensors

    DEFF Research Database (Denmark)

    Kafka, Jan Robert

    This thesis presents fabrication strategies to produce different types of all-polymer electrochemical sensors based on electrodes made of the highly conductive polymer poly(3,4-ethylenedioxythiophene) (PEDOT). Three different systems are presented, fabricated either by using microdrilling or by hot...

  7. Development of a Sensitive Electrochemical Enzymatic Reaction-Based Cholesterol Biosensor Using Nano-Sized Carbon Interdigitated Electrodes Decorated with Gold Nanoparticles.

    Science.gov (United States)

    Sharma, Deepti; Lee, Jongmin; Seo, Junyoung; Shin, Heungjoo

    2017-09-15

    We developed a versatile and highly sensitive biosensor platform. The platform is based on electrochemical-enzymatic redox cycling induced by selective enzyme immobilization on nano-sized carbon interdigitated electrodes (IDEs) decorated with gold nanoparticles (AuNPs). Without resorting to sophisticated nanofabrication technologies, we used batch wafer-level carbon microelectromechanical systems (C-MEMS) processes to fabricate 3D carbon IDEs reproducibly, simply, and cost effectively. In addition, AuNPs were selectively electrodeposited on specific carbon nanoelectrodes; the high surface-to-volume ratio and fast electron transfer ability of AuNPs enhanced the electrochemical signal across these carbon IDEs. Gold nanoparticle characteristics such as size and morphology were reproducibly controlled by modulating the step-potential and time period in the electrodeposition processes. To detect cholesterol selectively using AuNP/carbon IDEs, cholesterol oxidase (ChOx) was selectively immobilized via the electrochemical reduction of the diazonium cation. The sensitivity of the AuNP/carbon IDE-based biosensor was ensured by efficient amplification of the redox mediators, ferricyanide and ferrocyanide, between selectively immobilized enzyme sites and both of the combs of AuNP/carbon IDEs. The presented AuNP/carbon IDE-based cholesterol biosensor exhibited a wide sensing range (0.005-10 mM) and high sensitivity (~993.91 µA mM -1 cm -2 ; limit of detection (LOD) ~1.28 µM). In addition, the proposed cholesterol biosensor was found to be highly selective for the cholesterol detection.

  8. Stabilizing the baseline current of a microbial fuel cell-based biosensor through overpotential control under non-toxic conditions

    NARCIS (Netherlands)

    Stein, N.E.; Hamelers, H.V.M.; Buisman, C.J.N.

    2010-01-01

    A MFC-based biosensor can act as online toxicity sensor Electrical current is a direct linear measure for metabolic activity of electrochemically active microorganisms Microorganisms gain energy from anodic overpotential and current strongly depends on anodic overpotential Therefore control of

  9. Electrochemical Biosensor for Nitrite Based on Polyacrylic-Graphene Composite Film with Covalently Immobilized Hemoglobin

    Directory of Open Access Journals (Sweden)

    Raja Zaidatul Akhmar Raja Jamaluddin

    2018-04-01

    Full Text Available A new biosensor for the analysis of nitrite in food was developed based on hemoglobin (Hb covalently immobilized on the succinimide functionalized poly(n-butyl acrylate-graphene [poly(nBA-rGO] composite film deposited on a carbon-paste screen-printed electrode (SPE. The immobilized Hb on the poly(nBA-rGO conducting matrix exhibited electrocatalytic ability for the reduction of nitrite with significant enhancement in the reduction peak at −0.6 V versus Ag/AgCl reference electrode. Thus, direct determination of nitrite can be achieved by monitoring the cathodic peak current signal of the proposed polyacrylic-graphene hybrid film-based voltammetric nitrite biosensor. The nitrite biosensor exhibited a reproducible dynamic linear response range from 0.05–5 mg L−1 nitrite and a detection limit of 0.03 mg L−1. No significant interference was observed by potential interfering ions such as Ca2+, Na+, K+, NH4+, Mg2+, and NO3− ions. Analysis of nitrite in both raw and processed edible bird’s nest (EBN samples demonstrated recovery of close to 100%. The covalent immobilization of Hb on poly(nBA-rGO composite film has improved the performance of the electrochemical nitrite biosensor in terms of broader detection range, lower detection limit, and prolonged biosensor stability.

  10. Nanomaterials-based electrochemical sensors for nitric oxide

    International Nuclear Information System (INIS)

    Dang, Xueping; Hu, Hui; Wang, Shengfu; Hu, Shengshui

    2015-01-01

    Electrochemical sensing has been demonstrated to represent an efficient way to quantify nitric oxide (NO) in challenging physiological environments. A sensing interface based on nanomaterials opens up new opportunities and broader prospects for electrochemical NO sensors. This review (with 141 refs.) gives a general view of recent advances in the development of electrochemical sensors based on nanomaterials. It is subdivided into sections on (i) carbon derived nanomaterials (such as carbon nanotubes, graphenes, fullerenes), (ii) metal nanoparticles (including gold, platinum and other metallic nanoparticles); (iii) semiconductor metal oxide nanomaterials (including the oxides of titanium, aluminum, iron, and ruthenium); and finally (iv) nanocomposites (such as those formed from carbon nanomaterials with nanoparticles of gold, platinum, NiO or TiO 2 ). The various strategies are discussed, and the advances of using nanomaterials and the trends in NO sensor technology are outlooked in the final section. (author)

  11. New directions in medical biosensors employing poly(3,4-ethylenedioxy thiophene) derivative-based electrodes

    DEFF Research Database (Denmark)

    Rozlosnik, Noemi

    2009-01-01

    production and they are suitable for biosensor applications. Conducting polymer-based electrochemical sensors have shown numerous advantages in a number of areas related to human health, such as the diagnosis of infectious diseases, genetic mutations, drug discovery, forensics and food technology, due...... developed methods associated with the application of PEDOT to diagnostic sensing....

  12. A regenerative electrochemical biosensor for mercury(II) by using the insertion approach and dual-hairpin-based amplification

    International Nuclear Information System (INIS)

    Jia, Jing; Ling, Yu; Gao, Zhong Feng; Lei, Jing Lei; Luo, Hong Qun; Li, Nian Bing

    2015-01-01

    Highlights: • The dual-hairpin structure as a signal amplifier is label-free and handy. • The strategy uses the insertion approach to improve the hybridization efficiency. • This biosensor has a low detection limit (28 pM) for detection of Hg 2+ . • This biosensor can be easily regenerated by using L-cysteine. - Abstract: A simple and effective biosensor for Hg 2+ determination was investigated. The novel biosensor was prepared by the insertion approach that the moiety-labeled DNA inserted into a loosely packed cyclic-dithiothreitol (DTT) monolayer, improving the hybridization efficiency. Electrochemical impedance spectroscopy studies of two biosensors (single-hairpin and dual-hairpin structure DNA modified electrodes) used for Hg 2+ detection indicated that the dual-hairpin modified electrode had a larger electron transfer resistance change (ΔR ct ). Consequently, the dual-hairpin structure was used as a signal amplifier for the preparation of a selective Hg 2+ biosensor. This biosensor exhibited an excellent selectivity toward Hg 2+ over Cd 2+ , Pd 2+ , Co 2+ etc. Also, a linear relation was observed between the ΔR ct and Hg 2+ concentrations in a range from 0.1 nM to 5 μM with a detection limit of 28 pM under optimum conditions. Moreover, the biosensor can be reused by using L-cysteine and successfully applied for detecting Hg 2+ in real samples

  13. Protein Biosensors Based on Polymer Nanowires, Carbon Nanotubes and Zinc Oxide Nanorods

    Directory of Open Access Journals (Sweden)

    Taeksoo Ji

    2011-05-01

    Full Text Available The development of biosensors using electrochemical methods is a promising application in the field of biotechnology. High sensitivity sensors for the bio-detection of proteins have been developed using several kinds of nanomaterials. The performance of the sensors depends on the type of nanostructures with which the biomaterials interact. One dimensional (1-D structures such as nanowires, nanotubes and nanorods are proven to have high potential for bio-applications. In this paper we review these three different kinds of nanostructures that have attracted much attention at recent times with their great performance as biosensors. Materials such as polymers, carbon and zinc oxide have been widely used for the fabrication of nanostructures because of their enhanced performance in terms of sensitivity, biocompatibility, and ease of preparation. Thus we consider polymer nanowires, carbon nanotubes and zinc oxide nanorods for discussion in this paper. We consider three stages in the development of biosensors: (a fabrication of biomaterials into nanostructures, (b alignment of the nanostructures and (c immobilization of proteins. Two different methods by which the biosensors can be developed at each stage for all the three nanostructures are examined. Finally, we conclude by mentioning some of the major challenges faced by many researchers who seek to fabricate biosensors for real time applications.

  14. Electrochemical processes and mechanistic aspects of field-effect sensors for biomolecules

    Science.gov (United States)

    Huang, Weiguo; Diallo, Abdou Karim; Dailey, Jennifer L.; Besar, Kalpana

    2017-01-01

    Electronic biosensing is a leading technology for determining concentrations of biomolecules. In some cases, the presence of an analyte molecule induces a measured change in current flow, while in other cases, a new potential difference is established. In the particular case of a field effect biosensor, the potential difference is monitored as a change in conductance elsewhere in the device, such as across a film of an underlying semiconductor. Often, the mechanisms that lead to these responses are not specifically determined. Because improved understanding of these mechanisms will lead to improved performance, it is important to highlight those studies where various mechanistic possibilities are investigated. This review explores a range of possible mechanistic contributions to field-effect biosensor signals. First, we define the field-effect biosensor and the chemical interactions that lead to the field effect, followed by a section on theoretical and mechanistic background. We then discuss materials used in field-effect biosensors and approaches to improving signals from field-effect biosensors. We specifically cover the biomolecule interactions that produce local electric fields, structures and processes at interfaces between bioanalyte solutions and electronic materials, semiconductors used in biochemical sensors, dielectric layers used in top-gated sensors, and mechanisms for converting the surface voltage change to higher signal/noise outputs in circuits. PMID:29238595

  15. [Amperometric biosensor for lactate analysis in wines and grape must during fermentation].

    Science.gov (United States)

    Shkotova, L V; Horiushkina, T B; Slast'ia, E A; Soldatkin, O P; Tranh-Minh, S; Chovelon, J M; Dziadevych, S V

    2005-01-01

    The amperometric biosensor based on lactate oxidase for determination of lactate has been developed, and two methods of immobilization of lactate oxidase on the surface of industrial screen-printed platinum electrodes SensLab were compared. A sensor with immobilized in the Resydrol polymer lactate oxidase by the method of physical adsorption is characterized of narrow dynamic range and greater response value in comparison with a biosensor based on immobilised in poly(3,4-ethylenedioxythiophene) lactate oxidase by the method of electrochemical polymerization. Operational stability of the biosensor developed was studied and it was shown, that the immobilization method does not influence their stability. The analysis of the lactate in wine and during wine fermentation has been conducted. High correlation of the data obtained by means of amperometric lactate biosensor and a standard method of an ionic chromatography has been shown. The developed biosensor could be applied in the food industry for the control and optimization of the wine fermentation process, and quality control of wine.

  16. A ratiometric electrochemical biosensor for the exosomal microRNAs detection based on bipedal DNA walkers propelled by locked nucleic acid modified toehold mediate strand displacement reaction.

    Science.gov (United States)

    Zhang, Jing; Wang, Liang-Liang; Hou, Mei-Feng; Xia, Yao-Kun; He, Wen-Hui; Yan, An; Weng, Yun-Ping; Zeng, Lu-Peng; Chen, Jing-Hua

    2018-04-15

    Sensitive and selective detection of microRNAs (miRNAs) in cancer cells derived exosomes have attracted rapidly growing interest owing to their potential in diagnostic and prognostic applications. Here, we design a ratiometric electrochemical biosensor based on bipedal DNA walkers for the attomolar detection of exosomal miR-21. In the presence of miR-21, DNA walkers are activated to walk continuously along DNA tracks, resulting in conformational changes as well as considerable increases of the signal ratio produced by target-respond and target-independent reporters. With the signal cascade amplification of DNA walkers, the biosensor exhibits ultrahigh sensitivity with the limit of detection (LOD) down to 67 aM. Furthermore, owing to the background-correcting function of target-independent reporters termed as reference reporters, the biosensor is robust and stable enough to be applied in the detection of exosomal miR-21 extracted from breast cancer cell lines and serums. In addition, because locked nucleic acid (LNA) modified toehold mediate strand displacement reaction (TMSDR) has extraordinary discriminative ability, the biosensor displays excellent selectivity even against the single-base-mismatched target. It is worth mentioning that our sensor is regenerative and stable for at least 5 cycles without diminution in sensitivity. In brief, the high sensitivity, selectivity and reproducibility, together with cheap, make the proposed biosensor a promising approach for exosomal miRNAs detection, in conjunction with early point-of-care testing (POCT) of cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Electrochemical behavior of antioxidants: Part 3. Electrochemical studies of caffeic Acid–DNA interaction and DNA/carbon nanotube biosensor for DNA damage and protection

    Directory of Open Access Journals (Sweden)

    Refat Abdel-Hamid

    2016-05-01

    Full Text Available Multi-walled carbon nanotubes-modified glassy carbon electrode biosensor was used for electrochemical studies of caffeic acid–dsDNA interaction in phosphate buffer solution at pH 2.12. Caffeic acid, CAF, shows a well-defined cyclic voltammetric wave. Its anodic peak current decreases and the peak potential shifts positively on the addition of dsDNA. This behavior was ascribed to an interaction of CAF with dsDNA giving CAF–dsDNA complex by intercalative binding mode. The apparent binding constant of CAF–dsDNA complex was determined using amperometric titrations. The oxidative damage caused to DNA was detected using the biosensor. The damage caused by the reactive oxygen species, hydroxyl radical (·−OH generated by the Fenton system on the DNA-biosensor was detected. It was found that CAF has the capability of scavenging the hydroxide radical and protecting the DNA immobilized on the GCE surface.

  18. A microneedle biosensor for minimally-invasive transdermal detection of nerve agents.

    Science.gov (United States)

    Mishra, Rupesh K; Vinu Mohan, A M; Soto, Fernando; Chrostowski, Robert; Wang, Joseph

    2017-03-13

    A microneedle electrochemical biosensor for the minimally invasive detection of organophosphate (OP) chemical agents is described. The new sensor relies on the coupling of the effective biocatalytic action of organophosphorus hydrolase (OPH) with a hollow-microneedle modified carbon-paste array electrode transducer, and involves rapid square-wave voltammetric (SWV) measurements of the p-nitrophenol product of the OPH enzymatic reaction in the presence of the OP substrate. The scanning-potential SWV transduction mode offers an additional dimension of selectivity compared to common fixed-potential OPH-amperometric biosensors. The microneedle device offers a highly linear response for methyl paraoxon (MPOx) over the range of 20-180 μM, high selectivity in the presence of excess co-existing ascorbic acid and uric acid and a high stability sensor upon exposure to the interstitial fluid (ISF). The OPH microneedle sensor was successfully tested ex vivo using mice skin samples exposed to MPOx, demonstrating its promise for minimally-invasive monitoring of OP agents and pesticides and as a wearable sensor for detecting toxic compounds, in general.

  19. Development of a sensitive electrochemical DNA sensor by 4-aminothiophenol self-assembled on electrodeposited nanogold electrode coupled with Au nanoparticles labeled reporter ssDNA

    International Nuclear Information System (INIS)

    Li Guangjiu; Liu Lihua; Qi Xiaowei; Guo Yaqing; Sun Wei; Li Xiaolin

    2012-01-01

    Graphical abstract: - Abstract: A novel and sensitive electrochemical DNA biosensor was fabricated by using the 4-aminothiophenol (4-ATP) self-assembled on electrodeposited gold nanoparticles (NG) modified electrode to anchor capture ssDNA sequences and Au nanoparticles (AuNPs) labeled with reporter ssDNA sequences, which were further coupled with electroactive indicator of hexaammineruthenium (III) ([Ru(NH 3 ) 6 ] 3+ ) to amplify the electrochemical signal of hybridization reaction. Different modified electrodes were prepared and characterized by cyclic voltammetry, scanning electron microscope and electrochemical impedance spectroscopy. By using a sandwich model for the capture of target ssDNA sequences, which was based on the shorter probe ssDNA and AuNPs label reporter ssDNA hybridized with longer target ssDNA, the electrochemical behavior of [Ru(NH 3 ) 6 ] 3+ was monitored by differential pulse voltammetry (DPV). The fabricated electrochemical DNA sensor exhibited good distinguish capacity for the complementary ssDNA sequence and two bases mismatched ssDNA. The dynamic detection range of the target ssDNA sequences was from 1.4 × 10 −11 to 2.0 × 10 −9 mol/L with the detection limit as 9.5 × 10 −12 mol/L (3σ). So in this paper a new electrochemical DNA sensor was designed with gold nanoparticles as the immobilization platform and the signal amplifier simultaneously.

  20. Vertically Aligned Carbon Nanofiber based Biosensor Platform for Glucose Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Al Mamun, Khandaker A.; Tulip, Fahmida S.; MacArthur, Kimberly; McFarlane, Nicole; Islam, Syed K.; Hensley, Dale

    2014-03-01

    Vertically aligned carbon nanofibers (VACNFs) have recently become an important tool for biosensor design. Carbon nanofibers (CNF) have excellent conductive and structural properties with many irregularities and defect sites in addition to exposed carboxyl groups throughout their surfaces. These properties allow a better immobilization matrix compared to carbon nanotubes and offer better resolution when compared with the FET-based biosensors. VACNFs can be deterministically grown on silicon substrates allowing optimization of the structures for various biosensor applications. Two VACNF electrode architectures have been employed in this study and a comparison of their performances has been made in terms of sensitivity, sensing limitations, dynamic range, and response time. The usage of VACNF platform as a glucose sensor has been verified in this study by selecting an optimum architecture based on the VACNF forest density. Read More: http://www.worldscientific.com/doi/abs/10.1142/S0129156414500062

  1. A sensitive electrochemical sensor for in vitro detection of parathyroid hormone based on a MoS2-graphene composite

    Science.gov (United States)

    Kim, Hyeong-U.; Kim, Hye Youn; Kulkarni, Atul; Ahn, Chisung; Jin, Yinhua; Kim, Yeongseok; Lee, Kook-Nyung; Lee, Min-Ho; Kim, Taesung

    2016-10-01

    This paper reports a biosensor based on a MoS2-graphene (MG) composite that can measure the parathyroid hormone (PTH) concentration in serum samples from patients. The interaction between PTH and MG was analysed via an electrochemical sensing technique. The MG was functionalized using L-cysteine. Following this, PTH could be covalently immobilized on the MG sensing electrode. The properties of MG were evaluated using scanning electron microscopy, high-resolution transmission electron microscopy, X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectrometry. Following optimization of immobilized materials—such as MG, PTH, and alkaline phosphatase (ALP)—the performance of the MG sensor was investigated via cyclic voltammetry, to assess its linearity, repeatability, and reproducibility. Electrochemical impedance spectroscopy was performed on graphene oxide (GO) and MG-modified electrodes to confirm the capture of a monoclonal antibody (MAb) targeting PTH. Furthermore, the ALP-PTH-MG sensor exhibits a linear response towards PTH from artificial serum over a range of 1-50 pg mL-1. Moreover, patient sera (n = 30) were evaluated using the ALP-PTH-MG sensor and compared using standard equipment (Roche E 170). The P-value is less than 0.01 when evaluated with a t-test using Welch’s correction. This implies that the fabricated sensor can be deployed for medical diagnosis.

  2. Development of an Electrochemical Metal-Ion Biosensor Using Self-Assembled Peptide Nanofibrils

    DEFF Research Database (Denmark)

    Viguier, Bruno; Zor, Kinga; Kasotakis, Emmanouil

    2011-01-01

    . These nanofibrils were obtained under aqueous conditions, at room temperature and outside the clean room. The functionalized gold electrode was evaluated by cyclic voltammetry, impedance spectroscopy, energy dispersive X-ray and atomic force microscopy. The obtained results displayed a layer of nanofibrils able......This article describes the combination of self-assembled peptide nanofibrils with metal electrodes for the development of an electrochemical metal-ion biosensor. The biological nanofibrils were immobilized on gold electrodes and used as biorecognition elements for the complexation with copper ions...

  3. Magnetoresistive biosensors for quantitative proteomics

    Science.gov (United States)

    Zhou, Xiahan; Huang, Chih-Cheng; Hall, Drew A.

    2017-08-01

    Quantitative proteomics, as a developing method for study of proteins and identification of diseases, reveals more comprehensive and accurate information of an organism than traditional genomics. A variety of platforms, such as mass spectrometry, optical sensors, electrochemical sensors, magnetic sensors, etc., have been developed for detecting proteins quantitatively. The sandwich immunoassay is widely used as a labeled detection method due to its high specificity and flexibility allowing multiple different types of labels. While optical sensors use enzyme and fluorophore labels to detect proteins with high sensitivity, they often suffer from high background signal and challenges in miniaturization. Magnetic biosensors, including nuclear magnetic resonance sensors, oscillator-based sensors, Hall-effect sensors, and magnetoresistive sensors, use the specific binding events between magnetic nanoparticles (MNPs) and target proteins to measure the analyte concentration. Compared with other biosensing techniques, magnetic sensors take advantage of the intrinsic lack of magnetic signatures in biological samples to achieve high sensitivity and high specificity, and are compatible with semiconductor-based fabrication process to have low-cost and small-size for point-of-care (POC) applications. Although still in the development stage, magnetic biosensing is a promising technique for in-home testing and portable disease monitoring.

  4. An efficient biosensor made of an electromagnetic trap and a magneto-resistive sensor

    KAUST Repository

    Li, Fuquan

    2014-09-01

    Magneto-resistive biosensors have been found to be useful because of their high sensitivity, low cost, small size, and direct electrical output. They use super-paramagnetic beads to label a biological target and detect it via sensing the stray field. In this paper, we report a new setup for magnetic biosensors, replacing the conventional "sandwich" concept with an electromagnetic trap. We demonstrate the capability of the biosensor in the detection of E. coli. The trap is formed by a current-carrying microwire that attracts the magnetic beads into a sensing space on top of a tunnel magneto-resistive sensor. The sensor signal depends on the number of beads in the sensing space, which depends on the size of the beads. This enables the detection of biological targets, because such targets increase the volume of the beads. Experiments were carried out with a 6. μm wide microwire, which attracted the magnetic beads from a distance of 60. μm, when a current of 30. mA was applied. A sensing space of 30. μm in length and 6. μm in width was defined by the magnetic sensor. The results showed that individual E. coli bacterium inside the sensing space could be detected using super-paramagnetic beads that are 2.8. μm in diameter. The electromagnetic trap setup greatly simplifies the device and reduces the detection process to two steps: (i) mixing the bacteria with magnetic beads and (ii) applying the sample solution to the sensor for measurement, which can be accomplished within about 30. min with a sample volume in the μl range. This setup also ensures that the biosensor can be cleaned easily and re-used immediately. The presented setup is readily integrated on chips via standard microfabrication techniques. © 2014 Elsevier B.V.

  5. A Detailed Model of Electroenzymatic Glutamate Biosensors To Aid in Sensor Optimization and in Applications in Vivo.

    Science.gov (United States)

    Clay, Mackenzie; Monbouquette, Harold G

    2018-02-21

    Simulations conducted with a detailed model of glutamate biosensor performance describe the observed sensor performance well, illustrate the limits of sensor performance, and suggest a path toward sensor optimization. Glutamate is the most important excitatory neurotransmitter in the brain, and electroenzymatic sensors have emerged as a useful tool for the monitoring of glutamate signaling in vivo. However, the utility of these sensors currently is limited by their sensitivity and response time. A mathematical model of a typical glutamate biosensor consisting of a Pt electrode coated with a permselective polymer film and a top layer of cross-linked glutamate oxidase has been constructed in terms of differential material balances on glutamate, H 2 O 2 , and O 2 in one spatial dimension. Simulations suggest that reducing thicknesses of the permselective polymer and enzyme layers can increase sensitivity ∼6-fold and reduce response time ∼7-fold, and thereby improve resolution of transient glutamate signals. At currently employed enzyme layer thicknesses, both intrinsic enzyme kinetics and enzyme deactivation likely are masked by mass transfer. However, O 2 -dependence studies show essentially no reduction in signal at the lowest anticipated O 2 concentrations for expected glutamate concentrations in the brain and that O 2 transport limitations in vitro are anticipated only at glutamate concentrations in the mM range. Finally, the limitations of current biosensors in monitoring glutamate transients is simulated and used to illustrate the need for optimized biosensors to report glutamate signaling accurately on a subsecond time scale. This work demonstrates how a detailed model can be used to guide optimization of electroenzymatic sensors similar to that for glutamate and to ensure appropriate interpretation of data gathered using such biosensors.

  6. Biosensors.

    Science.gov (United States)

    Rechnitz, Garry A.

    1988-01-01

    Describes theory and principles behind biosensors that incorporate biological components as part of a sensor or probe. Projects major applications in medicine and veterinary medicine, biotechnology, food and agriculture, environmental studies, and the military. Surveys current use of biosensors. (ML)

  7. Laccase-based biosensor for the determination of polyphenol index in wine.

    Science.gov (United States)

    Di Fusco, Massimo; Tortolini, Cristina; Deriu, Daniela; Mazzei, Franco

    2010-04-15

    In this work we have developed and characterized the use of Laccases from Trametes versicolor (TvL) and Trametes hirsuta (ThL) as biocatalytic components of electrochemical biosensors for the determination of polyphenol index in wines. Polyazetidine prepolimer (PAP) was used as immobilizing agent, multi-walled and single-walled carbon nanotubes screen-printed electrodes as sensors (MWCNTs-SPE and SWCNTs-SPE) and gallic acid as standard substrate. The amperometric measurements were carried out by using a flow system at a fixed potential of -100 mV vs. silver/silver chloride electrode in Britton-Robinson buffer 0.1 mol L(-1), pH 5. The results were compared with those obtained with the Folin-Ciocalteau reference method. The results obtained in the analysis of twelve Italian wines put in evidence the better suitability of ThL-MWCNTs-based biosensor in the determination of the polyphenol index in wines. This biosensor shows fast and reliable amperometric responses to gallic acid with a linear range 0.1-18.0 mg L(-1) (r(2)=0.999). The influence of the interferences on both spectrophotometric and electrochemical measurements have been carefully evaluated. (c) 2009 Elsevier B.V. All rights reserved.

  8. A regenerative electrochemical biosensor for mercury(II) by using the insertion approach and dual-hairpin-based amplification

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Jing; Ling, Yu; Gao, Zhong Feng [Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Lei, Jing Lei [College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China); Luo, Hong Qun, E-mail: luohq@swu.edu.cn [Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Li, Nian Bing, E-mail: linb@swu.edu.cn [Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China)

    2015-09-15

    Highlights: • The dual-hairpin structure as a signal amplifier is label-free and handy. • The strategy uses the insertion approach to improve the hybridization efficiency. • This biosensor has a low detection limit (28 pM) for detection of Hg{sup 2+}. • This biosensor can be easily regenerated by using L-cysteine. - Abstract: A simple and effective biosensor for Hg{sup 2+} determination was investigated. The novel biosensor was prepared by the insertion approach that the moiety-labeled DNA inserted into a loosely packed cyclic-dithiothreitol (DTT) monolayer, improving the hybridization efficiency. Electrochemical impedance spectroscopy studies of two biosensors (single-hairpin and dual-hairpin structure DNA modified electrodes) used for Hg{sup 2+} detection indicated that the dual-hairpin modified electrode had a larger electron transfer resistance change (ΔR{sub ct}). Consequently, the dual-hairpin structure was used as a signal amplifier for the preparation of a selective Hg{sup 2+} biosensor. This biosensor exhibited an excellent selectivity toward Hg{sup 2+} over Cd{sup 2+}, Pd{sup 2+}, Co{sup 2+} etc. Also, a linear relation was observed between the ΔR{sub ct} and Hg{sup 2+} concentrations in a range from 0.1 nM to 5 μM with a detection limit of 28 pM under optimum conditions. Moreover, the biosensor can be reused by using L-cysteine and successfully applied for detecting Hg{sup 2+} in real samples.

  9. The utilization of SiNWs/AuNPs-modified indium tin oxide (ITO) in fabrication of electrochemical DNA sensor.

    Science.gov (United States)

    Rashid, Jahwarhar Izuan Abdul; Yusof, Nor Azah; Abdullah, Jaafar; Hashim, Uda; Hajian, Reza

    2014-12-01

    This work describes the incorporation of SiNWs/AuNPs composite as a sensing material for DNA detection on indium tin-oxide (ITO) coated glass slide. The morphology of SiNWs/AuNPs composite as the modifier layer on ITO was studied by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). The morphological studies clearly showed that SiNWs were successfully decorated with 20 nm-AuNPs using self-assembly monolayer (SAM) technique. The effective surface area for SiNWs/AuNPs-modified ITO enhanced about 10 times compared with bare ITO electrode. SiNWs/AuNPs nanocomposite was further explored as a matrix for DNA probe immobilization in detection of dengue virus as a bio-sensing model to evaluate its performance in electrochemical sensors. The hybridization of complementary DNA was monitored by differential pulse voltammetry (DPV) using methylene blue (MB) as the redox indicator. The fabricated biosensor was able to discriminate significantly complementary, non-complementary and single-base mismatch oligonucleotides. The electrochemical biosensor was sensitive to target DNA related to dengue virus in the range of 9.0-178.0 ng/ml with detection limit of 3.5 ng/ml. In addition, SiNWs/AuNPs-modified ITO, regenerated up to 8 times and its stability was up to 10 weeks at 4°C in silica gel. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Zwitterionic peptide anchored to conducting polymer PEDOT for the development of antifouling and ultrasensitive electrochemical DNA sensor.

    Science.gov (United States)

    Wang, Guixiang; Han, Rui; Su, Xiaoli; Li, Yinan; Xu, Guiyun; Luo, Xiliang

    2017-06-15

    Zwitterionic peptides were anchored to a conducting polymer of citrate doped poly(3,4-ethylenedioxythiophene) (PEDOT) via the nickel cation coordination, and the obtained peptide modified PEDOT, with excellent antifouling ability and good conductivity, was further used for the immobilization of a DNA probe to construct an electrochemical biosensor for the breast cancer marker BRCA1. The DNA biosensor was highly sensitive (with detection limit of 0.03fM) and selective, and it was able to detect BRCA1 in 5% (v/v) human plasma with satisfying accuracy and low fouling. The marriage of antifouling and biocompatible peptides with conducting polymers opened a new avenue to construct electrochemical biosensors capable of assaying targets in complex biological media with high sensitivity and without biofouling. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Influences of Mg Doping on the Electrochemical Performance of TiO2 Nanodots Based Biosensor Electrodes

    Directory of Open Access Journals (Sweden)

    M. S. H. Al-Furjan

    2014-01-01

    Full Text Available Electrochemical biosensors are essential for health monitors to help in diagnosis and detection of diseases. Enzyme adsorptions on biosensor electrodes and direct electron transfer between them have been recognized as key factors to affect biosensor performance. TiO2 has a good protein adsorption ability and facilitates having more enzyme adsorption and better electron transfer. In this work, Mg ions are introduced into TiO2 nanodots in order to further improve electrode performance because Mg ions are considered to have good affinity with proteins or enzymes. Mg doped TiO2 nanodots on Ti substrates were prepared by spin-coating and calcining. The effects of Mg doping on the nanodots morphology and performance of the electrodes were investigated. The density and size of TiO2 nanodots were obviously changed with Mg doping. The sensitivity of 2% Mg doped TiO2 nanodots based biosensor electrode increased to 1377.64 from 897.8 µA mM−1 cm−2 and its KMapp decreases to 0.83 from 1.27 mM, implying that the enzyme achieves higher catalytic efficiency due to better affinity of the enzyme with the Mg doped TiO2. The present work could provide an alternative to improve biosensor performances.

  12. Paper electrodes for bioelectrochemistry: Biosensors and biofuel cells.

    Science.gov (United States)

    Desmet, Cloé; Marquette, Christophe A; Blum, Loïc J; Doumèche, Bastien

    2016-02-15

    Paper-based analytical devices (PAD) emerge in the scientific community since 2007 as low-cost, wearable and disposable devices for point-of-care diagnostic due to the widespread availability, long-time knowledge and easy manufacturing of cellulose. Rapidly, electrodes were introduced in PAD for electrochemical measurements. Together with biological components, a new generation of electrochemical biosensors was born. This review aims to take an inventory of existing electrochemical paper-based biosensors and biofuel cells and to identify, at the light of newly acquired data, suitable methodologies and crucial parameters in this field. Paper selection, electrode material, hydrophobization of cellulose, dedicated electrochemical devices and electrode configuration in biosensors and biofuel cells will be discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Direct electron transfer biosensor for hydrogen peroxide carrying nanocomplex composed of horseradish peroxidase and Au-nanoparticle – Characterization and application to bienzyme systems

    Directory of Open Access Journals (Sweden)

    Yusuke Okawa

    2015-09-01

    Full Text Available A reagentless electrochemical biosensor for hydrogen peroxide was fabricated. The sensor carries a monolayer of nanocomplex composed of horseradish peroxidase and Au-nanoparticle, and responds to hydrogen peroxide through the highly efficient direct electron transfer at a mild electrode potential without any soluble mediator. Formation of the nanocomplex was studied with visible spectroscopy and size exclusion chromatography. The sensor performance was analyzed based on a hydrodynamic electrochemical technique and enzyme kinetics. The sensor was applied to fabrication of sensors for glucose and uric acid through further modification of the nanocomplex-carrying electrode with the corresponding hydrogen peroxide-generating oxidases, glucose oxidase and urate oxidase, respectively.

  14. Protein-Based Graphene Biosensors: Optimizing Artificial Chemoreception in Bilayer Lipid Membranes

    Directory of Open Access Journals (Sweden)

    Christina G. Siontorou

    2016-09-01

    Full Text Available Proteinaceous moieties are critical elements in most detection systems, including biosensing platforms. Their potential is undoubtedly vast, yet many issues regarding their full exploitation remain unsolved. On the other hand, the biosensor formats with the higher marketability probabilities are enzyme in nature and electrochemical in concept. To no surprise, alternative materials for hosting catalysis within an electrode casing have received much attention lately to demonstrate a catalysis-coated device. Graphene and ZnO are presented as ideal materials to modify electrodes and biosensor platforms, especially in protein-based detection. Our group developed electrochemical sensors based on these nanomaterials for the sensitive detection of cholesterol using cholesterol oxidase incorporated in stabilized lipid films. A comparison between the two platforms is provided and discussed. In a broader sense, the not-so-remote prospect of quickly assembling a protein-based flexible biosensing detector to fulfill site-specific requirements is appealing to both university researchers and industry developers.

  15. Introduction to biosensors from electric circuits to immunosensors

    CERN Document Server

    Yoon, Jeong-Yeol

    2016-01-01

    This book equips students with a thorough understanding of various types of sensors and biosensors that can be used for chemical, biological, and biomedical applications, including but not limited to temperature sensors, strain sensor, light sensors, spectrophotometric sensors, pulse oximeter, optical fiber probes, fluorescence sensors, pH sensor, ion-selective electrodes, piezoelectric sensors, glucose sensors, DNA and immunosensors, lab-on-a-chip biosensors, paper-based lab-on-a-chip biosensors, and microcontroller-based sensors. The author treats the study of biosensors with an applications-based approach, including over 15 extensive, hands-on labs given at the end of each chapter. The material is presented using a building-block approach, beginning with the fundamentals of sensor design and temperature sensors, and ending with more complicated biosensors. New to this second edition are sections on op-amp filters, pulse oximetry, meat quality monitoring, advanced fluorescent dyes, autofluorescence, various...

  16. Design of Novel Biosensors for Determination of Phenolic Compounds using Catalyst-Loaded Reduced Graphene Oxide Electrodes

    Directory of Open Access Journals (Sweden)

    Kathleen Morrisey

    2014-06-01

    Full Text Available Facile and inexpensive method for designing high performance sensors for H2O2 and polyphenols has been developed. The proposed sensors are based on high electrocatalytic activity of Prussian Blue (PB nanoparticles deposited in situ on high surface area graphene nanosheet-based thin films on a graphite electrode. The exfoliated graphene nanosheets were formed by attaching graphene oxide to the electrode surface followed by their electrochemical reduction to obtain the reduced graphene oxide (rGO, providing high surface area and excellent current-carrying capabilities to the sensory film. The PB catalyst nanoparticles were deposited electrochemically on rGO. This procedure is very time efficient as it reduces the time of sensor preparation from 3 days (according to recent literature to several hours. The proposed method provides simple means to obtain highly reliable and stable sensory films. The sensor shows a dynamic range of 1–500 µM H2O2 and a rapid response of 5 s to reach 95% of a steady-state response. When combined with immobilized enzymes (horseradish peroxidase or laccase oxidase, it can serve as a biosensor for polyphenols. As the proof of concept, the response of the enzymatic biosensors to polyphenol catechin has been presented delineating different mechanisms of horseradish peroxidase and laccase operation. The proposed sensors are low cost, reliable, and scalable.

  17. The study of a fluorescent biosensor based on polyelectrolyte microcapsules with encapsulated glucose oxidase

    Science.gov (United States)

    Kazakova, L. I.; Sirota, N. P.; Sirota, T. V.; Shabarchina, L. I.

    2017-09-01

    A fluorescent biosensor is synthesized and described. The biosensor consists of polyelectrolyte microcapsules with glucose oxidase (GOx) entrapped in the cavities and an oxygen-sensitive fluorescent indicator Ru(dpp) immobilized in shells, where Ru(dpp) is tris(4,7-diphenyl-1,10-phenanthroline)ruthenium(II) dichloride. The theoretical activity of the encapsulated GOx and the effect storage time and medium composition have on the stability of sensor microcapsules are determined from polarographic measurements. No change in the activity of the encapsulated enzyme and or its loss to the storage medium are detected over the test period. The dispersion medium (water or a phosphate buffer) are shown to have no effect on the activity of microcapsules with immobilized GOx. The described optical sensor could be used as an alternative to electrochemical sensors for in vitro determination of glucose in the clinically important range of concentrations (up to 10 mmol/L).

  18. Recent Progress in Electrochemical HbA1c Sensors: A Review

    Directory of Open Access Journals (Sweden)

    Baozhen Wang

    2015-03-01

    Full Text Available This article reviews recent progress made in the development of electrochemical glycated hemoglobin (HbA1c sensors for the diagnosis and management of diabetes mellitus. Electrochemical HbA1c sensors are divided into two categories based on the detection protocol of the sensors. The first type of sensor directly detects HbA1c by binding HbA1c on the surface of an electrode through bio-affinity of antibody and boronic acids, followed by an appropriate mode of signal transduction. In the second type of sensor, HbA1c is indirectly determined by detecting a digestion product of HbA1c, fructosyl valine (FV. Thus, the former sensors rely on the selective binding of HbA1c to the surface of the electrodes followed by electrochemical signaling in amperometric, voltammetric, impedometric, or potentiometric mode. Redox active markers, such as ferrocene derivatives and ferricyanide/ferrocyanide ions, are often used for electrochemical signaling. For the latter sensors, HbA1c must be digested in advance by proteolytic enzymes to produce the FV fragment. FV is electrochemically detected through catalytic oxidation by fructosyl amine oxidase or by selective binding to imprinted polymers. The performance characteristics of HbA1c sensors are discussed in relation to their use in the diagnosis and control of diabetic mellitus.

  19. Molecularly imprinted electrochemical sensor based on nickel nanoparticle-modified electrodes for phenobarbital determination

    International Nuclear Information System (INIS)

    Yu, Hui Cheng; Huang, Xue Yi; Lei, Fu Hou; Tan, Xue Cai; Wei, Yi Chun; Li, Hao

    2014-01-01

    Highlights: • Uniform Ni nanoparticles were synthesized. • A Ni nanoparticle-modified imprinted sensor was developed to detect phenobarbital. • The modified sensor exhibited high sensitivity for phenobarbital. • The electrochemical properties of the modified sensor were investigated. • The prepared sensor was applied to detect phenobarbital in fish samples. - Abstract: Uniform nickel nanoparticles were applied to improve the sensitivity of sensors for phenobarbital (PB) determination. A Ni nanoparticle-modified imprinted electrochemical sensor was developed by thermal polymerization with the use of methacrylic acid as the functional monomer and ethylene glycol maleic rosinate acrylate as the crosslinking agent. The chemical structures and morphologies of the imprinted films were characterized using Fourier transform infrared spectroscopy and scanning electron microscopy. The success of the fabrication of Ni nanoparticles, as well as the Ni nanoparticle-modified imprinted electrochemical sensor, was confirmed by the analytical results. The electrochemical properties of the modified molecularly imprinted and non-imprinted polymer sensors were investigated by cyclic voltammetry, differential pulse voltammetry, electrochemical impedance spectroscopy, and chronoamperometry. Results showed that the electrochemical properties of the molecularly imprinted sensor were remarkably different from those of the non-imprinted sensor. Linear responses of the imprinted sensor to PB were observed for concentrations ranging from 1.4 × 10 −7 mol L −1 to 1.3 × 10 −4 mol L −1 (r 2 = 0.9976), with a detection limit of 8.2 × 10 −9 mol L −1 (S/N = 3). The imprinted electrochemical sensor was used to determine PB in actual fish samples, in which average recoveries between 95.60% and 104.67% were achieved. The developed Ni nanoparticle-modified electrochemical sensor exhibited high sensitivity, high selectivity, and good recovery

  20. Electrochemical impedance-based DNA sensor using a modified single walled carbon nanotube electrode

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Jessica E. [Department of Mechanical Engineering, University of South Florida, Tampa, FL (United States); Nanomaterials and Nanomanufacturing Research Center, University of South Florida, Tampa, FL (United States); Pillai, Shreekumar [Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL (United States); Ram, Manoj Kumar, E-mail: mkram@usf.edu [Department of Mechanical Engineering, University of South Florida, Tampa, FL (United States); Nanomaterials and Nanomanufacturing Research Center, University of South Florida, Tampa, FL (United States); Kumar, Ashok [Department of Mechanical Engineering, University of South Florida, Tampa, FL (United States); Nanomaterials and Nanomanufacturing Research Center, University of South Florida, Tampa, FL (United States); Singh, Shree R. [Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL (United States)

    2011-07-20

    Carbon nanotubes have become promising functional materials for the development of advanced electrochemical biosensors with novel features which could promote electron-transfer with various redox active biomolecules. This paper presents the detection of Salmonella enterica serovar Typhimurium using chemically modified single walled carbon nanotubes (SWNTs) with single stranded DNA (ssDNA) on a polished glassy carbon electrode. Hybridization with the corresponding complementary ssDNA has shown a shift in the impedance studies due to a higher charge transfer in ssDNA. The developed biosensor has revealed an excellent specificity for the appropriate targeted DNA strand. The methodologies to prepare and functionalize the electrode could be adopted in the development of DNA hybridization biosensor.

  1. Electrochemical Synthesis of Polypyrrole, Reduced Graphene Oxide, and Gold Nanoparticles Composite and Its Application to Hydrogen Peroxide Biosensor

    Directory of Open Access Journals (Sweden)

    Baoyan Wu

    2016-11-01

    Full Text Available Here we report a facile eco-friendly one-step electrochemical approach for the fabrication of a polypyrrole (PPy, reduced graphene oxide (RGO, and gold nanoparticles (nanoAu biocomposite on a glassy carbon electrode (GCE. The electrochemical behaviors of PPy–RGO–nanoAu and its application to electrochemical detection of hydrogen peroxide were investigated by cyclic voltammetry. Graphene oxide and pyrrole monomer were first mixed and casted on the surface of a cleaned GCE. After an electrochemical processing consisting of the electrooxidation of pyrrole monomer and simultaneous electroreduction of graphene oxide and auric ions (Au3+ in aqueous solution, a PPy–RGO–nanoAu biocomposite was synthesized on GCE. Each component of PPy–RGO–nanoAu is electroactive without non-electroactive substance. The obtained PPy–RGO–nanoAu/GCE exhibited high electrocatalytic activity toward hydrogen peroxide, which allows the detection of hydrogen peroxide at a negative potential of about −0.62 V vs. SCE. The amperometric responses of the biosensor displayed a sensitivity of 40 µA/mM, a linear range of 32 µM–2 mM, and a detection limit of 2.7 µM (signal-to-noise ratio = 3 with good stability and acceptable reproducibility and selectivity. The results clearly demonstrate the potential of the as-prepared PPy–RGO–nanoAu biocomposite for use as a highly electroactive matrix for an amperometric biosensor.

  2. Sensor Arrays and Electronic Tongue Systems

    Directory of Open Access Journals (Sweden)

    Manel del Valle

    2012-01-01

    Full Text Available This paper describes recent work performed with electronic tongue systems utilizing electrochemical sensors. The electronic tongues concept is a new trend in sensors that uses arrays of sensors together with chemometric tools to unravel the complex information generated. Initial contributions and also the most used variant employ conventional ion selective electrodes, in which it is named potentiometric electronic tongue. The second important variant is the one that employs voltammetry for its operation. As chemometric processing tool, the use of artificial neural networks as the preferred data processing variant will be described. The use of the sensor arrays inserted in flow injection or sequential injection systems will exemplify attempts made to automate the operation of electronic tongues. Significant use of biosensors, mainly enzyme-based, to form what is already named bioelectronic tongue will be also presented. Application examples will be illustrated with selected study cases from the Sensors and Biosensors Group at the Autonomous University of Barcelona.

  3. Disposable Screen Printed Electrochemical Sensors: Tools for Environmental Monitoring

    Directory of Open Access Journals (Sweden)

    Akhtar Hayat

    2014-06-01

    Full Text Available Screen printing technology is a widely used technique for the fabrication of electrochemical sensors. This methodology is likely to underpin the progressive drive towards miniaturized, sensitive and portable devices, and has already established its route from “lab-to-market” for a plethora of sensors. The application of these sensors for analysis of environmental samples has been the major focus of research in this field. As a consequence, this work will focus on recent important advances in the design and fabrication of disposable screen printed sensors for the electrochemical detection of environmental contaminants. Special emphasis is given on sensor fabrication methodology, operating details and performance characteristics for environmental applications.

  4. Development and application of bio-sensor. Production of ammonia sensor

    Energy Technology Data Exchange (ETDEWEB)

    Totsuka, Yoshiyuki; Matsumoto, Yutaka; Sakata, Tadashi; Nakatsugawa, Shuuji; Nishina, Tokuhiro; Shiozawa, Kanji [Shizuoka Prefectural Industrial Technology Center, Shizuoka, (Japan)

    1989-08-01

    The objectives of this study are to make a biosensor on a trial basis which can instantaneously measure the nitrogen in wastewater, and to develop a wastewater treatment system which is capable of on-line measurement and controlling. The system provides easier operational control relating to such a high efficient treatment as the removal of nitrogen content in wastewater, serving as a solution to the eutrophication problem. It can be applied also to the analysis of fertilizer components for agriculture. Ammonia oxidizing bacteria were immobilized with cellulose acetate film, which is mounted on a diaphragm type oxygen electrode to make a sensor, and its responsibility was studied. The gradient is slow in high concentration but sharp in low concentration, and it seems possible to use it for the measurement for less than 20 ppm nitrogen concentration. The dependence of the sensor including electrodes and activity of bacteria on temperature is large, and the measurement should be made at a constant temperature. The responsibility was best at the pH of 9. The sensor could be used repeatedly for about a month. 7 refs., 10 figs., 1 tab.

  5. Self-Powered Electrochemical Lactate Biosensing

    Directory of Open Access Journals (Sweden)

    Ankit Baingane

    2017-10-01

    Full Text Available This work presents the development and characterization of a self-powered electrochemical lactate biosensor for real-time monitoring of lactic acid. The bioanode and biocathode were modified with D-lactate dehydrogenase (D-LDH and bilirubin oxidase (BOD, respectively, to facilitate the oxidation and reduction of lactic acid and molecular oxygen. The bioelectrodes were arranged in a parallel configuration to construct the biofuel cell. This biofuel cell’s current–voltage characteristic was analyzed in the presence of various lactic acid concentrations over a range of 1–25 mM. An open circuit voltage of 395.3 mV and a short circuit current density of 418.8 µA/cm² were obtained when operating in 25 mM lactic acid. Additionally, a 10 pF capacitor was integrated via a charge pump circuit to the biofuel cell to realize the self-powered lactate biosensor with a footprint of 1.4 cm × 2 cm. The charge pump enabled the boosting of the biofuel cell voltage in bursts of 1.2–1.8 V via the capacitor. By observing the burst frequency of a 10 pF capacitor, the exact concentration of lactic acid was deduced. As a self-powered lactate sensor, a linear dynamic range of 1–100 mM lactic acid was observed under physiologic conditions (37 °C, pH 7.4 and the sensor exhibited an excellent sensitivity of 125.88 Hz/mM-cm2. This electrochemical lactate biosensor has the potential to be used for the real-time monitoring of lactic acid level in biological fluids.

  6. An electrochemical dopamine sensor based on the ZnO/CuO nanohybrid structures.

    Science.gov (United States)

    Khun, K; Ibupoto, Z H; Liu, X; Mansor, N A; Turner, A P F; Beni, V; Willander, M

    2014-09-01

    The selective detection of dopamine (DA) is of great importance in the modern medicine because dopamine is one of the main regulators in human behaviour. In this study, ZnO/CuO nanohybrid structures, grown on the gold coated glass substrate, have been investigated as a novel electrode material for the electrochemical detection of dopamine. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) techniques were used for the material characterization and the obtained results are in good agreement. The selective determination of dopamine was demonstrated by cyclic voltammetry (CV) and amperometric experiments. The amperometric response was linear for dopamine concentrations between 1.0 x 10(-3) and 8.0 mM with a sensitivity of 90.9 μA mM(-1) cm(-2). The proposed dopamine biosensor is very stable, selective over common interferents as glucose, uric acid and ascorbic acid, and also good reproducibility was observed for seven electrodes. Moreover, the dopamine sensor exhibited a fast response time of less than 10 s. The wide range and acceptable sensitivity of the presented dopamine sensor provide the possible application in analysing the dopamine from the real samples.

  7. Electrochemical enzyme sensor arrays for the detection of the biogenic amines histamine, putrescine and cadaverine using magnetic beads as immobilisation supports

    International Nuclear Information System (INIS)

    Leonardo, Sandra; Campàs, Mònica

    2016-01-01

    Electrochemical biosensors based on diamine oxidase (DAO) conjugated to magnetic beads (MBs) were developed for the detection of histamine (Hist), putrescine (Put) and cadaverine (Cad), the most relevant biogenic amines (BAs) related to food safety and quality. DAO-MBs were immobilised on Co(II)-phthalocyanine/carbon and Prussian Blue/carbon electrodes to obtain mono-enzymatic biosensors, and on Os-wired HRP-modified carbon electrodes to obtain bi-enzymatic biosensors. The three sensor have low working potentials (+0.4 V, −0.1 V and −0.05 V vs Ag/AgCl, respectively), a linear range of two orders of magnitude (from 0.01 to 1 mM BA), good reproducibility (variability lower than 10 %), high repeatability (up to 8 consecutive measurements), limits of detection in the µM concentration range for Hist and in the sub-µM concentration range for Put and Cad, and no response from possible interfering compounds. The DAO-MB conjugates display excellent long-term stability (at least 3 months). The biosensor has been applied to the determination of BAs in spiked and naturally-spoiled fish, demonstrating its suitability both as screening tool and for BAs quantification. The use of MBs as supports for enzyme immobilisation is advantageous because the resulting biosensors are simple, fast, stable, affordable, and can be integrated into array platforms. This makes them suitable for high-throughput analysis of BAs in the food industry. (author)

  8. Highly stable porous silicon-carbon composites as label-free optical biosensors.

    Science.gov (United States)

    Tsang, Chun Kwan; Kelly, Timothy L; Sailor, Michael J; Li, Yang Yang

    2012-12-21

    A stable, label-free optical biosensor based on a porous silicon-carbon (pSi-C) composite is demonstrated. The material is prepared by electrochemical anodization of crystalline Si in an HF-containing electrolyte to generate a porous Si template, followed by infiltration of poly(furfuryl) alcohol (PFA) and subsequent carbonization to generate the pSi-C composite as an optically smooth thin film. The pSi-C sensor is significantly more stable toward aqueous buffer solutions (pH 7.4 or 12) compared to thermally oxidized (in air, 800 °C), hydrosilylated (with undecylenic acid), or hydrocarbonized (with acetylene, 700 °C) porous Si samples prepared and tested under similar conditions. Aqueous stability of the pSi-C sensor is comparable to related optical biosensors based on porous TiO(2) or porous Al(2)O(3). Label-free optical interferometric biosensing with the pSi-C composite is demonstrated by detection of rabbit IgG on a protein-A-modified chip and confirmed with control experiments using chicken IgG (which shows no affinity for protein A). The pSi-C sensor binds significantly more of the protein A capture probe than porous TiO(2) or porous Al(2)O(3), and the sensitivity of the protein-A-modified pSi-C sensor to rabbit IgG is found to be ~2× greater than label-free optical biosensors constructed from these other two materials.

  9. X-Ray Photoelectron Spectroscopic Characterization of Chemically Modified Electrodes Used as Chemical Sensors and Biosensors: A Review

    Directory of Open Access Journals (Sweden)

    Elio Desimoni

    2015-04-01

    Full Text Available The characterization of chemically modified sensors and biosensors is commonly performed by cyclic voltammetry and electron microscopies, which allow verifying electrode mechanisms and surface morphologies. Among other techniques, X-ray photoelectron spectroscopy (XPS plays a unique role in giving access to qualitative, quantitative/semi-quantitative and speciation information concerning the sensor surface. Nevertheless, XPS remains rather underused in this field. The aim of this paper is to review selected articles which evidence the useful performances of XPS in characterizing the top surface layers of chemically modified sensors and biosensors. A concise introduction to X-ray Photoelectron Spectroscopy gives to the reader the essential background. The application of XPS for characterizing sensors suitable for food and environmental analysis is highlighted.

  10. A three-dimensional nitrogen-doped graphene structure: a highly efficient carrier of enzymes for biosensors

    Science.gov (United States)

    Guo, Jingxing; Zhang, Tao; Hu, Chengguo; Fu, Lei

    2015-01-01

    In recent years, graphene-based enzyme biosensors have received considerable attention due to their excellent performance. Enormous efforts have been made to utilize graphene oxide and its derivatives as carriers of enzymes for biosensing. However, the performance of these sensors is limited by the drawbacks of graphene oxide such as slow electron transfer rate, low catalytic area and poor conductivity. Here, we report a new graphene-based enzyme carrier, i.e. a highly conductive 3D nitrogen-doped graphene structure (3D-NG) grown by chemical vapour deposition, for highly effective enzyme-based biosensors. Owing to the high conductivity, large porosity and tunable nitrogen-doping ratio, this kind of graphene framework shows outstanding electrical properties and a large surface area for enzyme loading and biocatalytic reactions. Using glucose oxidase (GOx) as a model enzyme and chitosan (CS) as an efficient molecular binder of the enzyme, our 3D-NG based biosensors show extremely high sensitivity for the sensing of glucose (226.24 μA mM-1 m-2), which is almost an order of magnitude higher than those reported in most of the previous studies. The stable adsorption and outstanding direct electrochemical behaviour of the enzyme on the nanocomposite indicate the promising application of this 3D enzyme carrier in high-performance electrochemical biosensors or biofuel cells.In recent years, graphene-based enzyme biosensors have received considerable attention due to their excellent performance. Enormous efforts have been made to utilize graphene oxide and its derivatives as carriers of enzymes for biosensing. However, the performance of these sensors is limited by the drawbacks of graphene oxide such as slow electron transfer rate, low catalytic area and poor conductivity. Here, we report a new graphene-based enzyme carrier, i.e. a highly conductive 3D nitrogen-doped graphene structure (3D-NG) grown by chemical vapour deposition, for highly effective enzyme

  11. Graphene Electronic Device Based Biosensors and Chemical Sensors

    Science.gov (United States)

    Jiang, Shan

    Two-dimensional layered materials, such as graphene and MoS2, are emerging as an exciting material system for a new generation of atomically thin electronic devices. With their ultrahigh surface to volume ratio and excellent electrical properties, 2D-layered materials hold the promise for the construction of a generation of chemical and biological sensors with unprecedented sensitivity. In my PhD thesis, I mainly focus on graphene based electronic biosensors and chemical sensors. In the first part of my thesis, I demonstrated the fabrication of graphene nanomesh (GNM), which is a graphene thin film with a periodic array of holes punctuated in it. The periodic holes introduce long periphery active edges that provide a high density of functional groups (e.g. carboxylic groups) to allow for covalent grafting of specific receptor molecules for chemical and biosensor applications. After covalently functionalizing the GNM with glucose oxidase, I managed to make a novel electronic sensor which can detect glucose as well as pH change. In the following part of my thesis I demonstrate the fabrication of graphene-hemin conjugate for nitric oxide detection. The non-covalent functionalization through pi-pi stacking interaction allows reliable immobilization of hemin molecules on graphene without damaging the graphene lattice to ensure the highly sensitive and specific detection of nitric oxide. The graphene-hemin nitric oxide sensor is capable of real-time monitoring of nitric oxide concentrations, which is of central importance for probing the diverse roles of nitric oxide in neurotransmission, cardiovascular systems, and immune responses. Our studies demonstrate that the graphene-hemin sensors can respond rapidly to nitric oxide in physiological environments with sub-nanomolar sensitivity. Furthermore, in vitro studies show that the graphene-hemin sensors can be used for the detection of nitric oxide released from macrophage cells and endothelial cells, demonstrating their

  12. Biosensor-based microRNA detection: techniques, design, performance, and challenges.

    Science.gov (United States)

    Johnson, Blake N; Mutharasan, Raj

    2014-04-07

    The current state of biosensor-based techniques for amplification-free microRNA (miRNA) detection is critically reviewed. Comparison with non-sensor and amplification-based molecular techniques (MTs), such as polymerase-based methods, is made in terms of transduction mechanism, associated protocol, and sensitivity. Challenges associated with miRNA hybridization thermodynamics which affect assay selectivity and amplification bias are briefly discussed. Electrochemical, electromechanical, and optical classes of miRNA biosensors are reviewed in terms of transduction mechanism, limit of detection (LOD), time-to-results (TTR), multiplexing potential, and measurement robustness. Current trends suggest that biosensor-based techniques (BTs) for miRNA assay will complement MTs due to the advantages of amplification-free detection, LOD being femtomolar (fM)-attomolar (aM), short TTR, multiplexing capability, and minimal sample preparation requirement. Areas of future importance in miRNA BT development are presented which include focus on achieving high measurement confidence and multiplexing capabilities.

  13. Impedimetric biosensors and immunosensors

    International Nuclear Information System (INIS)

    Prodromidis, M.I.

    2007-01-01

    The development of methods targeting the direct monitoring of antibody-antigen interactions is particularly attractive. The design of label-free affinity-based probing concepts is the objective of much current research, at both academic and industrial levels, towards establishing alternative methods to the already existing ELISA-based immunoassays. Among these, Electrochemical Impedance Spectroscopy (EIS) represents one of the most powerful methods, due to the ability of EIS-based sensors to be more easily integrated into multi-array or microprocessor, controlled diagnostic tools. During the last decade, EIS and the concept of biochemical capacitors have been widely used for probing various types of biomolecular interactions (immunosensors, DNA hybridization, protein-protein interactions). So far, impedimetric or capacitive immunosensors have been successfully applied at the academic level. However, no prototypes have been released into the market, since major fundamental issues still exist. Even though this fact has brought the reliability of impedimetric immunosensors into question, features associated with electrochemical approaches, namely the ability to be miniaturized, remote control of implanted sensors, low cost of electrode mass production and cost effective instrumentation (without need of high-energy sources) keep impedimetric sensors particularly attractive as compared to other approaches based on microbalances, surface plasmon resonance or ellipsometry. This lecture outlines the theoretical background of impedimetric immunosensors and presents different types of impedimetric biosensors as well as the instrumental approaches that have been so far proposed in the literature. (author)

  14. Distributed electrochemical sensors: recent advances and barriers to market adoption.

    Science.gov (United States)

    Hoekstra, Rafael; Blondeau, Pascal; Andrade, Francisco J

    2018-07-01

    Despite predictions of their widespread application in healthcare and environmental monitoring, electrochemical sensors are yet to be distributed at scale, instead remaining largely confined to R&D labs. This contrasts sharply with the situation for physical sensors, which are now ubiquitous and seamlessly embedded in the mature ecosystem provided by electronics and connectivity protocols. Although chemical sensors could be integrated into the same ecosystem, there are fundamental issues with these sensors in the three key areas of analytical performance, usability, and affordability. Nevertheless, advances are being made in each of these fields, leading to hope that the deployment of automated and user-friendly low-cost electrochemical sensors is on the horizon. Here, we present a brief survey of key challenges and advances in the development of distributed electrochemical sensors for liquid samples, geared towards applications in healthcare and wellbeing, environmental monitoring, and homeland security. As will be seen, in many cases the analytical performance of the sensor is acceptable; it is usability that is the major barrier to commercial viability at this moment. Were this to be overcome, the issue of affordability could be addressed. Graphical Abstract ᅟ.

  15. Monitoring of malolactic fermentation in wine using an electrochemical bienzymatic biosensor for L-lactate with long term stability.

    Science.gov (United States)

    Giménez-Gómez, Pablo; Gutiérrez-Capitán, Manuel; Capdevila, Fina; Puig-Pujol, Anna; Fernández-Sánchez, César; Jiménez-Jorquera, Cecilia

    2016-01-28

    L-lactic acid is monitored during malolactic fermentation process of wine and its evolution is strongly related with the quality of the final product. The analysis of L-lactic acid is carried out off-line in a laboratory. Therefore, there is a clear demand for analytical tools that enabled real-time monitoring of this process in field and biosensors have positioned as a feasible alternative in this regard. The development of an amperometric biosensor for L-lactate determination showing long-term stability is reported in this work. The biosensor architecture includes a thin-film gold electrochemical transducer selectively modified with an enzymatic membrane, based on a three-dimensional matrix of polypyrrole (PPy) entrapping lactate oxidase (LOX) and horseradish peroxidase (HRP) enzymes. The experimental conditions of the biosensor fabrication regarding the pyrrole polymerization and the enzymes entrapment are optimized. The biosensor response to L-lactate is linear in a concentration range of 1 × 10(-6)-1 × 10(-4) M, with a detection limit of 5.2 × 10(-7) M and a sensitivity of - (13500 ± 600) μA M(-1) cm(-2). The biosensor shows an excellent working stability, retaining more than 90% of its original sensitivity after 40 days. This is the determining factor that allowed for the application of this biosensor to monitor the malolactic fermentation of three red wines, showing a good agreement with the standard colorimetric method. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Development of a Novel Biosensor Using Cationic Antimicrobial Peptide and Nickel Phthalocyanine Ultrathin Films for Electrochemical Detection of Dopamine

    Directory of Open Access Journals (Sweden)

    Maysa F. Zampa

    2012-01-01

    Full Text Available The antimicrobial peptide dermaseptin 01 (DS 01, from the skin secretion of Phyllomedusa hypochondrialis frogs, was immobilized in nanostructured layered films in conjunction with nickel tetrasulfonated phthalocyanines (NiTsPc, widely used in electronic devices, using layer-by-layer technique. The films were used as a biosensor to detect the presence of dopamine (DA, a neurotransmitter associated with diseases such as Alzheimer's and Parkinson's, with detection limits in the order of 10−6 mol L−1. The use of DS 01 in LbL film generated selectivity in the detection of DA despite the presence of ascorbic acid found in biological fluids. This work is the first to report that the antimicrobial peptide and NiTsPc LbL film exhibits electroanalytical activity to DA oxidation. The selectivity in the detection of DA is a fundamental aspect for the development of electrochemical sensors with potential applications in the biomedical and pharmaceutical industries.

  17. Novel membrane-based electrochemical sensor for real-time bio-applications

    DEFF Research Database (Denmark)

    Al Atraktchi, Fatima Al-Zahraa; Bakmand, Tanya; Dimaki, Maria

    2014-01-01

    This article presents a novel membrane-based sensor for real-time electrochemical investigations of cellular- or tissue cultures. The membrane sensor enables recording of electrical signals from a cell culture without any signal dilution, thus avoiding loss of sensitivity. Moreover, the porosity...... of the membrane provides optimal culturing conditions similar to existing culturing techniques allowing more efficient nutrient uptake and molecule release. The patterned sensor electrodes were fabricated on a porous membrane by electron-beam evaporation. The electrochemical performance of the membrane electrodes...

  18. Woven electrochemical fabric-based test sensors (WEFTS): a new class of multiplexed electrochemical sensors.

    Science.gov (United States)

    Choudhary, Tripurari; Rajamanickam, G P; Dendukuri, Dhananjaya

    2015-05-07

    We present textile weaving as a new technique for the manufacture of miniature electrochemical sensors with significant advantages over current fabrication techniques. Biocompatible silk yarn is used as the material for fabrication instead of plastics and ceramics used in commercial sensors. Silk yarns are coated with conducting inks and reagents before being handloom-woven as electrodes into patches of fabric to create arrays of sensors, which are then laminated, cut and packaged into individual sensors. Unlike the conventionally used screen-printing, which results in wastage of reagents, yarn coating uses only as much reagent and ink as required. Hydrophilic and hydrophobic yarns are used for patterning so that sample flow is restricted to a small area of the sensor. This simple fluidic control is achieved with readily available materials. We have fabricated and validated individual sensors for glucose and hemoglobin and a multiplexed sensor, which can detect both analytes. Chronoamperometry and differential pulse voltammetry (DPV) were used to detect glucose and hemoglobin, respectively. Industrial quantities of these sensors can be fabricated at distributed locations in the developing world using existing skills and manufacturing facilities. We believe such sensors could find applications in the emerging area of wearable sensors for chemical testing.

  19. Design and Performance of GMR Sensors for the Detection of Magnetic Microbeads in Biosensors

    National Research Council Canada - National Science Library

    Rife, J. C; Miller, M. M; Sheehan, P. E; Tamanaha, C. R; Tondra, M; Whitman, L. J

    2003-01-01

    We are developing a biosensor system, the Bead ARray Counter (BARC), based on the capture and detection of micron-sized, paramagnetic beads on a chip containing an array of giant magnetoresistive (GMR) sensors...

  20. Electrochemical monitoring of the interaction between mitomycin C and DNA at chitosan--carbon nanotube composite modified electrodes

    OpenAIRE

    CANAVAR, Pembe Ece; EKŞİN, Ece; ERDEM, Arzum

    2015-01-01

    Single-walled carbon nanotube (CNT) and chitosan composite (chitosan*CNT) based sensors were developed as DNA biosensors, and then they were applied for electrochemical investigation of the interaction between the anticancer drug mitomycin C (MC) and DNA. The oxidation signals of MC and guanine were monitored before and after the interaction process by differential pulse voltammetry (DPV). The DPV results were in good agreement with those of electrochemical impedance spectroscopy (EIS)....

  1. Chitosan coated on the layers' glucose oxidase immobilized on cysteamine/Au electrode for use as glucose biosensor.

    Science.gov (United States)

    Zhang, Yawen; Li, Yunqiu; Wu, Wenjian; Jiang, Yuren; Hu, Biru

    2014-10-15

    A glucose biosensor was developed via direct immobilization of glucose oxidase (GOD) by self-assembled cysteamine monolayer on Au electrode surface followed by coating chitosan on the surface of electrode. In this work, chitosan film was coated on the surface of GOD as a protection film to ensure the stability and biocompatibility of the constructed glucose biosensor. The different application ranges of sensors were fabricated by immobilizing varied layers of GOD. The modified surface film was characterized by a scanning electron microscope (SEM) and the fabrication process of the biosensor was confirmed through electrochemical impedance spectroscopy (EIS) of ferrocyanide. The performance of cyclic voltammetry (CV) in the absence and presence of 25 mM glucose and ferrocenemethanol showed a diffusion-controlled electrode process and reflected the different maximum currents between the different GOD layers. With the developed glucose biosensor, the detection limits of the two linear responses are 49.96 μM and 316.8 μM with the sensitivities of 8.91 μA mM(-1)cm(-2) and 2.93 μA mM(-1)cm(-2), respectively. In addition, good stability (up to 30 days) of the developed biosensor was observed. The advantages of this new method for sensors construction was convenient and different width ranges of detection can be obtained by modified varied layers of GOD. The sensor with two layers of enzyme displayed two current linear responses of glucose. The present work provided a simplicity and novelty method for producing biosensors, which may help design enzyme reactors and biosensors in the future. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Preparation and electrochemical application of rutin biosensor for differential pulse voltammetric determination of NADH in the presence of acetaminophen

    Directory of Open Access Journals (Sweden)

    HAMID R. ZARE

    2010-10-01

    Full Text Available The electrocatalytic behavior of reduced nicotinamide adenine di-nucleotide (NADH was studied at the surface of a rutin biosensor, using various electrochemical methods. According to the results, the rutin biosensor had a strongly electrocatalytic effect on the oxidation of NADH with the overpotential being decreased by about 450 mV as compared to the process at a bare glassy carbon electrode, GCE. This value is significantly greater than the value of 220 mV that was reported for rutin embedded in a lipid-cast film. The kinetic parameters of the electron transfer coefficient, a, and the heterogeneous charge transfer rate constant, kh, for the electrocatalytic oxidation of NADH at the rutin biosensor were estimated. Furthermore, the linear dynamic range; sensitivity and limit of detection for NADH were evaluated using the differential pulse voltammetry method. The advantages of this biosensor for the determination of NADH are excellent catalytic activity and reproducibility, good detection limit and high exchange current density. The rutin biosensor could separate the oxidation peak potentials of NADH and acetaminophen present in the same solution while at a bare GCE, the peak potentials were indistinguishable.

  3. Energy harvesting for human wearable and implantable bio-sensors.

    Science.gov (United States)

    Mitcheson, Paul D

    2010-01-01

    There are clear trade-offs between functionality, battery lifetime and battery volume for wearable and implantable wireless-biosensors which energy harvesting devices may be able to overcome. Reliable energy harvesting has now become a reality for machine condition monitoring and is finding applications in chemical process plants, refineries and water treatment works. However, practical miniature devices that can harvest sufficient energy from the human body to power a wireless bio-sensor are still in their infancy. This paper reviews the options for human energy harvesting in order to determine power availability for harvester-powered body sensor networks. The main competing technologies for energy harvesting from the human body are inertial kinetic energy harvesting devices and thermoelectric devices. These devices are advantageous to some other types as they can be hermetically sealed. In this paper the fundamental limit to the power output of these devices is compared as a function of generator volume when attached to a human whilst walking and running. It is shown that the kinetic energy devices have the highest fundamental power limits in both cases. However, when a comparison is made between the devices using device effectivenesses figures from previously demonstrated prototypes presented in the literature, the thermal device is competitive with the kinetic energy harvesting device when the subject is running and achieves the highest power density when the subject is walking.

  4. Sensitive DNA impedance biosensor for detection of cancer, chronic lymphocytic leukemia, based on gold nanoparticles/gold modified electrode

    International Nuclear Information System (INIS)

    Ensafi, Ali A.; Taei, M.; Rahmani, H.R.; Khayamian, T.

    2011-01-01

    Highlights: → Chronic lymphocytic leukemia causes an increase in the number of white blood cells. → We introduced a highly sensitive biosensor for the detection of chronic lymphocytic leukemia. → A suitable 25-mer ssDNA probe was immobilized on the surface of the gold nanoparticles. → We used electrochemical impedance spectroscopy as a suitable tool for the detection. → Detection of chronic lymphocytic leukemia in blood sample was checked using the sensor. - Abstract: A simple and sensitive DNA impedance sensor was prepared for the detection of chronic lymphocytic leukemia. The DNA electrochemical biosensor is worked based on the electrochemical impedance spectroscopic (EIS) detection of the sequence-specific DNA related to chronic lymphocytic leukemia. The ssDNA probe was immobilized on the surface of the gold nanoparticles. Compared to the bare gold electrode, the gold nanoparticles-modified electrode could improve the density of the probe DNA attachment and hence the sensitivity of the DNA sensor greatly. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy were performed in a solution containing 1.0 mmol L -1 K 3 [Fe(CN) 6 ]/K 4 [Fe(CN) 6 ] and 50 mmol L -1 phosphate buffer saline pH 6.87 plus 50 mmol L -1 KCl. In the CV studied, the potential was cycled from 0.0 to +0.65 V with a scan rate of 50 mV s -1 . Using EIS, the difference of the electron transfer resistance (ΔR et ) was linear with the logarithm of the complementary oligonucleotides sequence concentrations in the range of 7.0 x 10 -12 -2.0 x 10 -7 mol L -1 , with a detection limit of 1.0 x 10 -12 mol L -1 . In addition, the DNA sensor showed a good reproducibility and stability during repeated regeneration and hybridization cycles.

  5. Developing Biosensors in Developing Countries: South Africa as a Case Study.

    Science.gov (United States)

    Fogel, Ronen; Limson, Janice

    2016-02-02

    A mini-review of the reported biosensor research occurring in South Africa evidences a strong emphasis on electrochemical sensor research, guided by the opportunities this transduction platform holds for low-cost and robust sensing of numerous targets. Many of the reported publications centre on fundamental research into the signal transduction method, using model biorecognition elements, in line with international trends. Other research in this field is spread across several areas including: the application of nanotechnology; the identification and validation of biomarkers; development and testing of biorecognition agents (antibodies and aptamers) and design of electro-catalysts, most notably metallophthalocyanine. Biosensor targets commonly featured were pesticides and metals. Areas of regional import to sub-Saharan Africa, such as HIV/AIDs and tuberculosis diagnosis, are also apparent in a review of the available literature. Irrespective of the targets, the challenge to the effective deployment of such sensors remains shaped by social and economic realities such that the requirements thereof are for low-cost and universally easy to operate devices for field settings. While it is difficult to disentangle the intertwined roles of national policy, grant funding availability and, certainly, of global trends in shaping areas of emphasis in research, most notable is the strong role that nanotechnology, and to a certain extent biotechnology, plays in research regarding biosensor construction. Stronger emphasis on collaboration between scientists in theoretical modelling, nanomaterials application and or relevant stakeholders in the specific field (e.g., food or health monitoring) and researchers in biosensor design may help evolve focused research efforts towards development and deployment of low-cost biosensors.

  6. Bio-Techniques in Electrochemical Transducers: an Overview

    Directory of Open Access Journals (Sweden)

    VIKAS

    2007-08-01

    Full Text Available Novelty in fabrication & designing of biosensors are being carried out at a high rate as these devices become increasingly popular in fields like environmental monitoring, bioterrorism, food analyses and most importantly in the area of health care and diagnostics. This rapidly expanding field has an annual growth rate of 65%, with major impetus from the health-care industry (30% of the world’s total analytical market supported with other analytical areas of food & environmental monitoring including defense needs. This context aims to highlight trends in practice for electrochemical biosensor design and construction. The availability and application of a vast range of polymers and copolymers associated with new sensing techniques have led to remarkable innovation in the design and construction of biosensors, significant improvements in sensor function and the emergence of new types of biosensor. Nevertheless, in vivo applications remain limited by functional deterioration due to surface fouling by biological components. However, use of new material and novelty in fabrication, raising hopes that the problems related to decreased functional of the bioanalytical layer be solved in time.

  7. Electrochemical Biosensors Based on Enzymatic Reactors Filled by Various Types of Silica and Amalgam Powders for Measurements in Flow Systems

    Czech Academy of Sciences Publication Activity Database

    Josypčuk, Oksana; Barek, J.; Josypčuk, Bohdan

    2016-01-01

    Roč. 28, č. 12 (2016), s. 3028-3038 ISSN 1040-0397 R&D Projects: GA ČR(CZ) GA15-03139S Institutional support: RVO:61388955 Keywords : electrochemical biosensors * enzymatic reactor * silica powders Subject RIV: CG - Electrochemistry Impact factor: 2.851, year: 2016

  8. Novel amperometric glucose biosensor based on MXene nanocomposite

    KAUST Repository

    Rakhi, R. B.

    2016-11-10

    A biosensor platform based on Au/MXene nanocomposite for sensitive enzymatic glucose detection is reported. The biosensor leverages the unique electrocatalytic properties and synergistic effects between Au nanoparticles and MXene sheets. An amperometric glucose biosensor is fabricated by the immobilization of glucose oxidase (GOx) enzyme on Nafion solubilized Au/ MXene nanocomposite over glassy carbon electrode (GCE). The biomediated Au nanoparticles play a significant role in facilitating the electron exchange between the electroactive center of GOx and the electrode. The GOx/Au/MXene/Nafion/GCE biosensor electrode displayed a linear amperometric response in the glucose concentration range from 0.1 to 18 mM with a relatively high sensitivity of 4.2 μAmM−1 cm−2 and a detection limit of 5.9 μM (S/N = 3). Furthermore, the biosensor exhibited excellent stability, reproducibility and repeatability. Therefore, the Au/MXene nanocomposite reported in this work is a potential candidate as an electrochemical transducer in electrochemical biosensors.

  9. Novel amperometric glucose biosensor based on MXene nanocomposite

    KAUST Repository

    Baby, Rakhi Raghavan; Nayuk, Pranati; Xia, Chuan; Alshareef, Husam N.

    2016-01-01

    A biosensor platform based on Au/MXene nanocomposite for sensitive enzymatic glucose detection is reported. The biosensor leverages the unique electrocatalytic properties and synergistic effects between Au nanoparticles and MXene sheets. An amperometric glucose biosensor is fabricated by the immobilization of glucose oxidase (GOx) enzyme on Nafion solubilized Au/ MXene nanocomposite over glassy carbon electrode (GCE). The biomediated Au nanoparticles play a significant role in facilitating the electron exchange between the electroactive center of GOx and the electrode. The GOx/Au/MXene/Nafion/GCE biosensor electrode displayed a linear amperometric response in the glucose concentration range from 0.1 to 18 mM with a relatively high sensitivity of 4.2 μAmM−1 cm−2 and a detection limit of 5.9 μM (S/N = 3). Furthermore, the biosensor exhibited excellent stability, reproducibility and repeatability. Therefore, the Au/MXene nanocomposite reported in this work is a potential candidate as an electrochemical transducer in electrochemical biosensors.

  10. Influence of different nanoparticles on electrochemical behavior of glucose biosensor

    Science.gov (United States)

    Nenkova, R. D.; Ivanov, Y. L.; Godjevargova, T. I.

    2017-02-01

    The influence of nanosized particles on the glucose oxidase loading and the performance of amperometric glucose bionsensors were studied. Four enzyme electrodes (Pt/PAN/GOD, Pt/PAN/NZ/GOD, Pt/PAN/NZ/MNP/GOD, Pt/PAN/NZ/MWNT/GOD) were prepared by cross-linking of glucose oxidase (GOD) on nanocomposite material. Nanocomposites were prepared by entrapping nanozeolite (NZ), multiwalled carbon nanotubes (MWNT) and magnetic nanoparticles (MNP) in polyacrylonitrile (PAN) film. Cyclic voltammetric kinetic studies have been carried out with the four biosensors and the surface concentration of the adsorbed electroactive species on the electrodes was estimated. The highest enzyme concentration on the electrode surface corresponded to the electrodes prepared by nanozeolite separate (Pt/PAN/NZ/GOD) and combined with multi-walled carbon nanotubes (Pt/PAN/NZ/MWNT/GOD). The sensitivity of these two biosensors was the highest and that is in accordance with the greater amount of the adsorbed electroactive species on the electrodes (0.373 mol.cm-2). This was indication that a good synergistic effect happened when MWNTs and NZ were combined and these greatly improve the electron transfer ability of the sensor interface. Amperometric measurement of the two glucose oxidase electrodes (Pt/PAN/NZ/GOD and Pt/PAN/NZ/MWNT/GOD) with best results was carried out. The linear concentration interval of the Pt/PAN/NZ/MWNT/GOD biosensor was up to 3 mM, the detection limit - 0.02 mM glucose and the storage stability - 81% of its initial current response after 30 days.

  11. Highly Sensitive Electrochemical Biosensor for Evaluation of Oxidative Stress Based on the Nanointerface of Graphene Nanocomposites Blended with Gold, Fe3O4, and Platinum Nanoparticles.

    Science.gov (United States)

    Wang, Le; Zhang, Yuanyuan; Cheng, Chuansheng; Liu, Xiaoli; Jiang, Hui; Wang, Xuemei

    2015-08-26

    High levels of H2O2 pertain to high oxidative stress and are associated with cancer, autoimmune, and neurodegenerative disease, and other related diseases. In this study, a sensitive H2O2 biosensor for evaluation of oxidative stress was fabricated on the basis of the reduced graphene oxide (RGO) nanocomposites decorated with Au, Fe3O4, and Pt nanoparticles (RGO/AuFe3O4/Pt) modified glassy carbon electrode (GCE) and used to detect the released H2O2 from cancer cells and assess the oxidative stress elicited from H2O2 in living cells. Electrochemical behavior of RGO/AuFe3O4/Pt nanocomposites exhibits excellent catalytic activity toward the relevant reduction with high selection and sensitivity, low overpotential of 0 V, low detection limit of ∼0.1 μM, large linear range from 0.5 μM to 11.5 mM, and outstanding reproducibility. The as-prepared biosensor was applied in the measurement of efflux of H2O2 from living cells including healthy normal cells and tumor cells under the external stimulation. The results display that this new nanocomposites-based biosensor is a promising candidate of nonenzymatic H2O2 sensor which has the possibility of application in clinical diagnostics to assess oxidative stress of different kinds of living cells.

  12. NaNO3/NaCl Oxidant and Polyethylene Glycol (PEG) Capped Gold Nanoparticles (AuNPs) as a Novel Green Route for AuNPs Detection in Electrochemical Biosensors.

    Science.gov (United States)

    López-Marzo, Adaris M; Hoyos-de-la-Torre, Raquel; Baldrich, Eva

    2018-03-20

    Gold nanoparticles (AuNPs) have been exploited as signal-producing tags in electrochemical biosensors. However, the electrochemical detection of AuNPs is currently performed using corrosive acid solutions, which may raise health and environmental concerns. Here, oxidant salts, and specifically the environmentally friendly and occupational safe NaNO 3 /NaCl mixture, have been evaluated for the first time as potential alternatives to the acid solutions traditionally used for AuNPs electrooxidation. In addition, a new strategy to improve the sensitivity of the biosensor through PEG-based ligand exchange to produce less compact and easier to oxidize AuNPs immunoconjugates is presented too. As we show, the electrochemical immunosensor using NaNO 3 /NaCl measurement solution for AuNPs electrooxidation and detection, coupled to the employment of PEG-capped nanoimmunoconjugates, produced results comparable to classical HCl detection. The procedure developed was next tested for human matrix metallopeptidase-9 (hMMP9) analysis, exhibiting a 0.18-23 ng/mL linear range, a detection limit of 0.06 ng/mL, and recoveries between 95 and 105% in spiked human plasma. These results show that the procedure developed is applicable to the analysis of protein biomarkers in blood plasma and could contribute to the development of more environmentally friendly AuNP-based electrochemical biosensors.

  13. Electrochemical Glucose Sensors—Developments Using Electrostatic Assembly and Carbon Nanotubes for Biosensor Construction

    Directory of Open Access Journals (Sweden)

    Mark R. Anderson

    2010-09-01

    Full Text Available In 1962, Clark and Lyons proposed incorporating the enzyme glucose oxidase in the construction of an electrochemical sensor for glucose in blood plasma. In their application, Clark and Lyons describe an electrode in which a membrane permeable to glucose traps a small volume of solution containing the enzyme adjacent to a pH electrode, and the presence of glucose is detected by the change in the electrode potential that occurs when glucose reacts with the enzyme in this volume of solution. Although described nearly 50 years ago, this seminal development provides the general structure for constructing electrochemical glucose sensors that is still used today. Despite the maturity of the field, new developments that explore solutions to the fundamental limitations of electrochemical glucose sensors continue to emerge. Here we discuss two developments of the last 15 years; confining the enzyme and a redox mediator to a very thin molecular films at electrode surfaces by electrostatic assembly, and the use of electrodes modified by carbon nanotubes (CNTs to leverage the electrocatalytic effect of the CNTs to reduce the oxidation overpotential of the electrode reaction or for the direct electron transport to the enzyme.

  14. Development of paper-based electrochemical sensors for water quality monitoring

    Science.gov (United States)

    Smith, Suzanne; Bezuidenhout, Petroné; Mbanjwa, Mesuli; Zheng, Haitao; Conning, Mariette; Palaniyandy, Nithyadharseni; Ozoemena, Kenneth; Land, Kevin

    2016-02-01

    We present a method for the development of paper-based electrochemical sensors for detection of heavy metals in water samples. Contaminated water leads to serious health problems and environmental issues. Paper is ideally suited for point-of-care testing, as it is low cost, disposable, and multi-functional. Initial sensor designs were manufactured on paper substrates using combinations of inkjet printing and screen printing technologies using silver and carbon inks. Bismuth onion-like carbon nanoparticle ink was manufactured and used as the active material of the sensor for both commercial and paper-based sensors, which were compared using standard electrochemical analysis techniques. The results highlight the potential of paper-based sensors to be used effectively for rapid water quality monitoring at the point-of-need.

  15. Fabrication of flexible and disposable carbon paste-based electrodes and their electrochemical sensing

    Science.gov (United States)

    Aryasomayajula, Lavanya; Varadan, Vijay K.

    2008-03-01

    The paper describes a disposable electrochemical biosensor for glucose monitoring. The sensor is based on carbon paste immobilized with glucose oxidase and upon screen printed electrodes. The sensor has been tested effectively for the blood glucose levels corresponding to normal (70 to 99 mg/dL or 3.9 to5.5 mmol/L), pre-diabetic (100 to 125 mg/dL or 5.6 to 6.9 mmol/L) and diabetic (>126 mg/dL or 7.0 mmol/L). The calibration curve and the sensitivity of the sensor were measured.

  16. Biosensors and preparation thereof

    NARCIS (Netherlands)

    2008-01-01

    A low-temp. prepn. method for a biosensor device with a layer of reagent on the sensor surface is disclosed. During manufg. biol. interaction between the biosensor substrate and the reagent layer material is reduced, e.g. by cooling the biosensor substrate and depositing the reagent layer on the

  17. Preparation of DNA biosensor application from fuel oil waste by functionalization and characterization of MWCNT

    Directory of Open Access Journals (Sweden)

    Ahmed Mishaal Mohammed

    2017-11-01

    Full Text Available The potential of using a multi-wall carbon nanotube (MWCNT synthesized from a fuel oil waste of power plants has discovered for the first time for DNA biosensors application. The MWCNT surface morphologies were examined by field emission scanning electron microscopy (FE-SEM and atomic force microscopy (AFM. The thickness of the MWCNT was found 203nm and confirmed by FESEM. The electrochemical DNA biosensor was successfully developed using a MWCNT modified on SiO2 thin films. The capacitance measurements were performed to detect the sensitivity of DNA detection. The change in capacitance before and after immobilization of the DNA was measured in the frequency range of 1Hz to 1MHz. The results indicate that bare device exhibited the lowest capacitance value, which was 32.7μF. The capacitance value of the DNA immobilization increase to 52μF. The permittivity and conductivity also were examined to study the effect of the DNA immobilization toward the MWCNT modified surface. This present demonstrated that the MWCNT modified SiO2 a thin film was successfully fabricated for DNA biosensor detection. Keywords: Carbon nanotubes, Sensors, Thin films, Electrochemical DNA

  18. Flow electrochemical biosensors based on enzymatic porous reactor and tubular detector of silver solid amalgam

    Energy Technology Data Exchange (ETDEWEB)

    Josypčuk, Bohdan, E-mail: josypcuk@jh-inst.cas.cz [J. Heyrovský Institute of Physical Chemistry of AS CR, v.v.i., Department of Biophysical Chemistry, Dolejskova 3, Prague (Czech Republic); Barek, Jiří [Charles University in Prague, Faculty of Science, University Center of Excellence UNCE “Supramolecular Chemistry”, Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry, Albertov 6, CZ-128 43 Prague 2 (Czech Republic); Josypčuk, Oksana [J. Heyrovský Institute of Physical Chemistry of AS CR, v.v.i., Department of Biophysical Chemistry, Dolejskova 3, Prague (Czech Republic); Charles University in Prague, Faculty of Science, University Center of Excellence UNCE “Supramolecular Chemistry”, Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry, Albertov 6, CZ-128 43 Prague 2 (Czech Republic)

    2013-05-17

    Graphical abstract: -- Highlights: •Flow amperometric enzymatic biosensor was constructed. •The biosensor is based on a reactor of a novel material – porous silver solid amalgam. •Tubular amalgam detector was used for determination of decrease of O{sub 2} concentration. •Covalent bonds amalgam−thiol−enzyme contributed to the sensor long-term stability. •LOD of glucose was 0.01 mmol L{sup −1} with RSD = 1.3% (n = 11). -- Abstract: A flow amperometric enzymatic biosensor for the determination of glucose was constructed. The biosensor consists of a flow reactor based on porous silver solid amalgam (AgSA) and a flow tubular detector based on compact AgSA. The preparation of the sensor and the determination of glucose occurred in three steps. First, a self-assembled monolayer of 11-mercaptoundecanoic acid (MUA) was formed at the porous surface of the reactor. Second, enzyme glucose oxidase (GOx) was covalently immobilized at MUA-layer using N-ethyl-N′-(3-dimethylaminopropyl) carboimide and N-hydroxysuccinimide chemistry. Finally, a decrease of oxygen concentration (directly proportional to the concentration of glucose) during enzymatic reaction was amperometrically measured on the tubular detector under flow injection conditions. The following parameters of glucose determination were optimized with respect to amperometric response: composition of the mobile phase, its concentration, the potential of detection and the flow rate. The calibration curve of glucose was linear in the concentration range of 0.02–0.80 mmol L{sup −1} with detection limit of 0.01 mmol L{sup −1}. The content of glucose in the sample of honey was determined as 35.5 ± 1.0 mass % (number of the repeated measurements n = 7; standard deviation SD = 1.2%; relative standard deviation RSD = 3.2%) which corresponds well with the declared values. The tested biosensor proved good long-term stability (77% of the current response of glucose was retained after 35 days)

  19. Development of electrochemical biosensors and solid-phase amplification methods for the detection of human papillomavirus genes

    OpenAIRE

    Civit Pitarch, Laia

    2012-01-01

    A rapid, accurate and reliable diagnosis is crucial for the identification of a disease, like cancer, where an early detection can improve patient survival outcomes. Cervical cancer is the third most commonly diagnosed and the fourth leading cause of cancer death in women. It is well known that persistent infections with high-risk human papillomaviruses (HPV) are the primary cause of cervical cancer. Electrochemical DNA biosensors have received important attention owing to their characterist...

  20. Light-Regulated Electrochemical Sensor Array for Efficiently Discriminating Hazardous Gases.

    Science.gov (United States)

    Liang, Hongqiu; Zhang, Xin; Sun, Huihui; Jin, Han; Zhang, Xiaowei; Jin, Qinghui; Zou, Jie; Haick, Hossam; Jian, Jiawen

    2017-10-27

    Inadequate detection limit and unsatisfactory discrimination features remain the challenging issues for the widely applied electrochemical gas sensors. Quite recently, we confirmed that light-regulated electrochemical reaction significantly enhanced the electrocatalytic activity, and thereby can potentially extend the detection limit to the parts per billion (ppb) level. Nevertheless, impact of the light-regulated electrochemical reaction on response selectivity has been discussed less. Herein, we systematically report on the effect of illumination on discrimination features via design and fabrication of a light-regulated electrochemical sensor array. Upon illumination (light on), response signal to the examined gases (C 3 H 6 , NO, and CO) is selectively enhanced, resulting in the sensor array demonstrating disparate response patterns when compared with that of the sensor array operated at light off. Through processing all the response patterns derived from both light on and light off with a pattern recognition algorithm, a satisfactory discrimination feature is observed. In contrast, apparent mutual interference between NO and CO is found when the sensor array is solely operated without illumination. The impact mechanism of the illumination is studied and it is deduced that the effect of the illumination on the discriminating features can be mainly attributed to the competition of electrocatalytic activity and gas-phase reactivity. If the enhanced electrocatalytic activity (to specific gas) dominates the whole sensing progress, enhancements in the corresponding response signal would be observed upon illumination. Otherwise, illumination gives a negligible impact. Hence, the response signal to part of the examined gases is selectively enhanced by illumination. Conclusively, light-regulated electrochemical reaction would provide an efficient approach to designing future smart sensing devices.

  1. Glucose biosensor based on glucose oxidase immobilized on a nanofilm composed of mesoporous hydroxyapatite, titanium dioxide, and modified with multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Li, J.; Kuang, D.; Feng, Y.; Zhang, F.; Liu, M.

    2012-01-01

    We report on a highly sensitive glucose biosensor that was fabricated from a composite made from mesoporous hydroxyapatite and mesoporous titanium dioxide which then were ultrasonically mixed with multi-walled carbon nanotubes to form a rough nanocomposite film. This film served as a platform to immobilize glucose oxidase onto a glassy carbon electrode. The morphological and electrochemical properties of the film were examined by scanning electron microscopy and electrochemical impedance spectroscopy. Cyclic voltammetry and chronoamperometry were used to characterize the electrochemical performances of the biosensor which exhibited excellent electrocatalytic activity to the oxidation of glucose. At an operating potential of 0. 3 V and pH 6. 8, the sensor displays a sensitivity of 57. 0 μA mM -1 cm -2 , a response time of <5 s, a linear dynamic range from 0. 01 to 15. 2 mM, a correlation coefficient of 0. 9985, and a detection limit of 2 μM at an SNR of 3. No interferences are found for uric acid, ascorbic acid, dopamine and most carbohydrates. The sensor is stable and was successfully applied to the determination of glucose in real samples. (author)

  2. Recent trends in carbon nanomaterial-based electrochemical sensors for biomolecules: A review

    International Nuclear Information System (INIS)

    Yang, Cheng; Denno, Madelaine E.; Pyakurel, Poojan; Venton, B. Jill

    2015-01-01

    Carbon nanomaterials are advantageous for electrochemical sensors because they increase the electroactive surface area, enhance electron transfer, and promote adsorption of molecules. Carbon nanotubes (CNTs) have been incorporated into electrochemical sensors for biomolecules and strategies have included the traditional dip coating and drop casting methods, direct growth of CNTs on electrodes and the use of CNT fibers and yarns made exclusively of CNTs. Recent research has also focused on utilizing many new types of carbon nanomaterials beyond CNTs. Forms of graphene are now increasingly popular for sensors including reduced graphene oxide, carbon nanohorns, graphene nanofoams, graphene nanorods, and graphene nanoflowers. In this review, we compare different carbon nanomaterial strategies for creating electrochemical sensors for biomolecules. Analytes covered include neurotransmitters and neurochemicals, such as dopamine, ascorbic acid, and serotonin; hydrogen peroxide; proteins, such as biomarkers; and DNA. The review also addresses enzyme-based electrodes that are used to detect non-electroactive species such as glucose, alcohols, and proteins. Finally, we analyze some of the future directions for the field, pointing out gaps in fundamental understanding of electron transfer to carbon nanomaterials and the need for more practical implementation of sensors. - Highlights: • We review the types of carbon nanomaterials used in electrochemical sensors. • Different materials and sensor designs are compared for classes of biomolecules. • Future challenges of better sensor design and implementation are assessed

  3. Recent trends in carbon nanomaterial-based electrochemical sensors for biomolecules: A review

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Cheng; Denno, Madelaine E.; Pyakurel, Poojan; Venton, B. Jill, E-mail: jventon@virginia.edu

    2015-08-05

    Carbon nanomaterials are advantageous for electrochemical sensors because they increase the electroactive surface area, enhance electron transfer, and promote adsorption of molecules. Carbon nanotubes (CNTs) have been incorporated into electrochemical sensors for biomolecules and strategies have included the traditional dip coating and drop casting methods, direct growth of CNTs on electrodes and the use of CNT fibers and yarns made exclusively of CNTs. Recent research has also focused on utilizing many new types of carbon nanomaterials beyond CNTs. Forms of graphene are now increasingly popular for sensors including reduced graphene oxide, carbon nanohorns, graphene nanofoams, graphene nanorods, and graphene nanoflowers. In this review, we compare different carbon nanomaterial strategies for creating electrochemical sensors for biomolecules. Analytes covered include neurotransmitters and neurochemicals, such as dopamine, ascorbic acid, and serotonin; hydrogen peroxide; proteins, such as biomarkers; and DNA. The review also addresses enzyme-based electrodes that are used to detect non-electroactive species such as glucose, alcohols, and proteins. Finally, we analyze some of the future directions for the field, pointing out gaps in fundamental understanding of electron transfer to carbon nanomaterials and the need for more practical implementation of sensors. - Highlights: • We review the types of carbon nanomaterials used in electrochemical sensors. • Different materials and sensor designs are compared for classes of biomolecules. • Future challenges of better sensor design and implementation are assessed.

  4. A PVC/polypyrrole sensor designed for beef taste detection using electrochemical methods and sensory evaluation.

    Science.gov (United States)

    Zhu, Lingtao; Wang, Xiaodan; Han, Yunxiu; Cai, Yingming; Jin, Jiahui; Wang, Hongmei; Xu, Liping; Wu, Ruijia

    2018-03-01

    An electrochemical sensor for detection of beef taste was designed in this study. This sensor was based on the structure of polyvinyl chloride/polypyrrole (PVC/PPy), which was polymerized onto the surface of a platinum (Pt) electrode to form a Pt-PPy-PVC film. Detecting by electrochemical methods, the sensor was well characterized by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The sensor was applied to detect 10 rib-eye beef samples and the accuracy of the new sensor was validated by sensory evaluation and ion sensor detection. Several cluster analysis methods were used in the study to distinguish the beef samples. According to the obtained results, the designed sensor showed a high degree of association of electrochemical detection and sensory evaluation, which proved a fast and precise sensor for beef taste detection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. The CP-based electrochemical biosensors with autocatalytic stage in their function and the mathematical description of their work

    Directory of Open Access Journals (Sweden)

    Volodymyr Valentynovych Tkach

    2012-07-01

    Full Text Available The electroanalytic process of the detection of biosubstances, realized by the biosensor, based in conducting polyheterocyclic compounds, the function of which contained autocatalytic stage, was mathematically described. The correspondent mathematical model was analyzed by linear stability theory and bifurcational analysis. The electrochemical instabilities, capable to succeed in this process, were explained in the terms of this model.

  6. A novel and simple cell-based electrochemical biosensor for evaluating the antioxidant capacity of Lactobacillus plantarum strains isolated from Chinese dry-cured ham.

    Science.gov (United States)

    Ge, Qingfeng; Ge, Panwei; Jiang, Donglei; Du, Nan; Chen, Jiahui; Yuan, Limin; Yu, Hai; Xu, Xin; Wu, Mangang; Zhang, Wangang; Zhou, Guanghong

    2018-01-15

    The analysis of antioxidants in foodstuffs has become an active area of research, leading to the recent development of numerous methods for assessing antioxidant capacity. Here we described the fabrication and validation of a novel and simple cell-based electrochemical biosensor for this purpose. The biosensor is used to assess the antioxidant capacity of cell-free extracts from Lactobacillus plantarum strains isolated from Chinese dry-cured ham. The biosensor relies on the determination of cellular reactive oxygen species (ROS) (the flux of H 2 O 2 released from RAW 264.7 macrophage cells) to indirectly assess changes in intracellular oxidative stress level as influenced by L. plantarum strains. A one-step acidified manganese dioxide (a-MnO 2 ) modified gold electrode (GE) was used to immobilize RAW 264.7 macrophage cells, which were then encapsulated in a 3D cell culture system consisting of alginate/ graphene oxide (NaAlg/GO). The biosensor exhibited a rapid and sensitive response for the detection of H 2 O 2 released from RAW264.7 cells. The detection limit was 0.02μM with a linear response from 0.05μM to 0.85μM and the biosensor was shown to have good stability and outstanding repeatability. This technique was then used for evaluating the antioxidant ability of extracts from L. plantarum NJAU-01. According to the electrochemical investigations and assays of SEM, TEM, and ROS, these cell-free extracts effectively reduced the oxidative stress levels in RAW264.7 cells under external stimulation. Extracts from L. plantarum strains at a dose of 10 10 CFU/mL showed the highest antioxidant activities with a relative antioxidant capacity (RAC) rate of 88.94%. Hence, this work provides a simple and efficient electrochemical biosensing platform based on RAW264.7 cells for fast, sensitive and quantitative assessment of antioxidant capacity of L. plantarum strains. The method demonstrates its potential for rapid screening for evaluating antioxidant properties of

  7. A label-free and high sensitive aptamer biosensor based on hyperbranched polyester microspheres for thrombin detection

    International Nuclear Information System (INIS)

    Sun, Chong; Han, Qiaorong; Wang, Daoying; Xu, Weimin; Wang, Weijuan; Zhao, Wenbo; Zhou, Min

    2014-01-01

    Highlights: • A label-free thrombin aptamer biosensor applied in whole blood has been developed. • The aptamer biosensor showed a wide detection range and a low detection limit. • The antibiofouling idea utilized for biosensor is significant for diagnostics. - Abstract: In this paper, we have synthesized hyperbranched polyester microspheres with carboxylic acid functional groups (HBPE-CA) and developed a label-free electrochemical aptamer biosensor using thrombin-binding aptamer (TBA) as receptor for the measurement of thrombin in whole blood. The indium tin oxide (ITO) electrode surface modified with HBPE-CA microspheres was grafted with TBA, which has excellent binding affinity and selectivity for thrombin. Binding of the thrombin at the modified ITO electrode surface greatly restrained access of electrons for a redox probe of [Fe(CN) 6 ] 3−/4− . Moreover, the aptamer biosensor could be used for detection of thrombin in whole blood, a wide detection range (10 fM–100 nM) and a detection limit on the order of 0.90 fM were demonstrated. Control experiments were also carried out by using bull serum albumin (BSA) and lysozyme in the absence of thrombin. The good stability and repeatability of this aptamer biosensor were also proved. We expect that this demonstration will lead to the development of highly sensitive label-free sensors based on aptamer with lower cost than current technology. The integration of the technologies, which include anticoagulant, sensor and nanoscience, will bring significant input to high-performance biosensors relevant to diagnostics and therapy of interest for human health

  8. A label-free and high sensitive aptamer biosensor based on hyperbranched polyester microspheres for thrombin detection

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Chong [Jiangsu Key Laboratory of Biofunctional Materials, Biomedical Functional Materials Collaborative Innovation Center, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023 (China); Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014 (China); Han, Qiaorong [Jiangsu Key Laboratory of Biofunctional Materials, Biomedical Functional Materials Collaborative Innovation Center, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023 (China); Wang, Daoying; Xu, Weimin [Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014 (China); Wang, Weijuan [Jiangsu Key Laboratory of Biofunctional Materials, Biomedical Functional Materials Collaborative Innovation Center, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023 (China); Zhao, Wenbo, E-mail: zhaowenbo@njnu.edu.cn [Jiangsu Key Laboratory of Biofunctional Materials, Biomedical Functional Materials Collaborative Innovation Center, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023 (China); Zhou, Min, E-mail: zhouminnju@126.com [Department of Vascular Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008 (China)

    2014-11-19

    Highlights: • A label-free thrombin aptamer biosensor applied in whole blood has been developed. • The aptamer biosensor showed a wide detection range and a low detection limit. • The antibiofouling idea utilized for biosensor is significant for diagnostics. - Abstract: In this paper, we have synthesized hyperbranched polyester microspheres with carboxylic acid functional groups (HBPE-CA) and developed a label-free electrochemical aptamer biosensor using thrombin-binding aptamer (TBA) as receptor for the measurement of thrombin in whole blood. The indium tin oxide (ITO) electrode surface modified with HBPE-CA microspheres was grafted with TBA, which has excellent binding affinity and selectivity for thrombin. Binding of the thrombin at the modified ITO electrode surface greatly restrained access of electrons for a redox probe of [Fe(CN){sub 6}]{sup 3−/4−}. Moreover, the aptamer biosensor could be used for detection of thrombin in whole blood, a wide detection range (10 fM–100 nM) and a detection limit on the order of 0.90 fM were demonstrated. Control experiments were also carried out by using bull serum albumin (BSA) and lysozyme in the absence of thrombin. The good stability and repeatability of this aptamer biosensor were also proved. We expect that this demonstration will lead to the development of highly sensitive label-free sensors based on aptamer with lower cost than current technology. The integration of the technologies, which include anticoagulant, sensor and nanoscience, will bring significant input to high-performance biosensors relevant to diagnostics and therapy of interest for human health.

  9. Ordered mesoporous carbon for electrochemical sensing: A review

    Energy Technology Data Exchange (ETDEWEB)

    Ndamanisha, Jean Chrysostome [Faculty of Chemistry, Northeast Normal University, Changchun 130024 (China); Universite du Burundi, Institut de pedagogie appliquee, B.P. 5223, Bujumbura (Burundi); Guo Liping, E-mail: guolp078@nenu.edu.cn [Faculty of Chemistry, Northeast Normal University, Changchun 130024 (China)

    2012-10-17

    Highlights: Black-Right-Pointing-Pointer The preparation and functionalization of ordered mesoporous carbon. Black-Right-Pointing-Pointer Their applications as electrochemical sensors with high electrocatalytic activity. Black-Right-Pointing-Pointer A promising electrode material based on its interesting properties. - Abstract: With its well-ordered pore structure, high specific surface area and tunable pore diameters in the mesopore range, ordered mesoporous carbon (OMC) is suitable for applications in catalysis and sensing. We report recent applications of OMC in electrochemical sensors and biosensors. After a brief description of the electrochemical properties, the functionalization of the OMC for improvement of the electrocatalytic properties is then presented. We show how the ordered mesostructure of OMC is very important in those applications. The high density of edge plane-like defective sites (EDSs), oxygen-containing groups and a large surface area on OMC may provide many favorable sites for electron transfer to compounds, which makes OMC a potential novel material for an investigation of the electrochemical behavior of substances. Moreover, the structural capabilities of OMC at the scale of a few nanometers agree with immobilization of other electrocataytic substances. Interesting properties of this material may open up a new approach to study the electrochemical determination of other biomolecules.

  10. Membrane-Coated Electrochemical Sensor for Corrosion Monitoring in Natural Gas Pipelines

    Directory of Open Access Journals (Sweden)

    J. Beck

    2017-07-01

    Full Text Available Electrochemical sensors can be used for a wide range of online in- situ process monitoring applications. However, the lack of a consistent electrolyte layer has previously limited electrochemical monitoring in gas and supercritical fluid streams. A solid state sensor is being designed that uses an ion conducting membrane to perform conductivity and corrosion measurements in natural gas pipelines up to 1000 psi. Initial results show that membrane conductivity measurements can be correlated directly to water content down to dew points of 1°C with good linearity. Corrosion monitoring can also be performed using methods such as linear polarization resistance and electrochemical impedance spectroscopy (EIS, though care must be taken in the electrode design to minimize deviation between sensors.

  11. Electrochemical and spectroscopic study on thiolation of polyaniline

    International Nuclear Information System (INIS)

    Blomquist, Maija; Bobacka, Johan; Ivaska, Ari; Levon, Kalle

    2013-01-01

    Highlights: ► We have thiolated and characterized polyaniline films in order to verify that the thiolation process has taken place. ► Such extensive characterization of thiolation of polyaniline has not previously been reported. ► Thiolation alters the electrochemical properties of polyaniline and the process should be understood. ► Through thiolation many reactive groups may covalently be bound to the polymer backbone. ► Possibility of covalent binding makes polyaniline films an attractive substrate for, e.g., biosensors. -- Abstract: Polyaniline (PANI) is a conducting polymer, easily synthesized and lucrative for many electrochemical applications like ion-selective sensors and biosensors. Thiolated molecules, including biological ones, can be bound by nucleophilic attachment to the polyaniline backbone. These covalently bound thiols add functionality to PANI, but also cause changes in the electrochemical properties of PANI. Polyaniline studied in this work was electropolymerized on glassy carbon electrodes. 2-Mercaptoethanol (MCE) and 6-(ferrocenyl)hexanethiol (FCHT) were used as the thiols to form functionalized films. The films were characterized by cyclic voltammetry (CV), ex situ FTIR and Raman spectroscopies, electrochemical impedance spectroscopy (EIS) and X-ray photoelectron spectroscopy (XPS). The goal of this work was to confirm the thiolation by spectroscopic methods and to study the impact of thiolation on the electrochemical properties of PANI. Our study showed that thiolated PANI has different electrochemical properties than PANI. Although the thiolation partially reduced the PANI backbone it still remained conductive after the thiolation. Detailed understanding of the thiolation process can be very useful for future applications of PANI

  12. Electrochemical DNA biosensor for detection of porcine oligonucleotides using ruthenium(II) complex as intercalator label redox

    Energy Technology Data Exchange (ETDEWEB)

    Halid, Nurul Izni Abdullah; Hasbullah, Siti Aishah; Heng, Lee Yook; Karim, Nurul Huda Abd [School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan (Malaysia); Ahmad, Haslina; Harun, Siti Norain [Chemistry Department, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor (Malaysia)

    2014-09-03

    A DNA biosensor detection of oligonucleotides via the interactions of porcine DNA with redox active complex based on the electrochemical transduction is described. A ruthenium(II) complex, [Ru(bpy){sub 2}(PIP)]{sup 2+}, (bpy = 2,2′bipyridine, PIP = 2-phenylimidazo[4,5-f[[1,10-phenanthroline]) as DNA label has been synthesized and characterized by 1H NMR and mass spectra. The study was carried out by covalent bonding immobilization of porcine aminated DNA probes sequences on screen printed electrode (SPE) modified with succinimide-acrylic microspheres and [Ru(bpy){sub 2}(PIP)]{sup 2+} was used as electrochemical redox intercalator label to detect DNA hybridization event. Electrochemical detection was performed by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) over the potential range where the ruthenium (II) complex was active. The results indicate that the interaction of [Ru(bpy){sub 2}(PIP)]{sup 2+} with hybridization complementary DNA has higher response compared to single-stranded and mismatch complementary DNA.

  13. Reproducible preparation of a stable polypyrrole-coated-silver nanoparticles decorated polypyrrole-coated-polycaprolactone-nanofiber-based cloth electrode for electrochemical sensor application

    Science.gov (United States)

    Li, Li; Wang, Xiaoping; Liu, Guiting; Wang, Zhenzhen; Wang, Feng; Guo, Xiaoyu; Wen, Ying; Yang, Haifeng

    2015-11-01

    A piece of conductive cloth has been successfully constructed from polypyrrole-coated silver nanoparticle (Ag@PPy) composites decorated on electrospun polycaprolactone (PCL) nanofibers that formed the core-shell structure of Ag@PPy/PCL@PPy via a photo-induced one-step redox reaction. The photochemical reaction method both accelerated the rate of formation of silver nanoparticles (Ag NPs) and enhanced the dispersion of Ag NPs at the surface of PCL@PPy film. The resulting Ag@PPy/PCL@PPy-based cloth was flexible enough to be cut and pasted onto a glass carbon electrode for the preparation of a biosensor. The resulting biosensor showed good electrochemical activity toward the reduction of H2O2 with low detection limit down to 1 μM (S/N = 3) and wide linear detection ranging from 0.01 mM to 3.5 mM (R2 = 0.990). This sensor has been applied to detect the trace H2O2 residual in milk. The cloth electrode has been proved to exhibit long-term stability, high selectivity, and excellent reproducibility.

  14. Reproducible preparation of a stable polypyrrole-coated-silver nanoparticles decorated polypyrrole-coated-polycaprolactone-nanofiber-based cloth electrode for electrochemical sensor application

    International Nuclear Information System (INIS)

    Li, Li; Wang, Xiaoping; Liu, Guiting; Wang, Zhenzhen; Wang, Feng; Guo, Xiaoyu; Wen, Ying; Yang, Haifeng

    2015-01-01

    A piece of conductive cloth has been successfully constructed from polypyrrole-coated silver nanoparticle (Ag@PPy) composites decorated on electrospun polycaprolactone (PCL) nanofibers that formed the core–shell structure of Ag@PPy/PCL@PPy via a photo-induced one-step redox reaction. The photochemical reaction method both accelerated the rate of formation of silver nanoparticles (Ag NPs) and enhanced the dispersion of Ag NPs at the surface of PCL@PPy film. The resulting Ag@PPy/PCL@PPy-based cloth was flexible enough to be cut and pasted onto a glass carbon electrode for the preparation of a biosensor. The resulting biosensor showed good electrochemical activity toward the reduction of H 2 O 2 with low detection limit down to 1 μM (S/N = 3) and wide linear detection ranging from 0.01 mM to 3.5 mM (R 2  = 0.990). This sensor has been applied to detect the trace H 2 O 2 residual in milk. The cloth electrode has been proved to exhibit long-term stability, high selectivity, and excellent reproducibility. (paper)

  15. Developing Biosensors in Developing Countries: South Africa as a Case Study

    Directory of Open Access Journals (Sweden)

    Ronen Fogel

    2016-02-01

    Full Text Available A mini-review of the reported biosensor research occurring in South Africa evidences a strong emphasis on electrochemical sensor research, guided by the opportunities this transduction platform holds for low-cost and robust sensing of numerous targets. Many of the reported publications centre on fundamental research into the signal transduction method, using model biorecognition elements, in line with international trends. Other research in this field is spread across several areas including: the application of nanotechnology; the identification and validation of biomarkers; development and testing of biorecognition agents (antibodies and aptamers and design of electro-catalysts, most notably metallophthalocyanine. Biosensor targets commonly featured were pesticides and metals. Areas  of regional import to sub-Saharan Africa, such as HIV/AIDs and tuberculosis diagnosis, are also apparent in a review of the available literature. Irrespective of the targets, the challenge to the effective deployment of such sensors remains shaped by social and economic realities such that the requirements thereof are for low-cost and universally easy to operate devices for field settings. While it is difficult to disentangle the intertwined roles of national policy, grant funding availability and, certainly, of global trends in shaping areas of emphasis in research, most notable is the strong role that nanotechnology, and to a certain extent biotechnology, plays in research regarding biosensor construction. Stronger emphasis on collaboration between scientists in theoretical modelling, nanomaterials application and or relevant stakeholders in the specific field (e.g., food or health monitoring and researchers in biosensor design may help evolve focused research efforts towards development and deployment of low-cost biosensors.

  16. Innovations in biomedical nanoengineering: nanowell array biosensor

    Science.gov (United States)

    Seo, YoungTae; Jeong, Sunil; Lee, JuKyung; Choi, Hak Soo; Kim, Jonghan; Lee, HeaYeon

    2018-04-01

    Nanostructured biosensors have pioneered biomedical engineering by providing highly sensitive analyses of biomolecules. The nanowell array (NWA)-based biosensing platform is particularly innovative, where the small size of NWs within the array permits extremely profound sensing of a small quantity of biomolecules. Undoubtedly, the NWA geometry of a gently-sloped vertical wall is critical for selective docking of specific proteins without capillary resistances, and nanoprocessing has contributed to the fabrication of NWA electrodes on gold substrate such as molding process, e-beam lithography, and krypton-fluoride (KrF) stepper semiconductor method. The Lee group at the Mara Nanotech has established this NW-based biosensing technology during the past two decades by engineering highly sensitive electrochemical sensors and providing a broad range of detection methods from large molecules (e.g., cells or proteins) to small molecules (e.g., DNA and RNA). Nanosized gold dots in the NWA enhance the detection of electrochemical biosensing to the range of zeptomoles in precision against the complementary target DNA molecules. In this review, we discuss recent innovations in biomedical nanoengineering with a specific focus on novel NWA-based biosensors. We also describe our continuous efforts in achieving a label-free detection without non-specific binding while maintaining the activity and stability of immobilized biomolecules. This research can lay the foundation of a new platform for biomedical nanoengineering systems.

  17. A Printed Organic Amplification System for Wearable Potentiometric Electrochemical Sensors.

    Science.gov (United States)

    Shiwaku, Rei; Matsui, Hiroyuki; Nagamine, Kuniaki; Uematsu, Mayu; Mano, Taisei; Maruyama, Yuki; Nomura, Ayako; Tsuchiya, Kazuhiko; Hayasaka, Kazuma; Takeda, Yasunori; Fukuda, Takashi; Kumaki, Daisuke; Tokito, Shizuo

    2018-03-02

    Electrochemical sensor systems with integrated amplifier circuits play an important role in measuring physiological signals via in situ human perspiration analysis. Signal processing circuitry based on organic thin-film transistors (OTFTs) have significant potential in realizing wearable sensor devices due to their superior mechanical flexibility and biocompatibility. Here, we demonstrate a novel potentiometric electrochemical sensing system comprised of a potassium ion (K + ) sensor and amplifier circuits employing OTFT-based pseudo-CMOS inverters, which have a highly controllable switching voltage and closed-loop gain. The ion concentration sensitivity of the fabricated K + sensor was 34 mV/dec, which was amplified to 160 mV/dec (by a factor of 4.6) with high linearity. The developed system is expected to help further the realization of ultra-thin and flexible wearable sensor devices for healthcare applications.

  18. Chip cleaning and regeneration for electrochemical sensor arrays

    Energy Technology Data Exchange (ETDEWEB)

    Bhalla, Vijayender [Biochemistry Department ' G.Moruzzi' , University of Bologna, Via Irnerio 48, 40126 Bologna (Italy); Carrara, Sandro, E-mail: sandro.carrara@epfl.c [Biochemistry Department ' G.Moruzzi' , University of Bologna, Via Irnerio 48, 40126 Bologna (Italy); Stagni, Claudio [Department DEIS, University of Bologna, viale Risorgimento 2, 40136 Bologna (Italy); Samori, Bruno [Biochemistry Department ' G.Moruzzi' , University of Bologna, Via Irnerio 48, 40126 Bologna (Italy)

    2010-04-02

    Sensing systems based on electrochemical detection have generated great interest because electronic readout may replace conventional optical readout in microarray. Moreover, they offer the possibility to avoid labelling for target molecules. A typical electrochemical array consists of many sensing sites. An ideal micro-fabricated sensor-chip should have the same measured values for all the equivalent sensing sites (or spots). To achieve high reliability in electrochemical measurements, high quality in functionalization of the electrodes surface is essential. Molecular probes are often immobilized by using alkanethiols onto gold electrodes. Applying effective cleaning methods on the chip is a fundamental requirement for the formation of densely-packed and stable self-assembly monolayers. However, the available well-known techniques for chip cleaning may not be so reliable. Furthermore, it could be necessary to recycle the chip for reuse. Also in this case, an effective recycling technique is required to re-obtain well cleaned sensing surfaces on the chip. This paper presents experimental results on the efficacy and efficiency of the available techniques for initial cleaning and further recycling of micro-fabricated chips. Piranha, plasma, reductive and oxidative cleaning methods were applied and the obtained results were critically compared. Some interesting results were attained by using commonly considered cleaning methodologies. This study outlines oxidative electrochemical cleaning and recycling as the more efficient cleaning procedure for electrochemical based sensor arrays.

  19. Current Technologies of Electrochemical Immunosensors: Perspective on Signal Amplification

    Directory of Open Access Journals (Sweden)

    Il-Hoon Cho

    2018-01-01

    Full Text Available An electrochemical immunosensor employs antibodies as capture and detection means to produce electrical charges for the quantitative analysis of target molecules. This sensor type can be utilized as a miniaturized device for the detection of point-of-care testing (POCT. Achieving high-performance analysis regarding sensitivity has been one of the key issues with developing this type of biosensor system. Many modern nanotechnology efforts allowed for the development of innovative electrochemical biosensors with high sensitivity by employing various nanomaterials that facilitate the electron transfer and carrying capacity of signal tracers in combination with surface modification and bioconjugation techniques. In this review, we introduce novel nanomaterials (e.g., carbon nanotube, graphene, indium tin oxide, nanowire and metallic nanoparticles in order to construct a high-performance electrode. Also, we describe how to increase the number of signal tracers by employing nanomaterials as carriers and making the polymeric enzyme complex associated with redox cycling for signal amplification. The pros and cons of each method are considered throughout this review. We expect that these reviewed strategies for signal enhancement will be applied to the next versions of lateral-flow paper chromatography and microfluidic immunosensor, which are considered the most practical POCT biosensor platforms.

  20. Electrochemical sensors based on gold nanoparticles modified with rhodamine B hydrazide to sensitively detect Cu(II)

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Donglai; Hu, Bin; Kang, Mengmeng [Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450001 (China); Wang, Minghua [Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, No.136, Science Avenue, Zhengzhou 450001 (China); He, Linghao [Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450001 (China); Zhang, Zhihong, E-mail: mainzhh@163.com [Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450001 (China); Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, No.136, Science Avenue, Zhengzhou 450001 (China); Fang, Shaoming, E-mail: mingfang@zzuli.edu.cn [Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450001 (China); Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, No.136, Science Avenue, Zhengzhou 450001 (China)

    2016-12-30

    Highlights: • An electrochemical sensor based on gold nanoparticles modified with rhodamine B hydrazide (AuNPs-RBH) was developed. • The sensor was applied in the highly sensitive and selective detection of Cu{sup 2+} in water. • The electrochemical sensor displays excellent regeneration, stability, and practicability for Cu{sup 2+} detection. • EIS was used to determine Cu{sup 2+} ions in an aqueous solution with the developed AuNPs-RBH-based electrochemical sensor. - Abstract: An electrochemical sensor based on gold nanoparticles (Au NPs) modified with rhodamine B hydrazide (RBH) (AuNPs-RBH) was developed and applied in the highly sensitive and selective detection of Cu{sup 2+} in water. RBH molecules were bounded onto the surface of AuNPs via the strong interaction between the amino groups and Au NPs. The chemical structure variations were characterized by X-ray photoelectron spectroscopy and fluoresence spectroscopy. Additionally, electrochemical impedance spectroscopy was used to determine Cu{sup 2+} ions in an aqueous solution with the developed AuNPs-RBH-based electrochemical sensor. Results show that the fabricated sensor exhibits good electrochemical performance because of the presence of Au NPs and high affinity with the Cu{sup 2+} resulting from the strong coordination chemistry between Cu{sup 2+} and RBH. The as-developed sensor towards detecting Cu{sup 2+} has a detection limitation of 12.5 fM within the concentration range of 0.1 pM–1 nM by using the electrochemical impedance technique. It also displays excellent selectivity, regeneration, stability, and practicability for Cu{sup 2+} detection. Therefore, the new strategy of the RBH-based electrochemical sensor exhibits great potential application in environment treatment and protection.

  1. Sensitive determination of citrinin based on molecular imprinted electrochemical sensor

    Energy Technology Data Exchange (ETDEWEB)

    Atar, Necip [Department of Chemical Engineering, Faculty of Engineering, Pamukkale University, Denizli (Turkey); Yola, Mehmet Lütfi, E-mail: mehmetyola@gmail.com [Department of Metallurgical and Materials Engineering, Faculty of Engineering, Sinop University, Sinop (Turkey); Eren, Tanju [Department of Chemical Engineering, Faculty of Engineering, Pamukkale University, Denizli (Turkey)

    2016-01-30

    Graphical abstract: - Highlights: • Citrinin-imprinted electrochemical sensor is developed for the sensitive detection of citrinin. • The nanomaterial and citrinin-imprinted surfaces were characterized by several methods. • Citrinin-imprinted electrochemical sensor is sensitive and selective in analysis of food. • Citrinin-imprinted electrochemical sensor is preferred to the other methods. - Abstract: In this report, a novel molecular imprinted voltammetric sensor based on glassy carbon electrode (GCE) modified with platinum nanoparticles (PtNPs) involved in a polyoxometalate (H{sub 3}PW{sub 12}O{sub 40}, POM) functionalized reduced graphene oxide (rGO) was prepared for the determination of citrinin (CIT). The developed surfaces were characterized by using scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) method. CIT imprinted GCE was prepared via electropolymerization process of 80.0 mM pyrrole as monomer in the presence of phosphate buffer solution (pH 6.0) containing 20.0 mM CIT. The linearity range and the detection limit of the developed method were calculated as 1.0 × 10{sup −12}–1.0 × 10{sup −10} M and 2.0 × 10{sup −13} M, respectively. In addition, the voltammetric sensor was applied to rye samples. The stability and selectivity of the voltammetric sensor were also reported.

  2. Sensitive determination of citrinin based on molecular imprinted electrochemical sensor

    International Nuclear Information System (INIS)

    Atar, Necip; Yola, Mehmet Lütfi; Eren, Tanju

    2016-01-01

    Graphical abstract: - Highlights: • Citrinin-imprinted electrochemical sensor is developed for the sensitive detection of citrinin. • The nanomaterial and citrinin-imprinted surfaces were characterized by several methods. • Citrinin-imprinted electrochemical sensor is sensitive and selective in analysis of food. • Citrinin-imprinted electrochemical sensor is preferred to the other methods. - Abstract: In this report, a novel molecular imprinted voltammetric sensor based on glassy carbon electrode (GCE) modified with platinum nanoparticles (PtNPs) involved in a polyoxometalate (H_3PW_1_2O_4_0, POM) functionalized reduced graphene oxide (rGO) was prepared for the determination of citrinin (CIT). The developed surfaces were characterized by using scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) method. CIT imprinted GCE was prepared via electropolymerization process of 80.0 mM pyrrole as monomer in the presence of phosphate buffer solution (pH 6.0) containing 20.0 mM CIT. The linearity range and the detection limit of the developed method were calculated as 1.0 × 10"−"1"2–1.0 × 10"−"1"0 M and 2.0 × 10"−"1"3 M, respectively. In addition, the voltammetric sensor was applied to rye samples. The stability and selectivity of the voltammetric sensor were also reported.

  3. Glucose biosensor based on a glassy carbon electrode modified with polythionine and multiwalled carbon nanotubes.

    Directory of Open Access Journals (Sweden)

    Wenwei Tang

    Full Text Available A novel glucose biosensor was fabricated. The first layer of the biosensor was polythionine, which was formed by the electrochemical polymerisation of the thionine monomer on a glassy carbon electrode. The remaining layers were coated with chitosan-MWCNTs, GOx, and the chitosan-PTFE film in sequence. The MWCNTs embedded in FAD were like "conductive wires" connecting FAD with electrode, reduced the distance between them and were propitious to fast direct electron transfer. Combining with good electrical conductivity of PTH and MWCNTs, the current response was enlarged. The sensor was a parallel multi-component reaction system (PMRS and excellent electrocatalytic performance for glucose could be obtained without a mediator. The glucose sensor had a working voltage of -0.42 V, an optimum working temperature of 25°C, an optimum working pH of 7.0, and the best percentage of polytetrafluoroethylene emulsion (PTFE in the outer composite film was 2%. Under the optimised conditions, the biosensor displayed a high sensitivity of 2.80 µA mM(-1 cm(-2 and a low detection limit of 5 µM (S/N = 3, with a response time of less than 15 s and a linear range of 0.04 mM to 2.5 mM. Furthermore, the fabricated biosensor had a good selectivity, reproducibility, and long-term stability, indicating that the novel CTS+PTFE/GOx/MWCNTs/PTH composite is a promising material for immobilization of biomolecules and fabrication of third generation biosensors.

  4. Cyclewise Operation of Printed MoS2 Transistor Biosensors for Rapid Biomolecule Quantification at Femtomolar Levels.

    Science.gov (United States)

    Ryu, Byunghoon; Nam, Hongsuk; Oh, Bo-Ram; Song, Yujing; Chen, Pengyu; Park, Younggeun; Wan, Wenjie; Kurabayashi, Katsuo; Liang, Xiaogan

    2017-02-24

    Field-effect transistors made from MoS 2 and other emerging layered semiconductors have been demonstrated to be able to serve as ultrasensitive biosensors. However, such nanoelectronic sensors still suffer seriously from a series of challenges associated with the poor compatibility between electronic structures and liquid analytes. These challenges hinder the practical biosensing applications that demand rapid, low-noise, highly specific biomolecule quantification at femtomolar levels. To address such challenges, we study a cyclewise process for operating MoS 2 transistor biosensors, in which a series of reagent fluids are delivered to the sensor in a time-sequenced manner and periodically set the sensor into four assay-cycle stages, including incubation, flushing, drying, and electrical measurement. Running multiple cycles of such an assay can acquire a time-dependent sensor response signal quantifying the reaction kinetics of analyte-receptor binding. This cyclewise detection approach can avoid the liquid-solution-induced electrochemical damage, screening, and nonspecific adsorption to the sensor and therefore improves the transistor sensor's durability, sensitivity, specificity, and signal-to-noise ratio. These advantages in combination with the inherent high sensitivity of MoS 2 biosensors allow for rapid biomolecule quantification at femtomolar levels. We have demonstrated the cyclewise quantification of Interleukin-1β in pure and complex solutions (e.g., serum and saliva) with a detection limit of ∼1 fM and a total detection time ∼23 min. This work leverages the superior properties of layered semiconductors for biosensing applications and advances the techniques toward realizing fast real-time immunoassay for low-abundance biomolecule detection.

  5. Biosensors and bioelectronics

    CERN Document Server

    Karunakaran, Chandran; Benjamin, Robson

    2015-01-01

    Biosensors and Bioelectronics presents the rapidly evolving methodologies that are relevant to biosensors and bioelectronics fabrication and characterization. The book provides a comprehensive understanding of biosensor functionality, and is an interdisciplinary reference that includes a range of interwoven contributing subjects, including electrochemistry, nanoparticles, and conducting polymers. Authored by a team of bioinstrumentation experts, this book serves as a blueprint for performing advanced fabrication and characterization of sensor systems-arming readers with an application-based re

  6. Amperometric urea biosensors based on sulfonated graphene/polyaniline nanocomposite

    Directory of Open Access Journals (Sweden)

    Das G

    2015-08-01

    Full Text Available Gautam Das, Hyon Hee Yoon Department of Chemical and Biological Engineering, Gachon University, Seongnam, Gyeonggi-do, South Korea Abstract: An electrochemical biosensor based on sulfonated graphene/polyaniline nanocomposite was developed for urea analysis. Oxidative polymerization of aniline in the presence of sulfonated graphene oxide was carried out by electrochemical methods in an aqueous environment. The structural properties of the nanocomposite were characterized by Fourier-transform infrared, Raman spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy techniques. The urease enzyme-immobilized sulfonated graphene/polyaniline nanocomposite film showed impressive performance in the electroanalytical detection of urea with a detection limit of 0.050 mM and a sensitivity of 0.85 µA·cm-2·mM-1. The biosensor achieved a broad linear range of detection (0.12–12.3 mM with a notable response time of approximately 5 seconds. Moreover, the fabricated biosensor retained 81% of its initial activity (based on sensitivity after 15 days of storage at 4°C. The ease of fabrication coupled with the low cost and good electrochemical performance of this system holds potential for the development of solid-state biosensors for urea detection. Keywords: electrochemical deposition, sulfonated graphene oxide, urease

  7. Aptamer based electrochemical sensors for emerging environmental pollutants

    Directory of Open Access Journals (Sweden)

    Akhtar eHAYAT

    2014-06-01

    Full Text Available Environmental contaminants monitoring is one of the key issues in understanding and managing hazards to human health and ecosystems. In this context, aptamer based electrochemical sensors have achieved intense significance because of their capability to resolve a potentially large number of problems and challenges in environmental contamination. An aptasensor is a compact analytical device incorporating an aptamer (oligonulceotide as the sensing element either integrated within or intimately associated with a physiochemical transducer surface. Nucleic acid is well known for the function of carrying and passing genetic information, however, it has found a key role in analytical monitoring during recent years. Aptamer based sensors represent a novelty in environmental analytical science and there are great expectations for their promising performance as alternative to conventional analytical tools. This review paper focuses on the recent advances in the development of aptamer based electrochemical sensors for environmental applications with special emphasis on emerging pollutants.

  8. A Novel of Multi-wall Carbon Nanotubes/Chitosan Electrochemical Sensor for Determination of Cupric ion

    Science.gov (United States)

    Tan, Funeng; Li, Lei

    2018-03-01

    A multi-wall carbon nanotubes/Chitosan electrochemical sensor had been fabricated by dropping CHS/MWNT solution directly onto the GC surface. The sensor was charactered by cyclic voltammetry and AC impedance with K3Fe(CN)6 as a electrochemical probe; Cyclic voltammograms(CV) and electrochemical impedance spectroscopy(EIS) indicated that the active area and electrochemical behavior of the sensor increased and improved significantly after the electrode was modified by carbon nanotubes dispersed by the chitosan. The sensor showed good electrocatalytic activity of K3Fe(CN)6. Also, from the cyclic voltammograms, we can see the process was diffusion controlled on the bare electrode and kinetics and diffusion controlled on the modified electrode. Finally Cu2+ responsed sensitively at the sensor which supplied a new method for the detection of Cu2+.

  9. Electrochemical sensors for biofilm and biocorrosion

    Energy Technology Data Exchange (ETDEWEB)

    Tribollet, B. [UPR 15 du CNRS, Universite Paris 6, 4 Place Jussieu, 75252 Paris Cedex05 (France)

    2003-07-01

    The presence of biofilm modifies the electrochemical properties of the interface and the mass transport near the interface. Two biofilm effects are damageable: the reduction of heat and/or mass transfer and the biocorrosion or microbiologically influenced corrosion (MIC). Two kinds of electrochemical sensors were developed: the first kind for the biofilm detection and the second one to evaluate the MIC risk. The biofilm detection is obtained by considering either the potential modification of the interface or the mass transport modification. The mass transport modification is analysed by considering the limiting diffusion current measured on a gold electrode where the biofilm development occurs. The MIC risk is evaluated with a sensor composed of two concentric electrodes in the material under investigation (e.g. carbon steel): a small disk electrode in the centre and a large ring. In a first step, a pit is artificially initiated by applying a current through these electrodes. In a second step, the risk factors of MIC are investigated by analysing the free coupling current circulating between these two short-circuited electrodes. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  10. Micro- and nanogap based biosensors

    OpenAIRE

    Hammond, Jules L.

    2017-01-01

    Biosensors are used for the detection of a range of analytes for applications in healthcare, food production, environmental monitoring and biodefence. However, many biosensing platforms are large, expensive, require skilled operators or necessitate the analyte to be labelled. Direct electrochemical detection methods present a particularly attractive platform due to the simplified instrumentation when compared to other techniques such as fluorescence-based biosensors. With modern integrated ci...

  11. ZnO nano-array-based EGFET biosensor for glucose detection

    Science.gov (United States)

    Qi, Junjie; Zhang, Huihui; Ji, Zhaoxia; Xu, Minxuan; Zhang, Yue

    2015-06-01

    Electrochemical biosensors are normally based on enzymatic catalysis of a reaction that produces or consumes electrons and the sensing membranes dominate the performance. In this work, ZnO nano-array-based EGFETs were fabricated for pH and glucose detection. The ZnO nano-arrays prepared via low-temperature hydrothermal method were well-aligned, with an average length of 2 μm and diameter of 100-150 nm, and have a typical hexagonal wurtzite structure. The sensor performed with a sensitivity of 45 mV/pH and response time of about 6-7 s from pH = 4-12. UV irradiation can improve the Vref response as a result of the formation of a depletion region at the surface of ZnO nanomaterials. Due to its high specific surface area, the ZnO nano-array EGFET sensor showed a sensitivity of -0.395 mV/μM to the glucose detection in a concentration range between 20 and 100 μM. These EGFET glucose biosensors demonstrate a low detectable concentration (20 μM) with good linearity, therefore may be used to detect glucose in saliva and tears at much lower concentrations than that in blood.

  12. Modified porous silicon for electrochemical sensor of para-nitrophenol

    International Nuclear Information System (INIS)

    Belhousse, S.; Belhaneche-Bensemra, N.; Lasmi, K.; Mezaache, I.; Sedrati, T.; Sam, S.; Tighilt, F.-Z.; Gabouze, N.

    2014-01-01

    Highlights: • Hybrid device based on Porous silicon (PSi) and polythiophene (PTh) was prepared. • Three types of PSi/PTh hybrid structures were elaborated: PSi/PTh, oxide/PSi/PTh and Amino-propyltrimethoxysilane (APTMES)/oxide/PSi/PTh. • PTh was grafted on PSi using electrochemical polymerization. • The electrodetection of para-nitrophenol (p-NPh) was performed by cyclic voltammetry. • Oxide/PSi/PTh and APTMES/oxide/PSi/PTh, based electrochemical sensor showed a good response toward p-NPh. - Abstract: Hybrid structures based on polythiophene modified porous silicon was used for the electrochemical detection of para-nitrophenol, which is a toxic derivative of parathion insecticide and it is considered as a major toxic pollutant. The porous silicon was prepared by anodic etching in hydrofluodic acid. Polythiophene films were then grown by electropolymerisation of thiophene monomer on three different surfaces: hydrogenated PSi, oxidized PSi and amine-terminated PSi. The morphology of the obtained structures were observed by scanning electron microscopy and characterized by spectroscopy (FTIR). Cyclic voltammetry was used to study the electrochemical response of proposed structures to para-nitrophenol. The results show a high sensitivity of the sensor and a linearity of the electrochemical response in a large concentration interval ranging from 1.5 × 10 −8 M to the 3 × 10 −4 M

  13. Simple and label-free electrochemical impedance Amelogenin gene hybridization biosensing based on reduced graphene oxide.

    Science.gov (United States)

    Benvidi, Ali; Rajabzadeh, Nooshin; Mazloum-Ardakani, Mohammad; Heidari, Mohammad Mehdi; Mulchandani, Ashok

    2014-08-15

    The increasing desire for sensitive, easy, low-cost, and label free methods for the detection of DNA sequences has become a vital matter in biomedical research. For the first time a novel label-free biosensor for sensitive detection of Amelogenin gene (AMEL) using reduced graphene oxide modified glassy carbon electrode (GCE/RGO) has been developed. In this work, detection of DNA hybridization of the target and probe DNA was investigated by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The optimum conditions were found for the immobilization of probe on RGO surface and its hybridization with the target DNA. CV and EIS carried out in an aqueous solution containing [Fe(CN)6](3-/4-) redox pair have been used for the biosensor characterization. The biosensor has a wide linear range from 1.0×10(-20) to 1.0×10(-14)M with the lower detection limit of 3.2×10(-21)M. Moreover, the present electrochemical detection offers some unique advantages such as ultrahigh sensitivity, simplicity, and feasibility for apparatus miniaturization in analytical tests. The excellent performance of the biosensor is attributed to large surface-to-volume ratio and high conductivity of RGO, which enhances the probe absorption and promotes direct electron transfer between probe and the electrode surface. This electrochemical DNA sensor could be used for the detection of specific ssDNA sequence in real biological samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Impedance-Based Miniaturized Biosensor for Ultrasensitive and Fast Prostate-Specific Antigen Detection

    Directory of Open Access Journals (Sweden)

    Ganna Chornokur

    2011-01-01

    Full Text Available This paper reports the successful fabrication of an impedance-based miniaturized biosensor and its application for ultrasensitive Prostate-Specific Antigen (PSA detection in standard and real human plasma solution, spiked with different PSA concentrations. The sensor was fabricated using photolithographic techniques, while monoclonal antibodies specific to human PSA were used as primary capture antibodies. Electrochemical impedance spectroscopy (EIS was employed as a detection technique. The sensor exhibited a detection limit of 1 pg/ml for PSA with minimal nonspecific binding (NSB. This detection limit is an order of magnitude lower than commercial PSA ELISA assays available on the market. The sensor can be easily modified into an array for the detection of other biomolecules of interest, enabling accurate, ultrasensitive, and inexpensive point-of-care sensing technologies.

  15. Electrochemical surface plasmon resonance sensor based on two-electrode configuration

    International Nuclear Information System (INIS)

    Zhang, Bing; Dong, Wei; Wen, Yizhang; Pang, Kai; Wang, Xiaoping; Li, Yazhuo; Zhan, Shuyue

    2016-01-01

    To obtain detailed information about electrochemistry reactions, a two-electrode electrochemical surface plasmon resonance (EC-SPR) sensor has been proposed. We describe the theory of potential modulation for this novel sensor and determine the factors that can change the SPR resonance angle. The reference electrode in three-electrode configuration was eliminated, and comparing with several other electrode materials, activated carbon (AC) is employed as the suitable counter electrode for its potential stability. Just like three-electrode configuration, the simpler AC two-electrode system can also obtain detailed information about the electrochemical reactions. (paper)

  16. Electrochemical Sensor for Explosives Precursors’ Detection in Water

    Directory of Open Access Journals (Sweden)

    Cloé Desmet

    2017-03-01

    Full Text Available Although all countries are intensifying their efforts against terrorism and increasing their mutual cooperation, terrorist bombing is still one of the greatest threats to society. The discovery of hidden bomb factories is of primary importance in the prevention of terrorism activities. Criminals preparing improvised explosives (IE use chemical substances called precursors. These compounds are released in the air and in the waste water during IE production. Tracking sources of precursors by analyzing air or wastewater can then be an important clue for bomb factories’ localization. We are reporting here a new multiplex electrochemical sensor dedicated to the on-site simultaneous detection of three explosive precursors, potentially used for improvised explosive device preparation (hereafter referenced as B01, B08, and B15, for security disclosure reasons and to avoid being detrimental to the security of the counter-explosive EU action. The electrochemical sensors were designed to be disposable and to combine ease of use and portability in a screen-printed eight-electrochemical cell array format. The working electrodes were modified with different electrodeposited metals: gold, palladium, and platinum. These different coatings giving selectivity to the multi-sensor through a “fingerprint”-like signal subsequently analyzed using partial least squares-discriminant analysis (PLS-DA. Results are given regarding the detection of the three compounds in a real environment and in the presence of potentially interfering species.

  17. Ionic Liquid-Based Optical and Electrochemical Carbon Dioxide Sensors

    Science.gov (United States)

    Behera, Kamalakanta; Pandey, Shubha; Kadyan, Anu; Pandey, Siddharth

    2015-01-01

    Due to their unusual physicochemical properties (e.g., high thermal stability, low volatility, high intrinsic conductivity, wide electrochemical windows and good solvating ability), ionic liquids have shown immense application potential in many research areas. Applications of ionic liquid in developing various sensors, especially for the sensing of biomolecules, such as nucleic acids, proteins and enzymes, gas sensing and sensing of various important ions, among other chemosensing platforms, are currently being explored by researchers worldwide. The use of ionic liquids for the detection of carbon dioxide (CO2) gas is currently a major topic of research due to the associated importance of this gas with daily human life. This review focuses on the application of ionic liquids in optical and electrochemical CO2 sensors. The design, mechanism, sensitivity and detection limit of each type of sensor are highlighted in this review. PMID:26690155

  18. Ionic Liquid-Based Optical and Electrochemical Carbon Dioxide Sensors.

    Science.gov (United States)

    Behera, Kamalakanta; Pandey, Shubha; Kadyan, Anu; Pandey, Siddharth

    2015-12-04

    Due to their unusual physicochemical properties (e.g., high thermal stability, low volatility, high intrinsic conductivity, wide electrochemical windows and good solvating ability), ionic liquids have shown immense application potential in many research areas. Applications of ionic liquid in developing various sensors, especially for the sensing of biomolecules, such as nucleic acids, proteins and enzymes, gas sensing and sensing of various important ions, among other chemosensing platforms, are currently being explored by researchers worldwide. The use of ionic liquids for the detection of carbon dioxide (CO₂) gas is currently a major topic of research due to the associated importance of this gas with daily human life. This review focuses on the application of ionic liquids in optical and electrochemical CO₂ sensors. The design, mechanism, sensitivity and detection limit of each type of sensor are highlighted in this review.

  19. Ionic Liquid-Based Optical and Electrochemical Carbon Dioxide Sensors

    Directory of Open Access Journals (Sweden)

    Kamalakanta Behera

    2015-12-01

    Full Text Available Due to their unusual physicochemical properties (e.g., high thermal stability, low volatility, high intrinsic conductivity, wide electrochemical windows and good solvating ability, ionic liquids have shown immense application potential in many research areas. Applications of ionic liquid in developing various sensors, especially for the sensing of biomolecules, such as nucleic acids, proteins and enzymes, gas sensing and sensing of various important ions, among other chemosensing platforms, are currently being explored by researchers worldwide. The use of ionic liquids for the detection of carbon dioxide (CO2 gas is currently a major topic of research due to the associated importance of this gas with daily human life. This review focuses on the application of ionic liquids in optical and electrochemical CO2 sensors. The design, mechanism, sensitivity and detection limit of each type of sensor are highlighted in this review.

  20. A biosensor system using nickel ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Prachi, E-mail: prachi.singh@st.niituniversity.in; Rathore, Deepshikha, E-mail: deep.nano@gmail.com [NIIT University, Neemrana, NH-8, Alwar, Rajasthan, India, 301705 (India)

    2016-05-06

    NiFe{sub 2}O{sub 4} ferrite nanoparticles were synthesized by chemical co-precipitation method and the structural characteristics were investigated using X-ray diffraction technique, where single cubic phase formation of nanoparticles was confirmed. The average particle size of NiFe{sub 2}O{sub 4} was found to be 4.9 nm. Nanoscale magnetic materials are an important source of labels for biosensing due to their strong magnetic properties which are not found in biological systems. This property of the material was exploited and the fabrication of the NiFe{sub 2}O{sub 4} nanoparticle based biosensor was done in the form of a capacitor system, with NiFe{sub 2}O{sub 4} as the dielectric material. The biosensor system was tested towards different biological materials with the help of electrochemical workstation and the same was analysed through Cole-Cole plot of NiFe{sub 2}O{sub 4}. The performance of the sensor was determined based on its sensitivity, response time and recovery time.

  1. The strategies of DNA immobilization and hybridization detection mechanism in the construction of electrochemical DNA sensor: A review

    Directory of Open Access Journals (Sweden)

    Jahwarhar Izuan Abdul Rashid

    2017-11-01

    Full Text Available In recent years, electrochemical deoxyribonucleic acid (DNA sensor has recently emerged as promising alternative clinical diagnostic devices especially for infectious disease by exploiting DNA recognition events and converting them into an electrochemical signal. This is because the existing DNA diagnostic method possesses certain drawbacks such as time-consuming, expensive, laborious, low selectivity and sensitivity. DNA immobilization strategies and mechanism of electrochemical detection are two the most important aspects that should be considered before developing highly selective and sensitive electrochemical DNA sensor. Here, we focus on some recent strategies for DNA probes immobilization on the surface of electrochemical transducer such as adsorption, covalent bonding and Avidin/Streptavidin-Biotin interaction on the electrode surface for specific interaction with its complementary DNA target. A numerous approach for DNA hybridization detection based electrochemical technique that frequently used including direct DNA electrochemical detection and label based electrochemical (redox-active indicator, enzyme label and nanoparticles were also discussed in aiming to provide general guide for the design of electrochemical DNA sensor. We also discussed the challenges and suggestions to improve the application of electrochemical DNA sensor at point-care setting. Keywords: Electrochemical DNA sensor, DNA immobilization, DNA hybridization, Electrochemical mechanism

  2. Magnetically-refreshable receptor platform structures for reusable nano-biosensor chips

    International Nuclear Information System (INIS)

    Yoo, Haneul; Cho, Dong-guk; Park, Juhun; Nam, Ki Wan; Cho, Young Tak; Chen, Xing; Hong, Seunghun; Lee, Dong Jun; Park, Jae Yeol

    2016-01-01

    We developed a magnetically-refreshable receptor platform structure which can be integrated with quite versatile nano-biosensor structures to build reusable nano-biosensor chips. This structure allows one to easily remove used receptor molecules from a biosensor surface and reuse the biosensor for repeated sensing operations. Using this structure, we demonstrated reusable immunofluorescence biosensors. Significantly, since our method allows one to place receptor molecules very close to a nano-biosensor surface, it can be utilized to build reusable carbon nanotube transistor-based biosensors which require receptor molecules within a Debye length from the sensor surface. Furthermore, we also show that a single sensor chip can be utilized to detect two different target molecules simply by replacing receptor molecules using our method. Since this method does not rely on any chemical reaction to refresh sensor chips, it can be utilized for versatile biosensor structures and virtually-general receptor molecular species. (paper)

  3. An ultrasensitive electrochemical biosensor for glucose using CdTe-CdS core-shell quantum dot as ultrafast electron transfer relay between graphene-gold nanocomposite and gold nanoparticle

    International Nuclear Information System (INIS)

    Gu Zhiguo; Yang Shuping; Li Zaijun; Sun Xiulan; Wang Guangli; Fang Yinjun; Liu Junkang

    2011-01-01

    Graphical abstract: We first reported an ultrasensitive electrochemical biosensor for glucose using CdTe-CdS core-shell quantum dot as ultrafast electron transfer relay between graphene-gold nanocomposite and gold nanoparticle. Since promising their electrocatalytic synergy towards glucose was achieved, the biosensor showed high sensitivity (5762.8 nA nM -1 cm -2 ), low detection limit (S/N = 3) (3 x 10 -12 M) and fast response time (0.045 s). - Abstract: The paper reported an ultrasensitive electrochemical biosensor for glucose which was based on CdTe-CdS core-shell quantum dot as ultrafast electron transfer relay between graphene-gold nanocomposite and gold nanoparticle. Since efficient electron transfer between glucose oxidase and the electrode was achieved, the biosensor showed high sensitivity (5762.8 nA nM -1 cm -2 ), low detection limit (S/N = 3) (3 x 10 -12 M), fast response time (0.045 s), wide calibration range (from 1 x 10 -11 M to 1 x 10 -8 M) and good long-term stability (26 weeks). The apparent Michaelis-Menten constant of the glucose oxidase on the medium, 5.24 x 10 -6 mM, indicates excellent bioelectrocatalytic activity of the immobilized enzyme towards glucose oxidation. Moreover, the effects of omitting graphene-gold nanocomposite, CdTe-CdS core-shell quantum dot and gold nanoparticle were also investigated. The result showed sensitivity of the biosensor is 7.67-fold better if graphene-gold nanocomposite, CdTe-CdS core-shell quantum dot and gold nanoparticle are used. This could be ascribed to improvement of the conductivity between graphene nanosheets due to introduction of gold nanoparticles, ultrafast charge transfer from CdTe-CdS core-shell quantum dot to graphene nanosheets and gold nanoparticle due to unique electrochemical properties of the CdTe-CdS core-shell quantum dot and good biocompatibility of gold nanoparticle for glucose oxidase. The biosensor is of best sensitivity in all glucose biosensors based on graphene nanomaterials up to

  4. An ultrasensitive electrochemical biosensor for glucose using CdTe-CdS core-shell quantum dot as ultrafast electron transfer relay between graphene-gold nanocomposite and gold nanoparticle

    Energy Technology Data Exchange (ETDEWEB)

    Gu Zhiguo; Yang Shuping [School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122 (China); Li Zaijun, E-mail: zaijunli@263.net [School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122 (China); Sun Xiulan [School of Food Science and Technology, Jiangnan University, Wuxi 214122 (China); Wang Guangli [School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122 (China); Fang Yinjun [Zhejiang Zanyu Technology Co., Ltd., Hangzhou 310009 (China); Liu Junkang [School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122 (China)

    2011-10-30

    Graphical abstract: We first reported an ultrasensitive electrochemical biosensor for glucose using CdTe-CdS core-shell quantum dot as ultrafast electron transfer relay between graphene-gold nanocomposite and gold nanoparticle. Since promising their electrocatalytic synergy towards glucose was achieved, the biosensor showed high sensitivity (5762.8 nA nM{sup -1} cm{sup -2}), low detection limit (S/N = 3) (3 x 10{sup -12} M) and fast response time (0.045 s). - Abstract: The paper reported an ultrasensitive electrochemical biosensor for glucose which was based on CdTe-CdS core-shell quantum dot as ultrafast electron transfer relay between graphene-gold nanocomposite and gold nanoparticle. Since efficient electron transfer between glucose oxidase and the electrode was achieved, the biosensor showed high sensitivity (5762.8 nA nM{sup -1} cm{sup -2}), low detection limit (S/N = 3) (3 x 10{sup -12} M), fast response time (0.045 s), wide calibration range (from 1 x 10{sup -11} M to 1 x 10{sup -8} M) and good long-term stability (26 weeks). The apparent Michaelis-Menten constant of the glucose oxidase on the medium, 5.24 x 10{sup -6} mM, indicates excellent bioelectrocatalytic activity of the immobilized enzyme towards glucose oxidation. Moreover, the effects of omitting graphene-gold nanocomposite, CdTe-CdS core-shell quantum dot and gold nanoparticle were also investigated. The result showed sensitivity of the biosensor is 7.67-fold better if graphene-gold nanocomposite, CdTe-CdS core-shell quantum dot and gold nanoparticle are used. This could be ascribed to improvement of the conductivity between graphene nanosheets due to introduction of gold nanoparticles, ultrafast charge transfer from CdTe-CdS core-shell quantum dot to graphene nanosheets and gold nanoparticle due to unique electrochemical properties of the CdTe-CdS core-shell quantum dot and good biocompatibility of gold nanoparticle for glucose oxidase. The biosensor is of best sensitivity in all glucose

  5. A ratiometric electrochemical biosensor for sensitive detection of Hg2+ based on thymine-Hg2+-thymine structure.

    Science.gov (United States)

    Xiong, Erhu; Wu, Liang; Zhou, Jiawan; Yu, Peng; Zhang, Xiaohua; Chen, Jinhua

    2015-01-01

    In this paper, a simple, selective and reusable electrochemical biosensor for the sensitive detection of mercury ions (Hg(2+)) has been developed based on thymine (T)-rich stem-loop (hairpin) DNA probe and a dual-signaling electrochemical ratiometric strategy. The assay strategy includes both "signal-on" and "signal-off" elements. The thiolated methylene blue (MB)-modified T-rich hairpin DNA capture probe (MB-P) firstly self-assembled on the gold electrode surface via Au-S bond. In the presence of Hg(2+), the ferrocene (Fc)-labeled T-rich DNA probe (Fc-P) hybridized with MB-P via the Hg(2+)-mediated coordination of T-Hg(2+)-T base pairs. As a result, the hairpin MB-P was opened, the MB tags were away from the gold electrode surface and the Fc tags closed to the gold electrode surface. These conformation changes led to the decrease of the oxidation peak current of MB (IMB), accompanied with the increase of that of Fc (IFc). The logarithmic value of IFc/IMB is linear with the logarithm of Hg(2+) concentration in the range from 0.5 nM to 5000 nM, and the detection limit of 0.08 nM is much lower than 10nM (the US Environmental Protection Agency (EPA) limit of Hg(2+) in drinking water). What is more, the developed DNA-based electrochemical biosensor could be regenerated by adding cysteine and Mg(2+). This strategy provides a simple and rapid approach for the detection of Hg(2+), and has promising application in the detection of Hg(2+) in real environmental samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Analytical Parameters of an Amperometric Glucose Biosensor for Fast Analysis in Food Samples.

    Science.gov (United States)

    Artigues, Margalida; Abellà, Jordi; Colominas, Sergi

    2017-11-14

    Amperometric biosensors based on the use of glucose oxidase (GOx) are able to combine the robustness of electrochemical techniques with the specificity of biological recognition processes. However, very little information can be found in literature about the fundamental analytical parameters of these sensors. In this work, the analytical behavior of an amperometric biosensor based on the immobilization of GOx using a hydrogel (Chitosan) onto highly ordered titanium dioxide nanotube arrays (TiO₂NTAs) has been evaluated. The GOx-Chitosan/TiO₂NTAs biosensor showed a sensitivity of 5.46 μA·mM -1 with a linear range from 0.3 to 1.5 mM; its fundamental analytical parameters were studied using a commercial soft drink. The obtained results proved sufficient repeatability (RSD = 1.9%), reproducibility (RSD = 2.5%), accuracy (95-105% recovery), and robustness (RSD = 3.3%). Furthermore, no significant interferences from fructose, ascorbic acid and citric acid were obtained. In addition, the storage stability was further examined, after 30 days, the GOx-Chitosan/TiO₂NTAs biosensor retained 85% of its initial current response. Finally, the glucose content of different food samples was measured using the biosensor and compared with the respective HPLC value. In the worst scenario, a deviation smaller than 10% was obtained among the 20 samples evaluated.

  7. Online Monitoring of Electrochemical Degradation of Paracetamol through a Biomimetic Sensor

    OpenAIRE

    Mariana Calora Quintino de Oliveira; Marcos Roberto de Vasconcelos Lanza; José Luis Paz Jara; Maria Del Pilar Taboada Sotomayor

    2011-01-01

    This paper reports, for the first time, the online monitoring to the electrochemical degradation of the paracetamol using a biomimetic sensor coupled to a Flow Injection Analysis (FIA) system. The electrochemical degradation of the drug was carried out in aqueous medium using a flow-by reactor with a DSA anode. The process efficiency was monitored at real time by the biomimetic sensor constructed by modifying a glassy carbon electrode with a Nafion membrane doped with iron tetrapyridinoporphy...

  8. A sensitive DNA biosensor fabricated from gold nanoparticles, carbon nanotubes, and zinc oxide nanowires on a glassy carbon electrode

    International Nuclear Information System (INIS)

    Wang Jie; Li Shuping; Zhang Yuzhong

    2010-01-01

    We outline here the fabrication of a sensitive electrochemical DNA biosensor for the detection of sequence-specific target DNA. Zinc oxide nanowires (ZnONWs) were first immobilized on the surface of a glassy carbon electrode. Multi-walled carbon nanotubes (MWCNTs) with carboxyl groups were then dropped onto the surface of the ZnONWs. Gold nanoparticles (AuNPs) were subsequently introduced to the surface of the MWNTs/ZnONWs by electrochemical deposition. A single-stranded DNA probe with a thiol group at the end (HS-ssDNA) was covalently immobilized on the surface of the AuNPs by forming an Au-S bond. Scanning electron microscopy (SEM) and cyclic voltammetry (CV) were used to investigate the film assembly process. Differential pulse voltammetry (DPV) was used to monitor DNA hybridization by measuring the electrochemical signals of [Ru(NH 3 ) 6 ] 3+ bounding to double-stranded DNA (dsDNA). The incorporation of ZnONWs and MWCNTs in this sensor design significantly enhances the sensitivity and the selectivity. This DNA biosensor can detect the target DNA quantitatively in the range of 1.0 x 10 -13 to 1.0 x 10 -7 M, with a detection limit of 3.5 x 10 -14 M (S/N = 3). In addition, the DNA biosensor exhibits excellent selectivity, even for single-mismatched DNA detection.

  9. Concatenation of electrochemical grafting with chemical or electrochemical modification for preparing electrodes with specific surface functionality

    International Nuclear Information System (INIS)

    Verma, Pallavi; Maire, Pascal; Novak, Petr

    2011-01-01

    Surface modified electrodes are used in electro-analysis, electro-catalysis, sensors, biomedical applications, etc. and could also be used in batteries. The properties of modified electrodes are determined by the surface functionality. Therefore, the steps involved in the surface modification of the electrodes to obtain specific functionality are of prime importance. We illustrate here bridging of two routes of surface modifications namely electrochemical grafting, and chemical or electrochemical reduction. First, by electrochemical grafting an organic moiety is covalently immobilized on the surface. Then, either by chemical or by electrochemical route the terminal functional group of the grafted moiety is transformed. Using the former route we prepared lithium alkyl carbonate (-O(CH 2 ) 3 OCO 2 Li) modified carbon with potential applications in batteries, and employing the latter we prepared phenyl hydroxyl amine (-C 6 H 4 NHOH) modified carbon which may find application in biosensors. Benzyl alcohol (-C 6 H 4 CH 2 OH) modified carbon was prepared by both chemical as well as electrochemical route. We report combinations of conjugating the two steps of surface modifications and show how the optimal route of terminal functional group modification depends on the chemical nature of the moiety attached to the surface in the electrochemical grafting step.

  10. Concatenation of electrochemical grafting with chemical or electrochemical modification for preparing electrodes with specific surface functionality

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Pallavi; Maire, Pascal [Paul Scherrer Institut, Electrochemistry Laboratory, Section Electrochemical Energy Storage, CH-5232 Villigen PSI (Switzerland); Novak, Petr, E-mail: petr.novak@psi.c [Paul Scherrer Institut, Electrochemistry Laboratory, Section Electrochemical Energy Storage, CH-5232 Villigen PSI (Switzerland)

    2011-04-01

    Surface modified electrodes are used in electro-analysis, electro-catalysis, sensors, biomedical applications, etc. and could also be used in batteries. The properties of modified electrodes are determined by the surface functionality. Therefore, the steps involved in the surface modification of the electrodes to obtain specific functionality are of prime importance. We illustrate here bridging of two routes of surface modifications namely electrochemical grafting, and chemical or electrochemical reduction. First, by electrochemical grafting an organic moiety is covalently immobilized on the surface. Then, either by chemical or by electrochemical route the terminal functional group of the grafted moiety is transformed. Using the former route we prepared lithium alkyl carbonate (-O(CH{sub 2}){sub 3}OCO{sub 2}Li) modified carbon with potential applications in batteries, and employing the latter we prepared phenyl hydroxyl amine (-C{sub 6}H{sub 4}NHOH) modified carbon which may find application in biosensors. Benzyl alcohol (-C{sub 6}H{sub 4}CH{sub 2}OH) modified carbon was prepared by both chemical as well as electrochemical route. We report combinations of conjugating the two steps of surface modifications and show how the optimal route of terminal functional group modification depends on the chemical nature of the moiety attached to the surface in the electrochemical grafting step.

  11. New Strategy for the Cleaning of Paper Artworks: A Smart Combination of Gels and Biosensors

    Directory of Open Access Journals (Sweden)

    Laura Micheli

    2014-01-01

    Full Text Available In this work an outlook on the design and application, in the cultural heritage field, of new tools for diagnostic and cleaning use, based on biocompatible hydrogels and electrochemical sensors, is reported. The use of hydrogels is intriguing because it does not require liquid treatment that could induce damage on artworks, while electrochemical biosensors not only are easy to prepare, but also can be selective for a specific compound and therefore are suitable for monitoring the cleaning process. In the field of restoration of paper artworks, more efforts have to be done in order to know how to perform the best way for an effective restoration. Rigid Gellan gel, made up of Gellan gum and calcium acetate, was proposed as a paper cleaning treatment, and selective biosensors for substances to be removed from this gel have been obtained by choosing the appropriate enzymes to be immobilized. Using this approach, it is possible to know when the cleanup process will be completed, avoiding lengthy and sometimes unnecessary cleaning material applications.

  12. Clinical validation of integrated nucleic acid and protein detection on an electrochemical biosensor array for urinary tract infection diagnosis.

    Directory of Open Access Journals (Sweden)

    Ruchika Mohan

    Full Text Available BACKGROUND: Urinary tract infection (UTI is a common infection that poses a substantial healthcare burden, yet its definitive diagnosis can be challenging. There is a need for a rapid, sensitive and reliable analytical method that could allow early detection of UTI and reduce unnecessary antibiotics. Pathogen identification along with quantitative detection of lactoferrin, a measure of pyuria, may provide useful information towards the overall diagnosis of UTI. Here, we report an integrated biosensor platform capable of simultaneous pathogen identification and detection of urinary biomarker that could aid the effectiveness of the treatment and clinical management. METHODOLOGY/PRINCIPAL FINDINGS: The integrated pathogen 16S rRNA and host lactoferrin detection using the biosensor array was performed on 113 clinical urine samples collected from patients at risk for complicated UTI. For pathogen detection, the biosensor used sandwich hybridization of capture and detector oligonucleotides to the target analyte, bacterial 16S rRNA. For detection of the protein biomarker, the biosensor used an analogous electrochemical sandwich assay based on capture and detector antibodies. For this assay, a set of oligonucleotide probes optimized for hybridization at 37°C to facilitate integration with the immunoassay was developed. This probe set targeted common uropathogens including E. coli, P. mirabilis, P. aeruginosa and Enterococcus spp. as well as less common uropathogens including Serratia, Providencia, Morganella and Staphylococcus spp. The biosensor assay for pathogen detection had a specificity of 97% and a sensitivity of 89%. A significant correlation was found between LTF concentration measured by the biosensor and WBC and leukocyte esterase (p<0.001 for both. CONCLUSION/SIGNIFICANCE: We successfully demonstrate simultaneous detection of nucleic acid and host immune marker on a single biosensor array in clinical samples. This platform can be used for

  13. Nano-yarn carbon nanotube fiber based enzymatic glucose biosensor

    International Nuclear Information System (INIS)

    Zhu Zhigang; Burugapalli, Krishna; Moussy, Francis; Song, Wenhui; Li Yali; Zhong Xiaohua

    2010-01-01

    A novel brush-like electrode based on carbon nanotube (CNT) nano-yarn fiber has been designed for electrochemical biosensor applications and its efficacy as an enzymatic glucose biosensor demonstrated. The CNT nano-yarn fiber was spun directly from a chemical-vapor-deposition (CVD) gas flow reaction using a mixture of ethanol and acetone as the carbon source and an iron nano-catalyst. The fiber, 28 μm in diameter, was made of bundles of double walled CNTs (DWNTs) concentrically compacted into multiple layers forming a nano-porous network structure. Cyclic voltammetry study revealed a superior electrocatalytic activity for CNT fiber compared to the traditional Pt-Ir coil electrode. The electrode end tip of the CNT fiber was freeze-fractured to obtain a unique brush-like nano-structure resembling a scale-down electrical 'flex', where glucose oxidase (GOx) enzyme was immobilized using glutaraldehyde crosslinking in the presence of bovine serum albumin (BSA). An outer epoxy-polyurethane (EPU) layer was used as semi-permeable membrane. The sensor function was tested against a standard reference electrode. The sensitivities, linear detection range and linearity for detecting glucose for the miniature CNT fiber electrode were better than that reported for a Pt-Ir coil electrode. Thermal annealing of the CNT fiber at 250 deg. C for 30 min prior to fabrication of the sensor resulted in a 7.5 fold increase in glucose sensitivity. The as-spun CNT fiber based glucose biosensor was shown to be stable for up to 70 days. In addition, gold coating of the electrode connecting end of the CNT fiber resulted in extending the glucose detection limit to 25 μM. To conclude, superior efficiency of CNT fiber for glucose biosensing was demonstrated compared to a traditional Pt-Ir sensor.

  14. Nano-yarn carbon nanotube fiber based enzymatic glucose biosensor

    Science.gov (United States)

    Zhu, Zhigang; Song, Wenhui; Burugapalli, Krishna; Moussy, Francis; Li, Ya-Li; Zhong, Xiao-Hua

    2010-04-01

    A novel brush-like electrode based on carbon nanotube (CNT) nano-yarn fiber has been designed for electrochemical biosensor applications and its efficacy as an enzymatic glucose biosensor demonstrated. The CNT nano-yarn fiber was spun directly from a chemical-vapor-deposition (CVD) gas flow reaction using a mixture of ethanol and acetone as the carbon source and an iron nano-catalyst. The fiber, 28 µm in diameter, was made of bundles of double walled CNTs (DWNTs) concentrically compacted into multiple layers forming a nano-porous network structure. Cyclic voltammetry study revealed a superior electrocatalytic activity for CNT fiber compared to the traditional Pt-Ir coil electrode. The electrode end tip of the CNT fiber was freeze-fractured to obtain a unique brush-like nano-structure resembling a scale-down electrical 'flex', where glucose oxidase (GOx) enzyme was immobilized using glutaraldehyde crosslinking in the presence of bovine serum albumin (BSA). An outer epoxy-polyurethane (EPU) layer was used as semi-permeable membrane. The sensor function was tested against a standard reference electrode. The sensitivities, linear detection range and linearity for detecting glucose for the miniature CNT fiber electrode were better than that reported for a Pt-Ir coil electrode. Thermal annealing of the CNT fiber at 250 °C for 30 min prior to fabrication of the sensor resulted in a 7.5 fold increase in glucose sensitivity. The as-spun CNT fiber based glucose biosensor was shown to be stable for up to 70 days. In addition, gold coating of the electrode connecting end of the CNT fiber resulted in extending the glucose detection limit to 25 µM. To conclude, superior efficiency of CNT fiber for glucose biosensing was demonstrated compared to a traditional Pt-Ir sensor.

  15. Construction and Characterization of a Chitosan-Immobilized-Enzyme and β-Cyclodextrin-Included-Ferrocene-Based Electrochemical Biosensor for H2O2 Detection

    Directory of Open Access Journals (Sweden)

    Wenbo Dong

    2017-07-01

    Full Text Available An electrochemical detection biosensor was prepared with the chitosan-immobilized-enzyme (CTS-CAT and β-cyclodextrin-included-ferrocene (β-CD-FE complex for the determination of H2O2. Ferrocene (FE was included in β-cyclodextrin (β-CD to increase its stability. The structure of the β-CD-FE was characterized. The inclusion amount, inclusion rate, and electrochemical properties of inclusion complexes were determined to optimize the reaction conditions for the inclusion. CTS-CAT was prepared by a step-by-step immobilization method, which overcame the disadvantages of the conventional preparation methods. The immobilization conditions were optimized to obtain the desired enzyme activity. CTS-CAT/β-CD-FE composite electrodes were prepared by compositing the CTS-CAT with the β-CD-FE complex on a glassy carbon electrode and used for the electrochemical detection of H2O2. It was found that the CTS-CAT could produce a strong reduction peak current in response to H2O2 and the β-CD-FE could amplify the current signal. The peak current exhibited a linear relationship with the H2O2 concentration in the range of 1.0 × 10−7–6.0 × 10−3 mol/L. Our work provided a novel method for the construction of electrochemical biosensors with a fast response, good stability, high sensitivity, and a wide linear response range based on the composite of chitosan and cyclodextrin.

  16. Modified porous silicon for electrochemical sensor of para-nitrophenol

    Energy Technology Data Exchange (ETDEWEB)

    Belhousse, S., E-mail: all_samia_b@yahoo.fr [Centre de Recherche en Technologie des Semi-conducteurs pour l’Energétique (CRTSE), Division Thin Films-Surface and Interface, 2, Bd. Frantz Fanon, B.P. 140, Alger-7 merveilles, Algiers (Algeria); Belhaneche-Bensemra, N., E-mail: nbelhaneche@yahoo.fr [Ecole Nationale Polytechnique (ENP), 10, Avenue Hassen Badi, B.P. 182, 16200, El Harrach, Algiers (Algeria); Lasmi, K., E-mail: kahinalasmi@yahoo.fr [Centre de Recherche en Technologie des Semi-conducteurs pour l’Energétique (CRTSE), Division Thin Films-Surface and Interface, 2, Bd. Frantz Fanon, B.P. 140, Alger-7 merveilles, Algiers (Algeria); Mezaache, I., E-mail: lyeso_44@hotmail.fr [Ecole Nationale Polytechnique (ENP), 10, Avenue Hassen Badi, B.P. 182, 16200, El Harrach, Algiers (Algeria); Sedrati, T., E-mail: tarek_1990m@hotmail.fr [Ecole Nationale Polytechnique (ENP), 10, Avenue Hassen Badi, B.P. 182, 16200, El Harrach, Algiers (Algeria); Sam, S., E-mail: Sabrina.sam@polytechnique.edu [Centre de Recherche en Technologie des Semi-conducteurs pour l’Energétique (CRTSE), Division Thin Films-Surface and Interface, 2, Bd. Frantz Fanon, B.P. 140, Alger-7 merveilles, Algiers (Algeria); Tighilt, F.-Z., E-mail: mli_zola@yahoo.fr [Centre de Recherche en Technologie des Semi-conducteurs pour l’Energétique (CRTSE), Division Thin Films-Surface and Interface, 2, Bd. Frantz Fanon, B.P. 140, Alger-7 merveilles, Algiers (Algeria); Gabouze, N., E-mail: ngabouze@yahoo.fr [Centre de Recherche en Technologie des Semi-conducteurs pour l’Energétique (CRTSE), Division Thin Films-Surface and Interface, 2, Bd. Frantz Fanon, B.P. 140, Alger-7 merveilles, Algiers (Algeria)

    2014-11-15

    Highlights: • Hybrid device based on Porous silicon (PSi) and polythiophene (PTh) was prepared. • Three types of PSi/PTh hybrid structures were elaborated: PSi/PTh, oxide/PSi/PTh and Amino-propyltrimethoxysilane (APTMES)/oxide/PSi/PTh. • PTh was grafted on PSi using electrochemical polymerization. • The electrodetection of para-nitrophenol (p-NPh) was performed by cyclic voltammetry. • Oxide/PSi/PTh and APTMES/oxide/PSi/PTh, based electrochemical sensor showed a good response toward p-NPh. - Abstract: Hybrid structures based on polythiophene modified porous silicon was used for the electrochemical detection of para-nitrophenol, which is a toxic derivative of parathion insecticide and it is considered as a major toxic pollutant. The porous silicon was prepared by anodic etching in hydrofluodic acid. Polythiophene films were then grown by electropolymerisation of thiophene monomer on three different surfaces: hydrogenated PSi, oxidized PSi and amine-terminated PSi. The morphology of the obtained structures were observed by scanning electron microscopy and characterized by spectroscopy (FTIR). Cyclic voltammetry was used to study the electrochemical response of proposed structures to para-nitrophenol. The results show a high sensitivity of the sensor and a linearity of the electrochemical response in a large concentration interval ranging from 1.5 × 10{sup −8} M to the 3 × 10{sup −4}M.

  17. Polypyrrole Composite Film for Highly Sensitive and Selective Electrochemical Determination Sensors

    International Nuclear Information System (INIS)

    Zheng, Xiangli; Tian, Dong; Duan, Shuo; Wei, Maochao; Liu, Shan; Zhou, Changli; Li, Qing; Wu, Gang

    2014-01-01

    In this paper, polypyrrole (PPy) and benz[a]anthracene-7,12-dione (BaD) were electro-polymerized onto a pyrolytic graphite electrode (PGE), constructing a novel BaD/PPy/PGE platform for electrochemical sensoring. The morphology and electrochemical properties of the fabricated BaD/PPy/PGE were characterized by scanning electron microscopy, cyclic voltammetry and electrochemical impedance spectroscopy. Furthermore, the electrochemical behavior of benzo[k]fluoranthene (BkF) at the BaD/PPy/PGE was investigated. Due to the specific interactions between BkF and BaD, a wide linear range of BkF detection from 1.0 × 10 −12 to 1.0 × 10 −9 M with good linearity (R 2 = 0.9962) and a low detection limit (1.0 × 10 −13 M, S/N = 3) were demonstrated. Importantly, other similar aromatics which had one ring or more than two rings, such as benzo[a]anthracene, benzo[a]pyrene, pyrene, benzo[ghi]peryle, anthracene, phenanthrene, naphthalene and parachlorophenol, showed insignificant interference on BkF detection. Consequently, this novel BaD/PPy/PGE with excellent stability and selectivity holds promise as an effective BkF electrochemical sensor in aqueous solution. As an example for its practical application, the newly developed sensor was applied to quantitative determination of BkF in waste water samples obtained from a coking plant with satisfactory sensitivity, selectivity, and reversibility

  18. Enzyme-Free Electrochemical Glucose Sensors Prepared by Dealloying Pd-Ni-P Metallic Glasses

    Directory of Open Access Journals (Sweden)

    Yuqiao Zeng

    2014-01-01

    Full Text Available We report the formation of enzyme-free electrochemical glucose sensors by electrochemical dealloying palladium-containing Pd-Ni-P metallic glasses. When metallic glasses with different Pd contents are used as the dealloying precursor alloys, palladium-based nanoporous metals with different ligament and pore sizes can be obtained. The chemical compositions of the nanoporous metals also vary according to the different precursor compositions. All the as-obtained nanoporous metals exhibit electrochemical catalytic activity towards the oxidation of d-glucose, indicating that the nanoporous metals prepared by dealloying the Pd-Ni-P metallic glasses are promising materials for enzyme-free electrochemical glucose sensor.

  19. Highly sensitive electrochemical biosensor for bisphenol A detection based on a diazonium-functionalized boron-doped diamond electrode modified with a multi-walled carbon nanotube-tyrosinase hybrid film.

    Science.gov (United States)

    Zehani, Nedjla; Fortgang, Philippe; Saddek Lachgar, Mohamed; Baraket, Abdoullatif; Arab, Madjid; Dzyadevych, Sergei V; Kherrat, Rochdi; Jaffrezic-Renault, Nicole

    2015-12-15

    A highly sensitive electrochemical biosensor for the detection of Bisphenol A (BPA) in water has been developed by immobilizing tyrosinase onto a diazonium-functionalized boron doped diamond electrode (BDD) modified with multi-walled carbon nanotubes (MWCNTs). The fabricated biosensor exhibits excellent electroactivity towards o-quinone, a product of this enzymatic reaction of BPA oxidation catalyzed by tyrosinase. The developed BPA biosensor displays a large linear range from 0.01 nM to 100 nM, with a detection limit (LOD) of 10 pM. The feasibility of the proposed biosensor has been demonstrated on BPA spiked water river samples. Therefore, it could be a promising and reliable analytical tool for on-site monitoring of BPA in waste water. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Biosensor Based on Tyrosinase Immobilized on Graphene-Decorated Gold Nanoparticle/Chitosan for Phenolic Detection in Aqueous

    Directory of Open Access Journals (Sweden)

    Fuzi Mohamed Fartas

    2017-05-01

    Full Text Available In this research work, electrochemical biosensor was fabricated based on immobilization of tyrosinase onto graphene-decorated gold nanoparticle/chitosan (Gr-Au-Chit/Tyr nanocomposite-modified screen-printed carbon electrode (SPCE for the detection of phenolic compounds. The nanocomposite film was constructed via solution casting method. The electrocatalytic activity of the proposed biosensor for phenol detection was studied using differential pulse voltammetry (DPV and cyclic voltammetry (CV. Experimental parameters such as pH buffer, enzyme concentration, ratio of Gr-Au-Chit, accumulation time and potential were optimized. The biosensor shows linearity towards phenol in the concentration range from 0.05 to 15 μM with sensitivity of 0.624 μA/μM and the limit of detection (LOD of 0.016 μM (S/N = 3. The proposed sensor also depicts good reproducibility, selectivity and stability for at least one month. The biosensor was compared with high-performance liquid chromatography (HPLC method for the detection of phenol spiked in real water samples and the result is in good agreement and comparable.

  1. Application of ionic liquids in electrochemical sensing systems.

    Science.gov (United States)

    Shiddiky, Muhammad J A; Torriero, Angel A J

    2011-01-15

    Since 1992, when the room temperature ionic liquids (ILs) based on the 1-alkyl-3-methylimidazolium cation were reported to provide an attractive combination of an electrochemical solvent and electrolyte, ILs have been widely used in electrodeposition, electrosynthesis, electrocatalysis, electrochemical capacitor, and lithium batteries. However, it has only been in the last few years that electrochemical biosensors based on carbon ionic liquid electrodes (CILEs) and IL-modified macrodisk electrodes have been reported. However, there are still a lot of challenges in achieving IL-based sensitive, selective, and reproducible biosensors for high speed analysis of biological and environmental compounds of interest. This review discusses the principles of operation of electrochemical biosensors based on CILEs and IL/composite-modified macrodisk electrodes. Subsequently, recent developments and major strategies for enhancing sensing performance are discussed. Key challenges and opportunities of IL-based biosensors to further development and use are considered. Emphasis is given to direct electron-transfer reaction and electrocatalysis of hemeproteins and enzyme-modified composite electrodes. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Redox-flexible NADH oxidase biosensor: A platform for various dehydrogenase bioassays and biosensors

    International Nuclear Information System (INIS)

    Serban, Simona; El Murr, Nabil

    2006-01-01

    A generic amperometric bioassay based on the enzymatic oxidation catalysed by the stable NADH oxidase (NAox) from Thermus thermophilus has been developed for NADH measurements. The NAox uses O 2 as its natural electron acceptor and produces H 2 O 2 in a two-electron process. Electrochemical and spectrophotometric experiments showed that the NAox used in this work, presents a very good activity towards its substrate and, in contrary to previously mentioned NADH oxidases, does not require the addition of any exogenous flavin cofactor neither to promote nor to maintain its activity. In addition, the NAox used also works with artificial electron acceptors like ferrocene derivatives. O 2 was successfully replaced by redox mediators such as hydroxymethyl ferrocene (FcCH 2 OH) for the regeneration of the active enzyme. Combining the NAox with the mediator and the horseradish peroxidase we developed an original, high sensitive 'redox-flexible' NADH amperometric bioassay working in a large window of applied potentials in both oxidation and reduction modes. The biosensor has a continuous and complementary linearity range permitting to measure NADH concentrations starting from 5 x 10 -6 M in reduction until 2 x 10 3 M in oxidation. This redox-flexibility allows choosing the applied potential in order to avoid electrochemical interferences. The association of the 'redox-flexible' concept with NADH dependent enzymes opens a novel strategy for dehydrogenases based bioassays and biosensors. The great number of dehydrogenases available makes the concept applicable for numerous substrates to analyse. Moreover it allows the development of a wide range of biosensors on the basis of a generic platform. This gives several advantages over the previous manufacturing techniques and offers a general and flexible scheme for the fabrication of biosensors presenting high sensitivities, wide calibration ranges and less affected by electrochemical interferences

  3. Electrochemical sensors based on stationary electrodes and immobilized DNA or its fragments and the assessment of their analytical potentials

    Czech Academy of Sciences Publication Activity Database

    Babkina, S. S.; Paleček, Emil; Jelen, František; Fojta, Miroslav

    2005-01-01

    Roč. 60, č. 6 (2005), s. 567-572 ISSN 1061-9348. [VII All-Russia Conference (with international participation) on Electrochemical Methods of Analysis. Ufa, 23.05.2004-27.05.2004] R&D Projects: GA MPO(CZ) 1H-PK/42 Institutional research plan: CEZ:AV0Z50040507 Keywords : electrochemical biosensor * DNA imobilization * nitrocellulose matrix Subject RIV: BO - Biophysics Impact factor: 0.496, year: 2005

  4. Electrodeposition of flower-like platinum on electrophoretically grown nitrogen-doped graphene as a highly sensitive electrochemical non-enzymatic biosensor for hydrogen peroxide detection

    International Nuclear Information System (INIS)

    Tajabadi, M.T.; Sookhakian, M.; Zalnezhad, E.; Yoon, G.H.; Hamouda, A.M.S.; Azarang, Majid; Basirun, W.J.; Alias, Y.

    2016-01-01

    Highlights: • Nitrogen doped graphene with different thickness by electrophoretic deposition. • The conductivity of N-graphene layer depends on the tickness. • Support of platinum shows efficient electrocatalytic performance for biosensor. • CV curves and amperometric responses improved and optimized in the presence of N-graphene. - Abstract: An efficient non-enzymatic biosensor electrode consisting of nitrogen-doped graphene (N-graphene) and platinum nanoflower (Pt NF) with different N-graphene loadings were fabricated on indium tin oxide (ITO) glass using a simple layer-by-layer electrophoretic and electrochemical sequential deposition approach. N-graphene was synthesized by annealing graphene oxide with urea at 900 °C. The structure and morphology of the as-fabricated non-enzymatic biosensor electrodes were determined using X-ray diffraction, field emission electron microscopy, transmission electron microscopy, Raman and X-ray photoelectron spectra. The as-fabricated Pt NF-N-graphene-modified ITO electrodes with different N-graphene loadings were utilized as a non-enzymatic biosensor electrode for the detection of hydrogen peroxide (H_2O_2). The behaviors of the hybrid electrodes towards H_2O_2 reduction were assessed using chronoamperometry, cyclic voltammetry and electrochemical impedance spectroscopy analysis. The Pt NF-N-graphene-modified ITO electrode with a 0.05 mg ml"−"1 N-graphene loading exhibited the lowest detection limit, fastest amperometric sensing, a wide linear response range, excellent stability and reproducibility for the non-enzymatic H_2O_2 detection, due to the synergistic effect between the electrocatalytic activity of the Pt NF and the high conductivity and large surface area of N-graphene.

  5. Electrochemical Sensor Coating Based on Electrophoretic Deposition of Au-Doped Self-Assembled Nanoparticles.

    Science.gov (United States)

    Zhang, Rongli; Zhu, Ye; Huang, Jing; Xu, Sheng; Luo, Jing; Liu, Xiaoya

    2018-02-14

    The electrophoretic deposition (EPD) of self-assembled nanoparticles (NPs) on the surface of an electrode is a new strategy for preparing sensor coating. By simply changing the deposition conditions, the electrochemical response for an analyte of deposited NPs-based coating can be controlled. This advantage can decrease the difference between different batches of sensor coating and ensure the reproducibility of each sensor. This work investigated the effects of deposition conditions (including deposition voltage, pH value of suspension, and deposition time) on the structure and the electrochemical response for l-tryptophan of sensor coating formed from Au-doped poly(sodium γ-glutamate) with pendant dopamine units nanohybrids (Au/γ-PGA-DA NBs) via the EPD method. The structure and thickness of the deposited sensor coating were measured by atomic force microscopy, which demonstrated that the structure and thickness of coating can be affected by the deposition voltage, the pH value of the suspension, and the deposition time. The responsive current for l-tryptophan of the deposited sensor coating were measured by differential pulse voltammetry, which showed that the responsive current value was affected by the structure and thickness of the deposited coating. These arguments suggested that a rich design-space for tuning the electrochemical response for analyte and a source of variability in the structure of sensor coating can be provided by the deposition conditions. When Au/γ-PGA-DA NBs were deposited on the electrode surface and formed a continuous coating with particle morphology and thinner thickness, the deposited sensor coating exhibited optimal electrochemical response for l-tryptophan.

  6. Rapid and Sensitive Detection of Bacteria Response to Antibiotics Using Nanoporous Membrane and Graphene Quantum Dot (GQDs-Based Electrochemical Biosensors

    Directory of Open Access Journals (Sweden)

    Weiwei Ye

    2017-05-01

    Full Text Available The wide abuse of antibiotics has accelerated bacterial multiresistance, which means there is a need to develop tools for rapid detection and characterization of bacterial response to antibiotics in the management of infections. In the study, an electrochemical biosensor based on nanoporous alumina membrane and graphene quantum dots (GQDs was developed for bacterial response to antibiotics detection. Anti-Salmonella antibody was conjugated with amino-modified GQDs by glutaraldehyde and immobilized on silanized nanoporous alumina membranes for Salmonella bacteria capture. The impedance signals across nanoporous membranes could monitor the capture of bacteria on nanoporous membranes as well as bacterial response to antibiotics. This nanoporous membrane and GQD-based electrochemical biosensor achieved rapid detection of bacterial response to antibiotics within 30 min, and the detection limit could reach the pM level. It was capable of investigating the response of bacteria exposed to antibiotics much more rapidly and conveniently than traditional tools. The capability of studying the dynamic effects of antibiotics on bacteria has potential applications in the field of monitoring disease therapy, detecting comprehensive food safety hazards and even life in hostile environment.

  7. Monitoring of volatile fatty acids during anaerobic digestion using a microbial electrochemical sensor

    DEFF Research Database (Denmark)

    Jin, Xiangdan; Angelidaki, Irini; Zhang, Yifeng

    2016-01-01

    Volatile fatty acid (VFA) concentration is known as an important indicator to control and optimize anaerobic digestion (AD) process. In this study, an innovative VFA biosensor was developed based on the principle of a microbial desalination cell. The bulk substrate was dosed into the middle chamber...... and reliable measurement of VFA levels during AD and other anaerobic processes. The outcomes will expand the application of bio-electrochemical system application....

  8. [Amperometric biosensor for ethanol analysis in wines and grape must during wine fermentation].

    Science.gov (United States)

    Shkotova, L V; Slast'ia, E A; Zhyliakova, T A; Soldatkin, O P; Schuhmann, W; Dziadevych, S V

    2005-01-01

    The amperometric biosensor for ethanol determination based on alcohol oxidase immobilised by the method of electrochemical polymerization has been developed. The industrial screen-printed platinum electrodes were used as transducers for creation of amperometric alcohol biosensor. Optimal conditions for electrochemical deposition of an active membrane with alcohol oxidase has been determined. Biosensors are characterised by good reproducibility and operational stability with minimal detection limit of ethanol 8 x 10(-5) M. The good correlation of results for ethanol detection in wine and during wine fermentation by using the developed amperometric biosensor with the data obtained by the standard methods was shown (r = 0.995).

  9. An electrochemical sensor for monitoring oxygen or hydrogen in water

    International Nuclear Information System (INIS)

    Leitai Yang; Morris, D.R.; Lister, D.H.

    1997-01-01

    Preliminary studies have been done on a simple electrochemical sensor which shows promise as a cheap, robust instrument for measuring dissolved oxygen or hydrogen in water. The sensor is based upon the solid-state electrolyte ''Nafion'' (trade name of perfluorinated sulphonic acid, manufactured by DuPont Inc.). The Nafion was dissolved in a mixture of aliphatic alcohols, made into a slurry with platinum black, and applied to a ∼1 cm-square electrode made of stainless steel gauze. The potential of the electrode was measured relative to a standard calomel electrode (SCE) in acid solutions at room temperature through which mixtures of oxygen and nitrogen or hydrogen and nitrogen were bubbled. The sensor was responsive to the equilibrating gas with good reproducibility. A similar sensor without the Nafion was not at all sensitive to changes in oxygen concentration. The voltage response of the sensor showed non-Nernstian behaviour, which suggests that the electrochemical reactions at the electrode surface are complex. Further testing of the sensor is required to verify its sensitivity and responsiveness in typical reactor coolant chemistries and to demonstrate its durability over a range of temperatures. (author). 4 refs, 4 figs, 1 tab

  10. An electrochemical sensor for monitoring oxygen or hydrogen in water

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Leitai; Morris, D R; Lister, D H [University of New Brunswick, Fredericton (Canada). Dept. of Chemical Engineering

    1997-02-01

    Preliminary studies have been done on a simple electrochemical sensor which shows promise as a cheap, robust instrument for measuring dissolved oxygen or hydrogen in water. The sensor is based upon the solid-state electrolyte ``Nafion`` (trade name of perfluorinated sulphonic acid, manufactured by DuPont Inc.). The Nafion was dissolved in a mixture of aliphatic alcohols, made into a slurry with platinum black, and applied to a {approx}1 cm-square electrode made of stainless steel gauze. The potential of the electrode was measured relative to a standard calomel electrode (SCE) in acid solutions at room temperature through which mixtures of oxygen and nitrogen or hydrogen and nitrogen were bubbled. The sensor was responsive to the equilibrating gas with good reproducibility. A similar sensor without the Nafion was not at all sensitive to changes in oxygen concentration. The voltage response of the sensor showed non-Nernstian behaviour, which suggests that the electrochemical reactions at the electrode surface are complex. Further testing of the sensor is required to verify its sensitivity and responsiveness in typical reactor coolant chemistries and to demonstrate its durability over a range of temperatures. (author). 4 refs, 4 figs, 1 tab.

  11. Current Status of HbA1c Biosensors

    Science.gov (United States)

    Lin, Hua; Yi, Jun

    2017-01-01

    Glycated hemoglobin (HbA1c) is formed via non-enzymatic glycosylation reactions at the α–amino group of βVal1 residues in the tetrameric Hb, and it can reflect the ambient glycemic level over the past two to three months. A variety of HbA1c detection methods, including chromatography, immunoassay, enzymatic measurement, electrochemical sensor and capillary electrophoresis have been developed and used in research laboratories and in clinics as well. In this review, we summarize the current status of HbA1c biosensors based on the recognition of the sugar moiety on the protein and also their applications in the whole blood sample measurements. PMID:28777351

  12. Flexible Molybdenum Electrodes towards Designing Affinity Based Protein Biosensors.

    Science.gov (United States)

    Kamakoti, Vikramshankar; Panneer Selvam, Anjan; Radha Shanmugam, Nandhinee; Muthukumar, Sriram; Prasad, Shalini

    2016-07-18

    Molybdenum electrode based flexible biosensor on porous polyamide substrates has been fabricated and tested for its functionality as a protein affinity based biosensor. The biosensor performance was evaluated using a key cardiac biomarker; cardiac Troponin-I (cTnI). Molybdenum is a transition metal and demonstrates electrochemical behavior upon interaction with an electrolyte. We have leveraged this property of molybdenum for designing an affinity based biosensor using electrochemical impedance spectroscopy. We have evaluated the feasibility of detection of cTnI in phosphate-buffered saline (PBS) and human serum (HS) by measuring impedance changes over a frequency window from 100 mHz to 1 MHz. Increasing changes to the measured impedance was correlated to the increased dose of cTnI molecules binding to the cTnI antibody functionalized molybdenum surface. We achieved cTnI detection limit of 10 pg/mL in PBS and 1 ng/mL in HS medium. The use of flexible substrates for designing the biosensor demonstrates promise for integration with a large-scale batch manufacturing process.

  13. Improved Ion-Channel Biosensors

    Science.gov (United States)

    Nadeau, Jay; White, Victor; Dougherty, Dennis; Maurer, Joshua

    2004-01-01

    An effort is underway to develop improved biosensors of a type based on ion channels in biomimetic membranes. These sensors are microfabricated from silicon and other materials compatible with silicon. As described, these sensors offer a number of advantages over prior sensors of this type.

  14. Recent trends in carbon nanomaterial-based electrochemical sensors for biomolecules: A review

    Science.gov (United States)

    Yang, Cheng; Denno, Madelaine E.; Pyakurel, Poojan; Venton, B. Jill

    2015-01-01

    Carbon nanomaterials are advantageous for electrochemical sensors because they increase the electroactive surface area, enhance electron transfer, and promote adsorption of molecules. Carbon nanotubes (CNTs) have been incorporated into electrochemical sensors for biomolecules and strategies have included the traditional dip coating and drop casting methods, direct growth of CNTs on electrodes and the use of CNT fibers and yarns made exclusively of CNTs. Recent research has also focused on utilizing many new types of carbon nanomaterials beyond CNTs. Forms of graphene are now increasingly popular for sensors including reduced graphene oxide, carbon nanohorns, graphene nanofoams, graphene nanorods, and graphene nanoflowers. In this review, we compare different carbon nanomaterial strategies for creating electrochemical sensors for biomolecules. Analytes covered include neurotransmitters and neurochemicals, such as dopamine, ascorbic acid, and serotonin; hydrogen peroxide; proteins, such as biomarkers; and DNA. The review also addresses enzyme-based electrodes that are used to detect non-electroactive species such as glucose, alcohols, and proteins. Finally, we analyze some of the future directions for the field, pointing out gaps in fundamental understanding of electron transfer to carbon nanomaterials and the need for more practical implementation of sensors. PMID:26320782

  15. Skin-Attachable, Stretchable Electrochemical Sweat Sensor for Glucose and pH Detection.

    Science.gov (United States)

    Oh, Seung Yun; Hong, Soo Yeong; Jeong, Yu Ra; Yun, Junyeong; Park, Heun; Jin, Sang Woo; Lee, Geumbee; Oh, Ju Hyun; Lee, Hanchan; Lee, Sang-Soo; Ha, Jeong Sook

    2018-04-25

    As part of increased efforts to develop wearable healthcare devices for monitoring and managing physiological and metabolic information, stretchable electrochemical sweat sensors have been investigated. In this study, we report on the fabrication of a stretchable and skin-attachable electrochemical sensor for detecting glucose and pH in sweat. A patterned stretchable electrode was fabricated via layer-by-layer deposition of carbon nanotubes (CNTs) on top of patterned Au nanosheets (AuNS) prepared by filtration onto stretchable substrate. For the detection of glucose and pH, CoWO 4 /CNT and polyaniline/CNT nanocomposites were coated onto the CNT-AuNS electrodes, respectively. A reference electrode was prepared via chlorination of silver nanowires. Encapsulation of the stretchable sensor with sticky silbione led to a skin-attachable sweat sensor. Our sensor showed high performance with sensitivities of 10.89 μA mM -1 cm -2 and 71.44 mV pH -1 for glucose and pH, respectively, with mechanical stability up to 30% stretching and air stability for 10 days. The sensor also showed good adhesion even to wet skin, allowing the detection of glucose and pH in sweat from running while being attached onto the skin. This work suggests the application of our stretchable and skin-attachable electrochemical sensor to health management as a high-performance healthcare wearable device.

  16. Graphene blended with SnO2 and Pd-Pt nanocages for sensitive non-enzymatic electrochemical detection of H2O2 released from living cells.

    Science.gov (United States)

    Fu, Yamin; Huang, Di; Li, Congming; Zou, Lina; Ye, Baoxian

    2018-07-19

    This paper described a novel, facile and nonenzymatic electrochemical biosensor to detect hydrogen peroxide (H 2 O 2 ). The sensor was fabricated based on Pd-Pt nanocages and SnO 2 /graphene nanosheets modified electrode (PdPt NCs@SGN/GCE). The electrochemical behavior of PdPt NCs@SGN/GCE exhibited excellent catalytic activity toward H 2 O 2 with fast response, high selectivity, superior sensitivity, low detection limit of 0.3 μM and large linear range from 1 μM to 300 μM. Under these obvious advantages, the constructed biosensor provided to be reliable for determination of H 2 O 2 secreted from human cervical cancer cells (Hela cells). Hence, the proposed biosensor is a promising candidate for detection of H 2 O 2 in situ released from living cells in clinical diagnostics. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Nuclear track-based biosensors with the enzyme laccase

    Energy Technology Data Exchange (ETDEWEB)

    García-Arellano, H. [Departamento de Ciencias Ambientales, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Lerma, Av. de las Garzas No. 10, Col. El Panteón, Lerma de Villada, Municipio de Lerma, Estado de México, C.P. 52005 (Mexico); Fink, D., E-mail: fink@xanum.uam.mx [Division de Ciencias Naturales e Ingeneria, Universidad Autónoma Metropolitana-Cuajimalpa, Artificios 40, Col. Hidalgo, Del. Álvaro Obregón C.P. 01120, México, D.F. (Mexico); Nuclear Physics Institute, 25068 Řež (Czech Republic); Muñoz Hernández, G. [Division de Ciencias Naturales e Ingeneria, Universidad Autónoma Metropolitana-Cuajimalpa, Artificios 40, Col. Hidalgo, Del. Álvaro Obregón C.P. 01120, México, D.F. (Mexico); Departamento de Fisica, Universidad Autónoma Metropolitana-Iztapalapa, PO Box 55-534, 09340 México, D.F. (Mexico); Vacík, J.; Hnatowicz, V. [Nuclear Physics Institute, 25068 Řež (Czech Republic); Alfonta, L. [Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, PO Box 653, Beer-Sheva 84105 (Israel)

    2014-08-15

    Highlights: • We construct a biosensor using polymer foils with laccase-clad etched nuclear tracks. • We use the biosensor for quantitation of phenolic compounds. • The biosensor can detect picomolar concentrations for some phenolic compounds. - Abstract: A new type of biosensors for detecting phenolic compounds is presented here. These sensors consist of thin polymer foils with laccase-clad etched nuclear tracks. The presence of suitable phenolic compounds in the sensors leads to the formation of enzymatic reaction products in the tracks, which differ in their electrical conductivities from their precursor materials. These differences correlate with the concentrations of the phenolic compounds. Corresponding calibration curves have been established for a number of compounds. The sensors thus produced are capable to cover between 5 and 9 orders of magnitude in concentration – in the best case down to some picomoles. The sensor's detection sensitivity strongly depends on the specific compound. It is highest for caffeic acid and acid blue 74, followed by ABTS and ferulic acid.

  18. [Application of DNA-based electrochemical biosensor in rapid detection of Escherichia coli exist in licorice decoction].

    Science.gov (United States)

    Zhao, Yu-Wen; Wang, Hai-Xia; Bie, Song-Tao; Shao, Qian; Wang, Chun-Hua; Wang, Dong-Heng; Li, Zheng

    2018-03-01

    A new method for detection of Escherichia coli exist in licorice decoction was developed by using DNA-based electrochemical biosensor. The thiolated capture probe was immobilized on a gold electrode at first. Then the aptamer for Escherichia coli was combined with the capture probe by hybridization. Due to the stronger interaction between the aptamer and the E. coli, the aptamer can dissociate from the capture probe in the presence of E. coli in licorice decoction. The biotinylated detection probe was hybridized with the single-strand capture probe. As a result, the electrochemical response to Escherichia coli can be measured by using differential pulse voltammetric in the presence of α-naphthyl phosphate. The plot of peak current vs. the logarithm of concentration in the range from 2.7×10² to 2.7×10⁸ CFU·mL⁻¹ displayed a linear relationship with a detection limit of 50 CFU·mL⁻¹. The relative standard deviation of 3 successive scans was 2.5%,2.1%,4.6% for 2×10²,2×10⁴,2×106:⁶ CFU·mL⁻¹ E. coli, respectively. The proposed procedure showed better specificity to E. coli in comparison to Pseudomonas aeruginosa, Staphylococcus aureus and Bacillus subtilis. In the detection of the real extractum glycyrrhizae, the results between the proposed strategy and the GB assay showed high degree of agreement, demonstrating the designed biosensor could be utilized as a powerful tool for microbial examination for traditional Chinese medicine. Copyright© by the Chinese Pharmaceutical Association.

  19. Carbon nanomaterial based electrochemical sensors for biogenic amines

    International Nuclear Information System (INIS)

    Yang, Xiao; He, Xiulan; Li, Fangping; Fei, Junjie; Feng, Bo; Ding, Yonglan

    2013-01-01

    This review describes recent advances in the use of carbon nanomaterials for electroanalytical detection of biogenic amines (BAs). It starts with a short introduction into carbon nanomaterials such as carbon nanotubes, graphene, nanodiamonds, carbon nanofibers, fullerenes, and their composites. Next, electrochemical sensing schemes are discussed for various BAs including dopamine, serotonin, epinephrine, norepinephrine, tyramine, histamine and putrescine. Examples are then given for methods for simultaneous detection of various BAs. Finally, we discuss the current and future challenges of carbon nanomaterial-based electrochemical sensors for BAs. The review contains 175 references. (author)

  20. A Low-Cost Inkjet-Printed Aptamer-Based Electrochemical Biosensor for the Selective Detection of Lysozyme

    Directory of Open Access Journals (Sweden)

    Niazul Islam Khan

    2018-01-01

    Full Text Available Recently, inkjet-printing has gained increased popularity in applications such as flexible electronics and disposable sensors, as well as in wearable sensors because of its multifarious advantages. This work presents a novel, low-cost immobilization technique using inkjet-printing for the development of an aptamer-based biosensor for the detection of lysozyme, an important biomarker in various disease diagnosis. The strong affinity between the carbon nanotube (CNT and the single-stranded DNA is exploited to immobilize the aptamers onto the working electrode by printing the ink containing the dispersion of CNT-aptamer complex. The inkjet-printing method enables aptamer density control, as well as high resolution patternability. Our developed sensor shows a detection limit of 90 ng/mL with high target selectivity against other proteins. The sensor also demonstrates a shelf-life for a reasonable period. This technology has potential for applications in developing low-cost point-of-care diagnostic testing kits for home healthcare.

  1. Analytical Parameters of an Amperometric Glucose Biosensor for Fast Analysis in Food Samples

    Directory of Open Access Journals (Sweden)

    Margalida Artigues

    2017-11-01

    Full Text Available Amperometric biosensors based on the use of glucose oxidase (GOx are able to combine the robustness of electrochemical techniques with the specificity of biological recognition processes. However, very little information can be found in literature about the fundamental analytical parameters of these sensors. In this work, the analytical behavior of an amperometric biosensor based on the immobilization of GOx using a hydrogel (Chitosan onto highly ordered titanium dioxide nanotube arrays (TiO2NTAs has been evaluated. The GOx–Chitosan/TiO2NTAs biosensor showed a sensitivity of 5.46 μA·mM−1 with a linear range from 0.3 to 1.5 mM; its fundamental analytical parameters were studied using a commercial soft drink. The obtained results proved sufficient repeatability (RSD = 1.9%, reproducibility (RSD = 2.5%, accuracy (95–105% recovery, and robustness (RSD = 3.3%. Furthermore, no significant interferences from fructose, ascorbic acid and citric acid were obtained. In addition, the storage stability was further examined, after 30 days, the GOx–Chitosan/TiO2NTAs biosensor retained 85% of its initial current response. Finally, the glucose content of different food samples was measured using the biosensor and compared with the respective HPLC value. In the worst scenario, a deviation smaller than 10% was obtained among the 20 samples evaluated.

  2. Analytical Parameters of an Amperometric Glucose Biosensor for Fast Analysis in Food Samples

    Science.gov (United States)

    2017-01-01

    Amperometric biosensors based on the use of glucose oxidase (GOx) are able to combine the robustness of electrochemical techniques with the specificity of biological recognition processes. However, very little information can be found in literature about the fundamental analytical parameters of these sensors. In this work, the analytical behavior of an amperometric biosensor based on the immobilization of GOx using a hydrogel (Chitosan) onto highly ordered titanium dioxide nanotube arrays (TiO2NTAs) has been evaluated. The GOx–Chitosan/TiO2NTAs biosensor showed a sensitivity of 5.46 μA·mM−1 with a linear range from 0.3 to 1.5 mM; its fundamental analytical parameters were studied using a commercial soft drink. The obtained results proved sufficient repeatability (RSD = 1.9%), reproducibility (RSD = 2.5%), accuracy (95–105% recovery), and robustness (RSD = 3.3%). Furthermore, no significant interferences from fructose, ascorbic acid and citric acid were obtained. In addition, the storage stability was further examined, after 30 days, the GOx–Chitosan/TiO2NTAs biosensor retained 85% of its initial current response. Finally, the glucose content of different food samples was measured using the biosensor and compared with the respective HPLC value. In the worst scenario, a deviation smaller than 10% was obtained among the 20 samples evaluated. PMID:29135931

  3. A new PANI biosensor based on catalase for cyanide determination.

    Science.gov (United States)

    Özcan, Hakkı Mevlüt; Aydin, Tuba

    2016-01-01

    Cyanide is one of the most widespread of compounds measured in environmental analysis due to their toxic effects on environment and health. We report a highly sensitive, reliable, selective amperometric sensor for determination of cyanide, using a polyaniline conductive polymer. The enzyme catalase was immobilized by electropolymerization. The steps during the immobilization were controlled by electrochemical impedance spectroscopy. Optimum pH, temperature, aniline concentration, enzyme concentration, and the number of scans obtained during electropolymerization, were investigated. In addition, the cyanide present in artificial waste water samples was determined. In the characterization studies of the biosensor, some parameters such as reproducibility and storage stability, were analyzed.

  4. Nanomaterial-Based Electrochemical Immunosensors for Clinically Significant Biomarkers

    Directory of Open Access Journals (Sweden)

    Niina J. Ronkainen

    2014-06-01

    Full Text Available Nanotechnology has played a crucial role in the development of biosensors over the past decade. The development, testing, optimization, and validation of new biosensors has become a highly interdisciplinary effort involving experts in chemistry, biology, physics, engineering, and medicine. The sensitivity, the specificity and the reproducibility of biosensors have improved tremendously as a result of incorporating nanomaterials in their design. In general, nanomaterials-based electrochemical immunosensors amplify the sensitivity by facilitating greater loading of the larger sensing surface with biorecognition molecules as well as improving the electrochemical properties of the transducer. The most common types of nanomaterials and their properties will be described. In addition, the utilization of nanomaterials in immunosensors for biomarker detection will be discussed since these biosensors have enormous potential for a myriad of clinical uses. Electrochemical immunosensors provide a specific and simple analytical alternative as evidenced by their brief analysis times, inexpensive instrumentation, lower assay cost as well as good portability and amenability to miniaturization. The role nanomaterials play in biosensors, their ability to improve detection capabilities in low concentration analytes yielding clinically useful data and their impact on other biosensor performance properties will be discussed. Finally, the most common types of electroanalytical detection methods will be briefly touched upon.

  5. Disposable electrochemical DNA biosensor for environmental ...

    Indian Academy of Sciences (India)

    been used due to its rapid, easy handling and cost effective responses for the toxicity assessment in real water ... in the application of DNA as biosensors as it is found ... used as a preclinical safety assessment tool to screen ... out the work.

  6. Electrochemically reduced graphene oxide-based electrochemical sensor for the sensitive determination of ferulic acid in A. sinensis and biological samples

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Linjie [School of Pharmacy, Lanzhou University, Lanzhou 730000 (China); Gou, Yuqiang [Lanzhou Military Command Center for Disease Prevention and Control, Lanzhou 730000 (China); Gao, Xia; Zhang, Pei; Chen, Wenxia; Feng, Shilan [School of Pharmacy, Lanzhou University, Lanzhou 730000 (China); Hu, Fangdi, E-mail: hufd@lzu.edu.cn [School of Pharmacy, Lanzhou University, Lanzhou 730000 (China); Li, Yingdong, E-mail: lydj412@163.com [Gansu College of Tradition Chinese Medicine, Lanzhou 730000 (China)

    2014-09-01

    An electrochemically reduced graphene oxide (ERGO) modified glassy carbon electrode (GCE) was used as a new voltammetric sensor for the determination of ferulic acid (FA). The morphology and microstructure of the modified electrodes were characterized by scanning electron microscopy (SEM) and Raman spectroscopy analysis, and the electrochemical effective surface areas of the modified electrodes were also calculated by chronocoulometry method. Sensing properties of the electrochemical sensor were investigated by means of cyclic voltammetry (CV) and differential pulse voltammetry (DPV). It was found that ERGO was electrodeposited on the surface of GCE by using potentiostatic method. The proposed electrode exhibited electrocatalytic activity to the redox of FA because of excellent electrochemical properties of ERGO. The transfer electron number (n), electrode reaction rate constant (k{sub s}) and electron-transfer coefficient (α) were calculated as 1.12, 1.24 s{sup −1}, and 0.40, respectively. Under the optimized conditions, the oxidation peak current was proportional to FA concentration at 8.49 × 10{sup −8} mol L{sup −1} to 3.89 × 10{sup −5} mol L{sup −1} with detection limit of 2.06 × 10{sup −8} mol L{sup −1}. This fabricated sensor also displayed acceptable reproducibility, long-term stability, and high selectivity with negligible interferences from common interfering species. The voltammetric sensor was successfully applied to detect FA in A. sinensis and biological samples with recovery values in the range of 99.91%-101.91%. - Highlights: • A novel ERGO–based electrochemical sensor of FA was successfully fabricated by using one-step electrodeposition method. • The electrode reaction was an adsorption–diffusion mixed controlled process. • The low detection limit with good selectivity and sensitivity were obtained. • This method was applied for the determination of FA in A. sinensis and biological samples.

  7. Microbial biosensors for environmental monitoring

    Directory of Open Access Journals (Sweden)

    David VOGRINC

    2015-12-01

    Full Text Available Microbial biosensors are analytical devices capable of sensing substances in the environment due to the specific biological reaction of the microorganism or its parts. Construction of a microbial biosensor requires knowledge of microbial response to the specific analyte. Linking this response with the quantitative data, using a transducer, is the crucial step in the construction of a biosensor. Regarding the transducer type, biosensors are divided into electrochemical, optical biosensors and microbial fuel cells. The use of the proper configuration depends on the selection of the biosensing element. With the use of transgenic E. coli strains, bioluminescence or fluorescence based biosensors were developed. Microbial fuel cells enable the use of the heterogeneous microbial populations, isolated from wastewater. Different microorganisms are used for different pollutants – pesticides, heavy metals, phenolic compounds, organic waste, etc. Biosensing enables measurement of their concentration and their toxic or genotoxic effects on the microbes. Increasing environmental awareness has contributed to the increase of interest for biomonitoring. Although technologies, such as bioinformatics and genetic engineering, allow us to design complex and efficient microbial biosensors for environmental pollutants, the transfer of the laboratory work to the field still remains a problem to solve.

  8. 3D printed stretchable capacitive sensors for highly sensitive tactile and electrochemical sensing

    Science.gov (United States)

    Li, Kai; Wei, Hong; Liu, Wenguang; Meng, Hong; Zhang, Peixin; Yan, Chaoyi

    2018-05-01

    Developments of innovative strategies for the fabrication of stretchable sensors are of crucial importance for their applications in wearable electronic systems. In this work, we report the successful fabrication of stretchable capacitive sensors using a novel 3D printing method for highly sensitive tactile and electrochemical sensing applications. Unlike conventional lithographic or templated methods, the programmable 3D printing technique can fabricate complex device structures in a cost-effective and facile manner. We designed and fabricated stretchable capacitive sensors with interdigital and double-vortex designs and demonstrated their successful applications as tactile and electrochemical sensors. Especially, our stretchable sensors exhibited a detection limit as low as 1 × 10-6 M for NaCl aqueous solution, which could have significant potential applications when integrated in electronics skins.

  9. Electrodeposition of flower-like platinum on electrophoretically grown nitrogen-doped graphene as a highly sensitive electrochemical non-enzymatic biosensor for hydrogen peroxide detection

    Energy Technology Data Exchange (ETDEWEB)

    Tajabadi, M.T. [University Malaya Centre for Ionic Liquids, Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Sookhakian, M., E-mail: m.sokhakian@gmail.com [University Malaya Centre for Ionic Liquids, Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Department of Mechanical Convergence Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Korea (Korea, Republic of); Zalnezhad, E., E-mail: erfan@hanyang.ac.kr [Department of Mechanical Convergence Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Korea (Korea, Republic of); Yoon, G.H. [Department of Mechanical Convergence Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Korea (Korea, Republic of); Hamouda, A.M.S. [Mechanical and Industrial Engineering Department, College of Engineering, Qatar University, 2713, Doha (Qatar); Azarang, Majid [Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Basirun, W.J. [Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Institute of Nanotechnology & Catalysis Research, Institute of Postgraduate Studies, University Malaya, 50603 Kuala Lumpur (Malaysia); Alias, Y., E-mail: yatimah70@um.edu.my [University Malaya Centre for Ionic Liquids, Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia)

    2016-11-15

    Highlights: • Nitrogen doped graphene with different thickness by electrophoretic deposition. • The conductivity of N-graphene layer depends on the tickness. • Support of platinum shows efficient electrocatalytic performance for biosensor. • CV curves and amperometric responses improved and optimized in the presence of N-graphene. - Abstract: An efficient non-enzymatic biosensor electrode consisting of nitrogen-doped graphene (N-graphene) and platinum nanoflower (Pt NF) with different N-graphene loadings were fabricated on indium tin oxide (ITO) glass using a simple layer-by-layer electrophoretic and electrochemical sequential deposition approach. N-graphene was synthesized by annealing graphene oxide with urea at 900 °C. The structure and morphology of the as-fabricated non-enzymatic biosensor electrodes were determined using X-ray diffraction, field emission electron microscopy, transmission electron microscopy, Raman and X-ray photoelectron spectra. The as-fabricated Pt NF-N-graphene-modified ITO electrodes with different N-graphene loadings were utilized as a non-enzymatic biosensor electrode for the detection of hydrogen peroxide (H{sub 2}O{sub 2}). The behaviors of the hybrid electrodes towards H{sub 2}O{sub 2} reduction were assessed using chronoamperometry, cyclic voltammetry and electrochemical impedance spectroscopy analysis. The Pt NF-N-graphene-modified ITO electrode with a 0.05 mg ml{sup −1} N-graphene loading exhibited the lowest detection limit, fastest amperometric sensing, a wide linear response range, excellent stability and reproducibility for the non-enzymatic H{sub 2}O{sub 2} detection, due to the synergistic effect between the electrocatalytic activity of the Pt NF and the high conductivity and large surface area of N-graphene.

  10. Iron-Based Nanomaterials/Graphene Composites for Advanced Electrochemical Sensors

    Directory of Open Access Journals (Sweden)

    Kaveh Movlaee

    2017-11-01

    Full Text Available Iron oxide nanostructures (IONs in combination with graphene or its derivatives—e.g., graphene oxide and reduced graphene oxide—hold great promise toward engineering of efficient nanocomposites for enhancing the performance of advanced devices in many applicative fields. Due to the peculiar electrical and electrocatalytic properties displayed by composite structures in nanoscale dimensions, increasing efforts have been directed in recent years toward tailoring the properties of IONs-graphene based nanocomposites for developing more efficient electrochemical sensors. In the present feature paper, we first reviewed the various routes for synthesizing IONs-graphene nanostructures, highlighting advantages, disadvantages and the key synthesis parameters for each method. Then, a comprehensive discussion is presented in the case of application of IONs-graphene based composites in electrochemical sensors for the determination of various kinds of (biochemical substances.

  11. Iron-Based Nanomaterials/Graphene Composites for Advanced Electrochemical Sensors

    Science.gov (United States)

    Movlaee, Kaveh; Ganjali, Mohmmad Reza; Norouzi, Parviz

    2017-01-01

    Iron oxide nanostructures (IONs) in combination with graphene or its derivatives—e.g., graphene oxide and reduced graphene oxide—hold great promise toward engineering of efficient nanocomposites for enhancing the performance of advanced devices in many applicative fields. Due to the peculiar electrical and electrocatalytic properties displayed by composite structures in nanoscale dimensions, increasing efforts have been directed in recent years toward tailoring the properties of IONs-graphene based nanocomposites for developing more efficient electrochemical sensors. In the present feature paper, we first reviewed the various routes for synthesizing IONs-graphene nanostructures, highlighting advantages, disadvantages and the key synthesis parameters for each method. Then, a comprehensive discussion is presented in the case of application of IONs-graphene based composites in electrochemical sensors for the determination of various kinds of (bio)chemical substances. PMID:29168771

  12. Application of Gold Nanoparticles for Electrochemical DNA Biosensor

    Directory of Open Access Journals (Sweden)

    Ahmed Mishaal Mohammed

    2014-01-01

    Full Text Available An electrochemical DNA biosensor was successfully fabricated by using (3-aminopropyltriethoxysilane (APTES as a linker molecule combined with the gold nanoparticles (GNPs on thermally oxidized SiO2 thin films. The SiO2 thin films surface was chemically modified with a mixture of APTES and GNPs for DNA detection in different time periods of 30 min, 1 hour, 2 hours, and 4 hours, respectively. The DNA immobilization and hybridization were conducted by measuring the differences of the capacitance value within the frequency range of 1 Hz to 1 MHz. The capacitance values for DNA immobilization were 160 μF, 77.8 μF, 70 μF, and 64.6 μF, respectively, with the period of time from 30 min to 4 hours. Meanwhile the capacitance values for DNA hybridization were 44 μF, 54 μF, 55 μF, and 61.5 μF, respectively. The capacitance value of bare SiO2 thin film was 0.42 μF, which was set as a base line for a reference in DNA detection. The differences of the capacitance value between the DNA immobilization and hybridization revealed that the modified SiO2 thin films using APTES and GNPs were successfully developed for DNA detection.

  13. Peptide-based biosensors: From self-assembled interfaces to molecular probes in electrochemical assays.

    Science.gov (United States)

    Puiu, Mihaela; Bala, Camelia

    2018-04-01

    Redox-tagged peptides have emerged as functional materials with multiple applications in the area of sensing and biosensing applications due to their high stability, excellent redox properties and versatility of biomolecular interactions. They allow direct observation of molecular interactions in a wide range of affinity and enzymatic assays and act as electron mediators. Short helical peptides possess the ability to self-assemble in specific configurations with the possibility to develop in highly-ordered, stable 1D, 2D and 3D architectures in a hierarchical controlled manner. We provide here a brief overview of the electrochemical techniques available to study the electron transfer in peptide films with particular interest in developing biosensors with immobilized peptide motifs, for biological and clinical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Electrochemical Impedance Spectroscopic Analysis of RuO2 Based Thick Film pH Sensors

    International Nuclear Information System (INIS)

    Manjakkal, Libu; Djurdjic, Elvira; Cvejin, Katarina; Kulawik, Jan; Zaraska, Krzysztof; Szwagierczak, Dorota

    2015-01-01

    The conductimetric interdigitated thick film pH sensors based on RuO 2 were fabricated and their electrochemical reactions with solutions of different pH values were studied by electrochemical impedance spectroscopy (EIS) technique. The microstructural properties and composition of the sensitive films were examined by scanning electron microscopy, X-ray energy dispersive spectroscopy and Raman spectroscopy. The EIS analysis of the sensor was carried out in the frequency range 10 mHz–2 MHz for pH values of test solutions 2–12. The electrical parameters of the sensor were found to vary with changing pH. The conductance and capacitance of the film were distinctly dependent on pH in the low frequency range. The Nyquist and Bode plots derived from the impedance data for the metal oxide thick film pH sensor provided information about the underlying electrochemical reactions

  15. A Simple Metallothionein-Based Biosensor for Enhanced Detection of Arsenic and Mercury

    Directory of Open Access Journals (Sweden)

    Gordon W. Irvine

    2017-03-01

    Full Text Available Metallothioneins (MTs are a family of cysteine-rich proteins whose biological roles include the regulation of essential metal ions and protection against the harmful effects of toxic metals. Due to its high affinity for many toxic, soft metals, recombinant human MT isoform 1a was incorporated into an electrochemical-based biosensor for the detection of As3+ and Hg2+. A simple design was chosen to maximize its potential in environmental monitoring and MT was physically adsorbed onto paper discs placed on screen-printed carbon electrodes (SPCEs. This system was tested with concentrations of arsenic and mercury typical of contaminated water sources ranging from 5 to 1000 ppb. The analytical performance of the MT-adsorbed paper discs on SPCEs demonstrated a greater than three-fold signal enhancement and a lower detection limit compared to blank SPCEs, 13 ppb for As3+ and 45 ppb for Hg2+. While not being as low as some of the recommended drinking water limits, the sensitivity of the simple MT-biosensor would be potentially useful in monitoring of areas of concern with a known contamination problem. This paper describes the ability of the metal binding protein metallothionein to enhance the effectiveness of a simple, low-cost electrochemical sensor.

  16. Enhanced host–guest electrochemical recognition of herbicide MCPA using a b-cyclodextrin carbon nanotube sensor

    OpenAIRE

    Rahemi, V.; Vandamme, J.J.; Garrido, J.M.P.J.; Borges, F.; Brett, C.M.A.; Garrido, E.M.P.J.

    2012-01-01

    An electrochemical sensor for the determination of the chlorophenoxy herbicide MCPA has been developed, based on a combination of multi-walled carbon nanotubes with incorporated b-cyclodextrin and a polyaniline film modified glassy carbon electrode. The proposed molecular host–guest recogni-tion based sensor has a high electrochemical sensitivity for the determination of MCPA. The electrochemical behaviour of MCPA at the chemically modified electrode was investigated in detail by cyclic volta...

  17. Facile Fabrication of 3D Layer-by-layer Graphene-gold Nanorod Hybrid Architecture for Hydrogen Peroxide Based Electrochemical Biosensor

    Science.gov (United States)

    2015-01-01

    measurement techniques such as radioisotope tracing, NMR spectroscopy, and microfluorometry assay [12,25,18]. In recent years, electrochemical biosensors...control number. 1. REPORT DATE 2015 2. REPORT TYPE 3. DATES COVERED 00-00-2015 to 00-00-2015 4. TITLE AND SUBTITLE Facile Fabrication of 3D...Claussen, S. Jedlicka, J.L. Rickus, D.M. Porterfield, J. Neurosci. Methods 189 (2010) 14–22. [17] E.S. McLamore, J. Shi, D. Jaroch, J.C. Claussen, A

  18. Electrospinning cellulose based nanofibers for sensor applications

    Science.gov (United States)

    Nartker, Steven

    2009-12-01

    Bacterial pathogens have recently become a serious threat to the food and water supply. A biosensor based on an electrochemical immunoassay has been developed for detecting food borne pathogens, such as Escherichia coli (E. coli) O157:H7. These sensors consist of several materials including, cellulose, cellulose nitrate, polyaniline and glass fibers. The current sensors have not been optimized in terms of microscale architecture and materials. The major problem associated with the current sensors is the limited concentration range of pathogens that provides a linear response on the concentration conductivity chart. Electrospinning is a process that can be used to create a patterned fiber mat design that will increase the linear range and lower the detection limit of these sensors by improving the microscale architecture. Using the electrospinning process to produce novel mats of cellulose nitrate will offer improved surface area, and the cellulose nitrate can be treated to further improve chemical interactions required for sensor activity. The macro and micro architecture of the sensor is critical to the performance of the sensors. Electrospinning technology can be used to create patterned architectures of nanofibers that will enhance sensor performance. To date electrospinning of cellulose nitrate has not been performed and optimization of the electrospinning process will provide novel materials suitable for applications such as filtration and sensing. The goal of this research is to identify and elucidate the primary materials and process factors necessary to produce cellulose nitrate nanofibers using the electrospinning process that will improve the performance of biosensors. Cellulose nitrate is readily dissolved in common organic solvents such as acetone, tetrahydrofuran (THF) and N,N dimethylformamide (DMF). These solvents can be mixed with other latent solvents such as ethanol and other alcohols to provide a solvent system with good electrospinning behavior

  19. A Cytochrome P450 3A4 Biosensor Based on Generation 4.0 PAMAM Dendrimers for the Detection of Caffeine

    Directory of Open Access Journals (Sweden)

    Michael Müller

    2016-08-01

    Full Text Available Cytochromes P450 (CYP, P450 are a large family of heme-active-site proteins involved in many catalytic processes, including steroidogenesis. In humans, four primary enzymes are involved in the metabolism of almost all xenobiotics. Among these enzymes, CYP3A4 is responsible for the inactivation of the majority of used drugs which makes this enzyme an interesting target for many fields of research, especially pharmaceutical research. Since the late 1970s, attempts have been made to construct and develop electrochemical sensors for the determination of substrates. This paper is concerned with the establishment of such a CYP3A4-containing biosensor. The sensor was constructed by adsorption of alternating layers of sub-nanometer gold particle-modified PAMAM (poly-amido-amine dendrimers of generation 4.0, along with the enzyme by a layer-by-layer assembly technique. Atomic force microscopy (AFM, quartz crystal microbalance (QCM, and Fourier-transformed infrared spectroscopy (FTIR were employed to elucidate the sensor assembly. Additionally, the biosensor was tested by cyclic voltammetry using caffeine as a substrate.

  20. Platinum nanoparticles functionalized nitrogen doped graphene platform for sensitive electrochemical glucose biosensing

    International Nuclear Information System (INIS)

    Yang, Zhanjun; Cao, Yue; Li, Juan; Jian, Zhiqin; Zhang, Yongcai; Hu, Xiaoya

    2015-01-01

    Highlights: • An efficient PtNPs@NG nanocomposite was prepared for the immobilization of enzyme. • A novel electrochemical glucose biosensor was constructed based on this PtNPs@NG. • The proposed glucose biosensor showed high sensitivity and low detection limit. • The PtNPs@NG composite provided a promising platform for biosensing applications. - Abstract: In this work, we reported an efficient platinum nanoparticles functionalized nitrogen doped graphene (PtNPs@NG) nanocomposite for devising novel electrochemical glucose biosensor for the first time. The fabricated PtNPs@NG and biosensor were characterized using transmission electron microscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, static water contact angle, UV–vis spectroscopy, electrochemical impedance spectra and cyclic voltammetry, respectively. PtNPs@NG showed large surface area and excellent biocompatibility, and enhanced the direct electron transfer between enzyme molecules and electrode surface. The glucose oxidase (GOx) immobilized on PtNPs@NG nanocomposite retained its bioactivity, and exhibited a surface controlled, quasi-reversible and fast electron transfer process. The constructed glucose biosensor showed wide linear range from 0.005 to 1.1 mM with high sensitivity of 20.31 mA M −1 cm −2 . The detection limit was calculated to be 0.002 mM at signal-to-noise of 3, which showed 20-fold decrease in comparison with single NG-based electrochemical biosensor for glucose. The proposed glucose biosensor also demonstrated excellent selectivity, good reproducibility, acceptable stability, and could be successfully applied in the detection of glucose in serum samples at the applied potential of −0.33 V. This research provided a promising biosensing platform for the development of excellent electrochemical biosensors

  1. Platinum nanoparticles functionalized nitrogen doped graphene platform for sensitive electrochemical glucose biosensing

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhanjun, E-mail: zjyang@yzu.edu.cn; Cao, Yue; Li, Juan; Jian, Zhiqin; Zhang, Yongcai; Hu, Xiaoya

    2015-04-29

    Highlights: • An efficient PtNPs@NG nanocomposite was prepared for the immobilization of enzyme. • A novel electrochemical glucose biosensor was constructed based on this PtNPs@NG. • The proposed glucose biosensor showed high sensitivity and low detection limit. • The PtNPs@NG composite provided a promising platform for biosensing applications. - Abstract: In this work, we reported an efficient platinum nanoparticles functionalized nitrogen doped graphene (PtNPs@NG) nanocomposite for devising novel electrochemical glucose biosensor for the first time. The fabricated PtNPs@NG and biosensor were characterized using transmission electron microscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, static water contact angle, UV–vis spectroscopy, electrochemical impedance spectra and cyclic voltammetry, respectively. PtNPs@NG showed large surface area and excellent biocompatibility, and enhanced the direct electron transfer between enzyme molecules and electrode surface. The glucose oxidase (GOx) immobilized on PtNPs@NG nanocomposite retained its bioactivity, and exhibited a surface controlled, quasi-reversible and fast electron transfer process. The constructed glucose biosensor showed wide linear range from 0.005 to 1.1 mM with high sensitivity of 20.31 mA M{sup −1} cm{sup −2}. The detection limit was calculated to be 0.002 mM at signal-to-noise of 3, which showed 20-fold decrease in comparison with single NG-based electrochemical biosensor for glucose. The proposed glucose biosensor also demonstrated excellent selectivity, good reproducibility, acceptable stability, and could be successfully applied in the detection of glucose in serum samples at the applied potential of −0.33 V. This research provided a promising biosensing platform for the development of excellent electrochemical biosensors.

  2. Carbon nanotube/polymer composite electrodes for flexible, attachable electrochemical DNA sensors.

    Science.gov (United States)

    Li, Jianfeng; Lee, Eun-Cheol

    2015-09-15

    All-solution-processed, easily-made, flexible multi-walled carbon nanotube (MWCNT)/polydimethylsiloxane (PDMS)-based electrodes were fabricated and used for electrochemical DNA sensors. These electrodes could serve as a recognition layer for DNA, without any surface modification, through π-π interactions between the MWCNTs and DNA, greatly simplifying the fabrication process for DNA sensors. The electrodes were directly connected to an electrochemical analyzer in the differential pulse voltammetry (DPV) and cyclic voltammetry (CV) measurements, where methylene blue was used as a redox indicator. Since neither functional groups nor probe DNA were immobilized on the surfaces of the electrodes, the sensor can be easily regenerated by washing these electrodes with water. The limit of detection was found to be 1.3 × 10(2)pM (S/N=3), with good DNA sequence differentiation ability. Fast fabrication of a DNA sensor was also achieved by cutting and attaching the MWCNT-PDMS composite electrodes at an analyte solution-containable region. Our results pave the way for developing user-fabricated easily attached DNA sensors at low costs. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Biosensors for detection of mercury in contaminated soils

    International Nuclear Information System (INIS)

    Bontidean, Ibolya; Mortari, Alessia; Leth, Suzanne; Brown, Nigel L.; Karlson, Ulrich; Larsen, Martin M.; Vangronsveld, Jaco; Corbisier, Philippe; Csoeregi, Elisabeth

    2004-01-01

    Biosensors based on whole bacterial cells and on bacterial heavy metal binding protein were used to determine the mercury concentration in soil. The soil samples were collected in a vegetable garden accidentally contaminated with elemental mercury 25 years earlier. Bioavailable mercury was measured using different sensors: a protein-based biosensor, a whole bacterial cell based biosensor, and a plant sensor, i.e. morphological and biochemical responses in primary leaves and roots of bean seedlings grown in the mercury-contaminated soil. For comparison the total mercury concentration of the soil samples was determined by AAS. Whole bacterial cell and protein-based biosensors gave accurate responses proportional to the total amount of mercury in the soil samples. On the contrary, plant sensors were found to be less useful indicators of soil mercury contamination, as determined by plant biomass, mercury content of primary leaves and enzyme activities

  4. Ring-Interferometric Sol-Gel Bio-Sensor

    Science.gov (United States)

    Bearman, Gregory (Inventor); Cohen, David (Inventor)

    2006-01-01

    A biosensor embodying the invention includes a sensing volume having an array of pores sized for immobilizing a first biological entity tending to bind to a second biological entity in such a manner as to change an index of refraction of the sensing volume. The biosensor further includes a ring interferometer, one volumetric section of the ring interferometer being the sensing volume, a laser for supplying light to the ring interferometer, and a photodetector for receiving light from the interferometer.

  5. Functional design of electrolytic biosensor

    Science.gov (United States)

    Gamage Preethichandra, D. M.; Mala Ekanayake, E. M. I.; Onoda, M.

    2017-11-01

    A novel amperometric biosensbased on conjugated polypyrrole (PPy) deposited on a Pt modified ITO (indium tin oxide) conductive glass substrate and their performances are described. We have presented a method of developing a highly sensitive and low-cost nano-biosensor for blood glucose measurements. The fabrication method proposed decreases the cost of production significantly as the amount of noble metals used is minimized. A nano-corrugated PPy substrate was developed through pulsed electrochemical deposition. The sensitivity achieved was 325 mA/(Mcm2) and the linear range of the developed sensor was 50-60 mmol/l. Then the application of the electrophoresis helps the glucose oxidase (GOx) on the PPy substrate. The main reason behind this high enzyme loading is the high electric field applied across the sensor surface (working electrode) and the counter electrode where that pushes the nano-scale enzyme particles floating in the phosphate buffer solution towards the substrate. The novel technique used has provided an extremely high sensitivities and very high linear ranges for enzyme (GOx) and therefore can be concluded that this is a very good technique to load enzyme onto the conducting polymer substrates.

  6. Silicon-on-Insulator Nanowire Based Optical Waveguide Biosensors

    International Nuclear Information System (INIS)

    Li, Mingyu; Liu, Yong; Chen, Yangqing; He, Jian-Jun

    2016-01-01

    Optical waveguide biosensors based on silicon-on-insulator (SOI) nanowire have been developed for label free molecular detection. This paper reviews our work on the design, fabrication and measurement of SOI nanowire based high-sensitivity biosensors employing Vernier effect. Biosensing experiments using cascaded double-ring sensor and Mach-Zehnder- ring sensor integrated with microfluidic channels are demonstrated (paper)

  7. A highly sensitive electrochemical biosensor for catechol using conducting polymer reduced graphene oxide-metal oxide enzyme modified electrode.

    Science.gov (United States)

    Sethuraman, V; Muthuraja, P; Anandha Raj, J; Manisankar, P

    2016-10-15

    The fabrication, characterization and analytical performances were investigated for a catechol biosensor, based on the PEDOT-rGO-Fe2O3-PPO composite modified glassy carbon (GC) electrode. The graphene oxide (GO) doped conducting polymer poly (3,4-ethylenedioxythiophene) (PEDOT) was prepared through electrochemical polymerization by potential cycling. Reduction of PEDOT-GO was carried out by amperometric method. Fe2O3 nanoparticles were synthesized in ethanol by hydrothermal method. The mixture of Fe2O3, PPO and glutaraldehyde was casted on the PEDOT-rGO electrode. The surface morphology of the modified electrodes was studied by FE-SEM and AFM. Cyclic voltammetric studies of catechol on the enzyme modified electrode revealed higher reduction peak current. Determination of catechol was carried out successfully by Differential Pulse Voltammetry (DPV) technique. The fabricated biosensor investigated shows a maximum current response at pH 6.5. The catechol biosensor exhibited wide sensing linear range from 4×10(-8) to 6.20×10(-5)M, lower detection limit of 7×10(-9)M, current maxima (Imax) of 92.55µA and Michaelis-Menten (Km) constant of 30.48µM. The activation energy (Ea) of enzyme electrode is 35.93KJmol(-1) at 50°C. There is no interference from d-glucose and l-glutamic acid, ascorbic acid and o-nitrophenol. The PEDOT-rGO-Fe2O3-PPO biosensor was stable for at least 75 days when stored in a buffer at about 4°C. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Electrochemical Carbon Dioxide Sensor for Plant Production Environments, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The aim of this proposal is to develop a low power consuming solid polymer electrolyte based, miniaturized electrochemical CO2 sensor that can continuously,...

  9. Electrochemical Carbon Dioxide Sensor for Plant Production Environments, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The aim of this proposal is to develop a low power consuming solid polymer electrolyte based, miniaturized electrochemical CO2 sensor that can continuously,...

  10. Construction and characterization of novel stress-responsive Deinococcal biosensors

    International Nuclear Information System (INIS)

    Joe, Min Ho; Lim, Sang Youg

    2012-01-01

    In this research, we constructed a recombinant whole-cell biosensor to detect mutagens (H2O2, mitomycin C, MNNG, bleomycin) using Deinococcus radiodurans and evaluated its possibility for actual application. We performed DNA microarray analysis and selected 10 candidate genes for biosensor recombinant plasmid construction. The expression of ddrA, ddrB, DR 0 161, DR 0 589, and pprA was highly increased after treatment of the target mutagens. Putative promoter region of the genes were used for LacZ-based biosensor plasmid construction by replacing groESL promoter of pRADZ3. Pormoter activity and specificity of the five recombinant LacZ-based biosensor strains harboring the recombinant plasmids was measured. The result indicated that the promoter region of ddrA is the most suitable promoter for the biosensor development. Red pigment-based biosensor plasmid was constructed by displacing lacZ with crtI. The sensor strain was constructed by transforming the sensor plasmid into crtI deleted mutant D. radiodurans strain. Finally, macroscopic detection of the target mutagens by the biosensor strain was evaluated. The strength of red pigment biosynthesis by this recombinant strain in response to the target mutagens was weaker than our expectation. Continuous damage to the sensor strain by the mutagens in the medium might be the main reason for this low red-pigment biosynthesis. Therefore, we propose that the LacZ-based biosensor is more effective than the biosensor using red pigment as indicator for the mutagen detection

  11. A graphene-based electrochemical sensor for sensitive detection of paracetamol

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Xinhuang; Wang, Jun; Wu, Hong; Liu, Jun; Aksay, Ilhan A.; Lin, Yuehe

    2010-05-15

    An electrochemical sensor based on the electrocatalytic activity of functionalized graphene for sensitive detection of paracetamol is presented. The electrochemical behaviors of paracetamol on graphene-modified glassy carbon electrodes (GCEs) were investigated by cyclic voltammetry and square-wave voltammetry. The results showed that the graphene-modified electrode exhibited excellent electrocatalytic activity to paracetamol. A quasi-reversible redox process of paracetamol at the modified electrode was obtained, and the over-potential of paracetamol decreased significantly compared with that at the bare GCE. Such electrocatalytic behavior of graphene is attributed to its unique physical and chemical properties, e.g., subtle electronic characteristics, attractive π–π interaction, and strong adsorptive capability. The sensor shows great promise for simple, sensitive, and quantitative detection of paracetamol.

  12. Capacitive Biosensors and Molecularly Imprinted Electrodes.

    Science.gov (United States)

    Ertürk, Gizem; Mattiasson, Bo

    2017-02-17

    Capacitive biosensors belong to the group of affinity biosensors that operate by registering direct binding between the sensor surface and the target molecule. This type of biosensors measures the changes in dielectric properties and/or thickness of the dielectric layer at the electrolyte/electrode interface. Capacitive biosensors have so far been successfully used for detection of proteins, nucleotides, heavy metals, saccharides, small organic molecules and microbial cells. In recent years, the microcontact imprinting method has been used to create very sensitive and selective biorecognition cavities on surfaces of capacitive electrodes. This chapter summarizes the principle and different applications of capacitive biosensors with an emphasis on microcontact imprinting method with its recent capacitive biosensor applications.

  13. A silicon-based electrochemical sensor for highly sensitive, specific, label-free and real-time DNA detection

    International Nuclear Information System (INIS)

    Guo, Yuanyuan; Su, Shao; Wei, Xinpan; Zhong, Yiling; Su, Yuanyuan; He, Yao; Huang, Qing; Fan, Chunhai

    2013-01-01

    We herein present a new kind of silicon-based electrochemical sensor using a gold nanoparticles-decorated silicon wafer (AuNPs@Si) as a high-performance electrode, which is facilely prepared via in situ AuNPs growth on a silicon wafer. Particularly significantly, the resultant electrochemical sensor is efficacious for label-free DNA detection with high sensitivity due to the unique merits of the prepared silicon-based electrode. Typically, DNA at remarkably low concentrations (1–10 fM) could be readily detected without requiring additional signal-amplification procedures, which is better than or comparable to the lowest DNA concentration ever detected via well-studied signal-amplification-assisted electrochemical sensors. Moreover, the silicon-based sensor features high specificity, allowing unambiguous discrimination of single-based mismatches. We further show that real-time DNA assembly is readily monitored via recording the intensity changes of current signals due to the robust thermal stability of the silicon-based electrode. The unprecedented advantages of the silicon-based electrochemical sensor would offer new opportunities for myriad sensing applications. (paper)

  14. Nanoparticle-functionalized nucleic acids: A strategy for amplified electrochemical detection of some single-base mismatches

    International Nuclear Information System (INIS)

    Ahangar, Laleh Enayati; Mehrgardi, Masoud A.

    2011-01-01

    In this study, nanoparticle-functionalized nucleic acids were employed to improve the sensitivity of electrochemical DNA biosensors that make capable them to detect different types of single-base mismatches (SBMs), including thermodynamically stable ones. The present biosensor was constructed by the immobilization of platinum nanoparticles (Pt-NPs) on the surface of a carbon paste electrode (CPE) via SH-functionalized DNA. A redox probe of 2-mercapto-1-methyl imidazole (MMI), which has different electrochemical behavior on Pt-NP and CPE, was used. This behavior helps to overcome the pinhole effect in DNA hybridization biosensors. Additionally, in the present biosensor, the positioning of the redox probe under the SBM in DNA, which decreases the sensitivity of most DNA biosensors, did not contribute to the observed electrochemical signal.

  15. Nanoparticle-functionalized nucleic acids: A strategy for amplified electrochemical detection of some single-base mismatches

    Energy Technology Data Exchange (ETDEWEB)

    Ahangar, Laleh Enayati [Department of Chemistry, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of); Mehrgardi, Masoud A., E-mail: m.mehrgardi@gmail.co [Department of Chemistry, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of)

    2011-02-15

    In this study, nanoparticle-functionalized nucleic acids were employed to improve the sensitivity of electrochemical DNA biosensors that make capable them to detect different types of single-base mismatches (SBMs), including thermodynamically stable ones. The present biosensor was constructed by the immobilization of platinum nanoparticles (Pt-NPs) on the surface of a carbon paste electrode (CPE) via SH-functionalized DNA. A redox probe of 2-mercapto-1-methyl imidazole (MMI), which has different electrochemical behavior on Pt-NP and CPE, was used. This behavior helps to overcome the pinhole effect in DNA hybridization biosensors. Additionally, in the present biosensor, the positioning of the redox probe under the SBM in DNA, which decreases the sensitivity of most DNA biosensors, did not contribute to the observed electrochemical signal.

  16. Electrochemical behaviour of carbon paste electrodes enriched with tin oxide nanoparticles using voltammetry and electrochemical impedance spectroscopy.

    Science.gov (United States)

    Muti, Mihrican; Erdem, Arzum; Caliskan, Ayfer; Sınag, Ali; Yumak, Tugrul

    2011-08-01

    The effect of the SnO(2) nanoparticles (SNPs) on the behaviour of voltammetric carbon paste electrodes were studied for possible use of this material in biosensor development. The electrochemical behaviour of SNP modified carbon paste electrodes (CPE) was first investigated by using cyclic voltammetry (CV), differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS) techniques. The performance of the SNP modified electrodes were compared to those of unmodified ones and the parameters affecting the response of the modified electrode were optimized. The SNP modified electrodes were then tested for the electrochemical sensing of DNA purine base adenine to explore their further development in biosensor applications. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. An Overview of Pesticide Monitoring at Environmental Samples Using Carbon Nanotubes-Based Electrochemical Sensors

    Directory of Open Access Journals (Sweden)

    Ademar Wong

    2017-03-01

    Full Text Available Carbon nanotubes have received enormous attention in the development of electrochemical sensors by promoting electron transfer reactions, decreasing the work overpotential within great surface areas. The growing concerns about environmental health emphasized the necessity of continuous monitoring of pollutants. Pesticides have been successfully used to control agricultural and public health pests; however, intense use can cause a number of damages for biodiversity and human health. In this sense, carbon nanotubes-based electrochemical sensors have been proposed for pesticide monitoring combining different electrode modification strategies and electroanalytical techniques. In this paper, we provide a review of the recent advances in the use of carbon nanotubes for the construction of electrochemical sensors dedicated to the environmental monitoring of pesticides. Future directions, perspectives, and challenges are also commented.

  18. Direct electrochemistry and electrocatalysis of lobetyolin via magnetic functionalized reduced graphene oxide film fabricated electrochemical sensor

    International Nuclear Information System (INIS)

    Sun, Bolu; Gou, Xiaodan; Bai, Ruibin; Abdelmoaty, Ahmed Attia Ahmed; Ma, Yuling; Zheng, Xiaoping; Hu, Fangdi

    2017-01-01

    A novel lobetyolin electrochemical sensor based on a magnetic functionalized reduced graphene oxide/Nafion nanohybrid film has been introduced in this work. The magnetic functionalized reduced graphene oxide was characterized by fourier transform infrared spectroscopy, atomic force microscope, X-ray diffraction, transmission electron microscopy and thermogravimetric analysis. The scanning electron microscopy characterized the morphology and microstructure of the prepared sensors, and the electrochemical effective surface areas of the prepared sensors were also calculated by chronocoulometry method. The electrochemical behavior of lobetyolin on the magnetic functionalized reduced graphene oxide/Nafion nanohybrid modified glassy carbon electrode was investigated by cyclic voltammetry and differential pulse voltammetry in a phosphate buffer solution of pH 6.0. The electron-transfer coefficient (α), electron transfer number (n), and electrode reaction rate constant (Κs) were calculated as 0.78, 0.73, and 4.63 s −1 , respectively. Under the optimized conditions, the sensor based on magnetic functionalized reduced graphene oxide/Nafion showed a linear voltammetric response to the lobetyolin concentration at 1.0 × 10 −7 to 1.0 × 10 −4 mol/L with detection limit (S/N = 3)of 4.3 × 10 −8 mol/L. The proposed sensor also displayed acceptable reproducibility, long-term stability, and high selectivity, and performs well for analysis of lobetyolin in real samples. The voltammetric sensor was successfully applied to detect lobetyolin in Codonopsis pilosula with recovery values in the range of 96.12% –102.66%. - Graphical abstract: Schematic diagram of the synthesis of MrGO hybrid and the fabrication process of the MrGO/Nafion/GCE for determination of lobetyolin. Display Omitted - Highlights: • The MrGO/Nafion@GCE electrochemical sensor was successfully fabricated. • The prepared MrGO was characterized by AFM, XRD, FTIR, VSM, TEM and SEM. • The proposed

  19. Direct electrochemistry and electrocatalysis of lobetyolin via magnetic functionalized reduced graphene oxide film fabricated electrochemical sensor

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Bolu [School of Pharmacy, Lanzhou University, Lanzhou 730000 (China); Gou, Xiaodan [School of Chemistry and Chemical Engineering, Nanjing University, 210046 (China); Bai, Ruibin; Abdelmoaty, Ahmed Attia Ahmed; Ma, Yuling; Zheng, Xiaoping [School of Pharmacy, Lanzhou University, Lanzhou 730000 (China); Hu, Fangdi, E-mail: hufd@lzu.edu.cn [School of Pharmacy, Lanzhou University, Lanzhou 730000 (China)

    2017-05-01

    A novel lobetyolin electrochemical sensor based on a magnetic functionalized reduced graphene oxide/Nafion nanohybrid film has been introduced in this work. The magnetic functionalized reduced graphene oxide was characterized by fourier transform infrared spectroscopy, atomic force microscope, X-ray diffraction, transmission electron microscopy and thermogravimetric analysis. The scanning electron microscopy characterized the morphology and microstructure of the prepared sensors, and the electrochemical effective surface areas of the prepared sensors were also calculated by chronocoulometry method. The electrochemical behavior of lobetyolin on the magnetic functionalized reduced graphene oxide/Nafion nanohybrid modified glassy carbon electrode was investigated by cyclic voltammetry and differential pulse voltammetry in a phosphate buffer solution of pH 6.0. The electron-transfer coefficient (α), electron transfer number (n), and electrode reaction rate constant (Κs) were calculated as 0.78, 0.73, and 4.63 s{sup −1}, respectively. Under the optimized conditions, the sensor based on magnetic functionalized reduced graphene oxide/Nafion showed a linear voltammetric response to the lobetyolin concentration at 1.0 × 10{sup −7} to 1.0 × 10{sup −4} mol/L with detection limit (S/N = 3)of 4.3 × 10{sup −8} mol/L. The proposed sensor also displayed acceptable reproducibility, long-term stability, and high selectivity, and performs well for analysis of lobetyolin in real samples. The voltammetric sensor was successfully applied to detect lobetyolin in Codonopsis pilosula with recovery values in the range of 96.12% –102.66%. - Graphical abstract: Schematic diagram of the synthesis of MrGO hybrid and the fabrication process of the MrGO/Nafion/GCE for determination of lobetyolin. Display Omitted - Highlights: • The MrGO/Nafion@GCE electrochemical sensor was successfully fabricated. • The prepared MrGO was characterized by AFM, XRD, FTIR, VSM, TEM and SEM.

  20. Detection of foodborne pathogens using surface plasmon resonance biosensors

    Czech Academy of Sciences Publication Activity Database

    Koubová, Vendula; Brynda, Eduard; Krasová, B.; Škvor, J.; Homola, Jiří; Dostálek, Jakub; Tobiška, Petr; Rošický, Jiří

    B74, 1/3 (2001), s. 100-105 ISSN 0925-4005. [European Conference on Optical Chemical Sensors and Biosensors EUROPT(R)ODE /5./. Lyon-Villeurbanne, 16.04.2000-19.04.2000] R&D Projects: GA ČR GA102/99/0549 Institutional research plan: CEZ:AV0Z2067918 Keywords : optical sensors * surface plasmon resonance * biosensors Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 1.440, year: 2001

  1. nanocomposites chitosan /clay for electrochemical sensors

    International Nuclear Information System (INIS)

    Braga, Carla R. Costa; Melo, Frank M. Araujo de; Costa, Gilmara M. Silva; Silva, Suedina M. Lima

    2009-01-01

    This study was performed to obtain films of nanocomposites chitosan/bentonite and chitosan/montmorillonite intercalation by the technique of solution in the proportions of 5:1 and 10:1. The nanocomposites were characterized by infrared spectroscopy (FTIR), X-ray diffraction (XRD) and the nanocomposites Chitosan/montmorillonite also were characterized by thermogravimetric analysis (TG). The results indicated that the feasibility of obtaining films of nanocomposites exfoliate. Among the suggested applications for films developed in this study includes them use for electrochemical sensors. (author)

  2. A Multi-Technique Reconfigurable Electrochemical Biosensor: Enabling Personal Health Monitoring in Mobile Devices.

    Science.gov (United States)

    Sun, Alexander; Venkatesh, A G; Hall, Drew A

    2016-10-01

    This paper describes the design and characterization of a reconfigurable, multi-technique electrochemical biosensor designed for direct integration into smartphone and wearable technologies to enable remote and accurate personal health monitoring. By repurposing components from one mode to the next, the biosensor's potentiostat is able reconfigure itself into three different measurements modes to perform amperometric, potentiometric, and impedance spectroscopic tests all with minimal redundant devices. A [Formula: see text] PCB prototype of the module was developed with discrete components and tested using Google's Project Ara modular smartphone. The amperometric mode has a ±1 nA to [Formula: see text] measurement range. When used to detect pH, the potentiometric mode achieves a resolution of < 0.08 pH units. In impedance measurement mode, the device can measure 50 Ω-10 [Formula: see text] and has been shown to have of phase error. This prototype was used to perform several point-of-care health tracking assays suitable for use with mobile devices: 1) Blood glucose tests were conducted and shown to cover the diagnostic range for Diabetic patients (  ∼  200 mg/dL). 2) Lactoferrin, a biomarker for urinary tract infections, was detected with a limit of detection of approximately 1 ng/mL. 3) pH tests of sweat were conducted to track dehydration during exercise. 4) EIS was used to determine the concentration of NeutrAvidin via a label-free assay.

  3. Recent Advances in Electrochemical Glycobiosensing

    Directory of Open Access Journals (Sweden)

    Germarie Sánchez-Pomales

    2011-01-01

    Full Text Available Biosensors based on electrochemical transduction mechanisms have recently made advances into the field of glycan analysis. These glyco-biosensors offer simple, rapid, sensitive, and economical approaches to the measurement need for rapid glycan analysis for biomarker detection, cancer and disease diagnostics, and bioprocess monitoring of therapeutic glycoproteins. Although the prevalent methods of glycan analysis (high-performance liquid chromatography, mass spectrometry, and nuclear magnetic resonance spectroscopy provide detailed identification and structural analysis of glycan species, there are significantly few low-cost, rapid glycan assays available for diagnostic and screening applications. Here we review instances in which glyco-biosensors have been used for glycan analysis using a variety of electrochemical transduction mechanisms (e.g., amperometric, potentiometric, impedimetric, and voltammetric, selective binding agents (e.g., lectins and antibodies, and redox species (e.g., enzyme substrates, inorganic, and nanomaterial.

  4. Electro-chemical sensors, sensor arrays and circuits

    Science.gov (United States)

    Katz, Howard E.; Kong, Hoyoul

    2014-07-08

    An electro-chemical sensor includes a first electrode, a second electrode spaced apart from the first electrode, and a semiconductor channel in electrical contact with the first and second electrodes. The semiconductor channel includes a trapping material. The trapping material reduces an ability of the semiconductor channel to conduct a current of charge carriers by trapping at least some of the charge carriers to localized regions within the semiconductor channel. The semiconductor channel includes at least a portion configured to be exposed to an analyte to be detected, and the trapping material, when exposed to the analyte, interacts with the analyte so as to at least partially restore the ability of the semiconductor channel to conduct the current of charge carriers.

  5. Diagnostics Strategies with Electrochemical Affinity Biosensors Using Carbon Nanomaterials as Electrode Modifiers

    Science.gov (United States)

    Campuzano, Susana; Yáñez-Sedeño, Paloma; Pingarrón, José M.

    2016-01-01

    Early diagnosis is often the key to successful patient treatment and survival. The identification of various disease signaling biomarkers which reliably reflect normal and disease states in humans in biological fluids explain the burgeoning research field in developing new methodologies able to determine the target biomarkers in complex biological samples with the required sensitivity and selectivity and in a simple and rapid way. The unique advantages offered by electrochemical sensors together with the availability of high affinity and specific bioreceptors and their great capabilities in terms of sensitivity and stability imparted by nanostructuring the electrode surface with different carbon nanomaterials have led to the development of new electrochemical biosensing strategies that have flourished as interesting alternatives to conventional methodologies for clinical diagnostics. This paper briefly reviews the advantages of using carbon nanostructures and their hybrid nanocomposites as electrode modifiers to construct efficient electrochemical sensing platforms for diagnosis. The review provides an updated overview of some selected examples involving attractive amplification and biosensing approaches which have been applied to the determination of relevant genetic and protein diagnostics biomarkers. PMID:28035946

  6. Construction and characterization of novel stress-responsive Deinococcal biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Joe, Min Ho; Lim, Sang Youg

    2012-01-15

    In this research, we constructed a recombinant whole-cell biosensor to detect mutagens (H2O2, mitomycin C, MNNG, bleomycin) using Deinococcus radiodurans and evaluated its possibility for actual application. We performed DNA microarray analysis and selected 10 candidate genes for biosensor recombinant plasmid construction. The expression of ddrA, ddrB, DR{sub 0}161, DR{sub 0}589, and pprA was highly increased after treatment of the target mutagens. Putative promoter region of the genes were used for LacZ-based biosensor plasmid construction by replacing groESL promoter of pRADZ3. Pormoter activity and specificity of the five recombinant LacZ-based biosensor strains harboring the recombinant plasmids was measured. The result indicated that the promoter region of ddrA is the most suitable promoter for the biosensor development. Red pigment-based biosensor plasmid was constructed by displacing lacZ with crtI. The sensor strain was constructed by transforming the sensor plasmid into crtI deleted mutant D. radiodurans strain. Finally, macroscopic detection of the target mutagens by the biosensor strain was evaluated. The strength of red pigment biosynthesis by this recombinant strain in response to the target mutagens was weaker than our expectation. Continuous damage to the sensor strain by the mutagens in the medium might be the main reason for this low red-pigment biosynthesis. Therefore, we propose that the LacZ-based biosensor is more effective than the biosensor using red pigment as indicator for the mutagen detection.

  7. Detection of vapor-phase organophosphate threats using wearable conformable integrated epidermal and textile wireless biosensor systems.

    Science.gov (United States)

    Mishra, Rupesh K; Martín, Aida; Nakagawa, Tatsuo; Barfidokht, Abbas; Lu, Xialong; Sempionatto, Juliane R; Lyu, Kay Mengjia; Karajic, Aleksandar; Musameh, Mustafa M; Kyratzis, Ilias L; Wang, Joseph

    2018-03-15

    Flexible epidermal tattoo and textile-based electrochemical biosensors have been developed for vapor-phase detection of organophosphorus (OP) nerve agents. These new wearable sensors, based on stretchable organophosphorus hydrolase (OPH) enzyme electrodes, are coupled with a fully integrated conformal flexible electronic interface that offers rapid and selective square-wave voltammetric detection of OP vapor threats and wireless data transmission to a mobile device. The epidermal tattoo and textile sensors display a good reproducibility (with RSD of 2.5% and 4.2%, respectively), along with good discrimination against potential interferences and linearity over the 90-300mg/L range, with a sensitivity of 10.7µA∙cm 3 ∙mg -1 (R 2 = 0.983) and detection limit of 12mg/L in terms of OP air density. Stress-enduring inks, used for printing the electrode transducers, ensure resilience against mechanical deformations associated with textile and skin-based on-body sensing operations. Theoretical simulations are used to estimate the OP air density over the sensor surface. These fully integrated wearable wireless tattoo and textile-based nerve-agent vapor biosensor systems offer considerable promise for rapid warning regarding personal exposure to OP nerve-agent vapors in variety of decentralized security applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. A New Laccase Based Biosensor for Tartrazine

    Directory of Open Access Journals (Sweden)

    Siti Zulaikha Mazlan

    2017-12-01

    Full Text Available Laccase enzyme, a commonly used enzyme for the construction of biosensors for phenolic compounds was used for the first time to develop a new biosensor for the determination of the azo-dye tartrazine. The electrochemical biosensor was based on the immobilization of laccase on functionalized methacrylate-acrylate microspheres. The biosensor membrane is a composite of the laccase conjugated microspheres and gold nanoparticles (AuNPs coated on a carbon-paste screen-printed electrode. The reaction involving tartrazine can be catalyzed by laccase enzyme, where the current change was measured by differential pulse voltammetry (DPV at 1.1 V. The anodic peak current was linear within the tartrazine concentration range of 0.2 to 14 μM (R2 = 0.979 and the detection limit was 0.04 μM. Common food ingredients or additives such as glucose, sucrose, ascorbic acid, phenol and sunset yellow did not interfere with the biosensor response. Furthermore, the biosensor response was stable up to 30 days of storage period at 4 °C. Foods and beverage were used as real samples for the biosensor validation. The biosensor response to tartrazine showed no significant difference with a standard HPLC method for tartrazine analysis.

  9. A New Laccase Based Biosensor for Tartrazine.

    Science.gov (United States)

    Mazlan, Siti Zulaikha; Lee, Yook Heng; Hanifah, Sharina Abu

    2017-12-09

    Laccase enzyme, a commonly used enzyme for the construction of biosensors for phenolic compounds was used for the first time to develop a new biosensor for the determination of the azo-dye tartrazine. The electrochemical biosensor was based on the immobilization of laccase on functionalized methacrylate-acrylate microspheres. The biosensor membrane is a composite of the laccase conjugated microspheres and gold nanoparticles (AuNPs) coated on a carbon-paste screen-printed electrode. The reaction involving tartrazine can be catalyzed by laccase enzyme, where the current change was measured by differential pulse voltammetry (DPV) at 1.1 V. The anodic peak current was linear within the tartrazine concentration range of 0.2 to 14 μM ( R ² = 0.979) and the detection limit was 0.04 μM. Common food ingredients or additives such as glucose, sucrose, ascorbic acid, phenol and sunset yellow did not interfere with the biosensor response. Furthermore, the biosensor response was stable up to 30 days of storage period at 4 °C. Foods and beverage were used as real samples for the biosensor validation. The biosensor response to tartrazine showed no significant difference with a standard HPLC method for tartrazine analysis.

  10. Poly(1-(2-carboxyethyl)pyrrole)/polypyrrole composite nanowires for glucose biosensor

    International Nuclear Information System (INIS)

    Jiang Hairong; Zhang Aifeng; Sun Yanan; Ru Xiaoning; Ge Dongtao; Shi Wei

    2012-01-01

    A novel glucose biosensor based on poly(1-(2-carboxyethyl)pyrrole) (PPyCOOH)/polypyrrole (PPy) composite nanowires was developed by immobilizing glucose oxidase (GOD) on the nanowires via covalent linkages. The PPyCOOH/PPy composite nanowires were fabricated by a facile two-step electrochemical synthesis route. First, PPy nanowires were synthesized in phosphate buffer solution using organic sulfonic acid, p-toluenesulfonate acid, as soft-template. Then, PPyCOOH/PPy composite nanowires were obtained by polymerizing 1-(2-carboxyethyl)pyrrole onto PPy nanowires via electrochemical method. Scanning electron microscopic, FT-IR spectra, X-ray photoelectron spectroscopy and cyclic voltammograms were used to characterize the structural and electrical behaviors of the composite nanowires. The PPyCOOH/PPy composite nanowires exhibited uniform diameter, high reactive site (-COOH), large specific surface, excellent electroactivity and good adhesion to electrode. The glucose biosensor was constructed by covalently coupling GOD to the composite nanowires. The biosensor response was rapid (5 s), highly sensitive (33.6 μA mM −1 cm −2 ) with a wide linear range (up to 10.0 mM) and low detection limit (0.63 μM); it also exhibited high stability and specificity to glucose. The attractive electrochemical and structural properties of PPyCOOH/PPy composite nanowires suggested potential application for electrocatalysis and biosensor.

  11. MIP sensors--the electrochemical approach.

    Science.gov (United States)

    Malitesta, Cosimino; Mazzotta, Elisabetta; Picca, Rosaria A; Poma, Alessandro; Chianella, Iva; Piletsky, Sergey A

    2012-02-01

    This review highlights the importance of coupling molecular imprinting technology with methodology based on electrochemical techniques for the development of advanced sensing devices. In recent years, growing interest in molecularly imprinted polymers (MIPs) in the preparation of recognition elements has led researchers to design novel formats for improvement of MIP sensors. Among possible approaches proposed in the literature on this topic, we will focus on the electrosynthesis of MIPs and on less common hybrid technology (e.g. based on electrochemistry and classical MIPs, or nanotechnology). Starting from the early work reported in this field, an overview of the most innovative and successful examples will be reviewed.

  12. An Electrochemical pH Sensor Based on the Amino-Functionalized Graphene and Polyaniline Composite Film.

    Science.gov (United States)

    Su, W; Xu, J; Ding, Xianting

    2016-12-01

    Conventional glass-based pH sensors are usually fragile and space consuming. Herein, a miniature electrochemical pH sensor based on amino-functionalized graphene fragments and polyaniline (NH 2 -G/PANI) composite film is developed via simply one-pot electrochemical polymerization on the ITO-coated glass substrates. Cyclic Voltammetry (CV), Scanning Electron Microscopy (SEM), Transmission electron microscopy (TEM), X-ray Photoelectron Spectroscopy (XPS), and Raman Spectra are involved to confirm the successful synthesis and to characterize the properties of the NH 2 -G/PANI composite film. The developed electrochemical pH sensor presents fast response, high sensitivity (51.1 mV/pH) and wide detection range when applied to PBS solutions of pH values from 1 to 11. The robust reproducibility and good stability of the developed pH sensors are investigated as well. Compared to the conventional glass-based pH meters, the NH 2 -G/PANI composite film-based pH sensor could be a promising contender for the flexible and miniaturized pH-sensing devices.

  13. Disposable L-lactate biosensor based on a screen-printed carbon electrode enhanced by graphene

    Science.gov (United States)

    Tu, Dandan; He, Yu; Rong, Yuanzhen; Wang, You; Li, Guang

    2016-04-01

    In this work, an amperometric L-lactate biosensor based on a graphene-modified screen-printed carbon electrode (SPCE) was constructed. First, the electrocatalytic performance of the SPCE modified with graphene by a one-step electrodeposition process (OerGO/SPCE) was investigated. The cyclic voltammogram of OerGO/SPCE, which showed a well-defined redox peak, had a smaller peak potential separation than that of SPCE, revealing the improvement in electron transfer speed brought about by modifying with graphene. Next, lactate oxidase and potassium ferricyanide were dropped on the OerGO/SPCE to construct a graphene-modified L-lactate biosensor (LOD/K3[Fe(CN)6]/OerGO/SPCE). The proposed biosensor, with a detection limit of 60 μM, had a high sensitivity (42.42 μA mM-1 cm-2) when working at a low working potential (0.15 V). The linear range was 0.5 mM-15 mM, covering the detecting range of L-lactate in clinical applications. The L-lactate biosensor had a short response time (10 s) and required only 10 μl of the sample. This L-lactate sensor modified with electrodeposited graphene had a larger sensitivity than that based on the bare SPCE. Thus, our low-cost and disposable L-lactate biosensor enhanced by graphene can perform as an attractive electrochemical device that can be manufactured for point-of-care testing (POCT) devices and be employed in POCT applications.

  14. Disposable L-lactate biosensor based on a screen-printed carbon electrode enhanced by graphene

    International Nuclear Information System (INIS)

    Tu, Dandan; He, Yu; Rong, Yuanzhen; Wang, You; Li, Guang

    2016-01-01

    In this work, an amperometric L-lactate biosensor based on a graphene-modified screen-printed carbon electrode (SPCE) was constructed. First, the electrocatalytic performance of the SPCE modified with graphene by a one-step electrodeposition process (OerGO/SPCE) was investigated. The cyclic voltammogram of OerGO/SPCE, which showed a well-defined redox peak, had a smaller peak potential separation than that of SPCE, revealing the improvement in electron transfer speed brought about by modifying with graphene. Next, lactate oxidase and potassium ferricyanide were dropped on the OerGO/SPCE to construct a graphene-modified L-lactate biosensor (LOD/K 3 [Fe(CN) 6 ]/OerGO/SPCE). The proposed biosensor, with a detection limit of 60 μM, had a high sensitivity (42.42 μA mM −1 cm −2 ) when working at a low working potential (0.15 V). The linear range was 0.5 mM–15 mM, covering the detecting range of L-lactate in clinical applications. The L-lactate biosensor had a short response time (10 s) and required only 10 μl of the sample. This L-lactate sensor modified with electrodeposited graphene had a larger sensitivity than that based on the bare SPCE. Thus, our low-cost and disposable L-lactate biosensor enhanced by graphene can perform as an attractive electrochemical device that can be manufactured for point-of-care testing (POCT) devices and be employed in POCT applications. (paper)

  15. Laser Scribed Graphene Biosensor for Detection of Biogenic Amines in Food Samples Using Locally Sourced Materials

    Directory of Open Access Journals (Sweden)

    Diana C. Vanegas

    2018-04-01

    Full Text Available In foods, high levels of biogenic amines (BA are the result of microbial metabolism that could be affected by temperatures and storage conditions. Thus, the level of BA is commonly used as an indicator of food safety and quality. This manuscript outlines the development of laser scribed graphene electrodes, with locally sourced materials, for reagent-free food safety biosensing. To fabricate the biosensors, the graphene surface was functionalized with copper microparticles and diamine oxidase, purchased from a local supermarket; and then compared to biosensors fabricated with analytical grade materials. The amperometric biosensor exhibits good electrochemical performance, with an average histamine sensitivity of 23.3 µA/mM, a lower detection limit of 11.6 µM, and a response time of 7.3 s, showing similar performance to biosensors constructed from analytical grade materials. We demonstrated the application of the biosensor by testing total BA concentration in fish paste samples subjected to fermentation with lactic acid bacteria. Biogenic amines concentrations prior to lactic acid fermentation were below the detection limit of the biosensor, while concentration after fermentation was 19.24 ± 8.21 mg histamine/kg, confirming that the sensor was selective in a complex food matrix. The low-cost, rapid, and accurate device is a promising tool for biogenic amine estimation in food samples, particularly in situations where standard laboratory techniques are unavailable, or are cost prohibitive. This biosensor can be used for screening food samples, potentially limiting food waste, while reducing chances of foodborne outbreaks.

  16. Electrochemical hydrogen isotope sensor based on solid electrolytes

    International Nuclear Information System (INIS)

    Matsumoto, Hiroshige; Hayashi, Hiroyuki; Iwahara, Hiroyasu

    2002-01-01

    An electrochemical sensor of hydrogen isotopes based on solid electrolytes for determining the hydrogen isotope ratios and/or total hydrogen pressures in gases has been developed. This paper describes the methodology of the hydrogen isotope sensing together with experimental results. When hydrogen isotope gases are introduced to an electrochemical cell using a proton-conducting electrolyte (hydrogen isotope cell), the electromotive force (EMF) of the cell agrees with that theoretically estimated. The EMF signals can be used for the determination of the hydrogen isotope ratio in gases if the total hydrogen pressure is predetermined. By supplementary use of an oxide ion conductor cell, both the ratio and total pressure of the hydrogen isotopes can be simultaneously determined. (author)

  17. Recent Development in Optical Fiber Biosensors

    Directory of Open Access Journals (Sweden)

    Catalina Bosch Ojeda

    2007-06-01

    Full Text Available Remarkable developments can be seen in the field of optical fibre biosensors in the last decade. More sensors for specific analytes have been reported, novel sensing chemistries or transduction principles have been introduced, and applications in various analytical fields have been realised. This review consists of papers mainly reported in the last decade and presents about applications of optical fiber biosensors. Discussions on the trends in optical fiber biosensor applications in real samples are enumerated.

  18. Progress in the electrochemical modification of graphene-based materials and their applications

    International Nuclear Information System (INIS)

    Chakrabarti, M.H.; Low, C.T.J.; Brandon, N.P.; Yufit, V.; Hashim, M.A.; Irfan, M.F.; Akhtar, J.; Ruiz-Trejo, E.; Hussain, M.A.

    2013-01-01

    Highlights: • Six means of functionalizing graphene electrochemically is reviewed. • Electrochemical functionalization is relatively new to other standard methods. • The technique is expected to improve graphene's application range considerably. -- Abstract: Graphene is a 2D allotrope of carbon with exciting properties such as extremely high electronic conductivity and superior mechanical strength. It has considerable potential for applications in fields such as bio-sensors, electrochemical energy storage and electronics. In most cases, graphene has been functionalized and modified with other materials to prepare composites. This work reviews the electrochemical modification of graphene. Commencing with a brief history, a summary of several different means of modifying graphene to effect diverse applications is provided. This is followed by a discussion on different composite materials that have been prepared with reduced graphene oxide prior to moving onto a detailed consideration of six different methods of electrochemically modifying graphene to prepare composite materials. These methods involve cathodic reduction of graphene oxide, electrophoretic deposition, electro-deposition techniques, electrospinning, electrochemical doping and electrochemical polymerization. Finally a consideration on the applications of electrochemically modified graphene composite materials in various fields is presented prior to discussing some prospects in enhancing the electrochemical process to realize excellent and economic composite materials in bulk

  19. Nanoscale surface modification for enhanced biosensing a journey toward better glucose monitoring

    CERN Document Server

    Zhang, Guigen

    2015-01-01

    This book gives a comprehensive overview of electrochemical-based biosensors and their crucial components. Practical examples are given throughout the text to illustrate how the performance of electrochemical-based biosensors can be improved by nanoscale surface modification and how an optimal design can be achieved. All essential aspects of biosensors are considered, including electrode functionalization, efficiency of the mass transport of reactive species, and long term durability and functionality of the sensor. This book also: ·       Explains how the performance of an electrochemical-based biosensor can be improved by nanoscale surface modification ·       Gives readers the tools to evaluate and improve the performance of a biosensor with a multidisciplinary approach that considers electrical, electrostatic, electrochemical, chemical, and biochemical events ·       Links the performance of a sensor to the various governing physical and chemical principles so readers can fully unders...

  20. Plasmonic biosensors.

    Science.gov (United States)

    Hill, Ryan T

    2015-01-01

    The unique optical properties of plasmon resonant nanostructures enable exploration of nanoscale environments using relatively simple optical characterization techniques. For this reason, the field of plasmonics continues to garner the attention of the biosensing community. Biosensors based on propagating surface plasmon resonances (SPRs) in films are the most well-recognized plasmonic biosensors, but there is great potential for the new, developing technologies to surpass the robustness and popularity of film-based SPR sensing. This review surveys the current plasmonic biosensor landscape with emphasis on the basic operating principles of each plasmonic sensing technique and the practical considerations when developing a sensing platform with the various techniques. The 'gold standard' film SPR technique is reviewed briefly, but special emphasis is devoted to the up-and-coming localized surface plasmon resonance and plasmonically coupled sensor technology. © 2014 Wiley Periodicals, Inc.

  1. Fabrication of highly sensitive gold nanourchins based electrochemical sensor for nanomolar determination of primaquine

    International Nuclear Information System (INIS)

    Thapliyal, Neeta Bachheti; Chiwunze, Tirivashe Elton; Karpoormath, Rajshekhar; Cherukupalli, Srinivasulu

    2017-01-01

    A gold nanourchins modified glassy carbon electrode (AuNu/GCE) was developed for the determination of antimalarial drug, primaquine (PQ). The surface of AuNu/GCE was characterized by electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and cyclic voltammetry (CV). EIS results indicated that the electron transfer process at AuNu/GCE was faster as compared to the bare electrode. The SEM and TEM image confirmed the presence and uniform dispersion of gold nanourchins on the GCE surface. Upon investigating the electrochemical behavior of PQ at AuNu/GCE, the developed sensor was found to exhibit high electrocatalytic activity towards the oxidation of PQ. Under optimal experimental conditions, the sensor showed fast and sensitive current response to PQ over a linear concentration range of 0.01–1 μM and 0.001–1 μM with a detection limit of 3.5 nM and 0.9 nM using differential pulse voltammetry (DPV) and square wave voltammetry (SWV), respectively. The AuNu/GCE showed good selectivity, reproducibility and stability. Further, the developed sensor was successfully applied to determine the drug in human urine samples and pharmaceutical formulations demonstrating its analytical applicability in clinical analysis as well as quality control. The proposed method thus provides a promising alternative in routine sensing of PQ as well as promotes the application of gold nanourchins in electrochemical sensors. - Graphical abstract: A gold nanourchins modified glassy carbon electrode was fabricated and used as an electrochemical sensing platform for the determination of primaquine. Display Omitted - Highlights: • Gold nanourchins based electrochemical sensor for determination of primaquine • A detection limit of 0.9 nM was obtained using square wave voltammetry. • Proposed method was applied to quantify the drug in tablet and human urine samples. • Fast, simple and low-cost method for trace analysis of

  2. Fabrication of highly sensitive gold nanourchins based electrochemical sensor for nanomolar determination of primaquine

    Energy Technology Data Exchange (ETDEWEB)

    Thapliyal, Neeta Bachheti, E-mail: thapliyaln@ukzn.ac.za; Chiwunze, Tirivashe Elton; Karpoormath, Rajshekhar, E-mail: karpoormath@ukzn.ac.za; Cherukupalli, Srinivasulu

    2017-05-01

    A gold nanourchins modified glassy carbon electrode (AuNu/GCE) was developed for the determination of antimalarial drug, primaquine (PQ). The surface of AuNu/GCE was characterized by electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and cyclic voltammetry (CV). EIS results indicated that the electron transfer process at AuNu/GCE was faster as compared to the bare electrode. The SEM and TEM image confirmed the presence and uniform dispersion of gold nanourchins on the GCE surface. Upon investigating the electrochemical behavior of PQ at AuNu/GCE, the developed sensor was found to exhibit high electrocatalytic activity towards the oxidation of PQ. Under optimal experimental conditions, the sensor showed fast and sensitive current response to PQ over a linear concentration range of 0.01–1 μM and 0.001–1 μM with a detection limit of 3.5 nM and 0.9 nM using differential pulse voltammetry (DPV) and square wave voltammetry (SWV), respectively. The AuNu/GCE showed good selectivity, reproducibility and stability. Further, the developed sensor was successfully applied to determine the drug in human urine samples and pharmaceutical formulations demonstrating its analytical applicability in clinical analysis as well as quality control. The proposed method thus provides a promising alternative in routine sensing of PQ as well as promotes the application of gold nanourchins in electrochemical sensors. - Graphical abstract: A gold nanourchins modified glassy carbon electrode was fabricated and used as an electrochemical sensing platform for the determination of primaquine. Display Omitted - Highlights: • Gold nanourchins based electrochemical sensor for determination of primaquine • A detection limit of 0.9 nM was obtained using square wave voltammetry. • Proposed method was applied to quantify the drug in tablet and human urine samples. • Fast, simple and low-cost method for trace analysis of

  3. Synthesis and Characterization of Polyaniline/Graphene Composite Nanofiber and Its Application as an Electrochemical DNA Biosensor for the Detection of Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Fatimah Syahidah Mohamad

    2017-12-01

    Full Text Available This article describes chemically modified polyaniline and graphene (PANI/GP composite nanofibers prepared by self-assembly process using oxidative polymerization of aniline monomer and graphene in the presence of a solution containing poly(methyl vinyl ether-alt-maleic acid (PMVEA. Characterization of the composite nanofibers was carried out by Fourier transform infrared (FTIR and Raman spectroscopy, transmission electron microscopy (TEM and scanning electron microscopy (SEM. SEM images revealed the size of the PANI nanofibers ranged from 90 to 360 nm in diameter and was greatly influenced by the proportion of PMVEA and graphene. The composite nanofibers with an immobilized DNA probe were used for the detection of Mycobacterium tuberculosis by using an electrochemical technique. A photochemical indicator, methylene blue (MB was used to monitor the hybridization of target DNA by using differential pulse voltammetry (DPV method. The detection range of DNA biosensor was obtained from of 10−6–10−9 M with the detection limit of 7.853 × 10−7 M under optimum conditions. The results show that the composite nanofibers have a great potential in a range of applications for DNA sensors.

  4. Effects of Nanowire Length and Surface Roughness on the Electrochemical Sensor Properties of Nafion-Free, Vertically Aligned Pt Nanowire Array Electrodes

    Directory of Open Access Journals (Sweden)

    Zhiyang Li

    2015-09-01

    Full Text Available In this paper, vertically aligned Pt nanowire arrays (PtNWA with different lengths and surface roughnesses were fabricated and their electrochemical performance toward hydrogen peroxide (H2O2 detection was studied. The nanowire arrays were synthesized by electroplating Pt in nanopores of anodic aluminum oxide (AAO template. Different parameters, such as current density and deposition time, were precisely controlled to synthesize nanowires with different surface roughnesses and various lengths from 3 μm to 12 μm. The PtNWA electrodes showed better performance than the conventional electrodes modified by Pt nanowires randomly dispersed on the electrode surface. The results indicate that both the length and surface roughness can affect the sensing performance of vertically aligned Pt nanowire array electrodes. Generally, longer nanowires with rougher surfaces showed better electrochemical sensing performance. The 12 μm rough surface PtNWA presented the largest sensitivity (654 μA·mM−1·cm−2 among all the nanowires studied, and showed a limit of detection of 2.4 μM. The 12 μm rough surface PtNWA electrode also showed good anti-interference property from chemicals that are typically present in the biological samples such as ascorbic, uric acid, citric acid, and glucose. The sensing performance in real samples (river water was tested and good recovery was observed. These Nafion-free, vertically aligned Pt nanowires with surface roughness control show great promise as versatile electrochemical sensors and biosensors.

  5. Prussian Blue acts as a mediator in a reagentless cytokinin biosensor

    International Nuclear Information System (INIS)

    Kowalska, Marta; Tian Faming; Smehilova, Maria; Galuszka, Petr; Frebort, Ivo; Napier, Richard; Dale, Nicholas

    2011-01-01

    Highlights: · An electrochemical biosensor for detection of the plant hormone cytokinin. · Constitutive expression system for large-scale protein production. · CKX enzyme entrapment in sol-gel film on the surface of a PrB-modified electrode. · Prussian Blue as an electron mediator between the enzyme and the electrode. · The biosensor was sensitive to micromolar concentrations of several cytokinins. - Abstract: An electrochemical biosensor for detection of the plant hormone cytokinin is introduced. Cytokinin homeostasis in tissues of many lower and higher plants is controlled largely by the activity of cytokinin dehydrogenase (CKX, EC 1.5.99.12) that catalyzes an irreversible cleavage of N 6 -side chain of cytokinins. Expression of Arabidopsis thaliana CKX2 from Pichia pastoris was used to prepare purified AtCKX2 as the basis of the cytokinin biosensor. Prussian Blue (PrB) was electrodeposited on Pt microelectrodes prior to deposition of the enzyme in a sol-gel matrix. The biosensor gave amperometric responses to several cytokinins. These responses depended on the presence of both the enzyme and the Prussian Blue. Thus Prussian Blue must act as an electron mediator between the FAD centre in CKX2 and the Pt surface.

  6. Online Monitoring of Electrochemical Degradation of Paracetamol through a Biomimetic Sensor

    Directory of Open Access Journals (Sweden)

    Mariana Calora Quintino de Oliveira

    2011-01-01

    Full Text Available This paper reports, for the first time, the online monitoring to the electrochemical degradation of the paracetamol using a biomimetic sensor coupled to a Flow Injection Analysis (FIA system. The electrochemical degradation of the drug was carried out in aqueous medium using a flow-by reactor with a DSA anode. The process efficiency was monitored at real time by the biomimetic sensor constructed by modifying a glassy carbon electrode with a Nafion membrane doped with iron tetrapyridinoporphyrazine (FeTPyPz. Simultaneously, we carried out off-line analysis by liquid chromatography (HPLC during the experiments in order to validate the proposed system. In addition, to investigate the degradation products of the paracetamol electrolysis, we used the techniques of UPLC/MS and GC/MS.

  7. Tyrosinase-Based Biosensors for Selective Dopamine Detection

    Directory of Open Access Journals (Sweden)

    Monica Florescu

    2017-06-01

    Full Text Available A novel tyrosinase-based biosensor was developed for the detection of dopamine (DA. For increased selectivity, gold electrodes were previously modified with cobalt (II-porphyrin (CoP film with electrocatalytic activity, to act both as an electrochemical mediator and an enzyme support, upon which the enzyme tyrosinase (Tyr was cross-linked. Differential pulse voltammetry was used for electrochemical detection and the reduction current of dopamine-quinone was measured as a function of dopamine concentration. Our experiments demonstrated that the presence of CoP improves the selectivity of the electrode towards dopamine in the presence of ascorbic acid (AA, with a linear trend of concentration dependence in the range of 2–30 µM. By optimizing the conditioning parameters, a separation of 130 mV between the peak potentials for ascorbic acid AA and DA was obtained, allowing the selective detection of DA. The biosensor had a sensitivity of 1.22 ± 0.02 µA·cm−2·µM−1 and a detection limit of 0.43 µM. Biosensor performances were tested in the presence of dopamine medication, with satisfactory results in terms of recovery (96%, and relative standard deviation values below 5%. These results confirmed the applicability of the biosensors in real samples such as human urine and blood serum.

  8. Background reduction in a young interferometer biosensor

    NARCIS (Netherlands)

    Mulder, H. K P; Subramaniam, V.; Kanger, J. S.

    2014-01-01

    Integrated optical Young interferometer (IOYI) biosensors are among the most sensitive label-free biosensors. Detection limits are in the range of 20 fg/mm2. The applicability of these sensors is however strongly hampered by the large background that originates from both bulk refractive index

  9. EDTA assisted synthesis of hydroxyapatite nanoparticles for electrochemical sensing of uric acid

    International Nuclear Information System (INIS)

    Kanchana, P.; Sekar, C.

    2014-01-01

    Hydroxyapatite nanoparticles have been synthesized using EDTA as organic modifier by a simple microwave irradiation method and its application for the selective determination of uric acid (UA) has been demonstrated. Electrochemical behavior of uric acid at HA nanoparticle modified glassy carbon electrode (E-HA/GCE) has been investigated by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), linear sweep voltammetry (LSV) and amperometry. The E-HA modified electrode exhibits efficient electrochemical activity towards uric acid sensing without requiring enzyme or electron mediator. Amperometry studies revealed that the fabricated electrode has excellent sensitivity for uric acid with the lowest detection limit of 142 nM over a wide concentration range from 1 × 10 −7 to 3 × 10 −5 M. Moreover, the studied E-HA modified GC electrode exhibits a good reproducibility and long-term stability and an admirable selectivity towards the determination of UA even in the presence of potential interferents. The analytical performance of this sensor was evaluated for the detection of uric acid in human urine and blood serum samples. - Highlights: • EDTA- hydroxyapatite (HA) nanoparticles have been synthesized by microwave irradiation method. • A novel amperometric Uric Acid biosensor has been fabricated using E-HA/GCE. • The fabricated sensor exhibits a wide linear range, good stability and high reproducibility. • The sensor was applied for the detection of UA in human blood serum and urine

  10. Phosphomolybdic acid functionalized graphene loading copper nanoparticles modified electrodes for non-enzymatic electrochemical sensing of glucose

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jiaoyan; Cao, Xiyue [College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Collaborative Innovation Center for Marine Biomass Fiber Materials and Textiles, Laboratory of Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071 (China); Xia, Jianfei, E-mail: xiajianfei@126.com [College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Collaborative Innovation Center for Marine Biomass Fiber Materials and Textiles, Laboratory of Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071 (China); Gong, Shida [College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Collaborative Innovation Center for Marine Biomass Fiber Materials and Textiles, Laboratory of Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071 (China); Wang, Zonghua, E-mail: wangzonghua@qdu.edu.cn [College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Collaborative Innovation Center for Marine Biomass Fiber Materials and Textiles, Laboratory of Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071 (China); Lu, Lin [College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Collaborative Innovation Center for Marine Biomass Fiber Materials and Textiles, Laboratory of Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071 (China); Zibo Normal College, Zibo, Shandong 255100 (China)

    2016-08-31

    A sensitive non-enzymatic glucose electrochemical biosensor (Cu/PMo{sub 12}-GR/GCE) was developed based on the combination of copper nanoparticles (CuNPs) and phosphomolybdic acid functionalized graphene (PMo{sub 12}-GR). PMo{sub 12}-GR films were modified on the surface of glassy carbon electrode (GCE) through electrostatic self-assembly with the aid of poly diallyl dimethyl ammonium chloride (PDDA). Then CuNPs were successfully decorated onto the PMo{sub 12}-GR modified GCE through electrodeposition. The morphology of Cu/PMo{sub 12}-GR/GCE was characterized by scanning electron microscope (SEM). Cyclic voltammetry (CV) and chronoamperometry were used to investigate the electrochemical performances of the biosensor. The results indicated that the modified electrode displayed a synergistic effect of PMo{sub 12}-GR sheets and CuNPs towards the electro-oxidation of glucose in the alkaline solution. At the optimal detection potential of 0.50 V, the response towards glucose presented a linear response ranging from 0.10 μM to 1.0 mM with a detection limit of 3.0 × 10{sup −2} μM (S/N = 3). In addition, Cu/PMo{sub 12}-GR/GCE possessed a high selectivity, good reproducibility, excellent stability and acceptable recovery, which indicating the potential application in clinical field. - Highlights: • Cu/PMo{sub 12}-GR/GCE as a non-enzymatic glucose electrochemical sensor. • PMo{sub 12} is efficient for the uniform growth of Cu-NPs and electron transport. • The sensor exhibits good sensitivity and specificity towards glucose.

  11. Enhancing the electrochemical response of myoglobin with carbon nanotube electrodes.

    Science.gov (United States)

    Esplandiu, M J; Pacios, M; Cyganek, L; Bartroli, J; del Valle, M

    2009-09-02

    In this paper, the electrochemical behavior of different myoglobin-modified carbon electrodes is evaluated. In particular, the performance of voltammetric biosensors made of forest-like carbon nanotubes, carbon nanotube composites and graphite composites is compared by monitoring mainly the electrocatalytic reduction of H(2)O(2) by myoglobin and their corresponding electroanalytical characteristics. Graphite composites showed the worst electroanalytical performance, exhibiting a small linear range, a limit of detection (LOD) of 9 x 10(-5) M and low sensitivity. However, it was found that the electrochemical response was enhanced with the use of carbon nanotube-based electrodes with LOD up to 5 x 10(-8) M, higher sensitivities and wider linear range response. On the one hand, in the case of the CNT epoxy composite, the improvement in the response can be mainly attributed to its more porous surface which allows the immobilization of higher amounts of the electroactive protein. On the other hand, in the case of the forest-like CNT electrodes, the enhancement is due to an increase in the electron transfer kinetics. These findings encourage the use of myoglobin-modified carbon nanotube electrodes as potential (bio)sensors of H(2)O(2) or O(2) in biology, microbiology and environmental fields.

  12. Electrochemical sensors for detection of acetylsalicylic acid

    OpenAIRE

    Šupálková, Veronika; Petřek, Jiří; Havel, Ladislav; Křížková, Soňa; Petrlová, Jitka; Adam, Vojtěch; Potěšil, David; Babula, Petr; Beklová, Miroslava; Horna, Aleš; Kizek, René

    2006-01-01

    Acetylsalicylic acid ( AcSA), or aspirin, was introduced in the late 1890s and has been used to treat a variety of inflammatory conditions. The aim of this work was to suggest electrochemical sensor for acetylsalicylic detection. Primarily, we utilized square wave voltammetry ( SWV) using both carbon paste electrode ( CPE) and of graphite pencil electrode ( GPE) as working ones to indirect determination of AcSA. The principle of indirect determination of AcSA bases in its hydrolysis on salicy...

  13. Electrochemically induced chemical sensor properties in graphite screen-printed electrodes: The case of a chemical sensor for uranium

    International Nuclear Information System (INIS)

    Kostaki, Vasiliki T.; Florou, Ageliki B.; Prodromidis, Mamas I.

    2011-01-01

    Highlights: → Electrochemical treatment endows analytical characteristics to SPEs. → A sensitive chemical sensor for uranium is described. → Performance is due to a synergy between electrochemical treatment and ink's solvents. → The amount of the solvent controls the achievable sensitivity. - Abstract: We report for the first time on the possibility to develop chemical sensors based on electrochemically treated, non-modified, graphite screen-printed electrodes (SPEs). The applied galvanostatic treatment (5 μA for 6 min in 0.1 M H 2 SO 4 ) is demonstrated to be effective for the development of chemical sensors for the determination of uranium in aqueous solutions. A detailed study of the effect of various parameters related to the fabrication of SPEs on the performance of the resulting sensors along with some diagnostic experiments on conventional graphite electrodes showed that the inducible analytical characteristics are due to a synergy between electrochemical treatment and ink's solvents. Indeed, the amount of the latter onto the printed working layer controls the achievable sensitivity. The preconcentration of the analyte was performed in an electroless mode in an aqueous solutions of U(VI), pH 4.6, and then, the accumulated species was reduced by means of a differential pulse voltammetry scan in 0.1 M H 3 BO 3 , pH 3. Under selected experimental conditions, a linear calibration curve over the range 5 x 10 -9 to 10 -7 M U(VI) was constructed. The 3σ limit of detection at a preconcentration time of 30 min, and the relative standard deviation of the method were 4.5 x 10 -9 M U(VI) and >12% (n = 5, 5 x 10 -8 M U(VI)), respectively. The effect of potential interferences was also examined.

  14. Positioning of the sensor cell on the sensing area using cell trapping pattern in incubation type planar patch clamp biosensor.

    Science.gov (United States)

    Wang, Zhi-Hong; Takada, Noriko; Uno, Hidetaka; Ishizuka, Toru; Yawo, Hiromu; Urisu, Tsuneo

    2012-08-01

    Positioning the sensor cell on the micropore of the sensor chip and keeping it there during incubation are problematic tasks for incubation type planar patch clamp biosensors. To solve these problems, we formed on the Si sensor chip's surface a cell trapping pattern consisting of a lattice pattern with a round area 5 μm deep and with the micropore at the center of the round area. The surface of the sensor chip was coated with extra cellular matrix collagen IV, and HEK293 cells on which a chimera molecule of channel-rhodopsin-wide-receiver (ChR-WR) was expressed, were then seeded. We examined the effects of this cell trapping pattern on the biosensor's operation. In the case of a flat sensor chip without a cell trapping pattern, it took several days before the sensor cell covered the micropore and formed an almost confluent state. As a result, multi-cell layers easily formed and made channel current measurements impossible. On the other hand, the sensor chip with cell trapping pattern easily trapped cells in the round area, and formed the colony consisted of the cell monolayer covering the micropore. A laser (473 nm wavelength) induced channel current was observed from the whole cell arrangement formed using the nystatin perforation technique. The observed channel current characteristics matched measurements made by using a pipette patch clamp. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Development of an Amperometric Biosensor Platform for the Combined Determination of L-Malic, Fumaric, and L-Aspartic Acid.

    Science.gov (United States)

    Röhlen, Désirée L; Pilas, Johanna; Schöning, Michael J; Selmer, Thorsten

    2017-10-01

    Three amperometric biosensors have been developed for the detection of L-malic acid, fumaric acid, and L -aspartic acid, all based on the combination of a malate-specific dehydrogenase (MDH, EC 1.1.1.37) and diaphorase (DIA, EC 1.8.1.4). The stepwise expansion of the malate platform with the enzymes fumarate hydratase (FH, EC 4.2.1.2) and aspartate ammonia-lyase (ASPA, EC 4.3.1.1) resulted in multi-enzyme reaction cascades and, thus, augmentation of the substrate spectrum of the sensors. Electrochemical measurements were carried out in presence of the cofactor β-nicotinamide adenine dinucleotide (NAD + ) and the redox mediator hexacyanoferrate (III) (HCFIII). The amperometric detection is mediated by oxidation of hexacyanoferrate (II) (HCFII) at an applied potential of + 0.3 V vs. Ag/AgCl. For each biosensor, optimum working conditions were defined by adjustment of cofactor concentrations, buffer pH, and immobilization procedure. Under these improved conditions, amperometric responses were linear up to 3.0 mM for L-malate and fumarate, respectively, with a corresponding sensitivity of 0.7 μA mM -1 (L-malate biosensor) and 0.4 μA mM -1 (fumarate biosensor). The L-aspartate detection system displayed a linear range of 1.0-10.0 mM with a sensitivity of 0.09 μA mM -1 . The sensor characteristics suggest that the developed platform provides a promising method for the detection and differentiation of the three substrates.

  16. Indicator Based and Indicator - Free Electrochemical DNA Biosensors

    National Research Council Canada - National Science Library

    Kerman, Kagan

    2001-01-01

    The utility and advantages of an indicator free and MB based sequence specific DNA hybridization biosensor based on guanine and adenine oxidation signals and MB reduction signals have been demonstrated...

  17. Electrochemical aptasensor for detecting Der p2 allergen using polycarbonate-based double-generation gold nanoparticle chip

    Directory of Open Access Journals (Sweden)

    Ming-Che Shen

    2017-04-01

    Full Text Available In this study, a novel aptamer-based impedimetric biosensor for detecting the group 2 allergen of Dermatophagoides pteronyssinus (Der p2 was developed. First, an anodic aluminum oxide (AAO membrane was prepared. A modified AAO barrier-layer surface with an array of nanohemispheres of 400 nm in diameter was used as a template for the nanoelectroforming of a nickel mold. After electroforming, the AAO template was etched and a nickel nanomold with a concave nanostructure array was produced. The formed nanostructured nickel nanomold was then used in the replica molding of a nanostructured polycarbonate (PC substrate via hot embossing. Finally, a gold thin film was sputtered onto the PC substrate to form a double-generation gold nanoparticle electrode (array of nanohemispheres with smaller nanoparticles orderly distributed on each nanohemisphere. After immobilizing specifically designed aptamers on the fabricated electrode, electrochemical impedance spectroscopy was used to determine the concentration of Der p2. The sensitivity of the proposed scheme for the detection of the dust mite antigen Der p2 was 2.088 Ω / (ng/mL × cm2 with a dynamic detection range of 27.5–400 ng/mL and detection limit of 16.47 ng/mL.The aptamer-based impedimetric biosensor proposed in this study possesses many advantages such as high sensitivity, low cost, and high consistency over currently used sensors. The proposed sensor was found to be useful for the rapid detection of rare molecules present in an analyte. Keywords: Aptamers, Der p2 dust mite allergen detection, Nanostructured biosensors, Electrochemical impedance spectroscopy

  18. A glucose biosensor based on glucose oxidase immobilized on three-dimensional porous carbon electrodes.

    Science.gov (United States)

    Chen, Jingyi; Zhu, Rong; Huang, Jia; Zhang, Man; Liu, Hongyu; Sun, Min; Wang, Li; Song, Yonghai

    2015-08-21

    A novel glucose biosensor was developed by immobilizing glucose oxidase (GOD) on a three-dimensional (3D) porous kenaf stem-derived carbon (3D-KSC) which was firstly proposed as a novel supporting material to load biomolecules for electrochemical biosensing. Here, an integrated 3D-KSC electrode was prepared by using a whole piece of 3D-KSC to load the GOD molecules for glucose biosensing. The morphologies of integrated 3D-KSC and 3D-KSC/GOD electrodes were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The SEM results revealed a 3D honeycomb macroporous structure of the integrated 3D-KSC electrode. The TEM results showed some microporosities and defects in the 3D-KSC electrode. The electrochemical behaviors and electrocatalytic performance of the integrated 3D-KSC/GOD electrode were evaluated by cyclic voltammetry and electrochemical impedance spectroscopy. The effects of pH and scan rates on the electrochemical response of the biosensor have been studied in detail. The glucose biosensor showed a wide linear range from 0.1 mM to 14.0 mM with a high sensitivity of 1.73 μA mM(-1) and a low detection limit of 50.75 μM. Furthermore, the glucose biosensor exhibited high selectivity, good repeatability and reproducibility, and good stability.

  19. Impedimetric microbial biosensor based on single wall carbon nanotube modified microelectrodes for trichloroethylene detection

    International Nuclear Information System (INIS)

    Hnaien, M.; Bourigua, S.; Bessueille, F.; Bausells, J.; Errachid, A.; Lagarde, F.; Jaffrezic-Renault, N.

    2011-01-01

    Highlights: ► We propose an impedimetric microbial biosensor for trichloroethylene detection. ► A new transducer modified with carbon nanotubes and Pseudomonas putida is evaluated. ► Functionalization steps are controlled by impedance spectroscopy and AFM. ► The biosensor offers good sensitivity, selectivity, linear range and stability. ► The biosensor is successfully applied to spiked natural water samples. - Abstract: Contamination of soils and groundwaters with persistent organic pollutants is a matter of increasing concern. The most common organic pollutants are chlorinated hydrocarbons such as perchloroethylene and trichloroethylene (TCE). In this study, we developed a bacterial impedimetric biosensor for TCE detection, based on the immobilization of Pseudomonas putida F1 strain on gold microelectrodes functionalized with single wall carbon nanotubes covalently linked to anti-Pseudomonas antibodies. The different steps of microelectrodes functionalization were characterized by electrochemical impedance and atomic force spectroscopies, and analytical performances of the developed microbial biosensor were determined. The impedimetric biosensor response was linear with TCE concentration up to 150 μg L −1 and a low limit of detection (20 μg L −1 ) was achieved. No significant loss of signal was observed after 4 weeks of storage at 4 °C in phosphate buffer saline pH 7 (three to four measurements a week). After 5 weeks, 90% of the initial value still remained. cis-1,2-Dichloroethylene and vinylchloride, the main TCE degradation products, did not significantly interfere with TCE. The microbial sensor was finally applied to the determination of TCE in natural water samples spiked at the 30, 50 and 75 μg L −1 levels. Recoveries were very good, ranging from 100 to 103%.

  20. Optical biosensor optimized for continuous in-line glucose monitoring in animal cell culture.

    Science.gov (United States)

    Tric, Mircea; Lederle, Mario; Neuner, Lisa; Dolgowjasow, Igor; Wiedemann, Philipp; Wölfl, Stefan; Werner, Tobias

    2017-09-01

    Biosensors for continuous glucose monitoring in bioreactors could provide a valuable tool for optimizing culture conditions in biotechnological applications. We have developed an optical biosensor for long-term continuous glucose monitoring and demonstrated a tight glucose level control during cell culture in disposable bioreactors. The in-line sensor is based on a commercially available oxygen sensor that is coated with cross-linked glucose oxidase (GOD). The dynamic range of the sensor was tuned by a hydrophilic perforated diffusion membrane with an optimized permeability for glucose and oxygen. The biosensor was thoroughly characterized by experimental data and numerical simulations, which enabled insights into the internal concentration profile of the deactivating by-product hydrogen peroxide. The simulations were carried out with a one-dimensional biosensor model and revealed that, in addition to the internal hydrogen peroxide concentration, the turnover rate of the enzyme GOD plays a crucial role for biosensor stability. In the light of this finding, the glucose sensor was optimized to reach a long functional stability (>52 days) under continuous glucose monitoring conditions with a dynamic range of 0-20 mM and a response time of t 90  ≤ 10 min. In addition, we demonstrated that the sensor was sterilizable with beta and UV irradiation and only subjected to minor cross sensitivity to oxygen, when an oxygen reference sensor was applied. Graphical abstract Measuring setup of a glucose biosensor in a shake flask for continuous glucose monitoring in mammalian cell culture.

  1. Preparation and characterization of AuNPs/CNTs-ErGO electrochemical sensors for highly sensitive detection of hydrazine.

    Science.gov (United States)

    Zhao, Zhenting; Sun, Yongjiao; Li, Pengwei; Zhang, Wendong; Lian, Kun; Hu, Jie; Chen, Yong

    2016-09-01

    A highly sensitive electrochemical sensor of hydrazine has been fabricated by Au nanoparticles (AuNPs) coating of carbon nanotubes-electrochemical reduced graphene oxide composite film (CNTs-ErGO) on glassy carbon electrode (GCE). Cyclic voltammetry and potential amperometry have been used to investigate the electrochemical properties of the fabricated sensors for hydrazine detection. The performances of the sensors were optimized by varying the CNTs to ErGO ratio and the quantity of Au nanoparticles. The results show that under optimal conditions, a sensitivity of 9.73μAμM(-1)cm(-2), a short response time of 3s, and a low detection limit of 0.065μM could be achieved with a linear concentration response range from 0.3μM to 319μM. The enhanced electrochemical performances could be attributed to the synergistic effect between AuNPs and CNTs-ErGO film and the outstanding catalytic effect of the Au nanoparticles. Finally, the sensor was successfully used to analyse the tap water, showing high potential for practical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Architecture of a modular, multichannel readout system for dense electrochemical biosensor microarrays

    International Nuclear Information System (INIS)

    Ramfos, Ioannis; Birbas, Alexios; Blionas, Spyridon

    2015-01-01

    The architecture of a modular, multichannel readout system for dense electrochemical microarrays, targeting Lab-on-a-Chip applications, is presented. This approach promotes efficient component reusability through a hybrid multiplexing methodology, maintaining high levels of sampling performance and accuracy. Two readout modes are offered, which can be dynamically interchanged following signal profiling, to cater for both rapid signal transitions and weak current responses. Additionally, functional extensions to the described architecture are discussed, which provide the system with multi-biasing capabilities. A prototype integrated circuit of the proposed architecture’s analog core and a supporting board were implemented to verify the working principles. The system was evaluated using standard loads, as well as electrochemical sensor arrays. Through a range of operating conditions and loads, the prototype exhibited a highly linear response and accurately delivered the readout of input signals with fast transitions and wide dynamic ranges. (paper)

  3. Recent advances in polymer supporting layered double hydroxides nanocomposite for electrochemical biosensors

    Science.gov (United States)

    Dhanasekaran, T.; Padmanaban, A.; Gnanamoorthy, G.; Manigandan, R.; Praveen Kumar, S.; Stephen, A.; Narayanan, V.

    2018-01-01

    In recent years, layered double hydroxides (LDHs) materials having emerging due to their ability of intercalate a variety of anions, either organic or inorganic molecules. The most significance of the LDHs has been found potential applications in catalysis, wastewater treatment, and electrochemical sensors. The Mg-Al LDHs (MAL) and Poly-o-phenylenediamine @ Mg-Al LDHs (P-MAL) was prepared via simple one step hydrothermal method. As prepared material was characterized using many techniques such as, the structural and crystal phase was determined from XRD and Raman analyses. The functional groups were depicted using FT-IR spectroscopy. The optical propertied studied using diffuse reflectance spectroscopy UV-vis spectroscopy and the emission property were analyzed from Photoluminescence spectroscopy. The surface morphology and average particle size was analyzed using FESEM microscopy. The prepared polymer composite material P-MAL was further used for highly sensitive electrochemical detection towards dopamine (DA).

  4. Comparative study of thermal stability of magnetostrictive biosensor between two kinds of biorecognition elements

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Xue-mei [School of Materials Science and Engineering, Changzhou University, Changzhou 213164 (China); Guntupalli, R.; Lakshmanan, R.S.; Chin, Bryan A. [Materials Research and Education Center, Auburn University, AL 36849 (United States); Hu, Jing, E-mail: jinghoo@126.com [School of Materials Science and Engineering, Changzhou University, Changzhou 213164 (China); Materials Research and Education Center, Auburn University, AL 36849 (United States)

    2014-08-01

    Magnetostrictive biosensors specific to Salmonella typhimurium were prepared by immobilizing antibody or phage as biorecognition elements onto the magnetostrictive sensor platform. The sensors were stored at temperatures of 25 °C (room temperature), 45 °C and 65 °C, respectively, and the ability to bind S. typhimurium was detected by testing the resonant frequency shift using a HP network analyzer after exposure to 1 mL of 1 × 10{sup 9} cfu/mL of S. typhimurium at a predetermined schedule. The binding of S. typhimurium to biosensors was confirmed by Scanning Electron Microscopy (SEM). The results showed that there existed an initial sudden drop in the average density of S. typhimurium bound to the biosensor surface versus duration at different temperatures for the two kinds of recognition elements, and the binding ability to S. typhimurium of phage-immobilized biosensors was much better than that of antibody-immobilized biosensors, with longevity longer than 30 days at all tested temperatures, though decreasing gradually over the testing period. While the longevity of antibody-immobilized biosensors was only about 30, 8 and 5 days at room temperature (25 °C), 45 °C and 65 °C, respectively. Meanwhile, the activation energy of the two kinds of biosensors was investigated, and it was found that phage immobilized sensors showed much higher activation energy than antibody immobilized sensors, which resulted in less dependency on temperature and thus having much better thermal stability than antibody immobilized sensors. - Highlights: • Phage immobilized biosensors has much better thermal stability. • The longevity of phage immobilized biosensors was longer than 30 days even at 65 °C. • The activation energy of phage immobilized biosensors is much higher.

  5. Comparative study of thermal stability of magnetostrictive biosensor between two kinds of biorecognition elements

    International Nuclear Information System (INIS)

    Ye, Xue-mei; Guntupalli, R.; Lakshmanan, R.S.; Chin, Bryan A.; Hu, Jing

    2014-01-01

    Magnetostrictive biosensors specific to Salmonella typhimurium were prepared by immobilizing antibody or phage as biorecognition elements onto the magnetostrictive sensor platform. The sensors were stored at temperatures of 25 °C (room temperature), 45 °C and 65 °C, respectively, and the ability to bind S. typhimurium was detected by testing the resonant frequency shift using a HP network analyzer after exposure to 1 mL of 1 × 10 9 cfu/mL of S. typhimurium at a predetermined schedule. The binding of S. typhimurium to biosensors was confirmed by Scanning Electron Microscopy (SEM). The results showed that there existed an initial sudden drop in the average density of S. typhimurium bound to the biosensor surface versus duration at different temperatures for the two kinds of recognition elements, and the binding ability to S. typhimurium of phage-immobilized biosensors was much better than that of antibody-immobilized biosensors, with longevity longer than 30 days at all tested temperatures, though decreasing gradually over the testing period. While the longevity of antibody-immobilized biosensors was only about 30, 8 and 5 days at room temperature (25 °C), 45 °C and 65 °C, respectively. Meanwhile, the activation energy of the two kinds of biosensors was investigated, and it was found that phage immobilized sensors showed much higher activation energy than antibody immobilized sensors, which resulted in less dependency on temperature and thus having much better thermal stability than antibody immobilized sensors. - Highlights: • Phage immobilized biosensors has much better thermal stability. • The longevity of phage immobilized biosensors was longer than 30 days even at 65 °C. • The activation energy of phage immobilized biosensors is much higher

  6. A regenerated electrochemical biosensor for label-free detection of glucose and urea based on conformational switch of i-motif oligonucleotide probe

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhong Feng; Chen, Dong Mei [Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Lei, Jing Lei [School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China); Luo, Hong Qun, E-mail: luohq@swu.edu.cn [Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Li, Nian Bing, E-mail: linb@swu.edu.cn [Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China)

    2015-10-15

    Improving the reproducibility of electrochemical signal remains a great challenge over the past decades. In this work, i-motif oligonucleotide probe-based electrochemical DNA (E-DNA) sensor is introduced for the first time as a regenerated sensing platform, which enhances the reproducibility of electrochemical signal, for label-free detection of glucose and urea. The addition of glucose or urea is able to activate glucose oxidase-catalyzed or urease-catalyzed reaction, inducing or destroying the formation of i-motif oligonucleotide probe. The conformational switch of oligonucleotide probe can be recorded by electrochemical impedance spectroscopy. Thus, the difference of electron transfer resistance is utilized for the quantitative determination of glucose and urea. We further demonstrate that the E-DNA sensor exhibits high selectivity, excellent stability, and remarkable regenerated ability. The human serum analysis indicates that this simple and regenerated strategy holds promising potential in future biosensing applications. - Highlights: • Conformational switch of i-motif is used for the detection of glucose and urea. • The sensor can be regenerated. • The proposed method is successfully applied in real sample assay. • Our method is label-free and inexpensive.

  7. Microfluidic electrochemical sensor for on-line monitoring of aerosol oxidative activity.

    Science.gov (United States)

    Sameenoi, Yupaporn; Koehler, Kirsten; Shapiro, Jeff; Boonsong, Kanokporn; Sun, Yele; Collett, Jeffrey; Volckens, John; Henry, Charles S

    2012-06-27

    Particulate matter (PM) air pollution has a significant impact on human morbidity and mortality; however, the mechanisms of PM-induced toxicity are poorly defined. A leading hypothesis states that airborne PM induces harm by generating reactive oxygen species in and around human tissues, leading to oxidative stress. We report here a system employing a microfluidic electrochemical sensor coupled directly to a particle-into-liquid sampler (PILS) system to measure aerosol oxidative activity in an on-line format. The oxidative activity measurement is based on the dithiothreitol (DTT) assay, where, after being oxidized by PM, the remaining reduced DTT is analyzed by the microfluidic sensor. The sensor consists of an array of working, reference, and auxiliary electrodes fabricated in a poly(dimethylsiloxane)-based microfluidic device. Cobalt(II) phthalocyanine-modified carbon paste was used as the working electrode material, allowing selective detection of reduced DTT. The electrochemical sensor was validated off-line against the traditional DTT assay using filter samples taken from urban environments and biomass burning events. After off-line characterization, the sensor was coupled to a PILS to enable on-line sampling/analysis of aerosol oxidative activity. Urban dust and industrial incinerator ash samples were aerosolized in an aerosol chamber and analyzed for their oxidative activity. The on-line sensor reported DTT consumption rates (oxidative activity) in good correlation with aerosol concentration (R(2) from 0.86 to 0.97) with a time resolution of approximately 3 min.

  8. Coupling of an indicator-free electrochemical DNA biosensor with polymerase chain reaction for the detection of DNA sequences related to the apolipoprotein E

    Energy Technology Data Exchange (ETDEWEB)

    Lucarelli, Fausto; Marrazza, Giovanna; Palchetti, Ilaria; Cesaretti, S.; Mascini, Marco

    2002-09-26

    This paper describes a disposable indicator-free electrochemical DNA biosensor applied to the detection of apolipoprotein E (apoE) sequences in PCR samples. In the indicator-free assays, the duplex formation was detected by measuring the electrochemical signal of the guanine base of nucleic acids. The biosensor format involved the immobilisation of an inosine-modified (guanine-free) probe onto a screen-printed electrode (SPE) transducer and the detection of the duplex formation in connection with the square-wave voltammetric measurement of the oxidation peak of the guanine of the target sequence. The indicator-free scheme has been characterised using 23-mer oligonucleotides as model: parameters affecting the hybridisation assay such as probe immobilisation conditions, hybridisation time, use of hybridisation accelerators were examined and optimised. The analysis of PCR samples (244 bp DNA fragments, obtained by amplification of DNA extracted from human blood) required a further optimisation of the experimental procedure. In particular, a lower steric hyndrance of the probe modified surface was essential to allow an efficient hybridisation of the target DNA fragment. Negative controls have been performed using the PCR blank and amplicons unrelated to the immobilised probe. A 10 min hybridisation time allowed a full characterisation of each sample.

  9. ZnO Nanorods Based Enzymatic Biosensor for Selective Determination of Penicillin

    Directory of Open Access Journals (Sweden)

    Magnus Willander

    2011-10-01

    Full Text Available In this study, we have successfully demonstrated the fabrication of a biosensor based on well aligned single-crystal zinc oxide (ZnO nanorods which were grown on gold coated glass substrate using a low temperature aqueous chemical growth (ACG method. The ZnO nanorods were immobilized with penicillinase enzyme using the physical adsorption approach in combination with N-5-azido-2-nitrobenzoyloxysuccinimide (ANB-NOS as cross linking molecules. The potentiometric response of the sensor configuration revealed good linearity over a large logarithmic concentration range from 100 µM to 100 mM. During the investigations, the proposed sensor showed a good stability with high sensitivity of ~121 mV/decade for sensing of penicillin. A quick electrochemical response of less than 5 s with a good selectivity, repeatability, reproducibility and a negligible response to common interferents such as Na1+, K1+, d-glucose, l-glucose, ascorbic acid, uric acid, urea, sucrose, lactose, glycine, penicilloic acid and cephalosporins, was observed.

  10. ZnO Nanorods Based Enzymatic Biosensor for Selective Determination of Penicillin.

    Science.gov (United States)

    Ibupoto, Zafar Hussain; Ali, Syed Muhammad Usman; Khun, Kimleang; Chey, Chan Oeurn; Nur, Omer; Willander, Magnus

    2011-10-27

    In this study, we have successfully demonstrated the fabrication of a biosensor based on well aligned single-crystal zinc oxide (ZnO) nanorods which were grown on gold coated glass substrate using a low temperature aqueous chemical growth (ACG) method. The ZnO nanorods were immobilized with penicillinase enzyme using the physical adsorption approach in combination with N-5-azido-2-nitrobenzoyloxysuccinimide (ANB-NOS) as cross linking molecules. The potentiometric response of the sensor configuration revealed good linearity over a large logarithmic concentration range from 100 µM to 100 mM. During the investigations, the proposed sensor showed a good stability with high sensitivity of ~121 mV/decade for sensing of penicillin. A quick electrochemical response of less than 5 s with a good selectivity, repeatability, reproducibility and a negligible response to common interferents such as Na1+, K1+, d-glucose, l-glucose, ascorbic acid, uric acid, urea, sucrose, lactose, glycine, penicilloic acid and cephalosporins, was observed.

  11. Development of a Transcription Factor-Based Lactam Biosensor

    DEFF Research Database (Denmark)

    Zhang, Jingwei; Barajas, Jesus F.; Burdu, Mehmet

    2017-01-01

    Lactams are an important class of commodity chemicals used in the manufacture of nylons, with millions of tons produced every year. Biological production of lactams could be greatly improved by high-throughput sensors for lactam biosynthesis. To identify biosensors of lactams, we applied a chemoi......Lactams are an important class of commodity chemicals used in the manufacture of nylons, with millions of tons produced every year. Biological production of lactams could be greatly improved by high-throughput sensors for lactam biosynthesis. To identify biosensors of lactams, we applied...... a chemoinformatic approach inspired by small molecule drug discovery. We define this approach as analogue generation toward catabolizable chemicals or AGTC. We discovered a lactam biosensor based on the ChnR/Pb transcription factor-promoter pair. The microbial biosensor is capable of sensing ε-caprolactam, Î......´-valerolactam, and butyrolactam in a dose-dependent manner. The biosensor has sufficient specificity to discriminate against lactam biosynthetic intermediates and therefore could potentially be applied for high-throughput metabolic engineering for industrially important high titer lactam biosynthesis....

  12. Wireless implantable electronic platform for chronic fluorescent-based biosensors.

    Science.gov (United States)

    Valdastri, Pietro; Susilo, Ekawahyu; Förster, Thilo; Strohhöfer, Christof; Menciassi, Arianna; Dario, Paolo

    2011-06-01

    The development of a long-term wireless implantable biosensor based on fluorescence intensity measurement poses a number of technical challenges, ranging from biocompatibility to sensor stability over time. One of these challenges is the design of a power efficient and miniaturized electronics, enabling the biosensor to move from bench testing to long term validation, up to its final application in human beings. In this spirit, we present a wireless programmable electronic platform for implantable chronic monitoring of fluorescent-based autonomous biosensors. This system is able to achieve extremely low power operation with bidirectional telemetry, based on the IEEE802.15.4-2003 protocol, thus enabling over three-year battery lifetime and wireless networking of multiple sensors. During the performance of single fluorescent-based sensor measurements, the circuit drives a laser diode, for sensor excitation, and acquires the amplified signals from four different photodetectors. In vitro functionality was preliminarily tested for both glucose and calcium monitoring, simply by changing the analyte-binding protein of the biosensor. Electronics performance was assessed in terms of timing, power consumption, tissue exposure to electromagnetic fields, and in vivo wireless connectivity. The final goal of the presented platform is to be integrated in a complete system for blood glucose level monitoring that may be implanted for at least one year under the skin of diabetic patients. Results reported in this paper may be applied to a wide variety of biosensors based on fluorescence intensity measurement.

  13. Facile hydrothermal synthesis of mn doped ZnO nanopencils for development of amperometric glucose biosensors

    Science.gov (United States)

    Shukla, Mayoorika; Pramila; Agrawal, Jitesh; Dixit, Tejendra; Palani, I. A.; Singh, Vipul

    2018-05-01

    Mn doped ZnO nanopencils were synthesized via low temperature hydrothermal process for fabrication of enzymatic electrochemical glucose biosensor. The KMnO4 was found to play a dual role in modifying morphology and inducing Mn doping. Interestingly, two different types of morphologies viz nanorods and nanopencils along with Mn doping in the later were obtained. Incorporation of Mn has shown a tremendous effect on the morphological variations, repression of defects and electrochemical charge transfer at electrode electrolyte interface. The possible reason behind obtained morphological changes has been proposed which in turn were responsible for the improvement in the different figure of merits of as fabricated enzymatic electrochemical biosensor. There has been a 17 fold enhancement in the sensitivity of the as fabricated glucose biosensor from ZnO nanorods to Mn doped ZnO nanopencils which can be attributed to morphological variation and Mn doping.

  14. The benzoquinone-mediated electrochemical microbial biosensor for water biotoxicity assay

    International Nuclear Information System (INIS)

    Li, Jiuming; Yu, Yuan; Wang, Yuning; Qian, Jun; Zhi, Jinfang

    2013-01-01

    Graphical abstract: The mediator can participate in microorganism respiration, accept the electrons from respiratory chains, and therefore be reduced by microorganism. The re-oxidization currents of mediators on electrode can reflect the microbial activity, and when respiration is suppressed by toxicants, it can be detected by the resulting change of currents. Unlike other biotoxicity tests, which record the toxic effect after a fixed time for incubation of biocomponents and toxicants, this mediated whole cell biosensor can provide a real-time monitor of the microbial activity during the measurement. -- Abstract: A simple mediated microbial biosensor providing real-time monitoring of water quality and evaluation of biotoxicity was fabricated by entrapping Escherichia coli (E. coli) cells in gelatin on glassy carbon electrode with benzoquinone as the redox mediator. The biotoxicity assay was based on the respiratory activity of E. coli cells estimated by the oxidation current of microbially reduced benzoquinone. The neutrality and lipophilicity rendered benzoquinone better efficiency than ferricyanide in mediated microbial reactions. After the optimization of preparation conditions, the prepared microbial biosensors have measured several common toxicants with different concentrations. In addition, the biotoxicity of binary mixtures of heavy metals and wastewater were investigated. The fabricated biosensor exhibited good repeatability and stability in the biotoxicity measurements

  15. The detection of Salmonella typhimurium on shell eggs using a phage-based biosensor

    Science.gov (United States)

    Chai, Yating; Li, Suiqiong; Horikawa, Shin; Shen, Wen; Park, Mi-Kyung; Vodyanoy, Vitaly J.; Chin, Bryan A.

    2011-06-01

    This paper presents the direct detection of Salmonella typhimurium on shell eggs using a phage-based magnetoelastic (ME) biosensor. The ME biosensor consists of a ME resonator as the sensor platform and E2 phage as the biorecognition element that is genetically engineered to specifically bind with Salmonella typhimurium. The ME biosensor, which is a wireless sensor, vibrates with a characteristic resonant frequency under an externally applied magnetic field. Multiple sensors can easily be remotely monitored. Multiple measurement and control sensors were placed on the shell eggs contaminated by Salmonella typhimurium solutions with different known concentrations. The resonant frequency of sensors before and after the exposure to the spiked shell eggs was measured. The frequency shift of the measurement sensors was significantly different than the control sensors indicating Salmonella contamination. Scanning electron microscopy was used to confirm binding of Salmonella to the sensor surface and the resulting frequency shift results.

  16. A hydrogel biosensor for high selective and sensitive detection of amyloid-beta oligomers.

    Science.gov (United States)

    Sun, Liping; Zhong, Yong; Gui, Jie; Wang, Xianwu; Zhuang, Xiaorong; Weng, Jian

    2018-01-01

    Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive cognitive and memory impairment. It is the most common neurological disease that causes dementia. Soluble amyloid-beta oligomers (AβO) in blood or cerebrospinal fluid (CSF) are the pathogenic biomarker correlated with AD. A simple electrochemical biosensor using graphene oxide/gold nanoparticles (GNPs) hydrogel electrode was developed in this study. Thiolated cellular prion protein (PrP C ) peptide probe was immobilized on GNPs of the hydrogel electrode to construct an AβO biosensor. Electrochemical impedance spectroscopy was utilized for AβO analysis. The specific binding between AβO and PrP C probes on the hydrogel electrode resulted in an increase in the electron-transfer resistance. The biosensor showed high specificity and sensitivity for AβO detection. It could selectively differentiate AβO from amyloid-beta (Aβ) monomers or fibrils. Meanwhile, it was highly sensitive to detect as low as 0.1 pM AβO in artificial CSF or blood plasma. The linear range for AβO detection is from 0.1 pM to 10 nM. This biosensor could be used as a cost-effective tool for early diagnosis of AD due to its high electrochemical performance and bionic structure.

  17. A DNA biosensor for molecular diagnosis of Aeromonas hydrophila using zinc sulfide nanospheres

    Directory of Open Access Journals (Sweden)

    M. Negahdary

    2017-07-01

    Full Text Available Today, identification of pathogenic bacteria using modern and accurate methods is inevitable. Integration in electrochemical measurements with nanotechnology has led to the design of efficient and sensitive DNA biosensors against bacterial agents. Here, efforts were made to detect Aeromonas hydrophila using aptamers as probes and zinc sulfide (ZnS nanospheres as signal enhancers and electron transfer facilitators. After modification of the working electrode area (in a screen-printed electrode with ZnS nanospheres through electrodeposition, the coated surface of a modified electrode with ZnS nanospheres was investigated through scanning electron microscopy (SEM. The size of synthesized ZnS nanospheres was estimated at about 20–50 nm and their shape was in the form of porous plates in microscopic observations. All electrochemical measurements were performed using cyclic voltammetry (CV, electrochemical impedance spectroscopy (EIS, and constant potential amperometry (CPA techniques. The designed DNA biosensor was able to detect deoxyribonucleic acid (DNA of Aeromonas hydrophila in the range 1.0  ×  10−4 to 1.0  ×  10−9 mol L−1; the limit of detection (LOD in this study was 1  ×  10−13 mol L−1. This DNA biosensor showed satisfactory thermal and pH stability. Reproducibility for this DNA biosensor was measured and the relative standard deviation (RSD of the performance of this DNA biosensor was calculated as 5 % during 42 days.

  18. Deep-probe metal-clad waveguide biosensors

    DEFF Research Database (Denmark)

    Skivesen, Nina; Horvath, Robert; Thinggaard, S.

    2007-01-01

    Two types of metal-clad waveguide biosensors, so-called dip-type and peak-type, are analyzed and tested. Their performances are benchmarked against the well-known surface-plasmon resonance biosensor, showing improved probe characteristics for adlayer thicknesses above 150-200 nm. The dip-type metal-clad...... waveguide sensor is shown to be the best all-round alternative to the surface-plasmon resonance biosensor. Both metal-clad waveguides are tested experimentally for cell detection, showing a detection linut of 8-9 cells/mm(2). (c) 2006 Elsevier B.V. All rights reserved....

  19. Towards a Uniform Metrological Assessment of Grating-Based Optical Fiber Sensors: From Refractometers to Biosensors.

    Science.gov (United States)

    Chiavaioli, Francesco; Gouveia, Carlos A J; Jorge, Pedro A S; Baldini, Francesco

    2017-06-21

    A metrological assessment of grating-based optical fiber sensors is proposed with the aim of providing an objective evaluation of the performance of this sensor category. Attention was focused on the most common parameters, used to describe the performance of both optical refractometers and biosensors, which encompassed sensitivity, with a distinction between volume or bulk sensitivity and surface sensitivity, resolution, response time, limit of detection, specificity (or selectivity), reusability (or regenerability) and some other parameters of generic interest, such as measurement uncertainty, accuracy, precision, stability, drift, repeatability and reproducibility. Clearly, the concepts discussed here can also be applied to any resonance-based sensor, thus providing the basis for an easier and direct performance comparison of a great number of sensors published in the literature up to now. In addition, common mistakes present in the literature made for the evaluation of sensor performance are highlighted, and lastly a uniform performance assessment is discussed and provided. Finally, some design strategies will be proposed to develop a grating-based optical fiber sensing scheme with improved performance.

  20. Sensitive detection of maltose and glucose based on dual enzyme-displayed bacteria electrochemical biosensor.

    Science.gov (United States)

    Liu, Aihua; Lang, Qiaolin; Liang, Bo; Shi, Jianguo

    2017-01-15

    Glucoamylase-displayed bacteria (GA-bacteria) and glucose dehydrogenase-displayed bacteria (GDH-bacteria) were co-immobilized on multi-walled carbon nanotubes (MWNTs) modified glassy carbon electrode (GCE) to construct GA-bacteria/GDH-bacteria/MWNTs/GCE biosensor. The biosensor was developed by optimizing the loading amount and the ratio of GA-bacteria to GDH-bacteria. The as-prepared biosensor exhibited a wide dynamic range of 0.2-10mM and a low detection limit of 0.1mM maltose (S/N=3). The biosensor also had a linear response to glucose in the range of 0.1-2.0mM and a low detection limit of 0.04mM glucose (S/N=3). Interestingly, at the same concentration, glucose was 3.75-fold sensitive than that of maltose at the proposed biosensor. No interferences were observed for other possible mono- and disaccharides. The biosensor also demonstrated good long-term storage stability and repeatability. Further, using both GDH-bacteria/MWNTs/GCE biosensor and GA-bacteria/GDH-bacteria/MWNTs/GCE biosensor, glucose and maltose in real samples can be detected. Therefore, the proposed biosensor is capable of monitoring the food manufacturing and fermentation process. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Ultrasensitive molecularly imprinted electrochemical sensor based on magnetism graphene oxide/β-cyclodextrin/Au nanoparticles composites for chrysoidine analysis

    International Nuclear Information System (INIS)

    Wang, Xiaojiao; Li, Xiangjun; Luo, Chuannan; Sun, Min; Li, Leilei; Duan, Huimin

    2014-01-01

    Highlights: • Synthesis and application of MGO/β-CD@AuNPs as a sensor for chrysoidine analysis. • The synthesized polymer had a laminar structure with high surface. • The propose sensor showed high selectivity and good sensitivity. - Abstract: A imprinted electrochemical sensor based on glassy carbon electrode (GCE) for ultrasensitive detection of chrysoidine was fabricated. A GCE was modified by magnetic graphene oxide/β-cyclodextrin/gold nanoparticles composites (MGO/β-CD@AuNPs). The sensing surface area and electronic transmission rate were increased, which was benefited from the distribution property of MGO/β-CD@AuNPs. The MGO/β-CD@AuNPs composite improved electrochemical response and sensitivity of the sensor. The molecularly imprinted electrochemical sensor was prepared by electropolymerization on modified electrode. Chrysoidine and pyrrole were used as template molecule and functional monomer, respectively. Under the optimization experimental conditions, the electrochemical sensor exhibited excellent analytical performance: the detection of chrysoidine ranged from 5.0 × 10 −8 mol/L to 5.0 × 10 −6 mol/L with the detection limit of 1.7 × 10 −8 mol/L. The sensor was applied to determine chrysoidine in spiked water samples and showed high selectivity, good sensitivity and acceptable reproducibility. The proposed method provides a promising platform for trace amount detection of other food additives

  2. Miniaturized Planar Room Temperature Ionic Liquid Electrochemical Gas Sensor for Rapid Multiple Gas Pollutants Monitoring.

    Science.gov (United States)

    Wan, Hao; Yin, Heyu; Lin, Lu; Zeng, Xiangqun; Mason, Andrew J

    2018-02-01

    The growing impact of airborne pollutants and explosive gases on human health and occupational safety has escalated the demand of sensors to monitor hazardous gases. This paper presents a new miniaturized planar electrochemical gas sensor for rapid measurement of multiple gaseous hazards. The gas sensor features a porous polytetrafluoroethylene substrate that enables fast gas diffusion and room temperature ionic liquid as the electrolyte. Metal sputtering was utilized for platinum electrodes fabrication to enhance adhesion between the electrodes and the substrate. Together with carefully selected electrochemical methods, the miniaturized gas sensor is capable of measuring multiple gases including oxygen, methane, ozone and sulfur dioxide that are important to human health and safety. Compared to its manually-assembled Clark-cell predecessor, this sensor provides better sensitivity, linearity and repeatability, as validated for oxygen monitoring. With solid performance, fast response and miniaturized size, this sensor is promising for deployment in wearable devices for real-time point-of-exposure gas pollutant monitoring.

  3. A Molecularly Imprinted Electrochemical Gas Sensor to Sense Butylated Hydroxytoluene in Air

    Directory of Open Access Journals (Sweden)

    Shadi Emam

    2018-01-01

    Full Text Available Alzheimer’s disease (AD is a neurodegenerative disease, which affects millions of people worldwide. Curing this disease has not gained much success so far. Exhaled breath gas analysis offers an inexpensive, noninvasive, and immediate method for detecting a large number of diseases, including AD. In this paper, a new method is proposed to detect butylated hydroxytoluene (BHT in the air, which is one of the chemicals found in the breath print of AD patients. A three-layer sensor was formed through deposition of a thin layer of graphene onto a glassy carbon substrate. Selective binding of the analyte was facilitated by electrochemically initiated polymerization of a solution containing the desired target molecule. Subsequent polymerization and removal of the analyte yielded a layer of polypyrrole, a conductive polymer, on top of the sensor containing molecularly imprinted cavities selective for the target molecule. Two sets of sensors have been developed. First, the graphene sensor has been fabricated with a layer of reduced graphene oxide (RGO and tested over 5–100 part per million (ppm. For the second batch, Prussian blue was added to graphene before polymerization, mainly for enhancing the electrochemical properties. The sensor was tested over 0.02-1 parts per billion (ppb level of concentration while the sensor resistance has been monitored.

  4. Facile fabrication of gold nanoparticle on zein ultrafine fibers and their application for catechol biosensor

    International Nuclear Information System (INIS)

    Chen, Xiaodong; Li, Dawei; Li, Guohui; Luo, Lei; Ullah, Naseeb; Wei, Qufu; Huang, Fenglin

    2015-01-01

    Graphical abstract: (A) Formation mechanism of A-CZNF and (B) reaction principle and formation mechanism of A-CZUF biosensor. - Highlights: • We utilized the hydrophobic protein nanofibers to fabricate a laccase-based biosensor for the first time. • The composite containing gold nanoparticles was prepared by combining electrospinning and one-step reduction method, which is a novel nanomaterial. • It is noticeable that the laccase biosensor showed a high electrochemical response and electrochemical activity toward catechol. • The novel biosensor will offer a simple, convenient and high efficient method for detecting polyphenolic compounds in environment. - Abstract: A novel laccase biosensor based on a new composite of laccase–gold nanoparticles (Au NPs)-crosslinked zein ultrafine fibers (CZUF) has been fabricated for catechol determination in real solution samples. Firstly, crosslinked zein ultrafine fibers containing gold nanoparticles (A-CZUF) were prepared by combining electrospinning and one-step reduction method using poly(ethyleneimine) (PEI) as reducing and crosslinking agent. A smooth morphology and relative average distribution of A-CZUF were depicted by scanning electron microscope (SEM) and transmission electron microscopy (TEM). The Fourier transform infrared spectroscopy (FT-IR) analysis indicated that PEI molecules attached to the surface of the zein ultrafine fibers via the reaction of functional groups between PEI and glyoxal. The results obtained from ultraviolet visible spectroscopy (UV–vis spectroscopy), X-ray diffraction (XRD) and thermal gravimetric analysis (TGA) for A-CZUF confirmed the existence of Au NPS coated on the surface of CZUF. Square wave voltammetry (SWV) and cyclic voltammetry (CV) were used to detect the electrochemical performance of the proposed biosensor. The results demonstrated that this biosensor possessed a high sensitive detection to catechol, which was attributed to the direct electron transfer (DET

  5. Integrated electrochemical sensor array for on-line monitoring of yeast fermentations

    NARCIS (Netherlands)

    Krommenhoek, E.E.; Gardeniers, Johannes G.E.; Bomer, Johan G.; Li, X.; Ottens, M.; van Dedem, G.W.K.; van Leeuwen, M.; van Gulik, W.M.; van der Wielen, L.A.M.; Heijnen, J.J.; van den Berg, Albert

    2007-01-01

    This paper describes the design, modeling, and experimental characterization of an electrochemical sensor array for on-line monitoring of fermentor conditions in both miniaturized cell assays and in industrial scale fertnentations. The viable biomass concentration is determined from impedance

  6. Oriented immobilization of His-tagged kinase RIO1 protein on redox active N-(IDA-like)-Cu(II) monolayer deposited on gold electrode—The base of electrochemical biosensor

    International Nuclear Information System (INIS)

    Mielecki, Marcin; Wojtasik, Justyn; Zborowska, Magdalena; Kurzątkowska, Katarzyna; Grzelak, Krystyna; Dehaen, Wim; Radecki, Jerzy; Radecka, Hanna

    2013-01-01

    Highlights: ► The redox active N-(IDA-like)-Cu(II) monolayer is suitable for oriented and stable immobilization of His-tagged kinase Rio1. ► Cu(II) deposited onto the electrode surface play double role: immobilization sites for His-tagged proteins and transduction centres tracking the protein–small molecule interactions. ► The base of biosensor response towards target compound is the change of Rio1 conformation lading to alternation of the permeability of counter ions to Cu(II) redox centres. -- Abstract: The fabrication of electrochemical biosensor consists of the following successive steps: formation of thiol derivative of iminodiacetic acid (IDA-like/N-heterocyclic donor) and N-acetylcysteamine (NAC) self-assembled monolayer on the Au electrode, complexation of Cu(II) by N(IDA-like) attached to the surface of the Au electrode and immobilization of kinase protein Rio1 through N(IDA-like)-Cu(II)-histidine-tag covalent bond formation. Each step of modification was controlled by cyclic voltammetry, electrochemical impedance spectrometry and atomic force microscopy. The interactions between rHis 6 -Rio1 attached to the surface of the electrode and tyrphostin inhibitor (2E)-N-Benzyl-2-cyano-3-(3,4-dihydroxyphenyl)-acrylamide (AG-490) and its analogue (2-cyano-N-(4-methoxyphenyl)-3-(pyridin-3-yl)prop-2-enamide) (CPE), present in aqueous solution were monitored with Osteryoung square wave voltammetry. The basis of the biosensor response was the change in the electrochemical properties of Cu(II) redox centres upon formation of the rHis 6 -Rio1-inhibitor complex. A linear responses with high reproducibility and stability were observed between 0.10 and 0.40 μM of AG-490 as well as of CPE. The interaction between rHis 6 -Rio1 and AG-490 was stronger than the interaction with its analogue CPE. Cu(II) redox current decrease of 37.9 ± 1.6% and 23.3 ± 1.0% were observed in the presence of 0.40 μM of AG-490 and CPE, respectively. The presented biosensor could be

  7. A new self-assembled layer-by-layer glucose biosensor based on chitosan biopolymer entrapped enzyme with nitrogen doped graphene.

    Science.gov (United States)

    Barsan, Madalina M; David, Melinda; Florescu, Monica; Ţugulea, Laura; Brett, Christopher M A

    2014-10-01

    The layer-by-layer (LbL) technique has been used for the construction of a new enzyme biosensor. Multilayer films containing glucose oxidase, GOx, and nitrogen-doped graphene (NG) dispersed in the biocompatible positively-charged polymer chitosan (chit(+)(NG+GOx)), together with the negatively charged polymer poly(styrene sulfonate), PSS(-), were assembled by alternately immersing a gold electrode substrate in chit(+)(NG+GOx) and PSS(-) solutions. Gravimetric monitoring during LbL assembly by an electrochemical quartz microbalance enabled investigation of the adsorption mechanism and deposited mass for each monolayer. Cyclic voltammetry and electrochemical impedance spectroscopy were used to characterize the LbL modified electrodes, in order to establish the contribution of each monolayer to the overall electrochemical properties of the biosensor. The importance of NG in the biosensor architecture was evaluated by undertaking a comparative study without NG in the chit layer. The GOx biosensor's analytical properties were evaluated by fixed potential chronoamperometry and compared with similar reported biosensors. The biosensor operates at a low potential of -0.2V vs., Ag/AgCl, exhibiting a high sensitivity of 10.5 μA cm(-2) mM(-1), and a detection limit of 64 μM. This study shows a simple approach in developing new biosensor architectures, combining the advantages of nitrogen-doped graphene with the LbL technique for enzyme immobilization. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Ferrocene-Functionalized 4-(2,5-Di(thiophen-2-yl-1H-pyrrol-1-ylaniline: A Novel Design in Conducting Polymer-Based Electrochemical Biosensors

    Directory of Open Access Journals (Sweden)

    Rukiye Ayranci

    2015-01-01

    Full Text Available Herein, we report a novel ferrocenyldithiophosphonate functional conducting polymer and its use as an immobilization matrix in amperometric biosensor applications. Initially, 4-(2,5-di(thiophen-2-yl-1H-pyrrol-1-ylamidoferrocenyldithiophosphonate was synthesized and copolymerized with 4-(2,5-di(thiophen-2-yl-1H-pyrrol-1-ylbenzenamine at graphite electrodes. The amino groups on the polymer were utilized for covalent attachment of the enzyme glucose oxidase. Besides, ferrocene on the backbone was used as a redox mediator during the electrochemical measurements. Prior to the analytical characterization, optimization studies were carried out. The changes in current signals at +0.45 V were proportional to glucose concentration from 0.5 to 5.0 mM. Finally, the resulting biosensor was applied for glucose analysis in real samples and the data were compared with the spectrophotometric Trinder method.

  9. Integration of an Optical Ring Resonator Biosensor into a Self-Contained Microfluidic Cartridge with Active, Single-Shot Micropumps

    Directory of Open Access Journals (Sweden)

    Sascha Geidel

    2016-09-01

    Full Text Available While there have been huge advances in the field of biosensors during the last decade, their integration into a microfluidic environment avoiding external tubing and pumping is still neglected. Herein, we show a new microfluidic design that integrates multiple reservoirs for reagent storage and single-use electrochemical pumps for time-controlled delivery of the liquids. The cartridge has been tested and validated with a silicon nitride-based photonic biosensor incorporating multiple optical ring resonators as sensing elements and an immunoassay as a potential target application. Based on experimental results obtained with a demonstration model, subcomponents were designed and existing protocols were adapted. The newly-designed microfluidic cartridges and photonic sensors were separately characterized on a technical basis and performed well. Afterwards, the sensor was functionalized for a protein detection. The microfluidic cartridge was loaded with the necessary assay reagents. The integrated pumps were programmed to drive the single process steps of an immunoassay. The prototype worked selectively, but only with a low sensitivity. Further work must be carried out to optimize biofunctionalization of the optical ring resonators and to have a more suitable flow velocity progression to enhance the system’s reproducibility.

  10. A novel electrochemical DNA biosensor based on a modified magnetic bar carbon paste electrode with Fe{sub 3}O{sub 4}NPs-reduced graphene oxide/PANHS nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Jahanbani, Shahriar; Benvidi, Ali, E-mail: abenvidi@yazd.ac.ir

    2016-11-01

    In this study, we have designed a label free DNA biosensor based on a magnetic bar carbon paste electrode (MBCPE) modified with nanomaterial of Fe{sub 3}O{sub 4}/reduced graphene oxide (Fe{sub 3}O{sub 4}NP-RGO) as a composite and 1- pyrenebutyric acid-N- hydroxysuccinimide ester (PANHS) as a linker for detection of DNA sequences. Probe (BRCA1 5382 insC mutation detection) strands were immobilized on the MBCPE/Fe{sub 3}O{sub 4}-RGO/PANHS electrode for the exact incubation time. The characterization of the modified electrode was studied using different techniques such as scanning electron microscopy (SEM), infrared spectroscopy (IR), vibrating sample magnetometer (VSM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry methods. Some experimental parameters such as immobilization time of probe DNA, time and temperature of hybridization process were investigated. Under the optimum conditions, the immobilization of the probe and its hybridization with the target DNA (Complementary DNA) were tested. This DNA biosensor revealed a good linear relationship between ∆ R{sub ct} and logarithm of the complementary target DNA concentration ranging from 1.0 × 10{sup −18} mol L{sup −1} to 1.0 × 10{sup −8} mol L{sup −1} with a correlation coefficient of 0.9935 and a detection limit of 2.8 × 10{sup −19} mol L{sup −1}. In addition, the mentioned biosensor was satisfactorily applied for discriminating of complementary sequences from non-complementary sequences. The constructed biosensor (MBCPE/Fe{sub 3}O{sub 4}-RGO/PANHS/ssDNA) with high sensitivity, selectivity, stability, reproducibility and low cost can be used for detection of BRCA1 5382 insC mutation. - Highlights: • We have designed a MBCPE/Fe{sub 3}O{sub 4}-RGO/PANHS/ssDNA for determination of BRCA1 5382. • The magnetic bar was used for fabrication of CPE for completely adsorption of Fe3O4-RGO. • The proposed electrode showed a detection limit as low as 2.8 × 10{sup −19} M for target

  11. Potentiometric pH-sensor based on electro polymerized poly (ο-phenylenediamine)

    International Nuclear Information System (INIS)

    Binag, Christina A.; Tongol, Bernard John V.

    1998-01-01

    A novel potentiometric pH-sensor device was fabricated using galvanostatic electrochemical polymerization of poly (ο-phenylenediamine) (PoPD) onto a Pt wire from a suitable buffer solution containing the doubly crystallized ο-phenylenediamine and the dopant bovine serum albumin (BSA). Electrochemical polymerization parameters of the sensor were optimized against Ag/AgCl electrode using electrode using buffer solutions of pH 3 to 10. The polymer-coated pH-sensor exhibited a high sensitivity with nearly Nermstian response and a slope of -47.5 mV/pH, a good linearity (r=-0.991), a reasonable response time (8 min. at pH 3-10), a favorable repeatability at three (3) replicate measurements (RSD=6% at pH 3-8), and a very high reproductibility (RSD <3%) at 11 replicate and alternate measurements of pH3 and 10 for a period of <2 h. This yellow-brown PoPD polymer coated Pt wire is a promising pH transducer for the analysis of pH changes in biological reactions acting as biosensor. (Author)

  12. EDTA assisted synthesis of hydroxyapatite nanoparticles for electrochemical sensing of uric acid

    Energy Technology Data Exchange (ETDEWEB)

    Kanchana, P.; Sekar, C., E-mail: Sekar2025@gmail.com

    2014-09-01

    Hydroxyapatite nanoparticles have been synthesized using EDTA as organic modifier by a simple microwave irradiation method and its application for the selective determination of uric acid (UA) has been demonstrated. Electrochemical behavior of uric acid at HA nanoparticle modified glassy carbon electrode (E-HA/GCE) has been investigated by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), linear sweep voltammetry (LSV) and amperometry. The E-HA modified electrode exhibits efficient electrochemical activity towards uric acid sensing without requiring enzyme or electron mediator. Amperometry studies revealed that the fabricated electrode has excellent sensitivity for uric acid with the lowest detection limit of 142 nM over a wide concentration range from 1 × 10{sup −7} to 3 × 10{sup −5} M. Moreover, the studied E-HA modified GC electrode exhibits a good reproducibility and long-term stability and an admirable selectivity towards the determination of UA even in the presence of potential interferents. The analytical performance of this sensor was evaluated for the detection of uric acid in human urine and blood serum samples. - Highlights: • EDTA- hydroxyapatite (HA) nanoparticles have been synthesized by microwave irradiation method. • A novel amperometric Uric Acid biosensor has been fabricated using E-HA/GCE. • The fabricated sensor exhibits a wide linear range, good stability and high reproducibility. • The sensor was applied for the detection of UA in human blood serum and urine.

  13. Copper-based electrochemical sensor with palladium electrode for cathodic stripping voltammetry of manganese.

    Science.gov (United States)

    Kang, Wenjing; Pei, Xing; Bange, Adam; Haynes, Erin N; Heineman, William R; Papautsky, Ian

    2014-12-16

    In this work, we report on the development of a palladium-based, microfabricated point-of-care electrochemical sensor for the determination of manganese using square wave cathodic stripping voltammetry. Heavy metals require careful monitoring, yet current methods are too complex for a point-of-care system. Voltammetry offers an attractive approach to metal detection on the microscale, but traditional carbon, gold, or platinum electrodes are difficult or expensive to microfabricate, preventing widespread use. Our sensor uses palladium working and auxiliary electrodes and integrates them with a copper-based reference electrode for simple fabrication and compatibility with microfabrication and printed circuit board processing, while maintaining competitive performance in electrochemical detection. Copper electrodes were prepared on glass substrate using a combination of microfabrication procedures followed by electrodeposition of palladium. The disposable sensor system was formed by bonding a poly(dimethylsiloxane) (PDMS) well to the glass substrate. Cathodic stripping voltammetry of manganese using our new disposable palladium-based sensors exhibited 334 nM (18.3 ppb) limit of detection in borate buffer. The sensor was used to demonstrate manganese determination in natural water samples from a pond in Burnet Woods, located in Cincinnati, OH, and the Ohio River.

  14. Molecularly imprinted polymer decorated nanoporous gold for highly selective and sensitive electrochemical sensors

    Science.gov (United States)

    Li, Yingchun; Liu, Yuan; Liu, Jie; Liu, Jiang; Tang, Hui; Cao, Cong; Zhao, Dongsheng; Ding, Yi

    2015-01-01

    Electrochemical nanosensors based on nanoporous gold leaf (NPGL) and molecularly imprinted polymer (MIP) are developed for pharmaceutical analysis by using metronidazole (MNZ) as a model analyte. NPGL, serving as the loading platform for MIP immobilization, possesses large accessible surface area with superb electric conductivity, while electrochemically synthesized MIP thin layer affords selectivity for specific recognition of MNZ molecules. For MNZ determination, the hybrid electrode shows two dynamic linear range of 5 × 10-11 to 1 × 10-9 mol L-1 and 1 × 10-9 to 1.4 × 10-6 mol L-1 with a remarkably low detection limit of 1.8 × 10-11 mol L-1 (S/N = 3). In addition, the sensor exhibits high binding affinity and selectivity towards MNZ with excellent reproducibility and stability. Finally, the reliability of MIP-NPGL for MNZ detection is proved in real fish tissue samples, demonstrating the potential for the proposed electrochemical sensors in monitoring drug and biological samples.

  15. Carbon nanofiber vs. carbon microparticles as modifiers of glassy carbon and gold electrodes applied in electrochemical sensing of NADH.

    Science.gov (United States)

    Pérez, Briza; Del Valle, Manel; Alegret, Salvador; Merkoçi, Arben

    2007-12-15

    Carbon materials (CMs), such as carbon nanotubes (CNTs), carbon nanofibers (CNFs), and carbon microparticles (CMPs) are used as doping materials for electrochemical sensors. The efficiency of these materials (either before or after acidic treatments) while being used as electrocatalysts in electrochemical sensors is discussed for beta-nicotinamide adenine dinucleotide (NADH) detection using cyclic voltammetry (CV). The sensitivity of the electrodes (glassy carbon (GC) and gold (Au)) modified with both treated and untreated materials have been deeply studied. The response efficiencies of the GC and Au electrodes modified with CNF and CMP, using dimethylformamide (DMF) as dispersing agent are significantly different due to the peculiar physical and chemical characteristics of each doping material. Several differences between the electrocatalytic activities of CMs modified electrodes upon NADH oxidation have been observed. The CNF film promotes better the electron transfer of NADH minimizing the oxidation potential at +0.352 V. Moreover higher currents for the NADH oxidation peak have been observed for these electrodes. The shown differences in the electrochemical reactivities of CNF and CMP modified electrodes should be with interest for future applications in biosensors.

  16. Laccase-catalyzed oxidation and intramolecular cyclization of dopamine: A new method for selective determination of dopamine with laccase/carbon nanotube-based electrochemical biosensors

    International Nuclear Information System (INIS)

    Xiang, Ling; Lin, Yuqing; Yu, Ping; Su, Lei; Mao, Lanqun

    2007-01-01

    This study demonstrates a new electrochemical method for the selective determination of dopamine (DA) with the coexistence of ascorbic acid (AA) and 3,4-dihydroxyphenylacetic acid (DOPAC) with laccase/multi-walled carbon nanotube (MWNT)-based biosensors prepared by cross-linking laccase into MWNT layer confined onto glassy carbon electrodes. The method described here is essentially based on the chemical reaction properties of DA including oxidation, intramolecular cyclization and disproportionation reactions to finally give 5,6-dihydroxyindoline quinone and on the uses of the two-electron and two-proton reduction of the formed 5,6-dihydroxyindoline quinone to constitute a method for the selective determination of DA at a negative potential that is totally separated from those for the redox processes of AA and DOPAC. Instead of the ECE reactions of DA with the first oxidation of DA being driven electrochemically, laccase is used here as the biocatalyst to drive the first oxidation of DA into its quinone form and thus initialize the sequential reactions of DA finally into 5,6-dihydroxyindoline quinone. In addition, laccase also catalyzes the oxidation of AA and DOPAC into electroinactive species with the concomitant reduction of O 2 . As a consequence, a combinational exploitation of the chemical properties inherent in DA and the multifunctional catalytic properties of laccase as well as the excellent electrochemical properties of carbon nanotubes substantially enables the prepared laccase/MWNT-based biosensors to be well competent for the selective determination of DA with the coexistence of physiological levels of AA and DOPAC. This demonstration offers a new method for the selective determination of DA, which could be potentially employed for the determination of DA in biological systems

  17. Detection of Salmonella enteritidis Using a Miniature Optical Surface Plasmon Resonance Biosensor

    International Nuclear Information System (INIS)

    Son, J R; Kim, G; Kothapalli, A; Morgan, M T; Ess, D

    2007-01-01

    The frequent outbreaks of foodborne illness demand rapid detection of foodborne pathogens. Unfortunately, conventional methods for pathogen detection and identification are labor-intensive and take days to complete. Biosensors have shown great potential for the rapid detection of foodborne pathogens. Surface plasmon resonance (SPR) sensors have been widely adapted as an analysis tool for the study of various biological binding reactions. SPR biosensors could detect antibody-antigen bindings on the sensor surface by measuring either a resonance angle or refractive index value. In this study, the feasibility of a miniature SPR sensor (Spreeta, TI, USA) for detection of Salmonella enteritidis has been evaluated. Anti-Salmonella antibodies were immobilized on the gold sensor surface by using neutravidin. Salmonella could be detected by the Spreeta biosensor at concentrations down to 10 5 cfu/ml

  18. Study of the biosensor based on platinum nanoparticles supported on carbon nanotubes and sugar-lectin biospecific interactions for the determination of glucose

    International Nuclear Information System (INIS)

    Li Wenjuan; Yuan Ruo; Chai Yaqin; Zhong Huaan; Wang Yan

    2011-01-01

    Research highlights: → This work described the synthesis of Pt nanoparticles supported on carbon nanotubes. → The Pt nano -CNTs were used to construct biosensor for the determination of glucose. → GOD can be assembled into multilayer thin films via sugar-lectin affinity. → The protocol can avoid the chemical denaturation of the enzyme. → It improve the stability and sensitivity of the enzyme biosensor. - Abstract: Highly sensitive electrochemical platform based on Pt nanoparticles supported on carbon nanotubes (Pt nano -CNTs) and sugar-lectin biospecific interactions is developed for the direct electrochemistry of glucose oxidase (GOD). Firstly, Pt nano -CNTs nanocomposites were prepared in the presence of carbon nanotubes (CNTs), and then the mixture was cast on a glassy carbon electrode (GCE) using chitosan as a binder. Thereafter, concanavalin A (Con A) was adsorbed onto the precursor film by the electrostatic force between positively charged chitosan and the negatively charged Con A. Finally, the multilayers of Con A/GOD films were prepared based on biospecific affinity of Con A and GOD via layer-by-layer (LBL) self-assembly technique. The electrochemical behavior of the sensor was studied using cyclic voltammetry and chronoamperometry. The electrochemical parameters of GOD in the film were calculated with the results of the electron transfer coefficient (α) and the apparent heterogeneous electron transfer rate constant (k s ) as 0.5 and 5.093 s -1 , respectively. Experimental results show that the biosensor responded linearly to glucose in the range from 1.2 x 10 -6 to 2.0 x 10 -3 M, with a detection limit of 4.0 x 10 -7 M under optimized conditions.

  19. Microbial Biosensors for Selective Detection of Disaccharides

    Science.gov (United States)

    Seven microbial strains were screened for their ability to detect disaccharides as components of Clark-type oxygen biosensors. Sensors responded to varying degrees to maltose, cellobiose, sucrose, and melibiose, but none responded strongly to lactose. Although microbial sensors are relatively nons...

  20. A novel immunochromatographic electrochemical biosensor for highly sensitive and selective detection of trichloropyridinol, a biomarker of exposure to chlorpyrifos.

    Science.gov (United States)

    Wang, Limin; Lu, Donglai; Wang, Jun; Du, Dan; Zou, Zhexiang; Wang, Hua; Smith, Jordan N; Timchalk, Charles; Liu, Fengquan; Lin, Yuehe

    2011-02-15

    We present a novel portable immunochromatographic electrochemical biosensor (IEB) for simple, rapid, and sensitive biomonitoring of trichloropyridinol (TCP), a metabolite biomarker of exposure to organophosphorus insecticides. Our new approach takes the advantage of immunochromatographic test strip for a rapid competitive immunoreaction and a disposable screen-printed carbon electrode for a rapid and sensitive electrochemical analysis of captured HRP labeling. Several key experimental parameters (e.g. immunoreaction time, the amount of HRP labeled TCP, concentration of the substrate for electrochemical measurements, and the blocking agents for the nitrocellulose membrane) were optimized to achieve a high sensitivity, selectivity and stability. Under optimal conditions, the IEB has demonstrated a wide linear range (0.1-100 ng/ml) with a detection limit as low as 0.1 ng/ml TCP. Furthermore, the IEB has been successfully applied for biomonitoring of TCP in the rat plasma samples with in vivo exposure to organophosphorus insecticides like Chlorpyrifos-oxon (CPF-oxon). The IEB thus opens up new pathways for designing a simple, rapid, clinically accurate, and quantitative tool for TCP detection, as well as holds a great promise for in-field screening of metabolite biomarkers, e.g., TCP, for humans exposed to organophosphorus insecticides. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Biosensors Used for Quantification of Nitrates in Plants

    Directory of Open Access Journals (Sweden)

    Romero-Galindo Raul

    2016-01-01

    Full Text Available Nitrogen is essential for the plant because it is used for the production of chlorophyll, proteins, nucleic acids, amino acids, and other cellular compounds; nitrogen is available in two forms: ammonium and nitrate. Several tools have been used to quantify nitrates in plants such as the Kjeldahl method and Dumas combustion digestion; however, they are destructive and long time-consuming methods. To solve these disadvantages, methods such as selective electrodes, optical sensors, reflectometers, and images based sensors have been developed; nonetheless, all these techniques show interference when carrying out measurements. Currently, biosensors based on genetic constructions, based on the response of promoter gene fused to Gene Fluorescent Protein (GFP, are gaining popularity, because they improve the accuracy of measurements of nitrate by avoiding the interference of carriers ion, high salt conditions, and other factors. The present review shows the different methods to quantify the nitrogen in plants; later, a biosensors perspective is presented, mainly focused on biosensors based on organism genetically modified. The review presents a list of promoter and reporter genes that could be used to develop different kind of sensors, and a perspective of sensors to measure quantitatively the nitrogen is presented.

  2. A Review on Passive and Integrated Near-Field Microwave Biosensors

    Science.gov (United States)

    Guha, Subhajit; Jamal, Farabi Ibne

    2017-01-01

    In this paper we review the advancement of passive and integrated microwave biosensors. The interaction of microwave with biological material is discussed in this paper. Passive microwave biosensors are microwave structures, which are fabricated on a substrate and are used for sensing biological materials. On the other hand, integrated biosensors are microwave structures fabricated in standard semiconductor technology platform (CMOS or BiCMOS). The CMOS or BiCMOS sensor technology offers a more compact sensing approach which has the potential in the future for point of care testing systems. Various applications of the passive and the integrated sensors have been discussed in this review paper. PMID:28946617

  3. Ionic Liquid-Based Optical and Electrochemical Carbon Dioxide Sensors

    OpenAIRE

    Kamalakanta Behera; Shubha Pandey; Anu Kadyan; Siddharth Pandey

    2015-01-01

    Due to their unusual physicochemical properties (e.g., high thermal stability, low volatility, high intrinsic conductivity, wide electrochemical windows and good solvating ability), ionic liquids have shown immense application potential in many research areas. Applications of ionic liquid in developing various sensors, especially for the sensing of biomolecules, such as nucleic acids, proteins and enzymes, gas sensing and sensing of various important ions, among other chemosensing platforms, ...

  4. Imprinted electrochemical sensor for dopamine recognition and determination based on a carbon nanotube/polypyrrole film

    International Nuclear Information System (INIS)

    Kan Xianwen; Zhou Hong; Li Chen; Zhu Anhong; Xing Zonglan; Zhao Zhe

    2012-01-01

    An electrochemical sensor combining a molecular imprinted technique and an electropolymerization method was developed in this work. A molecular imprinted polymer (MIP) film was fabricated by electropolymerizing pyrrole in the presence of dopamine (DA) after electrodepositing carboxyl-functionalized multi-walled carbon nanotubes (MWNTs-COOH) onto a glassy carbon electrode (GCE) surface. Scanning electron microscopy (SEM), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS) were employed to characterize the constructed sensor. The effects of pH, the monomer concentration, the number of cycles for the electropolymerization, and the scan rate for the sensor preparation were optimized. The MIP-based sensor displayed an excellent recognition capacity toward DA compared with other structurally similar molecules. Additionally, the DPV peak current was linear to the DA concentration in the range from 6.25 × 10 −7 to 1 × 10 −4 mol/L, with a detection limit of 6 × 10 −8 mol/L. The prepared sensor also showed stable reproducibility and regeneration capacity.

  5. Molybdenum disulfide nanoflower-chitosan-Au nanoparticles composites based electrochemical sensing platform for bisphenol A determination

    International Nuclear Information System (INIS)

    Huang, Ke-Jing; Liu, Yu-Jie; Liu, Yan-Ming; Wang, Ling-Ling

    2014-01-01

    Highlights: • This work constructs a novel electrochemical biosensor for bisphenol A detection. • Flower-like MoS 2 are prepared by a simple hydrothermal procedure. • AuNPs are assembled on MoS 2 nanoflowers modified electrode for signal amplification. • The developed sensor exhibits low detection limit and wide linear range. - Abstract: Two-dimensional transition metal dichalcogenide are attracting increasing attention in electrochemical sensing due to their unique electronic properties. In this work, flower-like molybdenum disulfide (MoS 2 ) was prepared by a simple hydrothermal method. The scanning electron microscopy and transmission electron microscopy images showed the MoS 2 nanoflower had sizes with diameter of about 200 nm and was constructed with many irregular sheets as a petal-like structure with thickness of several nanometers. A novel electrochemical sensor was constructed for the determination of bisphenol A (BPA) based on MoS 2 and chitosan-gold nanoparticles composites modified electrode. The sensor showed an efficient electrocatalytic role for the oxidation of BPA, and the oxidation overpotentials of BPA decreased significantly and the peak current increased greatly compared with bare GCE and other modified electrode. A good linear relationship between the oxidation peak current and BPA concentration was obtained in the range from 0.05 to 100 μM with a detection limit of 5.0 × 10 −9 M (S/N = 3). The developed sensor exhibited high sensitivity and long-term stability, and it was successfully applied for the determination of BPA in different samples. This work indicated MoS 2 nanoflowers were promising in electrochemical sensing and catalytic applications

  6. Tunable Signal-Off and Signal-On Electrochemical Cisplatin Sensor.

    Science.gov (United States)

    Wu, Yao; Lai, Rebecca Y

    2017-09-19

    We report the first electrochemical cisplatin sensor fabricated with a thiolated and methylene blue (MB)-modified oligo-adenine (A)-guanine (G) DNA probe. Depending on the probe coverage, the sensor can behave as a signal-off or signal-on sensor. For the high-coverage sensor, formation of intrastrand Pt(II)-AG adducts rigidifies the oligo-AG probe, resulting in a concentration-dependent decrease in the MB signal. For the low-coverage sensor, the increase in probe-to-probe spacing enables binding of cisplatin via the intrastrand GNG motif (N = A), generating a bend in the probe which results in an increase in the MB current. Although both high-coverage signal-off and low-coverage signal-on sensors are capable of detecting cisplatin, the signal-on sensing mechanism is better suited for real time analysis of cisplatin. The low-coverage sensor has a lower limit of detection, wider optimal AC frequency range, and faster response time. It has high specificity for cisplatin and potentially other Pt(II) drugs and does not cross-react with satraplatin, a Pt(IV) prodrug. It is also selective enough to be employed directly in 50% saliva and 50% urine. This detection strategy may offer a new approach for sensitive and real time analysis of cisplatin in clinical samples.

  7. Surface analysis and electrochemistry of a robust carbon-nanofiber-based electrode platform H_2O_2 sensor

    International Nuclear Information System (INIS)

    Suazo-Dávila, D.; Rivera-Meléndez, J.; Koehne, J.; Meyyappan, M.; Cabrera, C.R.

    2016-01-01

    Highlights: • Vertically aligned carbon nanofibers were intercalated with SiO_2 for mechanical strength and isolation of individual electrodes. • Stable and robust electrochemical hydrogen peroxide sensor is stable and robust. • Five consecutive calibration curves were done with different hydrogen peroxide concentrations over a period of 3 days without any deterioration in the electrochemical response. • The sensor was also used for the measurement of hydrogen peroxide as one of the by-products of the reaction of cholesterol oxidase with cholesterol and the sensor response exhibited linear behavior from 50 μM to 1 mM in cholesterol concentration. • In general, the electrochemical sensor is robust, stable, and reproducible, and the detection limit and sensitivity responses were among the best when compared with the literature. - Abstract: A vertically aligned carbon nanofiber-based (VACNF) electrode platform was developed for an enzymeless hydrogen peroxide sensor. Vertical nanofibers have heights on the order of 2–3 μm, and diameters that vary from 50 to 100 nm as seen by atomic force microscopy. The VACNF was grown as individual, vertically, and freestanding structures using plasma-enhanced chemical vapor deposition. The electrochemical sensor, for the hydrogen peroxide measurement in solution, showed stability and reproducibility in five consecutive calibration curves with different hydrogen peroxide concentrations over a period of 3 days. The detection limit was 66 μM. The sensitivity for hydrogen peroxide electrochemical detection was 0.0906 mA cm"−"2 mM"−"1, respectively. The sensor was also used for the measurement of hydrogen peroxide as the by-product of the reaction of cholesterol with cholesterol oxidase as a biosensor application. The sensor exhibits linear behavior in the range of 50 μM–1 mM in cholesterol concentrations. The surface analysis and electrochemistry characterization is presented.

  8. Facile hydrothermal growth graphene/ZnO nanocomposite for development of enhanced biosensor.

    Science.gov (United States)

    Low, Sze Shin; Tan, Michelle T T; Loh, Hwei-San; Khiew, Poi Sim; Chiu, Wee Siong

    2016-01-15

    Graphene/zinc oxide nanocomposite was synthesised via a facile, green and efficient approach consisted of novel liquid phase exfoliation and solvothermal growth for sensing application. Highly pristine graphene was synthesised through mild sonication treatment of graphite in a mixture of ethanol and water at an optimum ratio. The X-ray diffractometry (XRD) affirmed the hydrothermal growth of pure zinc oxide nanoparticles from zinc nitrate hexahydrate precursor. The as-prepared graphene/zinc oxide (G/ZnO) nanocomposite was characterised comprehensively to evaluate its morphology, crystallinity, composition and purity. All results clearly indicate that zinc oxide particles were homogenously distributed on graphene sheets, without any severe aggregation. The electrochemical performance of graphene/zinc oxide nanocomposite-modified screen-printed carbon electrode (SPCE) was evaluated using cyclic voltammetry (CV) and amperometry analysis. The resulting electrode exhibited excellent electrocatalytic activity towards the reduction of hydrogen peroxide (H2O2) in a linear range of 1-15 mM with a correlation coefficient of 0.9977. The sensitivity of the graphene/zinc oxide nanocomposite-modified hydrogen peroxide sensor was 3.2580 μAmM(-1) with a limit of detection of 7.4357 μM. An electrochemical DNA sensor platform was then fabricated for the detection of Avian Influenza H5 gene based on graphene/zinc oxide nanocomposite. The results obtained from amperometry study indicate that the graphene/zinc oxide nanocomposite-enhanced electrochemical DNA biosensor is significantly more sensitive (P < 0.05) and efficient than the conventional agarose gel electrophoresis. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Imprinted propyl gallate electrochemical sensor based on graphene/single walled carbon nanotubes/sol-gel film.

    Science.gov (United States)

    Xu, Guilin; Chi, Yu; Li, Lu; Liu, Shouhua; Kan, Xianwen

    2015-06-15

    A novel imprinted sol-gel electrochemical sensor for the determination of propyl gallate (PG) was developed based on a composite of graphene and single walled carbon nanotubes (GR-SWCNTs). It was fabricated by stepwise modifying GR-SWCNTs and molecularly imprinted polymers and stored in 0.10 mol L(-1) phosphate buffer solution pH 6.0, which endowed the sensor good sensitivity and selective recognition towards template molecules. The morphology and specific adsorption capacity of the sensor was characterized by scanning electron microscope and electrochemical methods, respectively. Under the optimized conditions, a linear range of the sensor to PG was 8.0 × 10(-8)-2.6 × 10(-3)mo lL(-1) with a limit of detection of 5.0 × 10(-8)mol L(-1) (S/N=3). The sensor exhibited specificity and selectivity towards template molecules as well as excellent reproducibility, regeneration and stability. Furthermore, the sensor could be applied to determine PG in edible oils, instant noodles and cookies with satisfactory results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Enzyme-Gelatin Electrochemical Biosensors: Scaling Down

    Directory of Open Access Journals (Sweden)

    Hendrik A. Heering

    2012-03-01

    Full Text Available In this article we investigate the possibility of scaling down enzyme-gelatin modified electrodes by spin coating the enzyme-gelatin layer. Special attention is given to the electrochemical behavior of the selected enzymes inside the gelatin matrix. A glassy carbon electrode was used as a substrate to immobilize, in the first instance, horse heart cytochrome c (HHC in a gelatin matrix. Both a drop dried and a spin coated layer was prepared. On scaling down, a transition from diffusion controlled reactions towards adsorption controlled reactions is observed. Compared to a drop dried electrode, a spin coated electrode showed a more stable electrochemical behavior. Next to HHC, we also incorporated catalase in a spin coated gelatin matrix immobilized on a glassy carbon electrode. By spincoating, highly uniform sub micrometer layers of biocompatible matrices can be constructed. A full electrochemical study and characterization of the modified surfaces has been carried out. It was clear that in the case of catalase, gluteraldehyde addition was needed to prevent leaking of the catalase from the gelatin matrix.

  11. Development of amperometric L-tyrosine sensor based on Fe-doped hydroxyapatite nanoparticles

    International Nuclear Information System (INIS)

    Kanchana, P.; Lavanya, N.; Sekar, C.

    2014-01-01

    A novel biosensor based on Fe-doped hydroxyapatite (Fe-HA) nanoparticles and tyrosinase has been developed for the detection of L-tyrosine. Nanostructured Fe-HA was synthesized by a simple microwave irradiation method, and its phase formation, morphology and magnetic property were examined by powder X-ray diffraction (XRD), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). Electrochemical performance of the nano Fe-HA/tyrosinase modified glassy carbon electrode (GCE) for detection of L-tyrosine was investigated by cyclic voltammetry (CV) and amperometric methods. The fabricated biosensor exhibited a linear response to L-tyrosine over a wide concentration range of 1.0 × 10 −7 to 1.0 × 10 −5 M with a detection limit of 245 nM at pH 7.0. In addition, the fabricated sensor showed an excellent selectivity, good reproducibility, long-term stability and anti-interference towards the determination of L-tyrosine. - Highlights: • A novel amperometric L-tyrosine biosensor has been fabricated using nanostructured Fe-HA. • The fabricated sensor exhibits a wide linear range, good stability and high reproducibility. • Fe-HA assists microenvironment and direct electron transfer between enzyme and electrode surface. • The nano Fe-HA and electrode fabrication procedure are simple and less expensive

  12. Ferrocene-functionalized 4-(2,5-Di(thiophen-2-yl)-1H-pyrrol-1-yl)aniline: a novel design in conducting polymer-based electrochemical biosensors.

    Science.gov (United States)

    Ayranci, Rukiye; Demirkol, Dilek Odaci; Ak, Metin; Timur, Suna

    2015-01-13

    Herein, we report a novel ferrocenyldithiophosphonate functional conducting polymer and its use as an immobilization matrix in amperometric biosensor applications. Initially, 4-(2,5-di(thiophen-2-yl)-1H-pyrrol-1-yl)amidoferrocenyldithiophosphonate was synthesized and copolymerized with 4-(2,5-di(thiophen-2-yl)-1H-pyrrol-1-yl)benzenamine at graphite electrodes. The amino groups on the polymer were utilized for covalent attachment of the enzyme glucose oxidase. Besides, ferrocene on the backbone was used as a redox mediator during the electrochemical measurements. Prior to the analytical characterization, optimization studies were carried out. The changes in current signals at +0.45 V were proportional to glucose concentration from 0.5 to 5.0 mM. Finally, the resulting biosensor was applied for glucose analysis in real samples and the data were compared with the spectrophotometric Trinder method.

  13. Real-Time Telemetry System for Amperometric and Potentiometric Electrochemical Sensors

    Directory of Open Access Journals (Sweden)

    Ching-Hsing Luo

    2011-09-01

    Full Text Available A real-time telemetry system, which consists of readout circuits, an analog-to-digital converter (ADC, a microcontroller unit (MCU, a graphical user interface (GUI, and a radio frequency (RF transceiver, is proposed for amperometric and potentiometric electrochemical sensors. By integrating the proposed system with the electrochemical sensors, analyte detection can be conveniently performed. The data is displayed in real-time on a GUI and optionally uploaded to a database via the Internet, allowing it to be accessed remotely. An MCU was implemented using a field programmable gate array (FPGA to filter noise, transmit data, and provide control over peripheral devices to reduce power consumption, which in sleep mode is 70 mW lower than in operating mode. The readout circuits, which were implemented in the TSMC 0.18-μm CMOS process, include a potentiostat and an instrumentation amplifier (IA. The measurement results show that the proposed potentiostat has a detectable current range of 1 nA to 100 μA, and linearity with an R2 value of 0.99998 in each measured current range. The proposed IA has a common-mode rejection ratio (CMRR greater than 90 dB. The proposed system was integrated with a potentiometric pH sensor and an amperometric nitrite sensor for in vitro experiments. The proposed system has high linearity (an R2 value greater than 0.99 was obtained in each experiment, a small size of 5.6 cm × 8.7 cm, high portability, and high integration.

  14. A single use electrochemical sensor based on biomimetic nanoceria for the detection of wine antioxidants.

    Science.gov (United States)

    Andrei, Veronica; Sharpe, Erica; Vasilescu, Alina; Andreescu, Silvana

    2016-08-15

    We report the development and characterization of a disposable single use electrochemical sensor based on the oxidase-like activity of nanoceria particles for the detection of phenolic antioxidants. The use of nanoceria in the sensor design enables oxidation of phenolic compounds, particularly those with ortho-dihydroxybenzene functionality, to their corresponding quinones at the surface of a screen printed carbon electrode. Detection is carried out by electrochemical reduction of the resulting quinone at a low applied potential of -0.1V vs the Ag/AgCl electrode. The sensor was optimized and characterized with respect to particle loading, applied potential, response time, detection limit, linear concentration range and sensitivity. The method enabled rapid detection of common phenolic antioxidants including caffeic acid, gallic acid and quercetin in the µM concentration range, and demonstrated good functionality for the analysis of antioxidant content in several wine samples. The intrinsic oxidase-like activity of nanoceria shows promise as a robust tool for sensitive and cost effective analysis of antioxidants using electrochemical detection. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Electrochemical sensor based on magnetic molecularly imprinted nanoparticles modified magnetic electrode for determination of Hb.

    Science.gov (United States)

    Sun, Binghua; Ni, Xinjiong; Cao, Yuhua; Cao, Guangqun

    2017-05-15

    A fast and selective electrochemical sensor for determination of hemoglobin (Hb) was developed based on magnetic molecularly imprinted nanoparticles modified on the magnetic glassy carbon electrode. The nanoparticles Fe 3 O 4 @SiO 2 with a magnetic core and a molecularly imprinted shell had regular structures and good monodispersity. Hb could be determined directly by electrochemical oxidization with the modified electrode. A magnetic field increased electrochemical response to Hb by two times. Imprinting Hb on the surface of Fe 3 O 4 @SiO 2 shortened the response time within 7min. Under optimum conditions, the imprinting factor toward the non-imprinted sensor was 2.8, and the separation factor of Hb to horseradish peroxidase was 2.6. The oxidation peak current had a linear relationship with Hb concentration ranged from 0.005mg/ml to 0.1mg/ml with a detection limit (S/N =3) of 0.0010mg/ml. The sensors were successfully applied to analysis of Hb in whole blood samples with recoveries between 95.7% and 105%. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. New CNT/poly(brilliant green) and CNT/poly(3,4-ethylenedioxythiophene) based electrochemical enzyme biosensors.

    Science.gov (United States)

    Barsan, Madalina M; Pifferi, Valentina; Falciola, Luigi; Brett, Christopher M A

    2016-07-13

    A combination of the electroactive polymer poly(brilliant green) (PBG) or conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) with carbon nanotubes to obtain CNT/PBG and CNT/PEDOT modified carbon film electrodes (CFE) has been investigated as a new biosensor platform, incorporating the enzymes glucose oxidase (GOx) as test enzyme, alcohol oxidase (AlcOx) or alcohol dehydrogenase (AlcDH). The sensing parameters were optimized for all biosensors based on CNT/PBG/CFE, CNT/PEDOT/CFE platforms. Under optimized conditions, both GOx biosensors exhibited very similar sensitivities, while in the case of AlcOx and AlcDH biosensors, AlcOx/CNT/PBG/CFE was found to give a higher sensitivity and lower detection limit. The influence of dissolved O2 on oxidase-biosensor performance was investigated and was shown to be different for each enzyme. Comparisons were made with similar reported biosensors, showing the advantages of the new biosensors, and excellent selectivity against potential interferents was successfully demonstrated. Finally, alcohol biosensors were successfully used for the determination of ethanol in alcoholic beverages. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Nanomaterials towards fabrication of cholesterol biosensors: Key roles and design approaches.

    Science.gov (United States)

    Saxena, Urmila; Das, Asim Bikas

    2016-01-15

    Importance of cholesterol biosensors is already recognized in the clinical diagnosis of cardiac and brain vascular diseases as discernible from the enormous amount of research in this field. Nevertheless, the practical application of a majority of the fabricated cholesterol biosensors is ordinarily limited by their inadequate performance in terms of one or more analytical parameters including stability, sensitivity and detection limit. Nanoscale materials offer distinctive size tunable electronic, catalytic and optical properties which opened new opportunities for designing highly efficient biosensor devices. Incorporation of nanomaterials in biosensing devices has found to improve the electroactive surface, electronic conductivity and biocompatibility of the electrode surfaces which then improves the analytical performance of the biosensors. Here we have reviewed recent advances in nanomaterial-based cholesterol biosensors. Foremost, the diverse roles of nanomaterials in these sensor systems have been discussed. Later, we have exhaustively explored the strategies used for engineering cholesterol biosensors with nanotubes, nanoparticles and nanocomposites. Finally, this review concludes with future outlook signifying some challenges of these nanoengineered cholesterol sensors. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Exploiting multi-function Metal-Organic Framework nanocomposite Ag@Zn-TSA as highly efficient immobilization matrixes for sensitive electrochemical biosensing

    International Nuclear Information System (INIS)

    Dong, Sheying; Zhang, Dandan; Suo, Gaochao; Wei, Wenbo; Huang, Tinglin

    2016-01-01

    A novel multi-function Metal-Organic Framework composite Ag@Zn-TSA (zinc thiosalicylate, Zn(C_7H_4O_2S), Zn-TSA) was synthesized as highly efficient immobilization matrixes of myoglobin (Mb)/glucose oxidase (GOx) for electrochemical biosensing. The electrochemical biosensors based on Ag@Zn-TSA composite and ionic liquid (IL) modified carbon paste electrode (CPE) were fabricated successfully. Furthermore, the properties of the sensors were discussed by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and amperometric current-time curve, respectively. The results showed the proposed biosensors had wide linear response to hydrogen peroxide (H_2O_2) in the range of 0.3–20,000 μM, to nitrite (NO_2"−) for 1.3 μM–1660 μM and 2262 μM–1,33,000 μM, to glucose for 2.0–1022 μM, with a low detection limit of 0.08 μM for H_2O_2, 0.5 μM for NO_2"−, 0.8 μM for glucose. The values of the apparent heterogeneous electron transfer rate constant (k_s) for Mb and GOx were estimated as 2.05 s"−"1 and 2.45 s"−"1, respectively. Thus, Ag@Zn-TSA was a kind of ideal material as highly efficient immobilization matrixes for sensitive electrochemical biosensing. In addition, this work indicated that MOF nanocomposite had a great potential for constructing wide range of sensing interface. - Highlights: • Novel Ag@Zn-TSA was used as highly efficient immobilization matrixes of Mb/glucose. • We exploited multi-function MOFs for a wide range of electrocatalytic sensing interface. • The proposed biosensors had an excellent catalytic effect on the small molecule (NO_2"−, H_2O_2, glucose).

  19. Development of mercury (II) ion biosensors based on mercury-specific oligonucleotide probes.

    Science.gov (United States)

    Li, Lanying; Wen, Yanli; Xu, Li; Xu, Qin; Song, Shiping; Zuo, Xiaolei; Yan, Juan; Zhang, Weijia; Liu, Gang

    2016-01-15

    Mercury (II) ion (Hg(2+)) contamination can be accumulated along the food chain and cause serious threat to the public health. Plenty of research effort thus has been devoted to the development of fast, sensitive and selective biosensors for monitoring Hg(2+). Thymine was demonstrated to specifically combine with Hg(2+) and form a thymine-Hg(2+)-thymine (T-Hg(2+)-T) structure, with binding constant even higher than T-A Watson-Crick pair in DNA duplex. Recently, various novel Hg(2+) biosensors have been developed based on T-rich Mercury-Specific Oligonucleotide (MSO) probes, and exhibited advanced selectivity and excellent sensitivity for Hg(2+) detection. In this review, we explained recent development of MSO-based Hg(2+) biosensors mainly in 3 groups: fluorescent biosensors, colorimetric biosensors and electrochemical biosensors. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Orientation of llama antibodies strongly increases sensitivity of biosensors.

    Science.gov (United States)

    Trilling, Anke K; Hesselink, Thamara; van Houwelingen, Adèle; Cordewener, Jan H G; Jongsma, Maarten A; Schoffelen, Sanne; van Hest, Jan C M; Zuilhof, Han; Beekwilder, Jules

    2014-10-15

    Sensitivity of biosensors depends on the orientation of bio-receptors on the sensor surface. The objective of this study was to organize bio-receptors on surfaces in a way that their analyte binding site is exposed to the analyte solution. VHH proteins recognizing foot-and-mouth disease virus (FMDV) were used for making biosensors, and azides were introduced in the VHH to function as bioorthogonal reactive groups. The importance of the orientation of bio-receptors was addressed by comparing sensors with randomly oriented VHH (with multiple exposed azide groups) to sensors with uniformly oriented VHH (with only a single azide group). A surface plasmon resonance (SPR) chip exposing cyclooctyne was reacted to azide functionalized VHH domains, using click chemistry. Comparison between randomly and uniformly oriented bio-receptors showed up to 800-fold increase in biosensor sensitivity. This technique may increase the containment of infectious diseases such as FMDV as its strongly enhanced sensitivity may facilitate early diagnostics. Copyright © 2014 Elsevier B.V. All rights reserved.