WorldWideScience

Sample records for electrochemical redox behavior

  1. Electrochemical characterization and redox behavior of Nb-doped SrTiO3

    DEFF Research Database (Denmark)

    Blennow Tullmar, Peter; Kammer Hansen, Kent; Wallenberg, L. Reine

    2009-01-01

    Sr-vacancy compensated Nb-doped SrTiO3 with the nominal composition Sr0.94Ti0.9Nb0.1O3 has been evaluated as a solid oxide fuel cell (SOFC) anode material in terms of redox stability and electrochemical properties. Sr0.94Ti0.9Nb0.1O3 has been synthesized with a recently developed modified glycine......-nitrate process. The phase purity and redox behavior have been analyzed with XRD and TGA. The electrochemical properties of Sr0.94Ti0.9Nb0.1O3 and a composite electrode of Sr0.94Ti0.9Nb0.1O3/YSZ have been investigated by electrochemical impedance spectroscopy (EIS) on cone shaped electrodes and on electrodes...... in a symmetrical cell configuration. The experiments indicated that the Nb-doped SrTiO3 electrodes were redox stable and showed a potential ability to be used as a part of a SOFC anode. The electrochemical activity appeared to be governed by the concentration of defect species (especially Ti3+ and V-0...

  2. The self-assembly of redox active peptides: Synthesis and electrochemical capacitive behavior.

    Science.gov (United States)

    Piccoli, Julia P; Santos, Adriano; Santos-Filho, Norival A; Lorenzón, Esteban N; Cilli, Eduardo M; Bueno, Paulo R

    2016-05-01

    The present work reports on the synthesis of a redox-tagged peptide with self-assembling capability aiming applications in electrochemically active capacitive surfaces (associated with the presence of the redox centers) generally useful in electroanalytical applications. Peptide containing ferrocene (fc) molecular (redox) group (Ac-Cys-Ile-Ile-Lys(fc)-Ile-Ile-COOH) was thus synthesized by solid phase peptide synthesis (SPPS). To obtain the electrochemically active capacitive interface, the side chain of the cysteine was covalently bound to the gold electrode (sulfur group) and the side chain of Lys was used to attach the ferrocene in the peptide chain. After obtaining the purified redox-tagged peptide, the self-assembly and redox capability was characterized by cyclic voltammetry (CV) and electrochemical impedance-based capacitance spectroscopy techniques. The obtained results confirmed that the redox-tagged peptide was successfully attached by forming an electroactive self-assembled monolayer onto gold electrode. The design of redox active self-assembly ferrocene-tagged peptide is predictably useful in the development of biosensor devices precisely to detect, in a label-free platform, those biomarkers of clinical relevance. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 357-367, 2016. © 2016 Wiley Periodicals, Inc.

  3. Electrochemical studies on the redox behavior of zirconium in the LiF-NaF eutectic melt

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Liang [School of Metallurgy, Northeastern University, Shenyang 110004 (China); Xiao, Yanping [School of Metallurgical Engineering, Anhui University of Technology, Ma' anshan 243002 (China); Zr-Hf-Ti Metallurgie B.V., Den Haag 2582 SB (Netherlands); Xu, Qian, E-mail: qianxu@shu.edu.cn [State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200072 (China); Sandwijk, Anthonie van [Zr-Hf-Ti Metallurgie B.V., Den Haag 2582 SB (Netherlands); Zhao, Zhuo [School of Metallurgical Engineering, Anhui University of Technology, Ma' anshan 243002 (China); Song, Qiushi; Cai, Yanqing [School of Metallurgy, Northeastern University, Shenyang 110004 (China); Yang, Yongxiang [School of Metallurgical Engineering, Anhui University of Technology, Ma' anshan 243002 (China); Department of Materials Science and Engineering, Delft University of Technology, 2628 CD Delft (Netherlands)

    2017-05-15

    In the present paper, a detailed study of the redox behavior of zirconium in the eutectic LiF-NaF system was carried out on an inert molybdenum electrode at 750 °C. Several transient electrochemical methods were used such as cyclic voltammetry, square wave voltammetry, chronopotentiometry, and open circuit voltammetry. The reduction of Zr (IV) was found to follow a two-step mechanism of Zr (IV)/Zr (II) and Zr (II)/Zr at the potentials of about −1.10 and −1.50 V versus Pt, respectively. The theoretical evaluations of the number of transferred electrons according to both cyclic voltammetry and square wave voltammetry further confirmed the Zr reduction mechanism. The estimations of Zr (IV) diffusion coefficient in the LiF-NaF eutectic melt at 750 °C through cyclic voltammetry and chronopotentiometry are in fair agreement, as to be approximately 1.13E-5 and 2.42E-5 cm{sup 2}/s, respectively. - Highlights: •The redox mechanism of zirconium in a fluoride salt system was investigated. •A multi-step redox process of Zr was found with various electrochemical methods. •Perspectives on zirconium electro-refining process were proposed.

  4. Electrochemical redox processes involving soluble cerium species

    International Nuclear Information System (INIS)

    Arenas, L.F.; Ponce de León, C.; Walsh, F.C.

    2016-01-01

    Highlights: • The relevance of cerium in laboratory and industrial electrochemistry is considered. • The history of fundamental electrochemical studies and applications is considered. • The chemistry, redox thermodynamics and electrode kinetics of cerium are summarised. • The uses of cerium ions in synthesis, energy storage, analysis and environmental treatment are illustrated. • Research needs and development perspectives are discussed. - Abstract: Anodic oxidation of cerous ions and cathodic reduction of ceric ions, in aqueous acidic solutions, play an important role in electrochemical processes at laboratory and industrial scale. Ceric ions, which have been used for oxidation of organic wastes and off-gases in environmental treatment, are a well-established oxidant for indirect organic synthesis and specialised cleaning processes, including oxide film removal from tanks and process pipework in nuclear decontamination. They also provide a classical reagent for chemical analysis in the laboratory. The reversible oxidation of cerous ions is an important reaction in the positive compartment of various redox flow batteries during charge and discharge cycling. A knowledge of the thermodynamics and kinetics of the redox reaction is critical to an understanding of the role of cerium redox species in these applications. Suitable choices of electrode material (metal or ceramic; coated or uncoated), geometry/structure (2-or 3-dimensional) and electrolyte flow conditions (hence an acceptable mass transport rate) are critical to achieving effective electrocatalysis, a high performance and a long lifetime. This review considers the electrochemistry of soluble cerium species and their diverse uses in electrochemical technology, especially for redox flow batteries and mediated electrochemical oxidation.

  5. Characterization of redox proteins using electrochemical methods

    NARCIS (Netherlands)

    Verhagen, M.

    1995-01-01

    The use of electrochemical techniques in combination with proteins started approximately a decade ago and has since then developed into a powerfull technique for the study of small redox proteins. In addition to the determination of redox potentials, electrochemistry can be used to obtain

  6. Electrochemical redox reactions in solvated silica sol-gel glass

    International Nuclear Information System (INIS)

    Opallo, M.

    2002-01-01

    The studies of electrochemical redox reactions in solvated silica sol-gel glass were reviewed. The methodology of the experiments with emphasis on the direct preparation of the solid electrolyte and the application ultra microelectrodes was described. Generally, the level of the electrochemical signal is not much below that observed in liquid electrolyte. The current depends on time elapsed after gelation, namely the longer time, the smaller current. The differences between electrochemical behaviour of the redox couples in monoliths and thin layers were described. (author)

  7. Characterization of redox proteins using electrochemical methods

    OpenAIRE

    Verhagen, M.

    1995-01-01

    The use of electrochemical techniques in combination with proteins started approximately a decade ago and has since then developed into a powerfull technique for the study of small redox proteins. In addition to the determination of redox potentials, electrochemistry can be used to obtain information about the kinetics of electron transfer between proteins and about the dynamic behaviour of redox cofactors in proteins. This thesis describes the results of a study, initiated to get a ...

  8. Nicotinamide-NAD sequence: redox process and related behavior, behavior and properties of intermediate and final products

    International Nuclear Information System (INIS)

    Elving, P.J.; Schmakel, C.O.; Santhanam, K.S.V.

    1976-01-01

    Illustrations of the application of analytical chemical techniques to the study of chemical phenomena are given. In particular, electrochemical techniques and methodology and, to a lesser extent, spectrophotometry were used to investigate the solution behavior, adsorption, redox processes including coupled chemical reactions, and allied aspects of biologically significant compounds and of their intermediate and final redox products, e.g., the behavior of the free radicals produced by initial one-electron processes. This approach is illustrated by the consideration of the behavior in aqueous and nonaqueous media of a sequence of compounds ranging from nicotinamide (3-carbamoylpyridine) to NAD + and NADP + ; the latter compounds function as coenzymes for the pyridinoproteins which are principal components in the Krebs citric acid cycle and in the electron transport chain in biological redox reactions. The discussion is presented under the following section headings: interpretation of electrochemical behavior; mechanistic patterns; kinetic aspects of charge-transfer and chemical reactions; correlation with theoretically calculated parameters; and, mechanisms of biological oxidation-reduction reactions. The use of pulse radiolysis, chronopotentiometric, and cyclic voltammetric methods in studies on free radical dimerization rates is reviewed in the discussion of the kinetic aspects of charge-transfer and chemical reactions. (188 references)

  9. Probing individual redox PEGylated gold nanoparticles by electrochemical--atomic force microscopy.

    Science.gov (United States)

    Huang, Kai; Anne, Agnès; Bahri, Mohamed Ali; Demaille, Christophe

    2013-05-28

    Electrochemical-atomic force microscopy (AFM-SECM) was used to simultaneously probe the physical and electrochemical properties of individual ~20 nm sized gold nanoparticles functionalized by redox-labeled PEG chains. The redox PEGylated nanoparticles were assembled onto a gold electrode surface, forming a random nanoarray, and interrogated in situ by a combined AFM-SECM nanoelectrode probe. We show that, in this so-called mediator-tethered (Mt) mode, AFM-SECM affords the nanometer resolution required for resolving the position of individual nanoparticles and measuring their size, while simultaneously electrochemically directly contacting the redox-PEG chains they bear. The dual measurement of the size and current response of single nanoparticles uniquely allows the statistical distribution in grafting density of PEG on the nanoparticles to be determined and correlated to the nanoparticle diameter. Moreover, because of its high spatial resolution, Mt/AFM-SECM allows "visualizing" simultaneously but independently the PEG corona and the gold core of individual nanoparticles. Beyond demonstrating the achievement of single-nanoparticle resolution using an electrochemical microscopy technique, the results reported here also pave the way toward using Mt/AFM-SECM for imaging nano-objects bearing any kind of suitably redox-labeled (bio)macromolecules.

  10. A study on electrochemical redox behavior of nitric acid by using a glassy carbon fiber column electrode system

    International Nuclear Information System (INIS)

    Kim, K. W.; Song, K. C.; Lee, I. H.; Choi, I. K.; You, J. H.

    1999-01-01

    Electrochemical redox behaviors of nitric acid were studied by using a glassy carbon fiber column electrode system, and its reaction mechanism was analyzed in several ways. The electrochemical reaction in less than 2.0 M nitric acid was not observed, but in more than 2.0 M nitric acid, the reduction rate of nitric acid to produce nitrous acid was slow so that the nitric acid solution had to be contacted with electrode enough in order for a apparent reduction current of nitric acid to nitrous acid be to observed. The nitrous acid generated in more than 2.0 M nitric acid was rapidly and easily reduced to NOx through an autocatalytic reaction. Sulfamic acid was confirmed to be effective to destroy the nitrous acid. The sulfamic acid of at least 0.05M was necessary to remove the nitrous acid generated in 3.5 M nitric acid

  11. Kinetic investigation of vanadium (V)/(IV) redox couple on electrochemically oxidized graphite electrodes

    International Nuclear Information System (INIS)

    Wang, Wenjun; Wei, Zengfu; Su, Wei; Fan, Xinzhuang; Liu, Jianguo; Yan, Chuanwei; Zeng, Chaoliu

    2016-01-01

    Highlights: • The VO_2"+/VO"2"+ redox reaction of the electrode could be facilitated to some extent with the increasing anodic corrosion. • A real reaction kinetic equation for the oxidation of VO"2"+ on the electrochemically oxidized electrode has been firstly obtained. • The establishment of the kinetic equation is conducive to predict polarization behaviors of the electrodes in engineering application. - Abstract: The morphology, surface composition, wettability and the kinetic parameters of the electrochemically oxidized graphite electrodes obtained under different anodic polarization conditions have been examined by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), contact angle measurements, steady-state polarization and cyclic voltammetry (CV) tests, with an attempt to investigate the inherent correlation between the physicochemical properties and the kinetic characteristics for carbon electrodes used in an all-vanadium redox flow battery (VRFB). When the anodic polarization potential raises up to 1.8 V vs. SCE, the anodic corrosion of the graphite might happen and a large number of oxygen-containing functional groups generate. The VO_2"+/VO"2"+ redox reaction can be facilitated and the reaction reversibility tends to become better with the increasing anodic potential, possibly owing to the increased surface oxides and the resulting improved wettability of the electrode. Based on this, a real reaction kinetic equation for the oxidation of VO"2"+ has been obtained on the electrode polarized at 1.8 V vs. SCE and it can be also well used to predict the polarization behavior of the oxidized electrode in vanadium (IV) acidic solutions.

  12. TEMPO/viologen electrochemical heterojunction for diffusion-controlled redox mediation: a highly rectifying bilayer-sandwiched device based on cross-reaction at the interface between dissimilar redox polymers.

    Science.gov (United States)

    Tokue, Hiroshi; Oyaizu, Kenichi; Sukegawa, Takashi; Nishide, Hiroyuki

    2014-03-26

    A couple of totally reversible redox-active molecules, which are different in redox potentials, 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO) and viologen (V(2+)), were employed to give rise to a rectified redox conduction effect. Single-layer and bilayer devices were fabricated using polymers containing these sites as pendant groups per repeating unit. The devices were obtained by sandwiching the redox polymer layer(s) with indium tin oxide (ITO)/glass and Pt foil electrodes. Electrochemical measurements of the single-layer device composed of polynorbornene-bearing TEMPO (PTNB) exhibited a diffusion-limited current-voltage response based on the TEMPO(+)/TEMPO exchange reaction, which was almost equivalent to a redox gradient through the PTNB layer depending upon the thickness. The bilayer device gave rise to the current rectification because of the thermodynamically favored cross-reaction between TEMPO(+) and V(+) at the polymer/polymer interface. A current-voltage response obtained for the bilayer device demonstrated a two-step diffusion-limited current behavior as a result of the concurrent V(2+)/V(+) and V(+)/V(0) exchange reactions according to the voltage and suggested that the charge transport process through the device was most likely to be rate-determined by a redox gradient in the polymer layer. Current collection experiments revealed a charge transport balance throughout the device, as a result of the electrochemical stability and robustness of the polymers in both redox states.

  13. Carbon-free Solid Dispersion LiCoO2 Redox Couple Characterization and Electrochemical Evaluation for All Solid Dispersion Redox Flow Batteries

    International Nuclear Information System (INIS)

    Qi, Zhaoxiang; Liu, Aaron L.; Koenig, Gary M.

    2017-01-01

    Highlights: • LiCoO 2 particles can be cycled in carbon-free and binder-free coin cells. • A carbon-free LiCoO 2 suspension is electrochemically oxidized and reduced. • Comparable size LiCoO 2 and Li 4 Ti 5 O 12 suspensions have similar rheological properties. • First demonstration of redox couples with solid suspensions for both electrodes. - Abstract: Semi-solid flow batteries have been reported to have among the highest energy densities for redox flow batteries, however, they rely on percolated carbon networks which increase the electrolyte viscosity significantly. We report the first demonstration of carbon-free redox flow couples comprised of dispersed lithium-ion battery active material suspensions, with sub-micrometer LiCoO 2 (LCO) particles at the cathode and Li 4 Ti 5 O 12 (LTO) particles at the anode. Both electrochemical and rheological properties of the LCO suspensions are reported and compared to previous reports for LTO dispersed electrochemical redox couples. An LTO anode and LCO cathode full cell was constructed and reversible electrochemical redox reaction of the dispersed particles was successfully demonstrated. This carbon-free dispersed lithium-ion active material full cell provides a proof-of-concept for a system that lies between the relatively high viscosity semi-solid flow cells with percolated carbon networks and the relatively low energy density conventional flow cells comprised of dissolved transition metals, providing a system for future study of the trade-off between energy density and viscosity for electrochemical flow cells that rely on solid active materials.

  14. Strategies for enhancing electrochemical activity of carbon-based electrodes for all-vanadium redox flow batteries

    International Nuclear Information System (INIS)

    Flox, Cristina; Skoumal, Marcel; Rubio-Garcia, Javier; Andreu, Teresa; Morante, Juan Ramón

    2013-01-01

    Highlights: ► Improved reactions at the positive electrode in all-vanadium redox flow batteries. ► Graphene-derived and PAN-modified electrodes have been successfully prepared. ► Modification with bimetallic CuPt 3 nanocubes yielded the best catalytic behavior. ► N and O-containing groups enhances the vanadium flow battery performance. - Abstract: Two strategies for improving the electroactivity towards VO 2+ /VO 2 + redox pair, the limiting process in all-vanadium redox flow batteries (VFBs), were presented. CuPt 3 nanoparticles supported onto graphene substrate and nitrogen and oxygen polyacrylonitrile (PAN)-functionalized electrodes materials have been evaluated. The morphology, composition, electrochemical properties of all electrodes prepared was characterized with field emission-scanning electrode microscopy, X-ray photoelectron spectroscopy, cyclic voltammetry, electrochemical impedance spectroscopy and cell charge–discharge test. The presence of the CuPt 3 nanocubes and nitrogen and oxygen functionalities enhance the electrocatalytic activity of the electrodes materials accelerating the oxygen and electron transfer processes. The battery performance was also evaluated using PAN-functionalized electrodes exhibiting a high of energy efficiency of 84% (at current density 20 mA cm −2 ) up to 30th cycle, indicating a promising alternative for improving the VFB

  15. Writing nanopatterns with electrochemical oxidation on redox responsive organometallic multilayers by AFM

    NARCIS (Netherlands)

    Song, Jing; Hempenius, Mark A.; Chung, H.J.; Vancso, Gyula J.

    2015-01-01

    Nanoelectrochemical patterning of redox responsive organometallic poly(ferrocenylsilane) (PFS) multilayers is demonstrated by electrochemical dip pen lithography (EDPN). Local electrochemical oxidation and Joule heating of PFS multilayers from the tip are considered as relevant mechanisms related to

  16. Adsorption behavior of redox-active suppressor additives: Combined electrochemical and STM studies

    International Nuclear Information System (INIS)

    Hai, N.T.M.; Huynh, T.M.T.; Fluegel, A.; Mayer, D.; Broekmann, P.

    2011-01-01

    Highlights: → Janus Green B and safranine are prototypical redox-active leveler additives for copper electroplating. → Their redox-transitions lie within the copper potential window. → Reduced additives are identified as active species for the leveling effect. → Electro-reduction affects in particular the central aromatic cores of the additives. - Abstract: The redox chemistry and the related surface phase behavior of Safranine (SAF) and Janus Green B (JGB) have been studied by means of cyclic voltammetry in combination with in situ Scanning Tunneling Microscopy using HOPG (Highly Oriented Pyrolytic Graphite) and single crystalline Cu(1 0 0) as model substrates, both revealing different widths of the accessible potential windows. JGB and SAF serve as prototypical heterocyclic suppressor/leveler additives that are used for the metallization of 3D-TSVs (3D Through Silicon Vias) following a classical 'leveling' concept. SAF can be considered as the reductive decomposition product of JGB that is formed at the copper/electrolyte interface upon electroplating. Both additives reveal a pronounced pH-dependent redox-chemistry with redox-transitions lying close to or even beyond the anodic limit of the copper potential window. Affected by these redox-processes are in particular the aromatic cores of those heterocycles that can be (quasi)reversibly reduced by a two electron transfer process within the potential window of copper. Therefore we identify the reduced form of those dyes as the active components for the suppressing/leveling effect in copper plating. STM data clearly shows a dye surface phase behavior that is crucially determined by its potential-dependent redox-chemistry. This will be exemplarily discussed for the SAF dye. On chloride-modified Cu(1 0 0) mono-reduced SAF forms a structurally well-defined monolayer of cationic stacking polymers. However, this coupled anion/cation layer reveals only minor suppressing capabilities with respect to the copper

  17. Droplet electrochemical study of the pH dependent redox behavior of novel ferrocenyl-carborane derivatives and its application in specific cancer cell recognition

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Changyu [State Key Laboratory of Bioelectronics (Chien-Shiung Wu Laboratory), Southeast University, Nanjing 210096 (China); Shah, Afzal [Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Ye, Hongde [State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093 (China); Chen, Xiao; Ye, Jing; Jiang, Hui [State Key Laboratory of Bioelectronics (Chien-Shiung Wu Laboratory), Southeast University, Nanjing 210096 (China); Chen, Baoan [Department of Hematology, the Affiliated Zhongda Hospital, Clinical Medical School, Southeast University, Nanjing 210009 (China); Wang, Xuemei, E-mail: xuewang@seu.edu.cn [State Key Laboratory of Bioelectronics (Chien-Shiung Wu Laboratory), Southeast University, Nanjing 210096 (China); Yan, Hong, E-mail: hyan1965@nju.edu.cn [State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093 (China)

    2015-02-01

    Highlights: • Electrochemical behaviors of novel ferrocenyl based carboranes (FcCB) were explored with a droplet system. • The shifts of peak potentials with changes of pH values indicated the involvement of proton during electron transfer reaction. • Normal cells and cancer cells could be specifically recognized by using FcCB as probe. • This electrochemical method in a droplet shows great potential application for relevant diagnostics of clinical samples. - Abstract: Novel ferrocenyl based carboranes (FcCBs) and their distinguish behavior for cancer cell recognition have been explored in this contribution. The voltammetric study in a droplet of 10 μL placed on the surface of a glassy carbon electrode demonstrates the excellent electrochemical behavior of FcCBs, which could be further exploited for establishing the promising and sensitive biosensors. The FcCBs’ redox behavior is examined in a wide pH range, and square wave voltammetry revealed the reversible and irreversible nature of first and second anodic peaks. The obvious shifts in peak potentials corresponding with the change of pH values demonstrate the abstraction of electrons to be accompanied with the transfer of protons. By using the droplet electrochemical technique, FcCBs can be employed to distinguish normal and cancer cells with a linear range from 1.0 × 10{sup 3} to 3.0 × 10{sup 4} cells mL{sup −1} and the limit of detection at 800 cells mL{sup −1}. The novel carborane derivatives could be utilized as important potential molecular probes for specific recognition of cancer cells like leukemia cells from normal cells.

  18. Synthesis and Electrochemical Study of a TCAA Derivative – A potential bipolar redox-active material

    International Nuclear Information System (INIS)

    Hagemann, Tino; Winsberg, Jan; Wild, Andreas; Schubert, Ulrich S.

    2017-01-01

    The 2,3,7,8-tetracyano-1,4,5,6,9,10-hexazaanthracene (TCAA) derivatives represent an interesting substance class for future research on organic electronic devices, such as solar cells, organic batteries or redox-flow batteries (RFBs). Because of their multivalent redox behavior they are potentially “bipolar”, usable both as cathode and anode activ charge-storage materials. Furthermore, they show a strong absorption and fluorescence behavior both in solution and solid state, rendering them a promising emitter for electroluminescence devices, like lamps or displays. In order to evaluate a TCAA for electrochemical applications the derivative 2,3,7,8-tetracyano-5,10-diphenyl-5,10-dihydrodipyrazino[2,3-b:2′,3′-e] pyrazine (2) was synthesized in two straightforward synthesis steps. The electrochemical behavior of 2 was initially determined by density functional theory (DFT) calculation and afterwards investigated via rotating disc electrode (RDE), UV–vis–NIR spectroelectrochemical as well as cyclic voltammetry (CV) measurements. It features a quasi-reversible oxidation and re-reduction at E ½ = 1.42 V vs. Fc + /Fc with a peak split of 96 mV and a quasi-reversible reduction and re-oxidation at E ½ = −1.49 V vs. Fc + /Fc with a peak split of 174 mV, which lead to a theoretical potential difference of 2.91 V.

  19. Electrochemical Switching of Conductance with Diarylethene-Based Redox-Active Polymers

    DEFF Research Database (Denmark)

    Logtenberg, Hella; van der Velde, Jasper H. M.; de Mendoza, Paula

    2012-01-01

    Reversible switching of conductance using redox triggered switching of a polymer-modified electrode is demonstrated. A bifunctional monomer comprising a central electroswitchable core and two bithiophene units enables formation of a film through anodic electropolymerization. The conductivity...... of the polymer can be switched electrochemically in a reversible manner by redox triggered opening and closing of the diarylethene unit. In the closed state, the conductivity of the modified electrode is higher than in the open state....

  20. Electrochemical behavior of amorphous metal-silicon-carbon nanocomposites based on titanium or tungsten nanophase

    International Nuclear Information System (INIS)

    Pleskov, Yu.V.; Krotova, M.D.; Shupegin, M.L.; Bozhko, A.D.

    2009-01-01

    Electrode behavior of nanocomposite films containing titanium- or tungsten-based conducting nanophase embedded in dielectric silicon-carbon matrix, deposited onto glassceramics substrate, is studied by cyclic voltammetry and electrochemical impedance spectroscopy. As the films' resistivity decreases, their electrochemical behavior gradually changes from that of 'poor conductor' to the nearly metal-like behavior. In particular, the differential capacitance increases, the charge transfer in a model redox system [Fe(CN) 6 ] 3-/4- accelerates, which may be explained by the increasing number of metal-containing clusters at the film/electrolyte solution interface

  1. Electrochemical Single‐Molecule AFM of the Redox Metalloenzyme Copper Nitrite Reductase in Action

    DEFF Research Database (Denmark)

    Hao, Xian; Zhang, Jingdong; Christensen, Hans Erik Mølager

    2012-01-01

    We studied the electrochemical behavior of the redox metalloenzyme copper nitrite reductase (CNiR, Achromobacter xylosoxidans) immobilized on a Au(111)‐electrode surface modified by a self‐assembled cysteamine molecular monolayer (SAM) using a combination of cyclic voltammetry and electrochemically......‐controlled atomic force microscopy (in situ AFM). The enzyme showed no voltammetric signals in the absence of nitrite substrate, whereas a strong reductive electrocatalytic signal appeared in the presence of nitrite. Such a pattern is common in protein film and monolayer voltammetry and points to conformational...... in the presence of nitrite. No change in size was observed in the absence of nitrite over the same potential range. The enzyme size variation is suggested to offer clues to the broadly observed substrate triggering in metalloenzyme monolayer voltammetry....

  2. Fabrication and electrochemical behavior of single-walled carbon nanotube/graphite-based electrode

    International Nuclear Information System (INIS)

    Moghaddam, Abdolmajid Bayandori; Ganjali, Mohammad Reza; Dinarvand, Rassoul; Razavi, Taherehsadat; Riahi, Siavash; Rezaei-Zarchi, Saeed; Norouzi, Parviz

    2009-01-01

    An electrochemical method for determining the dihydroxybenzene derivatives on glassy carbon (GC) has been developed. In this method, the performance of a single-walled carbon nanotube (SWCNT)/graphite-based electrode, prepared by mixing SWCNTs and graphite powder, was described. The resulting electrode shows an excellent behavior for redox of 3,4-dihydroxybenzoic acid (DBA). SWCNT/graphite-based electrode presents a significant decrease in the overvoltage for DBA oxidation as well as a dramatic improvement in the reversibility of DBA redox behavior in comparison with graphite-based and glassy carbon (GC) electrodes. In addition, scanning electron microscopy (SEM) and atomic force microscopy (AFM) procedures performed for used SWCNTs

  3. Catechol-chitosan redox capacitor for added amplification in electrochemical immunoanalysis.

    Science.gov (United States)

    Yan, Kun; Liu, Yi; Guan, Yongguang; Bhokisham, Narendranath; Tsao, Chen-Yu; Kim, Eunkyoung; Shi, Xiao-Wen; Wang, Qin; Bentley, William E; Payne, Gregory F

    2018-05-22

    Antibodies are common recognition elements for molecular detection but often the signals generated by their stoichiometric binding must be amplified to enhance sensitivity. Here, we report that an electrode coated with a catechol-chitosan redox capacitor can amplify the electrochemical signal generated from an alkaline phosphatase (AP) linked immunoassay. Specifically, the AP product p-aminophenol (PAP) undergoes redox-cycling in the redox capacitor to generate amplified oxidation currents. We estimate an 8-fold amplification associated with this redox-cycling in the capacitor (compared to detection by a bare electrode). Importantly, this capacitor-based amplification is generic and can be coupled to existing amplification approaches based on enzyme-linked catalysis or magnetic nanoparticle-based collection/concentration. Thus, the capacitor should enhance sensitivities in conventional immunoassays and also provide chemical to electrical signal transduction for emerging applications in molecular communication. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Factors Controlling Redox Speciation of Plutonium and Neptunium in Extraction Separation Processes

    Energy Technology Data Exchange (ETDEWEB)

    Paulenova, Alena [Principal Investigator; Vandegrift, III, George F. [Collaborator

    2013-09-24

    The objective of the project was to examine the factors controlling redox speciation of plutonium and neptunium in UREX+ extraction in terms of redox potentials, redox mechanism, kinetics and thermodynamics. Researchers employed redox-speciation extractions schemes in parallel to the spectroscopic experiments. The resulting distribution of redox species w studied uring spectroscopic, electrochemical, and spectro-electrochemical methods. This work reulted in collection of data on redox stability and distribution of redox couples in the nitric acid/nitrate electrolyte and the development of redox buffers to stabilize the desired oxidation state of separated radionuclides. The effects of temperature and concentrations on the redox behavior of neptunium were evaluated.

  5. Antioxidant activity and electrochemical elucidation of the enigmatic redox behavior of curcumin and its structurally modified analogues

    International Nuclear Information System (INIS)

    Jha, Niki S.; Mishra, Satyendra; Jha, Shailendra K.; Surolia, Avadhesha

    2015-01-01

    Highlights: • Structural analogues of curcumin have been synthesized. • Confirmation of redox behaviour emanates from H- shift from central methylene group in curcumin. • Mechanism of curcumin oxidation has been proposed. • Correlation between redox behavior and antioxidant activity has been established. - Abstract: Here, we report studies on the antioxidant activity and redox behavior of curcumin and its structurally modified synthetic analogues. We have synthesized a number of analogues of curcumin which abrogate its keto-enol tautomerism or substitute the methylene group at the centre of its heptadione moiety implicated in the hydride transfer and studied their redox property. From cyclic voltammetric studies, it is demonstrated that H- atom transfer from CH 2 group at the center of the heptadione link also plays an important role in the antioxidant properties of curcumin along with that of its phenolic –OH group. In addition, we also show that the conversion of 1, 3- dicarbonyl moiety of curcumin to an isosteric heterocycle as in pyrazole curcumin, which decreases its rotational freedom, leads to an improvement of its redox properties as well as its antioxidant activity

  6. Novel electrochemical redox-active species: one-step synthesis of polyaniline derivative-Au/Pd and its application for multiplexed immunoassay

    Science.gov (United States)

    Wang, Liyuan; Feng, Feng; Ma, Zhanfang

    2015-11-01

    Electrochemical redox-active species play crucial role in electrochemically multiplexed immunoassays. A one-pot method for synthesizing four kinds of new electrochemical redox-active species was reported using HAuCl4 and Na2PdCl4 as dual oxidating agents and aniline derivatives as monomers. The synthesized polyaniline derivative-Au/Pd composites, namely poly(N-methyl-o-benzenediamine)-Au/Pd, poly(N-phenyl-o-phenylenediamine)-Au/Pd, poly(N-phenyl-p-phenylenediamine)-Au/Pd and poly(3,3’,5,5’-tetramethylbenzidine)-Au/Pd, exhibited electrochemical redox activity at -0.65 V, -0.3 V, 0.12 V, and 0.5 V, respectively. Meanwhile, these composites showed high H2O2 electrocatalytic activity because of the presence of Au/Pd. The as-prepared composites were used as electrochemical immunoprobes in simultaneous detection of four tumor biomarkers (carcinoembryonic antigen (CEA), carbohydrate antigen 19-9 (CA199), carbohydrate antigen 72-4 (CA724), and alpha fetoprotein (AFP)). This immunoassay shed light on potential applications in simultaneous gastric cancer (related biomarkers: CEA, CA199, CA724) and liver cancer diagnosis (related biomarkers: CEA, CA199, AFP). The present strategy to the synthesize redox species could be easily extended to other polymers such as polypyrrole derivatives and polythiophene derivatives. This would be of great significance in the electrochemical detection of more analytes.

  7. Electrochemical behavior of adrenaline at the carbon atom wire modified electrode

    Science.gov (United States)

    Xue, Kuan-Hong; Liu, Jia-Mei; Wei, Ri-Bing; Chen, Shao-Peng

    2006-09-01

    Electrochemical behavior of adrenaline at an electrode modified by carbon atom wires (CAWs), a new material, was investigated by cyclic voltammetry combined with UV-vis spectrometry, and forced convection method. As to the electrochemical response of redox of adrenaline/adrenalinequinone couple in 0.50 M H 2SO 4, at a nitric acid treated CAW modified electrode, the anodic and cathodic peak potentials Epa and Epc shifted by 87 mV negatively and 139 mV in the positive direction, respectively, and standard heterogeneous rate constant k0 increased by 16 times compared to the corresponding bare electrode, indicating the extraordinary activity of CAWs in electrocatalysis for the process.

  8. Electrochemical behavior of adrenaline at the carbon atom wire modified electrode

    International Nuclear Information System (INIS)

    Xue Kuanhong; Liu Jiamei; Wei Ribing; Chen Shaopeng

    2006-01-01

    Electrochemical behavior of adrenaline at an electrode modified by carbon atom wires (CAWs), a new material, was investigated by cyclic voltammetry combined with UV-vis spectrometry, and forced convection method. As to the electrochemical response of redox of adrenaline/adrenalinequinone couple in 0.50 M H 2 SO 4 , at a nitric acid treated CAW modified electrode, the anodic and cathodic peak potentials E pa and E pc shifted by 87 mV negatively and 139 mV in the positive direction, respectively, and standard heterogeneous rate constant k 0 increased by 16 times compared to the corresponding bare electrode, indicating the extraordinary activity of CAWs in electrocatalysis for the process

  9. Single-Molecule Electrochemical Gating in Ionic Liquids

    DEFF Research Database (Denmark)

    Kay, Nicola J.; Higgins, Simon J.; Jeppesen, Jan O.

    2012-01-01

    The single-molecular conductance of a redox active molecular bridge has been studied in an electrochemical single-molecule transistor configuration in a room-temperature ionic liquid (RTIL). The redox active pyrrolo-tetrathiafulvalene (pTTF) moiety was attached to gold contacts at both ends through...... −(CH2)6S– groups, and gating of the redox state was achieved with the electrochemical potential. The water-free, room-temperature, ionic liquid environment enabled both the monocationic and the previously inaccessible dicationic redox states of the pTTF moiety to be studied in the in situ scanning...... and decreases again as the second redox process is passed. This is described as an “off–on–off–on–off” conductance switching behavior. This molecular conductance vs electrochemical potential relation could be modeled well as a sequential two-step charge transfer process with full or partial vibrational...

  10. Electrochemical Detection of Circadian Redox Rhythm in Cyanobacterial Cells via Extracellular Electron Transfer.

    Science.gov (United States)

    Nishio, Koichi; Pornpitra, Tunanunkul; Izawa, Seiichiro; Nishiwaki-Ohkawa, Taeko; Kato, Souichiro; Hashimoto, Kazuhito; Nakanishi, Shuji

    2015-06-01

    Recent research on cellular circadian rhythms suggests that the coupling of transcription-translation feedback loops and intracellular redox oscillations is essential for robust circadian timekeeping. For clarification of the molecular mechanism underlying the circadian rhythm, methods that allow for the dynamic and simultaneous detection of transcription/translation and redox oscillations in living cells are needed. Herein, we report that the cyanobacterial circadian redox rhythm can be electrochemically detected based on extracellular electron transfer (EET), a process in which intracellular electrons are exchanged with an extracellular electrode. As the EET-based method is non-destructive, concurrent detection with transcription/translation rhythm using bioluminescent reporter strains becomes possible. An EET pathway that electrochemically connected the intracellular region of cyanobacterial cells with an extracellular electrode was constructed via a newly synthesized electron mediator with cell membrane permeability. In the presence of the mediator, the open circuit potential of the culture medium exhibited temperature-compensated rhythm with approximately 24 h periodicity. Importantly, such circadian rhythm of the open circuit potential was not observed in the absence of the electron mediator, indicating that the EET process conveys the dynamic information regarding the intracellular redox state to the extracellular electrode. These findings represent the first direct demonstration of the intracellular circadian redox rhythm of cyanobacterial cells. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  11. Electrochemical behavior of adrenaline at the carbon atom wire modified electrode

    Energy Technology Data Exchange (ETDEWEB)

    Xue Kuanhong [Chemistry Department, Nanjing Normal University, Jiangsu Engineering Research Center for Bio-medical Function Materials, 122 NingHai Road, Nanjing, JiangSu 210097 (China)], E-mail: khxue@njnu.edu.cn; Liu Jiamei [Chemistry Department, Nanjing Normal University, Jiangsu Engineering Research Center for Bio-medical Function Materials, 122 NingHai Road, Nanjing, JiangSu 210097 (China); Wei Ribing [Chemistry Department, Nanjing Normal University, Jiangsu Engineering Research Center for Bio-medical Function Materials, 122 NingHai Road, Nanjing, JiangSu 210097 (China); Chen Shaopeng [Chemistry Department, Nanjing Normal University, Jiangsu Engineering Research Center for Bio-medical Function Materials, 122 NingHai Road, Nanjing, JiangSu 210097 (China)

    2006-09-11

    Electrochemical behavior of adrenaline at an electrode modified by carbon atom wires (CAWs), a new material, was investigated by cyclic voltammetry combined with UV-vis spectrometry, and forced convection method. As to the electrochemical response of redox of adrenaline/adrenalinequinone couple in 0.50 M H{sub 2}SO{sub 4}, at a nitric acid treated CAW modified electrode, the anodic and cathodic peak potentials E {sub pa} and E {sub pc} shifted by 87 mV negatively and 139 mV in the positive direction, respectively, and standard heterogeneous rate constant k {sup 0} increased by 16 times compared to the corresponding bare electrode, indicating the extraordinary activity of CAWs in electrocatalysis for the process.

  12. Redox properties of iron-bearing clays and MX-80 bentonite – Electrochemical and spectroscopic characterization

    International Nuclear Information System (INIS)

    Hofstetter, Th. B.; Sosedova, Y.; Gorski, C.; Voegelin, A.; Sander, M.

    2014-03-01

    The characterization of the redox properties of Fe-bearing minerals in the presence and absence of dissolved Fe"2"+ is of major relevance for the assessment of redox reactions in natural and engineered environments such as radioactive waste repositories. In this study, we developed an electrochemical approach based on the use of soluble organic electron transfer mediators, which enabled us to quantify the redox properties of Fe-bearing clay minerals, MX- 80 bentonite and combinations of clay minerals, Fe oxides and dissolved Fe"2"+. Using mediated electrochemical oxidation and reduction, we quantified the electron accepting and donating capacities of ferrous smectite SWa-1, Wyoming montmorillonite SWy-2 and MX-80 bentonite at pH 7.5. All structural Fe in clay minerals was redox-active in contrast to that present in other, not further defined phases of MX-80. The materials investigated were redoxactive over a very wide range of Eh-values, that is the Fe"2"+/Fe_t_o_t_a_l ratio of the minerals changed from 0 to 100 % between +600 and -600 mV (vs. SHE). Redox properties were highly path-dependent due to structural changes of the minerals as revealed from the study of native and redox-cycled clay minerals after repeated reduction and re-oxidation cycles. Irreversible alteration of the mineral structure, however, was less obvious for materials with lower total Fe content such as MX-80 bentonite and SWy-2. Systems containing native montmorillonites (SWy-2 or MX-80), goethite and dissolved Fe"2"+ were also able to buffer the reduction potential E_H between 0 and -300 mV. Regardless of their Fe oxidation state, Fe-bearing minerals are redox-active over a wide potential range and therefore very relevant as redox buffers determining the fate of redox-active radionuclides and metals in waste repositories. (authors)

  13. Redox properties of iron-bearing clays and MX-80 bentonite – Electrochemical and spectroscopic characterization

    Energy Technology Data Exchange (ETDEWEB)

    Hofstetter, Th. B.; Sosedova, Y.; Gorski, C.; Voegelin, A.; Sander, M.

    2014-03-15

    The characterization of the redox properties of Fe-bearing minerals in the presence and absence of dissolved Fe{sup 2+} is of major relevance for the assessment of redox reactions in natural and engineered environments such as radioactive waste repositories. In this study, we developed an electrochemical approach based on the use of soluble organic electron transfer mediators, which enabled us to quantify the redox properties of Fe-bearing clay minerals, MX- 80 bentonite and combinations of clay minerals, Fe oxides and dissolved Fe{sup 2+}. Using mediated electrochemical oxidation and reduction, we quantified the electron accepting and donating capacities of ferrous smectite SWa-1, Wyoming montmorillonite SWy-2 and MX-80 bentonite at pH 7.5. All structural Fe in clay minerals was redox-active in contrast to that present in other, not further defined phases of MX-80. The materials investigated were redoxactive over a very wide range of Eh-values, that is the Fe{sup 2+}/Fe{sub total} ratio of the minerals changed from 0 to 100 % between +600 and -600 mV (vs. SHE). Redox properties were highly path-dependent due to structural changes of the minerals as revealed from the study of native and redox-cycled clay minerals after repeated reduction and re-oxidation cycles. Irreversible alteration of the mineral structure, however, was less obvious for materials with lower total Fe content such as MX-80 bentonite and SWy-2. Systems containing native montmorillonites (SWy-2 or MX-80), goethite and dissolved Fe{sup 2+} were also able to buffer the reduction potential E{sub H} between 0 and -300 mV. Regardless of their Fe oxidation state, Fe-bearing minerals are redox-active over a wide potential range and therefore very relevant as redox buffers determining the fate of redox-active radionuclides and metals in waste repositories. (authors)

  14. Electrochemical characteristics of vanadium redox reactions on porous carbon electrodes for microfluidic fuel cell applications

    International Nuclear Information System (INIS)

    Lee, Jin Wook; Hong, Jun Ki; Kjeang, Erik

    2012-01-01

    Microfluidic vanadium redox fuel cells are membraneless and catalyst-free fuel cells comprising a microfluidic channel network with two porous carbon electrodes. The anolyte and catholyte for fuel cell operation are V(II) and V(V) in sulfuric acid based aqueous solution. In the present work, the electrochemical characteristics of the vanadium redox reactions are investigated on commonly used porous carbon paper electrodes and compared to a standard solid graphite electrode as baseline. Half-cell electrochemical impedance spectroscopy is applied to measure the overall ohmic resistance and resistivity of the electrodes. Kinetic parameters for both V(II) and V(V) discharging reactions are extracted from Tafel plots and compared for the different electrodes. Cyclic voltammetry techniques reveal that the redox reactions are irreversible and that the magnitudes of peak current density vary significantly for each electrode. The obtained kinetic parameters for the carbon paper are implemented into a numerical simulation and the results show a good agreement with measured polarization curves from operation of a microfluidic vanadium redox fuel cell employing the same material as flow-through porous electrodes. Recommendations for microfluidic fuel cell design and operation are provided based on the measured trends.

  15. Electrochemical catalytic activity of tungsten trioxide- modified graphite felt toward VO2+/VO2+ redox reaction

    International Nuclear Information System (INIS)

    Shen, Yang; Xu, Hongfeng; Xu, Pengcheng; Wu, Xiaoxin; Dong, Yiming; Lu, Lu

    2014-01-01

    A novel graphite felt electrode modified with tungsten trioxide (WO 3 ) was developed to improve the electrochemical performance of graphite felt toward the VO 2 + /VO 2+ redox pair. WO 3 was prepared using a hydrothermal method, and the morphology of WO 3 structures was investigated by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The electrochemical property of WO 3 -modified graphite felt toward VO 2 + /VO 2+ was carefully characterized using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements. The hydrogen-vanadium redox flow battery (H-VRFB) test indicates that single cells using 1.1 mg cm −2 WO 3 -modified graphite felt exhibited excellent performance at 70 mA cm −2 , and the corresponding coulombic, voltage, and energy efficiencies were 99.1%, 88.66% and 87.86%, respectively

  16. Redox poly[Ni(saldMp)] modified activated carbon electrode in electrochemical supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Gao Fei [Department of Physical Chemistry, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083 (China); Li Jianling, E-mail: lijianling@ustb.edu.c [Department of Physical Chemistry, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083 (China); Zhang Yakun; Wang Xindong [Department of Physical Chemistry, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083 (China); Kang Feiyu [Department of Material Science and Engineering, Tsinghua University, Beijing 100083 (China)

    2010-08-01

    The complex (2,2-dimethyl-1,3-propanediaminebis(salicylideneaminato))-nickel(II), [Ni(saldMp)], was oxidatively electropolymerized on activated carbon (AC) electrode in acetonitrile solution. The poly[Ni(saldMp)] presented an incomplete coated film on the surface of carbon particles of AC electrode by field emission scanning electron microscopy. The electrochemical behaviors of poly[Ni(saldMp)] modified activated carbon (PAC) electrode were evaluated in different potential ranges by cyclic voltammetry. Counterions and solvent swelling mainly occurred up to 0.6 V for PAC electrode by the comparison of D{sup 1/2}C values calculated from chronoamperometry experiments. Both the Ohmic resistance and Faraday resistance of PAC electrode gradually approached to those of AC electrode when its potential was ranging from 1.2 V to 0.0 V. Galvanostatic charge/discharge experiments indicated that both the specific capacitance and energy density were effectively improved by the reversible redox reaction of poly[Ni(saldMp)] film under the high current density up to 10 mA cm{sup -2} for AC electrode. The specific capacitance of PAC electrode decreased during the first 50 cycles but thereafter it remained constant for the next 200 cycles. This study showed the redox polymer may be an attractive material in supercapacitors.

  17. Controllable Electrochemical Activities by Oxidative Treatment toward Inner-Sphere Redox Systems at N-Doped Hydrogenated Amorphous Carbon Films

    Directory of Open Access Journals (Sweden)

    Yoriko Tanaka

    2012-01-01

    Full Text Available The electrochemical activity of the surface of Nitrogen-doped hydrogenated amorphous carbon thin films (a-CNH, N-doped DLC toward the inner sphere redox species is controllable by modifying the surface termination. At the oxygen plasma treated N-doped DLC surface (O-DLC, the surface functional groups containing carbon doubly bonded to oxygen (C=O, which improves adsorption of polar molecules, were generated. By oxidative treatment, the electron-transfer rate for dopamine (DA positively charged inner-sphere redox analyte could be improved at the N-doped DLC surface. For redox reaction of 2,4-dichlorophenol, which induces an inevitable fouling of the anode surface by forming passivating films, the DLC surfaces exhibited remarkably higher stability and reproducibility of the electrode performance. This is due to the electrochemical decomposition of the passive films without the interference of oxygen evolution by applying higher potential. The N-doped DLC film can offer benefits as the polarizable electrode surface with the higher reactivity and higher stability toward inner-sphere redox species. By making use of these controllable electrochemical reactivity at the O-DLC surface, the selective detection of DA in the mixed solution of DA and uric acid could be achieved.

  18. Redox Behavior of Fe2+/Fe3+ Redox Couple by Absorption Spectroscopy and Measurement

    International Nuclear Information System (INIS)

    Oh, J. Y.; Park, S.; Yun, J. I.

    2010-01-01

    Redox behavior has influences on speciation and other geochemical reactions of radionuclides such as sorption, solubility, and colloid formation, etc. It is one of the factors for evaluation of long-term safety assessment under high-level radioactive waste (HLW) disposal conditions. Accordingly, redox potential (Eh) measurement in aquatic system is important to investigate the redox conditions. Eh is usually measured with redox active electrodes (Pt, Au, glassy carbon, etc.). Nevertheless, Eh measurements by general methods using electrodes provide low accuracy and high uncertainty problem. Therefore, Eh calculated from the concentration of redox active elements with a proper complexing reagent by using UV-Vis absorption spectroscopy is progressed. Iron exists mostly as spent nuclear waste container material and in hydro-geologic minerals. In this system, iron controls the redox condition in near-field area and influences chemical behavior and speciation of radionuclides including redox sensitive actinides such as U, Np, and Pu. In the present work, we present the investigation on redox phenomena of iron in aquatic system by a combination of absorption spectroscopy and redox potential measurements

  19. Electrochemical DNA biosensor for detection of porcine oligonucleotides using ruthenium(II) complex as intercalator label redox

    Energy Technology Data Exchange (ETDEWEB)

    Halid, Nurul Izni Abdullah; Hasbullah, Siti Aishah; Heng, Lee Yook; Karim, Nurul Huda Abd [School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan (Malaysia); Ahmad, Haslina; Harun, Siti Norain [Chemistry Department, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor (Malaysia)

    2014-09-03

    A DNA biosensor detection of oligonucleotides via the interactions of porcine DNA with redox active complex based on the electrochemical transduction is described. A ruthenium(II) complex, [Ru(bpy){sub 2}(PIP)]{sup 2+}, (bpy = 2,2′bipyridine, PIP = 2-phenylimidazo[4,5-f[[1,10-phenanthroline]) as DNA label has been synthesized and characterized by 1H NMR and mass spectra. The study was carried out by covalent bonding immobilization of porcine aminated DNA probes sequences on screen printed electrode (SPE) modified with succinimide-acrylic microspheres and [Ru(bpy){sub 2}(PIP)]{sup 2+} was used as electrochemical redox intercalator label to detect DNA hybridization event. Electrochemical detection was performed by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) over the potential range where the ruthenium (II) complex was active. The results indicate that the interaction of [Ru(bpy){sub 2}(PIP)]{sup 2+} with hybridization complementary DNA has higher response compared to single-stranded and mismatch complementary DNA.

  20. The redox properties of the natural iron-bearing clay mineral ferruginous smectite SWA-1: a combined electrochemical and spectroscopic study

    International Nuclear Information System (INIS)

    Gorski, Christopher A.; Voegelin, Andreas; Sander, Michael; Hofstetter, Thomas B.

    2012-01-01

    Document available in extended abstract form only. Iron-bearing clay minerals are ubiquitous in the environment and clay-mineral-based materials have been proposed to be part of backfill material in nuclear waste repositories. Laboratory and field studies have confirmed that structural iron (Fe) in clay minerals participates in redox reactions with organic pollutants, metals, and radionuclides, thus influencing their transport and reactivity. Knowledge of the redox properties of Fe-bearing clay minerals is therefore essential for understanding and predicting the fate, mobility, and bioavailability subsurface contaminants. A quantitative understanding of clay mineral redox behavior remains lacking, however, due to constraints in previous experimental approaches and the complex structural changes that accompany changes in the Fe oxidation state. This work provides a quantitative means for measuring the redox properties of Fe-bearing clay minerals, which can be applied to both field and laboratory studies tracking radionuclide-clay mineral redox reactions. Here we use mediated electrochemical reduction and oxidation to determine the electron accepting and donating capacities of several natural Fe-bearing clay minerals with different structural Fe content (2.3 to 21 wt-%) and varied redox histories. Results indicate that the fraction of redox-active Fe in clay minerals is mineral-dependent, and is linked to the thermodynamics of reduction and oxidation as well as to the ability of clay minerals to conduct electrons and facilitate structural re-arrangements required to maintain charge balance. The reduction potential (E H ) characteristics of a natural ferruginous smectite (SWa-1) were further characterized as a function of solution conditions and repeated Fe reduction and oxidation cycles. SWa-1 samples were analyzed with Moessbauer spectroscopy (MS) and X-ray absorption spectroscopy (XAS) to link observed redox potential behavior to structural properties and changes

  1. Redox behaviors of iron by absorption spectroscopy and redox potential measurement

    International Nuclear Information System (INIS)

    Oh, Jae Yong

    2010-02-01

    This work is performed to study the redox (reduction/oxidation) behaviors of iron in aqueous system by a combination of absorption spectroscopy and redox potential measurements. There are many doubts on redox potential measurements generally showing low accuracies and high uncertainties. In the present study, redox potentials are measured by utilizing various redox electrodes such as Pt, Au, Ag, and glassy carbon (GC) electrodes. Measured redox potentials are compared with calculated redox potentials based on the chemical oxidation speciation of iron and thermodynamic data by absorption spectroscopy, which provides one of the sensitive and selective spectroscopic methods for the chemical speciation of Fe(II/III). From the comparison analyses, redox potential values measured by the Ag redox electrode are fairly consistent with those calculated by the chemical aqueous speciation of iron in the whole system. In summary, the uncertainties of measured redox potentials are closely related with the total Fe concentration and affected by the formation of mixed potentials due to Fe(III) precipitates in the pH range of 6 ∼ 9 beyond the solubility of Fe(III), whilst being independent of the initially prepared concentration ratios between Fe(II) and Fe(III)

  2. Influence of organic additives on electrochemical properties of the positive electrolyte for all-vanadium redox flow battery

    International Nuclear Information System (INIS)

    Wu Xiaojuan; Liu Suqin; Wang Nanfang; Peng Sui; He Zhangxin

    2012-01-01

    Inositol and phytic acid have been employed as organic additives of the positive electrolyte for all-vanadium redox flow battery (VRFB) to improve its stability and electrochemical reversibility. Thermal stability of the V(V) electrolyte could be improved by both inositol and phytic acid additives. The results of cyclic voltammetry (CV), steady polarization curve and electrochemical impedance spectroscopy (EIS) show that the electrochemical activity of the electrolyte with additives is improved compared to the blank one. The diffusion coefficient of V(IV) species with inositol has been increased from 0.71–1.16 × 10 −6 to 3.11–5.15 × 10 −6 cm 2 s −1 and the exchange current density was raised from 2.8 × 10 −3 to 11.7 × 10 −3 A cm −2 . Moreover, electrochemical results suggest that the positive electrolytes with organic additives have better cycling stability. The VRFB employing positive electrolyte with inositol as additive exhibits excellent charge–discharge behavior with an average energy efficiency of 81.5% at a current density of 30 mA cm −2 . The UV–visible spectroscopy confirms that new substances in V(V) electrolyte are not formed with both inositol and phytic acid additives.

  3. Understanding the nanoscale redox-behavior of iron-anodes for rechargeable iron-air batteries

    Energy Technology Data Exchange (ETDEWEB)

    Weinrich, Henning [Forschungszentrum Julich (Germany). Inst. for Energy and Climate Research-Fundamental Electrochemistry (IEK-9); RWTH Aachen Univ., Aachen (Germany). Inst. of Physical Chemistry; Come, Jérémy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS); Tempel, Hermann [Forschungszentrum Julich (Germany). Inst. for Energy and Climate Research-Fundamental Electrochemistry (IEK-9); Kungl, Hans [Forschungszentrum Julich (Germany). Inst. for Energy and Climate Research-Fundamental Electrochemistry (IEK-9); Eichel, Rüdiger-A. [Forschungszentrum Julich (Germany). Inst. for Energy and Climate Research-Fundamental Electrochemistry (IEK-9); Balke, Nina [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS)

    2017-10-10

    Iron-air cells provide a promising and resource-efficient alternative battery concept with superior area specific power density characteristics compared to state-of-the-art Li-air batteries and potentially superior energy density characteristics compared to present Li-ion batteries. Understanding charge-transfer reactions at the anode-electrolyte interface is the key to develop high-performance cells. By employing in-situ electrochemical atomic force microscopy (in-situ EC-AFM), in-depth insight into the electrochemically induced surface reaction processes on iron in concentrated alkaline electrolyte is obtained. The results highlight the formation and growth of the redox-layer on iron over the course of several oxidation/reduction cycles. By this means, a direct correlation between topography changes and the corresponding electrochemical reactions at the nanoscale could unambiguously be established. Here in this paper, the twofold character of the nanoparticulate redox-layer in terms of its passivating character and its contribution to the electrochemical reactions is elucidated. Furthermore, the evolution of single nanoparticles on the iron electrode surface is evaluated in unprecedented and artifact-free detail. Based on the dedicated topography analysis, a detailed structural model for the evolution of the redox-layer which is likewise elementary for corrosion science and battery research is derived.

  4. Enhanced electrochemical performance of in situ reduced graphene oxide-polyaniline nanotubes hybrid nanocomposites using redox-additive aqueous electrolyte

    Science.gov (United States)

    Devi, Madhabi; Kumar, A.

    2018-02-01

    Reduced graphene oxide (RGO)-polyaniline nanotubes (PAniNTs) nanocomposites have been synthesized by in situ reduction of GO. The morphology and structure of the nanocomposites are characterized by HRTEM, XRD and micro-Raman spectroscopy. The electrical and electrochemical performances of the nanocomposites are investigated for different RGO concentrations by conductivity measurements, cyclic voltammetry, charge-discharge and electrochemical impedance spectroscopy. Highest gravimetric specific capacitance of 448.71 F g-1 is obtained for 40 wt.% of RGO-PAniNTs nanocomposite as compared to 194.92 F g-1 for pure PAniNTs in 1 M KCl electrolyte. To further improve the electrochemical performance of the nanocomposite electrode, KI is used as redox-additive with 1 M KCl electrolyte. Highest gravimetric specific capacitance of 876.43 F g-1 and an improved cyclic stability of 91% as compared to 79% without KI after 5000 cycles is achieved for an optimized 0.1 M KI concentration. This is attributed to the presence of different ionic species of I- ions that give rise to a number of possible redox reactions improving the pseudocapacitance of the electrode. This improved capacitive performance is compared with that of catechol redox-additive in 1 M KCl electrolyte, and that of KI and catechol redox-additives added to 1 M H2SO4 electrolyte.

  5. Amplified and in situ detection of redox-active metabolite using a biobased redox capacitor.

    Science.gov (United States)

    Kim, Eunkyoung; Gordonov, Tanya; Bentley, William E; Payne, Gregory F

    2013-02-19

    Redox cycling provides a mechanism to amplify electrochemical signals for analyte detection. Previous studies have shown that diverse mediators/shuttles can engage in redox-cycling reactions with a biobased redox capacitor that is fabricated by grafting redox-active catechols onto a chitosan film. Here, we report that redox cycling with this catechol-chitosan redox capacitor can amplify electrochemical signals for detecting a redox-active bacterial metabolite. Specifically, we studied the redox-active bacterial metabolite pyocyanin that is reported to be a virulence factor and signaling molecule for the opportunistic pathogen P. aeruginosa. We demonstrate that redox cycling can amplify outputs from various electrochemical methods (cyclic voltammetry, chronocoulometry, and differential pulse voltammetry) and can lower the detection limit of pyocyanin to 50 nM. Further, the compatibility of this biobased redox capacitor allows the in situ monitoring of the production of redox-active metabolites (e.g., pyocyanin) during the course of P. aeruginosa cultivation. We anticipate that the amplified output of redox-active virulence factors should permit an earlier detection of life-threatening infections by the opportunistic pathogen P. aeruginosa while the "bio-compatibility" of this measurement approach should facilitate in situ study of the spatiotemporal dynamics of bacterial redox signaling.

  6. A Protocol for Electrochemical Evaluations and State of Charge Diagnostics of a Symmetric Organic Redox Flow Battery

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Wentao; Vemuri, Rama S.; Hu, Dehong; Yang, Zheng; Wei, Xiaoliang

    2017-01-01

    Redox flow batteries have been considered as one of the most promising stationary energy storage solutions for improving the reliability of the power grid and deployment of renewable energy technologies. Among the many flow battery chemistries, nonaqueous flow batteries have the potential to achieve high energy density because of the broad voltage windows of nonaqueous electrolytes. However, significant technical hurdles exist currently limiting nonaqueous flow batteries to demonstrate their full potential, such as low redox concentrations, low operating currents, under-explored battery status monitoring, etc. In an attempt to address these limitations, we report a nonaqueous flow battery based on a highly soluble, redox-active organic nitronyl nitroxide radical compound, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO). This redox materials exhibits an ambipolar electrochemical property with two reversible redox pairs that are moderately separated by a voltage gap of ~1.7 V. Therefore, PTIO can serve as both anolyte and catholyte redox materials to form a symmetric flow battery chemistry, which affords the advantages such as high effective redox concentrations and low irreversible redox material crossover. The PTIO flow battery shows decent electrochemical cyclability under cyclic voltammetry and flow cell conditions; an improved redox concentration of 0.5 M PTIO and operational current density of 20 mA cm-2 were achieved in flow cell tests. Moreover, we show that Fourier transform infrared (FTIR) spectroscopy could measure the PTIO concentrations during the PTIO flow battery cycling and offer reasonably accurate detection of the battery state of charge (SOC) as cross-validated by electron spin resonance measurements. This study suggests FTIR can be used as a reliable online SOC sensor to monitor flow battery status and ensure battery operations stringently in a safe SOC range.

  7. Electrochemical investigation of thermically treated graphene oxides as electrode materials for vanadium redox flow battery

    International Nuclear Information System (INIS)

    Di Blasi, O.; Briguglio, N.; Busacca, C.; Ferraro, M.; Antonucci, V.; Di Blasi, A.

    2015-01-01

    Highlights: • Graphene oxide is synthesized at high temperatures in a reducing environment. • Treated graphene oxide-based electrodes are prepared by the wet impregnation method. • Electrochemical performance is evaluated as a function of the physico-chemical properties. - Abstract: Thermically treated graphene oxides (TT-GOs) are synthesized at different temperatures, 100 °C, 150 °C, 200 °C and 300 °C in a reducing environment (20% H 2 /He) and investigated as electrode materials for vanadium redox flow battery (VRFB) applications. The treated graphene oxide-based electrodes are prepared by the wet impregnation method using carbon felt (CF) as support. The main aim is to achieve a suitable distribution of the dispersed graphene oxides on the CF surface in order to investigate the electrocatalytic activity for the VO 2+ /VO 2 + and V 2+ /V 3+ redox reactions in the perspective of a feasible large area electrodes scale-up for battery configuration of practical interest. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) are carried out in a three electrode half-cell to characterize the electrochemical properties of the TT-GO-based electrodes. Physico-chemical characterizations are carried out to corroborate the electrochemical results. The TT-GO sample treated at 100 °C (TT-GO-100) shows the highest electrocatalytic activity in terms of peak to peak separation (ΔE = 0.03 V) and current density intensity (∼0.24 A cm −2 at 30 mV/s) both toward the VO 2+ /VO 2 + and V 2+ /V 3+ redox reactions. This result is correlated to the presence of hydroxyl (−OH) and carboxyl (−COOH) species that act as active sites. A valid candidate is individuated as effective anode and cathode electrode in the perspective of electrodes scale-up for battery configuration of practical interest

  8. The Electrochemical Properties of Biochars and How They Affect Soil Redox Properties and Processes

    Directory of Open Access Journals (Sweden)

    Stephen Joseph

    2015-07-01

    Full Text Available Biochars are complex heterogeneous materials that consist of mineral phases, amorphous C, graphitic C, and labile organic molecules, many of which can be either electron donors or acceptors when placed in soil. Biochar is a reductant, but its electrical and electrochemical properties are a function of both the temperature of production and the concentration and composition of the various redox active mineral and organic phases present. When biochars are added to soils, they interact with plant roots and root hairs, micro-organisms, soil organic matter, proteins and the nutrient-rich water to form complex organo-mineral-biochar complexes Redox reactions can play an important role in the development of these complexes, and can also result in significant changes in the original C matrix. This paper reviews the redox processes that take place in soil and how they may be affected by the addition of biochar. It reviews the available literature on the redox properties of different biochars. It also reviews how biochar redox properties have been measured and presents new methods and data for determining redox properties of fresh biochars and for biochar/soil systems.

  9. Fabrication of Freestanding Sheets of Multiwalled Carbon Nanotubes (Buckypapers) for Vanadium Redox Flow Batteries and Effects of Fabrication Variables on Electrochemical Performance

    International Nuclear Information System (INIS)

    Mustafa, Ibrahim; Lopez, Ivan; Younes, Hammad; Susantyoko, Rahmat Agung; Al-Rub, Rashid Abu; Almheiri, Saif

    2017-01-01

    Typically, multiwalled carbon nanotubes (MWCNTs) are drop-casted on the surface of the underlying carbon substrates; the outcome is a randomly distributed MWCNT layers leading to uncontrollable structure and unreproducible results. Additionally, we suspect that the electrochemical response is influenced by the primary carbon-based substrate. Herein, we propose the use of freestanding sheets of MWCNTs (buckypapers, BP electrodes) as electrode materials for vanadium redox flow batteries to directly probe the electrochemical activity of MWCNTs toward VO 2+ /VO 2 + and V 2+ /V 3+ redox couples; henceforth, eliminating the need for an underlying carbon substrate. The amount of surfactant and the sonication time used during the fabrication of BP electrodes affect their morphological characteristics and electrochemical performances. Although the electrical conductivity of BP electrodes decreases with increasing surfactant amount and increasing sonication time, the heterogeneous rate constants for both redox couples increase as these fabrication variables are increased, indicating that the performance-limiting process is not electrical conductivity but the number of active sites available for the electrochemical reaction. The standard heterogeneous rate constant of the BP electrode with the highest amount of surfactant is comparable to those of state-of-the-art electrodes. Our promising results call for more research on the potential use of BP electrodes in redox flow batteries.

  10. The electrochemical catalytic activity of single-walled carbon nanotubes towards VO2+/VO2+ and V3+/V2+ redox pairs for an all vanadium redox flow battery

    International Nuclear Information System (INIS)

    Li Wenyue; Liu Jianguo; Yan Chuanwei

    2012-01-01

    Highlights: ► SWCNT shows excellent electrochemical catalytic activity towards VO 2 + /VO 2+ and V 3+ /V 2+ redox couples. ► The anodic reactions are more sensitive to the surface oxygen atom content change compared with the cathodic reactions. ► The enhanced battery performance clearly demonstrated that the SWCNT is suitable to be used as an electrode catalyst for VRFB. - Abstract: Single-walled carbon nanotube (SWCNT) was used as an electrode catalyst for an all vanadium redox flow battery (VRFB). The electrochemical property of SWCNT towards VO 2 + /VO 2+ and V 3+ /V 2+ was carefully characterized by cyclic voltammetric (CV) and electrochemical impedance spectroscopy (EIS) measurements. The peak current values for these redox pairs were significantly higher on the modified glassy carbon electrode compared with those obtained on the bare electrode, suggesting the excellent electrochemical activity of the SWCNT. Moreover, it was proved that the anodic process was more dependent on the surface oxygen of the SWCNT than the cathodic process through changing its surface oxygen content. Detailed EIS analysis of different modified electrodes revealed that the charge and mass transfer processes were accelerated at the modified electrode–electrolyte interface, which could be ascribed to the large specific surface area, the surface defects and the oxygen functional groups of the SWCNT. The enhanced battery performance effectively demonstrated that the SWCNT was suitable to serve as an electrode catalyst for the VRFB.

  11. Electrochemical behavior of two and one electron redox systems adsorbed on to micro- and mesoporous silicate materials: Influence of the channels and the cationic environment of the host materials

    International Nuclear Information System (INIS)

    Senthil Kumar, K.; Natarajan, P.

    2009-01-01

    Electrochemical behavior of two electron redox system, phenosafranine (PS + ) adsorbed on to micro- and mesoporous materials is investigated by cyclic voltammetry and differential pulse voltammetry using modified micro- and mesoporous host electrodes. Two redox peaks were observed when phenosafranine is adsorbed on the surface of microporous materials zeolite-Y and ZSM-5. However, only a single redox peak was observed in the modified electrode with phenosafranine encapsulated into the mesoporous material MCM-41 and when adsorbed on the external surface of silica. The observed redox peaks for the modified electrodes with zeolite-Y and ZSM-5 host are suggested to be primarily due to consecutive two electron processes. The peak separation ΔE and peak potential of phenosafranine adsorbed on zeolite-Y and ZSM-5 were found to be influenced by the pH of the electrolyte solution. The variation of the peak current in the cyclic voltammogram and differential pulse voltammetry with scan rate shows that electrodic processes are controlled by the nature of the surface of the host material. The heterogeneous electron transfer rate constants for phenosafranine adsorbed on to micro- and mesoporous materials were calculated using the Laviron model. Higher rate constant observed for the dye encapsulated into the MCM-41 indicates that the one-dimensional channel of the mesoporous material provides a more facile micro-environment for phenosafranine for the electron transfer reaction as compared to the microporous silicate materials. The stability of the modified electrode surface was investigated by multisweep cyclic voltammetry.

  12. Novel redox species polyaniline derivative-Au/Pt as sensing platform for label-free electrochemical immunoassay of carbohydrate antigen 199

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Liyuan; Shan, Jiao; Feng, Feng; Ma, Zhanfang, E-mail: mazhanfang@cnu.edu.cn

    2016-03-10

    A novel electrochemical redox-active nanocomposite was synthesized by a one-pot method using N,N′-diphenyl-p-phenylediamine as monomer, and HAuCl{sub 4} and K{sub 2}PtCl{sub 4} as co-oxidizing agents. The as-prepared poly(N,N′-diphenyl-p-phenylediamine)-Au/Pt exhibited admirable electrochemical redox activity at 0.15 V, excellent H{sub 2}O{sub 2} electrocatalytic ability and favorable electron transfer ability. Based on these, the evaluation of the composite as sensing substrate for label-free electrochemical immunosensing to the sensitive detection of carbohydrate antigen 199 was described. This technique proved to be a prospective detection tool with a wide liner range from 0.001 U mL{sup −1} to 40 U mL{sup −1}, and a low detection limit of 2.3 × 10{sup −4} U mL{sup −1} (S/N = 3). In addition, this method was used for the analysis of human serum sample, and good agreement was obtained between the values and those of enzyme-linked immunosorbent assay, implying the potential application in clinical research. Importantly, the strategy of the present substrate could be extended to other polymer-based nanocomposites such as polypyrrole derivatives or polythiophene derivatives, and this could be of great significance for the electrochemical immunoassay. - Highlights: • A novel electrochemical redox composite PPPD-Au/Pt was synthesized by one-pot method. • PPPD-Au/Pt was used as sensing substrate for label-free electrochemical immunosensor. • The immunosensor showed wide detection range and ultralow detection limit for the detection of CA199.

  13. Redox properties of clay-rich sediments as assessed by mediated electrochemical analysis : Separating pyrite, siderite and structural Fe in clay minerals

    NARCIS (Netherlands)

    Hoving, Alwina L.; Sander, Michael; Bruggeman, Christophe; Behrends, Thilo

    2017-01-01

    Redox reactions with Fe-containing minerals in clay-rich sediments largely affect the speciation, mobility, and (bio-) availability of redox-sensitive contaminants. Here, we use mediated electrochemical oxidation (MEO) and reduction (MER), to quantify the electron accepting and donating capacities

  14. A Protocol for Electrochemical Evaluations and State of Charge Diagnostics of a Symmetric Organic Redox Flow Battery.

    Science.gov (United States)

    Duan, Wentao; Vemuri, Rama S; Hu, Dehong; Yang, Zheng; Wei, Xiaoliang

    2017-02-13

    Redox flow batteries have been considered as one of the most promising stationary energy storage solutions for improving the reliability of the power grid and deployment of renewable energy technologies. Among the many flow battery chemistries, non-aqueous flow batteries have the potential to achieve high energy density because of the broad voltage windows of non-aqueous electrolytes. However, significant technical hurdles exist currently limiting non-aqueous flow batteries to demonstrate their full potential, such as low redox concentrations, low operating currents, under-explored battery status monitoring, etc. In an attempt to address these limitations, we recently reported a non-aqueous flow battery based on a highly soluble, redox-active organic nitronyl nitroxide radical compound, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO). This redox material exhibits an ambipolar electrochemical property, and therefore can serve as both anolyte and catholyte redox materials to form a symmetric flow battery chemistry. Moreover, we demonstrated that Fourier transform infrared (FTIR) spectroscopy could measure the PTIO concentrations during the PTIO flow battery cycling and offer reasonably accurate detection of the battery state of charge (SOC), as cross-validated by electron spin resonance (ESR) measurements. Herein we present a video protocol for the electrochemical evaluation and SOC diagnosis of the PTIO symmetric flow battery. With a detailed description, we experimentally demonstrated the route to achieve such purposes. This protocol aims to spark more interests and insights on the safety and reliability in the field of non-aqueous redox flow batteries.

  15. Redox-Based Regulation of Bacterial Development and Behavior.

    Science.gov (United States)

    Sporer, Abigail J; Kahl, Lisa J; Price-Whelan, Alexa; Dietrich, Lars E P

    2017-06-20

    Severe changes in the environmental redox potential, and resulting alterations in the oxidation states of intracellular metabolites and enzymes, have historically been considered negative stressors, requiring responses that are strictly defensive. However, recent work in diverse organisms has revealed that more subtle changes in the intracellular redox state can act as signals, eliciting responses with benefits beyond defense and detoxification. Changes in redox state have been shown to influence or trigger chromosome segregation, sporulation, aerotaxis, and social behaviors, including luminescence as well as biofilm establishment and dispersal. Connections between redox state and complex behavior allow bacteria to link developmental choices with metabolic state and coordinate appropriate responses. Promising future directions for this area of study include metabolomic analysis of species- and condition-dependent changes in metabolite oxidation states and elucidation of the mechanisms whereby the redox state influences circadian regulation.

  16. Electrochemical study of quinone redox cycling: A novel application of DNA-based biosensors for monitoring biochemical reactions.

    Science.gov (United States)

    Ensafi, Ali A; Jamei, Hamid Reza; Heydari-Bafrooei, Esmaeil; Rezaei, B

    2016-10-01

    This paper presents the results of an experimental investigation of voltammetric and impedimetric DNA-based biosensors for monitoring biological and chemical redox cycling reactions involving free radical intermediates. The concept is based on associating the amounts of radicals generated with the electrochemical signals produced, using differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). For this purpose, a pencil graphite electrode (PGE) modified with multiwall carbon nanotubes and poly-diallydimethlammonium chloride decorated with double stranded fish sperm DNA was prepared to detect DNA damage induced by the radicals generated from a redox cycling quinone (i.e., menadione (MD; 2-methyl-1,4-naphthoquinone)). Menadione was employed as a model compound to study the redox cycling of quinones. A direct relationship was found between free radical production and DNA damage. The relationship between MD-induced DNA damage and free radical generation was investigated in an attempt to identify the possible mechanism(s) involved in the action of MD. Results showed that DPV and EIS were appropriate, simple and inexpensive techniques for the quantitative and qualitative comparisons of different reducing reagents. These techniques may be recommended for monitoring DNA damages and investigating the mechanisms involved in the production of redox cycling compounds. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Comparing the performances of electrochemical sensors using p-aminophenol redox cycling by different reductants on gold electrodes modified with self-assembled monolayers

    International Nuclear Information System (INIS)

    Xia, Ning; Ma, Fengji; Zhao, Feng; He, Qige; Du, Jimin; Li, Sujuan; Chen, Jing; Liu, Lin

    2013-01-01

    Highlights: • Performances of p-AP redox cycling using different reductants on gold surface are compared. • Background current decreases in order of hydrazine, Na 2 SO 3 , NaBH 4 , NADH, cysteamine, and TCEP. • Chemical reaction rate with QI increases in order of NADH, TCEP, and cysteamine. • NADH, TCEP and cysteamine are suitable for p-AP redox cycling on gold electrode. -- Abstract: p-Aminophenol (p-AP) redox cycling using chemical reductants is one strategy for developing sensitive electrochemical sensors. However, most of the reported reductants are only used on indium-tin oxide (ITO) electrodes but not gold electrodes due to the high background current caused by the oxidation reaction of the reductants on the highly electrocatalytic gold electrodes. Therefore, new strategies and/or reductants are in demand for expanding the application of p-AP redox cycling on gold electrodes. In this work, we compared the performances of several reductants in p-AP redox cycling on self-assembled monolayers (SAMs)-modified gold electrodes. Among the tested reagents, nicotinamide adenine dinucleotide (NADH), tris(2-carboxyethyl)phosphine (TCEP) and cysteamine were demonstrated to be suitable for p-AP redox cycling on the alkanethiol-modified gold electrodes because of their low background current. The rate of chemical reaction between reductants and p-quinone imine (QI, the electrochemically oxidized product of p-AP) increases in the order of NADH −1 was achieved. We believe that our work will be valuable for the development of electrochemical sensors using p-AP redox cycling on gold electrodes

  18. Highly sensitive electrochemical immunoassay for human IgG using double-encoded magnetic redox-active nanoparticles

    International Nuclear Information System (INIS)

    Tang, D.; Tang, J.; Su, B.; Chen, H.; Chen, G.; Huang, J.

    2010-01-01

    A new sandwich-type electrochemical immunoassay was developed for the detection of human IgG using doubly-encoded and magnetic redox-active nanoparticles as recognition elements on the surface of a glassy carbon electrode modified with anti-IgG on nanogold particles. The recognition elements were synthesized by coating magnetic Fe3O4 nanoparticles with Prussian blue nanoparticles and then covered with peroxidase-labeled anti-IgG antibodies (POx-anti-IgG) on Prussian blue nanoparticles. The immunoelectrode displays very good electrochemical properties towards detection of IgG via using double-encoded magnetic redox-active nanoparticles as trace and hydrogen peroxide as enzyme substrate. Its limit of detection (10 pmol.L -1 ) is 10-fold better than that of using plain POx-anti-IgG secondary antibodies. The method was applied to the detection of IgG in serum samples, and an excellent correspondence with the reference values was found. (author)

  19. Determining Li+-Coupled Redox Targeting Reaction Kinetics of Battery Materials with Scanning Electrochemical Microscopy.

    Science.gov (United States)

    Yan, Ruiting; Ghilane, Jalal; Phuah, Kia Chai; Pham Truong, Thuan Nguyen; Adams, Stefan; Randriamahazaka, Hyacinthe; Wang, Qing

    2018-02-01

    The redox targeting reaction of Li + -storage materials with redox mediators is the key process in redox flow lithium batteries, a promising technology for next-generation large-scale energy storage. The kinetics of the Li + -coupled heterogeneous charge transfer between the energy storage material and redox mediator dictates the performance of the device, while as a new type of charge transfer process it has been rarely studied. Here, scanning electrochemical microscopy (SECM) was employed for the first time to determine the interfacial charge transfer kinetics of LiFePO 4 /FePO 4 upon delithiation and lithiation by a pair of redox shuttle molecules FcBr 2 + and Fc. The effective rate constant k eff was determined to be around 3.70-6.57 × 10 -3 cm/s for the two-way pseudo-first-order reactions, which feature a linear dependence on the composition of LiFePO 4 , validating the kinetic process of interfacial charge transfer rather than bulk solid diffusion. In addition, in conjunction with chronoamperometry measurement, the SECM study disproves the conventional "shrinking-core" model for the delithiation of LiFePO 4 and presents an intriguing way of probing the phase boundary propagations induced by interfacial redox reactions. This study demonstrates a reliable method for the kinetics of redox targeting reactions, and the results provide useful guidance for the optimization of redox targeting systems for large-scale energy storage.

  20. Redox properties of structural Fe in clay minerals. 2. Electrochemical and spectroscopic characterization of electron transfer irreversibility in ferruginous smectite, SWa-1.

    Science.gov (United States)

    Gorski, Christopher A; Klüpfel, Laura; Voegelin, Andreas; Sander, Michael; Hofstetter, Thomas B

    2012-09-04

    Structural Fe in clay minerals is an important, albeit poorly characterized, redox-active phase found in many natural and engineered environments. This work develops an experimental approach to directly assess the redox properties of a natural Fe-bearing smectite (ferruginous smectite, SWa-1, 12.6 wt % Fe) with mediated electrochemical reduction (MER) and oxidation (MEO). By utilizing a suite of one-electron-transfer mediating compounds to facilitate electron transfer between structural Fe in SWa-1 and a working electrode, we show that the Fe2+/Fe3+ couple in SWa-1 is redox-active over a large range of potentials (from E(H) = -0.63 V to +0.61 V vs SHE). Electrochemical and spectroscopic analyses of SWa-1 samples that were subject to reduction and re-oxidation cycling revealed both reversible and irreversible structural Fe rearrangements that altered the observed apparent standard reduction potential (E(H)(ø)) of structural Fe. E(H)(ø)-values vary by as much as 0.56 V between SWa-1 samples with different redox histories. The wide range of E(H)-values over which SWa-1 is redox-active and redox history-dependent E(H)(ø)-values underscore the importance of Fe-bearing clay minerals as redox-active phases in a wide range of redox regimes.

  1. Polyhydroquinone-graphene composite as new redox species for sensitive electrochemical detection of cytokeratins antigen 21-1

    Science.gov (United States)

    Wang, Huiqiang; Rong, Qinfeng; Ma, Zhanfang

    2016-07-01

    Polyhydroquinone-graphene composite as a new redox species was synthesized simply by a microwave-assisted one-pot method through oxidative polymerization of hydroquinone by graphene oxide, which exhibited excellent electrochemical redox activity at 0.124 V and can remarkably promote electron transfer. The as-prepared composite was used as immunosensing substrate in a label-free electrochemical immunosensor for the detection of cytokeratins antigen 21-1, a kind of biomarker of lung cancer. The proposed immunosensor showed wide liner range from 10 pg mL-1 to 200 ng mL-1 with a detection limit 2.3 pg mL-1, and displayed a good stability and selectivity. In addition, this method has been used for the analysis of human serum sample, and the detection results showed good consistence with those of ELISA. The present substrate can be easily extended to other polymer-based nanocomposites.

  2. Electrochemical analysis in a liposome suspension using lapachol as a hydrophobic electro active species.

    Science.gov (United States)

    Okumura, Noriko; Wakamatsu, Shiori; Uno, Bunji

    2014-01-01

    This study demonstrated that the electro-chemical analysis of hydrophobic quinones can be performed in liposome suspension systems. We prepared and analyzed liposome suspensions containing lapachol, which is a quinone-based anti-tumor activity compound. In this suspension system, a simple one redox couple of lapachol is observed. These results are quite different from those obtained in organic solvents. In addition, the pH dependence of redox behaviors of lapachol could be observed in multilamellar vesicle (MLV) suspension system. This MLV suspension system method may approximate the electrochemical behavior of hydrophobic compounds in aqueous conditions. A benefit of this liposome suspension system for electrochemical analysis is that it enables to observe water-insoluble compounds without using organic solvents.

  3. Using Electrochemical SERS to Measure the Redox Potential of Drug Molecules Bound to dsDNA—a Study of Mitoxantrone

    International Nuclear Information System (INIS)

    Meneghello, Marta; Papadopoulou, Evanthia; Ugo, Paolo; Bartlett, Philip N.

    2016-01-01

    Interaction with DNA plays an important role in the biological activity of some anticancer drug molecules. In this paper we show that electrochemical surface enhanced Raman spectroscopy at sphere segment void gold electrodes can be used as a highly sensitive technique to measure the redox potential of the anticancer drug mitoxantrone bound to dsDNA. For this system we show that we can follow the redox reaction of the bound molecule and can extract the redox potential for the molecule bound to dsDNA by deconvolution of the SER spectra recorded as a function of electrode potential. We find that mitoxantrone bound to dsDNA undergoes a 2 electron, 1 proton reduction and that the redox potential (-0.87 V vs. Ag/AgCl at pH 7.2) is shifted approximately 0.12 V cathodic of the corresponding value at a glassy carbon electrode. Our results also show that the reduced form of mitoxantrone remains bound to dsDNA and we are able to use the deconvoluted SER spectra of the reduced mitoxantrone as a function of electrode potential to follow the electrochemically driven melting of the dsDNA at more negative potentials.

  4. Functionalized carbon nanotube based hybrid electrochemical capacitors using neutral bromide redox-active electrolyte for enhancing energy density

    Science.gov (United States)

    Tang, Xiaohui; Lui, Yu Hui; Chen, Bolin; Hu, Shan

    2017-06-01

    A hybrid electrochemical capacitor (EC) with enhanced energy density is realized by integrating functionalized carbon nanotube (FCNT) electrodes with redox-active electrolyte that has a neutral pH value (1 M Na2SO4 and 0.5 M KBr mixed aqueous solution). The negative electrode shows an electric double layer capacitor-type behavior. On the positive electrode, highly reversible Br-/Br3- redox reactions take place, presenting a battery-type behavior, which contributes to increase the capacitance of the hybrid cell. The voltage window of the whole cell is extended up to 1.5 V because of the high over-potentials of oxygen and hydrogen evolution reactions in the neutral electrolyte. Compared with raw CNT, the FCNT has better wettability in the aqueous electrolyte and contributes to increase the electric double layer capacitance of the cell. As a result, the maximum energy density of 28.3 Wh kg-1 is obtained from the hybrid EC at 0.5 A g-1 without sacrificing its power density, which is around 4 times larger than that of the electrical double layer capacitor constructed by FCNT electrodes and 1 M Na2SO4 electrolyte. Moreover, the discharge capacity retained 86.3% of its initial performance after 10000 cycles of galvanostatic charge and discharge test (10 A/g), suggesting its long life cycle even at high current loading.

  5. Biogeochemical Barriers: Redox Behavior of Metals and Metalloids

    Science.gov (United States)

    Redox conditions and pH are arguably the most important geochemical parameters that control contaminant transport and fate in groundwater systems. Oxidation-reduction (redox) reactions mediate the chemical behavior of both inorganic and organic chemical constituents by affecting...

  6. Outstanding electrochemical performance of a graphene-modified graphite felt for vanadium redox flow battery application

    Science.gov (United States)

    González, Zoraida; Flox, Cristina; Blanco, Clara; Granda, Marcos; Morante, Juan R.; Menéndez, Rosa; Santamaría, Ricardo

    2017-01-01

    The development of more efficient electrode materials is essential to obtain vanadium redox flow batteries (VRFBs) with enhanced energy densities and to make these electrochemical energy storage devices more competitive. A graphene-modified graphite felt synthesized from a raw graphite felt and a graphene oxide water suspension by means of electrophoretic deposition (EPD) is investigated as a suitable electrode material in the positive side of a VRFB cell by means of cyclic voltammetry, impedance spectroscopy and charge/discharge experiments. The remarkably enhanced performance of the resultant hybrid material, in terms of electrochemical activity and kinetic reversibility towards the VO2+/VO2+, and mainly the markedly high energy efficiency of the VRFB cell (c.a. 95.8% at 25 mA cm-2) can be ascribed to the exceptional morphological and chemical characteristics of this tailored material. The 3D-architecture consisting of fibers interconnected by graphene-like sheets positively contributes to the proper development of the vanadium redox reactions and so represents a significant advance in the design of effective electrode materials.

  7. Mixed-Metal, Structural, and Substitution Effects of Polyoxometalates on Electrochemical Behavior in a Redox Flow Battery

    International Nuclear Information System (INIS)

    Pratt, Harry D.; Pratt, William R.; Fang, Xikui; Hudak, Nicholas S.; Anderson, Travis M.

    2014-01-01

    Graphical abstract: - Highlights: • Testing of a flow battery with polyoxometalates. • Coulombic efficiency of 83% for an iron-based compound. • Both size and charge density influence battery performance. - Abstract: A pair of redox flow batteries containing polyoxometalates was tested as part of an ongoing program in stationary energy storage. The iron-containing dimer, (SiFe 3 W 9 (OH) 3 O 34 ) 2 (OH) 3 11− , cycled between (SiFe 3 W 9 (OH) 3 O 34 ) 2 (OH) 3 11− /(SiFe 3 W 9 (OH) 3 O 34 ) 2 (OH) 3 14− and (SiFe 3 W 9 (OH) 3 O 34 ) 2 (OH) 3 17− /(SiFe 3 W 9 (OH) 3 O 34 ) 2 (OH) 3 14− for the positive and negative electrode, respectively. This compound demonstrated a coulombic efficiency of 83% after 20 cycles with an electrochemical yield (measured discharge capacity as a percentage of theoretical capacity) of 55%. Cyclic voltammetry on the Lindqvist ion, cis-V 2 W 4 O 19 4− , showed quasi-reversible vanadium electrochemistry, but tungsten reduction was mostly irreversible. In a flow cell configuration, cis-V 2 W 4 O 19 4− had a coulombic efficiency of 45% (for a two-electron process) and an electrochemical yield of 16% after 20 cycles. The poor performance of cis-V 2 W 4 O 19 4− was attributed primarily to its higher charge density. Collectively, the results showed that both polyoxometalate size and charge density are both important parameters to consider in battery material performance

  8. Electrochemical behavior of uranyl in anhydrous polar organic media

    Energy Technology Data Exchange (ETDEWEB)

    Burn, Adam G.; Nash, Kenneth L. [Washington State Univ., Pullmann, WA (United States). Dept. of Chemistry

    2017-09-01

    Weak complexes between pentavalent and hexavalent actinyl cations have been reported to exist in acidic, non-complexing high ionic strength aqueous media. Such ''cation-cation complexes'' were first identified in the context of actinide-actinide redox reactions in acidic aqueous media relevant to solvent extraction-based separation systems, hence their characterization is of potential interest for advanced nuclear fuel reprocessing. This chemistry could be relevant to efforts to develop advanced actinide separations based on the upper oxidation states of americium, which are of current interest. In the present study, the chemical behavior of pentavalent uranyl was examined in non-aqueous, aprotic polar organic solvents (propylene carbonate and acetonitrile) to determine whether UO{sub 2}{sup +} cations generated at the reducing working electrode surface would interact with the UO{sub 2}{sup 2+} cations in the bulk phase to form cation-cation complexes in such media. In magnesium perchlorate media, the electrolyte adsorbed onto the working electrode surface and interfered with the uranyl reduction/diffusion process through an ECE (electron transfer/chemical reaction/electron transfer) mechanism. In parallel studies of uranyl redox behavior in tetrabutylammonium hexafluorophosphate solutions, an EC (electron transfer/chemical reaction) mechanism was observed in the cyclic voltammograms. Ultimately, no conclusive electrochemical evidence demonstrated uranyl cation-cation interactions in the non-aqueous, aprotic polar organic solvent solutions, though the results reported do not completely rule out the presence of UO{sub 2}{sup +}.UO{sub 2}{sup 2+} complexes.

  9. Information processing through a bio-based redox capacitor: signatures for redox-cycling.

    Science.gov (United States)

    Liu, Yi; Kim, Eunkyoung; White, Ian M; Bentley, William E; Payne, Gregory F

    2014-08-01

    Redox-cycling compounds can significantly impact biological systems and can be responsible for activities that range from pathogen virulence and contaminant toxicities, to therapeutic drug mechanisms. Current methods to identify redox-cycling activities rely on the generation of reactive oxygen species (ROS), and employ enzymatic or chemical methods to detect ROS. Here, we couple the speed and sensitivity of electrochemistry with the molecular-electronic properties of a bio-based redox-capacitor to generate signatures of redox-cycling. The redox capacitor film is electrochemically-fabricated at the electrode surface and is composed of a polysaccharide hydrogel with grafted catechol moieties. This capacitor film is redox-active but non-conducting and can engage diffusible compounds in either oxidative or reductive redox-cycling. Using standard electrochemical mediators ferrocene dimethanol (Fc) and Ru(NH3)6Cl3 (Ru(3+)) as model redox-cyclers, we observed signal amplifications and rectifications that serve as signatures of redox-cycling. Three bio-relevant compounds were then probed for these signatures: (i) ascorbate, a redox-active compound that does not redox-cycle; (ii) pyocyanin, a virulence factor well-known for its reductive redox-cycling; and (iii) acetaminophen, an analgesic that oxidatively redox-cycles but also undergoes conjugation reactions. These studies demonstrate that the redox-capacitor can enlist the capabilities of electrochemistry to generate rapid and sensitive signatures of biologically-relevant chemical activities (i.e., redox-cycling). Published by Elsevier B.V.

  10. Effect of the Linker in Terephthalate-Functionalized Conducting Redox Polymers

    International Nuclear Information System (INIS)

    Yang, Li; Huang, Xiao; Gogoll, Adolf; Strømme, Maria; Sjödin, Martin

    2016-01-01

    The combination of high capacity redox active pendent groups and conducting polymers, realized in conducting redox polymers (CRPs), provides materials with high charge storage capacity that are electronically conducting which makes CRPs attractive for electrical energy storage applications. In this report, six polythiophene and poly(3,4-ethylenedioxythiophene)(PEDOT)-based CRPs with a diethyl terephthalate unit covalently bound to the polymer chain by various linkers have been synthesized and characterized electrochemically. The effects of the choice of polymer backbone and of the nature of the link on the electrochemistry, and in particular the cycling stability of these polymers, are discussed. All CRPs show both the doping of the polymer backbone as well as the redox behavior of the pendent groups and the redox potential of the pendent groups in the CRPs is close to that of corresponding monomer, indicating insignificant interaction between the pendant and the polymer backbone. While all CRPs show various degrees of charge decay upon electrochemical redox conversion, the PEDOT-based CRPs show significantly improved stability compared to the polythiophene counterparts. Moreover, we show that by the right choice of link the cycling stability of diethyl terephthalate substituted PEDOT-based CRPs can be significantly improved.

  11. ELECTROCHEMICAL OXIDATION OF ETHANOL USING Ni-Co-PVC COMPOSITE ELECTRODE

    Directory of Open Access Journals (Sweden)

    Riyanto Riyanto

    2011-07-01

    Full Text Available The morphological characteristics and electrochemical behavior of nickel metal foil (Ni, nickel-polyvinyl chloride (Ni-PVC and nickel-cobalt-polyvinyl chloride (Ni-Co-PVC electrodes in alkaline solution has been investigated. The morphological characteristics of the electrode surface were studied using SEM and EDS, while the electrochemical behavior of the electrodes was studied using cyclic voltammetry (CV. It was found that composite electrodes (Ni-PVC and Ni-Co-PVC have a porous, irregular and rough surface. In situ studies using electrochemical technique using those three electrodes exhibited electrochemical activity for redox system, as well as selectivity in the electrooxidation of ethanol to acetic acid. The studies also found that an electrokinetics and electrocatalytic activity behaviors of the electrodes prepared were Ni metal foil

  12. Nanoparticle-functionalized nucleic acids: A strategy for amplified electrochemical detection of some single-base mismatches

    International Nuclear Information System (INIS)

    Ahangar, Laleh Enayati; Mehrgardi, Masoud A.

    2011-01-01

    In this study, nanoparticle-functionalized nucleic acids were employed to improve the sensitivity of electrochemical DNA biosensors that make capable them to detect different types of single-base mismatches (SBMs), including thermodynamically stable ones. The present biosensor was constructed by the immobilization of platinum nanoparticles (Pt-NPs) on the surface of a carbon paste electrode (CPE) via SH-functionalized DNA. A redox probe of 2-mercapto-1-methyl imidazole (MMI), which has different electrochemical behavior on Pt-NP and CPE, was used. This behavior helps to overcome the pinhole effect in DNA hybridization biosensors. Additionally, in the present biosensor, the positioning of the redox probe under the SBM in DNA, which decreases the sensitivity of most DNA biosensors, did not contribute to the observed electrochemical signal.

  13. Nanoparticle-functionalized nucleic acids: A strategy for amplified electrochemical detection of some single-base mismatches

    Energy Technology Data Exchange (ETDEWEB)

    Ahangar, Laleh Enayati [Department of Chemistry, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of); Mehrgardi, Masoud A., E-mail: m.mehrgardi@gmail.co [Department of Chemistry, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of)

    2011-02-15

    In this study, nanoparticle-functionalized nucleic acids were employed to improve the sensitivity of electrochemical DNA biosensors that make capable them to detect different types of single-base mismatches (SBMs), including thermodynamically stable ones. The present biosensor was constructed by the immobilization of platinum nanoparticles (Pt-NPs) on the surface of a carbon paste electrode (CPE) via SH-functionalized DNA. A redox probe of 2-mercapto-1-methyl imidazole (MMI), which has different electrochemical behavior on Pt-NP and CPE, was used. This behavior helps to overcome the pinhole effect in DNA hybridization biosensors. Additionally, in the present biosensor, the positioning of the redox probe under the SBM in DNA, which decreases the sensitivity of most DNA biosensors, did not contribute to the observed electrochemical signal.

  14. One-step synthesis of redox-active polymer/AU nanocomposites for electrochemical immunoassay of multiplexed tumor markers.

    Science.gov (United States)

    Liu, Zhimin; Rong, Qinfeng; Ma, Zhanfang; Han, Hongliang

    2015-03-15

    In this work, a simple and sensitive multiplexed immunoassay protocol for simultaneous electrochemical determination of alpha-fetoprotein (AFP) and carcinoembryonic antigen (CEA) was designed using redox-active nanocomposites. As the redox-active species, the poly(o-phenylenediamine) (POPD)/Au nanocomposite and poly(vinyl ferrocene-2-aminothiophenol) (poly(VFc-ATP))/Au nanocomposite were obtained by one-step method which HAuCl4 was used as the oxidant. With Au nanoparticles (AuNPs), the nanocomposites were successful to immobilize labeled anti-CEA and anti-AFP as the immunosensing probes. The proposed electrochemical immunoassay enabled the simultaneous monitoring of AFP and CEA in a wide range of 0.01-100ngmL(-1). The detection limits was 0.006ngmL(-1) for CEA and 0.003ngmL(-1) for AFP (S/N=3). The assay results of serum samples with the proposed method were well consistent with the reference values from standard ELISA method. And the negligible cross-reactivity between the two analytes makes it possesses potential promise in clinical diagnosis. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. A study of the Fe(III)/Fe(II)-triethanolamine complex redox couple for redox flow battery application

    International Nuclear Information System (INIS)

    Wen, Y.H.; Zhang, H.M.; Qian, P.; Zhou, H.T.; Zhao, P.; Yi, B.L.; Yang, Y.S.

    2006-01-01

    The electrochemical behavior of the Fe(III)/Fe(II)-triethanolamine(TEA) complex redox couple in alkaline medium and influence of the concentration of TEA were investigated. A change of the concentration of TEA mainly produces the following two results. (1) With an increase of the concentration of TEA, the solubility of the Fe(III)-TEA can be increased to 0.6 M, and the solubility of the Fe(II)-TEA is up to 0.4 M. (2) In high concentration of TEA with the ratio of TEA to NaOH ranging from 1 to 6, side reaction peaks on the cathodic main reaction of the Fe(III)-TEA complex at low scan rate can be minimized. The electrode process of Fe(III)-TEA/Fe(II)-TEA is electrochemically reversible with higher reaction rate constant than the uncomplexed species. Constant current charge-discharge shows that applying anodic active materials of relatively high concentrations facilitates the improvement of cell performance. The open-circuit voltage of the Fe-TEA/Br 2 cell with the Fe(III)-TEA of 0.4 M, after full charging, is nearly 2.0 V and is about 32% higher than that of the all-vanadium batteries, together with the energy efficiency of approximately 70%. The preliminary exploration shows that the Fe(III)-TEA/Fe(II)-TEA couple is electrochemically promising as negative redox couple for redox flow battery (RFB) application

  16. Electrochemical sensors and biosensors based on redox polymer/carbon nanotube modified electrodes: a review.

    Science.gov (United States)

    Barsan, Madalina M; Ghica, M Emilia; Brett, Christopher M A

    2015-06-30

    The aim of this review is to present the contributions to the development of electrochemical sensors and biosensors based on polyphenazine or polytriphenylmethane redox polymers together with carbon nanotubes (CNT) during recent years. Phenazine polymers have been widely used in analytical applications due to their inherent charge transport properties and electrocatalytic effects. At the same time, since the first report on a CNT-based sensor, their application in the electroanalytical chemistry field has demonstrated that the unique structure and properties of CNT are ideal for the design of electrochemical (bio)sensors. We describe here that the specific combination of phenazine/triphenylmethane polymers with CNT leads to an improved performance of the resulting sensing devices, because of their complementary electrical, electrochemical and mechanical properties, and also due to synergistic effects. The preparation of polymer/CNT modified electrodes will be presented together with their electrochemical and surface characterization, with emphasis on the contribution of each component on the overall properties of the modified electrodes. Their importance in analytical chemistry is demonstrated by the numerous applications based on polymer/CNT-driven electrocatalytic effects, and their analytical performance as (bio) sensors is discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Improved electrochemical performances of binder-free CoMoO4 nanoplate arrays@Ni foam electrode using redox additive electrolyte

    Science.gov (United States)

    Veerasubramani, Ganesh Kumar; Krishnamoorthy, Karthikeyan; Kim, Sang Jae

    2016-02-01

    Herein, we are successfully prepared cobalt molybdate (CoMoO4) grown on nickel foam as a binder free electrode by hydrothermal approach for supercapacitors and improved their electrochemical performances using potassium ferricyanide (K3Fe(CN)6) as redox additive. The formation of CoMoO4 on Ni foam with high crystallinity is confirmed using XRD, Raman, and XPS measurements. The nanoplate arrays (NPAs) of CoMoO4 are uniformly grown on Ni foam which is confirmed by FE-SEM analysis. The prepared binder-free CoMoO4 NPAs achieved maximum areal capacity of 227 μAh cm-2 with KOH electrolyte at 2.5 mA cm-2. This achieved areal capacity is further improved about three times using the addition of K3Fe(CN)6 as redox additive. The increased electrochemical performances of CoMoO4 NPAs on Ni foam electrode via redox additive are discussed in detail and the mechanism has been explored. Moreover, the assembled CoMoO4 NPAs on Ni foam//activated carbon asymmetric supercapacitor device with an extended operating voltage window of 1.5 V exhibits an excellent performances such as high energy density and cyclic stability. The overall performances of binder-free CoMoO4 NPAs on Ni foam with redox additives suggesting their potential use as positive electrode material for high performance supercapacitors.

  18. Electrochemical and ab initio investigations to design a new phenothiazine based organic redox polymeric material for metal-ion battery cathodes.

    Science.gov (United States)

    Godet-Bar, T; Leprêtre, J-C; Le Bacq, O; Sanchez, J-Y; Deronzier, A; Pasturel, A

    2015-10-14

    Different N-substituted phenothiazines have been synthesized and their electrochemical behavior has been investigated in CH3CN in order to design the best polyphenothiazine based cathodic material candidate for lithium batteries. These compounds exhibit two successive reversible one-electron oxidation processes. Ab initio calculations demonstrate that the potential of the first process is a result of both the hybridization effects between the substituent and the phenothiazine unit as well as the change of conformation of the phenothiazine heterocycle during the oxidation process. More specifically, we show that an asymmetric molecular orbital spreading throughout an external cycle of the phenothiazine unit and the alkyl fragment is formed only if the alkyl fragment is long enough (from the methyl moiety onwards) and is at the origin of the bent conformation for N-substituted phenothiazines during oxidation. Electrochemical investigations supported by ab initio calculations allow the selection of a phenothiazinyl unit which is then polymerized by a Suzuki coupling strategy to avoid the common solubilization issue in carbonate-based liquid electrolytes of lithium cells. The first electrochemical measurements performed show that phenothiazine derivatives pave the way for a promising family of redox polymers intended to be used as organic positives for lithium batteries.

  19. Improvement in the assessment of direct and facilitated ion transfers by electrochemically induced redox transformations of common molecular probes

    DEFF Research Database (Denmark)

    Zhou, Min; Gan, Shiyu; Zhong, Lijie

    2012-01-01

    A new strategy based on a thick organic film modified electrode allowed us, for the first time, to explore the voltammetric processes for a series of hydrophilic ions by electrochemically induced redox transformations of common molecular probes. During the limited time available for voltammetry, ...

  20. Redox competition mode of scanning electrochemical microscopy (RC-SECM) for visualisation of local catalytic activity.

    Science.gov (United States)

    Eckhard, Kathrin; Chen, Xingxing; Turcu, Florin; Schuhmann, Wolfgang

    2006-12-07

    In order to locally analyse catalytic activity on modified surfaces a transient redox competition mode of scanning electrochemical microscopy (SECM) has been developed. In a bi-potentiostatic experiment the SECM tip competes with the sample for the very same analyte. This leads to a current decrease at the SECM tip, if it is positioned in close proximity to an active catalyst site on the surface. Specifically, local catalytic activity of a Pt-catalyst modified sample with respect to the catalytic reduction of molecular oxygen was investigated. At higher local catalytic activity the local 02 partial pressure within the gap between accurately positioned SECM tip and sample is depleted, leading to a noticeable tip current decrease over active sites. A flexible software module has been implemented into the SECM to adapt the competition conditions by proper definition of tip and sample potentials. A potential pulse profile enables the localised electrochemically induced generation of molecular oxygen prior to the competition detection. The current decay curves are recorded over the entire duration of the applied reduction pulse. Hence, a time resolved processing of the acquired current values provides movies of the local oxygen concentration against x,y-position. The SECM redox competition mode was verified with a macroscopic Pt-disk electrode as a test sample to demonstrate the feasibility of the approach. Moreover, highly dispersed electro-deposited spots of gold and platinum on glassy carbon were visualised using the redox competition mode of SECM. Catalyst spots of different nature as well as activity inhomogeneities within one spot caused by local variations in Pt-loading were visualised successfully.

  1. High Performance Hydrogen/Bromine Redox Flow Battery for Grid-Scale Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Cho, KT; Ridgway, P; Weber, AZ; Haussener, S; Battaglia, V; Srinivasan, V

    2012-01-01

    The electrochemical behavior of a promising hydrogen/bromine redox flow battery is investigated for grid-scale energy-storage application with some of the best redox-flow-battery performance results to date, including a peak power of 1.4 W/cm(2) and a 91% voltaic efficiency at 0.4 W/cm(2) constant-power operation. The kinetics of bromine on various materials is discussed, with both rotating-disk-electrode and cell studies demonstrating that a carbon porous electrode for the bromine reaction can conduct platinum-comparable performance as long as sufficient surface area is realized. The effect of flow-cell designs and operating temperature is examined, and ohmic and mass-transfer losses are decreased by utilizing a flow-through electrode design and increasing cell temperature. Charge/discharge and discharge-rate tests also reveal that this system has highly reversible behavior and good rate capability. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.018211jes] All rights reserved.

  2. Redox transitions of chromium, manganese, iron, cobalt and nickel protoporphyrins in aqueous solution

    NARCIS (Netherlands)

    de Groot, M.T.; Koper, M.T.M.

    2008-01-01

    The electrochemical redox behavior of immobilized chromium, manganese, iron, cobalt, and nickel protoporphyrins IX has been investigated over the pH 0–14 range. In the investigated potential domain the metalloporphyrins were observed in four different oxidation states (MI, MII, MIII and MIV). The

  3. Degradation of all-vanadium redox flow batteries (VRFB) investigated by electrochemical impedance and X-ray photoelectron spectroscopy: Part 2 electrochemical degradation

    Science.gov (United States)

    Derr, Igor; Bruns, Michael; Langner, Joachim; Fetyan, Abdulmonem; Melke, Julia; Roth, Christina

    2016-09-01

    Electrochemical degradation (ED) of carbon felt electrodes was investigated by cycling of a flow through all-vanadium redox flow battery (VRFB) and conducting half-cell measurements with two reference electrodes inside the test bench. ED was detected using half-cell and full-cell electrochemical impedance spectroscopy (EIS) at different states of charge (SOC). Reversing the polarity of the battery to recover cell performance was performed with little success. Renewing the electrolyte after a certain amount of cycles restored the capacity of the battery. X-ray photoelectron spectroscopy (XPS) reveals that the amount of surface functional increases by more than a factor of 3 for the negative side as well as for the positive side. Scanning electron microscope (SEM) images show a peeling of the fiber surface after cycling the felts, which leads to a loss of electrochemically active surface area (ECSA). Long term cycling shows that ED has a stronger impact on the negative half-cell [V(II)/V(III)] than the positive half-cell [V(IV)/V(V)] and that the negative half-cell is the rate-determining half-cell for the VRFB.

  4. Electrochemical behavior of free-radical derivatives of tetra(4hydroxyl-3,5-di-tert-butylphenyl) porphyrin

    Energy Technology Data Exchange (ETDEWEB)

    Pokhodenko, V.D.; Melezhik, A.V.; Platonova, E.P.; Vovk, D.N.

    1984-08-01

    The electrochemical behavior of free-radical derivatives of tetra(4hydroxyl-3,5-di-tert-butylphenyl) porphyrins and their complexes with Mg(II), Zn(II), Ni(II), CU(II), and Pd(II) ions was studied by the methods of voltamperometry, ESR, and spectrophotometry. It was shown that the introduction of free-radical substituents into the porphin macrocycle leads to a substantial decrease in the oxidation and reduction potentials of the complexes. The degree of conjunction of substituents with the porphin macrocycle is estimated according to the difference of the redox potentials of free-radical and quinoid derivatives of metalloporphyrins.

  5. Highly Sensitive Electrochemical Sensor for the Detection of Anions in Water Based on a Redox-Active Monolayer Incorporating an Anion Receptor.

    Science.gov (United States)

    Kaur, Balwinder; Erdmann, Cristiane Andreia; Daniëls, Mathias; Dehaen, Wim; Rafiński, Zbigniew; Radecka, Hanna; Radecki, Jerzy

    2017-12-05

    In the present work, gold electrodes were modified using a redox-active layer based on dipyrromethene complexes with Cu(II) or Co(II) and a dipodal anion receptor functionalized with dipyrromethene. These modified gold electrodes were then applied for the electrochemical detection of anions (Cl - , SO 4 2- , and Br - ) in a highly diluted water solution (in the picomolar range). The results showed that both systems, incorporating Cu(II) as well as Co(II) redox centers, exhibited highest sensitivity toward Cl - . The selectivity sequence found for both systems was Cl - > SO 4 2- > Br - . The high selectivity of Cl - anions can be attributed to the higher binding constant of Cl - with the anion receptor and the stronger electronic effect between the central metal and anion in the complex. The detection limit for the determination of Cl - was found at the 1.0 pM level for both sensing systems. The electrodes based on Co(II) redox centers displayed better selectivity toward Cl - anion detection than those based on Cu(II) centers which can be attributed to the stronger electronic interaction between the receptor-target anion complex and the Co(II)/Co(III) redox centers in comparison to the Cu(II)/Cu(I) system. Applicability of gold electrodes modified with DPM-Co(II)-DPM-AR for the electrochemical determination of Cl - anions was demonstrated using the artificial matrix mimicking human serum.

  6. Electrochemical reaction rates in a dye-sensitised solar cell - the iodide/tri-iodide redox system

    DEFF Research Database (Denmark)

    Bay, L.; West, K.; Winther-Jensen, B.

    2006-01-01

    The electrochemical reaction rate of the redox couple iodide/tri-iodide in acetonitrile is characterised by impedance spectroscopy. Different electrode materials relevant for the function of dye-sensitised solar cells (DSSC) are investigated. Preferably, the reaction with the iodide....../tri-iodide couple should be fast at the counter electrode, i.e. this electrode must have a high catalytic activity towards the redox couple, and the same reaction must be slow on the photo electrode. The catalytic activity is investigated for platinum, poly(3,4-ethylenedioxythiophene) (PEDOT), polypyrrole (PPy......), and polyaniline (PANI)-all deposited onto fluorine-doped tin oxide (FTO) glass. Both Pt and PEDOT are found to have sufficiently high catalytic activities for practical use as counter electrodes in DSSC. The reaction resistance on FTO and anatase confirmed the beneficial effect of a compact anatase layer on top...

  7. Electrochemical reaction rates in a dye sentisised solar cell - the iodide/tri-iodide redox system

    DEFF Research Database (Denmark)

    Bay, Lasse; West, Keld; Winter-Jensen, Bjørn

    2006-01-01

    The electrochemical reaction rate of the redox couple iodide / tri-iodide in acetonitrile is characterised by impedance spectroscopy. Different electrode materials relevant for the function of dye-sensitised solar cells (DSSC) are investigated. Preferably, the reaction with the iodide / tri......-iodide couple should be fast at the counter electrode, i.e. this electrode must have a high catalytic activity towards the redox couple, and the same reaction must be slow on the photo electrode. The catalytic activity is investigated for platinum, poly(3,4-ethylenedioxythiophene) (PEDOT), polypyrrole (PPy......), and polyaniline (PANI) - all deposited onto fluorine doped tin oxide (FTO) glass. Both Pt and PEDOT are found to have sufficiently high catalytic activities for practical use as counter electrode in DSSC. The reaction resistance on FTO and anatase confirmed the beneficial effect of a compact anatase layer on top...

  8. Investigation of electrochemical actuation by polyaniline nanofibers

    Science.gov (United States)

    Mehraeen, Shayan; Alkan Gürsel, Selmiye; Papila, Melih; Çakmak Cebeci, Fevzi

    2017-09-01

    Polyaniline nanofibers have shown promising electrical and electrochemical properties which make them prominent candidates in the development of smart systems employing sensors and actuators. Their electrochemical actuation potential is demonstrated in this study. A trilayer composite actuator based on polyaniline nanofibers was designed and fabricated. Cross-linked polyvinyl alcohol was sandwiched between two polyaniline nanofibrous electrodes as ion-containing electrolyte gel. First, electrochemical behavior of a single electrode was studied, showing reversible redox peak pairs in 1 M HCl using a cyclic voltammetry technique. High aspect ratio polyaniline nanofibers create a porous network which facilitates ion diffusion and thus accelerates redox reactions. Bending displacement of the prepared trilayer actuator was then tested and reported under an AC potential stimulation as low as 0.5 V in a variety of frequencies from 50 to 1000 mHz, both inside 1 M HCl solution and in air. Decay of performance of the composite actuator in air is investigated and it is reported that tip displacement in a solution was stable and repeatable for 1000 s in all selected frequencies.

  9. Investigation of Physical Properties and Electrochemical Behavior of Nitrogen-Doped Diamond-Like Carbon Thin Films

    Directory of Open Access Journals (Sweden)

    Rattanakorn Saensak

    2014-03-01

    Full Text Available This work reports characterizations of diamond-like carbon (DLC films used as electrodes for electrochemical applications. DLC thin films are prepared on glass slides and silicon substrates by radio frequency plasma enhanced chemical vapor deposition (RF-PECVD using a gas mixture of methane and hydrogen. In addition, the DLC films are doped with nitrogen in order to reduce electrical resistivity. Compared to the undoped DLC films, the electrical resistivity of nitrogen-doped (N-doped DLC films is decreased by three orders of magnitude. Raman spectroscopy and UV/Vis spectroscopy analyses show the structural transformation in N-doped DLC films that causes the reduction of band gap energy. Contact angle measurement at N-doped DLC films indicates increased hydrophobicity. The results obtained from the cyclic voltammetry measurements with Fe(CN63-/Fe(CN64- redox species exhibit the correlation between the physical properties and electrochemical behavior of DLC films.

  10. An electrochemical study on the positive electrode side of the zinc–cerium hybrid redox flow battery

    International Nuclear Information System (INIS)

    Nikiforidis, Georgios; Berlouis, Léonard; Hall, David; Hodgson, David

    2014-01-01

    Highlights: •Elevated temperatures favoured the Ce 3+/4+ reaction on the Pt, Pt–Ir and carbon substrates. •j o increased with temperature over the range 25 °C to 60 °C for all substrates. •Non-porous carbon substrates showed higher reversibility on the Ce 3+/4+ reaction. •Surface degradation of the carbon electrodes occurred due to the high positive potentials. •The Pt–Ir coatings gave the largest j o at 60 °C and appear best suited for use as the positive electrode in the Zn–Ce RFB. -- Abstract: In this study, the electrochemical behaviour of the Ce 3+/4+ redox couple in methanesulfonic acid medium on various electrode substrates was investigated as a function of temperature. Carbon composite electrodes as well as platinum and platinum iridium coated electrodes were studied for their suitability in carrying out the Ce 3+/4+ redox reaction. Cyclic voltammetry in 0.8 mol dm −3 cerium and 4.5 mol dm −3 methanesulfonic acid solution showed that elevated temperatures favoured the Ce 3+ /Ce 4+ reaction on the various platinum and platinum–iridium coated substrates as well as on carbon composite surfaces. The latter electrodes showed better kinetics than the metal coatings but deteriorated badly under the high positive potentials required for the cerium reaction. The exchange current density (j o ), obtained through Tafel extrapolation, polarisation resistance and electrochemical impedance spectroscopy measurements, increased with temperature over the range 25 °C to 60 °C. The Pt–Ir coatings gave the largest j o at 60 °C and appear best suited for use as the positive electrode in the Zn–Ce redox flow battery

  11. In-situ investigation of hydrogen evolution behavior in vanadium redox flow batteries

    International Nuclear Information System (INIS)

    Wei, L.; Zhao, T.S.; Xu, Q.; Zhou, X.L.; Zhang, Z.H.

    2017-01-01

    Highlights: • An in-situ method to investigate hydrogen evolution in VRFBs is developed. • The rate of hydrogen evolution during battery operation is quantified. • The gas evolution behaviors in the charge process of VRFBs are observed. - Abstract: In this work, we conceived and fabricated a three-electrode electrochemical cell and transparent vanadium redox flow battery to in-situ investigate the hydrogen evolution reaction during battery operation. Experimental results show that operating temperature has a strong influence on the HER rate. In particular, compared with V"3"+ reduction reaction, HER is more sensitive to temperature variation. It is also found that, contrary to the conventional wisdom that side reactions occur at the late stage of the charge process, H_2 evolves at a relatively low SOC. About 0.26 and 1.94 mL H_2 were collected at an early (SOC lower than 20%) and end of the charge process, respectively, suggesting that attention to the hydrogen formation at the negative electrode in the early charge process should also be paid to during long-term battery operations. Moreover, the produced hydrogen gas at the negative side prefers to form macroscopically observable bubbles onto the electrode surface, covering the active sites for vanadium redox reactions, while oxygen evolution (including CO_2 production) at the positive side corrodes electrode surface and introduces certain oxygen-containing functional groups.

  12. Dimensional behavior of Ni-YSZ composites during redox cycling

    DEFF Research Database (Denmark)

    Pihlatie, Mikko; Kaiser, Andreas; Larsen, Peter Halvor

    2009-01-01

    The dimensional behavior of Ni-yttria-stabilized zirconia (YSZ) cermets during redox cycling was tested in dilatometry within the temperature range 600-1000 degrees C. The effect Of humidity oil redox stability was investigated at intermediate and low temperatures. We show that both the sintering...... of nickel depending on temperature of the initial reduction and the operating conditions, and the temperature of reoxidation are very important for the size of the dimensional change. Cumulative redox strain (CRS) is shown to be correlated with temperature. Measured maximum CRS after three redox cycles...... varies within 0.25-3.2% dL/L in dry gas and respective temperature range of 600-1000 degrees C. A high degree of redox reversibility was reached at low temperature. however. reversibility is lost at elevated temperatures. We found that at 850 degrees C, 6% steam and a very high p(H2O)/p(H2) ratio...

  13. Electrochemical reverse engineering: A systems-level tool to probe the redox-based molecular communication of biology.

    Science.gov (United States)

    Li, Jinyang; Liu, Yi; Kim, Eunkyoung; March, John C; Bentley, William E; Payne, Gregory F

    2017-04-01

    electrochemical tool for in vitro redox-probing. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Titanium nitride as an electrocatalyst for V(II)/V(III) redox couples in all-vanadium redox flow batteries

    International Nuclear Information System (INIS)

    Yang, Chunmei; Wang, Haining; Lu, Shanfu; Wu, Chunxiao; Liu, Yiyang; Tan, Qinglong; Liang, Dawei; Xiang, Yan

    2015-01-01

    Titanium nitride nanoparticles (TiN NPs) are proposed as a novel catalyst towards the V(II)/V(III) redox pair for the negative electrode in vanadium redox flow batteries (VRFB). Electrochemical properties of TiN NPs were characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The results show that TiN NPs demonstrate better electrochemical activity and reversibility for the processes of V(II)/V(III) redox couples as compared with the graphite NPs. TiN NPs facilitate the charge transfer in the V(II)/V(III) redox reaction. Performance of a VRFB using a TiN NPs coated carbon paper as a negative electrode is much higher than that of a VRFB with a raw carbon paper electrode. The columbic efficiency (CE), the voltage efficiency (VE) and the energy efficiency (EE) of the VRFB single cell at charge-discharge current density of 30 mA/cm 2 are 91.74%, 89.11% and 81.74%, respectively. During a 50 charge-discharge cycles test, the CE values of VRFB with TiN NPs consistently remain higher than 90%.

  15. Redox electrode materials for supercapatteries

    OpenAIRE

    Yu, Linpo; Chen, George Z.

    2016-01-01

    Redox electrode materials, including transition metal oxides and electronically conducting polymers, are capable of faradaic charge transfer reactions, and play important roles in most electrochemical energy storage devices, such as supercapacitor, battery and supercapattery. Batteries are often based on redox materials with low power capability and safety concerns in some cases. Supercapacitors, particularly those based on redox inactive materials, e.g. activated carbon, can offer high power...

  16. Surface Redox Chemistry of Immobilized Nanodiamond: Effects of Particle Size and Electrochemical Environment

    Science.gov (United States)

    Gupta, S.; McDonald, B.; Carrizosa, S. B.

    2017-07-01

    The size of the diamond particle is tailored to nanoscale (nanodiamond, ND), and the ND surface is engineered targeting specific (electrochemical and biological) applications. In this work, we investigated the complex surface redox chemistry of immobilized ND layer on conductive boron-doped diamond electrode with a broad experimental parameter space such as particle size (nano versus micron), scan rate, pH (cationic/acidic versus anionic/basic), electrolyte KCl concentration (four orders of magnitude), and redox agents (neutral and ionic). We reported on the significant enhancement of ionic currents while recording reversible oxidation of neutral ferrocene methanol (FcMeOH) by almost one order of magnitude than traditional potassium ferricyanide (K3Fe(CN)6) redox agent. The current enhancement is inversely related to ND particle diameter in the following order: 1 μm << 1000 nm < 100 nm < 10 nm ≤ 5 nm < 2 nm. We attribute the current enhancement to concurrent electrocatalytic processes, i.e. the electron transfer between redox probes and electroactive surface functional (e.g. hydroxyl, carboxyl, epoxy) moieties and the electron transfer mediated by adsorbed FcMeOH+ (or Fe(CN) 6 3+ ) ions onto ND surface. The first process is pH dependent since it depends upon ND surface functionalities for which the electron transfer is coupled to proton transfer. The adsorption mediated process is observed most apparently at slower scan rates owing to self-exchange between adsorbed FcMeOH+ ions and FcMeOH redox agent molecules in diffusion-limited bulk electrolyte solution. Alternatively, it is hypothesized that the surface functionality and defect sites ( sp 2-bonded C shell and unsaturated bonds) give rise to surface electronic states with energies within the band gap (midgap states) in undoped ND. These surface states serve as electron donors (and acceptors) depending upon their bonding (and antibonding) character and, therefore, they can support electrocatalytic redox

  17. Effect of organic additives on positive electrolyte for vanadium redox battery

    International Nuclear Information System (INIS)

    Li Sha; Huang Kelong; Liu Suqin; Fang Dong; Wu Xiongwei; Lu Dan; Wu Tao

    2011-01-01

    Highlights: → Four organics as electrolyte additives of vanadium redox battery. → Changes are examined in the electrochemical properties of vanadium redox battery. → D-sorbitol is a suitable additive to the electrolyte for the vanadium redox battery. → The mechanism of improvement is discussed in detail. - Abstract: Fructose, mannitol, glucose, D-sorbitol are explored as additives in electrolyte for vanadium redox battery (VRB), respectively. The effects of additives on electrolyte are studied by cyclic voltammetry (CV), charge-discharge technique, electrochemical impedance spectroscopy (EIS) and Raman spectroscopy. The results indicate that the vanadium redox cell using the electrolyte with the additive of D-sorbitol exhibits the best electrochemical performance (the energy efficiency 81.8%). The EIS results indicate that the electrochemical activity of the electrolyte is improved by adding D-sorbitol, which can be interpreted as the increase of available (-OH) groups providing active sites for electron transfer. The Raman spectra show that VO 2+ ions take part in forming a complex with the D-sorbitol, which not only improve solubility of V(V) electrolyte, but also provide more activity sites for the V(IV)/V(V) redox reaction.

  18. Effect of organic additives on positive electrolyte for vanadium redox battery

    Energy Technology Data Exchange (ETDEWEB)

    Li Sha [Department of Functional Materials and Chemistry, School of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Huang Kelong, E-mail: lisha_csu@163.com [Department of Functional Materials and Chemistry, School of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Liu Suqin; Fang Dong; Wu Xiongwei; Lu Dan; Wu Tao [Department of Functional Materials and Chemistry, School of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China)

    2011-06-30

    Highlights: > Four organics as electrolyte additives of vanadium redox battery. > Changes are examined in the electrochemical properties of vanadium redox battery. > D-sorbitol is a suitable additive to the electrolyte for the vanadium redox battery. > The mechanism of improvement is discussed in detail. - Abstract: Fructose, mannitol, glucose, D-sorbitol are explored as additives in electrolyte for vanadium redox battery (VRB), respectively. The effects of additives on electrolyte are studied by cyclic voltammetry (CV), charge-discharge technique, electrochemical impedance spectroscopy (EIS) and Raman spectroscopy. The results indicate that the vanadium redox cell using the electrolyte with the additive of D-sorbitol exhibits the best electrochemical performance (the energy efficiency 81.8%). The EIS results indicate that the electrochemical activity of the electrolyte is improved by adding D-sorbitol, which can be interpreted as the increase of available (-OH) groups providing active sites for electron transfer. The Raman spectra show that VO{sup 2+} ions take part in forming a complex with the D-sorbitol, which not only improve solubility of V(V) electrolyte, but also provide more activity sites for the V(IV)/V(V) redox reaction.

  19. Investigation of some biologically relevant redox reactions using electrochemical mass spectrometry interfaced by desorption electrospray ionization.

    Science.gov (United States)

    Lu, Mei; Wolff, Chloe; Cui, Weidong; Chen, Hao

    2012-04-01

    Recently we have shown that, as a versatile ionization technique, desorption electrospray ionization (DESI) can serve as a useful interface to combine electrochemistry (EC) with mass spectrometry (MS). In this study, the EC/DESI-MS method has been further applied to investigate some aqueous phase redox reactions of biological significance, including the reduction of peptide disulfide bonds and nitroaromatics as well as the oxidation of phenothiazines. It was found that knotted/enclosed disulfide bonds in the peptides apamin and endothelin could be electrochemically cleaved. Subsequent tandem MS analysis of the resulting reduced peptide ions using collision-induced dissociation (CID) and electron-capture dissociation (ECD) gave rise to extensive fragment ions, providing a fast protocol for sequencing peptides with complicated disulfide bond linkages. Flunitrazepam and clonazepam, a class of nitroaromatic drugs, are known to undergo reduction into amines which was proposed to involve nitroso and N-hydroxyl intermediates. Now in this study, these corresponding intermediate ions were successfully intercepted and their structures were confirmed by CID. This provides mass spectrometric evidence for the mechanism of the nitro to amine conversion process during nitroreduction, an important redox reaction involved in carcinogenesis. In addition, the well-known oxidation reaction of chlorpromazine was also examined. The putative transient one-electron transfer product, the chlorpromazine radical cation (m/z 318), was captured by MS, for the first time, and its structure was also verified by CID. In addition to these observations, some features of the DESI-interfaced electrochemical mass spectrometry were discussed, such as simple instrumentation and the lack of background signal. These results further demonstrate the feasibility of EC/DESI-MS for the study of the biology-relevant redox chemistry and would find applications in proteomics and drug development research.

  20. Cascade redox flow battery systems

    Science.gov (United States)

    Horne, Craig R.; Kinoshita, Kim; Hickey, Darren B.; Sha, Jay E.; Bose, Deepak

    2014-07-22

    A reduction/oxidation ("redox") flow battery system includes a series of electrochemical cells arranged in a cascade, whereby liquid electrolyte reacts in a first electrochemical cell (or group of cells) before being directed into a second cell (or group of cells) where it reacts before being directed to subsequent cells. The cascade includes 2 to n stages, each stage having one or more electrochemical cells. During a charge reaction, electrolyte entering a first stage will have a lower state-of-charge than electrolyte entering the nth stage. In some embodiments, cell components and/or characteristics may be configured based on a state-of-charge of electrolytes expected at each cascade stage. Such engineered cascades provide redox flow battery systems with higher energy efficiency over a broader range of current density than prior art arrangements.

  1. Integrated circuit-based electrochemical sensor for spatially resolved detection of redox-active metabolites in biofilms.

    Science.gov (United States)

    Bellin, Daniel L; Sakhtah, Hassan; Rosenstein, Jacob K; Levine, Peter M; Thimot, Jordan; Emmett, Kevin; Dietrich, Lars E P; Shepard, Kenneth L

    2014-01-01

    Despite advances in monitoring spatiotemporal expression patterns of genes and proteins with fluorescent probes, direct detection of metabolites and small molecules remains challenging. A technique for spatially resolved detection of small molecules would benefit the study of redox-active metabolites that are produced by microbial biofilms and can affect their development. Here we present an integrated circuit-based electrochemical sensing platform featuring an array of working electrodes and parallel potentiostat channels. 'Images' over a 3.25 × 0.9 mm(2) area can be captured with a diffusion-limited spatial resolution of 750 μm. We demonstrate that square wave voltammetry can be used to detect, identify and quantify (for concentrations as low as 2.6 μM) four distinct redox-active metabolites called phenazines. We characterize phenazine production in both wild-type and mutant Pseudomonas aeruginosa PA14 colony biofilms, and find correlations with fluorescent reporter imaging of phenazine biosynthetic gene expression.

  2. Swiss roll nanomembranes with controlled proton diffusion as redox micro-supercapacitors.

    Science.gov (United States)

    Ji, Hengxing; Mei, Yongfeng; Schmidt, Oliver G

    2010-06-14

    We demonstrate a redox Swiss roll micro-supercapacitor by rolling up a multilayered nanomembrane with an electrochemical active layer at either the outer or inner surface for different proton diffusion behaviors. The Swiss roll micro-supercapacitor could achieve high performance (e.g. capacity and life time) in a microscale power source and is helpful for studying charge transfer at the electrolyte/electrode interface.

  3. Energize Electrochemical Double Layer Capacitor by Introducing an Ambipolar Organic Redox Radical in Electrolyte.

    Science.gov (United States)

    Wang, Yonggang; Hu, Lintong; Zhang, Yue; Shi, Chao; Guo, Kai; Zhai, Tianyou; Li, Huiqiao

    2018-05-24

    Carbon based electrochemical double layer capacitors (EDLCs) generally exhibit high power and long life, but low energy density/capacitance. Pore/morphology optimization and pseudocapacitive materials modification of carbon materials have been used to improve electrode capacitance, but leading to the consumption of tap density, conductivity and stability. Introducing soluble redox mediators into electrolyte is a promising alternative to improve the capacitance of electrode. However, it is difficult to find one redox mediator that can provide additional capacitance for both positive and negative electrodes simultaneously. Here, an ambipolar organic radical, 2, 2, 6, 6-tetramethylpiperidinyloxyl (TEMPO) is first introduced to the electrolyte, which can substantially contribute additional pseudocapacitance by oxidation at the positive electrode and reduction at the negative electrode simultaneously. The EDLC with TEMPO mediator delivers an energy density as high as 51 Wh kg-1, 2.4 times of the capacitor without TEMPO, and a long cycle stability over 4000 cycles. The achieved results potentially point a new way to improve the energy density of EDLCs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Electron transport determines the electrochemical properties of tetrahedral amorphous carbon (ta-C) thin films

    International Nuclear Information System (INIS)

    Palomäki, Tommi; Wester, Niklas; Caro, Miguel A.; Sainio, Sami; Protopopova, Vera; Koskinen, Jari; Laurila, Tomi

    2017-01-01

    Amorphous carbon based electrodes are very promising for electrochemical sensing applications. In order to better understand their structure-function relationship, the effect of film thickness on the electrochemical properties of tetrahedral amorphous carbon (ta-C) electrodes was investigated. ta-C thin films of 7, 15, 30, 50 and 100 nm were characterized in detail with Raman spectroscopy, transmission electron microscopy (TEM), conductive atomic force microscopy (c-AFM), scanning tunneling spectroscopy (STS) and X-ray absorption spectroscopy (XAS) to assess (i) the surface properties of the films, (ii) the effect of film thickness on their structure and electrical properties and (iii) the subsequent correlation with their electrochemistry. The electrochemical properties were investigated by cyclic voltammetry (CV) using two different outer-sphere redox probes, Ru(NH 3 ) 6 3+/2+ and FcMeOH, and by electrochemical impedance spectroscopy (EIS). Computational simulations using density functional theory (DFT) were carried out to rationalize the experimental findings. The characterization results showed that the sp 2 /sp 3 ratio increased with decreasing ta-C film thickness. This correlated with a decrease in mobility gap value and an increase in the average current through the films, which was also consistent with the computational results. XAS indicated that the surface of the ta-C films was always identical and composed of a sp 2 -rich layer. The CV measurements indicated reversible reaction kinetics for both outer-sphere redox probes at 7 and 15 nm ta-C films with a change to quasi-reversible behavior at a thickness of around 30 nm. The charge transfer resistance, obtained from EIS measurements, decreased with decreasing film thickness in accordance with the CV results. Based on the characterization and electrochemical results, we conclude that the reaction kinetics in the case of outer-sphere redox systems is determined mainly by the electron transport through the

  5. Highly enhanced electrochemical activity of Ni foam electrodes decorated with nitrogen-doped carbon nanotubes for non-aqueous redox flow batteries

    Science.gov (United States)

    Lee, Jungkuk; Park, Min-Sik; Kim, Ki Jae

    2017-02-01

    Nitrogen-doped carbon nanotubes (NCNTs) are directly grown on the surface of a three-dimensional (3D) Ni foam substrate by floating catalytic chemical vapor deposition (FCCVD). The electrochemical properties of the 3D NCNT-Ni foam are thoroughly examined as a potential electrode for non-aqueous redox flow batteries (RFBs). During synthesis, nitrogen atoms can be successfully doped onto the carbon nanotube (CNT) lattices by forming an abundance of nitrogen-based functional groups. The 3D NCNT-Ni foam electrode exhibits excellent electrochemical activities toward the redox reactions of [Fe (bpy)3]2+/3+ (in anolyte) and [Co(bpy)3]+/2+ (in catholyte), which are mainly attributed to the hierarchical 3D structure of the NCNT-Ni foam electrode and the catalytic effect of nitrogen atoms doped onto the CNTs; this leads to faster mass transfer and charge transfer during operation. As a result, the RFB cell assembled with 3D NCNT-Ni foam electrodes exhibits a high energy efficiency of 80.4% in the first cycle; this performance is maintained up to the 50th cycle without efficiency loss.

  6. Redox-Magnetohydrodynamic Microfluidics Without Channels and Compatible with Electrochemical Detection Under Immunoassay Conditions

    Science.gov (United States)

    Weston, Melissa C.; Nash, Christena K.; Fritsch, Ingrid

    2010-01-01

    A unique capability of redox-magnetohydrodynamics (redox-MHD) for handling liquids on a small scale was demonstrated. A 1.2-μL solution plug was pumped from an injection site to a detector without the need for a channel to direct the flow. The redox pumping species did not interfere with enzymatic activity in a solution compatible with enzyme-linked immunoassays. Alkaline phosphatase (AP), a common enzyme label, converted p-aminophenyl phosphate (PAPP) to p-aminophenol (PAPR) in the presence of 2.5 mM Ru(NH3)6Cl2 and 2.5 mM Ru(NH3)6 Cl3, in 0.1 M Tris buffer (pH=9). A solution plug containing PAPP (no AP) was pumped through the surrounding solution containing AP (no PAPP), and the enzymatically-generated PAPR was easily detected and distinguishable electrochemically from the pumping species with square wave voltammetry down to 0.1 mM concentrations. The test device consisted of a silicon chip containing individually-addressable microband electrodes, placed on a 0.5-T NdFeB permanent magnet with the field oriented perpendicular to the chip. A 8.0-mm wide × 15.5-mm long × 1.5-mm high volume of solution was contained by a poly(dimethylsiloxane) gasket and capped with a glass slide. A steady-state fluid velocity of ~30 μm/s was generated in a reinforcing flow configuration between oppositely polarized sets of pumping electrodes with ~2.1 μA. PMID:20681513

  7. Entropy production and energy dissipation in symmetric redox supercapacitors

    Science.gov (United States)

    Palma-Aramburu, N.; Santamaría-Holek, I.

    2017-08-01

    In this work we propose a theoretical model that accounts for the main features of the loading-unloading process of a symmetric redox MnO2-based supercapacitor dominated by fast electrochemical reactions at the electrodes. The model is formulated on the basis of nonequilibrium thermodynamics from which we are able to deduce generalized expressions for the electrochemical affinity, the load-voltage and the current-voltage equations that constitute generalizations of the current-overpotential and Butler-Volmer equations, and that are used to describe experimental voltagram data with good agreement. These equations allowed us to derive the behavior of the energy dissipated per cycle showing that it has a nonmonotonic behavior and that in the operation regime it follows a power-law behavior as a function of the frequency. The existence of a maximum for the energy dissipated as a function of the frequency suggests the that the corresponding optimal operation frequency should be similar in value to ωmax.

  8. Electrochemical behavior of rhodium acetamidate immobilized on a carbon paste electrode: a hydrazine sensor

    Directory of Open Access Journals (Sweden)

    Gil Eric de S.

    2000-01-01

    Full Text Available The electrochemical behavior of rhodium acetamidate immobilized in carbon paste electrode and the consequences for sensor construction were evaluated. The electrode showed good stability and redox properties. Two reversible redox couples with midpoint potentials between 0.15 and 0.55 V vs SCE were observed. However, peak resolution in voltammetric studies was very dependent on the supporting electrolyte. The correlation between coordinating power of the electrolyte and peak potential suggests that the electrolyte can coordinate through the axial position of the complexes. Furthermore, the axial position may be also the catalytic site, as a catalytical response was observed for hydrazine oxidation. A good linear response range for hydrazine was fit by the equation i = 23.13 (± 0.34 c , where i = current in mA and c = concentration in mol dm-3 in the range of 10-5 up to 10-2 mol dm-3. The low applied potential (<300 mV indicates a good device for hydrazine sensor, minimizing interference problems. The short response time (~1 s may be useful in flow injection analysis. Furthermore, this system was very stable presenting good repeatability even after 30 measurements with a variance of 0.5 %.

  9. Investigation of the temperature effect on electrochemical behaviors of TiO2 for gel type valve regulated lead-acid batteries

    Directory of Open Access Journals (Sweden)

    Metin GENÇTEN

    2016-12-01

    Full Text Available In this study, the effect of temperature on the electrochemical behaviors of gel electrolyte systems was investigated for valve regulated lead-acid battery at 0≤ T ≤50 oC. Fumed silica and mixture of fumed silica and TiO2 were used as gel electrolytes. TiO2 has a good combination with fumed silica. They were characterized by cyclic voltammetry, electrochemical impedance spectroscopy and battery tests. The anodic peak currents and redox capacities of the gel electrolytes increased with increasing of temperature. The highest anodic peak current and redox capacity were observed at 30 oC in fumed silica and at 40 oC in fumed silica:TiO2 based gel systems. The solution and charge transfer resistance values decreased in fumed silica:TiO2 gel system by increasing temperature. In battery tests, discharge curves were obtained for each gel system at 0, 25 and 50 oC. The discharge time of mixture gel electrolyte system was higher than that of fumed silica based gel electrolyte at low (0 oC and high (50 oC temperatures. The best performance was obtained in fumed silica based gel electrolyte at 25 oC.

  10. Direct voltammetric determination of redox-active iron in carbon nanotubes.

    Science.gov (United States)

    Teo, Wei Zhe; Pumera, Martin

    2014-12-01

    With the advances in nanotechnology over the past decade, consumer products are increasingly being incorporated with carbon nanotubes (CNTs). As the harmful effects of CNTs are suggested to be primarily due to the bioavailable amounts of metallic impurities, it is vital to detect and quantify these species using sensitive and facile methods. Therefore, in this study, we investigated the possibility of quantifying the amount of redox-available iron-containing impurities in CNTs with voltammetric techniques such as cyclic voltammetry. We examined the electrochemistry of Fe3 O4 nanoparticles in phosphate buffer solution and discovered that its electrochemical behavior could be affected by pH of the electrolyte. By utilizing the unique redox reaction between the iron and phosphate species, the redox available iron content in CNTs was determined successfully using voltammetry. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Redox-active porous coordination polymer based on trinuclear pivalate: Temperature-dependent crystal rearrangement and redox-behavior

    Energy Technology Data Exchange (ETDEWEB)

    Lytvynenko, Anton S. [L.V. Pisarzhevskii Institute of Physical Chemistry, National Academy of Sciences of Ukraine, Prospekt Nauki 31, Kiev 03028 (Ukraine); Kiskin, Mikhail A., E-mail: mkiskin@igic.ras.ru [N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky Prospect 31, GSP-1, 119991 Moscow (Russian Federation); Dorofeeva, Victoria N.; Mishura, Andrey M.; Titov, Vladimir E.; Kolotilov, Sergey V. [L.V. Pisarzhevskii Institute of Physical Chemistry, National Academy of Sciences of Ukraine, Prospekt Nauki 31, Kiev 03028 (Ukraine); Eremenko, Igor L.; Novotortsev, Vladimir M. [N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky Prospect 31, GSP-1, 119991 Moscow (Russian Federation)

    2015-03-15

    Linking of trinuclear pivalate Fe{sub 2}NiO(Piv){sub 6} (Piv=O{sub 2}CC(CH{sub 3}){sub 3}) by 2,6-bis(4-pyridyl)-4-(1-naphthyl)pyridine (L) resulted in formation of 1D-porous coordination polymer Fe{sub 2}NiO(Piv){sub 6}(L)·Solv, which was characterized in two forms: DMSO solvate Fe{sub 2}NiO(Piv){sub 6}(L)(DMSO)·2.5DMSO (1) or water solvate Fe{sub 2}NiO(Piv){sub 6}(L)(H{sub 2}O) (2). X-ray structure of 1 was determined. Crystal lattice of 1 at 160 K contained open channels, filled by captured solvent, while temperature growth to 296 K led to the crystal lattice rearrangement and formation of closed voids. Redox-behavior of 2 was studied by cyclic voltammetry for a solid compound, deposited on glassy-carbon electrode. Redox-activity of L preserved upon incorporation in the coordination polymer. The presence of pores in desolvated sample Fe{sub 2}NiO(Piv){sub 6}(L) was confirmed by the measurements of N{sub 2} and H{sub 2} adsorption at 77 K. Potential barriers of the different molecules diffusion through pores were estimated by the means of molecular mechanics. - Graphical abstract: Redox-behavior of 1D-porous coordination polymer Fe{sub 2}NiO(Piv){sub 6}(L)(H{sub 2}O) was studied by cyclic voltammetry in thin film, deposited on glassy-carbon electrode. Redox-activity of L preserved upon incorporation in the coordination polymer. Potential barriers of different molecules diffusion through pores were estimated by the means of molecular mechanics. - Highlights: • Porous 1D coordination polymer was synthesized. • Temperature growth led to pores closing due to crystal lattice rearrangement. • Redox-activity of ligand preserved upon incorporation into coordination polymer. • Redox-properties of solid coordination polymer were studied in thin film. • Diffusion barriers were evaluated by molecular mechanics.

  12. The Redox Flow System for solar photovoltaic energy storage

    Science.gov (United States)

    Odonnell, P.; Gahn, R. F.; Pfeiffer, W.

    1976-01-01

    The interfacing of a Solar Photovoltaic System and a Redox Flow System for storage was workable. The Redox Flow System, which utilizes the oxidation-reduction capability of two redox couples, in this case iron and titanium, for its storage capacity, gave a relatively constant output regardless of solar activity so that a load could be run continually day and night utilizing the sun's energy. One portion of the system was connected to a bank of solar cells to electrochemically charge the solutions, while a separate part of the system was used to electrochemically discharge the stored energy.

  13. Polyarene mediators for mediated redox flow battery

    Science.gov (United States)

    Delnick, Frank M.; Ingersoll, David; Liang, Chengdu

    2018-01-02

    The fundamental charge storage mechanisms in a number of currently studied high energy redox couples are based on intercalation, conversion, or displacement reactions. With exception to certain metal-air chemistries, most often the active redox materials are stored physically in the electrochemical cell stack thereby lowering the practical gravimetric and volumetric energy density as a tradeoff to achieve reasonable power density. In a general embodiment, a mediated redox flow battery includes a series of secondary organic molecules that form highly reduced anionic radicals as reaction mediator pairs for the reduction and oxidation of primary high capacity redox species ex situ from the electrochemical cell stack. Arenes are reduced to stable anionic radicals that in turn reduce a primary anode to the charged state. The primary anode is then discharged using a second lower potential (more positive) arene. Compatible separators and solvents are also disclosed herein.

  14. A study of tiron in aqueous solutions for redox flow battery application

    International Nuclear Information System (INIS)

    Xu Yan; Wen Yuehua; Cheng Jie; Cao Gaoping; Yang Yusheng

    2010-01-01

    In this study, the electrochemical behavior of tiron in aqueous solutions and the influence of pH were investigated. A change of pH mainly produces the following results. In acidic solutions of pH below 4, the electrode reaction of tiron exhibits a simple process at a relatively high potential with a favorable quasi-reversibility. The tiron redox reaction exhibits fast electrode kinetics and a diffusion-controlled process. In solutions of pH above 4, the electrode reaction of tiron tends to be complicated. Thus, acidic aqueous solutions of pH below 4 are favorable for the tiron as active species of a redox flow battery (RFB). Constant-current electrolysis shows that a part of capacity is irreversible and the structure of tiron is changed for the first electrolysis, which may result from an ECE process for the tiron electro-oxidation. Thus, the tiron needs an activation process for the application of a RFB. Average coulombic and energy efficiencies of the tiron/Pb battery are 93 and 82%, respectively, showing that self-discharge is small during the short-term cycling. The preliminary exploration shows that the tiron is electrochemically promising for redox flow battery application.

  15. Formation and properties of electroactive fullerene based films with a covalently attached ferrocenyl redox probe

    International Nuclear Information System (INIS)

    Wysocka-Zolopa, Monika; Winkler, Krzysztof; Caballero, Ruben; Langa, Fernando

    2011-01-01

    Highlights: → Formation of redox active films of ferrocene derivatives of C 60 and palladium. → Fullerene moieties are covalently bonded to palladium atoms to form a polymeric network. → Electrochemical activity at both positive and negative potentials. → Charge transfer processes accompanied by transport of supporting electrolyte to and from the polymer layers. - Abstract: Redox active films have been produced via electrochemical reduction in a solution containing palladium(II) acetate and ferrocene derivatives of C 60 (Fc-C 60 and bis-Fc-C 60 ). In these films, fullerene moieties are covalently bonded to palladium atoms to form a polymeric network. Fc-C 60 /Pd and bis-Fc-C 60 /Pd films form uniform and relatively smooth layers on the electrode surface. These films are electrochemically active in both the positive and negative potential regions. At negative potentials, reduction of fullerene moiety takes place resulting in voltammetric behavior resembles typical of conducting polymers. In the positive potential range, oxidation of ferrocene is responsible for the formation of a sharp and symmetrical peak on the voltammograms. In this potential range, studied films behave as typical redox polymers. The charge associated with the oxidation process depends on the number of ferrocene units attached to the C 60 moiety. Oxidation and reduction of these redox active films are accompanied by transport of supporting electrolyte to and from the polymer layer. Films also show a higher permeability to anions than to cations.

  16. Influence of Fenton's reagent treatment on electrochemical properties of graphite felt for all vanadium redox flow battery

    International Nuclear Information System (INIS)

    Gao, Chao; Wang, NanFang; Peng, Sui; Liu, SuQin; Lei, Ying; Liang, XinXing; Zeng, ShanShan; Zi, HuiFang

    2013-01-01

    Highlights: ► Highly hydroxyl-functionalized graphite felt has been obtained through Fenton's reagent treatment. ► Fenton's reagent treatment involves only one step, works under ambient conditions and will never produce any toxic gas. ► The treated graphite felt exhibits superior electrochemical performance in comparison to the untreated one. -- Abstract: An environmental, economic and highly effective method for carbon fiber hydroxylated-functionalization based on Fenton's reagent treatment is used to improve the electrochemical activity of graphite felt (GF) as the positive electrode in all vanadium redox flow battery (VRFB). The effect of H 2 O 2 content in Fenton's reagent on the structure and electrochemical properties of GF is investigated. The scanning electron microscope (SEM) indicates that the surface of the treated GF is etched increasingly with the content of H 2 O 2 . The Fourier transformation infrared (FTIR) spectroscopy shows that the peak intensity of hydroxyl groups on the treated felt is increased with the H 2 O 2 concentration, which is further verified by X-ray photoelectron spectroscopy (XPS). Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) show that the treated sample exhibits a higher electrochemical activity. A VRFB with the treated GF as electrodes exhibits higher coulombic, voltage and energy efficiency (98.8%, 75.1% and 74.2%) than that with the untreated GF (93.9%, 72.1% and 67.7%) at 60 mA cm −2 , and this method is even superior when compared with the reported methods

  17. Effective electrochemical method for investigation of hemoglobin unfolding based on the redox property of heme groups at glassy carbon electrodes.

    Science.gov (United States)

    Li, Xianchan; Zheng, Wei; Zhang, Limin; Yu, Ping; Lin, Yuqing; Su, Lei; Mao, Lanqun

    2009-10-15

    This study demonstrates a facile and effective electrochemical method for investigation of hemoglobin (Hb) unfolding based on the electrochemical redox property of heme groups in Hb at bare glassy carbon (GC) electrodes. In the native state, the heme groups are deeply buried in the hydrophobic pockets of Hb with a five-coordinate high-spin complex and thus show a poor electrochemical property at bare GC electrodes. Upon the unfolding of Hb induced by the denaturant of guanidine hydrochloride (GdnHCl), the fifth coordinative bond between the heme groups and the residue of the polypeptides (His-F8) is broken, and as a result, the heme groups initially buried deeply in the hydrophobic pockets dissociate from the polypeptide chains and are reduced electrochemically at GC electrodes, which can be used to probe the unfolding of Hb. The results on the GdnHCl-induced Hb unfolding obtained with the electrochemical method described here well coincide with those studied with other methods, such as UV-vis spectroscopy, fluorescence, and circular dichroism. The application of the as-established electrochemical method is illustrated to study the kinetics of GdnHCl-induced Hb unfolding, the GdnHCl-induced unfolding of another kind of hemoprotein, catalase, and the pH-induced Hb unfolding/refolding.

  18. Fast and stable redox reactions of MnO2/CNT hybrid electrodes for dynamically stretchable pseudocapacitors

    Science.gov (United States)

    Gu, Taoli; Wei, Bingqing

    2015-07-01

    Pseudocapacitors, which are energy storage devices that take advantage of redox reactions to store electricity, have a different charge storage mechanism compared to lithium-ion batteries (LIBs) and electric double-layer capacitors (EDLCs), and they could realize further gains if they were used as stretchable power sources. The realization of dynamically stretchable pseudocapacitors and understanding of the underlying fundamentals of their mechanical-electrochemical relationship have become indispensable. We report herein the electrochemical performance of dynamically stretchable pseudocapacitors using buckled MnO2/CNT hybrid electrodes. The extremely small relaxation time constant of less than 0.15 s indicates a fast redox reaction at the MnO2/CNT hybrid electrodes, securing a stable electrochemical performance for the dynamically stretchable pseudocapacitors. This finding and the fundamental understanding gained from the pseudo-capacitive behavior coupled with mechanical deformation under a dynamic stretching mode would provide guidance to further improve their overall performance including a higher power density than LIBs, a higher energy density than EDLCs, and a long-life cycling stability. Most importantly, these results will potentially accelerate the applications of stretchable pseudocapacitors for flexible and biomedical electronics.Pseudocapacitors, which are energy storage devices that take advantage of redox reactions to store electricity, have a different charge storage mechanism compared to lithium-ion batteries (LIBs) and electric double-layer capacitors (EDLCs), and they could realize further gains if they were used as stretchable power sources. The realization of dynamically stretchable pseudocapacitors and understanding of the underlying fundamentals of their mechanical-electrochemical relationship have become indispensable. We report herein the electrochemical performance of dynamically stretchable pseudocapacitors using buckled MnO2/CNT hybrid

  19. Electrochemical properties and diffusion of a redox active surfactant incorporated in bicontinuous cubic and lamellar phase

    International Nuclear Information System (INIS)

    Kostela, J.; Elmgren, M.; Almgren, M.

    2005-01-01

    The objective of this study was to investigate the electrochemical behaviour of the divalent redox active surfactant, N-cetyl-N'-methylviologen (CMV), in bicontinuous cubic and lamellar phases. The liquid crystalline phases were prepared from the system glycerolmonooleate (GMO)-water (and brine)-cationic surfactant. A comparison of the phase behaviour of GMO with the monovalent cetyltrimethylammonium bromide (CTAB) and the divalent CMV surfactant showed that the surfactants gave about the same effect at the same surface charge density. The electrochemical measurements were made with a mixture of CTAB and CMV as the surfactant. Cyclic voltammetry was used to study the electrochemistry of CMV incorporated in the cubic and lamellar phases that were spread on a gold electrode. The E 0 -values in the cubic samples were more negative (-0.55 V versus SCE) than in the lamellar samples (-0.53 V versus SCE). This can be explained by the higher charge density in the lamellar phase. The diffusion coefficients were also measured in the cubic phase. The mass transport is slowed down about fifty times in the cubic phase compared to in the pure electrolyte. The concentration dependence on the diffusion coefficient was also investigated. No electron hopping could be observed, which suggest that diffusional movement of the redox probe is the main source of charge transport. By placing the samples on a conducting glass slide, spectroelectrochemical investigations were performed. In the lamellar phase strong dimerization was detected at high concentration of viologen, but much less in the cubic phase

  20. Electrochemical properties and diffusion of a redox active surfactant incorporated in bicontinuous cubic and lamellar phase

    Energy Technology Data Exchange (ETDEWEB)

    Kostela, J. [Uppsala University, Department of Physical Chemistry, Box 579, S-75123 Uppsala (Sweden)]. E-mail: johan.kostela@fki.uu.se; Elmgren, M. [Uppsala University, Department of Physical Chemistry, Box 579, S-75123 Uppsala (Sweden); Almgren, M. [Uppsala University, Department of Physical Chemistry, Box 579, S-75123 Uppsala (Sweden)

    2005-05-30

    The objective of this study was to investigate the electrochemical behaviour of the divalent redox active surfactant, N-cetyl-N'-methylviologen (CMV), in bicontinuous cubic and lamellar phases. The liquid crystalline phases were prepared from the system glycerolmonooleate (GMO)-water (and brine)-cationic surfactant. A comparison of the phase behaviour of GMO with the monovalent cetyltrimethylammonium bromide (CTAB) and the divalent CMV surfactant showed that the surfactants gave about the same effect at the same surface charge density. The electrochemical measurements were made with a mixture of CTAB and CMV as the surfactant. Cyclic voltammetry was used to study the electrochemistry of CMV incorporated in the cubic and lamellar phases that were spread on a gold electrode. The E {sup 0}-values in the cubic samples were more negative (-0.55 V versus SCE) than in the lamellar samples (-0.53 V versus SCE). This can be explained by the higher charge density in the lamellar phase. The diffusion coefficients were also measured in the cubic phase. The mass transport is slowed down about fifty times in the cubic phase compared to in the pure electrolyte. The concentration dependence on the diffusion coefficient was also investigated. No electron hopping could be observed, which suggest that diffusional movement of the redox probe is the main source of charge transport. By placing the samples on a conducting glass slide, spectroelectrochemical investigations were performed. In the lamellar phase strong dimerization was detected at high concentration of viologen, but much less in the cubic phase.

  1. Effect of electrode intrusion on pressure drop and electrochemical performance of an all-vanadium redox flow battery

    Science.gov (United States)

    Kumar, S.; Jayanti, S.

    2017-08-01

    In this paper, we present a study of the effect of electrode intrusion into the flow channel in an all-vanadium redox flow battery. Permeability, pressure drop and electrochemical performance have been measured in a cell with active area 100 cm2and 414 cm2 fitted with a carbon felt electrode of thickness of 3, 6 or 9 mm compressed to 1.5, 2.5 or 4 mm, respectively, during assembly. Results show that the pressure drop is significantly higher than what can be expected in the thick electrode case while its electrochemical performance is lower. Detailed flow analysis using computational fluid dynamics simulations in two different flow fields shows that both these results can be attributed to electrode intrusion into the flow channel leading to increased resistance to electrolyte flow through the electrode. A correlation is proposed to evaluate electrode intrusion depth as a function of compression.

  2. Electrochemical Behavior of Biologically Important Indole Derivatives

    Directory of Open Access Journals (Sweden)

    Cigdem Karaaslan

    2011-01-01

    Full Text Available Voltammetric techniques are most suitable to investigate the redox properties of a new drug. Use of electrochemistry is an important approach in drug discovery and research as well as quality control, drug stability, and determination of physiological activity. The indole nucleus is an essential element of a number of natural and synthetic products with significant biological activity. Indole derivatives are the well-known electroactive compounds that are readily oxidized at carbon-based electrodes, and thus analytical procedures, such as electrochemical detection and voltammetry, have been developed for the determination of biologically important indoles. This paper explains some of the relevant and recent achievements in the electrochemistry processes and parameters mainly related to biologically important indole derivatives in view of drug discovery and analysis.

  3. A graphene-based electrochemical sensor for sensitive detection of paracetamol

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Xinhuang; Wang, Jun; Wu, Hong; Liu, Jun; Aksay, Ilhan A.; Lin, Yuehe

    2010-05-15

    An electrochemical sensor based on the electrocatalytic activity of functionalized graphene for sensitive detection of paracetamol is presented. The electrochemical behaviors of paracetamol on graphene-modified glassy carbon electrodes (GCEs) were investigated by cyclic voltammetry and square-wave voltammetry. The results showed that the graphene-modified electrode exhibited excellent electrocatalytic activity to paracetamol. A quasi-reversible redox process of paracetamol at the modified electrode was obtained, and the over-potential of paracetamol decreased significantly compared with that at the bare GCE. Such electrocatalytic behavior of graphene is attributed to its unique physical and chemical properties, e.g., subtle electronic characteristics, attractive π–π interaction, and strong adsorptive capability. The sensor shows great promise for simple, sensitive, and quantitative detection of paracetamol.

  4. Electrochemical characterization of alternate conducting carbazole-bisthiophene units

    Energy Technology Data Exchange (ETDEWEB)

    Lapkowski, Mieczyslaw; Data, Przemyslaw [Silesian University of Technology, Department of Chemistry, Strzody 9, 44-100 Gliwice (Poland); Centre of Polymer and Carbon Materials of the Polish Academy of Sciences, Sowinskiego 5, 44-100 Gliwice (Poland); Nowakowska-Oleksy, Anna [Wroclaw University of Technology, Faculty of Chemistry, Department of Medicinal Chemistry and Microbiology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland); Soloducho, Jadwiga, E-mail: jadwiga.soloducho@pwr.wroc.pl [Wroclaw University of Technology, Faculty of Chemistry, Department of Medicinal Chemistry and Microbiology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland); Roszak, Szczepan [Wroclaw University of Technology, Institute of Physical and Theoretical Chemistry, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland)

    2012-01-05

    Highlights: Black-Right-Pointing-Pointer Molecular structures and electronic properties of monomer influence every step of polymerization and shape the polymer. Black-Right-Pointing-Pointer The electroactivity of carbazole-bithiophene polymer depends on thickness of film. Black-Right-Pointing-Pointer Total electroconductivity of polymer is connected with electrode potential sufficient to oxidize bithiophene mers. Black-Right-Pointing-Pointer There was observed non-typical behavior of conducting polymers. Black-Right-Pointing-Pointer Achieved material is characterized by mixed conductivity redox and electron one. - Abstract: An electrochemical and theoretical character of alternate copolymer of carbazole and bithiophene units was investigated. Polymerization is processed as two steps bielectronic oxidation of molecule. With monoelectronic oxidation is connected stable radical cation with spin located mainly on carbazole. The electrochemical properties of polymer are dependent on thickness of film deposited on electrode. In case of the thin layers one it is observed characteristic redox couple of carbazole oxidation to radical cation. Analysis of polymer behavior and results of spectrochemical measurements indicate on mixed type of electroconductivity. Molecular structures, HOMO-LUMO gaps and nature of highest occupied and lowest unoccupied molecular orbitals were also studied in presented work for oligomers ranging from monomer to octamer. The studies applied density functional theory (DFT).

  5. Electrochemical Studies of Interactions Between Fe(II/Fe(III and Amino Acids Using Ferrocene-Modified Carbon Paste Electrode

    Directory of Open Access Journals (Sweden)

    Vatrál Jaroslav

    2014-12-01

    Full Text Available The electrochemical behavior of an Fe(II/Fe(III redox couple in the presence of various selected amino acids has been studied using ferrocene-modified carbon paste electrode at pH = 7.4. Because of Fe(II/Fe(III solubility issues at physiological pH, ferrocene was used as a source of iron. Anodic oxidation of iron (pH = 7.2 occurred at 0.356 V and cathodic oxidation at 0.231 V, both vs Ag|AgCl. Treatment of the voltammetric data showed that it was a purely diffusion-controlled reaction with the involvement of one electron. After addition of amino acids, potential shifts and current changes can be observed on the voltammograms. Cyclic voltammetry experiments revealed the capability of amino acids to change the electrochemical behavior of the Fe(II/Fe(III redox couple.

  6. Electrically Reversible Redox-Switchable Polydopamine Films for Regulating Cell Behavior

    International Nuclear Information System (INIS)

    Tan, Guoxin; Liu, Yan; Wu, Yuxuan; Ouyang, Kongyou; Zhou, Lei; Yu, Peng; Liao, Jinwen; Ning, Chengyun

    2017-01-01

    Highlights: • The phenolic/quinone groups on polydopamine can redox-switchable reversible under electrical stimulation. • The quinone groups on PDA (oxidized PDA) enhanced cell spreading and proliferation. • The phenolic groups on PDA (reduced PDA) induced cell differentiation. - Abstract: Switchable surfaces that respond to external stimuli are important for regulating cell behavior. The results herein suggest that the redox process of polydopamine (PDA) is a switching reaction between oxidized polydopamine and reduced polydopamine, involving an interconversion of coupled two-proton (2H + ) and two-electron (2e − ) processes. The redox-switchable reversible surface potential arising from the potential-tunable redox reaction of the phenolic and quinone groups on PDA on titanium induced both cell adhesion and spreading. In vitro experiments demonstrated that the quinone groups on PDA greatly enhanced pre-osteoblasts MC3T3-E1 cell spreading and proliferation. Phenolic groups enhanced the induction of differentiation. The proposed methodology may allow further investigation of switchable surfaces for biological and medical applications.

  7. Graphite-graphite oxide composite electrode for vanadium redox flow battery

    International Nuclear Information System (INIS)

    Li Wenyue; Liu Jianguo; Yan Chuanwei

    2011-01-01

    Highlights: → A new composite electrode is designed for vanadium redox flow battery (VRB). → The graphite oxide (GO) is used as electrode reactions catalyst. → The excellent electrode activity is attributed to the oxygen-containing groups attached on the GO surface. → A catalytic mechanism of the GO towards the redox reactions is presumed. - Abstract: A graphite/graphite oxide (GO) composite electrode for vanadium redox battery (VRB) was prepared successfully in this paper. The materials were characterized with X-ray diffraction, X-ray photoelectron spectroscopy and scanning electron microscopy. The specific surface area was measured by the Brunauer-Emmett-Teller method. The redox reactions of [VO 2 ] + /[VO] 2+ and V 3+ /V 2+ were studied with cyclic voltammetry and electrochemical impedance spectroscopy. The results indicated that the electrochemical performances of the electrode were improved greatly when 3 wt% GO was added into graphite electrode. The redox peak currents of [VO 2 ] + /[VO] 2+ and V 3+ /V 2+ couples on the composite electrode were increased nearly twice as large as that on the graphite electrode, and the charge transfer resistances of the redox pairs on the composite electrode are also reduced. The enhanced electrochemical activity could be ascribed to the presence of plentiful oxygen functional groups on the basal planes and sheet edges of the GO and large specific surface areas introduced by the GO.

  8. Synthesis and two-electron redox behavior of diazuleno[2,1-a:1,2-c]naphthalenes.

    Science.gov (United States)

    Ito, Shunji; Nomura, Akiko; Morita, Noboru; Kabuto, Chizuko; Kobayashi, Hirokazu; Maejima, Seiko; Fujimori, Kunihide; Yasunami, Masafumi

    2002-10-18

    The Diels-Alder reaction of di-2-azulenylacetylene with tetraphenylcyclopentadienone afforded 7,8,9,10-tetraphenyldiazuleno[2,1-a:1,2-c]naphthalene in one pot via autoxidation of the presumed 1,2-di-2-azulenylbenzene derivative. In contrast, a similar reaction of bis(1-methoxycarbonyl-2-azulenyl)acetylene with tetraphenylcyclopentadienone gave the 1,2-di-2-azulenylbenzene derivative. The following cyclodehydrogenation reaction of the benzene derivative with iron(III) chloride afforded diazuleno[2,1-a:1,2-c]naphthalene 6,11-bismethoxycarbonyl derivative. The redox behavior of these novel diazuleno[2,1-a:1,2-c]naphthalenes was examined by cyclic voltammetry (CV). These compounds exhibited two-step oxidation waves at +0.22 to +0.71 V upon CV, which revealed the formation of a radical cation and dication stabilized by the fused two azulene rings under the electrochemical oxidation conditions. Since the 1,2-di-2-azulenylbenzene derivative was oxidized at higher oxidation potentials (+0.83 and +1.86 V), the fusion of the two azulene rings to naphthalene increased electron-donating properties because of the formation of a closed-shell dicationic structure. Formation of the radical cation was characterized by UV-vis spectroscopy under the electrochemical oxidation conditions, although no evidence was obtained for the presumed dication under the conditions of the UV-vis spectroscopy measurement.

  9. Cobalt and Vanadium Trimetaphosphate Polyanions: Synthesis, Characterization, and Electrochemical Evaluation for Non-aqueous Redox-Flow Battery Applications.

    Science.gov (United States)

    Stauber, Julia M; Zhang, Shiyu; Gvozdik, Nataliya; Jiang, Yanfeng; Avena, Laura; Stevenson, Keith J; Cummins, Christopher C

    2018-01-17

    An electrochemical cell consisting of cobalt ([Co II/III (P 3 O 9 ) 2 ] 4-/3- ) and vanadium ([V III/II (P 3 O 9 ) 2 ] 3-/4- ) bistrimetaphosphate complexes as catholyte and anolyte species, respectively, was constructed with a cell voltage of 2.4 V and Coulombic efficiencies >90% for up to 100 total cycles. The [Co(P 3 O 9 ) 2 ] 4- (1) and [V(P 3 O 9 ) 2 ] 3- (2) complexes have favorable properties for flow-battery applications, including reversible redox chemistry, high stability toward electrochemical cycling, and high solubility in MeCN (1.09 ± 0.02 M, [PPN] 4 [1]·2MeCN; 0.77 ± 0.06 M, [PPN] 3 [2]·DME). The [PPN] 4 [1]·2MeCN and [PPN] 3 [2]·DME salts were isolated as crystalline solids in 82 and 68% yields, respectively, and characterized by 31 P NMR, UV/vis, ESI-MS(-), and IR spectroscopy. The [PPN] 4 [1]·2MeCN salt was also structurally characterized, crystallizing in the monoclinic P2 1 /c space group. Treatment of 1 with [(p-BrC 6 H 4 ) 3 N] + allowed for isolation of the one-electron-oxidized spin-crossover (SCO) complex, [Co(P 3 O 9 ) 2 ] 3- (3), which is the active catholyte species generated during cell charging. The success of the 1-2 cell provides a promising entry point to a potential future class of transition-metal metaphosphate-based all-inorganic non-aqueous redox-flow battery electrolytes.

  10. Strategies for "wiring" redox-active proteins to electrodes and applications in biosensors, biofuel cells, and nanotechnology.

    Science.gov (United States)

    Nöll, Tanja; Nöll, Gilbert

    2011-07-01

    In this tutorial review the basic approaches to establish electrochemical communication between redox-active proteins and electrodes are elucidated and examples for applications in electrochemical biosensors, biofuel cells and nanotechnology are presented. The early stage of protein electrochemistry is described giving a short overview over electron transfer (ET) between electrodes and proteins, followed by a brief introduction into experimental procedures for studying proteins at electrodes and possible applications arising thereof. The article starts with discussing the electrochemistry of cytochrome c, the first redox-active protein, for which direct reversible ET was obtained, under diffusion controlled conditions and after adsorption to electrodes. Next, examples for the electrochemical study of redox enzymes adsorbed on electrodes and modes of immobilization are discussed. Shortly the experimental approach for investigating redox-active proteins adsorbed on electrodes is outlined. Possible applications of redox enzymes in electrochemical biosensors and biofuel cells working by direct ET (DET) and mediated ET (MET) are presented. Furthermore, the reconstitution of redox active proteins at electrodes using molecular wire-like units in order to "wire" the proteins to the electrode surface and possible applications in nanotechnology are discussed.

  11. Redox-active Hybrid Materials for Pseudocapacitive Energy Storage

    Science.gov (United States)

    Boota, Muhammad

    Organic-inorganic hybrid materials show a great promise for the purpose of manufacturing high performance electrode materials for electrochemical energy storage systems and beyond. Molecular level combination of two best suited components in a hybrid material leads to new or sometimes exceptional sets of physical, chemical, mechanical and electrochemical properties that makes them attractive for broad ranges of applications. Recently, there has been growing interest in producing redox-active hybrid nanomaterials for energy storage applications where generally the organic component provides high redox capacitance and the inorganic component offers high conductivity and robust support. While organic-inorganic hybrid materials offer tremendous opportunities for electrochemical energy storage applications, the task of matching the right organic material out of hundreds of natural and nearly unlimited synthetic organic molecules to appropriate nanostructured inorganic support hampers their electrochemical energy storage applications. We aim to present the recent development of redox-active hybrid materials for pseudocapacitive energy storage. We will show the impact of combination of suitable organic materials with distinct carbon nanostructures and/or highly conductive metal carbides (MXenes) on conductivity, charge storage performance, and cyclability. Combined experimental and molecular simulation results will be discussed to shed light on the interfacial organic-inorganic interactions, pseudocapacitive charge storage mechanisms, and likely orientations of organic molecules on conductive supports. Later, the concept of all-pseudocapacitive organic-inorganic asymmetric supercapacitors will be highlighted which open up new avenues for developing inexpensive, sustainable, and high energy density aqueous supercapacitors. Lastly, future challenges and opportunities to further tailor the redox-active hybrids will be highlighted.

  12. A Silsesquioxane Organically Modified with 4-Amino-5-(4-pyridyl-4H-1,2,4-triazole-3-thiol: Thermal Behavior and Its Electrochemical Detection of Sulfhydryl Compounds

    Directory of Open Access Journals (Sweden)

    D. R. Do Carmo

    2014-01-01

    Full Text Available The octakis(3-chloropropylsilsesquioxane (SS was organofunctionalized with 4-amino-5-4(pyridyl-4H-1,2,4-triazole-3-thiol. The product formed (SA was undergo another reactions in two steps, first with copper and so hexacyanoferrate (III to form CuHSA. The organofunctionalized silsesquioxane was characterized by the following techniques: scanning electron microscopy (SEM, Fourier transform infrared (FTIR, nuclear magnetic resonance (NMR in solid state, and thermogravimetric analysis in air and nitrogen atmosphere. The composite CuHSA was incorporated into a graphite paste electrode and the electrochemical behavior studies were conducted with cyclic voltammetry. The cyclic voltammogram of the modified graphite paste electrode with CuHSA showed one redox couple with formal potential Eθ′=0.75 V versus Ag/AgCl(sat (KCl 1.0 mol L−1; v = 20 mV s−1 attributed to the redox process Fe(II(CN6/Fe(III(CN6 of the binuclear complex formed. The redox couple presents an electrocatalytic response of sulfhydryl compounds such as n-acetylcysteine and l-cysteine. For determination of n-acetylcysteine and l-cysteine the modified graphite paste electrode showed a linear region in the concentration range of 2 to 20 mmol L−1. The modified electrode was chemically and electrochemically stable and showed good reproducibility.

  13. Redox behavior of Ce(IV)/Ce(III) in the presence of nitrilotriacetic acid: a surrogate study for An(IV)/An(III) redox behavior

    International Nuclear Information System (INIS)

    Suzuki, Y.; Nankawa, T.; Ohnuki, T.; Francis, A.J.

    2010-01-01

    Using cyclic voltammetry, we investigated the redox behavior of Ce(IV)/Ce(III), which is a surrogate for An(IV)/An(III) (An = actinides), in a solution of nitrilotriacetic acid (NTA) at 25 C. The cyclic voltammogram of Ce in a 0.1 M NTA solution at pH 6 showed a reversible one-electron redox reaction for Ce(IV)/Ce(III) at 0.51 V vs. Ag/AgCl. This redox potential was much lower than that obtained in 1 M nitric acid, indicating that Ce(IV) was preferentially stabilized by complexation with NTA. The redox potential in the NTA solution was independent of the Ce concentration from 2 to 20 mM, NTA concentration from 5 to 200 mM and pH between 3 and 7. These results indicated that no polymerization and no additional coordination of NTA and OH to the Ce(III)-NTA complex took place during the redox reaction. As the speciation calculation of Ce(III) in the NTA solution showed that the predominant species was Ce III (nta) 2 3 (H 3 nta = NTA), the redox reaction of the Ce-NTA complex was expressed by the following: Ce IV (nta) 2 2- + e - ↔ Ce III (nta) 2 3 . The logarithm of the stability constant of Ce IV (nta) 2 2- was calculated to be 38.6 ± 0.8 for I = 0 from the redox potential shift of Ce(IV)/Ce(III) in the NTA solution. The value was in good accordance with the stability constant of the Np IV (nta) 2 2- complex, demonstrating that the aqueous coordination chemistry of Ce(IV) with NTA is quite similar to that of An(IV). These results strongly suggest that a negative shift of the Pu(IV)/Pu(III) redox potential in the NTA solution should make Pu(IV) more stable than Pu(III) even in a reducing environment. (orig.)

  14. A novel iron-lead redox flow battery for large-scale energy storage

    Science.gov (United States)

    Zeng, Y. K.; Zhao, T. S.; Zhou, X. L.; Wei, L.; Ren, Y. X.

    2017-04-01

    The redox flow battery (RFB) is one of the most promising large-scale energy storage technologies for the massive utilization of intermittent renewables especially wind and solar energy. This work presents a novel redox flow battery that utilizes inexpensive and abundant Fe(II)/Fe(III) and Pb/Pb(II) redox couples as redox materials. Experimental results show that both the Fe(II)/Fe(III) and Pb/Pb(II) redox couples have fast electrochemical kinetics in methanesulfonic acid, and that the coulombic efficiency and energy efficiency of the battery are, respectively, as high as 96.2% and 86.2% at 40 mA cm-2. Furthermore, the battery exhibits stable performance in terms of efficiencies and discharge capacities during the cycle test. The inexpensive redox materials, fast electrochemical kinetics and stable cycle performance make the present battery a promising candidate for large-scale energy storage applications.

  15. Redox flow batteries having multiple electroactive elements

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; Li, Liyu; Yang, Zhenguo; Nie, Zimin

    2018-05-01

    Introducing multiple redox reactions with a suitable voltage range can improve the energy density of redox flow battery (RFB) systems. One example includes RFB systems utilizing multiple redox pairs in the positive half cell, the negative half cell, or in both. Such RFB systems can have a negative electrolyte, a positive electrolyte, and a membrane between the negative electrolyte and the positive electrolyte, in which at least two electrochemically active elements exist in the negative electrolyte, the positive electrolyte, or both.

  16. Electrochemical Oscillation of Vanadium Ions in Anolyte

    Directory of Open Access Journals (Sweden)

    Hao Peng

    2017-08-01

    Full Text Available Periodic electrochemical oscillation of the anolyte was reported for the first time in a simulated charging process of the vanadium redox flow batteries. The electrochemical oscillation could be explained in terms of the competition between the growth and the chemical dissolution of V2O5 film. Also, the oscillation phenomenon was possible to regular extra power consumption. The results of this paper might enable new methods to improve the charge efficiency and energy saving for vanadium redox flow batteries.

  17. Fundamentally Addressing Bromine Storage through Reversible Solid-State Confinement in Porous Carbon Electrodes: Design of a High-Performance Dual-Redox Electrochemical Capacitor.

    Science.gov (United States)

    Yoo, Seung Joon; Evanko, Brian; Wang, Xingfeng; Romelczyk, Monica; Taylor, Aidan; Ji, Xiulei; Boettcher, Shannon W; Stucky, Galen D

    2017-07-26

    Research in electric double-layer capacitors (EDLCs) and rechargeable batteries is converging to target systems that have battery-level energy density and capacitor-level cycling stability and power density. This research direction has been facilitated by the use of redox-active electrolytes that add faradaic charge storage to increase energy density of the EDLCs. Aqueous redox-enhanced electrochemical capacitors (redox ECs) have, however, performed poorly due to cross-diffusion of soluble redox couples, reduced cycle life, and low operating voltages. In this manuscript, we propose that these challenges can be simultaneously met by mechanistically designing a liquid-to-solid phase transition of oxidized catholyte (or reduced anolyte) with confinement in the pores of electrodes. Here we demonstrate the realization of this approach with the use of bromide catholyte and tetrabutylammonium cation that induces reversible solid-state complexation of Br 2 /Br 3 - . This mechanism solves the inherent cross-diffusion issue of redox ECs and has the added benefit of greatly stabilizing the reactive bromine generated during charging. Based on this new mechanistic insight on the utilization of solid-state bromine storage in redox ECs, we developed a dual-redox EC consisting of a bromide catholyte and an ethyl viologen anolyte with the addition of tetrabutylammonium bromide. In comparison to aqueous and organic electric double-layer capacitors, this system enhances energy by factors of ca. 11 and 3.5, respectively, with a specific energy of ∼64 W·h/kg at 1 A/g, a maximum power density >3 kW/kg, and cycling stability over 7000 cycles.

  18. High voltage AC/AC electrochemical capacitor operating at low temperature in salt aqueous electrolyte

    Science.gov (United States)

    Abbas, Qamar; Béguin, François

    2016-06-01

    We demonstrate that an activated carbon (AC)-based electrochemical capacitor implementing aqueous lithium sulfate electrolyte in 7:3 vol:vol water/methanol mixture can operate down to -40 °C with good electrochemical performance. Three-electrode cell investigations show that the faradaic contributions related with hydrogen chemisorption in the negative AC electrode are thermodynamically unfavored at -40 °C, enabling the system to work as a typical electrical double-layer (EDL) capacitor. After prolonged floating of the AC/AC capacitor at 1.6 V and -40°C, the capacitance, equivalent series resistance and efficiency remain constant, demonstrating the absence of ageing related with side redox reactions at this temperature. Interestingly, when temperature is increased back to 24 °C, the redox behavior due to hydrogen storage reappears and the system behaves as a freshly prepared one.

  19. Multiwalled carbon nanotubes enhance electrochemical properties of titanium to determine in situ bone formation

    Energy Technology Data Exchange (ETDEWEB)

    Sirivisoot, Sirinrath; Webster, Thomas J [Division of Engineering, Brown University, Providence, RI 02912 (United States)], E-mail: Thomas_Webster@Brown.edu

    2008-07-23

    Multiwalled carbon nanotubes (MWCNTs) enhance osteoblast (bone-forming cell) calcium deposition compared to currently implanted materials (such as titanium). In this study, MWCNTs were grown out of nanopores anodized on titanium (MWCNT-Ti). The electrochemical responses of MWCNT-Ti were investigated in an attempt to ascertain if MWCNT-Ti can serve as novel in situ sensors of bone formation. For this purpose, MWCNT-Ti was subjected to a ferri/ferrocyanide redox couple and its electrochemical behavior measured. Cyclic voltammograms (CVs) showed an enhanced redox potential for the MWCNT-Ti. These redox signals were superior to that obtained with bare unmodified Ti, which did not sense either oxidation or reduction peaks in the CVs. A further objective of this study was to investigate the redox reactions of MWCNT-Ti in a solution of extracellular components secreted by osteoblasts in vitro. It was found that MWCNT-Ti exhibited well-defined and persistent CVs, similar to the ferri/ferrocyanide redox reaction. The higher electrodic performance and electrocatalytic activity of the MWCNT-Ti compared to the bare titanium observed in this study were likely due to the fact that MWCNTs enhanced direct electron transfer and facilitated double-layer effects, leading to a strong redox signal. Thus these results encourage the further study and modification of MWCNT-Ti to sense new bone growth in situ next to orthopedic implants and perhaps monitor other events (such as infection and/or harmful scar tissue formation) to improve the current clinical diagnosis of orthopedic implants.

  20. Multiwalled carbon nanotubes enhance electrochemical properties of titanium to determine in situ bone formation

    International Nuclear Information System (INIS)

    Sirivisoot, Sirinrath; Webster, Thomas J

    2008-01-01

    Multiwalled carbon nanotubes (MWCNTs) enhance osteoblast (bone-forming cell) calcium deposition compared to currently implanted materials (such as titanium). In this study, MWCNTs were grown out of nanopores anodized on titanium (MWCNT-Ti). The electrochemical responses of MWCNT-Ti were investigated in an attempt to ascertain if MWCNT-Ti can serve as novel in situ sensors of bone formation. For this purpose, MWCNT-Ti was subjected to a ferri/ferrocyanide redox couple and its electrochemical behavior measured. Cyclic voltammograms (CVs) showed an enhanced redox potential for the MWCNT-Ti. These redox signals were superior to that obtained with bare unmodified Ti, which did not sense either oxidation or reduction peaks in the CVs. A further objective of this study was to investigate the redox reactions of MWCNT-Ti in a solution of extracellular components secreted by osteoblasts in vitro. It was found that MWCNT-Ti exhibited well-defined and persistent CVs, similar to the ferri/ferrocyanide redox reaction. The higher electrodic performance and electrocatalytic activity of the MWCNT-Ti compared to the bare titanium observed in this study were likely due to the fact that MWCNTs enhanced direct electron transfer and facilitated double-layer effects, leading to a strong redox signal. Thus these results encourage the further study and modification of MWCNT-Ti to sense new bone growth in situ next to orthopedic implants and perhaps monitor other events (such as infection and/or harmful scar tissue formation) to improve the current clinical diagnosis of orthopedic implants

  1. Enhanced electrochemical performances of PANI using redox additive of K{sub 4}[Fe(CN){sub 6}] in aqueous electrolyte for symmetric supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Shanmugavani, A.; Kaviselvi, S.; Sankar, K.Vijaya; Selvan, R.Kalai, E-mail: selvankram@buc.edu.in

    2015-02-15

    Highlights: • Effect of K{sub 4}[Fe(CN){sub 6}] in H{sub 2}SO{sub 4} studied on the electrochemical properties of PANI. • The polaron band – π* transition reveals the emeraldine salt (conductive) form. • CV curves exhibit quasi-reversible redox behavior. • Symmetric PANI SC shows 228 F g{sup −1} at 1 mA cm{sup −2} in K{sub 4}[Fe (CN){sub 6}] added 1 M H{sub 2}SO{sub 4}. • PANI-1 symmetric supercapacitor shows almost 100% of capacity retention. - Abstract: Polyaniline (PANI) particles were prepared by reflux assisted chemical oxidative polymerization method with the aid of ammonium per sulfate/ferric chloride as oxidants and HCl/H{sub 2}SO{sub 4} as the medium. Amorphous nature and the emeraldine state of PANI were revealed from X-ray diffraction and Fourier transform infrared analysis. Moreover, ultra violet–visible spectra attributes to the polaron band – π* transition of polyaniline. The scanning electron microscopic image shows that the particle size is in the range of 0.2–2 μm. The electrochemical performances of the material were investigated in 1 M H{sub 2}SO{sub 4} and 0.08 M K{sub 4}[Fe(CN){sub 6}] added 1 M H{sub 2}SO{sub 4} aqueous electrolytes. Cyclic voltammetry and galvanostatic charge–discharge studies were carried out to find its suitability as a supercapacitor electrode material. The charge discharge analysis of the fabricated symmetric supercapacitors revealed the fact that the electrolyte containing redox additive (0.08 M K{sub 4}[Fe(CN){sub 6}]) delivered an enhanced specific capacitance of 228 F g{sup −1} (∼912 F g{sup −1} for single electrode) than that of 1 M H{sub 2}SO{sub 4} (100 F g{sup −1}) at 1 mA cm{sup −2}. Further cycling stability is performed at 5 mA cm{sup −2} ensures the durability of the supercapacitor.

  2. Effect of long-term fertilization on humic redox mediators in multiple microbial redox reactions.

    Science.gov (United States)

    Guo, Peng; Zhang, Chunfang; Wang, Yi; Yu, Xinwei; Zhang, Zhichao; Zhang, Dongdong

    2018-03-01

    This study investigated the effects of different long-term fertilizations on humic substances (HSs), humic acids (HAs) and humins, functioning as redox mediators for various microbial redox biotransformations, including 2,2',4,4',5,5'- hexachlorobiphenyl (PCB 153 ) dechlorination, dissimilatory iron reduction, and nitrate reduction, and their electron-mediating natures. The redox activity of HSs for various microbial redox metabolisms was substantially enhanced by long-term application of organic fertilizer (pig manure). As a redox mediator, only humin extracted from soils with organic fertilizer amendment (OF-HM) maintained microbial PCB 153 dechlorination activity (1.03 μM PCB 153 removal), and corresponding HA (OF-HA) most effectively enhanced iron reduction and nitrate reduction by Shewanella putrefaciens. Electrochemical analysis confirmed the enhancement of their electron transfer capacity and redox properties. Fourier transform infrared analysis showed that C=C and C=O bonds, and carboxylic or phenolic groups in HSs might be the redox functional groups affected by fertilization. This research enhances our understanding of the influence of anthropogenic fertility on the biogeochemical cycling of elements and in situ remediation ability in agroecosystems through microorganisms' metabolisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. A molecular theory of chemically modified electrodes with self-assembled redox polyelectrolye thin films: Reversible cyclic voltammetry

    Energy Technology Data Exchange (ETDEWEB)

    Tagliazucchi, Mario; Calvo, Ernesto J. [INQUIMAE, DQIAyQF Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires (Argentina); Szleifer, Igal [Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States)

    2008-10-01

    A molecular theory of chemically modified electrodes is applied to study redox polyelectroyte modified electrodes. The molecular approach explicitly includes the size, shape, charge distribution, and conformations of all of the molecular species in the system as well as the chemical equilibria (redox and acid-base) and intermolecular interactions. An osmium pyridine-bipyridine complex covalently bound to poly(allyl-amine) backbone (PAH-Os) adsorbed onto mercapto-propane sulfonate (MPS) thiolated gold electrode is described. The potential and electrolyte composition dependent redox and nonredox capacitance can be calculated with the molecular theory in very good agreement with voltammetric experiments under reversible conditions without the use of freely adjustable parameter. Unlike existing phenomenological models the theory links the electrochemical behavior with the structure of the polymer layer. The theory predicts a highly inhomogeneous distribution of acid-base and redox states that strongly couples with the spatial arrangement of the molecular species in the nanometric redox film. (author)

  4. Electrochemical fabrication and electronic behavior of polypyrrole nano-fiber array devices

    International Nuclear Information System (INIS)

    Liu Ling; Zhao Yaomin; Jia Nengqin; Zhou Qin; Zhao Chongjun; Yan Manming; Jiang Zhiyu

    2006-01-01

    Electrochemically active Polypyrrole (PPy) nano-fiber array device was fabricated via electrochemical deposition method using aluminum anodic oxide (AAO) membrane as template. After alkaline treatment electrochemically active PPy nano-fiber lost electrochemical activity, and became electrochemically inactive PPy. The electronic properties of PPy nano-fiber array devices were measured by means of a simple method. It was found that for an indium-tin oxide/electrochemically inactive PPy nano-fiber device, the conductivity of nano-fiber increased with the increase of voltage applied on the two terminals of nano-fiber. The electrochemical inactive PPy nano-fiber might be used as a nano-fiber switching diode. Both Au/electrochemically active PPy and Au/electrochemically inactive PPy nano-fiber devices demonstrate rectifying behavior, and might have been used for further application as nano-rectifiers

  5. Electrochemical fabrication and electronic behavior of polypyrrole nano-fiber array devices

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Liu [Department of Chemistry, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433 (China); Yaomin, Zhao [Department of Chemistry, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433 (China); Nengqin, Jia [Department of Chemistry, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433 (China); Qin, Zhou [Department of Chemistry, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433 (China); Chongjun, Zhao [Photon Craft Project, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences and Japan Science and Technology Agency, Shanghai 201800 (China); Manming, Yan [Department of Chemistry, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433 (China); Zhiyu, Jiang [Department of Chemistry, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433 (China)

    2006-05-01

    Electrochemically active Polypyrrole (PPy) nano-fiber array device was fabricated via electrochemical deposition method using aluminum anodic oxide (AAO) membrane as template. After alkaline treatment electrochemically active PPy nano-fiber lost electrochemical activity, and became electrochemically inactive PPy. The electronic properties of PPy nano-fiber array devices were measured by means of a simple method. It was found that for an indium-tin oxide/electrochemically inactive PPy nano-fiber device, the conductivity of nano-fiber increased with the increase of voltage applied on the two terminals of nano-fiber. The electrochemical inactive PPy nano-fiber might be used as a nano-fiber switching diode. Both Au/electrochemically active PPy and Au/electrochemically inactive PPy nano-fiber devices demonstrate rectifying behavior, and might have been used for further application as nano-rectifiers.

  6. Materials Genomics Screens for Adaptive Ion Transport Behavior by Redox-Switchable Microporous Polymer Membranes in Lithium-Sulfur Batteries.

    Science.gov (United States)

    Ward, Ashleigh L; Doris, Sean E; Li, Longjun; Hughes, Mark A; Qu, Xiaohui; Persson, Kristin A; Helms, Brett A

    2017-05-24

    Selective ion transport across membranes is critical to the performance of many electrochemical energy storage devices. While design strategies enabling ion-selective transport are well-established, enhancements in membrane selectivity are made at the expense of ionic conductivity. To design membranes with both high selectivity and high ionic conductivity, there are cues to follow from biological systems, where regulated transport of ions across membranes is achieved by transmembrane proteins. The transport functions of these proteins are sensitive to their environment: physical or chemical perturbations to that environment are met with an adaptive response. Here we advance an analogous strategy for achieving adaptive ion transport in microporous polymer membranes. Along the polymer backbone are placed redox-active switches that are activated in situ, at a prescribed electrochemical potential, by the device's active materials when they enter the membrane's pore. This transformation has little influence on the membrane's ionic conductivity; however, the active-material blocking ability of the membrane is enhanced. We show that when used in lithium-sulfur batteries, these membranes offer markedly improved capacity, efficiency, and cycle-life by sequestering polysulfides in the cathode. The origins and implications of this behavior are explored in detail and point to new opportunities for responsive membranes in battery technology development.

  7. Materials Genomics Screens for Adaptive Ion Transport Behavior by Redox-Switchable Microporous Polymer Membranes in Lithium–Sulfur Batteries

    Science.gov (United States)

    2017-01-01

    Selective ion transport across membranes is critical to the performance of many electrochemical energy storage devices. While design strategies enabling ion-selective transport are well-established, enhancements in membrane selectivity are made at the expense of ionic conductivity. To design membranes with both high selectivity and high ionic conductivity, there are cues to follow from biological systems, where regulated transport of ions across membranes is achieved by transmembrane proteins. The transport functions of these proteins are sensitive to their environment: physical or chemical perturbations to that environment are met with an adaptive response. Here we advance an analogous strategy for achieving adaptive ion transport in microporous polymer membranes. Along the polymer backbone are placed redox-active switches that are activated in situ, at a prescribed electrochemical potential, by the device’s active materials when they enter the membrane’s pore. This transformation has little influence on the membrane’s ionic conductivity; however, the active-material blocking ability of the membrane is enhanced. We show that when used in lithium–sulfur batteries, these membranes offer markedly improved capacity, efficiency, and cycle-life by sequestering polysulfides in the cathode. The origins and implications of this behavior are explored in detail and point to new opportunities for responsive membranes in battery technology development. PMID:28573201

  8. Electrochemical Grafting of Graphene Nano Platelets with Aryl Diazonium Salts.

    Science.gov (United States)

    Qiu, Zhipeng; Yu, Jun; Yan, Peng; Wang, Zhijie; Wan, Qijin; Yang, Nianjun

    2016-10-26

    To vary interfacial properties, electrochemical grafting of graphene nano platelets (GNP) with 3,5-dichlorophenyl diazonium tetrafluoroborate (aryl-Cl) and 4-nitrobenzene diazonium tetrafluoroborate (aryl-NO 2 ) was realized in a potentiodynamic mode. The covalently bonded aryl layers on GNP were characterized using atomic force microscopy and X-ray photoelectron spectroscopy. Electrochemical conversion of aryl-NO 2 into aryl-NH 2 was conducted. The voltammetric and impedance behavior of negatively and positively charged redox probes (Fe(CN) 6 3-/4- and Ru(NH 3 ) 6 2+/3+ ) on three kinds of aryl layers grafted on GNP reveal that their interfacial properties are determined by the charge states of redox probes and reactive terminal groups (-Cl, -NO 2 , -NH 2 ) in aryl layers. On aryl-Cl and aryl-NH 2 garted GNP, selective and sensitive monitoring of positively charged lead ions as well as negatively charged nitrite and sulfite ions was achieved, respectively. Such a grafting procedure is thus a perfect way to design and control interfacial properties of graphene.

  9. ELECTROCHEMICAL BEHAVIOR OF POLYCRYSTALLINE COPPER DURING THE ADSORPTION OF CO ABSTRACT

    Directory of Open Access Journals (Sweden)

    J. Salimon

    2017-12-01

    Full Text Available The electrochemical properties of electrode copper in carbon monoxide-saturated phosphate buffered solution were investigated. The electrochemistry of copper surface was sufficiently changed after the supporting electrolyte solution was saturated with CO. The hydrogen evolution region was depressed and shifted cathodically due to the adsorption process of CO on the copper surface in a linear or terminally bonded manner, Cu-CO . The oxidation and the reduction peaks of copper were significantly changed with two couple of redox peaks. This is due to the subsequent formation and the corresponding reduction of copper(I and the copper carbon monoxides species. Further changed in electrochemical properties occurred when the electrode surface was polarized at high cathodic potential (-1.4 V for a period of time (15 min. The hydrogen evolution region was further depressed due to the adsorption of CO process in multiple bonding sites as adsorbed bridge bonded CO, Cu-CO B L that occurred predominantly.

  10. Unobstructed electron transfer on porous polyelectrolyte nanostructures and its characterization by electrochemical surface plasmon resonance

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Bryce W.; Linman, Matthew J.; Linley, Kamara S.; Hare, Christopher D. [Department of Chemistry, University of California, Riverside, CA 92521 (United States); Cheng Quan, E-mail: quan.cheng@ucr.ed [Department of Chemistry, University of California, Riverside, CA 92521 (United States)

    2010-06-01

    Thin organic films with desirable redox properties have long been sought in biosensor research. We report here the development of a polymer thin film interface with well-defined hierarchical nanostructure and electrochemical behavior, and its characterization by electrochemical surface plasmon resonance (ESPR) spectroscopy. The nano-architecture build-up is monitored in real time with SPR, while the redox response is characterized by cyclic voltammetry in the same flow cell. The multilayer assembly is built on a self-assembled monolayer (SAM) of 1:1 (molar ratio) 11-ferrocenyl-1-undecanethiolate (FUT) and mercaptoundecanoic acid (MUA), and constructed using a layer-by-layer deposition of cationic poly(allylamine hydrochloride) (PAH) and anionic poly(sodium 4-styrenesulfonate) (PSS). Electron transfer (ET) on the mixed surface and the effect of the layer structures on ET are systematically studied. Under careful control, multiple layers can be deposited onto the 1:1 FUT/MUA SAM that presents unobstructed redox chemistry, indicating a highly ordered, extensively porous structure obtained under this condition. The use of SPR to trace the minute change during the electrochemical process offers neat characterization of local environment at the interface, in particular double layer region, allowing for better control over the redox functionality of the multilayers. The 1:1 SAM has a surface coverage of 4.1 +- 0.3 x 10{sup -10} mol cm{sup -2} for ferrocene molecules and demonstrates unperturbed electrochemistry activity even in the presence of a 13 nm polymer film adhered to the electrode surface. This thin layer possesses some desirable properties similar to those on a SAM while presenting approx15 nm exceedingly porous structure for high loading capacity. The high porosity allows perchlorate to freely partition into the film, leading to high current density that is useful for sensitive electrochemical measurements.

  11. The behavior of electrochemical cell resistance

    International Nuclear Information System (INIS)

    Ritley, K.A.; Dull, P.M.; Weber, M.H.; Carroll, M.; Hurst, J.J.; Lynn, K.G.

    1990-01-01

    Knowledge of the basic electrochemical behavior found in typical cold fusion experiments is important to understanding and preventing experimental errors. For a Pd/LiOH(D)/Pt electrochemical cell, the applied cell voltage/current relationship (the effective cell resistance) does not obey Ohm's law directly, but instead exhibits a complicated response to the current, voltage, temperature, electrolyte conductance, and other factors. Failure to properly consider this response can possibly result in errors that could affect the heat balance in calorimetry and temperature measurement experiments. Measurements of this response under varying voltage, temperature, and electrolyte conductivity conditions are reported. A plausible scenario in which the temperature dependence of the effective cell resistance can either exaggerate or ameliorate novel exothermic processes is suggested

  12. Lateral transport of solutes in microfluidic channels using electrochemically generated gradients in redox-active surfactants.

    Science.gov (United States)

    Liu, Xiaoyang; Abbott, Nicholas L

    2011-04-15

    We report principles for a continuous flow process that can separate solutes based on a driving force for selective transport that is generated by a lateral concentration gradient of a redox-active surfactant across a microfluidic channel. Microfluidic channels fabricated with gold electrodes lining each vertical wall were used to electrochemically generate concentration gradients of the redox-active surfactant 11-ferrocenylundecyl-trimethylammonium bromide (FTMA) in a direction perpendicular to the flow. The interactions of three solutes (a hydrophobic dye, 1-phenylazo-2-naphthylamine (yellow AB), an amphiphilic molecule, 2-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-pentanoyl)-1-hexadecanoyl-sn-glycero-3-phosphocholine (BODIPY C(5)-HPC), and an organic salt, 1-methylpyridinium-3-sulfonate (MPS)) with the lateral gradients in surfactant/micelle concentration were shown to drive the formation of solute-specific concentration gradients. Two distinct physical mechanisms were identified to lead to the solute concentration gradients: solubilization of solutes by micelles and differential adsorption of the solutes onto the walls of the microchannels in the presence of the surfactant concentration gradient. These two mechanisms were used to demonstrate delipidation of a mixture of BODIPY C(5)-HPC (lipid) and MPS and purification of BODIPY C(5)-HPC from a mixture of BODIPY C(5)-HPC and yellow AB. Overall, the results of this study demonstrate that lateral concentration gradients of redox-active surfactants formed within microfluidic channels can be used to transport solutes across the microfluidic channels in a solute-dependent manner. The approach employs electrical potentials (solutions having high ionic strength (>0.1M), and offers the basis of continuous processes for the purification or separation of solutes in microscale systems. © 2011 American Chemical Society

  13. Electrochemical reversibility of reticulated vitreous carbon electrodes heat treated at different carbonization temperatures

    Directory of Open Access Journals (Sweden)

    Emerson Sarmento Gonçalves

    2006-06-01

    Full Text Available Electrochemical response of ferri/ferrocyanide redox couple is discussed for a system that uses reticulated vitreous carbon (RVC three dimensional electrodes prepared at five different Heat Treatment Temperatures (HTT in the range of 700 °C to 1100 °C. Electrical resistivity, scanning electron microscopy and X ray Diffraction analyses were performed for all prepared samples. It was observed that the HTT increasing promotes an electrical conductivity increasing while the Bragg distance d002 decreases. The correlation between reversibility behavior of ferri/ferrocyanide redox couple and both surface morphology and chemical properties of the RVC electrodes demonstrated a strong dependence on the HTT used to prepare the RVC.

  14. Probing the electrochemical behaviour of SWCNT-cobalt nanoparticles and their electrocatalytic activities towards the detection of nitrite at acidic and physiological pH conditions

    CSIR Research Space (South Africa)

    Adekunle, AS

    2010-05-01

    Full Text Available was confirmed by field emission scanning electron microscopy (FESEM), AFM and EDX techniques. The electron transfer behavior of the modified electrodes was investigated in [Fe (CN)6]3-/4- redox probe using cyclic voltammetry (CV) and electrochemical impedance...

  15. Electrochemical determination of thioredoxin redox states

    Czech Academy of Sciences Publication Activity Database

    Dorčák, Vlastimil; Paleček, Emil

    2009-01-01

    Roč. 81, č. 4 (2009), s. 1543-1548 ISSN 0003-2700 R&D Projects: GA AV ČR(CZ) KAN400310651; GA ČR(CZ) GA301/07/0490; GA MŠk(CZ) LC06035 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : thioredoxin redox states * constant current chronopotentiometric stripping * carbon and mercury electrodes Subject RIV: BO - Biophysics Impact factor: 5.214, year: 2009

  16. Formation of mixed organic layers by stepwise electrochemical reduction of diazonium compounds.

    Science.gov (United States)

    Santos, Luis; Ghilane, Jalal; Lacroix, Jean Christophe

    2012-03-28

    This work describes the formation of a mixed organic layer covalently attached to a carbon electrode. The strategy adopted is based on two successive electrochemical reductions of diazonium salts. First, bithiophene phenyl (BTB) diazonium salt is reduced using host/guest complexation in a water/cyclodextrin (β-CD) solution. The resulting layer consists of grafted BTB oligomers and cyclodextrin that can be removed from the surface. The electrochemical response of several outer-sphere redox probes on such BTB/CD electrodes is close to that of a diode, thanks to the easily p-dopable oligo(BTB) moieties. When CD is removed from the surface, pinholes are created and this diode like behavior is lost. Following this, nitrophenyl (NP) diazonium is reduced to graft a second component. Electrochemical study shows that upon grafting NP insulating moieties, the diode-like behavior of the layer is restored which demonstrates that NP is grafted predominately in the empty spaces generated by β-CD desorption. As a result, a mixed BTB/NP organic layer covalently attached to a carbon electrode is obtained using a stepwise electrochemical reduction of two diazonium compounds.

  17. Organic non-aqueous cation-based redox flow batteries

    Science.gov (United States)

    Jansen, Andrew N.; Vaughey, John T.; Chen, Zonghai; Zhang, Lu; Brushett, Fikile R.

    2016-03-29

    The present invention provides a non-aqueous redox flow battery comprising a negative electrode immersed in a non-aqueous liquid negative electrolyte, a positive electrode immersed in a non-aqueous liquid positive electrolyte, and a cation-permeable separator (e.g., a porous membrane, film, sheet, or panel) between the negative electrolyte from the positive electrolyte. During charging and discharging, the electrolytes are circulated over their respective electrodes. The electrolytes each comprise an electrolyte salt (e.g., a lithium or sodium salt), a transition-metal free redox reactant, and optionally an electrochemically stable organic solvent. Each redox reactant is selected from an organic compound comprising a conjugated unsaturated moiety, a boron cluster compound, and a combination thereof. The organic redox reactant of the positive electrolyte is selected to have a higher redox potential than the redox reactant of the negative electrolyte.

  18. Electrochemical behavior of ruthenium (III), rhodium (III) and palladium (II) in 1-butyl-3-methylimidazolium chloride ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    Jayakumar, M.; Venkatesan, K.A. [Fuel Chemistry Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Srinivasan, T.G. [Fuel Chemistry Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India)], E-mail: tgs@igcar.gov.in; Vasudeva Rao, P.R. [Fuel Chemistry Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India)

    2009-11-01

    Electrochemical behavior of ruthenium (III), rhodium (III) and palladium (II) in 1-butyl-3-methylimidazolium chloride (bmimCl) and their ternary and binary solutions in bmimCl was studied at various working electrodes at 373 K by cyclic voltammetry and chronoamperometry. Ruthenium (III) chloride forms a stable solution with bmimCl and the cyclic voltammogram of ruthenium (III) in bmimCl recorded at glassy carbon electrode consisted of several redox waves due to the complex nature of ruthenium to exist in several oxidation states. Electrolysis of ruthenium (III) chloride in bmimCl at the cathodic limit of bmimCl (-1.8 V (vs. Pd)) did not result in ruthenium metal deposition. However, it was deposited from bmimPF{sub 6} and bmimNTf{sub 2} room temperature ionic liquids at -0.8 V (vs. Pd). The electrochemical behavior of ruthenium (III) in bmimCl in the presence of palladium (II) and rhodium (III) was studied by cyclic voltammetry. The presence of palladium (II) in bmimCl favors underpotential deposition of ruthenium metal. The nuclear loop at -0.5 V (vs. Pd) was observed in all solutions when palladium (II) co-existed with other two metal ions. Nucleation and growth of the metal on glassy carbon working electrode was investigated by chronoamperometry. The growth and decay of chronocurrents has been found to follow the instantaneous nucleation model with three-dimensional growth of nuclei.

  19. Erv2p: characterization of the redox behavior of a yeast sulfhydryl oxidase

    DEFF Research Database (Denmark)

    Wang, Wenzhong; Winther, Jakob R; Thorpe, Colin

    2007-01-01

    centers that facilitate the transfer of reducing equivalents from the dithiol substrates of these oxidases to the isoalloxazine ring where the reaction with molecular oxygen occurs. The present study examines yeast Erv2p and compares the redox behavior of this ER luminal protein with the augmenter...... and with unfolded proteins. Rapid reaction studies confirm that reduction of the flavin center of Erv2p is rate-limiting during turnover with molecular oxygen. This comparison of the redox properties between members of the ERV/ALR family of sulfhydryl oxidases provides insights into their likely roles in oxidative......The FAD prosthetic group of the ERV/ALR family of sulfhydryl oxidases is housed at the mouth of a 4-helix bundle and communicates with a pair of juxtaposed cysteine residues that form the proximal redox active disulfide. Most of these enzymes have one or more additional distal disulfide redox...

  20. Electrochemical energy storage devices comprising self-compensating polymers

    Science.gov (United States)

    Johnson, Paul; Bautista-Martinez, Jose Antonio; Friesen, Cody; Switzer, Elise

    2018-01-30

    The disclosed technology relates generally to devices comprising conductive polymers and more particularly to electrochemical devices comprising self-compensating conductive polymers. In one aspect, electrochemical energy storage device comprises a negative electrode comprising an active material including a redox-active polymer. The device additionally comprises a positive electrode comprising an active material including a redox-active polymer. The device further comprises an electrolyte material interposed between the negative electrode and positive electrode and configured to conduct mobile counterions therethrough between the negative electrode and positive electrode. At least one of the negative electrode redox-active polymer and the positive electrode redox-active polymer comprises a zwitterionic polymer unit configured to reversibly switch between a zwitterionic state in which the zwitterionic polymer unit has first and second charge centers having opposite charge states that compensate each other, and a non-zwitterionic state in which the zwitterionic polymer unit has one of the first and second charge centers whose charge state is compensated by mobile counterions.

  1. Investigation on the electrode process of the Mn(II)/Mn(III) couple in redox flow battery

    International Nuclear Information System (INIS)

    Xue Fangqin; Wang Yongliang; Wang Wenhong; Wang Xindong

    2008-01-01

    The Mn(II)/Mn(III) couple has been recognized as a potential anode for redox flow batteries to take the place of the V(IV)/V(V) in all-vanadium redox battery (VRB) and the Br 2 /Br - in sodium polysulfide/bromine (PSB) because it has higher standard electrode potential. In this study, the electrochemical behavior of the Mn(II)/Mn(III) couple on carbon felt and spectral pure graphite were investigated by cyclic voltammetry, steady polarization curve, electrochemical impedance spectroscopy, transient potential-step experiment, X-ray diffraction and charge-discharge experiments. Results show that the Mn(III) disproportionation reaction phenomena is obvious on the carbon felt electrode while it is weak on the graphite electrode owing to its fewer active sites. The reaction mechanism on carbon felt was discussed in detail. The reversibility of Mn(II)/Mn(III) is best when the sulfuric acid concentration is 5 M on the graphite electrode. Performance of a RFB employing Mn(II)/Mn(III) couple as anolyte active species and V(III)/V(II) as catholyte ones was evaluated with constant-current charge-discharge tests. The average columbic efficiency is 69.4% and the voltage efficiency is 90.4% at a current density of 20 mA cm -2 . The whole energy efficiency is 62.7% close to that of the all-vanadium battery and the average discharge voltage is about 14% higher than that of an all-vanadium battery. The preliminary exploration shows that the Mn(II)/Mn(III) couple is electrochemically promising for redox flow battery

  2. Redox active polymers and colloidal particles for flow batteries

    Science.gov (United States)

    Gavvalapalli, Nagarjuna; Moore, Jeffrey S.; Rodriguez-Lopez, Joaquin; Cheng, Kevin; Shen, Mei; Lichtenstein, Timothy

    2018-05-29

    The invention provides a redox flow battery comprising a microporous or nanoporous size-exclusion membrane, wherein one cell of the battery contains a redox-active polymer dissolved in the non-aqueous solvent or a redox-active colloidal particle dispersed in the non-aqueous solvent. The redox flow battery provides enhanced ionic conductivity across the electrolyte separator and reduced redox-active species crossover, thereby improving the performance and enabling widespread utilization. Redox active poly(vinylbenzyl ethylviologen) (RAPs) and redox active colloidal particles (RACs) were prepared and were found to be highly effective redox species. Controlled potential bulk electrolysis indicates that 94-99% of the nominal charge on different RAPs is accessible and the electrolysis products are stable upon cycling. The high concentration attainable (>2.0 M) for RAPs in common non-aqueous battery solvents, their electrochemical and chemical reversibility, and their hindered transport across porous separators make them attractive materials for non-aqueous redox flow batteries based on size-selectivity.

  3. Electrochemistry and electrochemiluminescence from a redox-active metal-organic framework.

    Science.gov (United States)

    Xu, Yang; Yin, Xue-Bo; He, Xi-Wen; Zhang, Yu-Kui

    2015-06-15

    The marriage of metal-organic frameworks (MOFs) and electrochemiluminescence (ECL) can combine their merits together. Designing ECL-active MOF with a high electron transfer capacity and high stability is critical for ECL emission. Here we reported the ECL from a redox-active MOF prepared from {Ru[4,4'-(HO2C)2-bpy]2bpy}(2+) and Zn(2+); a property of MOFs has not been reported previously. The MOF structure is independent of its charge and is therefore stable electrochemically. The redox-activity and well-ordered porous structure of the MOF were confirmed by its electrochemical properties and ECL emission. The high ECL emission indicated the ease of electron transfer between the MOF and co-reactants. Furthermore, the MOF exhibited permselectivity, charge selectivity, and catalytic selectivity along with a stable and concentration-dependent ECL emission toward co-reactants. ECL mechanism was proposed based on the results. The detection and recovery of cocaine in the serum sample was used to validate the feasibility of MOF- based ECL system. The information obtained in this study provides a better understanding of the redox properties of MOFs and their potential electrochemical applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Characterization of redox conditions in groundwater contaminant plumes

    Science.gov (United States)

    Christensen, Thomas H.; Bjerg, Poul L.; Banwart, Steven A.; Jakobsen, Rasmus; Heron, Gorm; Albrechtsen, Hans-Jørgen

    2000-10-01

    Evaluation of redox conditions in groundwater pollution plumes is often a prerequisite for understanding the behaviour of the pollutants in the plume and for selecting remediation approaches. Measuring of redox conditions in pollution plumes is, however, a fairly recent issue and yet relative few cases have been reported. No standardised or generally accepted approach exists. Slow electrode kinetics and the common lack of internal equilibrium of redox processes in pollution plumes make, with a few exceptions, direct electrochemical measurement and rigorous interpretation of redox potentials dubious, if not erroneous. Several other approaches have been used in addressing redox conditions in pollution plumes: redox-sensitive compounds in groundwater samples, hydrogen concentrations in groundwater, concentrations of volatile fatty acids in groundwater, sediment characteristics and microbial tools, such as MPN counts, PLFA biomarkers and redox bioassays. This paper reviews the principles behind the different approaches, summarizes methods used and evaluates the approaches based on the experience from the reported applications.

  5. Electrochemical studies of ruthenium compounds

    International Nuclear Information System (INIS)

    Kumar Ghosh, B.; Chakravorty, A.

    1989-01-01

    In many ways the chemistry of transition metals is the chemistry of multiple oxidation states and the associated redox phenomena. If a particular element were to be singeld out to illustrate this viewpoint, a model choice would be ruthenium - an element that is directly or indirectly the active centre of a plethora of redox phenomena encompassing ten different oxidation states and a breathtaking diversity of structure and bonding. In the present review the authors are primarily concerned with the oxidation states of certain ligands coordinated to ruthenium. This choice is deliberate since this is one area where the unique power of electrochemical methods is splendidly revealed. Without these methods, development in this area would have been greatly hampered. A brief summary of metal oxidation states is also included as a prelude to the main subject of this review. The authors have generally emphasize the information derived which is of chemical interest leaving the details of formal electrochemical arguments in the background. The authors have reviewed the pattern and systematics of ligand redox in ruthenium complexes. The synergistic combination of electrochemical and spectroscopic methods have vastly increased our understanding of ligand phenomena during the last 15 years or so. This in turn has led to better understanding and new developments in other fields. Photophysics and photochemistry could be cited as examples. (author). 176 refs.; 10 figs.; 10 tabs

  6. Electrochemical behavior of rare earth metals and their nitrides

    International Nuclear Information System (INIS)

    Ito, Yasuhiko; Goto, Takuya

    2004-01-01

    Pyrometallurgical recycle process using molten salts is considered to be a high potential in pyro-reprocess technologies for spent nitride fuels, and it is important to understand chemical and electro-chemical behavior of nitrides and metals in molten salts. In this study, cadmium nitrates deposited on the anode Cd plate in motlen salt (LiCl-KCl) with addition of Li 3 N are examined. The cadmium nitrates deposited have various compositions corresponding to polarization potentials and then, the relationship between the deposition potential of nitride Cd and their composition is cleared. Their standard chemical potential of CdN is estimated from electrochemical measurement. And then, potential-pH 3- diagram is drawn by voltametry examination of nitride resolution behavior with using thermochemical data of nitrides. (A. Hishinuma)

  7. Biredox ionic liquids with solid-like redox density in the liquid state for high-energy supercapacitors.

    Science.gov (United States)

    Mourad, Eléonore; Coustan, Laura; Lannelongue, Pierre; Zigah, Dodzi; Mehdi, Ahmad; Vioux, André; Freunberger, Stefan A; Favier, Frédéric; Fontaine, Olivier

    2017-04-01

    Kinetics of electrochemical reactions are several orders of magnitude slower in solids than in liquids as a result of the much lower ion diffusivity. Yet, the solid state maximizes the density of redox species, which is at least two orders of magnitude lower in liquids because of solubility limitations. With regard to electrochemical energy storage devices, this leads to high-energy batteries with limited power and high-power supercapacitors with a well-known energy deficiency. For such devices the ideal system should endow the liquid state with a density of redox species close to the solid state. Here we report an approach based on biredox ionic liquids to achieve bulk-like redox density at liquid-like fast kinetics. The cation and anion of these biredox ionic liquids bear moieties that undergo very fast reversible redox reactions. As a first demonstration of their potential for high-capacity/high-rate charge storage, we used them in redox supercapacitors. These ionic liquids are able to decouple charge storage from an ion-accessible electrode surface, by storing significant charge in the pores of the electrodes, to minimize self-discharge and leakage current as a result of retaining the redox species in the pores, and to raise working voltage due to their wide electrochemical window.

  8. Electrochemical supramolecular recognition of hemin-carbon composites

    Science.gov (United States)

    Le, Hien Thi Ngoc; Jeong, Hae Kyung

    2018-04-01

    Hemin-graphite oxide-carbon nanotube (hemin-GO-CNT) and hemin-thermally reduced graphite oxide-carbon nanotube (hemin-TRGO-CNT) composites are synthesized and investigated for the electrochemical supramolecular recognition by electron transfer between biomolecules (dopamine and hydrogen peroxide) and the composite electrodes. Redox reaction mechanisms of two composites with dopamine and hydrogen peroxide are explained in detail by using cyclic voltammetry and differential pulse voltammetry. Hemin-TRGO-CNT displays higher electrochemical detection for dopamine and hydrogen peroxide than that of hemin-GO-CNT, exhibiting enhancement of the electron transfer due to the effective immobilization of redox couple of hemin (Fe2+/Fe3+) on the TRGO-CNT surface.

  9. Neutral Red and Ferroin as Reversible and Rapid Redox Materials for Redox Flow Batteries.

    Science.gov (United States)

    Hong, Jeehoon; Kim, Ketack

    2018-04-17

    Neutral red and ferroin are used as redox indicators (RINs) in potentiometric titrations. The rapid response and reversibility that are prerequisites for RINs are also desirable properties for the active materials in redox flow batteries (RFBs). This study describes the electrochemical properties of ferroin and neutral red as a redox pair. The rapid reaction rates of the RINs allow a cell to run at a rate of 4 C with 89 % capacity retention after the 100 th  cycle. The diffusion coefficients, electrode reaction rates, and solubilities of the RINs were determined. The electron-transfer rate constants of ferroin and neutral red are 0.11 and 0.027 cm s -1 , respectively, which are greater than those of the components of all-vanadium and Zn/Br 2 cells. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Effect of oxygen plasma treatment on the electrochemical performance of the rayon and polyacrylonitrile based carbon felt for the vanadium redox flow battery application

    Science.gov (United States)

    Dixon, D.; Babu, D. J.; Langner, J.; Bruns, M.; Pfaffmann, L.; Bhaskar, A.; Schneider, J. J.; Scheiba, F.; Ehrenberg, H.

    2016-11-01

    Oxygen plasma treatment was applied on commercially available graphite felt electrodes based on rayon (GFA) and polyacrylonitrile (GFD). The formation of functional groups on the surface of the felt was confirmed by X-ray photoelectron spectroscopy measurements. The BET studies of the plasma treated electrodes showed no significant increase in surface area for both the rayon as well as the PAN based felts. Both plasma treated electrodes showed significantly enhanced V3+/V2+ redox activity compared to the pristine electrodes. Since an increase of the surface area has been ruled out for plasma treated electrode the enhanced activity could be attributed to surface functional groups. Interestingly, plasma treated GFD felts showed less electrochemical activity towards V5+/V4+ compared to the pristine electrode. Nevertheless, an overall increase of the single cell performance was still observed as the negative electrode is known to be the performance limiting electrode. Thus, to a great extent the present work helps to preferentially understand the importance of functional groups on the electrochemical activity of negative and positive redox reaction. The study emphasizes the need of highly active electrodes especially at the negative electrode side as inactive electrodes can still facilitate hydrogen evolution and degrade the electrolyte in VRFBs.

  11. Oriented immobilization of His-tagged kinase RIO1 protein on redox active N-(IDA-like)-Cu(II) monolayer deposited on gold electrode—The base of electrochemical biosensor

    International Nuclear Information System (INIS)

    Mielecki, Marcin; Wojtasik, Justyn; Zborowska, Magdalena; Kurzątkowska, Katarzyna; Grzelak, Krystyna; Dehaen, Wim; Radecki, Jerzy; Radecka, Hanna

    2013-01-01

    Highlights: ► The redox active N-(IDA-like)-Cu(II) monolayer is suitable for oriented and stable immobilization of His-tagged kinase Rio1. ► Cu(II) deposited onto the electrode surface play double role: immobilization sites for His-tagged proteins and transduction centres tracking the protein–small molecule interactions. ► The base of biosensor response towards target compound is the change of Rio1 conformation lading to alternation of the permeability of counter ions to Cu(II) redox centres. -- Abstract: The fabrication of electrochemical biosensor consists of the following successive steps: formation of thiol derivative of iminodiacetic acid (IDA-like/N-heterocyclic donor) and N-acetylcysteamine (NAC) self-assembled monolayer on the Au electrode, complexation of Cu(II) by N(IDA-like) attached to the surface of the Au electrode and immobilization of kinase protein Rio1 through N(IDA-like)-Cu(II)-histidine-tag covalent bond formation. Each step of modification was controlled by cyclic voltammetry, electrochemical impedance spectrometry and atomic force microscopy. The interactions between rHis 6 -Rio1 attached to the surface of the electrode and tyrphostin inhibitor (2E)-N-Benzyl-2-cyano-3-(3,4-dihydroxyphenyl)-acrylamide (AG-490) and its analogue (2-cyano-N-(4-methoxyphenyl)-3-(pyridin-3-yl)prop-2-enamide) (CPE), present in aqueous solution were monitored with Osteryoung square wave voltammetry. The basis of the biosensor response was the change in the electrochemical properties of Cu(II) redox centres upon formation of the rHis 6 -Rio1-inhibitor complex. A linear responses with high reproducibility and stability were observed between 0.10 and 0.40 μM of AG-490 as well as of CPE. The interaction between rHis 6 -Rio1 and AG-490 was stronger than the interaction with its analogue CPE. Cu(II) redox current decrease of 37.9 ± 1.6% and 23.3 ± 1.0% were observed in the presence of 0.40 μM of AG-490 and CPE, respectively. The presented biosensor could be

  12. Force modulation and electrochemical gating of conductance in a cytochrome

    Science.gov (United States)

    Davis, Jason J.; Peters, Ben; Xi, Wang

    2008-09-01

    Scanning probe methods have been used to measure the effect of electrochemical potential and applied force on the tunnelling conductance of the redox metalloprotein yeast iso-1-cytochrome c (YCC) at a molecular level. The interaction of a proximal probe with any sample under test will, at this scale, be inherently perturbative. This is demonstrated with conductive probe atomic force microscopy (CP-AFM) current-voltage spectroscopy in which YCC, chemically adsorbed onto pristine Au(111) via its surface cysteine residue, is observed to become increasingly compressed as applied load is increased, with concomitant decrease in junction resistance. Electrical contact at minimal perturbation, where probe-molecule coupling is comparable to that in scanning tunnelling microscopy, brings with it the observation of negative differential resistance, assigned to redox-assisted probe-substrate tunnelling. The role of the redox centre in conductance is also resolved in electrochemical scanning tunnelling microscopy assays where molecular conductance is electrochemically gateable through more than an order of magnitude.

  13. The study of redox mechanism of dobutamine at different pH media by electrochemical and in situ spectroelectrochemical methods

    International Nuclear Information System (INIS)

    Yang Gongjun; Xu Jingjuan; Chen Hongyuan

    2004-01-01

    Based on the comprehensive analyses of the experimental results of the electrochemical methods, in situ UV-Vis absorption spectra, in situ electron spin resonance (ESR), and attenuated total-internal reflection (ATR) as well as the calculation of UV-Vis absorption data by PM3 Semi-Empirical method, a reaction mechanism for the redox processes of dobutamine was presented. When the anodic sweep is carried out, dobutamine firstly undergoes a free radical reaction with one-electron and one-proton to form semi-quinone free radicals, which will continuously convert to its corresponding quinone form by further electrochemical oxidation reaction. The formed quinone cannot only undergo a cyclization process by chemical reaction to produce a new compound, which can be reduced at more negative potential, but also be reduced to form dobutamine again when subsequent cathodic sweep is followed. The cyclization rate is depended upon pH values, and it increases with the increase of pH. In neutral medium, the corresponding oxidation form of the cyclization reaction product is easy to convert to melanin

  14. Vanadium and Chromium Redox Behavior in borosilicate Nuclear Waste Glasses

    International Nuclear Information System (INIS)

    McKeown, D.; Muller, I.; Gan, H.; Feng, Z.; Viragh, C.; Pegg, I.

    2011-01-01

    X-ray absorption spectroscopy (XAS) was used to characterize vanadium (V) and chromium (Cr) environments in low activity nuclear waste (LAW) glasses synthesized under a variety of redox conditions. V 2 O 5 was added to the melt to improve sulfur incorporation from the waste; however, at sufficiently high concentrations, V increased melt foaming, which lowered melt processing rates. Foaming may be reduced by varying the redox conditions of the melt, while small amounts of Cr are added to reduce melter refractory corrosion. Three parent glasses were studied, where CO-CO 2 mixtures were bubbled through the corresponding melt for increasing time intervals so that a series of redox-adjusted-glasses was synthesized from each parent glass. XAS data indicated that V and Cr behaviors are significantly different in these glasses with respect to the cumulative gas bubbling times: V 4+ /V total ranges from 8 to 35%, while Cr 3+ /Cr total can range from 15 to 100% and even to population distributions including Cr 2+ . As Na-content decreased, V, and especially, Cr became more reduced, when comparing equivalent glasses within a series. The Na-poor glass series show possible redox coupling between V and Cr, where V 4+ populations increase after initial bubbling, but as bubbling time increases, V 4+ populations drop to near the level of the parent glass, while Cr becomes more reduced to the point of having increasing Cr 2+ populations.

  15. A stability comparison of redox-active layers produced by chemical coupling of an osmium redox complex to pre-functionalized gold and carbon electrodes

    International Nuclear Information System (INIS)

    Boland, Susan; Foster, Kevin; Leech, Donal

    2009-01-01

    The production of stable redox active layers on electrode surfaces is a key factor for the development of practical electronic and electrochemical devices. Here, we report on a comparison of the stability of redox layers formed by covalently coupling an osmium redox complex to pre-functionalized gold and graphite electrode surfaces. Pre-treatment of gold and graphite electrodes to provide surface carboxylic acid groups is achieved via classical thiolate self-assembled monolayer formation on gold surfaces and the electro-reduction of an in situ generated aryldiazonium salt from 4-aminobenzoic acid on gold, glassy carbon and graphite surfaces. These surfaces have been characterized by AFM and electrochemical blocking studies. The surface carboxylate is then used to tether an osmium complex, [Os(2,2'-bipyridyl) 2 (4-aminomethylpyridine)Cl]PF 6 , to provide a covalently bound redox active layer, E 0 '' of 0.29 V (vs. Ag/AgCl in phosphate buffer, pH 7.4), on the pre-treated electrodes. The aryldiazonium salt-treated carbon-based surfaces showed the greatest stability, represented by a decrease of <5% in the peak current for the Os(II/III) redox transition of the immobilized complex over a 3-day period, compared to a decrease of 19% and 14% for the aryldiazonium salt treated and thiolate treated gold surfaces, respectively, over the same period

  16. Redox-Active Star Molecules Incorporating the 4-Benzoylpyridinium Cation - Implications for the Charge Transfer Along Branches vs. Across the Perimeter in Dendrimer

    Science.gov (United States)

    Leventis, Nicholas; Yang, Jinua; Fabrizio,Even F.; Rawashdeh, Abdel-Monem M.; Oh, Woon Su; Sotiriou-Leventis, Chariklia

    2004-01-01

    Dendrimers are self-repeating globular branched star molecules, whose fractal structure continues to fascinate, challenge, and inspire. Functional dendrimers may incorporate redox centers, and potential applications include antennae molecules for light harvesting, sensors, mediators, and artificial biomolecules. We report the synthesis and redox properties of four star systems incorporating the 4-benzoyl-N-alkylpyridinium cation; the redox potential varies along the branches but remains constant at fixed radii. Bulk electrolysis shows that at a semi-infinite time scale all redox centers are electrochemically accessible. However, voltammetric analysis (cyclic voltammetry and differential pulse voltammetry) shows that on1y two of the three redox-active centers in the perimeter are electrochemically accessible during potential sweeps as slow as 20 mV/s and as fast as 10 V/s. On the contrary, both redox centers along branches are accessible electrochemically within the same time frame. These results are explained in terms of slow through-space charge transfer and the globular 3-D folding of the molecules and are discussed in terms of their implications on the design of efficient redox functional dendrimers.

  17. ETL 1 kW redox flow cell

    International Nuclear Information System (INIS)

    Nozaki, K.; Ozawa, T.

    1984-01-01

    A 1 kW scale redox flow cell system was set up in the laboratory (ETL), while three different types of batteries were also assembled by private companies in early 1983. In this article, this cell system is described. The concept of a modern type redox flow cell is based on a couple of fully soluble redox ions and a highly selective ion-exchange membrane. In the cell, the redox ion stored in a tank is flowed to and reduced on the electrode, while the other ion is also flowed to and oxidized on the other electrode. This electrochemical reaction produces electronic current in the external circuit and ionic current through the membrane sandwiched as a separator between the two electrodes. The reverse reaction proceeds in the charging process. In ETL, the concept was preliminarily tested, and conceptual design and cost estimation of the redox flow cells were carried out to confirm the feasibility; the R and D started on these bases in 1975

  18. Electrochemical corrosion behavior of gas atomized Al–Ni alloy powders

    International Nuclear Information System (INIS)

    Osório, Wislei R.; Spinelli, José E.; Afonso, Conrado R.M.; Peixoto, Leandro C.; Garcia, Amauri

    2012-01-01

    Highlights: ► Spray-formed Al–Ni alloy powders have cellular microstructures. ► Porosity has no deleterious effect on the electrochemical corrosion behavior. ► Better pitting corrosion resistance is related to a fine powder microstructure. ► A coarse microstructure can be related to better general corrosion resistance. - Abstract: This is a study describing the effects of microstructure features of spray-formed Al–Ni alloy powders on the electrochemical corrosion resistance. Two different spray-formed powders were produced using nitrogen (N 2 ) gas flow (4 and 8 bar were used). Electrochemical impedance spectroscopy (EIS), potentiodynamic anodic polarization techniques and an equivalent circuit analysis were used to evaluate the electrochemical behavior in a dilute 0.05 M NaCl solution at room temperature. It was found that a N 2 gas pressure of 8 bar resulted in a microstructure characterized by a high fraction of small powders and fine cell spacings, having improved pitting potential but higher corrosion current density when compared with the corresponding results of a coarser microstructure array obtained under a lower pressure. A favorable effect in terms of current density and oxide protective film formation was shown to be associated with the coarser microstructure, however, its pitting potential was found to be lower than that of the finer microstructure.

  19. Fabrication of Bi2O3||AC asymmetric supercapacitor with redox additive aqueous electrolyte and its improved electrochemical performances

    International Nuclear Information System (INIS)

    Senthilkumar, S.T.; Selvan, R. Kalai; Ulaganathan, M.; Melo, J.S.

    2014-01-01

    Graphical abstract: An asymmetric supercapacitor (ASC) has been fabricated using α-Bi 2 O 3 and bio-waste derived activated carbon (AC) as negative and positive electrodes respectively with Li 2 SO 4 as electrolyte. Interestingly, the addition of KI into the Li 2 SO 4 electrolyte can significantly enhances the ASC performance through the redox reaction between iodine/iodide ions. -- Highlights: •Flower like α-Bi 2 O 3 is prepared. •An asymmetric supercapacitor is fabricated using α-Bi 2 O 3 as negative electrode and bio-waste derived activated carbon as positive electrode. •Energy density is enhanced from 10.2 Wh kg −1 to 35.4 Wh kg −1 by using KI as redox additive in Li 2 SO 4 electrolyte. -- Abstract: A new asymmetric supercapacitor (ASC) was fabricated using flower like α-Bi2O3as negative and bio-waste derived activated carbon (AC) as positive electrodes with Li2SO4as electrolyte. Here, the fabricated ASC was operated over the potential range of 0-1.6 V and evaluated by cyclic voltammetry (CV), galvano static charge-discharge (GCD), electrochemical impedance spectroscopy (EIS) and cycle life. Further to improve the performance of ASC, KI was used as electrolyte redox additive with pristine (Li2SO4) electrolyte due to their possible redox reactions of iodine ions. Remarkably, a nearly threefold improved specific capacitance and energy density of 99.5 F g −1 and 35.4 Wh kg −1 respectively was achieved by adding of KI into Li 2 SO 4 electrolyte, while it was only 29 F g −1 and 10.2 Wh kg −1 for pristine (Li2SO4) electrolyte used ASC at 1.5 mA cm −2

  20. The Electrochemical Behavior of Carbon Fiber Microelectrodes Modified with Carbon Nanotubes Using a Two-Step Electroless Plating/Chemical Vapor Deposition Process

    Directory of Open Access Journals (Sweden)

    Longsheng Lu

    2017-03-01

    Full Text Available Carbon fiber microelectrode (CFME has been extensively applied in the biosensor and chemical sensor domains. In order to improve the electrochemical activity and sensitivity of the CFME, a new CFME modified with carbon nanotubes (CNTs, denoted as CNTs/CFME, was fabricated and investigated. First, carbon fiber (CF monofilaments grafted with CNTs (simplified as CNTs/CFs were fabricated in two key steps: (i nickel electroless plating, followed by (ii chemical vapor deposition (CVD. Second, a single CNTs/CF monofilament was selected and encapsulated into a CNTs/CFME with a simple packaging method. The morphologies of as-prepared CNTs/CFs were characterized by scanning electron microscopy. The electrochemical properties of CNTs/CFMEs were measured in potassium ferrocyanide solution (K4Fe(CN6, by using a cyclic voltammetry (CV and a chronoamperometry method. Compared with a bare CFME, a CNTs/CFME showed better CV curves with a higher distinguishable redox peak and response current; the higher the CNT content was, the better the CV curves were. Because the as-grown CNTs significantly enhanced the effective electrode area of CNTs/CFME, the contact area between the electrode and reactant was enlarged, further increasing the electrocatalytic active site density. Furthermore, the modified microelectrode displayed almost the same electrochemical behavior after 104 days, exhibiting remarkable stability and outstanding reproducibility.

  1. Flowable Conducting Particle Networks in Redox-Active Electrolytes for Grid Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Hatzell, K. B.; Boota, M.; Kumbur, E. C.; Gogotsi, Y.

    2015-01-01

    This study reports a new hybrid approach toward achieving high volumetric energy and power densities in an electrochemical flow capacitor for grid energy storage. The electrochemical flow capacitor suffers from high self-discharge and low energy density because charge storage is limited to the available surface area (electric double layer charge storage). Here, we examine two carbon materials as conducting particles in a flow battery electrolyte containing the VO2+/VO2+ redox couple. Highly porous activated carbon spheres (CSs) and multi-walled carbon nanotubes (MWCNTs) are investigated as conducting particle networks that facilitate both faradaic and electric double layer charge storage. Charge storage contributions (electric double layer and faradaic) are distinguished for flow-electrodes composed of MWCNTs and activated CSs. A MWCNT flow-electrode based in a redox-active electrolyte containing the VO2+/VO2+ redox couple demonstrates 18% less self-discharge, 10 X more energy density, and 20 X greater power densities (at 20 mV s-1) than one based on a non-redox active electrolyte. Furthermore, a MWCNT redox-active flow electrode demonstrates 80% capacitance retention, and >95% coulombic efficiency over 100 cycles, indicating the feasibility of utilizing conducting networks with redox chemistries for grid energy storage.

  2. Redox behavior and optical response of nanostructured poly(3,4-ethylenedioxythiophene) films grown in a camphorsulfonic acid based micellar solution

    International Nuclear Information System (INIS)

    Bhandari, Shweta; Deepa, M.; Singh, S.; Gupta, Govind; Kant, Rama

    2008-01-01

    Poly(3,4-ethylenedioxythiophene) (PEDOT) films have been electropolymerized from an aqueous micellar solution comprising camphorsulfonic acid (CSA), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ) and EDOT. The inclusion of the dopants CS - and CF 3 SO 3 - in the polymer structure and an unusually high doping level of 0.54 have been ascertained by the X-ray photoelectron spectroscopy. Transmission electron microscopy and atomic force microscopy studies show that the micellar effect of CSA leads to a morphology wherein polymer particles link together to form elongated shapes and also endows the film with a surface roughness of 25-30 nm. These nanostructures permit a facile intercalation-deintercalation of anions in the film during redox cycling. Electrochemical impedance spectroscopy show that the charge transfer phenomenon at the PEDOT-electrolyte interface is dominant in the high frequency region and diffusion controlled ionic movement prevails in the low frequency regime. The use of these films as potential cathodes in electrochromic windows is rationalized not only on the basis of their high scalability and ease of processing but also due to their large coloration efficiency (123 cm 2 C -1 ) and transmission modulation (50%) at a photopic wavelength of 550 nm. But further improvement in color-bleach kinetics and reproducibility of redox behavior is desirable to broaden their spectrum of utility

  3. Redox reaction studies by nanosecond pulse radiolysis

    International Nuclear Information System (INIS)

    Moorthy, P.N.

    1979-01-01

    Free radicals are formed as intermediates in many chemical and biochemical reactions. An important type of reaction which they can undergo is a one electron or redox process. The direction and rate of such electron transfer reactions is governed by the relative redox potentials of the participating species. Because of the generally short lived nature of free radicals, evaluation of their redox potentials poses a number of problems. Two techniques are described for the experimental determination of the redox potentials of short lived species generated by either a nanosecond electron pulse or laser flash. In the first method, redox titration of the short lived species with stable molecules of known redox potential is carried out, employing the technique of fast kinetic spectrophotometry. Conversely, by the same method it is also possible to evaluate the one electron redox potentials of stable molecules by redox titration with free radicals of known redox potential produced as above. In the second method, electrochemical reduction or oxidation of the short lived species at an appropriate electrode (generally a mercury drop) is carried out at different fixed potentials, and the redox potential evaluated from the current-potential curves (polarograms). Full description of the experimental set up and theoretical considerations for interpretation of the raw data are given. The relative merits of the two methods and their practical applicability are discussed. (auth.)

  4. Development of redox stable, multifunctional substrates for anode supported SOFCS

    DEFF Research Database (Denmark)

    Sudireddy, Bhaskar Reddy; Foghmoes, Søren Preben Vagn; Ramos, Tania

    2017-01-01

    Redox stable solid oxide fuel cells are beneficial in many aspects such as tolerance against system failures e.g fuel cut off and emergency shut down, but also allow for higher fuel utilization, which increases efficiency. State-ofthe-art Ni-cermet based anodes suffer from microstructural changes...... with a multifunctional anode support, the development of a two layer fuel electrode based on a redox stable strontium titanate layer for the electrochemically active layer and a redox stable Ni-YSZ support was pursued. Half-cells with well adhearing strontium titante anode layers on stateof-the-art Ni-YSZ cermet...... supports have been achieved. Redox tolerance of the half-cell depends could be increased by optimizing the redox stability of the cermet support....

  5. Organic non-aqueous cation-based redox flow batteries

    Science.gov (United States)

    Zhang, Lu; Huang, Jinhua; Burrell, Anthony

    2018-05-08

    The present invention provides a non-aqueous redox flow battery comprising a negative electrode immersed in a non-aqueous liquid negative electrolyte, a positive electrode immersed in a non-aqueous liquid positive electrolyte, and a cation-permeable separator (e.g., a porous membrane, film, sheet, or panel) between the negative electrolyte from the positive electrolyte. During charging and discharging, the electrolytes are circulated over their respective electrodes. The electrolytes each comprise an electrolyte salt (e.g., a lithium or sodium salt), a transition-metal free redox reactant, and optionally an electrochemically stable organic solvent. Each redox reactant is selected from an organic compound comprising a conjugated unsaturated moiety, a boron cluster compound, and a combination thereof. The organic redox reactant of the positive electrolyte comprises a tetrafluorohydroquinone ether compound or a tetrafluorocatechol ether compound.

  6. Redox shuttles for overcharge protection of lithium batteries

    Science.gov (United States)

    Amine, Khalil; Chen, Zonghai; Wang, Qingzheng

    2010-12-14

    The present invention is generally related to electrolytes containing novel redox shuttles for overcharge protection of lithium-ion batteries. The redox shuttles are capable of thousands hours of overcharge tolerance and have a redox potential at about 3-5.5 V vs. Li and particularly about 4.4-4.8 V vs. Li. Accordingly, in one aspect the invention provides electrolytes comprising an alkali metal salt; a polar aprotic solvent; and a redox shuttle additive that is an aromatic compound having at least one aromatic ring with four or more electronegative substituents, two or more oxygen atoms bonded to the aromatic ring, and no hydrogen atoms bonded to the aromatic ring; and wherein the electrolyte solution is substantially non-aqueous. Further there are provided electrochemical devices employing the electrolyte and methods of making the electrolyte.

  7. The fairytale of the GSSG/GSH redox potential.

    Science.gov (United States)

    Flohé, Leopold

    2013-05-01

    The term GSSG/GSH redox potential is frequently used to explain redox regulation and other biological processes. The relevance of the GSSG/GSH redox potential as driving force of biological processes is critically discussed. It is recalled that the concentration ratio of GSSG and GSH reflects little else than a steady state, which overwhelmingly results from fast enzymatic processes utilizing, degrading or regenerating GSH. A biological GSSG/GSH redox potential, as calculated by the Nernst equation, is a deduced electrochemical parameter based on direct measurements of GSH and GSSG that are often complicated by poorly substantiated assumptions. It is considered irrelevant to the steering of any biological process. GSH-utilizing enzymes depend on the concentration of GSH, not on [GSH](2), as is predicted by the Nernst equation, and are typically not affected by GSSG. Regulatory processes involving oxidants and GSH are considered to make use of mechanistic principles known for thiol peroxidases which catalyze the oxidation of hydroperoxides by GSH by means of an enzyme substitution mechanism involving only bimolecular reaction steps. The negligibly small rate constants of related spontaneous reactions as compared with enzyme-catalyzed ones underscore the superiority of kinetic parameters over electrochemical or thermodynamic ones for an in-depth understanding of GSH-dependent biological phenomena. At best, the GSSG/GSH potential might be useful as an analytical tool to disclose disturbances in redox metabolism. This article is part of a Special Issue entitled Cellular Functions of Glutathione. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Electrochemical Applications in Metal Bioleaching.

    Science.gov (United States)

    Tanne, Christoph Kurt; Schippers, Axel

    2017-12-10

    Biohydrometallurgy comprises the recovery of metals by biologically catalyzed metal dissolution from solids in an aqueous solution. The application of this kind of bioprocessing is described as "biomining," referring to either bioleaching or biooxidation of sulfide metal ores. Acidophilic iron- and sulfur-oxidizing microorganisms are the key to successful biomining. However, minerals such as primary copper sulfides are recalcitrant to dissolution, which is probably due to their semiconductivity or passivation effects, resulting in low reaction rates. Thus, further improvements of the bioleaching process are recommendable. Mineral sulfide dissolution is based on redox reactions and can be accomplished by electrochemical technologies. The impact of electrochemistry on biohydrometallurgy affects processing as well as analytics. Electroanalysis is still the most widely used electrochemical application in mineralogical research. Electrochemical processing can contribute to bioleaching in two ways. The first approach is the coupling of a mineral sulfide to a galvanic partner or electrocatalyst (spontaneous electron transfer). This approach requires only low energy consumption and takes place without technical installations by the addition of higher redox potential minerals (mostly pyrite), carbonic material, or electrocatalytic ions (mostly silver ions). Consequently, the processed mineral (often chalcopyrite) is preferentially dissolved. The second approach is the application of electrolytic bioreactors (controlled electron transfer). The electrochemical regulation of electrolyte properties by such reactors has found most consideration. It implies the regulation of ferrous and ferric ion ratios, which further results in optimized solution redox potential, less passivation effects, and promotion of microbial activity. However, many questions remain open and it is recommended that reactor and electrode designs are improved, with the aim of finding options for simplified

  9. Enhanced performance of ultracapacitors using redox additive-based electrolytes

    Science.gov (United States)

    Jain, Dharmendra; Kanungo, Jitendra; Tripathi, S. K.

    2018-05-01

    Different concentrations of potassium iodide (KI) as redox additive had been added to 1 M sulfuric acid (H2SO4) electrolyte with an aim of enhancing the capacitance and energy density of ultracapacitors via redox reactions at the interfaces of electrode-electrolyte. Ultracapacitors were fabricated using chemically treated activated carbon as electrode with H2SO4 and H2SO4-KI as an electrolyte. The electrochemical performances of fabricated supercapacitors were investigated by impedance spectroscopy, cyclic voltammetry and charge-discharge techniques. The maximum capacitance ` C' was observed with redox additives-based electrolyte system comprising 1 M H2SO4-0.3 M KI (1072 F g- 1), which is very much higher than conventional 1 M H2SO4 (61.3 F g- 1) aqueous electrolyte-based ultracapacitors. It corresponds to an energy density of 20.49 Wh kg- 1 at 2.1 A g- 1 for redox additive-based electrolyte, which is six times higher as compared to that of pristine electrolyte (1 M H2SO4) having energy density of only 3.36 Wh kg- 1. The temperature dependence behavior of fabricated cell was also analyzed, which shows increasing pattern in its capacitance values in a temperature range of 5-70 °C. Under cyclic stability test, redox electrolyte-based system shows almost 100% capacitance retention up to 5000 cycles and even more. For comparison, ultracapacitors based on polymer gel electrolyte polyvinyl alcohol (PVA) (10 wt%)—{H2SO4 (1 M)-KI (0.3 M)} (90 wt%) have been fabricated and characterized with the same electrode materials.

  10. Redox-dependent spatially resolved electrochemistry at graphene and graphite step edges.

    Science.gov (United States)

    Güell, Aleix G; Cuharuc, Anatolii S; Kim, Yang-Rae; Zhang, Guohui; Tan, Sze-yin; Ebejer, Neil; Unwin, Patrick R

    2015-04-28

    The electrochemical (EC) behavior of mechanically exfoliated graphene and highly oriented pyrolytic graphite (HOPG) is studied at high spatial resolution in aqueous solutions using Ru(NH3)6(3+/2+) as a redox probe whose standard potential sits close to the intrinsic Fermi level of graphene and graphite. When scanning electrochemical cell microscopy (SECCM) data are coupled with that from complementary techniques (AFM, micro-Raman) applied to the same sample area, different time-dependent EC activity between the basal planes and step edges is revealed. In contrast, other redox couples (ferrocene derivatives) whose potential is further removed from the intrinsic Fermi level of graphene and graphite show uniform and high activity (close to diffusion-control). Macroscopic voltammetric measurements in different environments reveal that the time-dependent behavior after HOPG cleavage, peculiar to Ru(NH3)6(3+/2+), is not associated particularly with any surface contaminants but is reasonably attributed to the spontaneous delamination of the HOPG with time to create partially coupled graphene layers, further supported by conductive AFM measurements. This process has a major impact on the density of states of graphene and graphite edges, particularly at the intrinsic Fermi level to which Ru(NH3)6(3+/2+) is most sensitive. Through the use of an improved voltammetric mode of SECCM, we produce movies of potential-resolved and spatially resolved HOPG activity, revealing how enhanced activity at step edges is a subtle effect for Ru(NH3)6(3+/2+). These latter studies allow us to propose a microscopic model to interpret the EC response of graphene (basal plane and edges) and aged HOPG considering the nontrivial electronic band structure.

  11. Redox Additive-Improved Electrochemically and Structurally Robust Binder-Free Nickel Pyrophosphate Nanorods as Superior Cathode for Hybrid Supercapacitors.

    Science.gov (United States)

    Sankar, Kalimuthu Vijaya; Seo, Youngho; Lee, Su Chan; Chan Jun, Seong

    2018-03-07

    For several decades, one of the great challenges for constructing a high-energy supercapacitor has been designing electrode materials with high performance. Herein, we report for the first time to our knowledge a novel hybrid supercapacitor composed of battery-type nickel pyrophosphate one-dimensional (1D) nanorods and capacitive-type N-doped reduced graphene oxide as the cathode and anode, respectively, in an aqueous redox-added electrolyte. More importantly, ex situ microscopic images of the nickel pyrophosphate 1D nanorods revealed that the presence of the battery-type redox additive enhanced the charge storage capacity and cycling life as a result of the microstructure stability. The nickel pyrophosphate 1D nanorods exhibited their maximum specific capacitance (8120 mF cm -2 at 5 mV s -1 ) and energy density (0.22 mWh cm -2 at a power density of 1.375 mW cm -2 ) in 1 M KOH + 75 mg K 3 [Fe(CN) 6 ] electrolyte. On the other side, the N-doped reduced graphene oxide delivered an excellent electrochemical performance, demonstrating that it was an appropriate anode. A hybrid supercapacitor showed a high specific capacitance (224 F g -1 at a current density of 1 A g -1 ) and high energy density (70 Wh kg -1 at a power density of 750 W kg -1 ), as well as a long cycle life (a Coulombic efficiency of 96% over 5000 cycles), which was a higher performance than most of those in recent reports. Our results suggested that the materials and redox additive in this novel design hold great promise for potential applications in a next-generation hybrid supercapacitor.

  12. Electrochemical Behavior of La on Liquid Bi electrode in LiCl-KCl molten salt

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Beom Kyu; Han, Hwa Jeong; Park, Byung Gi [Soonchunyang University, Asan (Korea, Republic of)

    2016-05-15

    Pyroprocessing technology aims to achieve a grouped and efficiently separation of all actinide for recycling with a sufficient decontamination of fission products generating the minimum. The main steps of the pyroprocess is electrowinning process, where the remaining elements in a molten salt after electrorifinning process. That process is U, MAs are concurrently recovered at the liquid metal. Recently, a study of the liquid metal and molten salt using an electrochemical is carried out in a variety of fields. However, there is deficient information about the electrode reaction of lanthanide and actinide on the liquid bismuth metal electrodes. In this paper, the electrochemical behavior of La(III), with liquid bismuth was investigated by the electrochemical method. The aim of this study is to investigate the electrochemical behavior of lanthanum or neodymium among lanthanides in molten LiCl-KCl salt at liquid metal bismuth electrode cyclic voltammetry and derive the thermochemical properties. The electrochemical behavior of La was studied in LiCl-KCl-LaCl{sub 3} molten salts using electrochemical techniques Cyclic Voltammetry on liquid Bi electrodes at 773K. During the process of cyclic voltammetry electrolysis, intermetallic compound were observed of La, Lax-Biy, Li-Bi. The diffusion coefficient of La was measured by cyclic voltemmetry and was found to be 8.18x10{sup -5}cm{sup 2}/s.

  13. Electrochemically deposited sol-gel-derived silicate films as a viable alternative in thin-film design.

    Science.gov (United States)

    Deepa, P N; Kanungo, Mandakini; Claycomb, Greg; Sherwood, Peter M A; Collinson, Maryanne M

    2003-10-15

    Sol-gel-derived silicate films were electrochemically deposited on conducting surfaces from a sol consisting of tetramethoxysilane (TMOS). In this method, a sufficiently negative potential is applied to the electrode surface to reduce oxygen to hydroxyl ions, which serves as the catalyst for the hydrolysis and condensation of TMOS. The electrodeposition process was followed by the electrochemical quartz crystal microbalance and cyclic voltammetry. The electrodeposited films were characterized for their surface morphology, porosity, and film thickness using atomic force microscopy, electrochemical probe techniques, surface area and pore size analysis, and profilometry. The electrodeposited films were found to have a completely different surface structure and to be significantly rougher relative to spin-coated films. This is likely due in part to the separation of the gelation and evaporation stages of film formation. The electrodeposited films were found to be permeable to simple redox molecules, such as ruthenium(III) hexaammine and ferrocene methanol. Film thickness can be easily varied from 15 microm by varying the electrode potential from -600 mV to more than -1000 mV, respectively. The electrodeposition process was further applied for the electroencapsulation of redox molecules and organic dyes within the silicate network. Cyclic voltammograms for the gel-entrapped ferrocene methanol (FcCH2OH) and ruthenium(II) tris(bipyridine) (Ru(bpy)3(2+)) exhibited the characteristic redox behavior of the molecules. The electroencapsulation of organic dyes in their "native" form proved to be more difficult because these species typically contain reducible functionalities that change the structure of the dye.

  14. Electrochemical Implications of Defects in Carbon Nanotubes

    Science.gov (United States)

    Hall, Jonathan Peter

    The electrochemical behavior of carbon nanotubes (CNTs) containing both intrinsic and extrinsically introduced defects has been investigated through the study of bamboo and hollow multi-walled CNT morphologies. The controlled addition of argon, hydrogen, and chlorine ions in addition to atomic hydrogen and magnesium vapor was used for varying the charge and type of extrinsic defects. To quantify changes in the CNTs upon treatment, Raman spectroscopy and electrochemical techniques were employed. It was indicated from Raman spectroscopy, cyclic voltammetry, electrochemical impedance spectroscopy, and chronopotentiometric experiments that the electrochemical response of hollow type CNTs could be tailored more significantly compared to bamboo type CNTs, which have innately high reactive site densities and are less amenable to modification. Total defect density and edge-plane-like defect concentrations monitored through Raman spectroscopy were used to correlate changes in the electrochemical response of the CNT electrodes as a function of treatment. The implementation of CNT electrodes in a prototypical electrolytic capacitor device was then explored and characterized. Dependencies on source current and redox couple concentration were evaluated, as well as changes in the total capacitance as a function of treatment. Cyclability studies were also performed as a function of source current magnitude to evaluate the longevity of the faradaic currents which typically decrease over time in other similar capacitors. This thesis then concludes with an overall summary of the themes and findings of the research presented in this work.

  15. Iodine encapsulation in CNTs and its application for electrochemical capacitor

    International Nuclear Information System (INIS)

    Taniguchi, Y.; Ishii, Y.; Al-zubaidi, A.; Kawasaki, S.; Rashid, M.; Syakirin, A.

    2016-01-01

    We report the experimental results for new type electrochemical capacitor using iodine redox reaction in single-walled carbon nanotubes (SWCNTs). It was found that the energy density of the present redox capacitor using SWCNTs is almost three times larger than that of the normal electric double layer capacitor.

  16. Iodine encapsulation in CNTs and its application for electrochemical capacitor

    Energy Technology Data Exchange (ETDEWEB)

    Taniguchi, Y.; Ishii, Y.; Al-zubaidi, A.; Kawasaki, S., E-mail: kawasaki.shinji@nitech.ac.jp [Nagoya Institute of Technology, Gokiso, Showa, Nagoya, Aichi (Japan); Rashid, M.; Syakirin, A. [Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia)

    2016-07-06

    We report the experimental results for new type electrochemical capacitor using iodine redox reaction in single-walled carbon nanotubes (SWCNTs). It was found that the energy density of the present redox capacitor using SWCNTs is almost three times larger than that of the normal electric double layer capacitor.

  17. Coulomb Repulsion Effect in Two-electron Non-adiabatic Tunneling through a One-level redox Molecule

    DEFF Research Database (Denmark)

    Medvedev, Igor M.; Kuznetsov, Alexander M.; Ulstrup, Jens

    2009-01-01

    We investigated Coulomb repulsion effects in nonadiabatic (diabatic) two-electron tunneling through a redox molecule with a single electronic level in a symmetric electrochemical contact under ambient conditions, i.e., room temperature and condensed matter environment. The electrochemical contact...

  18. Graphene Ink Film Based Electrochemical Detector for Paracetamol Analysis

    Directory of Open Access Journals (Sweden)

    Li Fu

    2018-01-01

    Full Text Available Graphene ink is a commercialized product in the graphene industry with promising potential application in electronic device design. However, the limitation of the graphene ink is its low electronic performance due to the ink preparation protocol. In this work, we proposed a simple post-treatment of graphene ink coating via electrochemical oxidation. The electronic conductivity of the graphene ink coating was enhanced as expected after the treatment. The proposed electrochemical oxidation treatment also exposes the defects of graphene and triggered an electrocatalytic reaction during the sensing of paracetamol (PA. The overpotential of redox is much lower than conventional PA redox potential, which is favorable for avoiding the interference species. Under optimum conditions, the graphene ink-based electrochemical sensor could linearly detect PA from 10 to 500 micro molar (μM, with a limit of detection of 2.7 μM.

  19. Mn3O4 anchored on carbon nanotubes as an electrode reaction catalyst of V(IV)/V(V) couple for vanadium redox flow batteries

    International Nuclear Information System (INIS)

    He, Zhangxing; Dai, Lei; Liu, Suqin; Wang, Ling; Li, Chuanchang

    2015-01-01

    Highlights: • Mn 3 O 4 /MWCNTs (multi-walled carbon nanotubes) composite fabricated by a simple solvothermal method was developed as electrochemical catalyst of V(IV)/V(V) redox couple for vanadium redox flow batteries for the first time. • The electrocatalytic kinetics of the redox reactions of three electrocatalysts (pure Mn 3 O 4 , pure MWCNTs, Mn 3 O 4 /MWCNTs) were compared, and were in the order of Mn 3 O 4 /MWCNTs > MWCNTs > Mn 3 O 4 . • The cell using Mn 3 O 4 /MWCNTs has lower electrochemical polarization, with larger discharge capacity and energy efficiency. The average energy efficiency of the cell using Mn 3 O 4 /MWCNTs is 84.65%, 3.73% higher than that of the pristine cell. - Abstract: Mn 3 O 4 /MWCNTs (multi-walled carbon nanotubes) composite fabricated by a simple solvothermal method was developed as electrochemical catalyst of V(IV)/V(V) redox couple for vanadium redox flow batteries. The electrochemical activity of V(IV)/V(V) redox couple can be enhanced by the electrochemical catalysts (Mn 3 O 4 , MWCNTs, Mn 3 O 4 /MWCNTs), and the electrocatalytic kinetics of the redox reactions were in the order of Mn 3 O 4 /MWCNTs > MWCNTs > Mn 3 O 4 . The cell using Mn 3 O 4 /MWCNTs composite as electrochemical catalyst was assembled and the charge-discharge performance was evaluated. Compared with the pristine cell, the cell using positive graphite felt modified by Mn 3 O 4 /MWCNTs had lower electrochemical polarization, larger discharge capacity and energy efficiency. The average energy efficiency of the cell using modified positive electrode for 50 cycles was 84.65%, 3.73% higher than that of the pristine cell. The superior electrocatalytic performance of Mn 3 O 4 /MWCNTs composite was mainly due to the effective mixed conducting network, facilitating the electron transport and ion diffusion in the electrode/electrolyte interface

  20. Electrochemical and morphological characterization of gold nanoparticles deposited on boron-doped diamond electrode

    Energy Technology Data Exchange (ETDEWEB)

    Limat, Meriadec; El Roustom, Bahaa [Ecole Polytechnique Federale de Lausanne (EPFL), Institute of Chemical Sciences and Engineering, CH-1015 Lausanne (Switzerland); Jotterand, Henri [Ecole Polytechnique Federale de Lausanne (EPFL), Institute of Physics of the Complex Matter, CH-1015 Lausanne (Switzerland); Foti, Gyoergy [Ecole Polytechnique Federale de Lausanne (EPFL), Institute of Chemical Sciences and Engineering, CH-1015 Lausanne (Switzerland)], E-mail: gyorgy.foti@epfl.ch; Comninellis, Christos [Ecole Polytechnique Federale de Lausanne (EPFL), Institute of Chemical Sciences and Engineering, CH-1015 Lausanne (Switzerland)

    2009-03-30

    A novel two-step method was employed to synthesize gold nanoparticles dispersed on boron-doped diamond (BDD) electrode. It consisted of sputter deposition at ambient temperature of maximum 15 equivalent monolayers of gold, followed by a heat treatment in air at 600 deg. C. Gold nanoparticles with an average diameter between 7 and 30 nm could be prepared by this method on polycrystalline BDD film electrode. The obtained Au/BDD composite electrode appeared stable under conditions of electrochemical characterization performed using ferri-/ferrocyanide and benzoquinone/hydroquinone redox couples in acidic medium. The electrochemical behavior of Au/BDD was compared to that of bulk Au and BDD electrodes. Finally, the Au/BDD composite electrode was regarded as an array of Au microelectrodes dispersed on BDD substrate.

  1. Electrochemical and morphological characterization of gold nanoparticles deposited on boron-doped diamond electrode

    International Nuclear Information System (INIS)

    Limat, Meriadec; El Roustom, Bahaa; Jotterand, Henri; Foti, Gyoergy; Comninellis, Christos

    2009-01-01

    A novel two-step method was employed to synthesize gold nanoparticles dispersed on boron-doped diamond (BDD) electrode. It consisted of sputter deposition at ambient temperature of maximum 15 equivalent monolayers of gold, followed by a heat treatment in air at 600 deg. C. Gold nanoparticles with an average diameter between 7 and 30 nm could be prepared by this method on polycrystalline BDD film electrode. The obtained Au/BDD composite electrode appeared stable under conditions of electrochemical characterization performed using ferri-/ferrocyanide and benzoquinone/hydroquinone redox couples in acidic medium. The electrochemical behavior of Au/BDD was compared to that of bulk Au and BDD electrodes. Finally, the Au/BDD composite electrode was regarded as an array of Au microelectrodes dispersed on BDD substrate

  2. Electrochemical studies of UO22+ in 1-octyl 3- methylimidazolium hexafluorophosphate (omimPF6) room temperature ionic liquid

    International Nuclear Information System (INIS)

    Kamat, J.V.; Gopinath, N.; Lohithakshan, K.V.; Aggarwal, S.K.

    2007-01-01

    The effect of the degraded products on the Electrochemical Window (EW) of l-octyl 3- methylimidazolium hexafluorophosphate (OmimPF 6 ) were studied. Studies were also carried to optimize conditions for extraction of UO 2 2+ to investigate its redox behavior in OmimPF6 and determine the number of electrons involved in the redox chemistry. The Chronoamperometric technique of evaluating n without knowing diffusion coefficient, D, was devised by Kakihana et al. and has been applied in the present work. The number of electrons involved was determined from the values of slope and intercept of the Cottrell plot. The results of these studies are presented in this paper

  3. A multimodal optical and electrochemical device for monitoring surface reactions: redox active surfaces in porous silicon Rugate filters.

    Science.gov (United States)

    Ciampi, Simone; Guan, Bin; Darwish, Nadim A; Zhu, Ying; Reece, Peter J; Gooding, J Justin

    2012-12-21

    Herein, mesoporous silicon (PSi) is configured as a single sensing device that has dual readouts; as a photonic crystal sensor in a Rugate filter configuration, and as a high surface area porous electrode. The as-prepared PSi is chemically modified to provide it with stability in aqueous media and to allow for the subsequent coupling of chemical species, such as via Cu(I)-catalyzed cycloaddition reactions between 1-alkynes and azides ("click" reactions). The utility of the bimodal capabilities of the PSi sensor for monitoring surface coupling procedures is demonstrated by the covalent coupling of a ferrocene derivative, as well as by demonstrating ligand-exchange reactions (LER) at the PSi surface. Both types of reactions were monitored through optical reflectivity measurements, as well as electrochemically via the oxidation/reduction of the surface tethered redox species.

  4. Redox cycling-based amplifying electrochemical sensor for in situ clozapine antipsychotic treatment monitoring

    International Nuclear Information System (INIS)

    Ben-Yoav, Hadar; Winkler, Thomas E.; Kim, Eunkyoung; Chocron, Sheryl E.; Kelly, Deanna L.; Payne, Gregory F.; Ghodssi, Reza

    2014-01-01

    Highlights: • A new concept for clozapine in situ sensing with minimal pre-treatment procedures. • A catechol-chitosan redox cycling system amplifies clozapine oxidation current. • The modified amplifier signal is 3 times greater than the unmodified system. • Differentiation between clozapine and its metabolite norclozapine has been shown. • The sensor has the capability to detect clozapine in human serum. - Abstract: Schizophrenia is a lifelong mental disorder with few recent advances in treatment. Clozapine is the most effective antipsychotic for schizophrenia treatment. However, it remains underutilized since frequent blood draws are required to monitor adverse side effects, and maintain clozapine concentrations in a therapeutic range. Micro-system technology utilized towards real-time monitoring of efficacy and safety will enable personalized medicine and better use of this medication. Although work has been reported on clozapine detection using its electrochemical oxidation, no in situ monitoring of clozapine has been described. In this work, we present a new concept for clozapine in situ sensing based on amplifying its oxidation current. Specifically, we use a biofabricated catechol-modified chitosan redox cycling system to provide a significant amplification of the generated oxidizing current of clozapine through a continuous cycle of clozapine reduction followed by re-oxidation. The amplified signal has improved the signal-to-noise ratio and provided the required limit-of-detection and dynamic range for clinical applications with minimal pre-treatment procedures. The sensor reports on the functionality and sensitivity of clozapine detection between 0.1 and 10 μg/mL. The signal generated by clozapine using the catechol-modified chitosan amplifier has shown to be 3 times greater than the unmodified system. The sensor has the ability to differentiate between clozapine and its metabolite norclozapine, as well as the feasibility to detect clozapine in

  5. Monitoring programmed cell death of living plant tissues in microfluidics using electrochemical and optical techniques

    DEFF Research Database (Denmark)

    Mark, Christina; Zor, Kinga; Heiskanen, Arto

    such as redox activity, O2 and H2O2 concentration, pH, cell viability and release of target enzymes such as α-amylase. We have optimised an intracellular, whole-cell redox activity assay[3] that detects changes in redox activity in barley aleurone layer during PCD. The assay uses a double mediator......This project focuses on developing and applying a tissue culture system with electrochemical and optical detection techniques for tissue culture of barley aleurone layer to increase understanding of the underlying mechanisms of programmed cell death (PCD) in plants. The major advantage......-system to electrochemically measure redox activity via changes in the NADP:NADPH ratio. Experiments show that redox activity changes depend on phytohormone activation or inactivation of aleurone layer metabolism and subsequent PCD. We have also successfully detected PCD induced by phytohormones in barley aleurone layer using...

  6. Hourly and daily variation of sediment redox potential in tidal wetland sediments

    Science.gov (United States)

    Catallo, W. James

    1999-01-01

    Variation of electrochemical oxidation-reduction (redox) potential was examined in surface salt march sediments under conditions of flooding and tidal simulation in mesocosms and field sites. Time series were generated of redox potential measured in sediment profiles at 2-10 cm depth using combination Pt-Ag/AgCl (ORP) electrodes. Redox potential data were acquired at rapid rates (1-55 samples/h) over extended periods (3-104 days) along with similar times series of temperature (water, air, soil) and pH. It was found that redox potential vaired as a result of water level changes and was unrelated to diurnal changes in temperature or pH, the latter of which changed by 370 mV redox potential decrease in under 48 hours). Attenuatoin of microbial activity by [gamma] y-radiation and toxic chemicals elimintated this response. In tidal salt marsh mesocosms where the sediment-plant assemblages were exposed to a simulated diurnal tide, redox potenial oscillations of 40-300 mV amplitude were recoded that has the same periodicity as the flood-drain cycle. Periodic redoc potential time series were observed repeatedly in sediments receiving tidal pulsing but not in those sediments exposed to static hydrological conditions. Data collected over 12 days from a coastal marsh site experiencing diurnal tides showed similar fluctuations in redox potential. Data from the experimentents indicated that (a) redox potential can be a dynamic, nonlinear variable in coastal and estuarine wetland sediments over hourly and daily scales, and the designs of biogeochemical experiments should reflect this, (b) redox potential can change rapidly and signigicantly in coastal wetland sediments in response of flooding and draining, (c) microbial community processes are primarily determinants of the time course of redox potential in wetland sediments, and elimination of inhibition of microbial activity (e.g. by pollutants) can significantly alter that behavior, and (d) fast redox potential dynamics appear

  7. Electrochemical Characterization of Ni/(Sc)YSZ Electrodes

    DEFF Research Database (Denmark)

    Ramos, Tania; Thydén, Karl Tor Sune; Mogensen, Mogens Bjerg

    2010-01-01

    Investigations of Ni/(Sc)YSZ cermets for solid oxide cells (SOCs) were performed by electrochemical impedance spectroscopy (EIS), under varying experimental conditions and upon redox cycling, using three different designs of symmetric cells. The deconvolution and fitting of the obtained impedance...... parameters. Initial degradation results for both Ni/ScYSZ and Ni/YSZ based anodes under very high steam content are also reported. ©2010 COPYRIGHT ECS - The Electrochemical Society...

  8. Room temperature redox reaction by oxide ion migration at carbon/Gd-doped CeO2 heterointerface probed by an in situ hard x-ray photoemission and soft x-ray absorption spectroscopies

    Directory of Open Access Journals (Sweden)

    Takashi Tsuchiya, Shogo Miyoshi, Yoshiyuki Yamashita, Hideki Yoshikawa, Kazuya Terabe, Keisuke Kobayashi and Shu Yamaguchi

    2013-01-01

    Full Text Available In situ hard x-ray photoemission spectroscopy (HX-PES and soft x-ray absorption spectroscopy (SX-XAS have been employed to investigate a local redox reaction at the carbon/Gd-doped CeO2 (GDC thin film heterointerface under applied dc bias. In HX-PES, Ce3d and O1s core levels show a parallel chemical shift as large as 3.2 eV, corresponding to the redox window where ionic conductivity is predominant. The window width is equal to the energy gap between donor and acceptor levels of the GDC electrolyte. The Ce M-edge SX-XAS spectra also show a considerable increase of Ce3+ satellite peak intensity, corresponding to electrochemical reduction by oxide ion migration. In addition to the reversible redox reaction, two distinct phenomena by the electrochemical transport of oxide ions are observed as an irreversible reduction of the entire oxide film by O2 evolution from the GDC film to the gas phase, as well as a vigorous precipitation of oxygen gas at the bottom electrode to lift off the GDC film. These in situ spectroscopic observations describe well the electrochemical polarization behavior of a metal/GDC/metal capacitor-like two-electrode cell at room temperature.

  9. Mesoporous tungsten oxynitride as electrocatalyst for promoting redox reactions of vanadium redox couple and performance of vanadium redox flow battery

    Science.gov (United States)

    Lee, Wonmi; Jo, Changshin; Youk, Sol; Shin, Hun Yong; Lee, Jinwoo; Chung, Yongjin; Kwon, Yongchai

    2018-01-01

    For enhancing the performance of vanadium redox flow battery (VRFB), a sluggish reaction rate issue of V2+/V3+ redox couple evaluated as the rate determining reaction should be addressed. For doing that, mesoporous tungsten oxide (m-WO3) and oxyniride (m-WON) structures are proposed as the novel catalysts, while m-WON is gained by NH3 heat treatment of m-WO3. Their specific surface area, crystal structure, surface morphology and component analysis are measured using BET, XRD, TEM and XPS, while their catalytic activity for V2+/V3+ redox reaction is electrochemically examined. As a result, the m-WON shows higher peak current, smaller peak potential difference, higher electron transfer rate constant and lower charge transfer resistance than other catalysts, like the m-WO3, WO3 nanoparticle and mesoporous carbon, proving that it is superior catalyst. Regarding the charge-discharge curve tests, the VRFB single cell employing the m-WON demonstrates high voltage and energy efficiencies, high specific capacity and low capacity loss rate. The excellent results of m-WON are due to the reasons like (i) reduced energy band gap, (ii) reaction familiar surface functional groups and (ii) greater electronegativity.

  10. On the Electrochemical Behavior of PVD Ti-Coated AISI 304 Stainless Steel in Borate Buffer Solution

    Science.gov (United States)

    Fattah-alhosseini, Arash; Elmkhah, Hassan; Attarzadeh, Farid Reza

    2017-04-01

    This work aims at studying the electrochemical behavior of annealed pure titanium (Ti) and nano-structured (NS) Ti coating in borate buffer solutions. Cathodic arc evaporation was successfully applied to deposit NS Ti coating. Samples were characterized by means of scanning electron microscope and x-ray diffraction. Potentiodynamic polarization tests, electrochemical impedance spectroscopy, and Mott-Schottky analysis were employed to discuss the electrochemical behavior of samples thoroughly. Electrochemical measurements showed that the deposited NS Ti coating offers a superior passivity in borate buffer solutions of pH 9.0 and 9.5. Mott-Schottky analysis revealed that all passive films are of n-type semiconducting nature in these alkaline solutions and the deposition process did not alter the semiconducting type of passive films formed on samples. Additionally, this analysis showed that the NS Ti coating possessed lower levels of donor densities. Finally, all electrochemical tests showed that passive behavior of the NS Ti samples was superior, mainly due to the formation of thicker and less defective passive films.

  11. Surface modification and electrochemical behaviour of undoped nanodiamonds

    International Nuclear Information System (INIS)

    Zang Jianbing; Wang Yanhui; Bian Linyan; Zhang Jinhui; Meng Fanwei; Zhao Yuling; Ren Shubin; Qu Xuanhui

    2012-01-01

    Surface modifications of undoped nanodiamond (ND) particles were carried out through different annealing treatments. The methods of Fourier transform infrared spectroscopy, Raman spectroscopy, and transmission electron microscopy were used to characterize the ND surface before and after the annealing process. The electrochemical properties of the modified ND powders in aqueous solution were investigated with Fe(CN) 6 3−/4− as a redox probe. When the annealing temperature was below 850 °C, vacuum annealing removed parts of the oxygen-containing surface functionalities from the ND surface and produced more sp 2 carbon atoms in the shell. The charge transfer of the Fe(CN) 6 3−/4− redox couple decreased with increasing annealing temperature. Re-annealing in air restored the original surface conditions: few sp 2 -bonded carbon atoms and similar surface functionalities, and thus the electrochemical activity. When ND was annealed in vacuum at 900–1100 °C, more serious graphitization produced a continuous fullerenic shell wrapped around a diamond core, which had a high conductivity and electrochemical activity. This provides a novel nanoparticle with high conductivity and high stability for electrochemical applications.

  12. Synthesis, Characterizations and Investigation of Electrochemical Behaviours of 4-[(2-Hydroxyphenyliminomethyl]benzene-1,3-diol

    Directory of Open Access Journals (Sweden)

    Aysen D. Mulazimoglu

    2009-01-01

    Full Text Available This Schiff base ligand, 4-[(2-hydroxyphenylimino methyl]benzene-1,3-diol (HIBD was synthesized by reaction of 2-aminophenol and 2,4-dihydroxybenzaldehyde. The ligand was characterized by elemental analysis, FT-IR and 1H-NMR. Electrochemical behaviors were investigated on the glassy carbon electrode (GC surface with cyclic voltammetry (CV. The modification of HIBD on the GC was performed in +0.3 V and +2,8 V potential range using 100 mV s-1 scanning rate having 5 cycle. For the characterization of the modified surfaces 1 mM ferrocene redox probe in 0,1 M tetrabutylammonium tetrafluoroborate (TBATFB and 1 mM ferricyanide redox probe in 0.1 M H2SO4 were used.

  13. Electrochemical synthesis, in situ spectroelectrochemistry of conducting indole-titanium dioxide and zinc oxide polymer nanocomposites for rechargeable batteries

    International Nuclear Information System (INIS)

    Parvin, Mohammad Hadi; Pirnia, Mahsa; Arjomandi, Jalal

    2015-01-01

    Highlights: • Two novel hybrid materials-based conducting PIn rechargeable batteries were developed. • The charge-discharging behavior of PIn-nanocomposite batteries were studied. • The characterization of samples has been done by in situ spectroelectrochemical method. • PIn-TiO 2 and ZnO nanocomposites were synthesized electrochemically on Au and ITO. • The PIn-TiO 2 and ZnO nanocomposites resistances were less than PIn. - Abstract: Electrochemical synthesis, in situ spectroelectrochemistry of conducting polyindole (PIn), polyindole-TiO 2 (PIn-TiO 2 ) and polyindole-ZnO (PIn-ZnO) nanocomposites were investigated. The PIn and polymer nanocomposites were tested electrochemically for rechargeable batteries. The films were characterized by means of CVs, in situ UV-visible, FT-IR spectroscopies, in situ resistivity measurements, energy dispersive X-ray (EDX), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The charge-discharging behavior of a Zn/1 M ZnSO 4 /PIn cell with a capacity of around 90 Ah Kg −1 and on open circuit potential of around 1.45 V was compared with Zn/1 M ZnSO 4 /PIn-nanocomposite. The potential differences of redox couples (ΔE) for nanocomposites films show very good reversibility. A positive shift of potential was observed for polymer nanocomposites during redox scan. A significant variability was observed for in situ conductivity of the PIn and polymer nanocomposites. During in situ UV-visible and FT-IR measurements, intermediate spectroscopic behavior and positive shifts of wavelengths were observed for PIn and polymer nanocomposites. The SEM, TEM and EDX of nanocomposite films show the presence of nano particle in PIn.

  14. Effects of non-dissolved redox mediators on a hexavalent chromium bioreduction process

    Directory of Open Access Journals (Sweden)

    Jing Lian

    2016-03-01

    Full Text Available The effects of six non-dissolved redox mediators (RM immobilized in cellulose acetate beads on enhancing Cr(VI reduction by Mangrovibacter plantisponsor CR1 were investigated. In addition, the voltammetric behaviours and electron transfer capacities of the redox mediators were examined using electrochemical methods. Compared to the control beads, the Cr(VI bioreduction rate with 1-chloroanthraquinone cellulose acetate beads (1-CAQ/CA beads was increased up to 4.5-fold, which was mainly attributed to enhanced electron transfer by 1-CAQ. The redox mediators also improved the oxidation–reduction potential values of the Cr(VI bioreduction processes, which might assist in Cr(VI bioreduction. The role of the redox mediators was discussed based on the cyclic voltammetric characteristics (E0' of the redox mediators and the electrochemical impedance spectroscopy characteristics (Rct of the RM/CA beads. A linear correlation was found for the reaction constant k and the 1-CAQ concentration (C1-CAQ, which was k = 1.5674 C1-CAQ + 4.8506 (R2 = 0.9683. The Cr(VI bioreduction was affected by temperature, and the optimum pH for the Cr(VI bioreduction was 6.5. The results of repeated-batch operations showed that 1-CAQ/CA beads exhibited good stability and persistence. This study contributes to a better understanding of the effects of the redox mediator on Cr(VI bioreduction process and demonstrates its promising potential for environmental bioremediation applications.

  15. Flat Graphene-Enhanced Electron Transfer Involved in Redox Reactions.

    Science.gov (United States)

    Pan, Meilan; Zhang, Yanyang; Shan, Chao; Zhang, Xiaolin; Gao, Guandao; Pan, Bingcai

    2017-08-01

    Graphene is easily warped in the out-of-plane direction because of its high in-plane Young's modulus, and exploring the influence of wrinkled graphene on its properties is essential for the design of graphene-based materials for environmental applications. Herein, we prepared wrinkled graphene (WGN-1 and WGN-2) by thermal treatment and compared their electrochemical properties with those of flat graphene nanosheets (FGN). FGN exhibit activities that are much better than those of wrinkled graphene nanosheets (WGN), not only in the electrochemical oxidation of methylene blue (MB) but also in the electrochemical reduction of nitrobenzene (NB). Transformation ratios of MB and NB in FGN, WGN-1, and WGN-2 were 97.5, 80.1, and 57.9% and 94.6, 92.1, and 81.2%, respectively. Electrochemical impedance spectroscopy and the surface resistance of the graphene samples increased in the following order: FGN reaction charges transfer faster across the reaction interfaces and along the surface of FGN than that of WGN, and wrinkles restrict reaction charge transfer and reduce the reaction rates. This study reveals that the morphology of the graphene (flat or wrinkle) greatly affects redox reaction activities and may have important implications for the design of novel graphene-based nanostructures and for our understanding of graphene wrinkle-dependent redox reactions in environmental processes.

  16. Synthesis, spectroscopy, magnetic and redox behaviors of copper(II) complexes with tert-butylated salen type ligands bearing bis(4-aminophenyl)ethane and bis(4-aminophenyl)amide backbones.

    Science.gov (United States)

    Kasumov, Veli T; Yerli, Yusuf; Kutluay, Aysegul; Aslanoglu, Mehmet

    2013-03-01

    New salen type ligands, N,N'-bis(X-3-tert-butylsalicylidene)-4,4'-ethylenedianiline [(X=H (1), 5-tert-butyl (2)] and N,N'-bis(X-3-tert-butylsalicylidene)-4,4'-amidedianiline [X=H (3), 5-tert (4)] and their copper(II) complexes 5-8, have been synthesized. Their spectroscopic (IR, (1)H NMR, UV/vis, ESR) properties, as well as magnetic and redox-reactivity behavior are reported. IR spectra of 7 and 8 indicate the coordination of amide oxygen atoms of 3 and 4 ligands to Cu(II). The solid state ESR spectra of 5-8 exhibits less informative exchange narrowed isotropic or anisotropic signals with weak unresolved low field patterns. The magnetic moments of 5 (2.92 μ(B) per Cu(II)) and 6 (2.79 μ(B) per Cu(II)) are unusual for copper(II) complexes and considerably higher than those for complexes 7 and 8. Cryogenic measurements (300-10 K) show weak antiferromagnetic exchange interactions between the copper(II) centers in complexes 6 and 8. The results of electrochemical and chemical redox-reactivity studies are discussed. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Reversible Redox Chemistry of Azo Compounds for Sodium-Ion Batteries.

    Science.gov (United States)

    Luo, Chao; Xu, Gui-Liang; Ji, Xiao; Hou, Singyuk; Chen, Long; Wang, Fei; Jiang, Jianjun; Chen, Zonghai; Ren, Yang; Amine, Khalil; Wang, Chunsheng

    2018-03-05

    Sustainable sodium-ion batteries (SSIBs) using renewable organic electrodes are promising alternatives to lithium-ion batteries for the large-scale renewable energy storage. However, the lack of high-performance anode material impedes the development of SSIBs. Herein, we report a new type of organic anode material based on azo group for SSIBs. Azobenzene-4,4'-dicarboxylic acid sodium salt is used as a model to investigate the electrochemical behaviors and reaction mechanism of azo compound. It exhibits a reversible capacity of 170 mAh g -1 at 0.2C. When current density is increased to 20C, the reversible capacities of 98 mAh g -1 can be retained for 2000 cycles, demonstrating excellent cycling stability and high rate capability. The detailed characterizations reveal that azo group acts as an electrochemical active site to reversibly bond with Na + . The reversible redox chemistry between azo compound and Na ions offer opportunities for developing long-cycle-life and high-rate SSIBs. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Electrochemical investigation of mineral electrodes in phosphate-buffered alkaline solution

    Directory of Open Access Journals (Sweden)

    D Erdenechimeg

    2014-12-01

    Full Text Available Cyclic voltammetric methods have been applied to study the electrochemical behavior of the sulfide minerals in phosphate-buffered alkaline solution. The redox process of electrodes of sulfide ores was investigated using silicone-impregnated graphite electrode. The cathodic and anodic reaction products in alkaline solution were determined within the potential range of -2V to +2V (vs. Ag/AgCl. The several successive measurement cycles’ voltammograms leads to the appearance of a new anodic peak at E = 450mV, which is absent in the first cycle and curves, as well as other features that appear in cycling, can probably be explained by secondary electrochemical transformations of the products formed by the oxidation of the original pyrite at the interface between the electrode material.DOI: http://doi.dx.org/10.5564/mjc.v15i0.318 Mongolian Journal of Chemistry 15 (41, 2014, p33-35

  19. Electrochemical Behavior of Pure Copper in Phosphate Buffer Solutions: A Comparison Between Micro- and Nano-Grained Copper

    Science.gov (United States)

    Imantalab, O.; Fattah-alhosseini, A.; Keshavarz, M. K.; Mazaheri, Y.

    2016-02-01

    In this work, electrochemical behavior of annealed (micro-) and nano-grained pure copper (fabricated by accumulative roll bonding process) in phosphate buffer solutions of various pH values ranging from 10.69 to 12.59 has been studied. Before any electrochemical measurements, evaluation of microstructure was obtained by optical microscope and transmission electron microscopy. To investigate the electrochemical behavior of the samples, the potentiodynamic polarization, Mott-Schottky analysis, and electrochemical impedance spectroscopy (EIS) were carried out. Potentiodynamic polarization plots and EIS measurements revealed that as a result of grain refinement, the passive behavior of the nano-grained sample was improved compared to that of annealed pure copper. Also, Mott-Schottky analysis indicated that the passive films behaved as p-type semiconductors and grain refinement did not change the semiconductor type of passive films.

  20. Electrochemical behavior and voltammetric determination of acetaminophen based on glassy carbon electrodes modified with poly(4-aminobenzoic acid)/electrochemically reduced graphene oxide composite films

    International Nuclear Information System (INIS)

    Zhu, Wencai; Huang, Hui; Gao, Xiaochun; Ma, Houyi

    2014-01-01

    Poly(4-aminobenzoic acid)/electrochemically reduced graphene oxide composite film modified glassy carbon electrodes (4-ABA/ERGO/GCEs) were fabricated by a two-step electrochemical method. The electrochemical behavior of acetaminophen at the modified electrode was investigated by means of cyclic voltammetry. The results indicated that 4-ABA/ERGO composite films possessed excellent electrocatalytic activity towards the oxidation of acetaminophen. The electrochemical reaction of acetaminophen at 4-ABA/ERGO/GCE is proved to be a surface-controlled process involving the same number of protons and electrons. The voltammetric determination of acetaminophen performed with the 4-ABA/ERGO modified electrode presents a good linearity in the range of 0.1–65 μM with a low detection limit of 0.01 μM (S/N = 3). In the case of using the 4-ABA/ERGO/GCE, acetaminophen and dopamine can be simultaneously determined without mutual interference. Furthermore, the 4-ABA/ERGO/GCE has good reproducibility and stability, and can be used to determine acetaminophen in tablets. - Highlights: • The 4-ABA/ERGO/GCE was fabricated by a two-step electrochemical method. • Electrochemical behavior of acetaminophen at the 4-ABA/ERGO/GCE was investigated. • The electrochemical sensor exhibited a low detection limit and good selectivity. • This sensor was applied to the detection of acetaminophen in commercial tablets

  1. Electrochemical behavior and voltammetric determination of acetaminophen based on glassy carbon electrodes modified with poly(4-aminobenzoic acid)/electrochemically reduced graphene oxide composite films

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Wencai [Key Laboratory for Colloid and Interface Chemistry of State Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan 250013 (China); Huang, Hui; Gao, Xiaochun [Key Laboratory for Colloid and Interface Chemistry of State Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Ma, Houyi, E-mail: hyma@sdu.edu.cn [Key Laboratory for Colloid and Interface Chemistry of State Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China)

    2014-12-01

    Poly(4-aminobenzoic acid)/electrochemically reduced graphene oxide composite film modified glassy carbon electrodes (4-ABA/ERGO/GCEs) were fabricated by a two-step electrochemical method. The electrochemical behavior of acetaminophen at the modified electrode was investigated by means of cyclic voltammetry. The results indicated that 4-ABA/ERGO composite films possessed excellent electrocatalytic activity towards the oxidation of acetaminophen. The electrochemical reaction of acetaminophen at 4-ABA/ERGO/GCE is proved to be a surface-controlled process involving the same number of protons and electrons. The voltammetric determination of acetaminophen performed with the 4-ABA/ERGO modified electrode presents a good linearity in the range of 0.1–65 μM with a low detection limit of 0.01 μM (S/N = 3). In the case of using the 4-ABA/ERGO/GCE, acetaminophen and dopamine can be simultaneously determined without mutual interference. Furthermore, the 4-ABA/ERGO/GCE has good reproducibility and stability, and can be used to determine acetaminophen in tablets. - Highlights: • The 4-ABA/ERGO/GCE was fabricated by a two-step electrochemical method. • Electrochemical behavior of acetaminophen at the 4-ABA/ERGO/GCE was investigated. • The electrochemical sensor exhibited a low detection limit and good selectivity. • This sensor was applied to the detection of acetaminophen in commercial tablets.

  2. Theoretical aspects of several successive two-step redox mechanisms in protein-film cyclic staircase voltammetry

    International Nuclear Information System (INIS)

    Gulaboski, Rubin; Kokoškarova, Pavlinka; Mitrev, Saša

    2012-01-01

    Highlights: ► Theoretical models for 2e− successive mechanisms are considered. ► The models are compatible for various metal-containing redox proteins. ► Diagnostic criteria are provided to recognize the particular redox mechanism. - Abstract: Protein-film voltammetry (PFV) is a versatile tool designed to provide insight into the enzymes physiological functions by studying the redox properties of various oxido-reductases with suitable voltammetric technique. The determination of the thermodynamic and kinetic parameters relevant to protein's physiological properties is achieved via methodologies established from theoretical considerations of various mechanisms in PFV. So far, the majority of the mathematical models in PFV have been developed for redox proteins undergoing a single-step electron transfer reactions. However, there are many oxido-reductases containing quinone moieties or polyvalent ions of transition metals like Mo, Mn, W, Fe or Co as redox centers, whose redox chemistry can be described only via mathematical models considering successive two-step electron transformation. In this work we consider theoretically the protein-film redox mechanisms of the EE (Electrochemical–Electrochemical), ECE (Electrochemical–Chemical–Electrochemical), and EECat (Electrochemical–Electrochemical–Catalytic) systems under conditions of cyclic staircase voltammetry. We also propose methodologies to determine the kinetics of electron transfer steps by all considered mechanisms. The experimentalists working with PFV can get large benefits from the simulated voltammograms given in this work.

  3. Materials for electrochemical capacitors

    Science.gov (United States)

    Simon, Patrice; Gogotsi, Yury

    2008-11-01

    Electrochemical capacitors, also called supercapacitors, store energy using either ion adsorption (electrochemical double layer capacitors) or fast surface redox reactions (pseudo-capacitors). They can complement or replace batteries in electrical energy storage and harvesting applications, when high power delivery or uptake is needed. A notable improvement in performance has been achieved through recent advances in understanding charge storage mechanisms and the development of advanced nanostructured materials. The discovery that ion desolvation occurs in pores smaller than the solvated ions has led to higher capacitance for electrochemical double layer capacitors using carbon electrodes with subnanometre pores, and opened the door to designing high-energy density devices using a variety of electrolytes. Combination of pseudo-capacitive nanomaterials, including oxides, nitrides and polymers, with the latest generation of nanostructured lithium electrodes has brought the energy density of electrochemical capacitors closer to that of batteries. The use of carbon nanotubes has further advanced micro-electrochemical capacitors, enabling flexible and adaptable devices to be made. Mathematical modelling and simulation will be the key to success in designing tomorrow's high-energy and high-power devices.

  4. Inert Layered Silicate Improves the Electrochemical Responses of a Metal Complex Polymer.

    Science.gov (United States)

    Eguchi, Miharu; Momotake, Masako; Inoue, Fumie; Oshima, Takayoshi; Maeda, Kazuhiko; Higuchi, Masayoshi

    2017-10-11

    A chemically inert, insulating layered silicate (saponite; SP) and an iron(II)-based metallo-supramolecular complex polymer (polyFe) were combined via electrostatic attraction to improve the electrochromic properties of polyFe. Structural characterization indicated that polyFe was intercalated into the SP nanosheets. Interestingly, the redox potential of polyFe was lowered by combining it with SP, and the current was measurable despite the insulating nature of SP. X-ray photoelectron spectroscopy showed that the decrease in the redox potential observed in the SP-polyFe hybrid was caused by the electrostatic neutralization of the Fe cation in polyFe by the negative charge on SP. Electrochemical analyses indicated that electron transfer occurred through electron hopping across the SP-polyFe hybrid. Control experiments using a metal complex composed of Fe and two 2,2':6',2''-terpyridine ligands (terpyFe) showed that SP contributes to the effective electron hopping. This modulation of the electrochemical properties by the layered silicates could be applied to other electrochemical systems, including hybrids of the redox-active ionic species and ion-exchangeable adsorbents.

  5. Electrochemical Behavior and Antioxidant and Prooxidant Activity of Natural Phenolics

    Directory of Open Access Journals (Sweden)

    Marija Todorović

    2007-10-01

    Full Text Available We have investigated the electrochemical oxidation of a number natural phenolics (salicylic acid, m-hydroxybenzoic acid, p-hydroxybenzoic acid, protocatechuic acid, o-coumaric acid, m-coumaric acid, p-coumaric acid, caffeic acid, quercetin and rutin using cyclic voltammetry. The antioxidant properties of these compounds were also studied. A structural analysis of the tested phenolics suggests that multiple OH substitution and conjugation are important determinants of the free radical scavenging activity and electrochemical behavior. Compounds with low oxidation potentials (Epa lower than 0.45 showed antioxidant activity, whereas compounds with high Epa values (>0.45 act as prooxidants.

  6. High-energy redox-flow batteries with hybrid metal foam electrodes.

    Science.gov (United States)

    Park, Min-Sik; Lee, Nam-Jin; Lee, Seung-Wook; Kim, Ki Jae; Oh, Duk-Jin; Kim, Young-Jun

    2014-07-09

    A nonaqueous redox-flow battery employing [Co(bpy)3](+/2+) and [Fe(bpy)3](2+/3+) redox couples is proposed for use in large-scale energy-storage applications. We successfully demonstrate a redox-flow battery with a practical operating voltage of over 2.1 V and an energy efficiency of 85% through a rational cell design. By utilizing carbon-coated Ni-FeCrAl and Cu metal foam electrodes, the electrochemical reactivity and stability of the nonaqueous redox-flow battery can be considerably enhanced. Our approach intoduces a more efficient conversion of chemical energy into electrical energy and enhances long-term cell durability. The cell exhibits an outstanding cyclic performance of more than 300 cycles without any significant loss of energy efficiency. Considering the increasing demands for efficient energy storage, our achievement provides insight into a possible development pathway for nonaqueous redox-flow batteries with high energy densities.

  7. Electrochemical energy storage systems for solar thermal applications

    Science.gov (United States)

    Krauthamer, S.; Frank, H.

    1980-01-01

    Existing and advanced electrochemical storage and inversion/conversion systems that may be used with terrestrial solar-thermal power systems are evaluated. The status, cost and performance of existing storage systems are assessed, and the cost, performance, and availability of advanced systems are projected. A prime consideration is the cost of delivered energy from plants utilizing electrochemical storage. Results indicate that the five most attractive electrochemical storage systems are the: iron-chromium redox (NASA LeRC), zinc-bromine (Exxon), sodium-sulfur (Ford), sodium-sulfur (Dow), and zinc-chlorine (EDA).

  8. Characterization of ferritin core on redox reactions as a nanocomposite for electron transfer

    International Nuclear Information System (INIS)

    Shin, Kwang Min; Watt, Richard K.; Watt, Gerald D.; Choi, Sang H.; Kim, Hyug-Han; Kim, Sun I.; Kim, Seon Jeong

    2010-01-01

    The kinetics of the change in mass related to the release from and deposition onto the cavities of a ferritin in the SWCNT nanocomposite by electrochemical redox reactions, and the effects of the SWCNT on the kinetics of the variation in mass of the ferritin nanocomposite were characterized using an electrochemical quartz crystal microbalance. The change in mass of reconstituted ferritin in the SWCNT nanocomposite shows reversible variation and stability of the ferritin/SWCNT nanocomposite on redox reactions was confirmed by using a coreless apoferritin and a Fe 2+ chelating agent. The ferritin/SWCNT nanocomposite is a good candidate for applications based on electron transfer, such as biosensor, biobatteries and electrodes for biofuel cell.

  9. An application of actinide elements for a redox flow battery

    International Nuclear Information System (INIS)

    Shiokawa, Yoshinobu; Yamana, Hajimu; Moriyama, Hirotake

    2000-01-01

    The electrochemical properties of U, Np, Pu and Am were discussed from the viewpoint of cell active materials. From the thermodynamic properties and the kinetics of electrode reactions, it is found that neptunium in the aqueous system can be utilized as an active material of the redox flow battery for the electric power storage. A new neptunium redox battery is proposed in the present article: the galvanic cell is expressed by (-)|Np 3+ , Np 4+ |NpO 2 + , NpO 2 2+ |(+). The neptunium battery is expected to have more excellent charge and discharge performance than the current vanadium battery, whereas the thermodynamic one of the former is comparable to the latter. For the development of a uranium redox battery, the application of the redox reactions in the non-aqueous solvents is essential. (author)

  10. Electrochemical corrosion behavior of a Ti-35Nb alloy for medical prostheses

    International Nuclear Information System (INIS)

    Cremasco, Alessandra; Osorio, Wislei R.; Freire, Celia M.A.; Garcia, Amauri; Caram, Rubens

    2008-01-01

    Since the 1980s, the titanium alloys show attractive properties for biomedical applications where the most important factors are, firstly, biocompatibility, corrosion and mechanical resistances, low modulus of elasticity, very good strength to weight ratio, reasonable formability and osseointegration. The aim of this study was to investigate the effects of two different heat treatments; furnace cooling and water quenching, on the general electrochemical corrosion resistance of Ti-35 wt%Nb alloy samples immersed in a 0.9% NaCl (0.15 mol L -1 ) solution at 25 deg. C and neutral pH range. The samples were obtained using a non-consumable tungsten electrode furnace with a water-cooled copper hearth under argon atmosphere. The microstructural pattern was examined by scanning electron microscopy (SEM) and X-ray diffractometry (XRD). In order to evaluate the electrochemical corrosion behavior of such Ti-Nb alloy samples, corrosion tests were performed by using electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization curves. Analyses of an equivalent circuit have also been used to provide quantitative support for the discussions and understanding of the corrosion behavior. It was found that water quenching provides a microstructural pattern consisting of an alpha-martensite acicular phase which decreases the material electrochemical performance due to the stress-induced martensitic transformation

  11. Electrochemical corrosion behavior of a Ti-35Nb alloy for medical prostheses

    Energy Technology Data Exchange (ETDEWEB)

    Cremasco, Alessandra [Department of Materials Engineering, State University of Campinas, UNICAMP, P.O. Box 6122, 13083-970 Campinas, SP (Brazil); Osorio, Wislei R. [Department of Materials Engineering, State University of Campinas, UNICAMP, P.O. Box 6122, 13083-970 Campinas, SP (Brazil)], E-mail: wislei@fem.unicamp.br; Freire, Celia M.A.; Garcia, Amauri; Caram, Rubens [Department of Materials Engineering, State University of Campinas, UNICAMP, P.O. Box 6122, 13083-970 Campinas, SP (Brazil)

    2008-05-30

    Since the 1980s, the titanium alloys show attractive properties for biomedical applications where the most important factors are, firstly, biocompatibility, corrosion and mechanical resistances, low modulus of elasticity, very good strength to weight ratio, reasonable formability and osseointegration. The aim of this study was to investigate the effects of two different heat treatments; furnace cooling and water quenching, on the general electrochemical corrosion resistance of Ti-35 wt%Nb alloy samples immersed in a 0.9% NaCl (0.15 mol L{sup -1}) solution at 25 deg. C and neutral pH range. The samples were obtained using a non-consumable tungsten electrode furnace with a water-cooled copper hearth under argon atmosphere. The microstructural pattern was examined by scanning electron microscopy (SEM) and X-ray diffractometry (XRD). In order to evaluate the electrochemical corrosion behavior of such Ti-Nb alloy samples, corrosion tests were performed by using electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization curves. Analyses of an equivalent circuit have also been used to provide quantitative support for the discussions and understanding of the corrosion behavior. It was found that water quenching provides a microstructural pattern consisting of an alpha-martensite acicular phase which decreases the material electrochemical performance due to the stress-induced martensitic transformation.

  12. 4-acetamido-2,2,6,6-tetramethylpiperidine-1-oxyl as a model organic redox active compound for nonaqueous flow batteries

    Science.gov (United States)

    Milshtein, Jarrod D.; Barton, John L.; Darling, Robert M.; Brushett, Fikile R.

    2016-09-01

    Nonaqueous redox flow batteries (NAqRFBs) that utilize redox active organic molecules are an emerging energy storage concept with the possibility of meeting grid storage requirements. Sporadic and uneven advances in molecular discovery and development, however, have stymied efforts to quantify the performance characteristics of nonaqueous redox electrolytes and flow cells. A need exists for archetypal redox couples, with well-defined electrochemical properties, high solubility in relevant electrolytes, and broad availability, to serve as probe molecules. This work investigates the 4-acetamido-2,2,6,6-tetramethylpiperidine-1-oxyl (AcNH-TEMPO) redox pair for such an application. We report the physicochemical and electrochemical properties of the reduced and oxidized compounds at dilute concentrations for electroanalysis, as well as moderate-to-high concentrations for RFB applications. Changes in conductivity, viscosity, and UV-vis absorbance as a function of state-of-charge are quantified. Cyclic voltammetry investigates the redox potential, reversibility, and diffusion coefficients of dilute solutions, while symmetric flow cell cycling determines the stability of the AcNH-TEMPO redox pair over long experiment times. Finally, single electrolyte flow cell studies demonstrate the utility of this redox couple as a platform chemistry for benchmarking NAqRFB performance.

  13. Preliminary results of the comparison of the electrochemical behavior of a thioether and biphenyl

    Science.gov (United States)

    Morales, W.; Jones, W. R.

    1983-01-01

    An electrochemical cell was constructed to explore the feasibility of using electrochemical techniques to simulate the tribochemistry of various substances. The electrochemical cell was used to study and compare the behavior of a thioether 1,3-bis(phenylthio) benzene and biphenyl. It is found that under controlled conditions biphenyl undergoes a reversible reduction to a radical anion whereas the thioether undergoes an irreversible reduction yielding several products. The results are discussed in relationship to boundary lubrication.

  14. Electrochemical properties of ion implanted silicon

    International Nuclear Information System (INIS)

    Pham minh Tan.

    1979-11-01

    The electrochemical behaviour of ion implanted silicon in contact with hydrofluoric acid solution was investigated. It was shown that the implanted layer on silicon changes profoundly its electrochemical properties (photopotential, interface impedance, rest potential, corrosion, current-potential behaviour, anodic dissolution of silicon, redox reaction). These changes depend strongly on the implantation parameters such as ion dose, ion energy, thermal treatment and ion mass and are weakly dependent on the chemical nature of the implantation ion. The experimental results were evaluated and interpreted in terms of the semiconductor electrochemical concepts taking into account the interaction of energetic ions with the solid surface. The observed effects are thus attributed to the implantation induced damage of silicon lattice and can be used for profiling of the implanted layer and the electrochemical treatment of the silicon surface. (author)

  15. Highly sensitive and label-free electrochemical detection of microRNAs based on triple signal amplification of multifunctional gold nanoparticles, enzymes and redox-cycling reaction.

    Science.gov (United States)

    Liu, Lin; Xia, Ning; Liu, Huiping; Kang, Xiaojing; Liu, Xiaoshuan; Xue, Chan; He, Xiaoling

    2014-03-15

    MicroRNAs (miRNAs) are believed to be important for cancer diagnosis and prognosis, serving as reliable molecular biomarkers. In this work, we presented a label-free and highly sensitive electrochemical genosensor for miRNAs detection with the triple signal amplification of gold nanoparticles (AuNPs), alkaline phosphatase (ALP) and p-aminophenol (p-AP) redox cycling. The label-free strategy is based on the difference in the structures of RNA and DNA. Specifically, miRNAs were first captured by the pre-immobilized DNA probes on a gold electrode. Next, the cis-diol group of ribose sugar at the end of the miRNAs chain allowed 3-aminophenylboronic acid (APBA)/biotin-modified multifunctional AuNPs (denoted as APBA-biotin-AuNPs) to be attached through the formation of a boronate ester covalent bond, which facilitated the capture of streptavidin-conjugated alkaline phosphatase (SA-ALP) via the biotin-streptavidin interaction. After the addition of the 4-aminophenylphosphate (p-APP) substrate, the enzymatic conversion from p-APP to p-AP occurred. The resulting p-AP could be cycled by a chemical reducing reagent after its electro-oxidization on the electrode (known as p-AP redox cycling), thus enabling an increase in the anodic current. As a result, the current increased linearly with the miRNAs concentration over a range of 10 fM-5 pM, and a detection limit of 3 fM was achieved. We believe that this work will be valuable for the design of new types of label-free and sensitive electrochemical biosensors. © 2013 Published by Elsevier B.V.

  16. Treatment of graphite felt by modified Hummers method for the positive electrode of vanadium redox flow battery

    International Nuclear Information System (INIS)

    Wu, Xiaoxin; Xu, Hongfeng; Shen, Yang; Xu, Pengcheng; Lu, Lu; Fu, Jie; Zhao, Hong

    2014-01-01

    A novel and highly effective treatment based on modified Hummers method was firstly used to improve the electrochemical activity of graphite felt as the positive electrode in all-vanadium redox flow battery (VRFB). The graphite felt was treated by the modified Hummers method and characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The electrochemical performance of the prepared electrode was evaluated through cyclic voltammetry and electrochemical impedance spectroscopy. Results show that graphite felt treated by modified Hummers method exhibits excellent electrocatalytic activity and reaction rate to vanadium redox couples. In our research, the hydrogen electrode and H 2 replaced the graphite felt and V 2+ /V 3+ couple in the negative side in the VRFB performance test. The coulombic, voltage, and energy efficiencies of the VRFB with the as-prepared electrodes at 50 mA cm −2 are 95.0%, 81.3%, and 77.2%, respectively. These values are much higher than those of the cell-assembled graphite felt electrodes that were conventionally and thermally treated. The graphite felt treated by the modified Hummers method carries more hydrophilic groups, such as–OH, on its defects, which is advantageous in facilitating the redox reaction of vanadium ions, thereby improving the operation efficiency of the vanadium redox flow battery

  17. Effect of Fe2O3 and Binder on the Electrochemical Properties of Fe2O3/AB (Acetylene Black) Composite Electrodes

    Science.gov (United States)

    Anh, Trinh Tuan; Thuan, Vu Manh; Thang, Doan Ha; Hang, Bui Thi

    2017-06-01

    In an effort to find the best anode material for Fe/air batteries, a Fe2O3/AB (Acetylene Black) composite was prepared by dry-type ball milling using Fe2O3 nanoparticles and AB as the active and additive materials, respectively. The effects of various binders and Fe2O3 content on the electrochemical properties of Fe2O3/AB electrodes in alkaline solution were investigated. It was found that the content of Fe2O3 strongly affected the electrochemical behavior of Fe2O3/AB electrodes; with Fe2O3 nanopowder content reaching 70 wt.% for the electrode and showing improvement of the cyclability. When the electrode binder polytetrafluoroethylene (PTFE) was used, clear redox peaks were observed via cyclic voltammetry (CV), while polyvinylidene fluoride-containing electrodes provided CV curves with unobservable redox peaks. Increasing either binder content in the electrode showed a negative effect in terms of the cyclability of the Fe2O3/AB electrode.

  18. Synthesis, pH dependent photometric and electrochemical investigation, redox mechanism and biological applications of novel Schiff base and its metallic derivatives

    Science.gov (United States)

    Rauf, Abdur; Shah, Afzal; Khan, Abdul Aziz; Shah, Aamir Hassan; Abbasi, Rashda; Qureshi, Irfan Zia; Ali, Saqib

    2017-04-01

    A novel Schiff base, 1-((2, 4-dimethylphenylimino)methyl)naphthalen-2-ol abbreviated as (HL) and its four metallic complexes were synthesized and confirmed by 1H and 13C NMR, FTIR, TGA and UV-Visible spectroscopy. Schiff base was also characterized by X-ray analysis. The photometric and electrochemical responses of all the synthesized compounds were investigated in a wide pH range. Structures of the compounds were optimized computationally for the evaluation of different physico-chemical parameters. On the basis of electrochemical results the redox mechanistic pathways of the compounds were proposed. The cytotoxicity analysis on Hela cells revealed that HL and its complexes inhibit cell growth as revealed from their IC50 values (HL):106.7 μM, (L2VO): 40.66 μM, (L2Sn): 5.92 μM, (L2Zn): 42.82 and (L2Co): 107.68 μM. The compounds were tested for anti-diabetic, triglyceride, cholesterol, anti-microbial, anti-fungal and enzyme inhibition activities. The results revealed that HL and its complexes are promising new therapeutic options as these compounds exhibit strong activity against cancer cells, diabetics, fungal and microbial inhibition.

  19. Abiotic pyrite reactivity versus nitrate, selenate and selenite using chemical and electrochemical methods

    International Nuclear Information System (INIS)

    Ignatiadis, I.; Betelu, S.; Gaucher, E.; Tournassat, C.; Chainet, F.

    2010-01-01

    Document available in extended abstract form only. This work is part of ReCosy European project (www.recosy.eu), whose main objectives are the sound understanding of redox phenomena controlling the long-term release/retention of radionuclides in nuclear waste disposal and providing tools to apply the results to performance assessment/safety case. Redox is one of the main factor affecting speciation and mobility of redox-sensitive radionuclides. Thus, it is of a great importance to investigate the redox reactivity of the host radioactive waste formations, particularly when exposed to redox perturbations. Callovo-Oxfordian formation (COx), a clay rock known as an anoxic and reducing system, was selected in France as the most suitable location to store nuclear waste. Iron (II) sulfide, mostly constituted of pyrite (FeS 2 ), iron (II) carbonate, iron(II) bearing clays and organic matter are considered to account almost entirely for the total reducing capacity of the rock. We report here the redox reactivity of pyrite upon exposure to nitrate (N(V)), selenate (Se(VI)) and selenite (Se(IV)) that possibly occur in the nuclear storage. Both, chemical and electrochemical kinetic approaches were simultaneously conducted such as to (i) determine the kinetics parameters of the reactions and (ii) understand the kinetic mechanisms. In order to reach similar conditions that are encountered in the storage system, all experiments were realised in NaCl 0.1 M, near neutral pH solutions, and an abiotic glove box (O 2 less than 10 -8 M). Chemical approach has consisted to set in contact pyrite in grains with solutions containing respectively nitrate, selenate and selenite. Reactants and products chemical analyses, conducted at different contact times, allowed us to assess the kinetics of oxidant reduction. Electrochemical approach has consisted in the continuous or semi-continuous analysis of large surface pyrite electrodes immersed in solutions with or without oxidant (nitrate

  20. Electrochemical investigations of Pu(IV)/Pu(III) redox reaction using graphene modified glassy carbon electrodes and a comparison to the performance of SWCNTs modified glassy carbon electrodes

    International Nuclear Information System (INIS)

    Gupta, Ruma; Gamare, Jayashree; Sharma, Manoj K.; Kamat, J.V.

    2016-01-01

    Highlights: • First report of aqueous electrochemistry of Plutonium on graphene modified electrode. • Graphene is best electrocatalytic material for Pu(IV)/Pu(III) redox couple among the reported modifiers viz. reduced graphene oxide (rGO) and SWCNT’s. • The electrochemical reversibility of Pu(IV)/Pu(III) redox couple improves significantly on graphene modified electrode compared to previously reported rGO & SWCNTs modified electrodes • Donnan interaction between plutonium species and graphene surface offers a possibility for designing a highly sensitive sensor for plutonium • Graphene modified electrode shows higher sensitivity for the determination of plutonium compared to glassy carbon and single walled carbon nanotube modified electrode - Abstract: The work reported in this paper demonstrates for the first time that graphene modified glassy carbon electrode (Gr/GC) show remarkable electrocatalysis towards Pu(IV)/Pu(III) redox reaction and the results were compared with that of single-walled carbon nanotubes modified GC (SWCNTs/GC) and glassy carbon (GC) electrodes. Graphene catalyzes the exchange of current of the Pu(IV)/Pu(III) couple by reducing both the anodic and cathodic overpotentials. The Gr/GC electrode shows higher peak currents (i p ) and smaller peak potential separation (ΔE p ) values than the SWCNTs/GC and GC electrodes. The heterogeneous electron transfer rate constants (k s ), charge transfer coefficients (α) and the diffusion coefficients (D) involved in the electrocatalytic redox reaction were determined. Our observations show that graphene is best electrocatalytic material among both the SWCNTs and GC to study Pu(IV)/Pu(III) redox reaction.

  1. Redox properties of structural Fe in clay minerals: 3. Relationships between smectite redox and structural properties.

    Science.gov (United States)

    Gorski, Christopher A; Klüpfel, Laura E; Voegelin, Andreas; Sander, Michael; Hofstetter, Thomas B

    2013-01-01

    Structural Fe in clay minerals is an important redox-active species in many pristine and contaminated environments as well as in engineered systems. Understanding the extent and kinetics of redox reactions involving Fe-bearing clay minerals has been challenging due to the inability to relate structural Fe(2+)/Fe(total) fractions to fundamental redox properties, such as reduction potentials (EH). Here, we overcame this challenge by using mediated electrochemical reduction (MER) and oxidation (MEO) to characterize the fraction of redox-active structural Fe (Fe(2+)/Fe(total)) in smectites over a wide range of applied EH-values (-0.6 V to +0.6 V). We examined Fe(2+)/Fe(total )- EH relationships of four natural Fe-bearing smectites (SWy-2, SWa-1, NAu-1, NAu-2) in their native, reduced, and reoxidized states and compared our measurements with spectroscopic observations and a suite of mineralogical properties. All smectites exhibited unique Fe(2+)/Fe(total) - EH relationships, were redox active over wide EH ranges, and underwent irreversible electron transfer induced structural changes that were observable with X-ray absorption spectroscopy. Variations among the smectite Fe(2+)/Fe(total) - EH relationships correlated well with both bulk and molecular-scale properties, including Fe(total) content, layer charge, and quadrupole splitting values, suggesting that multiple structural parameters determined the redox properties of smectites. The Fe(2+)/Fe(total) - EH relationships developed for these four commonly studied clay minerals may be applied to future studies interested in relating the extent of structural Fe reduction or oxidation to EH-values.

  2. Gold nanoparticle-based electrochemical biosensors

    International Nuclear Information System (INIS)

    Pingarron, Jose M.; Yanez-Sedeno, Paloma; Gonzalez-Cortes, Araceli

    2008-01-01

    The unique properties of gold nanoparticles to provide a suitable microenvironment for biomolecules immobilization retaining their biological activity, and to facilitate electron transfer between the immobilized proteins and electrode surfaces, have led to an intensive use of this nanomaterial for the construction of electrochemical biosensors with enhanced analytical performance with respect to other biosensor designs. Recent advances in this field are reviewed in this article. The advantageous operational characteristics of the biosensing devices designed making use of gold nanoparticles are highlighted with respect to non-nanostructured biosensors and some illustrative examples are commented. Electrochemical enzyme biosensors including those using hybrid materials with carbon nanotubes and polymers, sol-gel matrices, and layer-by-layer architectures are considered. Moreover, electrochemical immunosensors in which gold nanoparticles play a crucial role in the electrode transduction enhancement of the affinity reaction as well as in the efficiency of immunoreagents immobilization in a stable mode are reviewed. Similarly, recent advances in the development of DNA biosensors using gold nanoparticles to improve DNA immobilization on electrode surfaces and as suitable labels to improve detection of hybridization events are considered. Finally, other biosensors designed with gold nanoparticles oriented to electrically contact redox enzymes to electrodes by a reconstitution process and to the study of direct electron transfer between redox proteins and electrode surfaces have also been treated

  3. Gold nanoparticle-based electrochemical biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Pingarron, Jose M.; Yanez-Sedeno, Paloma; Gonzalez-Cortes, Araceli [Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040 Madrid (Spain)

    2008-08-01

    The unique properties of gold nanoparticles to provide a suitable microenvironment for biomolecules immobilization retaining their biological activity, and to facilitate electron transfer between the immobilized proteins and electrode surfaces, have led to an intensive use of this nanomaterial for the construction of electrochemical biosensors with enhanced analytical performance with respect to other biosensor designs. Recent advances in this field are reviewed in this article. The advantageous operational characteristics of the biosensing devices designed making use of gold nanoparticles are highlighted with respect to non-nanostructured biosensors and some illustrative examples are commented. Electrochemical enzyme biosensors including those using hybrid materials with carbon nanotubes and polymers, sol-gel matrices, and layer-by-layer architectures are considered. Moreover, electrochemical immunosensors in which gold nanoparticles play a crucial role in the electrode transduction enhancement of the affinity reaction as well as in the efficiency of immunoreagents immobilization in a stable mode are reviewed. Similarly, recent advances in the development of DNA biosensors using gold nanoparticles to improve DNA immobilization on electrode surfaces and as suitable labels to improve detection of hybridization events are considered. Finally, other biosensors designed with gold nanoparticles oriented to electrically contact redox enzymes to electrodes by a reconstitution process and to the study of direct electron transfer between redox proteins and electrode surfaces have also been treated. (author)

  4. The lightest organic radical cation for charge storage in redox flow batteries.

    Science.gov (United States)

    Huang, Jinhua; Pan, Baofei; Duan, Wentao; Wei, Xiaoliang; Assary, Rajeev S; Su, Liang; Brushett, Fikile R; Cheng, Lei; Liao, Chen; Ferrandon, Magali S; Wang, Wei; Zhang, Zhengcheng; Burrell, Anthony K; Curtiss, Larry A; Shkrob, Ilya A; Moore, Jeffrey S; Zhang, Lu

    2016-08-25

    In advanced electrical grids of the future, electrochemically rechargeable fluids of high energy density will capture the power generated from intermittent sources like solar and wind. To meet this outstanding technological demand there is a need to understand the fundamental limits and interplay of electrochemical potential, stability, and solubility in low-weight redox-active molecules. By generating a combinatorial set of 1,4-dimethoxybenzene derivatives with different arrangements of substituents, we discovered a minimalistic structure that combines exceptional long-term stability in its oxidized form and a record-breaking intrinsic capacity of 161 mAh/g. The nonaqueous redox flow battery has been demonstrated that uses this molecule as a catholyte material and operated stably for 100 charge/discharge cycles. The observed stability trends are rationalized by mechanistic considerations of the reaction pathways.

  5. Electrochemical Single-Molecule Transistors with Optimized Gate Coupling

    DEFF Research Database (Denmark)

    Osorio, Henrry M.; Catarelli, Samantha; Cea, Pilar

    2015-01-01

    Electrochemical gating at the single molecule level of viologen molecular bridges in ionic liquids is examined. Contrary to previous data recorded in aqueous electrolytes, a clear and sharp peak in the single molecule conductance versus electrochemical potential data is obtained in ionic liquids....... These data are rationalized in terms of a two-step electrochemical model for charge transport across the redox bridge. In this model the gate coupling in the ionic liquid is found to be fully effective with a modeled gate coupling parameter, ξ, of unity. This compares to a much lower gate coupling parameter...

  6. Microfluidic sensor for ultra high redox cycling amplification for highly selective electrochemical measurements

    NARCIS (Netherlands)

    Odijk, Mathieu; Straver, Martin; Olthuis, Wouter; van den Berg, Albert

    2011-01-01

    In this contribution a SU8/glass-based microfluidic sensor is described with two closely spaced parallel electrodes for highly selective measurements using the redox cycling (RC) effect. Using this sensor, a RC amplification of ~2000x is measured using the ferrocyanide redox couple, which is much

  7. New Supercapacitors Based on the Synergetic Redox Effect between Electrode and Electrolyte

    Directory of Open Access Journals (Sweden)

    You Zhang

    2016-08-01

    Full Text Available Redox electrolytes can provide significant enhancement of capacitance for supercapacitors. However, more important promotion comes from the synergetic effect and matching between the electrode and electrolyte. Herein, we report a novel electrochemical system consisted of a polyanilline/carbon nanotube composite redox electrode and a hydroquinone (HQ redox electrolyte, which exhibits a specific capacitance of 7926 F/g in a three-electrode system when the concentration of HQ in H2SO4 aqueous electrolyte is 2 mol/L, and the maximum energy density of 114 Wh/kg in two-electrode symmetric configuration. Moreover, the specific capacitance retention of 96% after 1000 galvanostatic charge/discharge cycles proves an excellent cyclic stability. These ultrahigh performances of the supercapacitor are attributed to the synergistic effect both in redox polyanilline-based electrolyte and the redox hydroquinone electrode.

  8. The Electrochemical Behavior of SnSb as an Anode for Li-ion Batteries Studied by Electrochemical Impedance Spectroscopy and Electron Microscopy

    International Nuclear Information System (INIS)

    Tesfaye, Alexander T.; Yücel, Yasemin D.; Barr, Maïssa K.S.; Santinacci, Lionel; Vacandio, Florence; Dumur, Frédéric; Maria, Sébastien; Monconduit, Laure; Djenizian, Thierry

    2017-01-01

    Highlights: •Electrochemical behavior of SnSb is investigated by EIS, SEM and TEM. •Formation of SEI and cracks occurs during cycling experiments. •The capacity fading as a result of the electrode modifications is discussed. -- Abstract: Evolution of the electrical and morphological properties of micron-sized SnSb has been investigated to understand the electrochemical behavior observed during cycling experiments. Electron microscopy techniques (scanning electron microscopy and transmission electron microscopy) and electrochemical impedance spectroscopy have been combined to evidence the electrode modifications and particularly the formation of a solid electrolyte interphase (SEI) layer. Evolution of the SEI resistance and the charge transfer resistance with the cell voltage can be explained by the electrolyte degradation and expansion/contraction of the electrode. Furthermore, we show that the SEI formation is not limited at the first discharge/charge of the battery. The continuous growth of the SEI layer up to 50 cycles associated to the electrode pulverization caused by the large volume variations are responsible for the capacity fading.

  9. Electrochemical co-reduction synthesis of graphene/nano-gold composites and its application to electrochemical glucose biosensor

    International Nuclear Information System (INIS)

    Wang, Xiaolin; Zhang, Xiaoli

    2013-01-01

    Graphical abstract: - Highlights: • Graphene/nano-Au composite was synthesized by electrochemical co-reduction method in one step. • Glucose oxidase achieves direct electrochemistry on the graphene/nano-Au composite film. • The glucose biosensor shows a high sensitivity of 56.93 μA mM −1 cm −2 toward glucose. • Glucose was detected with a wide linear range and low detection limit. - Abstract: A simple, green and controllable approach was employed for electrochemical synthesize of the graphene/nano-Au composites. The process was that graphene oxide and HAuCl 4 was electrochemically co-reduced onto the glassy carbon electrode (GCE) by cyclic voltammetry in one step. The obtained graphene/nano-Au/GCE exhibited high electrocatalytic activity toward H 2 O 2 , which resulted in a remarkable decrease in the overpotential of H 2 O 2 electrochemical oxidation compared with bare GCE. Such electrocatalytic behavior of the graphene/nano-Au/GCE permitted effective low-potential amperometric biosensing of glucose via the incorporation of glucose oxidase (GOD) with graphene/nano-Au. An obvious advantage of this enzyme electrode (graphene/nano-Au/GOD/GCE) was that the graphene/nano-Au nanocomposites provided a favorable microenvironment for GOD and facilitated the electron transfer between the active center of GOD and electrode. The immobilized GOD showed a direct, reversible redox reaction. Furthermore, the graphene/nano-Au/GOD/GCE was used as a glucose biosensor, displaying a low detection limit of 17 μM (S/N = 3), a high sensitivity of 56.93 μA mM −1 cm −2 , acceptable reproducibility, very good stability, selectivity and anti-interference ability

  10. Electrochemically induced C-H functionalization using bromide ion/2,2,6,6-tetramethylpiperidinyl-N-oxyl dual redox catalysts in a two-phase electrolytic system

    International Nuclear Information System (INIS)

    Li, Chao; Zeng, Cheng-Chu; Hu, Li-Ming; Yang, Feng-Lin; Yoo, Seung Joon; Little, R. Daniel

    2013-01-01

    Highlights: •Electrocatalytic C-H bond functionalization of tetrahydroisoquinolines is reported. •The transformation is mediated by a bromide ion/TEMPO dual redox catalyst system. •The transformation is conducted in a two-phase electrolytic medium. •The mechanism is proposed to proceed via a sequence of oxidation and addition reactions involving water as a nucleophile. •The procedure features wide substrate scope, the use of mild reaction conditions. -- Abstract: The electrochemical oxidative functionalization of benzylic C-H bonds, mediated by a dual bromide ion/2,2,6,6-tetramethylpiperidinyl-N-oxyl (TEMPO) redox catalyst system in a two-phase electrolytic medium, has been explored using cyclic voltammetry (CV) and preparative electrolysis techniques. The results show that electron transfer between TEMPO + and a neutral substrate occurs with an efficiency that depends upon the presence of a base. The preparative scale electrolysis led to the formation of dihydro-isoquinolinones, isochromanone and xanthenone in moderate to excellent yields. On the basis of the CV analysis and preparative electrolysis results, a reaction mechanism is proposed

  11. Microstructures and electrochemical behaviors of the friction stir welding dissimilar weld.

    Science.gov (United States)

    Shen, Changbin; Zhang, Jiayan; Ge, Jiping

    2011-06-01

    By using optical microscope, the microstructures of 5083/6082 friction stir welding (FSW) weld and parent materials were analyzed. Meanwhile, at ambient temperature and in 0.2 mol/L NaHS03 and 0.6 mol/L NaCl solutionby gravimetric test, potentiodynamic polarization curve test, electrochemical impedance spectra (EIS) and scanning electron microscope (SEM) observation, the electrochemical behavior of 5083/6082 friction stir welding weld and parent materials were comparatively investigated by gravimetric test, potentiodynamic polarization curve test, electrochemical impedance spectra (EIS) and scanning electron microscope (SEM) observation. The results indicated that at given processing parameters, the anti-corrosion property of the dissimilar weld was superior to those of the 5083 and 6082 parent materials. Copyright © 2011 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  12. Elucidation of the Mechanism of Redox Grafting of Diazotated Anthraquinone

    DEFF Research Database (Denmark)

    Chernyy, Sergey; Bousquet, Antoine; Torbensen, Kristian

    2012-01-01

    . Scanning electrochemical microscopy was used to study the relationship between the conductivity of thefilm and the charging level of the AQ redox units in the grafted film. For that purpose, approach curves were recorded at a platinum ultramicroelectrode for AQ-containing films on gold and glassy carbon...

  13. Electrochemical studies of redox probes in self-organized lyotropic ...

    Indian Academy of Sciences (India)

    Administrator

    quinone|hydroquinone, methyl viologen and ferrocenemethanol probes in a lyotropic hexagonal columnar phase (H1 phase) using cyclic voltammetry and electrochemical impedance ..... hydrogen bond of hydroquinone during oxidation is.

  14. Electrochemical roles of extracellular polymeric substances in biofilms

    DEFF Research Database (Denmark)

    Xiao, Yong; Zhao, Feng

    2017-01-01

    Most microbial cells in nature are surrounded by extracellular polymeric substances (EPS), which are fundamental components and determine the physiochemical properties of a biofilm. This review highlights the EPS properties of conductivity and redox ability from an electrochemical perspective, em...

  15. Evaluation of electrolytes for redox flow battery applications

    International Nuclear Information System (INIS)

    Chakrabarti, M.H.; Dryfe, R.A.W.; Roberts, E.P.L.

    2007-01-01

    A number of redox systems have been investigated in this work with the aim of identifying electrolytes suitable for testing redox flow battery cell designs. The criteria for the selection of suitable systems were fast electrochemical kinetics and minimal cross-contamination of active electrolytes. Possible electrolyte systems were initially selected based on cyclic voltammetry data. Selected systems were then compared by charge/discharge experiments using a simple H-type cell. The all-vanadium electrolyte system has been developed as a commercial system and was used as the starting point in this study. The performance of the all-vanadium system was significantly better than an all-chromium system which has recently been reported. Some metal-organic and organic redox systems have been reported as possible systems for redox flow batteries, with cyclic voltammetry data suggesting that they could offer near reversible kinetics. However, Ru(acac) 3 in acetonitrile could only be charged efficiently to 9.5% of theoretical charge, after which irreversible side reactions occurred and [Fe(bpy) 3 ](ClO 4 ) 2 in acetonitrile was found to exhibit poor charge/discharge performance

  16. Electrochemistry of actinide on electrochemically reduced graphene oxide: Electrocatalysis of Np(VI)O22+/Np(V)O2+ in nitric acid solution

    International Nuclear Information System (INIS)

    Ambolikar, Arvind S.; Guin, Saurav K.; Kasar, U.M.; Kamat, J.V.

    2015-01-01

    Highlights: • First report of aqueous electrochemistry of neptunium on electrochemically reduced graphene oxide (ERGNO). • First report on the electrochemical impedance spectroscopy of Np (VI) O 2 2+ /Np (V) O 2 + . • The electrochemical reversibility of Np (VI) O 2 2+ /Np (V) O 2 + redox couple improves on ERGNO compared to GC. • ERGNO shows higher sensitivity for the determination of Np compared to bare GC electrode. • The efficiency of detection of Np by ERGNO is improved by virtue of the electrocatalysis. - Abstract: Driven by the academic interest, we have studied the aqueous electrochemistry of neptunium (Np) in 1 M nitric acid solution on the electrochemically reduced graphene oxide (ERGNO) modified glassy carbon (GC) electrode. Similar to our previous experiences on the electrocatalytic action of ERGNO on the electrochemistry of uranium(VI)/uranium(IV) and plutonium(IV)/plutonium(III) redox couples, the present study confirms the robust electrocatalytic ability of ERGNO for the redox reaction of Np (VI) O 2 2+ /Np (V) O 2 + in acidic solution even at high anodic working potentials. The extent of the electrochemical reversibility of Np (VI) O 2 2+ /Np (V) O 2 + redox couple increases on ERGNO compared to the bare GC electrode. For the first time, the electron transfer reaction of Np (VI) O 2 2+ /Np (V) O 2 + redox couple is investigated by electrochemical impedance spectroscopy. The improved sensitivity as well as the lower limit of detection of Np by anodic square wave voltammetry on ERGNO compared to bare GC opens up the application of ERGNO in the nuclear science and technology.

  17. Composition and redox control of waste glasses: Recommendation for process control limit

    International Nuclear Information System (INIS)

    Jantzen, C.M.; Plodinec, M.J.

    1986-01-01

    An electrochemical series of redox couples, originally developed for Savannah River Laboratory glass frit 131 (SRL-131) as a reference composition, has been extended to two other alkali borosilicate compositions that are candidate glasses for nuclear waste immobilization. Since no dramatic differences were ascertained in the redox chemistry of selected multivalent elements in SRL-131 versus that in Savannah River Laboratory glass frit 165 (SRL-165) and in West Valley glass number-sign 205 (WV-205), the comprehensive electrochemical series can readily be applied to a range of nuclear waste glass compositions. In order to alleviate potential problems with foaming and precipitation of insolubles during the processing of the nuclear waste in these glass melts, the [Fe 2+ ]/[Fe 3+ ] ratio of the melt should be between 0.1 and 0.5. 27 refs., 4 figs., 2 tabs

  18. Electrochemical properties of LiMn2O4 cathode material doped with an actinide

    International Nuclear Information System (INIS)

    Eftekhari, Ali; Moghaddam, Abdolmajid Bayandori; Solati-Hashjin, Mehran

    2006-01-01

    Metal substation as an efficient approach for improvement of battery performance of LiMn 2 O 4 was performed by an actinide dopant. Uranium as the last natural element and most common actinide was employed for this purpose. Cyclic voltammetric studies revealed that incorporation of uranium into LiMn 2 O 4 spinel significantly improves electrochemical performance. It also strengthens the spinel stability to exhibit better cycleability. Surprisingly, the capacity increases upon cycling of LiU 0.01 Mn 1.99 O 4 cathode. This inverse behavior is attributed to uniform distribution of dopant during insertion/extraction process. In other words, this is an electrochemical refinement of the nanostructure which is not detectable in microscale morphology, as rearrangement of dopant in nanoscale occurs and this is an unexceptional nanostructural ordering. In addition, uranium doping strengthens the Li diffusion, particularly at redox potentials

  19. Dynamical analysis of electrochemical wall shear rate measurements

    NARCIS (Netherlands)

    Steenhoven, van A.A.; Beucken, van den F.J.H.M.

    1991-01-01

    The performance of a circular electrochemical wall shear rate probe under unsteady flow conditions is analysed through a combined ezxperimental, numerical and analytical approach. The experiments are performed with a ferri- and ferrocyanide redox couple and compared to finite element analysis of the

  20. Electrochemical migration, whisker formation, and corrosion behavior of printed circuit board under wet H2S environment

    International Nuclear Information System (INIS)

    Zou, Shiwen; Li, Xiaogang; Dong, Chaofang; Ding, Kangkang; Xiao, Kui

    2013-01-01

    Highlights: •The electrochemical migration, whisker formation, and corrosion behavior of PCB under wet H 2 S environment were observed and studied systematically. •The process of electrochemical migration of solder joints is explained. •The corrosion mechanism of PCB interconnectors induced by micro pores under wet H 2 S environment is discussed, and the corrosion reaction model is proposed. -- Abstract: Electrochemical migration, whisker formation, and corrosion behavior of printed circuit board (PCB) under wet H 2 S environment were analyzed by environment scanning electron microscope (ESEM), Energy dispersive X-ray spectroscopy (EDS) with mapping and element phase cluster (EPC) techniques, Raman Spectrum analysis and electrochemical impedance spectroscopy (EIS) technology. The results showed that nonuniform corrosion behavior occurred on PCB surfaces under 1 ppm wet H 2 S at 40 °C; whiskers formed on the inner sidewall of via-holes with a growth rate of 1.2 Å/s; numerous corrosion products migrated through the pore of plated gold layer, which broke off the protective layer. The corrosion rate was accelerated according to the big-cathode-small-anode model

  1. Electrochemical corrosion behavior of AZ91D alloy in ethylene glycol

    International Nuclear Information System (INIS)

    Fekry, A.M.; Fatayerji, M.Z.

    2009-01-01

    The effect of concentration on the corrosion behavior of Mg-based alloy AZ91D was investigated in ethylene glycol-water solutions using electrochemical techniques i.e. potentiodynamic polarization, electrochemical impedance measurements (EIS) and surface examination via scanning electron microscope (SEM) technique. This can provide a basis for developing new coolants for magnesium alloy engine blocks. Corrosion behavior of AZ91D alloy by coolant is important in the automotive industry. It was found that the corrosion rate of AZ91D alloy decreased with increasing concentration of ethylene glycol. For AZ91D alloy in chloride >0.05 M or fluoride 0.05 M for fluoride containing ethylene glycol solution, some inhibition effect has been observed. The corrosion of AZ91D alloy in the blank can be effectively inhibited by addition of 0.05 mM paracetamol that reacts with AZ91D alloy and forms a protective film on the surface at this concentration as confirmed by surface examination.

  2. A highly reversible anthraquinone-based anolyte for alkaline aqueous redox flow batteries

    Science.gov (United States)

    Cao, Jianyu; Tao, Meng; Chen, Hongping; Xu, Juan; Chen, Zhidong

    2018-05-01

    The development of electroactive organic materials for use in aqueous redox flow battery (RFB) electrolytes is highly attractive because of their structural flexibility, low cost and sustainability. Here, we report on a highly reversible anthraquinone-based anolyte (1,8-dihydroxyanthraquinone, 1,8-DHAQ) for alkaline aqueous RFB applications. Electrochemical measurements reveal the substituent position of hydroxyl groups for DHAQ isomers has a significant impact on the redox potential, electrochemical reversibility and water-solubility. 1,8-DHAQ shows the highest redox reversibility and rapidest mass diffusion among five isomeric DHAQs. The alkaline aqueous RFB using 1,8-DHAQ as the anolyte and potassium ferrocyanide as the catholyte yields open-circuit voltage approaching 1.1 V and current efficiency and capacity retention exceeding 99.3% and 99.88% per cycle, respectively. This aqueous RFB produces a maximum power density of 152 mW cm-2 at 100% SOC and 45 °C. Choline hydroxide was used as a hydrotropic agent to enhance the water-solubility of 1,8-DHAQ. 1,8-DHAQ has a maximum solubility of 3 M in 1 M KOH with 4 M choline hydroxide.

  3. Capacity improvement of the carbon-based electrochemical capacitor by zigzag-edge introduced graphene

    Science.gov (United States)

    Tamura, Naoki; Tomai, Takaaki; Oka, Nobuto; Honma, Itaru

    2018-01-01

    The electrochemical properties of graphene edge has been attracted much attention. Especially, zigzag edge has high electrochemical activity because neutral radical exits on edge. However, due to a lack of efficient production method for zigzag graphene, the electrochemical properties of zigzag edge have not been experimentally demonstrated and the capacitance enhancement of carbonaceous materials in energy storage devices by the control in their edge states is still challenge. In this study, we fabricated zigzag-edge-rich graphene by a one-step method combining graphene exfoliation in supercritical fluid and anisotropic etching by catalytic nanoparticles. This efficient production of zigzag-edge-rich graphene allows us to investigate the electrochemical activity of zigzag edge. By cyclic voltammetry, we revealed the zigzag edge-introduced graphene exhibited unique redox reaction in aqueous acid solution. Moreover, by the calculation on the density function theory (DFT), this unique redox potential for zigzag edge-introduced graphene can be attributed to the proton-insertion/-extraction reactions at the zigzag edge. This finding indicates that the graphene edge modification can contribute to the further increase in the capacitance of the carbon-based electrochemical capacitor.

  4. Optimal Sizing of Vanadium Redox Flow Battery Systems for Residential Applications Based on Battery Electrochemical Characteristics

    Directory of Open Access Journals (Sweden)

    Xinan Zhang

    2016-10-01

    Full Text Available The penetration of solar photovoltaic (PV systems in residential areas contributes to the generation and usage of renewable energy. Despite its advantages, the PV system also creates problems caused by the intermittency of renewable energy. As suggested by researchers, such problems deteriorate the applicability of the PV system and have to be resolved by employing a battery energy storage system (BESS. With concern for the high investment cost, the choice of a cost-effective BESS with proper sizing is necessary. To this end, this paper proposes the employment of a vanadium redox flow battery (VRB, which possesses a long cycle life and high energy efficiency, for residential users with PV systems. It further proposes methods of computing the capital and maintenance cost of VRB systems and evaluating battery efficiency based on VRB electrochemical characteristics. Furthermore, by considering the cost and efficiency of VRB, the prevalent time-of-use electricity price, the solar feed-in tariff, the solar power profile and the user load pattern, an optimal sizing algorithm for VRB systems is proposed. Simulation studies are carried out to show the effectiveness of the proposed methods.

  5. Sensitive Electrochemical Detection of Dopamine With a Nitrogen-doped Graphene Modified Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Wencheng Wang

    2016-09-01

    Full Text Available In this paper nitrogen-doped graphene (NG nanosheets were used as the modifier on the surface of glassy carbon electrode (GCE. The modified electrode (NG/GCE was further applied to the sensitive detection of dopamine (DA by voltammetric method. Due to the unique properties of NG such as large surface area and excellent electrocatalytic activity, electrochemical response of DA was greatly enhanced on NG/GCE with a pair of well-defined redox peaks appeared on cyclic voltammogram. Electrochemical behaviors of DA on NG/GCE were carefully investigated with the electrochemical parameters calculated. Under the selected conditions the oxidation peak currents of DA had a good linear relationship with its concentration in the range from 8.0×10–7 mol L–1 to 8.0×10–4 mol L–1 with a detection limit of 2.55×10–7 mol L–1 (3σ. The proposed method was further applied to the DA injection samples determination with satisfactory results. This work is licensed under a Creative Commons Attribution 4.0 International License.

  6. Bismuth nanoparticle decorating graphite felt as a high-performance electrode for an all-vanadium redox flow battery.

    Science.gov (United States)

    Li, Bin; Gu, Meng; Nie, Zimin; Shao, Yuyan; Luo, Qingtao; Wei, Xiaoliang; Li, Xiaolin; Xiao, Jie; Wang, Chongmin; Sprenkle, Vincent; Wang, Wei

    2013-03-13

    Employing electrolytes containing Bi(3+), bismuth nanoparticles are synchronously electrodeposited onto the surface of a graphite felt electrode during operation of an all-vanadium redox flow battery (VRFB). The influence of the Bi nanoparticles on the electrochemical performance of the VRFB is thoroughly investigated. It is confirmed that Bi is only present at the negative electrode and facilitates the redox reaction between V(II) and V(III). However, the Bi nanoparticles significantly improve the electrochemical performance of VRFB cells by enhancing the kinetics of the sluggish V(II)/V(III) redox reaction, especially under high power operation. The energy efficiency is increased by 11% at high current density (150 mA·cm(-2)) owing to faster charge transfer as compared with one without Bi. The results suggest that using Bi nanoparticles in place of noble metals offers great promise as high-performance electrodes for VRFB application.

  7. Electrochemical characterization of irreversibly adsorbed germanium on platinum stepped surfaces vicinal to Pt(1 0 0)

    International Nuclear Information System (INIS)

    Rodriguez, P.; Herrero, E.; Solla-Gullon, J.; Vidal-Iglesias, F.J.; Aldaz, A.; Feliu, J.M.

    2005-01-01

    The electrochemical behavior of germanium irreversibly adsorbed at stepped surfaces vicinal to the Pt(1 0 0) pole is reported. The process taking part on the (1 0 0) terraces is evaluated from charge density measurements and calibration lines versus the terrace dimension are plotted. On the series Pt(2n - 1,1,1) having (1 1 1) monoatomic steps, the charge involved in the redox process undergone by the irreversibly adsorbed germanium is able to account for (n - 0.5) terrace atoms, thus suggesting some steric difficulties in the growth of the adlayer on the (1 0 0) terraces. Conversely, no steric problems are apparent in the series Pt(n,1,0) in which more open (1 0 0) steps are present on the (1 0 0) terraces. In this latter case the charge density under the germanium redox peaks is proportional to the number of terrace atoms. Some comparison is made with other stepped surfaces to understand the behavior and stability of germanium irreversibly adsorbed on the different platinum surface sites

  8. Faradic redox active material of Cu7S4 nanowires with a high conductance for flexible solid state supercapacitors

    Science.gov (United States)

    Javed, Muhammad Sufyan; Dai, Shuge; Wang, Mingjun; Xi, Yi; Lang, Qiang; Guo, Donglin; Hu, Chenguo

    2015-08-01

    The exploration of high Faradic redox active materials with the advantages of low cost and low toxicity has been attracting great attention for producing high energy storage supercapacitors. Here, the high Faradic redox active material of Cu7S4-NWs coated on a carbon fiber fabric (CFF) is directly used as a binder-free electrode for a high performance flexible solid state supercapacitor. The Cu7S4-NW-CFF supercapacitor exhibits excellent electrochemical performance such as a high specific capacitance of 400 F g-1 at the scan rate of 10 mV s-1 and a high energy density of 35 Wh kg-1 at a power density of 200 W kg-1, with the advantages of a light weight, high flexibility and long term cycling stability by retaining 95% after 5000 charge-discharge cycles at a constant current of 10 mA. The high Faradic redox activity and high conductance behavior of the Cu7S4-NWs result in a high pseudocapacitive performance with a relatively high specific energy and specific power. Such a new type of pseudocapacitive material of Cu7S4-NWs with its low cost is very promising for actual application in supercapacitors.The exploration of high Faradic redox active materials with the advantages of low cost and low toxicity has been attracting great attention for producing high energy storage supercapacitors. Here, the high Faradic redox active material of Cu7S4-NWs coated on a carbon fiber fabric (CFF) is directly used as a binder-free electrode for a high performance flexible solid state supercapacitor. The Cu7S4-NW-CFF supercapacitor exhibits excellent electrochemical performance such as a high specific capacitance of 400 F g-1 at the scan rate of 10 mV s-1 and a high energy density of 35 Wh kg-1 at a power density of 200 W kg-1, with the advantages of a light weight, high flexibility and long term cycling stability by retaining 95% after 5000 charge-discharge cycles at a constant current of 10 mA. The high Faradic redox activity and high conductance behavior of the Cu7S4-NWs result in

  9. Sodium-ion supercapacitors based on nanoporous pyroproteins containing redox-active heteroatoms

    Science.gov (United States)

    Cho, Se Youn; Yoon, Hyeon Ji; Kim, Na Rae; Yun, Young Soo; Jin, Hyoung-Joon

    2016-10-01

    Nanostructured carbon-based materials fabricated via simple methods from renewable bio-resources have great potential in rechargeable energy storage systems. In this study, nanoporous pyroproteins containing a large amount of redox-active heteroatoms (H-NPs) were fabricated from silk fibroin by an in situ carbonization/activation method. The H-NPs have a large surface area of ∼3050 m2 g-1, which is mainly comprised of nanometer-scale pores. Also, these H-NPs have oxygen and nitrogen heteroatoms of 17.4 wt% and 2.9 wt%, respectively. Synergistic sodium ion storage behaviors originate from electrochemical double layer capacitance and pseudocapacitance, leading to very high electrochemical performances of H-NPs in aqueous and non-aqueous electrolyte systems. Sodium-ion supercapacitors (NISs) based on commercial graphite//H-NPs show a high specific power of ∼1900 W kg-1 at ∼77 Wh kg-1. Also, NISs based on commercial hard carbon//H-NPs exhibit a high specific energy of ∼217 Wh kg-1 at ∼42 W kg-1. In addition, outstanding cycling performances over 30,000 cycles are achieved for symmetric NISs.

  10. Electrochemical behavior of monolayer and bilayer graphene.

    Science.gov (United States)

    Valota, Anna T; Kinloch, Ian A; Novoselov, Kostya S; Casiraghi, Cinzia; Eckmann, Axel; Hill, Ernie W; Dryfe, Robert A W

    2011-11-22

    Results of a study on the electrochemical properties of exfoliated single and multilayer graphene flakes are presented. Graphene flakes were deposited on silicon/silicon oxide wafers to enable fast and accurate characterization by optical microscopy and Raman spectroscopy. Conductive silver paint and silver wires were used to fabricate contacts; epoxy resin was employed as a masking coating in order to expose a stable, well-defined area of graphene. Both multilayer and monolayer graphene microelectrodes showed quasi-reversible behavior during voltammetric measurements in potassium ferricyanide. However, the standard heterogeneous charge transfer rate constant, k°, was estimated to be higher for monolayer graphene flakes. © 2011 American Chemical Society

  11. Electrochemical behavior of labetalol at an ionic liquid modified carbon paste electrode and its electrochemical determination

    Directory of Open Access Journals (Sweden)

    Zhang Yan-Mei

    2013-01-01

    Full Text Available Electrochemical behavior of labetalol (LBT at carbon paste electrode (CPE and an ionic liquid1-benzyl-3-methylimidazolehexafluorophosphate([BnMIM]PF6modified carbon paste electrode([BnMIM]PF6/CPEin Britton-Robinson buffer solution (pH 2.0 was investigated by cyclic voltammetry (CV and square wave voltammetric (SWV. The experimental results showed that LBT at both the bare CPE and [BnMIM]PF6/CPEshowed an irreversible oxidation process, but at [BnMIM]PF6/CPE its oxidation peak current increased greatly and the oxidation peak potential shifted negatively. The electrode reaction process is a diffusion-controlled process involving one electron transferring accompanied by a participation of one proton at [BnMIM]PF6/CPE. At the same time, the electrochemical kinetic parameters were determined. Under the optimized electrochemical experimental conditions, the oxidation peak currents were proportional to LBT concentration in the range of 7.0 x 10-6-1.0 x 10-4 mol L-1 with the limit of detection(LOD, S/N=3 of 4.810 x 10-8 mol L-1and the limit of quantification(LOQ, S/N=10 of 1.60 x 10-7 mol L-1, respectively. The proposed method was successfully applied in the determination of LBT content in commercial tablet samples.

  12. Redox-flexible NADH oxidase biosensor: A platform for various dehydrogenase bioassays and biosensors

    International Nuclear Information System (INIS)

    Serban, Simona; El Murr, Nabil

    2006-01-01

    A generic amperometric bioassay based on the enzymatic oxidation catalysed by the stable NADH oxidase (NAox) from Thermus thermophilus has been developed for NADH measurements. The NAox uses O 2 as its natural electron acceptor and produces H 2 O 2 in a two-electron process. Electrochemical and spectrophotometric experiments showed that the NAox used in this work, presents a very good activity towards its substrate and, in contrary to previously mentioned NADH oxidases, does not require the addition of any exogenous flavin cofactor neither to promote nor to maintain its activity. In addition, the NAox used also works with artificial electron acceptors like ferrocene derivatives. O 2 was successfully replaced by redox mediators such as hydroxymethyl ferrocene (FcCH 2 OH) for the regeneration of the active enzyme. Combining the NAox with the mediator and the horseradish peroxidase we developed an original, high sensitive 'redox-flexible' NADH amperometric bioassay working in a large window of applied potentials in both oxidation and reduction modes. The biosensor has a continuous and complementary linearity range permitting to measure NADH concentrations starting from 5 x 10 -6 M in reduction until 2 x 10 3 M in oxidation. This redox-flexibility allows choosing the applied potential in order to avoid electrochemical interferences. The association of the 'redox-flexible' concept with NADH dependent enzymes opens a novel strategy for dehydrogenases based bioassays and biosensors. The great number of dehydrogenases available makes the concept applicable for numerous substrates to analyse. Moreover it allows the development of a wide range of biosensors on the basis of a generic platform. This gives several advantages over the previous manufacturing techniques and offers a general and flexible scheme for the fabrication of biosensors presenting high sensitivities, wide calibration ranges and less affected by electrochemical interferences

  13. Adhesion forces in AFM of redox responsive polymer grafts: Effects of tip hydrophilicity

    NARCIS (Netherlands)

    Feng, Xueling; Kieviet, B.D.; Song, Jing; Schön, Peter Manfred; Vancso, Gyula J.

    2014-01-01

    The adherence between silicon nitride AFM tips and redox-active poly(ferrocenylsilanes) (PFS) grafts ongold was investigated by electrochemical AFM force spectroscopy. Before the adhesion measurementssilicon nitride AFM probes were cleaned with organic solvents (acetone and ethanol) or piranha

  14. Specific Interaction between Redox Phospholipid Polymers and Plastoquinone in Photosynthetic Electron Transport Chain.

    Science.gov (United States)

    Tanaka, Kenya; Kaneko, Masahiro; Ishikawa, Masahito; Kato, Souichiro; Ito, Hidehiro; Kamachi, Toshiaki; Kamiya, Kazuhide; Nakanishi, Shuji

    2017-04-19

    Redox phospholipid polymers added in culture media are known to be capable of extracting electrons from living photosynthetic cells across bacterial cell membranes with high cytocompatibility. In the present study, we identify the intracellular redox species that transfers electrons to the polymers. The open-circuit electrochemical potential of an electrolyte containing the redox polymer and extracted thylakoid membranes shift to positive (or negative) under light irradiation, when an electron transport inhibitor specific to plastoquinone is added upstream (or downstream) in the photosynthetic electron transport chain. The same trend is also observed for a medium containing living photosynthetic cells of Synechococcus elongatus PCC7942. These results clearly indicate that the phospholipid redox polymers extract photosynthetic electrons mainly from plastoquinone. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Label-Free Aptasensor for Lysozyme Detection Using Electrochemical Impedance Spectroscopy

    OpenAIRE

    Dionisia Ortiz-Aguayo; Manel del Valle

    2018-01-01

    This research develops a label-free aptamer biosensor (aptasensor) based on graphite-epoxy composite electrodes (GECs) for the detection of lysozyme protein using Electrochemical Impedance Spectroscopy (EIS) technique. The chosen immobilization technique was based on covalent bonding using carbodiimide chemistry; for this purpose, carboxylic moieties were first generated on the graphite by electrochemical grafting. The detection was performed using [Fe(CN)6]3−/[Fe(CN)6]4− as redox probe. Afte...

  16. Solid-phase electrochemical reduction of graphene oxide films in alkaline solution

    Science.gov (United States)

    Basirun, Wan J.; Sookhakian, Mehran; Baradaran, Saeid; Mahmoudian, Mohammad R.; Ebadi, Mehdi

    2013-09-01

    Graphene oxide (GO) film was evaporated onto graphite and used as an electrode to produce electrochemically reduced graphene oxide (ERGO) films by electrochemical reduction in 6 M KOH solution through voltammetric cycling. Fourier transformed infrared and Raman spectroscopy confirmed the presence of ERGO. Electrochemical impedance spectroscopy characterization of ERGO and GO films in ferrocyanide/ferricyanide redox couple with 0.1 M KCl supporting electrolyte gave results that are in accordance with previous reports. Based on the EIS results, ERGO shows higher capacitance and lower charge transfer resistance compared to GO.

  17. Redox shuttles for lithium ion batteries

    Science.gov (United States)

    Weng, Wei; Zhang, Zhengcheng; Amine, Khalil

    2014-11-04

    Compounds may have general Formula IVA or IVB. ##STR00001## where, R.sup.8, R.sup.9, R.sup.10, and R.sup.11 are each independently selected from H, F, Cl, Br, CN, NO.sub.2, alkyl, haloalkyl, and alkoxy groups; X and Y are each independently O, S, N, or P; and Z' is a linkage between X and Y. Such compounds may be used as redox shuttles in electrolytes for use in electrochemical cells, batteries and electronic devices.

  18. Hematite Nanoparticles-Modified Electrode Based Electrochemical Sensing Platform for Dopamine

    Directory of Open Access Journals (Sweden)

    Khosro Zangeneh Kamali

    2014-01-01

    Full Text Available Hematite (α-Fe2O3 nanoparticles were synthesized by the solid transformation of ferrous hydroxide and ferrihydrite in hydrothermal condition. The as-prepared α-Fe2O3 nanoparticles were characterized by UV-vis, PL, XRD, Raman, TEM, AFM, FESEM, and EDX analysis. The experimental results indicated the formation of uniform hematite nanoparticles with an average size of 45 nm and perfect crystallinity. The electrochemical behavior of a GC/α-Fe2O3 electrode was studied using CV and EIS techniques with an electrochemical probe, [Fe(CN6]3−/4− redox couple. The electrocatalytic activity was investigated toward DA oxidation in a phosphate buffer solution (pH 6.8 by varying different experimental parameters. The chronoamperometric study showed a linear response in the range of 0–2 μM with LoD of 1.6 μM for DA. Square wave voltammetry showed a linear response in the range of 0–35 μM with LoD of 236 nM for DA.

  19. Hematite Nanoparticles-Modified Electrode Based Electrochemical Sensing Platform for Dopamine

    Science.gov (United States)

    Zangeneh Kamali, Khosro; Alagarsamy, Pandikumar; Huang, Nay Ming; Ong, Boon Hoong; Lim, Hong Ngee

    2014-01-01

    Hematite (α-Fe2O3) nanoparticles were synthesized by the solid transformation of ferrous hydroxide and ferrihydrite in hydrothermal condition. The as-prepared α-Fe2O3 nanoparticles were characterized by UV-vis, PL, XRD, Raman, TEM, AFM, FESEM, and EDX analysis. The experimental results indicated the formation of uniform hematite nanoparticles with an average size of 45 nm and perfect crystallinity. The electrochemical behavior of a GC/α-Fe2O3 electrode was studied using CV and EIS techniques with an electrochemical probe, [Fe(CN)6]3−/4− redox couple. The electrocatalytic activity was investigated toward DA oxidation in a phosphate buffer solution (pH 6.8) by varying different experimental parameters. The chronoamperometric study showed a linear response in the range of 0–2 μM with LoD of 1.6 μM for DA. Square wave voltammetry showed a linear response in the range of 0–35 μM with LoD of 236 nM for DA. PMID:25136664

  20. Technetium electrochemistry. 7. Electrochemical and spectroelectrochemical studies on technetium(III) and -(II) complexes containing polypyridyl ligands

    International Nuclear Information System (INIS)

    Wilcox, B.E.; Deutsch, E.

    1991-01-01

    The redox properties of a series of technetium(III/II) complexes of the general formula cis(X), trans(P)-[Tc III/II X 2 (PR w R') 2 L] 10+ , where X = Cl or Br, PR 2 R' = dimethylphenylphosphine or ethyldiphenylphosphine, and L = 2,2'-bipyridine (bpy), 4,4'-dimethyl-2,2'-bipyridine (Me 2 bpy), or 1,10-phenanthroline (phen), were investigated in 0.1 M TEAP/acetonitrile by cyclic voltammetry at a platinum-disk electrode. These complexes exhibit diffusion-controlled, 1-equiv Tc(IV)/Tc(III) redox couples and also Tc(III)/Tc(II) redox couples. Spectropotentiostatic experiments on three complexes of this class in 0.5 M TEAP/DMF confirm the 1-equiv character of the Tc(III)/Tc(II) couple. The electrochemical behavior of Tc(II) complexes of the general formula trans(P)-[TcX(PR 2 R') 2 terpy] + , terpy = 2,2':6',2 double-prime-terpyridine, was also investigated under the same conditions as above. These complexes exhibit diffusion-controlled, 1-equiv Tc(III)/Tc(II) redox couples and Tc(II)/Tc(I) redox couples. Spectropotentiostatic experiments on trans(P)-[TcCl(PMe 2 Ph) 2 terpy] + confirm the 1-equiv character of the Tc(III)/Tc(II) couple but show that the Tc(II)/Tc(I) couple is not reversible on the spectropotentiostatic time scale

  1. Electrochemical Behavior of Quinoxalin-2-one Derivatives at Mercury Electrodes and Its Analytical Use

    OpenAIRE

    Zimpl, Milan; Skopalova, Jana; Jirovsky, David; Bartak, Petr; Navratil, Tomas; Sedonikova, Jana; Kotoucek, Milan

    2012-01-01

    Derivatives of quinoxalin-2-one are interesting compounds with potential pharmacological activity. From this point of view, understanding of their electrochemical behavior is of great importance. In the present paper, a mechanism of electrochemical reduction of quinoxalin-2-one derivatives at mercury dropping electrode was proposed. Pyrazine ring was found to be the main electroactive center undergoing a pH-dependent two-electron reduction process. The molecule protonization of nitrogen in th...

  2. Electrochemical evaluation of sweet sorghum fermentable sugar bioenergy feedstock

    Science.gov (United States)

    Redox active constituents of sorghum, e.g., anthocyanin, flavonoids, and aconitic acid, putatively contribute to its pest resistance. Electrochemical reactivity of sweet sorghum stem juice was evaluated using cyclic voltammetry (CV) for five male (Atlas, Chinese, Dale, Isidomba, N98) and three fema...

  3. Investigation of the Redox Chemistry of Anthraquinone Derivatives Using Density Functional Theory

    Energy Technology Data Exchange (ETDEWEB)

    Bachman, Jonathan E.; Curtiss, Larry A.; Assary, Rajeev S.

    2014-09-25

    Application of density functional calculations to compute electrochemical properties such as redox windows, effect of substitution by electron donating and electron withdrawing groups on redox windows, and solvation free energies for ~50 anthraquinone (AQ) derivatives are presented because of their potential as anolytes in all-organic redox flow batteries. Computations suggest that lithium ions can increase (by ~0.4 V) the reduction potential of anthraquinone due to the lithium ion pairing by forming a Lewis base-Lewis acid complex. To design new redox active species, the substitution by electron donating groups are essential to improve the reduction window of AQ with adequate oxidative stability. For instance, a complete methylation of AQ can improve its reduction window by ~0.4 V. The quantum chemical studies of the ~50 AQ derivatives are used to derive a relationship that connects the computed LUMO energy and the reduction potential that can be applied as a descriptor for screening thousands of AQ derivatives. Our computations also suggest that incorporating oxy-methyl dioxolane substituents in the AQ framework can increase its interaction with non-aqueous solvent and improve its solubility. Thermochemical calculations for likely bond breaking decomposition reactions of un-substituted AQ anions suggest that the dianions are relatively stable in the solution. These studies provide ideal platform to perform further combined experimental and theoretical studies to understand the electrochemical reversibility and solubility of new quinone molecules as energy storage materials.

  4. Tip-surface interactions at redox responsive poly(ferrocenylsilane) (PFS) interface by AFM-based force spectroscopy

    International Nuclear Information System (INIS)

    Chung Hongjing; Song Jing; Vancso, G. Julius

    2009-01-01

    Poly(ferrocenylsilanes) (PFS) belong to the class of redox responsive organometallic polymers. Atomic force microscopy (AFM)-based single molecule force spectroscopy (SMFS) was used earlier to study single chain PFS response and redox energy driven single chain PFS molecular motors. Here we present further AFM investigations of force interactions between tip and a grafted PFS surface under potential control in electrochemical redox cycles. Typical tip-Au interaction is considered as reference in the force measurements. First the electrostatic component in the diffused double layer (DL) in NaClO 4 electrolyte environment was considered for a 'grafted to' PFS, which dominated the interplay between the tip and sample surface. The DL forces can also hinder the physisorption of PFS chain onto the tip when the voltage was applied at -0.1 V. On the other hand, if the tip contacted the PFS surface prior to the electrochemical process, physisorption of PFS chains governed the overall interaction regardless of subsequently applied surface potential. In addition, prolonged contact time, t c , may also contribute to the stability of tip-PFS bridging and detection of electrostatic forces between the tip-PFS interface. The results showed that tip-substrate interaction forces without PFS grafts have negligibly small force contributions under similar, electrochemically controlled, conditions used in single PFS chain based molecular motors.

  5. Redox potentials and kinetics of the Ce 3+/Ce 4+ redox reaction and solubility of cerium sulfates in sulfuric acid solutions

    Science.gov (United States)

    Paulenova, A.; Creager, S. E.; Navratil, J. D.; Wei, Y.

    Experimental work was performed with the aim of evaluating the Ce 4+/Ce 3+ redox couple in sulfuric acid electrolyte for use in redox flow battery (RFB) technology. The solubility of cerium sulfates in 0.1-4.0 M sulfuric acid at 20-60 °C was studied. A synergistic effect of both sulfuric acid concentration and temperature on the solubility of cerous sulfate was observed. The solubility of cerous sulfate significantly decreased with rising concentration of sulfuric acid and rising temperature, while the solubility of ceric sulfate goes through a significant maximum at 40 °C. Redox potentials and the kinetics of the cerous/ceric redox reaction were also studied under the same temperature-concentration conditions. The redox potentials were measured using the combined redox electrode (Pt-Ag/AgCl) in equimolar Ce 4+/Ce 3+ solutions (i.e.[Ce 3+]=[Ce 4+]) in sulfuric acid electrolyte. The Ce 3+/Ce 4+ redox potentials significantly decrease (i.e. shift to more negative values) with rising sulfuric acid concentration; a small maximum is observed at 40 °C. Cyclic voltammetric experiments confirmed slow electrochemical kinetics of the Ce 3+/Ce 4+ redox reaction on carbon glassy electrodes (CGEs) in sulfuric acid solutions. The observed dependencies of solubilities, the redox potentials and the kinetics of Ce 3+/Ce 4+ redox reaction on sulfuric acid concentration are thought to be the result of inequivalent complexation of the two redox species by sulfate anions: the ceric ion is much more strongly bound to sulfate than is the cerous ion. The best temperature-concentration conditions for the RFB electrolytes appear to be 40 °C and 1 M sulfuric acid, where the relatively good solubility of both cerium species, the maximum of redox potentials, and the more or less satisfying stability of CGE s were found. Even so, the relatively low solubility of cerium salts in sulfuric acid media and slow redox kinetics of the Ce 3+/Ce 4+ redox reaction at carbon indicate that the Ce 3+/Ce

  6. Electrochemical corrosion behavior of Ni-containing hypoeutectic Al-Si alloy

    Directory of Open Access Journals (Sweden)

    Abul Hossain

    2015-12-01

    Full Text Available Electrochemical corrosion characteristics of the thermally treated 2 wt % Ni-containing Al-6Si-0.5Mg alloy were studied in NaCl solutions. The corrosion behavior of thermally treated (T6 Al-6Si-0.5Mg (-2Ni alloys in 0.1 M NaCl solution was investigated by electrochemical potentiodynamic polarization technique consisting of linear polarization method using the fit of Tafel plot and electrochemical impedance spectroscopy (EIS techniques. Generally, linear polarization experiments revealed a decrease of the corrosion rate at thermal treated Al-6Si-0.5Mg-2Ni alloy. The EIS test results showed that there is no significant change in charge transfer resistance (Rct after addition of Ni to Al-6Si-0.5Mg alloy. The magnitude of the positive shift in the open circuit potential (OCP, corrosion potential (Ecorr and pitting corrosion potential (Epit increased with the addition of Ni to Al-6Si-0.5Mg alloy. The forms of corrosion in the studied Al-6Si-0.5Mg alloy (except Al-6Si-0.5Mg-2Ni alloy are pitting corrosion as obtained from the scanning electron microscopy (SEM study.

  7. Boosting lithium storage in covalent organic framework via activation of 14-electron redox chemistry.

    Science.gov (United States)

    Lei, Zhendong; Yang, Qinsi; Xu, Yi; Guo, Siyu; Sun, Weiwei; Liu, Hao; Lv, Li-Ping; Zhang, Yong; Wang, Yong

    2018-02-08

    Conjugated polymeric molecules have been heralded as promising electrode materials for the next-generation energy-storage technologies owing to their chemical flexibility at the molecular level, environmental benefit, and cost advantage. However, before any practical implementation takes place, the low capacity, poor structural stability, and sluggish ion/electron diffusion kinetics remain the obstacles that have to be overcome. Here, we report the synthesis of a few-layered two-dimensional covalent organic framework trapped by carbon nanotubes as the anode of lithium-ion batteries. Remarkably, upon activation, this organic electrode delivers a large reversible capacity of 1536 mAh g -1 and can sustain 500 cycles at 100 mA g -1 . Aided by theoretical calculations and electrochemical probing of the electrochemical behavior at different stages of cycling, the storage mechanism is revealed to be governed by 14-electron redox chemistry for a covalent organic framework monomer with one lithium ion per C=N group and six lithium ions per benzene ring. This work may pave the way to the development of high-capacity electrodes for organic rechargeable batteries.

  8. Nucleobase modification as redox DNA labelling for electrochemical detection

    Czech Academy of Sciences Publication Activity Database

    Hocek, Michal; Fojta, Miroslav

    2011-01-01

    Roč. 40, č. 12 (2011), s. 5802-5814 ISSN 0306-0012 R&D Projects: GA MŠk(CZ) LC06035; GA MŠk LC512; GA AV ČR(CZ) IAA400040901; GA ČR GA203/09/0317 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : nucleotides * oligonucleotides * DNA * electrochemistry * redox labeling Subject RIV: CC - Organic Chemistry Impact factor: 28.760, year: 2011

  9. The mechanism and kinetics of the electrochemical cleavage of azo bond of 2-hydroxy-5-sulfophenyl-azo-benzoic acids

    International Nuclear Information System (INIS)

    Mandic, Zoran; Nigovic, Biljana; Simunic, Branimir

    2004-01-01

    The electrochemical reduction of 2-hydroxy-5-[(4-sulfophenyl)azo]benzoic acid, 2-hydroxy-5-[(3-sulfophenyl)azo]benzoic acid, 2-hydroxy-5-[(2-sulfophenyl)azo]benzoic acid and 2-hydroxy-5-azo-benzoic acid has been carried out in aqueous solutions at glassy carbon electrode using cyclic voltammetry and chronoamperometry. The position of sulfo substituent relative to azo bridge as well as pH of the solution have significant impact on the electrochemical behavior of these compounds. It has been proposed that these compounds are reduced predominantly as hydrazone tautomers resulting in corresponding hydrazo compounds. The overall electrochemical reduction follows DISP2 mechanism, ultimately leading to the 5-amino salicylic acid and sulfanilic acid. The rate determining step is the homogenous redox reaction between intermediate hydrazo compound and 5-amino salicylic acid quinoneimine. The mechanism is proposed in which activated complex of 5-amino salicylic acid quinoneimine and intermediate hydrazo compound is formed with the simultaneous loss of one proton

  10. Materials and Systems for Organic Redox Flow Batteries: Status and Challenges

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Xiaoliang [Joint Center for Energy Storage Research (JCESR), Argonne, Illinois 60439, United States; Energy & amp, Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States; Pan, Wenxiao [Department; Duan, Wentao [Joint Center for Energy Storage Research (JCESR), Argonne, Illinois 60439, United States; Energy & amp, Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States; Hollas, Aaron [Energy & amp, Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States; Yang, Zheng [Joint Center for Energy Storage Research (JCESR), Argonne, Illinois 60439, United States; Energy & amp, Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States; Li, Bin [Energy & amp, Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States; Nie, Zimin [Energy & amp, Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States; Liu, Jun [Joint Center for Energy Storage Research (JCESR), Argonne, Illinois 60439, United States; Energy & amp, Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States; Reed, David [Energy & amp, Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States; Wang, Wei [Energy & amp, Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States; Sprenkle, Vincent [Energy & amp, Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States

    2017-08-14

    Redox flow batteries are propitious stationary energy storage technologies with exceptional scalability and flexibility to improve the stability, efficiency and sustainability of our power grid. The redox-active materials are the central component to RFBs for achieving high energy density and good cyclability. Traditional inorganic-based materials encounter critical technical and economic limitations such as low solubility, inferior electrochemical activity, and high cost. Redox-active organic materials (ROMs) are promising alternative “green” candidates to push the boundaries of energy storage because of the significant advantages of molecular diversity, structural tailorability, and natural abundance. Here the recent development of a variety of ROM families and associated battery designs in both aqueous and nonaqueous electrolytes are reviewed. Moreover, the critical challenges and potential research opportunities for developing practically relevant organic flow batteries are discussed.

  11. Methanesulfonic acid solution as supporting electrolyte for zinc-vanadium redox battery

    International Nuclear Information System (INIS)

    Tang Chao; Zhou Debi

    2012-01-01

    Highlights: ► Methanesulfonic acid as supporting electrolyte for V(V)/V(IV) was discussed. ► V(V)/V(IV) concentration as high as 3 mol L −1 was obtained. ► A Zn-V battery was assembled. ► The assembled Zn-V battery has good cycle performance and high cell voltage. - Abstract: The present work was performed in order to evaluate methanesulfonic acid (MSA) as electrolyte medium for V(IV)/V(V) redox couple as positive species applied in redox flow battery (RFB). V-MSA solutions containing more than 3.0 mol L −1 vanadium ions were obtained. Conductivity and viscosity of 3.0 mol L −1 V(IV)/V(V) electrolyte were determined to be 0.10 cm s −1 and 12.37 mPa s respectively. Cyclic voltammetry was conducted to investigate the electrochemical behavior of V(IV)/V(V) redox couple. The diffusion coefficients of V(IV) on Pt electrode in 1.0, 2.0 and 3.0 mol L −1 V(IV)/V(V) electrolytes determined were 3.606 × 10 −6 , 1.813 × 10 −6 and 0.5244 × 10 −6 cm 2 s −1 , respectively. A Zn-V battery was assembled with V(IV)/V(V)-MSA positive species and Zn/Zn(II)-MSA negative species. The cell voltage in charged state was 1.9–2.0 V and discharge voltage reached up to 1.7 V. The average coulombic efficiency and energy efficiency of the assembled cell were 95.85% and 63.90% respectively and it showed a good cyclic charge–discharge performance, which indicates that MSA has a promise application prospect in vanadium redox battery.

  12. Effect of L-glutamic acid on the positive electrolyte for all-vanadium redox flow battery

    International Nuclear Information System (INIS)

    Liang, Xinxing; Peng, Sui; Lei, Ying; Gao, Chao; Wang, Nanfang; Liu, Suqin; Fang, Dong

    2013-01-01

    Highlights: ► Amino acid is used as additive for all-vanadium redox flow battery. ► The additive can significantly improve performance of positive electrolyte. ► Mechanism for the improvement is investigated. -- Abstract: L-Glutamic acid is used as an additive for the positive electrolyte of all-vanadium redox flow battery (VRFB), and its effect on the thermal stability and electrochemical activity is investigated. It is found that the addition of L-glutamic can significantly alleviate the precipitation of V 2 O 5 from positive electrolyte. The conservation rate of V(V) ion can be as high as 58% after 2 M V(V) solution being kept in 40 °C for 89 h. Besides, L-glutamic can also improve the mass transport and electrochemical performance of anolyte. A high coulombic efficiency of over 95% and energy efficiency of 74% are obtained. XPS spectra illustrate that L-glutamic can react with the surface of carbon felt electrode and introduce more oxygen-containing and nitrogen-containing groups, which should be responsible for the improvement of electrochemical performance

  13. High Performance Redox Flow Batteries: An Analysis of the Upper Performance Limits of Flow Batteries Using Non-aqueous Solvents

    International Nuclear Information System (INIS)

    Sun, C.-N.; Mench, M.M.; Zawodzinski, T.A.

    2017-01-01

    Redox Flow Batteries (RFBs) are a promising technology for grid-scale electrochemical energy storage. In this work, we use a recently achieved high-performance flow battery performance curve as a basis to assess the maximum achievable performance of a RFB employing non-aqueous solutions as active materials. First we show high performance in a vanadium redox flow battery (VRFB), specifically a limiting situation in which the cell losses are ohmic in nature and derive from electrolyte conductance. Based on that case, we analyze the analogous limiting behavior of non-aqueous (NA) systems using a series of calculations assuming similar ohmic losses, scaled by the relative electrolyte resistances, with a higher voltage redox couple assumed for the NA battery. The results indicate that the NA battery performance is limited by the low electrolyte conductivity to a fraction of the performance of the VRFB. Given the narrow window in which the NARFB offers advantages, even for the most generous limiting assumptions related to performance while ignoring the numerous other disadvantageous aspects of these systems, we conclude that this technology is unlikely under present circumstances to provide practical large-scale energy storage solutions.

  14. Reverse Engineering Applied to Red Human Hair Pheomelanin Reveals Redox-Buffering as a Pro-Oxidant Mechanism

    Science.gov (United States)

    Kim, Eunkyoung; Panzella, Lucia; Micillo, Raffaella; Bentley, William E.; Napolitano, Alessandra; Payne, Gregory F.

    2015-01-01

    Pheomelanin has been implicated in the increased susceptibility to UV-induced melanoma for people with light skin and red hair. Recent studies identified a UV-independent pathway to melanoma carcinogenesis and implicated pheomelanin’s pro-oxidant properties that act through the generation of reactive oxygen species and/or the depletion of cellular antioxidants. Here, we applied an electrochemically-based reverse engineering methodology to compare the redox properties of human hair pheomelanin with model synthetic pigments and natural eumelanin. This methodology exposes the insoluble melanin samples to complex potential (voltage) inputs and measures output response characteristics to assess redox activities. The results demonstrate that both eumelanin and pheomelanin are redox-active, they can rapidly (sec-min) and repeatedly redox-cycle between oxidized and reduced states, and pheomelanin possesses a more oxidative redox potential. This study suggests that pheomelanin’s redox-based pro-oxidant activity may contribute to sustaining a chronic oxidative stress condition through a redox-buffering mechanism. PMID:26669666

  15. Electrochemical Reduction of Zinc Phosphate

    International Nuclear Information System (INIS)

    Kim, Chang Hwan; Lee, Jung Hyun; Shin, Woon Sup

    2010-01-01

    We demonstrated first that the electrochemical reduction of zinc phosphate in neutral phosphate buffer is possible and potentially applicable to bio-compatible rechargeable battery. The actual redox component is Zn(s)/Zn phosphate(s) and the future research about the control of crystal formation for the better cyclability is required. In lead-acid battery, the electrochemical redox reaction of Pb (s) /PbSO 4(s) is used by reducing Pb(II) and oxidizing Pb(0) in sulfate rich solution. Since both reduced form and oxidized form are insoluble, they cannot diffuse to the opposite electrodes and react. It is a very common strategy to make a stable battery electrode that a metal element is reduced and oxidized in solution containing an abundance of anion readily precipitating with the metal ion. For the application of this strategy to construction of rechargeable battery using bio-compatible electrode materials and electrolytes, the use of phosphate ion can be considered as anion readily precipitating with metal ions. If phosphate buffer with neutral pH is used as electrolyte, the better bio-compatibility will be achieved than most of rechargeable battery using strong acid, strong base or organic solvent as electrolyte solution. There are many metal ions readily precipitating with phos-phate ion, and zinc is one of them

  16. Electrochemical, morphological and microstructural characterization of carbon film resistor electrodes for application in electrochemical sensors

    International Nuclear Information System (INIS)

    Gouveia-Caridade, Carla; Soares, David M.; Liess, Hans-Dieter; Brett, Christopher M.A.

    2008-01-01

    The electrochemical and microstructural properties of carbon film electrodes made from carbon film electrical resistors of 1.5, 15, 140 Ω and 2.0 kΩ nominal resistance have been investigated before and after electrochemical pre-treatment at +0.9 V vs SCE, in order to assess the potential use of these carbon film electrodes as electrochemical sensors and as substrates for sensors and biosensors. The results obtained are compared with those at electrodes made from previously investigated 2 Ω carbon film resistors. Cyclic voltammetry was performed in acetate buffer and phosphate buffer saline electrolytes and the kinetic parameters of the model redox system Fe(CN) 6 3-/4- obtained. The 1.5 Ω resistor electrodes show the best properties for sensor development with wide potential windows, similar electrochemical behaviour to those of 2 Ω and close-to-reversible kinetic parameters after electrochemical pre-treatment. The 15 and 140 Ω resistor electrodes show wide potential windows although with slower kinetics, whereas the 2.0 kΩ resistor electrodes show poor cyclic voltammetric profiles even after pre-treatment. Electrochemical impedance spectroscopy related these findings to the interfacial properties of the electrodes. Microstructural and morphological studies were carried out using contact mode Atomic Force Microscopy (AFM), Confocal Raman spectroscopy and X-ray diffraction. AFM showed more homogeneity of the films with lower nominal resistances, related to better electrochemical characteristics. X-ray diffraction and Confocal Raman spectroscopy indicate the existence of a graphitic structure in the carbon films

  17. Electrochemical remediation technologies for soil and groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Doering, F. [Electrochemical Processes I.I. c. Valley Forge, PA (United States)]|[P2 Soil Remediation, Inc. Stuttgart (Germany); Doering, N. [P2 Soil Remediation, Inc. Stuttgart (Germany)

    2001-07-01

    In Direct Current Technologies (DCTs) a direct current electricity is passed between at least two subsurface electrodes in order to effect the remediation of the groundwater and/or the soil. DCTs in line with the U.S.-terminology comprise of the ElectroChemical Remediation Technologies (ECRTs), and GeoKinetics. The primary distinction between ECRTs and ElectroKinetics are the power input, and the mode of operation, which are electrochemical reactions vs. mass transport. ECRTs combine phenomena of colloid (surface) electrochemistry with the phenomena of Induced Polarization (IP). This report focuses on ECRTs, comprising of the ElectroChemical GeoOxidation (ECGO) for the mineralization of organic pollutants to finally carbon dioxide and water, and Induced Complexation (IC), related to the electrochemical conversion of metals enhancing the mobilization and precipitation of heavy metals on both electrodes. Both technologies are based on reduction-oxidation (redox) reactions at the scale of the individual soil particles. (orig.)

  18. Redox process at solid-liquid interfaces: studies with thin layers of green rusts electrodeposited on inert substrates

    International Nuclear Information System (INIS)

    Peulon, S.; Taghdai, Y.; Mercier, F.; Barre, N.; Legrand, L.; Chauss, A.

    2005-01-01

    layers are deposited onto conductive substrate, it is also possible to get information on the redox reactions in real time by coupling the electrochemistry with numerous in-situ methods as UV-Visible or quartz crystal microbalance (QCM); in-situ measurements are presented and discussed. [1] S. Peulon, L. Legrand, H. Antony, A. Chausse, 'Electrochemical deposition of thin films of green rusts 1 and 2 on inert gold substrate'. Electrochemistry Communications, 5 (2003) 208. [2] S. Peulon, H. Antony, L. Legrand, A. Chausse, 'Thin Layers of Iron Corrosion Products Electrochemically deposited on inert substrates: synthesis and behavior'. Electrochimica Acta 49 (2004) 2891. [3] H. Antony, S. Peulon, L. Legrand, A. Chausse, 'Electrochemical synthesis of lepidocrocite thin films on gold substrate and IRRAS, SEM and XRD analysis'. Electrochimica Acta, 50 (2004) 1015. (authors)

  19. Diblock Polyelectrolytic Copolymers Containing Cationic Iron and Cobalt Sandwich Complexes: Living ROMP Synthesis and Redox Properties.

    Science.gov (United States)

    Gu, Haibin; Ciganda, Roberto; Hernandez, Ricardo; Castel, Patricia; Zhao, Pengxiang; Ruiz, Jaime; Astruc, Didier

    2016-04-01

    Diblock metallopolymer polyelectrolytes containing the two redox-robust cationic sandwich units [CoCp'Cp](+) and [FeCp'(η(6)-C6 Me6)](+) (Cp = η(5)-C5 H5; Cp' = η(5)-C5H4-) as hexafluorophosphate ([PF6](-)) salts are synthesized by ring-opening metathesis polymerization using Grubbs' third generation catalyst. Their electrochemical properties show full chemical and electrochemical reversibilities allowing fine determination of the copolymer molecular weight using Bard-Anson's electrochemical method by cyclic voltammetry. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Characterization of PEDOT-Quinone Conducting Redox Polymers for Water Based Secondary Batteries

    International Nuclear Information System (INIS)

    Sterby, Mia; Emanuelsson, Rikard; Huang, Xiao; Gogoll, Adolf; Strømme, Maria; Sjödin, Martin

    2017-01-01

    Lithium-ion technologies show great promise to meet the demands that the transition towards renewable energy sources and the electrification of the transport sector put forward. However, concerns regarding lithium-ion batteries, including limited material resources, high energy consumption during production, and flammable electrolytes, necessitate research on alternative technologies for electrochemical energy storage. Organic materials derived from abundant building blocks and with tunable properties, together with water based electrolytes, could provide safe, inexpensive and sustainable alternatives. In this study, two conducting redox polymers based on poly(3,4-ethylenedioxythiophene) (PEDOT) and a hydroquinone pendant group have been synthesized and characterized in an acidic aqueous electrolyte. The polymers were characterized with regards to kinetics, pH dependence, and mass changes during oxidation and reduction, as well as their conductance. Both polymers show redox matching, i.e. the quinone redox reaction occurs within the potential region where the polymer is conducting, and fast redox conversion that involves proton cycling during pendant group redox conversion. These properties make the presented materials promising candidates as electrode materials for water based all-organic batteries.

  1. Electrochemical properties of manganese and rhenium complexes with organic redox ligands

    Energy Technology Data Exchange (ETDEWEB)

    Bumberg, A.A.; Milaev, A.G.; Okhlobystin, O.Yu.

    1983-03-01

    Pyrilium salts, 4H-pyrans and phenols that contain sigma-bound groups M(CO)/sub 3/ (M=Mn, Re) are investigated using the methods of classic and commutated polarography, disc rotating electrode with a ring and cyclic voltamperometry. The first single electron stage of electrochemical reduction of pyrilium cations containing sigma-bound substitutuents ..pi..=C/sub 5/H/sub 4/M(CO/sub 3/) (M=Mn, Re) takes place without any rupture of metal-carbon bonds and brings about rather stable vacant, metal organic radicals. Electrochemical dehydration of appropriate 4H-pyrans takes place through a stage of formation of these vacant radicals and complexes with the formation of metal organic pyrilium cations. Electrochemical oxidation of spatially hindrance phenols containing in 4-th position ..pi..-C/sub 5/H/sub 4/Re(CO/sub 3/) and C/sub 5/H/sub 4/Mn(CO)/sub 2/P(Ph)/sub 3/ substitutes takes place with the formation of appropriate cation radicals as intermediates and brings about vacant phenoxyls that contain charged organometallic group.

  2. HF/H2O2 treated graphite felt as the positive electrode for vanadium redox flow battery

    Science.gov (United States)

    He, Zhangxing; Jiang, Yingqiao; Meng, Wei; Jiang, Fengyun; Zhou, Huizhu; Li, Yuehua; Zhu, Jing; Wang, Ling; Dai, Lei

    2017-11-01

    In order to improve the electrochemical performance of the positive graphite felt electrode in vanadium flow redox battery, a novel method is developed to effectively modify the graphite felt by combination of etching of HF and oxidation of H2O2. After the etching of HF for the graphite felt at ambient temperature, abundant oxygen-containing functional groups were further introduced on the surface of graphite felt by hydrothermal treatment using H2O2 as oxidant. Benefiting from the surface etching and introduction of functional groups, mass transfer and electrode process can be improved significantly on the surface of graphite felt. VO2+/VO2+ redox reaction on the graphite felt modified by HF and H2O2 jointly (denote: GF-HF/H2O2) exhibits superior electrochemical kinetics in comparison with the graphite felt modified by single HF or H2O2 treatment. The cell using GF-HF/H2O2 as the positive electrode was assembled and its electrochemical properties were evaluated. The increase of energy efficiency of 4.1% for GF-HF/H2O2 at a current density of 50 mA cm-2 was obtained compared with the pristine graphite felt. The cell using GF-HF/H2O2 also demonstrated higher discharge capacity. Our study revealed that HF/H2O2 treatment is an efficient method to enhance the electrochemical performance of graphite felt, further improving the comprehensive energy storage performance of the vanadium flow redox battery.

  3. Redox buffered hydrofluoric acid etchant for the reduction of galvanic attack during release etching of MEMS devices having noble material films

    Science.gov (United States)

    Hankins, Matthew G [Albuquerque, NM

    2009-10-06

    Etchant solutions comprising a redox buffer can be used during the release etch step to reduce damage to the structural layers of a MEMS device that has noble material films. A preferred redox buffer comprises a soluble thiophosphoric acid, ester, or salt that maintains the electrochemical potential of the etchant solution at a level that prevents oxidation of the structural material. Therefore, the redox buffer preferentially oxidizes in place of the structural material. The sacrificial redox buffer thereby protects the exposed structural layers while permitting the dissolution of sacrificial oxide layers during the release etch.

  4. Synthesis and electrochemical and in situ spectroelectrochemical characterization of manganese, vanadyl, and cobalt phthalocyanines with 2-naphthoxy substituents

    International Nuclear Information System (INIS)

    Ozcesmeci, Ibrahim; Koca, Atif; Guel, Ahmet

    2011-01-01

    Highlights: → Metallo (Mn, Co, VO) phthalocyanines bearing peripheral 2-naphthoxy-groups were synthesized by cyclotetramerisation of the corresponding phthalonitrile derivative. → Incorporation of the redox active metal ions into the phthalocyanine core extends the redox capabilities of the Pc ring. → The presence of O 2 in the electrolyte system influences both oxygen reduction reaction and the electrochemical and spectral behaviors of the complexes. → Homogeneous catalytic ORR process occurs via an 'inner sphere' chemical catalysis process. - Abstract: Metallo (Mn, Co, VO) phthalocyanines bearing peripheral 2-naphthoxy groups were synthesized by cyclotetramerisation of the corresponding phthalonitrile derivative. The phthalocyanine compounds were characterized by elemental analyses, mass, FT-IR and UV-vis spectral data. Three intense bands in the electronic spectra clearly indicate the absorptions resulting from naphthyl groups along with the Q and B bands of the phthalocyanines. Electrochemical and spectroelectrochemical measurements exhibit that incorporation of redox active metal ions, Co II and Mn III , into the phthalocyanine core extends the redox capabilities of the Pc ring including the metal-based reduction and oxidation couples of the metal. Presence of molecular oxygen in the electrolyte system affects the voltammetric and spectroelectrochemical responses of the cobalt and manganese phthalocyanines due to the interaction between the complexes and molecular oxygen. Interaction reaction of oxygen with CoPc occurs via an 'inner sphere' chemical catalysis process. While CoPc gives the intermediates [O 2 - -Co II Pc -2 ] - and [O 2 2 -Co II Pc -2 ] 2- , MnPc forms μ-oxo MnPc species. An in situ electrocolorimetric method has been applied to investigate the color of the electro-generated anionic and cationic forms of the complexes for possible electrochromatic applications.

  5. Porphyrin-Based Symmetric Redox-Flow Batteries towards Cold-Climate Energy Storage.

    Science.gov (United States)

    Ma, Ting; Pan, Zeng; Miao, Licheng; Chen, Chengcheng; Han, Mo; Shang, Zhenfeng; Chen, Jun

    2018-03-12

    Electrochemical energy storage with redox-flow batteries (RFBs) under subzero temperature is of great significance for the use of renewable energy in cold regions. However, RFBs are generally used above 10 °C. Herein we present non-aqueous organic RFBs based on 5,10,15,20-tetraphenylporphyrin (H 2 TPP) as a bipolar redox-active material (anode: [H 2 TPP] 2- /H 2 TPP, cathode: H 2 TPP/[H 2 TPP] 2+ ) and a Y-zeolite-poly(vinylidene fluoride) (Y-PVDF) ion-selective membrane with high ionic conductivity as a separator. The constructed RFBs exhibit a high volumetric capacity of 8.72 Ah L -1 with a high voltage of 2.83 V and excellent cycling stability (capacity retention exceeding 99.98 % per cycle) in the temperature range between 20 and -40 °C. Our study highlights principles for the design of RFBs that operate at low temperatures, thus offering a promising approach to electrochemical energy storage under cold-climate conditions. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Isolation and Characterization of Electrochemically Active Subsurface Delftia and Azonexus Species

    Science.gov (United States)

    Jangir, Yamini; French, Sarah; Momper, Lily M.; Moser, Duane P.; Amend, Jan P.; El-Naggar, Mohamed Y.

    2016-01-01

    Continental subsurface environments can present significant energetic challenges to the resident microorganisms. While these environments are geologically diverse, potentially allowing energy harvesting by microorganisms that catalyze redox reactions, many of the abundant electron donors and acceptors are insoluble and therefore not directly bioavailable. Extracellular electron transfer (EET) is a metabolic strategy that microorganisms can deploy to meet the challenges of interacting with redox-active surfaces. Though mechanistically characterized in a few metal-reducing bacteria, the role, extent, and diversity of EET in subsurface ecosystems remains unclear. Since this process can be mimicked on electrode surfaces, it opens the door to electrochemical techniques to enrich for and quantify the activities of environmental microorganisms in situ. Here, we report the electrochemical enrichment of microorganisms from a deep fractured-rock aquifer in Death Valley, CA, USA. In experiments performed in mesocosms containing a synthetic medium based on aquifer chemistry, four working electrodes (WEs) were poised at different redox potentials (272, 373, 472, 572 mV vs. SHE) to serve as electron acceptors, resulting in anodic currents coupled to the oxidation of acetate during enrichment. The anodes were dominated by Betaproteobacteria from the families Comamonadaceae and Rhodocyclaceae. A representative of each dominant family was subsequently isolated from electrode-associated biomass. The EET abilities of the isolated Delftia strain (designated WE1-13) and Azonexus strain (designated WE2-4) were confirmed in electrochemical reactors using WEs poised at 522 mV vs. SHE. The rise in anodic current upon inoculation was correlated with a modest increase in total protein content. Both genera have been previously observed in mixed communities of microbial fuel cell enrichments, but this is the first direct measurement of their electrochemical activity. While alternate

  7. Isolation and characterization of electrochemically active subsurface Delftia and Azonexus species

    Directory of Open Access Journals (Sweden)

    Yamini eJangir

    2016-05-01

    Full Text Available Continental subsurface environments can present significant energetic challenges to the resident microorganisms. While these environments are geologically diverse, potentially allowing energy harvesting by microorganisms that catalyze redox reactions, many of the abundant electron donors and acceptors are insoluble and therefore not directly bioavailable. Extracellular electron transfer (EET is a metabolic strategy that microorganisms can deploy to meet the challenges of interacting with redox-active surfaces. Though mechanistically characterized in a few metal-reducing bacteria, the role, extent, and diversity of EET in subsurface ecosystems remains unclear. Since this process can be mimicked on electrode surfaces, it opens the door to electrochemical techniques to enrich for and quantify the activities of environmental microorganisms in situ. Here, we report the electrochemical enrichment of microorganisms from a deep fractured-rock aquifer in Death Valley, California, USA. In experiments performed in mesocosms containing a synthetic medium based on aquifer chemistry, four working electrodes were poised at different redox potentials (272, 373, 472, 572 mV vs. SHE to serve as electron acceptors, resulting in anodic currents coupled to the oxidation of acetate during enrichment. The anodes were dominated by Betaproteobacteria from the families Comamonadaceae and Rhodocyclaceae. A representative of each dominant family was subsequently isolated from electrode-associated biomass. The EET abilities of the isolated Delftia strain (designated WE1-13 and Azonexus strain (designated WE2-4 were confirmed in electrochemical reactors using working electrodes poised at 522 mV vs. SHE. The rise in anodic current upon inoculation was correlated with a modest increase in total protein content. Both genera have been previously observed in mixed communities of microbial fuel cell enrichments, but this is the first direct measurement of their electrochemical

  8. Improving the electrocatalytic performance of carbon nanotubes for VO"2"+/VO_2"+ redox reaction by KOH activation

    International Nuclear Information System (INIS)

    Dai, Lei; Jiang, Yingqiao; Meng, Wei; Zhou, Huizhu; Wang, Ling; He, Zhangxing

    2017-01-01

    Highlights: • KOH-activated carbon nanotubes (CNTs) was investigated as superior catalyst for VO"2"+/VO_2"+ redox reaction for vanadium redox flow battery (VRFB) for the first time. • KOH activation for CNTs can result in the chemical etching of surface and improved wettability, accelerating the mass transfer of vanadium ions. • KOH activation can introduce many oxygen-containing groups as active sites on the surface of CNTs. • KOH-activated CNTs as positive catalyst could increase the comprehensive energy storage performance of VRFB. - Abstract: In this paper, carbon nanotubes (CNTs) was activated by KOH treatment at high temperature and investigated as catalyst for VO"2"+/VO_2"+ redox reaction for vanadium redox flow battery (VRFB). X-ray photoelectron spectroscopy results suggest that the oxygen-containing groups can be introduced on CNTs by KOH activation. The mass transfer of vanadium ions can be accelerated by chemical etching by KOH activation and improved wettability due to the introduction of hydrophilic groups. The electrochemical properties of VO"2"+/VO_2"+ redox reaction can be enhanced by introduced oxygen-containing groups as active sites. The sample treated at 900 °C with KOH/CNTs mass ratio of 3:1 (CNTs-3) exhibits the highest electrocatalytic activity for VO"2"+/VO_2"+ redox reaction. The cell using CNTs-3 as positive catalyst demonstrates the smallest electrochemical polarization, the highest capacity and efficiency among the samples. Using KOH-activated CNTs-3 can increase the average energy efficiency of the cell by 4.4%. This work suggests that KOH-activated CNTs is a low-cost, efficient and promising catalyst for VO"2"+/VO_2"+ redox reaction for VRFB system.

  9. Water-activated graphite felt as a high-performance electrode for vanadium redox flow batteries

    Science.gov (United States)

    Kabtamu, Daniel Manaye; Chen, Jian-Yu; Chang, Yu-Chung; Wang, Chen-Hao

    2017-02-01

    A simple, green, novel, time-efficient, and potentially cost-effective water activation method was employed to enhance the electrochemical activity of graphite felt (GF) electrodes for vanadium redox flow batteries (VRFBs). The GF electrode prepared with a water vapor injection time of 5 min at 700 °C exhibits the highest electrochemical activity for the VO2+/VO2+ couple among all the tested electrodes. This is attributed to the small, controlled amount of water vapor that was introduced producing high contents of oxygen-containing functional groups, such as sbnd OH groups, on the surface of the GF fibers, which are known to be electrochemically active sites for vanadium redox reactions. Charge-discharge tests further confirm that only 5 min of GF water activation is required to improve the efficiency of the VRFB cell. The average coulombic efficiency, voltage efficiency, and energy efficiency are 95.06%, 87.42%, and 83.10%, respectively, at a current density of 50 mA cm-2. These voltage and energy efficiencies are determined to be considerably higher than those of VRFB cells assembled using heat-treated GF electrodes without water activation and pristine GF electrodes.

  10. Energy-density enhancement of carbon-nanotube-based supercapacitors with redox couple in organic electrolyte.

    Science.gov (United States)

    Park, Jinwoo; Kim, Byungwoo; Yoo, Young-Eun; Chung, Haegeun; Kim, Woong

    2014-11-26

    We demonstrate for the first time that the incorporation of a redox-active molecule in an organic electrolyte can increase the cell voltage of a supercapacitor. The redox molecule also contributes to increasing the cell capacitance by a faradaic redox reaction, and therefore the energy density of the supercapacitor can be significantly increased. More specifically, the addition of redox-active decamethylferrocene in an organic electrolyte results in an approximately 27-fold increase in the energy density of carbon-nanotube-based supercapacitors. The resulting high energy density (36.8 Wh/kg) stems from the increased cell voltage (1.1 V→2.1 V) and cell capacitance (8.3 F/g→61.3 F/g) resulting from decamethylferrocene addition. We found that the voltage increase is associated with the potential of the redox species relative to the electrochemical stability window of the supporting electrolyte. These results will be useful in identifying new electrolytes for high-energy-density supercapacitors.

  11. Electrochemical properties of novel organodisulfide poly 1,2-bis(thiophen-3-ylmethyl)disulfane as cathode material for secondary lithium batteries

    International Nuclear Information System (INIS)

    Weng, Guoming; Su, Yuzhi; Liu, Zhaoqing; Zhang, Jianhua; Dong, Wen; Xu, Changwei

    2009-01-01

    We successfully synthesized a new organodisulfide poly 1,2-bis(thiophen-3-ylmethyl)disulfane by a facile preparation method. The types of the chemical groups of poly-3-thienylthiophene were characterized by Fourier transform infrared spectroscopy (FTIR). The electrochemical properties of S-S bonds redox behavior in the organodisulfides were investigated in CH 3 CN/0.1 M [Bu 4 N] [PF 6 ] solution. The separation of the anodic and cathodic peak potentials for poly 1,2-bis(thiophen-3-ylmethyl)disulfane is 180 mV. The results indicated that poly 1,2-bis(thiophen-3-ylmethyl)disulfane has an excellent electrochemical reversibility. The average specific capacity of 230 mAh g -1 for poly-3-thienylthiophene is about 2 times higher than that of LiCoO 2 .

  12. "Off-on" electrochemical hairpin-DNA-based genosensor for cancer diagnostics.

    Science.gov (United States)

    Farjami, Elaheh; Clima, Lilia; Gothelf, Kurt; Ferapontova, Elena E

    2011-03-01

    A simple and robust "off-on" signaling genosensor platform with improved selectivity for single-nucleotide polymorphism (SNP) detection based on the electronic DNA hairpin molecular beacons has been developed. The DNA beacons were immobilized onto gold electrodes in their folded states through the alkanethiol linker at the 3'-end, while the 5'-end was labeled with a methylene blue (MB) redox probe. A typical "on-off" change of the electrochemical signal was observed upon hybridization of the 27-33 nucleotide (nt) long hairpin DNA to the target DNA, in agreement with all the hitherto published data. Truncation of the DNA hairpin beacons down to 20 nts provided improved genosensor selectivity for SNP and allowed switching of the electrochemical genosensor response from the on-off to the off-on mode. Switching was consistent with the variation in the mechanism of the electron transfer reaction between the electrode and the MB redox label, for the folded beacon being characteristic of the electrochemistry of adsorbed species, while for the "open" duplex structure being formally controlled by the diffusion of the redox label within the adsorbate layer. The relative current intensities of both processes were governed by the length of the formed DNA duplex, potential scan rate, and apparent diffusion coefficient of the redox species. The off-on genosensor design used for detection of a cancer biomarker TP53 gene sequence favored discrimination between the healthy and SNP-containing DNA sequences, which was particularly pronounced at short hybridization times.

  13. Quantifying Ion Transport in Polymers Using Electrochemical Quartz Crystal Microbalance with Dissipation

    Science.gov (United States)

    Lutkenhaus, Jodie; Wang, Shaoyang

    For polymers in energy systems, one of the most common means of quantifying ion transport is that of electrochemical impedance spectroscopy, in which an alternating electric field is applied and the resultant impedance response is recorded. While useful, this approach misses subtle details in transient film swelling, effects of hydration or solvent shells around the transporting ion, and changes in mechanical properties of the polymer. Here we present electrochemical quartz crystal microbalance with dissipation (EQCMD) monitoring as a means to quantify ion transport, dynamic swelling, and mechanical properties of polymers during electrochemical interrogation. We focus upon EQCMD characterization of the redox-active nitroxide radical polymer, poly(2,2,6,6-tetramethylpiperidinyloxy methacrylate) (PTMA). Upon oxidation, PTMA becomes positively charged, which requires the transport of a complementary anion into the polymer for electroneutrality. By EQCMD, we quantify anion transport and resultant swelling upon oxidation, as well as decoupling of contributions attributed to the ion and the solvent. We explore the effect of different lithium electrolyte salts in which each salt gives different charge storage and mass transport behavior. This is attributed to varied polymer-dopant and dopant-solvent interactions. The work was supported by the Grant DE-SC0014006 funded by the U.S. Department of Energy, Office of Science.

  14. Spectroscopic and electrochemical study of the polynuclear clusters of ruthenium acetate

    International Nuclear Information System (INIS)

    Cipriano, C.

    1989-01-01

    The chemistry of the trinuclear clusters (Ru 3 O (C H 3 CO 2 ) 4 L 3 ) where L = imidazole, pyridine or pyrazine type of ligands, was investigated based on spectroscopic and electrochemical techniques. These complexes are of great interest from the point of view of their electronic and redox properties, providing multi site species for electron transfer processes. They were isolated in solid state, and characterized by means of elementary analyses and infrared spectra. The electrochemical behaviour in acetonitrile solution was typically reversible; the cyclic voltamograms exhibited a series of four or five mono electronic waves ascribed to the successive Ru I V Ru I I I Ru I I I / Ru I I I Ru I I I Ru I I I / ... Ru I I Ru I I Ru I I redox couples. The differences between the successive redox potentials were about 1 V, indicating strong metal-metal interaction in the trinuclear Ru 3 O centre. The E values were strongly sensitive to the nature of the N-heterocyclic ligand, increasing with the pi-acceptor properties of the pyridine and pyrazine derivatives, but in a much less pronounced way in the case of the imidazole derivatives. (author)

  15. Comparative investigation on electrochemical behavior of hydroquinone at carbon ionic liquid electrode, ionic liquid modified carbon paste electrode and carbon paste electrode

    International Nuclear Information System (INIS)

    Zhang, Ya; Zheng, Jian Bin

    2007-01-01

    Ionic liquid, 1-heptyl-3-methylimidazolium hexafluorophosphate (HMIMPF 6 ), has been used to fabricate two new electrodes, carbon ionic liquid electrode (CILE) and ionic liquid modified carbon paste electrode (IL/CPE), using graphite powder mixed with HMIMPF 6 or the mixture of HMIMPF 6 /paraffin liquid as the binder, respectively. The electrochemical behaviors of hydroquinone at the CILE, the IL/CPE and the CPE were investigated in phosphate buffer solution. At all these electrodes, hydroquinone showed a pair of redox peaks. The order of the current response and the standard rate constant of hydroquinone at these electrodes were as follows: CILE > IL/CPE > CPE, while the peak-to-peak potential separation was in an opposite sequence: CILE < IL/CPE < CPE. The results show the superiority of CILE to IL/CPE and CPE, and IL/CPE to CPE in terms of promoting electron transfer, improving reversibility and enhancing sensitivity. The CILE was chosen as working electrode to determine hydroquinone by differential pulse voltammetry, which can be used for sensitive, simple and rapid determination of hydroquinone in medicated skin cosmetic cream

  16. Electrochemical corrosion behavior of AZ91D alloy in ethylene glycol

    Energy Technology Data Exchange (ETDEWEB)

    Fekry, A.M. [Chemistry Department, Faculty of Science, Cairo University, Giza 12613 (Egypt)], E-mail: hham4@hotmail.com; Fatayerji, M.Z. [Chemistry Department, Faculty of Science, Cairo University, Giza 12613 (Egypt)

    2009-11-01

    The effect of concentration on the corrosion behavior of Mg-based alloy AZ91D was investigated in ethylene glycol-water solutions using electrochemical techniques i.e. potentiodynamic polarization, electrochemical impedance measurements (EIS) and surface examination via scanning electron microscope (SEM) technique. This can provide a basis for developing new coolants for magnesium alloy engine blocks. Corrosion behavior of AZ91D alloy by coolant is important in the automotive industry. It was found that the corrosion rate of AZ91D alloy decreased with increasing concentration of ethylene glycol. For AZ91D alloy in chloride >0.05 M or fluoride <0.05 M containing 30% ethylene glycol solution, they are more corrosive than the blank (30% ethylene glycol-70% water). However, at concentrations <0.05 for chloride or >0.05 M for fluoride containing ethylene glycol solution, some inhibition effect has been observed. The corrosion of AZ91D alloy in the blank can be effectively inhibited by addition of 0.05 mM paracetamol that reacts with AZ91D alloy and forms a protective film on the surface at this concentration as confirmed by surface examination.

  17. A chemistry and material perspective on lithium redox flow batteries towards high-density electrical energy storage.

    Science.gov (United States)

    Zhao, Yu; Ding, Yu; Li, Yutao; Peng, Lele; Byon, Hye Ryung; Goodenough, John B; Yu, Guihua

    2015-11-21

    Electrical energy storage system such as secondary batteries is the principle power source for portable electronics, electric vehicles and stationary energy storage. As an emerging battery technology, Li-redox flow batteries inherit the advantageous features of modular design of conventional redox flow batteries and high voltage and energy efficiency of Li-ion batteries, showing great promise as efficient electrical energy storage system in transportation, commercial, and residential applications. The chemistry of lithium redox flow batteries with aqueous or non-aqueous electrolyte enables widened electrochemical potential window thus may provide much greater energy density and efficiency than conventional redox flow batteries based on proton chemistry. This Review summarizes the design rationale, fundamentals and characterization of Li-redox flow batteries from a chemistry and material perspective, with particular emphasis on the new chemistries and materials. The latest advances and associated challenges/opportunities are comprehensively discussed.

  18. The Au-S bond in biomolecular adsorption and electrochemical electron transfer

    DEFF Research Database (Denmark)

    Ford, M. J.; Hush, N. S.; Marcuccio, S.

    Interfacial electrochemical electron transfer (ET) of redox metalloproteins is long established. For the proteins to retain full ET or enzyme activity, modification of the electrode surfaces, such as goldsurfaces by self-assembled molecular monolayers (SAMs), is nearly always required, where pure...

  19. A Review for Aqueous Electrochemical Supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Cuimei [Key Laboratory of Preparation and Applications of Environmental Friendly Materials, Ministry of Education, College of Chemistry, Jilin Normal University, Siping (China); Zheng, Weitao, E-mail: wtzheng@jlu.edu.cn [Department of Materials Science, Key Laboratory of Mobile Materials, Ministry of Education and State Key Laboratory of Superhard Materials, Jilin University, Changchun (China)

    2015-05-08

    Electrochemical capacitor is the most promising energy-storage device that can meet the demands of high-power supply and long cycle life; however, low-energy density and high-fabrication cost limit its further development. Researchers have paid more attention to the development of electrode material in the past, and very few people attach importance to the research of the electrolyte, especially the redox electrolyte, which is important for improving specific capacitance greatly. This paper presents a review of the research in not only electrode material but also redox aqueous electrolyte and together with an important part of supercapacitor device. The advantages and disadvantages for different electrode material and electrolyte are discussed. And the new trends in supercapacitor development are also summarized.

  20. A Review for Aqueous Electrochemical Supercapacitors

    International Nuclear Information System (INIS)

    Zhao, Cuimei; Zheng, Weitao

    2015-01-01

    Electrochemical capacitor is the most promising energy-storage device that can meet the demands of high-power supply and long cycle life; however, low-energy density and high-fabrication cost limit its further development. Researchers have paid more attention to the development of electrode material in the past, and very few people attach importance to the research of the electrolyte, especially the redox electrolyte, which is important for improving specific capacitance greatly. This paper presents a review of the research in not only electrode material but also redox aqueous electrolyte and together with an important part of supercapacitor device. The advantages and disadvantages for different electrode material and electrolyte are discussed. And the new trends in supercapacitor development are also summarized.

  1. A review for aqueous electrochemical supercapacitors

    Directory of Open Access Journals (Sweden)

    Cuimei eZhao

    2015-05-01

    Full Text Available Electrochemical capacitor is the most promising energy storage device that can meet the demands of high power supply and long cycle life, however low energy density and high fabrication cost limit its further development. Researchers have paid more attention to the development of electrode material in the past, and very few people attach importance to the research of the electrolyte, especially the redox electrolyte, which is important for improving specific capacitance greatly. This paper presents a review of the research in not only electrode material but also redox aqueous electrolyte and together with an important part of supercapacitor device. The advantages and disadvantages for different electrode material and electrolyte are discussed. And the new trends in supercapacitor development are also summarized.

  2. Electron Transfer Reactivity Patterns at Chemically Modified Electrodes: Fundamentals and Application to the Optimization of Redox Recycling Amplification Systems

    Energy Technology Data Exchange (ETDEWEB)

    Bergren, Adam Johan [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    Electroanalytical chemistry is often utilized in chemical analysis and Fundamental studies. Important advances have been made in these areas since the advent of chemically modified electrodes: the coating of an electrode with a chemical film in order to impart desirable, and ideally, predictable properties. These procedures enable the exploitation of unique reactivity patterns. This dissertation presents studies that investigate novel reaction mechanisms at self-assembled monolayers on gold. In particular, a unique electrochemical current amplification scheme is detailed that relies on a selective electrode to enable a reactivity pattern that results in regeneration of the analyte (redox recycling). This regenerating reaction can occur up to 250 times for each analyte molecule, leading to a notable enhancement in the observed current. The requirements of electrode selectivity and the resulting amplification and detection limit improvements are described with respect to the heterogeneous and homogeneous electron transfer rates that characterize the system. These studies revealed that the heterogeneous electrolysis of the analyte should ideally be electrochemically reversible, while that for the regenerating agent should be held to a low level. Moreover, the homogeneous reaction that recycles the analyte should occur at a rapid rate. The physical selectivity mechanism is also detailed with respect to the properties of the electrode and redox probes utilized. It is shown that partitioning of the analyte into/onto the adlayer leads to the extraordinary selectivity of the alkanethiolate monolayer modified electrode. Collectively, these studies enable a thorough understanding of the complex electrode mechanism required for successful redox recycling amplification systems, Finally, in a separate (but related) study, the effect of the akyl chain length on the heterogeneous electron transfer behavior of solution-based redox probes is reported, where an odd-even oscillation

  3. The effects of surface modification on carbon felt electrodes for use in vanadium redox flow batteries

    International Nuclear Information System (INIS)

    Kim, Ki Jae; Kim, Young-Jun; Kim, Jae-Hun; Park, Min-Sik

    2011-01-01

    Highlights: ► We observed the physical and chemical changes on the surface of carbon felts after various surface modifications. ► The surface area and chemistry of functional groups formed on the surface of carbon felt are critical to determine the kinetics of the redox reactions of vanadium ions. ► By incorporation of the surface modifications into the electrode preparation, the electrochemical activity of carbon felts could be notably enhanced. - Abstract: The surface of carbon felt electrodes has been modified for improving energy efficiency of vanadium redox flow batteries. For comparative purposes, the effects of various surface modifications such as mild oxidation, plasma treatment, and gamma-ray irradiation on the electrochemical properties of carbon felt electrodes were investigated at optimized conditions. The cell energy efficiency was improved from 68 to 75% after the mild oxidation of the carbon felt at 500 °C for 5 h. This efficiency improvement could be attributed to the increased surface area of the carbon felt electrode and the formation of functional groups on its surface as a result of the modification. On the basis of various structural and electrochemical characterizations, a relationship between the surface nature and electrochemical activity of the carbon felt electrodes is discussed.

  4. Effect of aqueous electrolytes on the electrochemical behaviors of supercapacitors based on hierarchically porous carbons

    Science.gov (United States)

    Zhang, Xiaoyan; Wang, Xianyou; Jiang, Lanlan; Wu, Hao; Wu, Chun; Su, Jingcang

    2012-10-01

    Hierarchically porous carbons (HPCs) have been prepared by sol-gel self-assembly technology with nickel oxide and surfactant as the dual template. The porous carbons are further activated by nitric acid. The electrochemical behaviors of supercapacitors using HPCs as electrode material in different aqueous electrolytes, e.g., (NH4)2SO4, Na2SO4, H2SO4 and KOH are studied by cyclic voltametry, galvanostatic charge/discharge, cyclic life, leakage current, self-discharge and electrochemical impedance spectroscopy. The results demonstrate that the supercapacitors in various electrolytes perform definitely capacitive behaviors; especially in 6 M KOH electrolyte the supercapacitor represents the best electrochemical performance, the shortest relaxation time, and nearly ideal polarisability. The energy density of 8.42 Wh kg-1 and power density of 17.22 kW kg-1 are obtained at the operated voltage window of 1.0 V. Especially, the energy density of 11.54 Wh kg-1 and power density of 10.58 kW kg-1 can be achieved when the voltage is up to 1.2 V.

  5. Electrochemical energy engineering: a new frontier of chemical engineering innovation.

    Science.gov (United States)

    Gu, Shuang; Xu, Bingjun; Yan, Yushan

    2014-01-01

    One of the grand challenges facing humanity today is a safe, clean, and sustainable energy system where combustion no longer dominates. This review proposes that electrochemical energy conversion could set the foundation for such an energy system. It further suggests that a simple switch from an acid to a base membrane coupled with innovative cell designs may lead to a new era of affordable electrochemical devices, including fuel cells, electrolyzers, solar hydrogen generators, and redox flow batteries, for which recent progress is discussed using the authors' work as examples. It also notes that electrochemical energy engineering will likely become a vibrant subdiscipline of chemical engineering and a fertile ground for chemical engineering innovation. To realize this vision, it is necessary to incorporate fundamental electrochemistry and electrochemical engineering principles into the chemical engineering curriculum.

  6. The chemical behavior of acidified chromium (3) solutions. B.S. Thesis

    Science.gov (United States)

    Terman, D. K.

    1981-01-01

    A unique energy-storage system has been developed at NASA's Lewis Research Center called REDOX. This NASA-REDOX system is an electrochemical storage device that utilized the oxidation and reduction of two fully soluble redox couples for charging and discharging. The redox couples now being investigated are acidified chloride solutions of chromium (Cr(+2)/Cr(+3)) and iron (Fe(+2)/Fe(+3)).

  7. A lactate electrochemical biosensor with a titanate nanotube as direct electron transfer promoter

    International Nuclear Information System (INIS)

    Yang Mingli; Wang Jin; Li Huaqing; Wu Nianqiang Nick; Zheng Jianguo

    2008-01-01

    Hydrogen titanate (H 2 Ti 3 O 7 ) nanotubes (TNTs) have been synthesized by a one-step hydrothermal processing. Lactate oxidase (LOx) enzyme has been immobilized on the three-dimensional porous TNT network to make an electrochemical biosensor for lactate detection. Cyclic voltammetry and amperometry tests reveal that the LOx enzyme, which is supported on TNTs, maintains their substrate-specific catalytic activity. The nanotubes offer the pathway for direct electron transfer between the electrode surface and the active redox centers of LOx, which enables the biosensor to operate at a low working potential and to avoid the influence of the presence of O 2 on the amperometric current response. The biosensor exhibits a sensitivity of 0.24 μA cm -2 mM -1 , a 90% response time of 5 s, and a linear response in the range from 0.5 to 14 mM and the redox center of enzyme obviates the need of redox mediators for electrochemical enzymatic sensors, which is attractive for the development of reagentless biosensors

  8. A lactate electrochemical biosensor with a titanate nanotube as direct electron transfer promoter

    Science.gov (United States)

    Yang, Mingli; Wang, Jin; Li, Huaqing; Zheng, Jian-Guo; Wu, Nianqiang Nick

    2008-02-01

    Hydrogen titanate (H2Ti3O7) nanotubes (TNTs) have been synthesized by a one-step hydrothermal processing. Lactate oxidase (LOx) enzyme has been immobilized on the three-dimensional porous TNT network to make an electrochemical biosensor for lactate detection. Cyclic voltammetry and amperometry tests reveal that the LOx enzyme, which is supported on TNTs, maintains their substrate-specific catalytic activity. The nanotubes offer the pathway for direct electron transfer between the electrode surface and the active redox centers of LOx, which enables the biosensor to operate at a low working potential and to avoid the influence of the presence of O2 on the amperometric current response. The biosensor exhibits a sensitivity of 0.24 µA cm-2 mM-1, a 90% response time of 5 s, and a linear response in the range from 0.5 to 14 mM and the redox center of enzyme obviates the need of redox mediators for electrochemical enzymatic sensors, which is attractive for the development of reagentless biosensors.

  9. Electrochemical investigation of tetravalent uranium β-diketones for active materials of all-uranium redox flow battery

    International Nuclear Information System (INIS)

    Yamamura, Tomoo; Shiokawa, Yoshinobu; Ikeda, Yasuhisa

    2002-01-01

    For active materials of the all-uranium redox flow battery for the power storage, tetravalent uranium β-diketones were investigated. The electrode reactions of U(ba) 4 and U(btfa) 4 were examined in comparison with that of U(acac) 4 , where ba denotes benzoylacetone, btfa benzoyltrifluoroacetone and acac acetylacetone. The cyclic voltammograms of U(ba) 4 and U(btfa) 4 solutions indicate that there are two series of redox reactions corresponding to the complexes with different coordination numbers of four and three. The electrode kinetics of the U(IV)/U(III) redox reactions for btfa complexes is examined. The obtained result supports that the uranium β-diketone complexes examined in the present study will serve as excellent active materials for negative electrolyte in the redox flow battery. (author)

  10. The Analgesic Acetaminophen and the Antipsychotic Clozapine Can Each Redox-Cycle with Melanin.

    Science.gov (United States)

    Temoçin, Zülfikar; Kim, Eunkyoung; Li, Jinyang; Panzella, Lucia; Alfieri, Maria Laura; Napolitano, Alessandra; Kelly, Deanna L; Bentley, William E; Payne, Gregory F

    2017-12-20

    Melanins are ubiquitous but their complexity and insolubility has hindered characterization of their structures and functions. We are developing electrochemical reverse engineering methodologies that focus on properties and especially on redox properties. Previous studies have shown that melanins (i) are redox-active and can rapidly and repeatedly exchange electrons with diffusible oxidants and reductants, and (ii) have redox potentials in midregion of the physiological range. These properties suggest the functional activities of melanins will depend on their redox context. The brain has a complex redox context with steep local gradients in O 2 that can promote redox-cycling between melanin and diffusible redox-active chemical species. Here, we performed in vitro reverse engineering studies and report that melanins can redox-cycle with two common redox-active drugs. Experimentally, we used two melanin models: a convenient natural melanin derived from cuttlefish (Sepia melanin) and a synthetic cysteinyldopamine-dopamine core-shell model of neuromelanin. One drug, acetaminophen (APAP), has been used clinically for over a century, and recent studies suggest that low doses of APAP can protect the brain from oxidative-stress-induced toxicity and neurodegeneration, while higher doses can have toxic effects in the brain. The second drug, clozapine (CLZ), is a second generation antipsychotic with polypharmacological activities that remain incompletely understood. These in vitro observations suggest that the redox activities of drugs may be relevant to their modes-of-action, and that melanins may interact with drugs in ways that affect their activities, metabolism, and toxicities.

  11. Carbon nanosheets-based supercapacitors: Design of dual redox additives of 1, 4-dihydroxyanthraquinone and hydroquinone for improved performance

    Science.gov (United States)

    Xu, Dong; Sun, Xiao Na; Hu, Wei; Chen, Xiang Ying

    2017-07-01

    Using thiocarbanilide and Mg(OH)2 powders as carbon precursor and template, respectively, novel 2D carbon nanosheets with large area have been produced. Next, based on the cooperative effect, 1, 4-dihydroxyanthraquinone (DQ) and hydroquinone (HQ) regarded as efficient dual redox additives have been incorporated into the electrode carbon material and H2SO4 electrolyte, respectively, to largely elevate the capacitive performance of supercapacitors. More importantly, the cooperative effect results from the redox processes of DQ and HQ consecutively occurring in the electrode carbon material and aqueous H2SO4 electrolyte, respectively. Besides, the molar ratio of DQ and HQ exerts a crucial role in the determination of the electrochemical behaviors and eventually the optimum condition is the mass ratio of 1:1 concerning the DQ and porous carbon within solid electrode while retaining the HQ concentration as 20 mmol L-1 in 1 mol L-1 H2SO4 electrolyte. As a result, the maximum specific capacitance is achieved of 239 F g-1 at 3 A g-1, and furthermore the maximum energy density up to 21.1 Wh kg-1 is almost 3.5 times larger than that of the one without introducing any redox additive.

  12. Multilevel electrochemical signal detections of metalloprotein heterolayers for bioelectronic device

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Yong-Ho; Yoo, Si-Youl; Lee, Taek [Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro(Sinsu-dong), Mapo-gu, Seoul 121-742 (Korea, Republic of); Lee, Hun Joo [Interdisciplinary Program of Integrated Biotechnology, Sogang University, 35 Baekbeomro(Sinsu-dong), Mapo-gu, Seoul 121-742 (Korea, Republic of); Min, Junhong [School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul 156-756 (Korea, Republic of); Choi, Jeong-Woo, E-mail: jwchoi@sogang.ac.kr [Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro(Sinsu-dong), Mapo-gu, Seoul 121-742 (Korea, Republic of); Interdisciplinary Program of Integrated Biotechnology, Sogang University, 35 Baekbeomro(Sinsu-dong), Mapo-gu, Seoul 121-742 (Korea, Republic of)

    2014-01-31

    In the present study, we investigated the simultaneous detection of multilevel electrochemical signals from various metalloprotein heterolayers for the bioelectronic devices. A layer-by-layer assembly method based on simple electrostatic interaction was introduced to form protein bilayers. The gold substrate was modified with poly (ethylene glycol) thiol acid as the precursor, which introduced negative charges to the surface. Based on the isoelectric point, net-charge controlled metalloproteins by pH adjustment were sequentially immobilized on this negatively charged substrate. The degree of protein immobilization on the gold substrate was confirmed by surface plasmon resonance spectroscopy, and the surface topology changes due to the protein immobilization were confirmed by atomic force microscopy. Redox signals in the protein layers were measured by cyclic voltammetry. As a result, various redox signals generated from different metalloproteins on a single electrode were monitored. This proposed method for the detection of multi-level electrochemical signals can be directly applied to bioelectronic devices that store multi-information in a single electrode. - Highlights: • We fabricated heterolayers composed of various metalloproteins. • Metalloproteins were immobilized by layer-by-layer assembly. • The degree of immobilization was controlled by the net charge of metalloproteins. • Various redox signals generated from heterolayers were well monitored.

  13. Electrochemical behavior of cysteine at a CuGeO3 nanowires modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Dong Yongping; Pei Lizhai; Chu Xiangfeng; Zhang Wangbing; Zhang Qianfeng

    2010-01-01

    A CuGeO 3 nanowire modified glassy carbon electrode was fabricated and characterized by scanning electron microscopy. The results of electrochemical impedance spectroscopy reveal that electron transfer through nanowire film is facile compared with that of bare glassy carbon electrode. The modified electrode exhibited a novel electrocatalytic behavior to the electrochemical reactions of L-cysteine in neutral solution, which was not reported previously. Two pairs of semi-reversible electrochemical peaks were observed and assigned to the processes of oxidation/reduction and adsorption/desorption of cysteine at the modified electrode, respectively. The electrochemical response of cysteine is poor in alkaline condition and is enhanced greatly in acidic solution, suggesting that hydrogen ions participate in the electrochemical oxidation process of cysteine. The intensities of two anodic peaks varied linearly with the concentration of cysteine in the range of 1 x 10 -6 to 1 x 10 -3 mol L -1 , which make it possible to sensitive detection of cysteine with the CuGeO 3 nanowire modified electrode. Furthermore, the modified electrode exhibited good reproducibility and stability.

  14. Redox Equilibria in SO2 Oxidation Catalysts

    DEFF Research Database (Denmark)

    Rasmussen, Søren Birk; Eriksen, Kim Michael; Boghosian, Soghomon

    1999-01-01

    been carried out regarding the complex and compound formation of V(V) and the formation of V(IV) and V(III) compounds with low solubility causing catalyst deactivation. However, the redox chemistry of vanadium and the complex formation of V(IV) is much less investigated and further information...... on these subjects in pyrosulfate melts is needed to obtain a deeper understanding of the reaction mechanism. The present paper describes our efforts so far to study the V(IV) chemistry using especially spectroscopic and electrochemical methods....

  15. Strain- and Substrate-Dependent Redox Mediator and Electricity Production by Pseudomonas aeruginosa.

    Science.gov (United States)

    Bosire, Erick M; Blank, Lars M; Rosenbaum, Miriam A

    2016-08-15

    Pseudomonas aeruginosa is an important, thriving member of microbial communities of microbial bioelectrochemical systems (BES) through the production of versatile phenazine redox mediators. Pure culture experiments with a model strain revealed synergistic interactions of P. aeruginosa with fermenting microorganisms whereby the synergism was mediated through the shared fermentation product 2,3-butanediol. Our work here shows that the behavior and efficiency of P. aeruginosa in mediated current production is strongly dependent on the strain of P. aeruginosa We compared levels of phenazine production by the previously investigated model strain P. aeruginosa PA14, the alternative model strain P. aeruginosa PAO1, and the BES isolate Pseudomonas sp. strain KRP1 with glucose and the fermentation products 2,3-butanediol and ethanol as carbon substrates. We found significant differences in substrate-dependent phenazine production and resulting anodic current generation for the three strains, with the BES isolate KRP1 being overall the best current producer and showing the highest electrochemical activity with glucose as a substrate (19 μA cm(-2) with ∼150 μg ml(-1) phenazine carboxylic acid as a redox mediator). Surprisingly, P. aeruginosa PAO1 showed very low phenazine production and electrochemical activity under all tested conditions. Microbial fuel cells and other microbial bioelectrochemical systems hold great promise for environmental technologies such as wastewater treatment and bioremediation. While there is much emphasis on the development of materials and devices to realize such systems, the investigation and a deeper understanding of the underlying microbiology and ecology are lagging behind. Physiological investigations focus on microorganisms exhibiting direct electron transfer in pure culture systems. Meanwhile, mediated electron transfer with natural redox compounds produced by, for example, Pseudomonas aeruginosa might enable an entire microbial

  16. In Situ X‐Ray Diffraction Studies on Structural Changes of a P2 Layered Material during Electrochemical Desodiation/Sodiation

    DEFF Research Database (Denmark)

    Jung, Young Hwa; Christiansen, Ane Sælland; Johnsen, Rune E.

    2015-01-01

    for understanding the relationship between layered structures and electrochemical properties. A combination of in situ diffraction and ex situ X‐ray absorption spectroscopy reveals the phase transition mechanism for the ternary transition metal system (Fe–Mn–Co) with P2 stacking. In situ synchrotron X‐ray...... in a volumetric contraction of the lattice toward a fully charged state. Observations on the redox behavior of each transition metal in P2–Na0.7Fe0.4Mn0.4Co0.2O2 using X‐ray absorption spectroscopy indicate that all transition metals are involved in the reduction/oxidation process.......Sodium layered oxides with mixed transition metals have received significant attention as positive electrode candidates for sodium‐ion batteries because of their high reversible capacity. The phase transformations of layered compounds during electrochemical reactions are a pivotal feature...

  17. A miniaturized silicon based device for nucleic acids electrochemical detection

    Directory of Open Access Journals (Sweden)

    Salvatore Petralia

    2015-12-01

    Full Text Available In this paper we describe a novel portable system for nucleic acids electrochemical detection. The core of the system is a miniaturized silicon chip composed by planar microelectrodes. The chip is embedded on PCB board for the electrical driving and reading. The counter, reference and work microelectrodes are manufactured using the VLSI technology, the material is gold for reference and counter electrodes and platinum for working electrode. The device contains also a resistor to control and measuring the temperature for PCR thermal cycling. The reaction chamber has a total volume of 20 μL. It is made in hybrid silicon–plastic technology. Each device contains four independent electrochemical cells.Results show HBV Hepatitis-B virus detection using an unspecific DNA intercalating redox probe based on metal–organic compounds. The recognition event is sensitively detected by square wave voltammetry monitoring the redox signals of the intercalator that strongly binds to the double-stranded DNA. Two approaches were here evaluated: (a intercalation of electrochemical unspecific probe on ds-DNA on homogeneous solution (homogeneous phase; (b grafting of DNA probes on electrode surface (solid phase.The system and the method here reported offer better advantages in term of analytical performances compared to the standard commercial optical-based real-time PCR systems, with the additional incomes of being potentially cheaper and easier to integrate in a miniaturized device. Keywords: Electrochemical detection, Real time PCR, Unspecific DNA intercalator

  18. Electrochemical corrosion behaviors of the X90 linepipe steel in NS4 solution

    Directory of Open Access Journals (Sweden)

    Jinheng Luo

    2016-10-01

    Full Text Available Oil and gas line pipes are laid underground and run through different areas in the laying process, so they will be subjected to different degrees of corrosion and even crack, leading to enormous casualties and economic losses. In order to guarantee the safe operation of line pipes, therefore, it is significant to investigate the electrochemical corrosion behaviors of pipe steel in a simulated soil environment. In this paper, the electrochemical corrosion behaviors of the base metals and welding materials of API 5L X90 steel longitudinally submerged arc welding pipes in near-neutral simulated soil solution (NS4 were studied by means of the electrochemical impedance spectroscopy (EIS and the potentiodynamic polarization testing technology. It is shown that the typical characteristic of anodic dissolution is presented but with no passivation phenomenon when X90 linepipe steel is put in NS4 solution. The base material is thermodynamically more stable than the seam weld material. The base material and seam weld samples were polarized under −850 mV polarization potential for different durations. It is demonstrated that with the proceeding of polarization, the polarization resistance and the corrosion resistance increase while the corrosion current density decreases. And the corrosion resistance of base material is better than that of seam weld material.

  19. A novel in situ electrochemical NMR cell with a palisade gold film electrode

    Science.gov (United States)

    Ni, Zu-Rong; Cui, Xiao-Hong; Cao, Shuo-Hui; Chen, Zhong

    2017-08-01

    In situ electrochemical nuclear magnetic resonance (EC-NMR) has attracted considerable attention because of its ability to directly observe real-time electrochemical processes. Therefore, minimizing the incompatibility between the electrochemical device and NMR detection has become an important challenge. A circular thin metal film deposited on the outer surface of a glass tube with a thickness considerably less than the metal skin depth is considered to be the ideal working electrode. In this study, we demonstrate that such a thin film electrode still has a great influence on the radio frequency field homogeneity in the detective zone of the NMR spectrometer probe and provide theoretical and experimental confirmation of its electromagnetic shielding. Furthermore, we propose a novel palisade gold film device to act as the working electrode. The NMR nutation behavior of protons shows that the uniformity of the radio frequency field is greatly improved, increasing the sensitivity in NMR detection. Another advantage of the proposed device is that an external reference standard adapted to the reaction compound can be inserted as a probe to determine the fluctuation of the physico-chemical environment and achieve high-accuracy quantitative NMR analysis. A three-chamber electrochemical device based on the palisade gold film design was successfully fabricated and the in situ electrochemical NMR performance was validated in a standard 5 mm NMR probe by acquiring voltammograms and high-resolution NMR spectra to characterize the electrochemically generated species. The evolution of in situ EC-NMR spectrum monitoring of the redox transformation between p-benzoquinone and hydroquinone demonstrates the ability of the EC-NMR device to simultaneously quantitatively determine the reactants and elucidate the reaction mechanism at the molecular level.

  20. A novel in situ electrochemical NMR cell with a palisade gold film electrode

    Directory of Open Access Journals (Sweden)

    Zu-Rong Ni

    2017-08-01

    Full Text Available In situ electrochemical nuclear magnetic resonance (EC-NMR has attracted considerable attention because of its ability to directly observe real-time electrochemical processes. Therefore, minimizing the incompatibility between the electrochemical device and NMR detection has become an important challenge. A circular thin metal film deposited on the outer surface of a glass tube with a thickness considerably less than the metal skin depth is considered to be the ideal working electrode. In this study, we demonstrate that such a thin film electrode still has a great influence on the radio frequency field homogeneity in the detective zone of the NMR spectrometer probe and provide theoretical and experimental confirmation of its electromagnetic shielding. Furthermore, we propose a novel palisade gold film device to act as the working electrode. The NMR nutation behavior of protons shows that the uniformity of the radio frequency field is greatly improved, increasing the sensitivity in NMR detection. Another advantage of the proposed device is that an external reference standard adapted to the reaction compound can be inserted as a probe to determine the fluctuation of the physico-chemical environment and achieve high-accuracy quantitative NMR analysis. A three-chamber electrochemical device based on the palisade gold film design was successfully fabricated and the in situ electrochemical NMR performance was validated in a standard 5 mm NMR probe by acquiring voltammograms and high-resolution NMR spectra to characterize the electrochemically generated species. The evolution of in situ EC-NMR spectrum monitoring of the redox transformation between p-benzoquinone and hydroquinone demonstrates the ability of the EC-NMR device to simultaneously quantitatively determine the reactants and elucidate the reaction mechanism at the molecular level.

  1. Nanostructured layer-by-layer films containing phaeophytin-b: Electrochemical characterization for sensing purposes

    International Nuclear Information System (INIS)

    Nunes Pauli, Gisele Elias; Araruna, Felipe B.; Eiras, Carla; Leite, José Roberto S.A.; Chaves, Otemberg Souza; Filho, Severino Gonçalves Brito; Vanderlei de Souza, Maria de Fátima; Chavero, Lucas Natálio; Sartorelli, Maria Luisa

    2015-01-01

    This paper reports the study and characterization of a new platform for practical applications, where the use of phaeophytin-b (phaeo-b), a compound derived from chlorophyll, was characterized and investigated for sensing purposes. Modified electrodes with nanostructured phaeo-b films were fabricated via the layer-by-layer (LbL) technique, where phaeo-b was assembled with cashew gum, a polysaccharide, or with poly(allylamine) hydrochloride (PAH). The multilayer formation was investigated with UV–Vis spectroscopy by monitoring the absorption band associated to phaeo-b at approximately 410 nm, where distinct molecular interactions between the materials were verified. The morphology of the films was analyzed by atomic force microscopy (AFM). The electrochemical properties through redox behavior of phaeo-b were studied with cyclic voltammetry. The produced films were applied as sensors for hydrogen peroxide (H 2 O 2 ) detection. In terms of sensing, the cashew/phaeo-b film exhibited the most promising result, with a fast response and broad linear range upon the addition of H 2 O 2 . This approach provides a simple and inexpensive method for development of a nonenzymatic electrochemical sensor for H 2 O 2 . - Highlights: • Potential applications of phaeophytin-b • Low-cost method to produce sensitive nanostructured films • Electrochemical sensor based on phaeophytin-b and cashew gum

  2. Electrochemical Characterization of TiO 2 Blocking Layers for Dye-Sensitized Solar Cells

    KAUST Repository

    Kavan, Ladislav

    2014-07-31

    Thin compact layers of TiO2 are grown by thermal oxidation of Ti, by spray pyrolysis, by electrochemical deposition, and by atomic layer deposition. These layers are used in dye-sensitized solar cells to prevent recombination of electrons from the substrate (FTO or Ti) with the hole-conducting medium at this interface. The quality of blocking is evaluated electrochemically by methylviologen, ferro/ferricyanide, and spiro-OMeTAD as the model redox probes. Two types of pinholes in the blocking layers are classified, and their effective area is quantified. Frequency-independent Mott-Schottky plots are fitted from electrochemical impedance spectroscopy. Certain films of the thicknesses of several nanometers allow distinguishing the depletion layer formation both in the TiO2 film and in the FTO substrate underneath the titania film. The excellent blocking function of thermally oxidized Ti, electrodeposited film (60 nm), and atomic-layer-deposited films (>6 nm) is documented by the relative pinhole area of less than 1%. However, the blocking behavior of electrodeposited and atomic-layer-deposited films is strongly reduced upon calcination at 500 °C. The blocking function of spray-pyrolyzed films is less good but also less sensitive to calcination. The thermally oxidized Ti is well blocking and insensitive to calcination. © 2014 American Chemical Society.

  3. Facile electrochemical pretreatment of multiwalled carbon nanotube - Polydimethylsiloxane paste electrode for enhanced detection of dopamine and uric acid

    Science.gov (United States)

    Buenaventura, Angelo Gabriel E.; Yago, Allan Christopher C.

    2018-05-01

    A facile electrochemical pretreatment via anodization was done on Carbon Paste Electrodes (CPEs) composed of Multiwalled Carbon Nanotubes (MWCNTs) and Polydimethylsiloxane (PDMS) binder to produce `anodized' CPEs (ACPE). Cyclic Voltammetry (CV) technique was used to anodize the CPEs. The anodization step, performed in various solutions (0.2 M NaOH(aq), 0.06 M BR Buffer at pH 7.0, and 0.2 M HNO3(aq)), were found to enhance the electrochemical properties of the ACPEs compared to non-anodized CPE. Electrochemical Impedance Spectroscopy (EIS) measurements revealed a significantly lower charge transfer resistance (Rct) for the ACPEs (4.01-6.25 kΩ) as compared to CPE (25.9 kΩ). Comparison of the reversibility analysis for Fe(CN)63-/4- redox couple showed that the ACPEs have peak current ratio (Ia/Ic) at range of 0.97-1.10 while 1.92 for the CPE; this result indicated better electrochemical reversible behaviors for Fe(CN)63-/4- redox couple using the ACPEs. CV Anodization process was further optimized by varying solution and CV parameters (i.e. pH, composition, number of cycles, and potential range), and the resulting optimized ACPE was used for enhanced detection of Dopamine (DA) and Uric Acid (UA) in the presence of excess Ascorbic Acid (AA). Employing Differential Pulse Voltammetry technique, enhanced voltammetric signal for DA and significant peak separation between DA and UA was obtained. The anodic peak currents for the oxidation of DA and UA appeared at 0.263V and 0.414 V, respectively, and it was observed to be linearly increasing with increasing concentrations of biomolecules (25-100 µM). The detection limit was determined to be 3.86 µM for DA and 5.61 µM for UA. This study showed a quick and cost-effective pretreatment for CPEs based on MWCNT-PDMS composite which lead to significant enhancement on its electrochemical properties.

  4. Improving the performance of electrochemical microsensors based on enzymes entrapped in a redox hydrogel

    International Nuclear Information System (INIS)

    Mitala, J.J.; Michael, A.C.

    2006-01-01

    Microsensors based on carbon fiber microelectrodes coated with enzyme-entrapping redox hydrogels facilitate the in vivo detection of substances of interest within the central nervous system, including hydrogen peroxide, glucose, choline and glutamate. The hydrogel, formed by cross-linking a redox polymer, entraps the enzymes and mediates electron transfer between the enzymes and the electrode. It is important that the enzymes are entrapped in their enzymatically active state. Should entrapment cause enzyme denaturation, the sensitivity and the selectivity of the sensor may be compromised. Synthesis of the redox polymer according to published procedures may yield a product that precipitates when added to aqueous enzyme solutions. Casting hydrogels from solutions that contain the precipitate produces microsensors with low sensitivity and selectivity, suggesting that the precipitation disrupts the structure of the enzymes. Herein, we show that a surfactant, sodium dodecyl sulfate (SDS), can prevent the precipitation and improve the sensitivity and selectivity of the sensors

  5. The synthesis of PdPt/carbon paper via surface limited redox replacement reactions for oxygen reduction reaction

    CSIR Research Space (South Africa)

    Motsoeneng, RG

    2015-09-01

    Full Text Available Surface-limited redox replacement reactions using the electrochemical atomic layer deposition (EC-ALD) technique were used to synthesize PdPt bimetallic electrocatalysts on carbon paper substrate. Electrocatalysts having different Pd:Pt ratio were...

  6. High-energy density nonaqueous all redox flow lithium battery enabled with a polymeric membrane.

    Science.gov (United States)

    Jia, Chuankun; Pan, Feng; Zhu, Yun Guang; Huang, Qizhao; Lu, Li; Wang, Qing

    2015-11-01

    Redox flow batteries (RFBs) are considered one of the most promising large-scale energy storage technologies. However, conventional RFBs suffer from low energy density due to the low solubility of the active materials in electrolyte. On the basis of the redox targeting reactions of battery materials, the redox flow lithium battery (RFLB) demonstrated in this report presents a disruptive approach to drastically enhancing the energy density of flow batteries. With LiFePO4 and TiO2 as the cathodic and anodic Li storage materials, respectively, the tank energy density of RFLB could reach ~500 watt-hours per liter (50% porosity), which is 10 times higher than that of a vanadium redox flow battery. The cell exhibits good electrochemical performance under a prolonged cycling test. Our prototype RFLB full cell paves the way toward the development of a new generation of flow batteries for large-scale energy storage.

  7. High–energy density nonaqueous all redox flow lithium battery enabled with a polymeric membrane

    Science.gov (United States)

    Jia, Chuankun; Pan, Feng; Zhu, Yun Guang; Huang, Qizhao; Lu, Li; Wang, Qing

    2015-01-01

    Redox flow batteries (RFBs) are considered one of the most promising large-scale energy storage technologies. However, conventional RFBs suffer from low energy density due to the low solubility of the active materials in electrolyte. On the basis of the redox targeting reactions of battery materials, the redox flow lithium battery (RFLB) demonstrated in this report presents a disruptive approach to drastically enhancing the energy density of flow batteries. With LiFePO4 and TiO2 as the cathodic and anodic Li storage materials, respectively, the tank energy density of RFLB could reach ~500 watt-hours per liter (50% porosity), which is 10 times higher than that of a vanadium redox flow battery. The cell exhibits good electrochemical performance under a prolonged cycling test. Our prototype RFLB full cell paves the way toward the development of a new generation of flow batteries for large-scale energy storage. PMID:26702440

  8. Integrated Photoelectrochemical Solar Energy Conversion and Organic Redox Flow Battery Devices

    KAUST Repository

    Li, Wenjie

    2016-09-21

    Building on regenerative photoelectrochemical solar cells and emerging electrochemical redox flow batteries (RFBs), more efficient, scalable, compact, and cost-effective hybrid energy conversion and storage devices could be realized. An integrated photoelectrochemical solar energy conversion and electrochemical storage device is developed by integrating regenerative silicon solar cells and 9,10-anthraquinone-2,7-disulfonic acid (AQDS)/1,2-benzoquinone-3,5-disulfonic acid (BQDS) RFBs. The device can be directly charged by solar light without external bias, and discharged like normal RFBs with an energy storage density of 1.15 Wh L−1 and a solar-to-output electricity efficiency (SOEE) of 1.7 % over many cycles. The concept exploits a previously undeveloped design connecting two major energy technologies and promises a general approach for storing solar energy electrochemically with high theoretical storage capacity and efficiency.

  9. A Review for Aqueous Electrochemical Supercapacitors

    OpenAIRE

    Zhao, Cuimei; Zheng, Weitao

    2015-01-01

    Electrochemical capacitor is the most promising energy-storage device that can meet the demands of high-power supply and long cycle life; however, low-energy density and high-fabrication cost limit its further development. Researchers have paid more attention to the development of electrode material in the past, and very few people attach importance to the research of the electrolyte, especially the redox electrolyte, which is important for improving specific capacitance greatly. This paper p...

  10. Numerical modeling of an all vanadium redox flow battery.

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, Jonathan R.; Brunini, Victor E.; Moffat, Harry K.; Martinez, Mario J.

    2014-01-01

    We develop a capability to simulate reduction-oxidation (redox) flow batteries in the Sierra Multi-Mechanics code base. Specifically, we focus on all-vanadium redox flow batteries; however, the capability is general in implementation and could be adopted to other chemistries. The electrochemical and porous flow models follow those developed in the recent publication by [28]. We review the model implemented in this work and its assumptions, and we show several verification cases including a binary electrolyte, and a battery half-cell. Then, we compare our model implementation with the experimental results shown in [28], with good agreement seen. Next, a sensitivity study is conducted for the major model parameters, which is beneficial in targeting specific features of the redox flow cell for improvement. Lastly, we simulate a three-dimensional version of the flow cell to determine the impact of plenum channels on the performance of the cell. Such channels are frequently seen in experimental designs where the current collector plates are borrowed from fuel cell designs. These designs use a serpentine channel etched into a solid collector plate.

  11. Electrochemically Functionalized Seamless Three-Dimensional Graphene-Carbon Nanotube Hybrid for Direct Electron Transfer of Glucose Oxidase and Bioelectrocatalysis.

    Science.gov (United States)

    Terse-Thakoor, Trupti; Komori, Kikuo; Ramnani, Pankaj; Lee, Ilkeun; Mulchandani, Ashok

    2015-12-01

    Three-dimensional seamless chemical vapor deposition (CVD) grown graphene-carbon nanotubes (G-CNT) hybrid film has been studied for its potential in achieving direct electron transfer (DET) of glucose oxidase (GOx) and its bioelectrocatalytic activity in glucose detection. A two-step CVD method was employed for the synthesis of seamless G-CNT hybrid film where CNTs are grown on already grown graphene film on copper foil using iron as a catalyst. Physical characterization using SEM and TEM show uniform dense coverage of multiwall carbon nanotubes (MWCNT) grown directly on graphene with seamless contacts. The G-CNT hybrid film was electrochemically modified to introduce oxygenated functional groups for DET favorable immobilization of GOx. Pristine and electrochemically functionalized G-CNT film was characterized by electrochemical impedance spectroscopy (EIS), cyclic voltammetry, X-ray photoelectron-spectroscopy, and Raman spectroscopy. The DET between GOx and electrochemically oxidized G-CNT electrode was studied using cyclic voltammetry which showed a pair of well-defined and quasi-reversible redox peaks with a formal potential of -459 mV at pH 7 corresponding to the redox site of GOx. The constructed electrode detected glucose concentration over the clinically relevant range of 2-8 mM with the highest sensitivity of 19.31 μA/mM/cm(2) compared to reported composite hybrid electrodes of graphene oxide and CNTs. Electrochemically functionalized CVD grown seamless G-CNT structure used in this work has potential to be used for development of artificial mediatorless redox enzyme based biosensors and biofuel cells.

  12. Mapping the antioxidant activity of apple peels with soft probe scanning electrochemical microscopy

    OpenAIRE

    Lin, Tzu-En; Lesch, Andreas; Li, Chi-Lin; Girault, Hubert

    2017-01-01

    We present a non-invasive electrochemical strategy for mapping the antioxidant (AO) activity of apple peels, which counterbalances oxidative stress caused by various external effectors. Soft carbon microelectrodes were used for soft probe scanning electrochemical microscopy (SECM) enabling the gentle and scratch-free in contact mode scanning of the rough and delicate apple peels in an electrolyte solution. The SECM feedback mode was applied using ferrocene methanol (FcMeOH) as redox mediator ...

  13. Electrochemical behavior of single-walled carbon nanotube supercapacitors under compressive stress.

    Science.gov (United States)

    Li, Xin; Rong, Jiepeng; Wei, Bingqing

    2010-10-26

    The effect of compressive stress on the electrochemical behavior of flexible supercapacitors assembled with single-walled carbon nanotube (SWNT) film electrodes and 1 M aqueous electrolytes with different anions and cations were thoroughly investigated. The under-pressed capacitive and resistive features of the supercapacitors were studied by means of cyclic voltammetry measurements and electrochemical impedance analysis. The results demonstrated that the specific capacitance increased first and saturated in corresponding decreases of the series resistance, the charge-transfer resistance, and the Warburg diffusion resistance under an increased pressure from 0 to 1723.96 kPa. Wettability as well as ion-size effect of different aqueous electrolytes played important roles to determine the pressure dependence behavior of the suerpcapacitors under an applied pressure. An improved high-frequency capacitive response with 1172 Hz knee frequency, which is significantly higher compared to reported values, was observed under the compressive pressure of 1723.96 kPa, indicating an improving and excellent high-power capability of the supercapacitors under the pressure. The experimental results and the thorough analysis described in this work not only provide fundamental insight of pressure effects on supercapacitors but also give an important guideline for future design of next generation flexible/stretchable supercapacitors for industrial and consumer applications.

  14. Electro-Optical and Electrochemical Properties of a Conjugated Polymer Prepared by the Cyclopolymerization of Diethyl Dipropargylmalonate

    Directory of Open Access Journals (Sweden)

    Yeong-Soon Gal

    2008-01-01

    Full Text Available The electro-optical and electrochemical properties of poly(diethyl dipropargylmalonate were measured and discussed. Poly(diethyl dipropargylmalonate prepared by (NBDPdCl2 catalyst was used for study. The chemical structure of poly(diethyl dipropargylmalonate was characterized by such instrumental methods as NMR (1H-, 13C-, IR, and UV-visible spectroscopies to have the conjugated cyclopolymer backbone system. The microstructure analysis of polymer revealed that this polymer have the six-membered ring moieties majorly. The photoluminescence peak of polymer was observed at 543 nm, which is corresponded to the photon energy of 2.51 eV. The cyclovoltamograms of the polymer exhibited the irreversible electrochemical behaviors between the doping and undoping peaks. It was found that the kinetics of the redox process of this conjugated cyclopolymer might be controlled by the diffusion-control process from the experiment of the oxidation current density of polymer versus the scan rate.

  15. Influence of electrochemical pre-treatment on highly reactive carbon nitride thin films deposited on stainless steel for electrochemical applications

    International Nuclear Information System (INIS)

    Benchikh, A.; Debiemme-Chouvy, C.; Cachet, H.; Pailleret, A.; Saidani, B.; Beaunier, L.; Berger, M.H.

    2012-01-01

    In this work, a-CNx films prepared by DC magnetron sputtering on stainless steel substrate have been investigated as electrode materials. While their wide potential window was confirmed as a property shared by boron doped diamond (BDD) electrodes, their electrochemical activity with respect to fast and reversible redox systems, [Ru(NH 3 ) 6 ] 3+/2+ , [Fe(CN) 6 ] 3−/4− and [IrCl 6 ] 2−/3− , was assessed by Electrochemical Impedance Spectroscopy (EIS) after cathodic or anodic electrochemical pre-treatments or for as grown samples. It was shown for the three systems that electrochemical reactivity of the a-CNx films was improved after the cathodic pre-treatment and degraded after the anodic one, the apparent heterogeneous rate constant k 0app being decreased by at least one order of magnitude for the latter case. A high k 0app value of 0.11 cm s −1 for [IrCl 6 ] 2−/3− was obtained, close to the highest values found for BDD electrodes.

  16. A facile electrochemical intercalation and microwave assisted exfoliation methodology applied to screen-printed electrochemical-based sensing platforms to impart improved electroanalytical outputs.

    Science.gov (United States)

    Pierini, Gastón D; Foster, Christopher W; Rowley-Neale, Samuel J; Fernández, Héctor; Banks, Craig E

    2018-06-12

    Screen-printed electrodes (SPEs) are ubiquitous with the field of electrochemistry allowing researchers to translate sensors from the laboratory to the field. In this paper, we report an electrochemically driven intercalation process where an electrochemical reaction uses an electrolyte as a conductive medium as well as the intercalation source, which is followed by exfoliation and heating/drying via microwave irradiation, and applied to the working electrode of screen-printed electrodes/sensors (termed EDI-SPEs) for the first time. This novel methodology results in an increase of up to 85% of the sensor area (electrochemically active surface area, as evaluated using an outer-sphere redox probe). Upon further investigation, it is found that an increase in the electroactive area of the EDI-screen-printed based electrochemical sensing platforms is critically dependent upon the analyte and its associated electrochemical mechanism (i.e. adsorption vs. diffusion). Proof-of-concept for the electrochemical sensing of capsaicin, a measure of the hotness of chillies and chilli sauce, within both model aqueous solutions and a real sample (Tabasco sauce) is demonstrated in which the electroanalytical sensitivity (a plot of signal vs. concentration) is doubled when utilising EDI-SPEs over that of SPEs.

  17. Electrochemical behavior of pitch-based activated carbon fibers for electrochemical capacitors

    International Nuclear Information System (INIS)

    Lee, Hye-Min; Kwac, Lee-Ku; An, Kay-Hyeok; Park, Soo-Jin; Kim, Byung-Joo

    2016-01-01

    Highlights: • Electrode materials for electrochemical capacitors were developed using pitch-based activated carbon fibers with steam activation. • Activated carbon fibers showed enhanced specific surface area from 1520 to 3230 m 2 /g. • The increase in the specific capacitance of the samples was determined by charged pore structure during charging and discharging. - Abstract: In the present study, electrode materials for electrochemical capacitors were developed using pitch-based activated carbon fibers with steam activation. The surface and structural characteristics of activated carbon fibers were observed using scanning electron microscopy and X-ray diffraction, respectively. Pore characteristics were investigated using N 2 /77 K adsorption isotherms. The activated carbon fibers were applied as electrodes for electrical double-layer capacitors and analyzed in relation to the activation time. The specific surface area and total pore volume of the activated carbon fibers were determined to be 1520–3230 m 2 /g and 0.61–1.87 cm 3 /g, respectively. In addition, when the electrochemical characteristics were analyzed, the specific capacitance was confirmed to have increased from 1.1 F/g to 22.5 F/g. From these results, it is clear that the pore characteristics of pitch-based activated carbon fibers changed considerably in relation to steam activation and charge/discharge cycle; therefore, it was possible to improve the electrochemical characteristics of the activated carbon fibers.

  18. Electrochemical behavior and voltammetric determination of acetaminophen based on glassy carbon electrodes modified with poly(4-aminobenzoic acid)/electrochemically reduced graphene oxide composite films.

    Science.gov (United States)

    Zhu, Wencai; Huang, Hui; Gao, Xiaochun; Ma, Houyi

    2014-12-01

    Poly(4-aminobenzoic acid)/electrochemically reduced graphene oxide composite film modified glassy carbon electrodes (4-ABA/ERGO/GCEs) were fabricated by a two-step electrochemical method. The electrochemical behavior of acetaminophen at the modified electrode was investigated by means of cyclic voltammetry. The results indicated that 4-ABA/ERGO composite films possessed excellent electrocatalytic activity towards the oxidation of acetaminophen. The electrochemical reaction of acetaminophen at 4-ABA/ERGO/GCE is proved to be a surface-controlled process involving the same number of protons and electrons. The voltammetric determination of acetaminophen performed with the 4-ABA/ERGO modified electrode presents a good linearity in the range of 0.1-65 μM with a low detection limit of 0.01 μM (S/N=3). In the case of using the 4-ABA/ERGO/GCE, acetaminophen and dopamine can be simultaneously determined without mutual interference. Furthermore, the 4-ABA/ERGO/GCE has good reproducibility and stability, and can be used to determine acetaminophen in tablets. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Renewable hydrogen generation from a dual-circuit redox flow battery

    OpenAIRE

    Amstutz, Veronique; Toghill, Kathryn Ellen; Powlesland, Francis; Vrubel, Heron; Comninellis, Christos; Hu, Xile; Girault, Hubert H.

    2014-01-01

    Redox flow batteries (RFBs) are particularly well suited for storing the intermittent excess supply of renewable electricity; so-called “junk” electricity. Conventional RFBs are charged and discharged electrochemically, with electricity stored as chemical energy in the electrolytes. In the RFB system reported here, the electrolytes are conventionally charged but are then chemically discharged over catalytic beds in separate external circuits. The catalytic reaction of particular interest gene...

  20. Recent Advances in Electrochemical Glycobiosensing

    Directory of Open Access Journals (Sweden)

    Germarie Sánchez-Pomales

    2011-01-01

    Full Text Available Biosensors based on electrochemical transduction mechanisms have recently made advances into the field of glycan analysis. These glyco-biosensors offer simple, rapid, sensitive, and economical approaches to the measurement need for rapid glycan analysis for biomarker detection, cancer and disease diagnostics, and bioprocess monitoring of therapeutic glycoproteins. Although the prevalent methods of glycan analysis (high-performance liquid chromatography, mass spectrometry, and nuclear magnetic resonance spectroscopy provide detailed identification and structural analysis of glycan species, there are significantly few low-cost, rapid glycan assays available for diagnostic and screening applications. Here we review instances in which glyco-biosensors have been used for glycan analysis using a variety of electrochemical transduction mechanisms (e.g., amperometric, potentiometric, impedimetric, and voltammetric, selective binding agents (e.g., lectins and antibodies, and redox species (e.g., enzyme substrates, inorganic, and nanomaterial.

  1. REDOX BEHAVIOR AND DIFFUSIVITY OF ANTIMONY AND CERIUM ION IN ALKALI ALKALINE EARTH SILICATE GLASS MELTS

    Directory of Open Access Journals (Sweden)

    K. D. Kim

    2010-03-01

    Full Text Available Redox behavior and diffusivity of antimony and cerium ion in alkali alkaline earth silicate CRT (Cathode Ray Tube model glass melts were studied by means of square wave voltammetry under the frequency range of 5-1000 Hz and in the temperature range of 800-1400°C. According to voltammogram, peaks due to Sb³⁺/Sb⁰ were positioned in the negative potential region while peaks due to Sb⁵⁺/Sb³⁺ and Ce⁴⁺/Ce³⁺ were found in the positive potential region. By using some equations, correlation for peak potential versus temperature and peak current versus reciprocal frequency was examined, respectively. Their correlation showed a linear relation in the applied temperature and frequency range. Based on the linear relationship, thermodynamic and kinetic properties for each redox reaction were suggested.

  2. Effects of organic additives with oxygen- and nitrogen-containing functional groups on the negative electrolyte of vanadium redox flow battery

    International Nuclear Information System (INIS)

    Liu, Jianlei; Liu, Suqin; He, Zhangxing; Han, Huiguo; Chen, Yong

    2014-01-01

    DL-malic acid and L-aspartic acid are investigated as additives for the negative electrolyte of vanadium redox flow battery (VFRB) to improve its stability and electrochemical performance. The stability experiments indicate that the addition of L-aspartic acid into the 2 M V(III) electrolyte can stabilize the electrolyte by delaying its precipitation. The results of cyclic voltammetry and electrochemical impedance spectroscopy show that the V(III) electrolyte with both additives demonstrates enhanced electrochemical activity and reversibility. The introduction of DL-malic acid and L-aspartic acid can increase the diffusion coefficient of V(III) species and facilitate the charge transfer of V(III)/V(II) redox reaction. Between the two additives, the effect of L-aspartic acid is more remarkable. Moreover, the VFRB cell employing negative electrolyte with L-aspartic acid exhibits excellent cycling stability and achieves higher average energy efficiency (76.4%) compared to the pristine cell (73.8%). The comparison results with the cell employing L-aspartic acid pre-treated electrode confirm that L-aspartic acid in the electrolyte can modify the electrode by constantly providing oxygen- and nitrogen-containing groups, leading to the enhancement of electrochemical performance

  3. A Sustainable Redox-Flow Battery with an Aluminum-Based, Deep-Eutectic-Solvent Anolyte.

    Science.gov (United States)

    Zhang, Changkun; Ding, Yu; Zhang, Leyuan; Wang, Xuelan; Zhao, Yu; Zhang, Xiaohong; Yu, Guihua

    2017-06-19

    Nonaqueous redox-flow batteries are an emerging energy storage technology for grid storage systems, but the development of anolytes has lagged far behind that of catholytes due to the major limitations of the redox species, which exhibit relatively low solubility and inadequate redox potentials. Herein, an aluminum-based deep-eutectic-solvent is investigated as an anolyte for redox-flow batteries. The aluminum-based deep-eutectic solvent demonstrated a significantly enhanced concentration of circa 3.2 m in the anolyte and a relatively low redox potential of 2.2 V vs. Li + /Li. The electrochemical measurements highlight that a reversible volumetric capacity of 145 Ah L -1 and an energy density of 189 Wh L -1 or 165 Wh kg -1 have been achieved when coupled with a I 3 - /I - catholyte. The prototype cell has also been extended to the use of a Br 2 -based catholyte, exhibiting a higher cell voltage with a theoretical energy density of over 200 Wh L -1 . The synergy of highly abundant, dendrite-free, multi-electron-reaction aluminum anodes and environmentally benign deep-eutectic-solvent anolytes reveals great potential towards cost-effective, sustainable redox-flow batteries. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Nitrogen-Doped Graphene:Effects of nitrogen species on the properties of the vanadium redox flow battery

    International Nuclear Information System (INIS)

    Shi, Lang; Liu, Suqin; He, Zhen; Shen, Junxi

    2014-01-01

    Nitrogen-doped graphene nanosheets (NGS), prepared by a simple hydrothermal reaction of graphene oxide (GO) with urea as nitrogen source were studied as positive electrodes in vanadium redox flow battery (VRFB). The synthesized NGS with the nitrogen level as high as 10.12 atom% is proven to be a promising material for VRFB. The structures and electrochemical properties of the materials are investigated by scanning electron microscopy, X-ray photoelectron spectroscopy, cyclic voltammetry and electrochemical impendence spectroscopy. The results demonstrate that not only the nitrogen doping level but the nitrogen type in the NGS are significant for its catalytic activity towards the [VO] 2+ /[VO 2 ] + redox couple reaction. In more detail, among four types of nitrogen species (pyridinic-N, pyrrolic-N, quaternary-N, oxidic-N) doped into the graphene lattice, quaternary-N play mainly roles for improving the catalytic activity toward the [VO] 2+ /[VO 2 ] + couple reaction

  5. Electrochemical reactivity at graphitic micro-domains on polycrystalline boron doped diamond thin-films electrodes

    International Nuclear Information System (INIS)

    Mahe, E.; Devilliers, D.; Comninellis, Ch.

    2005-01-01

    This paper deals with the electrochemical reactivity of boron doped diamond (BDD) electrodes. A comparative study has been carried out to show the influence of the presence of graphitic micro-domains upon the surface of these films. Those graphitic domains are sometimes present on as-grown boron doped diamond electrodes. The effect of doping a pure Csp 3 diamond electrode is established by highly oriented pyrolytic graphite (HOPG) abrasion onto the diamond surface. In order to establish the effect of doping on a pure Csp 3 diamond electrode, the amount of graphitic domains was increased by means of HOPG crystals grafted onto the BDD surface. Indeed that method allows the enrichment of the Csp 2 contribution of the electrode. The presence of graphitic domains can be correlatively associated with the presence of kinetically active redox sites. The electrochemical reactivity of boron doped diamond electrodes shows a distribution of kinetic constants on the whole surface of the electrode corresponding to different active sites. In this paper, we have studied by cyclic voltammetry and electrochemical impedance spectroscopy the kinetics parameters of the ferri/ferrocyanide redox couple in KCl electrolyte. A method is proposed to diagnose the presence of graphitic domains on diamond electrodes, and an electrochemical 'pulse cleaning' procedure is proposed to remove them

  6. The effects of printing orientation on the electrochemical behaviour of 3D printed acrylonitrile butadiene styrene (ABS)/carbon black electrodes.

    Science.gov (United States)

    Bin Hamzah, Hairul Hisham; Keattch, Oliver; Covill, Derek; Patel, Bhavik Anil

    2018-06-14

    Additive manufacturing also known as 3D printing is being utilised in electrochemistry to reproducibly develop complex geometries with conductive properties. In this study, we explored if the electrochemical behavior of 3D printed acrylonitrile butadiene styrene (ABS)/carbon black electrodes was influenced by printing direction. The electrodes were printed in both horizontal and vertical directions. The horizsontal direction resulted in a smooth surface (HPSS electrode) and a comparatively rougher surface (HPRS electrode) surface. Electrodes were characterized using cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry. For various redox couples, the vertical printed (VP) electrode showed enhanced current response when compared the two electrode surfaces generated by horizontal print direction. No differences in the capacitive response was observed, indicating that the conductive surface area of all types of electrodes were identical. The VP electrode had reduced charge transfer resistance and uncompensated solution resistance when compared to the HPSS and HPRS electrodes. Overall, electrodes printed in a vertical direction provide enhanced electrochemical performance and our study indicates that print orientation is a key factor that can be used to enhance sensor performance.

  7. Synthesis and electrochemical properties of Na-rich Prussian blue analogues containing Mn, Fe, Co, and Fe for Na-ion batteries

    Science.gov (United States)

    Bie, Xiaofei; Kubota, Kei; Hosaka, Tomooki; Chihara, Kuniko; Komaba, Shinichi

    2018-02-01

    Electrochemical performance of Prussian blue analogues (PBAs) as positive electrode materials for non-aqueous Na-ion batteries is known to be highly dependent on their synthesis conditions according to the previous researches. Na-rich PBAs, NaxM[Fe(CN)6]·nH2O where M = Mn, Fe, Co, and Ni, are prepared via precipitation method under the same condition. The structure, chemical composition, morphology, valence of the transition metals, and electrochemical property of these samples are comparatively researched. The PBA with Mn shows large reversible capacity of 126 mAh g-1 in 2.0-4.2 V at a current density of 30 mA g-1 and the highest working voltage owning to high redox potential of Mn2+/3+ in MnN6 and Fe2+/3+ in FeC6. While, the PBA with Ni exhibits the best cyclability and rate performance though only 66 mAh g-1 is delivered. The significant differences in electrochemical behaviors of the PBAs originate from the various properties depending on different transition metals.

  8. Tuning the Stability of Organic Active Materials for Nonaqueous Redox Flow Batteries via Reversible, Electrochemically Mediated Li + Coordination

    Energy Technology Data Exchange (ETDEWEB)

    Carino, Emily V.; Staszak-Jirkovsky, Jakub; Assary, Rajeev S.; Curtiss, Larry A.; Markovic, Nenad M.; Brushett, Fikile R.

    2016-03-24

    We describe an electrochemically mediated interaction between Li+ and a promising active material for nonaqueous redox flow batteries (RFBs), 1,2,3,4-tetrahydro-6,7-dimethoxy-1,1,4,4-tetramethylnaphthalene (TDT), and the impact of this structural interaction on material stability during voltammetric cycling. TDT could be an advantageous organic positive electrolyte material for nonaqueous RFBs due to its high oxidation potential, 4.21 V vs Li/Li+, and solubility of at least 1.0 M in select electrolytes. Although results from voltammetry suggest TDT displays Nernstian reversibility in many nonaqueous electrolyte solutions, bulk electrolysis reveals significant degradation in all electrolytes studied, the extent of which depends on the electrolyte solution composition. Results of subtractively normalized in situ Fourier transform infrared spectroscopy (SNIFTIRS) confirm that TDT undergoes reversible structural changes during cyclic voltammetry in propylene carbonate and 1,2-dimethoxyethane solutions containing Li+ electrolytes, but irreversible degradation occurs when tetrabutylammonium (TBA+) replaces Li+ as the electrolyte cation in these solutions. By combining the results from SNIFTIRS experiments with calculations from density functional theory, solution-phase active species structure and potential-dependent interactions can be determined. We find that Li+ coordinates to the Lewis basic methoxy groups of neutral TDT and, upon electrochemical oxidation, this complex dissociates into the radical cation TDT•+ and Li+. The improved cycling stability in the presence of Li+ relative to TBA+ suggests that the structural interaction reported herein may be advantageous to the design of energy storage materials based on organic molecules.

  9. The electrochemical behavior of cobalt phthalocyanine/platinum as methanol-resistant oxygen-reduction electrocatalysts for DMFC

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yuhao; Reddy, Ramana G. [Department of Metallurgical and Materials Engineering, The University of Alabama, P.O. Box 870202, Tuscaloosa, AL 35487 (United States)

    2007-02-01

    The electrochemical behavior of cobalt phthalocyanine/platinum as methanol-resistant oxygen-reduction electrocatalyst for DMFC was investigated. Platinum was chemically deposited on the carbon-supported cobalt phthalocyanine (CoPc), and then it was heat-treated in high purity nitrogen at 300 C, 635 C and 980 C. In order to evaluate the electrocatalytic behavior of CoPc-Pt/C, the PtCo/C and Pt/C as reference catalysts were employed. TGA, XRD, EDAX, XPS and electrochemical experiments were used to study the thermal stability, crystal structure, physical characterization and electrochemical behavior of these catalysts. These catalysts exhibited similar electrocatalytic activity for oxygen reaction in 0.5 M H{sub 2}SO{sub 4} solution. In methanol tolerance experiments, Pt/C, PtCo/C and CoPc-Pt/C heated at 980 C were active for the methanol oxidation reaction (MOR). The presence of Co did not improve resistance to methanol poisoning. However, the CoPc-Pt/C after 300 C or 635 C heat-treatment demonstrated significant inactivity for MOR, hence they have a good ability to resist methanol poisoning. The current study indicated that the macrocyclic structure of phthalocyanine is the most important factor to improve the methanol tolerance of CoPc-Pt/C as the oxygen-reduction reaction (ORR) electrocatalyst. The CoPc-Pt based catalyst should be a good alternation for oxygen electro-reduction reaction in DMFC. (author)

  10. Characterization and electrochemical studies of Nafion/nano-TiO2 film modified electrodes

    International Nuclear Information System (INIS)

    Yuan Shuai; Hu Shengshui

    2004-01-01

    A nano-TiO 2 film from stable aqueous dispersion has been modified on a glassy carbon electrode (GCE), and was characterized by scanning electron microscopy (SEM) and surface-enhanced Raman spectroscopy (SERS). This nanostructured film exhibits an ability to improve the electron-transfer rate between electrode and dopamine (DA), and electrocatalyze the redox of DA. The electrocatalytical behavior of DA was examined by cyclic voltammetry (CV). Combined with Nafion, the bilayer-modified electrode (N/T/GCE) gives a sensitive voltammetric response of DA regardless of excess ascorbic acid (AA). Electrochemical impedance spectroscopy (EIS) at a fixed potential was performed at variously treated GCEs. The mechanism of the electrode reaction of DA at N/T/GCE and the equivalent circuits of different GCEs have been proposed

  11. Interfacial Redox Reactions Associated Ionic Transport in Oxide-Based Memories.

    Science.gov (United States)

    Younis, Adnan; Chu, Dewei; Shah, Abdul Hadi; Du, Haiwei; Li, Sean

    2017-01-18

    As an alternative to transistor-based flash memories, redox reactions mediated resistive switches are considered as the most promising next-generation nonvolatile memories that combine the advantages of a simple metal/solid electrolyte (insulator)/metal structure, high scalability, low power consumption, and fast processing. For cation-based memories, the unavailability of in-built mobile cations in many solid electrolytes/insulators (e.g., Ta 2 O 5 , SiO 2 , etc.) instigates the essential role of absorbed water in films to keep electroneutrality for redox reactions at counter electrodes. Herein, we demonstrate electrochemical characteristics (oxidation/reduction reactions) of active electrodes (Ag and Cu) at the electrode/electrolyte interface and their subsequent ions transportation in Fe 3 O 4 film by means of cyclic voltammetry measurements. By posing positive potentials on Ag/Cu active electrodes, Ag preferentially oxidized to Ag + , while Cu prefers to oxidize into Cu 2+ first, followed by Cu/Cu + oxidation. By sweeping the reverse potential, the oxidized ions can be subsequently reduced at the counter electrode. The results presented here provide a detailed understanding of the resistive switching phenomenon in Fe 3 O 4 -based memory cells. The results were further discussed on the basis of electrochemically assisted cations diffusions in the presence of absorbed surface water molecules in the film.

  12. Preparation, characterization and electrocatalytic behavior of zinc oxide/zinchexacyanoferrate and ruthenium oxide hexacyanoferrate hybrid film-modified electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Chu, H.-W.; Thangamuthu, R. [Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan (China); Chen, S.-M. [Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan (China)], E-mail: smchen78@ms15.hinet.net

    2008-02-15

    Polynuclear mixed-valent hybrid films of zinc oxide/zinchexacyanoferrate and ruthenium oxide hexacyanoferrate (ZnO/ZnHCF-RuOHCF) have been deposited on electrode surfaces from H{sub 2}SO{sub 4} solution containing Zn(NO{sub 3}){sub 2}, RuCl{sub 3} and K{sub 3}[Fe(CN){sub 6}] by potentiodynamic cycling method. Simultaneous cyclic voltammetry and electrochemical quartz crystal microbalance (EQCM) measurements demonstrate the steady growth of hybrid film. Surface morphology of hybrid film was investigated using scanning electron microscopy (SEM). Energy dispersive spectrometer (EDS) data confirm existence of zinc oxide and ruthenium oxide hexacyanoferrate (RuOHCF) in the hybrid film. The effect of type of monovalent cations on the redox behavior of hybrid film was investigated. In pure supporting electrolyte, electrochemical responses of Ru{sup II/III} redox transition occurring at negative potential region resemble with that of a surface immobilized redox couple. The electrocatalytic activity of ZnO/ZnHCF-RuOHCF hybrid film was investigated towards oxidation of epinephrine, dopamine and L-cysteine, and reduction of S{sub 2}O{sub 8}{sup 2-} and SO{sub 5}{sup 2-} as well as IO{sub 3}{sup -} using cyclic voltammetry and rotating ring disc electrode (RRDE) techniques.

  13. Electrochemical corrosion behavior of carbon steel with bulk coating holidays

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    With epoxy coal tar as the coating material, the electrochemical corrosion behavior of Q235 with different kinds of bulk coating holidays has been investigated with EIS (Electrochemical Impedance Spectroscopy) in a 3.5vol% NaCl aqueous solution.The area ratio of bulk coating holiday to total coating area of steel is 4.91%. The experimental results showed that at free corrosionpotential, the corrosion of carbon steel with disbonded coating holiday is heavier than that with broken holiday and disbonded & broken holiday with time; Moreover, the effectiveness of Cathodic Protection (CP) of carbon steel with broken holiday is better than that with disbonded holiday and disbonded & broken holiday on CP potential -850 mV (vs CSE). Further analysis indicated that the two main reasons for corrosion are electrolyte solution slowly penetrating the coating, and crevice corrosion at steel/coating interface near holidays. The ratio of impedance amplitude (Z) of different frequency to minimum frequency is defined as K value. The change rate of K with frequency is related to the type of coating holiday.

  14. Microstructural characterization and electrochemical corrosion behavior of Incoloy 800 in sulphate and chloride solutions

    International Nuclear Information System (INIS)

    Mansur, Fabio Abud; Schvartzman, Monica Maria de Abreu Mendonca; Campos, Wagner Reis da Costa; Aguiar, Antonio Eugenio de; Chaim, Marcos Souza

    2011-01-01

    Corrosion has been the major cause of tube failures in steam generators (SG) tubes in nuclear power plants. Problems have resulted from impurities in the secondary water systems which are originated from leaks of cooling water. It is important to understand the compatibility of steam generator tube materials with the environment. This study presents the microstructural characterization and electrochemical behavior of the Incoloy 800 in sodium chloride and sodium sulphate aqueous solutions at 80 degree C. Potentiodynamic anodic polarization, cyclic polarization and open circuit potential (OCP) measurements were the electrochemical techniques applied in this work. The pitting resistance of Incoloy 800 in chloride plus sulphate mixtures were also examined. Experiments performed in solutions with different concentrations of Cl- and SO 4 2- ions in solution (200 ppb, 500 ppb, 1ppm, 5 ppm, 50 ppm and 100 ppm) showed that this concentrations range had no substantial effect on the anodic behavior of the alloy. After polarization no localized corrosion was found on the samples. (author)

  15. Electrochemical activities of Geobacter biofilms growing on electrodes with various potentials

    International Nuclear Information System (INIS)

    Li, Dao-Bo; Huang, Yu-Xi; Li, Jie; Li, Ling-Li; Tian, Li-Jiao; Yu, Han-Qing

    2017-01-01

    Highlights: • Dependence of current generation on potentials by G. sulfurreducens is complex with the optimum at +0.1 V. • Unfavorable spatial distribution of biological activity within the biofilm at high potentials limits the current generation. • Same cytochrome c species are used for electron transfer in the biofilms developed at all potentials. - Abstract: Exoelectrogenic bacteria (EEB) play a central role in bioenergy recovery, biogeochemistry of elements, and polluting remediation. The electrochemical activity of EEB biofilm on electrode was proven to be dependent on the electrode potential, but the mechanism behind such a phenomenon is unclear. In this work, Geobacter sulfurreducens biofilms were developed at potentials ranging from −0.1 V to +0.6 V vs. standard hydrogen electrode to explore the profiles of potential regulation on G. sulfurreducens biofilm development and the electrochemical activity. We found that elevating the developing potential could improve the current generation by G. sulfurreducens biofilm until +0.1 V. At higher potentials less current was generated, although more biomass was formed on the electrode. The same cytochrome c species were synthesized for electron transfer in all biofilms, independent of the developing potential. Electrochemical experimental results and redox-sensitive staining imagings proved that the biofilms developed at +0.2 V–+0.4 V had greater cytochrome c contents and reducing capacities than the others. Current generation at high potentials was likely to be limited by both the metabolic rate and the electron transfer kinetics. These findings are useful for tuning the electrochemical activity of biofilm in catalyzing redox processes or generating electricity, which is crucial for the environmental and electrochemical application of EEB.

  16. Integrated Photoelectrochemical Solar Energy Conversion and Organic Redox Flow Battery Devices.

    Science.gov (United States)

    Li, Wenjie; Fu, Hui-Chun; Li, Linsen; Cabán-Acevedo, Miguel; He, Jr-Hau; Jin, Song

    2016-10-10

    Building on regenerative photoelectrochemical solar cells and emerging electrochemical redox flow batteries (RFBs), more efficient, scalable, compact, and cost-effective hybrid energy conversion and storage devices could be realized. An integrated photoelectrochemical solar energy conversion and electrochemical storage device is developed by integrating regenerative silicon solar cells and 9,10-anthraquinone-2,7-disulfonic acid (AQDS)/1,2-benzoquinone-3,5-disulfonic acid (BQDS) RFBs. The device can be directly charged by solar light without external bias, and discharged like normal RFBs with an energy storage density of 1.15 Wh L -1 and a solar-to-output electricity efficiency (SOEE) of 1.7 % over many cycles. The concept exploits a previously undeveloped design connecting two major energy technologies and promises a general approach for storing solar energy electrochemically with high theoretical storage capacity and efficiency. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Thermophysical and Electrochemical Properties of Ethereal Functionalised Cyclic Alkylammonium-based Ionic Liquids as Potential Electrolytes for Electrochemical Applications.

    Science.gov (United States)

    Neale, Alex R; Murphy, Sinead; Goodrich, Peter; Hardacre, Christopher; Jacquemin, Johan

    2017-08-05

    A series of hydrophobic room temperature ionic liquids (ILs) based on ethereal functionalised pyrrolidinium, piperidinium and azepanium cations bearing the bis[(trifluoromethyl)sulfonyl]imide, [TFSI] - , anion were synthesized and characterized. Their physicochemical properties such as density, viscosity and electrolytic conductivity, and thermal properties including phase transition behaviour and decomposition temperature have been measured. All of the ILs showed low melting point, low viscosity and good conductivity and the latter properties have been discussed in terms of the IL fragility, an important electrolyte feature of the transport properties of glass-forming ILs. Furthermore, the studied [TFSI] - -based ILs generally exhibit good electrochemical stabilities and, by coupling electrochemical experiments and DFT calculations, the effect of ether functionalisation at the IL cation on the electrochemical stability of the IL is discussed. Preliminary investigations into the Li-redox chemistry at a Cu working electrode are also reported as a function of ether-functionality within the pyrrolidinium-based IL family. Overall, the results show that these ionic liquids are suitable for electrochemical devices such as battery systems, fuel cells or supercapacitors. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  18. Redox Control and Hydrogen Production in Sediment Caps Using Carbon Cloth Electrodes

    Science.gov (United States)

    Sun, Mei; Yan, Fei; Zhang, Ruiling; Reible, Danny D.; Lowry, Gregory V.; Gregory, Kelvin B.

    2010-01-01

    Sediment caps that degrade contaminants can improve their ability to contain contaminants relative to sand and sorbent-amended caps, but few methods to enhance contaminant degradation in sediment caps are available. The objective of this study was to determine if, carbon electrodes emplaced within a sediment cap at poised potential could create a redox gradient and provide electron donor for the potential degradation of contaminants. In a simulated sediment cap overlying sediment from the Anacostia River (Washington, DC), electrochemically induced redox gradients were developed within 3 days and maintained over the period of the test (~100 days). Hydrogen and oxygen were produced by water electrolysis at the electrode surfaces and may serve as electron donor and acceptor for contaminant degradation. Electrochemical and geochemical factors that may influence hydrogen production were studied. Hydrogen production displayed zero order kinetics with ~75% coulombic efficiency and rates were proportional to the applied potential between 2.5V to 5V and not greatly affected by pH. Hydrogen production was promoted by increasing ionic strength and in the presence of natural organic matter. Graphite electrode-stimulated degradation of tetrachlorobenzene in a batch reactor was dependent on applied voltage and production of hydrogen to a concentration above the threshold for biological dechlorination. These findings suggest that electrochemical reactive capping can potentially be used to create “reactive” sediments caps capable of promoting chemical or biological transformations of contaminants within the cap. PMID:20879761

  19. Electrochemical characterization of screen-printed and conventional carbon paste electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Fanjul-Bolado, Pablo; Hernandez-Santos, David; Lamas-Ardisana, Pedro Jose [Departamento de Quimica Fisica y Analitica, Universidad de Oviedo, 33006 Oviedo, Asturias (Spain); Martin-Pernia, Alberto [Departamento de Ingenieria Electrica, Electronica de Computadores y Sistemas, Universidad de Oviedo, 33204 Gijon, Asturias (Spain); Costa-Garcia, Agustin [Departamento de Quimica Fisica y Analitica, Universidad de Oviedo, 33006 Oviedo, Asturias (Spain)], E-mail: costa@fq.uniovi.es

    2008-04-01

    This work compares the electroactivity of a conventional carbon paste electrode and non-pretreated commercially available screen-printed carbon electrodes (from Alderon Biosciences, University of Florence and DropSens) towards some benchmark redox couples like hexaammineruthenium (III), ferricyanide, p-aminophenol and hydroquinone. While cyclic voltammograms of Ru{sup 3+} did not show significative electron transfer reactivity differences between the electrodes tested, the other redox systems exhibited higher reversible behaviours on DropSens electrodes. Scanning electron microscopy and roughness analysis with a profilometer were applied to detect the surface morphology of the working electrodes. The roughness evaluated of the screen-printed carbon working electrodes increased in this order Alderon < University of Florence < DropSens. Finally, the most electrochemically active and rough unpretreated electrode (DropSens commercial screen-printed electrode) was used to study the electrochemical-chemical reaction mechanism of indigo carmine oxidation in 0.1 M sulphuric acid. This study showed that the adsorption of the oxidation product of indigo carmine is stabilized when it is adsorbed on the surface of the electrode.

  20. Electrochemical characterization of screen-printed and conventional carbon paste electrodes

    International Nuclear Information System (INIS)

    Fanjul-Bolado, Pablo; Hernandez-Santos, David; Lamas-Ardisana, Pedro Jose; Martin-Pernia, Alberto; Costa-Garcia, Agustin

    2008-01-01

    This work compares the electroactivity of a conventional carbon paste electrode and non-pretreated commercially available screen-printed carbon electrodes (from Alderon Biosciences, University of Florence and DropSens) towards some benchmark redox couples like hexaammineruthenium (III), ferricyanide, p-aminophenol and hydroquinone. While cyclic voltammograms of Ru 3+ did not show significative electron transfer reactivity differences between the electrodes tested, the other redox systems exhibited higher reversible behaviours on DropSens electrodes. Scanning electron microscopy and roughness analysis with a profilometer were applied to detect the surface morphology of the working electrodes. The roughness evaluated of the screen-printed carbon working electrodes increased in this order Alderon < University of Florence < DropSens. Finally, the most electrochemically active and rough unpretreated electrode (DropSens commercial screen-printed electrode) was used to study the electrochemical-chemical reaction mechanism of indigo carmine oxidation in 0.1 M sulphuric acid. This study showed that the adsorption of the oxidation product of indigo carmine is stabilized when it is adsorbed on the surface of the electrode

  1. Real-time mapping of salt glands on the leaf surface of Cynodon dactylon L. using scanning electrochemical microscopy.

    Science.gov (United States)

    Parthasarathy, Meera; Pemaiah, Brindha; Natesan, Ravichandran; Padmavathy, Saralla R; Pachiappan, Jayaraman

    2015-02-01

    Salt glands are specialized organelles present in the leaf tissues of halophytes, which impart salt-tolerance capability to the plant species. These glands are usually identified only by their morphology using conventional staining procedures coupled with optical microscopy. In this work, we have employed scanning electrochemical microscopy to identify the salt glands not only by their morphology but also by their salt excretion behavior. Bermuda grass (Cynodon dactylon L.) species was chosen for the study as they are known to be salt-tolerant and contain salt glands on leaf surfaces. Scanning electrochemical microscopy performed in sodium chloride medium in the presence and absence of potassium ferrocyanide as redox mediator, reveals the identity of salt glands. More insight into the ion expulsion behavior of these glands was obtained by mapping lateral and vertical variations in ion concentrations using surface impedance measurements which indicated five times higher resistance over the salt glands compared to the surrounding tissues and bulk solution. The protocol could be used to understand the developmental processes in plants grown in different soil/water conditions in order to improve salt tolerance of food crops by genetic engineering and hence improve their agricultural productivity.

  2. The effect of recrystallization on corrosion and electrochemical behavior of 7150 Al alloy

    Energy Technology Data Exchange (ETDEWEB)

    Peng, G.S.; Chen, K.H.; Fang, H.C.; Chen, S.Y.; Chao, H. [State Key Laboratory for Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China)

    2011-01-15

    By weight loss, potentiodynamic polarization, cyclic voltammetry, and electrochemical impedance spectroscopy (EIS) techniques complemented by optical and scanning electron microscopy observations, the effect of recrystallization on the corrosion, and electrochemical behavior of 7150 Al alloy was studied. The results indicated that the high recrystallization fraction 7150-1 was worse than the low recrystallization fraction 7150-2 on corrosion resistance. The analysis of EIS indicated that 7150-1 exhibited obvious pitting corrosion at 5 h immersion time, whereas 7150-2 showed no obvious pitting corrosion even at 33 h. The corrosion route developed along the grain boundary of recrystallization grains, not along the grain boundary of unrecrystallization grains. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Connecting Biology to Electronics: Molecular Communication via Redox Modality.

    Science.gov (United States)

    Liu, Yi; Li, Jinyang; Tschirhart, Tanya; Terrell, Jessica L; Kim, Eunkyoung; Tsao, Chen-Yu; Kelly, Deanna L; Bentley, William E; Payne, Gregory F

    2017-12-01

    Biology and electronics are both expert at for accessing, analyzing, and responding to information. Biology uses ions, small molecules, and macromolecules to receive, analyze, store, and transmit information, whereas electronic devices receive input in the form of electromagnetic radiation, process the information using electrons, and then transmit output as electromagnetic waves. Generating the capabilities to connect biology-electronic modalities offers exciting opportunities to shape the future of biosensors, point-of-care medicine, and wearable/implantable devices. Redox reactions offer unique opportunities for bio-device communication that spans the molecular modalities of biology and electrical modality of devices. Here, an approach to search for redox information through an interactive electrochemical probing that is analogous to sonar is adopted. The capabilities of this approach to access global chemical information as well as information of specific redox-active chemical entities are illustrated using recent examples. An example of the use of synthetic biology to recognize external molecular information, process this information through intracellular signal transduction pathways, and generate output responses that can be detected by electrical modalities is also provided. Finally, exciting results in the use of redox reactions to actuate biology are provided to illustrate that synthetic biology offers the potential to guide biological response through electrical cues. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Virtual electrochemical nitric oxide analyzer using copper, zinc superoxide dismutase immobilized on carbon nanotubes in polypyrrole matrix.

    Science.gov (United States)

    Madasamy, Thangamuthu; Pandiaraj, Manickam; Balamurugan, Murugesan; Karnewar, Santosh; Benjamin, Alby Robson; Venkatesh, Krishna Arun; Vairamani, Kanagavel; Kotamraju, Srigiridhar; Karunakaran, Chandran

    2012-10-15

    In this work, we have designed and developed a novel and cost effective virtual electrochemical analyzer for the measurement of NO in exhaled breath and from hydrogen peroxide stimulated endothelial cells using home-made potentiostat. Here, data acquisition system (NI MyDAQ) was used to acquire the data from the electrochemical oxidation of NO mediated by copper, zinc superoxide dismutase (Cu,ZnSOD). The electrochemical control programs (graphical user-interface software) were developed using LabVIEW 10.0 to sweep the potential, acquire the current response and process the acquired current signal. The Cu,ZnSOD (SOD1) immobilized on the carbon nanotubes in polypyrrole modified platinum electrode was used as the NO biosensor. The electrochemical behavior of the SOD1 modified electrode exhibited the characteristic quasi-reversible redox peak at the potential, +0.06 V vs. Ag/AgCl. The biological interferences were eliminated by nafion coated SOD1 electrode and then NO was measured selectively. Further, this biosensor showed a wide linear range of response over the concentration of NO from 0.1 μM to 1 mM with a detection limit of 0.1 μM and high sensitivity of 1.1 μA μM(-1). The electroanalytical results obtained here using the developed virtual electrochemical instrument were also compared with the standard cyclic voltammetry instrument and found in agreement with each other. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Preparation and electrochemical characterization of MnOOH nanowire-graphene oxide

    International Nuclear Information System (INIS)

    Wang Lin; Wang Dianlong

    2011-01-01

    Highlights: → MnOOH nanowire-graphene oxide composites are prepared by hydrothermal reaction in distilled water or 5% ammonia aqueous solution at 130 deg. C, with MnO 2 -graphene oxide composites which are synthesized by a redox reaction between KMnO 4 and graphene oxide. → MnO 2 is deoxidized to MnOOH on graphene oxide through hydrothermal reaction without any extra reductants. → It is found that the electrochemical resistance of MnOOH nanowire-graphene oxide composites decreases and the capacitance increases to 76 F g -1 when hydrothermal reaction is conducted in ammonia aqueous solution. → MnOOH nanowire-graphene oxide composites prepared by hydrothermal reaction in 5% ammonia aqueous solution have excellent capacitance retention ratio at scan rate from 5 mV s -1 to 40 mV s -1 . - Abstract: MnOOH nanowire-graphene oxide composites are prepared by hydrothermal reaction in distilled water or 5% ammonia aqueous solution at 130 deg. C with MnO 2 -graphene oxide composites which are synthesized by a redox reaction between KMnO 4 and graphene oxide. Powder X-ray diffraction (XRD) analyses and energy dispersive X-ray analyses (EDAX) show MnO 2 is deoxidized to MnOOH on graphene oxide through hydrothermal reaction without any extra reductants. The electrochemical capacitance of MnOOH nanowire-graphene oxide composites prepared in 5% ammonia aqueous solution is 76 F g -1 at current density of 0.1 A g -1 . Moreover, electrochemical impedance spectroscopy (EIS) suggests the electrochemical resistance of MnOOH nanowire-graphene oxide composites is reduced when hydrothermal reaction is conducted in ammonia aqueous solution. The relationship between the electrochemical capacitance and the structure of MnOOH nanowire-graphene oxide composites is characterized by cyclic voltammetry (CV) and field emission scanning electron microscopy (FESEM). The results indicate the electrochemical performance of MnOOH nanowire-graphene oxide composites strongly depends on their

  6. Transient behavior of redox flow battery connected to circuit based on global phase structure

    Science.gov (United States)

    Mannari, Toko; Hikihara, Takashi

    A Redox Flow Battery (RFB) is one of the promising energy storage systems in power grid. An RFB has many advantages such as a quick response, a large capacity, and a scalability. Due to these advantages, an RFB can operate in mixed time scale. Actually, it has been demonstrated that an RFB can be used for load leveling, compensating sag, and smoothing the output of the renewable sources. An analysis on transient behaviors of an RFB is a key issue for these applications. An RFB is governed by electrical, chemical, and fluid dynamics. The hybrid structure makes the analysis difficult. To analyze transient behaviors of an RFB, the exact model is necessary. In this paper, we focus on a change in a concentration of ions in the electrolyte, and simulate the change with a model which is mainly based on chemical kinetics. The simulation results introduces transient behaviors of an RFB in a response to a load variation. There are found three kinds of typical transient behaviors including oscillations. As results, it is clarified that the complex transient behaviors, due to slow and fast dynamics in the system, arise by the quick response to load.

  7. Redox Species of Redox Flow Batteries: A Review.

    Science.gov (United States)

    Pan, Feng; Wang, Qing

    2015-11-18

    Due to the capricious nature of renewable energy resources, such as wind and solar, large-scale energy storage devices are increasingly required to make the best use of the renewable power. The redox flow battery is considered suitable for large-scale applications due to its modular design, good scalability and flexible operation. The biggest challenge of the redox flow battery is the low energy density. The redox active species is the most important component in redox flow batteries, and the redox potential and solubility of redox species dictate the system energy density. This review is focused on the recent development of redox species. Different categories of redox species, including simple inorganic ions, metal complexes, metal-free organic compounds, polysulfide/sulfur and lithium storage active materials, are reviewed. The future development of redox species towards higher energy density is also suggested.

  8. Redox Species of Redox Flow Batteries: A Review

    Directory of Open Access Journals (Sweden)

    Feng Pan

    2015-11-01

    Full Text Available Due to the capricious nature of renewable energy resources, such as wind and solar, large-scale energy storage devices are increasingly required to make the best use of the renewable power. The redox flow battery is considered suitable for large-scale applications due to its modular design, good scalability and flexible operation. The biggest challenge of the redox flow battery is the low energy density. The redox active species is the most important component in redox flow batteries, and the redox potential and solubility of redox species dictate the system energy density. This review is focused on the recent development of redox species. Different categories of redox species, including simple inorganic ions, metal complexes, metal-free organic compounds, polysulfide/sulfur and lithium storage active materials, are reviewed. The future development of redox species towards higher energy density is also suggested.

  9. Toward developing long-life water quality sensors for the ISS using planar REDOX and conductivity sensors

    Science.gov (United States)

    Buehler, M. G.; Kuhlman, G. M.; Keymeulen, D.; Myung, N.; Kounaves, S. P.

    2003-01-01

    REDOX and conductivity sensors are metal electrodes that are used to detect ionic species in solution by measuring the electrochemical cell current as the voltage is scanned. This paper describes the construction of the sensors, the potentiostat electronics, the measurement methodology, and applications to water quality measurements.

  10. Synthesis, Characterization, and Electrochemical Properties of Polyaniline Thin Films

    Science.gov (United States)

    Rami, Soukaina

    Conjugated polymers have been used in various applications (battery, supercapacitor, electromagnetic shielding, chemical sensor, biosensor, nanocomposite, light-emitting-diode, electrochromic display etc.) due to their excellent conductivity, electrochemical and optical properties, and low cost. Polyaniline has attracted the researchers from all disciplines of science, engineering, and industry due to its redox properties, environmental stability, conductivity, and optical properties. Moreover, it is a polymer with fast electroactive switching and reversible properties displayed at low potential, which is an important feature in many applications. The thin oriented polyaniline films have been fabricated using self-assembly, Langmuir-Blodgett, in-situ self-assembly, layer-by-layer, and electrochemical technique. The focus of this thesis is to synthesize and characterize polyaniline thin films with and without dyes. Also, the purpose of this thesis is to find the fastest electroactive switching PANI electrode in different electrolytic medium by studying their electrochemical properties. These films were fabricated using two deposition techniques: in-situ self-assembly and electrochemical deposition. The characterization of these films was done using techniques such as Fourier Transform Infrared Spectroscopy (FTIR), UV-spectroscopy, Scanning Electron Microscope (SEM), and X-Ray Diffraction (XRD). FTIR and UV-spectroscopy showed similar results in the structure of the polyaniline films. However, for the dye incorporated films, since there was an addition in the synthesis of the material, peak locations shifted, and new peaks corresponding to these materials appeared. The 1 layer PANI showed compact film morphology, comparing to other PANI films, which displayed a fiber-like structure. Finally, the electrochemical properties of these thin films were studied using cyclic voltammetry (CV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS) in

  11. On the changing electrochemical behaviour of boron-doped diamond surfaces with time after cathodic pre-treatments

    International Nuclear Information System (INIS)

    Salazar-Banda, Giancarlo R.; Andrade, Leonardo S.; Nascente, Pedro A.P.; Pizani, Paulo S.; Rocha-Filho, Romeu C.; Avaca, Luis A.

    2006-01-01

    The electrochemical response of the Fe(CN) 6 4-/3- redox couple on boron-doped diamond (BDD) electrodes immediately after a cathodic pre-treatment and as a function of time exposed to atmospheric conditions is reported here. After this pre-treatment the electrode exhibits a changing electrochemical behaviour, i.e., a loss of the reversibility for the Fe(CN) 6 4-/3- redox couple as a function of time. Raman spectra showed that neither important bulk structural differences nor significant changes in the sp 2 /sp 3 content are introduced into the BDD film by the cathodic pre-treatment indicating that H-terminated sites play an important role in the electrochemical response of the electrodes. Thus, the changing behaviour reflected by a progressive decrease of the electron transfer rate with time must be associated to a loss of superficial hydrogen due to oxidation by oxygen from the air, as confirmed by X-ray photoelectron spectroscopy (XPS) analysis. Moreover, it was also found that this changing electrochemical behaviour is inversely proportional to the doping level, suggesting that the boron content has a stabilizing effect on the H-terminated surface. These results point out the necessity of doing the cathodic pre-treatment just before the electrochemical experiments are carried out in order to ensure reliable and reproducible results

  12. Spectrophotometric and electrochemical studies of the interaction of cryptand 222 with DDQ and I2 in ethanol solution

    Directory of Open Access Journals (Sweden)

    Abolfazl Semnani

    2006-12-01

    Full Text Available Spectrophotometric and electrochemical studies concerning the interaction of cryptand 222 with DDQ and I2 have been performed in ethanol solution. In the case of DDQ, the results are indicative of the formation of C222¬+ and DDQ- through an equilibrium reaction. The results of I2 indicate the formation of I2-ethanol complex and I3- in the absence of C222. In the presence of C222, the formation of C222I¬+ and I3- through a non-equilibrium reaction is confirmed. The equilibrium constant of the redox reaction between DDQ and C222 has been calculated from the absorbance mole ratio data, using the nonlinear least square program “KINFIT”. The electrochemical reversibility of I-/I2 couple and irreversibility of DDQ/DDQ- is indicated by amperometry. The behavior of DDQ and I2 has been compared. A comparison with aprotic solvents has also been made.

  13. Electrochemical Characteristics of Layered Transition Metal Oxide Cathode Materials for Lithium Ion Batteries: Surface, Bulk Behavior, and Thermal Properties.

    Science.gov (United States)

    Tian, Chixia; Lin, Feng; Doeff, Marca M

    2018-01-16

    Layered lithium transition metal oxides, in particular, NMCs (LiNi x Co y Mn z O 2 ) represent a family of prominent lithium ion battery cathode materials with the potential to increase energy densities and lifetime, reduce costs, and improve safety for electric vehicles and grid storage. Our work has focused on various strategies to improve performance and to understand the limitations to these strategies, which include altering compositions, utilizing cation substitutions, and charging to higher than usual potentials in cells. Understanding the effects of these strategies on surface and bulk behavior and correlating structure-performance relationships advance our understanding of NMC materials. This also provides information relevant to the efficacy of various approaches toward ensuring reliable operation of these materials in batteries intended for demanding traction and grid storage applications. In this Account, we start by comparing NMCs to the isostructural LiCoO 2 cathode, which is widely used in consumer batteries. Effects of changing the metal content (Ni, Mn, Co) upon structure and performance of NMCs are briefly discussed. Our early work on the effects of partial substitution of Al, Fe, and Ti for Co on the electrochemical and bulk structural properties is then covered. The original aim of this work was to reduce the Co content (and thus the raw materials cost) and to determine the effect of the substitutions on the electrochemical and bulk structural properties. More recently, we have turned to the application of synchrotron and advanced microscopy techniques to understand both bulk and surface characteristics of the NMCs. Via nanoscale-to-macroscale spectroscopy and atomically resolved imaging techniques, we were able to determine that the surfaces of NMC undergo heterogeneous reconstruction from a layered structure to rock salt under a variety of conditions. Interestingly, formation of rock salt also occurs under abuse conditions. The surface

  14. 3D Graphene-Ni Foam as an Advanced Electrode for High-Performance Nonaqueous Redox Flow Batteries.

    Science.gov (United States)

    Lee, Kyubin; Lee, Jungkuk; Kwon, Kyoung Woo; Park, Min-Sik; Hwang, Jin-Ha; Kim, Ki Jae

    2017-07-12

    Electrodes composed of multilayered graphene grown on a metal foam (GMF) were prepared by directly growing multilayer graphene sheets on a three-dimensional (3D) Ni-foam substrate via a self-catalyzing chemical vapor deposition process. The multilayer graphene sheets are successfully grown on the Ni-foam substrate surface, maintaining the unique 3D macroporous structure of the Ni foam. The potential use of GMF electrodes in nonaqueous redox flow batteries (RFBs) is carefully examined using [Co(bpy) 3 ] +/2+ and [Fe(bpy) 3 ] 2+/3+ redox couples. The GMF electrodes display a much improved electrochemical activity and enhanced kinetics toward the [Co(bpy) 3 ] +/2+ (anolyte) and [Fe(bpy) 3 ] 2+/3+ (catholyte) redox couples, compared with the bare Ni metal foam electrodes, suggesting that the 2D graphene sheets having lots of interdomain defects provide sufficient reaction sites and secure electric-conduction pathways. Consequently, a nonaqueous RFB cell assembled with GMF electrodes exhibits high Coulombic and voltage efficiencies of 87.2 and 90.9%, respectively, at the first cycle. This performance can be maintained up to the 50th cycle without significant efficiency loss. Moreover, the importance of a rational electrode design for improving electrochemical performance is addressed.

  15. Electro-deposition of Pd on carbon paper and Ni foam via surface limited redox-replacement reaction for oxygen reduction reaction

    CSIR Research Space (South Africa)

    Modibedi, RM

    2014-05-01

    Full Text Available Pd nanostructured catalysts were electrodeposited by surface-limited redox replacement reactions usingthe electrochemical atomic layer deposition technique. Carbon paper and Ni foam were used as substratesfor the electrodeposition of the metal...

  16. Elucidating effects of cell architecture, electrode material, and solution composition on overpotentials in redox flow batteries

    International Nuclear Information System (INIS)

    Pezeshki, Alan M.; Sacci, Robert L.; Delnick, Frank M.; Aaron, Douglas S.; Mench, Matthew M.

    2017-01-01

    An improved method for quantitative measurement of the charge transfer, finite diffusion, and ohmic overpotentials in redox flow batteries using electrochemical impedance spectroscopy is presented. The use of a pulse dampener in the hydraulic circuit enables the collection of impedance spectra at low frequencies with a peristaltic pump, allowing the measurement of finite diffusion resistances at operationally relevant flow rates. This method is used to resolve the rate-limiting processes for the V 2+ /V 3+ redox couple on carbon felt and carbon paper electrodes in the vanadium redox flow battery. Carbon felt was limited by both charge transfer and ohmic resistance, while carbon paper was limited by charge transfer, finite diffusion, and ohmic resistances. The influences of vanadium concentration and flow field design also are quantified.

  17. Polyoxovanadate-alkoxide clusters as multi-electron charge carriers for symmetric non-aqueous redox flow batteries.

    Science.gov (United States)

    VanGelder, L E; Kosswattaarachchi, A M; Forrestel, P L; Cook, T R; Matson, E M

    2018-02-14

    Non-aqueous redox flow batteries have emerged as promising systems for large-capacity, reversible energy storage, capable of meeting the variable demands of the electrical grid. Here, we investigate the potential for a series of Lindqvist polyoxovanadate-alkoxide (POV-alkoxide) clusters, [V 6 O 7 (OR) 12 ] (R = CH 3 , C 2 H 5 ), to serve as the electroactive species for a symmetric, non-aqueous redox flow battery. We demonstrate that the physical and electrochemical properties of these POV-alkoxides make them suitable for applications in redox flow batteries, as well as the ability for ligand modification at the bridging alkoxide moieties to yield significant improvements in cluster stability during charge-discharge cycling. Indeed, the metal-oxide core remains intact upon deep charge-discharge cycling, enabling extremely high coulombic efficiencies (∼97%) with minimal overpotential losses (∼0.3 V). Furthermore, the bulky POV-alkoxide demonstrates significant resistance to deleterious crossover, which will lead to improved lifetime and efficiency in a redox flow battery.

  18. Effect of the Debye screening on the tunnel current through simple electrochemical bridged contact

    DEFF Research Database (Denmark)

    Kuznetsov, A.M.; Medvedev, Oleg; Ulstrup, Jens

    2008-01-01

    General equations for tunnel current through electrochemical contact containing a redox-center in molecular bridge group are observed with allowing for potential distribution in the tunnel gap. Simple approximate expressions appropriate for the analysis of experimental data are also derived. The ...

  19. Nanostructured layer-by-layer films containing phaeophytin-b: Electrochemical characterization for sensing purposes

    Energy Technology Data Exchange (ETDEWEB)

    Nunes Pauli, Gisele Elias [Departamento de Física, Universidade Federal de Santa Catarina, Florianópolis, SC 88040900 (Brazil); Araruna, Felipe B. [Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, Campus Ministro Reis Velloso, CMRV, Universidade Federal do Piauí, UFPI, Parnaíba (Brazil); Eiras, Carla [Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, Campus Ministro Reis Velloso, CMRV, Universidade Federal do Piauí, UFPI, Parnaíba (Brazil); Laboratório Interdisciplinar de Materiais Avançados, LIMAV, CCN, UFPI, Teresina, PI 64049-550 (Brazil); Leite, José Roberto S.A. [Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, Campus Ministro Reis Velloso, CMRV, Universidade Federal do Piauí, UFPI, Parnaíba (Brazil); Chaves, Otemberg Souza; Filho, Severino Gonçalves Brito; Vanderlei de Souza, Maria de Fátima [Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Universidade Federal da Paraíba, 58051-970 João Pessoa, Paraíba (Brazil); Chavero, Lucas Natálio; Sartorelli, Maria Luisa [Departamento de Física, Universidade Federal de Santa Catarina, Florianópolis, SC 88040900 (Brazil); and others

    2015-02-01

    This paper reports the study and characterization of a new platform for practical applications, where the use of phaeophytin-b (phaeo-b), a compound derived from chlorophyll, was characterized and investigated for sensing purposes. Modified electrodes with nanostructured phaeo-b films were fabricated via the layer-by-layer (LbL) technique, where phaeo-b was assembled with cashew gum, a polysaccharide, or with poly(allylamine) hydrochloride (PAH). The multilayer formation was investigated with UV–Vis spectroscopy by monitoring the absorption band associated to phaeo-b at approximately 410 nm, where distinct molecular interactions between the materials were verified. The morphology of the films was analyzed by atomic force microscopy (AFM). The electrochemical properties through redox behavior of phaeo-b were studied with cyclic voltammetry. The produced films were applied as sensors for hydrogen peroxide (H{sub 2}O{sub 2}) detection. In terms of sensing, the cashew/phaeo-b film exhibited the most promising result, with a fast response and broad linear range upon the addition of H{sub 2}O{sub 2}. This approach provides a simple and inexpensive method for development of a nonenzymatic electrochemical sensor for H{sub 2}O{sub 2}. - Highlights: • Potential applications of phaeophytin-b • Low-cost method to produce sensitive nanostructured films • Electrochemical sensor based on phaeophytin-b and cashew gum.

  20. NICKEL HYDROXIDE FILMS IN CONTACT WITH AN ELECTROACTIVE SOLUTION. A STUDY EMPLOYING ELECTROCHEMICAL IMPEDANCE MEASUREMENTS

    OpenAIRE

    RICARDO TUCCERI

    2018-01-01

    The deactivation of nickel hydroxide films after prolonged storage times without use was studied. This study was carried out in the context of the Rotating Disc Electrode Voltammetry (RDEV) and Electrochemical Impedance Spectroscopy (EIS) when the nickel hydroxide film contacts an electroactive solution and a redox reaction occurs at the Au-Ni(OH)2|electrolyte interface. Deferasirox (4-(3,5-bis(2- hydroxyphenyl)-1,2,4-triazol-1-yl) benzoic acid) was employed as redox species in solution. Limi...

  1. Electrochemical characterization of glassy carbon electrode modified with 1,10-phenanthroline groups by two pathways: reduction of the corresponding diazonium ions and reduction of phenanthroline

    International Nuclear Information System (INIS)

    Shul, Galyna; Weissmann, Martin; Bélanger, Daniel

    2015-01-01

    The electrochemical behaviour of 1,10-phenanthroline molecules immobilized on a glassy carbon electrode surface by electrochemical reduction of the corresponding in-situ generated diazonium ions in an aqueous solution was investigated. Firstly, the derivatization of glassy carbon electrode was confirmed by the presence of the barrier effect in the solution of a redox probe. Secondly, atomic force microscopy measurements revealed the deposition of thin (< 2 nm) uniform 1,10-phenanthroline film on the surface of pyrolyzed photoresist film electrode. Thirdly, the initially electrochemically inactive grafted organic film became electroactive after being subjected to electrochemical reduction and oxidation. Fourthly, the electrochemical behaviour of phenanthroline modified electrode by electrochemical reduction of the corresponding diazonium cations was found to be similar to that of electrode modified by electrochemical reduction of only phenanthroline dissolved in an aqueous acid solution. Finally, cyclic voltammetry experiments using various methyl substituted phenanthroline derivatives provided direct evidence that functional groups responsible for the film electroactivity are formed at 5 or/and 6 positions of grafted phenanthroline molecules. On the other hand, a phenanthroline derivative having these positions blocked by methyl groups can also display electroactivity with position 7 being most likely involved in the observed redox process

  2. Electrochemical evaluation of avidin-biotin interaction on self-assembled gold electrodes

    International Nuclear Information System (INIS)

    Ding, S.-J.; Chang, B.-W.; Wu, C.-C.; Lai, M.-F.; Chang, H.-C.

    2005-01-01

    The avidin-biotin interaction on 11-mercaptoundecanoic acid self-assembled gold electrodes was investigated by means of cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The interfacial properties of the modified electrodes were evaluated in the presence of the Fe(China) 6 3-/4- couple redox as a probe. A simple equivalent circuit model with a constant phase element was used to interpret the obtained impedance spectra. The results of cyclic voltammetry showed that the voltammetric behavior of the redox probe was influenced by the electrode surface modification. It is evident that the accumulation of treated substances and the binding of biotin to avidin on the electrode surface resulted in the increasing electron-transfer resistance and the decreasing capacitance. The changes in the electron-transfer resistance on the avidin-modified electrodes were more sensitive than that in the capacitance while detecting biotin over the 2-10 μg/mL concentration. The detection amount can be as low as 20 ng/mL based on the electron-transfer resistance that presented the change of 4.3 kΩ without the use of labels. The development of a rapid, facile, and sensitive method for the quantitation of nanogram quantities of biomolecules utilizing EIS may be achieved

  3. Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries

    Science.gov (United States)

    Assat, Gaurav; Tarascon, Jean-Marie

    2018-05-01

    Our increasing dependence on lithium-ion batteries for energy storage calls for continual improvements in the performance of their positive electrodes, which have so far relied solely on cationic redox of transition-metal ions for driving the electrochemical reactions. Great hopes have recently been placed on the emergence of anionic redox—a transformational approach for designing positive electrodes as it leads to a near-doubling of capacity. But questions have been raised about the fundamental origins of anionic redox and whether its full potential can be realized in applications. In this Review, we discuss the underlying science that triggers a reversible and stable anionic redox activity. Furthermore, we highlight its practical limitations and outline possible approaches for improving such materials and designing new ones. We also summarize their chances for market implementation in the face of the competing nickel-based layered cathodes that are prevalent today.

  4. Hybrid supercapacitor-battery materials for fast electrochemical charge storage

    Science.gov (United States)

    Vlad, A.; Singh, N.; Rolland, J.; Melinte, S.; Ajayan, P. M.; Gohy, J.-F.

    2014-01-01

    High energy and high power electrochemical energy storage devices rely on different fundamental working principles - bulk vs. surface ion diffusion and electron conduction. Meeting both characteristics within a single or a pair of materials has been under intense investigations yet, severely hindered by intrinsic materials limitations. Here, we provide a solution to this issue and present an approach to design high energy and high power battery electrodes by hybridizing a nitroxide-polymer redox supercapacitor (PTMA) with a Li-ion battery material (LiFePO4). The PTMA constituent dominates the hybrid battery charge process and postpones the LiFePO4 voltage rise by virtue of its ultra-fast electrochemical response and higher working potential. We detail on a unique sequential charging mechanism in the hybrid electrode: PTMA undergoes oxidation to form high-potential redox species, which subsequently relax and charge the LiFePO4 by an internal charge transfer process. A rate capability equivalent to full battery recharge in less than 5 minutes is demonstrated. As a result of hybrid's components synergy, enhanced power and energy density as well as superior cycling stability are obtained, otherwise difficult to achieve from separate constituents. PMID:24603843

  5. Improving the electrocatalytic performance of carbon nanotubes for VO{sup 2+}/VO{sub 2}{sup +} redox reaction by KOH activation

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Lei; Jiang, Yingqiao; Meng, Wei; Zhou, Huizhu [School of Chemical Engineering, North China University of Science and Technology, Tangshan 063009 (China); Wang, Ling, E-mail: tswling@126.com [School of Chemical Engineering, North China University of Science and Technology, Tangshan 063009 (China); He, Zhangxing, E-mail: zxhe@ncst.edu.cn [School of Chemical Engineering, North China University of Science and Technology, Tangshan 063009 (China); State Key Laboratory Breeding Base of Nuclear Resources and Environment, East China Institute of Technology, Nanchang 330013 (China)

    2017-04-15

    Highlights: • KOH-activated carbon nanotubes (CNTs) was investigated as superior catalyst for VO{sup 2+}/VO{sub 2}{sup +} redox reaction for vanadium redox flow battery (VRFB) for the first time. • KOH activation for CNTs can result in the chemical etching of surface and improved wettability, accelerating the mass transfer of vanadium ions. • KOH activation can introduce many oxygen-containing groups as active sites on the surface of CNTs. • KOH-activated CNTs as positive catalyst could increase the comprehensive energy storage performance of VRFB. - Abstract: In this paper, carbon nanotubes (CNTs) was activated by KOH treatment at high temperature and investigated as catalyst for VO{sup 2+}/VO{sub 2}{sup +} redox reaction for vanadium redox flow battery (VRFB). X-ray photoelectron spectroscopy results suggest that the oxygen-containing groups can be introduced on CNTs by KOH activation. The mass transfer of vanadium ions can be accelerated by chemical etching by KOH activation and improved wettability due to the introduction of hydrophilic groups. The electrochemical properties of VO{sup 2+}/VO{sub 2}{sup +} redox reaction can be enhanced by introduced oxygen-containing groups as active sites. The sample treated at 900 °C with KOH/CNTs mass ratio of 3:1 (CNTs-3) exhibits the highest electrocatalytic activity for VO{sup 2+}/VO{sub 2}{sup +} redox reaction. The cell using CNTs-3 as positive catalyst demonstrates the smallest electrochemical polarization, the highest capacity and efficiency among the samples. Using KOH-activated CNTs-3 can increase the average energy efficiency of the cell by 4.4%. This work suggests that KOH-activated CNTs is a low-cost, efficient and promising catalyst for VO{sup 2+}/VO{sub 2}{sup +} redox reaction for VRFB system.

  6. High Energy Density Aqueous Electrochemical Capacitors with a KI-KOH Electrolyte.

    Science.gov (United States)

    Wang, Xingfeng; Chandrabose, Raghu S; Chun, Sang-Eun; Zhang, Tianqi; Evanko, Brian; Jian, Zelang; Boettcher, Shannon W; Stucky, Galen D; Ji, Xiulei

    2015-09-16

    We report a new electrochemical capacitor with an aqueous KI-KOH electrolyte that exhibits a higher specific energy and power than the state-of-the-art nonaqueous electrochemical capacitors. In addition to electrical double layer capacitance, redox reactions in this device contribute to charge storage at both positive and negative electrodes via a catholyte of IOx-/I- couple and a redox couple of H2O/Had, respectively. Here, we, for the first time, report utilizing IOx-/I- redox couple for the positive electrode, which pins the positive electrode potential to be 0.4-0.5 V vs Ag/AgCl. With the positive electrode potential pinned, we can polarize the cell to 1.6 V without breaking down the aqueous electrolyte so that the negative electrode potential could reach -1.1 V vs Ag/AgCl in the basic electrolyte, greatly enhancing energy storage. Both mass spectroscopy and Raman spectrometry confirm the formation of IO3- ions (+5) from I- (-1) after charging. Based on the total mass of electrodes and electrolyte in a practically relevant cell configuration, the device exhibits a maximum specific energy of 7.1 Wh/kg, operates between -20 and 50 °C, provides a maximum specific power of 6222 W/kg, and has a stable cycling life with 93% retention of the peak specific energy after 14,000 cycles.

  7. Electrochemical investigation of uranium β-diketonates for all-uranium redox flow battery

    International Nuclear Information System (INIS)

    Yamamura, Tomoo; Shiokawa, Yoshinobu; Yamana, Hajimu; Moriyama, Hirotake

    2002-01-01

    The redox flow battery using uranium as the negative and the positive active materials in polar aprotic solvents was proposed. In order to establish the guiding principle for the uranium compounds as the active materials, the investigation of uranium β-diketonate complexes was conducted on (i) the solubility of active materials, (ii) the electrode reaction of U(VI) and U(IV) β-diketonate complexes and (iii) the estimation of the open circuit voltage of the battery. The solubilities of higher than 0.8 mol dm -3 of U(VI) complexes and higher than 0.4 mol dm -3 of a U(IV) complex were obtained in the solvents. The electrode reactions of U(pta) 4 , UO 2 (dpm) 2 , UO 2 (fod) 2 and UO 2 (pta) 2 were first studied and the redox potentials of uranium β-diketonates were thermodynamically discussed. The open circuit voltage is estimated more than 1 V by using Hacac or Hdpm. The larger open circuit voltage is expected when a ligand with the larger basicity is used

  8. Design and Evaluation of a Boron Dipyrrin Electrophore for Redox Flow Batteries.

    Science.gov (United States)

    Heiland, Niklas; Cidarér, Clemens; Rohr, Camilla; Piescheck, Mathias; Ahrens, Johannes; Bröring, Martin; Schröder, Uwe

    2017-08-29

    A boron dipyrrin (BODIPY) dye was designed as a molecular single-component electrophore for redox flow batteries. All positions of the BODIPY core were assessed on the basis of literature data, in particular cyclic voltammetry and density functional calculations, and a minimum required substitution pattern was designed to provide solubility, aggregation, radical cation and anion stabilities, a large potential window, and synthetic accessibility. In-depth electrochemical and physical studies of this electrophore revealed suitable cathodic behavior and stability of the radical anion but rapid anodic decomposition of the radical cation. The three products that formed under the conditions of controlled oxidative electrolysis were isolated, and their structures were determined by spectroscopy and comparison with a synthetic model compound. From these structures, a benzylic radical reactivity, initiated by one-electron oxidation, was concluded to play the major role in this unexpected decomposition. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Redox Kinetics and Nonstoichiometry of Ce0.5Zr0.5O2−δ for Water Splitting and Hydrogen Production

    KAUST Repository

    Zhao, Zhenlong; Uddi, Mruthunjaya; Tsvetkov, Nikolai; Yildiz, Bilge; Ghoniem, Ahmed F.

    2017-01-01

    Water splitting and chemical fuel production as a promising carbon-neutral energy solution relies critically on an efficient electrochemical process over catalyst surfaces. The fundamentals within the surface redox pathways, including the complex

  10. Enrofloxacin behavior in presence of soil extracted organic matter: An electrochemical approach

    International Nuclear Information System (INIS)

    Antilén, Monica; Valencia, Camila; Peralta, Emilia; Canales, Camila; Espinosa-Bustos, Christian; Escudey, Mauricio

    2017-01-01

    In this work, a novel and simple method aimed at determining and quantifying Enrofloxacin in presence of Natural Organic Matter (NOM) is proposed. The method was based on the electrochemical oxidation of Enrofloxacin by using cyclic voltammetry as technique. It was found that this analyte presents a good electroactivity, in absence and in presence of NOM. However, this electrochemical behavior is highly pH-dependent, since the reaction is more favorable when less acid the media is. At this point, different pH values were studied in order to corroborate this phenomenon. Additionally, kinetic studies were done to determine the control of the reaction, the number of transferred electrons in the entire process and the rate determining step of the reaction by analyzing the Tafel slope. With these antecedents, a mechanism was proposed and the final product of the reaction was corroborated by using LC-MS. Finally, analytical parameters were studied with the aim of proposing this new method as an electrochemical sensor of Enrofloxacin. It was found that the method is highly linear, precise and accurate. Moreover, this method is not only sensitive but also selective to Enrofloxacin in presence of NOM, in comparison to spectrophotometric methods previously reported.

  11. Electrochemical reactivity at graphitic micro-domains on polycrystalline boron doped diamond thin-films electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Mahe, E. [LI2C CNRS/UMR 7612, Laboratoire d' Electrochimie, Universite Pierre-et-Marie Curie - case courrier 51, 4, Place Jussieu, 75252 Paris Cedex 05 (France); Devilliers, D. [LI2C CNRS/UMR 7612, Laboratoire d' Electrochimie, Universite Pierre-et-Marie Curie - case courrier 51, 4, Place Jussieu, 75252 Paris Cedex 05 (France); Comninellis, Ch. [Unite de Genie Electrochimique, Institut de sciences des procedes chimiques et biologiques, Ecole Polytechnique Federale de Lausanne, 1015, Lausanne (Switzerland)

    2005-04-01

    This paper deals with the electrochemical reactivity of boron doped diamond (BDD) electrodes. A comparative study has been carried out to show the influence of the presence of graphitic micro-domains upon the surface of these films. Those graphitic domains are sometimes present on as-grown boron doped diamond electrodes. The effect of doping a pure Csp{sup 3} diamond electrode is established by highly oriented pyrolytic graphite (HOPG) abrasion onto the diamond surface. In order to establish the effect of doping on a pure Csp{sup 3} diamond electrode, the amount of graphitic domains was increased by means of HOPG crystals grafted onto the BDD surface. Indeed that method allows the enrichment of the Csp{sup 2} contribution of the electrode. The presence of graphitic domains can be correlatively associated with the presence of kinetically active redox sites. The electrochemical reactivity of boron doped diamond electrodes shows a distribution of kinetic constants on the whole surface of the electrode corresponding to different active sites. In this paper, we have studied by cyclic voltammetry and electrochemical impedance spectroscopy the kinetics parameters of the ferri/ferrocyanide redox couple in KCl electrolyte. A method is proposed to diagnose the presence of graphitic domains on diamond electrodes, and an electrochemical 'pulse cleaning' procedure is proposed to remove them.

  12. Redox-capacitor to connect electrochemistry to redox-biology.

    Science.gov (United States)

    Kim, Eunkyoung; Leverage, W Taylor; Liu, Yi; White, Ian M; Bentley, William E; Payne, Gregory F

    2014-01-07

    It is well-established that redox-reactions are integral to biology for energy harvesting (oxidative phosphorylation), immune defense (oxidative burst) and drug metabolism (phase I reactions), yet there is emerging evidence that redox may play broader roles in biology (e.g., redox signaling). A critical challenge is the need for tools that can probe biologically-relevant redox interactions simply, rapidly and without the need for a comprehensive suite of analytical methods. We propose that electrochemistry may provide such a tool. In this tutorial review, we describe recent studies with a redox-capacitor film that can serve as a bio-electrode interface that can accept, store and donate electrons from mediators commonly used in electrochemistry and also in biology. Specifically, we (i) describe the fabrication of this redox-capacitor from catechols and the polysaccharide chitosan, (ii) discuss the mechanistic basis for electron exchange, (iii) illustrate the properties of this redox-capacitor and its capabilities for promoting redox-communication between biology and electrodes, and (iv) suggest the potential for enlisting signal processing strategies to "extract" redox information. We believe these initial studies indicate broad possibilities for enlisting electrochemistry and signal processing to acquire "systems level" redox information from biology.

  13. Single-molecule electron tunnelling through multiple redox levels with environmental relaxation

    DEFF Research Database (Denmark)

    Kuznetsov, A.M.; Ulstrup, Jens

    2004-01-01

    represent the substrate and tip in electrochemical in situ scanning tunnelling microscopy. An equivalent three-electrode configuration represents a molecular single-electron transistor in which the enclosing electrodes constitute source and drain, and the reference electrode the gate. Current-bias voltage...... relations at fixed electrochemical overpotential or gate voltage, and current-overpotential or current-gate voltage relations at fixed bias voltage are equivalent in the two systems. Due to the activation-less nature of the processes, electron flow between the electrodes through the molecular redox levels...... level(s) subsequent to electron transfer. Several physical mechanisms can be distinguished and distinctive current-overpotential/gate voltage or current-bias voltage relations obtained. These reflect electronic level separation, environmental nuclear reorganisation, and coherent or incoherent multi...

  14. Real-time monitoring of intracellular redox changes in Methylococcus capsulatus (Bath) for efficient bioconversion of methane to methanol.

    Science.gov (United States)

    Ishikawa, Masahito; Tanaka, Yuya; Suzuki, Risa; Kimura, Kota; Tanaka, Kenya; Kamiya, Kazuhide; Ito, Hidehiro; Kato, Souichiro; Kamachi, Toshiaki; Hori, Katsutoshi; Nakanishi, Shuji

    2017-10-01

    This study aimed to develop a novel method for real-time monitoring of the intracellular redox states in a methanotroph Methylococcus capsulatus, using Peredox as a genetically encoded fluorescent sensor of the NADH:NAD + ratio. As expected, the fluorescence derived from the Peredox-expressing M. capsulatus transformant increased by supplementation of electron donor compounds (methane and formate), while it decreased by specifically inhibiting the methanol oxidation reaction. Electrochemical measurements confirmed that the Peredox fluorescence reliably represents the intracellular redox changes. This study is the first to construct a reliable redox-monitoring method for methanotrophs, which will facilitate to develop more efficient methane-to-methanol bioconversion processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Electrochemical behavior and pH stability of artificial salivas for corrosion tests.

    Science.gov (United States)

    Queiroz, Gláucia Maria Oliveira de; Silva, Leandro Freitas; Ferreira, José Tarcísio Lima; Gomes, José Antônio da Cunha P; Sathler, Lúcio

    2007-01-01

    It is assumed that the compositions of artificial salivas are similar to that of human saliva. However, the use of solutions with different compositions in in vitro corrosion studies can lead dissimilar electrolytes to exhibit dissimilar corrosivity and electrochemical stability. This study evaluated four artificial salivas as regards pH stability with time, redox potentials and the polarization response of an inert platinum electrode. The tested solutions were: SAGF medium, Mondelli artificial saliva, UFRJ artificial saliva (prepared at the School of Pharmacy, Federal University of Rio de Janeiro, RJ, Brazil) and USP-RP artificial saliva (prepared at the School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, SP, Brazil). It was observed that pH variations were less than 1 unit during a 50-hour test. The SAGF medium, and the UFRJ and USP-RP solutions exhibited more oxidizing characteristics, whereas the Mondelli solution presented reducing properties. Anodic polarization revealed oxidation of the evaluated electrolytes at potentials below +600 mV SCE. It was observed that the UFRJ and USP-RP solutions presented more intense oxidation and reduction processes as compared to the Mondelli and SAGF solutions.

  16. Electrochemical Behavior Assessment of As-Cast Mg-Y-RE-Zr Alloy in Phosphate Buffer Solutions (X Na3PO4 + Y Na2HPO4) Using Electrochemical Impedance Spectroscopy and Mott-Schottky Techniques

    Science.gov (United States)

    Fattah-alhosseini, Arash; Asgari, Hamed

    2018-05-01

    In the present study, electrochemical behavior of as-cast Mg-Y-RE-Zr alloy (RE: rare-earth alloying elements) was investigated using electrochemical tests in phosphate buffer solutions (X Na3PO4 + Y Na2HPO4). X-ray diffraction techniques and Scanning electron microscopy equipped with energy dispersive x-ray spectroscopy were used to investigate the microstructure and phases of the experimental alloy. Different electrochemical tests such as potentiodynamic polarization (PDP), electrochemical impedance spectroscopy (EIS) and Mott-Schottky (M-S) analysis were carried out in order to study the electrochemical behavior of the experimental alloy in phosphate buffer solutions. The PDP curves and EIS measurements indicated that the passive behavior of the as-cast Mg-Y-RE-Zr alloy in phosphate buffer solutions was weakened by an increase in the pH, which is related to formation of an imperfect and less protective passive layer on the alloy surface. The presence of the insoluble zirconium particles along with high number of intermetallic phases of RE elements mainly Mg24Y5 in the magnesium matrix can deteriorate the corrosion performance of the alloy by disrupting the protective passive layer that is formed at pH values over 11. These insoluble zirconium particles embedded in the matrix can detrimentally influence the passivation. The M-S analysis revealed that the formed passive layers on Mg-Y-RE-Zr alloy behaved as an n-type semiconductor. An increase in donor concentration accompanying solutions of higher alkalinity is thought to result in the formation of a less resistive passive layer.

  17. In situ57Fe Moessbauer Investigation of Solid-State Redox Reactions of Lithium Insertion Electrodes for Advanced Batteries

    International Nuclear Information System (INIS)

    Sakai, Yoichi; Ariyoshi, Kingo; Ohzuku, Tsutomu

    2002-01-01

    A novel in situ electrochemical cell for 57 Fe Moessbauer measurements was developed in order to clarify the mechanisms of solid-state redox reactions in lithium insertion materials containing iron. Our in situ Moessbauer technique was successfully applied to the determination as to which transition metal ion was a redox center in the insertion electrodes, such as LiFe 0.5 Mn 1.5 O 4 , LiFeTiO 4 , or LiFe 0.25 Ni 0.75 O 2 , for the lithium-ion batteries.

  18. Model for Calculating Electrolytic Shunt Path Losses in Large Electrochemical Energy Conversion Systems

    Science.gov (United States)

    Prokopius, P. R.

    1976-01-01

    Generalized analysis and solution techniques were developed to evaluate the shunt power losses in electrochemical systems designed with a common or circulating electrolyte supply. Sample data are presented for a hypothetical bulk energy storage redox system, and the general applicability of the analysis technique is discussed.

  19. Catalytic Water Oxidation by a Bio-inspired Nickel Complex with Redox Active Ligand

    Science.gov (United States)

    Wang, Dong; Bruner, Charlie O.

    2017-01-01

    The oxidation of water to dioxygen is important in natural photosynthesis. One of nature’s strategies for managing such multi-electron transfer reactions is to employ redox active metal-organic cofactor arrays. One prototype example is the copper-tyrosinate active site found in galactose oxidase. In this work, we have implemented such a strategy to develop a bio-inspired nickel-phenolate complex capable of catalyzing the oxidation of water to O2 electrochemically at neutral pH with a modest overpotential. The employment of the redox-active ligand turned out to be a useful strategy to avoid the formation of high-valent nickel intermediates while a reasonable turnover rate (0.15 s−1) is retained. PMID:29099176

  20. The Binding Effect of Proteins on Medications and Its Impact on Electrochemical Sensing: Antipsychotic Clozapine as a Case Study

    Directory of Open Access Journals (Sweden)

    George E. Banis

    2017-08-01

    Full Text Available Clozapine (CLZ, a dibenzodiazepine, is demonstrated as the optimal antipsychotic for patients suffering from treatment-resistant schizophrenia. Like many other drugs, understanding the concentration of CLZ in a patient’s blood is critical for managing the patients’ symptoms, side effects, and overall treatment efficacy. To that end, various electrochemical techniques have been adapted due to their capabilities in concentration-dependent sensing. An open question associated with electrochemical CLZ monitoring is whether drug–protein complexes (i.e., CLZ bound to native blood proteins, such as serum albumin (SA or alpha-1 acid-glycoprotein (AAG contribute to electrochemical redox signals. Here, we investigate CLZ-sensing performance using fundamental electrochemical methods with respect to the impact of protein binding. Specifically, we test the activity of bound and free fractions of a mixture of CLZ and either bovine SA or human AAG. Results suggest that bound complexes do not significantly contribute to the electrochemical signal for mixtures of CLZ with AAG or SA. Moreover, the fraction of CLZ bound to protein is relatively constant at 31% (AAG and 73% (SA in isolation with varying concentrations of CLZ. Thus, electrochemical sensing can enable direct monitoring of only the unbound CLZ, previously only accessible via equilibrium dialysis. The methods utilized in this work offer potential as a blueprint in developing electrochemical sensors for application to other redox-active medications with high protein binding more generally. This demonstrates that electrochemical sensing can be a new tool in accessing information not easily available previously, useful toward optimizing treatment regimens.

  1. Spectroscopic and electrochemical study of polynuclear clusters from ruthenium acetate

    International Nuclear Information System (INIS)

    Cipriano, C.

    1989-01-01

    The chemistry of the trinuclear clusters [Ru sub(3) O (CH sub(3) CO sub(2)) sub(4) L sub(3)] where L = imidazole, pyridine or pyrazine type of ligands, was investigated based on spectroscopic and electrochemical techniques. These complexes are of great interest from the point of view of their electronic and redox properties, providing multisite species for electron transfer processes. They were isolated in solid state, and characterized by means of elementary analyses and infrared spectra. The electrochemical behaviour in acetonitrile solution was typically reversible; the cyclic voltammograms exhibited a series of four or five mono electronic waves ascribed to the sucessive Ru sup(IV) Ru sup(III) Ru sup(III) / Ru sup(III) Ru sup(III) Ru sup(III)/ --- Ru sup(II) Ru sup(II) Ru sup(II) redox couples. The differences between the successive redox potentials were about 1 V, indicating strong metal-metal interaction in the trinuclear Ru sub(3) centre. The E values were strongly sensitive to the nature of the N-heterocyclic ligand, increasing with the pi-acceptor properties of the pyridine and pyrazine derivatives, but in a much less pronounced way in the case of the imidazole derivatives. Resonance Raman studies for the pyrazine cluster showed selective intensification of the vibrational modes of the Ru-pyrazine chromophore, and the trinuclear centre, using excitation wavelengths coinciding with the metal-to-pyrazine and metal-metal bands, respectively. (author)

  2. Controlling the Host-Guest Interaction Mode through a Redox Stimulus.

    Science.gov (United States)

    Szalóki, György; Croué, Vincent; Carré, Vincent; Aubriet, Frédéric; Alévêque, Olivier; Levillain, Eric; Allain, Magali; Aragó, Juan; Ortí, Enrique; Goeb, Sébastien; Sallé, Marc

    2017-12-18

    A proof-of-concept related to the redox-control of the binding/releasing process in a host-guest system is achieved by designing a neutral and robust Pt-based redox-active metallacage involving two extended-tetrathiafulvalene (exTTF) ligands. When neutral, the cage is able to bind a planar polyaromatic guest (coronene). Remarkably, the chemical or electrochemical oxidation of the host-guest complex leads to the reversible expulsion of the guest outside the cavity, which is assigned to a drastic change of the host-guest interaction mode, illustrating the key role of counteranions along the exchange process. The reversible process is supported by various experimental data ( 1 H NMR spectroscopy, ESI-FTICR, and spectroelectrochemistry) as well as by in-depth theoretical calculations performed at the density functional theory (DFT) level. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Electrochemical Properties of Alkanethiol Monolayers Adsorbed on Nanoporous Au Surfaces

    International Nuclear Information System (INIS)

    Chu, Yeon Yi; Seo, Bora; Kim, Jong Won

    2010-01-01

    We investigated the electrochemical properties of alkanethiol monolayers adsorbed on NPG surfaces by cyclic voltammetry and electrochemical impedance spectroscopy, and the results are compared to those on flat Au surfaces. The reductive desorption of alkanethiols on NPG surfaces is observed in more negative potential regions than that on flat Au surfaces due the stronger S-Au interaction on NPG surfaces. While the electron transfer through alkanethiol monolayers on flat Au surfaces occurs via a tunneling process through the monolayer films, the redox species can permeate through the monolayers on NPG surfaces to transfer the electrons to the Au surfaces. The results presented here will help to elucidate the intrinsic electrochemical properties of alkanethiol monolayers adsorbed on curved Au surfaces, particularly on the surface of AuNPs. Self-assembled monolayers (SAMs) of thiolate molecules on Au surfaces have been the subject of intensive research for the last few decades due to their unique physical and chemical properties. The well-organized surface structures of thiolate SAMs with various end-group functionalities can be further utilized for many applications in biology and nanotechnology. In addition to the practical applications, SAMs of thiolate molecules on Au surfaces also provide unique opportunities to address fundamental issues in surface chemistry such as self-organized surface structures, electron transfer behaviors, and moleculesubstrate interactions. Although there have been numerous reports on the fundamental physical and chemical properties of thiolate SAMs on Au surfaces, most of them were investigated on flat Au surfaces, typically on well-defined Au(111) surfaces

  4. Electrochemical impedance spectroscopy of oxidized porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Mula, Guido, E-mail: guido.mula@unica.it [Dipartimento di Fisica, Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato, S.P. 8 km 0.700, 09042 Cagliari (Italy); Tiddia, Maria V. [Dipartimento di Fisica, Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato, S.P. 8 km 0.700, 09042 Cagliari (Italy); Ruffilli, Roberta [Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova (Italy); Falqui, Andrea [Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova (Italy); Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato, S.P. 8 km 0.700, 09042 Cagliari (Italy); Palmas, Simonetta; Mascia, Michele [Dipartimento di Ingegneria Meccanica Chimica e dei Materiali, Università degli Studi di Cagliari, Piazza d' Armi, 09126 Cagliari (Italy)

    2014-04-01

    We present a study of the electrochemical oxidation process of porous silicon. We analyze the effect of the layer thickness (1.25–22 μm) and of the applied current density (1.1–11.1 mA/cm{sup 2}, values calculated with reference to the external samples surface) on the oxidation process by comparing the galvanostatic electrochemical impedance spectroscopy (EIS) measurements and the optical specular reflectivity of the samples. The results of EIS were interpreted using an equivalent circuit to separate the contribution of different sample parts. A different behavior of the electrochemical oxidation process has been found for thin and thick samples: whereas for thin samples the oxidation process is univocally related to current density and thickness, for thicker samples this is no more true. Measurements by Energy Dispersive Spectroscopy using a Scanning Electron Microscopy confirmed that the inhomogeneity of the electrochemical oxidation process is increased by higher thicknesses and higher currents. A possible explanation is proposed to justify the different behavior of thin and thick samples during the electrochemical process. - Highlights: • A multidisciplinary approach on porous Si electrochemical oxidation is proposed. • Electrochemical, optical, and structural characterizations are used. • Layer thickness and oxidation current effects are shown. • An explanation of the observed behavior is proposed.

  5. Effect of black clay soil moisture on the electrochemical behavior of API X70 pipeline steel

    Science.gov (United States)

    Hendi, R.; Saifi, H.; Belmokre, K.; Ouadah, M.; Smili, B.; Talhi, B.

    2018-03-01

    The effect of moisture content variation (20–100 wt.%) on the electrochemical behavior of API X70 pipeline steel buried in the soil of Skikda (East of Algeria) was studied using electrochemical techniques, scanning electron microscopy (SEM), X ray diffraction analysis (XRD) and weight loss measurement. The electrochemical measurements showed that the corrosion current Icorr is directly proportional to the moisture content up to 50 wt.%, beyond this content, this value becomes almost constant. The result were confirmed by electrochemical impedance spectroscopy; the capacitance of the double layer formed on the surface is the highest at 50 wt.%. A single time constant was detected by plotting the Bode diagrams. The steel surface degradation has been appreciated using the scanning electron microscopy observations. A few pitting corrosion at 20 wt.% moisture, followed by more degradation at 50 wt.% have been revealed. However, when the moisture amount exceeded 50 wt.%, the surface became entirely covered by a corrosion product. XRD analysis revealed the dominance of FeOOH and Fe3O4 phases on steel surface for a moisture content of 50 wt.%.

  6. Electrochemical behavior of fission palladium in 1-butyl-3-methylimidazolium chloride

    Energy Technology Data Exchange (ETDEWEB)

    Jayakumar, M.; Venkatesan, K.A.; Srinivasan, T.G. [Fuel Chemistry Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India)

    2007-08-01

    Electrochemical behavior of palladium (II) chloride in 1-butyl-3-methylimidazolium chloride has been investigated by various electrochemical transient techniques using glassy carbon working electrode at different temperatures (343-373 K). Cyclic voltammogram consisted of a prominent reduction wave at -0.61 V (vs. Pd) due to the reduction of Pd(II) to Pd, and two oxidation waves at -0.26 and 0.31 V. A nucleation loop is observed at -0.53 V. The diffusion coefficient of palladium (II) in bmimCl ({proportional_to}10{sup -7} cm{sup 2}/s) was determined and the energy of activation (63 kJ/mol) was deduced from the cyclic voltammograms at various temperatures. Nucleation and growth of palladium on glassy carbon working electrode has been investigated by chronoamperometry and chronopotentiometry. The growth and decay of chronocurrents measured for palladium deposition has been found to follow the instantaneous nucleation model with three-dimensional growth of nuclei. The surface morphology of the deposit obtained at various applied potentials revealed the formation of dendrites immediately after nucleation and spread in all the directions with time. (author)

  7. Elucidating effects of cell architecture, electrode material, and solution composition on overpotentials in redox flow batteries

    Energy Technology Data Exchange (ETDEWEB)

    Pezeshki, Alan M. [Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sacci, Robert L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Delnick, Frank M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Aaron, Douglas S. [Univ. of Tennessee, Knoxville, TN (United States); Mench, Matthew M. [Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-01-16

    Here, an improved method for quantitative measurement of the charge transfer, finite diffusion, and ohmic overpotentials in redox flow batteries using electrochemical impedance spectroscopy is presented. The use of a pulse dampener in the hydraulic circuit enables the collection of impedance spectra at low frequencies with a peristaltic pump, allowing the measurement of finite diffusion resistances at operationally relevant flow rates. This method is used to resolve the rate-limiting processes for the V2+/V3+ redox couple on carbon felt and carbon paper electrodes in the vanadium redox flow battery. Carbon felt was limited by both charge transfer and ohmic resistance, while carbon paper was limited by charge transfer, finite diffusion, and ohmic resistances. The influences of vanadium concentration and flow field design also are quantified.

  8. Effect of covalently bonded polysiloxane multilayers on the electrochemical behavior of graphite electrode in lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Qinmin; Jiang, Yinghua [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China)

    2008-03-15

    Polysiloxane multilayers were covalently bonded to the surface of natural graphite particles via diazonium chemistry and silylation reaction. The as-prepared graphite exhibited excellent discharge-charge behavior as negative electrode materials in lithium ion batteries. The improvement in the electrochemical performance of the graphite electrodes was attributed to the formation of a stable and flexible passive film on their surfaces. It was also revealed that the chemical compositions of the multilayers exerted influence on the electrochemical behavior of the graphite electrodes. The result of this study presents a new strategy to the formation of elastic and strong passive film on the graphite electrode via molecular design. Owing to the diversity of polysilxoane multilayers, this method also enables researchers to control the surface chemistries of carbonaceous materials with flexibility. (author)

  9. Rapid and Efficient Redox Processes within 2D Covalent Organic Framework Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    DeBlase, Catherine R. [Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, New York 14853-1301, United States; Hernández-Burgos, Kenneth [Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, New York 14853-1301, United States; Silberstein, Katharine E. [Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, New York 14853-1301, United States; Rodríguez-Calero, Gabriel G. [Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, New York 14853-1301, United States; Bisbey, Ryan P. [Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, New York 14853-1301, United States; Abruña, Héctor D. [Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, New York 14853-1301, United States; Dichtel, William R. [Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, New York 14853-1301, United States

    2015-02-17

    Two-dimensional covalent organic frameworks (2D COFs) are ideally suited for organizing redox-active subunits into periodic, permanently porous polymer networks of interest for pseudocapacitive energy storage. Here we describe a method for synthesizing crystalline, oriented thin films of a redox-active 2D COF on Au working electrodes. The thickness of the COF film was controlled by varying the initial monomer concentration. A large percentage (80–99%) of the anthraquinone groups are electrochemically accessible in films thinner than 200 nm, an order of magnitude improvement over the same COF prepared as a randomly oriented microcrystalline powder. As a result, electrodes functionalized with oriented COF films exhibit a 400% increase in capacitance scaled to electrode area as compared to those functionalized with the randomly oriented COF powder. These results demonstrate the promise of redox-active COFs for electrical energy storage and highlight the importance of controlling morphology for optimal performance.

  10. Rapid and Efficient Redox Processes within 2D Covalent Organic Framework Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    DeBlase, Catherine R.; Hernández-Burgos, Kenneth; Silberstein, Katharine E.; Rodríguez-Calero, Gabriel G.; Bisbey, Ryan P.; Abruña, Héctor D.; Dichtel, William R.

    2015-03-24

    Two-dimensional covalent organic frameworks (2D COFs) are ideally suited for organizing redox-active subunits into periodic, permanently porous polymer networks of interest for pseudocapacitive energy storage. Here we describe a method for synthesizing crystalline, oriented thin films of a redox-active 2D COF on Au working electrodes. The thickness of the COF film was controlled by varying the initial monomer concentration. A large percentage (80–99%) of the anthraquinone groups are electrochemically accessible in films thinner than 200 nm, an order of magnitude improvement over the same COF prepared as a randomly oriented microcrystalline powder. As a result, electrodes functionalized with oriented COF films exhibit a 400% increase in capacitance scaled to electrode area as compared to those functionalized with the randomly oriented COF powder. These results demonstrate the promise of redox-active COFs for electrical energy storage and highlight the importance of controlling morphology for optimal performance.

  11. An aqueous all-organic redox-flow battery employing a (2,2,6,6-tetramethylpiperidin-1-yl)oxyl-containing polymer as catholyte and dimethyl viologen dichloride as anolyte

    Science.gov (United States)

    Hagemann, Tino; Winsberg, Jan; Grube, Mandy; Nischang, Ivo; Janoschka, Tobias; Martin, Norbert; Hager, Martin D.; Schubert, Ulrich S.

    2018-02-01

    Herein we present a new redox-flow battery (RFB) that employs a (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) containing copolymer (P1) as catholyte and the viologen derivative N,N‧-dimethyl-4,4‧-bipyridinium dichloride (MV) as anolyte in an aqueous sodium chloride solution. This is the first time that a combination of an organic polymer and a low-molar-mass organic redox-active material is presented. The electrochemical behavior of the utilized charge-storage materials were investigated by cyclic voltammetry (CV) and feature reversible redox-reactions at E½ = 0.7 V (TEMPO/TEMPO+) and E½ = -0.6 V vs. AgCl/Ag (MV++/MV+•), which lead to a promising cell voltage of 1.3 V in the subsequent battery application. Studies were performed to determine the most suitable anion-exchange membrane (AEM), the ideal conducting salt concentration and the optimal flow rate. The resulting battery reveals a stable charge/discharge performance over 100 consecutive cycles with coulombic efficiencies of up to 95%, a high energy efficiency of 85% and an overall energy density of the electrolyte system of 3.8 W h L-1.

  12. A simple method to fabricate electrochemical sensor systems with predictable high-redox amplification

    NARCIS (Netherlands)

    Straver, M.G.; Odijk, Mathieu; Olthuis, Wouter; van den Berg, Albert

    2012-01-01

    In this paper an easy to fabricate SU8/glass-based microfluidic sensor is described with two closely spaced parallel electrodes for highly selective measurements using the redox cycling effect. By varying the length of the microfluidic entrance channel, a diffusion barrier is created for non-cycling

  13. Kinetic studies of electrochemical generation of Ag(II) ion and catalytic oxidation of selected organics

    International Nuclear Information System (INIS)

    Zawodzinski, C.; Smith, W.H.; Martinez, K.R.

    1993-01-01

    The goal of this research is to develop a method to treat mixed hazardous wastes containing selected organic compounds and heavy metals, including actinide elements. One approach is to destroy the organic via electrochemical oxidation to carbon dioxide, then recover the metal contaminants through normally accepted procedures such as ion exchange, precipitation, etc. The authors have chosen to study the electrochemical oxidation of a simple alcohol, iso-propanol. Much of the recent work reported involved the use of an electron transfer mediator, usually the silver(I)/(II) redox couple. This involved direct electrochemical generation of the mediator at the anode of a divided cell followed by homogeneous reaction of the mediator with the organic compound. In this study the authors have sought to compare the mediated reaction with direct electrochemical oxidation of the organic. In addition to silver(I)/(II) they also looked at the cobalt(II)/(III) redox coupled. In the higher oxidation state both of these metal ions readily hydrolyze in aqueous solution to ultimately form insoluble oxide. The study concluded that in a 6M nitric acid solution at room temperature iso-propanol can be oxidized to carbon dioxide and acetic acid. Acetic acid is a stable intermediate and resists further oxidation. The presence of Co(III) enhances the rate or efficiency of the reaction

  14. Electrochemical and genomic analysis of novel electroactive isolates obtained via potentiostatic enrichment from tropical sediment

    Science.gov (United States)

    Doyle, Lucinda E.; Yung, Pui Yi; Mitra, Sumitra D.; Wuertz, Stefan; Williams, Rohan B. H.; Lauro, Federico M.; Marsili, Enrico

    2017-07-01

    Enrichment of electrochemically-active microorganisms (EAM) to date has mostly relied on microbial fuel cells fed with wastewater. This study aims to enrich novel EAM by exposing tropical sediment, not frequently reported in the literature, to sustained anodic potentials. Voltamperometric techniques and electrochemical impedance spectroscopy, performed over a wide range of potentials, characterise extracellular electron transfer (EET) over time. Applied potential is found to affect biofilm electrochemical signature. Geobacter metallireducens is heavily enriched on the electrodes, as determined by metagenomic and metatranscriptomic analysis, in the first report of the species in a lactate-fed system. Two novel isolates are grown in pure culture from the enrichment, identified by 16S rRNA gene sequencing as Aeromonas and Enterobacter, respectively. The names proposed are Aeromonas sp. CL-1 and Enterobacter sp. EA-1. Both isolates are capable of EET on carbon felt and screen-printed carbon electrodes without the addition of exogenous redox mediators. Enterobacter sp. EA-1 can also perform mediated electron transfer using the soluble redox mediator 2-hydroxy-1,4-naphthoquinone (HNQ). Both isolates are able to use acetate and lactate as electron donors. This work outlines a comprehensive methodology for characterising novel EAM from unconventional inocula.

  15. Electrochemical Oxidation of Propene with a LSF15/CGO10 Electrochemical Reactor

    DEFF Research Database (Denmark)

    Ippolito, Davide; Kammer Hansen, Kent

    2014-01-01

    A porous electrochemical reactor, made of La0.85Sr0.15FeO3 (LSF) as electrode and Ce0.9Gd0.1O1.95 (CGO) as electrolyte, was studied for the electrochemical oxidation of propene over a wide range of temperatures. Polarization was found to enhance propene oxidation rate. Ce0.9Gd0.1O1.95 was used...... as infiltration material to enhance the effect of polarization on propene oxidation rate, especially at low temperatures. The influence of infiltrated material, as a function of heat treatment, on the reactor electrochemical behavior has been evaluated by using electrochemical impedance spectroscopy...... in suppressing the competing oxygen evolution reaction and promoting the oxidation of propene under polarization, with faradaic efficiencies above 70% at 250◦C. © 2014 The Electrochemical Society....

  16. Electrocatalytic oxygen reduction and hydrogen evolution reactions on phthalocyanine modified electrodes: Electrochemical, in situ spectroelectrochemical, and in situ electrocolorimetric monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Koca, Atif, E-mail: akoca@eng.marmara.edu.tr [Department of Chemical Engineering, Faculty of Engineering, Marmara University, Goeztepe, 34722 Istanbul (Turkey); Kalkan, Ayfer; Bayir, Zehra Altuntas [Department of Chemistry, Technical University of Istanbul, Maslak, 34469 Istanbul (Turkey)

    2011-06-30

    Highlights: > Electrochemical and in situ spectroelectrochemical characterizations of the metallophthalocyanines were performed. > The presence of O{sub 2} influences both oxygen reduction reaction and the electrochemical behaviors of the complexes. > Homogeneous catalytic ORR process occurs via an 'inner sphere' chemical catalysis process. > CoPc and CuPc coated on a glassy carbon electrode decrease the overpotential of the working electrode for H{sup +} reduction. - Abstract: This study describes electrochemical, in situ spectroelectrochemical, and in situ electrocolorimetric monitoring of the electrocatalytic reduction of molecular oxygen and hydronium ion on the phthalocyanine-modified electrodes. For this purpose, electrochemical and in situ spectroelectrochemical characterizations of the metallophthalocyanines (MPc) bearing tetrakis-[4-((4'-trifluoromethyl)phenoxy)phenoxy] groups were performed. While CoPc gives both metal-based and ring-based redox processes, H{sub 2}Pc, ZnPc and CuPc show only ring-based electron transfer processes. In situ electrocolorimetric method was applied to investigate the color of the electrogenerated anionic and cationic forms of the complexes. The presence of O{sub 2} in the electrolyte system influences both oxygen reduction reaction and the electrochemical and spectral behaviors of the complexes, which indicate electrocatalytic activity of the complexes for the oxygen reduction reaction. Perchloric acid titrations monitored by voltammetry represent possible electrocatalytic activities of the complexes for hydrogen evolution reaction. CoPc and CuPc coated on a glassy carbon electrode decrease the overpotential of the working electrode for H{sup +} reduction. The nature of the metal center changes the electrocatalytic activities for hydrogen evolution reaction in aqueous solution. Although CuPc has an inactive metal center, its electrocatalytic activity is recorded more than CoPc for H{sup +} reduction in aqueous

  17. Applications of Silver Nanowires on Transparent Conducting Film and Electrode of Electrochemical Capacitor

    Directory of Open Access Journals (Sweden)

    Yuan-Jun Song

    2014-01-01

    Full Text Available Silver nanowire has potential applications on transparent conducting film and electrode of electrochemical capacitor due to its excellent conductivity. Transparent conducting film (G-film was prepared by coating silver nanowires on glass substrate using Meyer rod method, which exhibited better performance than carbon nanotube and graphene. The conductivity of G-film can be improved by increasing sintering temperature. Electrode of electrochemical capacitor (I-film was fabricated through the same method with G-film on indium tin oxide (ITO. CV curves of I-film under different scanning rates had obvious redox peaks, which indicated that I-film exhibited excellent electrochemical pseudocapacitance performance and good reversibility during charge/discharge process. In addition, the specific capacitance of I-film was measured by galvanostatic charge/discharge experiments, indicating that I-film exhibits high special capacitance and excellent electrochemical stability.

  18. Hydrogen evolution at the negative electrode of the all-vanadium redox flow batteries

    Science.gov (United States)

    Sun, Che-Nan; Delnick, Frank M.; Baggetto, Loïc; Veith, Gabriel M.; Zawodzinski, Thomas A.

    2014-02-01

    This work demonstrates a quantitative method to determine the hydrogen evolution rate occurring at the negative carbon electrode of the all vanadium redox flow battery (VRFB). Two carbon papers examined by buoyancy measurements yield distinct hydrogen formation rates (0.170 and 0.005 μmol min-1 g-1). The carbon papers have been characterized using electron microscopy, nitrogen gas adsorption, capacitance measurement by electrochemical impedance spectroscopy (EIS), and X-ray photoelectron spectroscopy (XPS). We find that the specific electrochemical surface area (ECSA) of the carbon material has a strong influence on the hydrogen generation rate. This is discussed in light of the use of high surface area material to obtain high reaction rates in the VRFB.

  19. Effect of Iron Redox Equilibrium on the Foaming Behavior of MgO-Saturated Slags

    Science.gov (United States)

    Park, Youngjoo; Min, Dong Joon

    2018-04-01

    In this study, the foaming index of CaO-SiO2-FetO and CaO-SiO2-FetO-Al2O3 slags saturated with MgO was measured to understand the relationship between their foaming behavior and physical properties. The foaming index of MgO-saturated slags increases with the FetO content due to the redox equilibrium of FetO. Experimental results indicated that MgO-saturated slag has relatively high ferric ion concentration, and the foaming index increases due to the effect of ferric ion. Therefore, the foaming behavior of MgO-saturated slag is more reasonably explained by considering the effect of ferric ion on the estimation of slag properties such as viscosity, surface tension, and density. Specifically, the estimation of slag viscosity was additionally verified by NBO/T, and this is experimentally obtained through Raman spectroscopy.

  20. Long-range protein electron transfer observed at the single-molecule level: In situ mapping of redox-gated tunneling resonance

    DEFF Research Database (Denmark)

    Chi, Qijin; Farver, O; Ulstrup, Jens

    2005-01-01

    on the redox potential. Maximum resonance appears around the equilibrium redox potential of azurin with an on/off current ratio of approximate to 9. Simulation analyses, based on a two-step interfacial ET model for the scanning tunneling microscopy redox process, were performed and provide quantitative......A biomimetic long-range electron transfer (ET) system consisting of the blue copper protein azurin, a tunneling barrier bridge, and a gold single-crystal electrode was designed on the basis of molecular wiring self-assembly principles. This system is sufficiently stable and sensitive in a quasi...... constants display tunneling features with distance-decay factors of 0.83 and 0.91 angstrom(-1) in H2O and D2O, respectively. Redox-gated tunneling resonance is observed in situ at the single-molecule level by using electrochemical scanning tunneling microscopy, exhibiting an asymmetric dependence...

  1. Differences in the electrochemical behavior of ruthenium and iridium oxide in electrocatalytic coatings of activated titanium anodes prepared by the sol–gel procedure

    Directory of Open Access Journals (Sweden)

    VLADIMIR V. PANIĆ

    2010-10-01

    Full Text Available The electrochemical characteristics of Ti0.6Ir0.4O2/Ti and Ti0.6Ru0.4O2/Ti anodes prepared by the sol–gel procedure from the corresponding oxide sols, obtained by force hydrolysis of the corresponding metal chlorides, were compared. The voltammetric properties in H2SO4 solution indicate that Ti0.6Ir0.4O2/Ti has more pronounced pseudocapacitive characteristics, caused by proton-assisted, solid state surface redox transitions of the oxide. At potentials negative to 0.0 VSCE, this electrode is of poor conductivity and activity, while the voltammetric behavior of the Ti0.6Ru0.4O2/Ti electrode is governed by proton injection/ejection into the oxide structure. The Ti0.6Ir0.4O2/Ti electrode had a higher electrocatalytical activity for oxygen evolution, while the investigated anodes were of similar activity for chlorine evolution. The potential dependence of the impedance characteristics showed that the Ti0.6Ru0.4O2/Ti electrode behaved like a capacitor over a wider potential range than the Ti0.6Ir0.4O2/Ti electrode, with fully-developed pseudocapacitive properties at potentials positive to 0.60 VSCE. However, the impedance characteristics of the Ti0.6Ir0.4O2/Ti electrode changed with increasing potential from resistor-like to capacitor-like behavior.

  2. Effect of porosity variation on the electrochemical behavior of vertically aligned multi-walled carbon nanotubes.

    Science.gov (United States)

    Raut, Akshay S; Parker, Charles B; Stoner, Brian R; Glass, Jeffrey T

    2012-06-01

    Electrochemical charge storage characteristics of vertically aligned multi-walled carbon nanotubes (MWCNTs) as a function of varying diameter and spacing are reported. It was observed that the specific capacitance of the MWCNTs increased as both diameter and inter-tube spacing decreased. The MWCNT films with 229 nm inter-MWCNT spacing exhibited specific capacitance of 228 F/g versus 70 F/g for 506 nm spacing, when tested in a non-aqueous electrolyte. Further, a trend in specific capacitance versus pore size is proposed. Coupled with previously reported trends observed in the sub-10 nm pore size regime, this is expected to offer better understanding of electrochemical behavior of porous carbon materials over a wide range of pore sizes.

  3. Fundamental studies of uranium and neptunium redox flow batteries (II)

    International Nuclear Information System (INIS)

    Shiokawa, Y.; Yamamura, T.; Watanabe, N.

    2002-01-01

    The atomic power generation entails production of so-called minor actinides and accumulation of depleted uranium. The theoretical and experimental investigations are underway to transmute minor actinides for minimizing the long-term radiotoxicity and reducing the radioactive waste. The utilization, however, would be alternative means. The actinide redox couples, An(VI)/An(V) and An(IV)/An(III), have excellent properties as battery active materials. Here j the uranium and neptunium redox flow batteries for the electric power storage are discussed from the electrochemical properties of U, Np, Pu and Am [1,2]. One of the required properties for the batteries for electric power storage is high energy efficiency, which is defined by the ratio of the discharge energy to the charge energy. These energies are dependent on the rapidness of kinetics in the electrode reactions, namely the standard rate constants and also the internal resistance of the battery

  4. Electrodeposited nickel oxide and graphene modified carbon ionic liquid electrode for electrochemical myglobin biosensor

    International Nuclear Information System (INIS)

    Sun, Wei; Gong, Shixing; Deng, Ying; Li, Tongtong; Cheng, Yong; Wang, Wencheng; Wang, Lei

    2014-01-01

    By using ionic liquid 1-hexylpyridinium hexafluorophosphate based carbon ionic liquid electrode (CILE) as the substrate electrode, graphene (GR) and nickel oxide (NiO) were in situ electrodeposited step by step to get a NiO/GR nanocomposite modified CILE. Myoglobin (Mb) was further immobilized on the surface of NiO/GR/CILE with a Nafion film to get the electrochemical sensor denoted as Nafion/Mb/NiO/GR/CILE. Cyclic voltammetric experiments indicated that a pair of well-defined quasi-reversible redox peaks appeared in pH 3.0 phosphate buffer solution with the formal peak potential (E 0′ ) located at − 0.188 V (vs. SCE), which was the typical characteristics of Mb Fe(III)/Fe(II) redox couples. So the direct electron transfer of Mb was realized and promoted due to the presence of the NiO/GR nanocomposite on the electrode. Based on the cyclic voltammetric data, the electrochemical parameters of Mb on the modified electrode were calculated. The Mb modified electrode showed an excellent electrocatalytic activity towards the reduction of different substrates including trichloroacetic acid and H 2 O 2 . Therefore a third-generation electrochemical Mb biosensor based on NiO/GR/CILE was constructed with good stability and reproducibility. - Highlights: • Graphene and nickel oxide nanocomposites were prepared by electrodeposition. • Electrochemical myoglobin sensor was prepared on a nanocomposite modified electrode. • Direct electrochemistry and electrocatalysis of myglobin were realized

  5. High surface area bio-waste based carbon as a superior electrode for vanadium redox flow battery

    Science.gov (United States)

    Maharjan, Makhan; Bhattarai, Arjun; Ulaganathan, Mani; Wai, Nyunt; Oo, Moe Ohnmar; Wang, Jing-Yuan; Lim, Tuti Mariana

    2017-09-01

    Activated carbon (AC) with high surface area (1901 m2 g-1) is synthesized from low cost bio-waste orange (Citrus sinensis) peel for vanadium redox flow battery (VRB). The composition, structure and electrochemical properties of orange peel derived AC (OP-AC) are characterized by elemental analyzer, field emission-scanning electron microscopy, X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, cyclic voltammetry (CV), and electrochemical impedance spectroscopy. CV results show that OP-AC coated bipolar plate demonstrates improved electro-catalytic activity in both positive and negative side redox couples than the pristine bipolar plate electrode and this is ascribed to the high surface area of OP-AC which provides effective electrode area and better contact between the porous electrode and bipolar plate. Consequently, the performance of VRB in a static cell shows higher energy efficiency for OP-AC electrode than the pristine electrode at all current densities tested. The results suggest the OP-AC to be a promising electrode for VRB applications and can be incorporated into making conducting plastics electrode to lower the VRB cell stack weight and cost.

  6. Development of a Telemetric, Miniaturized Electrochemical Amperometric Analyzer

    OpenAIRE

    Jaehyo Jung; Jihoon Lee; Siho Shin; Youn Tae Kim

    2017-01-01

    In this research, we developed a portable, three-electrode electrochemical amperometric analyzer that can transmit data to a PC or a tablet via Bluetooth communication. We performed experiments using an indium tin oxide (ITO) glass electrode to confirm the performance and reliability of the analyzer. The proposed analyzer uses a current-to-voltage (I/V) converter to convert the current generated by the reduction-oxidation (redox) reaction of the buffer solution to a voltage signal. This signa...

  7. The different behaviors of three oxidative mediators in probing the redox activities of the yeast Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Jinsheng [Department of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059 (China); Wang Min [School of Medicine, Ehime University, Toon 791-0295 (Japan); Yang Zhenyu [Department of Chemistry, Nanchang University, Jiangxi 330047 (China); Wang Zhong [School of Medicine, Ehime University, Toon 791-0295 (Japan); Wang Huaisheng [Department of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059 (China); Yang Zhengyu [Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100101 (China)

    2007-07-30

    The different behaviors of three lipophilic mediators including 2-methyl-1,4-naphthalenedione(menadione), 2,6-dichlorophenolindophenol (DCPIP) and N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) in probing the redox activity of the yeast Saccharomyces cerevisiae were studied by several comparative factor-influencing experiments. Hydrophilic ferricyanide was employed as an extracellular electron acceptor, and constituted dual mediator system with each of three lipophilic mediators. Limiting-current microelectrode voltammetry was used to measure the quantity of ferrocyanide accumulations, giving a direct measure of the redox activity. It was found that under anaerobic condition, menadione interacts with anaerobic respiration pathway, whereas DCPIP and TMPD interact with fermentation pathway in the yeast. Based on the understanding of the interaction between the yeast and each of three mediators, three mediators were respectively employed in evaluating the toxicity of acetic acid on S. cerevisiae and, the results for the first showed that the mediators are complementary to each other when used as electron carriers in biotoxicity assay.

  8. The different behaviors of three oxidative mediators in probing the redox activities of the yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Zhao Jinsheng; Wang Min; Yang Zhenyu; Wang Zhong; Wang Huaisheng; Yang Zhengyu

    2007-01-01

    The different behaviors of three lipophilic mediators including 2-methyl-1,4-naphthalenedione(menadione), 2,6-dichlorophenolindophenol (DCPIP) and N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) in probing the redox activity of the yeast Saccharomyces cerevisiae were studied by several comparative factor-influencing experiments. Hydrophilic ferricyanide was employed as an extracellular electron acceptor, and constituted dual mediator system with each of three lipophilic mediators. Limiting-current microelectrode voltammetry was used to measure the quantity of ferrocyanide accumulations, giving a direct measure of the redox activity. It was found that under anaerobic condition, menadione interacts with anaerobic respiration pathway, whereas DCPIP and TMPD interact with fermentation pathway in the yeast. Based on the understanding of the interaction between the yeast and each of three mediators, three mediators were respectively employed in evaluating the toxicity of acetic acid on S. cerevisiae and, the results for the first showed that the mediators are complementary to each other when used as electron carriers in biotoxicity assay

  9. Neptunium carbonato complexes in aqueous solution: an electrochemical, spectroscopic, and quantum chemical study.

    Science.gov (United States)

    Ikeda-Ohno, Atsushi; Tsushima, Satoru; Takao, Koichiro; Rossberg, André; Funke, Harald; Scheinost, Andreas C; Bernhard, Gert; Yaita, Tsuyoshi; Hennig, Christoph

    2009-12-21

    The electrochemical behavior and complex structure of Np carbonato complexes, which are of major concern for the geological disposal of radioactive wastes, have been investigated in aqueous Na(2)CO(3) and Na(2)CO(3)/NaOH solutions at different oxidation states by using cyclic voltammetry, X-ray absorption spectroscopy, and density functional theory calculations. The end-member complexes of penta- and hexavalent Np in 1.5 M Na(2)CO(3) with pH = 11.7 have been determined as a transdioxo neptunyl tricarbonato complex, [NpO(2)(CO(3))(3)](n-) (n = 5 for Np(V), and 4 for Np(VI)). Hence, the electrochemical reaction of the Np(V/VI) redox couple merely results in the shortening/lengthening of bond distances mainly because of the change of the cationic charge of Np, without any structural rearrangement. This explains the observed reversible-like feature on their cyclic voltammograms. In contrast, the electrochemical oxidation of Np(V) in a highly basic carbonate solution of 2.0 M Na(2)CO(3)/1.0 M NaOH (pH > 13) yielded a stable heptavalent Np complex of [Np(VII)O(4)(OH)(2)](3-), indicating that the oxidation reaction from Np(V) to Np(VII) in the carbonate solution involves a drastic structural rearrangement from the transdioxo configuration to a square-planar-tetraoxo configuration, as well as exchanging the coordinating anions from carbonate ions (CO(3)(2-)) to hydroxide ions (OH(-)).

  10. Theoretical treatment of high-frequency, large-amplitude ac voltammetry applied to ideal surface-confined redox systems

    International Nuclear Information System (INIS)

    Bell, Christopher G.; Anastassiou, Costas A.; O’Hare, Danny; Parker, Kim H.; Siggers, Jennifer H.

    2012-01-01

    Highlights: ► Theory of ac voltammetry on ideal surface-confined redox systems. ► Analytical description of the harmonics and transient of the current response. ► Solution valid for high frequency, large-amplitude sinusoidal input voltage. ► Protocol for determining system parameters from experimental current responses. - Abstract: Large-amplitude ac voltammetry, where the applied voltage is a large-amplitude sinusoidal waveform superimposed onto a dc ramp, is a powerful method for investigating the reaction kinetics of surface-confined redox species. Here we consider the large-amplitude ac voltammetric current response of a quasi-reversible, ideal, surface-confined redox system, for which the redox reaction is described by Butler–Volmer theory. We derive an approximate analytical solution, which is valid whenever the angular frequency of the sine-wave is much larger than the rate of the dc ramp and the standard kinetic rate constant of the redox reaction. We demonstrate how the third harmonic and the initial transient of the current response can be used to estimate parameters of the electrochemical system, namely the kinetic rate constant, the electron transfer coefficient, the adsorption formal potential, the initial proportion of oxidised molecules and the linear double-layer capacitance.

  11. Probing the redox metabolism in the strictly anaerobic, extremely thermophilic, hydrogen-producing Caldicellulosiruptor saccharolyticus using amperometry

    DEFF Research Database (Denmark)

    Kostesha, Natalie; Willquist, Karin; Emnéus, Jenny

    2011-01-01

    Changes in the redox metabolism in the anaerobic, extremely thermophilic, hydrogen-forming bacterium Caldicellulosiruptor saccharolyticus were probed for the first time in vivo using mediated amperometry with ferricyanide as a thermotolerant external mediator. Clear differences in the intracellul...... in the intracellular electron flow and to probe redox enzyme properties of a strictly anaerobic thermophile in vivo.......Changes in the redox metabolism in the anaerobic, extremely thermophilic, hydrogen-forming bacterium Caldicellulosiruptor saccharolyticus were probed for the first time in vivo using mediated amperometry with ferricyanide as a thermotolerant external mediator. Clear differences in the intracellular...... the NADH-dependent lactate dehydrogenase, upon which more NADH was directed to membrane-associated enzymes for ferricyanide reduction, leading to a higher electrochemical signal. The method is noninvasive and the results presented here demonstrate that this method can be used to accurately detect changes...

  12. Synthesis, spectroscopic and electrochemical performance of pasted β-nickel hydroxide electrode in alkaline electrolyte

    Science.gov (United States)

    Shruthi, B.; Bheema Raju, V.; Madhu, B. J.

    2015-01-01

    β-Nickel hydroxide (β-Ni(OH)2) was successfully synthesized using precipitation method. The structure and property of the β-Ni(OH)2 were characterized by X-ray diffraction (XRD), Fourier Transform infra-red (FT-IR), Raman spectra and thermal gravimetric-differential thermal analysis (TG-DTA). The results of the FTIR spectroscopy and TG-DTA studies indicate that the β-Ni(OH)2 contains water molecules and anions. The microstructural and composition studies have been performed using Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray (EDX) analysis. A pasted-type electrode is prepared using β-Ni(OH)2 powder as the active material on a nickel sheet as a current collector. Cyclic voltammetry (CV) and Electrochemical impedance spectroscopy (EIS) studies were performed to evaluate the electrochemical performance of the β-Ni(OH)2 electrode in 6 M KOH electrolyte. CV curves showed a pair of strong redox peaks as a result of the Faradaic redox reactions of β-Ni(OH)2. The proton diffusion coefficient (D) for the present β-Ni(OH)2 electrode material is found to be 1.44 × 10-12 cm2 s-1. Further, electrochemical impedance studies confirmed that the β-Ni(OH)2 electrode reaction processes are diffusion controlled.

  13. Electrochemical characterization of doped diamond-coated carbon fibers at different boron concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, E.C. [INPE, CP 515, Sao Jose dos Campos, SP 12201-970 (Brazil)]. E-mail: erica@las.inpe.br; Diniz, A.V. [INPE, CP 515, Sao Jose dos Campos, SP 12201-970 (Brazil); Trava-Airoldi, V.J. [INPE, CP 515, Sao Jose dos Campos, SP 12201-970 (Brazil); Ferreira, N.G. [CTA-Divisao de Materiais, Sao Jose dos Campos, SP 12228-904 (Brazil)

    2005-08-01

    Doped diamond films have been deposited on carbon fibers (felt) obtained from polyacrylonitrile at different levels of boron doping. For a successful coating of the fibers, an ultrasonic pretreatment in a bath of diamond powder dissolved in hexane was required. Films were grown on both sample sides, simultaneously, by hot filament-assisted chemical vapour deposition technique at 750 deg. C from a 0.5% H{sub 2}/CH{sub 4} mixture at a total pressure of 6.5 x 10{sup 3} Pa. Boron was obtained from H{sub 2} forced to pass through a bubbler containing B{sub 2}O{sub 3} dissolved in methanol. The doping level studied corresponds to films with acceptor concentrations in the range of 6.5 x 10{sup 18} to 1.5 x 10{sup 21} cm{sup -} {sup 3}, obtained from Mott-Schottky plots. Scanning electron microscopy analyses evidenced fibers totally covered with high quality polycrystalline boron-doped diamond film, also confirmed by Raman spectroscopy spectra. Diamond electrodes grown on carbon fibers demonstrated similar electrochemical behavior obtained from films on Si substrate, for ferri/ferrocyanide redox couple as a function of boron content. The boron content influences electrochemical surface area. A lower boron concentration provides a higher growth rate that results in a higher surface area.

  14. Graphite felt modified with bismuth nanoparticles as negative electrode in a vanadium redox flow battery.

    Science.gov (United States)

    Suárez, David J; González, Zoraida; Blanco, Clara; Granda, Marcos; Menéndez, Rosa; Santamaría, Ricardo

    2014-03-01

    A graphite felt decorated with bismuth nanoparticles was studied as negative electrode in a vanadium redox flow battery (VRFB). The results confirm the excellent electrochemical performance of the bismuth modified electrode in terms of the reversibility of the V(3+) /V(2+) redox reactions and its long-term cycling performance. Moreover a mechanism that explains the role that Bi nanoparticles play in the redox reactions in this negative half-cell is proposed. Bi nanoparticles favor the formation of BiHx , an intermediate that reduces V(3+) to V(2+) and, therefore, inhibits the competitive irreversible reaction of hydrogen formation (responsible for the commonly observed loss of Coulombic efficiency of VRFBs). Thus, the total charge consumed during the cathodic sweep in this electrode is used to reduce V(3+) to V(2+) , resulting in a highly reversible and efficient process. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Argon plasma treatment to enhance the electrochemical reactivity of screen-printed carbon surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ghamouss, F.; Luais, E. [Universite de Nantes, Faculte des Sciences et des Techniques, Chimie et Interdisciplinarite: Synthese, Analyse, Modelisation (CEISAM), UMR CNRS no 6230, 2, rue de la Houssiniere, BP 92208, 44322 NANTES Cedex 3 (France); Universite de Nantes, Institut des Materiaux Jean Rouxel IMN - CNRS, 2 rue de la Houssiniere, BP 32229, 44322 Nantes Cedex 3 (France); Thobie-Gautier, C. [Universite de Nantes, Faculte des Sciences et des Techniques, Chimie et Interdisciplinarite: Synthese, Analyse, Modelisation (CEISAM), UMR CNRS no 6230, 2, rue de la Houssiniere, BP 92208, 44322 NANTES Cedex 3 (France); Tessier, P.-Y. [Universite de Nantes, Faculte des Sciences et des Techniques, Chimie et Interdisciplinarite: Synthese, Analyse, Modelisation (CEISAM), UMR CNRS no 6230, 2, rue de la Houssiniere, BP 92208, 44322 NANTES Cedex 3 (France); Universite de Nantes, Institut des Materiaux Jean Rouxel IMN - CNRS, 2 rue de la Houssiniere, BP 32229, 44322 Nantes Cedex 3 (France); Boujtita, M. [Universite de Nantes, Faculte des Sciences et des Techniques, Chimie et Interdisciplinarite: Synthese, Analyse, Modelisation (CEISAM), UMR CNRS no 6230, 2, rue de la Houssiniere, BP 92208, 44322 NANTES Cedex 3 (France)], E-mail: mohammed.boujtita@univ-nantes.fr

    2009-04-15

    Radiofrequency argon plasma was used for screen-printed carbon electrodes (SPCE) surface treatment. The cyclic voltammetry of ferri/ferrocyanide as redox couple showed a remarkable improvement of the electrochemical reactivity of the SPCE after the plasma treatment. The effect of the plasma growth conditions on the efficiency of the treatment procedure was evaluated in term of electrochemical reactivity of the SPCE surface. The electrochemical study showed that the electrochemical reactivity of the treated electrodes was strongly dependant on radiofrequency power, treatment time and argon gas pressure. X-ray photoelectron spectroscopy (XPS) analysis showed a considerable evolution on the surface chemistry of the treated electrodes. Our results clearly showed that the argon plasma treatment induces a significant increase in the C{sub sp2}/C{sub sp3} ratio. The scanning electron micrograph (SEM) also showed a drastic change on the surface morphology of the treated SPCEs.

  16. Redox-responsive theranostic nanoplatforms based on inorganic nanomaterials.

    Science.gov (United States)

    Han, Lu; Zhang, Xiao-Yong; Wang, Yu-Long; Li, Xi; Yang, Xiao-Hong; Huang, Min; Hu, Kun; Li, Lu-Hai; Wei, Yen

    2017-08-10

    Spurred on by advances in materials chemistry and nanotechnology, scientists have developed many novel nanopreparations for cancer diagnosis and therapy. To treat complex malignant tumors effectively, multifunctional nanomedicines with targeting ability, imaging properties and controlled drug release behavior should be designed and exploited. The therapeutic efficiency of loaded drugs can be dramatically improved using redox-responsive nanoplatforms which can sense the differences in the redox status of tumor tissues and healthy ones. Redox-sensitive nanocarriers can be constructed from both organic and inorganic nanomaterials; however, at present, drug delivery nanovectors progressively lean towards inorganic nanomaterials because of their facile synthesis/modification and their unique physicochemical properties. In this review, we focus specifically on the preparation and application of redox-sensitive nanosystems based on mesoporous silica nanoparticles (MSNs), carbon nanomaterials, magnetic nanoparticles, gold nanomaterials and other inorganic nanomaterials. We discuss relevant examples of redox-sensitive nanosystems in each category. Finally, we discuss current challenges and future strategies from the aspect of material design and practical application. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. The Redox Code.

    Science.gov (United States)

    Jones, Dean P; Sies, Helmut

    2015-09-20

    The redox code is a set of principles that defines the positioning of the nicotinamide adenine dinucleotide (NAD, NADP) and thiol/disulfide and other redox systems as well as the thiol redox proteome in space and time in biological systems. The code is richly elaborated in an oxygen-dependent life, where activation/deactivation cycles involving O₂ and H₂O₂ contribute to spatiotemporal organization for differentiation, development, and adaptation to the environment. Disruption of this organizational structure during oxidative stress represents a fundamental mechanism in system failure and disease. Methodology in assessing components of the redox code under physiological conditions has progressed, permitting insight into spatiotemporal organization and allowing for identification of redox partners in redox proteomics and redox metabolomics. Complexity of redox networks and redox regulation is being revealed step by step, yet much still needs to be learned. Detailed knowledge of the molecular patterns generated from the principles of the redox code under defined physiological or pathological conditions in cells and organs will contribute to understanding the redox component in health and disease. Ultimately, there will be a scientific basis to a modern redox medicine.

  18. Electrochemical behavior of ruthenium-hexacyanoferrate modified glassy carbon electrode and catalytic activity towards ethanol electro oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Wendell M.; Marques, Aldalea L.B., E-mail: aldalea.ufma@hotmail.com [Universidade Federal do Maranhao (UFMA), Sao Luis, MA (Brazil). Departamento de Quimica Tecnologica; Cardoso, William S.; Marques, Edmar P.; Bezerra, Cicero W.B. [Universidade Federal do Maranhao (UFMA), Sao Luis, MA (Brazil). Departamento de Qumica; Ferreira, Antonio Ap. P. [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Araraquara, SP (Brazil). Instituto de Quimica; Song, Chaojie; Zhang, Jiujun [Energy, Mining and Environment Portfolio, National Research Council of Canada, Vancouver, BC (Canada)

    2013-04-15

    Ruthenium-based hexacyanoferrate (RuHCF) thin film modified glassy carbon electrode was prepared by drop evaporation method. The RuHCF modified electrode exhibited four redox couples in strong acidic solution (pH 1.5) attributed to Fe(CN){sub 6}{sup 3-} ion and three ruthenium forms (Ru(II), Ru(III) and Ru(IV)), characteristic of ruthenium oxide compounds. The modified electrode displayed excellent electrocatalytic activity towards ethanol oxidation in the potential region where electrochemical processes Ru(III)-O-Ru(IV) and Ru(IV)-O-Ru(VI) occur. Impedance spectroscopy data indicated that the charge transfer resistance decreased with the increase of the applied potential and ethanol concentration, indicating the use of the RuHCF modified electrode as an ethanol sensor. Under optimized conditions, the sensor responded linearly and rapidly to ethanol concentration between 0.03 and 0.4 mol L{sup -1} with a limit of detection of 0.76 mmol L{sup -1}, suggesting an adequate sensitivity in ethanol analyses. (author)

  19. Synthesis of feather-like CeO2 microstructures and enzymatic electrochemical catalysis for trichloroacetic acid

    Science.gov (United States)

    Xiao, Xin; Zhang, Dong En; Zhang, Fan; Gong, Jun Yan; Zhang, Xiao Bo; Wang, Yi Hui; Ma, Juan Juan; Tong, Zhi Wei

    Novel feather-like CeO2 microstructures were achieved by a thermal decomposition approach of Ce(OH)CO3 precursor. The Ce(OH)CO3 was obtained from a solvothermal method employing Ce(NO3)3.6H2O with C6H12N4 and C16H33(CH3)3NBr (CTAB) at 190∘C in a water-PEG-200 mixed solution. The feather-like CeO2 dendrite was obtained by thermal conversion of the feather-like Ce(OH)CO3 at 650∘C in air. A reasonable growth mechanism was proposed with the soft-template effect of PEG-200. The electrochemical behavior and enzyme activity of myoglobin (Mb) immobilized on CeO2-Nafion modified glassy carbon electrode (GCE) are demonstrated by cyclic voltammetric measurements. The results indicate that CeO2 can obviously promote the direct electron transfer between the Mb redox centers and the electrode. The Mb on CeO2-Nafion behaves as an elegant performance on the electrochemical reduction of trichloroacetic acid (TCA) from 0.32μM to 2.28μM. The detection limit is estimated to be 0.08μM.

  20. Direct electron transfer: an approach for electrochemical biosensors with higher selectivity and sensitivity

    Directory of Open Access Journals (Sweden)

    Freire Renato S.

    2003-01-01

    Full Text Available The most promising approach for the development of electrochemical biosensors is to establish a direct electrical communication between the biomolecules and the electrode surface. This review focuses on advances, directions and strategies in the development of third generation electrochemical biosensors. Subjects covered include a brief description of the fundamentals of the electron transfer phenomenon and amperometric biosensor development (different types and new oriented enzyme immobilization techniques. Special attention is given to different redox enzymes and proteins capable of electrocatalyzing reactions via direct electron transfer. The analytical applications and future trends for third generation biosensors are also presented and discussed.

  1. Impedance aspect of charge storage at graphite and glassy carbon electrodes in potassium hexacyanoferrate (II redox active electrolyte

    Directory of Open Access Journals (Sweden)

    Katja Magdić

    2016-04-01

    Full Text Available Different types of charge storage mechanisms at unmodified graphite vs. glassy carbon electrodes in acid sulphate supporting solution containing potassium hexacyanoferrate (II redox active electrolyte, have been revealed by electrochemical impedance spectroscopy and supported by cyclic voltammetry experiments. Reversible charge transfer of Fe(CN63-/4- redox reaction detected by assessment of CVs of glassy carbon electrode, is in impedance spectra indicated by presence of bulk diffusion impedance and constant double-layer/pseudocapacitive electrode impedance compared to that measured in the pure supporting electrolyte. Some surface retention of redox species detected by assessment of CVs of graphite electrode is in impedance spectra indicated by diffusion impedance coupled in this case by diminishing of double-layer/pseudo­capacitive impedance compared to that measured in the pure supporting electrolyte. This phenomenon is ascribed to contribution of additional pseudocapacitive impedance generated by redox reaction of species confined at the electrode surface.

  2. Redox-active antibiotics control gene expression and community behavior in divergent bacteria.

    Science.gov (United States)

    Dietrich, Lars E P; Teal, Tracy K; Price-Whelan, Alexa; Newman, Dianne K

    2008-08-29

    It is thought that bacteria excrete redox-active pigments as antibiotics to inhibit competitors. In Pseudomonas aeruginosa, the endogenous antibiotic pyocyanin activates SoxR, a transcription factor conserved in Proteo- and Actinobacteria. In Escherichia coli, SoxR regulates the superoxide stress response. Bioinformatic analysis coupled with gene expression studies in P. aeruginosa and Streptomyces coelicolor revealed that the majority of SoxR regulons in bacteria lack the genes required for stress responses, despite the fact that many of these organisms still produce redox-active small molecules, which indicates that redox-active pigments play a role independent of oxidative stress. These compounds had profound effects on the structural organization of colony biofilms in both P. aeruginosa and S. coelicolor, which shows that "secondary metabolites" play important conserved roles in gene expression and development.

  3. Electrochemical performances and capacity fading behaviors of activated carbon/hard carbon lithium ion capacitor

    International Nuclear Information System (INIS)

    Sun, Xianzhong; Zhang, Xiong; Liu, Wenjie; Wang, Kai; Li, Chen; Li, Zhao; Ma, Yanwei

    2017-01-01

    Highlights: • Three-electrode pouch cell is used to investigate the capacity fading of AC/HC LIC. • the electrode potential swing is critical for the cycleability of a LIC cell. • Different capacity fading behaviors are discussed. • A large-capacity LIC pouch cell has been assembled with a specific energy of 18.1 Wh kg −1 based on the total weight. - Abstract: Lithium ion capacitor (LIC) is one of the most promising electrochemical energy storage devices, which offers rapid charging-discharging capability and long cycle life. We have fabricated LIC pouch cells using an electrochemically-driven lithium pre-doping method through a three-electrode pouch cell structure. The active materials of cathode and anode of LIC cell are activated carbon and pre-lithiated hard carbon, respectively. The electrochemical performances and the capacity fading behaviors of LICs in the voltage range of 2.0 − 4.0 V have been studied. The specific energy and specific power reach 73.6 Wh kg −1 and 11.9 kW kg −1 based on the weight of the active materials in both cathode and anode, respectively. Since the cycling performance is actually determined by hard carbon anode, the anode potential swings are emphasized. The capacity fading of LIC upon cycling is proposed to be caused by the increases of internal resistance and the consumption of lithium stored in anode. Finally, a large-capacity LIC pouch cell has been assembled with a maximum specific energy of 18.1 Wh kg −1 and a maximum specific power of 3.7 kW kg −1 based on the weight of the whole cell.

  4. The electrochemical behavior of some podands at a benzo[c]cinnoline modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Isbir, Aybueke A.; Solak, Ali Osman; Uestuendag, Zafer; Bilge, Selen; Natsagdorj, Amgalan; Kilic, Emine; Kilic, Zeynel

    2005-01-01

    This paper describes the grafting of benzo[c]cinnoline (BCC) molecules on glassy carbon (GC) electrode surface. The attachment of BCC molecules to carbon substrate is induced by the electrochemical reduction of the corresponding diazonium salt. The modification of GC with BCC diazonium salt was done in aprotic solution and proved by blocking of dopamine electron transfer. The presence of BCC at the GC surface was characterized by cyclic voltammetry and X-ray photoelectron spectroscopy (XPS). On modified surface, the electrochemical behavior of two different types of podands and the catalytic effects of the GC-BCC surface were studied. The XPS was used to monitor element characteristics of the adsorbates on the GC surface and confirm the attachment of BCC molecules to the GC surface

  5. Electrochemical modification of a pyrolytic graphite sheet for improved negative electrode performance in the vanadium redox flow battery

    Science.gov (United States)

    Kabir, Humayun; Gyan, Isaiah O.; Francis Cheng, I.

    2017-02-01

    The vanadium redox flow battery is a promising technology for buffering renewable energies. It is recognized that negative electrode is the limitation in this device where there are problems of slow heterogeneous electron transfer (HET) of V3+/2+ and parasitic H2 evolution. Any methods aimed at addressing one of these barriers must assess the effects on the other. We examine electrochemical enhancement of a common commercially available material. Treatment of Panasonic pyrolytic graphite sheets is through oxidation at 2.1 V vs. Ag/AgCl for 1 min in 1 M H2SO4. This increases the standard HET rate for V3+/2+ from 3.2 × 10-7 to 1 × 10-3 cm/s, one of the highest in literature and shifts voltammetric reductive peak potential from -1.0 V to -0.65 V in 50 mM V3+ in 1 M H2SO4. Infrared analysis of the surfaces indicates formation of Csbnd OH, Cdbnd O, and Csbnd O functionalities. These groups catalyze HET with V3+/2+ as hypothesized by Skyllas-Kasacos. Also of significance is that electrode modification decreases the fraction of the current directed towards H2 evolution. This proportion decreases by two orders of a magnitude from 12% to 0.1% as measured at the respective voltammetric peak potentials of -1.0 V (pristine) and -0.65 V (modified).

  6. Effects of water plasma immersion ion implantation on surface electrochemical behavior of NiTi shape memory alloys in simulated body fluids

    International Nuclear Information System (INIS)

    Liu, X.M.; Wu, S.L.; Chu, Paul K.; Chung, C.Y.; Chu, C.L.; Yeung, K.W.K.; Lu, W.W.; Cheung, K.M.C.; Luk, K.D.K.

    2007-01-01

    Water plasma immersion ion implantation (PIII) was conducted on orthopedic NiTi shape memory alloy to enhance the surface electrochemical characteristics. The surface composition of the NiTi alloy before and after H 2 O-PIII was determined by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) was utilized to determine the roughness and morphology of the NiTi samples. Potentiodynamic polarization tests and electrochemical impedance spectroscopy (EIS) were carried out to investigate the surface electrochemical behavior of the control and H 2 O-PIII NiTi samples in simulated body fluids (SBF) at 37 deg. C as well as the mechanism. The H 2 O-PIII NiTi sample showed a higher breakdown potential (E b ) than the control sample. Based on the AFM results, two different physical models with related equivalent electrical circuits were obtained to fit the EIS data and explain the surface electrochemical behavior of NiTi in SBF. The simulation results demonstrate that the higher resistance of the oxide layer produced by H 2 O-PIII is primarily responsible for the improvement in the surface corrosion resistance

  7. Control by substrate of the cytochrome p450-dependent redox machinery: mechanistic insights.

    Science.gov (United States)

    Hlavica, Peter

    2007-08-01

    Based on initial studies with bacterial CYP101A1, a popular concept emerged predicting that substrate-induced low-to-high spin conversion of P450s is universally associated with shifts of the midpoint potential to a more positive value to maximize rates of electron transfer and metabolic turnover. However, evaluation of the plethora of observations with pro- and eukaryotic hemoproteins suggests a caveat as to generalization of this principle. Thus, some P450s are inherently high-spin, so that there is no need for a supportive substrate-triggered impulse to electron flow. With other enzymes, high-spin content is not consonant with reductive activity, and spin transition as such is not essential to sustaining substrate oxidation. Also, with certain proteins the low-spin conformer is reduced as swift as the high-spin entity. Moreover, there is not regularly a linear relationship between high-spin level and anodic shift of the reduction potential. Similarly, in given cases turnover may proceed despite insignificant or even lacking substrate-provoked alterations in the redox behaviour. Thus, folding of the disparate and sometimes conflicting data into a harmonized overall picture is a lingering problem. Apart from direct perturbation of the electrochemical properties, substrate docking may entail changes in enzyme conformation such as to favour productive complexation with redox partners or modulate electron transfer conduits within preformed donor/acceptor adducts, resulting in elevated ease of flow of reducing equivalents. Substrate-steered ordering of the oligomeric aggregation state of P450s is likely to impose steric constraints on heterodimers, causing one component to more readily align with electron carriers. Careful uncovering of electrochemical mechanisms in these systems will be fruitful to tailoring of novel bioenergetic machines and redox chains via redox-inspired protein engineering or molecular Lego, capable of generating products of interest or degrading

  8. Catalytic Water Oxidation by a Bio-inspired Nickel Complex with a Redox-Active Ligand.

    Science.gov (United States)

    Wang, Dong; Bruner, Charlie O

    2017-11-20

    The oxidation of water (H 2 O) to dioxygen (O 2 ) is important in natural photosynthesis. One of nature's strategies for managing such multi-electron transfer reactions is to employ redox-active metal-organic cofactor arrays. One prototype example is the copper tyrosinate active site found in galactose oxidase. In this work, we have implemented such a strategy to develop a bio-inspired nickel phenolate complex capable of catalyzing the oxidation of H 2 O to O 2 electrochemically at neutral pH with a modest overpotential. Employment of the redox-active ligand turned out to be a useful strategy to avoid the formation of high-valent nickel intermediates while a reasonable turnover rate (0.15 s -1 ) is retained.

  9. Redox fronts

    International Nuclear Information System (INIS)

    Chapman, N.; McKinley, I.; Shea, M.; Smellie, J.

    1993-01-01

    This article describes the investigations of redox fronts performed at the Osamu Utsumi mine. Results obtained by modelling groups on the rate of movement of the redox fronts and on the chemical reactions involved are discussed. Some of the most important rockwater interactions which occur at redox fronts can be modelled reasonably well but the complex redox chemistry of elements like sulphur is poorly simulated. The observed enrichment of many trace elements close to the redox fronts could be of significance for high-level waste repositories, but cannot be quantified by existing models. (author) 6 figs., 1 tab

  10. In operando observation system for electrochemical reaction by soft X-ray absorption spectroscopy with potential modulation method

    International Nuclear Information System (INIS)

    Nagasaka, Masanari; Kosugi, Nobuhiro; Yuzawa, Hayato; Horigome, Toshio

    2014-01-01

    In order to investigate local structures of electrolytes in electrochemical reactions under the same scan rate as a typical value 100 mV/s in cyclic voltammetry (CV), we have developed an in operando observation system for electrochemical reactions by soft X-ray absorption spectroscopy (XAS) with a potential modulation method. XAS spectra of electrolytes are measured by using a transmission-type liquid flow cell with built-in electrodes. The electrode potential is swept with a scan rate of 100 mV/s at a fixed photon energy, and soft X-ray absorption coefficients at different potentials are measured at the same time. By repeating the potential modulation at each fixed photon energy, it is possible to measure XAS of electrochemical reaction at the same scan rate as in CV. We have demonstrated successful measurement of the Fe L-edge XAS spectra of aqueous iron sulfate solutions and of the change in valence of Fe ions at different potentials in the Fe redox reaction. The mechanism of these Fe redox processes is discussed by correlating the XAS results with those at different scan rates

  11. All-Vanadium Dual Circuit Redox Flow Battery for Renewable Hydrogen Generation and Desulfurisation

    OpenAIRE

    Peljo, Pekka Eero; Vrubel, Heron; Amstutz, Veronique; Pandard, Justine; Morgado, Joana; Santasalo-Aarnio, Annukka; Lloyd, David; Gumy, Frederic; Dennison, C R; Toghill, Kathryn; Girault, Hubert

    2016-01-01

    An all-vanadium dual circuit redox flow battery is an electrochemical energy storage system capable to function as a conventional battery, but also to produce hydrogen and perform desulfurization when surplus of electricity is available by chemical discharge of the battery electrolytes. The hydrogen reactor chemically discharging the negative electrolyte has been designed and scaled up to kW scale, while different options to discharge the positive electrolyte have been evaluated, including ox...

  12. The Electrochemical Atomic Layer Deposition of Pt and Pd nanoparticles on Ni foam for the electrooxidation of alcohols

    CSIR Research Space (South Africa)

    Modibedi, RM

    2012-10-01

    Full Text Available Electrodeposition of Pt and Pd metal by surface limited redox replacement reactions was performed using the electrochemical atomic layer deposition. Carbon paper and Ni foam were used as substrates for metal deposition. Supported Pt and Pd...

  13. Solid-state electroanalytical characterization of the nonaqueous proton-conducting redox gel containing polyoxometallates

    International Nuclear Information System (INIS)

    Lewera, Adam; Zukowska, Grazyna; Miecznikowski, Krzysztof; Chojak, Malgorzata; Wieczorek, Wladyslaw; Kulesza, Pawel J.

    2005-01-01

    A novel polymetacrylate-based redox-conducting polymeric gel, into which Keggin-type polyoxometallate, phosphododecatungstic acid (H 3 PW 12 O 40 ), had been incorporated, was electrochemically characterized in the absence of external liquid supporting electrolyte using an ultramicrodisk-working electrode. The phosphotungstate component (15 wt.% of the gel block) was entrapped as the polar organic solvent solution within pores of the polymer matrix. H 3 PW 12 O 40 plays bifunctional role: it provides well-behaved redox centers and serves as strong acid (source of mobile protons). The solid-state voltammetric properties of the system are defined by the reversible one-electron transfers between phosphotungstate redox centers. The following parameters have been determined from the combination of potential step experiments performed in two limiting (radial and linear) diffusional regimes: the concentration of heteropolytungstate redox centers, 6 x 10 -2 mol dm -3 , and the apparent diffusion coefficient, 5 x 10 -7 cm 2 s -1 . The room temperature ionic (protonic) conductivity of the bulk gel was equal to 1.6 x 10 -3 S cm -1 . The charge propagation mechanism was found to be primarily controlled by physical diffusion of heteropolytungstate units within the gel pores rather than by electron hopping (self-exchange) between mixed-valence sites

  14. Electrochemical gate-controlled electron transport of redox-active single perylene bisimide molecular junctions

    International Nuclear Information System (INIS)

    Li, C; Mishchenko, A; Li, Z; Pobelov, I; Wandlowski, Th; Li, X Q; Wuerthner, F; Bagrets, A; Evers, F

    2008-01-01

    We report a scanning tunneling microscopy (STM) experiment in an electrochemical environment which studies a prototype molecular switch. The target molecules were perylene tetracarboxylic acid bisimides modified with pyridine (P-PBI) and methylthiol (T-PBI) linker groups and with bulky tert-butyl-phenoxy substituents in the bay area. At a fixed bias voltage, we can control the transport current through a symmetric molecular wire Au|P-PBI(T-PBI)|Au by variation of the electrochemical 'gate' potential. The current increases by up to two orders of magnitude. The conductances of the P-PBI junctions are typically a factor 3 larger than those of T-PBI. A theoretical analysis explains this effect as a consequence of shifting the lowest unoccupied perylene level (LUMO) in or out of the bias window when tuning the electrochemical gate potential VG. The difference in on/off ratios reflects the variation of hybridization of the LUMO with the electrode states with the anchor groups. I T -E S(T) curves of asymmetric molecular junctions formed between a bare Au STM tip and a T-PBI (P-PBI) modified Au(111) electrode in an aqueous electrolyte exhibit a pronounced maximum in the tunneling current at -0.740, which is close to the formal potential of the surface-confined molecules. The experimental data were explained by a sequential two-step electron transfer process

  15. The strategies of DNA immobilization and hybridization detection mechanism in the construction of electrochemical DNA sensor: A review

    Directory of Open Access Journals (Sweden)

    Jahwarhar Izuan Abdul Rashid

    2017-11-01

    Full Text Available In recent years, electrochemical deoxyribonucleic acid (DNA sensor has recently emerged as promising alternative clinical diagnostic devices especially for infectious disease by exploiting DNA recognition events and converting them into an electrochemical signal. This is because the existing DNA diagnostic method possesses certain drawbacks such as time-consuming, expensive, laborious, low selectivity and sensitivity. DNA immobilization strategies and mechanism of electrochemical detection are two the most important aspects that should be considered before developing highly selective and sensitive electrochemical DNA sensor. Here, we focus on some recent strategies for DNA probes immobilization on the surface of electrochemical transducer such as adsorption, covalent bonding and Avidin/Streptavidin-Biotin interaction on the electrode surface for specific interaction with its complementary DNA target. A numerous approach for DNA hybridization detection based electrochemical technique that frequently used including direct DNA electrochemical detection and label based electrochemical (redox-active indicator, enzyme label and nanoparticles were also discussed in aiming to provide general guide for the design of electrochemical DNA sensor. We also discussed the challenges and suggestions to improve the application of electrochemical DNA sensor at point-care setting. Keywords: Electrochemical DNA sensor, DNA immobilization, DNA hybridization, Electrochemical mechanism

  16. Influência da acidez do meio sobre a síntese e o comportamento redox do polipirrol Influence of the medium acidity on the synthesis and redox behavior of polypyrrole

    Directory of Open Access Journals (Sweden)

    Márcia T. Giacomini

    1999-09-01

    Full Text Available The influence of acidity on the synthesis and redox behavior of polypyrrole films was studied using galvanostatic and potentiodynamic techniques employing aqueous solutions formed by H2SO4/Na2SO4 , HCl/NaCl and HCl/CsCl. The chemical structure of the films were investigated using the FTIR technique. The polymer behavior as a function of the pH used in the cyclic voltammetric measurements is explained in terms of the mechanism responsible for the charge compensation formed during the polymer chain oxidation. From the FTIR measurements, it is seen that the water nucleophilic attack during the synthesis, does not occur under the experimental conditions employed in this work.

  17. Integrating a redox-coupled dye-sensitized photoelectrode into a lithium-oxygen battery for photoassisted charging.

    Science.gov (United States)

    Yu, Mingzhe; Ren, Xiaodi; Ma, Lu; Wu, Yiying

    2014-10-03

    With a high theoretical specific energy, the non-aqueous rechargeable lithium-oxygen battery is a promising next-generation energy storage technique. However, the large charging overpotential remains a challenge due to the difficulty in electrochemically oxidizing the insulating lithium peroxide. Recently, a redox shuttle has been introduced into the electrolyte to chemically oxidize lithium peroxide. Here, we report the use of a triiodide/iodide redox shuttle to couple a built-in dye-sensitized titanium dioxide photoelectrode with the oxygen electrode for the photoassisted charging of a lithium-oxygen battery. On charging under illumination, triiodide ions are generated on the photoelectrode, and subsequently oxidize lithium peroxide. Due to the contribution of the photovoltage, the charging overpotential is greatly reduced. The use of a redox shuttle to couple a photoelectrode and an oxygen electrode offers a unique strategy to address the overpotential issue of non-aqueous lithium-oxygen batteries and also a distinct approach for integrating solar cells and batteries.

  18. Alternative bases to 4-tert-butylpyridine for dye-sensitized solar cells employing copper redox mediator

    Czech Academy of Sciences Publication Activity Database

    Ferdowsi, P.; Saygili, Y.; Zakeeruddin, S. M.; Mokhtari, J.; Grätzel, M.; Hagfeldt, A.; Kavan, Ladislav

    2018-01-01

    Roč. 265, MAR 1 (2018), s. 194-201 ISSN 0013-4686 R&D Projects: GA ČR GA13-07724S Institutional support: RVO:61388955 Keywords : electrolytes * efficient * cathodes * shuttle * Dye-sensitized solar cells * Copper(II/I) redox mediators * Pyridine bases * Electrochemical characterization Subject RIV: CG - Electrochemistry OBOR OECD: Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis) Impact factor: 4.798, year: 2016

  19. Changes of electrochemical properties of polypyrrole when synthesized in a room-temperature ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    Dalmolin, Carla, E-mail: carla.dalmolin@udesc.br; Biaggio, Sonia R.; Bocchi, Nerilso; Rocha-Filho, Romeu C.

    2014-09-15

    The room-temperature ionic liquid (RTIL) 1-butyl-3-methylimidazolium tetrafluoroborate, BMIM BF{sub 4}, was employed as electrolyte in the electrosynthesis of thin polypyrrole (PPy) films on a Pt substrate, and the resulting PPy electrodes were electrochemically characterized. Electrochemical impedance spectroscopy (EIS) was used to comparatively investigate the electric behavior of PPy produced in the RTIL and the one produced in a traditional acetonitrile/lithium salt system, and charge–discharge curves in the range 2.0–4.0 V (vs. Li/Li{sup +}) were obtained in a 1.0 M LiBF{sub 4} propylene carbonate solution. Although a reduction of the specific capacity for the PPy obtained in the RTIL was observed, compared to that of the PPy film synthesized in the acetonitrilic electrolyte, its chronopotentiometric profile presented a plateau in the 2.7 V region. This is a remarkable result, considering that a linear decrease in this profile is usually observed for the majority of conducting polymer cathodes. PPy films obtained in BMIM BF{sub 4} presented globular morphology, with a special arrangement of nanoparticles constituting the globules; the EIS results indicated that this nanoscale structure may be contributing to a better definition of the redox characteristics during the PPy charge–discharge processes, as it happens for the well-organized structure of some metal oxides. - Highlights: • PPy was produced in an ionic liquid medium as active material for battery electrodes. • Discharge curves present a plateau not usual for conducting polymer electrodes. • RTIL used as synthesis electrolyte produced PPy with surface nanograins. • Morphological features explain the improved redox properties of PPy electrode. • Electrical properties of PPy grown in RTIL were accessed by impedance measurements.

  20. Active control of methanol carbonylation selectivity over Au/carbon anode by electrochemical potential.

    Science.gov (United States)

    Funakawa, Akiyasu; Yamanaka, Ichiro; Otsuka, Kiyoshi

    2005-05-12

    Electrochemical oxidative carbonylation of methanol was studied over Au supported carbon anode in CO. The major carbonylation products were dimethyl oxalate (DMO) and dimethyl carbonate (DMC). The minor oxidation products were dimethoxy methane (DMM) and methyl formate (MF) from methanol and CO(2). Influences of various reaction conditions were studied on carbonylation activities and selectivities. The selectivities to DMO and DMC can be controlled by the electrochemical potential. Electrocatalysis of Au/carbon anode was studied by cyclic voltammetry (CV), stoichiometric reactions among Au(3+), methanol, and CO, and UV-vis spectra. The Au/carbon anode was characterized by XRD, SEM, and BE images before and after the carbonylation. These experimental facts strongly suggest that transition of oxidation states of Au affects changing of the carbonylation selectivities to DMO and DMC. Au(0) is the active species for the selective DMO formation by direct electrochemical carbonylation at low potentials (selective DMC formation by indirect electrochemical carbonylation through Au(3+)/Au(+) redox at high potentials (>+1.3 V).

  1. Origin of the different behavior of some platinum decorated nanocarbons towards the electrochemical oxidation of hydrogen peroxide

    International Nuclear Information System (INIS)

    Malara, A.; Leonardi, S.G.; Bonavita, A.; Fazio, E.; Stelitano, S.; Neri, G.; Neri, F.; Santangelo, S.

    2016-01-01

    The electrochemical behavior of different platinum-decorated nanocarbons (Pt@C) towards the oxidation of hydrogen peroxide (H_2O_2) was investigated. Three different types of nanocarbons were considered: i) carbon black, ii) dahlia-like carbon nanohorns and iii) carbon nanotubes, which included both commercial (single-wall and multi-wall) and laboratory prepared (multi-wall) samples. Shape and size distribution of the platinum nanoparticles and morphology of the nanocarbons were analyzed by transmission electron microscopy. Their nanostructure was investigated by micro-Raman spectroscopy, while elemental composition of the samples and chemical bonding states were studied by X-ray photoelectron spectroscopy. Electrochemical behavior towards H_2O_2 oxidation was evaluated by means of cyclic voltammetry modifying the working screen-printed carbon electrode surface with the prepared Pt@C nanocomposites. Data obtained suggest that the size and dispersion of the Pt nanoparticles play a key role in increasing the sensitivity towards H_2O_2 detection. Thanks to the presence of smaller and more dispersed platinum particles and of a greater amount of platinum hydroxide, acting as intermediary in the H_2O_2 oxidation process, Pt@dahlia-like carbon nanohorns result to be the most promising platform for the development of H_2O_2 electrochemical sensors. - Highlights: • Different nanocarbons are decorated with Pt nanoparticles by wet impregnation method. • Pt@C-based hybrids are tested as active materials for sensing of hydrogen peroxide. • Sensor based on Pt@dahlia-like carbon nanohorns is the most performing device. • The origin of the different electrochemical behaviour is investigated. • Pt@C sensing performances are correlated with their structural and surface properties.

  2. Electrochemical properties of porous carbon black layer as an electron injector into iodide redox couple

    International Nuclear Information System (INIS)

    Kim, Jung-Min; Rhee, Shi-Woo

    2012-01-01

    Highlights: ► Carbon black (CB) porous layer for triiodide (I 3 − ) ion reduction is coated with spray coating method at 120 °C on the fluorine-doped tin oxide glass. ► The electrochemical impedance spectroscopy is analyzed for a symmetric cell and a new circuit model is applied to identify electrochemical parameters. ► Decreased particle size and increased thickness improve the catalytic activity because of the increase in the surface area and the conductivity of the CB layer. - Abstract: Electrochemical properties of carbon black (CB) porous layer as a counter electrode in dye-sensitized solar cells (DSC) are studied. CB electrode for triiodide (I 3 − ) ion reduction is coated with spray coating method on the fluorine-doped tin oxide glass at 120 °C. The CB particle size is varied from 20 nm to 90 nm and the CB electrode thickness is controlled from 1 μm to 9 μm by controlling the spraying time. The electrochemical impedance spectroscopy is analyzed for a symmetric cell and a new circuit model is applied to identify electrochemical parameters. As the CB particle size is decreased, the catalytic activity is improved because of the increase in the surface area and the conductivity of the CB layer. Increased CB electrode thickness also improves the catalytic activity and leads to the low charge transfer resistance at the electrolyte/CB electrode interface. The CB counter electrode with the particle size of 20 nm and the thickness of 9 μm for DSC shows the energy conversion efficiency of 7.2% with the highest fill factor (FF) of 65.6%, which is similar to the Pt counter electrode with FF of 65.8% and the efficiency of 7.6%.

  3. Influence of oxidation level on capacitance of electrochemical capacitors fabricated with carbon nanotube/carbon paper composites

    International Nuclear Information System (INIS)

    Hsieh, C.-T.; Chen, W.-Y.; Cheng, Y.-S.

    2010-01-01

    Gaseous oxidation of carbon papers (CPs) decorated with carbon nanotubes (CNTs) with varying degrees of oxidation was conducted to investigate the influence of surface oxides on the performance of electrochemical capacitors fabricated with oxidized CNT/CP composites. The oxidation period was found to significantly enhance the O/C atomic ratio on the composites, and the increase in oxygen content upon oxidation is mainly contributed by the formation of C=O and C-O groups. The electrochemical behavior of the capacitors was tested in 1 M H 2 SO 4 within a potential of 0 and 1 V vs. Ag/AgCl. Both superhydrophilicity and specific capacitance of the oxidized CNT/CP composites were found to increase upon oxidation treatment. A linearity increase of capacitance with O/C ratio can be attributed to the increase of the population of surface oxides on CNTs, which imparts excess sites for redox reaction (pseudocapacitance) and for the formation of double-layer (double-layer capacitance). The technique of ac impedance combined with equivalent circuit clearly showed that oxidized CNT/CP capacitor imparts not only enhanced capacitance but also a low equivalent series resistance.

  4. Electrochemical proton relay at the single-molecule level

    DEFF Research Database (Denmark)

    Kuznetsov, A. M.; Medvedev, I. G.; Ulstrup, Jens

    2009-01-01

    A scheme for the experimental study of single-proton transfer events, based on proton-coupled two-electron transfer between a proton donor and a proton acceptor molecule confined in the tunneling gap between two metal leads in electrolyte solution is suggested. Expressions for the electric current...... are derived and compared with formalism for electron tunneling through redox molecules. The scheme allows studying the kinetics of proton and hydrogen atom transfer as well as kinetic isotope effects at the single-molecule level under electrochemical potential control....

  5. Performance and cost characteristics of multi-electron transfer, common ion exchange non-aqueous redox flow batteries

    Science.gov (United States)

    Laramie, Sydney M.; Milshtein, Jarrod D.; Breault, Tanya M.; Brushett, Fikile R.; Thompson, Levi T.

    2016-09-01

    Non-aqueous redox flow batteries (NAqRFBs) have recently received considerable attention as promising high energy density, low cost grid-level energy storage technologies. Despite these attractive features, NAqRFBs are still at an early stage of development and innovative design techniques are necessary to improve performance and decrease costs. In this work, we investigate multi-electron transfer, common ion exchange NAqRFBs. Common ion systems decrease the supporting electrolyte requirement, which subsequently improves active material solubility and decreases electrolyte cost. Voltammetric and electrolytic techniques are used to study the electrochemical performance and chemical compatibility of model redox active materials, iron (II) tris(2,2‧-bipyridine) tetrafluoroborate (Fe(bpy)3(BF4)2) and ferrocenylmethyl dimethyl ethyl ammonium tetrafluoroborate (Fc1N112-BF4). These results help disentangle complex cycling behavior observed in flow cell experiments. Further, a simple techno-economic model demonstrates the cost benefits of employing common ion exchange NAqRFBs, afforded by decreasing the salt and solvent contributions to total chemical cost. This study highlights two new concepts, common ion exchange and multi-electron transfer, for NAqRFBs through a demonstration flow cell employing model active species. In addition, the compatibility analysis developed for asymmetric chemistries can apply to other promising species, including organics, metal coordination complexes (MCCs) and mixed MCC/organic systems, enabling the design of low cost NAqRFBs.

  6. Dynamic Reference Electrode development for redox potential measurements in fluoride molten salt at high temperature

    International Nuclear Information System (INIS)

    Durán-Klie, Gabriela; Rodrigues, Davide; Delpech, Sylvie

    2016-01-01

    Measurement of redox potential in fluoride media is a major problem due to the difficulty to design a reference electrode with high stability, high mechanical resistance and high accuracy. In the frame of molten salt reactor studies, a dynamic reference electrode (DRE) is developed to measure redox potential in fluoride molten salt at high temperature. DRE is based on the in-situ generation of a transient redox system. The choice of the redox couple corresponds to the cathodic limit of the molten salt considered. As a preliminary step, the demonstration of feasibility of generating a DRE was done in LiF-NaF-KF (46.5–11.5–42 mol%) media at 500 °C. In this salt, the reference redox system generated by coulometry at applied current is KF/K, metallic potassium being electrodeposited on a tungsten wire electrode. The validation of the DRE response and the experimental optimization parameters for DRE generation were realized by following the NiF 2 /Ni redox potential evolution as a function of NiF 2 concentration in the fused salt. The current value applied for DRE generation was optimized. It depends on the amount of metallic cations contained in the fused salt and which can be electrochemically reduced simultaneously during the DRE generation. The current corresponding to the DRE generation has to be 4 times greater than the current corresponding to the reduction of the other elements.

  7. Electrochemical Behavior of Sn-9Zn- xTi Lead-Free Solders in Neutral 0.5M NaCl Solution

    Science.gov (United States)

    Wang, Zhenghong; Chen, Chuantong; Jiu, Jinting; Nagao, Shijo; Nogi, Masaya; Koga, Hirotaka; Zhang, Hao; Zhang, Gong; Suganuma, Katsuaki

    2018-05-01

    Electrochemical techniques were employed to study the electrochemical corrosion behavior of Sn-9Zn- xTi ( x = 0, 0.05, 0.1, 0.2 wt.%) lead-free solders in neutral 0.5M NaCl solution, aiming to figure out the effect of Ti content on the corrosion properties of Sn-9Zn, providing information for the composition design of Sn-Zn-based lead-free solders from the perspective of corrosion. EIS results reveal that Ti addition was involved in the corrosion product layer and changed electrochemical interface behavior from charge transfer control process to diffusion control process. The trace amount of Ti addition (0.05 wt.%) can refine the microstructure and improve the corrosion resistance of Sn-9Zn solder, evidenced by much lower corrosion current density ( i corr) and much higher total resistance ( R t). Excess Ti addition (over 0.1 wt.%) led to the formation of Ti-containing IMCs, which were confirmed as Sn3Ti2 and Sn5Ti6, deteriorating the corrosion resistance of Sn-9Zn- xTi solders. The main corrosion products were confirmed as Sn3O(OH)2Cl2 mixed with small amount of chlorine/oxide Sn compounds.

  8. Salt-Assisted Ultrasonicated De-Aggregation and Advanced Redox Electrochemistry of Detonation Nanodiamond

    Directory of Open Access Journals (Sweden)

    Sanju Gupta

    2017-11-01

    Full Text Available Nanodiamond particles form agglomerates in the dry powder state and this poses limitation to the accessibility of their diamond-like core thus dramatically impacting their technological advancement. In this work, we report de-agglomeration of nanodiamond (ND by using a facile technique namely, salt-assisted ultrasonic de-agglomeration (SAUD. Utilizing ultrasound energy and ionic salts (sodium chloride and sodium acetate, SAUD is expected to break apart thermally treated nanodiamond aggregates (~50–100 nm and produce an aqueous slurry of de-aggregated stable colloidal nanodiamond dispersions by virtue of ionic interactions and electrostatic stabilization. Moreover, the SAUD technique neither has toxic chemicals nor is it difficult to remove impurities and therefore the isolated nanodiamonds produced are exceptionally suited for engineered nanocarbon for mechanical (composites, lubricants and biomedical (bio-labeling, biosensing, bioimaging, theranostic applications. We characterized the microscopic structure using complementary techniques including transmission electron microscopy combined with selected-area electron diffraction, optical and vibrational spectroscopy. We immobilized SAUD produced NDs on boron-doped diamond electrodes to investigate fundamental electrochemical properties. They included surface potential (or Fermi energy level, carrier density and mapping electrochemical (reactivity using advanced scanning electrochemical microscopy in the presence of a redox-active probe, with the aim of understanding the surface redox chemistry and the interfacial process of isolated nanodiamond particles as opposed to aggregated and untreated nanoparticles. The experimental findings are discussed in terms of stable colloids, quantum confinement and predominantly surface effects, defect sites (sp2–bonded C and unsaturated bonds, inner core (sp3–bonded C/outer shell (sp2–bonded C structure, and surface functionality. Moreover, the surface

  9. Download this PDF file

    African Journals Online (AJOL)

    The electrochemical properties of quinones make them a promising class of compounds to be utilized as active matter in secondary batteries. Quinones incorporated in carbon paste electrodes. (CPE) have been frequently employed to investigate their electrochemical behavior [1,2,3]. The redox couple ...

  10. Carbon nanotubes--electronic/electrochemical properties and application for nanoelectronics and photonics.

    Science.gov (United States)

    Sgobba, Vito; Guldi, Dirk M

    2009-01-01

    The fundamental chemical, redox, electrochemical, photoelectrochemical, optical and optoelectronic features of carbon nanotubes are surveyed with particular emphasis on the most relevant applications as electron donor/electron acceptor or as electron conductor/hole conductor materials, in solutions and in the solid state. Methods that aim at p- and n-doping as a means to favor hole or electron injection/transport are covered as well (critical review, 208 references).

  11. An FeIII Azamacrocyclic Complex as a pH-Tunable Catholyte and Anolyte for Redox-Flow Battery Applications.

    Science.gov (United States)

    Tsitovich, Pavel B; Kosswattaarachchi, Anjula M; Crawley, Matthew R; Tittiris, Timothy Y; Cook, Timothy R; Morrow, Janet R

    2017-11-02

    A reversible Fe 3+ /Fe 2+ redox couple of an azamacrocyclic complex is evaluated as an electrolyte with a pH-tunable potential range for aqueous redox-flow batteries (RFBs). The Fe III complex is formed by 1,4,7-triazacyclononane (TACN) appended with three 2-methyl-imidazole donors, denoted as Fe(Tim). This complex exhibits pH-sensitive redox couples that span E 1/2 (Fe 3+ /Fe 2+ )=317 to -270 mV vs. NHE at pH 3.3 and pH 12.8, respectively. The 590 mV shift in potential and kinetic inertness are driven by ionization of the imidazoles at various pH values. The Fe 3+ /Fe 2+ redox is proton-coupled at alkaline conditions, and bulk electrolysis is non-destructive. The electrolyte demonstrates high charge/discharge capacities at both acidic and alkaline conditions throughout 100 cycles. Given its tunable redox, fast electrochemical kinetics, exceptional stability/cyclability, this complex is promising for the design of aqueous RFB catholytes and anolytes that utilize the earth-abundant element iron. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. The mechanism behind redox instability of anodes in high-temperature SOFCs

    DEFF Research Database (Denmark)

    Klemensø, Trine; Chung, Charissa; Larsen, Peter Halvor

    2005-01-01

    Bulk expansion of the anode upon oxidation is considered to be responsible for the lack of redox stability in high-temperature solid oxide fuel cells (SOFCs). The bulk expansion of nickel-yttria stabilized zirconia (YSZ) anode materials was measured by dilatometry as a function of sample geometry......, ceramic component, temperature, and temperature cycling. The strength of the ceramic network and the degree of Ni redistribution appeared to be key parameters of the redox behavior. A model of the redox mechanism in nickel-YSZ anodes was developed based on the dilatometry data and macro...

  13. Electrochemical and Computational Studies on the Electrocatalytic Effect of Conducting Polymers toward the Redox Reactions of Thiadiazole-Based Thiolate Compounds

    KAUST Repository

    Rodríguez-Calero, Gabriel G.; Lowe, Michael A.; Kiya, Yasuyuki; Abruña, Héctor D.

    2010-01-01

    We have studied the electrocatalytic effects of polythiophene-based conducting polymers toward the redox reactions of the dilithium salt of the thiadiazole-based dithiol compound 2,5-dimercapto-1,3,4-thiodiazole (DMcT-2Li) via cyclic voltammetry (CV), rotating-disk electrode voltammetry, and electrochemical impedance spectroscopy (EIS). We have found that the electrocatalytic activity of the conducting polymers is strongly influenced by the potential range over which the polymers are electrically conductive (i.e., window of conductivity), which was tuned by employing different electron-donating groups at the 3- or 3,4-positions of polythiophene (PTh). Both poly(3,4-ethylenedioxythiophene) (PEDOT) and poly(3,4-propylenedioxythiophene) (PProDOT), whose windows of conductivity exhibited a good overlap with the formal potential for the dimerization process of DMcT-2Li; E0′ d (?0.54 V versus Ag/Ag+) exhibited electrocatalytic activity toward both the oxidation and reduction processes of DMcT-2Li. On the other hand, PTh, poly(3-methylthiophene) (PMTh), and poly(3,4- dimethoxythiophene) (PDMTh), whose windows of conductivity did not overlap with E0′d, did not exhibit electrocatalytic activity. The standard charge transfer rate constants for the dimerization process of DMcT-2Li at PEDOT, PProDOT, and PDMTh film-modified glassy carbon electrodes (GCEs) were estimated to be 7.4 - 10?4, 3.2 - 10?4, and 6.9 - 10?5 cm/s while the rate constant was 6.3 - 10?5 cm/s at an unmodified GCE. Moreover, EIS studies for PEDOT, PProDOT, and PDMTh film-modified GCEs indicated the smallest charge transfer resistance for a PEDOT film and highest for a PDMTh film at E0′d, indicating that the higher the electrical conductivity of a film at E 0′d the higher the electrocatalytic activity toward the redox reactions of DMcT-2Li. These results clearly indicate that in order to accelerate the redox reactions of DMcT-2Li (and likely of other organosulfur compounds) the window of conductivity

  14. Electrochemical and Computational Studies on the Electrocatalytic Effect of Conducting Polymers toward the Redox Reactions of Thiadiazole-Based Thiolate Compounds

    KAUST Repository

    Rodríguez-Calero, Gabriel G.

    2010-04-08

    We have studied the electrocatalytic effects of polythiophene-based conducting polymers toward the redox reactions of the dilithium salt of the thiadiazole-based dithiol compound 2,5-dimercapto-1,3,4-thiodiazole (DMcT-2Li) via cyclic voltammetry (CV), rotating-disk electrode voltammetry, and electrochemical impedance spectroscopy (EIS). We have found that the electrocatalytic activity of the conducting polymers is strongly influenced by the potential range over which the polymers are electrically conductive (i.e., window of conductivity), which was tuned by employing different electron-donating groups at the 3- or 3,4-positions of polythiophene (PTh). Both poly(3,4-ethylenedioxythiophene) (PEDOT) and poly(3,4-propylenedioxythiophene) (PProDOT), whose windows of conductivity exhibited a good overlap with the formal potential for the dimerization process of DMcT-2Li; E0′ d (?0.54 V versus Ag/Ag+) exhibited electrocatalytic activity toward both the oxidation and reduction processes of DMcT-2Li. On the other hand, PTh, poly(3-methylthiophene) (PMTh), and poly(3,4- dimethoxythiophene) (PDMTh), whose windows of conductivity did not overlap with E0′d, did not exhibit electrocatalytic activity. The standard charge transfer rate constants for the dimerization process of DMcT-2Li at PEDOT, PProDOT, and PDMTh film-modified glassy carbon electrodes (GCEs) were estimated to be 7.4 - 10?4, 3.2 - 10?4, and 6.9 - 10?5 cm/s while the rate constant was 6.3 - 10?5 cm/s at an unmodified GCE. Moreover, EIS studies for PEDOT, PProDOT, and PDMTh film-modified GCEs indicated the smallest charge transfer resistance for a PEDOT film and highest for a PDMTh film at E0′d, indicating that the higher the electrical conductivity of a film at E 0′d the higher the electrocatalytic activity toward the redox reactions of DMcT-2Li. These results clearly indicate that in order to accelerate the redox reactions of DMcT-2Li (and likely of other organosulfur compounds) the window of conductivity

  15. Anticancer Activity of Metal Complexes: Involvement of Redox Processes

    Science.gov (United States)

    Jungwirth, Ute; Kowol, Christian R.; Keppler, Bernhard K.; Hartinger, Christian G.; Berger, Walter; Heffeter, Petra

    2012-01-01

    Cells require tight regulation of the intracellular redox balance and consequently of reactive oxygen species for proper redox signaling and maintenance of metal (e.g., of iron and copper) homeostasis. In several diseases, including cancer, this balance is disturbed. Therefore, anticancer drugs targeting the redox systems, for example, glutathione and thioredoxin, have entered focus of interest. Anticancer metal complexes (platinum, gold, arsenic, ruthenium, rhodium, copper, vanadium, cobalt, manganese, gadolinium, and molybdenum) have been shown to strongly interact with or even disturb cellular redox homeostasis. In this context, especially the hypothesis of “activation by reduction” as well as the “hard and soft acids and bases” theory with respect to coordination of metal ions to cellular ligands represent important concepts to understand the molecular modes of action of anticancer metal drugs. The aim of this review is to highlight specific interactions of metal-based anticancer drugs with the cellular redox homeostasis and to explain this behavior by considering chemical properties of the respective anticancer metal complexes currently either in (pre)clinical development or in daily clinical routine in oncology. PMID:21275772

  16. Architecture for improved mass transport and system performance in redox flow batteries

    Science.gov (United States)

    Houser, Jacob; Pezeshki, Alan; Clement, Jason T.; Aaron, Douglas; Mench, Matthew M.

    2017-05-01

    In this work, electrochemical performance and parasitic losses are combined in an overall system-level efficiency metric for a high performance, all-vanadium redox flow battery. It was found that pressure drop and parasitic pumping losses are relatively negligible for high performance cells, i.e., those capable of operating at a high current density while at a low flow rate. Through this finding, the Equal Path Length (EPL) flow field architecture was proposed and evaluated. This design has superior mass transport characteristics in comparison with the standard serpentine and interdigitated designs at the expense of increased pressure drop. An Aspect Ratio (AR) design is discussed and evaluated, which demonstrates decreased pressure drop compared to the EPL design, while maintaining similar electrochemical performance under most conditions. This AR design is capable of leading to improved system energy efficiency for flow batteries of all chemistries.

  17. Coupling of Mechanical Behavior of Lithium Ion Cells to Electrochemical-Thermal (ECT) Models for Battery Crush

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chao; Santhanagopalan, Shriram; Pesaran, Ahmad; Sahraei, Elham; Wierzbicki, Tom

    2016-06-14

    Vehicle crashes can lead to crushing of the battery, damaging lithium ion battery cells and causing local shorts, heat generation, and thermal runaway. Simulating all the physics and geometries at the same time is challenging and takes a lot of effort; thus, simplifications are needed. We developed a material model for simultaneously modeling the mechanical-electrochemical-thermal behavior, which predicted the electrical short, voltage drop, and thermal runaway behaviors followed by a mechanical abuse-induced short. The effect of short resistance on the battery cell performance was studied.

  18. Preparation and characterization of hybrid Nafion/silica and Nafion/silica/PTA membranes for redox flow batteries

    Energy Technology Data Exchange (ETDEWEB)

    Glibin, V.; Pupkevich, V.; Svirko, L.; Karamanev, D. [Western Ontario Univ., London, ON (Canada). Dept. of Biochemical and Chemical Engineering

    2008-07-01

    Redox flow batteries are both efficient and cost-effective. However, the long-term stability of most ion-exchange membranes is limited as a result of the high oxidation rates of ions with high redox potentials. A method of synthesizing multi-component Nafion-silica and Nafion-silica-PTA membranes was presented in this study, which also investigated the electrochemical and ion transport properties of the membranes. Membranes were cast from dimethylformamide (DMFA) solution. The iron ion diffusion kinetics of the Nafion-silica and Nafion-silica PTA membranes were studied by dialysis. Results of the investigation demonstrated that the introduction of silica and phosphotungstic acid (PTA) into the Nafion membrane composition resulted in a significant decrease of ion transfer through the membrane. The addition of PTA also increased membrane permeability to ferric ions. The low iron diffusion coefficient and high ionic conductivity of the Nafion-silica membrane makes it a promising material for use in redox flow batteries. 4 refs., 1 tab., 1 fig.

  19. Development of a Novel Iodine-Vitamin C/Vanadium Redox Flow Battery

    International Nuclear Information System (INIS)

    Chen, Mei-Ling; Huang, Shu-Ling; Hsieh, Chin-Lung; Lee, Jan- Yen; Tsai, Tz-Jiun

    2014-01-01

    A novel (I + /I 2 )/vitamin C vs. V 4+ /V 5+ semi-vanadium redox flow battery (semi-VRFB) with iodine, vitamin C, and V 4+ /V 5+ redox couples, using multiple electrodes was investigated. The electrodes, Ni-P/carbon paper and Ni-P/TiO 2 /carbon paper, were modified by the electroless plating method and sol-gel process. The electrochemical characteristics and the performance of the semi-VRFB were verified by the cyclic voltammetry method and a charge-discharge test. This study shows modified electrodes can improve the reversibility and symmetry of the oxidation-reduction reaction of the semi-VRFB system, and effectively raise its storage ability. The coulomb efficiency of the semi-VRFB system is close to 96%, which is higher than the all-VRFB. The semi-VRFB system can reduce the amount of vanadium salt, therefore, it is not only a reduction in cost, but also has a great potential for the development of energy storage systems

  20. Electrochemical capacitor behavior of copper sulfide (CuS) nanoplatelets

    Energy Technology Data Exchange (ETDEWEB)

    Justin Raj, C.; Kim, Byung Chul; Cho, Won-Je; Lee, Won-Gil; Seo, Yongseong; Yu, Kook-Hyun, E-mail: yukook@dongguk.edu

    2014-02-15

    Highlights: • The electrochemical supercapacitor electrode was fabricated using CuS nanoplatelets. • CuS electrodes shows better electrochemical properties in aqueous LiClO{sub 4} electrolyte. • The heat treated CuS electrode shows an excellent pseudocapacitance performance than bare CuS electrode. -- Abstract: Copper sulfide (CuS) nanoplatelets have been fabricated by simple low temperature chemical bath deposition technique for electrochemical supercapacitor electrodes. The morphology and structural properties of the electrodes were analyzed using scanning electron microscopy and X-ray diffraction. The effect of heat treatment on electrochemical properties of CuS electrodes were examined by cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge/discharge tests. Results show that bare and heat treated CuS has pseudocapacitive characteristic within the potential range of −0.6 to 0.3 V (vs. Ag/AgCl) in aqueous 1 M LiClO{sub 4} solution. The pseudocapacitance is induced mainly by lithium ions insertion/extraction with the CuS electrodes. The specific capacitance of 72.85 F g{sup −1} was delivered by heat treated CuS film at a scan rate of 5 mV s{sup −1} with an energy and power density of 6.23 W h kg{sup −1} and 1.75 kW kg{sup −1} at 3 Ag{sup −1} constant discharge current which is comparatively higher than that of as deposited CuS electrode.