WorldWideScience

Sample records for electro-rheological fluids magneto-rheological

  1. State of the art of medical devices featuring smart electro-rheological and magneto-rheological fluids

    Directory of Open Access Journals (Sweden)

    Jong-Seok Oh

    2017-10-01

    Full Text Available Recently, smart fluids have drawn significant attention and growing a great interest in a broad range of engineering applications such as automotive and medical areas. In this article, two smart fluids called electro-rheological (ER fluid and magneto-rheological (MR fluid are reviewed in terms of medical applications. Especially, this article describes the attributes and inherent properties of individual medical and rehabilitation devices. The devices surveyed in this article include multi-degree-of-freedom haptic masters for robot surgery, thin membrane touch panels for braille readers, sponge-like tactile sensors to feel human tissues such as liver, rehabilitation systems such as prosthetic leg, and haptic interfaces for dental implant surgery. The operating principle, inherent characteristics and practical feasibility of each medical device or system are fully discussed in details.

  2. Dynamic analysis of electro- and magneto-rheological fluid dampers using duct flow models

    International Nuclear Information System (INIS)

    Esteki, Kambiz; Bagchi, Ashutosh; Sedaghati, Ramin

    2014-01-01

    Magneto-rheological (MR) and electro-rheological (ER) fluid dampers provide a semi-active control mechanism for suppressing vibration responses of a structure. MR and ER fluids change their viscosity under the influence of magnetic and electrical fields, respectively, which facilitates automatic control when these fluids are used in damping devices. The existing models, namely the phenomenological models for simulating the behavior of MR and ER dampers, rely on various parameters determined experimentally by the manufacturers for each damper configuration. It is of interest to develop mechanistic models of these dampers which can be applied to various configurations so that their fundamental characteristics can be studied to develop flexible design solutions for smart structures. This paper presents a formulation for dynamic analysis of electro-rheological (ER) and magneto-rheological (MR) fluid dampers in flow and mix mode configurations under harmonic and random excitations. The procedure employs the vorticity transport equation and the regularization function to deal with the unsteady flow and nonlinear behavior of ER/MR fluid in general motion. The finite difference method has been used to solve the governing differential equations. Using the developed approach, the damping force of ER/MR dampers can be calculated under any type of excitation. (paper)

  3. Design and analysis of magneto rheological fluid brake for an all terrain vehicle

    Science.gov (United States)

    George, Luckachan K.; Tamilarasan, N.; Thirumalini, S.

    2018-02-01

    This work presents an optimised design for a magneto rheological fluid brake for all terrain vehicles. The actuator consists of a disk which is immersed in the magneto rheological fluid surrounded by an electromagnet. The braking torque is controlled by varying the DC current applied to the electromagnet. In the presence of a magnetic field, the magneto rheological fluid particle aligns in a chain like structure, thus increasing the viscosity. The shear stress generated causes friction in the surfaces of the rotating disk. Electromagnetic analysis of the proposed system is carried out using finite element based COMSOL multi-physics software and the amount of magnetic field generated is calculated with the help of COMSOL. The geometry is optimised and performance of the system in terms of braking torque is carried out. Proposed design reveals better performance in terms of braking torque from the existing literature.

  4. Novel design of a self powered and self sensing magneto-rheological damper

    International Nuclear Information System (INIS)

    Ferdaus, Mohammad Meftahul; Rashid, M M; Bhuiyan, M M I; Muthalif, Asan Gani Bin Abdul; Hasan, M R

    2013-01-01

    Magneto-rheological (MR) dampers are semi-active control devices and use MR fluids. Magneto-rheological dampers have successful applications in mechatronics engineering, civil engineering and numerous areas of engineering. At present, traditional MR damper systems, require a isolated power supply and dynamic sensor. This paper presents the achievability and accuracy of a self- powered and self-sensing magneto-rheological damper using harvested energy from the vibration and shock environment in which it is deployed and another important part of this paper is the increased yield stress of the Magneto rheological Fluids. Magneto rheological fluids using replacement of glass beads for Magnetic Particles to surge yield stress is implemented here. Clearly this shows better result on yield stress, viscosity, and settling rate. Also permanent magnet generator (PMG) is designed and attached to a MR damper. For evaluating the self-powered MR damper's vibration mitigating capacity, an Engine Mount System using the MR damper is simulated. The ideal stiffness of the PMG for the Engine Mount System (EMS) is calculated by numerical study. The vibration mitigating performance of the EMS employing the self-powered and self sensing MR damper is theoretically calculated and evaluated in the frequency domain

  5. Novel design of a self powered and self sensing magneto-rheological damper

    Science.gov (United States)

    Meftahul Ferdaus, Mohammad; Rashid, M. M.; Bhuiyan, M. M. I.; Muthalif, Asan Gani Bin Abdul; Hasan, M. R.

    2013-12-01

    Magneto-rheological (MR) dampers are semi-active control devices and use MR fluids. Magneto-rheological dampers have successful applications in mechatronics engineering, civil engineering and numerous areas of engineering. At present, traditional MR damper systems, require a isolated power supply and dynamic sensor. This paper presents the achievability and accuracy of a self- powered and self-sensing magneto-rheological damper using harvested energy from the vibration and shock environment in which it is deployed and another important part of this paper is the increased yield stress of the Magneto rheological Fluids. Magneto rheological fluids using replacement of glass beads for Magnetic Particles to surge yield stress is implemented here. Clearly this shows better result on yield stress, viscosity, and settling rate. Also permanent magnet generator (PMG) is designed and attached to a MR damper. For evaluating the self-powered MR damper's vibration mitigating capacity, an Engine Mount System using the MR damper is simulated. The ideal stiffness of the PMG for the Engine Mount System (EMS) is calculated by numerical study. The vibration mitigating performance of the EMS employing the self-powered & self sensing MR damper is theoretically calculated and evaluated in the frequency domain.

  6. Synthesis and characterization of magneto-rheological (MR fluids for MR brake application

    Directory of Open Access Journals (Sweden)

    Bhau K. Kumbhar

    2015-09-01

    Full Text Available Magneto rheological (MR fluid technology has been proven for many industrial applications like shock absorbers, actuators, etc. MR fluid is a smart material whose rheological characteristics change rapidly and can be controlled easily in presence of an applied magnetic field. MR brake is a device to transmit torque by the shear stress of MR fluid. However, MR fluids exhibit yield stress of 50–90 kPa. In this research, an effort has been made to synthesize MR fluid sample/s which will typically meet the requirements of MR brake applications. In this study, various electrolytic and carbonyl iron powder based MR fluids have been synthesized by mixing grease as a stabilizer, oleic acid as an antifriction additive and gaur gum powder as a surface coating to reduce agglomeration of the MR fluid. MR fluid samples based on sunflower oil, which is bio-degradable, environmentally friendly and abundantly available have also been synthesized. These MR fluid samples are characterized for determination of magnetic, morphological and rheological properties. This study helps identify most suitable localized MR fluid meant for MR brake application.

  7. Vibration Control of Sandwich Beams Using Electro-Rheological Fluids

    Science.gov (United States)

    Srikantha Phani, A.; Venkatraman, K.

    2003-09-01

    Electro-rheological (ER) fluids are a class of smart materials exhibiting significant reversible changes in their rheological and hence mechanical properties under the influence of an applied electric field. Efforts are in progress to embed ER fluids in various structural elements to mitigate vibration problems. The present work is an experimental investigation of the behaviour of a sandwich beam with ER fluid acting as the core material. A starch-silicone-oil-based ER fluid is used in the present study. Significant improvements in the damping properties are achieved in experiments and the damping contributions by viscous and non-viscous forces are estimated by force-state mapping (FSM) technique. With the increase in electric field across the ER fluid from 0 to 2 kV, an increase of 25-50% in equivalent viscous damping is observed. It is observed that as concentration of starch is increased, the ER effect grows stronger but eventually is overcome by applied stresses.

  8. Effect of magneto rheological damper on tool vibration during hard turning

    Science.gov (United States)

    Paul, P. Sam; Varadarajan, A. S.

    2012-12-01

    Recently, the concept of hard turning has gained considerable attention in metal cutting as it can apparently replace the traditional process cycle of turning, heat treating, and finish grinding for assembly of hard wear resistant steel parts. The present investigation aims at developing a magneto rheological (MR) fluid damper for suppressing tool vibration and promoting better cutting performance during hard turning. The magneto rheological Fluid acts as a viscoelastic spring with non-linear vibration characteristics that are controlled by the composition of the magneto rheological fluid, the shape of the plunger and the electric parameters of the magnetizing field. Cutting experiments were conducted to arrive at a set of electrical, compositional and shape parameters that can suppress tool vibration and promote better cutting performance during turning of AISI 4340 steel of 46 HRC with minimal fluid application using hard metal insert with sculptured rake face. It was observed that the use of MR fluid damper reduces tool vibration and improves the cutting performance effectively. Also commercialization of this idea holds promise to the metal cutting industry.

  9. Performance of a viscous damper using electro-rheological fluid

    International Nuclear Information System (INIS)

    Otani, A.; Kobayashi, H.; Kobayashi, N.; Tadaishi, Y.

    1994-01-01

    A new damper has been developed that suppresses small-amplitude vibrations over a wide frequency range. The damper has been tested using both an electro-rheological fluid (ERF) and a highly viscous liquid, which are enclosed in the damper's casing (a metal bellows). The apparent viscosity of the ERF can be changed by varying the strength of the applied electrical field. Initially, a simple L-shaped piping model excited by a rotary-type exciter was used to investigate the performance of the damper, utilizing both fluids. The experimental results demonstrate the effectiveness of the passive damper. Based on the experimental results, application of the damper to an actual piping system with a big pump was carried out analytical

  10. Extended two-fluid model for simulating magneto-rheological fluid flows

    International Nuclear Information System (INIS)

    Shivaram, A C

    2011-01-01

    The current practice of designing magneto-rheological (MR) fluid-based devices is, to a large extent, based on simple phenomenological models like the Bingham model. Though useful for initial force or torque estimation and sizing, these models lack the capability to predict performance degradation due to changes in the particle volume fraction distribution. The present work demonstrates the use of the two-fluid model for predicting the particle volume fraction distribution inside a device in the absence of a field and proposes a novel modeling scheme which can simulate the fluid flow in the presence of a field. This modeling scheme can be used to (a) visualize flow patterns inside a device under various operating conditions, (b) predict the spatial distribution of particles inside a device after multiple operating cycles, (c) assist in estimating the extent of performance degradation due to non-uniform particle distribution and (d) enable testing of various design strategies to mitigate such performance issues using simulations. This is illustrated through numerical examples of a few case studies of typical MR device configurations

  11. A novel two-way-controllable magneto-rheological fluid damper

    International Nuclear Information System (INIS)

    Aydar, Gokhan; Wang, Xiaojie; Gordaninejad, Faramarz

    2010-01-01

    In this paper, a disc type, radial flow-mode magneto-rheological (MR) fluid damper comprising a permanent magnet and an electromagnet is designed, built and tested. The proposed MR fluid damper has an MR valve with which two-way controllability through cancellation or enhancement of the magnetic field is obtained. This added feature provides damping forces less than or greater than that of a passive viscous original equipment manufacturer damper. A three-dimensional electromagnetic finite element analysis has been performed to realize this unique function in the proposed design. Experimental and theoretical studies have been conducted in order to demonstrate that this new design can provide softer damping properties by cancelling the effect of the permanent magnet, while at the same time enhancing the field effect, resulting in a harder damping device. Softer and harder damping refer to decrease and increase in the damping, respectively

  12. State of the art of control schemes for smart systems featuring magneto-rheological materials

    International Nuclear Information System (INIS)

    Choi, Seung-Bok; Do, Phu Xuan; Li, Weihua; Yu, Miao; Fu, Jie; Du, Haiping

    2016-01-01

    This review presents various control strategies for application systems utilizing smart magneto-rheological fluid (MRF) and magneto-rheological elastomers (MRE). It is well known that both MRF and MRE are actively studied and applied to many practical systems such as vehicle dampers. The mandatory requirements for successful applications of MRF and MRE include several factors: advanced material properties, optimal mechanisms, suitable modeling, and appropriate control schemes. Among these requirements, the use of an appropriate control scheme is a crucial factor since it is the final action stage of the application systems to achieve the desired output responses. There are numerous different control strategies which have been applied to many different application systems of MRF and MRE, summarized in this review. In the literature review, advantages and disadvantages of each control scheme are discussed so that potential researchers can develop more effective strategies to achieve higher control performance of many application systems utilizing magneto-rheological materials. (topical review)

  13. A tunable magneto-rheological fluid-filled beam-like vibration absorber

    International Nuclear Information System (INIS)

    Hirunyapruk, C; Brennan, M J; Mace, B R; Li, W H

    2010-01-01

    Tuned vibration absorbers (TVAs) are often used to suppress unwanted vibrations. If the excitation frequency is time harmonic but the frequency changes with time, it is desirable to retune the TVA so that the natural frequency of the TVA always coincides with the excitation frequency. One way of achieving this is to adjust the stiffness of the TVA. The key challenge is to change the stiffness quickly in real time. In this paper a magneto-rheological (MR) fluid in its pre-yield state is used as the core of a three-layer beam-like TVA. The shear stiffness of the MR fluid is adjusted by varying the magnetic field to which it is exposed by changing the current supplied to the electromagnets. Hence the stiffness of the TVA can be varied. The vibration characteristics of the TVA as a function of the magnetic field strength are predicted using a finite element model together with an empirical model for the shear modulus of the MR fluid and a model for the magnetic field applied to the fluid. An MR fluid-filled TVA was manufactured and tested to validate the predictions. This TVA design allows the natural frequency to be changed by about 40%

  14. Design and analysis of a magneto-rheological damper for an all terrain vehicle

    Science.gov (United States)

    Krishnan Unni, R.; Tamilarasan, N.

    2018-02-01

    A shock absorber design intended to replace the existing conventional shock absorber with a controllable system using a Magneto-rheological damper is introduced for an All Terrain Vehicle (ATV) that was designed for Baja SAE competitions. Suspensions are a vital part of an All Terrain Vehicles as it endures various surfaces and requires utmost attention while designing. COMSOL multi-physics software is used for applications that have coupled physics problems and is a unique tool that is used for the designing and analysis phase of the Magneto-rheological damper for the considered application and the model is optimized based on Taguchi using DOE software. The magneto-rheological damper is designed to maximize the damping force with the measured geometric constraints for the All Terrain Vehicle.

  15. The influence of the current intensity on the damping characteristics for a magneto-rheological damper of passenger car

    Science.gov (United States)

    Dobre, A.; Andreescu, C. N.; Stan, C.

    2016-08-01

    Due to their simplicity and controllability, adaptive dampers became very popular in automotive engineering industry, especially in the passenger cars industry, in spite of technological obstacles inherent and the high cost of the magnetic fluid. “MagneRide” is the first technology which uses smart fluids in the shock absorbers of the vehicles adaptive suspensions. Since the discovery of the magneto-rheological effect there is a consistent progress regarding the control algorithms and hardware part itself. These magneto-rheological devices have a major potential which can be explored in various fields of applications. At present many companies make researches for the improvement of the response time and for obtaining a better response at low frequency and amplitude of the body car oscillations. The main objective of this paper is to determine the damping characteristic of a magnetorheological shock absorber of a passenger car. The authors aim to observe how to modify the damping characteristic by changing the intensity of the electric current. The experimental researches have being carried out on a complex and modern test bench especially built for testing shock absorbers, in order to compare the damping characteristic of the classical damper with the magneto-rheological damper.

  16. Magneto-Rheological Damper - An Experimental Study

    OpenAIRE

    Lozoya-Santos , Jorge De-Jesus; Morales-Menéndez , Rubén; Ramirez-Mendoza , Ricardo; Tudon-Martınez , Juan ,; Sename , Olivier; Dugard , Luc

    2012-01-01

    International audience; A Magneto-Rheological (MR) damper is evaluated under exhaustive experimental scenarios, generating a complete database. The obtained database includes classical tests and new proposals emphasizing the frequency contents. It also includes the impact of the electric current fluctuations. The variety of the performed experiments allows to study the MR damper force dynamics. A brief description of the damper behavior and a categorization of experiments based on driving con...

  17. Dynamic viscous behavior of magneto-rheological fluid in coupled mode operation

    International Nuclear Information System (INIS)

    Kaluvan, Suresh; Park, JinHyuk; Choi, Seung-Hyun; Kim, Pyunghwa; Choi, Seung-Bok

    2015-01-01

    A new method of measuring the coupled mode viscosity behavior of magneto-rheological (MR) fluid using the resonance concept is proposed. The coupled mode viscosity measurement device is designed as a resonant system using a cantilever beam probing with the rotating shaft mechanism. The ‘C’ shaped iron core of an electromagnetic coil, mounted in a resonating cantilever beam is used as a probing tip. The MR fluid between the probing tip and the rotating shaft mechanism experiences both squeeze and shear force. The vibration induced by the resonating cantilever beam creates only squeeze force on the MR fluid when the shaft is stationary. When the cantilever beam is vibrating at resonance and the shaft is rotating, the MR fluid experiences coupled (shear and squeeze) force. The cantilever beam is vibrated at its resonant frequency using the piezoelectric actuation technique and the resonance is maintained using simple closed loop resonator electronics. The input current to the probing coil is varied to produce a variable magnetic field which causes the viscosity change of the MR fluid. The viscosity change of the MR fluid produces a coupled force, which induces an additional stiffness on the resonating cantilever beam and alters its initial resonant frequency. The shift in resonant frequency due to the change in viscosity of the MR fluid is measured with the help of a resonator electronics circuit and its viscosity is related to the field dependent coupled mode yield stress of the MR fluid. The proposed measurement device is analytically derived and experimentally evaluated. (technical note)

  18. A magneto-rheological fluid mount featuring squeeze mode: analysis and testing

    International Nuclear Information System (INIS)

    Chen, Peng; Bai, Xian-Xu; Qian, Li-Jun; Choi, Seung-Bok

    2016-01-01

    This paper presents a mathematical model for a new semi-active vehicle engine mount utilizing magneto-rheological (MR) fluids in squeeze mode (MR mount in short) and validates the model by comparing analysis results with experimental tests. The proposed MR mount is mainly comprised of a frame for installation, a main rubber, a squeeze plate and a bobbin for coil winding. When the magnetic fields on, MR effect occurs in the upper gap between the squeeze plate and the bobbin, and the dynamic stiffness can be controlled by tuning the applied currents. Employing Bingham model and flow properties between parallel plates of MR fluids, a mathematical model for the squeeze type of MR mount is formulated with consideration of the fluid inertia, MR effect and hysteresis property. The field-dependent dynamic stiffness of the MR mount is then analyzed using the established mathematical model. Subsequently, in order to validate the mathematical model, an appropriate size of MR mount is fabricated and tested. The field-dependent force and dynamic stiffness of the proposed MR mount are evaluated and compared between the model and experimental tests in both time and frequency domains to verify the model efficiency. In addition, it is shown that both the damping property and the stiffness property of the proposed MR mount can be simultaneously controlled. (paper)

  19. Nonlinear modeling and testing of magneto-rheological fluids in low shear rate squeezing flows

    International Nuclear Information System (INIS)

    Farjoud, Alireza; Ahmadian, Mehdi; Craft, Michael; Mahmoodi, Nima; Zhang, Xinjie

    2011-01-01

    A novel analytical investigation of magneto-rheological (MR) fluids in squeezing flows is performed and the results are validated with experimental test data. The squeeze flow of MR fluids has recently been of great interest to researchers. This is due to the large force capacity of MR fluids in squeeze mode compared to other modes (valve and shear modes), which makes the squeeze mode appropriate for a wide variety of applications such as impact dampers and engine mounts. Tested MR fluids were capable of providing a large range of controllable force along a short stroke in squeeze mode. A mathematical model was developed using perturbation techniques to predict closed-form solutions for velocity field, shear rate distribution, pressure distribution and squeeze force. Therefore, the obtained solutions greatly help with the design process of intelligent devices that use MR fluids in squeeze mode. The mathematical model also reduces the need for complicated and computationally expensive numerical simulations. The analytical results are validated by performing experimental tests on a novel MR device called an 'MR pouch' in an MR squeeze mode rheometer, both designed and built at CVeSS

  20. A geometrical optimization of a magneto-rheological rotary brake in a prosthetic knee

    International Nuclear Information System (INIS)

    Gudmundsson, K H; Jonsdottir, F; Thorsteinsson, F

    2010-01-01

    Magneto-rheological (MR) fluids have been successfully introduced to prosthetic devices. One such device is a biomechanical prosthetic knee that uses MR fluids to actively control its rotary stiffness. The brake is rotational, utilizing the MR fluid in shear mode. In this study, the geometrical design of the MR brake is addressed. This includes the design of the magnetic circuit and the geometry of the fluid chamber. Mathematical models are presented that describe the rotary torque of the brake. A novel perfluorinated polyether (PFPE)-based MR fluid is introduced, whose properties are tailored for the prosthetic knee. On-state and off-state rheological measurements of the MR fluid are presented. The finite element method is used to evaluate the magnetic flux density in the MR fluid. The design is formulated as an optimization problem, aiming to maximize the braking torque. A parametric study is carried out for several design parameters. Subsequently, a multi-objective optimization problem is defined that considers three design objectives: the field-induced braking torque, the off-state rotary stiffness and the weight of the brake. Trade-offs between the three design objectives are investigated which provides a basis for informed design decisions on furthering the success of the MR prosthetic knee

  1. Characteristics of an electro-rheological fluid valve used in an inkjet printhead

    Science.gov (United States)

    Lee, C. Y.; Liao, W. C.

    2000-12-01

    The demand for non-impact printers has grown considerably with the advent of personal computers. For entry-level mass production, two drop-on-demand techniques have dominated the market - piezoelectric impulse and thermal-bubble types. However, the high cost of the piezoelectric printhead and the thermal problems encountered by the thermal-bubble jet printhead have restrained the use of these techniques in an array-type printhead. In this study, we propose a new design of printhead with an electro-rheological (ER) fluid acting as a control medium. The ER fluid valve controls the ink ejection. As a first step toward developing this new printhead, the characteristics of an ER fluid valve which controls the deflection of the elastic diaphragm are investigated. First, the response of a prototype is tested experimentally to prove the feasibility of using this ER valve for the inkjet printhead. Then, the discretized governing equation of the ER valve is derived. Finally, the prototype of the ER valve is fabricated. The experimental measurement based on the sinusoidal response verifies both the theoretical analysis and the controllability of the response of the ER valve by the applied electric field.

  2. Nonlinear Dynamics Analysis of the Semiactive Suspension System with Magneto-Rheological Damper

    Directory of Open Access Journals (Sweden)

    Hailong Zhang

    2015-01-01

    Full Text Available This paper examines dynamical behavior of a nonlinear oscillator which models a quarter-car forced by the road profile. The magneto-rheological (MR suspension system has been established, by employing the modified Bouc-Wen force-velocity (F-v model of magneto-rheological damper (MRD. The possibility of chaotic motions in MR suspension is discovered by employing the method of nonlinear stability analysis. With the bifurcation diagrams and corresponding Lyapunov exponent (LE spectrum diagrams detected through numerical calculation, we can observe the complex dynamical behaviors and oscillating mechanism of alternating periodic oscillations, quasiperiodic oscillations, and chaotic oscillations with different profiles of road excitation, as well as the dynamical evolutions to chaos through period-doubling bifurcations, saddle-node bifurcations, and reverse period-doubling bifurcations.

  3. Rheology of Active Fluids

    Science.gov (United States)

    Saintillan, David

    2018-01-01

    An active fluid denotes a viscous suspension of particles, cells, or macromolecules able to convert chemical energy into mechanical work by generating stresses on the microscale. By virtue of this internal energy conversion, these systems display unusual macroscopic rheological signatures, including a curious transition to an apparent superfluid-like state where internal activity exactly compensates viscous dissipation. These behaviors are unlike those of classical complex fluids and result from the coupling of particle configurations with both externally applied flows and internally generated fluid disturbances. Focusing on the well-studied example of a suspension of microswimmers, this review summarizes recent experiments, models, and simulations in this area and highlights the critical role played by the rheological response of these active materials in a multitude of phenomena, from the enhanced transport of passive suspended objects to the emergence of spontaneous flows and collective motion.

  4. Optimal design of disc-type magneto-rheological brake for mid-sized motorcycle: experimental evaluation

    Science.gov (United States)

    Sohn, Jung Woo; Jeon, Juncheol; Nguyen, Quoc Hung; Choi, Seung-Bok

    2015-08-01

    In this paper, a disc-type magneto-rheological (MR) brake is designed for a mid-sized motorcycle and its performance is experimentally evaluated. The proposed MR brake consists of an outer housing, a rotating disc immersed in MR fluid, and a copper wire coiled around a bobbin to generate a magnetic field. The structural configuration of the MR brake is first presented with consideration of the installation space for the conventional hydraulic brake of a mid-sized motorcycle. The design parameters of the proposed MR brake are optimized to satisfy design requirements such as the braking torque, total mass of the MR brake, and cruising temperature caused by the magnetic-field friction of the MR fluid. In the optimization procedure, the braking torque is calculated based on the Herschel-Bulkley rheological model, which predicts MR fluid behavior well at high shear rate. An optimization tool based on finite element analysis is used to obtain the optimized dimensions of the MR brake. After manufacturing the MR brake, mechanical performances regarding the response time, braking torque and cruising temperature are experimentally evaluated.

  5. Geometric optimal design of a magneto-rheological brake considering different shapes for the brake envelope

    International Nuclear Information System (INIS)

    Nguyen, Q H; Lang, V T; Nguyen, N D; Choi, S B

    2014-01-01

    When designing a magneto-rheological brake (MRB), it is well known that the shape of the brake envelope significantly affects the performance characteristics of the brake. In this study, different shapes for the MR brake envelope, such as rectangular, polygonal or spline shape, are considered and the most suitable shape identified. MRBs with different envelope shapes are introduced followed by the derivation of the braking torque based on Bingham-plastic behavior of the magneto-rheological fluid (MRF). Optimization of the design of the MRB with different envelope shapes is then done. The optimization problem is to find the optimal value for the significant geometric dimensions of the MRB that can produce a certain required braking torque while the brake mass is minimized. A finite element analysis integrated with an optimization tool is employed to obtain optimal solutions for the MRBs. From the results, the most suitable shape for the brake envelope is identified and discussed with the reduction of mass. In addition, the results of the analysis are compared with the experimental results to verify the proposed optimal design characteristics. (paper)

  6. Geometric optimal design of a magneto-rheological brake considering different shapes for the brake envelope

    Science.gov (United States)

    Nguyen, Q. H.; Lang, V. T.; Nguyen, N. D.; Choi, S. B.

    2014-01-01

    When designing a magneto-rheological brake (MRB), it is well known that the shape of the brake envelope significantly affects the performance characteristics of the brake. In this study, different shapes for the MR brake envelope, such as rectangular, polygonal or spline shape, are considered and the most suitable shape identified. MRBs with different envelope shapes are introduced followed by the derivation of the braking torque based on Bingham-plastic behavior of the magneto-rheological fluid (MRF). Optimization of the design of the MRB with different envelope shapes is then done. The optimization problem is to find the optimal value for the significant geometric dimensions of the MRB that can produce a certain required braking torque while the brake mass is minimized. A finite element analysis integrated with an optimization tool is employed to obtain optimal solutions for the MRBs. From the results, the most suitable shape for the brake envelope is identified and discussed with the reduction of mass. In addition, the results of the analysis are compared with the experimental results to verify the proposed optimal design characteristics.

  7. A fully dynamic magneto-rheological fluid damper model

    International Nuclear Information System (INIS)

    Jiang, Z; Christenson, R E

    2012-01-01

    Control devices can be used to dissipate the energy of a civil structure subjected to dynamic loading, thus reducing structural damage and preventing failure. Semiactive control devices have received significant attention in recent years. The magneto-rheological (MR) fluid damper is a promising type of semiactive device for civil structures due to its mechanical simplicity, inherent stability, high dynamic range, large temperature operating range, robust performance, and low power requirements. The MR damper is intrinsically nonlinear and rate-dependent, both as a function of the displacement across the MR damper and the command current being supplied to the MR damper. As such, to develop control algorithms that take maximum advantage of the unique features of the MR damper, accurate models must be developed to describe its behavior for both displacement and current. In this paper, a new MR damper model that includes a model of the pulse-width modulated (PWM) power amplifier providing current to the damper, a proposed model of the time varying inductance of the large-scale 200 kN MR dampers coils and surrounding MR fluid—a dynamic behavior that is not typically modeled—and a hyperbolic tangent model of the controllable force behavior of the MR damper is presented. Validation experimental tests are conducted with two 200 kN large-scale MR dampers located at the Smart Structures Technology Laboratory (SSTL) at the University of Illinois at Urbana-Champaign and the Lehigh University Network for Earthquake Engineering Simulation (NEES) facility. Comparison with experimental test results for both prescribed motion and current and real-time hybrid simulation of semiactive control of the MR damper shows that the proposed MR damper model can accurately predict the fully dynamic behavior of the large-scale 200 kN MR damper. (paper)

  8. A magneto rheological hybrid damper for railway vehicles suspensions

    Directory of Open Access Journals (Sweden)

    Gheorghe GHITA

    2012-09-01

    Full Text Available High speed railway vehicles features a specific lateral oscillation resulting from the coupled lateral displacement and yaw of the wheelset which leads to a sinusoid movement of the wheelset along the track, transferred to the entire vehicle. The amplitude of this oscillation is strongly dependant on vehicle’s velocity. Over a certain value, namely the critical speed, the instability phenomenon so-called hunting occurs. To raise the vehicle’s critical speed different designs of the suspension all leading to a much stiffer vehicle can be envisaged. Different simulations prove that a stiffer central suspension will decrease the passenger’s comfort in terms of lateral accelerations of the carboy. The authors propose a semi-active magneto rheological suspension to improve the vehicle’s comfort at high speeds. The suspension has as executive elements hybrid magneto rheological dampers operating under sequential control strategy type balance logic. Using an original mathematical model for the lateral dynamics of the vehicle the responses of the system with passive and semi-active suspensions are simulated. It is shown that the semi-active suspension can improve the vehicle performances.

  9. Semi-active engine mount design using auxiliary magneto-rheological fluid compliance chamber

    Science.gov (United States)

    Mansour, H.; Arzanpour, S.; Golnaraghi, M. F.; Parameswaran, A. M.

    2011-03-01

    Engine mounts are used in the automotive industry to isolate engine and chassis by reducing the noise and vibration imposed from one to the other. This paper describes modelling, simulation and design of a semi-active engine mount that is designed specifically to address the complicated vibration pattern of variable displacement engines (VDE). The ideal isolation for VDE requires the stiffness to be switchable upon cylinder activation/deactivation operating modes. In order to have a modular design, the same hydraulic engine mount components are maintained and a novel auxiliary magneto-rheological (MR) fluid chamber is developed and retrofitted inside the pumping chamber. The new compliance chamber is a controllable pressure regulator, which can effectively alter the dynamic performance of the mount. Switching between different modes happens by turning the electrical current to the MR chamber magnetic coil on and off. A model has been developed for the passive hydraulic mount and then it is extended to include the MR auxiliary chamber as well. A proof-of-concept prototype of the design has been fabricated which validates the mathematical model. The results demonstrate unique capability of the developed semi-active mount to be used for VDE application.

  10. Simulation of a Magneto-Rheological Fluid Based, Jamming, Soft Gripper Using the Soft Sphere DEM in LIGGGHTS

    Science.gov (United States)

    Leps, Thomas; Hartzell, Christine; Wereley, Norman; Choi, Young

    2017-11-01

    Jamming soft grippers are excellent universal grippers due to their low dependence on the shape of objects to be grabbed, and low stiffness, mitigating the need for object shape data and expensive force control of a stiff system. These grippers now rely on jamming transitions of dry grains under atmospheric pressure to hold objects. In order to expand their use to space environments, a gripper using magnetic actuation of a magneto-rheological fluid (MR Gripper) is being developed. The MR fluid is a suspension of μm scale iron grains in a silicone oil. When un-magnetized the fluid behaves as a dense suspension with low Bagnold number. When magnetized, it behaves like a jammed granular material, with magnetic forces between the grains dominating. We are simulating the gripper using LIGGGHTS, an open-source soft sphere DEM code. We have modeled both the deformable gripper membrane and the MR fluid itself using the LIGGGHTS framework. To our knowledge, this is the first time that the induced magnetic dipoles required to accurately simulate the jamming behavior of MR fluids have been modeled in LIGGGHTS. This simulation allows the rapid optimization of the hardware and magnetic field geometries, as well as the fluid behavior, without time consuming, and costly prototype revisions.

  11. Reduction of magneto rheological dampers stiffness by incorporating of an eddy current damper

    Science.gov (United States)

    Asghar Maddah, Ali; Hojjat, Yousef; Reza Karafi, Mohammad; Reza Ashory, Mohammad

    2017-05-01

    In this paper, a hybrid damper is developed to achieve lower stiffness compared to magneto rheological dampers. The hybrid damper consists of an eddy current damper (ECD) and a Magneto Rheological Damper (MRD). The aim of this research is to reduce the stiffness of MRDs with equal damping forces. This work is done by adding an eddy current passive damper to a semi-active MRD. The ECDs are contactless dampers which show an almost viscous damping behavior without increasing the stiffness of a system. However, MRDs increase damping and stiffness of a system simultaneously, when a magnetic field is applied. Damping of each part is studied theoretically and experimentally. A semi-empirical model is developed to explain the viscoelastic behavior of the damper. The experimental results showed that the hybrid damper is able to dissipate energy as much as those of MRDs while its stiffness is 12% lower at a zero excitation current.

  12. Rheological behavior of drilling fluids under low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Lomba, Rosana F.T.; Sa, Carlos H.M. de; Brandao, Edimir M. [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas]. E-mails: rlomba, chsa, edimir@cenpes.petrobras.com.br

    2000-07-01

    The so-called solid-free fluids represent a good alternative to drill through productive zones. These drill-in fluids are known to be non-damaging to the formation and their formulation comprise polymers, salts and acid soluble solids. Xanthan gum is widely used as viscosifier and modified starch as fluid loss control additive. The salts most commonly used are sodium chloride and potassium chloride, although the use of organic salt brines has been increasing lately. Sized calcium carbonate is used as bridging material, when the situation requires. The low temperatures encountered during deep water drilling demand the knowledge of fluid rheology at this temperature range. The rheological behavior of drill-in fluids at temperatures as low as 5 deg C was experimentally evaluated. Special attention was given to the low shear rate behavior of the fluids. A methodology was developed to come up with correlations to calculate shear stress variations with temperature. The developed correlations do not depend on a previous choice of a rheological model. The results will be incorporated in a numerical simulator to account for temperature effects on well bore cleaning later on. (author)

  13. Determining Rheological Parameters of Generalized Yield-Power-Law Fluid Model

    Directory of Open Access Journals (Sweden)

    Stryczek Stanislaw

    2004-09-01

    Full Text Available The principles of determining rheological parameters of drilling muds described by a generalized yield-power-law are presented in the paper. Functions between tangent stresses and shear rate are given. The conditions of laboratory measurements of rheological parameters of generalized yield-power-law fluids are described and necessary mathematical relations for rheological model parameters given. With the block diagrams, the methodics of numerical solution of these relations has been presented. Rheological parameters of an exemplary drilling mud have been calculated with the use of this numerical program.

  14. Accurate torque control of a bi-directional magneto-rheological actuator considering hysteresis and friction effects

    International Nuclear Information System (INIS)

    Nguyen, Phuong-Bac; Choi, Seung-Bok

    2013-01-01

    This paper presents a novel type of magneto-rheological (MR) actuator called a bi-directional magneto-rheological (BMR) actuator and accurate torque control results considering both hysteresis and friction compensation. The induced torque of this actuator varies from negative to positive values. As a result, it can work as either a brake or a clutch depending on the scheme of current input. In our work, the configuration of the actuator as well as its driving system is presented first. Subsequently, a congruency hysteresis based (CBH) model to take account of the effect of the hysteresis is proposed. After that, a compensator based on this model is developed. In addition, the effect of dry friction, which exists inherently with MR actuators in general, is also considered. In order to assess the effectiveness of the hysteresis compensator, several experiments on modeling and control of the actuator with different waveforms are carried out. (paper)

  15. Accurate torque control of a bi-directional magneto-rheological actuator considering hysteresis and friction effects

    Science.gov (United States)

    Nguyen, Phuong-Bac; Choi, Seung-Bok

    2013-05-01

    This paper presents a novel type of magneto-rheological (MR) actuator called a bi-directional magneto-rheological (BMR) actuator and accurate torque control results considering both hysteresis and friction compensation. The induced torque of this actuator varies from negative to positive values. As a result, it can work as either a brake or a clutch depending on the scheme of current input. In our work, the configuration of the actuator as well as its driving system is presented first. Subsequently, a congruency hysteresis based (CBH) model to take account of the effect of the hysteresis is proposed. After that, a compensator based on this model is developed. In addition, the effect of dry friction, which exists inherently with MR actuators in general, is also considered. In order to assess the effectiveness of the hysteresis compensator, several experiments on modeling and control of the actuator with different waveforms are carried out.

  16. Rheology in Pharmaceutical Sciences

    DEFF Research Database (Denmark)

    Aho, Johanna; Hvidt, Søren; Baldursdottir, Stefania

    2016-01-01

    Rheology is the science of flow and deformation of matter. Particularly gels and non-Newtonian fluids, which exhibit complex flow behavior, are frequently encountered in pharmaceutical engineering and manufacturing, or when dealing with various in vivo fluids. Therefore understanding rheology......, together with the common measurement techniques and their practical applications. Examples of the use of rheological techniques in the pharmaceutical field, as well as other closely related fields such as food and polymer science, are also given....... is important, and the ability to use rheological characterization tools is of great importance for any pharmaceutical scientist involved in the field. Flow can be generated by shear or extensional deformations, or a combination of both. This chapter introduces the basics of both shear and extensional rheology...

  17. Numerical Model of a Hybrid Damping System Composed of a Buckling Restrained Brace with a Magneto Rheological Damper

    Directory of Open Access Journals (Sweden)

    Filip-Vacarescu Norin

    2016-03-01

    Full Text Available This paper discusses the concept of a hybrid damper made from a combination of two dissipative devices. A passive hysteretic device like steel Buckling Restrained Brace (BRB can be combined with a magneto-rheological (MR Fluid Damper in order to obtain a hybrid dissipative system. This system can work either as a semi-active system, if the control unit is available, or as a passive system, tuned for working according to performance based seismic engineering (PBSE scale of reference parameters (i.e. interstory drift.

  18. Design and modeling of semi-active squeeze film dampers using magneto-rheological fluids

    International Nuclear Information System (INIS)

    Kim, Keun-Joo; Lee, Chong-Won; Koo, Jeong-Hoi

    2008-01-01

    Conventional squeeze film dampers (SFDs) have shown their effectiveness in suppressing unbalanced vibrations in rotor systems, particularly supported by rolling element bearings. Recently, there is an increasing demand for 'controllable' SFDs to meet the need of modern rotating machinery, characterized by high operating speed and high load capacity. Thus, this paper presents a controllable semi-active SFD using magneto-rheological (MR) fluids, focusing on its design and modeling. It offers a comprehensive design method and an innovative experimental identification and modeling technique for MR-SFDs. The primary goal of the MR-SFD design is set to maximize its dynamic control bandwidth, and the design method includes the material selection, magnetic circuit analysis and sealing element design. After constructing a prototype MR-SFD based on the final design, this work investigated how some of the critical design parameters affect the performance of the MR-SFD (i.e. its dynamic control bandwidth change). Furthermore, it characterized the damper's dynamic behavior experimentally using a novel excitation method that adopts active magnetic bearing (AMB) units. Unlike conventional methods, the AMB system was able to precisely control the amplitude and frequency of the input excitation, enabling us to obtain the nonlinear dynamic stiffness properties of the MR-SFD with varying input current. In modeling the dynamic behavior of the MR-SFD, this study employed the describing function method. The describing function analysis effectively captured the nonlinear dynamic behavior of the MR-SFD

  19. Macroscopic and microscopic structural integrity in magnetic colloids-cationic micellar solution: Rheology, SANS and magneto-optical study

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Rajesh, E-mail: rjp@bhavuni.ed [Department of Physics, Bhavnagar University, Bhavnagar 364 022 (India); Upadhyay, R.V., E-mail: rvu.as@ecchanga.ac.i [Charotar Institute of Applied Sciences, Education Campus, Changa 388421, Anand, Gujarat (India); Aswal, V.K. [Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Joshi, J.V.; Goyal, P.S. [UGC- DAE Consortium for Scientific Research, Mumbai Centre, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2011-03-15

    A stable mixture of two colloid system composed of double surfactant coated aqueous nanomagnetic fluid and aqueous micellar solution of cationic micelles of cetyletrymethyl ammonium bromide (CTABr) is prepared as a function of nanomagnetic fluid concentration. This mixed system is analyzed using three techniques such as zero field and field induced viscosity measurements, Small Angle Neutron Scattering technique and magneto-optical birefringence measurements. In field induced viscosity measurement it is observed that even 20% magnetic fluid concentration in CTABr aqueous solution shows 75% increase in viscosity compared to pure magnetic fluid. This suggests that in presence of CTABr micelles, a novel magneto rheological effect for low concentration of magnetic fluid is observed. From SANS measurements it is observed that aggregation number and a/b ratio increases with magnetic fluid concentration and magnetic birefringence reveals non-superimpose behavior of normalized field induced retardation. Results of these experiments are compared and indicate zero fields and field induced structural integrity between magnetic particles and soft micelles. - Research Highlights: {yields} This study exhibits zero field and field induced structural integrity between soft micelles and magnetic nanoparticles. {yields} The techniques used are viscosity measurements, Small Angle Neutron Scattering technique and magneto-optical birefringence. {yields} Study is useful for magnetic hyperthermia via micelles, as soft actuators, as an artificial micro-muscles, micro-manipulators, etc.

  20. A controllable tactile device for human-like tissue realization using smart magneto-rheological fluids: fabrication and modeling

    Science.gov (United States)

    Cha, Seung-Woo; Kang, Seok-Rae; Hwang, Yong-Hoon; Oh, Jong-Seok; Choi, Seung-Bok

    2018-06-01

    This paper proposes a new tactile device to realize the force of human-like organs using the viscoelastic property by combing a smart magneto-rheological (MR) fluid with a sponge (MR sponge in short). The effectiveness of the sensor is validated through the comparison of the force obtained through measurement and the proposed prediction model. As the first step, a conventional standard linear solid model is adopted to independently investigate the force characteristics of MR fluid and sponge. Force is measured using a 3-axis robot with a force sensor to obtain certain properties of MR fluid and sponge. In addition, to show that the proposed MR sponge can realize the force of human-like tissues, experiments are performed using three specimens, i.e., porcine heart, lung, and liver. Subsequently, a quasi-static model for predicting the field-dependent force of the MR sponge is formulated using empirical values. It is demonstrated through comparison that the proposed force model can accurately predict the force of the specimens without significant error. In addition, a psychophysical test is carried out by ordinary subjects to validate the effectiveness of the proposed tactile device. Results show that the MR sponge tactile device can easily produce various levels of the force of human-like tissues, such as the liver and lung of the porcine, by controlling input current.

  1. Rheological Properties of Quasi-2D Fluids in Microgravity

    Science.gov (United States)

    Stannarius, Ralf; Trittel, Torsten; Eremin, Alexey; Harth, Kirsten; Clark, Noel; Maclennan, Joseph; Glaser, Matthew; Park, Cheol; Hall, Nancy; Tin, Padetha

    2015-01-01

    In recent years, research on complex fluids and fluids in restricted geometries has attracted much attention in the scientific community. This can be attributed not only to the development of novel materials based on complex fluids but also to a variety of important physical phenomena which have barely been explored. One example is the behavior of membranes and thin fluid films, which can be described by two-dimensional (2D) rheology behavior that is quite different from 3D fluids. In this study, we have investigated the rheological properties of freely suspended films of a thermotropic liquid crystal in microgravity experiments. This model system mimics isotropic and anisotropic quasi 2D fluids [46]. We use inkjet printing technology to dispense small droplets (inclusions) onto the film surface. The motion of these inclusions provides information on the rheological properties of the films and allows the study of a variety of flow instabilities. Flat films have been investigated on a sub-orbital rocket flight and curved films (bubbles) have been studied in the ISS project OASIS. Microgravity is essential when the films are curved in order to avoid sedimentation. The experiments yield the mobility of the droplets in the films as well as the mutual mobility of pairs of particles. Experimental results will be presented for 2D-isotropic (smectic-A) and 2D-nematic (smectic-C) phases.

  2. Basic research of electro-rheological gel drum for novel linear actuator

    Energy Technology Data Exchange (ETDEWEB)

    Koyanagi, K; Yamaguchi, T; Oshima, T [Toyama Prefectural University, Toyama (Japan); Kakinuma, Y [Keio University, Kanagawa (Japan); Anzai, H; Sakurai, K [Fujikura Kasei, Tochigi (Japan)], E-mail: koyanagi@pu-toyama.ac.jp

    2009-02-01

    In recent years, robots that coexist with human are under active researches. Such robots need high safety, backdriveability, large generative force, high speed response, good controllability, and so on. We have put emphasis on the backdriveability and created a novel prototype linear actuator with an ER (Electro-Rheological) gel, a new functional material. It is an all-purpose actuator satisfying characteristics for human-coexistence welfare robot.

  3. Numerical Modeling of Fluid-Structure Interaction with Rheologically Complex Fluids

    OpenAIRE

    Chen, Xingyuan

    2014-01-01

    In the present work the interaction between rheologically complex fluids and elastic solids is studied by means of numerical modeling. The investigated complex fluids are non-Newtonian viscoelastic fluids. The fluid-structure interaction (FSI) of this kind is frequently encountered in injection molding, food processing, pharmaceutical engineering and biomedicine. The investigation via experiments is costly, difficult or in some cases, even impossible. Therefore, research is increasingly aided...

  4. Design and characterization of a magneto-rheological series elastic actuator for a lower extremity exoskeleton

    Science.gov (United States)

    Chen, Bing; Zhao, Xuan; Ma, Hao; Qin, Ling; Liao, Wei-Hsin

    2017-10-01

    In this paper, an innovative actuator named magneto-rheological series elastic actuator (MRSEA) is designed for the knee joints of a lower extremity exoskeleton CUHK-EXO. MRSEA is designed to reduce the mechanical impedance of the exoskeleton and filter out unwanted collisions. It can also provide large controllable braking torque with low power, and hence improve the system energy efficiency. A description of CUHK-EXO developed to help paraplegic patients regain the mobility to stand up, sit down and walk is firstly introduced, followed by the mechanical design of MRSEA and simulation of the torsion spring pack (TSP) and magneto-rheological (MR) brake of MRSEA. Prototype of MRSEA is fabricated. Preliminary tests are performed to investigate the characteristics of the TSP and MR brake, and walking experiments with a paraplegic patient are performed to evaluate the performance of MRSEA. Experimental results of MRSEA match the modeling and simulation. As compared with the electric motor, the energy efficiency of the innovative MRSEA is improved by 52.8% during a gait cycle.

  5. Rheological properties of PHPA polymer support fluids

    OpenAIRE

    Lam, Carlos; Martin, P J; Jefferis, S A

    2015-01-01

    Synthetic polymer fluids are becoming a popular replacement for bentonite slurries to support excavations for deep foundation elements. However, the rheological properties of the polymer fluids used in excavation support have not been studied in detail, and there is currently confusion about the choice of mathematical models for this type of fluid. To advance the current state of knowledge, a laboratory study has been performed to investigate the steady-shear viscosity and transient viscoelas...

  6. Micromechanical analysis on anisotropy of structured magneto-rheological elastomer

    International Nuclear Information System (INIS)

    Li, R; Zhang, Z; Wang, X J; Chen, S W

    2015-01-01

    This paper investigates the equivalent elastic modulus of structured magneto-rheological elastomer (MRE) in the absence of magnetic field. We assume that both matrix and ferromagnetic particles are linear elastic materials, and ferromagnetic particles are embedded in matrix with layer-like structure. The structured composite could be divided into matrix layer and reinforced layer, in which the reinforced layer is composed of matrix and the homogenously distributed ferromagnetic particles in matrix. The equivalent elastic modulus of reinforced layer is analysed by the Mori-Tanaka method. Finite Element Method (FEM) is also carried out to illustrate the relationship between the elastic modulus and the volume fraction of ferromagnetic particles. The results show that the anisotropy of elastic modulus becomes noticeable, as the volume fraction of particles increases. (paper)

  7. Optimal design of a magneto-rheological brake absorber for torsional vibration control

    International Nuclear Information System (INIS)

    Nguyen, Q H; Choi, S B

    2012-01-01

    This research presents an optimal design of a magneto-rheological (MR) brake absorber for torsional vibration control of a rotating shaft. Firstly, the configuration of an MR brake absorber for torsional vibration control of a rotating shaft system is proposed. Then, the braking torque of the MR brake is derived based on the Bingham plastic model of the MR fluid. By assuming that the behaviour of the MR brake absorber is similar to that of a dry friction torsional damper, the optimal braking torque to control the torsional vibration is determined and validated by simulation. The optimal design problem of the MR brake absorber is then developed and a procedure to solve the optimal problem is proposed. Based on the proposed optimal design procedure, the optimal design of a specific rotating shaft system is performed. Vibration control performance of the shaft system employing the optimized MR brake absorber is then investigated through simulation and discussion on the results is given. (paper)

  8. Optimal design of a magneto-rheological brake absorber for torsional vibration control

    Science.gov (United States)

    Nguyen, Q. H.; Choi, S. B.

    2012-02-01

    This research presents an optimal design of a magneto-rheological (MR) brake absorber for torsional vibration control of a rotating shaft. Firstly, the configuration of an MR brake absorber for torsional vibration control of a rotating shaft system is proposed. Then, the braking torque of the MR brake is derived based on the Bingham plastic model of the MR fluid. By assuming that the behaviour of the MR brake absorber is similar to that of a dry friction torsional damper, the optimal braking torque to control the torsional vibration is determined and validated by simulation. The optimal design problem of the MR brake absorber is then developed and a procedure to solve the optimal problem is proposed. Based on the proposed optimal design procedure, the optimal design of a specific rotating shaft system is performed. Vibration control performance of the shaft system employing the optimized MR brake absorber is then investigated through simulation and discussion on the results is given.

  9. A minimax stochastic optimal semi-active control strategy for uncertain quasi-integrable Hamiltonian systems using magneto-rheological dampers

    DEFF Research Database (Denmark)

    Feng, Ju; Ying, Zu-Guang; Zhu, Wei-Qiu

    2012-01-01

    A minimax stochastic optimal semi-active control strategy for stochastically excited quasi-integrable Hamiltonian systems with parametric uncertainty by using magneto-rheological (MR) dampers is proposed. Firstly, the control problem is formulated as an n-degree-of-freedom (DOF) controlled, uncer...

  10. Chocolate rheology

    Directory of Open Access Journals (Sweden)

    Estela Vidal Gonçalves

    2010-12-01

    Full Text Available Rheology is the science that studies the deformation and flow of solids and fluids under the influence of mechanical forces. The rheological measures of a product in the stage of manufacture can be useful in quality control. The microstructure of a product can also be correlated with its rheological behavior allowing for the development of new materials. Rheometry permits attainment of rheological equations applied in process engineering, particularly unit operations that involve heat and mass transfer. Consumer demands make it possible to obtain a product that complies with these requirements. Chocolate industries work with products in a liquid phase in conching, tempering, and also during pumping operations. A good design of each type of equipment is essential for optimum processing. In the design of every process, it is necessary to know the physical characteristics of the product. The rheological behavior of chocolate can help to know the characteristics of application of the product and its consumers. Foods are generally in a metastable state. Their texture depends on the structural changes that occur during processing. Molten chocolate is a suspension with properties that are strongly affected by particle characteristics including not only the dispersed particles but also the fat crystals formed during chocolate cooling and solidification. Chocolate rheology is extensively studied, and it is known that chocolate texture and stability is strongly affected by the presence of specific crystals

  11. The effect of the volume fraction and viscosity on the compression and tension behavior of the cobalt-ferrite magneto-rheological fluids

    Directory of Open Access Journals (Sweden)

    H. Shokrollahi

    2016-03-01

    Full Text Available The purpose of this work is to investigate the effects of the volume fraction and bimodal distribution of solid particles on the compression and tension behavior of the Co-ferrite-based magneto-rheological fluids (MRFs containing silicon oil as a carrier. Hence, Co-ferrite particles (CoFe2O4 with two various sizes were synthesized by the chemical co-precipitation method and mixed so as to prepare the bimodal MRF. The X-Ray Diffraction (XRD analysis, Fourier Transform Infrared Spectroscopy (FTIR, Laser Particle Size Analysis (LPSA and Vibrating Sample Magnetometer (VSM were conducted to examine the structural and magnetic properties, respectively. The results indicated that the increase of the volume fraction has a direct increasing influence on the values of the compression and tension strengths of fluids. In addition, the compression and tension strengths of the mixed MRF sample (1.274 and 0.647 MPa containing 60 and 550 nm samples were higher than those of the MRF sample with the same volume fraction and uniform particle size of 550 nm.

  12. Activated Sludge Rheology

    DEFF Research Database (Denmark)

    Ratkovich, Nicolas Rios; Horn, Willi; Helmus, Frank

    2013-01-01

    Rheological behaviour is an important fluid property that severely impacts its flow behaviour and many aspects related to this. In the case of activated sludge, the apparent viscosity has an influence on e.g. pumping, hydrodynamics, mass transfer rates, sludge-water separation (settling and filtr...... rheological measurements. Moreover, the rheological models are not very trustworthy and remain very “black box”. More insight in the physical background needs 30 to be gained. A model-based approach with dedicated experimental data collection is the key to address this.......Rheological behaviour is an important fluid property that severely impacts its flow behaviour and many aspects related to this. In the case of activated sludge, the apparent viscosity has an influence on e.g. pumping, hydrodynamics, mass transfer rates, sludge-water separation (settling......, leading to varying results and conclusions. In this paper, a vast amount of papers are critically reviewed with respect to this and important flaws are highlighted with respect to rheometer choice, rheometer settings and measurement protocol. The obtained rheograms from experimental efforts have...

  13. Comparison of Anti-Reflective Coated and Uncoated Surfaces Figured by Pitch-Polishing and Magneto-Rheological Processes

    International Nuclear Information System (INIS)

    Chow, R.; Thomas, M.D.; Bickel, R.; Taylor, J.R.

    2002-01-01

    When completed, the National Ignition Facility (NIF) will provide laser energies in the Mega-joule range. Successful pulse amplification to these extremely high levels requires that all small optics, found earlier in the beamline, have stringent surface and laser fluence requirements. In addition, they must operate reliably for 30 years constituting hundreds of thousands of shots. As part of the first four beamlines, spherical and aspherical lenses were required for the beam relaying telescopes. The magneto-rheological technique allows for faster and more accurate finishing of aspheres. The spherical and aspherical lenses were final figured using both conventional-pitch polishing processes for high quality laser optics and the magneto-rheological finishing process. The purpose of this paper is to compare the surface properties between these two finishing processes. Some lenses were set aside from production for evaluation. The surface roughness in the mid-frequency range was measured and the scatter was studied. Laser damage testing at 1064 nm (3-ns pulse width) was performed on surfaces in both the uncoated and coated condition.

  14. Mechanical and electro-rheological properties of electrospun poly(vinyl alcohol) nanofibre mats filled with carbon black nanoparticles

    International Nuclear Information System (INIS)

    Chuangchote, Surawut; Sirivat, Anuvat; Supaphol, Pitt

    2007-01-01

    The present contribution reports, for the first time, the mechanical and electro-rheological properties of electrospun poly(vinyl alcohol) (PVA) nanofibre mats with or without the incorporation of carbon black (CB) nanoparticles. The effects of sonication and the addition of CB on morphological appearance, average diameter of the as-spun fibre mats, and that of the individual fibres, were thoroughly investigated. Incorporation of CB (1-10% based on the weight of PVA) in 10% w/v PVA solution did not affect the morphology and average diameter of the obtained fibres (∼160 nm), but it affected both the mechanical and the electro-rheological properties of the as-spun PVA/CB fibre mats, in which the mats became more rigid with the addition and increasing amount of CB

  15. Fluids in crustal deformation: Fluid flow, fluid-rock interactions, rheology, melting and resources

    Science.gov (United States)

    Lacombe, Olivier; Rolland, Yann

    2016-11-01

    Fluids exert a first-order control on the structural, petrological and rheological evolution of the continental crust. Fluids interact with rocks from the earliest stages of sedimentation and diagenesis in basins until these rocks are deformed and/or buried and metamorphosed in orogens, then possibly exhumed. Fluid-rock interactions lead to the evolution of rock physical properties and rock strength. Fractures and faults are preferred pathways for fluids, and in turn physical and chemical interactions between fluid flow and tectonic structures, such as fault zones, strongly influence the mechanical behaviour of the crust at different space and time scales. Fluid (over)pressure is associated with a variety of geological phenomena, such as seismic cycle in various P-T conditions, hydrofracturing (including formation of sub-horizontal, bedding-parallel veins), fault (re)activation or gravitational sliding of rocks, among others. Fluid (over)pressure is a governing factor for the evolution of permeability and porosity of rocks and controls the generation, maturation and migration of economic fluids like hydrocarbons or ore forming hydrothermal fluids, and is therefore a key parameter in reservoir studies and basin modeling. Fluids may also help the crust partially melt, and in turn the resulting melt may dramatically change the rheology of the crust.

  16. Rheological phenomena in focus

    CERN Document Server

    Boger, DV

    1993-01-01

    More than possibly any other scientific discipline, rheology is easily visualized and the relevant literature contains many excellent photographs of unusual and often bizarre phenomena. The present book brings together these photographs for the first time. They are supported by a full explanatory text. Rheological Phenomena in Focus will be an indispensable support manual to all those who teach rheology or have to convince colleagues of the practical relevance of the subject within an industrial setting. For those who teach fluid mechanics, the book clearly illustrates the difference be

  17. Dramatic effect of fluid chemistry on cornstarch suspensions : Linking particle interactions to macroscopic rheology

    NARCIS (Netherlands)

    Oyarte Galvez, Loreto; de Beer, Sissi; van der Meer, Devaraj; Pons, Adeline

    2017-01-01

    Suspensions of cornstarch in water exhibit strong dynamic shear-thickening. We show that partly replacing water by ethanol strongly alters the suspension rheology. We perform steady and non-steady rheology measurements combined with atomic force microscopy to investigate the role of fluid chemistry

  18. Molecular Rheology of Complex Fluids

    DEFF Research Database (Denmark)

    Huang, Qian; Rasmussen, Henrik Koblitz

    following a stress maximum were reported for two LDPE melts. However the rheological significance of the stress maximum as well as the existence of steady flow conditions following the maximum is still a matter of some debate. This thesis focuses on the experimental study of extensional rheology of linear...... and branched polymer melts. We report the stress–strain measurements in extensional flows using a unique Filament Stretching Rheometer (FSR) in controlled strain rate mode and controlled stress mode. Extensional flow is difficult to measure reliably in Laboratory circumstances. In this thesis we first present...

  19. The rheological properties of shear thickening fluid reinforced with SiC nanowires

    Directory of Open Access Journals (Sweden)

    Jianhao Ge

    Full Text Available The rheological properties of shear thickening fluid (STF reinforced with SiC nanowires were investigated in this paper. Pure STF consists of 56 vol% silica nano-particles and polyethylene glycol 400 (PEG 400 solvent was fabricated; and a specific amount of SiC nanowires were dispersed into this pure STF, and then the volume fraction of PEG400 was adjusted to maintain the volume fraction of solid phase in the STF at a constant of 56%. The results showed there was almost 30% increase in the initial and shear thickening viscosity of the STF reinforced with SiC nanowires compared to the pure STF. Combining with the hydrodynamic cluster theory, the effect of the mechanism of SiC nanowire on the viscosity of STF was discussed, and based on the experimental results, an analytical model of viscosity was used to describe the rheological properties of STF, which agreed with the experimental results. Keywords: Shear thickening fluid (STF, Nanowire, Rheology, Viscosity, Analytical model

  20. Dynamic rheological properties of viscoelastic magnetic fluids in uniform magnetic fields

    International Nuclear Information System (INIS)

    Yamaguchi, Hiroshi; Niu Xiaodong; Ye Xiaojiang; Li Mingjun; Iwamoto, Yuhiro

    2012-01-01

    The dynamic rheological properties of viscoelastic magnetic fluids in externally applied uniform magnetic fields are investigated by a laboratory-made cone-plate rheometer in this study. In particular, the effects of the magnetic field on the viscoelastic properties (the complex dynamic modulus) of the viscoelastic magnetic fluids are studied. In the investigation, three viscoelastic magnetic fluids are made by mixing a magnetic fluid and a viscoelastic fluid with different mass ratios. As a supplementation to the experimental investigation, a theoretical analysis is also presented. The present study shows that the viscosity and elasticity of the viscoelastic magnetic fluids are significantly influenced by the magnetic field and the concentrations of the magnetic particles in the test fluids. Theoretical analysis qualitatively explains the present findings. - Highlights: ► The dynamic rheological properties of the viscoelastic magnetic fluids in uniform magnetic fields are investigated. ► Both the magnetic field strength and the concentration of the magnetic particles in the fluids have significant effects on the viscosity and elasticity of the viscoelastic magnetic fluids. ► Theoretical prediction and analysis qualitatively explains the present findings.

  1. Influence of clay and surfactant content in non-aqueous fluid rheology

    International Nuclear Information System (INIS)

    Guedes, I.C.; Gomes, N.L.; Menezes, R.R.; Campos, L.F.A.; Ferreira, H.S.

    2012-01-01

    The bentonite clay used as viscosity agent in the production of non-aqueous fluids cannot be used without organic treatment for their surfaces to become hydrophobic. These clays are called organophilic clays, and are generally obtained by adding, in an aqueous way, ionic or a nonionic surfactant. Recent studies of the variables involved in the dispersion of bentonite clays and in the process of organophilization, showed their lack of influence. This work aims to study the influence of clay content and surfactants on the rheology of nonaqueous fluids. To this end, the clays were treats and characterized, evidencing the incorporation of the surfactant, and then formulated non-aqueous fluids, following PETROBRAS standards, being possible to verify the influence of clay content and surfactant both from the point of view as the characterizing and rheological behavior. (author)

  2. Design of a 7-DOF haptic master using a magneto-rheological devices for robot surgery

    Science.gov (United States)

    Kang, Seok-Rae; Choi, Seung-Bok; Hwang, Yong-Hoon; Cha, Seung-Woo

    2017-04-01

    This paper presents a 7 degrees-of-freedom (7-DOF) haptic master which is applicable to the robot-assisted minimally invasive surgery (RMIS). By utilizing a controllable magneto-rheological (MR) fluid, the haptic master can provide force information to the surgeon during surgery. The proposed haptic master consists of three degrees motions of X, Y, Z and four degrees motions of the pitch, yaw, roll and grasping. All of them have force feedback capability. The proposed haptic master can generate the repulsive forces or torques by activating MR clutch and MR brake. Both MR clutch and MR brake are designed and manufactured with consideration of the size and output torque which is usable to the robotic surgery. A proportional-integral-derivative (PID) controller is then designed and implemented to achieve torque/force tracking trajectories. It is verified that the proposed haptic master can track well the desired torque and force occurred in the surgical place by controlling the input current applied to MR clutch and brake.

  3. Effect of rock rheology on fluid leak- off during hydraulic fracturing

    Science.gov (United States)

    Yarushina, V. M.; Bercovici, D.; Oristaglio, M. L.

    2012-04-01

    In this communication, we evaluate the effect of rock rheology on fluid leak­off during hydraulic fracturing of reservoirs. Fluid leak-off in hydraulic fracturing is often nonlinear. The simple linear model developed by Carter (1957) for flow of fracturing fluid into a reservoir has three different regions in the fractured zone: a filter cake on the fracture face, formed by solid additives from the fracturing fluid; a filtrate zone affected by invasion of the fracturing fluid; and a reservoir zone with the original formation fluid. The width of each zone, as well as its permeability and pressure drop, is assumed to remain constant. Physical intuition suggests some straightforward corrections to this classical theory to take into account the pressure dependence of permeability, the compressibility or non-Newtonian rheology of fracturing fluid, and the radial (versus linear) geometry of fluid leak­off from the borehole. All of these refinements, however, still assume that the reservoir rock adjacent to the fracture face is non­deformable. Although the effect of poroelastic stress changes on leak-off is usually thought to be negligible, at the very high fluid pressures used in hydraulic fracturing, where the stresses exceed the rock strength, elastic rheology may not be the best choice. For example, calculations show that perfectly elastic rock formations do not undergo the degree of compaction typically seen in sedimentary basins. Therefore, pseudo-elastic or elastoplastic models are used to fit observed porosity profiles with depth. Starting from balance equations for mass and momentum for fluid and rock, we derive a hydraulic flow equation coupled with a porosity equation describing rock compaction. The result resembles a pressure diffusion equation with the total compressibility being a sum of fluid, rock and pore-space compressibilities. With linear elastic rheology, the bulk formation compressibility is dominated by fluid compressibility. But the possibility

  4. MATHEMATICAL MODEL OF THE RHEOLOGICAL BEHAVIOR OF VISCOPLASTIC FLUID, WHICH DEMONSTRATES THE EFFECT OF “SOLIDIFICATION”

    Directory of Open Access Journals (Sweden)

    V. N. Kolodezhnov

    2014-01-01

    Full Text Available Summary. The irregular behavior of some kinds of suspensions on the basis of polymeric compositions and fine-dispersed fractions is characterized. As a simple, one-dimensional, shearing, viscometric flow such materials demonstrate the following mechanical behavior. There is no deformation if the shear stress does not exceed a certain critical value. If this critical value is exceeded, the flow is begins. This behavior is well-known and corresponds to the rheological models of viscoplastic fluid. However, further increase in the shear rate results in “solidification”. The rheological model of such viscoplastic fluids, mechanical behavior demonstrating the “solidification” effect is offered . This model contains four empirical parameters. The impact of the exponent on the dependence of the shearing stress and effective viscosity on the shear rate in the rheological model is graphically presented. The rheological model extrapolation on the three-dimensional flow is proposed.

  5. On shear rheology of gel propellants

    Energy Technology Data Exchange (ETDEWEB)

    Rahimi, Shai; Peretz, Arie [RAFAEL, MANOR Propulsion and Explosive Systems Division, Haifa (Israel); Natan, Benveniste [Faculty of Aerospace Engineering, Technion - Israel Institute of Technology, Haifa (Israel)

    2007-04-15

    Selected fuel, oxidizer and simulant gels were prepared and rheologically characterized using a rotational rheometer. For fuel gelation both organic and inorganic gellants were utilized, whereas oxidizers and simulants were gelled with addition of silica and polysaccharides, respectively. The generalized Herschel-Bulkley constitutive model was found to most adequately represent the gels studied. Hydrazine-based fuels, gelled with polysaccharides, were characterized as shear-thinning pseudoplastic fluids with low shear yield stress, whereas inhibited red-fuming nitric acid (IRFNA) and hydrogen peroxide oxidizers, gelled with silica, were characterized as yield thixotropic fluids with significant shear yield stress. Creep tests were conducted on two rheological types of gels with different gellant content and the results were fitted by Burgers-Kelvin viscoelastic constitutive model. The effect of temperature on the rheological properties of gel propellant simulants was also investigated. A general rheological classification of gel propellants and simulants is proposed. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  6. Regime of aggregate structures and magneto-rheological characteristics of a magnetic rod-like particle suspension: Monte Carlo and Brownian dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Kazuya [School of Akita Prefectural University, Yurihonjo (Japan); Satoh, Akira, E-mail: asatoh@akita-pu.ac.jp [Department of Machine Intelligence and System Engineering, Akita Prefectural University, Yurihonjo (Japan)

    2017-09-01

    Highlights: • Monte Carlo simulations have been employed for the aggregate structures. • Brownian dynamics simulations have been employed for the magneto-rheology. • Even a weak shear flow induces a significant regime change in the aggregates. • A strong external magnetic field drastically changes the aggregates. • The dependence of the viscosity on these factors is governed in a complex manner. - Abstract: In the present study, we address a suspension composed ferromagnetic rod-like particles to elucidate a regime change in the aggregate structures and the magneto-rheological characteristics. Monte Carlo simulations have been employed for investigating the aggregate structures in thermodynamic equilibrium, and Brownian dynamics simulations for magneto-rheological features in a simple shear flow. The main results obtained here are summarized as follows. For the case of thermodynamic equilibrium, the rod-like particles aggregate to form thick chain-like clusters and the neighboring clusters incline in opposite directions. If the external magnetic field is increased, the thick chain-like clusters in the magnetic field direction grow thicker by adsorbing the neighboring clusters that incline in the opposite direction. Hence, a significant phase change in the particle aggregates is not induced by an increase in the magnetic field strength. For the case of a simple shear flow, even a weak shear flow induces a significant regime change from the thick chain-like clusters of thermodynamic equilibrium into wall-like aggregates composed of short raft-like clusters. A strong external magnetic field drastically changes these aggregates into wall-like aggregates composed of thick chain-like clusters rather than the short raft-like clusters. The internal structure of these aggregates is not strongly influenced by a shear flow, and the formation of the short raft-like clusters is maintained inside the aggregates. The main contribution to the net viscosity is the

  7. Temperature control of an automotive engine cooling system utilizing a magneto-rheological fan clutch

    International Nuclear Information System (INIS)

    Kim, Eun-Seok; Choi, Seung-Bok; Park, Young-Gee; Lee, Soojin

    2010-01-01

    In this note, the temperature control of an automotive engine cooling system is undertaken using a magneto-rheological (MR) fluid-based fan clutch (MR fan clutch in short). In order to achieve this goal, an appropriate size of controllable fan clutch using an MR fluid is firstly devised by considering the design parameters of a conventional fan clutch to reflect the practical application. Then, the principal design parameters of the MR fan clutch such as the length of the disc are optimally determined through finite element analysis. The drum-type MR fan clutch is manufactured and its time response to input current is experimentally evaluated. A robust sliding mode controller is then formulated by treating the time constant of the fan clutch system as an uncertain parameter. After identifying the relationship between angular velocity of the MR fan clutch and the temperature of the cooling system, the sliding mode controller is experimentally realized for the cooling system. It has been clearly demonstrated that the proposed sliding mode controller follows well the desired temperature with a small regulating error. It is expected from this feasibility work that the proposed control system associated with an MR fan clutch can be effectively utilized for the automotive cooling system to improve the fuel efficiency. (technical note)

  8. Analogy between dynamics of thermo-rheological and piezo-rheological pendulums

    International Nuclear Information System (INIS)

    Hedrih, K

    2008-01-01

    The constitutive stress-strain relations of the standard thermo-rheological and piezo-rheological hereditary element in differential form as well as in two different integro-differential forms are defined. The considered problem of a thermo-rheological hereditary discrete system nonlinear dynamics in the form of thermo-rheological double pendulum system with coupled pendulums gets the significance of two constrained bodies in plane motion problem, as a problem important for studying a sensor dynamics or actuator dynamics in active structure dynamics. System of the averaged equations in the first approximation for amplitudes and phases are derived and qualitatively analyzed. Analogy between nonlinear dynamics of the double pendulum systems with thermo-rheological and piezo-rheological properties between pendulums is pointed out

  9. Attenuation of seismic waves and the universal rheological model of the Earth's mantle

    Science.gov (United States)

    Birger, B. I.

    2007-08-01

    Analysis of results of laboratory studies on creep of mantle rocks, data on seismic wave attenuation in the mantle, and rheological micromechanisms shows that the universal, i.e., relevant to all time scales, rheological model of the mantle can be represented as four rheological elements connected in series. These elements account for elasticity, diffusion rheology, high temperature dislocation rheology, and low temperature dislocation rheology. The diffusion rheology element is described in terms of a Newtonian viscous fluid. The high temperature dislocation rheology element is described by the rheological model previously proposed by the author. This model is a combination of a power-law non-Newtonian fluid model for stationary flows and the linear hereditary Andrade model for flows associated with small strains. The low temperature dislocation rheology element is described by the linear hereditary Lomnitz model.

  10. Initial rheological description of high performance concretes

    Directory of Open Access Journals (Sweden)

    Alessandra Lorenzetti de Castro

    2006-12-01

    Full Text Available Concrete is defined as a composite material and, in rheological terms, it can be understood as a concentrated suspension of solid particles (aggregates in a viscous liquid (cement paste. On a macroscopic scale, concrete flows as a liquid. It is known that the rheological behavior of the concrete is close to that of a Bingham fluid and two rheological parameters regarding its description are needed: yield stress and plastic viscosity. The aim of this paper is to present the initial rheological description of high performance concretes using the modified slump test. According to the results, an increase of yield stress was observed over time, while a slight variation in plastic viscosity was noticed. The incorporation of silica fume showed changes in the rheological properties of fresh concrete. The behavior of these materials also varied with the mixing procedure employed in their production. The addition of superplasticizer meant that there was a large reduction in the mixture's yield stress, while plastic viscosity remained practically constant.

  11. Surface rheology and interface stability.

    Energy Technology Data Exchange (ETDEWEB)

    Yaklin, Melissa A.; Cote, Raymond O.; Moffat, Harry K.; Grillet, Anne Mary; Walker, Lynn; Koehler, Timothy P.; Reichert, Matthew D. (Carnegie Mellon University, Pittsburgh, PA); Castaneda, Jaime N.; Mondy, Lisa Ann; Brooks, Carlton, F.

    2010-11-01

    We have developed a mature laboratory at Sandia to measure interfacial rheology, using a combination of home-built, commercially available, and customized commercial tools. An Interfacial Shear Rheometer (KSV ISR-400) was modified and the software improved to increase sensitivity and reliability. Another shear rheometer, a TA Instruments AR-G2, was equipped with a du Nouey ring, bicone geometry, and a double wall ring. These interfacial attachments were compared to each other and to the ISR. The best results with the AR-G2 were obtained with the du Nouey ring. A Micro-Interfacial Rheometer (MIR) was developed in house to obtain the much higher sensitivity given by a smaller probe. However, it was found to be difficult to apply this technique for highly elastic surfaces. Interfaces also exhibit dilatational rheology when the interface changes area, such as occurs when bubbles grow or shrink. To measure this rheological response we developed a Surface Dilatational Rheometer (SDR), in which changes in surface tension with surface area are measured during the oscillation of the volume of a pendant drop or bubble. All instruments were tested with various surfactant solutions to determine the limitations of each. In addition, foaming capability and foam stability were tested and compared with the rheology data. It was found that there was no clear correlation of surface rheology with foaming/defoaming with different types of surfactants, but, within a family of surfactants, rheology could predict the foam stability. Diffusion of surfactants to the interface and the behavior of polyelectrolytes were two subjects studied with the new equipment. Finally, surface rheological terms were added to a finite element Navier-Stokes solver and preliminary testing of the code completed. Recommendations for improved implementation were given. When completed we plan to use the computations to better interpret the experimental data and account for the effects of the underlying bulk

  12. The rheology applied to the fluids used in perforation of wells of petroleum

    International Nuclear Information System (INIS)

    Sierra Restrepo, Carlos Mario

    1997-01-01

    The properties of flow of the drilling fluids should be controlled, because they play a very important paper when we are drilling a well and a wrong behaviour could occasion serious problems. These properties are in great part consequence of their viscosity or more exactly of their rheology. The drilling fluids are too complex and the relationship between shear stress and shear rate is not considered as a linear relation that passes for the origin, like it is the case of the Newtonian fluids for the one which they are classified like n on Newtonian fluids . Also, they should conquer a certain grade of internal resistance in order to begin to flow. There is not a mathematical equation that describes the rheology of all the non-Newtonian fluids exactly. On the other hand, they have proposed several equations that approach the true relationship shear stress -shear rate. Those that have shown more satisfactory outputs are: The Bingham plastic model, the power-law model, and the power-law modified model

  13. Magneto-rheological suspensions for improving ground vehicle's ride comfort, stability, and handling

    Science.gov (United States)

    Ahmadian, Mehdi

    2017-10-01

    A state-of-the-art discussion on the applications of magneto-rheological (MR) suspensions for improving ride comfort, handling, and stability in ground vehicles is discussed for both road and rail applications. A historical perspective on the discovery and engineering development of MR fluids is presented, followed by some of the common methods for modelling their non-Newtonian behaviour. The common modes of the MR fluids are discussed, along with the application of the fluid in valve mode for ground vehicles' dampers (or shock absorbers). The applications span across nearly all road vehicles, including automobiles, trains, semi-trucks, motorcycles, and even bicycles. For each type of vehicle, the results of some of the past studies is presented briefly, with reference to the originating study. It is discussed that Past experimental and modelling studies have indicated that MR suspensions provide clear advantages for ground vehicles that far surpasses the performance of passive suspension. For rail vehicles, the primary advantage is in terms of increasing the speed at which the onset of hunting occurs, whereas for road vehicles - mainly automobiles - the performance improvements are in terms of a better balance between vehicle ride, handling, and stability. To further elaborate on this point, a single-suspension model is used to develop an index-based approach for studying the compromise that is offered by vehicle suspensions, using the H2 optimisation approach. Evaluating three indices based on the sprung-mass acceleration, suspension rattlespace, and tyre deflection, it is clearly demonstrated that MR suspensions significantly improve road vehicle's ride comfort, stability, and handling in comparison with passive suspensions. For rail vehicles, the simulation results indicate that using MR suspensions with an on-off switching control can increase the speed at which the on-set of hunting occurs by as much as 50% to more than 300%.

  14. Characterization of fasted human gastric fluid for relevant rheological parameters and gastric lipase activities

    DEFF Research Database (Denmark)

    Pedersen, Pernille Barbre; Vilmann, Peter; Bar-Shalom, Daniel

    2013-01-01

    be considered important during development of gastric simulated media. Further, the activity of the HGL is active even under fasted gastric conditions and might contribute to the digestion and emulsification of lipid-based drug delivery systems in the entire gastrointestinal tract. HGL should therefore......PURPOSE: To characterize human gastric fluid with regard to rheological properties and gastric lipase activity. In addition, traditional physicochemical properties were determined. METHODS: Fasted HGA were collected from 19 healthy volunteers during a gastroscopic examination. Rheological...... be considered in gastric evaluation of lipid-based drug delivery systems....

  15. Thermo-controlled rheology of electro-assembled polyanionic polysaccharide (alginate) and polycationic thermo-sensitive polymers.

    Science.gov (United States)

    Niang, Pape Momar; Huang, Zhiwei; Dulong, Virginie; Souguir, Zied; Le Cerf, Didier; Picton, Luc

    2016-03-30

    Several thermo-sensitive polyelectrolyte complexes were prepared by ionic self-association between an anionic polysaccharide (alginate) and a monocationic copolymer (polyether amine, Jeffamine®-M2005) with a 'Low Critical Solubility Temperature' (LCST). We show that electro-association must be established below the aggregation temperature of the free Jeffamine®, after which the organization of the system is controlled by the thermo-association of Jeffamine® that was previously electro-associated with the alginate. Evidence for this comes primarily from the rheology in the semi-dilute region. Electro- and thermo-associative behaviours are optimal at a pH corresponding to maximum ionization of both compounds (around pH 7). High ionic strength could prevent the electro-association. The reversibility of the transition is possible only at temperatures lower than the LCST of Jeffamine®. Similar behaviour has been obtained with carboxymethyl cellulose (CMC), which suggests that this behaviour can be observed using a range of anionic polyelectrolytes. In contrast, no specific properties have been found for pullulan, which is a neutral polysaccharide. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Rheology modification in mixed shape colloidal dispersions. Part I: pure components

    NARCIS (Netherlands)

    ten Brinke, A.J.W.; Bailey, L.; Lekkerkerker, H.N.W.; Matiland, G.C.

    2007-01-01

    The flow behaviour and rheology of colloidal dispersions are of considerable interest in many applications, for example colloidal clay particles find applications in oilfield and constructiondrilling fluids. The rheological properties of such fluids can be enhanced significantly by adding colloidal

  17. Modeling and Design of an Electro-Rheological Fluid Based Haptic System for Tele-Operation of Space Robots

    Science.gov (United States)

    Mavroidis, Constantinos; Pfeiffer, Charles; Paljic, Alex; Celestino, James; Lennon, Jamie; Bar-Cohen, Yoseph

    2000-01-01

    For many years, the robotic community sought to develop robots that can eventually operate autonomously and eliminate the need for human operators. However, there is an increasing realization that there are some tasks that human can perform significantly better but, due to associated hazards, distance, physical limitations and other causes, only robot can be employed to perform these tasks. Remotely performing these types of tasks requires operating robots as human surrogates. While current "hand master" haptic systems are able to reproduce the feeling of rigid objects, they present great difficulties in emulating the feeling of remote/virtual stiffness. In addition, they tend to be heavy, cumbersome and usually they only allow limited operator workspace. In this paper a novel haptic interface is presented to enable human-operators to "feel" and intuitively mirror the stiffness/forces at remote/virtual sites enabling control of robots as human-surrogates. This haptic interface is intended to provide human operators intuitive feeling of the stiffness and forces at remote or virtual sites in support of space robots performing dexterous manipulation tasks (such as operating a wrench or a drill). Remote applications are referred to the control of actual robots whereas virtual applications are referred to simulated operations. The developed haptic interface will be applicable to IVA operated robotic EVA tasks to enhance human performance, extend crew capability and assure crew safety. The electrically controlled stiffness is obtained using constrained ElectroRheological Fluids (ERF), which changes its viscosity under electrical stimulation. Forces applied at the robot end-effector due to a compliant environment will be reflected to the user using this ERF device where a change in the system viscosity will occur proportionally to the force to be transmitted. In this paper, we will present the results of our modeling, simulation, and initial testing of such an

  18. Effect of the fructose and glucose concentration on the rheological ...

    African Journals Online (AJOL)

    Jose Luis Montañez Soto

    2013-03-20

    Mar 20, 2013 ... Key words: High fructose syrups, viscosity, rheological behavior, Newtonian fluids. ... shear rate; ºBrix, soluble solids %; K, consistency index; n, flow behavior index. ... the correlations between rheological measurements and.

  19. Rheology for chemists an introduction

    CERN Document Server

    Goodwin, J W

    2008-01-01

    Rheology is primarily concerned with materials: scientific, engineering and everyday products whose mechanical behaviour cannot be described using classical theories. From biological to geological systems, the key to understanding the viscous and elastic behaviour firmly rests in the relationship between the interactions between atoms and molecules and how this controls the structure, and ultimately the physical and mechanical properties. Rheology for Chemists An Introduction takes the reader through the range of rheological ideas without the use of the complex mathematics. The book gives particular emphasis on the temporal behaviour and microstructural aspects of materials, and is detailed in scope of reference. An excellent introduction to the newer scientific areas of soft matter and complex fluid research, the second edition also refers to system dimension and the maturing of the instrumentation market. This book is a valuable resource for practitioners working in the field, and offers a comprehensive int...

  20. An experimental artificial-neural-network-based modeling of magneto-rheological fluid dampers

    International Nuclear Information System (INIS)

    Tudón-Martínez, J C; Lozoya-Santos, J J; Morales-Menendez, R; Ramirez-Mendoza, R A

    2012-01-01

    A static model for a magneto-rheological (MR) damper based on artificial neural networks (ANNs) is proposed, and an intensive and experimental study is presented for designing the ANN structure. The ANN model does not require time delays in the input vector. Besides the electric current signal, only one additional sensor is used to achieve a reliable MR damper structure. The model is experimentally validated with two commercial MR dampers of different characteristics: MR 1 damper with continuous actuation and MR 2 damper with two levels of actuation. The error to signal ratio (ESR) index is used to measure the model accuracy; for both MR dampers, an average value of 6.03% of total error is obtained from different experiments, which are designed to explore the nonlinearities of the MR phenomenon at different frequencies by including the impact of the electric current fluctuations. The proposed ANN model is compared with other well known parametric models; the qualitative and quantitative comparison among the models highlights the advantages of the ANN for representing a commercial MR damper. The ESR index was reduced by the ANN-based model by up to 29% with respect to the parametric models for the MR 1 damper and up to 40% for the MR 2 damper. The force–velocity diagram is used to compare the modeling properties of each approach: (1) the Bingham model cannot describe the hysteresis of both MR dampers and the distribution function of the modeled force varies from the experimental data, (2) the algebraic models have complications in representing the nonlinear behavior of the asymmetric damper (MR 2 ) and, (3) the ANN-based MR damper can model the nonlinearities of both MR dampers and presents good scalability; the accuracy of the results supports the use of this model for the validation of semi-active suspension control systems for a vehicle, by using nonlinear simulations. (paper)

  1. Dynamic characterization and modeling of magneto-rheological elastomers under compressive loadings

    International Nuclear Information System (INIS)

    Koo, J H; Khan, F; Jang, D D; Jung, H J

    2009-01-01

    The primary goal of this paper is to characterize and model the compression properties of Magneto-Rheological Elastomers (MREs). MRE samples were fabricated by curing a two component elastomer resin with 30% content of 10 μm sized iron particles by volume. In order to vary the magnetic field during compressive testing, a test fixture was designed and fabricated in which two permanent magnets could be variably positioned on either side of the specimen. By changing the distance between the magnets, the fixture allowed for varying the magnetic field that passes uniformly through the sample. Using this test setup and a dynamic test frame, a series of compression tests of MRE samples was performed by varying the magnetic field and frequency of loading. The results show the MR effect (percent increase in the materials 'stiffness') increases as the magnetic field increases and loading frequency increases within the range of the magnetic field and input frequency considered in this study. Furthermore, a phenomenological model was developed to capture the dynamic behaviours of the MREs under compression loadings.

  2. Water and clay based drilling fluids: rheologic, filtration and lubricity behavior; Fluidos hidroargilosos: comportamento reologico, de filtracao e lubricidade

    Energy Technology Data Exchange (ETDEWEB)

    Amorim, Luciana V.; Pereira, Melquesedek S.; Ferreira, Heber C. [Universidade Federal de Campina Grande (UFCG), PB (Brazil)

    2008-07-01

    The aim of this work is to provide continuity for UFCG studies presenting results of rheological, filtration and the lubricity behaviors obtained with fluids prepared with bentonite clays from Paraiba, in binary compositions, after treatment with lubricants agents. It was selected two samples of bentonite clays and four lubricants (Lub 1, Lub 2, Lub 3 and Lub 4). The results showed that: depending on the composition, the drilling fluids presented bingham and pseudo plastic rheological behaviors, and with the additives bingham behavior; among the rheological and filtration properties evaluated, the apparent viscosity, yield limiting and the water loss are the have changes with the addition of lubricants; the values of the lubricity coefficient (LC) of fluids without additives were next of 0.50, independent of the composition of the bentonite clay mixture; after addition of the lubricants, the LC of fluids reduced for values next to 0,11, independent of its concentration and lubricants the best-performing are the Lub 2 and Lub 4. (author)

  3. Experimental study of improved rheology and lubricity of drilling fluids enhanced with nano-particles

    Science.gov (United States)

    Bég, O. Anwar; Espinoza, D. E. Sanchez; Kadir, Ali; Shamshuddin, MD.; Sohail, Ayesha

    2018-04-01

    An experimental study of the rheology and lubricity properties of a drilling fluid is reported, motivated by applications in highly deviated and extended reach wells. Recent developments in nanofluids have identified that the judicious injection of nano-particles into working drilling fluids may resolve a number of issues including borehole instability, lost circulation, torque and drag, pipe sticking problems, bit balling and reduction in drilling speed. The aim of this article is, therefore, to evaluate the rheological characteristics and lubricity of different nano-particles in water-based mud, with the potential to reduce costs via a decrease in drag and torque during the construction of highly deviated and ERD wells. Extensive results are presented for percentage in torque variation and coefficient of friction before and after aging. Rheology is evaluated via apparent viscosity, plastic viscosity and gel strength variation before and after aging for water-based muds (WBM). Results are included for silica and titanium nano-particles at different concentrations. These properties were measured before and after aging the mud samples at 80 °C during 16 h at static conditions. The best performance was shown with titanium nano-particles at a concentration of 0.60% (w/w) before aging.

  4. Temperature and Pressure Effects on Drilling Fluid Rheology and ECD in Very Deep Wells

    Energy Technology Data Exchange (ETDEWEB)

    Rommetveit, R.; Bjoerkvoll, K.S.

    1997-12-31

    The rheological properties of drilling fluids are usually approximated to be independent of pressure and temperature. In many cases this is a good approximation. However, for wells with small margins between pore and fracture pressure, careful evaluations and analysis of the effects of temperature and pressure on well bore hydraulics and kick probability are needed. In this publication the effects of pressure and temperature are discussed and described for typical HPHT (High Pressure High Temperature) wells. Laboratory measurements show that rheology is very pressure and temperature dependent. The practical implications of these observations are illustrated through a series of calculations with an advanced pressure and temperature simulator. 10 refs., 15 figs.

  5. Rheological Principles for Food Analysis

    Science.gov (United States)

    Daubert, Christopher R.; Foegeding, E. Allen

    Food scientists are routinely confronted with the need to measure physical properties related to sensory texture and processing needs. These properties are determined by rheological methods, where rheology is a science devoted to the deformation and flow of all materials. Rheological properties should be considered a subset of the textural properties of foods, because the sensory detection of texture encompasses factors beyond rheological properties. Specifically, rheological methods accurately measure "force," "deformation," and "flow," and food scientists and engineers must determine how best to apply this information. For example, the flow of salad dressing from a bottle, the snapping of a candy bar, or the pumping of cream through a homogenizer are each related to the rheological properties of these materials. In this chapter, we describe fundamental concepts pertinent to the understanding of the subject and discuss typical examples of rheological tests for common foods. A glossary is included as Sect. 30.6 to clarify and summarize rheological definitions throughout the chapter.

  6. 5th European Rheology Conference

    CERN Document Server

    1998-01-01

    Global sustainable development of the world economy requires better understanding and utilization of natural recourses. In this endeavor rheology has an indispensable role. The Rheology Conferences are therefore always an important event for science and technology. The Fifth European Rheology Conference, held from September 6 to 11 in the Portoro-z, Slovenia, will be the first AlI-European rheology meeting after the formal constitution of the European Society ofRheology. As such it will be a special historical event. At this meeting the European Society of Rheology will introduce the Weissenberg Medal, to be bestowed every four years to an individual for hislhers contribution to the field of Rheology. The recipient ofthe first award will be professor G. Marrucci ofthe Universita degli Studi di Napoli, Italy. Two mini Symposia will be part of the Conference. The first, on Industrial Rheology, will commemorate the late professor G. Astarita. The second will honor the eightieth birthday of professor N.W. Tschoeg...

  7. Analysis and Testing of Chain Characteristics and Rheological Properties for Magnetorheological Fluid

    Directory of Open Access Journals (Sweden)

    Song Chen

    2013-01-01

    Full Text Available Digital holographic microscopy is presented in this study, which can measure the magnetorheological (MR fluid in different volume fractions of particles and different magnetic field strengths. Based on the chain structure of magnetic particle under applied magnetic field, the relationships between shear yield stress, magnetic field, size, and volume fraction of MR fluid in two parallel discs are established. In this experiment, we choose three MR fluid samples to check the rheological properties of MR fluid and to obtain the material parameters with the test equipment of MR fluid; the conclusion is effective.

  8. Experimental investigation of torsional vibration isolation using Magneto Rheological Elastomer

    Directory of Open Access Journals (Sweden)

    Praveen Shenoy K

    2018-01-01

    Full Text Available Rotating systems suffer from lateral and torsional vibrations which have detrimental effect on the roto-dynamic performance. Many available technologies such as vibration isolators and vibration absorbers deal with the torsional vibrations to a certain extent, however passive isolators and absorbers find less application when the input conditions are dynamic. The present work discusses use of a smart material called as Magneto Rheological Elastomer (MRE, whose properties can be changed based on magnetic field input, as a potential isolator for torsional vibrations under dynamic loading conditions. Carbonyl Iron Particles (CIP of average size 5 μm were mixed with RTV Silicone rubber to form the MRE. The effect of magnetic field on the system parameters was comprehended under impulse loading conditions using a custom built in-house system. Series arrangement of accelerometers were used to differentiate between the torsional and the bending modes of vibration of the system. Impact hammer tests were carried out on the torsional system to study its response, in the presence and absence of magnetic field. The tests revealed a shift in torsional frequency in the presence of magnetic field which elucidates the ability of MRE to work as a potential vibration isolator for torsional systems.

  9. Dynamic characterization and modeling of magneto-rheological elastomers under compressive loadings

    International Nuclear Information System (INIS)

    Koo, Jeong-Hoi; Khan, Fazeel; Jang, Dong-Doo; Jung, Hyung-Jo

    2010-01-01

    The primary goal of the research reported in this paper has been to characterize and model the compression properties of magneto-rheological elastomers (MREs). MRE samples were fabricated by curing a two-component elastomer resin with 30% content of 10 µm sized iron particles by volume. In order to vary the magnetic field during compressive testing, a test fixture was designed and fabricated in which two permanent magnets could be variably positioned on either side of the specimen. Changing the distance between the magnets of the fixture allowed the strength of the magnetic field passing uniformly through the sample to be varied. Using this test setup and a dynamic test frame, a series of compression tests of MRE samples were performed, by varying the magnetic field and the frequency of loading. The results show that the MR effect (per cent increase in the material 'stiffness') increases as the magnetic field increases and the loading frequency increases within the range of the magnetic field and input frequency considered in this study. Furthermore, a phenomenological model was developed to capture the dynamic behaviors of the MREs under compression loadings. (technical note)

  10. Rheology of sediment transported by a laminar flow

    Science.gov (United States)

    Houssais, M.; Ortiz, C. P.; Durian, D. J.; Jerolmack, D. J.

    2016-12-01

    Understanding the dynamics of fluid-driven sediment transport remains challenging, as it occurs at the interface between a granular material and a fluid flow. Boyer, Guazzelli, and Pouliquen [Phys. Rev. Lett. 107, 188301 (2011)], 10.1103/PhysRevLett.107.188301 proposed a local rheology unifying dense dry-granular and viscous-suspension flows, but it has been validated only for neutrally buoyant particles in a confined and homogeneous system. Here we generalize the Boyer, Guazzelli, and Pouliquen model to account for the weight of a particle by addition of a pressure P0 and test the ability of this model to describe sediment transport in an idealized laboratory river. We subject a bed of settling plastic particles to a laminar-shear flow from above, and use refractive-index-matching to track particles' motion and determine local rheology—from the fluid-granular interface to deep in the granular bed. Data from all experiments collapse onto a single curve of friction μ as a function of the viscous number Iv over the range 3 ×10-5 ≤Iv≤2 , validating the local rheology model. For Ivcreeping regime where we observe a continuous decay of the friction coefficient μ ≤μs as Iv decreases. The rheology of this creep regime cannot be described by the local model, and more work is needed to determine whether a nonlocal rheology model can be modified to account for our findings.

  11. Rheological assessment of nanofluids at high pressure high temperature

    Science.gov (United States)

    Kanjirakat, Anoop; Sadr, Reza

    2013-11-01

    High pressure high temperature (HPHT) fluids are commonly encountered in industry, for example in cooling and/or lubrications applications. Nanofluids, engineered suspensions of nano-sized particles dispersed in a base fluid, have shown prospective as industrial cooling fluids due to their enhanced rheological and heat transfer properties. Nanofluids can be potentially utilized in oil industry for drilling fluids and for high pressure water jet cooling/lubrication in machining. In present work rheological characteristics of oil based nanofluids are investigated at HPHT condition. Nanofluids used in this study are prepared by dispersing commercially available SiO2 nanoparticles (~20 nm) in a mineral oil. The basefluid and nanofluids with two concentrations, namely 1%, and 2%, by volume, are considered in this investigation. The rheological characteristics of base fluid and the nanofluids are measured using an industrial HPHT viscometer. Viscosity values of the nanofluids are measured at pressures of 100 kPa to 42 MPa and temperatures ranging from 25°C to 140°C. The viscosity values of both nanofluids as well as basefluid are observed to have increased with the increase in pressure. Funded by Qatar National Research Fund (NPRP 08-574-2-239).

  12. Silk Electrogel Rheology

    Science.gov (United States)

    Tabatabai, A. P.; Urbach, J. S.; Blair, D. L.; Kaplan, D. L.

    2014-03-01

    We present experimental results on the rheology on electrogels derived from aqueous solutions of reconstituted Bombyx Mori silk fibroin protein. Through electrochemistry, the silk protein solution develops local pH changes resulting in the assembly of protein into a weak gel. We determine the physical properties of the electrogels by performing rheology and observe that they exhibit the characteristics of a crosslinked biopolymer network. Interestingly, we find that these silk gels exhibit linear elasticity over a range of up to two orders of magnitude larger than most crosslinked biopolymer networks. Moreover, the nonlinear rheology exhibits a strain-stiffening behavior that is fundamentally different than the strain-stiffening observed in crosslinked biopolymers. Through rheological techniques we aim to understand this distinctive material that cannot be explained by current polymeric models. This work is supported by a grant from the AFOSR FA9550-07-1-0130.

  13. Peristaltic Transport of a Rheological Fluid: Model for Movement of Food Bolus Through Esophagus

    OpenAIRE

    Misra, J. C.; Maiti, S.

    2011-01-01

    Fluid mechanical peristaltic transport through esophagus has been of concern in the paper. A mathematical model has been developed with an aim to study the peristaltic transport of a rheological fluid for arbitrary wave shapes and tube lengths. The Ostwald-de Waele power law of viscous fluid is considered here to depict the non-Newtonian behaviour of the fluid. The model is formulated and analyzed with the specific aim of exploring some important information concerning the movement of food bo...

  14. Effect of Carreau-Yasuda rheological parameters on subcritical Lapwood convection in horizontal porous cavity saturated by shear-thinning fluid

    Science.gov (United States)

    Khechiba, Khaled; Mamou, Mahmoud; Hachemi, Madjid; Delenda, Nassim; Rebhi, Redha

    2017-06-01

    The present study is focused on Lapwood convection in isotropic porous media saturated with non-Newtonian shear thinning fluid. The non-Newtonian rheological behavior of the fluid is modeled using the general viscosity model of Carreau-Yasuda. The convection configuration consists of a shallow porous cavity with a finite aspect ratio and subject to a vertical constant heat flux, whereas the vertical walls are maintained impermeable and adiabatic. An approximate analytical solution is developed on the basis of the parallel flow assumption, and numerical solutions are obtained by solving the full governing equations. The Darcy model with the Boussinesq approximation and energy transport equations are solved numerically using a finite difference method. The results are obtained in terms of the Nusselt number and the flow fields as functions of the governing parameters. A good agreement is obtained between the analytical approximation and the numerical solution of the full governing equations. The effects of the rheological parameters of the Carreau-Yasuda fluid and Rayleigh number on the onset of subcritical convection thresholds are demonstrated. Regardless of the aspect ratio of the enclosure and thermal boundary condition type, the subcritical convective flows are seen to occur below the onset of stationary convection. Correlations are proposed to estimate the subcritical Rayleigh number for the onset of finite amplitude convection as a function of the fluid rheological parameters. Linear stability of the convective motion, predicted by the parallel flow approximation, is studied, and the onset of Hopf bifurcation, from steady convective flow to oscillatory behavior, is found to depend strongly on the rheological parameters. In general, Hopf bifurcation is triggered earlier as the fluid becomes more and more shear-thinning.

  15. Numerical analysis of non-Newtonian rheology effect on hydrocyclone flow field

    Directory of Open Access Journals (Sweden)

    Lin Yang

    2015-03-01

    Full Text Available In view of the limitations of the existing Newton fluid effects on the vortex flow mechanism study, numerical analysis of non Newton fluid effects was presented. Using Reynolds stress turbulence model (RSM and mixed multiphase flow model (Mixture of FLUENT (fluid calculation software and combined with the constitutive equation of apparent viscosity of non-Newtonian fluid, the typical non-Newtonian fluid (drilling fluid, polymer flooding sewage and crude oil as medium and Newton flow field (water as medium were compared by quantitative analysis. Based on the research results of water, the effects of non-Newtonian rheology on the key parameters including the combined vortex motion index n and tangential velocity were analyzed. The study shows that: non-Newtonian rheology has a great effect on tangential velocity and n value, and tangential velocity decreases with non-Newtonian increasing. The three kinds of n values (constant segment are: 0.564(water, 0.769(polymer flooding sewage, 0.708(drilling fluid and their variation amplitudes are larger than Newtonian fluid. The same time, non-Newtonian rheology will lead to the phenomenon of turbulent drag reduction in the vortex flow field. Compared with the existing formula calculation results shown, the calculation result of non-Newtonian rheology is most consistent with the simulation result, and the original theory has large deviations. The study provides reference for theory research of non-Newtonian cyclone separation flow field.

  16. Rheological studies of creams. I. Rheological functions and structure of creams.

    Science.gov (United States)

    Erös, I; Thaleb, A

    1994-05-01

    Large number of washable (o/w type) creams were prepared for rheological investigation. The rheological functions known from the literature were determined in our studies. Rheological constants were determined by measurements and calculations. From these, we selected those ones which were applicable to characterize the energy status of the coherent structure and which gave the most information for practical work, elaboration of composition and evaluation of stability. These functions and parameters are the following: flow curves, viscosity vs shear time and viscosity vs temperature functions, Bingham-type yield value, plastic viscosity, structure breakdown rate constant, activation energy.

  17. Comparison of Rheological Properties of Hopped Wort and Malt Wort

    Directory of Open Access Journals (Sweden)

    Petr Trávníček

    2015-01-01

    Full Text Available The aim of this work is determination rheological properties of hopped wort and malt wort and their comparison. In the paper following rheological properties has been described: the dependence of viscosity on a temperature of a sample and hysteresis loop test. The time dependence test was performed for a confirmation thixotropic behaviour. Based on measured values Arrhenius mathematical model has been applied. The activation energy was determined by using of this model. Tests have been carried out in the temperature range from 5 °C to 40 °C. Rheological tests proved that malt wort behaves as Newtonian fluid in all temperatures and hopped wort behaves as non-Newtonian fluid at low temperatures. Thixotropic behaviour is caused by the content of the rests of hops heads or malt scraps.

  18. Effect on Non-Newtonian Rheology on Mixing in Taylor-Couette Flow

    Science.gov (United States)

    Cagney, Neil; Balabani, Stavroula

    2017-11-01

    Mixing processes within many industry applications are strongly affected by the rheology of the working fluid. This is particularly relevant for pharmaceutical, food and waste treatment industries, where the working fluids are often strongly non-Newtonian, and significant variations in rheology between batches may occur. We approach the question of how rheology affects mixing by focussing on a the classical case of Taylor-Couette flow, which exhibits a number of instabilities and flow regimes as a function of Reynolds number. We examine Taylor-Couette flow generated for a range of aqueous solutions of xantham gum or corn starch, such that the rheology varies from shear-thinning to shear-thickening. For each case, we measure the power consumption using a torque meter and the flow field using high speed, time-resolved Particle-Image Velocimetry. The mixing characteristics are quantified using a number of Lagrangian and Eulerian approaches, including the coarse grained density method and vortex strength. By comparing these metrics to the power number, we discuss how the mixing efficiency (ratio of mixing effectiveness to power input) varies with the flow index of the fluid.

  19. Effects of the lower extremities muscle activation during muscular strength training on an unstable platform with magneto-rheological dampers

    Science.gov (United States)

    Piao, YongJun; Choi, YounJung; Kim, JungJa; Kwan, TaeKyu; Kim, Nam-Gyun

    2009-03-01

    Adequate postural balance depends on the spatial and temporal integration of vestibular, visual, and somatosensory information. Especially, the musculoskeletal function (range of joint, flexibility of spine, muscular strength) is essential in maintaining the postural balance. Muscular strength training methods include the use of commercialized devices and repeatable resistance training tools (rubber band, ball, etc). These training systems cost high price and can't control of intensity. Thus we suggest a new training system which can adjust training intensity and indicate the center of pressure of a subject while the training was passively controlled by applying controlled electric current to the Magneto- Rheological damper. And we performed experimental studies on the muscular activities in the lower extremities during maintaining, moving and pushing exercises on an unstable platform with Magneto rheological dampers. A subject executed the maintaining, moving and pushing exercises which were displayed in a monitor. The electromyographic signals of the eight muscles in lower extremities were recorded and analyzed in the time and frequency domain: the muscles of interest were rectus femoris, biceps femoris, tensor fasciae latae, vastus lateralis, vastus medialis, gastrocnemius, tibialis anterior, and soleus. The experimental results showed the difference of muscular activities at the four moving exercises and the nine maintaining exercises. The rate of the increase in the muscular activities was affected by the condition of the unstable platform with MR dampers for the maintaining and moving exercises. The experimental results suggested the choice of different maintaining and moving exercises could selectively train different muscles with varying intensity. Furthermore, the findings also suggested the training using this system can improve the ability of postural balance.

  20. Bifurcations and chaos of a vibration isolation system with magneto-rheological damper

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hailong [Magneto-electronics Lab, School of Physics and Technology, Nanjing Normal University, Nanjing 210046 (China); Vibration Control Lab, School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing 210042 (China); Zhang, Ning [Magneto-electronics Lab, School of Physics and Technology, Nanjing Normal University, Nanjing 210046 (China); Min, Fuhong; Yan, Wei; Wang, Enrong, E-mail: erwang@njnu.edu.cn [Vibration Control Lab, School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing 210042 (China)

    2016-03-15

    Magneto-rheological (MR) damper possesses inherent hysteretic characteristics. We investigate the resulting nonlinear behaviors of a two degree-of-freedom (2-DoF) MR vibration isolation system under harmonic external excitation. A MR damper is identified by employing the modified Bouc-wen hysteresis model. By numerical simulation, we characterize the nonlinear dynamic evolution of period-doubling, saddle node bifurcating and inverse period-doubling using bifurcation diagrams of variations in frequency with a fixed amplitude of the harmonic excitation. The strength of chaos is determined by the Lyapunov exponent (LE) spectrum. Semi-physical experiment on the 2-DoF MR vibration isolation system is proposed. We trace the time history and phase trajectory under certain values of frequency of the harmonic excitation to verify the nonlinear dynamical evolution of period-doubling bifurcations to chaos. The largest LEs computed with the experimental data are also presented, confirming the chaotic motion in the experiment. We validate the chaotic motion caused by the hysteresis of the MR damper, and show the transitions between distinct regimes of stable motion and chaotic motion of the 2-DoF MR vibration isolation system for variations in frequency of external excitation.

  1. Bifurcations and chaos of a vibration isolation system with magneto-rheological damper

    Directory of Open Access Journals (Sweden)

    Hailong Zhang

    2016-03-01

    Full Text Available Magneto-rheological (MR damper possesses inherent hysteretic characteristics. We investigate the resulting nonlinear behaviors of a two degree-of-freedom (2-DoF MR vibration isolation system under harmonic external excitation. A MR damper is identified by employing the modified Bouc-wen hysteresis model. By numerical simulation, we characterize the nonlinear dynamic evolution of period-doubling, saddle node bifurcating and inverse period-doubling using bifurcation diagrams of variations in frequency with a fixed amplitude of the harmonic excitation. The strength of chaos is determined by the Lyapunov exponent (LE spectrum. Semi-physical experiment on the 2-DoF MR vibration isolation system is proposed. We trace the time history and phase trajectory under certain values of frequency of the harmonic excitation to verify the nonlinear dynamical evolution of period-doubling bifurcations to chaos. The largest LEs computed with the experimental data are also presented, confirming the chaotic motion in the experiment. We validate the chaotic motion caused by the hysteresis of the MR damper, and show the transitions between distinct regimes of stable motion and chaotic motion of the 2-DoF MR vibration isolation system for variations in frequency of external excitation.

  2. Study of cement pastes rheological behavior using dynamic shear rheometer

    Directory of Open Access Journals (Sweden)

    J. E. S. L. Teixeira

    Full Text Available Concrete, in its fresh state, has flow characteristics that are crucial to its proper launch and densification. These characteristics are usually measured through empirical testing as the slump test, but this test does not quantify completely the material behavior. Since this material is characterized as a Bingham fluid, it is essential the study of its rheological behavior to verify its properties even in fresh state. The use of classical rheology has been employed by the scientific community to obtain rheological parameters determinants to characterize this material, such as yield stress, plastic viscosity and evolution of shear stress to shear rate. Thus, this present study aims to determine the rheological behavior of different cement pastes produced with cement CP III 40 RS, varying between them the hydration periods (20 and 60 min, the water-cement ratio (0.40, 0.45 and 0.50 and the use or not of additive. Samples were assayed by flow test to determine the rheological parameters showing the effect of the variables mentioned above in these parameters.

  3. Rheology of unstable mineral emulsions

    Directory of Open Access Journals (Sweden)

    Sokolović Dunja S.

    2013-01-01

    Full Text Available In this paper, the rheology of mineral oils and their unstable water emulsion were investigated. The oil samples were domestic crude oil UA, its fractions UA1, UA4 and blend semi-product UP1, while the concentration of oil in water emulsions was in the range from 1 up to 30%. The results were analyzed based on shear stress. The oil samples UA, UA1 and UP1 are Newtonian fluids, while UA4 is pseudoplastic fluid. The samples UA and UA4 show higher value of shear stress (83.75 Pa, 297 Pa, then other two samples UA1 and UP1 (18.41 Pa, 17.52 Pa. Rheology of investigated oils due to its complex chemical composition should be analyzed as a simultaneous effect of all their components. Therefore, structural composition of the oils was determined, namely content of paraffins, naphthenes, aromatics and asphaltenes. All samples contain paraffins, naphthenes and aromatics but only oils UA and UA4 contain asphaltenes as well. All investigated emulsions except 30% EUA4 are Newtonian fluids. The EUA4 30% emulsion shows pseudoplastic behaviour, and it is the only 30% emulsion among investigated ones that achieves lower shear stress then its oil. The characteristics of oil samples that could have an influence on their properties and their emulsion rheology, were determined. These characteristics are: neutralization number, interfacial tension, dielectric constant, and emulsivity. Oil samples UA and UA4 have significantly higher values of neutralization number, dielectric constants, and emulsivity. The sample UA has the lowest value of interface tension and the greatest emulsivity, indicating that this oil, among all investigated, has the highest preference for building emulsion. This could be the reason why 20% and 30% emulsions of the oil UA achieve the highest shear stress among all investigated emulsions.

  4. Rheological behavior of clay-nanoparticle hybrid-added bentonite suspensions: specific role of hybrid additives on the gelation of clay-based fluids.

    Science.gov (United States)

    Jung, Youngsoo; Son, You-Hwan; Lee, Jung-Kun; Phuoc, Tran X; Soong, Yee; Chyu, Minking K

    2011-09-01

    Two different types of clay nanoparticle hybrid, iron oxide nanoparticle clay hybrid (ICH) and Al(2)O(3)-SiO(2) nanoparticle clay hybrid (ASCH), were synthesized and their effects on the rheological properties of aqueous bentonite fluids in steady state and dynamic state were explored. When ICH particles were added, bentonite particles in the fluid cross-link to form relatively well-oriented porous structure. This is attributed to the development of positively charged edge surfaces in ICH that leads to strengthening of the gel structure of the bentonite susensions. The role of ASCH particles on the interparticle association of the bentonite fluids is different from that of ICH and sensitive to pH. As pH of ASCH-added bentonite suspensions increased, the viscosity, yield stress, storage modulus, and flow stress decreased. In contrast, at low pH, the clay suspensions containing ASCH additives were coagulated and their rheological properties become close to those of ICH added bentonite fluids. A correlation between the net surface charge of the hybrid additives and the rheological properties of the fluids indicates that the embedded nanoparticles within the interlayer space control the variable charge of the edge surfaces of the platelets and determine the particles association behavior of the clay fluids.

  5. Rheological evaluation of pretreated cladding removal waste

    International Nuclear Information System (INIS)

    McCarthy, D.; Chan, M.K.C.; Lokken, R.O.

    1986-01-01

    Cladding removal waste (CRW) contains concentrations of transuranic (TRU) elements in the 80 to 350 nCi/g range. This waste will require pretreatment before it can be disposed of as glass or grout at Hanford. The CRW will be pretreated with a rare earth strike and solids removal by centrifugation to segregate the TRU fraction from the non-TRU fraction of the waste. The centrifuge centrate will be neutralized with sodium hydroxide. This neutralized cladding removal waste (NCRW) is expected to be suitable for grouting. The TRU solids removed by centrifugation will be vitrified. The goal of the Rheological Evaluation of Pretreated Cladding Removal Waste Program was to evaluate those rheological and transport properties critical to assuring successful handling of the NCRW and TRU solids streams and to demonstrate transfers in a semi-prototypic pumping environment. This goal was achieved by a combination of laboratory and pilot-scale evaluations. The results obtained during these evaluations were correlated with classical rheological models and scaled-up to predict the performance that is likely to occur in the full-scale system. The Program used simulated NCRW and TRU solid slurries. Rockwell Hanford Operations (Rockwell) provided 150 gallons of simulated CRW and 5 gallons of simulated TRU solid slurry. The simulated CRW was neutralized by Pacific Northwest Laboratory (PNL). The physical and rheological properties of the NCRW and TRU solid slurries were evaluated in the laboratory. The properties displayed by NCRW allowed it to be classified as a pseudoplastic or yield-pseudoplastic non-Newtonian fluid. The TRU solids slurry contained very few solids. This slurry exhibited the properties associated with a pseudoplastic non-Newtonian fluid

  6. A comparative study on the rheology and wave dissipation of kaolinite and natural Hendijan Coast mud, the Persian Gulf

    Science.gov (United States)

    Soltanpour, Mohsen; Samsami, Farzin

    2011-03-01

    The objective of this paper is to investigate the rheological behavior of kaolinite and Hendijan mud, located at the northwest part of the Persian Gulf, and the dissipative role of this muddy bed on surface water waves. A series of laboratory rheological tests was conducted to investigate the rheological response of mud to rotary and cyclic shear rates. While a viscoplastic Bingham model can successfully be applied for continuous controlled shear-stress tests, the rheology of fluid mud displays complex viscoelastic behavior in time-periodic motion. The comparisons of the behavior of natural Hendijan mud with commercial kaolinite show rheological similarities. A large number of laboratory wave-flume experiments were carried out with a focus on the dissipative role of the fluid mud. Assuming four rheological models of viscous, Kelvin-Voigt viscoelastic, Bingham viscoplastic, and viscoelastic-plastic for fluid mud layer, a numerical multi-layered model was applied to analyze the effects of different parameters of surface wave and muddy bed on wave attenuation. The predicted results based on different rheological models generally agree with the obtained wave-flume data implying that the adopted rheological model does not play an important role in the accuracy of prediction.

  7. Rheology of waxy oils

    Energy Technology Data Exchange (ETDEWEB)

    Alicke, Alexandra A.; Marchesini, Flavio H.; Mendes, Paulo R. de Souza [Pontificia Universidade Catolica do Rio de Janeiro (PUC-Rio), RJ (Brazil)], e-mails: fhmo@puc-rio.br, pmendes@puc-rio.br; Ziglio, Claudio [Petrobras Research Center, Rio de Janeiro, RJ (Brazil)], e-mail: ziglio@petrobras.com.br

    2010-07-01

    It is well known that below the crystallization temperature the rheology of waxy oils changes from Newtonian to an extremely complex non-Newtonian behavior, which is shear-rate and temperature-history dependent. Along the last decades a lot of effort has been put into obtaining reliable rheological measurements from different oils so as to understand the yielding of waxy oils as well as the effects of shear and temperature histories on rheological properties, such as viscosity, yield stress, storage and loss moduli. In this paper we examine in detail the related literature, discussing the main reasons for some disagreements concerning the history effects on the flow properties of waxy oils. In addition, we performed temperature ramps and stress-amplitude-sweep tests and compared the results obtained with the main trends observed, highlighting the effects of cooling and shear on the microstructure and consequently on the rheological properties of these oils. (author)

  8. Dumbbell shaped polystyrene : synthesis and solution rheology

    NARCIS (Netherlands)

    Rajan, M.

    2006-01-01

    Polymeric additives profoundly influence fluid rheological properties; hence finding applications in fuels, lubricants, coatings, sprays, enhanced oil recovery, turbulent drag reduction etc. Several of these applications are based on the coil-stretch transition and subsequent stretching of polymer

  9. A feasibility study of in-line rheological characterisation of a ...

    African Journals Online (AJOL)

    2014-09-04

    Sep 4, 2014 ... to obtain in-line rheological parameters of opaque fluids with suspended ... ing, e.g., paper pulp, foods, transient flows and model mineral suspensions. ..... on Ultrasonic Doppler Methods for Fluid Mechanics and Fluid.

  10. Rheological behavior of mammalian cells.

    Science.gov (United States)

    Stamenović, D

    2008-11-01

    Rheological properties of living cells determine how cells interact with their mechanical microenvironment and influence their physiological functions. Numerous experimental studies have show that mechanical contractile stress borne by the cytoskeleton and weak power-law viscoelasticity are governing principles of cell rheology, and that the controlling physics is at the level of integrative cytoskeletal lattice properties. Based on these observations, two concepts have emerged as leading models of cytoskeletal mechanics. One is the tensegrity model, which explains the role of the contractile stress in cytoskeletal mechanics, and the other is the soft glass rheology model, which explains the weak power-law viscoelasticity of cells. While these two models are conceptually disparate, the phenomena that they describe are often closely associated in living cells for reasons that are largely unknown. In this review, we discuss current understanding of cell rheology by emphasizing the underlying biophysical mechanism and critically evaluating the existing rheological models.

  11. Rheology of Biopolymer Solutions and Gels

    Directory of Open Access Journals (Sweden)

    David R. Picout

    2003-01-01

    Full Text Available Rheological techniques and methods have been employed for many decades in the characterization of polymers. Originally developed and used on synthetic polymers, rheology has then found much interest in the field of natural (bio polymers. This review concentrates on introducing the fundamentals of rheology and on discussing the rheological aspects and properties of the two major classes of biopolymers: polysaccharides and proteins. An overview of both their solution properties (dilute to semi-dilute and gel properties is described.

  12. Rheological evaluation of simulated neutralized current acid waste

    International Nuclear Information System (INIS)

    Fow, C.L.; McCarthy, D.; Thornton, G.T.

    1986-06-01

    A byproduct of the Purex process is an aqueous waste stream that contains fission products. This waste stream, called current acid waste, is chemically neutralized and stored in double shell tanks on the Hanford Site. This neutralized current acid waste (NCAW) will be transported by pipe to B-Plant, a processing plant on the Hanford Site. Rheological and transport properties of NCAW slurry were evaluated. First, researchers conducted lab rheological evaluations of simulated NCAW. The results of these evaluations were then correlated with classical rheological models and scaled up to predict the performance that is likely to occur in the full-scale system. The NCAW in the tank will either be retrieved as is, i.e., no change in the concentration presently in the tank, or will be slightly concentrated before retrieval. Sluicing may be required to retrieve the solids. Three concentrations of simulated NCAW were evaluated that would simulate the different retrieval options: NCAW in the concentration that is presently in the tank; a slightly concentrated NCAW, called NCAW5.5; and equal parts of NCAW settled solids and water (simulating the sluicing stage), called NCAW1:1. The physical and rheological properties of three samples of each concentration at 25 and 100 0 C were evaluated in the laboratory. The properties displayed by NCAW and NCAW5.5 at 25 and 100 0 C allowed it to be classified as a pseudoplastic non-Newtonian fluid. NCAW1:1 at 25 and 100 0 C displayed properties of a yield-pseudoplastic non-Newtonian fluid. The classical non-Newtonian models for pseudoplastic and yield-pseudoplastic fluids were used with the laboratory data to predict the full-scale pump-pipe network parameters

  13. A rheological and microscopical characterization of biocompatible ferrofluids

    International Nuclear Information System (INIS)

    Nowak, J.; Wolf, D.; Odenbach, S.

    2014-01-01

    There is an increasing interest in suspensions of magnetic nanoparticles in the biomedical area. Those ferrofluids are e.g. used for magnetic resonance imaging and emerging research focuses on employing the fluids for magnetic drug targeting or magnetic particle heating as a potential treatment for cancer. For these applications the knowledge of the suspensions' thermophysical properties is of major interest to guarantee a safe and effective application. Therefore the flow behavior cannot be neglected as it might significantly influence the execution of the aforementioned applications. In this experimental study two biocompatible ferrofluids were investigated. Rheological measurements were carried out using rotational rheometry. To allow an interpretation of the fluids' behavior the microscopic make-up was investigated using dynamic light scattering and transmission electron microscopy. Measurements of diluted ferrofluids were carried out as a first step to simulate the rheological behavior reflecting the concentration of magnetic nanoparticles found in blood flow for most biomedical applications of such fluids. The detected strong effects show the potential to significantly influence application and handling of the biocompatible ferrofluids in the medical area and should therefore be taken into account for further research as well as for the application of such fluids. - Highlights: • The rheology of biocompatible multicore ferrofluids is influenced by magnetic fields. • The flow curves can be described by the Herschel–Bulkley model. • A connection between the magnetoviscous effect and the particle size is found. • The strong magnetoviscous effect exists even if the fluids are diluted. • The connection between the effect and the dilution is mathematically described

  14. Design and development of the Macpherson Proton Preve Magneto rheological damper with PID controller

    Science.gov (United States)

    Amiruddin, I. M.; Pauziah, M.; Aminudin, A.; Unuh, M. H.

    2017-10-01

    Since the creation of the first petrol-fuelled vehicle by Karl Benz in the late nineteenth century, car industry has grown considerably to meet the industrial demands. Luxurious looks and agreeable rides are the primary needs of drivers. The Magneto-rheological damper balanced their damping trademark progressively by applying the damping coefficient depending on the control system. In this research, the control calculations are assessed by utilizing the MR damper. The capacity and reliably of the target force for the damper speed is investigated from control algorithm. This is imperative to defeat the damper limitation. In this study, the simulation results of the semi-dynamic MR damper with the PID controller shows better performance in sprung mass acceleration, unsprung mass acceleration and suspension dislodging with permitting over the top tyre acceleration. The altered model of the MR damper is specially designed for Proton Preve specifications and semi-active PID control. The procedure for the advancement incorporates the numerical model to graphically recreate and break down the dynamic framework by utilizing Matlab.

  15. Rheology v.3 theory and applications

    CERN Document Server

    Eirich, Frederick

    1960-01-01

    Rheology: Theory and Applications, Volume 3 is a collection of articles contributed by experts in the field of rheology - the science of deformation and flow. This volume is composed of specialized chapters on the application of normal coordinate analysis to the theory of high polymers; principles of rheometry; and the rheology of cross-linked plastics, poly electrolytes, latexes, inks, pastes, and clay. Also included are a series of technological articles on lubrication, spinning, molding, extrusion, and adhesion and a survey of the general features of industrial rheology. Materials scientist

  16. Immunotherapy With Magentorheologic Fluids

    Science.gov (United States)

    2011-08-01

    anti-tumor effects are weakened by removal of the tumor antigen pool (i.e. surgery) or use of cytoreductive and immunosuppressive therapies (i.e...particles were injected as magneto -rheological fluid (MRF) into an orthotopic primary breast cancer and followed by application of a magnetic field to...SUBJECT TERMS MRF: Magneto -rehological fluid iron particles, IT: immunotherapy, necrotic death, DCs: dendritic cells, cytokines, chemokines

  17. High shear microfluidics and its application in rheological measurement

    Science.gov (United States)

    Kang, Kai; Lee, L. James; Koelling, Kurt W.

    2005-02-01

    High shear rheology was explored experimentally in microchannels (150×150 μm). Two aqueous polymer solutions, polyethylene oxide (viscoelastic fluid) and hydroxyethyl cellulose (viscous fluid) were tested. Bagley correction was applied to remove the end effect. Wall slip was investigated with Mooney’s analysis. Shear rates as high as 106 s-1 were obtained in the pressure-driven microchannel flow, allowing a smooth extension of the low shear rheological data obtained from the conventional rheometers. At high shear rates, polymer degradation was observed for PEO solutions at a critical microchannel wall shear stress of 4.1×103 Pa. Stresses at the ends of the microchannel also contributed to PEO degradation significantly.

  18. Rheology of Poly(N-isopropylacrylamide)-Clay Nanocomposite Hydrogels

    Science.gov (United States)

    Lombardi, Jack; Xu, Di; Bhatnagar, Divya; Gersappe, Dilip; Sokolov, Jonathan; Rafailovich, Miriam

    2015-03-01

    The stiffness of PNIPA Gels has been reported could be significant improved by gelation with clay fillers. Here we conducted systematic rheology study of synthesized PNIPA-Clay Composites at different clay concentration, in a range from fluid to strong gel, where G'' dominant changed to G' dominant. Molecular dynamics simulation was employed to analyze the structure of composites and corresponding mechanical changes with increased clays. Where we found viscoelastic behavior become significant only 1.5 times above percolation threshold. The yield stress extrapolated from our rheology results shows good fitting to modified Mooney's theory of suspension viscosity.

  19. Microstructural evolution and rheological properties of AA6063 alloy produced by semisolid processing (SIMA and MHD)

    International Nuclear Information System (INIS)

    Bustos, O.; Leiva, R.; Sanchez, C.; Ordonez, S.; Carvajal, L.; Mannheim, R.

    2007-01-01

    In this work the rheological behaviour and the microstructural evolution of alloy AA6063 submitted to two different processing routes were studied: cold deformation and partial fusion (SIMA process) and magneto hydrodynamic stirring during its solidification (MHD process). The microstructural evolution during the isothermal holding was studied to verify if the Ost wald ripening mechanisms, classic growth and coalescence, are applicable to alloys made by these processing routes. The rheological properties were evaluated using a compression rheometer with parallel plates and digital capture of position and time data. Compression tests were made in short cylinders extracted from ingots that showed: a dendritic microstructure typical of as cast material, a typical microstructure of cold deformed material and a microstructure of materials obtained by MHD process. It was found that a globular microstructure has a typical behaviour of a fluid when being formed in semisolid state, contrary to the behaviour of the as cast dendritic microstructure. In addition, the mechanisms that operate in the microstructural evolution during the isothermal holdings were verified, through metallographic analysis. (Author) 29 refs

  20. The rheology of non-suspended sediment transport mediated by a Newtonian fluid

    Science.gov (United States)

    Pähtz, Thomas; Durán, Orencio

    2017-04-01

    Using a coupled DEM/RANS numerical model of non-suspended sediment transport in a Newtonian fluid (Durán et al., POF 103306, 2012), we find that the gas-like part of the granular transport flow can be described by a universal condition that constrains the average geometry of interparticle collisions. We show that this condition corresponds to a constant sliding friction coefficient μ at an appropriately defined bed surface, thus explaining the success of Bagnold's old idea to describe the sediment transport in analogy to sliding friction. We are currently exploring whether this rheology applies to gas-like granular flows in general. We further find a transition of the gas-like flow to either a solid-like flow (solid-to-gas transition), which is typical for aeolian sediment transport ('saltation'), or a liquid-like flow (liquid-to-gas transition), which is typical for subaqueous sediment transport ('bedload'). The transition occurs at about the location of maximal particle collision frequency. If there is a liquid-like flow below the transition, we find that it can be described by a μ(I) rheology, where I is the visco-intertial number, an appropriately defined average of the viscous and intertial number.

  1. Mathematical model of microbicidal flow dynamics and optimization of rheological properties for intra-vaginal drug delivery: Role of tissue mechanics and fluid rheology.

    Science.gov (United States)

    Anwar, Md Rajib; Camarda, Kyle V; Kieweg, Sarah L

    2015-06-25

    Topically applied microbicide gels can provide a self-administered and effective strategy to prevent sexually transmitted infections (STIs). We have investigated the interplay between vaginal tissue elasticity and the yield-stress of non-Newtonian fluids during microbicide deployment. We have developed a mathematical model of tissue deformation driven spreading of microbicidal gels based on thin film lubrication approximation and demonstrated the effect of tissue elasticity and fluid yield-stress on the spreading dynamics. Our results show that both elasticity of tissue and yield-stress rheology of gel are strong determinants of the coating behavior. An optimization framework has been demonstrated which leverages the flow dynamics of yield-stress fluid during deployment to maximize retention while reaching target coating length for a given tissue elasticity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Rheological behavior of oil and biodiesel from Moringa oleifera

    International Nuclear Information System (INIS)

    Díaz Domínguez, Yosvany; Tabio García, Danger; Rondón Macías, Maylin; Fernández Santana, Elina; Rodríguez Muñoz, Susana; Piloto‐Rodríguez, Ramón

    2017-01-01

    The seeds of Moringa oleifera contain between 30 and 45% of oil, which has motivated the development of investigations with a view to their possible use. The present work aims to determine the rheological behavior of Moringa oleifera oil and biodiesel. The synthesis of biodiesel from crude Moringa oleifera oil was made using methanol with presence of sodium hydroxide. The average yield of this stage was 93%. The results of the rheological study shown that the viscosity at 40°C of Moringa oleifera oil is independent of the shear rate, which corresponds to the behavior of a Newtonian fluid. However, for biodiesel it was demonstrated that there is a dependence of the viscosity with the shear rate (non-Newtonian fluid). This result is corroborated by the fluidity curve, assuring that Moringa oleifera biodiesel behaves as a dilating fluid. (author)

  3. High shear microfluidics and its application in rheological measurement

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Kai; Lee, L.James; Koelling, Kurt W. [The Ohio State University, Department of Chemical Engineering, Columbus, OH (United States)

    2005-02-01

    High shear rheology was explored experimentally in microchannels (150 x 150 {mu}m). Two aqueous polymer solutions, polyethylene oxide (viscoelastic fluid) and hydroxyethyl cellulose (viscous fluid) were tested. Bagley correction was applied to remove the end effect. Wall slip was investigated with Mooney's analysis. Shear rates as high as 10{sup 6} s {sup -1} were obtained in the pressure-driven microchannel flow, allowing a smooth extension of the low shear rheological data obtained from the conventional rheometers. At high shear rates, polymer degradation was observed for PEO solutions at a critical microchannel wall shear stress of 4.1 x 10 {sup 3} Pa. Stresses at the ends of the microchannel also contributed to PEO degradation significantly. (orig.)

  4. Fault detection and fault tolerant control of a smart base isolation system with magneto-rheological damper

    International Nuclear Information System (INIS)

    Wang, Han; Song, Gangbing

    2011-01-01

    Fault detection and isolation (FDI) in real-time systems can provide early warnings for faulty sensors and actuator signals to prevent events that lead to catastrophic failures. The main objective of this paper is to develop FDI and fault tolerant control techniques for base isolation systems with magneto-rheological (MR) dampers. Thus, this paper presents a fixed-order FDI filter design procedure based on linear matrix inequalities (LMI). The necessary and sufficient conditions for the existence of a solution for detecting and isolating faults using the H ∞ formulation is provided in the proposed filter design. Furthermore, an FDI-filter-based fuzzy fault tolerant controller (FFTC) for a base isolation structure model was designed to preserve the pre-specified performance of the system in the presence of various unknown faults. Simulation and experimental results demonstrated that the designed filter can successfully detect and isolate faults from displacement sensors and accelerometers while maintaining excellent performance of the base isolation technology under faulty conditions

  5. Nonlinear dynamics and rheology of active fluids: simulations in two dimensions.

    Science.gov (United States)

    Fielding, S M; Marenduzzo, D; Cates, M E

    2011-04-01

    We report simulations of a continuum model for (apolar, flow aligning) active fluids in two dimensions. Both free and anchored boundary conditions are considered, at parallel confining walls that are either static or moving at fixed relative velocity. We focus on extensile materials and find that steady shear bands, previously shown to arise ubiquitously in one dimension for the active nematic phase at small (or indeed zero) shear rate, are generally replaced in two dimensions by more complex flow patterns that can be stationary, oscillatory, or apparently chaotic. The consequences of these flow patterns for time-averaged steady-state rheology are examined. ©2011 American Physical Society

  6. Microstructural Dynamics and Rheology of Suspensions of Rigid Fibers

    Science.gov (United States)

    Butler, Jason E.; Snook, Braden

    2018-01-01

    The dynamics and rheology of suspensions of rigid, non-Brownian fibers in Newtonian fluids are reviewed. Experiments, theories, and computer simulations are considered, with an emphasis on suspensions at semidilute and concentrated conditions. In these suspensions, interactions between the particles strongly influence the microstructure and rheological properties of the suspension. The interactions can arise from hydrodynamic disturbances, giving multibody interactions at long ranges and pairwise lubrication forces over short distances. For concentrated suspensions, additional interactions due to excluded volume (contacts) and adhesive forces are addressed. The relative importance of the various interactions as a function of fiber concentration is assessed.

  7. The rheology of shear thickening fluid (STF) and the dynamic performance of an STF-filled damper

    International Nuclear Information System (INIS)

    Zhang, X Z; Li, W H; Gong, X L

    2008-01-01

    This paper presents a study of the rheological properties of shear thickening fluid (STF) and its application as a damper. The STF samples, with different weight fractions, were prepared by dispersing nanosized silica particles in a solvent. By using a parallel-plate rheometer, both steady-state and dynamic experiments were carried out to investigate the rheological properties of STFs. Experimental results indicated that these suspensions show an abrupt increase in complex viscosity beyond a critical dynamic shear rate, as well as this increase being reversible. Working with the fabricated STF materials, a prototype damper was fabricated and its dynamic performances were experimentally evaluated. An equivalent linear model through effective elastic stiffness and viscous damping was developed to address both the damping and the stiffness capabilities of the damper. Also, a mathematical model was developed to investigate working mechanisms of STF-based devices

  8. Nonlocal rheological properties of granular flows near a jamming limit.

    Science.gov (United States)

    Aranson, Igor S; Tsimring, Lev S; Malloggi, Florent; Clément, Eric

    2008-09-01

    We study the rheology of sheared granular flows close to a jamming transition. We use the approach of partially fluidized theory (PFT) with a full set of equations extending the thin layer approximation derived previously for the description of the granular avalanches phenomenology. This theory provides a picture compatible with a local rheology at large shear rates [G. D. R. Midi, Eur. Phys. J. E 14, 341 (2004)] and it works in the vicinity of the jamming transition, where a description in terms of a simple local rheology comes short. We investigate two situations displaying important deviations from local rheology. The first one is based on a set of numerical simulations of sheared soft two-dimensional circular grains. The next case describes previous experimental results obtained on avalanches of sandy material flowing down an incline. Both cases display, close to jamming, significant deviations from the now standard Pouliquen's flow rule [O. Pouliquen, Phys. Fluids 11, 542 (1999); 11, 1956 (1999)]. This discrepancy is the hallmark of a strongly nonlocal rheology and in both cases, we relate the empirical results and the outcomes of PFT. The numerical simulations show a characteristic constitutive structure for the fluid part of the stress involving the confining pressure and the material stiffness that appear in the form of an additional dimensionless parameter. This constitutive relation is then used to describe the case of sandy flows. We show a quantitative agreement as far as the effective flow rules are concerned. A fundamental feature is identified in PFT as the existence of a jammed layer developing in the vicinity of the flow arrest that corroborates the experimental findings. Finally, we study the case of solitary erosive granular avalanches and relate the outcome with the PFT analysis.

  9. Rheology of dilute acid hydrolyzed corn stover at high solids concentration.

    Science.gov (United States)

    Ehrhardt, M R; Monz, T O; Root, T W; Connelly, R K; Scott, C T; Klingenberg, D J

    2010-02-01

    The rheological properties of acid hydrolyzed corn stover at high solids concentration (20-35 wt.%) were investigated using torque rheometry. These materials are yield stress fluids whose rheological properties can be well represented by the Bingham model. Yield stresses increase with increasing solids concentration and decrease with increasing hydrolysis reaction temperature, acid concentration, and rheometer temperature. Plastic viscosities increase with increasing solids concentration and tend to decrease with increasing reaction temperature and acid concentration. The solids concentration dependence of the yield stress is consistent with that reported for other fibrous systems. The changes in yield stress with reaction conditions are consistent with observed changes in particle size. This study illustrates that torque rheometry can be used effectively to measure rheological properties of concentrated biomass.

  10. Rheological properties of kaolin and chemically simulated waste

    International Nuclear Information System (INIS)

    Selby, C.L.

    1981-12-01

    The Savannah River Laboratory is conducting tests to determine the best operating conditions of pumps used to transfer insoluble radioactive sludges from old to new waste tanks. Because it is not feasible to conduct these tests with real or chemically simulated sludges, kaolin clay is being used as a stand-in for the solid waste. The rheology tests described herein were conducted to determine whether the properties of kaolin were sufficiently similar to those of real sludge to permit meaningful pump tests. The rheology study showed that kaolin can be substituted for real waste to accurately determine pump performance. Once adequately sheared, kaolin properties were found to remain constant. Test results determined that kaolin should not be allowed to settle more than two weeks between pump tests. Water or supernate from the waste tanks can be used to dilute sludge on an equal volume basis because they identically affect the rheological properties of sludge. It was further found that the fluid properties of kaolin and waste are insensitive to temperature

  11. Relation between sensory analysis and rheology of body lotions

    Czech Academy of Sciences Publication Activity Database

    Morávková, Tereza; Filip, Petr

    2016-01-01

    Roč. 38, č. 6 (2016), s. 558-566 ISSN 0142-5463 Institutional support: RVO:67985874 Keywords : body lotion * empirical model * emulsions * rheology * sensory attribute Subject RIV: BK - Fluid Dynamics Impact factor: 1.581, year: 2016

  12. An Evaluation of Magneto Rheological Dampers for Controlling Gun Recoil Dynamics

    Directory of Open Access Journals (Sweden)

    Mehdi Ahmadian

    2001-01-01

    Full Text Available The application of magneto rheological dampers for controlling recoil dynamics is examined, using a recoil demonstrator that includes a single-shot 50 caliber BMG rifle action and a MR damper. The demonstrator is selected such that it can adequately represent the velocities that commonly occur in weapons with a recoil system, and can be used for collecting data for analyzing the effects of MR dampers on recoil dynamics. The MR damper is designed so that it can work effectively at the large velocities commonly occurring in gun recoil, and also be easily adjusted to reasonably optimize the damper performance for the recoil demonstrator. The test results show that it is indeed possible to design and use MR dampers for recoil applications, which subject the damper to relative velocities far larger than the applications that such dampers have commonly been used for (i.e., vehicle applications. Further, the results indicate that the recoil force increases and the recoil stroke decreases nonlinearly with an increase in the damping force. Also of significance is the fact that the adjustability of MR dampers can be used in a closed-loop system such that the large recoil forces that commonly occur upon firing the gun are avoided and, simultaneously, the recoil stroke is reduced. This study points to the need for several areas of research including establishing the performance capabilities for MR dampers for gun recoil applications in an exact manner, and the potential use of such dampers for a fire out of battery recoil system.

  13. RHEOLOGIC BEHAVIOR OF PASTRY CREAMS

    Directory of Open Access Journals (Sweden)

    Camelia Vizireanu

    2012-03-01

    Full Text Available The increased social and economic importance of ready–made food production, together with the complexity of production technology, processing, handling and acceptance of these fragile and perishable products requires extensive knowledge of their physical properties. Viscoelastic properties play an important role in the handling and quality attributes of creams.Our study was to investigate the rheological properties of different confectionary creams, by scanning the field of shear rates at constant temperature and frequency, angular frequency scanning at small deformations and quantification of rheological changes during application of deformation voltages. The creams tested were made in the laboratory using specific concentrates as fine powders, marketed by the company “Dr. Oetker” compared with similar creams based on traditional recipes and techniques. Following the researches conducted we could conclude that both traditional creams and the instant ones are semi fluid food products with pseudoplastic and thixotropic shear flow behavior, with structural viscosity. Instant and traditional creams behaved as physical gels with links susceptible to destruction, when subjected to deformation forces.

  14. Rheology v.2 theory and applications

    CERN Document Server

    Eirich, Frederick

    1958-01-01

    Rheology: Theory and Applications, Volume II deals with the specific rheological subjects, such as deformational behavior in relation to the classic subjects and topics of rheology. This volume is divided into 13 chapters. Considerable chapters are devoted to the theory and aspects of viscoelastic and relaxation phenomena, as well as the applied theory concerning substances related to these phenomena, including elastomers, gelatins, and fibers. Other chapters cover the general principles of geological deformations derived from the study of less """"immobile"""" objects. The remaining chapt

  15. Rheological and Sensory Characteristics of Yoghurt-Modified Mayonnaise

    Czech Academy of Sciences Publication Activity Database

    Štern, Petr; Pokorný, J.; Šedivá, A.; Panovská, Z.

    2008-01-01

    Roč. 26, č. 3 (2008), s. 190-198 ISSN 1212-1800 R&D Projects: GA AV ČR IAA2060404 Institutional research plan: CEZ:AV0Z20600510 Keywords : mayonnaise * rheology * sensory analysis * texture * yoghurt Subject RIV: BK - Fluid Dynamics Impact factor: 0.472, year: 2008

  16. Effect of the fructose and glucose concentration on the rheological ...

    African Journals Online (AJOL)

    Jose Luis Montañez Soto

    2013-03-20

    Mar 20, 2013 ... Key words: High fructose syrups, viscosity, rheological behavior, Newtonian fluids. ... demanded by the pharmaceuticals, food and beverage industries due to its ... determine the preferred quality by the consumer through.

  17. Rheological characteristics of synthetic road binders

    Energy Technology Data Exchange (ETDEWEB)

    Gordon D. Airey; Musarrat H. Mohammed; Caroline Fichter [University of Nottingham, Nottingham (United Kingdom)

    2008-08-15

    This paper deals with the synthesis of polymer binders from monomers that could in future be derived from renewable resources. These binders consist of polyethyl acrylate (PEA) of different molecular weight, polymethyl acrylate (PMA) and polybutyl acrylate (PBA), which were synthesised from ethyl acrylate, methyl acrylate and butyl acrylate, respectively, by atom transfer radical polymerization (ATRP). The fundamental rheological properties of these binders were determined by means of a dynamic shear rheometer (DSR) using a combination of temperature and frequency sweeps. The results indicate that PEA has rheological properties similar to that of 100/150 penetration grade bitumen, PMA similar rheological properties to that of 10/20 penetration grade bitumen, while PBA, due to its highly viscous nature and low complex modulus, cannot be used on its own as an asphalt binder. The synthetic binders were also combined with conventional penetration grade bitumen to produce a range of bitumen-synthetic polymer binder blends. These blends were batched by mass in the ratio of 1:1 or 3:1 and subjected to the same DSR rheological testing as the synthetic binders. The blends consisting of a softer bitumen (70/100 pen or 100/150 pen) with a hard synthetic binder (PMA) tended to be more compatible and therefore stable and produced rheological properties that combined the properties of the two components. The synthetic binders and particularly the extended bitumen samples (blends) produced rheological properties that showed similar characteristics to elastomeric SBS PMBs. 30 refs., 12 figs., 2 tabs.

  18. Rheological properties of disintegrated sewage sludge

    Science.gov (United States)

    Wolski, Paweł

    2017-11-01

    The rheology of the sludge provides information about the capacity and the flow, which in the case of project tasks for the hydraulic conveying installation is an important control parameter. Accurate knowledge of the rheological properties of sludge requires the designation of rheological models. Models single and multiparameter (Ostwald, Bingham, Herschel-Bulkley'a, and others) allow an approximation of flow curves, and the determination of the boundaries of the flow of modified sludge allows you to control the process compaction or are dewatered sludge undergoing flow. The aim of the study was to determine the rheological parameters and rheological models of sludge conditioned by physical methods before and after the process of anaerobic digestion. So far, studies have shown that the application of conditioning in the preparation of sewage sludge increases shear stress, viscosity as well as the limits of flow in relation to the untreated sludge. Offset yield point by the application of a conditioning agent is associated with decreased flowability tested sludge, which has also been observed by analyzing the structure of the prepared samples. Lowering the yield point, and thus the shear stress was recorded as a result of the fermentation test of disintegrated sludge.

  19. Rheological Characterization of Unusual DWPF Slurry Samples

    International Nuclear Information System (INIS)

    Koopman, D. C.

    2005-01-01

    A study was undertaken to identify and clarify examples of unusual rheological behavior in Defense Waste Processing Facility (DWPF) simulant slurry samples. Identification was accomplished by reviewing sludge, Sludge Receipt and Adjustment Tank (SRAT) product, and Slurry Mix Evaporator (SME) product simulant rheological results from the prior year. Clarification of unusual rheological behavior was achieved by developing and implementing new measurement techniques. Development of these new methods is covered in a separate report, WSRC-TR-2004-00334. This report includes a review of recent literature on unusual rheological behavior, followed by a summary of the rheological measurement results obtained on a set of unusual simulant samples. Shifts in rheological behavior of slurries as the wt. % total solids changed have been observed in numerous systems. The main finding of the experimental work was that the various unusual DWPF simulant slurry samples exhibit some degree of time dependent behavior. When a given shear rate is applied to a sample, the apparent viscosity of the slurry changes with time rather than remaining constant. These unusual simulant samples are more rheologically complex than Newtonian liquids or more simple slurries, neither of which shows significant time dependence. The study concludes that the unusual rheological behavior that has been observed is being caused by time dependent rheological properties in the slurries being measured. Most of the changes are due to the effect of time under shear, but SB3 SME products were also changing properties while stored in sample bottles. The most likely source of this shear-related time dependence for sludge is in the simulant preparation. More than a single source of time dependence was inferred for the simulant SME product slurries based on the range of phenomena observed. Rheological property changes were observed on the time-scale of a single measurement (minutes) as well as on a time scale of hours

  20. The influence of fluid-rock interaction on the rheology of salt rock

    International Nuclear Information System (INIS)

    Spiers, C.J.; Urai, J.L; Lister, G.S.; Boland, J.N.; Zwart, H.J.

    1986-01-01

    This report documents work done on the rheological and dilatant properties of dry and wet salt during the period 1 November 1981 to 31 December 1983. The report opens with a review of previous evidence and theoretical models for water weakening effects in the long-term creep of salt. The programme was largely designed to look for such effects experimentally. Sections 3 and 4 describe the experimental apparatus and techniques used. Section 5 reports detailed characterization work on the experimental starting material (Speisesalz, Asse, Federal Republic of Germany). Section 6 deals with experiments on the rheological/dilatant properties of dry salt at about 20 0 C. The results show that even under worst case conditions, creep-induced dilatancy is almost completely suppressed at hydrostatic pressures > 15 MPa. Experiments on the influence of brine are reported in Sections 7 and 8. These show that small amounts of brine (e.g. 0.05 wt% - inherent or added) can cause a significant decrease in the creep strength of salt at low strain rates. This is related to a change in deformation mechanisms from dislocation glide/creep (at normal laboratory rates) to creep involving fluid-assisted recrystallization and diffusional creep (at low rates). The results imply that generally accepted creep laws for salt cannot necessarily be extrapolated to predict long-term behaviour under natural conditions

  1. Nanoscale Rheology and Anisotropic Diffusion Using Single Gold Nanorod Probes

    Science.gov (United States)

    Molaei, Mehdi; Atefi, Ehsan; Crocker, John C.

    2018-03-01

    The complex rotational and translational Brownian motion of anisotropic particles depends on their shape and the viscoelasticity of their surroundings. Because of their strong optical scattering and chemical versatility, gold nanorods would seem to provide the ultimate probes of rheology at the nanoscale, but the suitably accurate orientational tracking required to compute rheology has not been demonstrated. Here we image single gold nanorods with a laser-illuminated dark-field microscope and use optical polarization to determine their three-dimensional orientation to better than one degree. We convert the rotational diffusion of single nanorods in viscoelastic polyethylene glycol solutions to rheology and obtain excellent agreement with bulk measurements. Extensions of earlier models of anisotropic translational diffusion to three dimensions and viscoelastic fluids give excellent agreement with the observed motion of single nanorods. We find that nanorod tracking provides a uniquely capable approach to microrheology and provides a powerful tool for probing nanoscale dynamics and structure in a range of soft materials.

  2. EFFECTS OF PROPERTIES POLYMERIC ADDITIVES IN RHEOLOGIC AND DRILLING FLUIDS

    Directory of Open Access Journals (Sweden)

    Danielly Vieira de Lucena

    2014-03-01

    Full Text Available The influence of carboxymethylcellulose, CMC (filtrate reducer and xanthan gum (viscosifier in plastic and apparent viscosity at yield strength and the volume of filtrate in the composition of drilling fluids based on water was investigated based on statistical design. Five formulations consist of a range of concentrations used commercially were utilized in the design of the experiment. The formulations were prepared in accordance with company standards Petrobras. Regression models were calculated and correlated with the properties of the compositions. The relevance and validation of the models were confirmed by statistical analysis. The design can be applied to statistically optimize the mud properties considering the addition of CMC and xanthan gum, and to provide a better understanding of the influence of additives on the properties of polymer-based fluid system water. From the study it was observed that the values of the rheological properties vary with the concentration of additives, increasing with increasing concentration of the same, and that the concentration of the additives caused a decline of parameter values filtration.

  3. Estimation of semolina dough rheological parameters by inversion of a finite elements model

    Directory of Open Access Journals (Sweden)

    Angelo Fabbri

    2015-10-01

    Full Text Available The description of the rheological properties of food material plays an important role in food engineering. Particularly for the optimisation of pasta manufacturing process (extrusion is needful to know the rheological properties of semolina dough. Unfortunately characterisation of non-Newtonian fluids, such as food doughs, requires a notable time effort, especially in terms of number of tests to be carried out. The present work proposes an alternative method, based on the combination of laboratory measurement, made with a simplified tool, with the inversion of a finite elements numerical model. To determine the rheological parameters, an objective function, defined as the distance between simulation and experimental data, was considered and the well-known Levenberg-Marqard optimisation algorithm was used. In order to verify the feasibility of the method, the rheological characterisation of the dough was carried also by a traditional procedure. Results shown that the difference between measurements of rheological parameters of the semolina dough made with traditional procedure and inverse methods are very small (maximum percentage error equal to 3.6%. This agreement supports the coherence of the inverse method that, in general, may be used to characterise many non-Newtonian materials.

  4. Effect of the fructose and glucose concentration on the rheological ...

    African Journals Online (AJOL)

    Jose Luis Montañez Soto

    2013-03-20

    Mar 20, 2013 ... C.P. 38010. Celaya, Guanajuato, México. ... In quality control, knowledge of the rheological behavior of a fluid is ... intermediary products during manufacturing and of course, of ... fructose and 45%, glucose (Arancia, Mexico).

  5. Rheology of Savannah River Site Tank 42 radioactive sludges. Revision 1

    International Nuclear Information System (INIS)

    Ha, B.C.; Bibler, N.E.

    1995-01-01

    Knowledge of the rheology of the radioactive sludge slurries at the Savannah River Site (SRS) is necessary in order to ensure that they can be retrieved from waste tanks and processed for final disposal. At Savannah River Site (SRS), Tank 42 sludge represents one of the first HLW radioactive sludges to be vitrified in the Defense Waste Processing Facility (DWPF). The rheological properties of unwashed Tank 42 sludge slurries at various solids concentrations were measured remotely in the Shielded Cells at the Savannah River Technology Center (SRTC) using a modified Haake Rotovisco viscometer. Rheological properties of Tank 42 radioactive sludge were measured as a function of weight percent total solids to ensure that the first DWPF radioactive sludge batch can be pumped and processed in the DWPF with the current design bases. The yield stress and consistency of the sludge slurries were determined by assuming a Bingham plastic fluid model

  6. Rheological behavior and constitutive equations of heterogeneous titanium-bearing molten slag

    Science.gov (United States)

    Jiang, Tao; Liao, De-ming; Zhou, Mi; Zhang, Qiao-yi; Yue, Hong-rui; Yang, Song-tao; Duan, Pei-ning; Xue, Xiang-xin

    2015-08-01

    Experimental studies on the rheological properties of a CaO-SiO2-Al2O3-MgO-TiO2-(TiC) blast furnace (BF) slag system were conducted using a high-temperature rheometer to reveal the non-Newtonian behavior of heterogeneous titanium-bearing molten slag. By measuring the relationships among the viscosity, the shear stress and the shear rate of molten slags with different TiC contents at different temperatures, the rheological constitutive equations were established along with the rheological parameters; in addition, the non-Newtonian fluid types of the molten slags were determined. The results indicated that, with increasing TiC content, the viscosity of the molten slag tended to increase. If the TiC content was less than 2wt%, the molten slag exhibited the Newtonian fluid behavior when the temperature was higher than the critical viscosity temperature of the molten slag. In contrast, the molten slag exhibited the non-Newtonian pseudoplastic fluid characteristic and the shear thinning behavior when the temperature was less than the critical viscosity temperature. However, if the TiC content exceeded 4wt%, the molten slag produced the yield stress and exhibited the Bingham and plastic pseudoplastic fluid behaviors when the temperature was higher and lower than the critical viscosity temperature, respectively. When the TiC content increased further, the yield stress of the molten slag increased and the shear thinning phenomenon became more obvious.

  7. Synchrotron SAXS/WAXD and rheological studies of clay suspensions in silicone fluid.

    Science.gov (United States)

    Zhang, Li-Ming; Jahns, Christopher; Hsiao, Benjamin S; Chu, Benjamin

    2003-10-15

    Suspensions of two commercial smectite clays, montmorillonite KSF and montmorillonite K10, in a low-viscosity silicone oil (Dow Corning 245 Fluid) were studied by simultaneous synchrotron small-angle X-ray scattering (SAXS)/wide-angle X-ray diffraction (WAXD) techniques and rheological measurements. In the 0.5% (w/v) KSF clay suspension and two K10 clay suspensions (0.5% and 1.0%), WAXD profiles below 2theta=10.0 degrees did not display any characteristic reflection peaks associated with the chosen montmorillonite clays, while corresponding SAXS profiles exhibited distinct scattering maxima, indicating that both clays were delaminated by the silicone oil. In spite of the large increase in viscosity, the clay suspensions exhibited no gel characteristics. Dynamic rheological experiments indicated that the clay/silicone oil suspensions exhibited the behavior of viscoelasticity, which could be influenced by the type and the concentration of the clay. For the K10 clay suspensions, the frequency-dependent loss modulus (G") was greater in magnitude than the storage modulus (G') in the concentration range from 0.5 to 12.0%. The increase in the clay concentration shifted the crossover point between G' and G" into the accessible frequency range, indicating that the system became more elastic. In contrast, the KSF clay suspension exhibited lower G' and G" values, indicating a weaker viscoelastic response. The larger viscoelasticity response in the K10 clay suspension may be due to the acid treatment generating a higher concentration of silanol groups on the clay surface.

  8. THE ROLE OF DIFFERENT RHEOLOGICAL MODELS IN ACCURACY OF PRESSURE LOSS PREDICTION

    Directory of Open Access Journals (Sweden)

    Katarina Simon

    2004-12-01

    Full Text Available Hydraulics play an important function in many oil field operations including drilling, completion, fracturing, acidizing, workover and production. The standard API methods for drilling fluid hydraulics assume either power law or Bingham plastic rheological model. These models and corresponding hydraulic calculations do provide a simple way for fair estimates of hydraulics for conventional vertical wells using simple drilling fluids, such as bentonite fluids. However, nowdays with many wells drilled deep, slim or horizontal using complex muds with unusual behaviour (such as tested MMH mud, it is necessary to use appropriate rheological model for mathematical modelling of fluid behaviour. Oil and gas reservoirs in Croatia have been under production for quite a while and the probability to discover new deposits of hydrocarbons is rather small. Therefore attempts have been made to maintain the gas and oil exploitation at the present level. One of possible ways to meet this target is re-entry wells drilling. The diameter of such wells in reservoir is smaller than 0,1524 m (6 in. Accurate modelling of annular pressure losses becomes therefore an important issue, particularly in cases where a small safety margin exists between optimal drilling parameters and wellbore stability, what is the case in re-entry wells. The objective of the paper is to show the influence of well geometry and accuracy of fluid rheological properties modelling to the distribution of pressure losses in a slimhole well.

  9. Rheological measurements on cement grouts

    International Nuclear Information System (INIS)

    Dalton, M.J.

    1986-06-01

    This report describes the techniques which have been developed at Winfrith for assessing the rheological properties of cement grouts. A discussion of the theory of rheology and its application to cement is given and the methodology for calibrating a special paddle measuring system for a commercial viscometer is described. The use of the system for determining flow curves, equilibrium viscosity, viscosity as a function of shearing time and structure changes is also discussed. (author)

  10. A Comparison of Rheology Data for Radioactive and Stimulant Savannah River Site Waste

    International Nuclear Information System (INIS)

    KOOPMAN, DAVIDC.

    2004-01-01

    This document reviews radioactive and simulant rheology data on SRS waste slurries. Simulant sludge slurries have been prepared at Optima: Tank 51 for Sludge Batch 1A (SB1A) and trimmed for Sludge Batch 1B (SB1B), at USC-Columbia: Tank 8 and Tank 40 for Sludge Batch 2 (SB2), and at Clemson Environmental Technology Laboratory (CETL): SB2, Sludge Batch 3 (SB3), and several generic simulants. Various radioactive waste tank slurry samples have been analyzed for rheology in the SRTC Shielded Cells during the past 25 years. More recently, some rheological measurements have been made on the DWPF qualification samples for new sludge batches or on special samples pulled to help with resolution of processing issues. This document attempts to make comparisons of rheological data for systems where there were both some radioactive slurry data and some potentially similar simulant slurry data. The Approach section describes the basic data types encountered, e.g. sludges, Sludge Receipt and Adjustment Tank (SRAT) products, and Slurry Mix Evaporator (SME) products. The last are equivalent to melter feeds. This is followed by a discussion of rheometry and the Bingham Plastic fluid model. This model has been used to reduce rheological data on SRS waste slurries over the past twenty years

  11. Investigation de fluides électrorhéologiques sur la base des matériaux hybrides

    OpenAIRE

    Marins , Jéssica Alves ,

    2014-01-01

    Electrorheology is an area has been exploring the application of these organic-inorganic hybrid compounds, to obtain better performance in electrorheological properties. Electro-rheological fluids consist of a colloidal dispersion, where the liquid is non-conductive and the particles dispersed in the fluid are able of polarized at presence of electric field. When the fluids ER are subjected to an external electric field the rheological properties change, and may increase or decrease the appar...

  12. RHEOLOGY AND SCALING BEHAVIOR OF SWELLING CLAY DISPERSIONS

    Directory of Open Access Journals (Sweden)

    S. Chaoui

    2015-07-01

    Full Text Available The microstructure and scaling of rheological properties of colloidal gels of bentonite investigated as a function of volume fraction and strength of interparticle interaction over a range of volume fractions, elastic modulus is well described with a scaling law functions of volume fractions, while the role of interparticle attractions can be accounted for by expressing these rheological properties as (f/fg-1n, where fg captures the strength of particle interaction and n the microstructure. The scaling variable (fp/fpc-1, suggested in percolation theory to describe rheological behavior near percolation transition, acts to collapse G’ data suggesting that along lines of constant (f/fg-1 these gels are rheologically identical.

  13. RHEOLOGY AND SCALING BEHAVIOR OF SWELLING CLAY DISPERSIONS

    Directory of Open Access Journals (Sweden)

    S. CHAOUI

    2012-12-01

    Full Text Available The microstructure and scaling of rheological properties of colloidal gels of bentonite investigated as a function of volume fraction and strength of interparticle interaction over a range of volume fractions, elastic modulus is well described with a scaling law functions of volume fractions, while the role of interparticle attractions can be accounted for by expressing these rheological properties as (/g-1n, where g captures the strength of particle interaction and n the microstructure.The scaling variable (p/pc-1, suggested in percolation theory to describe rheological behavior near percolation transition, acts to collapse G’ data suggesting that along lines of constant (/g-1 these gels are rheologically identical.

  14. Transient rheology of stimuli responsive hydrogels: Integrating microrheology and microfluidics

    Science.gov (United States)

    Sato, Jun

    Stimuli-responsive hydrogels have diverse potential applications in the field of drug delivery, tissue engineering, agriculture, cosmetics, gene therapy, and as sensors and actuators due to their unique responsiveness to external signals, such as pH, temperature, and ionic strength. Understanding the responsiveness of hydrogel structure and rheology to these stimuli is essential for designing materials with desirable performance. However, no instrumentation and well-defined methodology are available to characterize the structural and rheological responses to rapid solvent changes. In this thesis, a new microrheology set-up is described, which allows us to quantitatively measure the transient rheological properties and microstructure of a variety of solvent-responsive complex fluids. The device was constructed by integrating particle tracking microrheology and microfluidics and offers unique experimental capabilities for performing solvent-reponse measurements on soft fragile materials without applying external shear forces. Transient analysis methods to quantitatively obtain rheological properties were also constructed, and guidelines for the trade-off between statistical validity and temporal resolution were developed to accurately capture physical transitions. Employing the new device and methodology, we successfully quantified the transient rheological and microstructural responses during gel formation and break-up, and viscosity changes of solvent-responsive complex fluids. The analysis method was expanded for heterogeneous samples, incorporating methods to quantify the microrheology of samples with broad distributions of individual particle dynamics. Transient microrheology measurements of fragile, heterogeneous, self-assembled block copolypeptide hydrogels revealed that solvent exchange via convective mixing and dialysis can lead to significantly different gel properties and that commonly applied sample preparation protocols for the characterization of soft

  15. Rheological behaviour of self-compacting micro-concrete

    Indian Academy of Sciences (India)

    Workability; viscosity; cement paste; high range water reducing admixture. Abstract. The rheological behaviour of Self-Compacting Micro-Concrete (SCMC) mixtures has been investigated within the scope of this paper. Rheological measurements have been performed using a novel rheometer equipped with a ball ...

  16. Yielding behavior and temperature-induced on-field oscillatory rheological studies in a novel MR suspension containing polymer-capped Fe{sub 3}Ni alloy microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Arief, Injamamul, E-mail: arif.inji.chem1986@gmail.com [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012 (India); Mukhopadhyay, P.K. [LCMP, Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Salt Lake, Kolkata 700 106 (India)

    2017-05-01

    Magnetic Bimetallic alloy nanoparticles of 3d elements are known for their tunable shape, size and magnetic anisotropy and find extensive applications ranging from magneto-mechanical to biomedical devices. This paper reports the polyol-mediated synthesis of Fe-rich polyacrylic acid (PAA)-Fe{sub 3}Ni alloyed microspheres and its morphological and structural characterizations with scanning electron microscopy and X-ray diffraction studies. Magnetorheological fluid was prepared by dispersing the 10 vol% microparticles in silicone oil. The room temperature viscoelastic characterization of the fluid was performed under different magnetic fields. The field-dependent yield stresses were scaled using Klingenberg model and found that static yield stress was more accurately described by an ~M{sup 3} dependence, where M is particle magnetization. We proposed a multipolar contribution and ascertained the fact that simple dipolar description was insufficient to describe the trend in a complex rheological fluid. Temperature-dependent oscillatory rheological studies under various fields were also investigated. This demonstrated a strong temperature-induced thinning effect. The temperature-thinning in complex moduli and viscosity were more pronounced for the samples at higher magnetic field owing to quasi-solid behavior. - Highlights: • Novel one-pot chemical synthesis of Fe-rich PAA-Fe{sub 3}Ni microspheres. • Room temperature steady shear magnetorheology revealed viscoelastic behavior. • Rheometer magnetic fields can be replaced by powder particle magnetization (M) for better stress scaling. • Higher order scaling relations (~M{sup 3}) to particle magnetization (M) were observed for static yield stress. • Temperature-induced, field-dependent oscillatory rheology indicated pronounced thinning behavior, owing to predominantly quasi-solid behavior at high field density.

  17. Review Of Rheology Models For Hanford Waste Blending

    International Nuclear Information System (INIS)

    Koopman, D. C.; Stone, M.

    2013-01-01

    The area of rheological property prediction was identified as a technology need in the Hanford Tank Waste - waste feed acceptance initiative area during a series of technical meetings among the national laboratories, Department of Energy-Office of River Protection, and Hanford site contractors. Meacham et al. delivered a technical report in June 2012, RPP-RPT-51652 ''One System Evaluation of Waste Transferred to the Waste Treatment Plant'' that included estimating of single shell tank waste Bingham plastic rheological model constants along with a discussion of the issues inherent in predicting the rheological properties of blended wastes. This report was selected as the basis for moving forward during the technical meetings. The report does not provide an equation for predicting rheological properties of blended waste slurries. The attached technical report gives an independent review of the provided Hanford rheological data, Hanford rheological models for single tank wastes, and Hanford rheology after blending provided in the Meacham report. The attached report also compares Hanford to SRS waste rheology and discusses some SRS rheological model equations for single tank wastes, as well as discussing SRS experience with the blending of waste sludges with aqueous material, other waste sludges, and frit slurries. Some observations of note: Savannah River Site (SRS) waste samples from slurried tanks typically have yield stress >1 Pa at 10 wt.% undissolved solids (UDS), while core samples largely have little or no yield stress at 10 wt.% UDS. This could be due to how the waste has been processed, stored, retrieved, and sampled or simply in the differences in the speciation of the wastes. The equations described in Meacham's report are not recommended for extrapolation to wt.% UDS beyond the available data for several reasons; weak technical basis, insufficient data, and large data scatter. When limited data are available, for example two to three points, the equations

  18. Rheology for chemists an introduction

    CERN Document Server

    Goodwin, J W

    2000-01-01

    Rheology is an integral part of life, from decorative paint and movement of volcanic lava to the flow of blood in our veins. This book describes, without the use of complex mathematics, how atoms and molecules interact to control the handling properties of materials ranging from simple ionic crystals through polymers to colloidal dispersions.Beginning with an introduction to essential terminology, Rheology for Chemists goes on to discuss limiting behaviour, temporal behaviour and non-linear behaviour. Throughout, examples of everyday experiments are provided to illustrate the theory, which increases in complexity with each discrete chapter. Ideas are developed in a systematic fashion so that the mechanisms responsible for the elastic, viscous or viscoelastic behaviour of systems are understood. The text thus progresses in a manner that makes it an ideal introduction to rheology for any scientist who needs to use the ideas to modify systems.Comprehensive and unique in approach, this book will provide the neces...

  19. Ceramic tape casting: A review of current methods and trends with emphasis on rheological behaviour and flow analysis

    International Nuclear Information System (INIS)

    Jabbari, M.; Bulatova, R.; Tok, A.I.Y.; Bahl, C.R.H.; Mitsoulis, E.; Hattel, J.H.

    2016-01-01

    Highlights: • Brief review of the tape casting process for ceramics. • Role of fluid flow analysis in tape casting of ceramics. • Rheological classification of common fluids in tape casting. • Review of commonly used rheological behaviour for ceramics in tape casting. - Abstract: Tape casting has been used to produce thin layers of ceramics that can be used as single layers or can be stacked and laminated into multilayered structures. Today, tape casting is the basic fabrication process that provides multilayered capacitors and multilayered ceramic packages. In tape casting the rheological behaviour of the slurry as well as the material flow during casting are of utmost importance since these phenomena to a large extent determine the final properties and hence the quality of the cast product. During the last decades this has led to an increasing number of works in literature within fluid flow analysis of tape casting. In the present paper a review of the development of the tape casting process with particular focus on the rheological classifications as well as modelling the material flow is hence presented and in this context the current status is examined and future potential discussed.

  20. Ceramic tape casting: A review of current methods and trends with emphasis on rheological behaviour and flow analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jabbari, M., E-mail: mjab@mek.dtu.dk [Process Modelling Group, Department of Mechanical Engineering, Technical University of Denmark, Nils Koppels Allé, 2800 Kgs. Lyngby (Denmark); Bulatova, R. [Department of Energy Conversion and Storage, Technical University of Denmark, Frederiksborgvej 399, Building 779, Roskilde (Denmark); Tok, A.I.Y. [School of Materials Science & Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Bahl, C.R.H. [Department of Energy Conversion and Storage, Technical University of Denmark, Frederiksborgvej 399, Building 779, Roskilde (Denmark); Mitsoulis, E. [School of Mining Engineering and Metallurgy, National Technical University of Athens, Zografou, 15780 Athens (Greece); Hattel, J.H. [Process Modelling Group, Department of Mechanical Engineering, Technical University of Denmark, Nils Koppels Allé, 2800 Kgs. Lyngby (Denmark)

    2016-10-15

    Highlights: • Brief review of the tape casting process for ceramics. • Role of fluid flow analysis in tape casting of ceramics. • Rheological classification of common fluids in tape casting. • Review of commonly used rheological behaviour for ceramics in tape casting. - Abstract: Tape casting has been used to produce thin layers of ceramics that can be used as single layers or can be stacked and laminated into multilayered structures. Today, tape casting is the basic fabrication process that provides multilayered capacitors and multilayered ceramic packages. In tape casting the rheological behaviour of the slurry as well as the material flow during casting are of utmost importance since these phenomena to a large extent determine the final properties and hence the quality of the cast product. During the last decades this has led to an increasing number of works in literature within fluid flow analysis of tape casting. In the present paper a review of the development of the tape casting process with particular focus on the rheological classifications as well as modelling the material flow is hence presented and in this context the current status is examined and future potential discussed.

  1. Coupled Effects of non-Newtonian Rheology and Aperture Variability on Flow in a Single Fracture

    Science.gov (United States)

    Di Federico, V.; Felisa, G.; Lauriola, I.; Longo, S.

    2017-12-01

    Modeling of non-Newtonian flow in fractured media is essential in hydraulic fracturing and drilling operations, EOR, environmental remediation, and to understand magma intrusions. An important step in the modeling effort is a detailed understanding of flow in a single fracture, as the fracture aperture is spatially variable. A large bibliography exists on Newtonian and non-Newtonian flow in variable aperture fractures. Ultimately, stochastic or deterministic modeling leads to the flowrate under a given pressure gradient as a function of the parameters describing the aperture variability and the fluid rheology. Typically, analytical or numerical studies are performed adopting a power-law (Oswald-de Waele) model. Yet the power-law model, routinely used e.g. for hydro-fracturing modeling, does not characterize real fluids at low and high shear rates. A more appropriate rheological model is provided by e.g. the four-parameter Carreau constitutive equation, which is in turn approximated by the more tractable truncated power-law model. Moreover, fluids of interest may exhibit yield stress, which requires the Bingham or Herschel-Bulkely model. This study employs different rheological models in the context of flow in variable aperture fractures, with the aim of understanding the coupled effect of rheology and aperture spatial variability with a simplified model. The aperture variation, modeled within a stochastic or deterministic framework, is taken to be one-dimensional and i) perpendicular; ii) parallel to the flow direction; for stochastic modeling, the influence of different distribution functions is examined. Results for the different rheological models are compared with those obtained for the pure power-law. The adoption of the latter model leads to overestimation of the flowrate, more so for large aperture variability. The presence of yield stress also induces significant changes in the resulting flowrate for assigned external pressure gradient.

  2. Structure and rheology of nanoparticle–polymer suspensions

    KAUST Repository

    Srivastava, Samanvaya

    2012-01-01

    Structure and rheology of oligomer-tethered nanoparticles suspended in low molecular weight polymeric host are investigated at various particle sizes and loadings. Strong curvature effects introduced by the small size of the nanoparticle cores are found to be important for understanding both the phase stability and rheology of the materials. Small angle X-ray scattering (SAXS) and transmission electron microscopy measurements indicate that PEG-SiO 2/PEG suspensions are more stable against phase separation and aggregation than expected from theory for interacting brushes. SAXS and rheology measurements also reveal that at high particle loadings, the stabilizing oligomer brush is significantly compressed and produces jamming in the suspensions. The jamming transition is accompanied by what appears to be a unique evolution in the transient suspension rheology, along with large increments in the zero-shear, Newtonian viscosity. The linear and nonlinear flow responses of the jammed suspensions are discussed in the framework of the Soft Glassy Rheology (SGR) model, which is shown to predict many features that are consistent with experimental observations, including a two-step relaxation following flow cessation and a facile method for determining the shear-thinning coefficient from linear viscoelastic measurements. Finally, we show that the small sizes of the particles have a significant effect on inter-particle interactions and rheology, leading to stronger deviations from expectations based on planar brushes and hard-sphere suspension theories. In particular, we find that in the high volume fraction limit, tethered nanoparticles interact in their host polymer through short-range forces, which are more analogous to those between soft particles than between spherical polymer brushes. © 2012 The Royal Society of Chemistry.

  3. Accelerated lattice Boltzmann model for colloidal suspensions rheology and interface morphology

    Science.gov (United States)

    Farhat, Hassan

    Colloids are ubiquitous in the food, medical, cosmetic, polymer, water purification and pharmaceutical industries. Colloids thermal, mechanical and storage properties are highly dependent on their interface morphology and their rheological behavior. Numerical methods provide a cheap and reliable virtual laboratory for the study of colloids. However efficiency is a major concern to address when using numerical methods for practical applications. This work introduces the main building-blocks for an improved lattice Boltzmann-based numerical tool designed for the study of colloidal rheology and interface morphology. The efficiency of the proposed model is enhanced by using the recently developed and validated migrating multi-block algorithms for the lattice Boltzmann method (LBM). The migrating multi-block was used to simulate single component, multi-component, multiphase and single component multiphase flows. Results were validated by experimental, numerical and analytical solutions. The contamination of the fluid-fluid interface influences the colloids morphology. This issue was addressed by the introduction of the hybrid LBM for surfactant-covered droplets. The module was used for the simulation of surfactant-covered droplet deformation under shear and uniaxial extensional flows respectively and under buoyancy. Validation with experimental and theoretical results was provided. Colloids are non-Newtonian fluids which exhibit rich rheological behavior. The suppression of coalescence module is the part of the proposed model which facilitates the study of colloids rheology. The model results for the relative viscosity were in agreement with some theoretical results. Biological suspensions such as blood are macro-colloids by nature. The study of the blood flow in the microvasculature was heuristically approached by assuming the red blood cells as surfactant covered droplets. The effects of interfacial tension on the flow velocity and the droplet exclusion from the walls

  4. An experimental investigation into nonlinear dynamics of a magneto-rheological elastomer sandwich beam

    International Nuclear Information System (INIS)

    Yildirim, Tanju; Ghayesh, Mergen H; Li, Weihua; Alici, Gursel

    2016-01-01

    An experimental investigation has been carried out on the nonlinear dynamics of a clamped–clamped Magneto-Rheological Elastomer (MRE) sandwich beam with a point mass when subjected to a point excitation. Three sets of experiments have been conducted namely for (i) an aluminium beam, (ii) a MRE sandwich beam in the absence of a magnetic field and (iii) a MRE sandwich beam in the presence of a magnetic field. An electrodynamic shaker was used to excite each system and the corresponding displacement of the point mass was measured: for the third experiment (iii), an array of magnets has been placed at various distances away from the centre of the point mass to investigate the effect of changing stiffness and damping properties on the nonlinear dynamical behaviour. An interesting feature for the third group is the beam point mass displacement was no longer symmetric as the stiffness and damping of the system are increased when moving towards the magnets. Both the first and second groups exhibited distinct nonlinear behaviour; however, for the third group this work shows that for a low magnetic field the sandwich beam exhibits two distinct resonance peaks, one occurring above and the other below the fundamental natural frequency of the transverse motion, with the right one larger. For a larger magnetic field, these peaks even out until the magnetic force was large enough that the hardening-type nonlinear behaviour changes to a softening-type; a significant qualitative change in the nonlinear dynamical behaviour of the system, due to the presence of the magnetic field, was observed. (paper)

  5. Rheology of Supramolecular Polymers

    DEFF Research Database (Denmark)

    Shabbir, Aamir

    Supramolecular polymers are a broad class of materials that include all polymerscapable of associating via secondary interactions. These materials represent an emerging class of systems with superior versatility compared to classical polymers with applications in food stuff, coatings, cost...... efficient processes or biomedical areas. Design and development of supramolecular polymers using ionic, hydrogen bonding or transition metal complexes with tailored properties requires deep understanding of dynamics both in linear and non-linear deformations. While linear rheology is important to understand...... the dynamics under equilibrium conditions, extensional rheology is relevant during the processing or in the usage of polymers utilizing supramolecular associations for example, acrylic based pressure sensitive adhesives are subjected to extensional deformations during the peeling where strain hardening...

  6. Cookbook for rheological models - asphalt binders : final report.

    Science.gov (United States)

    2016-05-01

    Rheology is defined as the science of the deformation and flow of matter (Hackley and Ferraris, : 2001). The measurement of rheological properties of matter has become very important in various : fields, especially the construction industry, where pr...

  7. Review Of Rheology Models For Hanford Waste Blending

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D. C.; Stone, M.

    2013-09-26

    The area of rheological property prediction was identified as a technology need in the Hanford Tank Waste - waste feed acceptance initiative area during a series of technical meetings among the national laboratories, Department of Energy-Office of River Protection, and Hanford site contractors. Meacham et al. delivered a technical report in June 2012, RPP-RPT-51652 ''One System Evaluation of Waste Transferred to the Waste Treatment Plant'' that included estimating of single shell tank waste Bingham plastic rheological model constants along with a discussion of the issues inherent in predicting the rheological properties of blended wastes. This report was selected as the basis for moving forward during the technical meetings. The report does not provide an equation for predicting rheological properties of blended waste slurries. The attached technical report gives an independent review of the provided Hanford rheological data, Hanford rheological models for single tank wastes, and Hanford rheology after blending provided in the Meacham report. The attached report also compares Hanford to SRS waste rheology and discusses some SRS rheological model equations for single tank wastes, as well as discussing SRS experience with the blending of waste sludges with aqueous material, other waste sludges, and frit slurries. Some observations of note: Savannah River Site (SRS) waste samples from slurried tanks typically have yield stress >1 Pa at 10 wt.% undissolved solids (UDS), while core samples largely have little or no yield stress at 10 wt.% UDS. This could be due to how the waste has been processed, stored, retrieved, and sampled or simply in the differences in the speciation of the wastes. The equations described in Meacham's report are not recommended for extrapolation to wt.% UDS beyond the available data for several reasons; weak technical basis, insufficient data, and large data scatter. When limited data are available, for example two to

  8. Field-Induced Rheology in Uniaxial and Biaxial Fields

    International Nuclear Information System (INIS)

    MARTIN, JAMES E.

    1999-01-01

    Steady and oscillatory shear 3-D simulations of electro- and magnetorheology in uniaxial and biaxial fields are presented, and compared to the predictions of the chain model. These large scale simulations are three dimensional, and include the effect of Brownian motion. In the absence of thermal fluctuations, the expected shear thinning viscosity is observed in steady shear, and a striped phase is seen to rapidly form in a uniaxial field, with a shear slip zone in each sheet. However, as the influence of Brownian motion increases, the fluid stress decreases, especially at lower Mason numbers, and the striped phase eventually disappears, even when the fluid stress is still high. In a biaxial field, an opposite trend is seen, where Brownian motion decreases the stress most significantly at higher Mason numbers. to account for the uniaxial steady shear data they propose a microscopic chain model of the role played by thermal fluctuations on the rheology of ER and MR fluids that delineates the regimes where an applied field can impact the fluid viscosity, and gives an analytical prediction for the thermal effect. In oscillatory shear, a striped phase again appears in uniaxial field, at strain amplitudes greater than(approx) 0.15, and the presence of a shear slip zone creates strong stress nonlinearities at low strain amplitudes. In a biaxial field, a shear slip zone is not created, and so the stress nonlinearities develop only at expected strain amplitudes. The nonlinear dynamics of these systems is shown to be in good agreement with the Kinetic Chain Model

  9. RHEOLOGY OF CHICKPEA PROTEIN CONCENTRATE DISPERSIONS

    Directory of Open Access Journals (Sweden)

    Aurelia Ionescu

    2011-12-01

    Full Text Available Chickpea proteins are used as ingredients in comminuted sausage products and many oriental textured foods. Rheological behaviour of chickpea protein concentrate was studied using a controlled stress rheometer. The protein dispersion prepared with phosphate buffer at pH 7.0 presented non-Newtonian shear thinning behaviour and rheological data well fitted to the Sisko, Carreau and Cross models. The viscoelastic properties of the chickpea protein suspensions were estimated by measuring the storage and loss moduli in oscillatory frequency conditions (0.1-10 Hz at 20°C. Moreover, thermally induced gelation of the chickpea proteins (16, 24 and 36% was studied at pH 7.0 and 4.5 in the temperature range 50 to 100oC and salt concentration ranging from 0 to 1 M. Gelling behaviour was quantified by means of dynamic rheological measurements. Gels formation was preceded by the decrease of storage modulus and loss moduli, coupled with the increase of the phase angle (delta. The beginning of thermal gelation was influenced by protein concentration, pH and salt level. In all studied cases, storage modulus increased rapidly in the temperature range 70-90°C. All rheological parameters measured at 90°C were significantly higher at pH 4.5 compared to pH 7.0.

  10. Rheological properties of alumina injection feedstocks

    Directory of Open Access Journals (Sweden)

    Vivian Alexandra Krauss

    2005-06-01

    Full Text Available The rheological behavior of alumina molding feedstocks containing polyethylene glycol (PEG, polyvinylbutyral (PVB and stearic acid (SA and having different powder loads were analyzed using a capillary rheometer. Some of the feedstocks showed a pseudoplastic behavior of n < 0, which can lead to the appearance of weld lines on molded parts. Their viscosity also displayed a strong dependence on the shear rate. The slip phenomenon, which can cause an unsteady front flow, was also observed. The results indicate that the feedstock containing a lower powder load displayed the best rheological behavior. The 55 vol. % powder loaded feedstock presented the best rheological behavior, thus appearing to be more suitable than the formulation containing a vol. 59% powder load, which attained viscosities exceeding 10³ Pa.s at low shear rates, indicating its unsuitability for injection molding.

  11. Rheological properties of crumb rubber modified bitumen containing antioxidant

    International Nuclear Information System (INIS)

    Mohamed, A. A; Omar, Husaini; Hamzah, M.O; Ismail, H.

    2009-01-01

    Rheology has become a useful tool in the characterization of the bitumen performance on the pavement. Visco-elastic properties of crumb rubber modified bitumen with antioxidants (CR30) were determined by the means of rheological measurement. This measurement led to a better knowledge of bitumen behavior that occurs when subjected to different thermal and mechanical conditions, as seen during road construction and services in the field. Dynamic Shear Rheometer (DSR) was used to characterize the rheology of the binders before and after oven aging. The binders were aged for 3 and 9 days. Results of a compatibility test showed that the addition of CR30 modified bitumen is compatible with the base bitumen. The results of unaged samples indicated that the addition of 1% CR30 and 5% CR30 modified binders caused an increase in G value as a result of the rheological changes. Results showed that aging has significant influence on bitumen rheology, by increasing complex modulus and decreasing phase angle. (author)

  12. Melt rheology and its applications in the plastics industry

    CERN Document Server

    Dealy, John M

    2013-01-01

    This is the second edition of Melt Rheology and its Role in Plastics Processing, although the title has changed to reflect its broadened scope. Advances in the recent years in rheometer technology and polymer science have greatly enhanced the usefulness of rheology in the plastics industry. It is now possible to design polymers having specific molecular structures and to predict the flow properties of melts having those structures. In addition, rheological properties now provide more precise information about molecular structure. This book provides all the information that is needed for the intelligent application of rheology in the development of new polymers, the determination of molecular structure and the correlation of processability with laboratory test data. Theory and equations are limited to what is essential for the use of rheology in the characterization of polymers, the development of new plastics materials and the prediction of plastics processing behavior. The emphasis is on information that wil...

  13. Design of a 7-DOF slave robot integrated with a magneto-rheological haptic master

    Science.gov (United States)

    Hwang, Yong-Hoon; Cha, Seung-Woo; Kang, Seok-Rae; Choi, Seung-Bok

    2017-04-01

    In this study, a 7-DOF slave robot integrated with the haptic master is designed and its dynamic motion is controlled. The haptic master is made using a controllable magneto-rheological (MR) clutch and brake and it provides the surgeon with a sense of touch by using both kinetic and kinesthetic information. Due to the size constraint of the slave robot, a wire actuating is adopted to make the desired motion of the end-effector which has 3-DOF instead of a conventional direct-driven motor. Another motions of the link parts that have 4-DOF use direct-driven motor. In total system, for working as a haptic device, the haptic master need to receive the information of repulsive forces applied on the slave robot. Therefore, repulsive forces on the end-effector are sensed by using three uniaxial torque transducer inserted in the wire actuating system and another repulsive forces applied on link part are sensed by using 6-axis transducer that is able to sense forces and torques. Using another 6-axis transducer, verify the reliability of force information on final end of slave robot. Lastly, integrated with a MR haptic master, psycho-physical test is conducted by different operators who can feel the different repulsive force or torque generated from the haptic master which is equivalent to the force or torque occurred on the end-effector to demonstrate the effectiveness of the proposed system.

  14. Hysteresis-induced bifurcation and chaos in a magneto-rheological suspension system under external excitation

    International Nuclear Information System (INIS)

    Zhang Hailong; Zhang Ning; Wang Enrong; Min Fuhong

    2016-01-01

    The magneto-rheological damper (MRD) is a promising device used in vehicle semi-active suspension systems, for its continuous adjustable damping output. However, the innate nonlinear hysteresis characteristic of MRD may cause the nonlinear behaviors. In this work, a two-degree-of-freedom (2-DOF) MR suspension system was established first, by employing the modified Bouc–Wen force–velocity (F–v) hysteretic model. The nonlinear dynamic response of the system was investigated under the external excitation of single-frequency harmonic and bandwidth-limited stochastic road surface. The largest Lyapunov exponent (LLE) was used to detect the chaotic area of the frequency and amplitude of harmonic excitation, and the bifurcation diagrams, time histories, phase portraits, and power spectrum density (PSD) diagrams were used to reveal the dynamic evolution process in detail. Moreover, the LLE and Kolmogorov entropy (K entropy) were used to identify whether the system response was random or chaotic under stochastic road surface. The results demonstrated that the complex dynamical behaviors occur under different external excitation conditions. The oscillating mechanism of alternating periodic oscillations, quasi-periodic oscillations, and chaotic oscillations was observed in detail. The chaotic regions revealed that chaotic motions may appear in conditions of mid-low frequency and large amplitude, as well as small amplitude and all frequency. The obtained parameter regions where the chaotic motions may appear are useful for design of structural parameters of the vibration isolation, and the optimization of control strategy for MR suspension system. (paper)

  15. Structure-rheology relationship in a sheared lamellar fluid.

    Science.gov (United States)

    Jaju, S J; Kumaran, V

    2016-03-01

    The structure-rheology relationship in the shear alignment of a lamellar fluid is studied using a mesoscale model which provides access to the lamellar configurations and the rheology. Based on the equations and free energy functional, the complete set of dimensionless groups that characterize the system are the Reynolds number (ργL(2)/μ), the Schmidt number (μ/ρD), the Ericksen number (μγ/B), the interface sharpness parameter r, the ratio of the viscosities of the hydrophilic and hydrophobic parts μ(r), and the ratio of the system size and layer spacing (L/λ). Here, ρ and μ are the fluid density and average viscosity, γ is the applied strain rate, D is the coefficient of diffusion, B is the compression modulus, μ(r) is the maximum difference in the viscosity of the hydrophilic and hydrophobic parts divided by the average viscosity, and L is the system size in the cross-stream direction. The lattice Boltzmann method is used to solve the concentration and momentum equations for a two dimensional system of moderate size (L/λ=32) and for a low Reynolds number, and the other parameters are systematically varied to examine the qualitative features of the structure and viscosity evolution in different regimes. At low Schmidt numbers where mass diffusion is faster than momentum diffusion, there is fast local formation of randomly aligned domains with "grain boundaries," which are rotated by the shear flow to align along the extensional axis as time increases. This configuration offers a high resistance to flow, and the layers do not align in the flow direction even after 1000 strain units, resulting in a viscosity higher than that for an aligned lamellar phase. At high Schmidt numbers where momentum diffusion is fast, the shear flow disrupts layers before they are fully formed by diffusion, and alignment takes place by the breakage and reformation of layers by shear, resulting in defects (edge dislocations) embedded in a background of nearly aligned layers

  16. Rheology and density of glucose syrup and honey : Determining their suitability for usage in analogue and fluid dynamic models of geological processes

    NARCIS (Netherlands)

    Schellart, W. P.

    Analogue models of lithospheric deformation and fluid dynamic models of mantle flow mostly use some kind of syrup such as honey or glucose syrup to simulate the low-viscosity sub-lithospheric mantle. This paper describes detailed rheological tests and density measurements of three brands of glucose

  17. Polyelectrolytes thermodynamics and rheology

    CERN Document Server

    P M, Visakh; Picó, Guillermo Alfredo

    2014-01-01

    This book discusses current development of theoretical models and experimental findings on the thermodynamics of polyelectrolytes. Particular emphasis is placed on the rheological description of polyelectrolyte solutions and hydrogels.

  18. Neural network compensation of semi-active control for magneto-rheological suspension with time delay uncertainty

    International Nuclear Information System (INIS)

    Dong Xiaomin; Yu Miao; Liao Changrong; Chen Weimin; Li Zushu

    2009-01-01

    This study presents a new intelligent control method, human-simulated intelligent control (HSIC) based on the sensory motor intelligent schema (SMIS), for a magneto-rheological (MR) suspension system considering the time delay uncertainty of MR dampers. After formulating the full car dynamic model featuring four MR dampers, the HSIC based on eight SMIS is derived. A neural network model is proposed to compensate for the uncertain time delay of the MR dampers. The HSIC based on SMIS is then experimentally realized for the manufactured full vehicle MR suspension system on the basis of the dSPACE platform. Its performance is evaluated and compared under various road conditions and presented in both time and frequency domains. The results show that significant gains are made in the improvement of vehicle performance. Results include a reduction of over 35% in the acceleration peak-to-peak value of a sprung mass over a bumpy road and a reduction of over 24% in the root-mean-square (RMS) sprung mass acceleration over a random road as compared to passive suspension with typical original equipment (OE) shock absorbers. In addition, the semi-active full vehicle system via HSIC based on SMIS provides better isolation than that via the original HSIC, which can avoid the effect of the time delay uncertainty of the MR dampers

  19. Surface effects on anti-plane shear waves propagating in magneto-electro-elastic nanoplates

    International Nuclear Information System (INIS)

    Wu, Bin; Zhang, Chunli; Chen, Weiqiu; Zhang, Chuanzeng

    2015-01-01

    Material surfaces may have a remarkable effect on the mechanical behavior of magneto-electro-elastic (or multiferroic) structures at nanoscale. In this paper, a surface magneto-electro-elasticity theory (or effective boundary condition formulation), which governs the motion of the material surface of magneto-electro-elastic nanoplates, is established by employing the state-space formalism. The properties of anti-plane shear (SH) waves propagating in a transversely isotropic magneto-electro-elastic plate with nanothickness are investigated by taking surface effects into account. The size-dependent dispersion relations of both antisymmetric and symmetric SH waves are presented. The thickness-shear frequencies and the asymptotic characteristics of the dispersion relations considering surface effects are determined analytically as well. Numerical results show that surface effects play a very pronounced role in elastic wave propagation in magneto-electro-elastic nanoplates, and the dispersion properties depend strongly on the chosen surface material parameters of magneto-electro-elastic nanoplates. As a consequence, it is possible to modulate the waves in magneto-electro-elastic nanoplates through surface engineering. (paper)

  20. Rheological behavior of Brazilian Cherry (Eugenia uniflora L. pulp at pasteurization temperatures

    Directory of Open Access Journals (Sweden)

    Alessandra Santos Lopes

    2013-03-01

    Full Text Available The rheological behavior of Brazilian Cherry (Eugenia uniflora L. pulp in the range of temperatures used for pasteurization (83 to 97 °C was studied. The results indicated that Brazilian Cherry pulp presented pseudoplastic behavior, and the Herschel-Bulkley model was considered more adequate to represent the rheological behavior of this pulp in the range of temperatures studied. The fluid behavior index (n varied in the range from 0.448 to 0.627. The effect of temperature on the apparent viscosity was described by an equation analogous to Arrhenius equation, and a decrease in apparent viscosity with an increase in temperature was observed.

  1. Recommendations for rheological testing and modelling of DWPF melter feed slurries

    International Nuclear Information System (INIS)

    Shadday, M.A. Jr.

    1994-08-01

    The melter feed in the DWPF process is a non-Newtonian slurry. In the melter feed system and the sampling system, this slurry is pumped at a wide range of flow rates through pipes of various diameters. Both laminar and turbulent flows are encountered. Good rheology models of the melter feed slurries are necessary for useful hydraulic models of the melter feed and sampling systems. A concentric cylinder viscometer is presently used to characterize the stress/strain rate behavior of the melter feed slurries, and provide the data for developing rheology models of the fluids. The slurries exhibit yield stresses, and they are therefore modelled as Bingham plastics. The ranges of strain rates covered by the viscometer tests fall far short of the entire laminar flow range, and therefore hydraulic modelling applications of the present rheology models frequently require considerable extrapolation beyond the range of the data base. Since the rheology models are empirical, this cannot be done with confidence in the validity of the results. Axial pressure drop versus flow rate measurements in a straight pipe can easily fill in the rest of the laminar flow range with stress/strain rate data. The two types of viscometer tests would be complementary, with the concentric cylinder viscometer providing accurate data at low strain rates, near the yield point if one exists, and pipe flow tests providing data at high strain rates up to and including the transition to turbulence. With data that covers the laminar flow range, useful rheological models can be developed. In the Bingham plastic model, linear behavior of the shear stress as a function of the strain rate is assumed once the yield stress is exceeded. Both shear thinning and shear thickening behavior have been observed in viscometer tests. Bingham plastic models cannot handle this non-linear behavior, but a slightly more complicated yield/power law model can

  2. Differential Rheology Among ABO Blood Group System In Nigerians

    African Journals Online (AJOL)

    Research Article. Differential Rheology ... alterations in membrane and cytoskeletal properties that could affect the rheology of blood. This study was ... depending on the concentration of plasma proteins especially ... Laboratory Analysis:.

  3. Fluid content along the subduction plate interface: how it impacts the long- (and short-) term rheology and exhumation modes

    Science.gov (United States)

    Agard, Philippe; Angiboust, Samuel; Guillot, Stéphane; Burov, Evgueni

    2015-04-01

    Over the last decade, many studies based on field, petrological and geophysical evidence have emphasized the link between mineral reactions, fluid release and seismogenesis, either along the whole plate interface (eg., Hacker et al., 2003) or at specific depths (e.g., ~30 km: Audet et al., 2009; ~70-80 km: Angiboust et al., 2012). Although they argue for a crucial influence of fluids on subduction processes, large uncertainties remain when assessing their impact on the rheology of the plate interface across space and time. Kilometer-scale accreted terranes/units in both ancient and present-day subduction zones potentially allow to track changes in mechanical coupling along the plate interface. Despite some potential biases (exhumation is limited and episodic, lasting no more than a few My if any, from prefered depths -- mainly 30-40 and 70-80 km, and there are so far only few examples precisely located with respect to the plate interface) their record of changes in fluid regime and strain localisation is extremely valuable. One striking example of the role of fluids on plate interface rheology during nascent subduction is provided by metamorphic soles (i.e., ~500 m thick tectonic slices welded to the base of ophiolites). We show that their accretion to the ophiolite indeed only happens across a transient, optimal time-T-P window (after Hacker et al., Journal of Geophysical Research 2003; Audet et al., Nature, 2009; Angiboust et al., Geology 2012

  4. Wave propagation in a transversely isotropic magneto-electro-elastic solid bar immersed in an inviscid fluid

    Directory of Open Access Journals (Sweden)

    R. Selvamani

    2016-01-01

    Full Text Available Wave propagation in a transversely isotropic magneto-electro-elastic solid bar immersed in an inviscid fluid is discussed within the frame work of linearized three dimensional theory of elasticity. Three displacement potential functions are introduced to uncouple the equations of motion, electric and magnetic induction. The frequency equations that include the interaction between the solid bar and fluid are obtained by the perfect slip boundary conditions using the Bessel functions. The numerical calculations are carried out for the non-dimensional frequency, phase velocity and attenuation coefficient by fixing wave number and are plotted as the dispersion curves. The results reveal that the proposed method is very effective and simple and can be applied to other bar of different cross section by using proper geometric relation.

  5. Structural analysis of gluten-free doughs by fractional rheological model

    Science.gov (United States)

    Orczykowska, Magdalena; Dziubiński, Marek; Owczarz, Piotr

    2015-02-01

    This study examines the effects of various components of tested gluten-free doughs, such as corn starch, amaranth flour, pea protein isolate, and cellulose in the form of plantain fibers on rheological properties of such doughs. The rheological properties of gluten-free doughs were assessed by using the rheological fractional standard linear solid model (FSLSM). Parameter analysis of the Maxwell-Wiechert fractional derivative rheological model allows to state that gluten-free doughs present a typical behavior of viscoelastic quasi-solid bodies. We obtained the contribution dependence of each component used in preparations of gluten-free doughs (either hard-gel or soft-gel structure). The complicate analysis of the mechanical structure of gluten-free dough was done by applying the FSLSM to explain quite precisely the effects of individual ingredients of the dough on its rheological properties.

  6. Complex rheological behaviors of loach (Misgurnus anguillicaudatus) skin mucus

    International Nuclear Information System (INIS)

    Wang, Xiang; Su, Heng; Lv, Weiyang; Du, Miao; Song, Yihu; Zheng, Qiang

    2015-01-01

    The functions and structures of biological mucus are closely linked to rheology. In this article, the skin mucus of loach (Misgurnus anguillicaudatus) was proved to be a weak hydrogel susceptible to shear rate, time, and history, exhibiting: (i) Two-region breakdown of its gel structure during oscillatory strain sweep; (ii) rate-dependent thickening followed by three-region thinning with increased shear rate, and straight thinning with decreased shear rate; and (iii) time-dependent rheopexy at low shear rates, and thixotropy at high shear rates. An interesting correlation between the shear rate- and time-dependent rheological behaviors was also revealed, i.e., the rheopexy-thixotropy transition coincided with the first-second shear thinning region transition. Apart from rheology, a structure of colloidal network was observed in loach skin mucus using transmission electron microscopy. The complex rheology was speculated to result from inter- and intracolloid structural alterations. The unique rheology associated with the colloidal network structure, which has never been previously reported in vertebrate mucus, may play a key role in the functions (e.g., flow, reannealing, lubrication, and barrier) of the mucus

  7. Complex rheological behaviors of loach (Misgurnus anguillicaudatus) skin mucus

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiang, E-mail: 11229036@zju.edu.cn; Su, Heng, E-mail: shtdyso@163.com; Lv, Weiyang, E-mail: 3090103369@zju.edu.cn; Du, Miao, E-mail: dumiao@zju.edu.cn; Song, Yihu, E-mail: s-yh0411@zju.edu.cn; Zheng, Qiang, E-mail: zhengqiang@zju.edu.cn [MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027 (China)

    2015-01-15

    The functions and structures of biological mucus are closely linked to rheology. In this article, the skin mucus of loach (Misgurnus anguillicaudatus) was proved to be a weak hydrogel susceptible to shear rate, time, and history, exhibiting: (i) Two-region breakdown of its gel structure during oscillatory strain sweep; (ii) rate-dependent thickening followed by three-region thinning with increased shear rate, and straight thinning with decreased shear rate; and (iii) time-dependent rheopexy at low shear rates, and thixotropy at high shear rates. An interesting correlation between the shear rate- and time-dependent rheological behaviors was also revealed, i.e., the rheopexy-thixotropy transition coincided with the first-second shear thinning region transition. Apart from rheology, a structure of colloidal network was observed in loach skin mucus using transmission electron microscopy. The complex rheology was speculated to result from inter- and intracolloid structural alterations. The unique rheology associated with the colloidal network structure, which has never been previously reported in vertebrate mucus, may play a key role in the functions (e.g., flow, reannealing, lubrication, and barrier) of the mucus.

  8. Experimental study and modeling of the rheology and hydraulics in the foam drilling; Estudos experimentais e modelagem da reologia e da hidraulica na perfuracao com espuma

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Andre L.; Sa, Carlos H.M. de; Lourenco, Affonso M.F.; S. Junior, Valter [PETROBRAS, S.A, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas]. E-mails: aleibsohn@cenpes.petrobras.com.br; chsa@cenpes.petrobras.com.br; affonso-lourenco@utulsa.edu; vsj@cenpes.petrobras.com.br

    2000-07-01

    This article describes the extense experimental effort for analyzing the foam stability and rheological properties for application as light drilling fluid. The study considered the influence of the foaming and concentration on the foam rheology and the gas volumetric fraction on the foam rheological properties. Simple correlations were proposed for quantification of the experimental behaviour. Field tests were performed to evaluate one of the foaming agents analyzed in laboratory by using 16 combinations of the gas-fluid flow.

  9. Interaction and rheology of vesicle suspensions in confined shear flow

    Science.gov (United States)

    Shen, Zaiyi; Farutin, Alexander; Thiébaud, Marine; Misbah, Chaouqi

    2017-10-01

    Dynamics and rheology of a confined suspension of vesicles (a model for red blood cells) are studied numerically in two dimensions by using an immersed boundary lattice Boltzmann method. We pay particular attention to the link between the spatiotemporal organization and the rheology of the suspension. Besides confinement, we analyze the effect of concentration of the suspension, ϕ (defined as the area fraction occupied by the vesicles in the simulation domain), as well as the viscosity contrast λ (defined as the ratio between the viscosity of the fluid inside the vesicles, ηint, and that of the suspending fluid, ηext). The hydrodynamic interaction between two vesicles is shown to play a key role in determining the spatial organization. For λ =1 , the pair of vesicles settles into an equilibrium state with constant interdistance, which is regulated by the confinement. The equilibrium interdistance increases with the gap between walls, following a linear relationship. However, no stable equilibrium interdistance between two tumbling vesicles is observed for λ =10 . A quite ordered suspension is observed concomitant with the existence of an equilibrium interdistance between a vesicle pair. However, a disordered suspension prevails when no pair equilibrium interdistance exists, as occurs for tumbling vesicles. We then analyze the rheology, focusing on the effective viscosity, denoted as η , as well as on normalized viscosity, defined as [η ] =(η -ηext) /(ηextϕ ) . Ordering of the suspension is accompanied by a nonmonotonic behavior of [η ] with ϕ , while η exhibits plateaus. The nonmonotonic behavior of [η ] is suppressed when a disordered pattern prevails.

  10. Actuated rheology of magnetic micro-swimmers suspensions: Emergence of motor and brake states

    Science.gov (United States)

    Vincenti, Benoit; Douarche, Carine; Clement, Eric

    2018-03-01

    We study the effect of magnetic field on the rheology of magnetic micro-swimmers suspensions. We use a model of a dilute suspension under simple shear and subjected to a constant magnetic field. Particle shear stress is obtained for both pusher and puller types of micro-swimmers. In the limit of low shear rate, the rheology exhibits a constant shear stress, called actuated stress, which only depends on the swimming activity of the particles. This stress is induced by the magnetic field and can be positive (brake state) or negative (motor state). In the limit of low magnetic fields, a scaling relation of the motor-brake effect is derived as a function of the dimensionless parameters of the model. In this case, the shear stress is an affine function of the shear rate. The possibilities offered by such an active system to control the rheological response of a fluid are finally discussed.

  11. Rheological characterization of addition polyimide matrix resins and prepregs

    Science.gov (United States)

    Maximovich, M. G.; Galeos, R. M.

    1984-01-01

    Although graphite-reinforced polyimide matrix composites offer outstanding specific strength and stiffness, together with high thermal oxidative stability, processing problems connected with their rheological behavior remain to be addressed. The present rheological studies on neat polyimide resin systems encountered outgassing during cure. A staging technique has been developed which can successfully handle polyimide samples, and novel methods were applied to generate rheological curves for graphite-reinforced prepregs. The commercial graphite/polyimide systems studied were PRM 15, LARC 160, and V378A.

  12. Measurement of the Rheological Properties of High Performance Concrete: State of the Art Report

    Science.gov (United States)

    Ferraris, Chiara F.

    1999-01-01

    The rheological or flow properties of concrete in general and of high performance concrete (HPC) in particular, are important because many factors such as ease of placement, consolidation, durability, and strength depend on the flow properties. Concrete that is not properly consolidated may have defects, such as honeycombs, air voids, and aggregate segregation. Such an important performance attribute has triggered the design of numerous test methods. Generally, the flow behavior of concrete approximates that of a Bingham fluid. Therefore, at least two parameters, yield stress and viscosity, are necessary to characterize the flow. Nevertheless, most methods measure only one parameter. Predictions of the flow properties of concrete from its composition or from the properties of its components are not easy. No general model exists, although some attempts have been made. This paper gives an overview of the flow properties of a fluid or a suspension, followed by a critical review of the most commonly used concrete rheology tests. Particular attention is given to tests that could be used for HPC. Tentative definitions of terms such as workability, consistency, and rheological parameters are provided. An overview of the most promising tests and models for cement paste is given.

  13. Comparative study of sea ice dynamics simulations with a Maxwell elasto-brittle rheology and the elastic-viscous-plastic rheology in NEMO-LIM3

    Science.gov (United States)

    Raulier, Jonathan; Dansereau, Véronique; Fichefet, Thierry; Legat, Vincent; Weiss, Jérôme

    2017-04-01

    Sea ice is a highly dynamical environment characterized by a dense mesh of fractures or leads, constantly opening and closing over short time scales. This characteristic geomorphology is linked to the existence of linear kinematic features, which consist of quasi-linear patterns emerging from the observed strain rate field of sea ice. Standard rheologies used in most state-of-the-art sea ice models, like the well-known elastic-viscous-plastic rheology, are thought to misrepresent those linear kinematic features and the observed statistical distribution of deformation rates. Dedicated rheologies built to catch the processes known to be at the origin of the formation of leads are developed but still need evaluations on the global scale. One of them, based on a Maxwell elasto-brittle formulation, is being integrated in the NEMO-LIM3 global ocean-sea ice model (www.nemo-ocean.eu; www.elic.ucl.ac.be/lim). In the present study, we compare the results of the sea ice model LIM3 obtained with two different rheologies: the elastic-viscous-plastic rheology commonly used in LIM3 and a Maxwell elasto-brittle rheology. This comparison is focused on the statistical characteristics of the simulated deformation rate and on the ability of the model to reproduce the existence of leads within the ice pack. The impact of the lead representation on fluxes between ice, atmosphere and ocean is also assessed.

  14. Rheology of planetary ices

    Energy Technology Data Exchange (ETDEWEB)

    Durham, W.B. [Lawrence Livermore National Lab., CA (United States); Kirby, S.H.; Stern, L.A. [Geological Survey, Menlo Park, CA (United States)

    1996-04-24

    The brittle and ductile rheology of ices of water, ammonia, methane, and other volatiles, in combination with rock particles and each other, have a primary influence of the evolution and ongoing tectonics of icy moons of the outer solar system. Laboratory experiments help constrain the rheology of solar system ices. Standard experimental techniques can be used because the physical conditions under which most solar system ices exist are within reach of conventional rock mechanics testing machines, adapted to the low subsolidus temperatures of the materials in question. The purpose of this review is to summarize the results of a decade-long experimental deformation program and to provide some background in deformation physics in order to lend some appreciation to the application of these measurements to the planetary setting.

  15. The effect of spherical nanoparticles on rheological properties of bi-dispersed magnetorheological fluids

    Science.gov (United States)

    Kannappan, K. Thiruppathi; Laherisheth, Zarana; Parekh, Kinnari; Upadhyay, R. V.

    2015-06-01

    In the present investigation, the rheological properties of bi-dispersed magnetorheological (MR) fluid based on Fe3O4 nanosphere and microsphere of iron particles are experimentally investigated. The MR fluid is prepared by substituting nanosphere of 40nm Fe3O4 particles in MR fluids having microsphere iron particles (7-8 μm). Three different weight fractions (0%, 1% and 3%) of nanosphere-microsphere MR fluids are synthesized. In the absence of the magnetic field, substitution of magnetic nanosphere decreases the viscosity lower than without substituted sample at high as well as low shear rate. Upon the application of the magnetic field, the particles align along the direction of the field, which promotes the yield stress. Here too the yield stress value decreases with magnetic nanosphere substitution. This behaviour is explain based on the inter-particle interaction as well as formation of nanosphere cloud around the magnetic microsphere, which effectively reduces the viscosity and works as weak point when chains are formed. Variation of dynamic yield stress with magnetic field is explained using microscopic model. In any event such fluid does not sediment and is not abrasive so it could be useful if not too high yield stress is needed.

  16. Steady-shear rheological properties of graphene-reinforced epoxy resin for manufacturing of aerospace composite films

    Science.gov (United States)

    Clausi, Marialaura; Santonicola, M. Gabriella; Laurenzi, Susanna

    2016-05-01

    The aim of this work is to analyze the steady-shear rheological behavior and the absolute viscosity of epoxy matrix reinforced with graphene nanoplatelets (xGnP) before cure. Three different grades of xGnP (grades C, M and H) were dispersed homogenously at different weight percentages (wt%) into the epoxy matrix, ranging from 0.5 to 5 wt%. It is found that nanocomposite fluids with xGnP-C exhibit a Newtonian behavior at shear rate in the range 0.1-100 s-1, conversely, nanocomposite fluids with xGnP of grade M and H exhibit a shear-thinning behavior with the increase of nanoplatelet loading. Results from this analysis indicate how the steady shear rheological properties of the nano-reinforced polymer fluids depend on the geometrical characteristics of the graphene nanoplatelets.

  17. Rheological study of chitosan in solution

    International Nuclear Information System (INIS)

    Silva, Italo Guimaraes Medeiros da; Alves, Keila dos Santos; Balaban, Rosangela de Carvalho

    2009-01-01

    Chitosan is an abundant biopolymer with remarkable physicochemical and biological properties, usually employed in a wide range of applications. It acts as a cationic polyelectrolyte in aqueous acid solutions, leading to unique characteristics. In this work, chitosan was characterized by 1 H NMR and its rheological behavior were studied as function of chitosan sample, shear rate, polymer concentration, ionic strength, time and temperature. In order to calculate rheological parameters and to understand the macromolecular dynamic in solution, the Otswald-de Waele model was fitted. (author)

  18. Mechanism Underlying Bonding Water Film Effect on Rheological Parameters

    Directory of Open Access Journals (Sweden)

    Yiyan Lv

    2016-01-01

    Full Text Available From experiments on bonding water of different slurries and the analysis of flow curves, the bilinear fluid model has been improved. The results showed that the rheological parameters correspond to physical processes at different stages of shear strain. As shear rate increases, slurries evolve from high-viscosity Bingham fluids to low-viscosity Bingham fluids. Specific surface area determines the number of edge-to-face arrangements; mineral composition influences the binding strength of each edge-to-face arrangement; and the volume fraction of particles regulates the distance between clay particles and number of edge-to-face arrangements.

  19. Rheological Behaviour of Water-in-Light Crude Oil Emulsion

    Science.gov (United States)

    Husin, H.; Taju Ariffin, T. S.; Yahya, E.

    2018-05-01

    Basically, emulsions consist of two immiscible liquids which have different density. In petroleum industry, emulsions are undesirable due to their various costly problems in term of transportation difficulties and production loss. A study of the rheological behaviour of light crude oil and its mixture from Terengganu were carried out using Antoon Paar MCR 301 rheometer operated at pressure of 2.5 bar at temperature C. Water in oil emulsions were prepared by mixing light crude oil with different water volume fractions (20%, 30% and 40%). The objectives of present paper are to study the rheological behaviour of emulsion as a fuction of shear rate and model analysis that fitted with the experimental data. The rheological models of Ostwald-De-Waele and Herschel-Bulkley were fitted to the experimental results. All models represented well the rheological data, with high values for the correlation coefficients. The result indicated that variation of water content influenced shear rate-shear stress rheogram of the prepared emulsions. In the case of 100% light crude oil, the study demonstrated non-Newtonian shear thickening behavior. However, for emulsion with different volume water ratios, the rheological behaviour could be well described by Herschel-Bulkley models due to the present of yield stress parameter (R2 = 0.99807). As a conclusion, rheological studies showed that volume water ratio have a great impact on the shear stress and viscosity of water in oil emulsion and it is important to understand these factors to avoid various costly problems.

  20. Rheological properties of defense waste slurries

    International Nuclear Information System (INIS)

    Ebadian, M.A.

    1998-01-01

    The major objective of this two-year project has been to obtain refined and reliable experimental data about the rheological properties of melter feeds. The research has involved both experimental studies and model development. Two experimental facilities have been set up to measure viscosity and pressure drop. Mathematical models have been developed as a result of experimental observation and fundamental rheological theory. The model has the capability to predict the viscosity of melter slurries in a range of experimental conditions. The final results of the investigation could be used to enhance the current design base for slurry transportation systems and improve the performance of the slurry mixing process. If successful, the cost of this waste treatment will be reduced, and disposal safety will be increased. The specific objectives for this project included: (1) the design, implementation, and validation of the experimental facility in both batch and continuous operating modes; (2) the identification and preparation of melter feed samples of both the SRS and Hanford waste slurries at multiple solids concentration levels; (3) the measurement and analysis of the melter feeds to determine the effects of the solids concentration, pH value, and other factors on the rheological properties of the slurries; (4) the correlation of the rheological properties as a function of the measured physical and chemical parameters; and (5) transmission of the experimental data and resulting correlation to the DOE site user to guide melter feed preparation and transport equipment design

  1. Rheology of organoclay suspension

    CSIR Research Space (South Africa)

    Hato, MJ

    2011-05-01

    Full Text Available The authors have studied the rheological properties of clay suspensions in silicone oil, where clay surfaces were modified with three different types of surfactants. Dynamic oscillation measurements showed a plateau-like behavior for all...

  2. Role of interfacial rheological properties in oil field chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Lakatos-Szabo, J.; Lakatos, I.; Kosztin, B.

    1996-12-31

    Interfacial rheological properties of different Hungarian crude oil/water systems were determined in wide temperature and shear rate range and in presence of inorganic electrolytes, tensides, alkaline materials and polymers. The detailed laboratory study definitely proved that the interfacial rheological properties are extremely sensitive parameters towards the chemical composition of inmiscible formation liquids. Comparison and interpretation of the interfacial rheological properties may contribute significantly to extension of the weaponry of the reservoir characterization, better understanding of the displacement mechanism, development of the more profitable EOR/IOR methods, intensification of the surface technologies, optimization of the pipeline transportation and improvement of the refinery operations. It was evidenced that the interfacial rheology is an efficient and powerful detection technique, which may enhance the knowledge on formation, structure, properties and behaviour of interfacial layers. 17 refs., 18 figs., 2 tabs.

  3. Study of the rheological behavior of chocolate and margarine [abstract

    Directory of Open Access Journals (Sweden)

    Debaste, F.

    2010-01-01

    Full Text Available In the food industry, the production process is often established in an empirical way, according to rules of good practice. These methods present gaps, in particular at the level of the production regularity. To model and optimize the processes, it is highly useful to determine the physico-chemical properties of the product. In this work, chocolate and margarine are studied, both aiming direct industrial application but also aiming a general enhancement of rheological mechanism understanding. Indeed, the chocolate is a suspension of solid particles in cocoa butter and the margarine is a water-in-oil emulsion. Rheological behavior of those fluids is therefore relying on different key phenomena. In this work the flow behavior of both products is characterized and a mathematical model describing the rheological behavior of chocolate is developed. For chocolate, the goal is to model the tempering process. To establish the rheological behavior of chocolate, viscosity measurements were realized in a SEARLE VT550 viscometer using a bob and cup geometry. To build the mathematical law, general tests following the International Office of Cocoa, Chocolate and Sugar Confectionery (IOCCC recommended method (Servais et al., 2004 were performed. The obtained rheogram shows that the chocolate has a slightly thixotropic behavior. More focus is set on a smaller range of shear rate important for the industrial application (Debaste et al., 2008. Measures for various temperatures and various quantities of cocoa butter were realized. The results show a classical shear-thinning behavior. Further, a statistical analysis of the results was made to determine the parameters of a power-law describing this behavior. It appears that temperature and cocoa butter fraction have no influence on the exponent but well on the consistency parameter. For margarine, the goal is to model the flow in resting tubes, the last step in the industrial production (Herman et al., 2008. To

  4. Electro-osmotic and pressure-driven flow of viscoelastic fluids in microchannels: Analytical and semi-analytical solutions

    Science.gov (United States)

    Ferrás, L. L.; Afonso, A. M.; Alves, M. A.; Nóbrega, J. M.; Pinho, F. T.

    2016-09-01

    In this work, we present a series of solutions for combined electro-osmotic and pressure-driven flows of viscoelastic fluids in microchannels. The solutions are semi-analytical, a feature made possible by the use of the Debye-Hückel approximation for the electrokinetic fields, thus restricted to cases with small electric double-layers, in which the distance between the microfluidic device walls is at least one order of magnitude larger than the electric double-layer thickness. To describe the complex fluid rheology, several viscoelastic differential constitutive models were used, namely, the simplified Phan-Thien-Tanner model with linear, quadratic or exponential kernel for the stress coefficient function, the Johnson-Segalman model, and the Giesekus model. The results obtained illustrate the effects of the Weissenberg number, the Johnson-Segalman slip parameter, the Giesekus mobility parameter, and the relative strengths of the electro-osmotic and pressure gradient-driven forcings on the dynamics of these viscoelastic flows.

  5. Microstructure and Rheology near an Attractive Colloidal Glass Transition

    International Nuclear Information System (INIS)

    Narayanan, T.; Sztucki, M.; Belina, G.; Pignon, F.

    2006-01-01

    Microstructure and rheological properties of a thermally reversible short-ranged attractive colloidal system are studied in the vicinity of the attractive glass transition line. At high volume fractions, the static structure factor changes very little but the low frequency shear moduli varies over several orders of magnitude across the transition. From the frequency dependence of shear moduli, fluid-attractive glass and repulsive glass-attractive glass transitions are identified

  6. The transverse shear deformation behaviour of magneto-electro-elastic shell

    International Nuclear Information System (INIS)

    Albarody, Thar M. Badri; Al-Kayiem, Hussain H.; Faris, Waleed

    2016-01-01

    Compared to the large number of possible magneto-electro-elastic shell theories, very few exact solutions determining the in-plane stresses, electric displacements and magnetic inductions are possible. While, solving the magneto-electro-elastic shell equations in terms of thermo-magneto-electro-elastic generalized field functions on arbitrary domains and for general conditions exactly are not always possible. In the present work, a linear version of magneto-electro-elastic shell with simply supported boundary conditions, solved exactly, provided that the lamination scheme is cross-ply or anti-symmetric angle-ply laminates. The exact solution that introduced herein can measure the in-plane stresses, electric displacements and magnetic inductions. It also allow for an accurate and usually elegant and conclusive investigation of the various sensations in a shell structure. However, it is important for micro-electro-mechanical shell applications to have an approach available that gives the transverse shear deformation Behaviour for cases that cannot examine experimentally. An investigated examples were accompanied and noteworthy conclusions were drawn which highlight the issues of the implementation of the exact solution, implication of the effects of the material properties, lay-ups of the constituent layers, and shell parameters on the static Behaviour

  7. The transverse shear deformation behaviour of magneto-electro-elastic shell

    Energy Technology Data Exchange (ETDEWEB)

    Albarody, Thar M. Badri; Al-Kayiem, Hussain H. [UniversitiTeknologi PETRONAS, Perak (Malaysia); Faris, Waleed [International Islamic University Malaysia, Perak (Malaysia)

    2016-01-15

    Compared to the large number of possible magneto-electro-elastic shell theories, very few exact solutions determining the in-plane stresses, electric displacements and magnetic inductions are possible. While, solving the magneto-electro-elastic shell equations in terms of thermo-magneto-electro-elastic generalized field functions on arbitrary domains and for general conditions exactly are not always possible. In the present work, a linear version of magneto-electro-elastic shell with simply supported boundary conditions, solved exactly, provided that the lamination scheme is cross-ply or anti-symmetric angle-ply laminates. The exact solution that introduced herein can measure the in-plane stresses, electric displacements and magnetic inductions. It also allow for an accurate and usually elegant and conclusive investigation of the various sensations in a shell structure. However, it is important for micro-electro-mechanical shell applications to have an approach available that gives the transverse shear deformation Behaviour for cases that cannot examine experimentally. An investigated examples were accompanied and noteworthy conclusions were drawn which highlight the issues of the implementation of the exact solution, implication of the effects of the material properties, lay-ups of the constituent layers, and shell parameters on the static Behaviour.

  8. Tucupi creamy paste: development, sensory evaluation and rheological characterization

    Directory of Open Access Journals (Sweden)

    Telma dos Santos COSTA

    Full Text Available Abstract Tucupi, a fermented product obtained from cassava (Manihot esculenta Crantz is widely employed in the cuisine of the Northern region of Brazil, however, its industrial application is incipient. This study used tucupi to prepare a creamy paste, which underwent sensory and rheological evaluation. Paste formulations with 5 to 20% concentrated tucupi were obtained. An acceptance test was used to assess the product’s acceptability regarding the attributes of color, aroma, flavor, texture, and overall impression. A purchase intention test of the product was also applied. The product’s rheology was studied at 25, 40, and 60 °C and the activation energy (Ea was estimated. The internal preference mapping indicated that the paste formulation with 5% and 10% tucupi were the most accepted by the judge, but only the 10% tucupi paste was characterized. Proportions greater than 15% tucupi influenced negatively in the flavor and texture of the product. Purchase intention test showed that 99% of the judges demonstrated interest in purchasing the product. The product presented 72.7% moisture, 10.4% lipids, 0.5% proteins, 2.1% ashes, 14.3% carbohydrates, and 7.4 μg/g β-carotene. According to the rheological assays, the paste presented characteristics of a pseudoplastic fluid. The Herschel-Bulkley model proved efficient to predict the flow curves for the product in the temperature range tested, for which Ea was estimated at 7.49 kJ/mol.

  9. On the rheology of dilative granular media: Bridging solid- and fluid-like behavior

    Science.gov (United States)

    Andrade, José E.; Chen, Qiushi; Le, Phong H.; Avila, Carlos F.; Matthew Evans, T.

    2012-06-01

    A new rate-dependent plasticity model for dilative granular media is presented, aiming to bridge the seemingly disparate solid- and fluid-like behavioral regimes. Up to date, solid-like behavior is typically tackled with rate-independent plasticity models emanating from Mohr-Coulomb and Critical State plasticity theory. On the other hand, the fluid-like behavior of granular media is typically treated using constitutive theories amenable to viscous flow, e.g., Bingham fluid. In our proposed model, the material strength is composed of a dilation part and a rate-dependent residual strength. The dilatancy strength plays a key role during solid-like behavior but vanishes in the fluid-like regime. The residual strength, which in a classical plasticity model is considered constant and rate-independent, is postulated to evolve with strain rate. The main appeal of the model is its simplicity and its ability to reconcile the classic plasticity and rheology camps. The applicability and capability of the model are demonstrated by numerical simulation of granular flow problems, as well as a classical shear banding problem, where the performance of the continuum model is compared to discrete particle simulations and physical experiment. These results shed much-needed light onto the mechanics and physics of granular media at various shear rates.

  10. Evaluation of different polyolefins as rheology modifier additives in lubricating grease formulations

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Alfonso, J.E.; Valencia, C.; Sanchez, M.C. [Departamento de Ingenieria Quimica, Facultad de Ciencias Experimentales, Universidad de Huelva, Campus Universitario del Carmen, 21071 Huelva (Spain); Franco, J.M., E-mail: franco@uhu.es [Departamento de Ingenieria Quimica, Facultad de Ciencias Experimentales, Universidad de Huelva, Campus Universitario del Carmen, 21071 Huelva (Spain); Gallegos, C. [Departamento de Ingenieria Quimica, Facultad de Ciencias Experimentales, Universidad de Huelva, Campus Universitario del Carmen, 21071 Huelva (Spain)

    2011-08-15

    Highlights: {yields} Evaluation of different polyolefins as modifiers of the rheological properties and mechanical stability of lithium lubricating greases. {yields} The type of polymer, molecular weight, cristallinity degree and vinyl acetate content influences the rheological and thermal response of lubricating greases. {yields} The crystallinity degree, mainly dependent on the nature of the polymer, is the most highly influencing parameter on the rheology of lubricating greases. {yields} The rheological modification exerted by EVA copolymers mainly depends on the vinyl acetate content. - Abstract: The purpose of the present work is to evaluate the effect that different polyolefins, used as additives in small proportions, exert on the rheological properties of standard lithium lubricating greases. Grease formulations containing several polyolefins, differing in nature and molecular weight, were manufactured and rheologically characterized. The influence of the type of polymer, molecular weight, crystallinity degree and vinyl acetate content has been analyzed. Small-amplitude oscillatory shear (SAOS) and viscous flow measurements, as well as calorimetric (DSC) and thermogravimetric (TGA) analysis, were carried out. In general, the addition of polymers such as HDPE, LDPE, LLDPE and PP to lithium lubricating greases significantly increases the values of the rheological parameters analyzed, consistency and mechanical stability. However, the use of polyolefins as rheology modifiers does not significantly affect the friction coefficient determined in a tribological contact. The crystallinity degree, mainly dependent on the nature of the polymer, has been found the most highly influencing parameter on the rheology of the lubricating greases studied. However, the rheological modification exerted by EVA copolymers mainly depends on the vinyl acetate content. Thus, a negative effect in both apparent viscosity and linear viscoelastic functions of greases was obtained when

  11. Flow of entangled wormlike micellar fluids: mesoscopic simulations, rheology and micro-PIV experiments

    NARCIS (Netherlands)

    Boek, E.S.; Boek, E.S.; Padding, J.T.; Anderson, V.J.; Briels, Willem J.; Crawshaw, J.P.

    2007-01-01

    There is a great need for understanding the relationship between the structure and chemistry of surfactants forming wormlike micelles, and their macroscopic flow properties. Available macroscopic Rheological Equations of State (REoS) are often inadequate to predict flow behaviour in complex

  12. Flow of entangled wormlike micellar fluids: Mesoscopic simulations, rheology and μ-PIV experiments

    NARCIS (Netherlands)

    Boek, E.S.; Padding, J.T.; Anderson, V.J.; Briels, W.J.; Crawshaw, J.P.

    2007-01-01

    There is a great need for understanding the relationship between the structure and chemistry of surfactants forming wormlike micelles, and their macroscopic flow properties. Available macroscopic Rheological Equations of State (REoS) are often inadequate to predict flow behaviour in complex

  13. Textural Properties of Agarose Gels described by FT-Rheology

    NARCIS (Netherlands)

    Klein, C.O.; Venema, P.; Sagis, L.M.C.; Linden, van der E.

    2008-01-01

    Large Amplitude Oscillatory Shear was used to determine the non-linear rheological properties of agarose gels. The analysis was performed with the characteristic functions method based on FT-Rheology, that gives access to a physical interpretation of the non-linear regime. This analysis was then

  14. Rheological study of chitosan and its blends: An overview

    Directory of Open Access Journals (Sweden)

    Esam A. El-hefian

    2010-06-01

    Full Text Available Chitosan, a modified natural carbohydrate polymer derived from carapaces of crabs and shrimps, has received a great deal of attention for its applications in diverse fields owing to its biodegradability, biocompatibility, non-toxicity and anti-bacterial property. The wide-ranging applications involve a broad spectrum of characterisation techniques and rheology represents one technique of growing importance in this field. This paper is an attempt to review the latest development in the rheology of chitosan, either on its own or associated with other materials, including the parameters that strongly influence its rheological behaviour such as concentration, pH and temperature.

  15. Relation between sensory analysis and rheology of body lotions.

    Science.gov (United States)

    Moravkova, T; Filip, P

    2016-12-01

    Evaluation of sensory attributes of cosmetic products is traditionally based on sensory panels. However, in some cases, a suitable candidate method that can reduce time and costs is the use of instrumental analysis that can detect relatively very small changes of entry ingredients. Such approach has been already applied for emollients, salt content, stabilizers, etc. The aim of this contribution is to apply the relations between sensory analysis and rheology to a series of body lotions differing in the contents of emulsifiers and viscosity regulators. Sensory and rheological analyses are related. Rheological analysis can represent a good alternative to basic orientation in chosen customer's feelings. A rotational rheometer is the only instrumental device required for the measurements. An empirical rheological model was proposed by means of which the selected sensory attributes were evaluated using the numerical values of adjustable model parameters. This approach exhibited a very good agreement with the results obtained by the sensory panel. It was shown that a description of chosen sensory attributes can be responsibly carried out by rheological measurements, that is through the attained numerical values of the parameters appearing in a proposed empirical model characterizing shear viscosity of body lotions. © 2016 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  16. Morphology and rheology in filamentous cultivations.

    Science.gov (United States)

    Wucherpfennig, T; Kiep, K A; Driouch, H; Wittmann, C; Krull, R

    2010-01-01

    Because of their metabolic diversity, high production capacity, secretion efficiency, and capability of carrying out posttranslational modifications, filamentous fungi are widely exploited as efficient cell factories in the production of metabolites, bioactive substances, and native or heterologous proteins, respectively. There is, however, a complex relationship between the morphology of these microorganisms, transport phenomena, the viscosity of the cultivation broth, and related productivity. The morphological characteristics vary between freely dispersed mycelia and distinct pellets of aggregated biomass, every growth form having a distinct influence on broth rheology. Hence, the advantages and disadvantages for mycelial or pellet cultivation have to be balanced out carefully. Because of the still inadequate understanding of the morphogenesis of filamentous microorganisms, fungal morphology is often a bottleneck of productivity in industrial production. To obtain an optimized production process, it is of great importance to gain a better understanding of the molecular and cell biology of these microorganisms as well as the relevant approaches in biochemical engineering. In this chapter, morphology and growth of filamentous fungi are described, with special attention given to specific problems as they arise from fungal growth forms; growth and mass transfer in fungal biopellets are discussed as an example. To emphasize the importance of the flow behavior of filamentous cultivation broths, an introduction to rheology is also given, reviewing important rheological models and recent studies concerning rheological parameters. Furthermore, current knowledge on morphology and productivity in relation to the environom is outlined in the last section of this review. Copyright 2010 Elsevier Inc. All rights reserved.

  17. Rheology and characteristics of sulfated polysaccharides from chlorophytan seaweeds Ulva fasciata.

    Science.gov (United States)

    Shao, Ping; Qin, Minpu; Han, Longfei; Sun, Peilong

    2014-11-26

    The rheological characteristics of polysaccharides which were extracted and separated from Ulva fasciata (UFP) were investigated in aqueous solutions under conditions of concentration, temperature, solution pH and salt concentrations. It was described by the power-law model with a consistency index (k) and a flow behavior index (n). The rheology results showed UFP exhibited as a shear-thickening fluid and a possible mechanism was proposed to explain this phenomenon that might be the collapse of UFP necklace-type structures. UFP characteristics were evaluated by determining the chemical analysis and zeta potential. The findings indicated UFP may consist of partially ulvan, as the results were in accordance with the ulvan structure. Additionally, a rod-climbing effect and cold-set gelation were observed in the UFP semidilute solution. Therefore, the cold-set gelling properties and unique shear-thickening fluid properties in this work could be valuable for the exploration of U. fasciata as a new source of water-soluble gelling polysaccharides. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Shear Rheology of a Suspension of Deformable Solids in Viscoelastic Fluid via Immersed Boundary Techniques

    Science.gov (United States)

    Guido, Christopher; Shaqfeh, Eric

    2017-11-01

    The simulation of fluids with suspended deformable solids is important to the design of microfluidic devices with soft particles and the examination of blood flow in complex channels. The fluids in these applications are often viscoelastic, motivating the development of a high-fidelity simulation tool with general constitutive model implementations for both the viscoelastic fluid and deformable solid. The Immersed Finite Element Method (IFEM) presented by Zhang et al. (2007) allows for distinct fluid and solid grids to be utilized reducing the need for costly re-meshing when particles translate. We discuss a modified version of the IFEM that allows for the simulation of deformable particles in viscoelastic flows. This simulation tool is validated for simple Newtonian shear flows with elastic particles that obey a Neo-Hookean Law. The tool is used to further explore the rheology of a dilute suspension of Neo-Hookean particles in a Giesekus fluid. The results show that dilute suspensions of soft particles have viscosities that decrease as the Capillary number becomes higher in both the case of a Newtonian and viscoelastic fluid. A discussion of multiple particle results will be included. NSF CBET-1066263 and 1066334.

  19. Rheological investigation of high-acyl gellan gum hydrogel and its mixtures with simulated body fluids.

    Science.gov (United States)

    Osmałek, Tomasz Zbigniew; Froelich, Anna; Jadach, Barbara; Krakowski, Marek

    2018-05-01

    Purpose Most of the studies concerning gellan have been focused on its application as a food ingredient, however, gellan is often considered as a candidate for the development of novel pharmaceutical formulations. Taking into account that gellan is ion-sensitive, it can be assumed that its initial mechanical properties can change upon contact with body secretions. Therefore, the aim of the work was to investigate the rheological properties of pure high-acyl gellan gum hydrogel (0.4%) and its mixtures with selected simulated body fluids. Methods The rheological investigations were performed on rotational rheometer and included oscillatory temperature, amplitude, and frequency sweeping. The results enabled estimation of the linear viscoelastic regime, calculation of the cross-over points, and percentage of structure recovery. Results In the case of pure hydrogel no evidence of thermosensitivity was observed in the range of 20-40°C. In pH = 1.2 (NaCl/HCl) the hydrogel structure was almost entirely destroyed. Mixing with phosphate buffer (pH = 4.5) resulted in higher gel strength than after dilution with deionized water. The opposite effect was observed in the case of pH = 7.4. The studies performed for the mixture of GG hydrogel and mucin indicated interaction between the components. The hydrogel elasticity increased in the presence of simulated tear, but decreased in simulated saliva and vaginal fluid. Conclusions In this study, it was shown that the stability of a three-dimensional gellan structure may be affected by pH and the presence of mucin which most probably competed with gellan gum in divalent cations binding. The observations presented in this study may be important in terms of potential application of gellan gum as a potential carrier in drug delivery systems.

  20. Complex rheological properties of a water-soluble extract from the fronds of the black tree fern, Cyathea medullaris.

    Science.gov (United States)

    Goh, Kelvin K T; Matia-Merino, Lara; Hall, Christopher E; Moughan, Paul J; Singh, Harjinder

    2007-11-01

    A water-soluble extract was obtained from the fronds of a New Zealand native black tree fern (Cyathea medullaris or Mamaku in Māori). The extract exhibited complex rheological behavior. Newtonian, shear-thinning, shear-thickening, thixotropic, antithixotropic, and viscoelastic behaviors were observed depending on polymer concentration, shear rate, and shear history. The extract also displayed rod-climbing and self-siphoning properties typical of viscoelastic fluids. Such complex rheological properties have been reported in synthetic or chemically modified polymers but are less frequent in unmodified biopolymers. Although Mamaku extract obtained from the pith of the fern has been traditionally used by the Māori in New Zealand for treating wounds and diarrhea among other ailments, this material has never been characterized before. This study reports on the chemical composition of the extract and on its viscoelastic properties through rotational and oscillatory rheological measurements. Explanations of the mechanism behind the rheological properties were based on transient network models for associating polymers.

  1. Towards establishing the rheology of a sediment bed

    Science.gov (United States)

    Biegert, Edward; Vowinckel, Bernhard; Meiburg, Eckart

    2017-11-01

    In order to gain a better understanding of erosion, we have conducted numerical simulations of particle-resolved flows similar to the experiments of Aussillous et al. (2013), which involve laminar pressure-driven flows over erodible sediment beds. These simulations allow us to resolve velocity profiles and stresses of the fluid-particle mixtures within and above the sediment bed, which can be difficult or impossible to measure experimentally. Thus, we can begin investigating the rheology of the fluid-particle mixtures. In particular, we compare the effective viscosity as a function of volume fraction to existing models, such as those of Eilers (1943), Morris and Boulay (1999), and Boyer et al. (2011).

  2. A statistical investigation of the rheological properties of magnesium phosphate cement

    OpenAIRE

    Yue, Y.; Bai, Y.; Hu, W.; You, C.; Qian, J.; McCague, C.; Jin, F.; Al-Tabbaa, A.; Mo, L.; Deng, M.

    2016-01-01

    Magnesium phosphate cement (MPC) is a promising material applied for rapid patch repairing in civil engineering and waste immobilisation in nuclear industry. However, the rheological properties of this new binder material which highly affects its engineering application, is to be explored. The current work aims at investigating the rheological properties of MPC along 98 with determining the optimum conditions to obtain MPC materials with desirable rheological performances. ...

  3. Bio-inspired device: a novel smart MR spring featuring tendril structure

    International Nuclear Information System (INIS)

    Kaluvan, Suresh; Park, Chun-Yong; Choi, Seung-Bok

    2016-01-01

    Smart materials such as piezoelectric patches, shape memory alloy, electro and magneto rheological fluid, magnetostrictive materials, etc are involved by far to design intelligent and high performance smart devices like injectors, dental braces, dampers, actuators and sensors. In this paper, an interesting smart device is proposed by inspiring on the structure of the bio climber plant. The key enabling concept of this proposed work is to design the smart spring damper as a helical shaped tendril structure using magneto-rheological (MR) fluid. The proposed smart spring consists of a hollow helical structure filled with MR fluid. The viscosity of the MR fluid decides the damping force of helical shaped smart spring, while the fluid intensity in the vine decides the strength of the tendril in the climber plant. Thus, the proposed smart spring can provide a new concept design of the damper which can be applicable to various damping system industries with tuneable damping force. The proposed smart spring damper has several advantageous such as cost effective, easy implementation compared with the conventional damper. In addition, the proposed spring damper can be easily designed to adapt different damping force levels without any alteration. (letter)

  4. Bio-inspired device: a novel smart MR spring featuring tendril structure

    Science.gov (United States)

    Kaluvan, Suresh; Park, Chun-Yong; Choi, Seung-Bok

    2016-01-01

    Smart materials such as piezoelectric patches, shape memory alloy, electro and magneto rheological fluid, magnetostrictive materials, etc are involved by far to design intelligent and high performance smart devices like injectors, dental braces, dampers, actuators and sensors. In this paper, an interesting smart device is proposed by inspiring on the structure of the bio climber plant. The key enabling concept of this proposed work is to design the smart spring damper as a helical shaped tendril structure using magneto-rheological (MR) fluid. The proposed smart spring consists of a hollow helical structure filled with MR fluid. The viscosity of the MR fluid decides the damping force of helical shaped smart spring, while the fluid intensity in the vine decides the strength of the tendril in the climber plant. Thus, the proposed smart spring can provide a new concept design of the damper which can be applicable to various damping system industries with tuneable damping force. The proposed smart spring damper has several advantageous such as cost effective, easy implementation compared with the conventional damper. In addition, the proposed spring damper can be easily designed to adapt different damping force levels without any alteration.

  5. Rheo-NMR - how nuclear magnetic resonance is providing new insight regarding complex fluid rheology

    International Nuclear Information System (INIS)

    Callaghan, P.T.

    2000-01-01

    Over the past five decades, NMR has revolutionised chemistry, and has found widespread application in condensed matter physics, in molecular biology, in medicine and in food technology. Most recently NMR has made a significant impact in chemical engineering, where it is being extensively used for the non-invasive study of dispersion and flow in porous media. One of the most recent applications of NMR in materials science concerns its use in the study of the mechanical properties of complex fluids. This particular aspect of NMR has been extensively developed in research carried out at Massey University in New Zealand. In this short article, some of the ideas behind this work and the applications which have resulted, will be described. These examples provide a glimpse of possible applications of Nuclear Magnetic Resonance to the study of complex fluid rheology. While this is a very new field of research in which only a handful of groups presently participate, the potential exists for a substantial increase in Rheo-NMR research activity. Systems studied to date include polymer melts and semi-dilute solutions, thermotropic and lyotropic liquid crystals and liquid crystalline polymers, micellar solutions, food materials and colloidal suspensions. Rheo-NMR suffers in a number of respects by comparison with optical methods. It is expensive, it is difficult to use, it suffers from poor signal-to-noise ratios and the effective interpretation of spectra often depends on familiarity with the nuclear spin Hamiltonian and the associated effects of spin dynamics. Nonetheless NMR offers some unique advantages, including the ability to work with opaque materials, the ability to combine velocimetry with localised spectroscopy, and the ability to access a wide range of molecular properties relating to organisation, orientation and dynamics. Rheo-NMR has been able to provide a direct window on a variety of behaviours, including slip, shear-thinning, shear banding, yield stress

  6. Field-sensitivity To Rheological Parameters

    Science.gov (United States)

    Freund, Jonathan; Ewoldt, Randy

    2017-11-01

    We ask this question: where in a flow is a quantity of interest Q quantitatively sensitive to the model parameters θ-> describing the rheology of the fluid? This field sensitivity is computed via the numerical solution of the adjoint flow equations, as developed to expose the target sensitivity δQ / δθ-> (x) via the constraint of satisfying the flow equations. Our primary example is a sphere settling in Carbopol, for which we have experimental data. For this Carreau-model configuration, we simultaneously calculate how much a local change in the fluid intrinsic time-scale λ, limit-viscosities ηo and η∞, and exponent n would affect the drag D. Such field sensitivities can show where different fluid physics in the model (time scales, elastic versus viscous components, etc.) are important for the target observable and generally guide model refinement based on predictive goals. In this case, the computational cost of solving the local sensitivity problem is negligible relative to the flow. The Carreau-fluid/sphere example is illustrative; the utility of field sensitivity is in the design and analysis of less intuitive flows, for which we provide some additional examples.

  7. Study of the geopolymer restructuration by impulse rheology

    International Nuclear Information System (INIS)

    Rouyer, J.; Frizon, F.; Poulesquen, A.

    2015-01-01

    The aim of the study is to describe the evolution of the microstructure during the setting process of the geo-polymer using an original rheological method named Optimal Fourier Rheology (OFR). The alkali activation of meta-kaolin enables physicochemical transformation from a fresh paste to a hard meso-porous matrix. Classically, oscillatory rheology technique provides viscoelastic moduli spectrum and enables to determine rheological comportment of the material under investigation. However the duration to perform a complete spectrum (more than 2.5 h) makes useless this technique in the case of changing material. The OFR technique decreases the measurement duration under 10 minutes and enables to perform several snapshots of the evolving rheological behaviour. Contrary to monochromatic iterations, here the applied stress takes the form of a chirp function which contains the full usable bandwidth. Interpretations of spectrums provide efficient access to structural evolution along the setting. Results show that the number of oligomers increases into the solution due to the dissolution of the meta-kaolin leading to a constant increase of the viscoelastic parameters until the gradual appearance of the percolating networks. The gelling time was rigorously assessed by using the Winter and Chambon criterion. A fractal percolating network is formed inside the material after a reaction time depending on the formulation parameters; corresponding fractal dimensions were established. After the gel point, the viscoelastic moduli grow rapidly until geo-polymers reach a classic viscoelastic state. Structural unit size were determined using moduli curves crossover and equalled to 2.1 nm in the case of Na geo-polymer; this value fits extremely well with value previously obtained by SAXS. Finally, the elasticity becomes constant in a large frequency range and the viscous parameter strongly decreases which means that the solid porous network is under formation. In conclusion, this

  8. Clay-cement suspensions - rheological and functional properties

    Science.gov (United States)

    Wojcik, L.; Izak, P.; Mastalska-Poplawska, J.; Gajek, M.

    2017-01-01

    The piping erosion in soil is highly unexpected in civil engineering. Elimination of such damages is difficult, expensive and time-consuming. One of the possibility is the grouting method. This method is still developed into direction of process automation as well as other useful properties of suspensions. Main way of modernization of the grouting method is connected it with rheology of injection and eventuality of fitting them to specific problems conditions. Very popular and useful became binders based on modified clays (clay-cement suspensions). Important principle of efficiency of the grouting method is using of time-dependent pseudothixotropic properties of the clay-cement suspensions. The pseudo-rheounstability aspect of the suspensions properties should be dedicated and fitted to dynamic changes of soil conditions destructions. Whole process of the modification of the suspension rheology is stimulated by the specific agents. This article contains a description of practical aspects of the rheological parameters managing of the clay-cement suspensions, dedicated to the building damages, hydrotechnic constructions etc.

  9. Effect of Particle Size Distribution on Slurry Rheology: Nuclear Waste Simulant Slurries

    International Nuclear Information System (INIS)

    Chun, Jaehun; Oh, Takkeun; Luna, Maria L.; Schweiger, Michael J.

    2011-01-01

    Controlling the rheological properties of slurries has been of great interest in various industries such as cosmetics, ceramic processing, and nuclear waste treatment. Many physicochemical parameters, such as particle size, pH, ionic strength, and mass/volume fraction of particles, can influence the rheological properties of slurry. Among such parameters, the particle size distribution of slurry would be especially important for nuclear waste treatment because most nuclear waste slurries show a broad particle size distribution. We studied the rheological properties of several different low activity waste nuclear simulant slurries having different particle size distributions under high salt and high pH conditions. Using rheological and particle size analysis, it was found that the percentage of colloid-sized particles in slurry appears to be a key factor for rheological characteristics and the efficiency of rheological modifiers. This behavior was shown to be coupled with an existing electrostatic interaction between particles under a low salt concentration. Our study suggests that one may need to implement the particle size distribution as a critical factor to understand and control rheological properties in nuclear waste treatment plants, such as the U.S. Department of Energy's Hanford and Savannah River sites, because the particle size distributions significantly vary over different types of nuclear waste slurries.

  10. Immune Response Augmentation in Metastasized Breast Cancer by Localized Therapy Utilizing Biocompatible Magnetic Fluids. Addendum

    Science.gov (United States)

    2009-08-01

    Metastasized Breast Cancer by Localized Therapy Utilizing Biocompatible Magnetic Fluids PRINCIPAL INVESTIGATOR: Cahit A. Evrensel...AND SUBTITLE 5a. CONTRACT NUMBER Immune Response Augmentation in Metastasized Breast Cancer by Localized Therapy Utilizing Biocompatible... Magneto -rheological Fluid (MRF) iron nano-particles were synthesized using the reverse micelle technique and coated with poly(NIPAAm). The size

  11. Rheological Investigation on the Effect of Shear and Time Dependent Behavior of Waxy Crude Oil

    Directory of Open Access Journals (Sweden)

    Japper-Jaafar A.

    2014-07-01

    Full Text Available Rheological measurements are essential in transporting crude oil, especially for waxy crude oil. Several rheological measurements have been conducted to determine various rheological properties of waxy crude oil including the viscosity, yield strength, wax appearance temperature (WAT, wax disappearance temperature (WDT, storage modulus and loss modulus, amongst others, by using controlled stress rheometers. However, a procedure to determine the correct parameters for rheological measurements is still unavailable in the literature. The paper aims to investigate the effect of shear and time dependent behaviours of waxy crude oil during rheological measurements. It is expected that the preliminary work could lead toward a proper rheological measurement guideline for reliable rheological measurement of waxy crude oil.

  12. Modeling of the blood rheology in steady-state shear flows

    International Nuclear Information System (INIS)

    Apostolidis, Alex J.; Beris, Antony N.

    2014-01-01

    We undertake here a systematic study of the rheology of blood in steady-state shear flows. As blood is a complex fluid, the first question that we try to answer is whether, even in steady-state shear flows, we can model it as a rheologically simple fluid, i.e., we can describe its behavior through a constitutive model that involves only local kinematic quantities. Having answered that question positively, we then probe as to which non-Newtonian model best fits available shear stress vs shear-rate literature data. We show that under physiological conditions blood is typically viscoplastic, i.e., it exhibits a yield stress that acts as a minimum threshold for flow. We further show that the Casson model emerges naturally as the best approximation, at least for low and moderate shear-rates. We then develop systematically a parametric dependence of the rheological parameters entering the Casson model on key physiological quantities, such as the red blood cell volume fraction (hematocrit). For the yield stress, we base our description on its critical, percolation-originated nature. Thus, we first determine onset conditions, i.e., the critical threshold value that the hematocrit has to have in order for yield stress to appear. It is shown that this is a function of the concentration of a key red blood cell binding protein, fibrinogen. Then, we establish a parametric dependence as a function of the fibrinogen and the square of the difference of the hematocrit from its critical onset value. Similarly, we provide an expression for the Casson viscosity, in terms of the hematocrit and the temperature. A successful validation of the proposed formula is performed against additional experimental literature data. The proposed expression is anticipated to be useful not only for steady-state blood flow modeling but also as providing the starting point for transient shear, or more general flow modeling

  13. PREFACE: 1st International Conference on Rheology and Modeling of Materials

    Science.gov (United States)

    Gömze, László A.

    2015-04-01

    Understanding the rheological properties of materials and their rheological behaviors during their manufacturing processes and in their applications in many cases can help to increase the efficiency and competitiveness not only of the finished goods and products but the organizations and societies also. The more scientific supported and prepared organizations develop more competitive products with better thermal, mechanical, physical, chemical and biological properties and the leading companies apply more competitive knowledge, materials, equipment and technology processes. The idea to organize in Hungary the 1st International Conference on Rheology and Modeling of Materials we have received from prospective scientists, physicists, chemists, mathematicians and engineers from Asia, Europe, North and South America including India, Korea, Russia, Turkey, Estonia, France, Italy, United Kingdom, Chile, Mexico and USA. The goals of ic-rmm1 the 1st International Conference on Rheology and Modeling of Materials are the following: • Promote new methods and results of scientific research in the fields of modeling and measurements of rheological properties and behavior of materials under processing and applications. • Change information between the theoretical and applied sciences as well as technical and technological implantations. • Promote the communication between the scientists of different disciplines, nations, countries and continents. The international conference ic-rmm1 provides a platform among the leading international scientists, researchers, PhD students and engineers for discussing recent achievements in measurement, modeling and application of rheology in materials technology and materials science of liquids, melts, solids, crystals and amorphous structures. Among the major fields of interest are the influences of material structures, mechanical stresses temperature and deformation speeds on rheological and physical properties, phase transformation of

  14. The influence of thickeners on the rheological and sensory properties of cosmetic lotions

    Czech Academy of Sciences Publication Activity Database

    Morávková, Tereza; Filip, Petr

    2014-01-01

    Roč. 11, č. 6 (2014), s. 173-186 ISSN 1785-8860 R&D Projects: GA ČR GA103/09/2066 Institutional support: RVO:67985874 Keywords : cosmetic lotion * eye cream * empirical rheological modelling * sensory analysis Subject RIV: BK - Fluid Dynamics Impact factor: 0.471, year: 2013

  15. Rheology of Carbon Fibre Reinforced Cement-Based Mortar

    International Nuclear Information System (INIS)

    Banfill, Phillip F. G.; Starrs, Gerry; McCarter, W. John

    2008-01-01

    Carbon fibre reinforced cement based materials (CFRCs) offer the possibility of fabricating 'smart' electrically conductive materials. Rheology of the fresh mix is crucial to satisfactory moulding and fresh CFRC conforms to the Bingham model with slight structural breakdown. Both yield stress and plastic viscosity increase with increasing fibre length and volume concentration. Using a modified Viskomat NT, the concentration dependence of CFRC rheology up to 1.5% fibre volume is reported

  16. Rheology of Carbon Fibre Reinforced Cement-Based Mortar

    Science.gov (United States)

    Banfill, Phillip F. G.; Starrs, Gerry; McCarter, W. John

    2008-07-01

    Carbon fibre reinforced cement based materials (CFRCs) offer the possibility of fabricating "smart" electrically conductive materials. Rheology of the fresh mix is crucial to satisfactory moulding and fresh CFRC conforms to the Bingham model with slight structural breakdown. Both yield stress and plastic viscosity increase with increasing fibre length and volume concentration. Using a modified Viskomat NT, the concentration dependence of CFRC rheology up to 1.5% fibre volume is reported.

  17. Rheological Study of Ageing Soft Glasses of Laponite

    Indian Academy of Sciences (India)

    Table of contents. Rheological Study of Ageing Soft Glasses of Laponite · Colloidal glasses · Laponite Na+0.7[(Si8Mg5.5Li0.3)O20(OH)4]–0.7 · Effect of salt (NaCl) · Arrested state · Relaxation dynamics · Rheology of aging system · Slide 8 · Experimental Protocol · Ageing and Creep experiments · Slide 11 · Slide 12.

  18. Rheology of concentrated biomass

    Science.gov (United States)

    J.R. Samaniuk; J. Wang; T.W. Root; C.T. Scott; D.J. Klingenberg

    2011-01-01

    Economic processing of lignocellulosic biomass requires handling the biomass at high solids concentration. This creates challenges because concentrated biomass behaves as a Bingham-like material with large yield stresses. Here we employ torque rheometry to measure the rheological properties of concentrated lignocellulosic biomass (corn stover). Yield stresses obtained...

  19. Design and characterization of a soft magneto-rheological miniature shock absorber for a controllable variable stiffness sole

    Directory of Open Access Journals (Sweden)

    Grivon Daniel

    2015-12-01

    Full Text Available The proposed paper discusses the design and characterization of a soft miniature Magneto-Rheological (MR shock absorber. In particular, the final application considered for the insertion of the designed devices is a controllable variable stiffness sole for patients with foot neuropathy. Such application imposes particularly challenging constraints in terms of miniaturization (cross-sectional area ≤ 1.5 cm2, height ≤ 25 mm and high sustainable loads (normal loads up to 60 N and shear stresses at the foot/device interface up to 80 kPa while ensuring moderate to low level of power consumption. Initial design considerations are done to introduce and justify the chosen novel configuration of soft shock absorber embedding a MR valve as the core control element. Successively, the dimensioning of two different MR valves typologies is discussed. In particular, for each configuration two design scenarios are evaluated and consequently two sets of valves satisfying different specifications are manufactured. The obtained prototypes result in miniature modules (external diam. ≤ 15 mm, overall height ≤ 30 mm with low power consumption (from a minimum of 63 mW to a max. of 110 mW and able to sustain a load up to 65 N. Finally, experimental sessions are performed to test the behaviour of the realized shock absorbers and results are presented.

  20. Magnetic induction measurements and identification of the permeability of Magneto-Rheological Elastomers using finite element simulations

    International Nuclear Information System (INIS)

    Schubert, Gerlind; Harrison, Philip

    2016-01-01

    The isotropic and anisotropic magnetic permeability of Magneto-Rheological Elastomers (MREs) is identified using a simple inverse modelling approach. This involves measuring the magnetic flux density and attractive force occurring between magnets, when MRE specimens are placed in between the magnets. Tests were conducted using isotropic MREs with 10–40% and for anisotropic MREs with 10–30%, particle volume concentration. Magnetic permeabilities were then identified through inverse modelling, by simulating the system using commercially available multi-physics finite element software. As expected, the effective permeability of isotropic MREs was found to be scalar-valued; increasing with increasing particle volume concentration (from about 1.6 at 10% to 3.7 at 30% particle volume concentration). The magnetic permeability of transversely isotropic MRE was itself found to be transversely isotropic, with permeabilities in the direction of particle chain alignment from 1.6 at 10% to 4.45 at 30%, which is up to 1.07–1.25 times higher than in the transverse directions. Results of this investigation are demonstrated to show good agreement with those reported in the literature. - Highlights: • An inverse modelling approach for permeability identification of MREs. • Comparison of magnetic flux measurements with finite element simulations. • Permeability of isotropic and anisotropic MREs of varying iron content identified. • Results compare favourably with theoretical predictions. • Simple experimental setup. • Inexpensive technique that can be conducted in most mechanical test labs.

  1. Effect of smectite clays storage in their rheological properties

    International Nuclear Information System (INIS)

    Silva, I.A. da; Sousa, F.K.A. de; Neves, G. de A.; Ferreira, H.C.; Ferreira, H.S.; Ferreira, H.S.

    2017-01-01

    This work investigates the storage influence of natural and industrial smectite clays in their rheological properties, since the salt metathesis reaction that occurs following treatment of polycationic clays with Na_2 CO_3 is reversible. The phenomena involved in this reaction are not yet fully known and previous studies show improvement in some properties. The rheological properties were determined in sodium-clays in 1995 and polycationic clays added with sodium carbonate (Na_2 CO_3 ) in 2015. Physical, chemical and mineralogical characterizations of the samples were performed using the following techniques: particle size analysis by laser diffraction, chemical composition by X-ray fluorescence, X-ray diffraction and thermal analysis (DTA and TGA). The rheology of dispersions was determined by the apparent viscosity, plastic viscosity and filtrate volume, which were later considered the oil industry standards only as a benchmark. The results showed that the storage conditions, humidity and particle size of the samples resulted in improvements in their rheological properties over the years, indicating the non-reversibility of the reaction of cation exchange, which is important in their validity after manufacturing. (author)

  2. Creepy landscapes : river sediment entrainment develops granular flow rheology on creeping bed.

    Science.gov (United States)

    Prancevic, J.; Chatanantavet, P.; Ortiz, C. P.; Houssais, M.; Durian, D. J.; Jerolmack, D. J.

    2015-12-01

    To predict rates of river sediment transport, one must first address the zeroth-order question: when does sediment move? The concept and determination of the critical fluid shear stress remains hazy, as observing particle motion and determining sediment flux becomes increasingly hard in its vicinity. To tackle this problem, we designed a novel annular flume experiment - reproducing an infinite river channel - where the refractive index of particles and the fluid are matched. The fluid is dyed with a fluorescent powder and a green laser sheet illuminates the fluid only, allowing us to observe particle displacements in a vertical plane. Experiments are designed to highlight the basic granular interactions of sediment transport while suppressing the complicating effects of turbulence; accordingly, particles are uniform spheres and Reynolds numbers are of order 1. We have performed sediment transport measurements close to the onset of particle motion, at steady state, and over long enough time to record averaged rheological behavior of particles. We find that particles entrained by a fluid exhibit successively from top to bottom: a suspension regime, a dense granular flow regime, and - instead of a static bed - a creeping regime. Data from experiments at a range of fluid stresses can be collapsed onto one universal rheologic curve that indicates the effective friction is a monotonic function of a dimensionless number called the viscous number. These data are in remarkable agreement with the local rheology model proposed by Boyer et al., which means that dense granular flows, suspensions and bed-load transport are unified under a common frictional flow law. Importantly, we observe slow creeping of the granular bed even in the absence of bed load, at fluid stresses that are below the apparent critical value. This last observation challenges the classical definition of the onset of sediment transport, and points to a continuous transition from quasi-static deformation to

  3. Rheological behavior of water-ash mixtures from Sakurajima and Ontake volcanoes: implications for lahar flow dynamics

    Science.gov (United States)

    Kurokawa, Aika K.; Ishibashi, Hidemi; Miwa, Takahiro; Nanayama, Futoshi

    2018-06-01

    Lahars represent one of the most serious volcanic hazards, potentially causing severe damage to the surrounding environment, not only immediately after eruption but also later due to rainfall or snowfall. The flow of a lahar is governed by volcanic topography and its rheological behavior, which is controlled by its volume, microscale properties, and the concentration of particles. However, the effects of particle properties on the rheology of lahars are poorly understood. In this study, viscosity measurements were performed on water-ash mixtures from Sakurajima and Ontake volcanoes. Samples from Sakurajima show strong and simple shear thinning, whereas those from Ontake show viscosity fluctuations and a transition between shear thinning and shear thickening. Particle analysis of the volcanic ash together with a theoretical analysis suggests that the rheological difference between the two types of suspension can be explained by variations in particle size distribution and shape. In particular, to induce the complex rheology of the Ontake samples, coexistence of two particle size groups may be required since two independent behaviors, one of which follows the streamline (Stokes number St << 1, inertial number I < 0.001) and the other shows a complicated motion ( St 1, I 0.001), compete against each other. The variations in the spatial distribution of polydisperse particles, and the time dependence of this feature which generates apparent rheological changes, indicate that processes related to microscale particle heterogeneities are important in understanding the flow dynamics of lahars and natural polydisperse granular-fluid mixtures in general.

  4. Becker and Lomnitz rheological models: A comparison

    Science.gov (United States)

    Mainardi, Francesco; Spada, Giorgio

    2012-07-01

    The viscoelastic material functions for the Becker and the Lomnitz rheological models, sometimes employed to describe the transient flow of rocks, are studied and compared. Their creep functions, which are known in a closed form, share a similar time dependence and asymptotic behavior. This is also found for the relaxation functions, obtained by solving numerically a Volterra equation of the second kind. We show that the two rheologies constitute a clear example of broadly similar creep and relaxation patterns associated with neatly distinct retardation spectra, for which analytical expressions are available.

  5. Rheological properties of polypropylene nanocomposites

    International Nuclear Information System (INIS)

    Oliveira, Camila F. de P.; Demarquette, Nicole R.

    2009-01-01

    In this work, composites of polypropylene with a master batch to obtain clay containing nano composites were obtained. The materials were characterized by X ray diffraction, small angle X-ray scattering and by rheological analysis. (author)

  6. Potential Hydraulic Modelling Errors Associated with Rheological Data Extrapolation in Laminar Flow

    International Nuclear Information System (INIS)

    Shadday, Martin A. Jr.

    1997-01-01

    The potential errors associated with the modelling of flows of non-Newtonian slurries through pipes, due to inadequate rheological models and extrapolation outside of the ranges of data bases, are demonstrated. The behaviors of both dilatant and pseudoplastic fluids with yield stresses, and the errors associated with treating them as Bingham plastics, are investigated

  7. The influence of thickeners on the rheological and sensory properties of cosmetic lotions

    Czech Academy of Sciences Publication Activity Database

    Morávková, Tereza; Filip, Petr

    2014-01-01

    Roč. 11, č. 6 (2014), s. 173-186 ISSN 1785-8860 R&D Projects: GA ČR GA103/09/2066 Institutional support: RVO:67985874 Keywords : cosmetic lotion * eye cream * empirical rheological model ling * sensory analysis Subject RIV: BK - Fluid Dynamics Impact factor: 0.471, year: 2013

  8. Investigation of the rheological properties of human semen

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, P.F. (Purdue Univ., West Lafayette, IN); Picologlou, B.F.

    1977-01-01

    The results of an investigation of the previously undetermined rheological properties of human semen using a modified, multiple-point capillary viscometer are presented. The design of a viscometer, specifically constructed to give accurate, instantaneous pressure gradient and material flow rate records of biological viscoelastic fluids whose rheological properties are possibly changing with time is given. Using this device, measurements are made on human semen immediately following ejaculation. An analytical scheme for the data reduction, suitable for non-linear viscoelastic fluids of the Maxwell-type, is offered. An expression is developed for a non-linear Maxwell-type viscoelastic fluid flow in a circular tube, relating the material's elastic properties to the distance of recoil and the pressure gradient. In the case of a power-law elastic behavior this relation couples the wall shear stress with the recoil distance through an apparent shear modulus. Previously established procedures for the viscous response analysis are utilized and an approximate non-dimensional parameter is introduced allowing one to ascertain the relative contributions of the elastic and viscous components to the rate of flow. Results show the elastic and viscous properties of human semen to be functions of time following ejaculation and frequency of ejaculation. The elastic component is found to have a linear response over the shear stress range investigated, whereas the viscous component is found to exhibit a power-law behavior. The final equilibrium state is characterized by Newtonian behavior, with mean absolute viscosity of 3.37 centipoise. Finally, similarity among all cases examined is found for each material property through consideration of a non-dimensional time, t*, determined from semen liquefaction time and time post ejaculation.

  9. Factors That Influence the Extensional Rheological Property of Saliva.

    Directory of Open Access Journals (Sweden)

    Amrita Vijay

    Full Text Available The spinnbarkeit of saliva reflects the ability of saliva to adhere to surfaces within the mouth, thereby serving as a protective role and aiding in lubrication. Therefore, alterations in the extensional rheology of saliva may result in the loss in adhesiveness or the ability to bind onto surfaces. Mucin glycoproteins and their structures are known to be important factors for the extensional rheological properties of saliva. The conformation of mucin depends on factors such as pH and ionic strength. Chewing is one of the main stimuli for salivary secretion but creates significant sheer stress on the salivary film which could influence mouthfeel perceptions. The current study investigates the possible factors which affect the extensional rheological properties of saliva by comparing submandibular/sublingual saliva with different oral stimuli within the same group of subjects. Unstimulated and stimulated saliva (chew, smell and taste salivas were collected primarily from submandibular/sublingual glands. The saliva samples were measured for Spinnbarkeit followed by the measuring mucin, total protein, total calcium and bicarbonate concentrations. The results indicated correlations between rheological properties and mucin/ion concentrations. However, chewing stimulated submandibular/sublingual saliva is shown to have significantly lower Spinnbarkeit, but factors such as mucin, protein and calcium concentrations did not account for this variation. Analysis of the concentration of bicarbonate and pH appears to suggest that it has a prominent effect on extensional rheology of saliva.

  10. Rheological and tribological behaviour of lubricating oils containing platelet MoS2 nanoparticles

    Science.gov (United States)

    Wan, Qingming; Jin, Yi; Sun, Pengcheng; Ding, Yulong

    2014-05-01

    This work concerns rheological and frictional behaviour of lubricating oils containing platelet molybdenum disulfide (MoS2) nanoparticles (average diameter 50 nm; single layer thickness 3 nm). Stable nano-MoS2 lubricants were formulated and measured for their rheological behaviour and tribological performance. Rheological experiments showed that the nano-MoS2 oils were non-Newtonian following the Bingham plastic fluid model. The viscosity data fitted the classic Hinch-Leal (H-L) model if an agglomeration factor of 1.72 was introduced. Tribological experiments indicated that the use of MoS2 nanoparticles could enhance significantly the tribological performance of the base lubricating oil (reduced frictional coefficient, reduced surface wear and increased stability). Scanning electron microscopy, laser confocal microscope and x-ray energy dispersive spectroscopy analyses suggested that the reduced frictional coefficient and surface wear be associated with surface patching effects. Such patching effects were shown to depend on the concentration of MoS2 nanoparticles, and an effective patching required a concentration over approximately 1 wt%. The increased stability could be attributed to the enhanced heat transfer and lubricating oil film strength due to the presence of nanoparticles.

  11. A feasibility study of in-line rheological characterisation of a ...

    African Journals Online (AJOL)

    The rheological characteristics of sludge affect transportation, treatment and the disposal processes involved in sludge system design and management operations such as dewatering, including flocculation and filtration. The concentration of solid matter in the sludge has an effect on rheological parameters such as yield ...

  12. The effects of cryopreservation on red blood cell rheologic properties

    NARCIS (Netherlands)

    Henkelman, Sandra; Lagerberg, Johan W. M.; Graaff, Reindert; Rakhorst, Gerhard; van Oeveren, Willem

    2010-01-01

    BACKGROUND: In transfusion medicine, frozen red blood cells (RBCs) are an alternative for liquid-stored RBCs. Little is known about the rheologic properties (i.e., aggregability and deformability) of thawed RBCs. In this study the rheologic properties of high-glycerol frozen RBCs and postthaw stored

  13. Electrochemical and rheological behaviour of a fluid zinc paste; Comportement electrochimique et rheologique d`une pate de zinc fluide

    Energy Technology Data Exchange (ETDEWEB)

    Sajot, N.

    1997-12-04

    Zinc is a performing anodic material in numerous types of batteries. The anode of alkaline cells is typically a suspension of metallic powder in a gelled potassium hydroxide electrolyte, called zinc paste. We process such a homogeneous, fluid and stable paste, we study its physical electrochemical and rheological properties. Electrical power delivered during galvano-static electrolysis is about a few tens of mW.cm{sup -2} for anodic overvoltages inferior to 200 mV until the complete oxidation of the metal, 10 oxidation-reduction cycles are realised on paste samples of few mm width. In other respects, the product has a Bingham-type flow behavior, of critical shearing stress close to 200 Pa, and plastic viscosity about Pa.s, valid from 0,1 s{sup -1} shear rate. Zinc paste circulates in a slim rectangular section channel. Movement is ensured by a peristaltic pump placed on a cylindrical flexible tube. The paste transit between rectangular and circular sections is made through a profiled mechanical piece called a fish tail, without draft edge or roughness. An electrolytic separator and a current collector form the walls of the parallelopipedal channel, thus an electrolysis cell is framed. We record electrical and rheological characteristics of 2 oxidation-reduction cycles, during which the paste continues to flow and remains conductive. Established performances on the elementary cell allow to make up an air-zinc circulating paste battery for an electrical vehicle: the hydraulic recharge of a 100 l anodic paste tank is made in a few minutes, corresponding to a 300 km autonomy. (author) 87 refs.

  14. Rheological characteristics of cell suspension and cell culture of Perilla frutescens.

    Science.gov (United States)

    Zhong, J J; Seki, T; Kinoshita, S; Yoshida, T

    1992-12-05

    Physical properties such as viscosity, fluid dynamic behavior of cell suspension, and size distribution of cell aggregates of a plant, Perilla frustescens, cultured in a liquid medium were studied. As a result of investigations using cells harvester after 12 days of cultivation in a flask, it was found that the apparent viscosity of the cell suspension did not change with any variation of cell concentration below 5 g dry cell/L but markedly increased when the cell concentration increased over 12.8 g dry cell/L. The cell suspension exhibited the characteristics of a Bingham plastic fluid with a small yield stress. The size of cell aggregates in the range 74 to 500 mum did not influence the rheological characteristics of the cell suspension. The rheological characteristics of cultivation mixtures of P. frutescens cultivated in a flask and in a bioreactor were also investigated. The results showed that the flow characteristics of the cell culture could be described by a Bingham plastic model. At the later stage of cultivation, the apparent viscosity increased steadily, even though the biomass concentration (by dry weight) decreased, due to the increase of individual cell size. (c) 1992 John Wiley & Sons, Inc.

  15. Influence of enzymes and ascorbic acid on dough rheology and ...

    African Journals Online (AJOL)

    Influence of enzymes and ascorbic acid on dough rheology and wheat bread quality. ... Journal Home > Vol 15, No 3 (2016) >. Log in or ... Seven bread formulations containing different concentrations of these ... The rheological properties of each dough formulation were determined by moisture, gluten and farinograph tests.

  16. Effect of hydrocolloid on rheology and microstructure of high-protein soy desserts.

    Science.gov (United States)

    Arancibia, Carla; Bayarri, Sara; Costell, Elvira

    2015-10-01

    Due to the rheological and structural basis of texture perceived in semisolid foods, the aim of this work was to study the effects of two thickening agents, on rheology and microstructure of soy protein desserts. As rheological parameter values may not be enough to explain the possible perceived texture differences, the effect of composition on two instrumental indexes of oral consistency (apparent viscosity at 50 s(-1) and complex dynamic viscosity at 8 Hz) was also studied. Samples were prepared at two soy protein isolate (SPI) concentrations (6 and 8 % w/w), each with four modified starch concentrations (2, 2.5, 3 and 3.5 % w/w) or four Carboxymethyl cellulose (CMC) concentrations (0.3, 0.5, 0.7 and 0.9 % w/w). Two more samples without added thickener were prepared as control samples. The flow curves of all systems showed a typical shear-thinning behaviour and observable hysteresis loops. Control sample flow fitted well with the Ostwald-de Waele model and the flow of samples with thickener to the Herschel-Bulkley model. Viscoelastic properties of samples ranged from fluid-like to weak gel, depending on thickener and SPI concentrations. Starch-based samples exhibited a globular structure with SPI aggregates distributed among starch granules. In CMC-based samples, a coarse stranded structure with SPI aggregates partially embedded was observed. Variation of the two thickness index values with composition showed a similar trend with good correlation between them (R(2) = 0.92). Soy desserts with different composition but with similar rheological behaviour or instrumental thickness index values can be obtained.

  17. Rheology of Cementitious Materials: Alkali-Activated Materials or Geopolymers

    Directory of Open Access Journals (Sweden)

    Puertas F.

    2018-01-01

    Understanding and controlling the rheology of the AAMs systems will ultimately determine whether they can be implemented in the market, and will open up greater competitive possibilities in a crisis-affected sector. A systematic study of the factors that affect the rheological properties of AAMs (pastes, mortars and concretes is therefore necessary in order to ultimately develop more resistant and durable materials.

  18. A new fuzzy-disturbance observer-enhanced sliding controller for vibration control of a train-car suspension with magneto-rheological dampers

    Science.gov (United States)

    Nguyen, Sy Dzung; Choi, Seung-Bok; Nguyen, Quoc Hung

    2018-05-01

    Semi-active train-car suspensions are always impacted negatively by uncertainty and disturbance (UAD). In order to deal with this, we propose a novel optimal fuzzy disturbance observer-enhanced sliding mode controller (FDO-SMC) for magneto-rheological damper (MRD)-based semi-active train-car suspensions subjected to UAD whose variability rate may be high but bounded. The two main parts of the FDO-SMC are an adaptive sliding mode controller (ad-SMC) and an optimal fuzzy disturbance observer (op-FDO). As the first step, the initial structures of the sliding mode controller (SMC) and disturbance observer (DO) are built. Adaptive update laws for the SMC and DO are then set up synchronously via Lyapunov stability analysis. Subsequently, an optimal fuzzy system (op-FS) is designed to fully implement a parameter constraint mechanism so as to guarantee the system stability converging to the desired state even if the UAD variability rate increases in a given range. As a result, both the ad-SMC and op-FDO are formulated. It is shown from the comparative work with existing controllers that the proposed method provides the best vibration control capability with relatively low consumed power.

  19. Weakly sheared active suspensions: hydrodynamics, stability, and rheology.

    Science.gov (United States)

    Cui, Zhenlu

    2011-03-01

    We present a kinetic model for flowing active suspensions and analyze the behavior of a suspension subjected to a weak steady shear. Asymptotic solutions are sought in Deborah number expansions. At the leading order, we explore the steady states and perform their stability analysis. We predict the rheology of active systems including an activity thickening or thinning behavior of the apparent viscosity and a negative apparent viscosity depending on the particle type, flow alignment, and the anchoring conditions, which can be tested on bacterial suspensions. We find remarkable dualities that show that flow-aligning rodlike contractile (extensile) particles are dynamically and rheologically equivalent to flow-aligning discoid extensile (contractile) particles for both tangential and homeotropic anchoring conditions. Another key prediction of this work is the role of the concentration of active suspensions in controlling the rheological behavior: the apparent viscosity may decrease with the increase of the concentration.

  20. Hysteresis-induced bifurcation and chaos in a magneto-rheological suspension system under external excitation

    Science.gov (United States)

    Hailong, Zhang; Enrong, Wang; Fuhong, Min; Ning, Zhang

    2016-03-01

    The magneto-rheological damper (MRD) is a promising device used in vehicle semi-active suspension systems, for its continuous adjustable damping output. However, the innate nonlinear hysteresis characteristic of MRD may cause the nonlinear behaviors. In this work, a two-degree-of-freedom (2-DOF) MR suspension system was established first, by employing the modified Bouc-Wen force-velocity (F-v) hysteretic model. The nonlinear dynamic response of the system was investigated under the external excitation of single-frequency harmonic and bandwidth-limited stochastic road surface. The largest Lyapunov exponent (LLE) was used to detect the chaotic area of the frequency and amplitude of harmonic excitation, and the bifurcation diagrams, time histories, phase portraits, and power spectrum density (PSD) diagrams were used to reveal the dynamic evolution process in detail. Moreover, the LLE and Kolmogorov entropy (K entropy) were used to identify whether the system response was random or chaotic under stochastic road surface. The results demonstrated that the complex dynamical behaviors occur under different external excitation conditions. The oscillating mechanism of alternating periodic oscillations, quasi-periodic oscillations, and chaotic oscillations was observed in detail. The chaotic regions revealed that chaotic motions may appear in conditions of mid-low frequency and large amplitude, as well as small amplitude and all frequency. The obtained parameter regions where the chaotic motions may appear are useful for design of structural parameters of the vibration isolation, and the optimization of control strategy for MR suspension system. Projects supported by the National Natural Science Foundation of China (Grant Nos. 51475246, 51277098, and 51075215), the Research Innovation Program for College Graduates of Jiangsu Province China (Grant No. KYLX15 0725), and the Natural Science Foundation of Jiangsu Province of China (Grant No. BK20131402).

  1. Comparison of rheological evaluation techniques and turbulent flow prediction of a simulated nuclear waste melter slurry

    International Nuclear Information System (INIS)

    Carleson, T.E.; Hart, R.E.; Drown, D.C.; Peterson, M.E.

    1987-03-01

    An experimental study was performed on a simulated nuclear waste slurry containing the type of waste sludge and glass-forming chemicals that will be converted to a stable glass in a high-temperature furnace. The rheological properties of the slurry must be determined in order to design the transport and mixing systems. The rheological parameters for the slurry were determined by a variety of viscometers including a rotational viscometer, a capillary tube viscometer, and a pipe flow apparatus. Experiments revealed the absence of wall slip and sufficient non-Newtonian behavior to require adjustments of the results. The slurry was characterized as a yield pseudoplastic fluid. Different rheological constants were obtained for all three viscometers. Predictions of the shear stress as a function of shear rate showed good agreement between the constants determined by the rotational viscometer and the pipe loop apparatus. Laminar and turbulent flows in the pipe loop correlated closely with a recent theoretical model. 16 refs., 16 figs., 5 tabs

  2. Debris flow rheology: Experimental analysis of fine-grained slurries

    Science.gov (United States)

    Major, Jon J.; Pierson, Thomas C.

    1992-01-01

    The rheology of slurries consisting of ≤2-mm sediment from a natural debris flow deposit was measured using a wide-gap concentric-cylinder viscometer. The influence of sediment concentration and size and distribution of grains on the bulk rheological behavior of the slurries was evaluated at concentrations ranging from 0.44 to 0.66. The slurries exhibit diverse rheological behavior. At shear rates above 5 s−1 the behavior approaches that of a Bingham material; below 5 s−1, sand exerts more influence and slurry behavior deviates from the Bingham idealization. Sand grain interactions dominate the mechanical behavior when sand concentration exceeds 0.2; transient fluctuations in measured torque, time-dependent decay of torque, and hysteresis effects are observed. Grain rubbing, interlocking, and collision cause changes in packing density, particle distribution, grain orientation, and formation and destruction of grain clusters, which may explain the observed behavior. Yield strength and plastic viscosity exhibit order-of-magnitude variation when sediment concentration changes as little as 2–4%. Owing to these complexities, it is unlikely that debris flows can be characterized by a single rheological model.

  3. Effect of particle stiffness on contact dynamics and rheology in a dense granular flow

    Science.gov (United States)

    Bharathraj, S.; Kumaran, V.

    2018-01-01

    Dense granular flows have been well described by the Bagnold rheology, even when the particles are in the multibody contact regime and the coordination number is greater than 1. This is surprising, because the Bagnold law should be applicable only in the instantaneous collision regime, where the time between collisions is much larger than the period of a collision. Here, the effect of particle stiffness on rheology is examined. It is found that there is a rheological threshold between a particle stiffness of 104-105 for the linear contact model and 105-106 for the Hertzian contact model above which Bagnold rheology (stress proportional to square of the strain rate) is valid and below which there is a power-law rheology, where all components of the stress and the granular temperature are proportional to a power of the strain rate that is less then 2. The system is in the multibody contact regime at the rheological threshold. However, the contact energy per particle is less than the kinetic energy per particle above the rheological threshold, and it becomes larger than the kinetic energy per particle below the rheological threshold. The distribution functions for the interparticle forces and contact energies are also analyzed. The distribution functions are invariant with height, but they do depend on the contact model. The contact energy distribution functions are well fitted by Gamma distributions. There is a transition in the shape of the distribution function as the particle stiffness is decreased from 107 to 106 for the linear model and 108 to 107 for the Hertzian model, when the contact number exceeds 1. Thus, the transition in the distribution function correlates to the contact regime threshold from the binary to multibody contact regime, and is clearly different from the rheological threshold. An order-disorder transition has recently been reported in dense granular flows. The Bagnold rheology applies for both the ordered and disordered states, even though

  4. Rheological Model for Describing Viscometric Flows of Melts of Branched Polymers

    Czech Academy of Sciences Publication Activity Database

    Merzlikina, D.A.; Pyshnograi, G.; Pivokonský, Radek; Filip, Petr

    2016-01-01

    Roč. 89, č. 3 (2016), s. 652-659 ISSN 1062-0125 Grant - others:Russian Foundation for Basic Research(RU) 15-4-04003 Institutional support: RVO:67985874 Keywords : rheology * polymer melts * mesoscopic approach * rheological equation of state * viscometric fl ows Subject RIV: BK - Fluid Dynamics http://download.springer.com/static/pdf/8/art%253A10.1007%252Fs10891-016-1423-7.pdf?originUrl=http%3A%2F%2Flink.springer.com%2Farticle%2F10.1007%2Fs10891-016-1423-7&token2=exp=1481193683~acl=%2Fstatic%2Fpdf%2F8%2Fart%25253A10.1007%25252Fs10891-016-1423-7.pdf%3ForiginUrl%3Dhttp%253A%252F%252Flink.springer.com%252Farticle%252F10.1007%252Fs10891-016-1423-7*~hmac=cb34c324456883ecc6fc41d3feb0677836d7c454728829b5e085aac5ce7de417

  5. Rheological measurements on artifical muds

    NARCIS (Netherlands)

    De Wit, P.J.

    1992-01-01

    The rheological behaviour of three artificial muds was determined using a rotational viscometer. First some characteristics of the viscometer used were rneasured. For want of an appropriate calibration tluid, the viscosity of demineralized water was determined. The result agreed very well with what

  6. Rheological and microbiological study of flour treated by irradiation

    International Nuclear Information System (INIS)

    Laabidi, Othmen

    2007-01-01

    the aim this work is to study the effectiveness of radio treatment and its effect on the conservation of flour and their various parameters (physico-chemical and rheological). The flour has been treated with different doses (0, 0.75, 1.5 and 3 kGy), physico-chemical, rheological, microbiological and sensory analyses were made.The results show that the irradiation as a treatment for decontamination gave a highly effective. Indeed, a dose of 1.5 kGy allows a total destruction of yeasts and molds. Thus, from the point of view physico-chemical, increasing the dose of radiation causes a change in physical and chemical properties and rheological of flour. for the characteristics of bread, increasing the dose of radiation affects the quality of bread. (Author). 38 refs

  7. Renovation and Strengthening of Wooden Beams With CFRP Bands Including the Rheological Effects

    Directory of Open Access Journals (Sweden)

    Kula Krzysztof

    2016-09-01

    Full Text Available The paper presents a work analysis of wooden beams reinforced with glued composite bands from the top and resin inclusions, taking into account the rheology of materials. The paper presents numerical model of the multimaterial beam work including rheological phenomena described by linear equations of viscoelasticity. For the construction of this model one used MES SIMULIA ABAQUS environment in which were prepared its own procedures containing rheological models. The calculation results were compared with the literature data. One has done an analysis of the advisability of the use of CFRP reinforcements bands in terms of rheological phenomena.

  8. Rheological and filtration characteristics of drilling fluids enhanced by nanoparticles with selected additives: an experimental study

    Directory of Open Access Journals (Sweden)

    Nima Mohamadian

    2018-05-01

    Full Text Available The suspension properties of drilling fluids containing pure and polymer-treated (partially-hydrolyzed polyacrylamide (PHPA or Xanthan gum clay nanoparticles are compared withthose of a conventional water-and-bentonite-based drilling fluid, used as the referencesample. Additionally, the mud weight, plastic viscosity, apparent viscosity, yield point, primary and secondary gelatinization properties, pH, and filtration properties of the various drilling fluids studied are also measured and compared. The performance of each drilling fluid type is evaluated with respect in terms of its ability to reduce mud cake thickness and fluid loss thereby inhibiting differential-pipe-sticking. For that scenario, the mud-cake thickness is varied, and the filtration properties of the drilling fluids are measured as an indicator of potential well-diameter reduction, caused by mud cake, adjacent to permeable formations. The novel results show that nanoparticles do significantly enhance the rheological and filtration characteristics of drilling fluids. A pure-clay-nanoparticle suspension, without any additives, reduced fluid loss to about 42% and reduced mud cake thickness to 30% compared to the reference sample. The xanthan-gum-treated-clay-nanoparticle drilling fluid showed good fluid loss control and reduced fluid loss by 61% compared to the reference sample. The presence of nanofluids also leads to reduced mud-cake thicknesses, directly mitigating the risks of differential pipe sticking.

  9. Rheological behavior study of a clay-polymer mixture: effects of the polymer addition

    International Nuclear Information System (INIS)

    Benchabane, A.

    2006-11-01

    The aim of the present work is to establish a bibliographical synthesis on the microstructure, the colloidal and rheological characterization of bentonite suspensions with and without polymer/surfactant addition; to lead to a rheological characterization of clay-additive mixtures and to understand the interaction between the clay particles and polymer/surfactants. Different experimental measurements: rheology, particle sizing, and x-ray diffraction were used to study the rheological character of the water-bentonite-anionic additive mixtures (CMC, SDS, xanthane) as well as the nature of the particle-particle interactions and particle-additive. The modeling part led to the adoption of Tiu and Boger's model to predict the thixotropy of the bentonite suspensions without additive. Thus, a new model is proposed with physical parameters for a better correlation of the rheological behavior of the various studied mixtures. (author)

  10. Rheology of oil sands slurries

    Energy Technology Data Exchange (ETDEWEB)

    Chow, R.; Zhou, J. [Alberta Research Council, Edmonton, AB (Canada). Mineral Oil Sands Unit; Wallace, D. [Dean Wallace Consulting Inc., Beaumont, AB (Canada)

    2006-07-01

    This study focused on integrating rheology and colloid science to improve recovery of bitumen in surface mined oil sands. Factors that influence recovery, such as conditions of particle interaction, solids concentration and shear rate, were reviewed. In an effort to understand the rheological behaviour of clay-in-water suspensions, an elaborate procedure was developed to separate an inter-bedded clay layer from a site at Albian Sands Energy Inc. The variables were water chemistry, solids concentration, and shear rate. The research study was conducted at the Alberta Research Council with the support of the CONRAD Extraction Group. A controlled stress rheometer was used to provide the quantitative evaluations of the clay slurry properties. The research results indicate that the viscoelastic properties of the slurry are highly influenced by the shear history of the slurry, solids content, calcium concentration, and sample aging. Shear thinning behaviour was observed in all slurry samples, but the slurry viscosity increased with test time for a given shear rate. In order to classify the slurries, a method was developed to distinguish the gel strength. The slurries were then classified into 3 distinct patterns, including no gel, weak gel and strong gel. The evolution of the experimental protocols were described along with the current stability maps that correlate the domains of the gel strength according to the solids concentration, calcium ion content, and shear rate. It was concluded that the rheological properties of oil sands slurries influence bitumen recovery in commercial surface-mined oil sands operations. tabs., figs.

  11. A general computation model based on inverse analysis principle used for rheological analysis of W/O rapeseed and soybean oil emulsions

    Science.gov (United States)

    Vintila, Iuliana; Gavrus, Adinel

    2017-10-01

    The present research paper proposes the validation of a rigorous computation model used as a numerical tool to identify rheological behavior of complex emulsions W/O. Considering a three-dimensional description of a general viscoplastic flow it is detailed the thermo-mechanical equations used to identify fluid or soft material's rheological laws starting from global experimental measurements. Analyses are conducted for complex emulsions W/O having generally a Bingham behavior using the shear stress - strain rate dependency based on a power law and using an improved analytical model. Experimental results are investigated in case of rheological behavior for crude and refined rapeseed/soybean oils and four types of corresponding W/O emulsions using different physical-chemical composition. The rheological behavior model was correlated with the thermo-mechanical analysis of a plane-plane rheometer, oil content, chemical composition, particle size and emulsifier's concentration. The parameters of rheological laws describing the industrial oils and the W/O concentrated emulsions behavior were computed from estimated shear stresses using a non-linear regression technique and from experimental torques using the inverse analysis tool designed by A. Gavrus (1992-2000).

  12. Heat flow, heat transfer and lithosphere rheology in geothermal areas: Features and examples

    Science.gov (United States)

    Ranalli, G.; Rybach, L.

    2005-10-01

    Surface heat flow measurements over active geothermal systems indicate strongly positive thermal anomalies. Whereas in "normal" geothermal settings, the surface heat flow is usually below 100-120 mW m - 2 , in active geothermal areas heat flow values as high as several watts per meter squared can be found. Systematic interpretation of heat flow patterns sheds light on heat transfer mechanisms at depth on different lateral, depth and time scales. Borehole temperature profiles in active geothermal areas show various signs of subsurface fluid movement, depending on position in the active system. The heat transfer regime is dominated by heat advection (mainly free convection). The onset of free convection depends on various factors, such as permeability, temperature gradient and fluid properties. The features of heat transfer are different for single or two-phase flow. Characteristic heat flow and heat transfer features in active geothermal systems are demonstrated by examples from Iceland, Italy, New Zealand and the USA. Two main factors affect the rheology of the lithosphere in active geothermal areas: steep temperature gradients and high pore fluid pressures. Combined with lithology and structure, these factors result in a rheological zonation with important consequences both for geodynamic processes and for the exploitation of geothermal energy. As a consequence of anomalously high temperature, the mechanical lithosphere is thin and its total strength can be reduced by almost one order of magnitude with respect to the average strength of continental lithosphere of comparable age and thickness. The top of the brittle/ductile transition is located within the upper crust at depths less than 10 km, acts as the root zone of listric normal faults in extensional environments and, at least in some cases, is visible on seismic reflection lines. These structural and rheological features are well illustrated in the Larderello geothermal field in Tuscany.

  13. A comparison of 200 kN magneto-rheological damper models for use in real-time hybrid simulation pretesting

    International Nuclear Information System (INIS)

    Jiang, Z; Christenson, R

    2011-01-01

    Control devices can be used to dissipate the energy of a civil structure subjected to dynamic loading, such as earthquake, wave and wind excitation, thus reducing structural damage and preventing failure. The magneto-rheological (MR) fluid damper is a promising device for use in civil structures due to its mechanical simplicity, inherent stability, high dynamic range, large temperature operating range, robust performance, and low power requirements. The MR damper is intrinsically nonlinear and rate dependent. Thus a challenging aspect of applying this technology is the development of accurate models to describe the behavior of such dampers for control design and evaluation purposes. In particular, a new type of experimental testing called real-time hybrid simulation (RTHS) combines numerical simulation with laboratory testing of physical components. As with any laboratory testing, safety is of critical importance. For RTHS in particular the feedback and dynamic interaction of physical and numerical components can result in potentially unstable behavior. For safety purposes, it is desired to conduct pretest simulations where the physical specimen is replaced with an appropriate numerical model yet the numerical RTHS component is left unchanged. These pretest simulations require a MR damper model that can exhibit stability and convergence at larger fixed integration time steps, and provide computational efficiency, speed of calculation, and accuracy during pretest verification of the experimental setup. Several models for MR dampers have been proposed, including the hyperbolic tangent, Bouc–Wen, viscous plus Dahl and algebraic models. This paper examines the relative performance of four MR damper models of large-scale 200 kN MR dampers as needed for pretest simulations of RTHS. Experimental tests are conducted on two large-scale MR dampers located at two RTHS test facilities at the Smart Structures Technology Laboratory at the University of Illinois at Urbana

  14. Alkali activated slag cements using waste glass as alternative activators. Rheological behaviour

    Directory of Open Access Journals (Sweden)

    Manuel Torres-Carrasco

    2015-03-01

    The findings show that AAS paste behaviour of rheology when the activator was a commercial waterglass solution or NaOH/Na2CO3 with waste glass was similar, fit the Herschel-Bulkley model. The formation of primary C-S-H gel in both cases were confirmed. However, the rheological behaviour in standard cements fit the Bingham model. The use of the waste glass may be feasible from a rheological point of view in pastes can be used.

  15. Effect of Some Biopolymers on the Rheological Behavior of Surimi Gel

    Directory of Open Access Journals (Sweden)

    Takahiro Noda

    2012-05-01

    Full Text Available The objective of this study was to investigate the effect of selected biopolymers on the rheological properties of surimi. In our paper, we highlight the functional properties and rheological aspects of some starch mixtures used in surimi. However, the influence of some other ingredients, such as cryoprotectants, mannans, and hydroxylpropylmethylcellulose (HPMC, on the rheological properties of surimi is also described. The outcome reveals that storage modulus increased with the addition of higher levels of starch. Moreover, the increasing starch level increased the breaking force, deformation, and gel strength of surimi as a result of the absorption of water by starch granules in the mixture to make the surimi more rigid. On the other hand, the addition of cryoprotectants, mannans, and HPMC improved the rheological properties of surimi. The data obtained in this paper could be beneficial particularly to the scientists who deal with food processing field.

  16. Rheological study of feed stock for NiTi alloy molded parts

    International Nuclear Information System (INIS)

    Subuki, I; Abdullah, Z; Razali, R; Ismail, M H

    2015-01-01

    A rheological behaviour of the powder-binder mixture is one of essential analysis upon to success of Metal Injection Moulding (MIM) process. The purpose of this experimental work is to investigate the rheological behavior of feedstock containing mixtures of elemental Ni and Ti powders mixed with composite binder of palm stearin (PS) and polyethylene (PE) binder system. An equiatomic Ni-Ti (50-50) ratio was used in the present work for all formulations owing to excellent shape memory behaviour. The experimental rheological result indicated that all the feedstocks exhibited pseudo plastic flow behaviour; viscosity decreasing with temperature and shear rate. Increasing the powder loading resulted in higher viscosity, particularly at the low-range of shear rate. Owing to pseudo-plastic flow, it was found that the feedstock prepared exhibit promising rheological properties, thus resulting successfully injection moulding at an optimum temperature of 130°C. (paper)

  17. Capillary levelling as a probe of rheology in polymer thin films

    Science.gov (United States)

    McGraw, Joshua D.; Jago, Nick M.; Dalnoki-Veress, Kari

    2011-03-01

    While measuring the rheology of bulk polymer systems is routine, when the size of a system becomes comparable to the molecular size, flow properties are poorly understood and hard to measure. Here, we present the results of experiments that are easily performed and can probe the rheological properties of polymer films that are mere tens of nanometres in thickness. We prepare glassy bilayer polymer films with height profiles well approximated by a step function. Upon annealing above the glass transition, broadening of the height profiles due to gradients in the Laplace pressure is observed. By validating the technique as a probe of the rheology with a range of molecular weights, we will show that this robust technique can be used to investigate the effects of confinement and interfaces on the rheology of ultrathin polymer films. Financial support from NSERC of Canada is gratefully acknowledged.

  18. Estimation of Rheological Properties of Viscous Debris Flow Using a Belt Conveyor

    Science.gov (United States)

    Hübl, J.; Steinwendtner, H.

    2000-09-01

    Rheological parameters of viscous debris flows are influenced by a great amount of factors and are therefore extremely difficult to estimate. Because of this uncertainties a belt conveyor (conveyor channel) was constructed to measure flow behaviour and rheological properties of natural debris flow material. The upward movement of the smooth rubberised belt between fixed lateral plastic walls causes a stationary wave relative to these bends. This special experimental design enables to study behaviour of viscous ebris flow material with maximum grain diameters up to 20 mm within several minutes and to hold measuring equipment very simple. The conveyor channel was calibrated first with Xanthan, a natural polysaccharide used as thickener in food technology, whose rheological properties are similar to viscous debris flow material. In a second step natural debris flow material was investigated. Velocities and rheological parameters were measured with varying solid concentration and slope of the channel. In cases where concentration of coarse particles exceed around 15% by volume the conveyor channel obtains an alternative to expensive commercial viscometers for determination of rheological parameters of viscous debris flows.

  19. Rheology and hydrodynamic properties of Tolypocladium inflatum fermentation broth and its simulation.

    Science.gov (United States)

    Benchapattarapong, N; Anderson, W A; Bai, F; Moo-Young, M

    2005-07-01

    A physico-chemical, two phase simulated pseudoplastic fermentation (SPF) broth was investigated in which Solka Floc cellulose fibre was used to simulate the filamentous biomass, and a mixture of 0.1% (w/v) carboxymethyl cellulose (CMC) and 0.15 M aqueous sodium chloride was used to simulate the liquid fraction of the fermentation broth. An investigation of the rheological behaviour and hydrodynamic properties of the SPF broth was carried out, and compared to both a fungal Tolypocladium inflatum fermentation broth and a CMC solution in a 50 L stirred tank bioreactor equipped with conventional Rushton turbines. The experimental data confirmed the ability of the two phase SPF broth to mimic both the T. inflatum broth bulk rheology as well as the mixing and mass transfer behaviour. In contrast, using a homogeneous CMC solution with a similar bulk rheology to simulate the fermentation resulted in a significant underestimation of the mass transfer and mixing times. The presence of the solid phase and its microstructure in the SPF broth appear to play a significant role in gas holdup and bubble size, thus leading to the different behaviours. The SPF broth seems to be a more accurate simulation fluid that can be used to predict the bioreactor mixing and mass transfer performance in filamentous fermentations, in comparison with CMC solutions used in some previous studies.

  20. Historical evolution of oil painting media: A rheological study

    Science.gov (United States)

    de Viguerie, Laurence; Ducouret, Guylaine; Lequeux, François; Moutard-Martin, Thierry; Walter, Philippe

    2009-09-01

    Rheology is the science of flow, which is a phenomenon found in every painting operation, such as decorative paintings or protective coatings. In this article, the principles of rheology as applied to paintings and coatings are recalled in a first part and the rheological criteria required in the paint industry presented. Indeed, different flow behaviours leads to different finishes. The same procedure and techniques as in industry can be employed to explain some evolutions in oil painting aspects over the centuries. The first recipes for oil painting indicate the use of treated oil, resins and spirits. This article deals with the evolution of the composition of these systems as media for oil painting, according to rheological clues. During the Renaissance period, the media used were Newtonian or slightly shear thinning and allowed one a perfect levelling. Then techniques changed, paints became more opaque with less addition of oil/resin media, and brushstrokes appeared visible. Some preparations containing lead, oil and mastic resin, whose flow behaviour is closed to those required in industry, may have appeared during the 17th century and are still used and sold today. To cite this article: L. de Viguerie et al., C. R. Physique 10 (2009).

  1. How to Prepare SMC and BMC-like Compounds to Perform Relevant Rheological Experiments?

    Science.gov (United States)

    Guiraud, Olivier; Dumont, Pierre J. J.; Orgéas, Laurent

    2013-04-01

    The study of the rheology of injected or compression moulded compounds like SMC or BMC is made particularly difficult by the high content and the intricate arrangement of their fibrous reinforcement. For these two types of compounds, inappropriate rheological testing protocols and rheometers are often used, which leads to a very large scatter of the experimental data. This study describes specific sampling and specimen's preparation methods, as well as dedicated rheometry devices to test their rheology. Following the proposed protocols, it is possible to obtain rheological measurements showing low scatter of the recorded stress values: about ±10% for SMC and about ±15% for BMC-like compounds.

  2. Magneto-optic and electro-optic modulators

    International Nuclear Information System (INIS)

    Hutchinson, D.P.; Ma, C.H.; Price, T.R.; Staats, P.A.; Sluis, K.L.V.

    1982-01-01

    An important aspect of the Faraday rotation diagnostic for tokamak plasma measurement has been the development of suitable polarization modulators for submillimeter wavelength. The problems are to obtain high optical transmission and fast modulation frequencies. In ORNL, the authors have developed both a magneto-optic and an electro-optic submillimeter-wave modulators. These devices have been operated at modulation frequency of approximately 100 kHz, and both have high transmission. The original magneto-optic modulator consists of a 3 mm thick by 1.4 cm diameter 2-111 ferrite disk mounted at the center of an air core coil. Recently, a new ferrite modulator has been tested, which allows a much higher modulation frequency than the original device. A laboratory set-up designed to simulate a plasma heterodyne interferometer/polarimeter experiment has been used to determine the modulator characteristics. A mechanical polarization rotor was used to simulate the rotation by plasma. The transmission of the ferrite disk was 80 % at a wavelength of 0.447 mm. The authors have also performed preliminary measurement on an electro-optic modulator first demonstrated by Fetterman at Lincoln Laboratory, U.S. This device is a classical electro-optic modulator using a cryogenically cooled (4.2 K) LiTaO 3 crystal. Experiments are underway to determine the electro-optic properties of the crystal over the temperature range from 4.2 K to 77 K and over the range of wavelength from 0.118 mm to 0.447 mm. (Wakatsuki, Y.)

  3. Influence of clay, surfactant and presence of dispersant in the non-aqueous fluids rheology

    International Nuclear Information System (INIS)

    Gomes, N.L.; Guedes, I.C.; Menezes, R.R.; Campos, L.F.A.; Ferreira, H.S.

    2012-01-01

    The bentonite clay used as a thickening agent in production of non-aqueous fluids and can not be used without a prior treatment to their organic surfaces become hydrophobic. These treated clays are called organoclays, and are usually obtained by adding, in aqueous solution, a quaternary ammonium salt. This work makes a detailed study of the variables involved in the dispersion of the bentonite clays in organophilization process, as well, the type of clay, type of surfactant and the presence of dispersant. It was observed this study that the process variables involved in the dispersion of the clays and organophilization, observed through characterization, have low influence on the peaks related to interplanar basal distance caused by the incorporation of the surfactant and bentonite clays been influential the type of clay and surfactant and the presence of sodium as dispersant agent, on the rheological properties. (author)

  4. Evaluation of the rheological behavior of drilling fluids in annular flow conditions; Avaliacao do comportamento reologico de fluidos de perfuracao no escoamento anular

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Maria das Gracas Pena; Martins, Andre Leibsohn; Oliveira, Antonio Augusto Junqueira de [PETROBRAS, Rio de Janeiro (Brazil). Centro de Pesquisas. Div. de Explotacao

    1988-12-31

    The rheological behavior of drilling fluids during annular flow in a physical simulator well (Surface Hydraulic System - SHS)was investigated. Measurement of volumetric flow and pressure drop the 10-meter simulator well was used to assess applicability of the Bingham, power Law, Casson, and Herschell-Bulkley models to the annular flow of water and oil-based fluids under different temperatures. Additionally, under different pre-set deformation ranges, SHS-observed behavior was compared with behavior observed using the traditional Fann VG 35 A viscometer. (author) 8 refs., 21 figs., 15 tabs.

  5. Rheological and electrical properties of polymeric nanoparticle solutions and their influence on RBC suspensions

    Czech Academy of Sciences Publication Activity Database

    Antonova, N.; Koseva, N.; Kowalczyk, A.; Říha, Pavel; Ivanov, I.

    2014-01-01

    Roč. 24, č. 3 (2014), s. 35190 ISSN 1430-6395 Institutional support: RVO:67985874 Keywords : nanoparticles and RBC suspensions * poly(acrylic acid) * rheology * electrical conductivity Subject RIV: BK - Fluid Dynamics Impact factor: 1.078, year: 2014 http://www.ar.ethz.ch/TMPPDF/24308140293.696/ApplRheol_24_35190.pdf

  6. Effect of pulsed electric field and pasteurisation treatments on the rheological properties of mango nectar (Mangifera indica

    Directory of Open Access Journals (Sweden)

    S. S. Manjunatha

    2015-01-01

    Full Text Available The rheological behaviour of pulsed electric field (PEF processed and thermally pasteurised mango nectar (Mangifera indica was evaluated using controlled stress rheometer. The mango nectar was subjected to pulsed electric field (PEF as well as thermal processing. The rheological parameter shear stress was measured up to the shear rate of 750 s-1 using co-axial cylinder attachment at wide range of temperatures from 10 to 70 °C. The investigation showed that pulsed electric field (PEF processed and thermally pasteurised mango nectar behaved like a pseudo plastic (shear thinning fluid and obeyed Herschel-Bulkley model (0.9780 0.893, p < 0.05 and flow activation energy (Ea was significantly (p < 0.05 affected by processing conditions. The results indicated that the pulsed electric field (PEF and thermal processing condition has affected the rheological properties of mango nectar. The combined equation relating to shear stress (τ with temperature and shear rate of mango nectar was established.

  7. Numerical study of inertial effects on the rheology of filament suspensions

    Science.gov (United States)

    Alizad Banaei, Arash; Rosti, Marco Edoardo; Brandt, Luca

    2017-11-01

    Significant work has been devoted to modeling fiber suspensions as they occur in many applications such as paper and food industries. Most of the works are limited to the motion of rigid cylindrical rods in low Stokes flows. Here, we investigate the rheological properties of flexible filament suspensions by means of numerical simulations. We considered the filaments as one-dimensional inextensible slender bodies obeying the Euler-Bernoulli equations and study the effect of flexibility, flow inertia and volume fraction on the rheology of the suspensions. The numerical simulations are performed using the Immersed Boundary Method to model the fluid/structure interaction. The results indicate that the inertia has significant effect on the relative viscosity of the suspensions. The effect is larger for less deformable filaments. The filament suspensions exhibit viscoelastic behavior and the first normal stress has a maximum for moderate flexibilities. The relative viscosity increases with volume fraction of the filaments and it is more sensitive to the volume fraction for larger Reynolds numbers. For a constant flexibility, the mean end-to-end distance of the filaments decreases with Reynolds number and the mean velocity fluctuations of the fluid increases with the Reynolds number. European Research Council, Grant No. ERC-2013-CoG- 616186, TRITOS; SNIC (the Swedish National Infrastructure for Computing).

  8. Rheological considerations for the modelling of submarine sliding at Rockall Bank, NE Atlantic Ocean

    Science.gov (United States)

    Salmanidou, D. M.; Georgiopoulou, A.; Guillas, S.; Dias, F.

    2018-03-01

    Recent scientific research indicates that the Rockall Bank Slide Complex in the NE Atlantic Ocean has formed as the result of repetitive slope failures that can be distinguished in at least three major phases. These sliding episodes took place during and before the Last Glacial Maximum. This work attempts the modelling of each sliding episode with the incorporation of the landslide's rheological properties. The objective is to study the landslide kinematics and final deposition of each episode under a rheological framework that comes in agreement with the field observations. To do so in the present work, we use different types of rheological models to compute the total retarding stress and simulate submarine failure. The Bingham rheology and the frictional rheology are used to model the flow behavior. The scope of this approach is to understand the effect of the two classical laws in landslide kinematics. A rheological model that combines the two regimes is also used. To account for the hydrodynamic drag, the Voellmy model is employed. The results are validated against the field observations on the seabed of the Rockall Trough. The simulations show that for this particular case the Bingham rheology with a small or negligible basal friction produces the best results. The tsunamigenic potential of the episodes is also briefly examined.

  9. Rheological characterization of a magnetorheological ferrofluid using iron nitride nanoparticles

    Science.gov (United States)

    Armijo, Leisha M.; Ahuré-Powell, Louise A.; Wereley, Norman M.

    2015-05-01

    Magnetorheology of a magnetorheological ferrofluid (MRFF) was investigated to study the role of a ferromagnetic nanoparticle (NP) additive in magnetorheological fluids (MRFs). Iron nitride (Fe16N2) NPs, nominally within the diameter range of ˜16-45 nm (spherical NPs) and ˜30-66 nm (cubic NPs), were coated with carboxy-polyethylene glycol (carboxy-PEG) and dispersed in silicone oil in order to produce a magnetic carrier fluid or ferrofluid for two solids loadings: 2 vol. % and 5 vol. %. Conventional spherical carbonyl iron (CI) particles, varying in diameter from 6 to 10 μm, were suspended in the ferrofluid at 25 vol. % solids loading. Rheological properties of the MRFF synthesized with the carboxy-PEG-based ferromagnetic carrier fluid were compared to the MRF synthesized with silicone oil to determine how ferrofluid can influence dynamic viscosity and yield stress. Rheological measurements of both MRF and MRFF samples were carried out using a Paar Physica 300 rheometer to estimate the field-off viscosity and to measure flow curves (i.e., shear stress vs. shear rate) as a function of magnetic field. A Bingham-plastic model was used to characterize the flow curves, and results show that there is an increase in the dynamic viscosity of the MRFF over the MRF. The ferromagnetic carrier fluid greatly increases yield stress as only 2 vol. % of added carboxy-PEG NPs improves the yield stress performance by almost 5%. A second MRFF sample synthesized with 5 vol. % of added carboxy-PEG NPs contained in the ferrofluid significantly enhanced the yield stress performance by 13% over the MRF at the same CI solids loading (25 vol. %).

  10. The effect of sweeteners and milk type on the rheological properties ...

    African Journals Online (AJOL)

    Administrator

    The aim of the study was, to determine effects of sweeteners and milk type on the rheological and sensorial properties of reduced ... Key words: Rheology, artifical sweeteners, low-calorie, power-law model, salep drink. INTRODUCTION ... to several adverse health effects including cardiovascular diseases, diabetes and ...

  11. Applications of Monte Carlo method to nonlinear regression of rheological data

    Science.gov (United States)

    Kim, Sangmo; Lee, Junghaeng; Kim, Sihyun; Cho, Kwang Soo

    2018-02-01

    In rheological study, it is often to determine the parameters of rheological models from experimental data. Since both rheological data and values of the parameters vary in logarithmic scale and the number of the parameters is quite large, conventional method of nonlinear regression such as Levenberg-Marquardt (LM) method is usually ineffective. The gradient-based method such as LM is apt to be caught in local minima which give unphysical values of the parameters whenever the initial guess of the parameters is far from the global optimum. Although this problem could be solved by simulated annealing (SA), the Monte Carlo (MC) method needs adjustable parameter which could be determined in ad hoc manner. We suggest a simplified version of SA, a kind of MC methods which results in effective values of the parameters of most complicated rheological models such as the Carreau-Yasuda model of steady shear viscosity, discrete relaxation spectrum and zero-shear viscosity as a function of concentration and molecular weight.

  12. Assessing the microstructural and rheological changes induced by food additives on potato puree.

    Science.gov (United States)

    Dankar, Iman; Haddarah, Amira; El Omar, Fawaz; Sepulcre, Francesc; Pujolà, Montserrat

    2018-02-01

    The effects of agar, alginate, lecithin and glycerol on the rheological properties of commercial potato puree were investigated and interpreted in terms of starch microstructural changes, and the applicability of the Cox-Merz rule was evaluated. Each additive was applied separately at two concentrations (0.5 and 1%). Microscopic observations revealed more swollen starch aggregations in lecithin and glycerol compared with those of potato puree and agar, consequently affecting the rheological properties of potato puree. All samples exhibited shear thinning non-Newtonian behaviour. Rheological measurements were strongly concentration dependent. At 0.5% concentration, additives exerted decreases in all the rheological properties of potato puree in the order of glycerol>alginate>lecithin>agar, while at 1% concentration, the order changed to glycerol>lecithin>alginate, whereas 1% agar behaved differently, increasing all rheological values. This study also showed that agar and alginate in addition to potato puree could be valuable and advantageous for further technological processes, such as 3D printing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Free Surface Flows and Extensional Rheology of Polymer Solutions

    Science.gov (United States)

    Dinic, Jelena; Jimenez, Leidy Nallely; Biagioli, Madeleine; Estrada, Alexandro; Sharma, Vivek

    Free-surface flows - jetting, spraying, atomization during fuel injection, roller-coating, gravure printing, several microfluidic drop/particle formation techniques, and screen-printing - all involve the formation of axisymmetric fluid elements that spontaneously break into droplets by a surface-tension-driven instability. The growth of the capillary-driven instability and pinch-off dynamics are dictated by a complex interplay of inertial, viscous and capillary stresses for simple fluids. Additional contributions by elasticity, extensibility and extensional viscosity play a role for complex fluids. We show that visualization and analysis of capillary-driven thinning and pinch-off dynamics of the columnar neck in an asymmetric liquid bridge created by dripping-onto-substrate (DoS) can be used for characterizing the extensional rheology of complex fluids. Using a wide variety of complex fluids, we show the measurement of the extensional relaxation time, extensional viscosity, power-law index and shear viscosity. Lastly, we elucidate how polymer composition, flexibility, and molecular weight determine the thinning and pinch-off dynamics of polymeric complex fluids.

  14. Rheological properties of a nematic cell oriented in a planar manner

    International Nuclear Information System (INIS)

    Barbero, G.; Meyer, C.; Lelidis, I.

    2010-01-01

    We propose a simple model to investigate the rheological properties of a nematic cell oriented in a planar manner. The storage and loss modulus are evaluated in the case of strong and weak anchoring conditions. The contribution of the surface viscosity to the rheological parameters is also considered.

  15. Flexibility of three differential constitutive models evaluated by large amplitude oscillatory shear and Fourier transform rheology

    Czech Academy of Sciences Publication Activity Database

    Pivokonský, Radek; Filip, Petr; Zelenková, Jana

    2016-01-01

    Roč. 104, č. 8 (2016), s. 171-178 ISSN 0032-3861 Institutional support: RVO:67985874 Keywords : LAOS * fourier transform rheology * Giesekus model * PTT model * modified XPP model * poly(ethylene oxide) Subject RIV: BK - Fluid Dynamics Impact factor: 3.684, year: 2016

  16. Shear and elongational rheology of photo-oxidative degraded HDPE and LLDPE

    Science.gov (United States)

    Wagner, Manfred Hermann; Zheng, Wang; Wang, Peng; Talamante, Sebastián Ramos; Narimissa, Esmaeil

    2017-05-01

    The effect of photo-oxidative degradation of high-density polyethylene (HDPE) and linear low-density polyethylene (LLDPE) was investigated by linear and non-linear rheological measurements. The linear-viscoelastic rheological measurements were performed at different temperatures, while the elongational viscosity was measured at 170°C and at different strain rates. The rheological data are indicative of structural changes caused by photo-oxidative degradation including formation of long-chain branches (LCB), cross-linking, and chain scission, and they revealed a cyclic and continuing competition between chain scission and LCB/gel formation. These findings are supported by additional FTIR measurements and direct measurements of the gel content of the degraded samples.

  17. Impact of lithospheric rheology on surface topography

    Science.gov (United States)

    Liao, K.; Becker, T. W.

    2017-12-01

    The expression of mantle flow such as due to a buoyant plume as surface topography is a classical problem, yet the role of rheological complexities could benefit from further exploration. Here, we investigate the topographic expressions of mantle flow by means of numerical and analytical approaches. In numerical modeling, both conventional, free-slip and more realistic, stress-free boundary conditions are applied. For purely viscous rheology, a high viscosity lithosphere will lead to slight overestimates of topography for certain settings, which can be understood by effectively modified boundary conditions. Under stress-free conditions, numerical and analytical results show that the magnitude of dynamic topography decreases with increasing lithosphere thickness (L) and viscosity (ηL), as L-1 and ηL-3. The wavelength of dynamic topography increases linearly with L and (ηL/ ηM) 1/3. We also explore the time-dependent interactions of a rising plume with the lithosphere. For a layered lithosphere with a decoupling weak lower crust embedded between stronger upper crust and lithospheric mantle, dynamic topography increases with a thinner and weaker lower crust. The dynamic topography saturates when the decoupling viscosity is 3-4 orders lower than the viscosity of upper crust and lithospheric mantle. We further explore the role of visco-elastic and visco-elasto-plastic rheologies.

  18. PHYSICOCHEMICAL AND RHEOLOGICAL CHARACTERIZATION OF AVOCADO OILS

    Directory of Open Access Journals (Sweden)

    Tamara de Souza Jorge

    2015-08-01

    Full Text Available Avocado oil is rich in bioactive compounds, which can improve human health by acting as an antioxidant. It may be extracted from different varieties of avocado, such as Margarida and Hass varieties, each of them with particular characteristics. Aiming to evaluate the differences between them, avocado fruits and pulps from these were analyzed according to their physicochemical characteristics. After extracted, the oils had their bioactive characteristics studied and rheological behavior determined through a rotational rheometer. They were then compared to commercial avocado oil. The fruits of Margarida variety had greater size, higher weight (664.51 g, and higher pulp yield (72.19% than Hass variety, which showed higher lipid content (65.29 g/100 g dry basis. The commercial oil showed less primary oxidative degradation, whereas Margarida variety had a lower level of secondary degradation products as well as a higher content of bioactive compounds, such as phytosterols (999.60 mg/kg and tocopherols (36.73 mg/kg. The rheological behaviors of both oils were appropriately described through Newton model, with R2 > 0.999 for all temperatures. By an Arrhenius type equation, it was verified that Hass's rheological parameters are more influenced by temperature than Margarida and commercial oil, presenting activation energy of 33.6 kJ/mol.

  19. Introducing Students to Rheological Classification of Foods, Cosmetics, and Pharmaceutical Excipients Using Common Viscous Materials

    Science.gov (United States)

    Faustino, Ce´lia; Bettencourt, Ana F.; Alfaia, Anto´nio; Pinheiro, Lídia

    2015-01-01

    Rheological measurements are very important tools for the characterization of the flow and deformation of a material, as well as for optimization of the rheological parameters. The application and acceptance of pharmaceutical formulations, cosmetics, and foodstuffs depends upon their rheological characteristics, such as texture, consistency, or…

  20. Physical therapy applications of MR fluids and intelligent control

    Science.gov (United States)

    Dong, Shufang; Lu, Ke-Qian; Sun, J. Q.; Rudolph, Katherine

    2005-05-01

    Resistance exercise has been widely reported to have positive rehabilitation effects for patients with neuromuscular and orthopaedic conditions. This paper presents an optimal design of magneto-rheological fluid dampers for variable resistance exercise devices. Adaptive controls for regulating the resistive force or torque of the device as well as the joint motion are presented. The device provides both isometric and isokinetic strength training for various human joints.

  1. Nonlinear oscillatory rheology and structure of wormlike micellar solutions and colloidal suspensions

    Science.gov (United States)

    Gurnon, Amanda Kate

    The complex, nonlinear flow behavior of soft materials transcends industrial applications, smart material design and non-equilibrium thermodynamics. A long-standing, fundamental challenge in soft-matter science is establishing a quantitative connection between the deformation field, local microstructure and macroscopic dynamic flow properties i.e., the rheology. Soft materials are widely used in consumer products and industrial processes including energy recovery, surfactants for personal healthcare (e.g. soap and shampoo), coatings, plastics, drug delivery, medical devices and therapeutics. Oftentimes, these materials are processed by, used during, or exposed to non-equilibrium conditions for which the transient response of the complex fluid is critical. As such, designing new dynamic experiments is imperative to testing these materials and further developing micromechanical models to predict their transient response. Two of the most common classes of these soft materials stand as the focus of the present research; they are: solutions of polymer-like micelles (PLM or also known as wormlike micelles, WLM) and concentrated colloidal suspensions. In addition to their varied applications these two different classes of soft materials are also governed by different physics. In contrast, to the shear thinning behavior of the WLMs at high shear rates, the near hard-sphere colloidal suspensions are known to display increases, sometimes quite substantial, in viscosity (known as shear thickening). The stress response of these complex fluids derive from the shear-induced microstructure, thus measurements of the microstructure under flow are critical for understanding the mechanisms underlying the complex, nonlinear rheology of these complex fluids. A popular micromechanical model is reframed from its original derivation for predicting steady shear rheology of polymers and WLMs to be applicable to weakly nonlinear oscillatory shear flow. The validity, utility and limits of

  2. FlowCyl: one-parameter characterisation of matrix rheology

    DEFF Research Database (Denmark)

    Cepuritis, Rolands; Ramenskiy, Evgeny; Mørtsell, Ernst

    The FlowCyl is a simple flow viscometer – a modification of the Marsh Cone test apparatus developed to characterize cement pastes and grouts. The FlowCyl gives a one parameter characterisation of rheology called the flow resistance ratio or λQ for use in the Particle-Matrix concrete proportioning...... Model (PMM) as a description of the viscous phase of the concrete, while another parameter related to packing density is used to describe the particle phase. There have been numerous studies which have shown how the matrix λ Qvalues affect the rheological parameters of concretes with a given particle...

  3. Multi-functional hinge equipped with a magneto-rheological rotary damper for solar array deployment system

    Science.gov (United States)

    Wen, Mingfu; Yu, Miao; Fu, Jie; Wu, Zhengzhong

    2015-02-01

    This article describes the design and simulation of a novel multi-functional hinge equipped with a rotary magnetorheological damper for solar array deployment system, which is comprised of a hinge, an angular sensor, a positioning and locking mechanism and a rotary damper. In order to achieve the compact design in structure, some components were reused in different function modules. It's the first to use magnet-rheological fluid (MRF) to dissipate the energy in solar array deployment system. The main advantage in using MR rotary damper instead of a viscous fluid rotary damper is that the damping force of MR damper can be adjusted according to the external magnetic field environment excited. A mechanic model was built and the structure design was focused on the MR rotary damper, a damping force model of this damper is deduced based on hydromechanics with Bingham plastic constitutive model. A simulation of deployment motion was taken to validate the motion sequence of various components during the unfolding and locking process. It can be obtained that a constant damping coefficient can hardly balance the different performance of solar deployment system, then a simulation of the proposed deployment system equipped with rotary MR damper was carried out. According to the simulation, it can be obtained that the terminal velocity decreased by 75.81% and the deployment time decreased by 72.37% compared with a given constant damping coefficients. Therefore, the proposed new type of rotary damper can reach a compromise with different performance utilizing an on-off control strategy.

  4. Bronchial Mucus as a Complex Fluid: Molecular Interactions and Influence of Nanostructured Particles on Rheological and Transport Properties

    Directory of Open Access Journals (Sweden)

    Odziomek Marcin

    2017-06-01

    Full Text Available Transport properties of bronchial mucus are investigated by two-stage experimental approach focused on: (a rheological properties and (b mass transfer rate through the stagnant layer of solutions of mucus components (mucine, DNA, proteins and simulated multi-component mucus. Studies were done using thermostated horizontal diffusion cells with sodium cromoglycate and carminic acid as transferred solutes. Rheological properties of tested liquids was studied by a rotational viscometer and a cone-plate rheometer (dynamic method. First part of the studies demonstrated that inter-molecular interactions in these complex liquids influence both rheological and permeability characteristics. Transfer rate is governed not only by mucus composition and concentration but also by hydrophobic/hydrophilic properties of transported molecules. Second part was focused on the properties of such a layer in presence of selected nanostructured particles (different nanoclays and graphene oxide which may be present in lungs after inhalation. It was shown that most of such particles increase visco-elasticity of the mucus and reduce the rate of mass transfer of model drugs. Measured effects may have adverse impact on health, since they will reduce mucociliary clearance in vivo and slow down drug penetration to the bronchial epithelium during inhalation therapy.

  5. Postgraduate education on electro-active polymers at Southern Denmark University

    Science.gov (United States)

    Jones, Richard W.

    2009-03-01

    A recently introduced elective to the Master's of Science in Mechatronics program at Southern Denmark University, entitled 'Mechatronics: Design and Build' concentrates on some of the interdisciplinary aspects of Mechatronics Engineering. The 'Motion Control of Mechatronic Devices' is the main theme of this elective. Within this 'theme' the modelling, identification and compensation of nonlinear effects such as friction, stiction and hysteresis are considered. One of the most important components of the elective considers 'Smart Materials' and their use for actuation purposes. The theory, modelling and properties of piezoceramics. magneto- and electro- rheological fluids and dielectric electro active polymers (DEAP) are introduced in the 'Smart Materials' component. This paper initially reviews the laboratory experiments that have been developed for the dielectric electro active polymer section of the 'Mechatronics: Design and Build' elective. In lectures the students are introduced to the basic theory and fabrication of tubular actuators, that use DEAP material based on smart compliant electrode technology. In the laboratory the students to (a) carry out a series of experiments to characterise the tubular actuators, and (b) design a closed-loop position controller and test the performance of the controlled actuator for both step changes in desired position and periodic input reference signals. The last part of this contribution reviews some of the DEAP-based demonstration devices that been developed by Danfoss PolyPower A/S using their PolyPowerTM material which utilizes smart compliant electrode technology.

  6. Effect of carboxymethylcellulose on the rheological and filtration properties of bentonite clay samples determined by experimental planning and statistical analysis

    Directory of Open Access Journals (Sweden)

    B. M. A. Brito

    Full Text Available Abstract Over the past few years, considerable research has been conducted using the techniques of mixture delineation and statistical modeling. Through this methodology, applications in various technological fields have been found/optimized, especially in clay technology, leading to greater efficiency and reliability. This work studied the influence of carboxymethylcellulose on the rheological and filtration properties of bentonite dispersions to be applied in water-based drilling fluids using experimental planning and statistical analysis for clay mixtures. The dispersions were prepared according to Petrobras standard EP-1EP-00011-A, which deals with the testing of water-based drilling fluid viscosifiers for oil prospecting. The clay mixtures were transformed into sodic compounds, and carboxymethylcellulose additives of high and low molar mass were added, in order to improve their rheology and filtrate volume. Experimental planning and statistical analysis were used to verify the effect. The regression models were calculated for the relation between the compositions and the following rheological properties: apparent viscosity, plastic viscosity, and filtrate volume. The significance and validity of the models were confirmed. The results showed that the 3D response surfaces of the compositions with high molecular weight carboxymethylcellulose added were the ones that most contributed to the rise in apparent viscosity and plastic viscosity, and that those with low molecular weight were the ones that most helped in the reduction of the filtrate volume. Another important observation is that the experimental planning and statistical analysis can be used as an important auxiliary tool to optimize the rheological properties and filtrate volume of bentonite clay dispersions for use in drilling fluids when carboxymethylcellulose is added.

  7. Rheological Properties of Aqueous Nanometric Alumina Suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chuanping [Iowa State Univ., Ames, IA (United States)

    2004-01-01

    Colloidal processing is an effective and reliable approach in the fabrication of the advanced ceramic products. Successful colloidal processing of fine ceramic powders requires accurate control of the rheological properties. The accurate control relies on the understanding the influences of various colloidal parameters on the rheological properties. Almost all research done on the rheology paid less attention to the interactions of particle and solvent. However, the interactions of the particles are usually built up through the media in which the particles are suspended. Therefore, interactions of the particle with the media, the adsorbed layers on the particle surface, and chemical and physical properties of media themselves must influence the rheology of the suspension, especially for the dense suspensions containing nanosized particles. Relatively little research work has been reported in this area. This thesis addresses the rheological properties of nanometric alumina aqueous suspensions, and paying more attention to the interactions between particle and solvent, which in turn influence the particle-particle interactions. Dense nanometric alumina aqueous suspensions with low viscosity were achieved by environmentally-benign fructose additives. The rheology of nanometric alumina aqueous suspensions and its variation with the particle volume fraction and concentration of fructose were explored by rheometry. The adsorptions of solute (fructose) and solvent (water) on the nanometric alumina particle surfaces were measured and analyzed by TG/DSC, TOC, and NMR techniques. The mobility of water molecules in the suspensions and its variation with particle volume fractions and fructose additive were determined by the 17O NMR relaxation method. The interactions between the nanometric alumina particles in water and fructose solutions were investigated by AFM. The results indicated that a large number of water layers were physically bound on the particles

  8. Effects of Temperature on Time Dependent Rheological Characteristics of Koumiss

    Directory of Open Access Journals (Sweden)

    Serdal Sabancı

    2016-04-01

    Full Text Available The rheological properties of koumiss were investigated at different temperatures (4, 10, and 20°C. Experimental shear stress–shear rate data were fitted to different rheological models. The consistency of koumiss was predicted by using the power-law model since it described the consistency of koumiss best with highest regression coefficient and lowest errors (root mean square error and chi-square. Koumiss exhibited shear thinning behavior (n

  9. Using natural laboratories and modeling to decipher lithospheric rheology

    Science.gov (United States)

    Sobolev, Stephan

    2013-04-01

    Rheology is obviously important for geodynamic modeling but at the same time rheological parameters appear to be least constrained. Laboratory experiments give rather large ranges of rheological parameters and their scaling to nature is not entirely clear. Therefore finding rheological proxies in nature is very important. One way to do that is finding appropriate values of rheological parameter by fitting models to the lithospheric structure in the highly deformed regions where lithospheric structure and geologic evolution is well constrained. Here I will present two examples of such studies at plate boundaries. One case is the Dead Sea Transform (DST) that comprises a boundary between African and Arabian plates. During the last 15- 20 Myr more than 100 km of left lateral transform displacement has been accumulated on the DST and about 10 km thick Dead Sea Basin (DSB) was formed in the central part of the DST. Lithospheric structure and geological evolution of DST and DSB is rather well constrained by a number of interdisciplinary projects including DESERT and DESIRE projects leaded by the GFZ Potsdam. Detailed observations reveal apparently contradictory picture. From one hand widespread igneous activity, especially in the last 5 Myr, thin (60-80 km) lithosphere constrained from seismic data and absence of seismicity below the Moho, seem to be quite natural for this tectonically active plate boundary. However, surface heat flow of less than 50-60mW/m2 and deep seismicity in the lower crust ( deeper than 20 km) reported for this region are apparently inconsistent with the tectonic settings specific for an active continental plate boundary and with the crustal structure of the DSB. To address these inconsistencies which comprise what I call the "DST heat-flow paradox", a 3D numerical thermo-mechanical model was developed operating with non-linear elasto-visco-plastic rheology of the lithosphere. Results of the numerical experiments show that the entire set of

  10. Rheological behaviour of fibre-rich plant materials in fat-based food systems

    NARCIS (Netherlands)

    Bonarius, G.A.; Vieira, J.B.; Goot, van der A.J.; Bodnar, I.

    2014-01-01

    The potential use of fibre-rich materials as bulking agents to replace sucrose in chocolate confectionary products is investigated. Since the rheological behaviour of the molten chocolate mass is key in chocolate production, the rheology of fibre-rich materials in medium chain triglycerides (MCT) is

  11. Preliminary data on rheological limits for grouts in the Transportable Grout Facility

    International Nuclear Information System (INIS)

    Gilliam, T.M.; McDaniel, E.W.; Dole, L.R.; West, G.A.

    1987-04-01

    This report describes a method for establishing rheological limits for grouts that can be pumped in the Hanford Transportable Grout Facility (TGF). This method is based on two models that require determining two key parameters - gel strength and density. This work also presents rheological data on grouts prepared with simulated customer phosphate wastes (CPW) and double shell slurry (DSS) from the Hanford complex. These data can be used to make preliminary estimates of operating rheological limits of the TFG grouts. The suggested design limits will include safety factors that will increase these limits significantly. 4 refs

  12. Combined effects of magnetic field and partial slip on obliquely striking rheological fluid over a stretching surface

    International Nuclear Information System (INIS)

    Nadeem, S.; Mehmood, Rashid; Akbar, Noreen Sher

    2015-01-01

    This study explores the collective effects of partial slip and transverse magnetic field on an oblique stagnation point flow of a rheological fluid. The prevailing momentum equations are designed by manipulating Casson fluid model. By applying the suitable similarity transformations, the governing system of equations is being transformed into coupled nonlinear ordinary differential equations. The resulting system is handled numerically through midpoint integration scheme together with Richardson's extrapolation. It is found that both normal and tangential velocity profiles decreases with an increase in magnetic field as well as slip parameter. Streamlines pattern are presented to study the actual impact of slip mechanism and magnetic field on the oblique flow. A suitable comparison with the previous literature is also provided to confirm the accuracy of present results for the limiting case. - Highlights: • The MHD 2-Dimensional flow of Casson fluid is present. • Streamlines pattern are presented to study the actual impact of slip mechanism and magnetic field on the oblique flow. • The prevailing momentum equations are designed by manipulating Casson fluid model. • Obtained coupled ordinary differential equations are investigated numerically. • Graphical results are obtained for each physical parameter

  13. Tamper indicating and sensing optical-based smart structures

    International Nuclear Information System (INIS)

    Sliva, P.; Anheier, N.C.; Gordon, N.R.; Simmons, K.L.; Stahl, K.A.; Undem, H.A.

    1995-05-01

    This paper has presented an overview of the type of optical-based structures that can be designed and constructed. These smart structures are capable of responding to their environment. The examples given represent a modest sampling of the complexity that can be achieved in both design and practice. Tamper-indicating containers and smart, sensing windows demonstrate just a few of the applications. We have shown that optical-based smart structures can be made multifunctional with the sensing built in. The next generation smart structure will combine the sensing functionality of these optical-based smart structures with other sensors such as piezoelectrics and electro-rheological fluids to not only be able to respond to the environment, but to adapt to it as well. An example of functionality in this regime would be a piezosensor that senses pressure changes (e.g., shock waves), which then causes an electro-rheological fluid to change viscosity. A fiber sensor located in or near the electro-rheological fluid senses the stiffness change and sends a signal through a feedback loop back to the piezosensor for additional adjustments to the electro-rheological fluid

  14. Synthesis of novel high-voltage cathode material LiCoPO4 via rheological phase method

    International Nuclear Information System (INIS)

    Tan, Long; Luo, Zhimei; Liu, Haowen; Yu, Ying

    2010-01-01

    For the first time, rheological phase method, a simple and effective route, is applied to synthesize novel cathode material LiCoPO 4 . X-ray diffraction spectrometer (XRD), X-ray photoelectron spectrometer (XPS), transmission electron microscope (TEM) and electrochemical impedance spectroscopy (EIS) are taken to investigate this material, respectively. XRD figure shows that the rheological sample is better crystallized than the solid-state one. XPS result of the rheological sample exhibits that the valence of Co is 2+. TEM images show that better dispersed particles with smaller size can be formed by rheological method comparing to the solid-state route. Charge-discharge test is carried out in the range of 3.0-5.0 V at 0.2 mA cm -2 . The initial discharge capacity for rheological phase and solid-state powder is 71.5 and 30.9 mAh g -1 , respectively. The better electrochemical property should be ascribed to the better crystallized rheological phase production with better dispersed and smaller particles, which can greatly facilitate the diffusion of Li + .

  15. Aging and nonlinear rheology of thermoreversible colloidal gels

    Science.gov (United States)

    Wagner, Norman; Gordon, Melissa; Kloxin, Christopher

    Colloidal dispersions are found in a wide variety of consumer products such as paint, food and pharmaceuticals. We investigate gel formation and aging in a thermoreverible gel consisting of octadecyl-coated silica nanoparticles suspended in n-tetradecane. In this system, the octadecyl brush can undergo a phase change allowing the attractions between particles to be tuned by temperature (1,2). By probing the system with steady shear and large amplitude oscillatory shear, we have studied the effect of thermal history and shear history on gel formation and gel mechanical properties during aging. Gels were formed by approaching a common temperature from above and below to determine a reference state from which creep tests were conducted. Creep ringing was observed as expected for the viscoelastic gel. The rheological aging is interpreted in terms of the gel microstructure formed with differing thermal and shear histories to determine how processing affects structure. Recently proposed scaling laws for the rheology and structure under flow are explored within the context of gel aging (3). Through rheological and microstructural measurements, we will further the understanding of gel formation and aging in this model system which may be applied to processing conditions in an industrial setting.

  16. Magneto-electro-elastic buckling analysis of nonlocal curved nanobeams

    Science.gov (United States)

    Ebrahimi, Farzad; Reza Barati, Mohammad

    2016-09-01

    In this work, a size-dependent curved beam model is developed to take into account the effects of nonlocal stresses on the buckling behavior of curved magneto-electro-elastic FG nanobeams for the first time. The governing differential equations are derived based on the principle of virtual work and Euler-Bernoulli beam theory. The power-law function is employed to describe the spatially graded magneto-electro-elastic properties. By extending the radius of the curved nanobeam to infinity, the results of straight nonlocal FG beams can be rendered. The effects of magnetic potential, electric voltage, opening angle, nonlocal parameter, power-law index and slenderness ratio on buckling loads of curved MEE-FG nanobeams are studied.

  17. Effect of ?-cyclodextrin on Rheological Properties of some Viscosity Modifiers

    OpenAIRE

    Rao, G. Chandra Sekhara; Ramadevi, K.; Sirisha, K.

    2014-01-01

    Cyclodextrins are a group of novel excipients, extensively used in the present pharmaceutical industry. Sometimes they show significant interactions with other conventional additives used in the formulation of dosage forms. The effect of β-cyclodextrin on the rheological properties of aqueous solutions of some selected viscosity modifiers was studied in the present work. β-cyclodextrin showed two different types of effects on the rheology of the selected polymers. In case of natural polymers ...

  18. Preparation and rheological studies of uncoated and PVA-coated magnetite nanofluid

    International Nuclear Information System (INIS)

    Khosroshahi, M.E.; Ghazanfari, L.

    2012-01-01

    Experimental studies of rheological behavior of uncoated magnetite nanoparticles (MNPs)U and polyvinyl alcohol (PVA) coated magnetite nanoparticles (MNPs)C were performed. A Co-precipitation technique under N 2 gas was used to prevent undesirable critical oxidation of Fe 2+ . The results showed that smaller particles can be synthesized in both cases by decreasing the NaOH concentration which in our case this corresponded to 35 nm and 7 nm using 0.9 M NaOH at 750 rpm for (MNPs)U and (MNPs)C. The stable magnetic fluid contained well-dispersed Fe 3 O 4 /PVA nanocomposites which indicated fast magnetic response. The rheological measurement of magnetic fluid indicated an apparent viscosity range (0.1–1.2) pa s at constant shear rate of 20 s −1 with a minimum value in the case of (MNPs)U at 0 T and a maximum value for (MNPs)C at 0.5 T. Also, as the shear rate increased from 20 s −1 to 150 s −1 at constant magnetic field, the apparent viscosity also decreased correspondingly. The water-based ferrofluid exhibited the non-Newtonian behavior of shear thinning under magnetic field. - Highlights: ► The stable water-based magnetic fluid with fast magnetic response was synthesized. ► The shear rate was increased from 20 S −1 to 150 S −1 at constant magnetic field. ► The viscosity of magnetic fluid decreased with increasing of shear rate. ► Viscosity range (0.1–1.2) pa s was measured for (MNPs)U and (MNPs)C. ► The ferrofluid was non-Newtonian (shear thinning) under magnetic field.

  19. An analytical solution for the magneto-electro-elastic bimorph beam forced vibrations problem

    International Nuclear Information System (INIS)

    Milazzo, A; Orlando, C; Alaimo, A

    2009-01-01

    Based on the Timoshenko beam theory and on the assumption that the electric and magnetic fields can be treated as steady, since elastic waves propagate very slowly with respect to electromagnetic ones, a general analytical solution for the transient analysis of a magneto-electro-elastic bimorph beam is obtained. General magneto-electric boundary conditions can be applied on the top and bottom surfaces of the beam, allowing us to study the response of the bilayer structure to electromagnetic stimuli. The model reveals that the magneto-electric loads enter the solution as an equivalent external bending moment per unit length and as time-dependent mechanical boundary conditions through the definition of the bending moment. Moreover, the influences of the electro-mechanic, magneto-mechanic and electromagnetic coupling on the stiffness of the bimorph stem from the computation of the beam equivalent stiffness constants. Free and forced vibration analyses of both multiphase and laminated magneto-electro-elastic composite beams are carried out to check the effectiveness and reliability of the proposed analytic solution

  20. Rheological analysis of fine-grained natural debris-flow material

    Science.gov (United States)

    Major, Jon J.; Pierson, Thomas C.; ,

    1990-01-01

    Experiments were conducted on large samples of fine-grained material (???2mm) from a natural debris flow using a wide-gap concentric-cylinder viscometer. The rheological behavior of this material is compatible with a Bingham model at shear rates in excess of 5 sec. At lesser shear rates, rheological behavior of the material deviates from the Bingham model, and when sand concentration of the slurry exceeds 20 percent by volume, particle interaction between sand grains dominates the mechanical behavior. Yield strength and plastic viscosity are extremely sensitive to sediment concentration.

  1. Categorization of rheological scaling models for particle gels applied to casein gels

    NARCIS (Netherlands)

    Mellema, M.; Opheusden, van J.H.J.; Vliet, van T.

    2002-01-01

    Rennet-induced casein gels made from skim milk were studied rheologically. A scaling model or framework for describing the rheological behavior of gels is discussed and used for classification of the structure of casein gels. There are two main parameters in the model that describe the number of

  2. Rheological behaviour of the commercial fluid mass modified by starch to be used in pressure casting

    International Nuclear Information System (INIS)

    Weng, L.Y.; Araujo, M.S. de; Cerri, J.A.

    2011-01-01

    In this paper was studied the adjust of two commercial ceramic masses (A and B) with silicate of sodium, starch and NaOH for pressure casting. The distribution and size of particles and the chemical composition of the masses had been characterized. In a first stage, the silicate of sodium concentrations in A (1%) and B (0.6%) had been determined by deflocculating curves of suspensions with 65% of solids. In one second stage was analyzed the rheological behavior after remaining in rest for 10 and 120 minutes. The starch as the sodium hydroxy can serve as reducing of viscosity, however above of a relation starch/sodium hydroxy is possible to observe the gelling effect. The maximum value of starch / NaOH, in order not to modify in significant way the rheological behavior for the Mass A and the B were 0.75% / 0.75% and 0.50% / 0.50%. (author)

  3. Structure and rheology of nanoparticle–polymer suspensions

    KAUST Repository

    Srivastava, Samanvaya; Shin, Jung Hwan; Archer, Lynden A.

    2012-01-01

    separation and aggregation than expected from theory for interacting brushes. SAXS and rheology measurements also reveal that at high particle loadings, the stabilizing oligomer brush is significantly compressed and produces jamming in the suspensions

  4. Rheological effects of micropolar slime on the gliding motility of bacteria with slip boundary condition

    Science.gov (United States)

    Asghar, Z.; Ali, N.; Anwar Bég, O.; Javed, T.

    2018-06-01

    Gliding bacteria are virtually everywhere. These organisms are phylogenetically diverse with their hundreds of types, different shapes and several modes of motility. One possible mode of gliding motility in the rod shaped bacteria is that they propel themselves by producing undulating waves in their body. Few bacteria glides near the solid surface over the slime without any aid of flagella so the classical Navier-Stokes equations are incapable of explaining the slime rheology at the microscopic level. Micropolar fluid dynamics however provides a solid framework for mimicking bacterial physical phenomena at both micro and nano-scales, and therefore we use the micropolar fluid to characterize the rheology of a thin layer of slime and its dominant microrotation effects. It is also assumed that there is a certain degree of slip between slime and bacterial undulating surface and also between slime and solid substrate. The flow equations are formulated under long wavelength and low Reynolds number assumptions. Exact expressions for stream function and pressure gradient are obtained. The speed of the gliding bacteria is numerically calculated by using a modified Newton-Raphson method. Slip effects and effects of non-Newtonian slime parameters on bacterial speed and power are also quantified. In addition, when the glider is fixed, the effects of slip and rheological properties of micropolar slime parameters on the velocity, micro-rotation (angular velocity) of spherical slime particles, pressure rise per wavelength, pumping and trapping phenomena are also shown graphically and discussed in detail. The study is relevant to emerging biofuel cell technologies and also bacterial biophysics.

  5. The boundary element method applied to 3D magneto-electro-elastic dynamic problems

    Science.gov (United States)

    Igumnov, L. A.; Markov, I. P.; Kuznetsov, Iu A.

    2017-11-01

    Due to the coupling properties, the magneto-electro-elastic materials possess a wide number of applications. They exhibit general anisotropic behaviour. Three-dimensional transient analyses of magneto-electro-elastic solids can hardly be found in the literature. 3D direct boundary element formulation based on the weakly-singular boundary integral equations in Laplace domain is presented in this work for solving dynamic linear magneto-electro-elastic problems. Integral expressions of the three-dimensional fundamental solutions are employed. Spatial discretization is based on a collocation method with mixed boundary elements. Convolution quadrature method is used as a numerical inverse Laplace transform scheme to obtain time domain solutions. Numerical examples are provided to illustrate the capability of the proposed approach to treat highly dynamic problems.

  6. The rheology and processing of “edge sheared” colloidal polymer opals

    International Nuclear Information System (INIS)

    Wong, Hon Sum; Mackley, Malcolm; Butler, Simon; Baumberg, Jeremy; Snoswell, David; Finlayson, Chris; Zhao, Qibin

    2014-01-01

    This paper is concerned with the rheology and processing of solvent-free core shell “polymer opals” that consist of a soft outer shell grafted to hard colloidal polymer core particles. Strong iridescent colors can be produced by shearing the material in a certain way that causes the initially disordered spheres to rearrange into ordered crystalline structures and produce colors by diffraction and interference of multiple light scattering, similar to gemstone opals. The basic linear viscoelastic rheology of a polymer opal sample was determined as a function of temperature, and the material was found to be highly viscoelastic at all tested temperatures. A Cambridge multipass rheometer was specifically modified in order to make controlled mechanical measurements of initially disordered polymer opal tapes that were sandwiched between protective polyethylene terephthalate sheets. Axial extension, simple shear, and a novel “edge shearing” geometry were all evaluated, and multiple successive experiments of the edge shearing test were carried out at different temperatures. The optical development of colloidal ordering, measured as optical opalescence, was quantified by spectroscopy using visible backscattered light. The development of opalescence was found to be sensitive to the geometry of deformation and a number of process variables suggesting a complex interaction of parameters that caused the opalescence. In order to identify aspects of the deformation mechanism of the edge shearing experiment, a separate series of in situ optical experiments were carried out and this helped indicate the extent of simple shear generated with each edge shear deformation. The results show that strong ordering can be induced by successive edge shearing deformation. The results are relevant to polymer opal rheology, processing, and mechanisms relating to ordering within complex viscoelastic fluids

  7. The rheology and processing of “edge sheared” colloidal polymer opals

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Hon Sum; Mackley, Malcolm, E-mail: mrm5@cam.ac.uk; Butler, Simon [Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB2 3RA (United Kingdom); Baumberg, Jeremy; Snoswell, David; Finlayson, Chris; Zhao, Qibin [Cavendish Laboratory, NanoPhotonics Centre, University of Cambridge, Cambridge CB3 OHE (United Kingdom)

    2014-03-15

    This paper is concerned with the rheology and processing of solvent-free core shell “polymer opals” that consist of a soft outer shell grafted to hard colloidal polymer core particles. Strong iridescent colors can be produced by shearing the material in a certain way that causes the initially disordered spheres to rearrange into ordered crystalline structures and produce colors by diffraction and interference of multiple light scattering, similar to gemstone opals. The basic linear viscoelastic rheology of a polymer opal sample was determined as a function of temperature, and the material was found to be highly viscoelastic at all tested temperatures. A Cambridge multipass rheometer was specifically modified in order to make controlled mechanical measurements of initially disordered polymer opal tapes that were sandwiched between protective polyethylene terephthalate sheets. Axial extension, simple shear, and a novel “edge shearing” geometry were all evaluated, and multiple successive experiments of the edge shearing test were carried out at different temperatures. The optical development of colloidal ordering, measured as optical opalescence, was quantified by spectroscopy using visible backscattered light. The development of opalescence was found to be sensitive to the geometry of deformation and a number of process variables suggesting a complex interaction of parameters that caused the opalescence. In order to identify aspects of the deformation mechanism of the edge shearing experiment, a separate series of in situ optical experiments were carried out and this helped indicate the extent of simple shear generated with each edge shear deformation. The results show that strong ordering can be induced by successive edge shearing deformation. The results are relevant to polymer opal rheology, processing, and mechanisms relating to ordering within complex viscoelastic fluids.

  8. Rheology of attractive emulsions.

    Science.gov (United States)

    Datta, Sujit S; Gerrard, Dustin D; Rhodes, Travers S; Mason, Thomas G; Weitz, David A

    2011-10-01

    We show how attractive interactions dramatically influence emulsion rheology. Unlike the repulsive case, attractive emulsions below random close packing, φ(RCP), can form soft gel-like elastic solids. However, above φ(RCP), attractive and repulsive emulsions have similar elasticities. Such compressed attractive emulsions undergo an additional shear-driven relaxation process during yielding. Our results suggest that attractive emulsions begin to yield at weak points through the breakage of bonds, and, above φ(RCP), also undergo droplet configurational rearrangements.

  9. Incorporation mode effect of Nano-silica on the rheological and mechanical properties of cementitious pastes and cement mortars

    Science.gov (United States)

    Safi, B.; Aknouche, H.; Mechakra, H.; Aboutaleb, D.; Bouali, K.

    2018-04-01

    Previous research indicates that the inclusion of nanosilica (NS) modifies the properties of the fresh and hardened state, compared to the traditional mineral additions. NS decreases the setting times of the cement mortar compared to silica fume (SF) and reduce of required water while improving the cohesion of the mixtures in the fresh state. Some authors estimate that the appropriate percentage of Nano-silica should be small (1 to 5% by weight) because of difficulties caused by agglomeration to particles during mixing, while others indicate that 10% by weight, if adjustments are made to the formulation to avoid an excess of self-drying and micro cracks that could impede strength. For this purpose, the present work aim to see the effect of the introduction mode of the nanosilica on the rheological and physic mechanical properties of cement mortars. In this study, NS was used either powdered with cement or in solution with the superplasticizer (Superplasticizer doped in nanosilica). Results show that the use of nanosilica powder (replacing cement on the one hand) has a negative influence on the rheological parameters and the rheological behavior of cementitious pastes. However, the introduction of nanosilica in solution in the superplasticizer (SP) was significantly improved the rheological parameters and the rheological behavior of cementitious pastes. Indeed, more the dosage of NS-doped SP increases more the shear stress and viscosities of the cementitious pastes become more fluid and manageable. A significant reduction of shear stress and plastic viscosity were observed that due to the increase in superplasticizer. A dosage of 1.5% NS-doped SP gave adequate fluidity and the shear rate was lower.

  10. 2nd International Conference on Rheology and Modeling of Materials (IC-RMM2)

    International Nuclear Information System (INIS)

    2017-01-01

    Understanding the rheological properties of materials and their rheological behaviors during their manufacturing processes and in their applications in many cases can help to increase the efficiency and competitiveness not only of the finished goods and products but the organizations and societies also. The more scientific supported and prepared organizations develop more competitive products with better thermal, mechanical, physical, chemical and biological properties and the leading companies apply more competitive equipment and technology processes. The aims of the 2 nd International Conference on Rheology and Modeling of Materials (ic-rmm2) and the parallel organized symposiums of the 1 st International Symposium on Powder Injection Molding (is-pim1) and the 1 st International Symposium on Rheology and Fracture of Solids (is-rfs1) are the followings: Promote new methods and results of scientific research in the fields of modeling and measurements of rheological properties and behavior of materials under processing and applications; Change information between the theoretical and applied sciences as well as technical and technological implantations. Promote the communication and collaboration between the scientists, researchers and engineers of different disciplines, different nations, countries and continents. The international conference ic-rmm2 and symposiums of is-pim1 and is-rfs1 provide a platform among the leading international scientists, researchers, PhD students and engineers for discussing recent achievements in measurement, modeling and application of rheology in materials technology and materials science of liquids, melts, solids, crystals and amorphous structures. Among thr major fields of interest are the influence of materials structures, mechanical stresses, temperatures, deformation speeds and shear rates on rheological and physical properties, phase transformation of foams, foods, polymers, plastics and other competitive materials like ceramics

  11. 2nd International Conference on Rheology and Modeling of Materials (IC-RMM2)

    Science.gov (United States)

    2017-01-01

    Understanding the rheological properties of materials and their rheological behaviors during their manufacturing processes and in their applications in many cases can help to increase the efficiency and competitiveness not only of the finished goods and products but the organizations and societies also. The more scientific supported and prepared organizations develop more competitive products with better thermal, mechanical, physical, chemical and biological properties and the leading companies apply more competitive equipment and technology processes. The aims of the 2nd International Conference on Rheology and Modeling of Materials (ic-rmm2) and the parallel organized symposiums of the 1st International Symposium on Powder Injection Molding (is-pim1) and the 1st International Symposium on Rheology and Fracture of Solids (is-rfs1) are the followings: Promote new methods and results of scientific research in the fields of modeling and measurements of rheological properties and behavior of materials under processing and applications; Change information between the theoretical and applied sciences as well as technical and technological implantations. Promote the communication and collaboration between the scientists, researchers and engineers of different disciplines, different nations, countries and continents. The international conference ic-rmm2 and symposiums of is-pim1 and is-rfs1 provide a platform among the leading international scientists, researchers, PhD students and engineers for discussing recent achievements in measurement, modeling and application of rheology in materials technology and materials science of liquids, melts, solids, crystals and amorphous structures. Among thr major fields of interest are the influence of materials structures, mechanical stresses, temperatures, deformation speeds and shear rates on rheological and physical properties, phase transformation of foams, foods, polymers, plastics and other competitive materials like ceramics

  12. A study of influence of material properties on magnetic flux density induced in magneto rheological damper through finite element analysis

    Directory of Open Access Journals (Sweden)

    Gurubasavaraju T. M.

    2018-01-01

    Full Text Available Magnetorheological fluids are smart materials, which are responsive to the external stimulus and changes their rheological properties. The damper performance (damping force is dependent on the magnetic flux density induced at the annular gap. Magnetic flux density developed at fluid flow gap of MR damper due to external applied current is also dependent on materials properties of components of MR damper (such as piston head, outer cylinder and piston rod. The present paper discus about the influence of different materials selected for components of the MR damper on magnetic effect using magnetostatic analysis. Different materials such as magnetic and low carbon steels are considered for piston head of the MR damper and magnetic flux density induced at fluid flow gap (filled with MR fluid is computed for different DC current applied to the electromagnetic coil. Developed magnetic flux is used for calculating the damper force using analytical method for each case. The low carbon steel has higher magnetic permeability hence maximum magnetic flux could pass through the piston head, which leads to higher value of magnetic effect induction at the annular gap. From the analysis results it is observed that the magnetic steel and low carbon steel piston head provided maximum magnetic flux density. Eventually the higher damping force can be observed for same case.

  13. Effect of pulsed electric field on the rheological and colour properties of soy milk.

    Science.gov (United States)

    Xiang, Bob Y; Simpson, Marian V; Ngadi, Michael O; Simpson, Benjamin K

    2011-12-01

    The effects of pulsed electric field (PEF) treatments on rheological and colour properties of soy milk were evaluated. Flow behaviour, viscosity and rheological parameters of PEF-treated soy milk were monitored using a controlled stress rheometer. For PEF treatments, electric field intensity of 18, 20 and 22 kV cm(-1) and number of pulses of 25, 50, 75 and 100 were used. For the measurements of rheological properties of soy milk shear rates between 0 and 200 s(-1) was used. The rheological behaviour of control and the PEF-treated soy milk were described using a power law model. The PEF treatments affected the rheological properties of soy milk. Apparent viscosity of soy milk increased from 6.62 to 7.46 (10(-3) Pa s) with increase in electric field intensity from 18 to 22 kV cm(-1) and increase in the number of pulses from 0 to 100. The consistency index (K) of soy milk also changed with PEF treatments. Lightness (L*), red/greenness (a*) and yellowness/blueness (b*) of soy milk were affected by PEF treatments.

  14. Rheological evaluation of simulated neutralized current acid waste - transuranics

    International Nuclear Information System (INIS)

    Fow, C.L.; McCarthy, D.; Thornton, G.T.; Scott, P.A.; Bray, L.A.

    1986-09-01

    At the Hanford Plutonium and Uranium Extraction Plant (PUREX), in Richland, Washington, plutonium and uranium products are recovered from irradiated fuel by a solvent extraction process. A byproduct of this process is an aqueous waste stream that contains fission products. This waste stream, called current acid waste (CAW), is chemically neutralized and stored in double shell tanks (DSTs) on the Hanford Site. This neutralized current acid waste (NCAW) will be transported by pipe to B-Plant, a processing plant located nearby. In B-Plant, the transuranic (TRU) elements in NCAW are separated from the non-TRU elements. The majority of the TRU elements in NCAW are in the solids. Therefore, the primary processing operation is to separate the NCAW solids (NCAW-TRU) from the NCAW liquid. These two waste streams will be pumped to suitable holding tanks before being further processed for permanent disposal. To ensure that the retrieval and transportation of NCAW and NCAW-TRU are successful, researchers at Pacific Northwest Laboratory (PNL) evaluated the rheological and transport properties of the slurries. This evaluation had two phases. First, researchers conducted laboratory rheological evaluations of simulated NCAW and NCAW-TRU. The results of these evaluations were then correlated with classical rheological models and scaled up to predict the performance that is likely to occur in the full-scale system. This scale-up procedure has already been successfully used to predict the critical transport properties of a slurry (Neutralized Cladding Removal Waste) with rheological properties similar to those displayed by NCAW and NCAW-TRU

  15. Rheological characteristics of flours milled from different wheat varieties (Triticum aestivum L.

    Directory of Open Access Journals (Sweden)

    Ladislav Haris

    2010-01-01

    Full Text Available Technological quality was studied of wheat flours from three varieties of Triticum aestivum L. (Arida, Meritto, Verita delivered to the mill for three years (2007–2009. Physico-chemical parameters observed during the purchase of grain (STN 461100-2 were not significantly different. Also milled flours from tested varieties have by processors required ash content, gluten, acceptable Zeleny index, α-amylase activity (falling number, but as the rheological properties of dough from these flours show, these parameters are unsuited enough (unsuitability of material for efficient processing of flour. Rheological evaluation showed that each variety is suitable for different processing direction. Therefore, if we deliberately separate lots of purchased grain, not only by basic physico-che­mi­cal properties listed in the current standards (CSN and STN, but also by their rheological properties, which are important and reliable indicator of the direction of the end-use processing of wheat flours, the flours will be more likely to succeed in specific cereal technology. For the production of bread was satisfactory rheological properties of dough from variety Arida. Verita variety is suitable for processing into wafers, and a variety Meritto for producing biscuits and crackers. Verita and Me­rit­to varieties so do not achieved the expected values of the rheological optimum for „classic“ bread processing (bakery products despite satisfactory gluten content and falling number to use this processing direction. Reported results show us the possibilities of more efficient selection of varieties or lots purchased grain of wheat for use in baking and buscuit industry by using rheological evaluation methods. Results were evaluated by analysis of data exploration (Boxplot, scattering graphs, classical nonparametric testing of hypotheses and the distribution of the data (Wilcoxon test, Kruskal-Wallis, Friedman, rates central tendency and dispersion.

  16. Effect of hydrocolloids on the physico-chemical and rheological properties of reconstituted sweetened yoghurt powder.

    Science.gov (United States)

    Seth, Dibyakanta; Mishra, Hari Niwas; Deka, Sankar Chandra

    2018-03-01

    The consistency of sweetened yoghurt (misti dahi) is a desired characteristic which is attributed to the casein protein network formation during fermentation. Unfortunately, this property is lost in reconstituted sweetened yoghurt (RSY) due to the irreversible nature of protein denaturation during spray drying. Therefore, this study aimed to increase the consistency of RSY using different hydrocolloids. The effects addition of guar gum, pectin, κ-carrageenan and gelatin (0.1%w/v each) on the physico-chemical, microbial, rheological and sensory properties of RSY were investigated. RSY with 40% total solids demonstrated the rheological properties which are very similar to those of fresh sweetened yoghurt. RSY containing different hydrocolloids further increased the rheological properties. The dynamic rheological study revealed that the magnitude of storage modulus (G'), loss modulus (G″), and loss tangent (tan δ) were significantly influenced by the addition of hydrocolloids and gelatin exhibited highest dynamic moduli in RSY. However, κ-carrageenan added RSY was preferred sensorially as the rheological properties were very close to gelatin added RSY. Addition of hydrocolloids significantly increased the starter bacteria count and pH and reduced water expulsion rate (P < 0.05). Addition of hydrocolloids can improve the rheological properties of reconstituted yoghurt. The study concluded that the addition of κ-carrageenan showed better results in terms of rheological and sensory properties of RSY. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  17. Stability and dynamic rheological characterization of spread developed based on pistachio oil.

    Science.gov (United States)

    Mousazadeh, Morad; Mousavi, Seyed Mohammad; Emam-Djomeh, Zahra; HadiNezhad, Mehri; Rahmati, Naghmeh

    2013-05-01

    This study investigated the influence of formulation variables (pistachio oil (PO, 7.5 and 15%, w/w), Cocoa butter (CB, 7.5 and 15%, w/w), xanthan gum (XG, 0 and 0.3%, w/w), and distillated monoglyceride (DMG, 0.5 and 1%, w/w)) on the rheological properties and emulsion stability of spreads. Power law and Herschel-Bulkley models were used for modeling shear-thinning behavior of samples. The power law model was found to describe the flow behavior of spreads better than Herschel-Bulkley model. All the rheological properties were increased by adding XG to the spreads whereas increasing PO content caused to decrease them. The DMG had positive effect on apparent viscosity and elastic behavior but had negative effect on viscose behavior. Apparent viscosity was increased by adding CB while rheological modules were not significantly (p DMG improved stability of emulsion. The best spread formulation with optimum rheological properties was 15% PO, 7.5% CB, 0.3% XG and 1% DMG. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Micro-rheology and interparticle interactions in aerosols probed with optical tweezers

    Science.gov (United States)

    Reid, Jonathan P.; Power, Rory M.; Cai, Chen; Simpson, Stephen H.

    2014-09-01

    Using optical tweezers for micro-rheological investigations of a surrounding fluid has been routinely demonstrated. In this work, we will demonstrate that rheological measurements of the bulk and surface properties of aerosol particles can be made directly using optical tweezers, providing important insights into the phase behavior of materials in confined environments and the rate of molecular diffusion in viscous phases. The use of holographic optical tweezers to manipulate aerosol particles has become standard practice in recent years, providing an invaluable tool to investigate particle dynamics, including evaporation/ condensation kinetics, chemical aging and phase transformation. When combined with non-linear Raman spectroscopy, the size and refractive index of a particle can be determined with unprecedented accuracy viscosity and surface tension of particles can be measured directly in the under-damped regime at low viscosity. In the over-damped regime, we will show that viscosity measurements can extend close to the glass transition, allowing measurements over an impressive dynamic range of 12 orders of magnitude in relaxation timescale and viscosity. Indeed, prior to the coalescence event, we will show how the Brownian trajectories of trapped particles can yield important and unique insights into the interactions of aerosol particles.

  19. Native Silk Feedstock as a Model Biopolymer: A Rheological Perspective.

    Science.gov (United States)

    Laity, Peter R; Holland, Chris

    2016-08-08

    Variability in silk's rheology is often regarded as an impediment to understanding or successfully copying the natural spinning process. We have previously reported such variability in unspun native silk extracted straight from the gland of the domesticated silkworm Bombyx mori and discounted classical explanations such as differences in molecular weight and concentration. We now report that variability in oscillatory measurements can be reduced onto a simple master-curve through normalizing with respect to the crossover. This remarkable result suggests that differences between silk feedstocks are rheologically simple and not as complex as originally thought. By comparison, solutions of poly(ethylene-oxide) and hydroxypropyl-methyl-cellulose showed similar normalization behavior; however, the resulting curves were broader than for silk, suggesting greater polydispersity in the (semi)synthetic materials. Thus, we conclude Nature may in fact produce polymer feedstocks that are more consistent than typical man-made counterparts as a model for future rheological investigations.

  20. Rheological Characterization of Green Sand Flow

    DEFF Research Database (Denmark)

    Jabbaribehnam, Mirmasoud; Spangenberg, Jon; Hovad, Emil

    2016-01-01

    The main aim of this paper is to characterize experimentally the flow behaviour of the green sand that is used for casting of sand moulds. After the sand casting process is performed, the sand moulds are used for metal castings. The rheological properties of the green sand is important to quantif...

  1. Rheology and Microbiology of Sludge from a Thermophilic Aerobic Membrane Reactor

    Directory of Open Access Journals (Sweden)

    Alessandro Abbà

    2017-01-01

    Full Text Available A thermophilic aerobic membrane reactor (TAMR treating high-strength COD liquid wastes was submitted to an integrated investigation, with the aim of characterizing the biomass and its rheological behaviour. These processes are still scarcely adopted, also because the knowledge of their biology as well as of the physical-chemical properties of the sludge needs to be improved. In this paper, samples of mixed liquor were taken from a TAMR and submitted to fluorescent in situ hybridization for the identification and quantification of main bacterial groups. Measurements were also targeted at flocs features, filamentous bacteria, and microfauna, in order to characterize the sludge. The studied rheological properties were selected as they influence significantly the performances of membrane bioreactors (MBR and, in particular, of the TAMR systems that operate under thermophilic conditions (i.e., around 50°C with high MLSS concentrations (up to 200 gTS L−1. The proper description of the rheological behaviour of sludge represents a useful and fundamental aspect that allows characterizing the hydrodynamics of sludge suspension devoted to the optimization of the related processes. Therefore, in this study, the effects on the sludge rheology produced by the biomass concentration, pH, temperature, and aeration were analysed.

  2. Study of rheology and friction factor of natural food hydrocolloid gels

    Directory of Open Access Journals (Sweden)

    Vojtěch Kumbár

    2017-01-01

    Full Text Available Differences in the rheology and friction factor of natural food hydrocolloid gels were studied in this paper. The practical importance of the knowledge of the rheological parameters is quite evident. The experimental data were carried out using a concentric cylinder rotary viscometer. It was prepared 1% hydrocolloid solutions (hydrogels. Hydrogels of the natural gums extracted from the seeds of the plants and plant tubers have been used - carob gum (from the seeds of Ceratonia siliqua, guar gum (from the seeds of Cyamopsis tetragonoloba and tara gum (from the seeds of Caesalpinia spinosa. Rheological behaviour has non-Newtonian pseudoplastic character and the flow curves were fitted using the Otswald - de Waele (power law model and Herschel - Bulkley model. The hydrogels exhibit shear thinning behaviour. The meaning of the rheological parameters on the friction factors during flow of hydrocolloid gels in the tube has been shown. Information on time dependent behaviour of tested liquids has been also obtained. Time dependent curves were fitted by the Gaussian model. Preliminary results obtained for a constant shear rate showed the thixotropic and time-dependent behaviour of the hydrogels. These parameters can be especially used in much software dealing with a numerical simulation of the flow problems.

  3. A magneto-rheological fluid-based torque sensor for smart torque wrench application

    Science.gov (United States)

    Ahmadkhanlou, Farzad; Washington, Gregory N.

    2013-04-01

    In this paper, the authors have developed a new application where MR fluid is being used as a sensor. An MR-fluid based torque wrench has been developed with a rotary MR fluid-based damper. The desired set torque ranges from 1 to 6 N.m. Having continuously controllable yield strength, the MR fluid-based torque wrench presents a great advantage over the regular available torque wrenches in the market. This design is capable of providing continuous set toque from the lower limit to the upper limit while regular torque wrenches provide discrete set torques only at some limited points. This feature will be especially important in high fidelity systems where tightening torque is very critical and the tolerances are low.

  4. Magneto-optic and electro-optic modulators

    International Nuclear Information System (INIS)

    Hutchinson, D.P.; Ma, C.H.; Price, T.R.; Staats, P.A.; Vander Sluis, K.L.

    1982-01-01

    An important aspect of the Faraday rotation diagnostic for tokamak plasma measurements has been the development of suitable polarization modulators for submillimeter wavelengths. The problems are to obtain high optical transmission and fast modulation frequencies. At ORNL we have developed both a magneto-optic and an electro-optic submillimeter-wave modulators. These devices have been operated at modulation frequencies of approximately 100 kHz and both have high transmission

  5. Alveoconsistograph evaluation of rheological properties of rye doughs

    Energy Technology Data Exchange (ETDEWEB)

    Callejo, M. J.; Bujeda, C.; Rodriguez, G.; Chaya, C.

    2009-07-01

    The aim of this work is to study the effect of rye flour on the rheological properties of doughs. Rye meals of two different extraction rate (65% and 85%) were blended in different proportions with wheat flours. The viscoelastic behaviour of the sample blends was determined by a Chopin alveograph. The effect of rye flour on dough rheology during mixing was determined by a Chopin consistograph. It was found that Chopin Consistograph methodology was not suitable for determining water absorption capacity in blends with rye. It has been confirmed that adjustment of dough hydration in baked products incorporating rye flour must be taken into account, depending not only on the wheat-to-rye ratio but also on the rye meals extraction rate. (Author) 35 refs.

  6. Rheological and Thermal Behavior of Polypropylene-Kaolin Composites

    International Nuclear Information System (INIS)

    Teng, S.T.; Nor Azura Abdul Rahim; Lan, D.N.U

    2014-01-01

    Kaolins effect on rheological behaviour of polypropylene-kaolin composites was investigated. The research found that not only the kaolin content influence the rheological behaviour but also the compounding using internal mixer and twin screw extruder. In details, viscosity and shear stress increased with addition of kaolin content. These characteristics also exhibited higher in polypropylene-kaolin composite suspensions compounded using twin screw extruder than using internal mixer. Chain scission was assumed to occur and affect the melt properties. Further justification characterized by Differential Scanning Calorimeter (DSC) showed that the effect of kaolin and loading content were more evident on the onset melting temperature and crystallinity. Besides, due to the different cooling operation in both processes, the effect of compounding on melting characteristic was conspicuous. (author)

  7. Rheological study of self-compacting mortars based on ternary cements

    Directory of Open Access Journals (Sweden)

    Elhadja Dada

    2018-01-01

    Full Text Available Self-compacting concrete (SCC is able to provide the ability to be easily implemented without vibration and to achieve spectacular structures, by its high fluidity and its rheological stability. By against its formulation requires a large volume of cement, which is necessary to allow its flow. The current environmental considerations lead to reduce the production of clinker however, it is essential to use cementitious additions to replace cement, because of their high availability and their moderate price. Furthermore, their use contributes in a simple and economical way to solve the problems related to the environment. The objective of our work is to study the effects of the incorporation of mineral additions such as: blast furnace slag of El-Hadjar (BFS, and marble powder (MP on the rheological parameters of selfcompacting mortars developed in different combinations in ternary system with a substitution rate ranging from 20% to 60%. According to this study, it been found that the substitution of cement by blast furnace slag and marble powder has negatively affected the rheological behavior of the mixtures. In addition, a considerable decrease in the rheological parameters has been achieved with a substitution rate of 20% of slag and 30% of marble powder. As well as an improvement of workability has been proven to self-compacting mortars and this is due to the increase of ternary cement replacement rate by marble powder from 20% to 30%.

  8. The effect of oxygen fugacity on the rheological evolution of crystallizing basaltic melts

    Science.gov (United States)

    Kolzenburg, S.; Di Genova, D.; Giordano, D.; Hess, K. U.; Dingwell, D. B.

    2018-04-01

    Storage and transport of silicate melts in the Earth's crust and their emplacement on the planet's surface occur almost exclusively at sub-liquidus temperatures. At these conditions, the melts undergo crystallization under a wide range of cooling-rates, deformation-rates, and oxygen fugacities (fO2). Oxygen fugacity is known to influence the thermodynamics and kinetics of crystallization in magmas and lavas. Yet, its influence on sub-liquidus rheology remains largely uncharted. We present the first rheological characterization of crystallizing lavas along natural cooling paths and deformation-rates and at varying fO2. Specifically, we report on apparent viscosity measurements for two crystallizing magmatic suspensions 1) at log ⁡ fO2 of -9.15 (quartz-fayalite-magnetite buffer, QFM, -2.1) and 2) in air. These fugacities span a range of reduced to oxidized conditions pertinent to magma migration and lava emplacement. We find that: 1) crystallization at constant cooling-rates results in a quasi-exponential increase in the apparent viscosity of the magmatic suspensions until they achieve their rheological cut off temperature (Tcutoff), where the melt effectively solidifies 2) the rheological departure and Tcutoff increase with increasing fO2 and 3) increasing fO2 results in decreased crystallization-rates. Based on the experimental results and by comparison with previous rheological isothermal studies we propose a generalisation of the effect of fO2 on the dynamic rheological evolution of natural magmatic and volcanic suspensions. We further discuss the implications for magmatic transport in plumbing and storage systems (e.g. conduits, dikes and magma chambers) and during lava flow emplacement.

  9. Rheology, Morphology and Temperature Dependency of Nanotube Networks in Polycarbonate/Multiwalled Carbon Nanotube Composites

    International Nuclear Information System (INIS)

    Abbasi, Samaneh; Carreau, Pierre J.; Derdouri, Abdessalem

    2008-01-01

    We present several issues related to the state of dispersion and rheological behavior of polycarbonate/multiwalled carbon nanotube (MWCNT) composites. The composites were prepared by diluting a commercial masterbatch containing 15 wt% nanotubes using optimized melt-mixing conditions. The state of dispersion was then analyzed by scanning and transmission electron microscopy (SEM, TEM). Rheological characterization was also used to assess the final morphology. Further, it was found that the rheological percolation threshold decreased significantly with increasing temperature and finally reached a constant value. This is described in terms of the Brownian motion, which increases with temperature. However, by increasing the nanotube content, the temperature effects on the complex viscosity at low frequency decreased significantly. Finally, the percolation thresholds were found to be approximately equal to 0.3 and 2 wt% for rheological and electrical conductivity measurements, respectively

  10. Reconciling laboratory and observational models of mantle rheology in geodynamic modelling

    Science.gov (United States)

    King, Scott D.

    2016-10-01

    Experimental and geophysical observations constraining mantle rheology are reviewed with an emphasis on their impact on mantle geodynamic modelling. For olivine, the most studied and best-constrained mantle mineral, the tradeoffs associated with the uncertainties in the activation energy, activation volume, grain-size and water content allow the construction of upper mantle rheology models ranging from nearly uniform with depth to linearly increasing from the base of the lithosphere to the top of the transition zone. Radial rheology models derived from geophysical observations allow for either a weak upper mantle or a weak transition zone. Experimental constraints show that wadsleyite and ringwoodite are stronger than olivine at the top of the transition zone; however the uncertainty in the concentration of water in the transition zone precludes ruling out a weak transition zone. Both observational and experimental constraints allow for strong or weak slabs and the most promising constraints on slab rheology may come from comparing inferred slab geometry from seismic tomography with systematic studies of slab morphology from dynamic models. Experimental constraints on perovskite and ferropericlase strength are consistent with general feature of rheology models derived from geophysical observations and suggest that the increase in viscosity through the top of the upper mantle could be due to the increase in the strength of ferropericlase from 20-65 GPa. The decrease in viscosity in the bottom half of the lower mantle could be the result of approaching the melting temperature of perovskite. Both lines of research are consistent with a high-viscosity lithosphere, a low viscosity either in the upper mantle or transition zone, and high viscosity in the lower mantle, increasing through the upper half of the lower mantle and decreasing in the bottom half of the lower mantle, with a low viscosity above the core. Significant regions of the mantle, including high

  11. Rheology of Savannah River site tank 42 HLW radioactive sludge

    International Nuclear Information System (INIS)

    Ha, B.C.

    1997-01-01

    Knowledge of the rheology of the radioactive sludge slurries at the Savannah River Site is necessary in order to ensure that they can be retrieved from waste tanks and processed for final disposal. At Savannah River Site, Tank 42 sludge represents on of the first HLW radioactive sludges to be vitrified in the Defense Waste Processing Facility. The rheological properties of unwashed Tank 42 sludge slurries at various solids concentrations were measured remotely in the Shielded Cells at the Savannah River Technology Center using a modified Haake Rotovisco viscometer

  12. Test Method for Rheological Behavior of Mortar for Building Work

    Directory of Open Access Journals (Sweden)

    Korobko Bogdan

    2017-09-01

    Full Text Available This paper offers a test method for rheological behavior of mortars with different mobility and different composition, which are used for execution of construction work. This method is based on investigation of the interaction between the valve ball and the mortar under study and allows quick defining of experimental variables for any composition of building mortars. Certain rheological behavior will permit to calculate the design parameters of machines for specific conditions of work performance – mixing (pre-operation, pressure generation, pumping to the work site, workpiece surfacing.

  13. Rheological properties of potassium barium borate glasses

    NARCIS (Netherlands)

    Szwejda, K.A.; Vogel, D.L.; Stevels, J.M.

    1973-01-01

    Several series of potassium barium borate glasses have been investigated as to their rheological properties. It has been found, that all these glasses show deviations from ‘Newtonian’ behaviour below temperatures corresponding to viscosities of 1010 poises. The activation energies of viscous flow

  14. Rheological characterization of modified foodstuffs with food grade thickening agents

    Science.gov (United States)

    Reyes-Ocampo, I.; Aguayo-Vallejo, JP; Ascanio, G.; Córdova-Aguilar, MS

    2017-01-01

    This work describes a rheological characterization in terms of shear and extensional properties of whole milk, modified with food grade thickening agents (xanthan and carboxymethyl cellulose) with the purpose of being utilized in dysphagia treatment. Shear viscosity of the thickened fluids (2% wt. of xanthan and CMC) were measured in a stress-controlled rheometer and for extensional viscosity, a custom-built orifice flowmeter was used, with elongation rates from 20 to 3000 s-1. Such elongation-rate values represent the entire swallowing process, including the pharyngeal and esophageal phases. The steady-state shear and extensional flow curves were compared with the flow curve of a pudding consistency BaSO4 suspension (α=05), typically used as a reference fluid for the specialized commercial dysphagia products. The modified fluids presented non-Newtonian behavior in both, shear and extensional flows, and the comparison with the reference fluid show that the thickened milk prepared here, can be safely used for consumption by patients with severe dysphagia.

  15. Rheology and structure of aqueous bentonite–polyvinyl alcohol ...

    Indian Academy of Sciences (India)

    Keywords. Bentonite–polyvinyl alcohol dispersions; rheology; zeta potential; particle size analysis; SEM; FTIR studies. 1. .... sity and interception of the linear portion of the curve ..... applications for decolourizing or moisture absorption purpose.

  16. Rheological investigation and simulation of a debris-flow event in the Fella watershed

    Directory of Open Access Journals (Sweden)

    M. A. Boniello

    2010-05-01

    Full Text Available To set an approach for the future territorial planning, the Geological Survey of Friuli Venezia Giulia Region, through the researchers of Trieste University, started a program of debris-flow risk analysis using Flo-2D software as tool to delimit the hazardous areas. In the present paper, as a case study, a debris flow, called Fella sx, occurring in a torrent catchment was analyzed. The choice was due to the abundance of information about past events, inundated areas, rain fall, geology and to its representativeness. An initial back-analysis investigation identified a couple of representative rheological parameters. Riverbed samples were collected, sieve analyses were performed and rheological tests were carried out on the fraction finer than 0.063 mm using a rotationally controlled stress rehometer equipped with the serrated parallel plate geometry. The shear dependent behaviour was examined at different concentrations ranging from 33 to 48%, by weight. Viscosity data treatment was performed to determine the most suitable rheological model to provide the best approximation of the debris-flow behaviour. The rheological parameters, derived from experimental data, were used and compared with those obtained through the back-analysis and with the real inundated area. Data obtained through rheological analysis are useful in constructing scenarios of future events where no data for back-analysis are available.

  17. Rheological Behavior of Dense Assemblies of Granular Materials

    International Nuclear Information System (INIS)

    Sundaresan, Sankaran; Tardos, Gabriel I.; Subramaniam, Shankar

    2011-01-01

    Assemblies of granular materials behave differently when they are owing rapidly, from when they are slowly deforming. The behavior of rapidly owing granular materials, where the particle-particle interactions occur largely through binary collisions, is commonly related to the properties of the constituent particles through the kinetic theory of granular materials. The same cannot be said for slowly moving or static assemblies of granular materials, where enduring contacts between particles are prevalent. For instance, a continuum description of the yield characteristics of dense assemblies of particles in the quasistatic ow regime cannot be written explicitly on the basis of particle properties, even for cohesionless particles. Continuum models for this regime have been proposed and applied, but these models typically assume that the assembly is at incipient yield and they are expressed in terms of the yield function, which we do not yet know how to express in terms of particle-level properties. The description of the continuum rheology in the intermediate regime is even less understood. Yet, many practically important flows in nature and in a wide range of technological applications occur in the dense flow regime and at the transition between dilute and dense regimes; the lack of validated continuum rheological models for particle assemblies in these regimes limits predictive modeling of such flows. This research project is aimed at developing such rheological models.

  18. In situ rheology of the oceanic lithosphere along the Hawaiian ridge

    Science.gov (United States)

    Pleus, A.; Ito, G.; Wessel, P.; Frazer, L. N.

    2017-12-01

    Much of our quantitative understanding of lithospheric rheology is based on rock deformation experiments carried out in the laboratory. The accuracy of the relationships between stress and lithosphere deformation, however, are subject to large extrapolations, given that laboratory strain rates (10-7 s-1) are much greater than geologic rates (10-15 to 10-12 s-1). In situ deformation experiments provide independent constraints and are therefore needed to improve our understanding of natural rheology. Zhong and Watts [2013] presented such a study around the main Hawaiian Islands and concluded that the lithosphere flexure requires a much weaker rheology than predicted by laboratory experiments. We build upon this study by investigating flexure around the older volcanoes of the Hawaiian ridge. The ridge is composed of a diversity of volcano sizes that loaded seafloor of nearly constant age (85+/-8 Ma); this fortunate situation allows for an analysis of flexural responses to large variations in applied loads at nearly constant age-dependent lithosphere thermal structure. Our dataset includes new marine gravity and multi-beam bathymetry data collected onboard the Schmidt Ocean Institute's R/V Falkor. These data, along with forward models of lithospheric flexure, are used to obtain a joint posterior probability density function for model parameters that control the lithosphere's flexural response to a given load. These parameters include the frictional coefficient constraining brittle failure in the shallow lithosphere, the activation energy for the low-temperature plasticity regime, and the geothermal gradient of the Hawaiian lithosphere. The resulting in situ rheological parameters may be used to verify or update those derived in the lab. Attaining accurate lithospheric rheological properties is important to our knowledge, not only of the evolution of the Hawaiian lithosphere, but also of other solid-earth geophysical problems, such as oceanic earthquakes, subduction

  19. Rheological behaviour of self-compacting micro-concrete

    Indian Academy of Sciences (India)

    phase composition to link fresh concrete workability and mixing intensity. In this paper, rheological measurements have been performed using a novel rheometer equipped with a ball measuring system. SCMC mixtures with various HRWRA contents and conventional cement paste mixtures with varying water/cement ratios ...

  20. Nonlinear Viscoelastic Rheology and the Occurrence of Aftershocks

    Science.gov (United States)

    Shcherbakov, R.; Zhang, X.

    2017-12-01

    Aftershocks are ubiquitous in nature. They are the manifestation of relaxation phenomena observed in various physical systems. In one prominent example, they typically occur after large earthquakes. The observed aftershock sequences usually obey several well defined non-trivial empirical laws in magnitude, temporal, and spatial domains. In many cases their characteristics follow scale-invariant distributions. The occurrence of aftershocks displays a prominent temporal behavior due to time-dependent mechanisms of stress and/or energy transfer. There are compelling evidences that the lower continental crust and upper mantle are governed by various solid state creep mechanisms. Among those mechanisms a power-law viscous flow was suggested to explain the postseismic surface deformation after large earthquakes. In this work, we consider a slider-block model to mimic the behavior of a seismogenic fault. In the model, we introduce a nonlinear viscoelastic coupling mechanism to capture the essential characteristics of crustal rheology and stress interaction between the blocks and the medium. For this purpose we employ nonlinear Kelvin-Voigt elements consisting of an elastic spring and a dashpot assembled in parallel to introduce viscoelastic coupling between the blocks and the driving plate. By mapping the model into a cellular automaton we derive the functional form of the stress transfer mechanism in the model. We show that the nonlinear viscoelasticity plays a critical role in triggering of aftershocks. It explains the functional form of the Omori-Utsu law and gives physical interpretation of its parameters. The proposed model also suggests that the power-law rheology of the fault gauge and underlying lower crust and upper mantle controls the decay rate of aftershocks. To verify this, we analyze several prominent aftershock sequences to estimate their decay rates and correlate with the rheological properties of the underlying lower crust and mantle, which were estimated

  1. Optimal design and selection of magneto-rheological brake types based on braking torque and mass

    International Nuclear Information System (INIS)

    Nguyen, Q H; Lang, V T; Choi, S B

    2015-01-01

    In developing magnetorheological brakes (MRBs), it is well known that the braking torque and the mass of the MRBs are important factors that should be considered in the product’s design. This research focuses on the optimal design of different types of MRBs, from which we identify an optimal selection of MRB types, considering braking torque and mass. In the optimization, common types of MRBs such as disc-type, drum-type, hybrid-type, and T-shape types are considered. The optimization problem is to find an optimal MRB structure that can produce the required braking torque while minimizing its mass. After a brief description of the configuration of the MRBs, the MRBs’ braking torque is derived based on the Herschel-Bulkley rheological model of the magnetorheological fluid. Then, the optimal designs of the MRBs are analyzed. The optimization objective is to minimize the mass of the brake while the braking torque is constrained to be greater than a required value. In addition, the power consumption of the MRBs is also considered as a reference parameter in the optimization. A finite element analysis integrated with an optimization tool is used to obtain optimal solutions for the MRBs. Optimal solutions of MRBs with different required braking torque values are obtained based on the proposed optimization procedure. From the results, we discuss the optimal selection of MRB types, considering braking torque and mass. (technical note)

  2. Hanford Waste Physical and Rheological Properties: Data and Gaps - 12078

    Energy Technology Data Exchange (ETDEWEB)

    Kurath, D.E.; Wells, B.E.; Huckaby, J.L.; Mahoney, L.A.; Daniel, R.C.; Burns, C.A.; Tingey, J.M.; Cooley, S.K. [Pacific Northwest National Laboratory PO Box 999, Richland WA 99352 (United States)

    2012-07-01

    The retrieval, transport, treatment and disposal operations associated with Hanford Tank Wastes involve the handling of a wide range of slurries. Knowledge of the physical and rheological properties of the waste is a key component to the success of the design and implementation of the waste processing facilities. Previous efforts to compile and analyze the physical and rheological properties were updated with new results including information on solids composition and density, particle size distributions, slurry rheology, and particle settling behavior. The primary source of additional data is from a recent series of tests sponsored by the Hanford Waste Treatment and Immobilization Plant (WTP). These tests involved an extensive suite of characterization and bench-scale process testing of 8 waste groups representing approximately 75% of the high-level waste mass expected to be processed through the WTP. Additional information on the morphology of the waste solids was also included. Based on the updated results, a gap analysis to identify gaps in characterization data, analytical methods and data interpretation was completed. (authors)

  3. Effects of polyethyleneimine adsorption on rheology of bentonite ...

    Indian Academy of Sciences (India)

    Unknown

    XRD, zeta potential and adsorption studies were done together with rheological .... trokinetics experiments on Balikesir bentonite samples. For this reason, the ... rence between apparent and true adsorption rates, and hence swelling of clays ...

  4. Influence of superplasticizer on the rheology of fresh cement asphalt paste

    Directory of Open Access Journals (Sweden)

    Jianwei Peng

    2015-12-01

    Full Text Available Cement asphalt (CA paste is an organic–inorganic composite material of cement and asphalt emulsion. Its complicated rheological behavior affects its site application in high speed railway. Superplasticizers (SPs are usually used to improve the construction properties of fresh CA mortar. However, the principle of SPs acting on the rheology of CA paste is seldom studied. In this paper, the effects of polycarboxylate (PCA and naphthalenesulfonate (PNS on the rheological properties of CA pastes, asphalt emulsions (both anionic and cationic and cement pastes were studied, respectively from the viewpoint of adsorption and zeta potential. Centrifugation method was used to determine the adsorption of asphalt onto cement particle, electroacoustic method was employed to study the zeta potential of cement particles of concentrated paste, and optical microscopy was used to observe the dispersion of particles. The results suggest that both PCA and PNS can decrease the yield stress and apparent viscosity of CA pastes. The effect of SPs on the rheology of CA paste can be explained by two reasons. First, PNS can adsorb on both asphalt and cement surface, change the zeta potential and then decrease their yield stress and viscosity, while PCA only adsorb on cement surface. Second, the competitive adsorption of SPs and asphalt prevents asphalt from adsorbing on cement surface and then more asphalt droplets are released into aqueous solution, thereby enhancing the particle dispersion.

  5. Bidisperse and polydisperse suspension rheology at large solid fraction

    Energy Technology Data Exchange (ETDEWEB)

    Pednekar, Sidhant [Benjamin Levich Institute and Department of Chemical Engineering, The City College of New York, New York, New York 10031; Chun, Jaehun [Pacific Northwest National Laboratory, Richland, Washington 99352; Morris, Jeffrey F. [Benjamin Levich Institute and Department of Chemical Engineering, The City College of New York, New York, New York 10031

    2018-03-01

    At the same solid volume fraction, bidisperse and polydisperse suspensions display lower viscosities, and weaker normal stress response, compared to monodisperse suspensions. The reduction of viscosity associated with size distribution can be explained by an increase of the maximum flowable, or jamming, solid fraction. In this work, concentrated or "dense" suspensions are simulated under strong shearing, where thermal motion and repulsive forces are negligible, but we allow for particle contact with a mild frictional interaction with interparticle friction coefficient of 0.2. Aspects of bidisperse suspension rheology are first revisited to establish that the approach reproduces established trends; the study of bidisperse suspensions at size ratios of large to small particle radii (2 to 4) shows that a minimum in the viscosity occurs for zeta slightly above 0.5, where zeta=phi_{large}/phi is the fraction of the total solid volume occupied by the large particles. The simple shear flows of polydisperse suspensions with truncated normal and log normal size distributions, and bidisperse suspensions which are statistically equivalent with these polydisperse cases up to third moment of the size distribution, are simulated and the rheologies are extracted. Prior work shows that such distributions with equivalent low-order moments have similar phi_{m}, and the rheological behaviors of normal, log normal and bidisperse cases are shown to be in close agreement for a wide range of standard deviation in particle size, with standard correlations which are functionally dependent on phi/phi_{m} providing excellent agreement with the rheology found in simulation. The close agreement of both viscosity and normal stress response between bi- and polydisperse suspensions demonstrates the controlling in influence of the maximum packing fraction in noncolloidal suspensions. Microstructural investigations and the stress distribution according to particle size are also presented.

  6. Effect of Shear History on Rheology of Time-Dependent Colloidal Silica Gels

    Directory of Open Access Journals (Sweden)

    Paulo H. S. Santos

    2017-11-01

    Full Text Available This paper presents a rheological study describing the effects of shear on the flow curves of colloidal gels prepared with different concentrations of fumed silica (4%, 5%, 6%, and 7% and a hydrophobic solvent (Hydrocarbon fuel, JP-8. Viscosity measurements as a function of time were carried out at different shear rates (10, 50, 100, 500, and 1000 s−1, and based on this data, a new structural kinetics model was used to describe the system. Previous work has based the analysis of time dependent fluids on the viscosity of the intact material, i.e., before it is sheared, which is a condition very difficult to achieve when weak gels are tested. The simple action of loading the gel in the rheometer affects its structure and rheology, and the reproducibility of the measurements is thus seriously compromised. Changes in viscosity and viscoelastic properties of the sheared material are indicative of microstructural changes in the gel that need to be accounted for. Therefore, a more realistic method is presented in this work. In addition, microscopical images (Cryo-SEM were obtained to show how the structure of the gel is affected upon application of shear.

  7. Understanding the rheology of yield stress materials

    NARCIS (Netherlands)

    Paredes Rojas, J.F.

    2013-01-01

    This thesis presents the PhD research on the flow behavior of yield stress materials, using rheological measurements and confocal laser scanning microscopy. Experiments are performed in dispersed systems, such as emulsions, gels and foams; for these, when the amount of the dispersed phase is high

  8. Rheology essentials of cosmetic and food emulsions

    CERN Document Server

    Brummer, Rüdiger

    2006-01-01

    Cosmetic emulsions exist today in many forms for a wide variety of applications, including face and hand creams for normal, dry or oily skin, body milks and lotions, as well as sun-block products. Keeping track of them and their properties is not always easy despite informative product names or partial names (e.g. hand or face cream) that clearly indicate their use and properties. This practical manual provides a detailed overview that describes the key properties and explains how to measure them using modern techniques. Written by an expert in flows and flow properties, it focuses on the application of rheological (flow) measurements to cosmetic and food emulsions and the correlation of these results with findings from other tests. Beginning with a brief history of rheology and some fundamental principles, the manual describes in detail the use of modern viscometers and rheometers, including concise explanations of the different available instruments. But the focus remains on practical everyday lab procedure...

  9. Primitive chain network simulations of probe rheology.

    Science.gov (United States)

    Masubuchi, Yuichi; Amamoto, Yoshifumi; Pandey, Ankita; Liu, Cheng-Yang

    2017-09-27

    Probe rheology experiments, in which the dynamics of a small amount of probe chains dissolved in immobile matrix chains is discussed, have been performed for the development of molecular theories for entangled polymer dynamics. Although probe chain dynamics in probe rheology is considered hypothetically as single chain dynamics in fixed tube-shaped confinement, it has not been fully elucidated. For instance, the end-to-end relaxation of probe chains is slower than that for monodisperse melts, unlike the conventional molecular theories. In this study, the viscoelastic and dielectric relaxations of probe chains were calculated by primitive chain network simulations. The simulations semi-quantitatively reproduced the dielectric relaxation, which reflects the effect of constraint release on the end-to-end relaxation. Fair agreement was also obtained for the viscoelastic relaxation time. However, the viscoelastic relaxation intensity was underestimated, possibly due to some flaws in the model for the inter-chain cross-correlations between probe and matrix chains.

  10. Dynamics and Rheology of Soft Colloidal Glasses

    KAUST Repository

    Wen, Yu Ho

    2015-01-20

    © 2015 American Chemical Society. The linear viscoelastic (LVE) spectrum of a soft colloidal glass is accessed with the aid of a time-concentration superposition (TCS) principle, which unveils the glassy particle dynamics from in-cage rattling motion to out-of-cage relaxations over a broad frequency range 10-13 rad/s < ω < 101 rad/s. Progressive dilution of a suspension of hairy nanoparticles leading to increased intercenter distances is demonstrated to enable continuous mapping of the structural relaxation for colloidal glasses. In contrast to existing empirical approaches proposed to extend the rheological map of soft glassy materials, i.e., time-strain superposition (TSS) and strain-rate frequency superposition (SRFS), TCS yields a LVE master curve that satis fies the Kramers-Kronig relations which interrelate the dynamic moduli for materials at equilibrium. The soft glassy rheology (SGR) model and literature data further support the general validity of the TCS concept for soft glassy materials.

  11. Rheological properties of salep powder-milk mixture.

    Science.gov (United States)

    Develi Işıklı, Nursel; Dönmez, Mehmet Necmi; Kozan, Nejat; Karababa, Erşan

    2015-10-01

    Rheological properties of salep-milk mixture as hot drink were evaluated using a rotational viscometer at different temperature (45, 50, 55, 60, and 65 °C) and salep concentration (0.75, 1.00, and 1.25 w/v, %). All salep-milk mixtures exhibited non-Newtonian behavior. The shear rate /shear stress data obtained from forward and backward directions were examined by common rheological models such as power law, Herschel-Bulkey, Casson and Bingham plastic models. Among the common models, the power-law model fitted the shear rate and shear stress data for 1.00 and 1.25 % salep concentration at all temperature. The Bingham plastic model described well the flow behavior of the salep-milk mixtures in 0.75 % salep concentration at all temperature. Flow behavior index (n), according to the power law and Herschel-Bulkey models decreased with an increase in salep concentration and a decrease of temperature. The consistency coefficient decreased with temperature and increased with salep concentration.

  12. Structure, Ion Transport, and Rheology of Nanoparticle Salts

    KAUST Repository

    Wen, Yu Ho; Lu, Yingying; Dobosz, Kerianne M.; Archer, Lynden A.

    2014-01-01

    particles into medium and high dielectric constant liquids yields electrolytes with unique structure and transport properties. We find that electrostatic repulsion imparted by ion dissociation can be tuned to control the dispersion state and rheology through

  13. Guar gum/borax hydrogel: Rheological, low field NMR and release characterizations

    Directory of Open Access Journals (Sweden)

    M. Grassi

    2013-09-01

    Full Text Available Guar gum (GG and Guar gum/borax (GGb hydrogels are studied by means of rheology, Low Field Nuclear Magnetic Resonance (LF NMR and model drug release tests. These three approaches are used to estimate the mesh size (ζ of the polymeric network. A comparison with similar Scleroglucan systems is carried out. In the case of GGb, the rheological and Low Field NMR estimations of ζ lead to comparable results, while the drug release approach seems to underestimate ζ. Such discrepancy is attributed to the viscous effect of some polymeric chains that, although bound to the network to one end, can freely fluctuate among meshes. The viscous drag exerted by these chains slows down drug diffusion through the polymeric network. A proof for this hypothesis is given by the case of Scleroglucan gel, where the viscous contribution is not so significant and a good agreement between the rheological and release test approaches was found.

  14. A constitutive rheological model for agglomerating blood derived from nonequilibrium thermodynamics

    Science.gov (United States)

    Tsimouri, Ioanna Ch.; Stephanou, Pavlos S.; Mavrantzas, Vlasis G.

    2018-03-01

    Red blood cells tend to aggregate in the presence of plasma proteins, forming structures known as rouleaux. Here, we derive a constitutive rheological model for human blood which accounts for the formation and dissociation of rouleaux using the generalized bracket formulation of nonequilibrium thermodynamics. Similar to the model derived by Owens and co-workers ["A non-homogeneous constitutive model for human blood. Part 1. Model derivation and steady flow," J. Fluid Mech. 617, 327-354 (2008)] through polymer network theory, each rouleau in our model is represented as a dumbbell; the corresponding structural variable is the conformation tensor of the dumbbell. The kinetics of rouleau formation and dissociation is treated as in the work of Germann et al. ["Nonequilibrium thermodynamic modeling of the structure and rheology of concentrated wormlike micellar solutions," J. Non-Newton. Fluid Mech. 196, 51-57 (2013)] by assuming a set of reversible reactions, each characterized by a forward and a reverse rate constant. The final set of evolution equations for the microstructure of each rouleau and the expression for the stress tensor turn out to be very similar to those of Owens and co-workers. However, by explicitly considering a mechanism for the formation and breakage of rouleaux, our model further provides expressions for the aggregation and disaggregation rates appearing in the final transport equations, which in the kinetic theory-based network model of Owens were absent and had to be specified separately. Despite this, the two models are found to provide similar descriptions of experimental data on the size distribution of rouleaux.

  15. Rheological characterization of nuclear waste using falling-ball rheometry

    International Nuclear Information System (INIS)

    Abbott, J.R.; Unal, C.; Stephens, T.; Pasamehmetoglu, K.O.; Graham, A.L.; Edwards, J.N.

    1994-01-01

    Knowledge of the rheological properties of saturated solutions containing solid particles is very important in nuclear waste management technology. For example, the nuclear waste in the Hanford Site high-level radioactive waste tanks contains strong electrolyte solutions with a high concentration of solids. Previous attempt using rotational viscometers to determine the rheology has shown unusual thixotropic and shear thinning behaviors with a lack of reproducibility. Using falling-ball rheometry, the rheology of the undisturbed simulant may be determined with much better reproducibility. In this study, a well-mixed simulant which has similar chemical composition to the actual waste will be tested. Falling-ball size and density will be varied to get data in a wide range of shear rates. To determine the rheogram, several methods will be tried to match the observed data. Based on these tests, a rheogram can be determined from the model and its best-fit parameters. The simulant shows shear-thinning behavior and a yield stress. This would suggest a H-B model. But when fitting to one of the simulants which showed a very low yield stress, the predictions assuming no yield and assuming yield resulted in no improvement in the fit when assuming yield

  16. Rheology and structure of milk protein gels

    NARCIS (Netherlands)

    Vliet, van T.; Lakemond, C.M.M.; Visschers, R.W.

    2004-01-01

    Recent studies on gel formation and rheology of milk gels are reviewed. A distinction is made between gels formed by aggregated casein, gels of `pure` whey proteins and gels in which both casein and whey proteins contribute to their properties. For casein' whey protein mixtures, it has been shown

  17. Evaluation of the rheological behavior of asphaltic binder modified with zeolite material

    Energy Technology Data Exchange (ETDEWEB)

    Silveira, E.M. da; Sant' ana, Hosiberto B.; Soares, Sandra A.; Soares, Jorge B. [Federal University of Ceara, Fortaleza, CE (Brazil)

    2008-07-01

    Several new processes have been developed to reduce mixing and compaction temperatures of hot mix asphalt without sacrificing the quality of the resulting pavement. One of these processes utilizes the zeolite, a crystalline hydrated aluminum silicate. A laboratory study was conducted to determine the applicability of zeolite to improve the rheological and chemical behavior of an asphaltic binder. The synthetic asphaltic binder was produced with different zeolite contents (0,1; 0.3; and 0.5% w/w) by wet process. The rheological and chemical behavior was verified by Dynamic Shear Rheometer and Infrared Spectroscopy, respectively. The zeolite's chemical composition and morphology was studied by Dispersive X-ray Spectroscopy (EDX). Additionally, the scanning electron microscope (SEM) was utilized to establish the zeolite elemental composition. The results showed that investigated zeolite was classified as a sodium aluminum silicate and it was able to modify the rheological properties of the neat asphalt binder. The G*/sin{delta} parameter was affected by the zeolite presence, indicating better performance for the binders with zeolite. The results show that synthetic binders can partly replicate the rheological properties of conventional AB. Comparable complex modulus values was obtained. No significant difference was found in viscoelastic response, given by the phase angles as a function of both temperature and frequency. (author)

  18. Rheological Modeling of Macro Viscous Flows of Granular Suspension of Regular and Irregular Particles

    Directory of Open Access Journals (Sweden)

    Anna Maria Pellegrino

    2017-12-01

    Full Text Available This paper refers to complex granular-fluid mixtures involved into geophysical flows, such as debris and hyper-concentrated flows. For such phenomena, the interstitial fluids play a role when they are in the viscous regime. Referring to experiments on granular-fluid mixture carried out with pressure imposed annular shear cell, we study the rheological behaviour of dense mixture involving both spheres and irregular-shaped particles. For the case of viscous suspensions with irregular grains, a significant scatter of data from the trend observed for mixtures with spherical particles was evident. In effect, the shape of the particles likely plays a fundamental role in the flow dynamics, and the constitutive laws proposed by the frictional theory for the spheres are no longer valid. Starting from the frictional approach successfully applied to suspension of spheres, we demonstrate that also in case of irregular particles the mixture rheology may be fully characterized by the two relationships involving friction coefficient µ and volume concentration Ф as a function of the dimensionless viscous number Iv. To this goal, we provided a new consistent general model, referring to the volume fraction law and friction law, which accounts for the particle shape. In this way, the fitting parameters reduce just to the static friction angle µ1, and the two parameters, k and fs related to the grain shape. The resulting general model may apply to steady fully developed flows of saturated granular fluid mixture in the viscous regime, no matter of granular characteristics.

  19. Rheological and structural properties of sea cucumber Stichopus japonicus during heat treatment

    Science.gov (United States)

    Gao, Xin; Xue, Dongmei; Zhang, Zhaohui; Xu, Jiachao; Xue, Changhu

    2005-07-01

    Changes in tissue structure, rheological properties and water content of raw and heated sea cucumber meat were studied. Sea cucumber Stichopus japonicus was heated at 25°C , 70°C and 100°C water for 5 min. The structural changes were observed using a light microscope and the rheological parameters (rupture strength, adhesive strength and deformation) determined using a texture meter. Microscopic photograph revealed that the structural change of heated meat was greater than that of raw meat. The rupture strength, adhesive strength and deformation of raw meat were smaller than those of the heated meat. Meanwhile, rheological parameters showed positive correlation with heating temperature. These changes are mainly caused by thermal denaturation and gelatinization of collagen during heating. These changes were also evidenced in observations using a light microscope and differential scanning calorimetry.

  20. Rheological Properties, Water-Holding and Oil-Binding Capacities of Particulate β-Glucans Isolated from Spent Brewer’s Yeast by Three Different Procedures

    Directory of Open Access Journals (Sweden)

    Vlatka Petravić-Tominac

    2011-01-01

    Full Text Available Particulate β-glucans were isolated from brewer’s yeast using three different procedures – alkaline (A, alkaline-acidic (AA and alkaline-acidic with mannoprotein removal (AAM and dried using three different methods – air drying (AD, lyophilization (L and spray drying (SD. In this work, the obtained β-glucan preparations were tested for their microstructure, rheological properties, swelling, water-holding and oil-binding capacities. According to their rheological properties, suspensions containing 1 and 2 % (by mass of spray-dried samples belong to the category of dilatant fluids. Among the spray-dried samples, rheological behaviour and water-holding capacity of the preparation AA-SD differed from those obtained by other two procedures (A-SD and AAM-SD. Concerning different drying methods applied, swelling was the lowest in the lyophilized samples and the most pronounced in the air-dried ones. Oil-binding capacity was the highest in the lyophilized preparations and increased proportionally to the number of processing steps applied in the isolation procedure.

  1. Transient molecular orientation and rheology in flow aligning thermotropic liquid crystalline polymers

    International Nuclear Information System (INIS)

    Ugaz, Victor M.; Burghardt, Wesley R.; Zhou, Weijun; Kornfield, Julia A.

    2001-01-01

    Quantitative measurements of molecular orientation and rheology are reported for various transient shear flows of a nematic semiflexible copolyether. Unlike the case of lyotropic liquid crystalline polymers (LCPs), whose structure and rheology in shear are dominated by director tumbling, this material exhibits flow aligning behavior. The observed behavior is quite similar to that seen in a copolyester that we have recently studied [Ugaz and Burghardt (1998)], suggesting that flow aligning dynamics may predominate in main-chain thermotropes that incorporate significant chain flexibility. Since the flow aligning regime has received little attention in previous attempts to model the rheology of textured, polydomain LCPs, we attempt to determine whether available models are capable of predicting the orientation and stress response of this class of LCP. We first examine the predictions of the polydomain Ericksen model, an adaptation of Ericksen's transversely isotropic fluid model which accounts for the polydomain distribution of director orientation while neglecting distortional elasticity. This simple model captures a number of qualitative and quantitative features associated with the evolution of orientation and stress during shear flow inception, but cannot cope with reversing flows. To consider the possible role of distortional elasticity in the re-orientation dynamics upon reversal, we evaluate the mesoscopically averaged domain theory of Larson and Doi [Larson and Doi (1991)], which incorporates a phenomenological description of distortional elastic effects. To date, their approach to account for polydomain structure has only been applied to describe tumbling LCPs. We find that it captures the qualitative transient orientation response to flow reversals, but is less successful in describing the evolution of stresses. This is linked to the decoupling approximation adopted during the model's development. Finally, a modified polydomain Ericksen model is introduced

  2. In situ rheology of yeast biofilms.

    Science.gov (United States)

    Brugnoni, Lorena I; Tarifa, María C; Lozano, Jorge E; Genovese, Diego

    2014-01-01

    The aim of the present work was to investigate the in situ rheological behavior of yeast biofilms growing on stainless steel under static and turbulent flow. The species used (Rhodototula mucilaginosa, Candida krusei, Candida kefyr and Candida tropicalis) were isolated from a clarified apple juice industry. The flow conditions impacted biofilm composition over time, with a predominance of C. krusei under static and turbulent flow. Likewise, structural variations occurred, with a tighter appearance under dynamic flow. Under turbulent flow there was an increase of 112 μm in biofilm thickness at 11 weeks (p < 0.001) and cell morphology was governed by hyphal structures and rounded cells. Using the in situ growth method introduced here, yeast biofilms were determined to be viscoelastic materials with a predominantly solid-like behavior, and neither this nor the G'0 values were significantly affected by the flow conditions or the growth time, and at large deformations their weak structure collapsed beyond a critical strain of about 1.5-5%. The present work could represent a starting point for developing in situ measurements of yeast rheology and contribute to a thin body of knowledge about fungal biofilm formation.

  3. Structure, Ion Transport, and Rheology of Nanoparticle Salts

    KAUST Repository

    Wen, Yu Ho

    2014-07-08

    Above a critical surface chemistry-dependent particle loading associated with nanoscale interparticle spacing, ligand-ligand interactions-both electrostatic and steric-come into play and govern the structure and dynamics of charged oligomer-functionalized nanoparticle suspensions. We report in particular on the structure, ion transport, and rheology of suspensions of nanoparticle salts created by cofunctionalization of silica particles with tethered sulfonate salts and oligomers. Dispersion of the hairy ionic particles into medium and high dielectric constant liquids yields electrolytes with unique structure and transport properties. We find that electrostatic repulsion imparted by ion dissociation can be tuned to control the dispersion state and rheology through counterion size (i.e., Li+, Na+, and K+) and dielectric properties of the dispersing medium. Analysis of small-angle X-ray scattering (SAXS) structure factors and the mechanical modulus shows that when the interparticle spacing approaches nanometer dimensions, weakly entangled anchored ligands experience strong and long-lived topological constraints analogous to those normally found in well-entangled polymeric fluids. This finding provides insight into the molecular origins of the surprisingly similar rubbery plateau moduli observed in hairy nanoparticle suspensions and entangled polymers of the same chemistry as the tethered ligands. Additionally, we find that a time-composition superposition (TCS) principle exists for the suspensions, which can be used to substantially extend the observation time over which dynamics are observed in jammed, soft glassy suspensions. Application of TCS reveals dynamical similarities between the suspensions and entangled solutions of linear polymer chains; i.e., a hairy particle trapped in a cage appears to exhibit analogous dynamics to a long polymer chain confined to a tube. © 2014 American Chemical Society.

  4. Response of multiphase magneto-electro-elastic sensors under ...

    African Journals Online (AJOL)

    The finite element formulation for coupled magneto-electro-elastic sensor bonded to a mild steel beam with plane stress assumption is presented in this paper. The beam is subjected to harmonic excitation with a point load at tip and a uniformly distributed load along the bottom surface of the mild steel beam. Numerical ...

  5. Rheological and sensory behaviors of parboiled pasta cooked using a microwave pasteurization process.

    Science.gov (United States)

    Joyner, Helen S; Jones, Kari E; Rasco, Barbara A

    2017-10-01

    Pasta hydration and cooking requirements make in-package microwave pasteurization of pasta a processing challenge. The objective of this study was to assess instrumental and sensory attributes of microwave-treated pasta in comparison to conventionally cooked pasta. Fettuccine pasta was parboiled for 0, 3, 6, 9, or 12 min, pasteurized by microwaves at 915 MHz, then stored under refrigeration for 1 week. Pastas were evaluated by a trained sensory panel and with rheometry. Total pasta heat treatment affected both rheological and sensory behaviors; these differences were attributed to ultrastructure differences. Significant nonlinear behavior and dominant fluid-like behavior was observed in all pastas at strains >1%. Sensory results suggested microwave pasteurization may intensify the attributes associated with the aging of pasta such as retrogradation. A clear trend between magnitude of heat treatment and attribute intensity was not observed for all sensory attributes tested. The microwave pasta with the longest parboil time showed rheological behavior most similar to conventionally cooked pasta. Principal component analysis revealed that no microwave-treated pasta was similar to the control pasta. However, pasta parboiled for 9 min before microwave treatment had the greatest number of similar sensory attributes, followed by pasta parboiled for 6 or 12 min. Further study is needed to determine overall consumer acceptance of microwave-treated pasta and whether the differences in sensory and rheological behavior would impact consumer liking. The results of this study may be applied to optimize microwave pasteurization processes for cooked pasta and similar products, such as rice. The measurement and analysis procedures can be used to evaluate processing effects on a variety of different foods to determine overall palatability. © 2017 Wiley Periodicals, Inc.

  6. Influence of hydroxypropylmethyl cellulose-sodium laurylsulfate interaction on rheological properties of the solution

    Directory of Open Access Journals (Sweden)

    Šaletić Jelena V.

    2004-01-01

    Full Text Available Interactions between the polymers and surfactants in solution have widely been investigated because of their scientific and technological importance. These interactions can be utilized to modify the physicochemical properties of system in many food products, pharmaceutical formulations, personal care products, paints, pesticides, etc. Interaction between nonionic polymer - hydroxypropylmethyl cellulose (HPMC and anionic surfactant - sodium laurylsulfate (SDS in solution has been investigated in this paper by rheological measurements. Rheological measurements are performed by rotational viscometer at 20°C and changes of rheological characteristics of HPMC solutions (0.5-1.5% with increasing SDS concentrations (0-4.0% were determined. The results of these investigations showed that viscosity of the solution is dependant on HPMC-SDS interaction. At particular SDS concentration viscosity increases, reach maximum and after that decreases until reach constant value. From the viscosity changes the characteristic concentrations of SDS, critical aggregation concentration (cac and polymer saturation point (psp, were determined. These concentrations are in linear relationships with HPMC concentrations. Rheological properties of the solution are strong influenced by HPMC-SDS interaction and exhibits more or less pronounced pseudoplastic behavior, which changes to Newtonian one after the psp has been reached.

  7. Rheology and microstructure of kefiran and whey protein mixed gels.

    Science.gov (United States)

    Kazazi, Hosayn; Khodaiyan, Faramarz; Rezaei, Karamatollah; Pishvaei, Malihe; Mohammadifar, Mohammad Amin; Moieni, Sohrab

    2017-04-01

    The effect of kefiran on cold-set gelation of whey protein isolate (WPI) at 25 °C was studied using rheological measurements and environmental scanning electron microscopy (ESEM). The gelation of samples was induced by the addition of glucono-δ-lactone to the dispersions. WPI concentration was maintained at 8% (w/v) and the concentration of kefiran varied from 0 to 0.08% (w/v). According to rheological measurements, the addition of kefiran into WPI dispersions resulted in a significant increase in the gel strength, the yield stress, and the shear stress values at the flowing point. The gelling point and gelation pH of samples decreased significantly with an increase in kefiran concentration. ESEM micrographs showed that the presence of kefiran played an important role in the microstructure formation of gels. The microstructure of kefiran-WPI mixed gels was more compact and dense, compared to the WPI gel. Depletion interactions between kefiran and whey protein aggregates can be regarded as the chief factor which was responsible for these effects. The present work demonstrated that rheological and microstructural properties of acid-induced whey protein gels were improved by the addition of kefiran.

  8. Rheology of Savannah River Site Tank 51 HLW radioactive sludge

    International Nuclear Information System (INIS)

    Ha, B.C.

    1993-01-01

    Savannah River Site (SRS) Tank 51 HLW radioactive sludge represents a major portion of the first batch of sludge to be vitrified in the Defense Waste Processing Facility (DWPF) at SRS. The rheological properties of Tank 51 sludge will determine if the waste sludge can be pumped by the current DWPF process cell pump design and the homogeneity of melter feed slurries. The rheological properties of Tank 51 sludge and sludge/frit slurries at various solids concentrations were measured remotely in the Shielded Cells Operations (SCO) at the Savannah River Technology Center (SRTC) using a modified Haake Rotovisco viscometer system. Rheological properties of Tank 51 radioactive sludge/Frit 202 slurries increased drastically when the solids content was above 41 wt %. The yield stresses of Tank 51 sludge and sludge/frit slurries fall within the limits of the DWPF equipment design basis. The apparent viscosities also fall within the DWPF design basis for sludge consistency. All the results indicate that Tank 51 waste sludge and sludge/frit slurries are pumpable throughout the DWPF processes based on the current process cell pump design, and should produce homogeneous melter feed slurries

  9. The rheological and fracture properties of Gouda cheese

    NARCIS (Netherlands)

    Luyten, H.

    1988-01-01

    The rheological and fracture behaviour of Gouda cheese was studied. Methods for determining these properties of visco-elastic materials are described. Application of the theory of fracture mechanics, after modification and expansion, to visco-elastic materials with a

  10. Mathematical models to predict rheological parameters of lateritic hydromixtures

    Directory of Open Access Journals (Sweden)

    Gabriel Hernández-Ramírez

    2017-10-01

    Full Text Available The present work had as objective to establish mathematical models that allow the prognosis of the rheological parameters of the lateritic pulp at concentrations of solids from 35% to 48%, temperature of the preheated hydromixture superior to 82 ° C and number of mineral between 3 and 16. Four samples of lateritic pulp were used in the study at different process locations. The results allowed defining that the plastic properties of the lateritic pulp in the conditions of this study conform to the Herschel-Bulkley model for real plastics. In addition, they show that for current operating conditions, even for new situations, UPD mathematical models have a greater ability to predict rheological parameters than least squares mathematical models.

  11. Effect of Cationic Surface Modification on the Rheological Behavior and Microstructure of Nanocrystalline Cellulose

    Directory of Open Access Journals (Sweden)

    Yanjun Tang

    2018-03-01

    Full Text Available In the present work, the microstructure and rheological behavior of nanocrystalline cellulose (NCC and cationically modified NCC (CNCC were comparatively studied. The resultant CNCC generally showed improved dispersion and higher thermal stability in comparison to the un-modified NCC. The rheological behavior demonstrated that the viscosity of the NCC suspension substantially decreased with the increasing shear rate (0.01–100 s−1, showing the typical characteristics of a pseudoplastic fluid. In contrast, the CNCC suspensions displayed a typical three-region behavior, regardless of changes in pH, temperature, and concentration. Moreover, the CNCC suspensions exhibited higher shear stress and viscosity at a given shear rate (0.01–100 s−1 than the NCC suspension. Meanwhile, the dynamic viscoelasticity measurements revealed that the CNCC suspensions possessed a higher elastic (G′ and loss modulus (G″ than NCC suspensions over the whole frequency range (0.1–500 rad·s−1, providing evidence that the surface cationization of NCC makes it prone to behave as a gel-like structure.

  12. The Rheology of the Earth in the Intermediate Time Range

    Directory of Open Access Journals (Sweden)

    A. E. SCHEIDEGGER

    1970-06-01

    Full Text Available The evidence bearing upon the rheology of the " tectonically
    significant layers" of the Earth (" tectonosphere " in the intermediate
    time range (4 hours to 15000 years is analyzed. This evidence is
    based upon observations of rock-behavior in the laboratory, of seismic
    aftershock sequences, of Earth tides and of the decay of the Chandler wobble.
    It is shown that of the rheological models (Maxwell-material, Kelvin-material,
    and logarithmically creeping material advocated in the literature, only that
    based on logarithmic creep does not contradict any of the observational
    evidence available to date. In addition, a strength limit may be present.

  13. Influence of liquid smoke flavoring on the rheological characteristics of minced fish

    Directory of Open Access Journals (Sweden)

    I. S. Drozdetskaya

    2018-01-01

    Full Text Available Organoleptic properties of the finished products from minced fish of centralized production does not always meet the specified quality requirements. In this regard, the use of a liquid smoke flavoring will allow to give the products new attractive taste properties, to expand the range of commonly eaten food, to improve the oxidative stability and microbial spoilage during storage, to essentially simplify the technological process, as compared to traditional smoking, and above all to get safe products. The influence of the addition of the liquid smoke flavoring on functional and technological, physico-chemical and rheological properties of products is known. The parameters of ultimate shear stress (USS, effective viscosity and adhesion of mince of industrial production and those produced of raw materials are defined. The influence of the chemical composition and the type of raw material on these indicators is shown. The influence of water binding and water-holding capacity of mince of industrial production and those produced of raw materials on rheology indicators is defined and confirmed by significant correlation calculations. It was determined that the addition of liquid smoke flavoring "liquid smoke" reduced effective viscosity, adhesion properties of minced fish both of industrial production and that produced of raw materials. The nature of the rheological parameters change was the same for all kinds of mince. The study of water binding and water-holding capacity, shear stress limits, effective viscosity suggests that the minced fish products where liquid smoke flavoring is added will have good formability and rheological properties. The studies have shown that the rheological parameters of the studied minced fish were within normal limits, which allows their use in the centralized production of semi-finished goods and products.

  14. HWVP NCAW melter feed rheology FY 1993 testing and analyses: Letter report

    International Nuclear Information System (INIS)

    Smith, P.A.

    1996-03-01

    The Hanford Waste Vitrification Plant (HWVP) program has been established to immobilize selected Hanford nuclear wastes before shipment to a geologic repository. The HWVP program is directed by the U.S. Department of Energy (DOE). The Pacific Northwest Laboratory (PNL) provides waste processing and vitrification technology to assist the design effort. The focus of this letter report is melter feed rheology, Process/Product Development, which is part of the Task in the PNL HWVP Technology Development (PHTD) Project. Specifically, the melter feed must be transported to the liquid fed ceramic melter (LFCM) to ensure HWVP operability and the manufacture of an immobilized waste form. The objective of the PHTD Project slurry flow technology development is to understand and correlate dilute and concentrated waste, formatted waste, waste with recycle addition, and melter feed transport properties. The objectives of the work described in this document were to examine frit effects and several processing conditions on melter feed rheology. The investigated conditions included boiling time, pH, noble metal containing melter feed, solids loading, and aging time. The results of these experiments contribute to the understanding of melter feed rheology. This document is organized in eight sections. This section provides the introductory remarks, followed by Section 2.0 that contains conclusions and recommendations. Section 3.0 reviews the scientific principles, and Section 4.0 details the experimental methods. The results and discussion and the review of related rheology data are in Sections 5.0 and 6.0, respectively. Section 7.0, an analysis of NCAW melter feed rheology data, provides an overall review of melter feed with FY 91 frit. References are included in Section 8.0. This letter report satisfies contractor milestone PHTD C93-03.02E, as described in the FY 1993 Pacific Northwest Hanford Laboratory Waste Plant Technology Development (PHTD) Project Work Plan

  15. INFLUENCE OF STORING AND TEMPERATURE ON RHEOLOGIC AND THERMOPHYSICAL PROPERTIES OF WHISKY SAMPLES

    Directory of Open Access Journals (Sweden)

    Peter Hlavac

    2013-09-01

    Full Text Available Temperature and storing time can be included between the most significant parameters that influence physical properties of food. This article deals with selected rheologic and thermophysical properties of alcohol drink whisky. Our research was oriented on measuring of rheologic and thermophysical characteristics of whisky. There were measured two types of whisky Grant s and Jim Beam from two different producers, both samples had 40 percent of alcohol content. During the experiments were analyzed rheologic parameters as dynamic viscosity, kinematic viscosity and fluidity and thermophysical parameters as thermal conductivity, thermal diffusivity and volume specific heat. Selected parameters were measured in temperature range 5 to 27 C. Measurements were done on whisky samples in different days during the storage. Measuring of dynamic viscosity was performed by digital rotational viscometer Anton Paar. Principle of measuring is based on dependency of sample resistance against the probe rotation. Density of whisky samples was determined by pycnometric method. Average density at given temperature along with dynamic viscosity value was used at calculation of kinematic viscosity and fluidity was also determined. Measuring of thermophysical parameters was performed by instrument Isomet 2104 Measurement by Isomet is based on analysis of the temperature response of the measured sample to heat flow impulses. Relations of rheologic and thermophysical parameters to the temperature were made and influence of storing time was discussed. From obtained results is clear that dynamic and kinematic viscosity is decreasing exponentially with temperature and fluidity has increasing exponential progress. We found out that both whisky samples had at the beginning and after one week of storage very similar values of rheologic parameters. Very small difference in rheologic parameters of whisky samples was found after two weeks of storing. Values of dynamic and kinematic

  16. The rheological responds of the superparamagnetic fluid based on Fe{sub 3}O{sub 4} hollow nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Ruan, Xiaohui; Pei, Lei; Xuan, Shouhu, E-mail: xuansh@ustc.edu.cn; Yan, Qifan; Gong, Xinglong, E-mail: gongxl@ustc.edu.cn

    2017-05-01

    In this work, a superparamagnetic fluid based on Fe{sub 3}O{sub 4} hollow nanospheres was developed and the influence of the particle structure on the rheological properties was investigated. The Fe{sub 3}O{sub 4} hollow nanospheres which were prepared by using the hydrothermal method presented the superparamagnetic characteristic, and the magnetic fluid thereof showed well magnetorheological (MR) effect. The stable magnetic fluid had a high yield stress even at low shear rate and its maximal yield stress was dramatically influenced by the measurement gap. In comparison to the Fe{sub 3}O{sub 4} nanoparticles based magnetic fluid (MF), the Fe{sub 3}O{sub 4} hollow nanospheres based MF exhibited better MR effect and higher stability since the unique hollow nanostructure. The shear stress of the hollow nanospheres is about 1.85 times larger than the nanoparticles based MF because it formed stronger chains structure under applying a magnetic field. To further investigate the enhancing mechanism, a molecule dynamic simulation was conducted to analyze the shear stress and the structure evolution of the Fe{sub 3}O{sub 4} hollow nanospheres based MF and the simulation matched well with the experimental results. - Highlights: • A superparamagnetic fluid based on Fe{sub 3}O{sub 4} hollow nanospheres was investigated. • The stable magnetic fluid had a high yield stress even at low shear rate. • The shear stress of the hollow nanospheres is large. • A molecule dynamic simulation was conducted to analyze the shear stress.

  17. Linear rheology as a potential monitoring tool for sputum in patients with Chronic Obstructive Pulmonary Disease (COPD).

    Science.gov (United States)

    Nettle, C J; Jenkins, L; Curtis, D; Badiei, N; Lewis, K; Williams, P R; Daniels, D R

    2018-01-01

    The rheological properties of sputum may influence lung function and become modified in disease. This study aimed to correlate the viscoelastic properties of sputum with clinical data on the severity of disease in patients with chronic obstructive pulmonary disease (COPD). Sputum samples from COPD patients were investigated using rheology, simple mathematical modelling and Scanning Electron Microscopy (SEM). The samples were all collected from patients within two days of their admission to Prince Philip Hospital due to an exacerbation of their COPD. Oscillatory and creep rheological techniques were used to measure changes in viscoelastic properties at different frequencies over time. COPD sputum was observed to behave as a viscoelastic solid at all frequencies studied. Comparing the rheology of exacerbated COPD sputum with healthy sputum (not diagnosed with a respiratory disease) revealed significant differences in response to oscillatory shear and creep-recovery experiments, which highlights the potential clinical benefits of better understanding sputum viscoelasticity. A common power law model G(t)=G0(tτ0)-m was successfully fitted to experimental rheology data over the range of frequencies studied. A comparison between clinical data and the power law index m obtained from rheology, suggested that an important possible future application of this parameter is as a potential biomarker for COPD severity.

  18. Rheology of dense suspensions of non colloidal particles

    Science.gov (United States)

    Guazzelli, Élisabeth

    2017-06-01

    Dense suspensions are materials with broad applications both in industrial processes (e.g. waste disposal, concrete, drilling muds, metalworking chip transport, and food processing) and in natural phenomena (e.g. flows of slurries, debris, and lava). Despite its long research history and its practical relevance, the mechanics of dense suspensions remain poorly understood. The major difficulty is that the grains interact both by hydrodynamic interactions through the liquid and by mechanical contact. These systems thus belong to an intermediate regime between pure suspensions and granular flows. We show that we can unify suspension and granular rheology under a common framework by transferring the frictional approach of dry granular media to wet suspensions of spherical particles. We also discuss non-Newtonian behavior such as normal-stress differences and shear-induced migration. Beyond the classical problem of dense suspension of hard spheres which is far from being completely resolved, there are also entirely novel avenues of study concerning more complex mixtures of particles and fluids such as those involving other types of particles (e.g. fibers) or non-Newtonian fluids that we will also address.

  19. Pasting and rheological properties of quinoa-oat composites

    Science.gov (United States)

    Quinoa (Chenopodium, quinoa) flour, known for its essential amino acids, was composited with oat products containing ß-glucan known for lowering blood cholesterol and preventing heart disease. Quinoa-oat composites were developed and evaluated for their pasting and rheological properties by a Rapid ...

  20. PHYSICOCHEMICAL AND RHEOLOGICAL CHARACTERIZATION OF COMMERCIAL DAIRY FERMENTED BEVERAGES

    Directory of Open Access Journals (Sweden)

    KAMILLA SOARES MENDONÇA

    2015-12-01

    Full Text Available The Technical Regulation on Identity and Quality of Whey-based Drinks establish few parameters to dairy beverages, which may impair standardized product providing to the consumer. The ingathering of the physicochemical characteristics provides information that allow the standardization of the product and provide safety to the consumer, whereas the rheological characterization in important for the processing. Samples of five commercial brands of strawberry flavored dairy beverages, with ten to fourteen days of manufacture, from three different batches were analyzed in triplicate in order to study the percentage of protein, fat, pH, titratable acidity, total dry extract, fixed mineral residue and lactose. It was performed a colorimetric determination and verification of the presence of starch .The rheological tests were carried out in a rotational rheometer and the data was adjusted by Herschel-Bulkley’s model. The statistical analysis was executed by an analysis of variance and the Tukey’s test with 5% significance. The analysis showed that the percentages of lipids of three brands were below the required by legislation. Furthermore, the presence of starch in the composition was detected for all analyzed beverages. Both for the physicochemical and rheological parameters the brands of dairy beverage examined differed between themselves in several parameters. These results indicated the need to establish well-defined identity and quality standards aiming at product quality control and consumer safety improvement.

  1. Estimate of Hanford Waste Rheology and Settling Behavior

    International Nuclear Information System (INIS)

    Poloski, Adam P.; Wells, Beric E.; Tingey, Joel M.; Mahoney, Lenna A.; Hall, Mark N.; Thomson, Scott L.; Smith, Gary Lynn; Johnson, Michael E.; Meacham, Joseph E.; Knight, Mark A.; Thien, Michael G.; Davis, Jim J.; Onishi, Yasuo

    2007-01-01

    The U.S. Department of Energy (DOE) Office of River Protection's Waste Treatment and Immobilization Plant (WTP) will process and treat radioactive waste that is stored in tanks at the Hanford Site. Piping, pumps, and mixing vessels have been selected to transport, store, and mix the high-level waste slurries in the WTP. This report addresses the analyses performed by the Rheology Working Group (RWG) and Risk Assessment Working Group composed of Pacific Northwest National Laboratory PNNL, Bechtel National Inc. (BNI), CH2M HILL, DOE Office of River Protection (ORP) and Yasuo Onishi Consulting, LLC staff on data obtained from documented Hanford waste analyses to determine a best-estimate of the rheology of the Hanford tank wastes and their settling behavior. The actual testing activities were performed and reported separately in referenced documentation. Because of this, many of the required topics below do not apply and are so noted

  2. Rheological characterisation of biologically treated and non-treated putrescible food waste.

    Science.gov (United States)

    Baroutian, Saeid; Munir, M T; Sun, Jiyang; Eshtiaghi, Nicky; Young, Brent R

    2018-01-01

    Food waste is gaining increasing attention worldwide due to growing concerns over its environmental and economic costs. Understanding the rheological behaviour of food waste is critical for effective processing so rheological measurements were carried out for different food waste compositions at 25, 35 and 45 °C. Food waste samples of various origins (carbohydrates, vegetables & fruits, and meat), anaerobically digested and diluted samples were used in this study. The results showed that food waste exhibits shear-thinning flow behaviour and viscosity of food waste is a function of temperature and composition. The composition of food waste affected the flow properties. Viscosity decreased at a given temperature as the proportion of carbohydrate increased. This may be due to the high water content of vegetable & fruits as the total solids fraction is likely to be a key controlling factor of the rheology. The Herschel-Bulkley model was used successfully to model food waste flow behaviour. Also, a higher strain was needed to break down the structure of the food waste as digestion time increased. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Suitability of simple rheological laws for the numerical simulation of dense pyroclastic flows and long-runout volcanic avalanches

    Science.gov (United States)

    Kelfoun, Karim

    2011-08-01

    The rheology of volcanic rock avalanches and dense pyroclastic flows is complex, and it is difficult at present to constrain the physics of their processes. The problem lies in defining the most suitable parameters for simulating the behavior of these natural flows. Existing models are often based on the Coulomb rheology, sometimes with a velocity-dependent stress (e.g., Voellmy), but other laws have also been used. Here I explore the characteristics of flows, and their deposits, obtained on simplified topographies by varying source conditions and rheology. The Coulomb rheology, irrespective of whether there is a velocity-dependent stress, forms cone-shaped deposits that do not resemble those of natural long-runout events. A purely viscous or a purely turbulent flow can achieve realistic velocities and thicknesses but cannot form a deposit on slopes. The plastic rheology, with (e.g., Bingham) or without a velocity-dependent stress, is more suitable for the simulation of dense pyroclastic flows and long-runout volcanic avalanches. With this rheology, numerical flows form by pulses, which are often observed during natural flow emplacement. The flows exhibit realistic velocities and deposits of realistic thicknesses. The plastic rheology is also able to generate the frontal lobes and lateral levées which are commonly observed in the field. With the plastic rheology, levée formation occurs at the flow front due to a divergence of the driving stresses at the edges. Once formed, the levées then channel the remaining flow mass. The results should help future modelers of volcanic flows with their choice of which mechanical law corresponds best to the event they are studying.

  4. Rheological properties of purified illite clays in glycerol/water suspensions

    Science.gov (United States)

    Dusenkova, I.; Malers, J.; Berzina-Cimdina, L.

    2015-04-01

    There are many studies about rheological properties of clay-water suspensions, but no published investigations about clay-glycerol suspensions. In this work apparent viscosity of previously purified illite containing clay fraction clay minerals were almost totally removed by centrifugation. All obtained suspensions behaved as shear-thinning fluids with multiple times higher viscosity than pure glycerol/water solutions. Reduction of clay fraction concentration by 5% decreased the apparent viscosity of 50% glycerol/water suspensions approximately 5 times. There was basically no difference in apparent viscosity between all four 50% glycerol/water suspensions, but in 90% glycerol/water suspensions samples from Iecava deposit showed slightly higher apparent viscosity, which could be affected by the particle size distribution.

  5. Rheological properties of different minerals and clay soils

    Directory of Open Access Journals (Sweden)

    Dolgor Khaydapova

    2015-07-01

    Full Text Available Rheological properties of kaolinite, montmorillonite, ferralitic soil of the humid subtropics (Norfolk island, southwest of Oceania, alluvial clay soil of arid subtropics (Konyaprovince, Turkey and carbonate loess loam of Russian forest-steppe zone were determined. A parallel plate rheometer MCR-302 (Anton Paar, Austria was used in order to conduct amplitude sweep test. Rheological properties allow to assess quantitatively structural bonds and estimate structural resistance to a mechanical impact. Measurements were carried out on samples previously pounded and capillary humidified during 24 hours. In the amplitude sweep method an analyzed sample was placed between two plates. The upper plate makes oscillating motions with gradually extending amplitude. Software of the device allows to receive several rheological parameters such as elastic modulus (G’, Pa, viscosity modulus (G", Pa, linear viscoelasticity range (G’>>G”, and point of destruction of structure at which the elastic modulus becomes equal to the viscosity modulus (G’=G”- crossover. It was found out that in the elastic behavior at G '>> G " strength of structural links of kaolinite, alluvial clay soil and loess loam constituted one order of 105 Pa. Montmorillonit had a minimum strength - 104 Pa and ferrallitic soil of Norfolk island [has] - a maximum one -106 Pa. At the same time montmorillonite and ferralitic soil were characterized by the greatest plasticity. Destruction of their structure (G '= G" took place only in the cases when strain was reaching 11-12%. Destraction of the kaolinite structure happened at 5% of deformation and of the alluvial clay soil and loess loam - at 4.5%.

  6. Microfluidic processing of concentrated surfactant mixtures: online SAXS, microscopy and rheology.

    Science.gov (United States)

    Martin, Hazel P; Brooks, Nicholas J; Seddon, John M; Luckham, Paul F; Terrill, Nick J; Kowalski, Adam J; Cabral, João T

    2016-02-14

    We investigate the effect of microfluidic flow on the microstructure and dynamics of a model surfactant mixture, combining synchrotron Small Angle X-ray Scattering (SAXS), microscopy and rheology. A system comprising a single-chain cationic surfactant, hexadecyl trimethyl ammonium chloride (C16TAC), a short-chain alcohol (1-pentanol) and water was selected for the study due to its flow responsiveness and industrial relevance. Model flow fields, including sequential contraction-expansion (extensional) and rotational flows, were investigated and the fluid response in terms of the lamellar d-spacing, orientation and birefringence was monitored in situ, as well as the recovery processes after cessation of flow. Extensional flows are found to result in considerable d-spacing increase (from approx 59 Å to 65 Å). However, under continuous flow, swelling decreases with increasing flow velocity, eventually approaching the equilibrium values at velocities ≃2 cm s(-1). Through individual constrictions we observe the alignment of lamellae along the flow velocity, accompanied by increasing birefringence, followed by an orientation flip whereby lamellae exit perpendicularly to the flow direction. The resulting microstructures are mapped quantitatively onto the flow field in 2D with 200 μm spatial resolution. Rotational flows alone do not result in appreciable changes in lamellar spacing and flow type and magnitude evidently impact the fluid microstructure under flow, as well as upon relaxation. The findings are correlated with rheological properties measured ex situ to provide a mechanistic understanding of the effect of flow imposed by tubular processing units in the phase behavior and performance of a model surfactant system with ubiquitous applications in personal care and coating industries.

  7. Rheological Characteristics of 2D Titanium Carbide (MXene) Dispersions: A Guide for Processing MXenes.

    Science.gov (United States)

    Akuzum, Bilen; Maleski, Kathleen; Anasori, Babak; Lelyukh, Pavel; Alvarez, Nicolas Javier; Kumbur, E Caglan; Gogotsi, Yury

    2018-03-27

    Understanding the rheological properties of two-dimensional (2D) materials in suspension is critical for the development of various solution processing and manufacturing techniques. 2D carbides and nitrides (MXenes) constitute one of the largest families of 2D materials with >20 synthesized compositions and applications already ranging from energy storage to medicine to optoelectronics. However, in spite of a report on clay-like behavior, not much is known about their rheological response. In this study, rheological behavior of single- and multilayer Ti 3 C 2 T x in aqueous dispersions was investigated. Viscous and viscoelastic properties of MXene dispersions were studied over a variety of concentrations from colloidal dispersions to high loading slurries, showing that a multilayer MXene suspension with up to 70 wt % can exhibit flowability. Processing guidelines for the fabrication of MXene films, coatings, and fibers have been established based on the rheological properties. Surprisingly, high viscosity was observed at very low concentrations for solutions of single-layer MXene flakes. Single-layer colloidal solutions were found to exhibit partial elasticity even at the lowest tested concentrations (<0.20 mg/mL) due to the presence of strong surface charge and excellent hydrophilicity of MXene, making them amenable to fabrication at dilute concentrations. Overall, the findings of this study provide fundamental insights into the rheological response of this quickly growing 2D family of materials in aqueous environments as well as offer guidelines for processing of MXenes.

  8. Researches on thermal and rheological properties of cream- and vegetable spread

    Directory of Open Access Journals (Sweden)

    A. N. Ostrikov

    2016-01-01

    Full Text Available Researches of thermal and rheological properties of cream- and vegetable spread are necessary for the scientific substantiation of their obtaining process, namely mixing and crystallization processes. As the object of research, we chose a cream- and vegetable spread, with the following composition: peanut butter 10%; wheat germ oil 10%; linseed oil 20%; butter 59.8%; emulsifier 0.2%. With the data obtained in the course of research of the rheological properties of cream- and vegetable spread, one can subsequently generate recommendations for optimization of technological modes of production. In particular, one can solve problems of intensification of hydro-mechanical and thermal processes by carrying them out at such a temperature and speed when the maximum preservation of the produced product structure will be achieved. Determination of thermal characteristics was carried out in the apparatus for the study of thermal and rheological properties of viscoelastic liquids Coesfeld RT-1394H. Rheological researches of cream- and vegetable spread were carried out on a series of viscometers SV-10 and PB-8m. The graphs of spread dynamic viscosity dependence on the temperature, and the dependence of the effective viscosity of the spread and vegetable oils on the shear rate were built according to experimental data. The data obtained is rational to choose the equipment for processing and production of cream- and vegetable spread, to simulate processes taking place in the production process, to solve problems of intensification of thermal and hydro-mechanical processes reasonably, by conducting the production process at temperatures that do not cause the destruction of the product structure.

  9. Drilling mud and cement slurry rheology manual

    Energy Technology Data Exchange (ETDEWEB)

    This book is not primarily concerned with theory. Its basic approach is practical. It has attempted to present a logical treatment which will be easy to apply in practice. As a result, certain computing methods were omitted, and precision sometimes has to be sacrificed to simplicity. However, no apology is made for the use of such approximations; in fact, any attempt at rigor would be doomed to failure, in view of the many inherent factors which do not lend themselves to quantitative treatment. Chapter 1: deals with fundamental concepts. Chapter 2: refers to the general principles involved in determining rheological parameters of drilling fluids and cement slurries. Chapter 3: relates to practical methods for using the results obtained in the first two Chapters, in units employed on the worksite. It is primarily intended for technicians called upon to make ''hydraulic'' computations during drilling. Chapter 4: contains several examples.

  10. Rheological properties of erythrocytes in patients infected with Clostridium difficile.

    Science.gov (United States)

    Czepiel, Jacek; Jurczyszyn, Artur; Biesiada, Grażyna; Sobczyk-Krupiarz, Iwona; Jałowiecka, Izabela; Świstek, Magdalena; Perucki, William; Teległów, Aneta; Marchewka, Jakub; Dąbrowski, Zbigniew; Mach, Tomasz; Garlicki, Aleksander

    2014-12-04

    Clostridium difficile infection (CDI) is a bacterial infection of the digestive tract. Acute infections are accompanied by increased risk for venous thromboembolism (VTE). To date, there have been no studies of the rheological properties of blood during the course of digestive tract infections. The aim of our study was to examine the effects of CDI on red blood cell (RBC) rheology, specifically RBC deformability, RBC aggregation, and plasma viscosity. In addition, the activity of glucose 6 phosphate dehydrogenase (G6PD) and acetylcholinesterase (AChE) in RBC was studied. Our study group included 20 patients with CDI, 20 healthy persons comprised the control group. We examined the effects of CDI on the rheology of RBCs, their deformability and aggregation, using a Laser-assisted Optical Rotational Cell Analyzer (LORCA). Plasma viscosity was determined using a capillary tube plasma viscosymeter. Moreover, we estimated the activity of AChE and G6PD in RBC using spectrophotometric method. A statistically significant increase was found in the aggregation index, viscosity and activity of G6PD whereas the amount of time to reach half of maximum aggregation (t½) and the amplitude of aggregation (AMP) both showed statistically significantly decreases among patients with CDI compared to the control group. We also observed that the Elongation Index (EI) was decreased when shear stress values were low, between 0.3 Pa and 0.58 Pa, whereas EI was increased for shear stress in the range of 1.13-59.97 Pa. These observations were statistically significant. We report for the first time that acute infection of the gastrointestinal tract with Clostridium difficile is associated with abnormalities in rheological properties of blood, increased serum viscosity as well as increased aggregation of RBCs, which correlated with severity of inflammation. These abnormalities may be an additional mechanism causing increased incidence of VTE in CDI.

  11. Rheological properties of erythrocytes in patients infected with Clostridium difficile

    Directory of Open Access Journals (Sweden)

    Jacek Czepiel

    2014-12-01

    Full Text Available Clostridium difficile infection (CDI is a bacterial infection of the digestive tract. Acute infections are accompanied by increased risk for venous thromboembolism (VTE. To date, there have been no studies of the rheological properties of blood during the course of digestive tract infections. The aim of our study was to examine the effects of CDI on red blood cell (RBC rheology, specifically RBC deformability, RBC aggregation, and plasma viscosity. In addition, the activity of glucose 6 phosphate dehydrogenase (G6PD and acetylcholinesterase (AChE in RBC was studied. Our study group included 20 patients with CDI, 20 healthy persons comprised the control group. We examined the effects of CDI on the rheology of RBCs, their deformability and aggregation, using a Laser–assisted Optical Rotational Cell Analyzer (LORCA. Plasma viscosity was determined using a capillary tube plasma viscosymeter. Moreover, we estimated the activity of AChE and G6PD in RBC using spectrophotometric method. A statistically significant increase was found in the aggregation index, viscosity and activity of G6PD whereas the amount of time to reach half of maximum aggregation (t½ and the amplitude of aggregation (AMP both showed statistically significantly decreases among patients with CDI compared to the control group. We also observed that the Elongation Index (EI was decreased when shear stress values were low, between 0.3 Pa and 0.58 Pa, whereas EI was increased for shear stress in the range of 1.13 - 59.97 Pa. These observations were statistically significant. We report for the first time that acute infection of the gastrointestinal tract with Clostridium difficile is associated with abnormalities in rheological properties of blood, increased serum viscosity as well as increased aggregation of RBCs, which correlated with severity of inflammation. These abnormalities may be an additional mechanism causing increased incidence of VTE in CDI.

  12. Analysis of LDPE-ZnO-clay nanocomposites using novel cumulative rheological parameters

    Science.gov (United States)

    Kracalik, Milan

    2017-05-01

    Polymer nanocomposites exhibit complex rheological behaviour due to physical and also possibly chemical interactions between individual phases. Up to now, rheology of dispersive polymer systems has been usually described by evaluation of viscosity curve (shear thinning phenomenon), storage modulus curve (formation of secondary plateau) or plotting information about dumping behaviour (e.g. Van Gurp-Palmen-plot, comparison of loss factor tan δ). On the contrary to evaluation of damping behaviour, values of cot δ were calculated and called as "storage factor", analogically to loss factor. Then values of storage factor were integrated over specific frequency range and called as "cumulative storage factor". In this contribution, LDPE-ZnO-clay nanocomposites with different dispersion grades (physical networks) have been prepared and characterized by both conventional as well as novel analysis approach. Next to cumulative storage factor, further cumulative rheological parameters like cumulative complex viscosity, cumulative complex modulus or cumulative storage modulus have been introduced.

  13. Rheological studies of aqueous stabilised nano-zirconia particle suspensions

    Directory of Open Access Journals (Sweden)

    Asad Ullah Khan

    2012-02-01

    Full Text Available In the present investigation aqueous suspensions of nano- and colloidal range particles are stabilised by changing the ambient pH. Rheology is used to establish the stability of the suspensions and it is found that the rheology of the suspensions is strongly dependent on the pH values. The viscosity is highest close to the iso-electric point of the powders. At the iso-electric point the net surface charge on the powder particles is zero and is the cause of the high viscosity. Away from the iso-electric point, the particles are charged, giving rise to a double layer phenomenon and causing the reduction in viscosity. It is also found that increasing the solid contents of the suspensions reduces the pH region of low viscosity.

  14. Free vibration analysis of magneto-electro-thermo-elastic nanobeams resting on a Pasternak foundation

    Science.gov (United States)

    Jandaghian, A. A.; Rahmani, O.

    2016-03-01

    In this study, free vibration analysis of magneto-electro-thermo-elastic (METE) nanobeams resting on a Pasternak foundation is investigated based on nonlocal theory and Timoshenko beam theory. Coupling effects between electric, magnetic, mechanical and thermal loading are considered to derive the equations of motion and distribution of electrical potential and magnetic potential along the thickness direction of the METE nanobeam. The governing equations and boundary conditions are obtained using the Hamilton principle and discretized via the differential quadrature method (DQM). Numerical results reveal the effects of the nonlocal parameter, magneto-electro-thermo-mechanical loading, Winkler spring coefficients, Pasternak shear coefficients and height-to-length ratio on the vibration characteristics of METE nanobeams. It is observed that the natural frequency is dependent on the magnetic, electric, temperature, elastic medium, small-scale coefficient, and height-to-length ratio. These results are useful in the mechanical analysis and design of smart nanostructures constructed from magneto-electro-thermo-elastic materials.

  15. Free vibration analysis of magneto-electro-thermo-elastic nanobeams resting on a Pasternak foundation

    International Nuclear Information System (INIS)

    Jandaghian, A A; Rahmani, O

    2016-01-01

    In this study, free vibration analysis of magneto-electro-thermo-elastic (METE) nanobeams resting on a Pasternak foundation is investigated based on nonlocal theory and Timoshenko beam theory. Coupling effects between electric, magnetic, mechanical and thermal loading are considered to derive the equations of motion and distribution of electrical potential and magnetic potential along the thickness direction of the METE nanobeam. The governing equations and boundary conditions are obtained using the Hamilton principle and discretized via the differential quadrature method (DQM). Numerical results reveal the effects of the nonlocal parameter, magneto-electro-thermo-mechanical loading, Winkler spring coefficients, Pasternak shear coefficients and height-to-length ratio on the vibration characteristics of METE nanobeams. It is observed that the natural frequency is dependent on the magnetic, electric, temperature, elastic medium, small-scale coefficient, and height-to-length ratio. These results are useful in the mechanical analysis and design of smart nanostructures constructed from magneto-electro-thermo-elastic materials. (paper)

  16. Capillary rheological studies of 17-4 PH MIM feedstocks prepared using a custom CSIR binder system

    CSIR Research Space (South Africa)

    Machaka, Ronald

    2018-02-01

    Full Text Available This paper reports on an attempt to establish the rheological properties of 17-4 PH stainless steel MIM feedstocks prepared using a proprietary CSIR wax-based binder system. The influence of powder and feedstock characteristics on the rheological...

  17. Rheological and electrical properties used to investigate the coagulation process during sludge treatment.

    Science.gov (United States)

    Mortadi, A; El Melouky, A; Chahid, E; Nasrellah, H; Bakasse, M; Zradba, A; Cherkaoui, O; El Moznine, R

    2018-01-01

    Analyses of rheological properties and electrical conductivity (σ dc ) at direct current have been employed in order to investigate the effects of calcium oxide on the coagulation process during sludge treatment in the textile industry. In this context, rheological and electrical measurements were performed on five samples - one that contained raw sludge and the other four that were prepared from the raw sludge and different amounts of calcium oxide: 2, 3, 4, 5% (w/w). Rheological behavior of these samples was analyzed using the Herschel-Bulkley modified model. The influence of calcium oxide content on the rheological parameters such as infinite viscosity, the yield stress, the consistency coefficient, and the consistency index, are presented and discussed. The impact of the calcium oxide content on pH and conductivity were also examined. Similar behaviors have been seen in the evolution of conductivity and infinite viscosity as a function of the calcium oxide content. These latter characteristics were modeled by an equation using two power laws. This equation was able to fit very well the evolution of electrical conductivity and also the viscosity versus the percentage of calcium oxide to predict the optimal amount of calcium oxide (3%) to achieve the coagulation step during sludge treatment.

  18. Study and rheological characterization of various bone ash porcelain formulations

    International Nuclear Information System (INIS)

    Carus, L.A.; Bento, L.; Braganca, S.R.

    2012-01-01

    The bone ash porcelain is a widely accepted product on the market because their qualities such as high strength and whiteness, to differ from common table porcelains. Its traditional formulation comes from an English recipe, consisting of 25% of kaolin, 25% of feldspar and 50% of bovine bone ash. In some studies, this proportion is adapted to regional conditions, optimizing the formulation according to the raw materials available. In this study, the rheological behavior of bone porcelain suspensions, in which the flux feldspar is partially substituted by an alternative flux (espudomenio, wollastonite and glass). The results show that the rheological behavior of porcelain is affected by the size, shape, surface area and particle size distribution of particles in suspension

  19. Rheological Behavior of Bentonite-Polyester Dispersions

    Science.gov (United States)

    Abu-Jdayil, Basim; Al-Omari, Salah Addin

    2013-07-01

    The rheological behavior of a bentonite clay dispersed in unsaturated polyester was investigated. The effects of the solid content and particle size on the steady and transient rheological properties of the dispersions were studied. In addition, two types of bentonite with different Na+/Ca+2 ratio were used in this study. The Herschel-Bulkley and the Weltman models were used to describe the apparent viscosity of the bentonite-polyester composite in relation to the shear rate and shearing time. The bentonite-polyester dispersions were found to exhibit both Newtonian and non-Newtonian behavior. The transition from a Newtonian to a Bingham plastic and then to a shear-thinning material with a yield stress was found to depend on the solid concentration, the particle size, and the type of bentonite. At a low solid content, the apparent viscosity of the bentonite dispersion increased linearly with solid concentration. But a dramatic increase in the apparent viscosity beyond a solid content of 20 wt.% was observed. On the other hand, a thixotropic behavior was detected in bentonite-polyester dispersions with a high solid content and a low particle size. However, this behavior was more pronounced in dispersions with a high Na+/Ca+2 ratio.

  20. Selected Rheological Properties of RS3/4 Type Resistant Starch

    Directory of Open Access Journals (Sweden)

    Kapelko-Żeberska Małgorzata

    2017-12-01

    Full Text Available This study was aimed at determining the effect of acetylation degree and crosslinking of retrograded starch with adipic acid on selected rheological properties of prepared pastes and gels. The esterification of retrograded starch allowed obtaining preparations with various degrees of substitution with residues of acetic (0.7–11.2 g/100 g and adipic acids (0.1–0.3 g/100 g. Acetylation and crosslinking caused a decrease in amylose content of the preparations (3–21 g/100 g. Solubility of the preparations in water, in a wide range of variability, was increasing along with an increasing degree of acetylation and with a decreasing degree of crosslinking (19–100 g/100 g. Values of most of the rheological coefficients determined based on the flow curves of the prepared pastes and mechanical spectra of gels (3.5rheological properties upon the effect of double modification were not the sum of changes proceeding as a result of single modifications. Instead, interaction of both factors was observed. The conducted modifications enable modelling the properties of produced preparations.

  1. Rheological behavior of silver nanowire conductive inks during screen printing

    Science.gov (United States)

    Hemmati, Shohreh; Barkey, Dale P.; Gupta, Nivedita

    2016-08-01

    The rheological behavior of silver nanowire (AgNW) suspensions adapted for screen printing inks was investigated. Aqueous silver nanowire inks consisting of AgNW (length of 30 μm, and diameter of 40 and 90 nm), dispersant and binder were formulated. The effect of AgNW content on the rheological behavior of the ink and the build-up of ink structure after screen printing were examined as they depend on applied shear and temperature. Rheological measurements under conditions that mimic the screen printing process were done to assess viscoelastic properties induced by flow alignment of the wires and the subsequent recovery of the low shear structure. The Stretched Exponential model (SEmo) was used to model the recovery process after screen printing to obtain the characteristic time of the recovery or build-up process. The characteristic time was determined at several temperatures to obtain the activation energy of recovery. The domination of Brownian motion or non-Brownian motion behavior can be characterized by a Peclet number, which is the ratio of shear rate to the rotational diffusion coefficient. The Peclet number and the dimensionless concentration of wires were used to assess the recovery mechanism. The steady viscosity at low and high shear rates was also treated by an activation energy analysis.

  2. Rheological behavior of silver nanowire conductive inks during screen printing

    International Nuclear Information System (INIS)

    Hemmati, Shohreh; Barkey, Dale P.; Gupta, Nivedita

    2016-01-01

    The rheological behavior of silver nanowire (AgNW) suspensions adapted for screen printing inks was investigated. Aqueous silver nanowire inks consisting of AgNW (length of 30 μm, and diameter of 40 and 90 nm), dispersant and binder were formulated. The effect of AgNW content on the rheological behavior of the ink and the build-up of ink structure after screen printing were examined as they depend on applied shear and temperature. Rheological measurements under conditions that mimic the screen printing process were done to assess viscoelastic properties induced by flow alignment of the wires and the subsequent recovery of the low shear structure. The Stretched Exponential model (SEmo) was used to model the recovery process after screen printing to obtain the characteristic time of the recovery or build-up process. The characteristic time was determined at several temperatures to obtain the activation energy of recovery. The domination of Brownian motion or non-Brownian motion behavior can be characterized by a Peclet number, which is the ratio of shear rate to the rotational diffusion coefficient. The Peclet number and the dimensionless concentration of wires were used to assess the recovery mechanism. The steady viscosity at low and high shear rates was also treated by an activation energy analysis.

  3. Rheological behavior of silver nanowire conductive inks during screen printing

    Energy Technology Data Exchange (ETDEWEB)

    Hemmati, Shohreh; Barkey, Dale P., E-mail: dpb@unh.edu; Gupta, Nivedita [University of New Hampshire, Department of Chemical Engineering (United States)

    2016-08-15

    The rheological behavior of silver nanowire (AgNW) suspensions adapted for screen printing inks was investigated. Aqueous silver nanowire inks consisting of AgNW (length of 30 μm, and diameter of 40 and 90 nm), dispersant and binder were formulated. The effect of AgNW content on the rheological behavior of the ink and the build-up of ink structure after screen printing were examined as they depend on applied shear and temperature. Rheological measurements under conditions that mimic the screen printing process were done to assess viscoelastic properties induced by flow alignment of the wires and the subsequent recovery of the low shear structure. The Stretched Exponential model (SEmo) was used to model the recovery process after screen printing to obtain the characteristic time of the recovery or build-up process. The characteristic time was determined at several temperatures to obtain the activation energy of recovery. The domination of Brownian motion or non-Brownian motion behavior can be characterized by a Peclet number, which is the ratio of shear rate to the rotational diffusion coefficient. The Peclet number and the dimensionless concentration of wires were used to assess the recovery mechanism. The steady viscosity at low and high shear rates was also treated by an activation energy analysis.

  4. Influence of polymer fibers on rheological properties of cement mortars

    Directory of Open Access Journals (Sweden)

    Malaszkiewicz Dorota

    2017-10-01

    Full Text Available The reinforcing effect of fibers in cement composites often results in the improvement of the brittle nature of cementitious materials. But the decrease in the workability of fresh concrete is often the disadvantage of fibers addition. Conventional single-point workability tests cannot characterize workability of concrete in terms of fundamental rheological parameters. To this end, this paper describes an investigation of the influence of synthetic fiber additions (fiber length in the range 12–50 mm and volume fraction in the range 0–4% on the rheological properties of fiber reinforced fresh mortar (FRFM and development of these properties over time. The rheometer Viskomat XL was used in this study. Within the limitations of the instrument and testing procedure it is shown that FRFMs conform to the Bingham model. Natural postglacial sand 0/4 mm was used as a fine aggregate and cement CEMI 42.5 R was used as a binder. Three commercial synthetic fibers were selected for these examinations. Rheological properties were expressed in terms of Bingham model parameters g (yield value and h (plastic viscosity. Based on the test results it was found out that the fiber type and volume fraction affected both the yield stress and plastic viscosity.

  5. Influence of polymer fibers on rheological properties of cement mortars

    Science.gov (United States)

    Malaszkiewicz, Dorota

    2017-10-01

    The reinforcing effect of fibers in cement composites often results in the improvement of the brittle nature of cementitious materials. But the decrease in the workability of fresh concrete is often the disadvantage of fibers addition. Conventional single-point workability tests cannot characterize workability of concrete in terms of fundamental rheological parameters. To this end, this paper describes an investigation of the influence of synthetic fiber additions (fiber length in the range 12-50 mm and volume fraction in the range 0-4%) on the rheological properties of fiber reinforced fresh mortar (FRFM) and development of these properties over time. The rheometer Viskomat XL was used in this study. Within the limitations of the instrument and testing procedure it is shown that FRFMs conform to the Bingham model. Natural postglacial sand 0/4 mm was used as a fine aggregate and cement CEMI 42.5 R was used as a binder. Three commercial synthetic fibers were selected for these examinations. Rheological properties were expressed in terms of Bingham model parameters g (yield value ) and h (plastic viscosity). Based on the test results it was found out that the fiber type and volume fraction affected both the yield stress and plastic viscosity.

  6. Hereditary spherocytosis and elliptocytosis associated with prosthetic heart valve replacement: rheological study of erythrocyte modifications.

    Science.gov (United States)

    Caprari, Patrizia; Tarzia, Anna; Mojoli, Giorgio; Cianciulli, Paolo; Mannella, Emilio; Martorana, Maria Cristina

    2009-04-01

    The implantation of a prosthetic heart valve (HVP) in patients with hereditary spherocytosis (HS) and hereditary elliptocytosis (HE) is rare, and the changes in the structure and deformability of erythrocytes that follow implantation in these patients have been poorly described. In the present study, the erythrocytes in HS and HE patients with mechanical HVP were compared to the erythrocytes in patients with only congenital membrane defects, in terms of biochemical modifications and rheological behaviour. Integral and cytoskeletal erythrocyte membrane proteins were studied, and blood viscosity (shear rate/shear stress ratio), aggregation ratio [eta(1 s(-1))/eta(200 s(-1))], and red cell visco-elasticity were determined. Valve replacement with a mechanical prosthesis worsened anaemia and resulted in a change in haemolysis, from sub-clinical to evident. The rheological investigation of erythrocytes from HS patients confirmed the characteristic increased viscosity and aggregation ratio and the decreased deformability. The rheological behaviour of erythrocytes from patients with HVP showed a decrease in viscosity and an increase in elastic modulus. In these patients, the prosthesis seems to have induced traumatic damage to the erythrocyte membrane, leading to fragmentation and lysis, which in turn modified rheological parameters. The biochemical and rheological investigation allowed us to understand the clinical and haematological pictures of the patients and to describe the role played by different factors in haemolytic anaemia.

  7. Rheological behavior, chemical and physical characterization of soybean and cottonseed methyl esters submitted to thermal oxidation process

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Adriano Sant' ana; Silva, Flavio Luiz Honorato da; Lima, Ezenildo Emanuel de; Carvalho, Maria Wilma N.C. [Universidade Federal de Campina Grande (CCT/UFCG), PB (Brazil). Centro de Ciencia e Tecnologia; Dantas, Hemeval Jales; Farias, Paulo de Almeida [Universidade Federal de Campina Grande (CTRN/UFCG), PB (Brazil). Centro de Tecnologia e Recursos Naturais

    2008-07-01

    In this study the effect of antioxidant terc-butylhydroxyanisol (BHA) on the oxidative stability of soybean and cottonseed methyl esters subjected to thermal degradation at 100 deg C was studied. Soybean and cottonseed methyl esters specific mass, dynamic viscosity and rheological behavior were evaluated. According to results, antioxidant degraded samples specific mass and dynamic viscosity did not showed alterations, remaining statistically equal. Soybean and cottonseed methyl esters showed a Newtonian rheological behavior and degraded samples without adding BHA showed rheological behavior alterations. (author)

  8. Three-Dimensional Rheological Structure of North China Craton Determined by Integration of Multiple observations: Controlling Role for Lithospheric Rifting

    Science.gov (United States)

    Xiong, X.; Shan, B.; Li, Y.

    2017-12-01

    The North China Craton (NCC) has undergone significant lithospheric rejuvenation in late Mesozoic and Cenozoic, one feature of which is the widespread extension and rifting. The extension is distinct between the two parts of NCC: widespread rifting in the eastern NCC and localized narrow rifting in the west. The mechanism being responsible for this difference is uncertain and highly debated. Since lithospheric deformation can be regarded as the response of lithosphere to various dynamic actions, the rheological properties of lithosphere must have a fundamental influence on its tectonics and deformation behavior. In this study, we investigated the 3D thermal and rheological structure of NCC by developing a model integrating several geophysical observables (such as surface heatflow, regional elevation, gravity and geoid anomalies, and seismic tomography models). The results exhibit obvious lateral variation in rheological structure between the eastern and western NCC. The overall lithospheric strength is higher in the western NCC than in the east. Despite of such difference in rheology, both parts of NCC are characterized by mantle dominated strength regime, which facilitates the development of narrow rifting. Using ancient heatflow derived from mantle xenoliths studies, and taking the subduction-related dehydration reactions during Mesozoic into account, we constructed the thermal and rheological structure of NCC in Ordovician, early Cretaceous and early Cenozoic. Combining the evidence from numerical simulations, we proposed an evolution path of the rifting in NCC. The lithosphere of NCC in Ordovician was characterized by a normal craton features: low geotherm, high strength and mantle dominated regime. During Jurassic and Cretaceous, the mantle lithosphere in the eastern NCC was hydrated by fluid released by the suduction of the Pacific plate, resulting in weakening of the lithosphere and a transition from mantle dominated to crust dominated regime, which

  9. An Ice Model That is Consistent with Composite Rheology in GIA Modelling

    Science.gov (United States)

    Huang, P.; Patrick, W.

    2017-12-01

    There are several popular approaches in constructing ice history models. One of them is mainly based on thermo-mechanical ice models with forcing or boundary conditions inferred from paleoclimate data. The second one is mainly based on the observed response of the Earth to glacial loading and unloading, a process called Glacial Isostatic Adjustment or GIA. The third approach is a hybrid version of the first and second approaches. In this presentation, we will follow the second approach which also uses geological data such as ice flow, terminal moraine data and simple ice dynamic for the ice sheet re-construction (Peltier & Andrew 1976). The global ice model ICE-6G (Peltier et al. 2015) and all its predecessors (Tushingham & Peltier 1991, Peltier 1994, 1996, 2004, Lambeck et al. 2014) are constructed this way with the assumption that mantle rheology is linear. However, high temperature creep experiments on mantle rocks show that non-linear creep laws can also operate in the mantle. Since both linear (e.g. diffusion creep) and non-linear (e.g. dislocation) creep laws can operate simultaneously in the mantle, mantle rheology is likely composite, where the total creep is the sum of both linear and onlinear creep. Preliminary GIA studies found that composite rheology can fit regional RSL observations better than that from linear rheology(e.g. van der Wal et al. 2010). The aim of this paper is to construct ice models in Laurentia and Fennoscandia using this second approach, but with composite rheology, so that its predictions can fit GIA observations such as global RSL data, land uplift rate and g-dot simultaneously in addition to geological data and simple ice dynamics. The g-dot or gravity-rate-of-change data is from the GRACE gravity mission but with the effects of hydrology removed. Our GIA model is based on the Coupled Laplace-Finite Element method as described in Wu(2004) and van der Wal et al.(2010). It is found that composite rheology generally supports a thicker

  10. PyFLOWGO: An open-source platform for simulation of channelized lava thermo-rheological properties

    Science.gov (United States)

    Chevrel, Magdalena Oryaëlle; Labroquère, Jérémie; Harris, Andrew J. L.; Rowland, Scott K.

    2018-02-01

    Lava flow advance can be modeled through tracking the evolution of the thermo-rheological properties of a control volume of lava as it cools and crystallizes. An example of such a model was conceived by Harris and Rowland (2001) who developed a 1-D model, FLOWGO, in which the velocity of a control volume flowing down a channel depends on rheological properties computed following the thermal path estimated via a heat balance box model. We provide here an updated version of FLOWGO written in Python that is an open-source, modern and flexible language. Our software, named PyFLOWGO, allows selection of heat fluxes and rheological models of the user's choice to simulate the thermo-rheological evolution of the lava control volume. We describe its architecture which offers more flexibility while reducing the risk of making error when changing models in comparison to the previous FLOWGO version. Three cases are tested using actual data from channel-fed lava flow systems and results are discussed in terms of model validation and convergence. PyFLOWGO is open-source and packaged in a Python library to be imported and reused in any Python program (https://github.com/pyflowgo/pyflowgo)

  11. Sensitivity of Clay Suspension Rheological Properties to pH, Temperature, Salinity, and Smectite-Quartz Ratio

    Science.gov (United States)

    Kameda, Jun; Morisaki, Tomonori

    2017-10-01

    Understanding the rheological properties of clay suspensions is critical to assessing the behavior of sediment gravity flows such as debris flow or turbidity current. We conducted rheological measurements of composite smectite-quartz suspensions at a temperature of 7°C and a salt concentration of 0.6 M. This is representative of smectite-bearing sediments under conditions on the seafloor. The flow curves obtained were fitted by the Bingham fluid model, from which we determined the Bingham yield stress and dynamic viscosity of each suspension. At a constant smectite-quartz mixing ratio, the yield stress and the dynamic viscosity tend to increase as the solid/water ratio of the suspension is increased. In the case of a constant solid/water ratio, these values increase with increasing smectite content in the smectite-quartz mixture. Additional experiments exploring differing physicochemical conditions (pH 1.0-9.0; temperature 2-30°C; and electrolyte (NaCl) concentration 0.2-0.6 M) revealed that the influence of temperature is negligible, while pH moderately affects the rheology of the suspension. More significantly, the electrolyte concentration greatly affects the flow behavior. These variations can be explained by direct and/or indirect (double-layer) interactions between smectite-smectite particles as well as between smectite-quartz particles in the suspension. Although smectite is known as a frictionally weak material, our experimental results suggest that its occurrence can reduce the likelihood that slope failure initiates. Furthermore, smectite can effectively suppress the spreading distance once the slope has failed.

  12. Rheological Properties of Extreme Pressure Greases Measured Using a Process Control Rheometer

    DEFF Research Database (Denmark)

    Glasscock, Julie; Smith, Robin S.

    2012-01-01

    A new process control rheometer (PCR) designed for use in industrial process flows has been used to measure the rheological properties of three extreme-pressure greases. The rheometer is a robust yet sensitive instrument designed to operate in an industrial processing environment in either in......-line or on-line configurations. The PCR was able to measure the rheological properties including the elastic modulus, viscous modulus, and complex viscosity of the greases which in an industrial flow application could be used as variables in a feedback system to control the process and the quality...

  13. Influence of rheology on the pumpability of mortar : P 2 Improved construction technology SP 2.4 Workability

    OpenAIRE

    Vikan, Hedda Vestøl; Jacobsen, Stefan

    2010-01-01

    The rheological and material parameters determining the pumpability of fresh self-compacting mortar have been studied in full-scale (70 m Ø 50 mm rubber hose and screw pump with max capacity 7 m3/h). Concrete pressure gradient over the hose length (dp/dx) and flow rate were measured to quantify pumpability. The rheological properties of the pumped mortars were measured with a ConTec BML viscometer. Finally, the rheological properties of the slip layer that occurs in vicinity of the wall of th...

  14. Rheology and TIC/TOC results of ORNL tank samples

    International Nuclear Information System (INIS)

    Pareizs, J. M.; Hansen, E. K.

    2013-01-01

    The Savannah River National Laboratory (SRNL)) was requested by Oak Ridge National Laboratory (ORNL) to perform total inorganic carbon (TIC), total organic carbon (TOC), and rheological measurements for several Oak Ridge tank samples. As received slurry samples were diluted and submitted to SRNL-Analytical for TIC and TOC analyses. Settled solids yield stress (also known as settled shear strength) of the as received settled sludge samples were determined using the vane method and these measurements were obtained 24 hours after the samples were allowed to settled undisturbed. Rheological or flow properties (Bingham Plastic viscosity and Bingham Plastic yield stress) were determined from flow curves of the homogenized or well mixed samples. Other targeted total suspended solids (TSS) concentrations samples were also analyzed for flow properties and these samples were obtained by diluting the as-received sample with de-ionized (DI) water

  15. Influence of ultrasonication and Fenton oxidation pre-treatment on rheological characteristics of wastewater sludge.

    Science.gov (United States)

    Pham, T T H; Brar, S K; Tyagi, R D; Surampalli, R Y

    2010-01-01

    The effect of ultrasonication and Fenton oxidation as physico-chemical pre-treatment processes on the change of rheology of wastewater sludge was investigated in this study. Pre-treated and raw sludges displayed non-Newtonian rheological behaviour with shear thinning as well as thixotropic properties for total solids ranging from 10 g/L to 40 g/L. The rheological models, namely, Bingham plastic, Casson law, NCA/CMA Casson, IPC Paste, and power law were also studied to characterize flow of raw and pre-treated sludges. Among all rheological models, the power law was more prominent in describing the rheology of the sludges. Pre-treatment processes resulted in a decrease in pseudoplasticity of sludge due to the decrease in consistency index K varying from 42.4 to 1188, 25.6 to 620.4 and 52.5 to 317.9; and increase in flow behaviour index n changing from 0.5 to 0.35, 0.62 to 0.55 and 0.63 to 0.58, for RS, UlS and FS, respectively at solids concentration 10-40 g/L. The correlation between improvement of biodegradability and dewaterability, decrease in viscosity, and change in particle size as a function of sludge pre-treatment process was also investigated. Fenton oxidation facilitated sludge filterability resulting in capillary suction time values which were approximately 50% of the raw sludges, whereas ultrasonication with high input energy deteriorated the filterability. Biodegradability was also enhanced by the pre-treatment processes and the maximum value was obtained (64%, 77% and 73% for raw, ultrasonicated and Fenton oxidized sludges, respectively) at total solids concentration of 25 g/L. Hence, pre-treatment of wastewater sludge modified the rheological properties so that: (1) the flowability of sludge was improved for transport through the treatment train (via pipes and pumps); (2) the dewaterability of wastewater sludge was enhanced for eventual disposal and; (3) the assimilation of nutrients by microorganisms for further value-addition was increased.

  16. Rheology and FTIR studies of model waxy crude oils with relevance to gelled pipeline restart

    Energy Technology Data Exchange (ETDEWEB)

    Magda, J.J.; Guimeraes, K.; Deo, M.D. [Utah Univ., Salt Lake City, UT (United States). Dept. of Chemical Engineering; Venkatesan, R.; Montesi, A. [Chevron Energy Technology Co., Houston, TX (United States)

    2008-07-01

    Gels composed of wax crystals may sometimes form when crude oils are transported in pipelines when ambient temperatures are low. The gels may stop the pipe flow, making it difficult or even impossible to restart the flow without breaking the pipe. Rheology and FTIR techniques were used to study the problem and to characterize transparent model waxy crude oils in pipeline flow experiments. These model oils were formulated without any highly volatile components to enhance the reproducibility of the rheology tests. Results were presented for the time- and temperature-dependent rheology of the model waxy crude oils as obtained in linear oscillatory shear and in creep-recovery experiments. The model oils were shown to exhibit many of the rheological features reported for real crude oils, such as 3 distinct apparent yield stresses, notably static yield stress, dynamic yield stress, and elastic-limit yield stress. It was concluded that of the 3, the static yield stress value, particularly its time dependence, can best be used to predict the restart behaviour observed for the same gel in model pipelines.

  17. Effect of various supplementary cementitious materials on rheological properties of self-consolidating concrete

    OpenAIRE

    Saleh Ahari, Reza; Erdem, Tahir Kemal; Ramyar, Kambiz

    2015-01-01

    In design of self-consolidating concrete (SCC) for a given application, the mixture's rheological parameters should be adjusted to achieve a given profile of yield stress and plastic viscosity. Supplementary cementitious materials (SCM) can be useful for this adjustment in addition to their other advantages. In this study, the rheological properties of 57 SCC mixtures with various SCM were investigated for a constant slump flow value. For this aim, various amounts of silica fume (SF), metakao...

  18. Modifying the rheological properties of melter feed for the Hanford Waste Vitrification Plant

    International Nuclear Information System (INIS)

    Blair, H.T.; McMakin, A.H.

    1986-03-01

    Selected high-level nuclear wastes from the Hanford Site may be vitrified in the future Hanford Waste Vitrification Plant (HWVP) by Rockwell Hanford Company, the contractor responsible for reprocessing and waste management at the Hanford Site. The Pacific Northwest Laboratory (PNL), is responsible for providing technical support for the HWVP. In this capacity, PNL performed rheological evaluations of simulated HWVP feed in order to determine which processing factors could be modified to best optimize the vitrification process. To accomplish this goal, a simulated HWVP feed was first created and characterized. Researchers then evaluated how the chemical and physical form of the glass-forming additives affected the rheological properties and melting behavior of melter feed prepared with the simulated HWVP feed. The effects of adding formic acid to the waste were also evaluated. Finally, the maximum melter feed concentration with acceptable rheological properties was determined

  19. Correlation between structure and rheological properties of suspension of nanosized powders

    Energy Technology Data Exchange (ETDEWEB)

    Tabellion, J.; Clasen, R. [Saarland Univ., Saarbruecken (Germany). Dept. of Powder Technology; Reinshagen, J.; Oberacker, R.; Hoffmann, M.J. [Karlsruhe Univ. (Germany). Inst. for Ceramics in Mechanical Engineering

    2002-07-01

    Since the properties of a ceramic green body and compact produced thereof are strongly influenced by the properties of the suspension used, controlling structure and properties of a suspension is a very important issue in ceramic manufacturing. Macroscopically, the rheological properties of a suspension are the key parameters that influence the behaviour during the shaping process. The rheological behaviour of aqueous suspensions of nanosized fumed silica (DEGUSSA, Aerosil OX50) with different amounts of OX50 (10 to 50 wt.%) was measured over a pH-range from 1 to 13 by means of rotational viscosimetry. A distinct maximum of the viscosity was observed for a pH of about 7 to 8, independent of the solid content of the suspensions. Since the rheological behaviour of the suspensions could not be explained by the {zeta}-Potential measured for OX50, the suspensions were investigated by means of so-called cryo-SEM characterization. A droplet of the suspension is quench-frozen in subcooled nitrogen (-210 C), prepared and the water is sublimed at -90 C. Thus it was possible to visualize the agglomerate structure of the primary OX50-particles within the suspensions. (orig.)

  20. Structure and rheological characteristics of fucoidan from sea cucumber Apostichopus japonicus.

    Science.gov (United States)

    Yu, Long; Xue, Changhu; Chang, Yaoguang; Hu, Yanfang; Xu, Xiaoqi; Ge, Lei; Liu, Guanchen

    2015-08-01

    Sea cucumber is a traditional health food consumed in East Asia. In this study, fucoidan from sea cucumber Apostichopus japonicus (Aj-FUC) was isolated, and its structure and rheological characteristics were elucidated for the first time. Aj-FUC was a branched polysaccharide mainly composed of a novel repeating unit [α-L-Fucp2(OSO3(-))-1 → 3,(α-L-Fucp-1 → 4-α-L-Fucp-1 →)4-α-L-Fucp2(OSO3(-))-1 → 3-α-L-Fucp2(OSO3(-))], clarified by using a combination of infrared spectroscopy, methylation analysis, enzymatic degradation and nuclear magnetic resonance. In steady shear measurement, Aj-FUC manifested a non-Newtonian shear-thinning behaviour at low shear rate (1-100 S(-1)) while exhibiting a non-Newtonian shear-thickening behaviour at high shear rate (100-1000 S(-1)); salts had limited impact on its flow curve. Comparative study on viscosity and rheological behaviour of Aj-FUC and a linear fucoidan extracted from sea cucumber Acaudina molpadioides suggested that the presence of branch structure might significantly influence the rheological characteristics of fucoidan. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. The influence of winter swimming on the rheological properties of blood.

    Science.gov (United States)

    Teległów, Aneta; Dąbrowski, Zbigniew; Marchewka, Anna; Tyka, Aleksander; Krawczyk, Marcin; Głodzik, Jacek; Szyguła, Zbigniew; Mleczko, Edward; Bilski, Jan; Tyka, Anna; Tabarowski, Zbigniew; Czepiel, Jacek; Filar-Mierzwa, Katarzyna

    2014-01-01

    The aim of this study was to analyze the changes in blood rheology resulting from regular winter swimming. The study was carried out on 12 male winter swimmers. Venous blood for morphological, biochemical and rheological analysis was sampled twice from each winter swimmer - at the beginning of the season and after its completion. There were no significant changes detected in the median values of most blood morphological parameters. The only exception pertained to MCHC which was significantly lower after the season. Winter swimming entailed significant decrease in median elongation index values at shear stress levels of 0.30 Pa and 0.58 Pa, and significant increase in median values of this parameter at shear stress levels ≥1.13 Pa. No significant changes were observed in winter swimmers' median values of aggregation indices and plasma viscosity. The median level of glucose was lower post winter swimming in comparison to the pre-seasonal values. In contrast, one season of winter swimming did not influence swimmers' median value of fibrinogen concentration. In summary, this study revealed positive effects of winter swimming on the rheological properties of blood, manifested by an increase in erythrocyte deformability without accompanying changes in erythrocyte aggregation.

  2. Impaired blood rheology is associated with endothelial dysfunction in patients with coronary risk factors.

    Science.gov (United States)

    Yagi, Hideki; Sumino, Hiroyuki; Aoki, Tomoyuki; Tsunekawa, Katsuhiko; Araki, Osamu; Kimura, Takao; Nara, Makoto; Ogiwara, Takayuki; Murakami, Masami

    2016-01-01

    To investigate the relationship between blood rheology and endothelial function in patients with coronary risk factors, brachial arterial flow-mediated vasodilatation (FMD), an index of endothelial function and blood passage time (BPT), an index of blood rheology, and fasting blood cell count, glucose metabolism, and plasma fibrinogen, lipid, C-reactive protein, and whole blood viscosity levels were measured in 95 patients with coronary risk factors and 37 healthy controls. Brachial arterial FMD after reactive hyperemia was assessed by ultrasonography. BPT was assessed using the microchannel method. In healthy controls, BPT significantly correlated with FMD (r = - 0.325, p index (BMI; r = 0.530, p measurement of blood rheology using the microchannel method may be useful in evaluating brachial arterial endothelial function as a marker of atherosclerosis in these patients.

  3. Rheological study of an hydrate slurry as secondary two-phase refrigerant. Experimental results and modelling; Etude rheologique d'une suspension d'hydrates en tant que fluide frigoporteur diphasique: resultats experimentaux et modelisation

    Energy Technology Data Exchange (ETDEWEB)

    Darbouret, M.

    2005-12-15

    Secondary two-phase fluids are suspensions of solid crystals. Thanks to the melting latent heat, they present a great interest for cold transportation. Moreover, they are a mean of reducing the amount of classical refrigerant. In the refrigeration field, ice slurries are already used. The goal is now to extend this technology to other temperature ranges suitable for other applications like freezing or air-conditioning. For an air-conditioning application, a TBAB (Tetra-Butyl-Ammonium Bromide) aqueous solution is studied. Under atmospheric pressure and for positive temperatures, this solution crystallizes into ice-like compounds named 'hydrates'. First, the physical properties of the aqueous solution and its crystallisation conditions were studied. Two different types of hydrates can appear. The goal of the experimental set-up is to study the rheological behaviour of two-phase fluids. Slurries are made in brushed-surface heat exchanger and pumped into pipes where flow rates and pressure drops are measured. The rheological behaviour of TBAB hydrates slurries can be described using a Bingham fluid model. We highlight that the two rheological parameters, which are the apparent viscosity and the yield shear stress, depend on the volume fraction of crystal of course, but also on the hydrate type, and on the initial concentration of the solution. The yield shear stress is interpreted as the consequence of the Van der Waals inter-particle interaction forces. Finally, possible stratification effects are modelled with a finite difference method. The principle is to calculate particle concentration and velocity profiles following the flow of the slurry. Calculations are validated with experimental velocity profiles published by P. Reghem (2002). This model underlines the influence of the particle distribution in the pipe on pressure drops. (author)

  4. Rheological properties of oil-in-water emulsions prepared with oil and protein isolates from sesame (Sesamum Indicum

    Directory of Open Access Journals (Sweden)

    David Ramirez BREWER

    2016-01-01

    Full Text Available In this study, food emulsions of oil in water from sesame (Sesamum indicum protein isolates and their oil were formulated and standardised. The effect of the concentrations of sesame (Sesamum indicum protein isolates and base oil and the speed of the emulsification process for the food emulsion stability was studied. The protein isolates were achieved from the defatted sesame flour (DSF, obtaining a percentage of 80% ± 0.05% of protein. Emulsions were formulated through a factorial design 23. The rheological behaviour of sesame (Sesamum indicum protein isolates-stabilised emulsions and microstructural composition were investigated. Stable emulsions with suitable rheological properties and microstructure were formulated at a concentration of 10% sesame oil and different concentrations of protein isolates, between 1.5% and 2.5%, with the best droplet distribution characteristics being shown for the 2.5% sesame protein isolates. The emulsions showed a non-Newtonian fluid behaviour, adjusting the Sisko model.

  5. Rheology of High-Melt-Strength Polypropylene for Additive Manufacturing

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; Kamleitner, Florian; Jagenteufel, Ralf

    Acrylonitrile butadiene styrene (ABS) is a widely used material for additive manufacturing (AM) fused deposition modeling (FDM). The rheological properties of high-melt-strength polypropylene (HMS-PP) were compared to commercially available ABS 250 filament to study the possibility of using...

  6. Rheological study of chitosan acetate solutions containing chitin nanofibrils

    Czech Academy of Sciences Publication Activity Database

    Mikešová, Jana; Hašek, Jindřich; Tishchenko, Galina; Morganti, P.

    2014-01-01

    Roč. 112, 4 November (2014), s. 753-757 ISSN 0144-8617 EU Projects: European Commission(XE) 315233 - N-CHITOPACK Institutional support: RVO:61389013 Keywords : rheology * chitosan solutions * chitin nanofibrils Subject RIV: CD - Macromolecular Chemistry Impact factor: 4.074, year: 2014

  7. Recent advances in extensional rheology: controlled flows and fracture

    DEFF Research Database (Denmark)

    Hassager, Ole; Huang, Qian

    Extensional deformation and flow occur in a number of polymer processing operations such as fiber spinning and film blowing. To understand and analyze material behavior in such operations, accurate and quantitative measurements of the rheological properties in well-defined extensional deformation...

  8. Vortex jamming in superconductors and granular rheology

    International Nuclear Information System (INIS)

    Yoshino, Hajime; Nogawa, Tomoaki; Kim, Bongsoo

    2009-01-01

    We demonstrate that a highly frustrated anisotropic Josephson junction array (JJA) on a square lattice exhibits a zero-temperature jamming transition, which shares much in common with those in granular systems. Anisotropy of the Josephson couplings along the horizontal and vertical directions plays roles similar to normal load or density in granular systems. We studied numerically static and dynamic response of the system against shear, i.e. injection of external electric current at zero temperature. Current-voltage curves at various strength of the anisotropy exhibit universal scaling features around the jamming point much as do the flow curves in granular rheology, shear-stress versus shear-rate. It turns out that at zero temperature the jamming transition occurs right at the isotropic coupling and anisotropic JJA behaves as exotic fragile vortex matter: it behaves as a superconductor (vortex glass) in one direction, whereas it is a normal conductor (vortex liquid) in the other direction even at zero temperature. Furthermore, we find a variant of the theoretical model for the anisotropic JJA quantitatively reproduces universal master flow-curves of the granular systems. Our results suggest an unexpected common paradigm stretching over seemingly unrelated fields-the rheology of soft materials and superconductivity.

  9. Analysis of rheological properties of bone cements.

    Science.gov (United States)

    Nicholas, M K D; Waters, M G J; Holford, K M; Adusei, G

    2007-07-01

    The rheological properties of three commercially available bone cements, CMW 1, Palacos R and Cemex ISOPLASTIC, were investigated. Testing was undertaken at both 25 and 37 degrees C using an oscillating parallel plate rheometer. Results showed that the three high viscosity cements exhibited distinct differences in curing rate, with CMW 1 curing in 8.7 min, Palacos R and Cemex ISOPLASTIC in 13 min at 25 degrees C. Furthermore it was found that these curing rates were strongly temperature dependent, with curing rates being halved at 37 degrees C. By monitoring the change of viscosity with time over the entire curing process, the results showed that these cements had differing viscosity profiles and hence exhibit very different handling characteristics. However, all the cements reached the same maximum viscosity of 75 x 10(3) Pa s. Also, the change in elastic/viscous moduli and tan delta with time, show the cements changing from a viscous material to an elastic solid with a clear peak in the viscous modulus during the latter stages of curing. These results give valuable information about the changes in rheological properties for each commercial bone cement, especially during the final curing process.

  10. Faults, fluids and friction : effect of pressure solution and phyllosilicates on fault slip behaviour, with implications for crustal rheology

    NARCIS (Netherlands)

    Bos, B.

    2000-01-01

    In order to model the mechanics of motion and earthquake generation on large crustal fault zones, a quantitative description of the rheology of fault zones is prerequisite. In the past decades, crustal strength has been modeled using a brittle or frictional failure law to represent fault slip

  11. COMPARISON BETWEEN DIFFERENT MODELS FOR RHEOLOGICAL CHARACTERIZATION OF ACTIVATED SLUDGE

    Directory of Open Access Journals (Sweden)

    A. H. Khalili Garakani

    2011-09-01

    Full Text Available Activated sludge flow rheology is a very complicated phenomenon. Studies related to activated sludge tend to classify sludge as non-Newtonian fluid. Until now, several theories have been built to describe the complex behavior of activated sludge with varying degrees of success. In this article, seven different models for viscosity of non-Newtonian fluids (i.e., Power law, Bingham plastic, Herschel-Bulkley, Casson, Sisko, Carreau and Cross were considered to evaluate their predictive capability of apparent viscosity of activated sludge. Results showed that although evaluating the constants in the four-parameter models is difficult, they provide the best prediction of viscosity in the whole range of shear rates for activated sludge. For easier prediction of viscosity at different mixed liquor suspended solids (2.74-31g/L, temperature (15-25°C and shear rate (1-1000/s, simple correlations were proposed. Comparing the results with the experimental data revealed that the proposed correlations are in good agreement with real apparent viscosities.

  12. Optimization of MR fluid Yield stress using Taguchi Method and Response Surface Methodology Techniques

    Science.gov (United States)

    Mangal, S. K.; Sharma, Vivek

    2018-02-01

    Magneto rheological fluids belong to a class of smart materials whose rheological characteristics such as yield stress, viscosity etc. changes in the presence of applied magnetic field. In this paper, optimization of MR fluid constituents is obtained with on-state yield stress as response parameter. For this, 18 samples of MR fluids are prepared using L-18 Orthogonal Array. These samples are experimentally tested on a developed & fabricated electromagnet setup. It has been found that the yield stress of MR fluid mainly depends on the volume fraction of the iron particles and type of carrier fluid used in it. The optimal combination of the input parameters for the fluid are found to be as Mineral oil with a volume percentage of 67%, iron powder of 300 mesh size with a volume percentage of 32%, oleic acid with a volume percentage of 0.5% and tetra-methyl-ammonium-hydroxide with a volume percentage of 0.7%. This optimal combination of input parameters has given the on-state yield stress as 48.197 kPa numerically. An experimental confirmation test on the optimized MR fluid sample has been then carried out and the response parameter thus obtained has found matching quite well (less than 1% error) with the numerically obtained values.

  13. Study of the rheological properties of water and Martian soil simulant mixtures for engineering applications on the red planet

    Science.gov (United States)

    Taylor, Lewis; Alberini, Federico; Sullo, Antonio; Meyer, Marit E.; Alexiadis, Alessio

    2018-03-01

    The rheological properties of mixtures of water and the Martian soil simulant JSC-Mars-1A are investigated by preparing and testing samples at various solids concentrations. The results indicate that the dispersion is viscoelastic and, at small timescales (∼0.1 s), reacts to sudden strain as an elastic solid. At longer timescales the dispersion behaves like a Bingham fluid and exhibits a yield stress. Hysteresis loops show that rapid step-changes (2 s duration) of shear-rate result in thixotropic behaviour, but slower changes (>10 s duration) can result in rheopexy. These observations are explained with the breakdown and recovery of the packing structure under stress. The rheological information is used to generate practical tools, such as the system curve and the Moody chart that can be used for designing piping systems, and calculating pump sizes and pressure requirements.

  14. Dissipative particle dynamics simulations for biological tissues: rheology and competition

    International Nuclear Information System (INIS)

    Basan, Markus; Prost, Jacques; Joanny, Jean-François; Elgeti, Jens

    2011-01-01

    In this work, we model biological tissues using a simple, mechanistic simulation based on dissipative particle dynamics. We investigate the continuum behavior of the simulated tissue and determine its dependence on the properties of the individual cell. Cells in our simulation adhere to each other, expand in volume, divide after reaching a specific size checkpoint and undergo apoptosis at a constant rate, leading to a steady-state homeostatic pressure in the tissue. We measure the dependence of the homeostatic state on the microscopic parameters of our model and show that homeostatic pressure, rather than the unconfined rate of cell division, determines the outcome of tissue competitions. Simulated cell aggregates are cohesive and round up due to the effect of tissue surface tension, which we measure for different tissues. Furthermore, mixtures of different cells unmix according to their adhesive properties. Using a variety of shear and creep simulations, we study tissue rheology by measuring yield stresses, shear viscosities, complex viscosities as well as the loss tangents as a function of model parameters. We find that cell division and apoptosis lead to a vanishing yield stress and fluid-like tissues. The effects of different adhesion strengths and levels of noise on the rheology of the tissue are also measured. In addition, we find that the level of cell division and apoptosis drives the diffusion of cells in the tissue. Finally, we present a method for measuring the compressibility of the tissue and its response to external stress via cell division and apoptosis

  15. Rheological Characterization and Cluster Classification of Iranian Commercial Foods, Drinks and Desserts to Recommend for Esophageal Dysphagia Diets.

    Science.gov (United States)

    Zargaraan, Azizollaah; Omaraee, Yasaman; Rastmanesh, Reza; Taheri, Negin; Fadavi, Ghasem; Fadaei, Morteza; Mohammadifar, Mohammad Amin

    2013-12-01

    In the absence of dysphagia-oriented food products, rheological characterization of available food items is of importance for safe swallowing and adequate nutrient intake of dysphagic patients. In this way, introducing alternative items (with similar ease of swallow) is helpful to improve quality of life and nutritional intake of esophageal cancer dysphagia patients. The present study aimed at rheological characterization and cluster classification of potentially suitable foodstuffs marketed in Iran for their possible use in dysphagia diets. In this descriptive study, rheological data were obtained during January and February 2012 in Rheology Lab of National Nutrition and Food Technology Research Institute Tehran, Iran. Steady state and oscillatory shear parameters of 39 commercial samples were obtained using a Physica MCR 301 rheometer (Anton-Paar, GmbH, Graz, Austria). Matlab Fuzzy Logic Toolbox (R2012 a) was utilized for cluster classification of the samples. Using an extended list of rheological parameters and fuzzy logic methods, 39 commercial samples (drinks, main courses and desserts) were divided to 5 clusters and degree of membership to each cluster was stated by a number between 0 and 0.99. Considering apparent viscosity of foodstuffs as a single criterion for classification of dysphagia-oriented food products is shortcoming of current guidelines in dysphagia diets. Authors proposed to some revisions in classification of dysphagia-oriented food products and including more rheological parameters (especially, viscoelastic parameters) in the classification.

  16. Rheology of dense suspensions of non colloidal particles

    Directory of Open Access Journals (Sweden)

    Guazzelli Élisabeth

    2017-01-01

    Full Text Available Dense suspensions are materials with broad applications both in industrial processes (e.g. waste disposal, concrete, drilling muds, metalworking chip transport, and food processing and in natural phenomena (e.g. flows of slurries, debris, and lava. Despite its long research history and its practical relevance, the mechanics of dense suspensions remain poorly understood. The major difficulty is that the grains interact both by hydrodynamic interactions through the liquid and by mechanical contact. These systems thus belong to an intermediate regime between pure suspensions and granular flows. We show that we can unify suspension and granular rheology under a common framework by transferring the frictional approach of dry granular media to wet suspensions of spherical particles. We also discuss non-Newtonian behavior such as normal-stress differences and shear-induced migration. Beyond the classical problem of dense suspension of hard spheres which is far from being completely resolved, there are also entirely novel avenues of study concerning more complex mixtures of particles and fluids such as those involving other types of particles (e.g. fibers or non-Newtonian fluids that we will also address.

  17. Size-dependent electro-magneto-elastic bending analyses of the shear-deformable axisymmetric functionally graded circular nanoplates

    Science.gov (United States)

    Arefi, Mohammad; Zenkour, Ashraf M.

    2017-10-01

    This paper develops nonlocal elasticity equations and magneto-electro-elastic relations to size-dependent electro-magneto-elastic bending analyses of the functionally graded axisymmetric circular nanoplates based on the first-order shear deformation theory. All material properties are graded along the thickness direction based on exponential varying. It is assumed that a circular nanoplate is made from piezo-magnetic materials. The energy method and Ritz approach is employed for the derivation of governing equations of electro-magneto-elastic bending and the solution of the problem, respectively. The nanoplate is subjected to applied electric and magnetic potentials at top and transverse loads while it is rested on Pasternak's foundation. Some important numerical results are presented in various figures to show the influence of applied electric and magnetic potentials, small scale parameter and inhomogeneous index of an exponentially graded nanoplate.

  18. Effects of polyethyleneimine adsorption on rheology of bentonite ...

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... The influence of the cationic polymer, polyethyleneimine polymer (PEI) on the flow behaviour of bentonite suspensions (2%, w/w), was studied. XRD, zeta potential and adsorption studies were done together with rheological measurements. The addition of PEI at concentration ranges of 10-5–4.5 g/l and ...

  19. Rheological changes in irradiated chicken eggs

    Science.gov (United States)

    Ferreira, Lúcia F. S.; Del Mastro, Nélida L.

    1998-06-01

    Pathogenic bacteria may cause foodborne illnesses. Humans may introduce pathogens into foods during production, processing, distribution and or preparation. Some of these microorganisms are able to survive conventional preservation treatments. Heat pasteurization, which is a well established and satisfactory means of decontamination/disinfection of liquid foods, cannot efficiently achieve a similar objective for solid foods. Extensive work carried out worldwide has shown that irradiation is efficient in eradicating foodborne pathogens like Salmonella spp. that can contaminate poultry products. In this work Co-60 gamma irradiation was applied to samples of industrial powder white, yolk and whole egg at doses between 0 and 25 kGy. Samples were rehydrated and the viscosity measured in a Brookfield viscosimeter, model DV III at 5, 15 and 25°C. The rheological behaviour among the various kinds of samples were markedly different. Irradiation with doses up to 5 kGy, known to reduced bacterial contamination to non-detectable levels, showed almost no variation of viscosity of irradiated egg white samples. On the other hand, whole or yolk egg samples showed some changes in rheological properties depending on the dose level, showing the predominance of whether polimerization or degradation as a result of the irradiation. Additionally, irradiation of yolk egg powder reduced yolk color as a function of the irradiation exposure implemented. The importance of these results are discussed in terms of possible industrial applications.

  20. Rheological changes in irradiated chicken eggs

    International Nuclear Information System (INIS)

    Ferreira, Lucia F. S.; Del Mastro, Nelida L.

    1998-01-01

    Pathogenic bacteria may cause foodborne illnesses. Humans may introduce pathogens into foods during production, processing, distribution and or preparation. Some of these microorganisms are able to survive conventional preservation treatments. Heat pasteurization, which is a well established and satisfactory means of decontamination/disinfection of liquid foods, cannot efficiently achieve a similar objective for solid foods. Extensive work carried out worldwide has shown that irradiation is efficient in eradicating foodborne pathogens like Salmonella spp. that can contaminate poultry products. In this work Co-60 gamma irradiation was applied to samples of industrial powder white, yolk and whole egg at doses between 0 and 25 kGy. Samples were rehydrated and the viscosity measured in a Brookfield viscosimeter, model DV III at 5, 15 and 25 degree sign C. The rheological behaviour among the various kinds of samples were markedly different. Irradiation with doses up to 5 kGy, known to reduced bacterial contamination to non-detectable levels, showed almost no variation of viscosity of irradiated egg white samples. On the other hand, whole or yolk egg samples showed some changes in rheological properties depending on the dose level, showing the predominance of whether polimerization or degradation as a result of the irradiation. Additionally, irradiation of yolk egg powder reduced yolk color as a function of the irradiation exposure implemented. The importance of these results are discussed in terms of possible industrial applications

  1. Reconstructing modalities of magma storage in the crust by thermo-rheological modelling

    Science.gov (United States)

    Caricchi, L.; Annen, C.; Rust, A.; Blundy, J.

    2012-04-01

    During my PhD I worked under the supervision of Luigi Burlini studying the rheological behaviour of magma. Luigi was not only a great teacher and friend but he was also able to project the science he was performing beyond the obvious applications. This aspect of Luigi's approach shaped my approach to research and brought me to think to ways of applying the studies we performed together to unravel the complexity of nature that impassioned and inspired him. This contribution comes from the motivation and interest that Luigi created in me during the short, but truly memorable journey we shared together. This study combines petrology, thermal modelling and magma rheology to characterise timescales and modalities of magma emplacement in the Earth's crust. Thermal modelling was performed to determine the influence of magma injection rates in the crust on the temperature evolution of a magmatic body. The injected tonalitic magma was considered to contain dioritic enclaves, common in plutons. The contrast in chemical composition between host and enclaves leads to different crystallinities of these magmas during cooling and produce a rheological contrast that permits reciprocal deformation only in restricted temperature ranges. Characterising the thermal and rheological evolution of host magma and enclaves, we traced the evolution of strain recorded by these inclusions during the construction of an intrusion, showing that the strain recorded by enclaves distributed in different portions of a pluton can be used to constrain thermal evolution in time, magmatic fluxes and timescale of assemblage of magmatic bodies in the crust.

  2. Torque Control of a Rehabilitation Teaching Robot Using Magneto-Rheological Fluid Clutches

    Science.gov (United States)

    Hakogi, Hokuto; Ohaba, Motoyoshi; Kuramochi, Naimu; Yano, Hidenori

    A new robot that makes use of MR-fluid clutches for simulating torque is proposed to provide an appropriate device for training physical therapy students in knee-joint rehabilitation. The feeling of torque provided by the robot is expected to correspond to the torque performance obtained by physical therapy experts in a clinical setting. The torque required for knee-joint rehabilitation, which is a function of the rotational angle and the rotational angular velocity of a knee movement, is modeled using a mechanical system composed of typical spring-mass-damper elements. The robot consists of two MR-fluid clutches, two induction motors, and a feedback control system. In the torque experiments, output torque is controlled using the spring and damper coefficients separately. The values of these coefficients are determined experimentally. The experimental results show that the robot would be suitable for training physical therapy students to experience similar torque feelings as needed in a clinical situation.

  3. Faults, fluids and friction : Effect of pressure solution and phyllosilicates on fault slip behaviour, with implications for crustal rheology

    NARCIS (Netherlands)

    Bos, B.

    2000-01-01

    In order to model the mechanics of motion and earthquake generation on large crustal fault zones, a quantitative description of the rheology of fault zones is prerequisite. In the past decades, crustal strength has been modeled using a brittle or frictional failure law to represent fault slip at

  4. Rheological behaviour, sensory properties and syneresis of probiotic yoghurt supplemented with various prebiotics

    DEFF Research Database (Denmark)

    Heydari, Somayeh; Amiri-Rigi, Atefeh; Ehsani, Mohammad Reza

    2018-01-01

    The main aim of this study was to investigate the effects of addition of six different prebiotic compounds (inulin, lactulose, lactitol, Hi-maize, maltodextrin and β-glucan) on syneresis, sensory attributes and rheological characteristics (elastic modulus, viscous modulus, loss tangent, complex...... modules) of probiotic yoghurt. The results revealed that the inclusion of the prebiotic compounds into the probiotic yoghurt profoundly affected the products' syneresis, as well as the sensory and rheological characteristics of the probiotic yoghurts compared with control samples. On the whole, production...

  5. Rheology of Potato flour Mixes and Wheat to Make Bread

    Directory of Open Access Journals (Sweden)

    Ely Fernando Sacón-Vera

    2016-07-01

    Full Text Available Evaluate the rheological properties of flour mixes Ipomoea batata and Triticum vulgare for the preparation of bread dough, was the goal of this research for it a completely randomized design, as treatments sweet potato flour was used varieties are used: Toquecita, Guayaco Purple, Purple Ecuador, Brazil and Ina Purple in a 30/70 ratio (sweet potato flour / wheat flour respectively. The rheological variables: water absorption, development time, weakening of the dough stability, water absorption index (C1, mixing rate (C2, gluten strength index (C3, gel viscosity (C4, resistance index amylase (C5 and starch retro gradation index (C6 were evaluated with Mixolab equipment. The results showed that the variety Purple Brazil showed better characteristics of flours recommended premixes for the baking process in response to these indices

  6. Effect of Gipan addition on the rheologic properties of cement slurries

    Energy Technology Data Exchange (ETDEWEB)

    Shadrin, L N; Solovev, E M

    1966-08-01

    The objective of this study was to determine the effectiveness of Gipan in controlling cement rheology. The chemical nature of Gipan is not disclosed in the article; however it is said to be a plasticizer (perhaps an acrylic polymer). The consistency and rheological properties of Gipan-cement mixtures were studied at 20$C. It was shown that as the concentration of Gipan increased from 0.1 to 1%, cement gel strength decreased, while viscosity increased. Calculations indicated that on adding 1% Gipan to cement, the amount of hydraulic power required to produce turbulent flow in a well is one-half that required for cement without the additive. The Gipan also reduces cement water-loss tremendously.

  7. Dark chocolate’s compositional effects revealed by oscillatory rheology

    NARCIS (Netherlands)

    van der Vaart, K.; Depypere, F.; De Graef, V.; Schall, P.; Fall, A.; Bonn, D.; Dewettinck, K.

    2013-01-01

    In this study, two types of oscillatory shear rheology are applied on dark chocolate with varying volume fraction, particle size distribution, and soy lecithin concentration. The first, a conventional strain sweep, allows for the separation of the elastic and viscous properties during the yielding.

  8. Probing the micro-rheological properties of aerosol particles using optical tweezers

    International Nuclear Information System (INIS)

    Power, Rory M; Reid, Jonathan P

    2014-01-01

    The use of optical trapping techniques to manipulate probe particles for performing micro-rheological measurements on a surrounding fluid is well-established. Here, we review recent advances made in the use of optical trapping to probe the rheological properties of trapped particles themselves. In particular, we review observations of the continuous transition from liquid to solid-like viscosity of sub-picolitre supersaturated solution aerosol droplets using optical trapping techniques. Direct measurements of the viscosity of the particle bulk are derived from the damped oscillations in shape following coalescence of two particles, a consequence of the interplay between viscous and surface forces and the capillary driven relaxation of the approximately spheroidal composite particle. Holographic optical tweezers provide a facile method for the manipulation of arrays of particles allowing coalescence to be controllably induced between two micron-sized aerosol particles. The optical forces, while sufficiently strong to confine the composite particle, are several orders of magnitude weaker than the capillary forces driving relaxation. Light, elastically back-scattered by the particle, is recorded with sub-100 ns resolution allowing measurements of fast relaxation (low viscosity) dynamics, while the brightfield image can be used to monitor the shape relaxation extending to times in excess of 1000 s. For the slowest relaxation dynamics studied (particles with the highest viscosity) the presence and line shape of whispering gallery modes in the cavity enhanced Raman spectrum can be used to infer the relaxation time while serving the dual purpose of allowing the droplet size and refractive index to be measured with accuracies of ±0.025% and ±0.1%, respectively. The time constant for the damped relaxation can be used to infer the bulk viscosity, spanning from the dilute solution limit to a value approaching that of a glass, typically considered to be >10 12

  9. Probing the micro-rheological properties of aerosol particles using optical tweezers

    Science.gov (United States)

    Power, Rory M.; Reid, Jonathan P.

    2014-07-01

    The use of optical trapping techniques to manipulate probe particles for performing micro-rheological measurements on a surrounding fluid is well-established. Here, we review recent advances made in the use of optical trapping to probe the rheological properties of trapped particles themselves. In particular, we review observations of the continuous transition from liquid to solid-like viscosity of sub-picolitre supersaturated solution aerosol droplets using optical trapping techniques. Direct measurements of the viscosity of the particle bulk are derived from the damped oscillations in shape following coalescence of two particles, a consequence of the interplay between viscous and surface forces and the capillary driven relaxation of the approximately spheroidal composite particle. Holographic optical tweezers provide a facile method for the manipulation of arrays of particles allowing coalescence to be controllably induced between two micron-sized aerosol particles. The optical forces, while sufficiently strong to confine the composite particle, are several orders of magnitude weaker than the capillary forces driving relaxation. Light, elastically back-scattered by the particle, is recorded with sub-100 ns resolution allowing measurements of fast relaxation (low viscosity) dynamics, while the brightfield image can be used to monitor the shape relaxation extending to times in excess of 1000 s. For the slowest relaxation dynamics studied (particles with the highest viscosity) the presence and line shape of whispering gallery modes in the cavity enhanced Raman spectrum can be used to infer the relaxation time while serving the dual purpose of allowing the droplet size and refractive index to be measured with accuracies of ±0.025% and ±0.1%, respectively. The time constant for the damped relaxation can be used to infer the bulk viscosity, spanning from the dilute solution limit to a value approaching that of a glass, typically considered to be >1012 Pa s, whilst

  10. Mineralogy and rheology of raw and activated Turonian to Coniacian clays from Benue Trough, northeastern Nigeria

    Directory of Open Access Journals (Sweden)

    A.S. Arabi

    2018-03-01

    Full Text Available Since the discovery of oil and gas in Oloibiri, an onshore oilfield located in Oloibiri in Ogbia Local Government Area of Bayelsa State, Nigeria on Sunday 15th January 1956 by Shell Darcy, hundreds of oil wells have been drilled and not a single of these oil wells was drilled without the use of bentonite. This work is aimed at evaluating the rheological properties of raw and beneficiated Nigerian clays to ascertain their worth for use as drilling mud in oil and gas well drilling. This will save foreign earnings used in the importation of bentonite by the oil and gas development companies, create employment opportunity and open a new frontier for solid mineral development. Five clay samples from Pindiga Formation in Benue Trough, northeastern Nigeria were collected and subjected to elemental, rheological and other physical properties tests and analysis, while another portion of same samples were beneficiated using sodium carbonate, gum Arabic and poly-anionic cellulose for rheological enhancement then subjected to same cycle of tests and analysis above. Results obtained indicates that wet beneficiation as adopted in this study has proved to be more effective in Ca and Na ionic exchange. The rheological and other physical properties of the clays attained the standard that is required for use in oil and gas well drilling after addition of 12% sodium carbonate and 1.5 g poly-anionic cellulose. It was also discovered that when the formulation was allow to age (stay for 24 h, it attained optimum rheological requirement with 12% sodium carbonate and just 0.8 g poly-anionic cellulose. The clays studies do not require addition of weighing additive such as barite because of their high iron content which made their density attain the require standard even without additives. Keywords: Bentonitic clay, Beneficiation, Nigeria, Pindiga, Rheology, Mineralogy

  11. Lower crustal earthquakes in the North China Basin and implications for crustal rheology

    Science.gov (United States)

    Yuen, D. A.; Dong, Y.; Ni, S.; LI, Z.

    2017-12-01

    The North China Basin is a Mesozoic-Cenozoic continental rift basin on the eastern North China Craton. It is the central region of craton destruction, also a very seismically active area suffering severely from devastating earthquakes, such as the 1966 Xingtai M7.2 earthquake, the 1967 Hejian M6.3 earthquake, and the 1976 Tangshan M7.8 earthquake. We found remarkable discrepancies of depth distribution among the three earthquakes, for instance, the Xingtai and Tangshan earthquakes are both upper-crustal earthquakes occurring between 9 and 15 km on depth, but the depth of the Hejian earthquake was reported of about 30 72 km, ranging from lowermost crust to upper mantle. In order to investigate the focal depth of earthquakes near Hejian area, we developed a method to resolve focal depth for local earthquakes occurring beneath sedimentary regions by P and S converted waves. With this method, we obtained well-resolved depths of 44 local events with magnitudes between M1.0 and M3.0 during 2008 to 2016 at the Hejian seismic zone, with a mean depth uncertainty of about 2 km. The depth distribution shows abundant earthquakes at depth of 20 km, with some events in the lower crust, but absence of seismicity deeper than 25 km. In particular, we aimed at deducing some constraints on the local crustal rheology from depth-frequency distribution. Therefore, we performed a comparison between the depth-frequency distribution and the crustal strength envelop, and found a good fit between the depth profile in the Hejian seismic zone and the yield strength envelop in the Baikal Rift Systems. As a conclusion, we infer that the seismogenic thickness is 25 km and the main deformation mechanism is brittle fracture in the North China Basin . And we made two hypotheses: (1) the rheological layering of dominant rheology in the North China Basin is similar to that of the Baikal Rift Systems, which can be explained with a quartz rheology at 0 10 km depth and a diabase rheology at 10 35 km

  12. Rheological characterisation and printing performance of Sn/Ag/Cu solder pastes

    International Nuclear Information System (INIS)

    Durairaj, R.; Ramesh, S.; Mallik, S.; Seman, A.; Ekere, N.

    2009-01-01

    Lead-free solder paste printing process accounts for majority of the assembly defects in the electronic manufacturing industry. The study investigates rheological behaviour and stencil printing performance of the lead-free solder pastes (Sn/Ag/Cu). Oscillatory stress sweep test was carried out to study the visco-elastic behaviour of the lead-free solder pastes. The visco-elastic behaviour of the paste encompasses solid and liquid characteristic of the paste, which could be used to study the flow behaviour experienced by the pastes during the stencil printing process. From this study, it was found that the solid characteristics (G') is higher than the liquid characteristic (G'') for the pastes material. In addition, the results from the study showed that the solder paste with a large G' = G'' has a higher cohesiveness resulting in poor withdrawal of the paste during the stencil printing process. The phase angles (δ) was used to correlate the quality of the dense suspensions to the formulation of solder paste materials. This study has revealed the value of having a rheological measurement for explaining and characterising solder pastes for stencil printing. As the demand for lead free pastes increases rheological measurements can assist with the formulation or development of new pastes.

  13. Interfacial rheology of model particles at liquid interfaces and its relation to (bicontinuous) Pickering emulsions

    Science.gov (United States)

    Thijssen, J. H. J.; Vermant, J.

    2018-01-01

    Interface-dominated materials are commonly encountered in both science and technology, and typical examples include foams and emulsions. Conventionally stabilised by surfactants, emulsions can also be stabilised by micron-sized particles. These so-called Pickering-Ramsden (PR) emulsions have received substantial interest, as they are model arrested systems, rather ubiquitous in industry and promising templates for advanced materials. The mechanical properties of the particle-laden liquid-liquid interface, probed via interfacial rheology, have been shown to play an important role in the formation and stability of PR emulsions. However, the morphological processes which control the formation of emulsions and foams in mixing devices, such as deformation, break-up, and coalescence, are complex and diverse, making it difficult to identify the precise role of the interfacial rheological properties. Interestingly, the role of interfacial rheology in the stability of bicontinuous PR emulsions (bijels) has been virtually unexplored, even though the phase separation process which leads to the formation of these systems is relatively simple and the interfacial deformation processes can be better conceptualised. Hence, the aims of this topical review are twofold. First, we review the existing literature on the interfacial rheology of particle-laden liquid interfaces in rheometrical flows, focussing mainly on model latex suspensions consisting of polystyrene particles carrying sulfate groups, which have been most extensively studied to date. The goal of this part of the review is to identify the generic features of the rheology of such systems. Secondly, we will discuss the relevance of these results to the formation and stability of PR emulsions and bijels.

  14. The Relation between the Rheological Properties of Gels and the Mechanical Properties of Their Corresponding Aerogels

    Directory of Open Access Journals (Sweden)

    Mingze Sun

    2018-04-01

    Full Text Available A series of low density, highly porous clay/poly(vinyl alcohol composite aerogels, incorporating ammonium alginate, were fabricated via a convenient and eco-friendly freeze drying method. It is significant to understand rheological properties of precursor gels because they directly affect the form of aerogels and their processing behaviors. The introduction of ammonium alginate impacted the rheological properties of colloidal gels and improved the mechanical performance of the subject aerogels. The specific compositions and processing conditions applied to those colloidal gel systems brought about different aerogel morphologies, which in turn translated into the observed mechanical properties. The bridge between gel rheologies and aerogel structures are established in the present work.

  15. Physical, rheological, functional and film properties of a novel emulsifier: Frost grape polysaccharide (FGP) from Vitis riparia Michx

    Science.gov (United States)

    A novel emulsifier, Frost grape polysaccharide (FGP), isolated from natural exudate of the species Vitis riparia Michx, was physically and rheologically characterized. The determination of the physical, structural, thermodynamic, emulsification, film, and rheological properties of FGP provide essent...

  16. Rheology Of Settled Solids In The Small Column Ion Exchange Process

    International Nuclear Information System (INIS)

    Poirier, M.; Ferguson, C.; Koopman, D.

    2011-01-01

    The Small Column Ion Exchange (SCIX) process is being developed to remove cesium, strontium, and actinides from Savannah River Site (SRS) Liquid Waste using an existing waste tank (i.e., Tank 41H) to house the process. This process adds monosodium titanate (MST) to a waste tank containing salt solution (and entrained sludge solids). While the process is operating, the solid particles will begin to settle at temperatures up to 45 C. Previous testing has shown that sludge-MST slurries that sit for extended periods (i.e., 1-61 days) at elevated temperatures (i.e., 23-80 C) can develop large shear strengths which could make them difficult to resuspend and remove from the tank. The authors are conducting rheological testing of mixtures containing various concentrations of sludge, MST, and crystalline silicotitanate (CST, ground and unground) that have been aged at different times (i.e., 0 to 13 weeks) and isothermally heated to 30, 45, or 60 C. Additional tests are being conducted that will allow the solid particles to settle at 45 C for 6, 12, and 24 months. The objectives of this task are to determine the impact of settling time and temperature on the shear strength, yield stress, and consistency of the slurries and to determine the impact of radiation on slurry rheology. The testing will determine the relative impact of these parameters rather than predict the shear strength, yield stress, and consistency as a function of feed and operating conditions. This document describes the rheology of slurries containing MST and simulated sludge that sat at elevated temperatures (i.e., up to 60 C) for up to 13 weeks. Rheology of CST-containing slurries, as well as results of the long term settling (6, 12, and 24 months) and irradiation tests (10 and 100 MRad), will be reported later. The conclusions from this analysis follow: (1) MST only slurries that sat at elevated temperatures had larger shear strength, yield stress, and consistency than MST plus sludge slurries that

  17. RHEOLOGY OF SETTLED SOLIDS IN THE SMALL COLUMN ION EXCHANGE PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M.; Ferguson, C.; Koopman, D.

    2011-01-27

    The Small Column Ion Exchange (SCIX) process is being developed to remove cesium, strontium, and actinides from Savannah River Site (SRS) Liquid Waste using an existing waste tank (i.e., Tank 41H) to house the process. This process adds monosodium titanate (MST) to a waste tank containing salt solution (and entrained sludge solids). While the process is operating, the solid particles will begin to settle at temperatures up to 45 C. Previous testing has shown that sludge-MST slurries that sit for extended periods (i.e., 1-61 days) at elevated temperatures (i.e., 23-80 C) can develop large shear strengths which could make them difficult to resuspend and remove from the tank. The authors are conducting rheological testing of mixtures containing various concentrations of sludge, MST, and crystalline silicotitanate (CST, ground and unground) that have been aged at different times (i.e., 0 to 13 weeks) and isothermally heated to 30, 45, or 60 C. Additional tests are being conducted that will allow the solid particles to settle at 45 C for 6, 12, and 24 months. The objectives of this task are to determine the impact of settling time and temperature on the shear strength, yield stress, and consistency of the slurries and to determine the impact of radiation on slurry rheology. The testing will determine the relative impact of these parameters rather than predict the shear strength, yield stress, and consistency as a function of feed and operating conditions. This document describes the rheology of slurries containing MST and simulated sludge that sat at elevated temperatures (i.e., up to 60 C) for up to 13 weeks. Rheology of CST-containing slurries, as well as results of the long term settling (6, 12, and 24 months) and irradiation tests (10 and 100 MRad), will be reported later. The conclusions from this analysis follow: (1) MST only slurries that sat at elevated temperatures had larger shear strength, yield stress, and consistency than MST plus sludge slurries that

  18. Evaluation of antioxidant, rheological, physical and sensorial properties of wheat flour dough and cake containing turmeric powder.

    Science.gov (United States)

    Park, S H; Lim, H S; Hwang, S Y

    2012-10-01

    The effects of addition of turmeric powder (0%, 2%, 4%, 6% and 8%) were examined in order to obtain an antioxidant-enriched cake with good physico-chemical and sensorial properties. The rheological properties of doughs were evaluated using dynamic rheological measurements. Physical properties, curcumin content, radical scavenging activity (RSA-DPPH assay) and sensory analysis (hedonic test) of the supplemented cake were determined. Addition of turmeric powder up to 8% caused significant changes on dough characteristics and on cake rheological properties. The highest curcumin (203 mg/kg) and RSA-DPPH activity (45%) were achieved in the cake having the highest percentage of turmeric powder (8%); however, this sample showed the worst results regarding the rheological properties. Moreover, by sensory evaluation this cake sample was not acceptable. A 6% substitution of wheat flour with turmeric powder showed acceptable sensory scores which were comparable to those of 0-4% turmeric cakes. This indicated that up to 6% level of turmeric powder might be included in cake formulation.

  19. Role of inertia in the rheology of amorphous sys- tems: a finite element based elasto plastic model

    Science.gov (United States)

    Karimi, Kamran; Barrat, Jean-Louis

    A simple Finite Element analysis with varying damping strength is used to model the athermal shear rheology of densely packed glassy systems at a continuum level. We focus on the influence of dissipation mechanism on bulk rheological properties. Our numerical studies, done over a wide range of damping coefficients, identify two well-separated rheological regimes along with a cross-over region controlled by a critical damping. In the overdamped limit, inertial effects are negligible and the rheological response is well described by the commonly observed Herschel-Bulkley equation. In stark contrast, inertial vibrations in the underdamped regime prompt a significant drop in the mean-stress level, leading to a non-monotonic constitutive relation. The observed negative slope in the flow curve, which is a signature of mechanical instability and thus permanent shear-banding, arises from the sole influence of inertia, in qualitative agreement with the recent molecular dynamics study of Nicolas et al. (arXiv preprint arXiv:1508.06067, 2015).

  20. Melt compounding of different grades of polystyrene with organoclay. Part 2: Rheological properties

    DEFF Research Database (Denmark)

    Tanoue, Shuichi; Utracki, Leszek A.; Garcia-Rejon, Andrés

    2004-01-01

    . The rheological properties of PNC were determined under dynamic and steady state shear as well as under extensional flow conditions. At the higher clay content, dynamic strain sweep demonstrated that the storage and loss moduli decrease continuously with an increase of strain. To characterize this nonlinear...... viscoelastic behavior, the Fourier-transform rheology, was applied. The low strain frequency sweep showed that the storage and loss moduli increase with organoclay content. The extracted zero-shear viscosity data were used to calculate the intrinsic viscosity and then the aspect ratio of dispersions. In spite...

  1. Mechanics of couple-stress fluid coatings

    Science.gov (United States)

    Waxman, A. M.

    1982-01-01

    The formal development of a theory of viscoelastic surface fluids with bending resistance - their kinematics, dynamics, and rheology are discussed. It is relevant to the mechanics of fluid drops and jets coated by a thin layer of immiscible fluid with rather general rheology. This approach unifies the hydrodynamics of two-dimensional fluids with the mechanics of an elastic shell in the spirit of a Cosserat continuum. There are three distinct facets to the formulation of surface continuum mechanics. Outlined are the important ideas and results associated with each: the kinematics of evolving surface geometries, the conservation laws governing the mechanics of surface continua, and the rheological equations of state governing the surface stress and moment tensors.

  2. Influence of blending sequence on the rheological behavior of HDPE/LLDPE/MMT nano composites

    International Nuclear Information System (INIS)

    Passador, F.R.; Pessan, L.A.; Ruvolo Filho, A.

    2010-01-01

    The blending sequence affects the rheological behavior and the morphology formation of the nanocomposites. In this work, the blending sequences were explored to see its influence in the rheological behavior of HDPE/LLDPE/MMT nanocomposites. The nanocomposites were obtained by melt-intercalation using HDPE-g-MA as a compatibilizer in a torque rheometer (Haake Rheomix 600p at 180 deg C and rotor speed of 80rpm) and five blending sequences were studied. The materials structures were characterized by wide angle X-ray diffraction (WAXD) and by rheological properties. The nanoclay's addition increased the shear viscosity at low shear rates, changing the behavior of HDPE/LLDPE matrix to a Bingham model behavior with an apparent yield stress. Intense interactions were obtained for the blending sequence where HDPE and HDPE-g-MA were first reinforced with organoclay and then the HDPE/HDPE-g-MA/organoclay nanocomposite was later blended with LLDPE. (author)

  3. Rheological behavior and stability of ciprofloxacin suspension: Impact of structural vehicles and flocculating agent

    Directory of Open Access Journals (Sweden)

    Eskandar Moghimipour

    2013-01-01

    Full Text Available Ciprofloxacin is a fluoroquinolone and is used against a broad spectrum of gram-negative and gram-positive bacteria. The aim of the study is to investigate the effect of structural vehicles and other formulating factors on physical stability and rheological behavior of ciprofloxacin suspension. To formulate the suspensions, the effect of glycerin and polysorbate 80 as wetting agents was evaluated. Then to achieve controlled flocculation, different concentrations of sodium chloride and calcium chloride were added. After choosing suitable wetting and flocculating agents, structural vehicles such as sodium carboxyl methyl cellulose (NaCMC, hydroxypropylmethylcellulose (HPMC and Veegum were evaluated. Physical stability parameters such as sedimentation volume, the degree of flocculation and the ease of redispersion of the suspensions and growth of crystals were evaluated. After incorporation of structural vehicles, the rheological properties of formulations containing were also studied to find out their rheological behavior. According to the results, suspension containing glycerin (0.2% w/v and sodium chloride (0.05% w/v as wetting agent and flocculating agent, respectively, were the most stable formulations regarding their F and N. Microscopic observations showed the growth of crystals in ciprofloxacin suspension in formulation without excipients and the minimum amount of crystal growth was seen in suspension containing NaCMC (0.25% w/v, Veegum (0.1% w/v and NaCl (0.05% w/v. Rheological studies showed that almost all of the formulations had psuedoplastic behavior with different degree of thixotropy. The formulation containing NaCMC (0.25% w/v, Veegum (0.1% w/v and NaCl (0.05% w/v was the most stable formulation. It may be concluded that by altering the amount ratios of formulation factors, the best rheological behavior and the most proper thixotropy may be achieved.

  4. Rheological behavior and stability of ciprofloxacin suspension: Impact of structural vehicles and flocculating agent.

    Science.gov (United States)

    Moghimipour, Eskandar; Rezaee, Saeed; Salimi, Anayatollah; Asadi, Elham; Handali, Somayeh

    2013-07-01

    Ciprofloxacin is a fluoroquinolone and is used against a broad spectrum of gram-negative and gram-positive bacteria. The aim of the study is to investigate the effect of structural vehicles and other formulating factors on physical stability and rheological behavior of ciprofloxacin suspension. To formulate the suspensions, the effect of glycerin and polysorbate 80 as wetting agents was evaluated. Then to achieve controlled flocculation, different concentrations of sodium chloride and calcium chloride were added. After choosing suitable wetting and flocculating agents, structural vehicles such as sodium carboxyl methyl cellulose (NaCMC), hydroxypropylmethylcellulose (HPMC) and Veegum were evaluated. Physical stability parameters such as sedimentation volume, the degree of flocculation and the ease of redispersion of the suspensions and growth of crystals were evaluated. After incorporation of structural vehicles, the rheological properties of formulations containing were also studied to find out their rheological behavior. According to the results, suspension containing glycerin (0.2% w/v) and sodium chloride (0.05% w/v) as wetting agent and flocculating agent, respectively, were the most stable formulations regarding their F and N. Microscopic observations showed the growth of crystals in ciprofloxacin suspension in formulation without excipients and the minimum amount of crystal growth was seen in suspension containing NaCMC (0.25% w/v), Veegum (0.1% w/v) and NaCl (0.05% w/v). Rheological studies showed that almost all of the formulations had psuedoplastic behavior with different degree of thixotropy. The formulation containing NaCMC (0.25% w/v), Veegum (0.1% w/v) and NaCl (0.05% w/v) was the most stable formulation. It may be concluded that by altering the amount ratios of formulation factors, the best rheological behavior and the most proper thixotropy may be achieved.

  5. Understanding the rheology of two and three-phase magmas

    Science.gov (United States)

    Coats, R.; Cai, B.; Kendrick, J. E.; Wallace, P. A.; Hornby, A. J.; Miwa, T.; von Aulock, F. W.; Ashworth, J. D.; Godinho, J.; Atwood, R. C.; Lee, P. D.; Lavallée, Y.

    2017-12-01

    The rheology of magma plays a fundamental role in determining the style of a volcanic eruption, be it explosive or effusive. Understanding how magmas respond to changes in stress/ strain conditions may help to enhance eruption forecast models. The presence of crystals and bubbles in magmas alter the viscosity of suspensions and favor a non-Newtonian response. Thus, with the aim of grasping the rheological behavior of volcanic materials, uniaxial compressive tests were performed on natural and synthetic samples. A suite of variably porous (10-32 vol.%), highly crystalline ( 50 vol.%) dacite from the 1991-95 eruption of Mt Unzen, Japan, was selected as the natural material, while synthetic samples were sintered with desired porosities (Diamond Light Source. Unexpectedly, these observations suggest that fractures nucleate in crystals due to crystal interactions, before propagating through the interstitial melt. This ongoing study promises to uncover the way crystal-bearing magmas flow or fail, necessary to constrain magmatic processes and volcanic hazards.

  6. Constraining Earth's Rheology of the Barents Sea Using Grace Gravity Change Observations

    Science.gov (United States)

    van der Wal, W.; Root, B. C.; Tarasov, L.

    2014-12-01

    The Barents Sea region was ice covered during last glacial maximum and experiences Glacial Isostatic Adjustment (GIA). Because of the limited amount of relevant geological and geodetic observations, it is difficult to constrain GIA models for this region. With improved ice sheet models and gravity observations from GRACE, it is possible to better constrain Earth rheology. This study aims to constrain the upper mantle viscosity and elastic lithosphere thickness from GRACE data in the Barents Sea region. The GRACE observations are corrected for current ice melting on Svalbard, Novaya Zemlya and Frans Joseph Land. A secular trend in gravity rate trend is estimated from the CSR release 5 GRACE data for the period of February 2003 to July 2013. Furthermore, long wavelength effects from distant large mass balance signals such as Greenland ice melting are filtered out. A new high-variance set of ice loading histories from calibrated glaciological modeling are used in the GIA modeling as it is found that ICE-5G over-estimates the observed GIA gravity change in the region. It is found that the rheology structure represented by VM5a results in over-estimation of the observed gravity change in the region for all ice sheet chronologies investigated. Therefore, other rheological Earth models were investigated. The best fitting upper mantle viscosity and elastic lithosphere thickness in the Barents Sea region are 4 (±0.5)*10^20 Pas and 110 (±20) km, respectively. The GRACE satellite mission proves to be a useful constraint in the Barents Sea Region for improving our knowledge on the upper mantle rheology.

  7. Effect of Water on the Rheology of Clinopyroxene at High Temperature and Pressure

    Science.gov (United States)

    Wang, Z.; Zhang, J.

    2017-12-01

    Clinopyroxene is one of the most important constituent minerals in the lower crust and the upper mantle, and its rheological properties may determine the strength and seismic properties of the lower crust. Previous studies have shown that water content in clinopyroxene of lower crust and upper mantle varies significantly by tectonic backgrounds ranging from 50-700 ppm. However quantitative experimental investigations on the effect of water on the rheological properties of clinopyroxene have been sparse and controversy. We report here experimental deformation on synthesized clinopyroxene aggregates of varying amounts of water using a 5 GPa modified Griggs-type apparatus. Clinopyroxene aggregates of different water contents are prepared by dehydration of a water-rich natural clinopyroxene aggregates at room pressure in a mixed gaseous CO/CO2 flow buffered oven. The water contents are measured by FTIR before and after each experiment. Our results show that the strength of clinopyroxene aggregates decreases exponentially with the increase of water content. The rheological strength of clinopyroxene aggregates is reduced by about 4 times when the water content increases from 84 ppm to 662 ppm (the span of major water contents reported for clinopyroxene of lower crust and upper mantle), corresponding to a water fugacity exponent (r) value of 1.77. It is between the r values previously reported for clinopyroxene (r = 3.0, Chen et al., 2006; r = 1.4±0.2, Hier-Majunder et al., 2005). This r value is less than that reported for garnet (r = 2.4, Katayama and Karato, 2008), but larger than those reported for olivine (r = 0.7-1.25, Karato and Jung, 2003, Mei and Kohlstedt, 2000; r = 1/3, Fei et al., 2013) and plagioclase (r = 1.0±0.3, Rybacki et al., 2006). The effect of water on the rheological strength of clinopyroxene might be more significant than those for olivine and plagioclase but less significant than that for garnet. These results provide important constraints on the

  8. The rheological structure of the lithosphere in the Eastern Marmara region, Turkey

    Science.gov (United States)

    Oruç, Bülent; Sönmez, Tuba

    2017-05-01

    The aim of this work is to propose the geometries of the crustal-lithospheric mantle boundary (Moho) and lithosphere-asthenosphere boundary (LAB) and the 1D thermal structure of the lithosphere, in order to establish a rheological model of the Eastern Marmara region. The average depths of Moho and LAB are respectively 35 km and 51 km from radially averaged amplitude spectra of EGM08 Bouguer anomalies. The geometries of Moho and LAB interfaces are estimated from the Parker-Oldenburg gravity inversion algorithm. Our results show the Moho depth varies from 31 km at the northern part of North Anatolian Fault Zone (NAFZ) to 39 km below the mountain belt in the southern part of the NAFZ. The depth to the LAB beneath the same parts of the region ranges from 45 km to 55 km. Having lithospheric strength and thermal boundary layer structure, we analyzed the conditions of development of lithosphere thinning. A two-dimensional strength profile has been estimated for rheology model of the study area. Thus we suggest that the rheological structure consists of a strong upper crust, a weak lower crust, and a partly molten upper lithospheric mantle.

  9. Objective and quantitative definitions of modified food textures based on sensory and rheological methodology.

    Science.gov (United States)

    Wendin, Karin; Ekman, Susanne; Bülow, Margareta; Ekberg, Olle; Johansson, Daniel; Rothenberg, Elisabet; Stading, Mats

    2010-06-28

    Patients who suffer from chewing and swallowing disorders, i.e. dysphagia, may have difficulties ingesting normal food and liquids. In these patients a texture modified diet may enable that the patient maintain adequate nutrition. However, there is no generally accepted definition of 'texture' that includes measurements describing different food textures. Objectively define and quantify categories of texture-modified food by conducting rheological measurements and sensory analyses. A further objective was to facilitate the communication and recommendations of appropriate food textures for patients with dysphagia. About 15 food samples varying in texture qualities were characterized by descriptive sensory and rheological measurements. Soups were perceived as homogenous; thickened soups were perceived as being easier to swallow, more melting and creamy compared with soups without thickener. Viscosity differed between the two types of soups. Texture descriptors for pâtés were characterized by high chewing resistance, firmness, and having larger particles compared with timbales and jellied products. Jellied products were perceived as wobbly, creamy, and easier to swallow. Concerning the rheological measurements, all solid products were more elastic than viscous (G'>G''), belonging to different G' intervals: jellied products (low G') and timbales together with pâtés (higher G'). By combining sensory and rheological measurements, a system of objective, quantitative, and well-defined food textures was developed that characterizes the different texture categories.

  10. Bambara-wheat composite flour: rheological behavior of dough and functionality in bread.

    Science.gov (United States)

    Erukainure, Ochuko L; Okafor, Jane N C; Ogunji, Akinyele; Ukazu, Happiness; Okafor, Ebele N; Eboagwu, Ijeoma L

    2016-11-01

    The rheological behavior and functional properties of doughs from bambara-wheat composite flour was investigated. Bambara-wheat composite flour was prepared by substituting wheat with 0%, 10%, 15%, and 20% of bambara flour. The rheological behavior of their dough was analyzed with Mixolab. Breads produced from the flour were analyzed for physical characteristics. Organoleptic analysis was carried out by 20 panelists. Mixolab analysis revealed, except for stability time, depreciating values for dough consistency (C1), protein weakening (C2), starch gelatinization (C3), amylase activity (C4), and retrogradation (C5) as the inclusion of bambara flour increased. Physical characteristics of the loaves revealed significant ( P  baking characteristics.

  11. Studying The Rheological Properties of Xanthan Cellulose Gum-Dioxide Titanium Nano-Composites

    Directory of Open Access Journals (Sweden)

    Abdulazeez O. Mousa Al-Ogaili

    2017-02-01

    Full Text Available In this paper, we investigated the rheological properties of xanthan cellulose gum(Xn dissolves in distilled water for different concentrations (0.1 , 0.2, …, 0.8% g/mL before and after adding (0.25 g of (TiO2 for each concentration. The rheological properties such as shear viscosity have been practically measured, but relative viscosity, specific viscosity, reduced viscosity and viscosity average molecular weight have been calculated, all the viscosities depend on density and concentration. The results show that adding (TiO2 led to increase the values of all types of viscosities before and after adding(TiO2.

  12. Comparison between different models for rheological characterization of sludge from settling tank

    Directory of Open Access Journals (Sweden)

    Malczewska Beata

    2017-09-01

    Full Text Available The municipal sludge characterized non-Newtonian behaviour, therefore the viscosity of the sewage sludge is not a constant value. The laboratory investigation was made using coaxial cylinder with rotating torque and gravimetric concentration of the investigated sludge ranged from 4.40% to 2.09%. This paper presents the investigation on the effect of concentration of rheological sludge behaviour. The three different rheological models: Bingham (plastic model, Ostwald-de Waele (power-law, Hershel-Bulkley’s were calculated by fitting the experimental data of shear stress as a function of shear rate to these models. In this study, the 3-parameter Herschel- Bulkley’s model fits the experimental data best.

  13. Rheology of StelliteTM 21 Alloy in Semi-Solid State

    Directory of Open Access Journals (Sweden)

    Sołek K.

    2016-12-01

    Full Text Available The main objective of this study was to conduct an analysis of the rheological properties of StelliteTM 21 alloy in the semi-solid state, as the results could be used for identifying the appropriate temperature range for thixoforming of this alloy, and a secondary objective of the experimental work was the development of mathematical model of the alloy’s apparent viscosity. Such viscosity models are necessary for numerical simulations of the thixoforming processes. The StelliteTM 21 alloy exhibits high hardness and thus shaping in the semi-solid state is promising route of production of parts from this alloy. Within the confines of experimental work the measurement methods of the rheological properties at high temperatures was developed. They are based on the use of specially designed viscometer equipped with high temperature furnace.

  14. Polyethylene/synthetic boehmite alumina nanocomposites: Structure, thermal and rheological properties

    Directory of Open Access Journals (Sweden)

    2010-05-01

    Full Text Available Synthetic boehmite alumina (BA has been incorporated up to 8 wt% in low density polyethylene (LDPE and high density polyethylene (HDPE, respectively, by melt compounding. The primary nominal particle size of these two BA grades was 40 and 60 nm, respectively. The dispersion of the BA in polyethylene (PE matrices was investigated by scanning and transmission electron microscopy techniques (SEM and TEM. The thermal (melting and crystallization, thermooxidative (oxidation induction temperature and time, and rheological behaviors of the nanocomposites were determined. It was found that BA is nanoscale dispersed in both LDPE and HDPE without any surface treatment and additional polymeric compatibilizer. BA practically did not influence the thermal (melting and crystallization and rheological properties of the parent PEs. On the other hand, BA worked as a powerful thermooxidative stabilizer for LDPE, and especially for HDPE nanocomposites.

  15. Shear rheological properties of fresh human faeces with different ...

    African Journals Online (AJOL)

    2014-03-11

    Mar 11, 2014 ... Short communication. Shear rheological properties of fresh human faeces with different moisture content. SM Woolley1, RS Cottingham1, J Pocock1 and CA Buckley1*. 1Pollution Research Group, School of Engineering, University of KwaZulu-Natal, King George V Avenue, Berea 4041, South Africa.

  16. The rheological behaviour of fracture-filling cherts: example of Barite Valley dikes, Barberton Greenstone Belt, South Africa

    Science.gov (United States)

    Ledevin, M.; Arndt, N.; Davaille, A.; Ledevin, R.; Simionovici, A.

    2015-02-01

    In the Barberton Greenstone Belt, South Africa, a 100-250 m thick complex of carbonaceous chert dikes marks the transition from the Mendon Formation to the Mapepe Formation (3260 Ma). The sub-vertical- to vertical position of the fractures, the abundance of highly shattered zones with poorly rotated angular fragments and common jigsaw fit, radial structures, and multiple injection features point to repetitive hydraulic fracturing that released overpressured fluids trapped within the shallow crust. The chemical and isotopic compositions of the chert favour a model whereby seawater-derived fluids circulated at low temperature (clay-sized, rounded particles of silica, carbonaceous matter and minor clay minerals, all suspended in a siliceous colloidal solution. The dike geometry and characteristics of the slurry concur on that the chert was viscoelastic, and most probably thixotropic at the time of injection: the penetration of black chert into extremely fine fractures is evidence for low viscosity at the time of injection and the suspension of large country rock fragments in the chert matrix provides evidence of high viscosity soon thereafter. We explain the rheology by the particulate and colloidal structure of the slurry, and by the characteristic of silica suspensions to form cohesive 3-D networks through gelation. Our results provide valuable information about the compositions, physical characteristics and rheological properties of the fluids that circulated through Archean volcano-sedimentary sequences, which is an additional step to understand conditions on the floor of Archean oceans, the habitat of early life.

  17. Rheological Behavior of Carbon Nanotubes as an Additive on Lithium Grease

    Directory of Open Access Journals (Sweden)

    Alaa Mohamed

    2013-01-01

    Full Text Available The rheological behaviors of carbon nanotubes (CNTs as an additive on lithium grease at different concentrations were examined under various settings of shear rate, shear stress, and apparent viscosity. The results indicated that the optimum content of the CNTs was 2%. These experimental investigations were evaluated with a Brookfield Programmable Rheometer DV-III ULTRA. The results indicated that the shear, stress and apparent viscosity increase with the increase of CNTs concentration. The microstructure of CNTs and lithium grease was examined by high resolution transmission electron microscope (HRTEM and scanning electron microscope (SEM. The results indicated that the microscopic structure of the lithium grease presents a more regular and homogeneous network structure, with long fibers, which confirms the rheological stability.

  18. Mudflow rheology in a vertically rotating flume

    Science.gov (United States)

    Holmes, Robert R.; Westphal, Jerome A.; Jobson, Harvey E.; ,

    1990-01-01

    Joint research by the U.S. Geological Survey and the University of Missouri-Rolla currently (1990) is being conducted on a 3.05 meters in diameter vertically rotating flume used to simulate mudflows under steady-state conditions. Observed mudflow simulations indicate flow patterns in the flume are similar to those occurring in natural mudflows. Variables such as mean and surface velocity, depth, and average boundary shear stress can be measured in this flume more easily than in the field or in a traditional tilting flume. Sensitive variables such as sediment concentration, grain-size distribution, and Atterberg limits also can be precisely and easily controlled. A known Newtonian fluid, SAE 30 motor oil, was tested in the flume and the computed value for viscosity was within 12.5 percent of the stated viscosity. This provided support that the data from the flume can be used to determine the rheological properties of fluids such as mud. Measurements on mud slurries indicate that flows with sediment concentrations ranging from 81 to 87 percent sediment by weight can be approximated as Bingham plastic for strain rates greater than 1 per second. In this approximation, the yield stress and Bingham viscosity were extremely sensitive to sediment concentration. Generally, the magnitude of the yield stress was large relative to the change in shear stress with increasing mudflow velocity.

  19. Effects of the organic solvents addition about crude oil rheological behavior from 'Reconcavo Baiano' (Brazil); Efeito da adicao de solventes organicos sobre o comportamento reologico do petroleo cru oriundo do 'Reconcavo Baiano' (Brasil)

    Energy Technology Data Exchange (ETDEWEB)

    Cavalcanti, Luis A.P. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Faculdade de Engenharia Quimica; Vieira, Jacyara M.A. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Faculdade de Engenharia de Minas; Almeida, Yeda M.B.; Sarmento, Sandra M. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil)

    2004-07-01

    The crude oil rheological properties are quite important in its transport and refining processes. They can affect the head losses and, thus, the pressure within a refining unit. These properties can be affected by the temperature and the chemical composition as well as by solvents added to the crude oil. The current work studied the rheological behaviour of both a crude oil from the Reconcavo Baiano (Brazil) and mixture of this crude oil with organic solvents (toluene and xylene). The solvent type and concentration effects on the rheological parameters, were studied. The Brookfield viscometer, model LDVD-II, was used. The results brought to light that the crude oil and the crude oil-solvent mixtures behaved, discretely, as thixotropic fluids. The model of Herschel-Bulkley for viscoplastic fluid was the best in fitting the experimental data for both crude oil and crude oil - solvent mixture. The toluene was found to be more efficient in reducing both the apparent viscosity and apparent yield stress of the crude oil than the xylene for a given concentration. The solvent concentration affects indirectly the rheological properties of the crude oil. (author)

  20. Dynamic Characteristics of Magneto-Fluid Supports

    Directory of Open Access Journals (Sweden)

    V. A. Chernobai

    2008-01-01

    Full Text Available The paper considers a vibro-protective magneto-fluid support that uses elastic properties of magnetic fluid with a free surface in magnetic field.The paper has experimentally revealed that the analyzed structure is characterized by better noise absorbing characteristics.The conducted experiments have made it possible to conclude that there is a possibility to use vibro-protective magneto-fluid supports within the frequency range from 0 to 300 Hz, amplitudes up to 2 mm and unit load up to 2,5 · 10 4 Н/м².