WorldWideScience

Sample records for electrically measured ls-pressure

  1. Controlling a Conventional LS-pump based on Electrically Measured LS-pressure

    DEFF Research Database (Denmark)

    Pedersen, Henrik Clemmensen; Andersen, Torben Ole; Hansen, Michael Rygaard

    2008-01-01

    As a result of the increasing use of sensors in mobile hydraulic equipment, the need for hydraulic pilot lines is decreasing, being replaced by electrical wiring and electrically controllable components. For controlling some of the existing hydraulic components there are, however, still a need...... this system, by either generating a copy of the LS-pressure, the LS-pressure being the output, or letting the output be the pump pressure. The focus of the current paper is on the controller design based on the first approach. Specifically a controlled leakage flow is used to avoid the need for a switching...

  2. Electricity electron measurement

    International Nuclear Information System (INIS)

    Kim, Sang Jin; Sung, Rak Jin

    1985-11-01

    This book deals with measurement of electricity and electron. It is divided into fourteen chapters, which depicts basic of electricity measurement, unit and standard, important electron circuit for measurement, instrument of electricity, impedance measurement, power and power amount measurement, frequency and time measurement, waveform measurement, record instrument and direct viewing instrument, super high frequency measurement, digital measurement on analog-digital convert, magnetic measurement on classification by principle of measurement, measurement of electricity application with principle sensors and systematization of measurement.

  3. Semiconductor Electrical Measurements Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Semiconductor Electrical Measurements Laboratory is a research laboratory which complements the Optical Measurements Laboratory. The laboratory provides for Hall...

  4. Electric Properties Measurement of Lentil

    Directory of Open Access Journals (Sweden)

    Novák Ján

    2018-03-01

    Full Text Available This paper contains the results of the electric properties measurement of lentil set. Electric measurements with use of these materials are of fundamental importance in relation to the analysis of quantity of absorbed water and dielectric heating characteristics. The aim of this paper was to perform the measurements of conductivity, dielectric constant and loss tangent on samples of lentil, the electrical properties of which had not been sufficiently measured. Measurements were performed under various moisture contents, and the frequency of electric field ranged from 1 MHz to 16 MHz, using a Q meter with coaxial probe. It was concluded that conductivity, relative permittivity and loss tangent increased with an increase in moisture content, and dielectric constant and loss tangent decreased as the frequency of electric field increased.

  5. Electrical Resistivity Measurements: a Review

    Science.gov (United States)

    Singh, Yadunath

    World-wide interest on the use of ceramic materials for aerospace and other advanced engineering applications, has led to the need for inspection techniques capable of detecting unusually electrical and thermal anomalies in these compounds. Modern ceramic materials offer many attractive physical, electrical and mechanical properties for a wide and rapidly growing range of industrial applications; moreover specific use may be made of their electrical resistance, chemical resistance, and thermal barrier properties. In this review, we report the development and various techniques for the resistivity measurement of solid kind of samples.

  6. In Situ TEM Electrical Measurements

    DEFF Research Database (Denmark)

    Canepa, Silvia; Alam, Sardar Bilal; Ngo, Duc-The

    2016-01-01

    understanding of complex physical and chemical interactions in the pursuit to optimize nanostructure function and device performance. Recent developments of sample holder technology for TEM have enabled a new field of research in the study of functional nanomaterials and devices via electrical stimulation...... influence the sample by external stimuli, e.g. through electrical connections, the TEM becomes a powerful laboratory for performing quantitative real time in situ experiments. Such TEM setups enable the characterization of nanostructures and nanodevices under working conditions, thereby providing a deeper...... and measurement of the specimen. Recognizing the benefits of electrical measurements for in situ TEM, many research groups have focused their effort in this field and some of these methods have transferred to ETEM. This chapter will describe recent advances in the in situ TEM investigation of nanostructured...

  7. Lord Kelvin's atmospheric electricity measurements

    Science.gov (United States)

    Aplin, Karen; Harrison, R. Giles; Trainer, Matthew; Hough, James

    2013-04-01

    Lord Kelvin (William Thomson), one of the greatest Victorian scientists, made a substantial but little-recognised contribution to geophysics through his work on atmospheric electricity. He developed sensitive instrumentation for measuring the atmospheric electric field, including invention of a portable electrometer, which made mobile measurements possible for the first time. Kelvin's measurements of the atmospheric electric field in 1859, made during development of the portable electrometer, can be used to deduce the substantial levels of particulate pollution blown over the Scottish island of Arran from the industrial mainland. Kelvin was also testing the electrometer during the largest solar flare ever recorded, the "Carrington event" in the late summer of 1859. Subsequently, Lord Kelvin also developed a water dropper sensor, and employed photographic techniques for "incessant recording" of the atmospheric electric field, which led to the long series of measurements recorded at UK observatories for the remainder of the 19th and much of the 20th century. These data sets have been valuable in both studies of historical pollution and cosmic ray effects on atmospheric processes.

  8. Electrical measurements during magnet construction

    International Nuclear Information System (INIS)

    Sintchak, G.; Ganetis, G.; Cottingham, G.

    1989-01-01

    Throughout the construction phase of the cold mass for SSC magnets, electrical tests are made to determine that no faults in the coil structure have developed. These tests include ones designed to measure turn-to-turn voltage hold-off, hypot tests to ground, coil resistance, and instrumentation checks. These various tests will be described and the test parameters that are used will be covered. 4 figs

  9. Measurements of electrically exploded tubes

    International Nuclear Information System (INIS)

    Shearer, J.W.; Hartman, C.W.; Munger, R.H.; Gullickson, R.L.; Trimble, D.O.; Cheng, D.Y.

    1975-01-01

    The dynamics of electrically exploded tubes were investigated, principally by means of current measurements and flash x-ray pictures. The pinch effect was observed on the tube motion. Pileup of the imploding tube metal was seen on axis. An approximate analytical model can be roughly fitted to the data, but a more complete fit can be obtained with detailed numerical codes. Application of the results to the planning of future gas-embedded Z-pinch experiments is discussed. (U.S.)

  10. Electrical measurement, signal processing, and displays

    CERN Document Server

    Webster, John G

    2003-01-01

    ELECTROMAGNETIC VARIABLES MEASUREMENTVoltage MeasurementCurrent Measurement Power Measurement Power Factor Measurement Phase Measurement Energy Measurement Electrical Conductivity and Resistivity Charge Measurement Capacitance and Capacitance Measurements Permittivity Measurement Electric Field Strength Magnetic Field Measurement Permeability and Hysteresis MeasurementInductance Measurement Immittance MeasurementQ Factor Measurement Distortion Measurement Noise Measurement.Microwave Measurement SIGNAL PROCESSINGAmplifiers and Signal ConditionersModulation Filters Spectrum Analysis and Correlat

  11. Mounting Thin Samples For Electrical Measurements

    Science.gov (United States)

    Matus, L. G.; Summers, R. L.

    1988-01-01

    New method for mounting thin sample for electrical measurements involves use of vacuum chuck to hold a ceramic mounting plate, which holds sample. Contacts on mounting plate establish electrical connection to sample. Used to make electrical measurements over temperature range from 77 to 1,000 K and does not introduce distortions into magnetic field during Hall measurements.

  12. Induction Motors by Electric Measurements

    Directory of Open Access Journals (Sweden)

    Andrzej M. Trzynadlowski

    1999-01-01

    Full Text Available The paper gives an overview of the issues and means of detection of mechanical abnormalities in induction motors by electric measurements. If undetected and untreated, the worn or damaged bearings, rotor imbalance and eccentricity, broken bars of the rotor cage, and torsional and lateral vibration lead to roughly a half of all failures of induction motor drives. The detection of abnormalities is based on the fact that they cause periodic disturbance of motor variables, such as the speed, torque, current, and magnetic flux. Thus, spectral analysis of those or related quantities may yield a warning about an incipient failure of the drive system. Although the traditional non-invasive diagnostics has mostly been based on the signature analysis of the stator current, other media can also be employed. In particular, the partial instantaneous input power is shown, theoretically and experimentally, to offer distinct advantages under noisy operating conditions. Use of torque and flux estimates is also discussed.

  13. Analysis of electric vehicles measurements

    NARCIS (Netherlands)

    Vonk, B.M.J.; Geldtmeijer, D.A.M.; Slootweg, J.G.

    2013-01-01

    Electric vehicles are expected to have a significant impact on electricity grids. Intelligent charging strategies are suggested by literature and tested in the field to prevent overloading of network assets in electricity grids by using the flexibility of electro-mobility. This paper covers an

  14. Two devices for atmospheric electric field measurement

    International Nuclear Information System (INIS)

    Colombet, Andre; Hubert, Pierre.

    1977-02-01

    Two instruments installed at St Privat d'Allier for electric field measurement in connection with the rocket triggered lighting experiment program are described. The first one is a radioactive probe electrometer used as a warning device. The second is a field mill used for tape recording of electric field variation during the triggering events. Typical examples of such records are given [fr

  15. Electrical measurements in the laboratory practice

    CERN Document Server

    Bartiromo, Rosario

    2016-01-01

    This book covers the basic theory of electrical circuits, describes analog and digital instrumentation, and applies modern methods to evaluate uncertainties in electrical measurements. It is comprehensive in scope and is designed specifically to meet the needs of students in physics and electrical engineering who are attending laboratory classes in electrical measurements. The topics addressed in individual chapters include the analysis of continuous current circuits; sources of measurement uncertainty and their combined effect; direct current measurements; analysis of alternating current circuits; special circuits including resonant circuits, frequency filters and impedance matching networks; alternating current measurements; analog and digital oscilloscopes; non-sinusoidal waveforms and circuit excitation by pulses; distributed parameter components and transmission lines. Each chapter is equipped with a number of problems. A special appendix describes a series of nine experiments, in each case providing a p...

  16. Electrical measurement of sweat activity

    International Nuclear Information System (INIS)

    Tronstad, Christian; Grimnes, Sverre; Martinsen, Ørjan G; Gjein, Gaute E; Fosse, Erik; Krogstad, Anne-Lene

    2008-01-01

    A multichannel logger for long-term measurements of sweat activity is presented. The logger uses skin surface electrodes for unipolar admittance measurements in the stratum corneum. The logger is developed with emphasis on clinical use. The portability of the logger enables recording of sweat activity under circumstances such as daily errands, exercise and sleep. Measurements have been done on 24 healthy volunteers during relaxation and exercise with heart rate monitoring. Recordings of sweat activity during sleep have been done on two healthy subjects. Early results show good agreement with the literature on sweating physiology and electrodermal activity. Results are presented showing measurements related to physical exercise, dermatomes, distribution of sweat glands and sympathetic activity. This study examines the normal sweating patterns for the healthy population, and we present results with the first 24 healthy volunteers. Comparing these results with similar measurements on hyperhidrosis patients will make it possible to find the most useful parameters for diagnosis and treatment evaluation

  17. Electrical resistivity measurement to predict uniaxial compressive ...

    Indian Academy of Sciences (India)

    Electrical resistivity values of 12 different igneous rocks were measured on core samples using a resistivity meter in the ... It was seen that the UCS and tensile strength values were linearly correlated with the ..... Innovation 2 20. Archie G E ...

  18. Electrical resistivity measurements to predict abrasion resistance

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 31; Issue 2. Electrical resistivity measurements to predict abrasion resistance of rock aggregates ... It was seen that correlation coefficients were increased for the rock classes. In addition ...

  19. Measuring Electrical Current: The Roads Not Taken

    Science.gov (United States)

    Greenslade, Thomas B., Jr.

    2011-01-01

    Recently I wrote about the standard Weston meter movement, that is at the heart of all modern analogue current measurements. Now I will discuss other techniques used to measure electric current that, despite being based on valid physical principles, are largely lost in technological history.

  20. Electric Field Quantitative Measurement System and Method

    Science.gov (United States)

    Generazio, Edward R. (Inventor)

    2016-01-01

    A method and system are provided for making a quantitative measurement of an electric field. A plurality of antennas separated from one another by known distances are arrayed in a region that extends in at least one dimension. A voltage difference between at least one selected pair of antennas is measured. Each voltage difference is divided by the known distance associated with the selected pair of antennas corresponding thereto to generate a resulting quantity. The plurality of resulting quantities defined over the region quantitatively describe an electric field therein.

  1. Coulomb's Electrical Measurements. Experiment No. 14.

    Science.gov (United States)

    Devons, Samuel

    Presented is information related to the life and work of Charles Coulomb as well as detailed notes of his measurements of the distribution of electricity on conductors. The two methods that he used (the large torsion balance, and the timing of "force" oscillations) are described. (SA)

  2. Electrical Impedance Measurements of PZT Nanofiber Sensors

    Directory of Open Access Journals (Sweden)

    Richard Galos

    2017-01-01

    Full Text Available Electrical impedance measurements of PZT nanofiber sensors were performed using a variety of methods over a frequency spectrum ranging from DC to 1.8 GHz. The nanofibers formed by electrospinning with diameters ranging from 10 to 150 nm were collected and integrated into sensors using microfabrication techniques. Special matching circuits with ultrahigh input impedance were fabricated to produce low noise, measurable sensor outputs. Material properties including resistivity and dielectric constant are derived from the impedance measurements. The resulting material properties are also compared with those of individual nanofibers being tested using conductive AFM and Scanning Conductive Microscopy.

  3. Electrical measurements in µ-EDM

    International Nuclear Information System (INIS)

    Ferri, Carlo; Ivanov, Atanas; Petrelli, Antoine

    2008-01-01

    The phenomena occurring between the electrodes in electric discharge machining when manufacturing features on the micro-metre scale (µ-EDM) is not fully understood. Poor quantitative knowledge of the sources of variability affecting this process hinders the identification of its natural tolerance limits. Moreover, improvements in measuring systems contribute to the acquisition of new information that often conflicts with existent theoretical models of this process. The prime objective of this paper is to advance the experimental knowledge of µ-EDM by providing a measurement framework for the electrical discharges. The effects of the electrodes metallic materials (Ag, Ni, Ti, W) on the electrical measurements defined in the proposed framework are analysed. Linear mixed-effects models are fitted to the experimental data using the restricted maximum likelihood method (REML). The main conclusion drawn is that the discharge current and voltage as defined and measured in this framework do significantly depend on the electrode material even when keeping all the other machining conditions unchanged

  4. Electric Field Effects in RUS Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Darling, Timothy W [Los Alamos National Laboratory; Ten Cate, James A [Los Alamos National Laboratory; Allured, Bradley [UNIV NEVADA, RENO; Carpenter, Michael A [CAMBRIDGE UNIV. UK

    2009-09-21

    Much of the power of the Resonant Ultrasound Spectroscopy (RUS) technique is the ability to make mechanical resonance measurements while the environment of the sample is changed. Temperature and magnetic field are important examples. Due to the common use of piezoelectric transducers near the sample, applied electric fields introduce complications, but many materials have technologically interesting responses to applied static and RF electric fields. Non-contact optical, buffered, or shielded transducers permit the application of charge and externally applied electric fields while making RUS measurements. For conducting samples, in vacuum, charging produces a small negative pressure in the volume of the material - a state rarely explored. At very high charges we influence the electron density near the surface so the propagation of surface waves and their resonances may give us a handle on the relationship of electron density to bond strength and elasticity. Our preliminary results indicate a charge sign dependent effect, but we are studying a number of possible other effects induced by charging. In dielectric materials, external electric fields influence the strain response, particularly in ferroelectrics. Experiments to study this connection at phase transformations are planned. The fact that many geological samples contain single crystal quartz suggests a possible use of the piezoelectric response to drive vibrations using applied RF fields. In polycrystals, averaging of strains in randomly oriented crystals implies using the 'statistical residual' strain as the drive. The ability to excite vibrations in quartzite polycrystals and arenites is explored. We present results of experimental and theoretical approaches to electric field effects using RUS methods.

  5. Electrical and calorimetric measurements and related software

    CERN Document Server

    Catalan-Lasheras, N; Koratzinos, M; Rijllart, A; Siemko, A; Strait, J; Tavian, L; Wolf, R

    2009-01-01

    During the incident of sector 3-4 on September 19th, the temperature of a number of magnets increased over the expected values prior to the circuit failure. A review of the data logged during powering tests on all circuits indicated potential resistive splices in sectors 1-2 and 6-7. Calorimetric and electrical measurements confirmed a high resistance in magnet B16. R1 and B32R6. Systematic measurements have been performed in other cold sectors of the LHC during which the temperature increase and voltage across magnets were acquired at different currents. Cryogenic subsectors on which the temperature increase was abnormal were equipped with precise voltmeters to detect eventual resistive splices in the bus-bars. The findings of the measurement campaign will be shown as well as the plans to implement similar diagnostics as a routine check prior to powering the superconducting circuits of the LHC.

  6. EDM: Neutron electric dipole moment measurement

    Directory of Open Access Journals (Sweden)

    Peter Fierlinger

    2016-02-01

    Full Text Available An electric dipole moment (EDM of the neutron would be a clear sign of new physics beyond the standard model of particle physics. The search for this phenomenon is considered one of the most important experiments in fundamental physics and could provide key information on the excess of matter versus antimatter in the universe. With high measurement precision, this experiment aims to ultimately achieve a sensitivity of 10-28 ecm, a 100-fold improvement in the sensitivity compared to the state-of-the-art. The EDM instrument is operated by an international collaboration based at the Technische Universität München.

  7. Electrical resistivity measurements in superconducting ceramics

    International Nuclear Information System (INIS)

    Muccillo, R.; Bressiani, A.H.A.; Muccillo, E.N.S.; Bressiani, J.C.

    1988-01-01

    Electrical resistivity measurements have been done in (Y, Ba, Cu, O) - and (Y, A1, Ba, Cu, O) - based superconducting ceramics. The sintered specimens were prepared by applying gold electrodes and winding on the non-metalized part with a copper strip to be immersed in liquid nitrogen for cooling. The resistivity measurements have been done by the four-probe method. A copper-constantan or chromel-alumel thermocouple inserted between the specimen and the copper cold finger has been used for the determination of the critical temperature T c . Details of the experimental set-up and resistivity versus temperature plots in the LNT-RT range for the superconducting ceramics are the major contributions of this communication. (author) [pt

  8. Electrical resistivity measurements in superconducting ceramics

    International Nuclear Information System (INIS)

    Muccillo, R.; Bressiani, A.H.A.; Muccillo, E.N.S.; Bressian, J.C.

    1988-01-01

    Electrical resistivity measurements have been done in (Y,Ba,Cu,O)- and (Y,Al,Ba,Cu,O)-based superconducting ceramics. The sintered specimens were prepared by applying gold electrodes and winding on the non-metalized part with a copper strip to be immersed in liquid nitrogen for cooling. The resistivity measurements have been done by the four-probe method. A copper constantan or chromel-alumel thermocouple inserted between the specimen and the copper cold finger has been used for the determination of the critical temperature T c . Details of the experimental set-up and resistivity versus temperature plots in the LNT-RT range for the superconducting ceramics are the major contributions of this communication. (author) [pt

  9. Electric field measurements in high pressure discharges

    International Nuclear Information System (INIS)

    Mitko, S.V.; Ochkin, V.N.; Serdyuchenko, A.Yu.; Tskhai, S.N.

    2001-01-01

    Electric fields define a wide range of interactions and phenomena at different phases of matter both on micro- and macro-level. Investigation of electric fields behavior provides a key for understanding of these phenomena and their application

  10. Evaluating groundwater flow using passive electrical measurements

    Science.gov (United States)

    Voytek, E.; Revil, A.; Singha, K.

    2016-12-01

    Accurate quantification of groundwater flow patterns, both in magnitude and direction, is a necessary component of evaluating any hydrologic system. Groundwater flow patterns are often determined using a dense network of wells or piezometers, which can be limited due to logistical or regulatory constraints. The self-potential (SP) method, a passive geophysical technique that relies on currents generated by water movement through porous materials, is a re-emerging alternative or addition to traditional piezometer networks. Naturally generated currents can be measured as voltage differences at the ground surface using only two electrodes, or a more complex electrode array. While the association between SP measurements and groundwater flow was observed as early as 1890s, the method has seen resurgence in hydrology since the governing equations were refined in the 1980s. The method can be used to analyze hydrologic processes at various temporal and spatial scales. Here we present the results of multiple SP surveys collected a multiple scales (1 to 10s of meters). Here single SP grid surveys are used to evaluate flow patterns through artic hillslopes at a discrete point in time. Additionally, a coupled groundwater and electrical model is used to analyze multiple SP data sets to evaluate seasonal changes in groundwater flow through an alpine meadow.

  11. Electrical, Magnetic, and Optical Measurement Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides tools necessary for electrical, magnetic, and optical characterization of bulk and thin-film materials. This includes the ability to determine the...

  12. Electric Field Measurements At The Magnetopause

    Science.gov (United States)

    Lindqvist, P.-A.; Dunlop, M.

    The quasi-thermal noise (QTN) is due to the thermal motions of the particles, which produce electrostatic fluctuations. This noise is detected by any sensitive receiver at the ports of an electric antenna immersed in a plasma and can be used to measure in-situ the plasma density, temperature and bulk velocity. The basic reason is that this noise can be formally calculated as a function of both the particle velocity distribu- tions and the antenna geometry. So, conversely, the "spectroscopy" of this noise re- veals the local plasma properties. This method is routinely used on various spacecraft (Ulysses, Wind) in the solar wind or in planetary magnetospheres/ionospheres (Image at Earth, Cassini at Venus, Earth and soon at Saturn). This method has the advantage of being relatively immune to spacecraft potential and photoelectrons pertubations, since it senses a large plasma volume. It provides an accurate measurement of the electron density (a few %) because it is based on the detection of the strong signal peak near the local plasma frequency (which is close to a resonance for electrostatic waves). We will show that QTN may be as well adapted to measure 1) magnetized (anisotropic) plasmas (and deduce the magnetic field strength), 2) suprathermal or non-thermal component (as for example a kappa distribution), and 3) a wide range of core temperature, i.e from ~10 eV, as in the solar wind, to rather low temperatures (tron density and temperature for comparison with our models of Mercury/solar wind interaction.

  13. A new measure for the strength of electrical synapses

    Directory of Open Access Journals (Sweden)

    Julie S Haas

    2015-09-01

    Full Text Available Electrical synapses, like chemical synapses, mediate intraneuronal communication. Electrical synapses are typically quantified by subthreshold measurements of coupling, which fall short in describing their impact on spiking activity in coupled neighbors. Here we describe a novel measurement for electrical synapse strength that directly evaluates the effect of synaptically transmitted activity on spike timing. This method, also applicable to neurotransmitter-based synapses, communicates the considerable strength of electrical synapses. For electrical synapses measured in rodent slices of the thalamic reticular nucleus, spike timing is modulated by tens of ms by activity in a coupled neighbor.

  14. Measurement of electric potential distribution in dielectrics

    Energy Technology Data Exchange (ETDEWEB)

    Veretel' nik, V I; Dergozubov, K A; Evdokimov, O B; Shevelev, G E [Tomskij Politekhnicheskij Inst. (USSR). Nauchno-Issledovatel' skij Inst. Ehlektronnoj Introskopii

    1976-05-01

    A radiation method of potential probing in a substance is described. The method is based upon the influence of the electric field upon the emission of secondary electrons expelled by ..gamma..-irradiation from the studied sample.

  15. Electric field measurements in a xenon discharge using Spark spectroscopy

    NARCIS (Netherlands)

    Wagenaars, E.; Bowden, M.D.; Kroesen, G.M.W.

    2005-01-01

    Measurements of electric field distributions in a low-pressure xenon discharge are presented. The measurement technique is based on Stark spectroscopy, using a 2 + 1 excitation scheme with fluorescence dip detection. Electric fields can be measured by detecting Stark shifts of high-lying Rydberg

  16. Electric power: liberalization in half-measure

    International Nuclear Information System (INIS)

    Pradel, P.

    1996-01-01

    The European directive about the electric power liberalization concerns only big consumers. These manufacturers have privileged relations with E.D.F. for long years with a very attractive price for the kilowatt hour. The change should not be very important, only more transparency in accounts and change in tariffs of power transmission: for example, a small electric power producer will be authorized to contest the buying price that E.D.F. imposes to him to transport the energy he produces. (N.C.)

  17. Measurement of electric fields in the H-1NF heliac

    International Nuclear Information System (INIS)

    James, B.W.; Howard, J.

    1999-01-01

    There are a number of laser induced fluorescence techniques which can be used to measure internal plasma electric fields. It is planned to use a technique based on Stark mixing of energy levels in a supersonic beam containing metastable helium atoms to measure radial electric fields in H-1NF. Enhanced values of radial electric field are associated with improved confinement modes in H-1NF and other magnetically confined plasmas

  18. Electrical Resistivity Measurements of Downscaled Homogenous ...

    African Journals Online (AJOL)

    Knowledge of electrical resistivity for reservoir rocks is crucial for a number of reservoir engineering tasks such as the determination of oil-in-place and the calibration of resistivity logs. Those properties can now be predicted by numerical calculations directly on micro-CT images taken from rock fragments typically having a ...

  19. Electrical Measurements on a Moving Argon Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, A. A.M.; Howatson, A. M. [Oxford University (United Kingdom)

    1966-10-15

    Experimental current-voltage characteristic curves were obtained for a moving argon plasma at two stations in an electrically-driven 5 cm shock tube. The standard energy was 1 kj and the base pressure 10 torr, giving a shock of about Mach 4. The measurements were made on the highly-ionized driver gas which followed the shock at speeds between 800 and 1100 m/sec. Two types of electrode were used. One comprised circular solid electrodes of aluminium, molybdenum or stainless steel so machined as to be quite flush with the tube wall; the other comprised filaments of tungsten wire which were immersed in the free stream and could be used cold or heated for thermionic emission. Characteristics were obtained both for applied voltages and for MHD-generated voltages; for the latter a magnetic field of good uniformity up to 0.9 Wb/m{sup 2} was used. The results were always markedly dependent on the surface condition of the electrodes. For consistent results the flush electrodes had to be cleaned carefully by hand after every third discharge, while the filament electrodes were thermionically cleaned before every discharge. In general the cold electrode characteristics for applied voltage showed three distinct regions: a current increase such as would be expected from a double probe; a saturation region; and a linear increase, in order of increasing voltage. For the flush electrodes another apparent saturation was found before, finally, the transition to an arc-type discharge. The first saturation current for flush electrodes corresponded to a random ion current much less than that estimated to exist away from the tube walls, as is expected from a consideration of diffusion through a boundary layer. The value of the current varied somewhat with the electrode material. For the cold filaments, the saturation current density was of the same order as for the flush electrodes. From the linear region of the curves, an effective plasma conductivity was obtained. For comparison, the

  20. Optical sensors for the measurement of electric current and voltage

    Energy Technology Data Exchange (ETDEWEB)

    Rutgers, W R; Hulshof, H J.M.; Laurensse, I J; van der Wey, A H

    1987-01-01

    Optical sensors for the measurement of electrical current and voltage were developed for application in electric power systems. The current sensor, based on the Faraday effect in a monomode glass fiber, and the voltage sensor, based on the transverse Pockels effect in a crystal, are demonstrated in wide-band (10 MHz) interference-free measurements of pulsed currents and impulse voltages.

  1. PHASE GRADIENT METHOD OF MAGNETIC FIELD MEASUREMENTS IN ELECTRIC VEHICLES

    Directory of Open Access Journals (Sweden)

    N. G. Ptitsyna

    2013-01-01

    Full Text Available Operation of electric and hybrid vehicles demands real time magnetic field control, for instance, for fire and electromagnetic safety. The article deals with a method of magnetic field measurements onboard electric cars taking into account peculiar features of these fields. The method is based on differential methods of measurements, and minimizes the quantity of magnetic sensors.

  2. Measuring Technology and Mechatronics Automation in Electrical Engineering

    CERN Document Server

    2012-01-01

    Measuring Technology and Mechatronics Automation in Electrical Engineering includes select presentations on measuring technology and mechatronics automation related to electrical engineering, originally presented during the International Conference on Measuring Technology and Mechanatronics Automation (ICMTMA2012). This Fourth ICMTMA, held at Sanya, China, offered a prestigious, international forum for scientists, engineers, and educators to present the state of the art of measuring technology and mechatronics automation research.

  3. Electrical conductivity measurement on DKDP Crystals with different deuterated degrees

    International Nuclear Information System (INIS)

    Liu, Baoan; Yin, Xin; Xu, Mingxia; Ji, Shaohua; Zhu, Lili; Zhang, Lisong; Sun, Xun; Xu, Xinguang; Zhao, Minglei; Zhang, Qinghua

    2012-01-01

    Ten DKDP single crystals with deuterated degrees ranging from 0 to 90 % were grown by a rapid growth method. The electrical conductivities of these crystals were measured along a and c directions at room temperature. The electrical conductivity increases with the increase for deuterium content. Also, the electrical conductivities of certain crystals were measured at various temperatures ranging from 20 to 130 C. The values of activation energy decrease as the increase of deuterium content. The present study indicates that the deuterium tunneling frequency is smaller than that of hydrogen, which may be the reason why the variation of electrical conductivity happens after the substitution of hydrogen for deuterium in KDP crystal. (orig.)

  4. Electrical conductivity and magnetic permeability measurement of case hardened steels

    Science.gov (United States)

    Tian, Yong

    2015-03-01

    For case carburized steels, electrical conductivity and magnetic permeability profiles are needed to develop model-based case depth characterization techniques for the purpose of nondestructive quality control. To obtain fast and accurate measurement of these material properties, four-point potential drop approaches are applied on circular-shaped discs cut from steel rings with different case depths. First, a direct current potential drop (DCPD) approach is applied to measure electrical conductivity. Subsequently, an alternating current potential drop (ACPD) approach is used to measure magnetic permeability. Practical issues in measurement design and implementation are discussed. Depth profiles of electrical conductivity and magnetic permeability are reported.

  5. Measuring electric conductivity in liquid metals by eddy current method

    International Nuclear Information System (INIS)

    Zhuravlev, S.P.; Ostrovskij, O.I.; Grigoryan, V.A.

    1982-01-01

    Technique permitting to apply the method of vertiginous currents for investigation of electric conductivity of metal melts in the high temperature range is presented. Interferences affecting accuracy of measurements are specified and ways of their removing are pointed out. Scheme of measuring and design of the facility are described. Results of measuring electric resistance of liquid Fe, Co, Ni obtained for the first time by this method are presented. The data obtained agree with the results of measurements conducted by the method of the rotating magnetic field. Difference in absolute values of electric resistance in parallel experiments for each metal does not exceed 4%

  6. Analysis of Surface Electric Field Measurements from an Array of Electric Field Mills

    Science.gov (United States)

    Lucas, G.; Thayer, J. P.; Deierling, W.

    2016-12-01

    Kennedy Space Center (KSC) has operated an distributed array of over 30 electric field mills over the past 18 years, providing a unique data set of surface electric field measurements over a very long timespan. In addition to the electric field instruments there are many meteorological towers around KSC that monitor the local meteorological conditions. Utilizing these datasets we have investigated and found unique spatial and temporal signatures in the electric field data that are attributed to local meteorological effects and the global electric circuit. The local and global scale influences on the atmospheric electric field will be discussed including the generation of space charge from the ocean surf, local cloud cover, and a local enhancement in the electric field that is seen at sunrise.

  7. Evaluation of Cow Milk Electrical Conductivity Measurements

    Directory of Open Access Journals (Sweden)

    Constantin Gavan

    2017-11-01

    Full Text Available The efficiency of subclinical mastitis diagnosis using an electrical conductivity (EC meter was evaluated in the dairy farm of Agricultural Research and Development Station ( ARDS Simnic Craiova. The results were compared with those obtained by using the California Mastitis Test (CMT and the Somatic Cell Count (SCC.The milk quarter samples ( 1176 from Holstein Friesian cows were analyzed between September and December 2015. The EC evaluation with  the EC meter  ,showed a high proportion of results differing from SCC and CMT results. The CMT still shows to be the most accessible and efficient test in comparison to the EC meter tested.

  8. Electrical measurements on submicronic synthetic conductors : carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Langer, L [Unite de Physico-Chimie et de Physique des Materiaux, Univ. Catholique de Louvain, Louvain-la-Neuve (Belgium); Stockman, L [Lab. voor Vaste Stof-Fysika en Magnetisme, Katholieke Univ. Leuven (Belgium); Heremans, J P [Physics Dept., General Motors Research, Warren, MI (United States); Bayot, V [Unite de Physico-Chimie et de Physique des Materiaux, Univ. Catholique de Louvain, Louvain-la-Neuve (Belgium); Olk, C H [Physics Dept., General Motors Research, Warren, MI (United States); Haesendonck, C van [Lab. voor Vaste Stof-Fysika en Magnetisme, Katholieke Univ. Leuven (Belgium); Bruynseraede, Y [Lab. voor Vaste Stof-Fysika en Magnetisme, Katholieke Univ. Leuven (Belgium); Issi, J P [Unite de Physico-Chimie et de Physique des Materiaux, Univ. Catholique de Louvain, Louvain-la-Neuve (Belgium)

    1995-03-15

    The synthesis of very small samples has raised the need for a drastic miniaturization of the classical four-probe technique in order to realize electrical resistance measurements. Two methods to realize electrical contacts on very small fibers are described here. Using classical photolithography the electrical resistivity of a submicronic catalytic chemical vapour deposited filament is estimated. Scanning tunneling microscopy (STM) lithography allowed to attach small gold contacts to a small bundle (diameter 50 nm) of carbon nanotubes. This bundle is found to exhibit a semimetallic behavior at higher temperature and an unexpected drop of the electrical resistivity at lower temperature. (orig.)

  9. Assembly for electrical conductivity measurements in the piston cylinder device

    Science.gov (United States)

    Watson, Heather Christine [Dublin, CA; Roberts, Jeffrey James [Livermore, CA

    2012-06-05

    An assembly apparatus for measurement of electrical conductivity or other properties of a sample in a piston cylinder device wherein pressure and heat are applied to the sample by the piston cylinder device. The assembly apparatus includes a body, a first electrode in the body, the first electrode operatively connected to the sample, a first electrical conductor connected to the first electrode, a washer constructed of a hard conducting material, the washer surrounding the first electrical conductor in the body, a second electrode in the body, the second electrode operatively connected to the sample, and a second electrical conductor connected to the second electrode.

  10. Electric-field-induced superconductivity detected by magnetization measurements of an electric-double-layer capacitor

    International Nuclear Information System (INIS)

    Kasahara, Yuichi; Takeuchi, Yuki; Ye, Jianting; Yuan, Hongtao; Shimotani, Hidekazu; Iwasa, Yoshihiro; Nishimura, Takahiro; Sato, Tatsuya

    2010-01-01

    We report evidence for superconductivity induced by the application of strong electric fields onto the surface of a band insulator, ZrNCl, provided by the observation of a shielding diamagnetic signal. We introduced an electric-double-layer capacitor configuration and in situ magnetization measurements at low temperatures as a method to detect the novel electric-field-induced superconducting state. The results showed excellent agreement with a previous report using a transistor configuration, demonstrating that the present technique is a novel method for investigating the nonequilibrium phase induced by electric fields. (author)

  11. D.C. electrical conductivity measurements on ADP single crystals ...

    Indian Academy of Sciences (India)

    Unknown

    Impurity added ADP crystals; density; electrical conductivity measurements. 1. Introduction ... determined by the intrinsic defects caused by thermal fluctuations in the ... beaker (corning glass vessel) and allowed to equilibrate at the desired ...

  12. Ferro electricity from magnetic order by neutron measurement

    International Nuclear Information System (INIS)

    Kenzelmann, M.

    2009-01-01

    Magnetic insulators with competing exchange interactions can give rise to strong fluctuations and qualitatively new ground states. The proximity of such systems to quantum critical points can lead to strong cross-coupling between magnetic long-range order and the nuclear lattice. Case in point is a new class of multiferroic materials in which the magnetic and ferroelectric order parameters are directly coupled, and a magnetic field can suppress or switch the electric polarization [1]. Our neutron measurements reveal that ferro electricity is induced by magnetic order and emerges only if the magnetic structure creates a polar axis [2-5]. Our measurements provide evidence that commensurate magnetic order can produce ferro electricity with large electric polarization [6]. The spin dynamics and the field-temperature phase diagram of the ordered phases provide evidence that competing ground states are essential for ferro electricity. (author)

  13. Geo-electric measurements – internal state of historic masonry

    OpenAIRE

    Schueremans, Luc

    2009-01-01

    A geophysical resistivity measuring device was modified to perform automatic monitoring of historical masonry structures before, during and after grout injection for consolidation purposes. The obtained image is called a geo-electrical tomography. The technique was used to evaluate the deteriorated masonry of the recently partly collapsed Maagdentoren in Zichem,(B). Geo-electric measuring techniques have been adapted from application in geology to be used as a non-destructive technique for t...

  14. Performance measurement of electricity suppliers using PROMETHEE and balance scorecard

    OpenAIRE

    Mona Osati; Manouchehr Omidvari

    2016-01-01

    Performance measurement in energy industry plays an important role on increasing the productivity. Electricity is also among the most essential components of energy in mega cities like Tehran. The lack of a good service in this city may result unpleasant consequences on most civilians who live in this city. This paper presents an empirical investigation to measure the performance of six major electricity contractors in city of Tehran, Iran. The study implements grey numbers to handle any unce...

  15. Prophylactic and thermovision measurements of electric machines and equipment

    International Nuclear Information System (INIS)

    Jedlicka, R.; Brestovansky, L.

    1996-01-01

    High-voltage measurements of generators, unit and service transformers and some significant motor drives used at a nuclear power plant are described in this paper. Thermovision measurements of electric machines and distribution systems are dealt with in the second part of the paper. Power electric equipment represent one of the most significant components of a nuclear power plant. Turbine mechanical energy is converted into the electrical energy within these equipment. Power generated by generators is transformed by transformers so that it can achieve appropriate parameters for both the transmission over the distribution system and the power plant service power supply. The service power supply switchboards and cables provide supply to motors and other consumers necessary for the nuclear power plant technological process. The whole complex of equipment has to be maintained in good technical conditions. It is necessary to make thermovision and prophylactic measurements to identify and verify the electric equipment technical condition. The mentioned measurements warn the operation staff in advance against both gradual deterioration of power connection contact resistances, i.e. power connections overheating, and the machine insulation systems condition deterioration. The operation staff try to prevent the electric equipment operation accidents by early removing the detected failures, thus, improving the nuclear safety. In order to provide the above-mentioned activities a special prophylactic measurement group was established at the NPP Bohunice in 1983. The group specialists make following types of measurements. 1. Prophylactic measurements of electric machines. Prophylactics of 220 MW generators and 6 MW service power generators; Prophylactics of both unit and service transformers and VHV bushings; Prophylactics of major 6 kV motor drives. 2. Thermovision measurements of current connections. Measurements enumarated in paragraph 1 are made on disconnected electric

  16. Friction Coefficient Determination by Electrical Resistance Measurements

    Science.gov (United States)

    Tunyagi, A.; Kandrai, K.; Fülöp, Z.; Kapusi, Z.; Simon, A.

    2018-01-01

    A simple and low-cost, DIY-type, Arduino-driven experiment is presented for the study of friction and measurement of the friction coefficient, using a conductive rubber cord as a force sensor. It is proposed for high-school or college/university-level students. We strongly believe that it is worthwhile planning, designing and performing Arduino…

  17. Electrical impedance spectroscopy measurements to estimate the ...

    Indian Academy of Sciences (India)

    Administrator

    The reviews of these studies were presented by Kahraman ... kind of solid or liquid material: ionic, semi-conducting, mixed electronic–ionic and .... the rock sample and its response was measured at room temperature. Figure 5 indicates the ...

  18. A Fieldmill for Measuring Atmospheric Electricity

    Science.gov (United States)

    Thompson, Frank

    2018-01-01

    It is a well known fact that the Earth carries a net negative charge that produces a downward electrostatic field. The present experiment shows how this field can be measured with a Field Mill which has been constructed from components readily available in the Laboratory. In fine weather conditions a value of 120 (±10) V m[superscript -1] was…

  19. Static Measurements on HTS Coils of Fully Superconducting AC Electric Machines for Aircraft Electric Propulsion System

    Science.gov (United States)

    Choi, Benjamin B.; Hunker, Keith R.; Hartwig, Jason; Brown, Gerald V.

    2017-01-01

    The NASA Glenn Research Center (GRC) has been developing the high efficiency and high-power density superconducting (SC) electric machines in full support of electrified aircraft propulsion (EAP) systems for a future electric aircraft. A SC coil test rig has been designed and built to perform static and AC measurements on BSCCO, (RE)BCO, and YBCO high temperature superconducting (HTS) wire and coils at liquid nitrogen (LN2) temperature. In this paper, DC measurements on five SC coil configurations of various geometry in zero external magnetic field are measured to develop good measurement technique and to determine the critical current (Ic) and the sharpness (n value) of the super-to-normal transition. Also, standard procedures for coil design, fabrication, coil mounting, micro-volt measurement, cryogenic testing, current control, and data acquisition technique were established. Experimentally measured critical currents are compared with theoretical predicted values based on an electric-field criterion (Ec). Data here are essential to quantify the SC electric machine operation limits where the SC begins to exhibit non-zero resistance. All test data will be utilized to assess the feasibility of using HTS coils for the fully superconducting AC electric machine development for an aircraft electric propulsion system.

  20. Longitudinal and transverse electric field measurements in resonant cavities

    International Nuclear Information System (INIS)

    Tong Dechun; Chen Linfeng; Zheng Xiaoyue

    1994-01-01

    The paper presents a measuring technique for the electric field distribution of high order modes in resonant cavities. A perturbing bead-like cage made with metallic wires are developed for S-band field measurements, which can be used to detect a small electric field component in the presence of other strong electric or magnetic field components (That means high sensitivity and high directivity). In order to avoid orientation error for the cage with very high directivity, two parallel threads were used for supporting the perturbing cage. A simple mechanical set-up is described. The cage can be driven into the cavity on-axis or off-axis in any azimuth for the longitudinal and transverse electric field measurements

  1. Electric Dipole Moment Measurements with Rare Isotopes

    International Nuclear Information System (INIS)

    Chupp, Timothy

    2016-01-01

    The origin of matter is one of the deepest questions addressed by science and remains a mystery because our understanding of the Big Bang suggests that equal amounts of matter as antimatter would be created and annihilate leaving nothing from which stars, galaxies, planets and ultimately life as we know it was created. We know this is not the case in the universe, and so the explanation that the laws of physics can distinguish the difference of moving forward and backward in time and provide mechanisms that produce more matter that antimatter so that a little bit was left over. These same laws of physics affect our world today and would very slightly change the shape of an atom, stretching is along the direction of the spin of its nucleus. This subtle shape change has been searched in many systems - the neutron, atoms and molecules, but has not yet been detected, even as the motivation is strengthened by our understanding of their structure. We therefore look to new systems that have special features that make these effects stand out. Rare isotopes provide one possibility and specific radon atoms are our choice. We have developed techniques to make these measurements with short-lived radioactive atoms, studied the nuclei to provide deeper understanding of how these affect arise in such atoms (including radium) and developed new laser-based techniques to measure and control the magnetic fields necessary to perform these exquisitely sensitive measurements. In this work we have shown that radioactive radon atoms can be produced and transported to an apparatus that lines up the spins of the atoms. We have also shown that the nuclei of nearby radium are pear shaped and that the radon nuclei likely oscillate from one pear shape to its mirror reflection. We have also used the techniques which control nuclear spin to study the magnetic environment in a magnetically shielded room, which has the smallest magnetic field in a large volume in the universe. Measuring magnetic

  2. Electric Dipole Moment Measurements with Rare Isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Chupp, Timothy [Univ. of Michigan, Ann Arbor, MI (United States)

    2016-11-11

    The origin of matter is one of the deepest questions addressed by science and remains a mystery because our understanding of the Big Bang suggests that equal amounts of matter as antimatter would be created and annihilate leaving nothing from which stars, galaxies, planets and ultimately life as we know it was created. We know this is not the case in the universe, and so the explanation that the laws of physics can distinguish the difference of moving forward and backward in time and provide mechanisms that produce more matter that antimatter so that a little bit was left over. These same laws of physics affect our world today and would very slightly change the shape of an atom, stretching is along the direction of the spin of its nucleus. This subtle shape change has been searched in many systems - the neutron, atoms and molecules, but has not yet been detected, even as the motivation is strengthened by our understanding of their structure. We therefore look to new systems that have special features that make these effects stand out. Rare isotopes provide one possibility and specific radon atoms are our choice. We have developed techniques to make these measurements with short-lived radioactive atoms, studied the nuclei to provide deeper understanding of how these affect arise in such atoms (including radium) and developed new laser-based techniques to measure and control the magnetic fields necessary to perform these exquisitely sensitive measurements. In this work we have shown that radioactive radon atoms can be produced and transported to an apparatus that lines up the spins of the atoms. We have also shown that the nuclei of nearby radium are pear shaped and that the radon nuclei likely oscillate from one pear shape to its mirror reflection. We have also used the techniques which control nuclear spin to study the magnetic environment in a magnetically shielded room, which has the smallest magnetic field in a large volume in the universe. Measuring magnetic

  3. A fieldmill for measuring atmospheric electricity

    Science.gov (United States)

    Thompson, Frank

    2018-03-01

    It is a well known fact that the Earth carries a net negative charge that produces a downward electrostatic field. The present experiment shows how this field can be measured with a Field Mill which has been constructed from components readily available in the Laboratory. In fine weather conditions a value of 120 (±10) V m-1 was obtained which agrees with data in the literature. However, when a thunder storm was approaching preliminary measurements showed that the field varied between +400 V m-1 and -1000 V m-1 thus indicating complex charge states of the approaching clouds. Suggestions are made for improving the sensitivity of the apparatus so that experiments can be carried out for other weather conditions.

  4. Friction coefficient determination by electrical resistance measurements

    Science.gov (United States)

    Tunyagi, A.; Kandrai, K.; Fülöp, Z.; Kapusi, Z.; Simon, A.

    2018-05-01

    A simple and low-cost, DIY-type, Arduino-driven experiment is presented for the study of friction and measurement of the friction coefficient, using a conductive rubber cord as a force sensor. It is proposed for high-school or college/university-level students. We strongly believe that it is worthwhile planning, designing and performing Arduino and compatible sensor-based experiments in physics class in order to ensure a better understanding of phenomena, develop theoretical knowledge and multiple experimental skills.

  5. Electric field measurements at subcritical, oblique bow shock crossings

    International Nuclear Information System (INIS)

    Wygant, J.R.; Bensadoun, M.; Mozer, F.S.

    1987-01-01

    Electric field measurements at oblique, subcritical bow shock crossings are presented from the ISEE 1 University of California, Berkeley, double-probe electric field experiment. The measurements averaged over the 3-s spin period of the spacecraft provide the first observations of the large-scale (100 km) laminar oscillations in the longitudinal component of the electric field associated with the whistler precursor which is characteristic of these dispersive shocks. The amplitude of the oscillations increases from ∼0.5 mV/m to a maximum of 6 mV/m across the magnetic ramp of the shock (directed along the shock normal). The calculated electric potential drops across the shocks varied from 340 to 550 volts, which is 40-60% of the observed loss of kinetic energy associated with the bulk flow of the ions. These measurements suggest that at these shocks the additional deceleration of incident ions is due to the Lorentz force. The contributions to the normal component of the large-scale electric field at the shock due to the parallel and perpendicular components (relative to the magnetic field) of the electric field are evaluated. It is shown that the perpendicular component of the electric field dominates, accounting for most of the cross-shock potential, but that there is a nonnegligible parallel component. This large-scale parallel component has a magnitude of 1-2 mV/m which sometimes results in a potential well for electrons with a depth of ∼150 eV. It is experimentally demonstrated that the dominance of the perpendicular over the parallel component of the electric field resulted in a correlation between the longitudinal component of the large-scale electric field and the fluctuations in the magnetic field component perpendicular to the coplanarity plane

  6. Wet method for measuring starch gelatinization temperature using electrical conductivity.

    Science.gov (United States)

    Morales-Sanchez, E; Figueroa, J D C; Gaytan-Martínez, M

    2009-09-01

    The objective of the present study was to develop a method for obtaining the gelatinization temperature of starches by using electrical conductivity. Native starches from corn, rice, potato, and wheat were prepared with different proportions of water and heated from room temperature to 90 degrees C, in a device especially designed for monitoring the electrical conductivity as a function of temperature. The results showed a linear trend of the electrical conductivity with the temperature until it reaches the onset gelatinization temperature. After that point, the electrical conductivity presented an increment or decrement depending on the water content in the sample and it was related to starch swelling and gelatinization phenomena. At the end gelatinization temperature, the conductivity becomes stable and linear, indicating that there are no more changes of phase. The starch gelatinization parameter, which was evaluated in the 4 types of starches using the electrical conductivity, was compared with those obtained by using differential scanning calorimeter (DSC). The onset temperature at which the electrical conductivity increased or decreased was found to be similar to that obtained by DSC. Also, the final temperature at which the electrical conductivity returned to linearity matched the end gelatinization temperature of the DSC. Further, a wet method for measuring the onset, peak, and end gelatinization temperatures as a function of temperature using the electrical conductivity curves is presented for a starch-water suspension.

  7. Calibration-free electrical conductivity measurements for highly conductive slags

    International Nuclear Information System (INIS)

    Macdonald, Christopher J.; Gao, Huang; Pal, Uday B.; Van den Avyle, James A.; Melgaard, David K.

    2000-01-01

    This research involves the measurement of the electrical conductivity (K) for the ESR (electroslag remelting) slag (60 wt.% CaF 2 - 20 wt.% CaO - 20 wt.% Al 2 O 3 ) used in the decontamination of radioactive stainless steel. The electrical conductivity is measured with an improved high-accuracy-height-differential technique that requires no calibration. This method consists of making continuous AC impedance measurements over several successive depth increments of the coaxial cylindrical electrodes in the ESR slag. The electrical conductivity is then calculated from the slope of the plot of inverse impedance versus the depth of the electrodes in the slag. The improvements on the existing technique include an increased electrochemical cell geometry and the capability of measuring high precision depth increments and the associated impedances. These improvements allow this technique to be used for measuring the electrical conductivity of highly conductive slags such as the ESR slag. The volatilization rate and the volatile species of the ESR slag measured through thermogravimetric (TG) and mass spectroscopy analysis, respectively, reveal that the ESR slag composition essentially remains the same throughout the electrical conductivity experiments

  8. A Measurement System of Electric Signals on Standing Trees

    Directory of Open Access Journals (Sweden)

    Hao TIAN

    2014-01-01

    Full Text Available The standing tree electric signal (STES, defined as the electric potential difference between standing trees and the surrounding soil, can be utilized to reflect the biological nature of the trees. This signal should be measured precisely because it can also be collected and used as the electric power energy. In this paper, the automatic measurement system of standing tree biological electric signal based on MSP430 MCU. First of all, the basic structure of the presented system is introduced and it includes three modules: amplification module of the standing tree electric signal, the acquisition and processing of the signal module and the serial communication module. Then, the performances of the built system are respectively validated by the Poplar, Planetree, and Platanus in Beijing Forestry University. The result indicated that the relative error of this system is less than 2 %. The presented system can be considered as the foundation of the subsequent study on the mechanism of the biological electric signal and the application of the biological electric energy on standing trees.

  9. Electric field measurements in the auroral E region

    International Nuclear Information System (INIS)

    Mahon, H.P.; Smiddy, M.; Sagalyn, R.C.

    1975-01-01

    Dipole electric field, positive ion and electron densities and temperatures, vehicle potential, and plasma sheath measurements have been made in the auroral E region by means of rockets flown from Fort Churchill, Canada. These results are described and compared over the altitude region 100 to 165 km. On a rocket flight launched on 10 December 1969 during very quiet conditions, adjacent to a stable, low intensity auroral arc, the plasma density and temperatures are found to be high and the electric fields large and steady. Electric field components of the order of -17 mv m -1 to +6 mv m -1 were measured along the Earth's magnetic field. The plasma results indicate that these fields may be contributing to enhanced electron temperatures. On a flight of 9 March 1970 during a large magnetic storm with widespread auroral activity, lower plasma densities and temperatures and much smaller and more erratic electric fields were observed with no significant component parallel to the magnetic field. (auth)

  10. Magnetic resonance electrical impedance tomography for measuring electrical conductivity during electroporation

    International Nuclear Information System (INIS)

    Kranjc, M; Miklavčič, D; Bajd, F; Serša, I

    2014-01-01

    The electroporation effect on tissue can be assessed by measurement of electrical properties of the tissue undergoing electroporation. The most prominent techniques for measuring electrical properties of electroporated tissues have been voltage–current measurement of applied pulses and electrical impedance tomography (EIT). However, the electrical conductivity of tissue assessed by means of voltage–current measurement was lacking in information on tissue heterogeneity, while EIT requires numerous additional electrodes and produces results with low spatial resolution and high noise. Magnetic resonance EIT (MREIT) is similar to EIT, as it is also used for reconstruction of conductivity images, though voltage and current measurements are not limited to the boundaries in MREIT, hence it yields conductivity images with better spatial resolution. The aim of this study was to investigate and demonstrate the feasibility of the MREIT technique for assessment of conductivity images of tissues undergoing electroporation. Two objects were investigated: agar phantoms and ex vivo liver tissue. As expected, no significant change of electrical conductivity was detected in agar phantoms exposed to pulses of all used amplitudes, while a considerable increase of conductivity was measured in liver tissue exposed to pulses of different amplitudes. (paper)

  11. The transient electric field measurement system for EAST device

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y., E-mail: wayong@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China); Ji, Z.S. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China); Zhu, C.M. [The Experiment & Verification Center of State Grid Electric Power Research Institute (The Automation Equipment EMC Lab. of State Grid Co.), Nanjing, Jiangsu (China); Zhang, Z.C.; Ma, T.F.; Xu, Z.H. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China)

    2016-11-15

    The electromagnetic environment around the Experimental Advanced Superconducting Tokamak (EAST) device is very complex during plasma discharge experiment. In order to fully monitor the changes of electric field around the EAST device during plasma discharge, a transient electric field measurement system based on PCI eXtensions for Instrumentation (PXI) platform has been designed. A digitizer is used for high-speed data acquisition of raw signals from electric field sensors, and a Field Programmable Gate Array (FPGA) module is used for realizing an on-the-fly fast Fourier transform (FFT) and inverse fast Fourier transform (IFFT) algorithm including a beforehand identified antenna factor (AF) to achieve finally a calibrated and filtered electric field measurement, then these signals can be displayed and easily analyzed. The raw signals from electric field sensors are transferred through optical fiber by optical isolation to reduce electromagnetic interference (EMI). The high speed data streaming technology is used for data storage. A prototype of this system has been realized to measure the transient electric field strength, with the real-time processing and continuous acquisition ability of one channel of 14-bit resolution and up to 50 MHz sampling rate, and 6 KHz FFT frequency resolution.

  12. Prophylactic and thermovision measurements of electric machines and equipment

    Energy Technology Data Exchange (ETDEWEB)

    Jedlicka, R; Brestovansky, L [Atomova Elektraren Bohunice, Jaslovske Bohunice (Slovakia)

    1997-12-31

    High-voltage measurements of generators, unit and service transformers and some significant motor drives used at a nuclear power plant are described in this paper. Thermovision measurements of electric machines and distribution systems are dealt with in the second part of the paper. Power electric equipment represent one of the most significant components of a nuclear power plant. Turbine mechanical energy is converted into the electrical energy within these equipment. Power generated by generators is transformed by transformers so that it can achieve appropriate parameters for both the transmission over the distribution system and the power plant service power supply. The service power supply switchboards and cables provide supply to motors and other consumers necessary for the nuclear power plant technological process. The whole complex of equipment has to be maintained in good technical conditions. It is necessary to make thermovision and prophylactic measurements to identify and verify the electric equipment technical condition. The mentioned measurements warn the operation staff in advance against both gradual deterioration of power connection contact resistances, i.e. power connections overheating, and the machine insulation systems condition deterioration. The operation staff try to prevent the electric equipment operation accidents by early removing the detected failures, thus, improving the nuclear safety. In order to provide the above-mentioned activities a special prophylactic measurement group was established at the NPP Bohunice in 1983. The group specialists make following types of measurements. 1. Prophylactic measurements of electric machines. Prophylactics of 220 MW generators and 6 MW service power generators; Prophylactics of both unit and service transformers and VHV bushings; Prophylactics of major 6 kV motor drives. 2. Thermovision measurements of current connections. (Abstract Truncated)

  13. A Power-Frequency Electric Field Sensor for Portable Measurement.

    Science.gov (United States)

    Xiao, Dongping; Ma, Qichao; Xie, Yutong; Zheng, Qi; Zhang, Zhanlong

    2018-03-31

    In this paper, a new type of electric field sensor is proposed for the health and safety protection of inspection staff in high-voltage environments. Compared with the traditional power frequency electric field measurement instruments, the portable instrument has some special performance requirements and, thus, a new kind of double spherical shell sensor is presented. First, the mathematical relationships between the induced voltage of the sensor, the output voltage of the measurement circuit, and the original electric field in free space are deduced theoretically. These equations show the principle of the proposed sensor to measure the electric field and the effect factors of the measurement. Next, the characteristics of the sensor are analyzed through simulation. The simulation results are in good agreement with the theoretical analysis. The influencing rules of the size and material of the sensor on the measurement results are summarized. Then, the proposed sensor and the matching measurement system are used in a physical experiment. After calibration, the error of the measurement system is discussed. Lastly, the directional characteristic of the proposed sensor is experimentally tested.

  14. Guide to Flow Measurement for Electric Propulsion Systems

    Science.gov (United States)

    Frieman, Jason D.; Walker, Mitchell L. R.; Snyder, Steve

    2013-01-01

    In electric propulsion (EP) systems, accurate measurement of the propellant mass flow rate of gas or liquid to the thruster and external cathode is a key input in the calculation of thruster efficiency and specific impulse. Although such measurements are often achieved with commercial mass flow controllers and meters integrated into propellant feed systems, the variability in potential propellant options and flow requirements amongst the spectrum of EP power regimes and devices complicates meter selection, integration, and operation. At the direction of the Committee on Standards for Electric Propulsion Testing, a guide was jointly developed by members of the electric propulsion community to establish a unified document that contains the working principles, methods of implementation and analysis, and calibration techniques and recommendations on the use of mass flow meters in laboratory and spacecraft electric propulsion systems. The guide is applicable to EP devices of all types and power levels ranging from microthrusters to high-power ion engines and Hall effect thrusters. The establishment of a community standard on mass flow metering will help ensure the selection of the proper meter for each application. It will also improve the quality of system performance estimates by providing comprehensive information on the physical phenomena and systematic errors that must be accounted for during the analysis of flow measurement data. This paper will outline the standard methods and recommended practices described in the guide titled "Flow Measurement for Electric Propulsion Systems."

  15. Pulsed electric field sensor based on original waveform measurement

    International Nuclear Information System (INIS)

    Ma Liang; Wu Wei; Cheng Yinhui; Zhou Hui; Li Baozhong; Li Jinxi; Zhu Meng

    2010-01-01

    The paper introduces the differential and original waveform measurement principles for pulsed E-field, and develops an pulsed E-field sensor based on original waveform measurement along with its theoretical correction model. The sensor consists of antenna, integrator, amplifier and driver, optic-electric/electric-optic conversion module and transmission module. The time-domain calibration in TEM cell indicates that, its risetime response is shorter than 1.0 ns, and the output pulse width at 90% of the maximum amplitude is wider than 10.0 μs. The output amplitude of the sensor is linear to the electric field intensity in a dynamic range of 20 dB. The measurement capability can be extended to 10 V/m or 50 kV/m by changing the system's antenna and other relative modules. (authors)

  16. Market power in electricity markets: Beyond concentration measures

    International Nuclear Information System (INIS)

    Borenstein, S.; Bushnell, J.; Knittel, C.R.

    1999-01-01

    The wave of electricity market restructuring both within the US and abroad has brought the issue of horizontal market power to the forefront of energy policy. Traditionally, estimation and prediction of market power has relied heavily on concentration measures. In this paper, the authors discuss the weaknesses of concentration measures as a viable measure of market power in the electricity industry, and they propose an alternative method based on market simulations that take advantage of existing plant level data. The authors discuss results from previous studies they have performed, and present new results that allow for the detection of threshold demand levels where market power is likely to be a problem. In addition, the authors analyze the impact of that recent divestitures in the California electricity market will have on estimated market power. They close with a discussion of the policy implications of the results

  17. Measurement of temperature, electric conductivity and density of plasma

    International Nuclear Information System (INIS)

    Vasilevova, I.; Nefedov, A.; Oberman, F.; Urinson, A.

    1982-01-01

    Three instruments are briefly described developed by the High Temperatures Institute of the USSR Academy of Sciences for the measurement of plasma temperature, electric conductivity and density. The temperature measuring instrument uses as a standard a light source whose temperature may significantly differ from plasma temperature because three light fluxes are compared, namely the flux emitted by the plasma, the flux emitted directly by the standard source, and the flux emitted by the standard source after passage through the plasma. The results of measurement are computer processed. Electric conductivity is measured using a coil placed in a probe which is automatically extended for a time of maximally 0.3 seconds into the plasma stream. The equipment for measuring plasma density consists of a special single-channel monochromator, a temperature gauge, a plasma pressure gauge, and of a computer for processing the results of measurement. (Ha)

  18. Comparison of electric field exposure measurement methods under power lines

    International Nuclear Information System (INIS)

    Korpinen, L.; Kuisti, H.; Tarao, H.; Paeaekkoenen, R.; Elovaara, J.

    2014-01-01

    The object of the study was to investigate extremely low frequency (ELF) electric field exposure measurement methods under power lines. The authors compared two different methods under power lines: in Method A, the sensor was placed on a tripod; and Method B required the measurer to hold the meter horizontally so that the distance from him/her was at least 1.5 m. The study includes 20 measurements in three places under 400 kV power lines. The authors used two commercial three-axis meters, EFA-3 and EFA-300. In statistical analyses, they did not find significant differences between Methods A and B. However, in the future, it is important to take into account that measurement methods can, in some cases, influence ELF electric field measurement results, and it is important to report the methods used so that it is possible to repeat the measurements. (authors)

  19. Performance measurement of electricity suppliers using PROMETHEE and balance scorecard

    Directory of Open Access Journals (Sweden)

    Mona Osati

    2016-06-01

    Full Text Available Performance measurement in energy industry plays an important role on increasing the productivity. Electricity is also among the most essential components of energy in mega cities like Tehran. The lack of a good service in this city may result unpleasant consequences on most civilians who live in this city. This paper presents an empirical investigation to measure the performance of six major electricity contractors in city of Tehran, Iran. The study implements grey numbers to handle any uncertainty associated with numbers. The study has also adopted four main perspectives used in balanced scorecard as part of PROMETHEE method to rank different contractors.

  20. Electricity

    CERN Document Server

    Basford, Leslie

    2013-01-01

    Electricity Made Simple covers the fundamental principles underlying every aspect of electricity. The book discusses current; resistance including its measurement, Kirchhoff's laws, and resistors; electroheat, electromagnetics and electrochemistry; and the motor and generator effects of electromagnetic forces. The text also describes alternating current, circuits and inductors, alternating current circuits, and a.c. generators and motors. Other methods of generating electromagnetic forces are also considered. The book is useful for electrical engineering students.

  1. Effect of Voltage Measurement on the Quantitative Identification of Transverse Cracks by Electrical Measurements

    KAUST Repository

    Selvakumaran, Lakshmi; Lubineau, Gilles

    2016-01-01

    of the ply. Through the mesoscale relationship, the conductivity obtained from electrical tomography can be used as a measure of the transverse cracking density. Interpretation of this measure will be accurate provided the assumptions made during

  2. Simulation of Light Collection for Neutron Electrical Dipole Moment measurement

    Science.gov (United States)

    Ji, Pan; nEDM Collaboration

    2017-09-01

    nEDM (Neutron Electrical Dipole moment) measurement addresses a critical topic in particle physics and Standard Model, that is CPT violation in neutron electrical dipole moment if detected in which the Time reversal violation is connected to the matter/antimatter imparity of the universe. The neutron electric dipole moment was first measured in 1950 by Smith, Purcell, and Ramsey at the Oak Ridge Reactor - the first intense neutron source. This measurement showed that the neutron was very nearly round (to better than one part in a million). The goal of the nEDM experiment is to further improve the precision of this measurement by another factor of 100. The signal from the experiment is detected by collecting the photons generated when neutron beams were captured by liquid helium 3. The Geant4 simulation project that I participate simulates the process of light collection to improve the design for higher capture efficiency. The simulated geometry includes light source, reflector, wavelength shifting fibers, wavelength shifting TPB and acrylic as in real experiment. The UV photons exiting from Helium go through two wavelength-shifting processes in TPB and fibers to be finally captured. Oak Ridge National Laboratory Neutron Electric Dipole Moment measurement project.

  3. Electrical resistivity borehole measurements: application to an urban tunnel site

    Science.gov (United States)

    Denis, A.; Marache, A.; Obellianne, T.; Breysse, D.

    2002-06-01

    This paper shows how it is possible to use wells drilled during geotechnical pre-investigation of a tunneling site to obtain a 2-D image of the resistivity close to a tunnel boring machine. An experimental apparatus is presented which makes it possible to perform single and borehole-to-borehole electrical measurements independent of the geological and hydrogeological context, which can be activated at any moment during the building of the tunnel. This apparatus is first demonstrated through its use on a test site. Numerical simulations and data inversion are used to analyse the experimental results. Finally, electrical resistivity tomography and single-borehole measurements on a tunneling site are presented. Experimental results show the viability of the apparatus and the efficiency of the inverse algorithm, and also highlight the limitations of the electrical resistivity tomography as a tool for geotechnical investigation in urban areas.

  4. Measurement of power loss during electric vehicle charging and discharging

    International Nuclear Information System (INIS)

    Apostolaki-Iosifidou, Elpiniki; Codani, Paul; Kempton, Willett

    2017-01-01

    When charging or discharging electric vehicles, power losses occur in the vehicle and the building systems supplying the vehicle. A new use case for electric vehicles, grid services, has recently begun commercial operation. Vehicles capable of such application, called Grid-Integrated Vehicles, may have use cases with charging and discharging summing up to much more energy transfer than the charging only use case, so measuring and reducing electrical losses is even more important. In this study, the authors experimentally measure and analyze the power losses of a Grid-Integrated Vehicle system, via detailed measurement of the building circuits, power feed components, and of sample electric vehicle components. Under the conditions studied, measured total one-way losses vary from 12% to 36%, so understanding loss factors is important to efficient design and use. Predominant losses occur in the power electronics used for AC-DC conversion. The electronics efficiency is lowest at low power transfer and low state-of-charge, and is lower during discharging than charging. Based on these findings, two engineering design approaches are proposed. First, optimal sizing of charging stations is analyzed. Second, a dispatch algorithm for grid services operating at highest efficiency is developed, showing 7.0% to 9.7% less losses than the simple equal dispatch algorithm. - Highlights: • Grid-to-battery-to-grid comprehensive power loss measurement and analysis. • No previous experimental measurements of Grid-Integrated Vehicle system power loss. • Electric vehicle loss analyzed as a factor of state of charge and charging rate. • Power loss in the building components less than 3%. • Largest losses found in Power Electronics (typical round-trip loss 20%).

  5. Measured electric field intensities near electric cloud discharges detected by the Kennedy Space Center's Lightning Detection and Ranging System, LDAR

    Science.gov (United States)

    Poehler, H. A.

    1977-01-01

    For a summer thunderstorm, for which simultaneous, airborne electric field measurements and Lightning Detection and Ranging (LDAR) System data was available, measurements were coordinated to present a picture of the electric field intensity near cloud electrical discharges detected by the LDAR System. Radar precipitation echos from NOAA's 10 cm weather radar and measured airborne electric field intensities were superimposed on LDAR PPI plots to present a coordinated data picture of thunderstorm activity.

  6. Subcellular Electrical Measurements as a Function of Wood Moisture Content

    Science.gov (United States)

    Samuel L. Zelinka; José L. Colon Quintana; Samuel V. Glass; Joseph E. Jakes; Alex C. Wiedenhoeft

    2015-01-01

    The percolation model developed by Zelinka et al. was based upon macroscale measurements of the electrical conductivity and implicitly treats the wood material as homogenous. The transport mechanism proposed by Jakes et al. depends upon a moisture induced glass transition occurring in the hemicelluloses. This theory suggests that there are likely differences in the...

  7. Electric field measurements in moving ionization fronts during plasma breakdown

    NARCIS (Netherlands)

    Wagenaars, E.; Bowden, M.D.; Kroesen, G.M.W.

    2006-01-01

    We have performed time-resolved, direct measurements of electric field strengths in moving ionization fronts during the breakdown phase of a pulsed plasma. Plasma breakdown, or plasma ignition, is a highly transient process marking the transition from a gas to a plasma. Some aspects of plasma

  8. Modernization of laboratories of test of electric measurer

    International Nuclear Information System (INIS)

    Cuervo, Luis Felipe

    1999-01-01

    The paper presents to the companies that possess test laboratories and calibration of electric measurer, an economic alternative for their modernization, using the repontentiation like an economic solution that it liberates resources to be used in other areas that they want it

  9. New method of measuring electric dipole moments in storage rings

    NARCIS (Netherlands)

    Farley, FJM; Jungmann, K; Miller, JP; Morse, WM; Orlov, YF; Roberts, BL; Semertzidis, YK; Silenko, A; Stephenson, EJ

    2004-01-01

    A new highly sensitive method of looking for electric dipole moments of charged particles in storage rings is described. The major systematic errors inherent in the method are addressed and ways to minimize them are suggested. It seems possible to measure the muon EDM to levels that test speculative

  10. Vibrations measurement at the Embalse nuclear power plant's electrical generator

    International Nuclear Information System (INIS)

    Salomoni, R.C.; Belinco, C.G.; Pastorini, A.J.; Sacchi, M.A.

    1987-01-01

    After the modifications made at the Embalse nuclear power plant's electrical generator to reduce its vibration level produced by electromagnetic phenomena, it was necessary to perform measurements at the new levels, under different areas and power conditions. To this purpose, a work was performed jointly with the 'Vibrations Team' of the ANSALDO Company (the generator constructor) and the Hydrodynamic Assays Division under the coordination and supervision of the plant's electrical maintenance responsible. This paper includes the main results obtained and the instrumentation criteria and analysis performed. (Author)

  11. Method for Measuring Small Nonlinearities of Electric Characteristics

    DEFF Research Database (Denmark)

    Guldbrandsen, Tom; Meyer, Niels I; Schjær-Jacobsen, Jørgen

    1965-01-01

    A method is described for measuring very small deviations from linearity in electric characteristics. The measurement is based on the harmonics generated by the nonlinear element when subjected to a sine wave signal. A special bridge circuit is used to balance out the undesired harmonics...... of the signal generator together with the first harmonic frequency. The set-up measures the small-signal value and the first and second derivative with respect to voltage. The detailed circuits are given for measuring nonlinearities in Ohmic and capacitive components. In the Ohmic case, a sensitivity...

  12. Leaching of Conductive Species: Implications to Measurements of Electrical Resistivity.

    Science.gov (United States)

    Spragg, R; Jones, S; Bu, Y; Lu, Y; Bentz, D; Snyder, K; Weiss, J

    2017-05-01

    Electrical tests have been used to characterize the microstructure of porous materials, the measured electrical response being determined by the contribution of the microstructure (porosity and tortuosity) and the electrical properties of the solution (conductivity of the pore solution) inside the pores of the material. This study has shown how differences in concentration between the pore solution (i.e., the solution in the pores) and the storage solution surrounding the test specimen leads to significant transport (leaching) of the conductive ionic species between the pore solution and the storage solution. Leaching influences the resistivity of the pore solution, thereby influencing electrical measurements on the bulk material from either a surface or uniaxial bulk resistance test. This paper has three main conclusions: 1.) Leaching of conductive species does occur with concentration gradients and that a diffusion based approach can be used to estimate the time scale associated with this change. 2.) Leaching of ions in the pore solution can influence resistivity measurements, and the ratio of surface to uniaxial resistivity can be used as a method to assess the presence of leaching and 3.) An estimation of the magnitude of leaching for standardized tests of cementitious materials.

  13. A combined sustainability index for electricity efficiency measures

    International Nuclear Information System (INIS)

    Goldrath, T.; Ayalon, O.; Shechter, M.

    2015-01-01

    One of the most substantial tools that serve decision makers in their efforts to reduce greenhouse gas emissions includes energy efficiency measures that in most cases benefit from governmental assistance for achieving electricity consumption reduction goals. This paper examines five energy efficiency measures, defining a combined sustainability index. A multi-criteria analysis of five predefined indices was developed (economic, environmental, technology, social and political), providing a combined index for each measure and a tool for identifying the preferred measure within a specific situation, based on its total sustainability score. In this research, a case study was conducted and the preferred measure was found to be municipal street lighting systems, based on its high political and social scores, and its relatively high installation potential. The second choice would be replacement of chillers in the industrial sector, and the least favorable measure is the replacement of water pumps in the water sector. The methodology described brings into account the technological specifications of the measure implemented, and the specific national conditions under which it is implemented. - Highlights: • A MCDA of five indices was developed to define a combined sustainability index. • Criteria defined were environment, technology, economy, social and political. • Five energy efficiency measures were rated, based on their total sustainability score. • Measures were in five main electricity consumption sectors. • The preferred measure found in the case study was municipal street lighting systems.

  14. Thermal and Electrical Conductivity Measurements of CDA 510 Phosphor Bronze

    Science.gov (United States)

    Tuttle, James E.; Canavan, Edgar; DiPirro, Michael

    2009-01-01

    Many cryogenic systems use electrical cables containing phosphor bronze wire. While phosphor bronze's electrical and thermal conductivity values have been published, there is significant variation among different phosphor bronze formulations. The James Webb Space Telescope (JWST) will use several phosphor bronze wire harnesses containing a specific formulation (CDA 510, annealed temper). The heat conducted into the JWST instrument stage is dominated by these harnesses, and approximately half of the harness conductance is due to the phosphor bronze wires. Since the JWST radiators are expected to just keep the instruments at their operating temperature with limited cooling margin, it is important to know the thermal conductivity of the actual alloy being used. We describe an experiment which measured the electrical and thermal conductivity of this material between 4 and 295 Kelvin.

  15. Electric field measurements with electro-optical sensor

    International Nuclear Information System (INIS)

    Brambilla, R.

    1992-03-01

    When electric field calculations on the surface of electrodes and electrical insulation present difficulties due to complex geometries and diverse dielectric properties, it is sometimes very useful to resort to direct measurements. However, conventional probes, based on the capacitive effect, are not quite suitable for this purpose due to strong perturbations introduced by probes themselves and to difficulties in isolating the sensors from the instrumentation at points of measurement with a high potential. To avoid these difficulties, a measurement system was developed which incorporates a Pockels effect crystal sensor, a moveable HeNe laser beam for signal transmission and beam polarization modulation, and a laser beam analyzer which detects variations in polarization induced by the sensor. This paper describes the key design, operation and performance characteristics of this device

  16. Apparatus for simultaneously measuring electrical conductivity and oxygen fugacity

    Energy Technology Data Exchange (ETDEWEB)

    Netherton, R.; Duba, A.

    1978-01-31

    Electrical conductivity studies of silicates are useful in determining temperature vs depth in the earth. Realistic laboratory measurements of conduction mechanisms require that exact determinations of oxygen fugacity (fo{sub 2}) be made in the experimental environment. An apparatus is described that monitors system fo{sub 2} with a calcia-doped zirconia-oxygen cell while measuring electrical conductivity of iron-bearing silicates at high temperature (greater than 1000 K). The fo{sub 2} calculated thermodynamically from CO/CO{sub 2} mixing ratios agreed well with measurements made with the zirconia cell at 1473 K, except for fo{sub 2} greater than 10{sup -4} Pa, where, on a log{sub 10} scale, mixing-ratio errors were as large as +- 0.2. These errors are attributed to oxygen contamination in the CO{sub 2} and to mobile carbon deposits that formed in the apparatus.

  17. Fabrication and electric measurements of nanostructures inside transmission electron microscope

    International Nuclear Information System (INIS)

    Chen, Qing; Peng, Lian-Mao

    2011-01-01

    Using manipulation holders specially designed for transmission electron microscope (TEM), nanostructures can be characterized, measured, modified and even fabricated in-situ. In-situ TEM techniques not only enable real-time study of structure-property relationships of materials at atomic scale, but also provide the ability to control and manipulate materials and structures at nanoscale. This review highlights in-situ electric measurements and in-situ fabrication and structure modification using manipulation holder inside TEM. -- Research highlights: → We review in-situ works using manipulation holder in TEM. → In-situ electric measurements, fabrication and structure modification are focused. → We discuss important issues that should be considered for reliable results. → In-situ TEM is becoming a very powerful tool for many research fields.

  18. Instantaneous input electrical power measurements of HITU transducer

    Energy Technology Data Exchange (ETDEWEB)

    Karaboece, B; Guelmez, Y [Tuebitak Ulusal Metroloji Enstituesue (UME), P.K. 54 41470 Gebze-Kocaeli (Turkey); Rajagapol, S; Shaw, A, E-mail: baki.karaboce@ume.tubitak.gov.t [National Physical Laboratory (NPL), Hampton Road, Teddington TW11 0LW (United Kingdom)

    2011-02-01

    HITU (High Intensity Theraupetic Ultrasound) transducers are widely used in therapeutic ultrasound in medicine. The output ultrasonic power of HITU transducer can be measured in number of methods described in IEC 61161 standard [1]. New IEC standards specifically for measurement of HITU equipment are under development. The ultrasound power radiated from a transducer is dependent on applied input electrical voltage and current and consequently power. But, up to now, no standardised method has been developed and adopted for the input electrical power measurements. Hence, a workpackage was carried out for the establishment of such method in the frequency range of 1 to 3 MHz as a part of EURAMET EMRP Era-net plus 'External Beam Cancer Therapy' project. Several current shunts were developed and evaluated. Current measurements were also realized with Philips current probe and preamplifier at NPL and Agilent current probe at UME. In this paper, a method for the measurement of instantaneous electrical power delivered to a reactive ultrasound transducer in the required frequency range is explored.

  19. Diffusivity and electrical resistivity measurements in rock matrix around fractures

    International Nuclear Information System (INIS)

    Kumpulainen, H.; Uusheimo, K.

    1989-12-01

    Microfracturing of rock matrix around permeable fractures was studied experimentally from drill core samples around major fractures. The methods used were diffusion measurements using a 36 Cl-tracer and electrical resistivity measurements. Rock samples were from the Romuvaara investigation site, the granite specimen around a partially filled carbonate fracture (KR4/333 m) and gneiss specimen around a slickenside fracture (KR1/645 m). A consistent difference of one to two orders of magnitude in the levels of the methods with regard to the effective diffusion coefficients for Cl - -ion was found, the electrical resistivity measurement giving higher values. On the basis of the diffusion measurements the diffusion porosities could be calculated but these remained one to two orders of magnitude lower than that expected for granitic rocks using the water saturation method. A possible reason for these differences could have been the low, in some cases 0.004 M NaC1-concentration in the diffusion experiments vs. the 1 M NaCl-concentration used in the electrical resistivity measurements. Due to the small number of specimens and cross sectional areas of only 2 cm 2 , rock inhomogeneity effects were significant making the interpretation of the results somewhat troublesome. Porosities on fracture surfaces seemed to be higher than in the deeper, more intact rock matrix

  20. Instantaneous input electrical power measurements of HITU transducer

    International Nuclear Information System (INIS)

    Karaboece, B; Guelmez, Y; Rajagapol, S; Shaw, A

    2011-01-01

    HITU (High Intensity Theraupetic Ultrasound) transducers are widely used in therapeutic ultrasound in medicine. The output ultrasonic power of HITU transducer can be measured in number of methods described in IEC 61161 standard [1]. New IEC standards specifically for measurement of HITU equipment are under development. The ultrasound power radiated from a transducer is dependent on applied input electrical voltage and current and consequently power. But, up to now, no standardised method has been developed and adopted for the input electrical power measurements. Hence, a workpackage was carried out for the establishment of such method in the frequency range of 1 to 3 MHz as a part of EURAMET EMRP Era-net plus 'External Beam Cancer Therapy' project. Several current shunts were developed and evaluated. Current measurements were also realized with Philips current probe and preamplifier at NPL and Agilent current probe at UME. In this paper, a method for the measurement of instantaneous electrical power delivered to a reactive ultrasound transducer in the required frequency range is explored.

  1. Effect of Voltage Measurement on the Quantitative Identification of Transverse Cracks by Electrical Measurements

    KAUST Repository

    Selvakumaran, Lakshmi

    2016-03-24

    Electrical tomography can be used as a structural health monitoring technique to identify different damage mechanisms in composite laminates. Previous work has established the link between transverse cracking density and mesoscale conductivity of the ply. Through the mesoscale relationship, the conductivity obtained from electrical tomography can be used as a measure of the transverse cracking density. Interpretation of this measure will be accurate provided the assumptions made during homogenization are valid. One main assumption of mesoscale homogenization is that the electric field is in the plane. Here, we test the validity of this assumption for laminates with varying anisotropy ratios and for different distances between the cracked ply and surface that is instrumented with electrodes. We also show the equivalence in electrical response between measurements from cracked laminates and their equivalent mesoscale counterparts. Finally, we propose some general guidelines on the measurement strategy for maximizing the accuracy of transverse cracks identification.

  2. Detecting rapid mass movements using electrical self-potential measurements

    Science.gov (United States)

    Heinze, Thomas; Limbrock, Jonas; Pudasaini, Shiva P.; Kemna, Andreas

    2017-04-01

    Rapid mass movements are a latent danger for lives and infrastructure in almost any part of the world. Often such mass movements are caused by increasing pore pressure, for example, landslides after heavy rainfall or dam breaking after intrusion of water in the dam. Among several other geophysical methods used to observe water movement, the electrical self-potential method has been applied to a broad range of monitoring studies, especially focusing on volcanism and dam leakage but also during hydraulic fracturing and for earthquake prediction. Electrical self-potential signals may be caused by various mechanisms. Though, the most relevant source of the self-potential field in the given context is the streaming potential, caused by a flowing electrolyte through porous media with electrically charged internal surfaces. So far, existing models focus on monitoring water flow in non-deformable porous media. However, as the self-potential is sensitive to hydraulic parameters of the soil, any change in these parameters will cause an alteration of the electric signal. Mass movement will significantly influence the hydraulic parameters of the solid as well as the pressure field, assuming that fluid movement is faster than the pressure diffusion. We will present results of laboratory experiments under drained and undrained conditions with fluid triggered as well as manually triggered mass movements, monitored with self-potential measurements. For the undrained scenarios, we observe a clear correlation between the mass movements and signals in the electric potential, which clearly differ from the underlying potential variations due to increased saturation and fluid flow. In the drained experiments, we do not observe any measurable change in the electric potential. We therefore assume that change in fluid properties and release of the load causes disturbances in flow and streaming potential. We will discuss results of numerical simulations reproducing the observed effect. Our

  3. Design of Electric Field Sensors for Measurement of Electromagnetic Pulse

    Directory of Open Access Journals (Sweden)

    Hui ZHANG

    2014-01-01

    Full Text Available In this paper, a D-dot electric field sensor and a fiber-optic transmission electric field sensor are developed for measurement of electromagnetic pulse. The D-dot sensor is a differential model sensor without source and has a simple structure. The fiber-optic transmission sensor is in the type of small dipole antenna, which uses its outside shielding layer as a pair of antennas. Design of the sensor circuit and the test system are introduced in this paper. A calibration system for these pulsed field sensors is established and the test results verified the ability of the developed sensors for measurement of the standard electromagnetic pulse field (the half peak width is 25 ns and the rising time is 2.5 ns.

  4. Cutting force measurement of electrical jigsaw by strain gauges

    International Nuclear Information System (INIS)

    Kazup, L; Varadine Szarka, A

    2016-01-01

    This paper describes a measuring method based on strain gauges for accurate specification of electric jigsaw's cutting force. The goal of the measurement is to provide an overall perspective about generated forces in a jigsaw's gearbox during a cutting period. The lifetime of the tool is affected by these forces primarily. This analysis is part of the research and development project aiming to develop a special linear magnetic brake for realizing automatic lifetime tests of electric jigsaws or similar handheld tools. The accurate specification of cutting force facilitates to define realistic test cycles during the automatic lifetime test. The accuracy and precision resulted by the well described cutting force characteristic and the possibility of automation provide new dimension for lifetime testing of the handheld tools with alternating movement. (paper)

  5. [Measurement of chemical agents in metallurgy field: electric steel plant].

    Science.gov (United States)

    Cottica, D; Grignani, E; Ghitti, R; Festa, D; Apostoli, P

    2012-01-01

    The steel industry maintains its important position in the context of the Italian production involving thousands of workers. The iron and steel processes are divided into primary steel industry, production of intermediate minerals, and secondary steel, scrap from the production of semi-finished industrial and consumer sector (metal inserted into components and metal used for dissipative uses, primarily coatings) and industrial waste. The paper presents the results of environmental monitoring carried out in some electric steel plant for the measurement of airborne chemicals that characterize the occupational exposure of workers employed in particular area like electric oven, to treatment outside the furnace, continuous casting area. For the sampling of the pollutants were used both personal and in fixed positions samplers. The pollutants measured are those typical of steel processes inhalable dust, metals, respirable dust, crystalline silica, but also Polycyclic Aromatic Hydrocarbons (PAH), polychlorinated dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs).

  6. Automatic measurement for monitoring crack growth with electric potential technique

    International Nuclear Information System (INIS)

    Nakajima, Nobuya; Kikuchi, Masaaki; Shima, Seishi

    1981-10-01

    In the study of fracture mechanics, it is one of the most important problems to monitor the crack growth phenomena. Recently, many experimental methods have been developed. In this report, the Direct Current (DC) potential method is employed for measuring the crack growth length in the pressuried high temperature water. The objective of the current investigation is to develop an experimental method to quantify the sensitivity of this method in the air environment using the Compact Tension (CT) specimen. The main results obtained are as follows: 1) It is ignored that the electrical potential changes with plastic deformation at the crack tip of the specimen. 2) Using the Reversible Direct Current (RDC) Method, the measurement system gives no effect on the electrical stability for a long time. 3) For the fatigue and statical crack growth length, good relation is observed between the crack length-to-specimen width ratio (a/W) and potential ratio (Va/Vo). (author)

  7. Concept, characteristics, and applications of important electrical measuring techniques

    International Nuclear Information System (INIS)

    Amberg, C.; Czaika, N.; Andreae, G.

    1978-01-01

    In the field of electrical measuring techniques the investigations were concentrated on the transducers. We investigated the time-temperature behaviour of the following transducers: The weldable, fully encapsulated high temperature strain gauges, inductance and transformer displacement transducers, and weldable capacitive strain transducers with distance sensor. A literatur-review showing the state of techniques reference the influence of nuclear radiation was put together. (orig./HP) [de

  8. Electrical conductivity measurements in shock compressed liquid nitrogen

    International Nuclear Information System (INIS)

    Hamilton, D.C.; Mitchell, A.C.; Nellis, W.J.

    1985-06-01

    The electrical conductivity of shock compressed liquid nitrogen was measured in the pressure range 20 to 50 GPa using a two-stage light-gas gun. The conductivities covered a range 4 x 10 -2 to 1 x 10 2 ohm -1 cm -1 . The data are discussed in terms of a liquid semiconductor model below the onset of the dissociative phase transition at 30 GPa. 15 refs., 1 fig

  9. Electric field vector measurements in a surface ionization wave discharge

    International Nuclear Information System (INIS)

    Goldberg, Benjamin M; Adamovich, Igor V; Lempert, Walter R; Böhm, Patrick S; Czarnetzki, Uwe

    2015-01-01

    This work presents the results of time-resolved electric field vector measurements in a short pulse duration (60 ns full width at half maximum), surface ionization wave discharge in hydrogen using a picosecond four-wave mixing technique. Electric field vector components are measured separately, using pump and Stokes beams linearly polarized in the horizontal and vertical planes, and a polarizer placed in front of the infrared detector. The time-resolved electric field vector is measured at three different locations across the discharge gap, and for three different heights above the alumina ceramic dielectric surface, ∼100, 600, and 1100 μm (total of nine different locations). The results show that after breakdown, the discharge develops as an ionization wave propagating along the dielectric surface at an average speed of 1 mm ns −1 . The surface ionization wave forms near the high voltage electrode, close to the dielectric surface (∼100 μm). The wave front is characterized by significant overshoot of both vertical and horizontal electric field vector components. Behind the wave front, the vertical field component is rapidly reduced. As the wave propagates along the dielectric surface, it also extends further away from the dielectric surface, up to ∼1 mm near the grounded electrode. The horizontal field component behind the wave front remains quite significant, to sustain the electron current toward the high voltage electrode. After the wave reaches the grounded electrode, the horizontal field component experiences a secondary rise in the quasi-dc discharge, where it sustains the current along the near-surface plasma sheet. The measurement results indicate presence of a cathode layer formed near the grounded electrode with significant cathode voltage fall, ≈3 kV, due to high current density in the discharge. The peak reduced electric field in the surface ionization wave is 85–95 Td, consistent with dc breakdown field estimated from the Paschen

  10. Electric and magnetic field measurements in an outdoor electric power substation

    Energy Technology Data Exchange (ETDEWEB)

    Safigianni, A.S.; Tsompanidou, C.G. [Democritus Univ. Thrace, Xanthi (Greece). Dept. of Electrical and Computer Engineering

    2006-07-01

    With the ever increasing environmental exposure to man-made electromagnetic fields (EMFs), public concern regarding the potential health hazards of exposure to electric and magnetic fields at extremely low frequencies (ELF) has also increased. This paper examined the ELF fields at a 150/20 kV outdoor electric power substation in Xanthi, Greece. Basic data regarding this substation was provided along with previous relevant research studies. The reference levels for safe general public and occupational exposure according to the International Commission on Non-Ionizing Radiation Protection (ICNIRP) was also presented. The instruments used to take the measurements were described and indicative results of the EMFs measurements in the substation were provided. In general, the measured magnetic flux density values were far below the reference level for safe public and occupational exposure. No significant differentiation was noted in these values in relation to body height. However, the levels were found to be in violation in two positions, near the capacitor banks. It was emphasized that these values greatly decreased with distance, and the positions where these high values were measured were not occupied by technicians when the capacitors were under voltage. In addition, it was emphasized that the measured magnetic flux density values were very small in the supervision room, where the supervisor of the substation works and in the ring zone where the public has access. All the measured electric field strength values were below the reference level for safe public and occupational exposure. It was concluded that the measured field values are within recognized guidelines and pose no danger for public or working personnel. 19 refs., 1 tab., 4 figs.

  11. Equipment for the measurement of non-electrical parameters

    International Nuclear Information System (INIS)

    Lewin, M.I.; Ewtuchow, A.N.

    1977-01-01

    The invention concerns equipment for the measurement of non-electrical parameters, which can be used in data processing and control equipment. The transducer converts non-electrical parameters into electrical signals. The process according to the invention is explained using the example of an inductive transducer, which is fed with alternating current. The measured parameter affects the mutual inductance of the transducer, so that the secondary voltage supplied by it is a function of the measured parameter. Amplitude measurement of this voltage by means of rectification and filtering has the disadvantage of long time constants, where the measuring period would amount to 6 to 10 cycles of the supply voltage. According to the invention the secondary voltage of the transducer is connected to an integrator during a half-cycle between two zeros, which charges a capacitor to a voltage proportional to the amplitude. An analogue-digital converter now produces a digital signal corresponding to the capacitor voltage, which is taken to the control equipment. This conversion occurs during a fraction of the second half-cycle, so that there is still time before the end of this half-cycle, so that there is still time before the end of this half-cycle to discharge the capacitor and to reproduce the initial conditions. In the next cycle the whole process is repeated, so that the measuring process only takes one cycle. In order to make the digital signal independent of the amplitude of the current fed in, this also flows through an identical transducer with constant mutual inductance, and affects the analogue-digital converter via a comparative circuit. (ORU) [de

  12. Fabrication and electric measurements of nanostructures inside transmission electron microscope.

    Science.gov (United States)

    Chen, Qing; Peng, Lian-Mao

    2011-06-01

    Using manipulation holders specially designed for transmission electron microscope (TEM), nanostructures can be characterized, measured, modified and even fabricated in-situ. In-situ TEM techniques not only enable real-time study of structure-property relationships of materials at atomic scale, but also provide the ability to control and manipulate materials and structures at nanoscale. This review highlights in-situ electric measurements and in-situ fabrication and structure modification using manipulation holder inside TEM. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Electric Field Measurement of the Living Human Body for Biomedical Applications: Phase Measurement of the Electric Field Intensity

    Directory of Open Access Journals (Sweden)

    Ichiro Hieda

    2013-01-01

    Full Text Available The authors are developing a technique for conducting measurements inside the human body by applying a weak electric field at a radio frequency (RF. Low RF power is fed to a small antenna, and a similar antenna located 15–50 cm away measures the electric field intensity. Although the resolution of the method is low, it is simple, safe, cost-effective, and able to be used for biomedical applications. One of the technical issues suggested by the authors' previous studies was that the signal pattern acquired from measurement of a human body was essentially different from that acquired from a phantom. To trace the causes of this difference, the accuracy of the phase measurements was improved. This paper describes the new experimental system that can measure the signal phase and amplitude and reports the results of experiments measuring a human body and a phantom. The results were analyzed and then discussed in terms of their contribution to the phase measurement.

  14. Measurement of Anisotropic Particle Interactions with Nonuniform ac Electric Fields.

    Science.gov (United States)

    Rupp, Bradley; Torres-Díaz, Isaac; Hua, Xiaoqing; Bevan, Michael A

    2018-02-20

    Optical microscopy measurements are reported for single anisotropic polymer particles interacting with nonuniform ac electric fields. The present study is limited to conditions where gravity confines particles with their long axis parallel to the substrate such that particles can be treated using quasi-2D analysis. Field parameters are investigated that result in particles residing at either electric field maxima or minima and with long axes oriented either parallel or perpendicular to the electric field direction. By nonintrusively observing thermally sampled positions and orientations at different field frequencies and amplitudes, a Boltzmann inversion of the time-averaged probability of states yields kT-scale energy landscapes (including dipole-field, particle-substrate, and gravitational potentials). The measured energy landscapes show agreement with theoretical potentials using particle conductivity as the sole adjustable material property. Understanding anisotropic particle-field energy landscapes vs field parameters enables quantitative control of local forces and torques on single anisotropic particles to manipulate their position and orientation within nonuniform fields.

  15. Development of electrical efficiency measurement techniques for 10 kW-class SOFC system: Part I. Measurement of electrical efficiency

    International Nuclear Information System (INIS)

    Tanaka, Yohei; Momma, Akihiko; Kato, Ken; Negishi, Akira; Takano, Kiyonami; Nozaki, Ken; Kato, Tohru

    2009-01-01

    Measurement techniques to estimate electrical efficiency of 10 kW-class SOFC systems fueled by town-gas were developed and demonstrated for a system developed by Kansai Electric Power Company and Mitsubishi Materials Corporation under a NEDO project. Higher heating value of the fuel was evaluated with a transportable gas sampling unit and conventional gas chromatography in AIST laboratory with thermal-conductivity and flame-ionization detectors, leading to mean value 44.69 MJ m -3 on a volumetric base for ideal-gas at the standard state (0 deg. C, 101.325 kPa). Mass-flow-rate of the fuel was estimated as 33.04 slm with a mass-flow meter for CH 4 , which was calibrated to correct CH 4 flow-rate and effect of sensitivity change and to obtain conversion factor from CH 4 to town-gas. Without calibration, systematic effect would occur by 8% in flow-rate measurement in the case for CH 4 . Power output was measured with a precision power analyzer, a virtual three phase starpoint adapter, and tri-axial shunts. Power of fundamental wave (60 Hz) was estimated as 10.14 kW, considering from total active power, total higher harmonic distortion factor, and power consumption at the starpoint adapter. The electrical efficiency was presumed to be 41.2% (HHV), though this mean value will be complete only when uncertainty estimation is accompanied

  16. Facing a Problem of Electrical Energy Quality in Ship Networks-measurements, Estimation, Control

    Institute of Scientific and Technical Information of China (English)

    Tomasz Tarasiuk; Janusz Mindykowski; Xiaoyan Xu

    2003-01-01

    In this paper, electrical energy quality and its indices in ship electric networks are introduced, especially the meaning of electrical energy quality terms in voltage and active and reactive power distribution indices. Then methods of measurement of marine electrical energy indices are introduced in details and a microprocessor measurement-diagnosis system with the function of measurement and control is designed. Afterwards, estimation and control of electrical power quality of marine electrical power networks are introduced. And finally, according to the existing method of measurement and control of electrical power quality in ship power networks, the improvement of relative method is proposed.

  17. An electrical method for the measurement of the thermal and electrical conductivity of reduced graphene oxide nanostructures.

    Science.gov (United States)

    Schwamb, Timo; Burg, Brian R; Schirmer, Niklas C; Poulikakos, Dimos

    2009-10-07

    This paper introduces an electrical four-point measurement method enabling thermal and electrical conductivity measurements of nanoscale materials. The method was applied to determine the thermal and electrical conductivity of reduced graphene oxide flakes. The dielectrophoretically deposited samples exhibited thermal conductivities in the range of 0.14-2.87 W m(-1) K(-1) and electrical conductivities in the range of 6.2 x 10(2)-6.2 x 10(3) Omega(-1) m(-1). The measured properties of each flake were found to be dependent on the duration of the thermal reduction and are in this sense controllable.

  18. Measurement of AC electrical characteristics of SSC superconducting dipole magnets

    International Nuclear Information System (INIS)

    Smedley, K.M.; Shafer, R.E.

    1992-01-01

    Experiments were conducted to measure the AC electrical characteristics of SSC superconducting dipole magnets over the frequency range of 0.1 Hz to 10 kHz. A magnet equivalent circuit representing the magnet DC inductance, eddy current losses, coil-to-ground and turn-to-turn capacitance, was synthesized from the experimental data. This magnet equivalent circuit can be used to predict the current ripple distribution along the superconducting magnet string and can provide dynamic information for the design of the collider current regulation loop

  19. Measurement of gastrointestinal transmural electric potential difference in man.

    Science.gov (United States)

    Geall, M G; Code, C F; McIlrath, D C; Summerskill, W H

    1970-01-01

    Measurement, in man, of the electric potential difference between venous blood and the mucosal surface of the gastrointestinal tract gave identical values to the potential difference between mucosa and serosa. Various parts of the peritoneum were equipotential with venous blood. By contrast, skin-enteric potential difference varied with time and among different subjects because of a potential difference between skin and blood that is unpredictably reduced by skin injury. The results with electrolyte bridges of KCl in agar or of flowing KCl were identical.

  20. Piezo-sensor self-diagnostics using electrical impedance measurements.

    Energy Technology Data Exchange (ETDEWEB)

    Park, G. H. (Gyu Hae); Farrar, C. R. (Charles R.); Rutherford, A. C. (Amanda C.); Robertson, A. N. (Amy N.)

    2004-01-01

    This paper present the piezoelectric sensor self-diagnostic procedure that performs in-situ monitoring of the operational status of piezoelectric materials (PZT) used for sensors and actuators in structural health monitoring (SHM) applications. The use of active-sensing piezoelectric materials has received considerable attention in the SHM community. A critical aspect of the piezoelectric active-sensing technologies is that usually large numbers of distributed sensors and actuators are needed to perform the required monitoring process. The sensor/actuator self-diagnostic procedure, where the sensors/actuators are confirmed to be functioning properly during operation, is therefore a critical component to successfully complete the SHM process and to minimize the false indication regarding the structural health. The basis of this procedure is to track the changes in the capacitive value of piezoelectric materials resulting from the sensor failure, which is manifested in the imaginary part of the measured electrical admittances. Furthermore, through the analytical and experimental investigation, it is confirmed that the bonding layer between the PZT and a host structure significantly contributes to the measured capacitive values. Therefore, by monitoring the imaginary part of the admittances, one can quantitatively assess the degradation of the mechanical/electrical properties of the PZT and its attachment to a host structure. This paper concludes with an experimental example to demonstrate the feasibility of the proposed sensor-diagnostic procedure.

  1. Fundamental course of measuring. II. The electrical measuring of non-electrical parameters. Grundkurs der Messtechnik. T. 2. Das elektrische Messen nichtelektrischer Groessen

    Energy Technology Data Exchange (ETDEWEB)

    Merz, L [Technische Univ. Muenchen (F.R. Germany). Lehrstuhl und Lab. fuer Steuerungs- und Regelungstechnik

    1975-01-01

    The fundamental course of the electrical measuring of non-electrical parameters aims to fulfill the task of presenting the present knowledge on the basic measuring methods in simple language and illustrative form. The present part II deals especially with measuring methods in heat and process engineering in the industrial field. Following the introduction in part A, the techniques of electrical probes are mainly described, and it is shown which mechanical probes cannot yet be replaced by electrical ones. Part C describes the techniques of measuring transducers.

  2. Measurement of the radial electric field in the ASDEX tokamak

    International Nuclear Information System (INIS)

    Field, A.R.; Fussmann, G.; Hofmann, J.V.

    1990-12-01

    The radial electric field (E Τ ) at the plasma periphery is determined by measuring the drift velocities of low-Z impurities ions (BIV, CIII and HeII). The measurements are performed with a scannable mirror system which allows the determination of the poloidal, perpendicular (to B vector) and toroidal components of the drift velocities from the differential Doppler shift of visible line emission observed along opposing viewing directions. The principle of the measurement is investigated in detail. In particular, it is shown that for radially localised emission shells there exits a line of sight oriented perpendicular to B vector along which E Τ may be inferred directly from the observed Doppler shift of the line emission. Along such a line of sight the net contribution to the shift from the diamagnetic drift and the radial gradient of the excitation probability is negligible. During the Ohmic- and L-phases the perpendicular drift velocity of the BIV ions measured approximately 2 cm inside the separatrix is small (≤ 2 kms -1 ) and in the ion diamagnetic drift direction. However, at the L → H-Mode transition it changes sign and begins to increase on the time-scale of the edge pressure gradients reaching the highest values at the end of the H * -phase. From these high perpendicular drift velocities it is infered that, in the H-mode, there exists a strong negative radial electric field (vertical strokeE τ vertical stroke ≤ kVm -1 ) just inside the separatrix. The dependence of the drift velocity of the BIV ions and E Τ on the NBI-heating power and the magnitude and direction of the plasma current and the magnetic field is investigated. (orig.)

  3. Magneto-acousto-electrical Measurement Based Electrical Conductivity Reconstruction for Tissues.

    Science.gov (United States)

    Zhou, Yan; Ma, Qingyu; Guo, Gepu; Tu, Juan; Zhang, Dong

    2018-05-01

    Based on the interaction of ultrasonic excitation and magnetoelectrical induction, magneto-acousto-electrical (MAE) technology was demonstrated to have the capability of differentiating conductivity variations along the acoustic transmission. By applying the characteristics of the MAE voltage, a simplified algorithm of MAE measurement based conductivity reconstruction was developed. With the analyses of acoustic vibration, ultrasound propagation, Hall effect, and magnetoelectrical induction, theoretical and experimental studies of MAE measurement and conductivity reconstruction were performed. The formula of MAE voltage was derived and simplified for the transducer with strong directivity. MAE voltage was simulated for a three-layer gel phantom and the conductivity distribution was reconstructed using the modified Wiener inverse filter and Hilbert transform, which was also verified by experimental measurements. The experimental results are basically consistent with the simulations, and demonstrate that the wave packets of MAE voltage are generated at tissue interfaces with the amplitudes and vibration polarities representing the values and directions of conductivity variations. With the proposed algorithm, the amplitude and polarity of conductivity gradient can be restored and the conductivity distribution can also be reconstructed accurately. The favorable results demonstrate the feasibility of accurate conductivity reconstruction with improved spatial resolution using MAE measurement for tissues with conductivity variations, especially suitable for nondispersive tissues with abrupt conductivity changes. This study demonstrates that the MAE measurement based conductivity reconstruction algorithm can be applied as a new strategy for nondestructive real-time monitoring of conductivity variations in biomedical engineering.

  4. Crack Growth Monitoring in Harsh Environments by Electric Potential Measurements

    International Nuclear Information System (INIS)

    Lloyd, Wilson Randolph; Reuter, Walter Graham; Weinberg, David Michael

    1999-01-01

    Electric potential measurement (EPM) technology offers an attractive alternative to conventional nondestructive evaluation (NDE) for monitoring crack growth in harsh environments. Where conventional NDE methods typically require localized human interaction, the EPM technique developed at the Idaho National Engineering and Environmental Laboratory (INEEL) can be operated remotely and automatically. Once a crack-like defect is discovered via conventional means, EPM can be applied to monitor local crack size changes. This is of particular interest in situations where an identified structural defect is not immediately rejectable from a fitness-for-service viewpoint, but due to operational and environmental conditions may grow to an unsafe size with continuing operation. If the location is in a harsh environment where periodic monitoring by normal means is either too costly or not possible, a very expensive repair may be immediately mandated. However, the proposed EPM methodology may offer a unique monitoring capability that would allow for continuing service. INEEL has developed this methodology, supporting equipment, and calibration information to apply EPM in a field environment for just this purpose. Laboratory and pilot scale tests on full-size engineering structures (pressure vessels and piping) have been successfully performed. The technique applicable is many severe environments because the sensitive equipment (electronics, operators) can be situated in a remote location, with only current and voltage probe electrical leads entering into the harsh environment. Experimental results showing the utility of the methodology are presented, and unique application concepts that have been examined by multiple experiments are discussed

  5. Neutron electric dipole moment measurement with a buffer gas comagnetometer

    International Nuclear Information System (INIS)

    Masuda, Yasuhiro; Asahi, Koichiro; Hatanaka, Kichiji; Jeong, Sun-Chan; Kawasaki, Shinsuke; Matsumiya, Ryohei; Matsuta, Kensaku; Mihara, Mototsugu; Watanabe, Yutaka

    2012-01-01

    A neutron EDM measurement with a comagnetometer is discussed. For magnetometry, polarized xenon atoms are injected into a cylindrical cell where a cylindrically symmetric magnetic field and an electric field are applied for the EDM measurement. The geometric phase effect (GPE), which originates from particle motion in a magnetic field gradient, is analyzed in terms of the Dyson series. The motion of the xenon atom is largely suppressed because of a small mean free path. The field gradient is controlled by means of NMR measurements, where the false effect of Earth's rotation is removed. As a result, the GPE is reduced below 10 −28 e cm. -- Highlights: ► A method of high precision neutron EDM measurement is described. ► Geometric phase effects are discussed in terms of Dyson series. ► A magnetic field drift is compensated by means of a buffer gas magnetometer. ► Geometric phase effects are greatly suppressed. ► The systematic error is reduced by two orders of magnitude compared with before.

  6. Measurement strategy for rectangular electrical capacitance tomography sensor

    International Nuclear Information System (INIS)

    Ye, Jiamin; Ge, Ruihuan; Qiu, Guizhi; Wang, Haigang

    2014-01-01

    To investigate the influence of the measurement strategy for the rectangular electrical capacitance tomography (ECT) sensor, a Finite Element Method (FEM) is utilized to create the model for simulation. The simulation was carried out using COMSOL Multiphysics(trade mark, serif) and Matlab(trade mark, serif). The length-width ratio of the rectangular sensing area is 5. Twelve electrodes are evenly arranged surrounding the pipe. The covering ratio of the electrodes is 90%. The capacitances between different electrode pairs are calculated for a bar distribution. The air of the relative permittivity 1.0 and the material of the permittivity 3.0 are used for the calibration. The relative permittivity of the second phase is 3.0. The noise free and noise data are used for the image reconstruction using the Linear Back Projection (LBP). The measurement strategies with 1-, 2- and 4- electrode excitation are compared using the correlation coefficient. Preliminary results show that the measurement strategy with 2-electrode excitation outperforms other measurement strategies with 1- or 4-electrode excitation

  7. Neutron electric dipole moment measurement with a buffer gas comagnetometer

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, Yasuhiro, E-mail: yasuhiro.masuda@kek.jp [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Asahi, Koichiro [Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Hatanaka, Kichiji [RCNP, Osaka University, 10-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Jeong, Sun-Chan; Kawasaki, Shinsuke [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Matsumiya, Ryohei [RCNP, Osaka University, 10-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Matsuta, Kensaku; Mihara, Mototsugu [Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan); Watanabe, Yutaka [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

    2012-03-19

    A neutron EDM measurement with a comagnetometer is discussed. For magnetometry, polarized xenon atoms are injected into a cylindrical cell where a cylindrically symmetric magnetic field and an electric field are applied for the EDM measurement. The geometric phase effect (GPE), which originates from particle motion in a magnetic field gradient, is analyzed in terms of the Dyson series. The motion of the xenon atom is largely suppressed because of a small mean free path. The field gradient is controlled by means of NMR measurements, where the false effect of Earth's rotation is removed. As a result, the GPE is reduced below 10{sup −28}e cm. -- Highlights: ► A method of high precision neutron EDM measurement is described. ► Geometric phase effects are discussed in terms of Dyson series. ► A magnetic field drift is compensated by means of a buffer gas magnetometer. ► Geometric phase effects are greatly suppressed. ► The systematic error is reduced by two orders of magnitude compared with before.

  8. Overview of electrical axis measurement in TESLA-type cavities

    International Nuclear Information System (INIS)

    Labanc, Anton

    2007-01-01

    The cells of TESLA cavities are mechanically aligned and tuned before the cavities are installed into the cryomodule. The alignment minimizes unwanted interaction of the accelerated beam with the transverse electric field component and the magnetic field of the accelerating TM 010 -π mode. It also reduces an interaction with higher order modes. The tuning equalizes field amplitudes of the accelerating mode in all cells. Until now, the eccentricity (misalignment) of cells is measured mechanically with residual misalignment after tuning up to 0.4 mm. Unfortunately the mechanical measurement is only weakly related to the electromagnetic fields inside a cavity, both for the accelerating and higher order modes. For improvement of the precision a new method of electromagnetic field mapping inside a cavity, based on small perturbation theory was developed. This method can be applied to modes which do not propagate through the beam pipes. In the setup built for the axis measurement a metallic needle is used as field perturbing object. Conducted tests confirmed high precision of 0.1 mm. Tests on the copper model for which it is possible to excite all of considered modes and on several niobium cavities were performed. In this paper an overview of measurement method, equipment and first results are reported. (orig.)

  9. An Effective Measured Data Preprocessing Method in Electrical Impedance Tomography

    Directory of Open Access Journals (Sweden)

    Chenglong Yu

    2014-01-01

    Full Text Available As an advanced process detection technology, electrical impedance tomography (EIT has widely been paid attention to and studied in the industrial fields. But the EIT techniques are greatly limited to the low spatial resolutions. This problem may result from the incorrect preprocessing of measuring data and lack of general criterion to evaluate different preprocessing processes. In this paper, an EIT data preprocessing method is proposed by all rooting measured data and evaluated by two constructed indexes based on all rooted EIT measured data. By finding the optimums of the two indexes, the proposed method can be applied to improve the EIT imaging spatial resolutions. In terms of a theoretical model, the optimal rooting times of the two indexes range in [0.23, 0.33] and in [0.22, 0.35], respectively. Moreover, these factors that affect the correctness of the proposed method are generally analyzed. The measuring data preprocessing is necessary and helpful for any imaging process. Thus, the proposed method can be generally and widely used in any imaging process. Experimental results validate the two proposed indexes.

  10. Precision measurement of electric organ discharge timing from freely moving weakly electric fish.

    Science.gov (United States)

    Jun, James J; Longtin, André; Maler, Leonard

    2012-04-01

    Physiological measurements from an unrestrained, untethered, and freely moving animal permit analyses of neural states correlated to naturalistic behaviors of interest. Precise and reliable remote measurements remain technically challenging due to animal movement, which perturbs the relative geometries between the animal and sensors. Pulse-type electric fish generate a train of discrete and stereotyped electric organ discharges (EOD) to sense their surroundings actively, and rapid modulation of the discharge rate occurs while free swimming in Gymnotus sp. The modulation of EOD rates is a useful indicator of the fish's central state such as resting, alertness, and learning associated with exploration. However, the EOD pulse waveforms remotely observed at a pair of dipole electrodes continuously vary as the fish swims relative to the electrodes, which biases the judgment of the actual pulse timing. To measure the EOD pulse timing more accurately, reliably, and noninvasively from a free-swimming fish, we propose a novel method based on the principles of waveform reshaping and spatial averaging. Our method is implemented using envelope extraction and multichannel summation, which is more precise and reliable compared with other widely used threshold- or peak-based methods according to the tests performed under various source-detector geometries. Using the same method, we constructed a real-time electronic pulse detector performing an additional online pulse discrimination routine to enhance further the detection reliability. Our stand-alone pulse detector performed with high temporal precision (<10 μs) and reliability (error <1 per 10(6) pulses) and permits longer recording duration by storing only event time stamps (4 bytes/pulse).

  11. Towards a new measurement of the neutron electric dipole moment

    International Nuclear Information System (INIS)

    Ban, G.; Bodek, K.; Daum, M.; Henneck, R.; Heule, S.; Kasprzak, M.; Khomytov, N.; Kirch, K.; Knecht, A.; Kistryn, S.; Knowles, P.; Kuzniak, M.; Lefort, T.; Naviliat-Cuncic, O.; Pichlmaier, A.; Plonka, C.; Quemener, G.; Rebetez, M.; Rebreyend, D.; Rogel, G.

    2006-01-01

    Precision measurements of particle electric dipole moments (EDMs) provide extremely sensitive means to search for non-standard mechanisms of T (or CP) violation. For the neutron EDM, the upper limit has been reduced by eight orders of magnitude in 50 years thereby excluding several CP violation scenarios. We report here on a new effort aiming at improving the neutron EDM limit by two orders of magnitude, down to a level of 3 x 10 -28 e.cm. The two central elements of the approach are the use of the higher densities which will be available at the new dedicated spallation UCN source at the Paul Scherrer Institute, and the optimization of the in-vacuum Ramsey resonance technique, with storage chambers at room temperature, to reach new limits of sensitivity.

  12. Release isentrope measurements with the LLNL electric gun

    Energy Technology Data Exchange (ETDEWEB)

    Gathers, G.R.; Osher, J.E.; Chau, H.H.; Weingart, R.C.; Lee, C.G.; Diaz, E.

    1987-06-01

    The liquid-vapor coexistence boundary is not well known for most metals because the extreme conditions near the critical point create severe experimental difficulties. The isentropes passing through the liquid-vapor region typically begin from rather large pressures on the Hugoniot. We are attempting to use the high velocities achievable with the Lawrence Livermore National Laboratory (LLNL) electric gun to obtain these extreme states in aluminum and measure the release isentropes by releasing into a series of calibrated standards with known Hugoniots. To achieve large pressure drops needed to explore the liquid-vapor region, we use argon gas for which Hugoniots have been calculated using the ACTEX code, as one of the release materials.

  13. Electrical impedance measured changes in thoracic fluid content during thoracentesis

    DEFF Research Database (Denmark)

    Petersen, J R; Jensen, B V; Drabaek, H

    1994-01-01

    In patients (seven females and 11 males) with pleural effusion due to pulmonary (n = 13) or cardiac disease (n = 5) the change in baseline transthoracic impedance (Z0) was measured by electrical impedance (BoMed's NCCOM-3, 70 kHz) during thoracentesis. Data were obtained before and after withdrawal...... of each 500 ml, and at the end of the thoracentesis. We found a close linear correlation (r = 0.97) between changes in Z0 and the volume of aspirated pleural effusion (y = 0.415.x+0.093). The variability of the estimated thoracic fluid volumes was analysed with a plot of the residuals from the regression...... line, and we found that changes in thoracic fluid volume estimated by impedance technique would be within +/- 302 ml (= 2 SD). However, the absolute value of Z0 before thoracentesis could not differentiate the group of patients with pleural effusion from normal subjects (n = 28)....

  14. Evaluation of DC electric field distribution of PPLP specimen based on the measurement of electrical conductivity in LN2

    Science.gov (United States)

    Hwang, Jae-Sang; Seong, Jae-Kyu; Shin, Woo-Ju; Lee, Jong-Geon; Cho, Jeon-Wook; Ryoo, Hee-Suk; Lee, Bang-Wook

    2013-11-01

    High temperature superconducting (HTS) cable has been paid much attention due to its high efficiency and high current transportation capability, and it is also regarded as eco-friendly power cable for the next generation. Especially for DC HTS cable, it has more sustainable and stable properties compared to AC HTS cable due to the absence of AC loss in DC HTS cable. Recently, DC HTS cable has been investigated competitively all over the world, and one of the key components of DC HTS cable to be developed is a cable joint box considering HVDC environment. In order to achieve the optimum insulation design of the joint box, analysis of DC electric field distribution of the joint box is a fundamental process to develop DC HTS cable. Generally, AC electric field distribution depends on relative permittivity of dielectric materials but in case of DC, electrical conductivity of dielectric material is a dominant factor which determines electric field distribution. In this study, in order to evaluate DC electric field characteristics of the joint box for DC HTS cable, polypropylene laminated paper (PPLP) specimen has been prepared and its DC electric field distribution was analyzed based on the measurement of electrical conductivity of PPLP in liquid nitrogen (LN2). Electrical conductivity of PPLP in LN2 has not been reported yet but it should be measured for DC electric field analysis. The experimental works for measuring electrical conductivity of PPLP in LN2 were presented in this paper. Based on the experimental works, DC electric field distribution of PPLP specimen was fully analyzed considering the steady state and the transient state of DC. Consequently, it was possible to determine the electric field distribution characteristics considering different DC applying stages including DC switching on, DC switching off and polarity reversal conditions.

  15. Evaluation of DC electric field distribution of PPLP specimen based on the measurement of electrical conductivity in LN2

    International Nuclear Information System (INIS)

    Hwang, Jae-Sang; Seong, Jae-Kyu; Shin, Woo-Ju; Lee, Jong-Geon; Cho, Jeon-Wook; Ryoo, Hee-Suk; Lee, Bang-Wook

    2013-01-01

    Highlights: •The electrical conductivity of PPLP in LN 2 was successfully measured. •Based on the measured value of PPLP, DC field analysis was performed. •The electric field distribution was altered according to the DC applying stages. •The maximum electric field was observed during polarity reversal situation. •DC field analysis is important to determine the optimum design of DC HTS devices. -- Abstract: High temperature superconducting (HTS) cable has been paid much attention due to its high efficiency and high current transportation capability, and it is also regarded as eco-friendly power cable for the next generation. Especially for DC HTS cable, it has more sustainable and stable properties compared to AC HTS cable due to the absence of AC loss in DC HTS cable. Recently, DC HTS cable has been investigated competitively all over the world, and one of the key components of DC HTS cable to be developed is a cable joint box considering HVDC environment. In order to achieve the optimum insulation design of the joint box, analysis of DC electric field distribution of the joint box is a fundamental process to develop DC HTS cable. Generally, AC electric field distribution depends on relative permittivity of dielectric materials but in case of DC, electrical conductivity of dielectric material is a dominant factor which determines electric field distribution. In this study, in order to evaluate DC electric field characteristics of the joint box for DC HTS cable, polypropylene laminated paper (PPLP) specimen has been prepared and its DC electric field distribution was analyzed based on the measurement of electrical conductivity of PPLP in liquid nitrogen (LN 2 ). Electrical conductivity of PPLP in LN 2 has not been reported yet but it should be measured for DC electric field analysis. The experimental works for measuring electrical conductivity of PPLP in LN 2 were presented in this paper. Based on the experimental works, DC electric field distribution of

  16. Measuring of electric fields with laser-induced fluorescence-dip Stark spectroscopy

    NARCIS (Netherlands)

    Wagenaars, E.; Bowden, M.D.; Kroesen, G.M.W.

    2007-01-01

    The electric field is an important quantity in low-pressure gas discharges, driving many fundamental processes. Unfortunately, it is difficult to measure electric field distributions in plasmas directly. The goal of this research was to develop a diagnostic technique to measure electric fields in

  17. High frequency electric field levels: An example of determination of measurement uncertainty for broadband measurements

    Directory of Open Access Journals (Sweden)

    Vulević Branislav

    2016-01-01

    Full Text Available Determining high frequency electromagnetic field levels in urban areas represents a very complex task, having in mind the exponential growth of the number of sources embodied in public cellular telephony systems in the past twenty years. The main goal of this paper is a representation of a practical solution in the evaluation of measurement uncertainty for in-situ measurements in the case of spatial averaging. An example of the estimation of the uncertainty for electric field strength broadband measurements in the frequency range from 3 MHz to 18 GHz is presented.

  18. Electrical measurement of radiation effect in SiC

    Energy Technology Data Exchange (ETDEWEB)

    Kanazawa, Satoshi; Kamiya, Koji; Kanno, Ikuo [Kyoto Univ. (Japan). Faculty of Engineering] [and others

    1996-04-01

    For aiming to limited resources and environmental conservations on the Earth, development of controlling element workable under high temperature environment was investigated so as to establish a high grade and optimum controlling system. In order to observe changes of electrical properties before and after irradiation and after annealing, and to investigate changes of carrier concentration and movability after irradiating neutron from reactor and accelerator for the SiC single crystal wafer, elucidation on neutron irradiation effect of SiC as well as finding an optimum method on nuclear conversion injection were investigated. For this reason, SiC surface was purified by its etching and was treated thermally at 1000degC for about 30 min. under argon gas atmosphere after vacuum depositing nickel on it. And then, it was irradiated neutron using Kyoto University reactor (LTL), Linac and University of Tokyo reactor (YAYOI) to measure changes of resistivity using van der Pauw. As a result, it was found that LTL irradiation data was under investigation of measuring method, that in Linac no meaning change was observed because of low irradiation, and that only YAYOI data showed increase of resistivity. (G.K.)

  19. In situ electrical measurements of polytypic silver nanowires

    International Nuclear Information System (INIS)

    Liu Xiaohua; Zhu Jing; Jin Chuanhong; Peng Lianmao; Tang Daiming; Cheng Huiming

    2008-01-01

    Novel 4H structure silver nanowires (4H-AgNWs) have been reported to coexist with the usual face-centered cubic (FCC) ones. Here we report the electrical properties of these polytypic AgNWs for the first time. AgNWs with either 4H or FCC structures in the diameter range of 20-80 nm were measured in situ inside a transmission electron microscope (TEM). Both kinds of AgNW in the diameter range show metallic conductance. The average resistivity of the 4H-AgNWs is 19.9 μΩ cm, comparable to the 11.9 μΩ cm of the FCC-AgNWs. The failure current density can be up to ∼10 8 A cm -2 for both 4H-and FCC-AgNWs. The maximum stable current density (MSCD) is introduced to estimate the AgNWs' current-carrying ability, which shows diameter-dependence with a peak around 34 nm in diameter. It is attributed to fast annihilation of the current-induced vacancies and the enhanced surface scattering. Our investigations also suggest that the magnetic field of the electromagnetic lens may also introduce some influence on the measurements inside the TEM

  20. Aligned deposition and electrical measurements on single DNA molecules

    International Nuclear Information System (INIS)

    Eidelshtein, Gennady; Kotlyar, Alexander; Hashemi, Mohtadin; Gurevich, Leonid

    2015-01-01

    A reliable method of deposition of aligned individual dsDNA molecules on mica, silicon, and micro/nanofabricated circuits is presented. Complexes of biotinylated double stranded poly(dG)–poly(dC) DNA with avidin were prepared and deposited on mica and silicon surfaces in the absence of Mg 2+ ions. Due to its positive charge, the avidin attached to one end of the DNA anchors the complex to negatively charged substrates. Subsequent drying with a directional gas flow yields DNA molecules perfectly aligned on the surface. In the avidin–DNA complex only the avidin moiety is strongly and irreversibly bound to the surface, while the DNA counterpart interacts with the substrates much more weakly and can be lifted from the surface and realigned in any direction. Using this technique, avidin–DNA complexes were deposited across platinum electrodes on a silicon substrate. Electrical measurements on the deposited DNA molecules revealed linear IV-characteristics and exponential dependence on relative humidity. (paper)

  1. Inductive Contactless Distance Measurement Intended for a Gastric Electrical Implant

    Directory of Open Access Journals (Sweden)

    J. Tomek

    2007-01-01

    Full Text Available For a gastric electrical stimulation project we are developing a system for on-demand switching according to the volume or elongation of the stomach wall. The system is to be implanted into the human abdomen, which limits the utilization of many possible solutions and types of sensors. Magnetic induction has been agreed as the most suitable principle, despite its direction dependency and the need of multi-axial and multiple probes for precision measurements. Possible configurations are discussed as well as the complexity of the necessary electronics and the implantation itself. For detecting food consumption, perfect precision is fortunately not necessary, but a certain compromise will still be necessary for the final system. A simple two-coil system – a transmitter and receiver and a system with a three-axial coil – have already been realized. The first system has already been successfully tested in-vivo on dogs by our US colleagues. However, if the implantation is badly performed, and the coils are completely out of axis, the system cannot sense relative changes in volume properly. The three-axial sensor presented here eliminates these problems. More complex arrangements emerging from magnetic tracking are discussed, because laboratory studies of stomach movements may require them. 

  2. Accurate position estimation methods based on electrical impedance tomography measurements

    Science.gov (United States)

    Vergara, Samuel; Sbarbaro, Daniel; Johansen, T. A.

    2017-08-01

    Electrical impedance tomography (EIT) is a technology that estimates the electrical properties of a body or a cross section. Its main advantages are its non-invasiveness, low cost and operation free of radiation. The estimation of the conductivity field leads to low resolution images compared with other technologies, and high computational cost. However, in many applications the target information lies in a low intrinsic dimensionality of the conductivity field. The estimation of this low-dimensional information is addressed in this work. It proposes optimization-based and data-driven approaches for estimating this low-dimensional information. The accuracy of the results obtained with these approaches depends on modelling and experimental conditions. Optimization approaches are sensitive to model discretization, type of cost function and searching algorithms. Data-driven methods are sensitive to the assumed model structure and the data set used for parameter estimation. The system configuration and experimental conditions, such as number of electrodes and signal-to-noise ratio (SNR), also have an impact on the results. In order to illustrate the effects of all these factors, the position estimation of a circular anomaly is addressed. Optimization methods based on weighted error cost functions and derivate-free optimization algorithms provided the best results. Data-driven approaches based on linear models provided, in this case, good estimates, but the use of nonlinear models enhanced the estimation accuracy. The results obtained by optimization-based algorithms were less sensitive to experimental conditions, such as number of electrodes and SNR, than data-driven approaches. Position estimation mean squared errors for simulation and experimental conditions were more than twice for the optimization-based approaches compared with the data-driven ones. The experimental position estimation mean squared error of the data-driven models using a 16-electrode setup was less

  3. Electric-Field-Induced Superconductivity Detected by Magnetization Measurements of an Electric-Double-Layer Capacitor

    NARCIS (Netherlands)

    Kasahara, Yuichi; Nishijima, Takahiro; Sato, Tatsuya; Takeuchi, Yuki; Ye, Jianting; Yuan, Hongtao; Shimotani, Hidekazu; Iwasa, Yoshihiro

    We report evidence for superconductivity induced by the application of strong electric fields onto the surface of a band insulator, ZrNCl, provided by the observation of a shielding diamagnetic signal. We introduced an electric-double-layer capacitor configuration and in situ magnetization

  4. Electric field measurement in the dielectric tube of helium atmospheric pressure plasma jet

    NARCIS (Netherlands)

    Sretenović, G.B.; Guaitella, O.; Sobota, A.; Krstić, I.B.; Kovačević, V.V.; Obradović, B.M.; Kuraica, M.M.

    2017-01-01

    The results of the electric field measurements in the capillary of the helium plasma jet are presented in this article. Distributions of the electric field for the streamers are determined for different gas flow rates. It is found that electric field strength in front of the ionization wave

  5. Hydrothermal fault zone mapping using seismic and electrical measurements

    Science.gov (United States)

    Onacha, Stephen Alumasa

    This dissertation presents a new method of using earthquakes and resistivity data to characterize permeable hydrothermal reservoirs. The method is applied to field examples from Casa Diablo in the Long Valley Caldera, California; Mt. Longonot, Kenya; and Krafla, Iceland. The new method has significant practical value in the exploration and production of geothermal energy. The method uses P- and S-wave velocity, S-wave polarization and splitting magnitude, resistivity and magnetotelluric (MT) strike directions to determine fracture-porosity and orientation. The conceptual model used to characterize the buried, fluid-circulating fault zones in hydrothermal systems is based on geological and fracture models. The method has been tested with field earthquake and resistivity data; core samples; temperature measurements; and, for the case of Krafla, with a drilled well. The use of resistivity and microearthquake measurements is based on theoretical formulation of shared porosity, anisotropy and polarization. The relation of resistivity and a double porosity-operator is solved using a basis function. The porosity-operator is used to generate a correlation function between P-wave velocity and resistivity. This correlation is then used to generate P-wave velocity from 2-D resistivity models. The resistivity models are generated from magnetotelluric (MT) by using the Non-Linear Conjugate Gradient (NLCG) inversion method. The seismic and electrical measurements used come from portable, multi station microearthquake (MEQ) monitoring networks and multi-profile, MT and transient electromagnetic (TEM) observation campaigns. The main conclusions in this dissertation are listed below: (1) Strong evidence exists for correlation between MT strike direction and anisotropy and MEQ S-wave splitting at sites close to fluid-filled fracture zones. (2) A porosity operator generated from a double porosity model has been used to generate valid P-wave velocity models from resistivity data. This

  6. Features of measurement and processing of vibration signals registered on the moving parts of electrical machines

    OpenAIRE

    Gyzhko, Yuri

    2011-01-01

    Measurement and processing of vibration signals registered on the moving parts of the electrical machines using the diagnostic information-measuring system that uses Bluetooth wireless standard for the transmission of the measured data from moving parts of electrical machine is discussed.

  7. Rotating magnetizations in electrical machines: Measurements and modeling

    Directory of Open Access Journals (Sweden)

    Andreas Thul

    2018-05-01

    Full Text Available This paper studies the magnetization process in electrical steel sheets for rotational magnetizations as they occur in the magnetic circuit of electrical machines. A four-pole rotational single sheet tester is used to generate the rotating magnetic flux inside the sample. A field-oriented control scheme is implemented to improve the control performance. The magnetization process of different non-oriented materials is analyzed and compared.

  8. Measurement of Deterioration of Frying Oil Using Electrical Properties

    OpenAIRE

    羽倉, 義雄; 佐々木, 芳浩; 鈴木, 寛一

    2006-01-01

    In this study, the relationship between the electrical properties of frying oil (relative dielectric constant and conductance) and its deterioration indicators (acid value, amounts of polymerized triacylglycerols and chromaticity) were examined, focusing on the changes in electrical properties that accompany deterioration. The samples of frying oil used in this experiment were collected from fried food processing sites (school, hospital and factory feeding centers) and were collected at closi...

  9. Rotating magnetizations in electrical machines: Measurements and modeling

    Science.gov (United States)

    Thul, Andreas; Steentjes, Simon; Schauerte, Benedikt; Klimczyk, Piotr; Denke, Patrick; Hameyer, Kay

    2018-05-01

    This paper studies the magnetization process in electrical steel sheets for rotational magnetizations as they occur in the magnetic circuit of electrical machines. A four-pole rotational single sheet tester is used to generate the rotating magnetic flux inside the sample. A field-oriented control scheme is implemented to improve the control performance. The magnetization process of different non-oriented materials is analyzed and compared.

  10. Electric field measurements in a near atmospheric pressure nanosecond pulse discharge with picosecond electric field induced second harmonic generation

    Science.gov (United States)

    Goldberg, Benjamin M.; Chng, Tat Loon; Dogariu, Arthur; Miles, Richard B.

    2018-02-01

    We present an optical electric field measurement method for use in high pressure plasma discharges. The method is based upon the field induced second harmonic generation technique and can be used for localized electric field measurements with sub-nanosecond resolution in any gaseous species. When an external electric field is present, a dipole is induced in the typically centrosymmetric medium, allowing for second harmonic generation with signal intensities which scale by the square of the electric field. Calibrations have been carried out in 100 Torr room air, and a minimum sensitivity of 450 V/cm is demonstrated. Measurements were performed with nanosecond or faster temporal resolution in a 100 Torr room air environment both with and without a plasma present. It was shown that with no plasma present, the field follows the applied voltage to gap ratio, as measured using the back current shunt method. When the electric field is strong enough to exceed the breakdown threshold, the measured field was shown to exceed the anticipated voltage to gap ratio which is taken as an indication of the ionization wave front as it sweeps through the plasma volume.

  11. Measuring competitiveness of the EPEX spot market for electricity

    International Nuclear Information System (INIS)

    Graf, Christoph; Wozabal, David

    2013-01-01

    The issue of market concentration in electricity markets and resulting possible anti-competitive behavior of producers is a much discussed topic in many countries. We investigate the day-ahead market for electricity at the EPEX, the largest central European market for electricity. To analyze whether generating companies use their market power to influence prices, we use a conjectural variations approach as well as a direct approach to construct marginal costs of electricity production. Given the available data, we cannot reject the hypothesis that there was no systematic abuse of market power by the suppliers of electricity on the EPEX day-ahead spot market for the years 2007–2010. These results are essentially robust when restricting the sample to high load hours, which are generally considered to be the most prone to market manipulation. -- Highlights: •We investigate the efficiency of the German spot market for electricity. •We employ a conjectural variations approach and a fundamental market model. •Peak load hours and base load hours are analyzed separately. •We find that the market was competitive from 2007 to 2010 for both base and peak hours. •Policies to promote market transparency in Germany can be regarded as successful

  12. Defect Investigation of Plastically Deformed Al 5454 Wrought Alloy using PADBS and Electrical Measurements

    International Nuclear Information System (INIS)

    Abdel-Rahman, M.; Kamel, N.A.; Lotfy, Y.A.; Badawi, E.A.; Abdel-Rahman, M.A.

    2009-01-01

    Positron Annihilation Doppler Broadening Spectroscopy (PADPS) is a nondestructive technique used in material science. Electrical measurements are one of the oldest techniques used also in material science. This paper aimed to discuss the availability of using both PADPS and electrical measurements as diagnostic techniques to detect the defects in a set of plastically deformed 5454 wrought aluminum alloy. The results of the positron annihilation measurements and the electrical measurements were analyzed in terms of the two-state trapping model. This model can be used to investigate both defect and dislocation densities of the samples under investigation. Results obtained by both nuclear and electrical techniques have been reportedity

  13. Absorption measurement s in InSe single crystal under an applied electric field

    International Nuclear Information System (INIS)

    Ates, A.; Guerbulak, B.; Guer, E.; Yildirim, T.; Yildirim, M.

    2002-01-01

    InSe single crystal was grown by Bridgman-Stockberger method. Electric field effect on the absorption measurements have been investigated as a function of temperature in InSe single crystal. The absorption edge shifted towards longer wavelengths and decreased of intensity in absorption spectra under an electric field. Using absorption measurements, Urbach energy was calculated under an electric field. Applied electric field caused a increasing in the Urbach energy. At 10 K and 320 K, the first exciton energies were calculated as 1.350 and 1.311 eV for zero voltage and 1.334 and 1.301 eV for electric field respectively

  14. Electric field simulation and measurement of a pulse line ion accelerator

    International Nuclear Information System (INIS)

    Shen Xiaokang; Zhang Zimin; Cao Shuchun; Zhao Hongwei; Zhao Quantang; Liu Ming; Jing Yi; Wang Bo; Shen Xiaoli

    2012-01-01

    An oil dielectric helical pulse line to demonstrate the principles of a Pulse Line Ion Accelerator (PLIA) has been designed and fabricated. The simulation of the axial electric field of an accelerator with CST code has been completed and the simulation results show complete agreement with the theoretical calculations. To fully understand the real value of the electric field excited from the helical line in PLIA, an optical electric integrated electric field measurement system was adopted. The measurement result shows that the real magnitude of axial electric field is smaller than that calculated, probably due to the actual pitch of the resister column which is much less than that of helix. (authors)

  15. Markets and policy measures in the evolution of electric mobility

    CERN Document Server

    Hülsmann, Michael

    2016-01-01

    This edited monograph collects theoretical, empirical and political contributions from different fields, focusing on the commercial launch of electric mobility, and intending to shed more light on the complexity of supply and demand. It is an ongoing discussion, both in the public as well as in academia, whether or not electric mobility is capable of gaining a considerable market share in the near future. The target audience primarily comprises researchers and practitioners in the field, but the book may also be beneficial for graduate students.

  16. Measurement of total dissolved solids using electrical conductivity

    International Nuclear Information System (INIS)

    Ray, Vinod K.; Jat, J.R.; Reddy, G.B.; Balaji Rao, Y.; Phani Babu, C.; Kalyanakrishnan, G.

    2017-01-01

    Total dissolved solids (TDS) is an important parameter for the disposal of effluents generated during processing of different raw materials like Magnesium Di-uranate (MDU), Heat Treated Uranium Peroxide (HTUP), Sodium Di-uranate (SDU) in Uranium Extraction plant and Washed and Dried Frit (WDF) in Zirconium Extraction Plant. The present paper describes the use of electrical conductivity for determination of TDS. As electrical conductivity is matrix dependent property, matrix matched standards were prepared for determination of TDS in ammonium nitrate solution (AN) and mixture of ammonium nitrate and ammonium sulphate (AN/AS) and results were found to be in good agreement when compared with evaporation method. (author)

  17. Electric field measuring and display system. [for cloud formations

    Science.gov (United States)

    Wojtasinski, R. J.; Lovall, D. D. (Inventor)

    1974-01-01

    An apparatus is described for monitoring the electric fields of cloud formations within a particular area. It utilizes capacitor plates that are alternately shielded from the clouds for generating an alternating signal corresponding to the intensity of the electric field of the clouds. A synchronizing signal is produced for controlling sampling of the alternating signal. Such samplings are fed through a filter and converted by an analogue to digital converter into digital form and subsequently fed to a transmitter for transmission to the control station for recording.

  18. Electric field measurements at near-atmospheric pressure by coherent Raman scattering of laser beams

    International Nuclear Information System (INIS)

    Ito, Tsuyohito; Kobayashi, Kazunobu; Hamaguchi, Satoshi; Mueller, Sarah; Czarnetzki, Uwe

    2010-01-01

    Electric field measurements at near-atmospheric pressure environments based on electric-field induced Raman scattering are applied to repetitively pulsed nanosecond discharges. The results have revealed that the peak electric field near the centre of the gap is almost independent of the applied voltage. Minimum sustainable voltage measurements suggests that, at each discharge pulse, charged particles that remain from the previous pulse serve as discharge seeds and play an important role for generation of uniform glow-like discharges.

  19. Measuring the financial impact of demand response for electricity retailers

    International Nuclear Information System (INIS)

    Feuerriegel, Stefan; Neumann, Dirk

    2014-01-01

    Due to the integration of intermittent resources of power generation such as wind and solar, the amount of supplied electricity will exhibit unprecedented fluctuations. Electricity retailers can partially meet the challenge of matching demand and volatile supply by shifting power demand according to the fluctuating supply side. The necessary technology infrastructure such as Advanced Metering Infrastructures for this so-called Demand Response (DR) has advanced. However, little is known about the economic dimension and further effort is strongly needed to realistically quantify the financial impact. To succeed in this goal, we derive an optimization problem that minimizes procurement costs of an electricity retailer in order to control Demand Response usage. The evaluation with historic data shows that cost volatility can be reduced by 7.74%; peak costs drop by 14.35%; and expenditures of retailers can be significantly decreased by 3.52%. - Highlights: • Ex post simulation to quantify financial impacts of demand response. • Effects of Demand Response are simulated based on real-world data. • Procurement costs of an average electricity retailer decrease by 3.4%. • Retailers can cut hourly peak expenditures by 12.1%. • Cost volatility is reduced by 12.2%

  20. Electrical conductivity measurements on gel grown KDP crystals ...

    Indian Academy of Sciences (India)

    Impurity added KDP crystals; gel method; electrical conductivity; activation energy. 1. Introduction. Potassium dihydrogen ... phate [(NH4)2SO4] along with double distilled water and ethyl alcohol were used. KDP was added with .... in the vicinity of electrodes or chemical changes in layers close to electrodes (Bunget and ...

  1. In situ Electrical measurements in Transmission Electron Microscopy

    NARCIS (Netherlands)

    Rudneva, M.

    2013-01-01

    In the present thesis the combination of real-time electricalmeasurements on nano-sampleswith simultaneous examination by transmission electron microscope (TEM) is discussed. Application of an electrical current may lead to changes in the samples thus the possibility to correlate such changes with

  2. Validating the Electric Maze Task as a Measure of Planning

    Science.gov (United States)

    Sheppard, Kelly W.; Cheatham, Carol L.

    2017-01-01

    The Electric Maze Task (EMT) is a novel planning task designed to allow flexible testing of planning abilities across a broad age range and to incorporate manipulations to test underlying planning abilities, such as working-memory and inhibitory control skills. The EMT was tested in a group of 63 typically developing 7- to 12-year-olds.…

  3. Charge transfer to a dielectric target by guided ionization waves using electric field measurements

    NARCIS (Netherlands)

    Slikboer, E.T.; Garcia-Caurel, E.; Guaitella, O.; Sobota, A.

    2017-01-01

    A kHz-operated atmospheric pressure plasma jet is investigated by measuring charge transferred to a dielectric electro-optic surface (BSO crystal) allowing for the measurement of electric field by exploiting the Pockels effect. The electric field values, distribution of the surface discharge and

  4. Measuring the progress and impacts of decarbonising British electricity

    International Nuclear Information System (INIS)

    Staffell, Iain

    2017-01-01

    Britain's ambitious carbon targets require that electricity be immediately and aggressively decarbonised, so it is reassuring to report that electricity sector emissions have fallen 46% in the three years to June 2016, their lowest since 1960. This paper analyses the factors behind this fall and the impacts they are having. The main drivers are: demand falling 1.3% per year due to efficiency gains and mild winters; gas doubling its share to 60% of fossil generation due to the carbon price floor; and the dramatic uptake of wind, solar and biomass which now supply up to 45% of demand. Accounting conventions also play their part: imported electricity and biomass would add 5% and 2% to emissions if they were included. The pace of decarbonisation is impressive, but raises both engineering and economic challenges. Falling peak demand has delayed fears of capacity shortage, but minimum net demand is instead becoming a problem. The headroom between inflexible nuclear and intermittent renewables is rapidly shrinking, with controllable output reaching a minimum of just 5.9 GW as solar output peaked at 7.1 GW. 2015 also saw Britain's first negative power prices, the highest winter peak prices for six years, and the highest balancing costs. - Highlights: • CO_2 emissions from British electricity have fallen 46% in the three years to June 2016. • Emissions from imports and biomass are not attributed to electricity, but add 5%. • Coal capacity fell 50% and output 75% due to prices, competition and legislation. • Wind, solar and biomass provided 20% of demand in 2015, with a peak of 45%. • Prices have become more volatile and net demand is falling towards must-run nuclear.

  5. Noninvasive electrical conductivity measurement by MRI: a test of its validity and the electrical conductivity characteristics of glioma.

    Science.gov (United States)

    Tha, Khin Khin; Katscher, Ulrich; Yamaguchi, Shigeru; Stehning, Christian; Terasaka, Shunsuke; Fujima, Noriyuki; Kudo, Kohsuke; Kazumata, Ken; Yamamoto, Toru; Van Cauteren, Marc; Shirato, Hiroki

    2018-01-01

    This study noninvasively examined the electrical conductivity (σ) characteristics of diffuse gliomas using MRI and tested its validity. MRI including a 3D steady-state free precession (3D SSFP) sequence was performed on 30 glioma patients. The σ maps were reconstructed from the phase images of the 3D SSFP sequence. The σ histogram metrics were extracted and compared among the contrast-enhanced (CET) and noncontrast-enhanced tumour components (NCET) and normal brain parenchyma (NP). Difference in tumour σ histogram metrics among tumour grades and correlation of σ metrics with tumour grades were tested. Validity of σ measurement using this technique was tested by correlating the mean tumour σ values measured using MRI with those measured ex vivo using a dielectric probe. Several σ histogram metrics of CET and NCET of diffuse gliomas were significantly higher than NP (Bonferroni-corrected p ≤ .045). The maximum σ of NCET showed a moderate positive correlation with tumour grade (r = .571, Bonferroni-corrected p = .018). The mean tumour σ measured using MRI showed a moderate positive correlation with the σ measured ex vivo (r = .518, p = .040). Tissue σ can be evaluated using MRI, incorporation of which may better characterise diffuse gliomas. • This study tested the validity of noninvasive electrical conductivity measurements by MRI. • This study also evaluated the electrical conductivity characteristics of diffuse glioma. • Gliomas have higher electrical conductivity values than the normal brain parenchyma. • Noninvasive electrical conductivity measurement can be helpful for better characterisation of glioma.

  6. Electrical conductivity of highly ionized dense hydrogen plasma. 1. Electrical measurements and diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Radtke, R; Guenther, K [Akademie der Wissenschaften der DDR, Berlin. Zentralinstitut fuer Elektronenphysik

    1976-05-11

    A diagnostic technique for the determination of pressure, temperature and its radial distribution, the strength of the electric field and the current of a wall-stabilized pulse hydrogen arc at a pressure of 10 atm and a maximum power of 120 kW/cm arc length is developed.

  7. Electric field measurements in a nanosecond pulse discharge in atmospheric air

    International Nuclear Information System (INIS)

    Simeni Simeni, Marien; Frederickson, Kraig; Lempert, Walter R; Adamovich, Igor V; Goldberg, Benjamin M; Zhang, Cheng

    2017-01-01

    The paper presents the results of temporally and spatially resolved electric field measurements in a nanosecond pulse discharge in atmospheric air, sustained between a razor edge high-voltage electrode and a plane grounded electrode covered by a thin dielectric plate. The electric field is measured by picosecond four-wave mixing in a collinear phase-matching geometry, with time resolution of approximately 2 ns, using an absolute calibration provided by measurements of a known electrostatic electric field. The results demonstrate electric field offset on the discharge center plane before the discharge pulse due to surface charge accumulation on the dielectric from the weaker, opposite polarity pre-pulse. During the discharge pulse, the electric field follows the applied voltage until ‘forward’ breakdown occurs, after which the field in the plasma is significantly reduced due to charge separation. When the applied voltage is reduced, the field in the plasma reverses direction and increases again, until the weak ‘reverse’ breakdown occurs, producing a secondary transient reduction in the electric field. After the pulse, the field is gradually reduced on a microsecond time scale, likely due to residual surface charge neutralization by transport of opposite polarity charges from the plasma. Spatially resolved electric field measurements show that the discharge develops as a surface ionization wave. Significant surface charge accumulation on the dielectric surface is detected near the end of the discharge pulse. Spatially resolved measurements of electric field vector components demonstrate that the vertical electric field in the surface ionization wave peaks ahead of the horizontal electric field. Behind the wave, the vertical field remains low, near the detection limit, while the horizontal field is gradually reduced to near the detection limit at the discharge center plane. These results are consistent with time-resolved measurements of electric field

  8. Electric heating systems - Measures and options for the reduction of electricity consumption; Elektroheizungen Massnahmen und Vorgehensoptionen zur Reduktion des Stromverbrauchs

    Energy Technology Data Exchange (ETDEWEB)

    Nipkow, J.; Togni, G.

    2009-10-15

    This final report for the Swiss Federal Office of Energy (SFOE) takes a look at how electricity consumption for electrical heating systems can be reduced. The authors state that electric space heating consumes roughly 6% to 12% of Swiss electricity consumption, depending on the source of data. Important reduction potentials obtainable through the implementation of efficiency measures and substitution are well known. The results of two surveys on hardware installations and heating users' and utility companies' preferences are presented and discussed. The user survey yielded more than 900 evaluable answers. The main focus was on conditions considered necessary for changing a heating system. The utilities' survey was carried out by means of letters posted to 62 utilities, half of whom sent back evaluable answers. The main focus was on the number of dwellings supplied with electric space heating, current and past tariffs and utility activities to motivate customers to change their heating systems. The results showed that high investments necessary for a new heating system and additional thermal insulation of the building are the main obstacles for making changes. On the basis of the project's findings, a catalogue of measures was developed, whereby financial aspects and general conditions were taken into account.

  9. Measurement and analysis of the electric field radiation in pulsed power system of linear induction accelerator

    International Nuclear Information System (INIS)

    Cheng Qifeng; Ni Jianping; Meng Cui; Cheng Cheng; Liu Yinong; Li Jin

    2009-01-01

    The close of high voltage switch in pulsed power system of linear induction accelerator often radiates strong transient electric field, which may influence ambient sensitive electric equipment, signals and performance of other instruments, etc. By performing gridded measurement around the Marx generator, the general distribution law and basic characters of electric field radiation are summarized. The current signal of the discharge circuit is also measured, which demonstrates that the current and the radiated electric field both have a resonance frequency about 150 kHz, and contain much higher frequency components. (authors)

  10. Incoherent-scatter radar measurements of electric field and plasma in the auroral ionosphere

    International Nuclear Information System (INIS)

    Vondrak, R.

    1983-01-01

    This chapter summarizes Chatanika radar measurements of electric fields and currents, and their relation to E-region ionization and conductivity. Electric-field coupling between the ionosphere and magnetosphere and the relationship between field-aligned currents and meridional ionospheric currents are examined. Topics considered include the diurnal pattern of the ionization and electric field; electrical coupling between the ionosphere and magnetosphere; and the relationship between meridional currents and field-aligned currents. It is concluded that the incoherent-scatter radar technique has been developed into a powerful method for remotely measuring the electrical and thermal properties of the auroral ionospheric plasma, and that the usefulness of the radar measurements is greatly enhanced when combined with simultaneous satellite measurements

  11. Control of systematic uncertainties in the storage ring search for an electric dipole moment by measuring the electric quadrupole moment

    Directory of Open Access Journals (Sweden)

    Andrzej Magiera

    2017-09-01

    Full Text Available Measurements of electric dipole moment (EDM for light hadrons with use of a storage ring have been proposed. The expected effect is very small, therefore various subtle effects need to be considered. In particular, interaction of particle’s magnetic dipole moment and electric quadrupole moment with electromagnetic field gradients can produce an effect of a similar order of magnitude as that expected for EDM. This paper describes a very promising method employing an rf Wien filter, allowing to disentangle that contribution from the genuine EDM effect. It is shown that both these effects could be separated by the proper setting of the rf Wien filter frequency and phase. In the EDM measurement the magnitude of systematic uncertainties plays a key role and they should be under strict control. It is shown that particles’ interaction with field gradients offers also the possibility to estimate global systematic uncertainties with the precision necessary for an EDM measurement with the planned accuracy.

  12. Control of systematic uncertainties in the storage ring search for an electric dipole moment by measuring the electric quadrupole moment

    Science.gov (United States)

    Magiera, Andrzej

    2017-09-01

    Measurements of electric dipole moment (EDM) for light hadrons with use of a storage ring have been proposed. The expected effect is very small, therefore various subtle effects need to be considered. In particular, interaction of particle's magnetic dipole moment and electric quadrupole moment with electromagnetic field gradients can produce an effect of a similar order of magnitude as that expected for EDM. This paper describes a very promising method employing an rf Wien filter, allowing to disentangle that contribution from the genuine EDM effect. It is shown that both these effects could be separated by the proper setting of the rf Wien filter frequency and phase. In the EDM measurement the magnitude of systematic uncertainties plays a key role and they should be under strict control. It is shown that particles' interaction with field gradients offers also the possibility to estimate global systematic uncertainties with the precision necessary for an EDM measurement with the planned accuracy.

  13. Preionization electron density measurement by collecting electric charge

    International Nuclear Information System (INIS)

    Giordano, G.; Letardi, T.

    1988-01-01

    A method using electron collection for preionization-electron number density measurements is presented. A cathode-potential drop model is used to describe the measurement principle. There is good agreement between the model and the experimental result

  14. A miniature sensor for electrical field measurements in dusty planetary atmospheres

    International Nuclear Information System (INIS)

    Renno, N O; Rogacki, S; Kok, J F; Kirkham, H

    2008-01-01

    Dusty phenomena such as regular wind-blown dust, dust storms, and dust devils are the most important, currently active, geological processes on Mars. Electric fields larger than 100 kV/m have been measured in terrestrial dusty phenomena. Theoretical calculations predict that, close to the surface, the bulk electric fields in martian dusty phenomena reach the breakdown value of the isolating properties of thin martian air of about a few 10 kV/m. The fact that martian dusty phenomena are electrically active has important implications for dust lifting and atmospheric chemistry. Electric field sensors are usually grounded and distort the electric fields in their vicinity. Grounded sensors also produce large errors when subject to ion currents or impacts from clouds of charged particles. Moreover, they are incapable of providing information about the direction of the electric field, an important quantity. Finally, typical sensors with more than 10 cm of diameter are not capable of measuring electric fields at distances as small as a few cm from the surface. Measurements this close to the surface are necessary for studies of the effects of electric fields on dust lifting. To overcome these shortcomings, we developed the miniature electric-field sensor described in this article.

  15. Statistical analysis of lightning electric field measured under Malaysian condition

    Science.gov (United States)

    Salimi, Behnam; Mehranzamir, Kamyar; Abdul-Malek, Zulkurnain

    2014-02-01

    Lightning is an electrical discharge during thunderstorms that can be either within clouds (Inter-Cloud), or between clouds and ground (Cloud-Ground). The Lightning characteristics and their statistical information are the foundation for the design of lightning protection system as well as for the calculation of lightning radiated fields. Nowadays, there are various techniques to detect lightning signals and to determine various parameters produced by a lightning flash. Each technique provides its own claimed performances. In this paper, the characteristics of captured broadband electric fields generated by cloud-to-ground lightning discharges in South of Malaysia are analyzed. A total of 130 cloud-to-ground lightning flashes from 3 separate thunderstorm events (each event lasts for about 4-5 hours) were examined. Statistical analyses of the following signal parameters were presented: preliminary breakdown pulse train time duration, time interval between preliminary breakdowns and return stroke, multiplicity of stroke, and percentages of single stroke only. The BIL model is also introduced to characterize the lightning signature patterns. Observations on the statistical analyses show that about 79% of lightning signals fit well with the BIL model. The maximum and minimum of preliminary breakdown time duration of the observed lightning signals are 84 ms and 560 us, respectively. The findings of the statistical results show that 7.6% of the flashes were single stroke flashes, and the maximum number of strokes recorded was 14 multiple strokes per flash. A preliminary breakdown signature in more than 95% of the flashes can be identified.

  16. Vector electric field measurement via position-modulated Kelvin probe force microscopy

    Science.gov (United States)

    Dwyer, Ryan P.; Smieska, Louisa M.; Tirmzi, Ali Moeed; Marohn, John A.

    2017-10-01

    High-quality spatially resolved measurements of electric fields are critical to understanding charge injection, charge transport, and charge trapping in semiconducting materials. Here, we report a variation of frequency-modulated Kelvin probe force microscopy that enables spatially resolved measurements of the electric field. We measure electric field components along multiple directions simultaneously by employing position modulation and lock-in detection in addition to numeric differentiation of the surface potential. We demonstrate the technique by recording linescans of the in-plane electric field vector in the vicinity of a patch of trapped charge in a 2,7-diphenyl[1]benzothieno[3,2-b][1]benzothiophene (DPh-BTBT) organic field-effect transistor. This technique is simple to implement and should be especially useful for studying electric fields in spatially inhomogeneous samples like organic transistors and photovoltaic blends.

  17. Electric fields in accelerating conductors: measurement of the EMF in rotationally accelerating coils

    Energy Technology Data Exchange (ETDEWEB)

    Moorhead, G.F.; Opat, G.I.

    1996-06-06

    The acceleration of an electric conductor is predicted to produce an electric filed proportional to m/q where `m`is the free mass and `q` the charge of the carriers of the electric current. In certain configurations this leads to a measurable electromagnetic field (EMF). In this paper is reported a measurement of the EMF induced by rotationally accelerating coils of aluminium and copper wire. The measured EMFs are found to agree with the theoretical predictions to within the error estimates. 23 refs., 1 tab., 4 figs.

  18. Electric fields in accelerating conductors: measurement of the EMF in rotationally accelerating coils

    International Nuclear Information System (INIS)

    Moorhead, G.F.; Opat, G.I.

    1996-01-01

    The acceleration of an electric conductor is predicted to produce an electric filed proportional to m/q where 'm'is the free mass and 'q' the charge of the carriers of the electric current. In certain configurations this leads to a measurable electromagnetic field (EMF). In this paper is reported a measurement of the EMF induced by rotationally accelerating coils of aluminium and copper wire. The measured EMFs are found to agree with the theoretical predictions to within the error estimates. 23 refs., 1 tab., 4 figs

  19. Electric field measurements on plasma bullets in N2 using four-wave mixing

    NARCIS (Netherlands)

    van der Schans, M.; Böhm, P.; Nijdam, S.; IJzerman, W.L.; Czarnetzki, U.

    2015-01-01

    Atmospheric pressure plasma jets driven by pulsed DC or kHz AC voltages typically consist of discrete guided ionisation waves called plasma bullets. In this work, the electric field of plasma bullets generated in a pulsed DC jet with N2 as feed gas is investigated. Electric field measurements in N2

  20. In-situ measurement of the electrical conductivity of aluminum oxide in HFIR

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J.; White, D.P.; Snead, L.L. [Oak Ridge National Lab., TN (United States)] [and others

    1996-10-01

    A collaborative DOE/Monbusho irradiation experiment has been completed which measured the in-situ electrical resistivity of 12 different grades of aluminum oxide during HFIR neutron irradiation at 450{degrees}C. No evidence for bulk RIED was observed following irradiation to a maximum dose of 3 dpa with an applied dc electric field of 200 V/mm.

  1. Can measurements of electric dipole moments determine the seesaw parameters?

    International Nuclear Information System (INIS)

    Demir, Durmus A.; Farzan, Yasaman

    2005-01-01

    In the context of the supersymmetrized seesaw mechanism embedded in the Minimal Supersymmetric Standard Model (MSSM), complex neutrino Yukawa couplings can induce Electric Dipole Moments (EDMs) for the charged leptons, providing an additional route to seesaw parameters. However, the complex neutrino Yukawa matrix is not the only possible source of CP violation. Even in the framework of Constrained MSSM (CMSSM), there are additional sources, usually attributed to the phases of the trilinear soft supersymmetry breaking couplings and the mu-term, which contribute not only to the electron EDM but also to the EDMs of neutron and heavy nuclei. In this work, by combining bounds on various EDMs, we analyze how the sources of CP violation can be discriminated by the present and planned EDM experiments

  2. Rocket measurements of electric fields, electron density and temperature during the three phases of auroral substorms

    International Nuclear Information System (INIS)

    Marklund, G.; Block, L.; Lindqvist, P.-A.

    1979-12-01

    On Jan. 27, 1979, three rocket payloads were launched from Kiruna, Sweden, into different phases of two successive auroral substorms. Among other experiments, the payloads carried the RIT double probe electric field experiments, providing electric field, electron density and temperature data, which are presented here. These are discussed in association with observations of particles, ionospheric drifts (STARE) and electric fields in the equatorial plane (GEOS). The motions of the auroral forms, as obtained from auroral pictures are compared with the E x B/B 2 drifts and the currents calculated from the rocket electric field and density measurements with the equivalent current system deduced from ground based magnetometer data (SMA). (Auth.)

  3. CRIT II electric, magnetic, and density measurements within an ionizing neutral stream

    Science.gov (United States)

    Swenson, C. M.; Kelley, M. C.; Primdahl, F.; Baker, K. D.

    1990-01-01

    Measurements from rocket-borne sensors inside a high-velocity neutral barium beam show a-factor-of-six increase in plasma density in a moving ionizing front. This region was colocated with intense fluctuating electric fields at frequencies well under the lower hybrid frequency for a barium plasma. Large quasi-dc electric and magnetic field fluctuations were also detected with a large component of the current and the electric field parallel to B(0). An Alfven wave with a finite electric field component parallel to the geomagnetic field was observed to propagate along B(0), where it was detected by an instrumented subpayload.

  4. On the measurement of stationary electric fields in air

    Science.gov (United States)

    Kirkham, H.

    2002-01-01

    Applications and measurement methods for field measurements are reviewed. Recent developments using optical technology are examined. The various methods are compared. It is concluded that the best general purpose instrument is the isolated cylindrical field mill, but MEMS technology could furnish better instruments in the future.

  5. [A novel biologic electricity signal measurement based on neuron chip].

    Science.gov (United States)

    Lei, Yinsheng; Wang, Mingshi; Sun, Tongjing; Zhu, Qiang; Qin, Ran

    2006-06-01

    Neuron chip is a multiprocessor with three pipeline CPU; its communication protocol and control processor are integrated in effect to carry out the function of communication, control, attemper, I/O, etc. A novel biologic electronic signal measurement network system is composed of intelligent measurement nodes with neuron chip at the core. In this study, the electronic signals such as ECG, EEG, EMG and BOS can be synthetically measured by those intelligent nodes, and some valuable diagnostic messages are found. Wavelet transform is employed in this system to analyze various biologic electronic signals due to its strong time-frequency ability of decomposing signal local character. Better effect is gained. This paper introduces the hardware structure of network and intelligent measurement node, the measurement theory and the signal figure of data acquisition and processing.

  6. Measuring public understanding on Tenaga Nasional Berhad (TNB) electricity bills using ordered probit model

    Science.gov (United States)

    Zainudin, WNRA; Ramli, NA

    2017-09-01

    In 2016, Tenaga Nasional Berhad (TNB) had introduced an upgrade in its Billing and Customer Relationship Management (BCRM) as part of its long-term initiative to provide its customers with greater access to billing information. This includes information on real and suggested power consumption by the customers and further details in their billing charges. This information is useful to help TNB customers to gain better understanding on their electricity usage patterns and items involved in their billing charges. Up to date, there are not many studies done to measure public understanding on current electricity bills and whether this understanding could contribute towards positive impacts. The purpose of this paper is to measure public understanding on current TNB electricity bills and whether their satisfaction towards energy-related services, electricity utility services, and their awareness on the amount of electricity consumed by various appliances and equipment in their home could improve this understanding on the electricity bills. Both qualitative and quantitative research methods are used to achieve these objectives. A total of 160 respondents from local universities in Malaysia participated in a survey used to collect relevant information. Using Ordered Probit model, this paper finds respondents that are highly satisfied with the electricity utility services tend to understand their electricity bills better. The electric utility services include management of electricity bills and the information obtained from utility or non-utility supplier to help consumers manage their energy usage or bills. Based on the results, this paper concludes that the probability to understand the components in the monthly electricity bill increases as respondents are more satisfied with their electric utility services and are more capable to value the energy-related services.

  7. A statistical study of high-altitude electric fields measured on the Viking satellite

    International Nuclear Information System (INIS)

    Lindqvist, P.A.; Marklund, G.T.

    1990-01-01

    Characteristics of high-altitude data from the Viking electric field instrument are presented in a statistical study based on 109 Viking orbits. The study is focused in particular on the signatures of and relationships between various parameters measured by the electric field instrument, such as the parallel and transverse (to B) components of the electric field instrument, such as electric field variability. A major goal of the Viking mission was to investigate the occurrence and properties of parallel electric fields and their role in the auroral acceleration process. The results in this paper on the altitude distribution of the electric field variability confirm earlier findings on the distribution of small-scale electric fields and indicate the presence of parallel fields up to about 11,000 km altitude. The directly measured parallel electric field is also investigated in some detail. It is in general directed upward with an average value of 1 mV/m, but depends on, for example, altitude and plasma density. Possible sources of error in the measurement of the parallel field are also considered and accounted for

  8. Internet Enabled Remote Driving of a Combat Hybrid Electric Power System for Duty Cycle Measurement

    National Research Council Canada - National Science Library

    Goodell, Jarrett; Compere, Marc; Smith, Wilford; Holtz, Dale; Brudnak, Mark; Pozolo, Mike; Paul, Victor; Mohammad, Syed; Mortsfield, Todd; Shvartsman, Andrey

    2007-01-01

    This paper describes a human-in-the-loop motion-based simulator interfaced to hybrid-electric power system hardware, both of which were used to measure the duty cycle of a combat vehicle in a virtual...

  9. Development and application of measurement techniques for evaluating localised magnetic properties in electrical steel

    Science.gov (United States)

    Lewis, N. J.; Anderson, P. I.; Gao, Y.; Robinson, F.

    2018-04-01

    This paper reports the development of a measurement probe which couples local flux density measurements obtained using the needle probe method with the local magnetising field attained via a Hall effect sensor. This determines the variation in magnetic properties including power loss and permeability at increasing distances from the punched edge of 2.4% and 3.2% Si non-oriented electrical steel sample. Improvements in the characterisation of the magnetic properties of electrical steels would aid in optimising the efficiency in the design of electric machines.

  10. Measurement of electric field and gradient in the plasma sheath using clusters of floating microspheres

    International Nuclear Information System (INIS)

    Sheridan, T. E.; Katschke, M. R.; Wells, K. D.

    2007-01-01

    A method for measuring the time-averaged vertical electric field and its gradient in the plasma sheath using clusters with n=2 or 3 floating microspheres of known mass is described. The particle charge q is found by determining the ratio of the breathing frequency to the center-of-mass frequency for horizontal (in-plane) oscillations. The electric field at the position of the particles is then calculated using the measured charge-to-mass ratio, and the electric-field gradient is determined from the vertical resonance frequency. The Debye length is also found. Experimental results are in agreement with a simple sheath model

  11. Electric field measurement in the ionosphere using the time-of-flight technique

    International Nuclear Information System (INIS)

    Nakamura, Masato; Hayakawa, Hajime; Tsuruda, Koichiro

    1989-01-01

    The first successful electric field measurement in the ionosphere using the time-of-flight technique with a lithium ion beam was carried out on a S-520 sounding rocket launched from Kagoshima Space Center, Japan on January 15, 1987. The purpose of this experiment was to prove the validity of the time-of-flight technique when it is applied to the measurement of the dc electric field in the ionosphere. A time-coded ion beam was ejected from the rocket in the direction perpendicular to the Earth's magnetic field. The beam returned to the rocket twice per rocket spin when the initial beam direction was nearly perpendicular to the electric field. The electric field and the magnetic field were derived from the travel time of these return lithium ions. The accuracy of the electric field determination was ± 0.3 mV/m. The direction of the electric field was obtained from the direction of the returning ion beam after about one ion gyration. The main constituent of the measured electric field was a V x B field due to the rocket motion across the geomagnetic field. The ambient field was less than 1 mV/m. The magnetic field was measured with an accuracy of ± 2.7 nT in this experiment

  12. A Thermographic Measurement Approach to Assess Supercapacitor Electrical Performances

    Directory of Open Access Journals (Sweden)

    Stanislaw Galla

    2017-12-01

    Full Text Available This paper describes a proposal for the qualitative assessment of condition of supercapacitors based on the conducted thermographic measurements. The presented measurement stand was accompanied by the concept of methodology of performing tests. Necessary conditions, which were needed to minimize the influence of disturbing factors on the performance of thermal imaging measurements, were also indicated. Mentioned factors resulted from both: the hardware limitations and from the necessity to prepare samples. The algorithm that was used to determine the basic parameters for assessment has been presented. The article suggests to use additional factors that may facilitate the analysis of obtained results. Measuring the usefulness of the proposed methodology was tested on commercial samples of supercapacitors. All of the tests were taken in conjunction with the classical methods based on capacitance (C and equivalent series resistance (ESR measurements, which were also presented in the paper. Selected results presenting the observed changes occurring in both: basic parameters of supercapacitors and accompanying fluctuations of thermal fields, along with analysis, were shown. The observed limitations of the proposed assessment method and the suggestions for its development were also described.

  13. Electrical probe measurements in low and high pressure discharges

    International Nuclear Information System (INIS)

    Andersson, D.

    1976-11-01

    The construction of an apparatus for automatic determination of electron distributions is described, whereafter measurements of electron energy distributions before and after a stationary plasma sheath in a low pressure mercury discharge are presented. The sheath appears at a constriction of the discharge tube. The measurements have been made with a spheric probe, using the second-derivative method, and the results show that the energy distribution on the anode side of the sheath is a sum of a thermal population and an accelerated distribution. Near the sheath the accelerated electrons suffice to carry the discharge current, but far from it the current must be carried by an anisotropy in the thermal part of the distribution function. A comparison is made with calculated distributions. The cross-sections for electron-neutral and Coulomb collisions are not sufficient to account for the damping of the accelerated population, suggesting the presence of a plasma instability. In order to study the distribution function of the axial velocity component, preliminary measurements of the first derivative of the current to a plane probe have been made. Such measurements yield information about the anisotropy and the current transport, and may perhaps shed some light on the phenomenon of current limitation. Some measurements on a TIG welding arc are also described. (Auth.)

  14. Electric field measurement in microwave discharge ion thruster with electro-optic probe.

    Science.gov (United States)

    Ise, Toshiyuki; Tsukizaki, Ryudo; Togo, Hiroyoshi; Koizumi, Hiroyuki; Kuninaka, Hitoshi

    2012-12-01

    In order to understand the internal phenomena in a microwave discharge ion thruster, it is important to measure the distribution of the microwave electric field inside the discharge chamber, which is directly related to the plasma production. In this study, we proposed a novel method of measuring a microwave electric field with an electro-optic (EO) probe based on the Pockels effect. The probe, including a cooling system, contains no metal and can be accessed in the discharge chamber with less disruption to the microwave distribution. This method enables measurement of the electric field profile under ion beam acceleration. We first verified the measurement with the EO probe by a comparison with a finite-difference time domain numerical simulation of the microwave electric field in atmosphere. Second, we showed that the deviations of the reflected microwave power and the beam current were less than 8% due to inserting the EO probe into the ion thruster under ion beam acceleration. Finally, we successfully demonstrated the measurement of the electric-field profile in the ion thruster under ion beam acceleration. These measurements show that the electric field distribution in the thruster dramatically changes in the ion thruster under ion beam acceleration as the propellant mass flow rate increases. These results indicate that this new method using an EO probe can provide a useful guide for improving the propulsion of microwave discharge ion thrusters.

  15. Electrical measuring device for a high temperature reactor

    International Nuclear Information System (INIS)

    Elter, C.; Handel, H.; Schoening, J.; Schmitt, H.

    1982-01-01

    The device for measuring the low or high neutron flux during start-up or at load is accommodated in an armoured guide tube projecting into the floor. A gas-tight capsule is formed as the measuring column with outer dome with a lid solidly connected by a flange to the armoured tube situated on the side wall of the concrete reactor vessel, together with the armoured guide tube. Two shielding shutters prevent the passage of radiation through the armoured tube. (DG) [de

  16. A corotation electric field model of the Earth derived from Swarm satellite magnetic field measurements

    Science.gov (United States)

    Maus, Stefan

    2017-08-01

    Rotation of the Earth in its own geomagnetic field sets up a primary corotation electric field, compensated by a secondary electric field of induced electrical charges. For the geomagnetic field measured by the Swarm constellation of satellites, a derivation of the global corotation electric field inside and outside of the corotation region is provided here, in both inertial and corotating reference frames. The Earth is assumed an electrical conductor, the lower atmosphere an insulator, followed by the corotating ionospheric E region again as a conductor. Outside of the Earth's core, the induced charge is immediately accessible from the spherical harmonic Gauss coefficients of the geomagnetic field. The charge density is positive at high northern and southern latitudes, negative at midlatitudes, and increases strongly toward the Earth's center. Small vertical electric fields of about 0.3 mV/m in the insulating atmospheric gap are caused by the corotation charges located in the ionosphere above and the Earth below. The corotation charges also flow outward into the region of closed magnetic field lines, forcing the plasmasphere to corotate. The electric field of the corotation charges further extends outside of the corotating regions, contributing radial outward electric fields of about 10 mV/m in the northern and southern polar caps. Depending on how the magnetosphere responds to these fields, the Earth may carry a net electric charge.

  17. Non-ionizing radiation exposure: electric field strength measurement ...

    African Journals Online (AJOL)

    In this research, the measured values are compared with the international standard recommended by ICNIRP then were also compared with previous study from several locations around Malaysia. The result shows an increase in the values of electromagnetic field radiation. The result of this study could be used for health ...

  18. In-Vivo Techniques for Measuring Electrical Properties of Tissues.

    Science.gov (United States)

    1980-09-01

    probe Electromagnetic energy Dielectric properties Monopole antenna In-situ tissues , Antemortem/Pos tmortem studies Renal blood flow 10 ABSTRACT... mice or rats, which were positioned beneath a fixed measurement probe. Several alternative methods involving the use of semi-rigid or flexible coaxial

  19. An optical, electrical and ultrasonic layered single sensor for ingredient measurement in liquid

    International Nuclear Information System (INIS)

    Kimoto, A; Kitajima, T

    2010-01-01

    In this paper, an optical, electrical and ultrasonic layered single sensor is proposed as a new, non-invasive sensing method for the measurement of ingredients in liquid, particularly in the food industry. In the proposed sensor, the photo sensors and the PVDF films with the transparent conductive electrode are layered and the optical properties of the liquid are measured by a light emitting diode (LED) and a phototransistor (PT). In addition, the electrical properties are measured by indium tin oxide (ITO) film electrodes as the transparent conductive electrodes of PVDF films arranged on the surfaces of the LED and PT. Moreover, the ultrasonic properties are measured by PVDF films. Thus, the optical, electrical and ultrasonic properties in the same space of the liquid can be simultaneously measured at a single sensor. To test the sensor experimentally, three parameters of the liquid—such as concentrations of yellow color, sodium chloride (NaCl) and ethanol in distilled water—were estimated using the measurement values of the optical, electrical and ultrasonic properties obtained with the proposed sensor. The results suggested that it is possible to estimate the three ingredient concentrations in the same space of the liquid from the optical, electrical and ultrasonic properties measured by the proposed single sensor, although there are still some problems such as measurement accuracy that must be solved

  20. In situ measurements of contributions to the global electrical circuit by a thunderstorm in southeastern Brazil

    Science.gov (United States)

    Thomas, J.N.; Holzworth, R.H.; McCarthy, M.P.

    2009-01-01

    The global electrical circuit, which maintains a potential of about 280??kV between the earth and the ionosphere, is thought to be driven mainly by thunderstorms and lightning. However, very few in situ measurements of electrical current above thunderstorms have been successfully obtained. In this paper, we present dc to very low frequency electric fields and atmospheric conductivity measured in the stratosphere (30-35??km altitude) above an active thunderstorm in southeastern Brazil. From these measurements, we estimate the mean quasi-static conduction current during the storm period to be 2.5 ?? 1.25??A. Additionally, we examine the transient conduction currents following a large positive cloud-to-ground (+ CG) lightning flash and typical - CG flashes. We find that the majority of the total current is attributed to the quasi-static thundercloud charge, rather than lightning, which supports the classical Wilson model for the global electrical circuit.

  1. Electric field measurements in a NLC/PMSE region during the MASS/ECOMA campaign

    Directory of Open Access Journals (Sweden)

    M. Shimogawa

    2009-04-01

    Full Text Available We present results of electric field measurements made during the MASS rocket campaign in Andøya, Norway into noctilucent clouds (NLC and polar mesospheric summer echoes (PMSE on 3 August 2007. The instrument used high input-impedance preamps to measure vertical and horizontal electric fields. No large-amplitude geophysical electric fields were detected in the cloud layers, but significant levels of electric field fluctuations were measured. Within the cloud layer, the probe potentials relative to the rocket skin were driven negative by incident heavy charged aerosols. The amplitude of spikes caused by probe shadowing were also larger in the NLC/PMSE region. We describe a method for calculating positive ion conductivities using these shadowing spike amplitudes and the density of heavy charged aerosols.

  2. Measurement of absolute displacement-amplitude of ultrasonic wave using piezo-electric detection method

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seong Hyun; Kim, Jong Beom; Jhang, Kyung Young [Hanyang University, Seoul (Korea, Republic of)

    2017-02-15

    A nonlinear ultrasonic parameter is defined by the ratio of displacement amplitude of the fundamental frequency component to that of the second-order harmonic frequency component. In this study, the ultrasonic displacement amplitude of an SUS316 specimen was measured via a piezo-electric-based method to identify the validity of piezo-electric detection method. For comparison, the ultrasonic displacement was also determined via a laser-based Fabry-Pérot interferometer. The experimental results for both measurements were in good agreement. Additionally, the stability of the repeated test results from the piezo-electric method exceeded that of the laser-interferometric method. This result indicated that the piezo-electric detection method can be utilized to measure a nonlinear ultrasonic parameter due to its excellent stability although it involves a complicated process.

  3. Measurement of absolute displacement-amplitude of ultrasonic wave using piezo-electric detection method

    International Nuclear Information System (INIS)

    Park, Seong Hyun; Kim, Jong Beom; Jhang, Kyung Young

    2017-01-01

    A nonlinear ultrasonic parameter is defined by the ratio of displacement amplitude of the fundamental frequency component to that of the second-order harmonic frequency component. In this study, the ultrasonic displacement amplitude of an SUS316 specimen was measured via a piezo-electric-based method to identify the validity of piezo-electric detection method. For comparison, the ultrasonic displacement was also determined via a laser-based Fabry-Pérot interferometer. The experimental results for both measurements were in good agreement. Additionally, the stability of the repeated test results from the piezo-electric method exceeded that of the laser-interferometric method. This result indicated that the piezo-electric detection method can be utilized to measure a nonlinear ultrasonic parameter due to its excellent stability although it involves a complicated process

  4. Electric field measurements in a dielectric barrier nanosecond pulse discharge with sub-nanosecond time resolution

    International Nuclear Information System (INIS)

    Goldberg, Benjamin M; Shkurenkov, Ivan; Adamovich, Igor V; Lempert, Walter R; O’Byrne, Sean

    2015-01-01

    The paper presents the results of time-resolved electric field measurements in a nanosecond discharge between two plane electrodes covered by dielectric plates, using picosecond four-wave mixing diagnostics. For absolute calibration, the IR signal was measured in hydrogen at a pressure of 440 Torr, for electrostatic electric field ranging from 0 to 8 kV cm −1 . The calibration curve (i.e. the square root of IR signal intensity versus electric field) was shown to be linear. By measuring the intensities of the pump, Stokes, and IR signal beam for each laser shot during the time sweep across the high-voltage pulse, temporal evolution of the electric field in the nanosecond pulse discharge was determined with sub-nanosecond time resolution. The results are compared to kinetic modeling predictions, showing good agreement, including non-zero electric field offset before the main high voltage pulse, breakdown moment, and reduction of electric field in the plasma after breakdown. The difference between the experimental results and model predictions is likely due to non-1D structure of the discharge. Comparison with the kinetic modeling predictions shows that electric field in the nanosecond pulse discharge is controlled primarily by electron impact excitation and charge accumulation on the dielectric surfaces. (paper)

  5. Measuring the vertical electrical field above an oceanic convection system using a meteorological sounding balloon

    Science.gov (United States)

    Chen, A. B.; Chiu, C.; Lai, S.; Chen, C.; Kuo, C.; Su, H.; Hsu, R.

    2012-12-01

    The vertical electric field above thundercloud plays an important role in the generation and modeling of transient luminous events. For example, Pasko [1995] proposed that the high quasi-static E-field following the positive cloud-to-ground lightning could accelerate and input energy to ambient electrons; as they collide and excite nitrogen and oxygen molecules in upper atmosphere, sprites may be induced. A series of balloon experiments led by Holzworth have investigated the temporal and spatial fluctuations of the electric field and conductivity in the upper atmosphere at different sites [Holzworth 2005, and references in]. But the strength and variation of the vertical electric field above thundercloud, especially oceanic ones, are not well documented so far. A lightweight, low-cost measurement system including an electric field meter and the associated aviation electronics are developed to carry out the in-situ measurement of the vertical electric field and the inter-cloud charge distribution. Our measuring system was first deployed using a meteorological sounding balloon from Taitung, Taiwan in May 2012. The measured electric field below 3km height shows an exponential decay and it is consistent with the expected potential gradient variation between ionosphere and the Earth surface. But the background strength of the measured E-field grows up exponentially and a violent fluctuations is also observed when the balloon flew over a developing oceanic convection cell. The preliminary results from this flight will be reported and discussed. This low-cost electric field meter is developed within one year. In the coming months, more flights will be performed with the aim to measure the rapid variation of the electric field above thundercloud as well as the E-field that may induce transient luminous events. Our ground campaigns show that the occurrence rates of blue and gigantic jet are relatively high in the vicinity of Taiwan. Our experiment can be used to diagnose

  6. A modified Wheeler cap method for radiation efficiency measurement of balanced electrically small antennas

    DEFF Research Database (Denmark)

    Zhang, Jiaying; Pivnenko, Sergey; Breinbjerg, Olav

    2010-01-01

    , but not for balanced antennas like loops or dipoles. In this paper, a modified Wheeler cap method is proposed for the radiation efficiency measurement of balanced electrically small antennas and a three-port network model of the Wheeler cap measurement is introduced. The advantage of the modified method...... is that it is wideband, thus does not require any balun, and both the antenna input impedance and radiation efficiency can be obtained. An electrically small loop antenna and a wideband dipole were simulated and measured according to the proposed method and the results of measurements and simulations are presented...

  7. Electrical conductivity measurements of aqueous and immobilized potassium hydroxide

    DEFF Research Database (Denmark)

    Allebrod, Frank; Chatzichristodoulou, Christodoulos; Mollerup, Pia Lolk

    2012-01-01

    concentrations was investigated using the van der Pauw method in combination with electrochemical impedance spectroscopy (EIS). Conductivity values as high as 2.7 S cm−1 for 35 wt%, 2.9 S cm−1 for 45 wt%, and 2.8 S cm−1 for 55 wt% concentrated aqueous solutions were measured at 200 °C. Micro- and nano-porous...... solid pellets were produced and used to immobilize aqueous KOH solutions. These are intended to operate as ion-conductive diaphragms (electrolytes) in alkaline electrolysis cells, offering high conductivity and corrosion resistance. The conductivity of immobilized KOH has been determined by the same...

  8. Real-time particle volume fraction measurement in centrifuges by wireless electrical resistance detector

    International Nuclear Information System (INIS)

    Nagae, Fumiya; Okawa, Kazuya; Matsuno, Shinsuke; Takei, Masahiro; Zhao Tong; Ichijo, Noriaki

    2015-01-01

    In this study, wireless electrical resistance detector is developed as first step in order to develop electrical resistance tomography (ERT) that are attached wireless communication, and miniaturized. And the particle volume fraction measurement results appropriateness is qualitatively examined. The real-time particle volume fraction measurement is essential for centrifuges, because rotational velocity and supply should be controlled based on the results in order to obtain the effective separation, shorten process time and save energy. However, a technique for the particle volume fraction measurement in centrifuges has not existed yet. In other words, the real-time particle volume fraction measurement in centrifuges becomes innovative technologies. The experiment device reproduces centrifugation in two-phase using particle and salt solution as measuring object. The particle concentration is measured changing rotational velocity, supply and measurement section position. The measured concentration changes coincide with anticipated tendency of concentration changes. Therefore the particle volume fraction measurement results appropriateness are qualitatively indicated. (author)

  9. Electrical conductivity measurements of bacterial nanowires from Pseudomonas aeruginosa

    International Nuclear Information System (INIS)

    Maruthupandy, Muthusamy; Anand, Muthusamy; Beevi, Akbar Sait Hameedha; Priya, Radhakrishnan Jeeva; Maduraiveeran, Govindhan

    2015-01-01

    The extracellular appendages of bacteria (flagella) that transfer electrons to electrodes are called bacterial nanowires. This study focuses on the isolation and separation of nanowires that are attached via Pseudomonas aeruginosa bacterial culture. The size and roughness of separated nanowires were measured using transmission electron microscopy (TEM) and atomic force microscopy (AFM), respectively. The obtained bacterial nanowires indicated a clear image of bacterial nanowires measuring 16 nm in diameter. The formation of bacterial nanowires was confirmed by microscopic studies (AFM and TEM) and the conductivity nature of bacterial nanowire was investigated by electrochemical techniques. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), which are nondestructive voltammetry techniques, suggest that bacterial nanowires could be the source of electrons—which may be used in various applications, for example, microbial fuel cells, biosensors, organic solar cells, and bioelectronic devices. Routine analysis of electron transfer between bacterial nanowires and the electrode was performed, providing insight into the extracellular electron transfer (EET) to the electrode. CV revealed the catalytic electron transferability of bacterial nanowires and electrodes and showed excellent redox activities. CV and EIS studies showed that bacterial nanowires can charge the surface by producing and storing sufficient electrons, behave as a capacitor, and have features consistent with EET. Finally, electrochemical studies confirmed the development of bacterial nanowires with EET. This study suggests that bacterial nanowires can be used to fabricate biomolecular sensors and nanoelectronic devices. (paper)

  10. Effects of heat and electricity saving measures in district-heated multistory residential buildings

    International Nuclear Information System (INIS)

    Truong, Nguyen Le; Dodoo, Ambrose; Gustavsson, Leif

    2014-01-01

    Highlights: • We analyzed the potential for energy savings in district heated buildings. • Measures that reduce more peak load production give higher primary energy savings. • Efficient appliances increase heat demand but give net primary energy savings. • Efficient appliances give the largest net primary energy savings. - Abstract: The effects of heat and electricity saving measures in district-heated buildings can be complex because these depend not only on how energy is used on the demand side but also on how energy is provided from the supply side. In this study, we analyze the effects of heat and electricity saving measures in multistory concrete-framed and wood-framed versions of an existing district-heated building and examine the impacts of the reduced energy demand on different district heat (DH) production configurations. The energy saving measures considered are for domestic hot water reduction, building thermal envelope improvement, ventilation heat recovery (VHR), and household electricity savings. Our analysis is based on a measured heat load profile of an existing DH production system in Växjö, Sweden. Based on the measured heat load profile, we model three minimum-cost DH production system using plausible environmental and socio-political scenarios. Then, we investigate the primary energy implications of the energy saving measures applied to the two versions of the existing building, taking into account the changed DH demand, changed cogenerated electricity, and changed electricity use due to heat and electricity saving measures. Our results show that the difference between the final and primary energy savings of the concrete-framed and wood-framed versions of the case-study building is minor. The primary energy efficiency of the energy saving measures depends on the type of measure and on the composition of the DH production system. Of the various energy saving measures explored, electricity savings give the highest primary energy savings

  11. Study of irradiation defects in bismuth by electric transport measurements

    International Nuclear Information System (INIS)

    Le Goff, M.

    1984-01-01

    Pure monocrystalline bismuth is irradiated near 4K by electrons of different energies. Irradiation effects are measured by galvanomagnetic properties at low temperature. Frenkel pairs created during irradiation have a strong effect on carrier mobilities. The data are quantitatively analyzed assuming a rigid band model. After irradiation with 1 MeV electrons, each Frankel pair created corresponds to a total charge of 0.14 electrons. This result obtained by magnetoresistance and Hall effect is confirmed by Shubnikov-de Haas experiments. There is a linear variation between the excess carrier density (p-n) and the Frenkel pair concentration. The more important step of annealing is observed around 40-50 K. This step is attributed to interstitial migration. Resistivity presents a minimum at low temperature after irradiation with electrons of energy over 1.3 MeV. This is explained by virtual bound levels near the Fermi level. The Kondo effect bound to magnetic defects is discussed [fr

  12. Measurements of Electric Field in a Nanosecond Pulse Discharge by 4-WAVE Mixing

    Science.gov (United States)

    Baratte, Edmond; Adamovich, Igor V.; Simeni Simeni, Marien; Frederickson, Kraig

    2017-06-01

    Picosecond four-wave mixing is used to measure temporally and Picosecond four-wave mixing is used to measure temporally and spatially resolved electric field in a nanosecond pulse dielectric discharge sustained in room air and in an atmospheric pressure hydrogen diffusion flame. Measurements of the electric field, and more precisely the reduced electric field (E/N) in the plasma is critical for determination rate coefficients of electron impact processes in the plasma, as well as for quantifying energy partition in the electric discharge among different molecular energy modes. The four-wave mixing measurements are performed using a collinear phase matching geometry, with nitrogen used as the probe species, at temporal resolution of about 2 ns . Absolute calibration is performed by measurement of a known electrostatic electric field. In the present experiments, the discharge is sustained between two stainless steel plate electrodes, each placed in a quartz sleeve, which greatly improves plasma uniformity. Our previous measurements of electric field in a nanosecond pulse dielectric barrier discharge by picosecond 4-wave mixing have been done in air at room temperature, in a discharge sustained between a razor edge high-voltage electrode and a plane grounded electrode (a quartz plate or a layer of distilled water). Electric field measurements in a flame, which is a high-temperature environment, are more challenging because the four-wave mixing signal is proportional to the to square root of the difference betwen the populations of N2 ground vibrational level (v=0) and first excited vibrational level (v=1). At high temperatures, the total number density is reduced, thus reducing absolute vibrational level populations of N2. Also, the signal is reduced further due to a wider distribution of N2 molecules over multiple rotational levels at higher temperatures, while the present four-wave mixing diagnostics is using spectrally narrow output of a ps laser and a high

  13. Irreversibility in transformation behavior of equiatomic nickel-titanium alloy by electrical resistivity measurement

    International Nuclear Information System (INIS)

    Matsumoto, Hitoshi

    2004-01-01

    Measurements of the electrical resistivity were precisely performed on shape memory Ni 50 Ti 50 alloy in order to reveal the irreversible behavior of the thermoelastic martensitic transformation with thermal cycling. The hump in the electrical resistivity during cooling is enhanced with increasing the number of complete thermal cycles to result in a peak, although no peak in the electrical resistivity is observed on the reverse transformation during heating. The electrical resistivity in the low-temperature phase, of which the temperature dependence is linear, increases with increasing the number of complete thermal cycles. The temperature coefficient of the electrical resistivity in the temperature region of the high-temperature phase increases with elevating the temperature. The transformation is strongly influenced by incomplete thermal cycles to result in a peak in the resistivity even on the reverse transformation after incomplete thermal cycling. It is thought that the anomalous behavior such as enhancement of a resistivity-peak, the increase in the electrical resistivity of the low-temperature phase, and the nonlinear relation between the resistivity and the temperature in the high-temperature phase are attributable to the appearance of an intermediate phase stabilized by transformation-induced defects, the accumulation of the transformation-induced defects, and the electron scattering due to the softening of a phonon mode in the high-temperature phase, respectively. It proved useful to make more accurate measurements of the electrical resistivity in order to investigate the intrinsic behavior of the transformation in NiTi

  14. Global Electric Circuit Implications of Combined Aircraft Storm Electric Current Measurements and Satellite-Based Diurnal Lightning Statistics

    Science.gov (United States)

    Mach, Douglas M.; Blakeslee, Richard J.; Bateman, Monte G.

    2011-01-01

    Using rotating vane electric field mills and Gerdien capacitors, we measured the electric field profile and conductivity during 850 overflights of thunderstorms and electrified shower clouds (ESCs) spanning regions including the Southeastern United States, the Western Atlantic Ocean, the Gulf of Mexico, Central America and adjacent oceans, Central Brazil, and the South Pacific. The overflights include storms over land and ocean, and with positive and negative fields above the storms. Over three-quarters (78%) of the land storms had detectable lightning, while less than half (43%) of the oceanic storms had lightning. Integrating our electric field and conductivity data, we determined total conduction currents and flash rates for each overpass. With knowledge of the storm location (land or ocean) and type (with or without lightning), we determine the mean currents by location and type. The mean current for ocean thunderstorms is 1.7 A while the mean current for land thunderstorms is 1.0 A. The mean current for ocean ESCs 0.41 A and the mean current for land ESCs is 0.13 A. We did not find any significant regional or latitudinal based patterns in our total conduction currents. By combining the aircraft derived storm currents and flash rates with diurnal flash rate statistics derived from the Lightning Imaging Sensor (LIS) and Optical Transient Detector (OTD) low Earth orbiting satellites, we reproduce the diurnal variation in the global electric circuit (i.e., the Carnegie curve) to within 4% for all but two short periods of time. The agreement with the Carnegie curve was obtained without any tuning or adjustment of the satellite or aircraft data. Given our data and assumptions, mean contributions to the global electric circuit are 1.1 kA (land) and 0.7 kA (ocean) from thunderstorms, and 0.22 kA (ocean) and 0.04 (land) from ESCs, resulting in a mean total conduction current estimate for the global electric circuit of 2.0 kA. Mean storm counts are 1100 for land

  15. Design of a fiber optical sensor for atmospheric electric field measurement

    International Nuclear Information System (INIS)

    Baghdasaryan, H.V.; Knyazyan, T.M.; Daryan, A.V.

    2016-01-01

    All-optical sensor for atmospheric electric field detection and measurement is suggested and numerically modelled. Thin electro- optical crystal sandwiched between two distributed Bragg reflectors (DBRs) forming multilayer Gires-Tournois (G-T) microresonator is used as a sensitive part of the electric field sensor. In the sensor device, an optical fiber delivers the wideband light spectrum to the sensing multilayer structure of G-T microresonator. The reflectance spectrum of the sensor contains information on the electric field strength and direction. The relevant reflectance peaks’ shift in the reflected spectrum can be observed by an optical spectrum analyzer (OSA). Numerical modelling has been done by the method of single expression that is a suitable tool for multi-boundary problems solution. The obtained results of modelling will be useful in a new type of non-distorting sensor’s elaboration for atmospheric electric field detection and measurement. (author)

  16. Nanolithography based contacting method for electrical measurements on single template synthesized nanowires

    DEFF Research Database (Denmark)

    Fusil, S.; Piraux, L.; Mátéfi-Tempfli, Stefan

    2005-01-01

    A reliable method enabling electrical measurements on single nanowires prepared by electrodeposition in an alumina template is described. This technique is based on electrically controlled nanoindentation of a thin insulating resist deposited on the top face of the template filled by the nanowires....... We show that this method is very flexible, allowing us to electrically address single nanowires of controlled length down to 100 nm and of desired composition. Using this approach, current densities as large as 10 A cm were successfully injected through a point contact on a single magnetic...

  17. Study of phosphorus implanted and annealed silicon by electrical measurements and ion channeling technique

    CERN Document Server

    Hadjersi, T; Zilabdi, M; Benazzouz, C

    2002-01-01

    We investigated the effect of annealing temperature on the electrical activation of phosphorus implanted into silicon. The measurements performed using spreading resistance, four-point probe and ion channeling techniques have allowed us to establish the existence of two domains of variation of the electrical activation (350-700 deg. C) and (800-1100 deg. C). The presence of reverse annealing and the annihilation of defects have been put in a prominent position in the first temperature range. It has been shown that in order to achieve a complete electrical activation, the annealing temperature must belong to the second domain (800-1100 deg. C).

  18. Analysis on the phase transition behavior of Cu base bulk metallic glass by electrical resistivity measurement

    International Nuclear Information System (INIS)

    Ji, Young Su; Chung, Sung Jae; Ok, Myoung-Ryul; Hong, Kyung Tae; Suh, Jin-Yoo; Byeon, Jai Won; Yoon, Jin-Kook; Lee, Kyung Hwan; Lee, Kyung Sub

    2007-01-01

    The crystallization behavior of Cu 43 Zr 43 Al 7 Ag 7 (numbers indicate at.%) bulk metallic glass was investigated using the isothermal electrical resistivity measurements at 450 deg. C in the supercooled liquid region. The crystallization process is a single step phase transformation. To analyze the electrical resistivity reduction, microstructure evolutions were analyzed using differential scanning calorimetry, X-ray diffraction, transmission electron microscopy and small-angle X-ray scattering. The Avrami parameter of the electrical resistivity reduction step was 1.73, indicating that the crystallization process is a diffusion-controlled growth of intermetallic compounds with decreasing nucleation rate

  19. Procedures for measuring the electrical properties of superconductors for accelerator magnets

    International Nuclear Information System (INIS)

    Sampson, W.B.

    1986-01-01

    There are three important electrical properties associated with the superconductor used to fabricate accelerator magnets. The most important is the critical current since this determines the performance potential of the magnet. The normal state resistivity and the volume magnetization are the other principal electrical parameters. In this report methods for measuring these parameters are presented and procedures for including self field effect and magnetoresistance are discussed

  20. Spectroscopic measurement of the electric field in a helium plasma jet

    NARCIS (Netherlands)

    Hofmans, M.; Sobota, A.

    2017-01-01

    The electric field in a plasma jet is measured spectroscopically utilizing the Stark-effect. A cold atmospheric pressure helium plasma jet is used, which operates at a μs-pulsed applied voltage of 6 kV, a frequency of 5 kHz and with a helium flow of 1.5 slm. Due to the electric field in the jet, the

  1. Direct measurement of macroscopic electric fields produced by collective effects in electron-impact experiments

    International Nuclear Information System (INIS)

    Velotta, R.; Avaldi, L.; Camilloni, R.; Giammanco, F.; Spinelli, N.; Stefani, G.

    1996-01-01

    The macroscopic electric field resulting from the space charge produced in electron-impact experiments has been characterized by using secondary electrons of well-defined energy (e.g., Auger or autoionizing electrons) as a probe. It is shown that the measurement of the kinetic-energy shifts suffered by secondary electrons is a suitable tool for the analysis of the self-generated electric field in a low-density plasma. copyright 1996 The American Physical Society

  2. A cable-free impedance and gain measurement technique for electrically small antennas

    DEFF Research Database (Denmark)

    Pivnenko, Sergey; Zhang, Jiaying; Breinbjerg, Olav

    2010-01-01

    are represented in terms of spherical wave expansions (SWEs), and the propagation is accounted for by a transmission formula. In this paper the measurement results by the proposed technique will be presented for several AUTs, including a standard gain horn antenna, a monopole antenna, and an electrically small......Impedance and gain measurements for electrically small antennas represent a great challenge due to influences of the feeding cable. The leaking current along the cable and scattering effects are two main issues caused by the feed line. In this paper, a novel cable-free antenna impedance and gain...... measurement technique for electrically small antennas is proposed. The antenna properties are extracted by measuring the signal scattered by the antenna under test (AUT), when it is loaded with three known loads. The technique is based on a rigorous electromagnetic model where the probe and AUT...

  3. Calorimetric Measurement for Internal Conversion Efficiency of Photovoltaic Cells/Modules Based on Electrical Substitution Method

    Science.gov (United States)

    Saito, Terubumi; Tatsuta, Muneaki; Abe, Yamato; Takesawa, Minato

    2018-02-01

    We have succeeded in the direct measurement for solar cell/module internal conversion efficiency based on a calorimetric method or electrical substitution method by which the absorbed radiant power is determined by replacing the heat absorbed in the cell/module with the electrical power. The technique is advantageous in that the reflectance and transmittance measurements, which are required in the conventional methods, are not necessary. Also, the internal quantum efficiency can be derived from conversion efficiencies by using the average photon energy. Agreements of the measured data with the values estimated from the nominal values support the validity of this technique.

  4. Electrical properties of Titan's surface from Cassini RADAR scatterometer measurements

    Science.gov (United States)

    Wye, Lauren C.; Zebker, Howard A.; Ostro, Steven J.; West, Richard D.; Gim, Yonggyu; Lorenz, Ralph D.; The Cassini Radar Team

    2007-06-01

    albedo feature Shangri-La is best fit by a Hagfors model with a dielectric constant close to 2.4 and an rms slope near 9.5°. From the modeled backscatter curves, we find the average radar albedo in the same linear (SL) polarization to be near 0.34. We constrain the total-power albedo in order to compare the measurements with available groundbased radar results, which are typically obtained in both senses of circular polarization. We estimate an upper limit of 0.4 on the total-power albedo, a value that is significantly higher than the 0.21 total albedo value measured at 13 cm [Campbell, D., Black, G., Carter, L., Ostro, S., 2003. Science 302, 431-434]. This is consistent with a surface that has more small-scale structure and is thus more reflective at 2-cm than 13-cm. We compare results across overlapping observations and observe that the reduction and analysis are repeatable and consistent. We also confirm the strong correlations between radar and near-infrared images.

  5. The future of GPS-based electric power system measurements, operation and control

    Energy Technology Data Exchange (ETDEWEB)

    Rizy, D.T. [Oak Ridge National Lab., TN (United States); Wilson, R.E. [Western Area Power Administration, Golden, CO (United States); Martin, K.E.; Litzenberger, W.H. [Bonneville Power Administration, Portland, OR (United States); Hauer, J.F. [Pacific Northwest National Lab., Richland, WA (United States); Overholt, P.N. [Dept. of Energy, Washington, DC (United States); Sobajic, D.J. [Electric Power Research Inst., Palo Alto, CA (United States)

    1998-11-01

    Much of modern society is powered by inexpensive and reliable electricity delivered by a complex and elaborate electric power network. Electrical utilities are currently using the Global Positioning System-NAVSTAR (GPS) timekeeping to improve the network`s reliability. Currently, GPS synchronizes the clocks on dynamic recorders and aids in post-mortem analysis of network disturbances. Two major projects have demonstrated the use of GPS-synchronized power system measurements. In 1992, the Electric Power Research Institute`s (EPRI) sponsored Phase Measurements Project used a commercially available Phasor Measurements Unit (PMU) to collect GPS-synchronized measurements for analyzing power system problems. In 1995, Bonneville Power Administration (BPA) and Western Area Power Administration (WAPA) under DOE`s and EPRI`s sponsorship launched the Wide Area Measurements (WAMS) project. WAMS demonstrated GPS-synchronized measurements over a large area of their power networks and demonstrated the networking of GPS-based measurement systems in BPA and WAPA. The phasor measurement technology has also been used to conduct dynamic power system tests. During these tests, a large dynamic resistor was inserted to simulate a small power system disturbance.

  6. Method for measuring the charge of electric storage batteries. Verfahren zur Messung des Ladezustandes elektrischer Akkumulatoren

    Energy Technology Data Exchange (ETDEWEB)

    Kappus, W.

    1982-03-11

    With liquid-electrolyte storage batteries, charge can be deduced from density measurement which is feasible in a simple technical way by measuring hydrostatic pressure in the electrolyte fluid. Pressure difference is detected piezo-electrically and indicated externally by a voltmeter. Gas-filled or fluid-filled bellows serve as pressure sensors.

  7. A Harmonic Impedance Measurement System for Reduction of Harmonics in the Electricity Grid

    NARCIS (Netherlands)

    Heskes, P.J.M.; Myrzik, J.M.A.; Kling, W.L.

    2009-01-01

    This paper describes the development of a Complex Harmonic Impedance Measurement system, called the CHIME-system. This system performs on-line impedance measurements in the electricity grid and will be designed for implementation in Digital Signal Processor (DSP) control systems of grid-connected

  8. A harmonic impedance measurement system for reduction of harmonics in the electricity grid

    NARCIS (Netherlands)

    Heskes, P.J.M.; Myrzik, J.M.A.; Kling, W.L.

    2009-01-01

    This paper describes the development of a Complex Harmonic Impedance Measurement system, called the CHIME-system. This system performs on-line impedance measurements in the electricity grid and will be designed for implementation in Digital Signal Processor (DSP) control systems of grid-connected

  9. Information-Measuring System to Control the Electrical and Mechanical Motor Parameters

    Directory of Open Access Journals (Sweden)

    K. S. Ermakov

    2015-01-01

    Full Text Available The article considers the issue of creating an information-measuring system for an asynchronous motor. The presented system allows ensuring the failure-free protection of electromotor, considerably reducing costs of its unplanned repair, and reduced economical loss from idle time of the electric motor.The developed system comprises a mathematical model and two subsystems to measure electrical and mechanical parameters of the asynchronous motor.The electrical subsystem comprises a FLUKE company recording multi-meter a signal from which passes through the block of intervals and coding and comes to PC.The mechanical subsystem uses technical tools of phase-chronometric method. This method developed at the department of Metrology and Interchangeability allows an increasing efficiency of developed informative-measuring system. Mathematical modeling is used to link information from subsystems (electrical and mechanical to electromotor construction.The work conducted mathematical modeling of some defects of electric motor, namely: rupture of rotor winding and line surge.The mathematical model in Mathcad was based on a modified formula of Kloss. It allows us to tie the average current value of the torque of the induction motor with shaft speed and take into account the effect of the frequency and voltage.The Matlab Simulink (the package for visual programming environment was used to simulate a rupture of the rotor winding. Simulation results showed how the phase currents of the electric motor changed with the winding rupture.The developed information-measuring system has a number of advantages over traditional systems used in this field (vibration-based diagnostics systems. It will allow an increasing efficiency of the system for diagnostics of electrical machines created on the basis of this information-measuring system.

  10. Electricity

    International Nuclear Information System (INIS)

    Tombs, F.

    1983-01-01

    The subject is discussed, with particular reference to the electricity industry in the United Kingdom, under the headings; importance and scope of the industry's work; future fuel supplies (estimated indigenous fossil fuels reserves); outlook for UK energy supplies; problems of future generating capacity and fuel mix (energy policy; construction programme; economics and pricing; contribution of nuclear power - thermal and fast reactors; problems of conversion of oil-burning to coal-burning plant). (U.K.)

  11. Combined Aircraft and Satellite-Derived Storm Electric Current and Lightning Rates Measurements and Implications for the Global Electric Circuit

    Science.gov (United States)

    Mach, Douglas M.; Blakeslee, Richard J.; Bateman, Monte G.

    2010-01-01

    Using rotating vane electric field mills and Gerdien capacitors, we measured the electric field profile and conductivity during 850 overflights of electrified shower clouds and thunderstorms spanning regions including the Southeastern United States, the Western Atlantic Ocean, the Gulf of Mexico, Central America and adjacent oceans, Central Brazil, and the South Pacific. The overflights include storms over land and ocean, with and without lightning, and with positive and negative fields above the storms. The measurements were made with the NASA ER-2 and the Altus-II high altitude aircrafts. Peak electric fields, with lightning transients removed, ranged from -1.0 kV/m to 16 kV/m, with a mean value of 0.9 kV/m. The median peak field was 0.29 kV/m. Integrating our electric field and conductivity data, we determined total conduction currents and flash rates for each overpass. With knowledge of the storm location (land or ocean) and type (with or without lightning), we determine the mean currents by location and type. The mean current for ocean storms with lightning is 1.6 A while the mean current for land storms with lightning is 1.0 A. The mean current for oceanic storms without lightning (i.e., electrified shower clouds) is 0.39 A and the mean current for land storms without lightning is 0.13 A. Thus, on average, land storms with or without lightning have about half the mean current as their corresponding oceanic storm counterparts. Over three-quarters (78%) of the land storms had detectable lightning, while less than half (43%) of the oceanic storms had lightning. We did not find any significant regional or latitudinal based patterns in our total conduction currents. By combining the aircraft derived storm currents and flash rates with diurnal lightning statistics derived from the Lightning Imaging Sensor (LIS) and Optical Transient Detector (OTD) low Earth orbiting satellites, we reproduce the diurnal variation in the global electric circuit (i.e., the Carnegie

  12. 10 CFR 500.3 - Electric regions-electric region groupings for reliability measurements under the Powerplant and...

    Science.gov (United States)

    2010-01-01

    ... System (APS)—7, except Duquesne Light Company. 2. American Electric Power System (AEP)—entire AEP System... 10 Energy 4 2010-01-01 2010-01-01 false Electric regions-electric region groupings for reliability... of electric regions for use with regard to the Act. The regions are identified by FERC Power Supply...

  13. Matrix diffusion studies by electrical conductivity methods. Comparison between laboratory and in-situ measurements

    International Nuclear Information System (INIS)

    Ohlsson, Y.; Neretnieks, I.

    1998-01-01

    Traditional laboratory diffusion experiments in rock material are time consuming, and quite small samples are generally used. Electrical conductivity measurements, on the other hand, provide a fast means for examining transport properties in rock and allow measurements on larger samples as well. Laboratory measurements using electrical conductivity give results that compare well to those from traditional diffusion experiments. The measurement of the electrical resistivity in the rock surrounding a borehole is a standard method for the detection of water conducting fractures. If these data could be correlated to matrix diffusion properties, in-situ diffusion data from large areas could be obtained. This would be valuable because it would make it possible to obtain data very early in future investigations of potentially suitable sites for a repository. This study compares laboratory electrical conductivity measurements with in-situ resistivity measurements from a borehole at Aespoe. The laboratory samples consist mainly of Aespoe diorite and fine-grained granite and the rock surrounding the borehole of Aespoe diorite, Smaaland granite and fine-grained granite. The comparison shows good agreement between laboratory measurements and in-situ data

  14. Electric Mars: The first direct measurement of an upper limit for the Martian "polar wind" electric potential

    Science.gov (United States)

    Collinson, Glyn; Mitchell, David; Glocer, Alex; Grebowsky, Joseph; Peterson, W. K.; Connerney, Jack; Andersson, Laila; Espley, Jared; Mazelle, Christian; Sauvaud, Jean-André; Fedorov, Andrei; Ma, Yingjuan; Bougher, Steven; Lillis, Robert; Ergun, Robert; Jakosky, Bruce

    2015-11-01

    An important mechanism in the generation of polar wind outflow is the ambipolar electric potential which assists ions in overcoming gravity and is a key mechanism for Terrestrial ionospheric escape. At Mars, open field lines are not confined to the poles, and outflow of ionospheric electrons is observed far into the tail. It has thus been hypothesized that a similar electric potential may be present at Mars, contributing to global ionospheric loss. However, no direct measurements of this potential have been made. In this pilot study, we examine photoelectron spectra measured by the Solar Wind Electron Analyzer instrument on the NASA Mars Atmosphere and Volatile EvolutioN (MAVEN) Mars Scout to put an initial upper bound on the total potential drop in the ionosphere of Mars of Φ♂ ≾⊥ 2V , with the possibility of a further ≾4.5 V potential drop above this in the magnetotail. If the total potential drop was close to the upper limit, then strong outflows of major ionospheric species (H+, O+, and O2+) would be expected. However, if most of the potential drop is confined below the spacecraft, as expected by current theory, then such a potential would not be sufficient on its own to accelerate O2+ to escape velocities, but would be sufficient for lighter ions. However, any potential would contribute to atmospheric loss through the enhancement of Jeans escape.

  15. Real time determination of the laser ablated mass by means of electric field-perturbation measurement

    Science.gov (United States)

    Pacheco, P.; Álvarez, J.; Sarmiento, R.; Bredice, F.; Sánchez-Aké, C.; Villagrán-Muniz, M.; Palleschi, V.

    2018-04-01

    A Nd:YAG ns-pulsed laser was used to ablate Al, Cd and Zn targets, which were placed between the plates of a planar charged capacitor. The plasma generates a transient redistribution of the electrical charges on the plates that can be measured as a voltage drop across a resistor connected to the ground plate. This signal is proportional to the capacitor applied voltage, the distance between the plates and the total number of ions produced in the ablation process which in turn is related to the laser energy and the ablated mass. After a series of pulses, the targets were weighed on a thermogravimetric balance to measure the ablated mass. Our results show that the electrical signal measured on the resistor is univocally related to the ablated mass from the target. Therefore, after a proper calibration depending on the material and the experimental geometry, the electrical signal can be used for real time quantitative measurement of the ablated mass in pulsed laser generated plasma experiments. The experiments were repeated on an aluminum target, with and without the presence of the external electric field in order to determine the possible influence of the applied electric field on the ablated mass.

  16. Rocket measurements within a polar cap arc: Plasma, particle, and electric circuit parameters

    International Nuclear Information System (INIS)

    Weber, E.J.; Ballenthin, J.O.; Basu, S.; Carlson, H.C.; Hardy, D.A.; Maynard, N.C.; Smiddy, M.; Kelley, M.C.; Fleischman, J.R.; Sheehan, R.E.; Pfaff, R.F.; Rodriguez, P.

    1989-01-01

    An instrumented rocket payload was launched into a polar cap F layer aurora to investigate the energetic particle, plasma, and electric circuit parameters of a Sun-aligned arc. On-board instruments measured energetic electron flux, ion composition and density fluctuations, electron density and temperature, electron density fluctuations, and ac and dc electric fields. Real-time all-sky imaging photometer measurements of the location and motion of the aurora, were used to determine the proper geophysical situation for launch. Comparison of the in situ measurements with remote optical measurements shows that the arc was produced by fluxes of low-energy (< 1 keV) electrons. Field-aligned potentials in the arc inferred from the electron spectra had a maximum value of approximately 300 V, and from the spectral shape a parent population of preaccelerated electrons characteristic of the boundary plasma sheet or magnetosheath was inferred. Electric field components along and across the arc show sunward flow within the arc and duskward drift of the arc consistent with the drift direction and speed determined from optical imaging. Thus this arc is drifting duskward under the influence of the convection electric field. Three possible explanations for this (field-aligned currents, chemistry, and transport) are considered. Finally, ionospheric irregularity and electric field fluctuations indicate two different generation mechanisms on the dawnside and duskside of the arc. On the duskside, parameters are suggestive of an interchange process, while on the dawnside, fluctuation parameters are consistent with a velocity shear instability

  17. High latitude stratospheric electrical measurements in fair and foul weather under various solar conditions

    International Nuclear Information System (INIS)

    Holzworth, R.H.

    1981-01-01

    Stratospheric electric field and conductivity measurements during a wide variety of weather and solar conditions are presented. These data are all from high latitude sites in the months of either April or August. The vector electric field is determined by orthogonal double probes connected through high impedance inputs to differential electrometers. The direct conductivity measurement involves determining the relaxation time constant of the medium after refloating a shorted pair of separated probes. Vertical electric field data from several balloon flights with average duration of 18 h at ceiling in fair weather are shown to be well modeled by a simple exponential altitude dependent equation. Examples of solar flare and magnetospheric effects on stratospheric electric fields are shown. Data collected over electrified clouds and thunderstorms are presented along with a discussion of the thunderstorm related electric currents. Lightning stroke signatures in the stratosphere during a large thunderstorm are identified in the electric field data. Current surges through the stratosphere due to DC currents as well as the sferic are calculated. In nearly 1000 h of balloon data no direct solar influence is identified in these data except during major flares. (author)

  18. Research of Electrical Conductivity Measurement System for Mine Bursting Water Based on Dual Frequency Method

    Directory of Open Access Journals (Sweden)

    Zhou Mengran

    2016-01-01

    Full Text Available This paper presents a double frequency conductivity measurement method for measuring mine bursting water, to solve the capacitance effect of the conductivity sensor itself has the help. The core controller of the system is the single chip microcomputer ATMEGA128. This paper introduces the basic principle of the measurement of the existing problems and the dual frequency measurement method, and then introduces and analyzes the hardware. To test and analyze the collected data, the double frequency method is found to have good stability and accuracy in the measurement of the electrical conductivity of mine inrush water. It is proved that the method and the system design of the hardware circuit can accurately measure the electric conductivity of the mine inrush water source.

  19. Measurements of Ozone, Lightning, and Electric Fields within Thunderstorms over Langmuir Laboratory, New Mexico

    Science.gov (United States)

    Eack, K. B.; Winn, W. P.; Rust, W. D.; Minschwaner, K.; Fredrickson, S.; Kennedy, D.; Edens, H. E.; Kalnajs, L. E.; Rabin, R. M.; Lu, G. P.; Bonin, D.

    2008-12-01

    A field project was conducted at the Langmuir Laboratory for Atmospheric Research during the summer of 2008 in an effort to better understand the direct production of ozone within electrically active storms. Five balloon flights were successfully launched into thunderstorms during this project. In situ measurements from the balloon instrument package included ozone mixing ratio, electric field strength, meteorological variables, and GPS location and timing. Lightning discharges were identified within each storm using a ground based lightning mapping array. The data show that the instruments ascended through regions of high electric fields within the sampled storms, and in some cases the balloon was in very close proximity to lightning. Relationships between electric field, lightning, and ozone observed during these flights will be discussed.

  20. Electrostatic sensors applied to the measurement of electric charge transfer in gas-solids pipelines

    International Nuclear Information System (INIS)

    Woodhead, S R; Denham, J C; Armour-Chelu, D I

    2005-01-01

    This paper describes the development of a number of electric charge sensors. The sensors have been developed specifically to investigate triboelectric charge transfer which takes place between particles and the pipeline wall, when powdered materials are conveyed through a pipeline using air. A number of industrial applications exist for such gas-solids pipelines, including pneumatic conveyors, vacuum cleaners and dust extraction systems. The build-up of electric charge on pipelines and powdered materials can lead to electrostatic discharge and so is of interest from a safety viewpoint. The charging of powders can also adversely affect their mechanical handling characteristics and so is of interest to handling equipment engineers. The paper presents the design of the sensors, the design of the electric charge test rig and electric charge measurement test results

  1. Noninvasive electrical conductivity measurement by MRI. A test of its validity and the electrical conductivity characteristics of glioma

    Energy Technology Data Exchange (ETDEWEB)

    Tha, Khin Khin; Kudo, Kohsuke [Hokkaido University Hospital, Department of Diagnostic and Interventional Radiology, N-14, W-5, Kita-ku, Sapporo (Japan); Hokkaido University, Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education, Sapporo (Japan); Katscher, Ulrich; Stehning, Christian [Philips Research Laboratories, Hamburg (Germany); Yamaguchi, Shigeru; Terasaka, Shunsuke; Kazumata, Ken [Faculty of Medicine, Hokkaido University, Department of Neurosurgery, Sapporo (Japan); Fujima, Noriyuki [Hokkaido University Hospital, Department of Diagnostic and Interventional Radiology, N-14, W-5, Kita-ku, Sapporo (Japan); Yamamoto, Toru [Hokkaido University, Faculty of Health Sciences, Sapporo (Japan); Van Cauteren, Marc [Clinical Science Philips Healthtech Asia Pacific, Tokyo (Japan); Shirato, Hiroki [Hokkaido University, Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education, Sapporo (Japan); Faculty of Medicine, Hokkaido University, Department of Radiation Medicine, Sapporo (Japan)

    2018-01-15

    This study noninvasively examined the electrical conductivity (σ) characteristics of diffuse gliomas using MRI and tested its validity. MRI including a 3D steady-state free precession (3D SSFP) sequence was performed on 30 glioma patients. The σ maps were reconstructed from the phase images of the 3D SSFP sequence. The σ histogram metrics were extracted and compared among the contrast-enhanced (CET) and noncontrast-enhanced tumour components (NCET) and normal brain parenchyma (NP). Difference in tumour σ histogram metrics among tumour grades and correlation of σ metrics with tumour grades were tested. Validity of σ measurement using this technique was tested by correlating the mean tumour σ values measured using MRI with those measured ex vivo using a dielectric probe. Several σ histogram metrics of CET and NCET of diffuse gliomas were significantly higher than NP (Bonferroni-corrected p ≤.045). The maximum σ of NCET showed a moderate positive correlation with tumour grade (r =.571, Bonferroni-corrected p =.018). The mean tumour σ measured using MRI showed a moderate positive correlation with the σ measured ex vivo (r =.518, p =.040). Tissue σ can be evaluated using MRI, incorporation of which may better characterise diffuse gliomas. (orig.)

  2. Precise electrical transport measurements by using Bridgman type pressure cell at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Oishi, Takayuki [Division of Civil and Enviromental Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan); Ohashi, Masashi [Faculty of Environmental Design, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan)

    2010-03-01

    We report a technique for the precise measurement of the electrical resisivity under high pressure at low temperature by using Bridgman anvils made of tungsten carbide. Quasi-hydrostatic pressure is generated up to {approx}15 GPa in the relatively large working space which allows the use of large specimens and simple experimental procedures rather than using a standard diamond anvil cell. The application is demonstrated by the measurements of the electrical resistivity of lead in order to describe the effect of pressure on the superconducting transition.

  3. Measurements of fatigue crack length at elevated temperature by D. C. electrical potential method

    International Nuclear Information System (INIS)

    Matsumoto, Masakatsu; Yamauchi, Isamu; Kodaira, Tsuneo

    1982-07-01

    The direct current (d.c.) electrical potential method was used to automatically and continuously measure the crack length in cyclic crack growth test at elevated temperature. This report describes some results concerning the calibration curves, i.e. the relation between electrical potential change and amount of crack extention, using SUS 304 and 2 1/4Cr-1Mo steels. It can be concluded that the measurements of fatigue crack length is possible even at elevated temperature as well as at room temperature with the equivalent accuracy. (author)

  4. Determining of the electric field strength using high frequency broadband measurements

    Directory of Open Access Journals (Sweden)

    Vulević Branislav D.

    2017-01-01

    Full Text Available Exposure of humans to electromagnetic fields of high frequency (above 100 kHz, i.e. radiofrequency radiation from the modern wireless systems, today inevitable is. The purpose of this paper is to highlight the importance of broadband measurements of the electric field of high frequency in order to fast and reliable assessment of human exposure. A practical method of ‘in situ’ measurement the electric field intensity which is related to the frequency range of 3 MHz to 18 GHz, is provided.

  5. Precise electrical transport measurements by using Bridgman type pressure cell at low temperature

    International Nuclear Information System (INIS)

    Oishi, Takayuki; Ohashi, Masashi

    2010-01-01

    We report a technique for the precise measurement of the electrical resisivity under high pressure at low temperature by using Bridgman anvils made of tungsten carbide. Quasi-hydrostatic pressure is generated up to ∼15 GPa in the relatively large working space which allows the use of large specimens and simple experimental procedures rather than using a standard diamond anvil cell. The application is demonstrated by the measurements of the electrical resistivity of lead in order to describe the effect of pressure on the superconducting transition.

  6. PNPI differential EDM spectrometer and latest results of measurements of the neutron electric dipole moment

    Energy Technology Data Exchange (ETDEWEB)

    Serebrov, A. P., E-mail: serebrov@pnpi.spb.ru; Kolomenskiy, E. A.; Pirozhkov, A. N.; Krasnoshchekova, I. A.; Vasiliev, A. V.; Polyushkin, A. O.; Lasakov, M. S.; Murashkin, A. N.; Solovey, V. A.; Fomin, A. K.; Shoka, I. V.; Zherebtsov, O. M. [National Research Center Kurchatov Institute, Petersburg Nuclear Physics Institute (Russian Federation); Alexandrov, E. B.; Dmitriev, S. P.; Dovator, N. A. [Russian Academy of Sciences, Ioffe Physical Technical Institute (Russian Federation); Geltenbort, P.; Ivanov, S. N.; Zimmer, O. [Institut Max von Laue–Paul Langevin (France)

    2015-12-15

    In this work, the double chamber magnetic resonance spectrometer of the Petersburg Nuclear Physics Institute (PNPI) designed to measure the neutron electric dipole moment (EDM) is briefly described. A method for long storage of polarized ultracold neutrons in a resonance space with a superposed electric field collinear to the leading magnetic field is used. The results of the measurements carried out on the ILL reactor (Grenoble, France) are interpreted as the upper limit of the value of neutron EDM vertical bar d{sub n} vertical bar < 5.5 × 10{sup –26}e cm at the 90% confidence level.

  7. Electric shock and electrical fire specialty

    International Nuclear Information System (INIS)

    2011-02-01

    This book deals with electric shock and electrical fire, which is made up seven chapters. It describes of special measurement for electric shock and electrical fire. It mentions concretely about electrical fire analysis and precautionary measurement, electrical shock analysis cases, occurrence of static electricity and measurement, gas accident, analysis of equipment accident and precautionary measurement. The book is published to educate the measurement on electric shock and electrical fire by electrical safety technology education center in Korea Electrical Safety Corporation.

  8. Self-Diagnosis of Damage in Carbon Fiber Reinforced Composites Using Electrical Residual Resistance Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Ji Ho [KAERI, Daejeon (Korea, Republic of)

    2009-08-15

    The objective of this research was to develop a practical integrated approach using extracted features from electrical resistance measurements and coupled electromechanical models of damage, for in-situ damage detection and sensing in carbon fiber reinforced plastic(CFRP) composites. To achieve this objective, we introduced specific known damage (in terms of type, size, and location) into CFRP laminates and established quantitative relationships with the electrical resistance measurements. For processing of numerous measurement data, an autonomous data acquisition system was devised. We also established a specimen preparation procedure and a method for electrode setup. Coupon and panel CFRP laminate specimens with several known damage were tested. Coupon specimens with various sizes of artificial delaminations obtained by inserting Teflon film were manufactured and the resistance was measured. The measurement results showed that increase of delamination size led to increase of resistance implying that it is possible to sense the existence and size of delamination. A quasi-isotropic panel was manufactured and electrical resistance was measured. Then three different sizes of holes were drilled at a chosen location. The panel was prepared using the established procedures with six electrode connections on each side making a total of twenty-four electrodes. Vertical, horizontal, and diagonal pairs of electrodes were chosen and the resistance was measured. The measurement results showed the possibility of the established measurement system for an in-situ damage detection method for CFRP composite structures.

  9. What we can learn from measurements of air electric conductivity in 222Rn-rich atmosphere

    Science.gov (United States)

    Seran, E.; Godefroy, M.; Pili, E.; Michielsen, N.; Bondiguel, S.

    2017-02-01

    Electric conductivity of air is an important characteristic of the electric properties of an atmosphere. Testing instruments to measure electric conductivity ranging from 10-13 to 10-9 S m-1 in natural conditions found in the Earth atmosphere is not an easy task. One possibility is to use stratospheric balloon flights; another (and a simpler one) is to look for terrestrial environments with significant radioactive decay. In this paper we present measurements carried out with different types of conductivity sensors in two 222Rn-rich environments, i.e., in the Roselend underground tunnel (French Alps) and in the Institute of Radioprotection and Nuclear Safety BACCARA (BAnC de CAllibrage du RAdon) chamber. The concept of the conductivity sensor is based on the classical time relaxation method. New elements in our design include isolation of the sensor sensitive part (electrode) from the external electric field and sensor miniaturization. This greatly extends the application domain of the sensor and permits to measure air electric conductivity when the external electric field is high and varies from few tens of V m-1 to up to few tens of kV m-1. This is suitable to propose the instrument for a planetary mission. Two-fold objectives were attained as the outcome of these tests and their analysis. First was directly related to the performances of the conductivity sensors and the efficiency of the conductivity sensor design to shield the external electric field. Second objective aimed at understanding the decay mechanisms of 222Rn and its progeny in atmosphere and the impact of the enclosed space on the efficiency of gas ionization.

  10. A quadruple-scanning-probe force microscope for electrical property measurements of microscopic materials

    International Nuclear Information System (INIS)

    Higuchi, Seiji; Kubo, Osamu; Kuramochi, Hiromi; Aono, Masakazu; Nakayama, Tomonobu

    2011-01-01

    Four-terminal electrical measurement is realized on a microscopic structure in air, without a lithographic process, using a home-built quadruple-scanning-probe force microscope (QSPFM). The QSPFM has four probes whose positions are individually controlled by obtaining images of a sample in the manner of atomic force microscopy (AFM), and uses the probes as contacting electrodes for electrical measurements. A specially arranged tuning fork probe (TFP) is used as a self-detection force sensor to operate each probe in a frequency modulation AFM mode, resulting in simultaneous imaging of the same microscopic feature on an insulator using the four TFPs. Four-terminal electrical measurement is then demonstrated in air by placing each probe electrode in contact with a graphene flake exfoliated on a silicon dioxide film, and the sheet resistance of the flake is measured by the van der Pauw method. The present work shows that the QSPFM has the potential to measure the intrinsic electrical properties of a wide range of microscopic materials in situ without electrode fabrication.

  11. A Step Towards Electric Propulsion Testing Standards: Pressure Measurements and Effective Pumping Speeds

    Science.gov (United States)

    Dankanich, John W.; Swiatek, Michael W.; Yim, John T.

    2012-01-01

    The electric propulsion community has been implored to establish and implement a set of universally applicable test standards during the research, development, and qualification of electric propulsion systems. Existing practices are fallible and result in testing variations which leads to suspicious results, large margins in application, or aversion to mission infusion. Performance measurements and life testing under appropriate conditions can be costly and lengthy. Measurement practices must be consistent, accurate, and repeatable. Additionally, the measurements must be universally transportable across facilities throughout the development, qualification, spacecraft integration and on-orbit performance. A preliminary step to progress towards universally applicable testing standards is outlined for facility pressure measurements and effective pumping speed calculations. The standard has been applied to multiple facilities at the NASA Glenn Research Center. Test results and analyses of universality of measurements are presented herein.

  12. The time resolved measurement of ultrashort terahertz-band electric fields without an ultrashort probe

    International Nuclear Information System (INIS)

    Walsh, D. A.; Snedden, E. W.; Jamison, S. P.

    2015-01-01

    The time-resolved detection of ultrashort pulsed THz-band electric field temporal profiles without an ultrashort laser probe is demonstrated. A non-linear interaction between a narrow-bandwidth optical probe and the THz pulse transposes the THz spectral intensity and phase information to the optical region, thereby generating an optical pulse whose temporal electric field envelope replicates the temporal profile of the real THz electric field. This optical envelope is characterised via an autocorrelation based FROG (frequency resolved optical gating) measurement, hence revealing the THz temporal profile. The combination of a narrow-bandwidth, long duration, optical probe, and self-referenced FROG makes the technique inherently immune to timing jitter between the optical probe and THz pulse and may find particular application where the THz field is not initially generated via ultrashort laser methods, such as the measurement of longitudinal electron bunch profiles in particle accelerators

  13. Mg-doping experiment and electrical transport measurement of boron nanobelts

    International Nuclear Information System (INIS)

    Kirihara, K.; Hyodo, H.; Fujihisa, H.; Wang, Z.; Kawaguchi, K.; Shimizu, Y.; Sasaki, T.; Koshizaki, N.; Soga, K.; Kimura, K.

    2006-01-01

    We measured electrical conductance of single crystalline boron nanobelts having α-tetragonal crystalline structure. The doping experiment of Mg was carried out by vapor diffusion method. The pure boron nanobelt is a p-type semiconductor and its electrical conductivity was estimated to be on the order of 10 -3 (Ω cm) -1 at room temperature. The carrier mobility of pure boron nanobelt was measured to be on the order of 10 -3 (cm 2 Vs -1 ) at room temperature and has an activation energy of ∼0.19 eV. The Mg-doped boron nanobelts have the same α-tetragonal crystalline structure as the pristine nanobelts. After Mg vapor diffusion, the nanobelts were still semiconductor, while the electrical conductance increased by a factor of 100-500. Transition to metal or superconductor by doping was not observed. - Graphical abstract: SEM micrographs of boron nanobelt after Ni/Au electrode fabrication by electron beam lithography. Display Omitted

  14. A novel approach to measure the electric dipole moment of the isotope 129-Xe

    Directory of Open Access Journals (Sweden)

    Kuchler F.

    2014-03-01

    Full Text Available Permanent electric dipole moments (EDM of fundamental systems are promising systems to find new CP violation beyond the Standard Model. Our EDM experiment is based on hyper-polarized liquid xenon droplets of sub-millimeter size on a micro-fabricated structure, placed in a low-field NMR setup. Implementation of rotating electric fields enables a conceptually new EDM measurement technique, allowing thorough investigation of systematic effects. Still, a Ramsey-type spin precession experiment with static electric field can be realized at similar sensitivity within the same setup. Employing superconducting pick-up coils and highly sensitive LTc-SQUIDs, a large array of independent measurements can be performed simultaneously. With our approach we aim to finally increase the sensitivity on the EDM of 129Xe by more than three orders of magnitude.

  15. Electrical Resistivity Measurement of Petroleum Coke Powder by Means of Four-Probe Method

    Science.gov (United States)

    Rouget, G.; Majidi, B.; Picard, D.; Gauvin, G.; Ziegler, D.; Mashreghi, J.; Alamdari, H.

    2017-10-01

    Carbon anodes used in Hall-Héroult electrolysis cells are involved in both electrical and chemical processes of the cell. Electrical resistivity of anodes depends on electrical properties of its constituents, of which carbon coke aggregates are the most prevalent. Electrical resistivity of coke aggregates is usually characterized according to the ISO 10143 standardized test method, which consists of measuring the voltage drop in the bed of particles between two electrically conducing plungers through which the current is also applied. Estimation of the electrical resistivity of coke particles from the resistivity of particle bed is a challenging task and needs consideration of the contribution of the interparticle void fraction and the particle/particle contact resistances. In this work, the bed resistivity was normalized by subtracting the interparticle void fraction. Then, the contact size was obtained from discrete element method simulation and the contact resistance was calculated using Holm's theory. Finally, the resistivity of the coke particles was obtained from the bed resistivity.

  16. Electrical crosstalk-coupling measurement and analysis for digital closed loop fibre optic gyro

    International Nuclear Information System (INIS)

    Jing, Jin; Hai-Ting, Tian; Xiong, Pan; Ning-Fang, Song

    2010-01-01

    The phase modulation and the closed-loop controller can generate electrical crosstalk-coupling in digital closed-loop fibre optic gyro. Four electrical cross-coupling paths are verified by the open-loop testing approach. It is found the variation of ramp amplitude will lead to the alternation of gyro bias. The amplitude and the phase parameters of the electrical crosstalk signal are measured by lock-in amplifier, and the variation of gyro bias is confirmed to be caused by the alternation of phase according to the amplitude of the ramp. A digital closed-loop fibre optic gyro electrical crosstalk-coupling model is built by approximating the electrical cross-coupling paths as a proportion and integration segment. The results of simulation and experiment show that the modulation signal electrical crosstalk-coupling can cause the dead zone of the gyro when a small angular velocity is inputted, and it could also lead to a periodic vibration of the bias error of the gyro when a large angular velocity is inputted

  17. First in situ measurement of electric field fluctuations during strong spread F in the Indian zone

    Directory of Open Access Journals (Sweden)

    H. S. S. Sinha

    2000-05-01

    Full Text Available An RH-560 rocket flight was conducted from Sriharikota rocket range (SHAR (14°N, 80°E, dip 14°N along with other experiments, as a part of equatorial spread F (ESF campaign, to study the nature of irregularities in electric field and electron density. The rocket was launched at 2130 local time (LT and it attained an apogee of 348 km. Results of vertical and horizontal electric field fluctuations are presented here. Scale sizes of electric field fluctuations were measured in the vertical direction only. Strong ESF irregularities were observed in three regions, viz., 160-190 km, 210-257 km and 290-330 km. Some of the valley region vertical electric field irregularities (at 165 km and 168 km, in the intermediate-scale size range, observed during this flight, show spectral peak at kilometer scales and can be interpreted in terms of the image striation theory suggested by Vickrey et al. The irregularities at 176 km do not exhibit any peak at kilometer scales and appear to be of a new type. Scale sizes of vertical electric field fluctuations showed a decrease with increasing altitude. The most prominent scales were of the order of a few kilometers around 170 km and a few hundred meters around 310 km. Spectra of intermediate-scale vertical electric field fluctuations below the base of the F region (210-257 km showed a tendency to become slightly flatter (spectral index n = -2.1 ± 0.7 as compared to the valley region (n = -3.6 ± 0.8 and the region below the F peak (n = -2.8 ± 0.5. Correlation analysis of the electron density and vertical electric field fluctuations suggests the presence of a sheared flow of current in 160-330 km region.Keywords: Ionosphere (Electric fields and currents; ionospheric irregularities; Radio science (ionospheric physics

  18. Measuring market performance in restructured electricity markets: An empirical analysis of the PJM energy market

    Science.gov (United States)

    Tucker, Russell Jay

    2002-09-01

    Today the electric industry in the U.S. is transitioning to competitive markets for wholesale electricity. Independent system operators (ISOs) now manage broad regional markets for electrical energy in several areas of the U.S. A recent rulemaking by the Federal Energy Regulatory Commission (FERC) encourages the development of regional transmission organizations (RTOs) and restructured competitive wholesale electricity markets nationwide. To date, the transition to competitive wholesale markets has not been easy. The increased reliance on market forces coupled with unusually high electricity demand for some periods have created conditions amenable to market power abuse in many regions throughout the U.S. In the summer of 1999, hot and humid summer conditions in Pennsylvania, New Jersey, Maryland, Delaware, and the District of Columbia pushed peak demand in the PJM Interconnection to record levels. These demand conditions coincided with the introduction of market-based pricing in the wholesale electricity market. Prices for electricity increased on average by 55 percent, and reached the $1,000/MWh range. This study examines the extent to which generator market power raised prices above competitive levels in the PJM Interconnection during the summer of 1999. It simulates hourly market-clearing prices assuming competitive market behavior and compares these prices with observed market prices in computing price markups over the April 1-August 31, 1999 period. The results of the simulation analysis are supported with an examination of actual generator bid data of incumbent generators. Price markups averaged 14.7 percent above expected marginal cost over the 5-month period for all non-transmission-constrained hours. The evidence presented suggests that the June and July monthly markups were strongly influenced by generator market power as price inelastic peak demand approached the electricity generation capacity constraint of the market. While this analysis of the

  19. The effect of Er on MSE measurements of q, a new technique for measuring Er, and a test of the neoclassical electric field

    International Nuclear Information System (INIS)

    Zarnstorff, M.C.; Synakowski, E.J.

    1996-10-01

    Previous analysis of motional-Stark Effect (MSE) data to measure the q-profile ignored contributions from the plasma electric field. The MSE measurements are shown to be sensitive to the electric field and require significant corrections for plasmas with large rotation velocities or pressure gradients. MSE measurements from rotating plasmas on the Tokamak Fusion Test Reactor (TFTR) confirm the significance of these corrections and verify their magnitude. Several attractive configurations are considered for future MSE-based diagnostics for measuring the plasma radial electric field. MSE data from TFTR is analyzed to determine the change in the radial electric field between two plasmas. The measured electric field quantitatively agrees with the predictions of neoclassical theory. These results confirm the utility of a MSE electric field measurement

  20. Four-point probe measurements using current probes with voltage feedback to measure electric potentials

    Science.gov (United States)

    Lüpke, Felix; Cuma, David; Korte, Stefan; Cherepanov, Vasily; Voigtländer, Bert

    2018-02-01

    We present a four-point probe resistance measurement technique which uses four equivalent current measuring units, resulting in minimal hardware requirements and corresponding sources of noise. Local sample potentials are measured by a software feedback loop which adjusts the corresponding tip voltage such that no current flows to the sample. The resulting tip voltage is then equivalent to the sample potential at the tip position. We implement this measurement method into a multi-tip scanning tunneling microscope setup such that potentials can also be measured in tunneling contact, allowing in principle truly non-invasive four-probe measurements. The resulting measurement capabilities are demonstrated for \

  1. Measurement of ac electrical conductivity of molten glass by impedance measurement using co-axial cylinder electrode

    International Nuclear Information System (INIS)

    Shah, J.G.; Yalmali, V.S.; Tawde, Manisha; Mishra, R.

    2006-01-01

    The need of nuclear power as an energy source requires the solution of many problems. One of the most important is fixation of high level radioactive waste (HLW) in suitable borosilicate glass formulation. The major issue with this process is maximum waste loading in the final vitrified product without compromising on long term product characteristics. The electrical resistivity measurement at high temperature could not be measured with good precision using standard parallel plate electrode configuration due to error in cell constant measurement. Hence a high accuracy, calibration free technique consisting of co-axial electrodes was employed

  2. [Measurement of the electric field of the heart in a homogeneous volume conductor].

    Science.gov (United States)

    Tsukerman, B M; Titomir, L I

    1975-01-01

    The paper describes a technique and some results of experimental measurements of electrical potentials generated by an isolated dog heart in homogeneous conductor, drawing equipotential maps of the field, and calculating the characteristics of the dipole equivalent generator of the heart. The form of potential distribution on a spherical surface around the heart and its ideal orthogonal vectorcardiograms are discussed.

  3. Measuring q/m for Water Drops--An Introduction to the Effects of Electrical Forces

    Science.gov (United States)

    Hart, Francis X.

    1974-01-01

    Discusses an experiment which introduces students to the effects of electrical forces on the motion of macroscopic objects. Included are the proecedures of measuring the charge-to-mass ratio from deflections of charged water drops in horizontal fields and the overall charges delivered in a Faraday cup. (CC)

  4. Measuring user similarity using electric circuit analysis: application to collaborative filtering.

    Science.gov (United States)

    Yang, Joonhyuk; Kim, Jinwook; Kim, Wonjoon; Kim, Young Hwan

    2012-01-01

    We propose a new technique of measuring user similarity in collaborative filtering using electric circuit analysis. Electric circuit analysis is used to measure the potential differences between nodes on an electric circuit. In this paper, by applying this method to transaction networks comprising users and items, i.e., user-item matrix, and by using the full information about the relationship structure of users in the perspective of item adoption, we overcome the limitations of one-to-one similarity calculation approach, such as the Pearson correlation, Tanimoto coefficient, and Hamming distance, in collaborative filtering. We found that electric circuit analysis can be successfully incorporated into recommender systems and has the potential to significantly enhance predictability, especially when combined with user-based collaborative filtering. We also propose four types of hybrid algorithms that combine the Pearson correlation method and electric circuit analysis. One of the algorithms exceeds the performance of the traditional collaborative filtering by 37.5% at most. This work opens new opportunities for interdisciplinary research between physics and computer science and the development of new recommendation systems.

  5. Measuring user similarity using electric circuit analysis: application to collaborative filtering.

    Directory of Open Access Journals (Sweden)

    Joonhyuk Yang

    Full Text Available We propose a new technique of measuring user similarity in collaborative filtering using electric circuit analysis. Electric circuit analysis is used to measure the potential differences between nodes on an electric circuit. In this paper, by applying this method to transaction networks comprising users and items, i.e., user-item matrix, and by using the full information about the relationship structure of users in the perspective of item adoption, we overcome the limitations of one-to-one similarity calculation approach, such as the Pearson correlation, Tanimoto coefficient, and Hamming distance, in collaborative filtering. We found that electric circuit analysis can be successfully incorporated into recommender systems and has the potential to significantly enhance predictability, especially when combined with user-based collaborative filtering. We also propose four types of hybrid algorithms that combine the Pearson correlation method and electric circuit analysis. One of the algorithms exceeds the performance of the traditional collaborative filtering by 37.5% at most. This work opens new opportunities for interdisciplinary research between physics and computer science and the development of new recommendation systems.

  6. A setup for measuring the Seebeck coefficient and the electrical resistivity of bulk thermoelectric materials

    Science.gov (United States)

    Fu, Qiang; Xiong, Yucheng; Zhang, Wenhua; Xu, Dongyan

    2017-09-01

    This paper presents a setup for measuring the Seebeck coefficient and the electrical resistivity of bulk thermoelectric materials. The sample holder was designed to have a compact structure and can be directly mounted in a standard cryostat system for temperature-dependent measurements. For the Seebeck coefficient measurement, a thin bar-shaped sample is mounted bridging two copper bases; and two ceramic heaters are used to generate a temperature gradient along the sample. Two type T thermocouples are used to determine both temperature and voltage differences between two widely separated points on the sample. The thermocouple junction is flattened into a disk and pressed onto the sample surface by using a spring load. The flexible fixation method we adopted not only simplifies the sample mounting process but also prevents thermal contact deterioration due to the mismatch of thermal expansion coefficients between the sample and other parts. With certain modifications, the sample holder can also be used for four-probe electrical resistivity measurements. High temperature measurements are essential for thermoelectric power generation. The experimental system we developed is capable of measuring the Seebeck coefficient and the electrical resistivity of bulk thermoelectric materials in a wide temperature range from 80 to 500 K, which can be further extended to even higher temperatures. Measurements on two standard materials, constantan and nickel, confirmed the accuracy and the reliability of the system.

  7. Evaluation of DC electric field distribution of PPLP specimen based on the measurement of electrical conductivity in LN{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Jae-Sang; Seong, Jae-Kyu; Shin, Woo-Ju; Lee, Jong-Geon [Hanyang University, 408-2, 4th Engineering Bldg, Sa 3-dong, Sangrok-gu, Ansan 426-791 (Korea, Republic of); Cho, Jeon-Wook; Ryoo, Hee-Suk [Korea Electrotechnology Research Institute, Changwon, Gyungnam 641-120 (Korea, Republic of); Lee, Bang-Wook, E-mail: bangwook@hanyang.ac.kr [Hanyang University, 408-2, 4th Engineering Bldg, Sa 3-dong, Sangrok-gu, Ansan 426-791 (Korea, Republic of)

    2013-11-15

    Highlights: •The electrical conductivity of PPLP in LN{sub 2} was successfully measured. •Based on the measured value of PPLP, DC field analysis was performed. •The electric field distribution was altered according to the DC applying stages. •The maximum electric field was observed during polarity reversal situation. •DC field analysis is important to determine the optimum design of DC HTS devices. -- Abstract: High temperature superconducting (HTS) cable has been paid much attention due to its high efficiency and high current transportation capability, and it is also regarded as eco-friendly power cable for the next generation. Especially for DC HTS cable, it has more sustainable and stable properties compared to AC HTS cable due to the absence of AC loss in DC HTS cable. Recently, DC HTS cable has been investigated competitively all over the world, and one of the key components of DC HTS cable to be developed is a cable joint box considering HVDC environment. In order to achieve the optimum insulation design of the joint box, analysis of DC electric field distribution of the joint box is a fundamental process to develop DC HTS cable. Generally, AC electric field distribution depends on relative permittivity of dielectric materials but in case of DC, electrical conductivity of dielectric material is a dominant factor which determines electric field distribution. In this study, in order to evaluate DC electric field characteristics of the joint box for DC HTS cable, polypropylene laminated paper (PPLP) specimen has been prepared and its DC electric field distribution was analyzed based on the measurement of electrical conductivity of PPLP in liquid nitrogen (LN{sub 2}). Electrical conductivity of PPLP in LN{sub 2} has not been reported yet but it should be measured for DC electric field analysis. The experimental works for measuring electrical conductivity of PPLP in LN{sub 2} were presented in this paper. Based on the experimental works, DC electric

  8. Measurement of full-field deformation induced by a dc electrical field in organic insulator films

    Directory of Open Access Journals (Sweden)

    Boudou L.

    2010-06-01

    Full Text Available Digital image correlation method (DIC using the correlation coefficient curve-fitting for full-field surface deformation measurements of organic insulator films is investigated in this work. First the validation of the technique was undertaken. The computer-generated speckle images and the measurement of coefficient of thermal expansion (CTE of aluminium are used to evaluate the measurement accuracy of the technique. In a second part the technique is applied to measure the mechanical deformation induced by electrical field application to organic insulators. For that Poly(ethylene naphthalene 2,6-dicarboxylate (PEN thin films were subjected to DC voltage stress and DIC provides the full-field induced deformations of the test films. The obtained results show that the DIC is a practical and robust tool for better comprehension of mechanical behaviour of the organic insulator films under electrical stress.

  9. Research on motor rotational speed measurement in regenerative braking system of electric vehicle

    Science.gov (United States)

    Pan, Chaofeng; Chen, Liao; Chen, Long; Jiang, Haobin; Li, Zhongxing; Wang, Shaohua

    2016-01-01

    Rotational speed signals acquisition and processing techniques are widely used in rotational machinery. In order to realized precise and real-time control of motor drive and regenerative braking process, rotational speed measurement techniques are needed in electric vehicles. Obtaining accurate motor rotational speed signal will contribute to the regenerative braking force control steadily and realized higher energy recovery rate. This paper aims to develop a method that provides instantaneous speed information in the form of motor rotation. It addresses principles of motor rotational speed measurement in the regenerative braking systems of electric vehicle firstly. The paper then presents ideal and actual Hall position sensor signals characteristics, the relation between the motor rotational speed and the Hall position sensor signals is revealed. Finally, Hall position sensor signals conditioning and processing circuit and program for motor rotational speed measurement have been carried out based on measurement error analysis.

  10. Electrical shielding box measurement of the negative hydrogen beam from Penning ion gauge ion source.

    Science.gov (United States)

    Wang, T; Yang, Z; Dong, P; long, J D; He, X Z; Wang, X; Zhang, K Z; Zhang, L W

    2012-06-01

    The cold-cathode Penning ion gauge (PIG) type ion source has been used for generation of negative hydrogen (H(-)) ions as the internal ion source of a compact cyclotron. A novel method called electrical shielding box dc beam measurement is described in this paper, and the beam intensity was measured under dc extraction inside an electrical shielding box. The results of the trajectory simulation and dc H(-) beam extraction measurement were presented. The effect of gas flow rate, magnetic field strength, arc current, and extraction voltage were also discussed. In conclusion, the dc H(-) beam current of about 4 mA from the PIG ion source with the puller voltage of 40 kV and arc current of 1.31 A was extrapolated from the measurement at low extraction dc voltages.

  11. Design of a low-cost system for electrical conductivity measurements of high temperature

    Science.gov (United States)

    Singh, Yadunath

    2018-05-01

    It is always a curiosity and interest among researchers working in the field of material science to know the impact of high temperature on the physical and transport properties of the materials. In this paper, we report on the design and working of a system for the measurements of electrical resistivity with high temperature. It was designed at our place and successively used for these measurements in the temperature range from room temperature to 500 ˚C.

  12. Electronic energy gap of molecular hydrogen from electrical conductivity measurements at high shock pressures

    Science.gov (United States)

    Nellis, W. J.; Mitchell, A. C.; Mccandless, P. C.; Erskine, D. J.; Weir, S. T.

    1992-01-01

    Electrical conductivities were measured for liquid D2 and H2 shock compressed to pressures of 10-20 GPa (100-200 kbar), molar volumes near 8 cu cm/mol, and calculated temperatures of 2900-4600 K. The semiconducting energy gap derived from the conductivities is 12 eV, in good agreement with recent quasi-particle calculations and with oscillator frequencies measured in diamond-anvil cells.

  13. Electric field measurement in an atmospheric or higher pressure gas by coherent Raman scattering of nitrogen

    International Nuclear Information System (INIS)

    Ito, Tsuyohito; Kobayashi, Kazunobu; Hamaguchi, Satoshi; Mueller, Sarah; Luggenhoelscher, Dirk; Czarnetzki, Uwe

    2009-01-01

    The feasibility of electric field measurement based on field-induced coherent Raman scattering is demonstrated for the first time in a nitrogen containing gas at atmospheric or higher pressure, including open air. The technique is especially useful for the determination of temporal and spatial profiles of the electric field in air-based microdischarges, where nitrogen is abundant. In our current experimental setup, the minimum detectable field strength in open air is about 100 V mm -1 , which is sufficiently small compared with the average field present in typical microdischarges. No further knowledge of other gas/plasma parameters such as the nitrogen density is required. (fast track communication)

  14. First Measurement of the Atomic Electric Dipole Moment of (225)Ra.

    Science.gov (United States)

    Parker, R H; Dietrich, M R; Kalita, M R; Lemke, N D; Bailey, K G; Bishof, M; Greene, J P; Holt, R J; Korsch, W; Lu, Z-T; Mueller, P; O'Connor, T P; Singh, J T

    2015-06-12

    The radioactive radium-225 ((225)Ra) atom is a favorable case to search for a permanent electric dipole moment. Because of its strong nuclear octupole deformation and large atomic mass, (225)Ra is particularly sensitive to interactions in the nuclear medium that violate both time-reversal symmetry and parity. We have developed a cold-atom technique to study the spin precession of (225)Ra atoms held in an optical dipole trap, and demonstrated the principle of this method by completing the first measurement of its atomic electric dipole moment, reaching an upper limit of |d((225)Ra)|<5.0×10(-22)  e cm (95% confidence).

  15. Contribution of soil electric resistivity measurements to the studies on soil/grapevine water relations

    Directory of Open Access Journals (Sweden)

    Etienne Goulet

    2006-06-01

    Full Text Available The classical techniques that allow to quantify the soil water status such as the gravimetric method or the use of neutrons probes do not give access to the volume of soil explored by the plant root system. On the contrary, electric tomography can be used to have a global vision on the water exchange area between soil and plant. The measurement of soil electric resistivity, as a non destructive, spatially integrative technique, has recently been introduced into viticulture. The use of performing equipment and adapted software allows for rapid data processing and gives the possibility to spatialize the variations of soil texture or humidity in two or three dimensions. Soil electric resistivity has been tested for the last three years at the Experimental Unit on Grapevine and Vine, INRA, Angers, France, to study the water supply to the vine in different “terroir” conditions. Resistivity measurements were carried out with the resistivity meter Syscal R1+ (Iris Instruments, France equipped with 21 electrodes. Those electrodes were lined up on the soil surface in a direction perpendiculary to 5 grapevine rows with an electrode spacing of 0.5 m. and a dipole-dipole arrangement. Resistivity measurements were performed on the same place at different times in order to study soil moisture variations. This experimental set up has permitted to visualise the soil stratification and individualize some positive electric anomalies corresponding to preferential drying ; this desiccation could be attributed to grapevine root activity. The soil bulk subject to the water up-take could be defined more precisely and in some types of soil, available water may even be quantified. Terroir effect on grapevine root activity has also been shown up on two different experimental parcels through electric tomography and first results indicate that it is possible to monitor the effects of soil management (inter-row grassing or different rootstocks on the water supply to the

  16. Atom interferometry experiments with lithium. Accurate measurement of the electric polarizability

    International Nuclear Information System (INIS)

    Miffre, A.

    2005-06-01

    Atom interferometers are very sensitive tools to make precise measurements of physical quantities. This study presents a measurement of the static electric polarizability of lithium by atom interferometry. Our result, α = (24.33 ± 0.16)*10 -30 m 3 , improves by a factor 3 the most accurate measurements of this quantity. This work describes the tuning and the operation of a Mach-Zehnder atom interferometer in detail. The two interfering arms are separated by the elastic diffraction of the atomic wave by a laser standing wave, almost resonant with the first resonance transition of lithium atom. A set of experimental techniques, often complicated to implement, is necessary to build the experimental set-up. After a detailed study of the atom source (a supersonic beam of lithium seeded in argon), we present our experimental atom signals which exhibit a very high fringe visibility, up to 84.5 % for first order diffraction. A wide variety of signals has been observed by diffraction of the bosonic isotope at higher diffraction orders and by diffraction of the fermionic less abundant isotope. The quality of these signals is then used to do very accurate phase measurements. A first experiment investigates how the atom interferometer signals are modified by a magnetic field gradient. An absolute measurement of lithium atom electric polarizability is then achieved by applying a static electric field on one of the two interfering arms, separated by only 90 micrometers. The construction of such a capacitor, its alignment in the experimental set-up and its operation are fully detailed.We obtain a very accurate phase measurement of the induced Lo Surdo - Stark phase shift (0.07 % precision). For this first measurement, the final uncertainty on the electric polarizability of lithium is only 0.66 %, and is dominated by the uncertainty on the atom beam mean velocity, so that a further reduction of the uncertainty can be expected. (author)

  17. Automated AC Electrical Impedance Measurement of Ceramic Oxides by means of a Lock-in Amplifier

    International Nuclear Information System (INIS)

    Al-Khawaja, S.; Al-Sous, M. B.; Nasrallah, F.

    2009-06-01

    In this study, the electrical impedance of some ceramic oxides has been investigated employing the Perkin Elmer DSP 7280 Lock-in amplifier, while recording the electric response versus frequency and temperature at constant amplitude. Via integral automation of this lock-in with other delicate electrical measuring devices, a control program has been developed to accurately and swiftly acquire the frequency response of the sample, in order to lately infer the resulting samples' impedance in volt and ampere. Two maxima peaks characterising the impedance, in the curve of the doped molybdenum oxide have been observed discerning two phases in the sample (doped with 40% of niobium oxide), which shows a remarkable relaxation related to improvement in its ionic conductivity within the solid phase, with respect to increasing frequency. (author)

  18. Ionization measurement as a function of the electric field in tetramethyl-silane (TMS)

    International Nuclear Information System (INIS)

    Daba, A.G.

    1992-07-01

    The WALIC collaboration has built a calorimeter prototype using the tetramethyl-pentane (TMP) as active medium and lead as absorber medium in order to study the response of electrons and hadrons. The aim of this work is to study the response of tetramethyl-silane to high electric fields knowing that TMP and TMS have similar properties and similar behaviour with electric field. A test bench is mounted to measure the charge deposited by electrons emitted by a ruthenium source. The trigger was made using a silicon detector. Low noise amplifiers were designed and built for the signal conditioning and in order to reduce the pick-up noise, the system is completely isolated in a double Faraday cage. A theoretical study of noise has been developed. The signal allowed to study the behaviour of warm liquid in presence of a high electric field

  19. Electric field measurements in nanosecond pulse discharges in air over liquid water surface

    Science.gov (United States)

    Simeni Simeni, Marien; Baratte, Edmond; Zhang, Cheng; Frederickson, Kraig; Adamovich, Igor V.

    2018-01-01

    Electric field in nanosecond pulse discharges in ambient air is measured by picosecond four-wave mixing, with absolute calibration by a known electrostatic field. The measurements are done in two geometries, (a) the discharge between two parallel cylinder electrodes placed inside quartz tubes, and (b) the discharge between a razor edge electrode and distilled water surface. In the first case, breakdown field exceeds DC breakdown threshold by approximately a factor of four, 140 ± 10 kV cm-1. In the second case, electric field is measured for both positive and negative pulse polarities, with pulse durations of ˜10 ns and ˜100 ns, respectively. In the short duration, positive polarity pulse, breakdown occurs at 85 kV cm-1, after which the electric field decreases over several ns due to charge separation in the plasma, with no field reversal detected when the applied voltage is reduced. In a long duration, negative polarity pulse, breakdown occurs at a lower electric field, 30 kV cm-1, after which the field decays over several tens of ns and reverses direction when the applied voltage is reduced at the end of the pulse. For both pulse polarities, electric field after the pulse decays on a microsecond time scale, due to residual surface charge neutralization by transport of opposite polarity charges from the plasma. Measurements 1 mm away from the discharge center plane, ˜100 μm from the water surface, show that during the voltage rise, horizontal field component (Ex ) lags in time behind the vertical component (Ey ). After breakdown, Ey is reduced to near zero and reverses direction. Further away from the water surface (≈0.9 mm), Ex is much higher compared to Ey during the entire voltage pulse. The results provide insight into air plasma kinetics and charge transport processes near plasma-liquid interface, over a wide range of time scales.

  20. Monitoring Induced Fractures with Electrical Measurements using Depth to Surface Resistivity: A Field Case Study

    Science.gov (United States)

    Wilt, M.; Nieuwenhuis, G.; Sun, S.; MacLennan, K.

    2016-12-01

    Electrical methods offer an attractive option to map induced fractures because the recovered anomaly is related to the electrical conductivity of the injected fluid in the open (propped) section of the fracture operation. This is complementary to existing micro-seismic technology, which maps the mechanical effects of the fracturing. In this paper we describe a 2014 field case where a combination of a borehole casing electrode and a surface receiver array was used to monitor hydrofracture fracture creation and growth in an unconventional oil field project. The fracture treatment well was 1 km long and drilled to a depth of 2.2 km. Twelve fracture events were induced in 30 m intervals (stages) in the 1 km well. Within each stage 5 events (clusters) were initiated at 30 m intervals. Several of the fracture stages used a high salinity brine, instead of fresh water, to enhance the electrical signal. The electrical experiment deployed a downhole source in a well parallel to the treatment well and 100 m away. The source consisted of an electrode attached to a wireline cable into which a 0.25 Hz square wave was injected. A 60-station electrical field receiver array was placed above the fracture and extending for several km. Receivers were oriented to measure electrical field parallel with the presumed fracture direction and those perpendicular to it. Active source electrical data were collected continuously during 7 frac stages, 3 of which used brine as the frac fluid over a period of several days. Although the site was quite noisy and the electrical anomaly small we managed to extract a clear frac anomaly using field separation, extensive signal averaging and background noise rejection techniques. Preliminary 3D modeling, where we account for current distribution of the casing electrode and explicitly model multiple thin conductive sheets to represent fracture stages, produces a model consistent with the field measurements and also highlights the sensitivity of the

  1. Results of acoustic measurements with an electric boiling generator at KNK II

    International Nuclear Information System (INIS)

    Aberle, J.

    1987-08-01

    With regard to an integral core surveillance in sodium-cooled breeder reactors acoustic measurement techniques are under development. To determine experimentally the acoustic transfer function of a reactor core and to demonstrate the detectability of local sodium boiling, experiments with a so-called Boiling Generator were carried out in the KNK II reactor. The main part of this Boiling Generator was an electrically heated pin bundle which was equipped with a local blockage to obtain cooling disturbances. In this report the results of the acoustic measurements carried out with the Boiling Generator are presented. Main topic of the evaluation is the determination of the acoustic transfer function between the core and the upper sodium plenum. The signal conditioning necessary prior to this investigation is also explained. Great effort was required to suppress electrical disturbances which superimposed the acoustic signals and could not be eliminated by the hardware during the experiments. Finally, the detectability of local boiling using acoustic measurements is considered

  2. RFID technology for reading of electricity measurements; RFID-lukumoduli saehkoeenergiamittaustietojen luentaan

    Energy Technology Data Exchange (ETDEWEB)

    Vehvilaeinen, T [MX Electrix Oy, Paelkaene (Finland)

    2006-12-19

    In the project is developed a reading module for electricity energy meters. The module saves and transmits the meter's energy measurement and power quality data. The project is based on RFID technology, which is a new application in reading of electricity measurements. The reading module of the meter is read via the customers GSM-telephone, which has a RFID- interface. The reading data is transmitted automatically from the module to the GSM hone, when the customer visits the meter. The utility sends the reading request and needed identifier to the customers GSM. After the reading the measured data is transferred to the utility's data base automatically. The utility can send information to the customer of used energy, pricing, make offers etc. The customer can transfer the data to his/hers own computer or get the information via the internet. (orig.)

  3. Simultaneous reconstruction of permittivity and conductivity using multi-frequency admittance measurement in electrical capacitance tomography

    International Nuclear Information System (INIS)

    Zhang, Maomao; Soleimani, Manuchehr

    2016-01-01

    Electrical capacitance tomography (ECT) is an imaging method mainly capable of reconstructing dielectric permittivity. Generally, the reactance part of complex admittance is measured in a selected frequency. This paper presents for the first time an in depth and systematic analysis of complex admittance data for simultaneous reconstruction of both electrical conductivity and dielectric permittivity. A complex-valued forward model, Jacobian matrix and inverse solution are developed in the time harmonic excitation mode to allow for multi-frequency measurements. Realistic noise models are used to evaluate the performance of complex admittance ECT in a range of excitation frequencies. This paper demonstrates far greater potential for ECT as a versatile imaging tool through novel analysis of complex admittance imaging using a dual conductivity permittivity inversion method. The paper demonstrates that various classes of contactless capacitance based measurement devices can be analysed through complex multi-frequency ECT. (paper)

  4. Electric field measurements in a nanosecond pulse discharge by picosecond CARS/4-wave mixing

    Science.gov (United States)

    Goldberg, Ben; Shkurenkov, Ivan; Adamovich, Igor; Lempert, Walter

    2014-10-01

    Time-resolved electric field measurements in hydrogen by picosecond CARS/4-wave mixing are presented. Measurements are carried out in a high voltage nanosecond pulse discharge in hydrogen in plane-to-plane geometry, at pressures of up to several hundred Torr, and with a time resolution of 0.2 ns. Absolute calibration of the diagnostics is done using a sub-breakdown high voltage pulse of 12 kV/cm. A diffuse discharge is obtained by applying a peak high voltage pulse of 40 kV/cm between the electrodes. It is found that breakdown occurs at a lower field, 15--20 kV/cm, after which the field in the plasma is reduced rapidly due to plasma self shielding The experimental results are compared with kinetic modeling calculations, showing good agreement between the measured and the predicted electric field.

  5. Measurements of plasma density fluctuations and electric wave fields using spherical electrostatic probes

    International Nuclear Information System (INIS)

    Eriksson, A.I.; Bostroem, R.

    1995-04-01

    Spherical electrostatic probes are in wide use for the measurements of electric fields and plasma density. This report concentrates on the measurements of fluctuations of these quantities rather than background values. Potential problems with the technique include the influence of density fluctuations on electric field measurements and vice versa, effects of varying satellite potential, and non-linear rectification in the probe and satellite sheaths. To study the actual importance of these and other possible effects, we simulate the response of the probe-satellite system to various wave phenomena in the plasma by applying approximate analytical as well as numerical methods. We use a set of non-linear probe equations, based on probe characteristics experimentally obtained in space, and therefore essentially independent of any specific probe theory. This approach is very useful since the probe theory for magnetized plasmas is incomplete. 47 refs

  6. SEM technique for imaging and measuring electronic transport in nanocomposites based on electric field induced contrast

    Science.gov (United States)

    Jesse, Stephen [Knoxville, TN; Geohegan, David B [Knoxville, TN; Guillorn, Michael [Brooktondale, NY

    2009-02-17

    Methods and apparatus are described for SEM imaging and measuring electronic transport in nanocomposites based on electric field induced contrast. A method includes mounting a sample onto a sample holder, the sample including a sample material; wire bonding leads from the sample holder onto the sample; placing the sample holder in a vacuum chamber of a scanning electron microscope; connecting leads from the sample holder to a power source located outside the vacuum chamber; controlling secondary electron emission from the sample by applying a predetermined voltage to the sample through the leads; and generating an image of the secondary electron emission from the sample. An apparatus includes a sample holder for a scanning electron microscope having an electrical interconnect and leads on top of the sample holder electrically connected to the electrical interconnect; a power source and a controller connected to the electrical interconnect for applying voltage to the sample holder to control the secondary electron emission from a sample mounted on the sample holder; and a computer coupled to a secondary electron detector to generate images of the secondary electron emission from the sample.

  7. Using VIIRS Day/Night Band to Measure Electricity Supply Reliability: Preliminary Results from Maharashtra, India

    Directory of Open Access Journals (Sweden)

    Michael L. Mann

    2016-08-01

    Full Text Available Unreliable electricity supplies are common in developing countries and impose large socio-economic costs, yet precise information on electricity reliability is typically unavailable. This paper presents preliminary results from a machine-learning approach for using satellite imagery of nighttime lights to develop estimates of electricity reliability for western India at a finer spatial scale. We use data from the Visible Infrared Imaging Radiometer Suite (VIIRS onboard the Suomi National Polar Partnership (SNPP satellite together with newly-available data from networked household voltage meters. Our results point to the possibilities of this approach as well as areas for refinement. With currently available training data, we find a limited ability to detect individual outages identified by household-level measurements of electricity voltage. This is likely due to the relatively small number of individual outages observed in our preliminary data. However, we find that the approach can estimate electricity reliability rates for individual locations fairly well, with the predicted versus actual regression yielding an R2 > 0.5. We also find that, despite the after midnight overpass time of the SNPP satellite, the reliability estimates derived are representative of daytime reliability.

  8. Concept for a MEMS-type vacuum sensor based on electrical conductivity measurements

    Directory of Open Access Journals (Sweden)

    F. J. Giebel

    2017-11-01

    Full Text Available The concept of the micro-structured vacuum sensor presented in this article is the measurement of the electrical conductivity of thinned gases in order to develop a small, economical and quite a simple type of vacuum sensor. There are already some approaches for small vacuum sensors. Most of them are based on conservative measurement principles similar to those used in macroscopic vacuum gauges. Ionization gauges use additional sources of energy, like hot cathodes, ultraviolet radiation or high voltage for example, for ionizing gas molecules and thereby increasing the number of charge carriers for measuring low pressures. In contrast, the concept discussed here cannot be found in macroscopic sensor systems because it depends on the microscopic dimension of a gas volume defined by two electrodes. Here we present the concept and the production of a micro-structured vacuum sensor chip, followed by the electrical characterization. Reference measurements with electrodes at a distance of about 1 mm showed currents in the size of picoampere and a conductivity depending on ambient pressure. In comparison with these preliminary measurements, fundamental differences regarding pressure dependence of the conductivity are monitored in the electrical characterization of the micro-structured sensor chip. Finally the future perspectives of this sensor concept are discussed.

  9. Influence of plant roots on electrical resistivity measurements of cultivated soil columns

    Science.gov (United States)

    Maloteau, Sophie; Blanchy, Guillaume; Javaux, Mathieu; Garré, Sarah

    2016-04-01

    Electrical resistivity methods have been widely used for the last 40 years in many fields: groundwater investigation, soil and water pollution, engineering application for subsurface surveys, etc. Many factors can influence the electrical resistivity of a media, and thus influence the ERT measurements. Among those factors, it is known that plant roots affect bulk electrical resistivity. However, this impact is not yet well understood. The goals of this experiment are to quantify the effect of plant roots on electrical resistivity of the soil subsurface and to map a plant roots system in space and time with ERT technique in a soil column. For this research, it is assumed that roots system affect the electrical properties of the rhizosphere. Indeed the root activity (by transporting ions, releasing exudates, changing the soil structure,…) will modify the rhizosphere electrical conductivity (Lobet G. et al, 2013). This experiment is included in a bigger research project about the influence of roots system on geophysics measurements. Measurements are made on cylinders of 45 cm high and a diameter of 20 cm, filled with saturated loam on which seeds of Brachypodium distachyon (L.) Beauv. are sowed. Columns are equipped with electrodes, TDR probes and temperature sensors. Experiments are conducted at Gembloux Agro-Bio Tech, in a growing chamber with controlled conditions: temperature of the air is fixed to 20° C, photoperiod is equal to 14 hours, photosynthetically active radiation is equal to 200 μmol m-2s-1, and air relative humidity is fixed to 80 %. Columns are fully saturated the first day of the measurements duration then no more irrigation is done till the end of the experiment. The poster will report the first results analysis of the electrical resistivity distribution in the soil columns through space and time. These results will be discussed according to the plant development and other controlled factors. Water content of the soil will also be detailed

  10. Improving sensitivity to magnetic fields and electric dipole moments by using measurements of individual magnetic sublevels

    Science.gov (United States)

    Tang, Cheng; Zhang, Teng; Weiss, David S.

    2018-03-01

    We explore ways to use the ability to measure the populations of individual magnetic sublevels to improve the sensitivity of magnetic field measurements and measurements of atomic electric dipole moments (EDMs). When atoms are initialized in the m =0 magnetic sublevel, the shot-noise-limited uncertainty of these measurements is 1 /√{2 F (F +1 ) } smaller than that of a Larmor precession measurement. When the populations in the even (or odd) magnetic sublevels are combined, we show that these measurements are independent of the tensor Stark shift and the second order Zeeman shift. We discuss the complicating effect of a transverse magnetic field and show that when the ratio of the tensor Stark shift to the transverse magnetic field is sufficiently large, an EDM measurement with atoms initialized in the superposition of the stretched states can reach the optimal sensitivity.

  11. Influence of the Ambient Electric Field on Measurements of the Actively Controlled Spacecraft Potential by MMS

    Science.gov (United States)

    Torkar, K.; Nakamura, R.; Andriopoulou, M.; Giles, B. L.; Jeszenszky, H.; Khotyaintsev, Y. V.; Lindqvist, P.-A.; Torbert, R. B.

    2017-12-01

    Space missions with sophisticated plasma instrumentation such as Magnetospheric Multiscale, which employs four satellites to explore near-Earth space benefit from a low electric potential of the spacecraft, to improve the plasma measurements and therefore carry instruments to actively control the potential by means of ion beams. Without control, the potential varies in anticorrelation with plasma density and temperature to maintain an equilibrium between the plasma current and the one of photoelectrons produced at the surface and overcoming the potential barrier. A drawback of the controlled, almost constant potential is the difficulty to use it as convenient estimator for plasma density. This paper identifies a correlation between the spacecraft potential and the ambient electric field, both measured by double probes mounted at the end of wire booms, as the main responsible for artifacts in the potential data besides the known effect of the variable photoelectron production due to changing illumination of the surface. It is shown that the effect of density variations is too weak to explain the observed correlation with the electric field and that a correction of the artifacts can be achieved to enable the reconstruction of the uncontrolled potential and plasma density in turn. Two possible mechanisms are discussed: the asymmetry of the current-voltage characteristic determining the probe to plasma potential and the fact that a large equipotential structure embedded in an electric field results in asymmetries of both the emission and spatial distribution of photoelectrons, which results in an increase of the spacecraft potential.

  12. Measuring the competitiveness benefits of a transmission investment policy: The case of the Alberta electricity market

    International Nuclear Information System (INIS)

    Wolak, Frank A.

    2015-01-01

    Transmission expansions can increase the extent of competition faced by wholesale electricity suppliers with the ability to exercise unilateral market power. This can cause them to submit offer curves closer to their marginal cost curves, which sets market-clearing prices closer to competitive benchmark price levels. These lower wholesale market-clearing prices are the competitiveness benefit consumers realize from the transmission expansion. This paper quantifies empirically the competitiveness benefits of a transmission expansion policy that causes strategic suppliers to expect no transmission congestion. Using hourly generation-unit level offer, output, market-clearing price and congestion data from the Alberta wholesale electricity market from January 1, 2009 to July 31, 2013, an upper and lower bound on the hourly consumer competitiveness benefits of this transmission policy is computed. Both of these competitiveness benefits measures are economically significant, which argues for including them in transmission planning processes for wholesale electricity markets to ensure that all transmission expansions with positive net benefits to electricity consumers are undertaken. -- Highlights: •Define competitiveness benefits to consumers from transmission expansions in wholesale market. •Compute upper and lower bounds on competitiveness benefits for Alberta market. •Compare no-perceived congestion prices to actual prices to measure competitiveness benefits. •Economically substantial competitiveness benefits found for sample period studied. •To ensure adequate transmission, planning processes should account for these benefits

  13. Measuring the electrical resistivity and contact resistance of vertical carbon nanotube bundles for application as interconnects

    International Nuclear Information System (INIS)

    Chiodarelli, Nicolo'; Li, Yunlong; Arstila, Kai; Richard, Olivier; Cott, Daire J; Heyns, Marc; De Gendt, Stefan; Groeseneken, Guido; Vereecken, Philippe M; Masahito, Sugiura; Kashiwagi, Yusaku

    2011-01-01

    Carbon nanotubes (CNT) are known to be materials with potential for manufacturing sub-20 nm high aspect ratio vertical interconnects in future microchips. In order to be successful with respect to contending against established tungsten or copper based interconnects, though, CNT must fulfil their promise of also providing low electrical resistance in integrated structures using scalable integration processes fully compatible with silicon technology. Hence, carefully engineered growth and integration solutions are required before we can fully exploit their potentialities. This work tackles the problem of optimizing a CNT integration process from the electrical perspective. The technique of measuring the CNT resistance as a function of the CNT length is here extended to CNT integrated in vertical contacts. This allows extracting the linear resistivity and the contact resistance of the CNT, two parameters to our knowledge never reported separately for vertical CNT contacts and which are of utmost importance, as they respectively measure the quality of the CNT and that of their metal contacts. The technique proposed allows electrically distinguishing the impact of each processing step individually on the CNT resistivity and the CNT contact resistance. Hence it constitutes a powerful technique for optimizing the process and developing CNT contacts of superior quality. This can be of relevant technological importance not only for interconnects but also for all those applications that rely on the electrical properties of CNT grown with a catalytic chemical vapor deposition method at low temperature.

  14. Polynomial Collocation for Handling an Inaccurately Known Measurement Configuration in Electrical Impedance Tomography

    DEFF Research Database (Denmark)

    Hyvönen, Niina; Kaarnioja, V.; Mustonen, L.

    2017-01-01

    The objective of electrical impedance tomography is to reconstruct the internal conductivity of a physical body based on measurements of current and potential at a finite number of electrodes attached to its boundary. Although the conductivity is the quantity of main interest in impedance...... tomography, a real-world measurement configuration includes other unknown parameters as well: The information on the contact resistances, electrode positions, and body shape is almost always incomplete. In this work, the dependence of the electrode measurements on all aforementioned model properties...

  15. Atmospheric electrical field measurements near a fresh water reservoir and the formation of the lake breeze

    Directory of Open Access Journals (Sweden)

    Francisco Lopes

    2016-06-01

    Full Text Available In order to access the effect of the lakes in the atmospheric electrical field, measurements have been carried out near a large man-made lake in southern Portugal, the Alqueva reservoir, during the ALqueva hydro-meteorological EXperiment 2014. The purpose of these conjoint experiments was to study the impact of the Alqueva reservoir on the atmosphere, in particular on the local atmospheric electric environment by comparing measurements taken in the proximity of the lake. Two stations 10 km apart were used, as they were located up- and down-wind of the lake (Amieira and Parque Solar, respectively, in reference to the dominant northwestern wind direction. The up-wind station shows lower atmospheric electric potential gradient (PG values than the ones observed in the down-wind station between 12 and 20 UTC. The difference in the atmospheric electric PG between the up-wind and the down-wind station is ~30 V/m during the day. This differential occurs mainly during the development of a lake breeze, between 10 and 18 UTC, as a consequence of the surface temperature gradient between the surrounding land and the lake water. In the analysis presented, a correlation is found between the atmospheric electric PG differences and both wind speed and temperature gradients over the lake, thus supporting the influence of the lake breeze over the observed PG variation in the two stations. Two hypotheses are provided to explain this observation: (1 The air that flows from the lake into the land station is likely to increase the local electric conductivity through the removal of ground dust and the transport of cleaner air from higher altitudes with significant light ion concentrations. With such an increase in conductivity, it is expected to see a reduction of the atmospheric electric PG; (2 the resulting air flow over the land station carries negative ions formed by wave splashing in the lake's water surface, as a result of the so-called balloelectric effect

  16. Microcontroller based system for electrical breakdown time delay measurement in gas-filled devices.

    Science.gov (United States)

    Pejović, Milić M; Denić, Dragan B; Pejović, Momčilo M; Nešić, Nikola T; Vasović, Nikola

    2010-10-01

    This paper presents realization of a digital embedded system for measuring electrical breakdown time delay. The proposed system consists of three major parts: dc voltage supply, analog subsystem, and a digital subsystem. Any dc power source with the range from 100 to 1000 V can be used in this application. The analog subsystem should provide fast and accurate voltage switching on the testing device as well as transform the signals that represent the voltage pulse on the device and the device breakdown into the form suitable for detection by a digital subsystem. The insulated gate bipolar transistor IRG4PH40KD driven by TC429 MOSFET driver is used for high voltage switching on the device. The aim of a digital subsystem is to detect the signals from the analog subsystem and to measure the elapsed time between their occurrences. Moreover, the digital subsystem controls various parameters that influence time delay and provides fast data storage for a large number of measured data. For this propose, we used the PIC18F4550 microcontroller with a full-speed compatible universal serial bus (USB) engine. Operation of this system is verified on different commercial and custom made gas devices with different structure and breakdown mechanisms. The electrical breakdown time delay measurements have been carried out as a function of several parameters, which dominantly influence electrical breakdown time delay. The obtained results have been verified using statistical methods, and they show good agreement with the theory. The proposed system shows good repeatability, sensitivity, and stability for measuring the electrical breakdown time delay.

  17. Microcontroller based system for electrical breakdown time delay measurement in gas-filled devices

    Energy Technology Data Exchange (ETDEWEB)

    Pejovic, Milic M.; Denic, Dragan B.; Pejovic, Momcilo M.; Nesic, Nikola T.; Vasovic, Nikola [Faculty of Electronic Engineering, University of Nis, Aleksandra Medvedeva 14, 18000 Nis (Serbia)

    2010-10-15

    This paper presents realization of a digital embedded system for measuring electrical breakdown time delay. The proposed system consists of three major parts: dc voltage supply, analog subsystem, and a digital subsystem. Any dc power source with the range from 100 to 1000 V can be used in this application. The analog subsystem should provide fast and accurate voltage switching on the testing device as well as transform the signals that represent the voltage pulse on the device and the device breakdown into the form suitable for detection by a digital subsystem. The insulated gate bipolar transistor IRG4PH40KD driven by TC429 MOSFET driver is used for high voltage switching on the device. The aim of a digital subsystem is to detect the signals from the analog subsystem and to measure the elapsed time between their occurrences. Moreover, the digital subsystem controls various parameters that influence time delay and provides fast data storage for a large number of measured data. For this propose, we used the PIC18F4550 microcontroller with a full-speed compatible universal serial bus (USB) engine. Operation of this system is verified on different commercial and custom made gas devices with different structure and breakdown mechanisms. The electrical breakdown time delay measurements have been carried out as a function of several parameters, which dominantly influence electrical breakdown time delay. The obtained results have been verified using statistical methods, and they show good agreement with the theory. The proposed system shows good repeatability, sensitivity, and stability for measuring the electrical breakdown time delay.

  18. Microcontroller based system for electrical breakdown time delay measurement in gas-filled devices

    International Nuclear Information System (INIS)

    Pejovic, Milic M.; Denic, Dragan B.; Pejovic, Momcilo M.; Nesic, Nikola T.; Vasovic, Nikola

    2010-01-01

    This paper presents realization of a digital embedded system for measuring electrical breakdown time delay. The proposed system consists of three major parts: dc voltage supply, analog subsystem, and a digital subsystem. Any dc power source with the range from 100 to 1000 V can be used in this application. The analog subsystem should provide fast and accurate voltage switching on the testing device as well as transform the signals that represent the voltage pulse on the device and the device breakdown into the form suitable for detection by a digital subsystem. The insulated gate bipolar transistor IRG4PH40KD driven by TC429 MOSFET driver is used for high voltage switching on the device. The aim of a digital subsystem is to detect the signals from the analog subsystem and to measure the elapsed time between their occurrences. Moreover, the digital subsystem controls various parameters that influence time delay and provides fast data storage for a large number of measured data. For this propose, we used the PIC18F4550 microcontroller with a full-speed compatible universal serial bus (USB) engine. Operation of this system is verified on different commercial and custom made gas devices with different structure and breakdown mechanisms. The electrical breakdown time delay measurements have been carried out as a function of several parameters, which dominantly influence electrical breakdown time delay. The obtained results have been verified using statistical methods, and they show good agreement with the theory. The proposed system shows good repeatability, sensitivity, and stability for measuring the electrical breakdown time delay.

  19. New equivalent-electrical circuit model and a practical measurement method for human body impedance.

    Science.gov (United States)

    Chinen, Koyu; Kinjo, Ichiko; Zamami, Aki; Irei, Kotoyo; Nagayama, Kanako

    2015-01-01

    Human body impedance analysis is an effective tool to extract electrical information from tissues in the human body. This paper presents a new measurement method of impedance using armpit electrode and a new equivalent circuit model for the human body. The lowest impedance was measured by using an LCR meter and six electrodes including armpit electrodes. The electrical equivalent circuit model for the cell consists of resistance R and capacitance C. The R represents electrical resistance of the liquid of the inside and outside of the cell, and the C represents high frequency conductance of the cell membrane. We propose an equivalent circuit model which consists of five parallel high frequency-passing CR circuits. The proposed equivalent circuit represents alpha distribution in the impedance measured at a lower frequency range due to ion current of the outside of the cell, and beta distribution at a high frequency range due to the cell membrane and the liquid inside cell. The calculated values by using the proposed equivalent circuit model were consistent with the measured values for the human body impedance.

  20. Evaluation of metal–nanowire electrical contacts by measuring contact end resistance

    International Nuclear Information System (INIS)

    Park, Hongsik; Beresford, Roderic; Xu, Jimmy; Ha, Ryong; Choi, Heon-Jin; Shin, Hyunjung

    2012-01-01

    It is known, but often unappreciated, that the performance of nanowire (NW)-based electrical devices can be significantly affected by electrical contacts between electrodes and NWs, sometimes to the extent that it is really the contacts that determine the performance. To correctly understand and design NW device operation, it is thus important to carefully measure the contact resistance and evaluate the contact parameters, specific contact resistance and transfer length. A four-terminal pattern or a transmission line model (TLM) pattern has been widely used to measure contact resistance of NW devices and the TLM has been typically used to extract contact parameters of NW devices. However, the conventional method assumes that the electrical properties of semiconducting NW regions covered by a metal are not changed after electrode formation. In this study, we report that the conventional methods for contact evaluation can give rise to considerable errors because of an altered property of the NW under the electrodes. We demonstrate that more correct contact resistance can be measured from the TLM pattern rather than the four-terminal pattern and correct contact parameters including the effects of changed NW properties under electrodes can be evaluated by using the contact end resistance measurement method. (paper)

  1. An improved electrical-conductance sensor for void-fraction measurement in a horizontal pipe

    International Nuclear Information System (INIS)

    Ko, Min Seok; Jemg, Dong Wook; Kim, Sin; Lee, Bo An; Won, Woo Youn; Lee, Yeon Gun

    2015-01-01

    The electrical-impedance method has been widely used for void-fraction measurement in two-phase flow due to its many favorable features. In the impedance method, the response characteristics of the electrical signal heavily depend upon flow pattern, as well as phasic volume. Thus, information on the flow pattern should be given for reliable void-fraction measurement. This study proposes an improved electrical-conductance sensor composed of a three-electrode set of adjacent and opposite electrodes. In the proposed sensor, conductance readings are directly converted into the flow pattern through a specified criterion and are consecutively used to estimate the corresponding void fraction. Since the flow pattern and the void fraction are evaluated by reading conductance measurements, complexity of data processing can be significantly reduced and real-time information provided. Before actual applications, several numerical calculations are performed to optimize electrode and insulator sizes, and optimal design is verified by static experiments. Finally, the proposed sensor is applied for air-water two-phase flow in a horizontal loop with a 40-mm inner diameter and a 5-m length, and its measurement results are compared with those of a wire-mesh sensor

  2. Relative localization in wireless sensor networks for measurement of electric fields under HVDC transmission lines.

    Science.gov (United States)

    Cui, Yong; Wang, Qiusheng; Yuan, Haiwen; Song, Xiao; Hu, Xuemin; Zhao, Luxing

    2015-02-04

    In the wireless sensor networks (WSNs) for electric field measurement system under the High-Voltage Direct Current (HVDC) transmission lines, it is necessary to obtain the electric field distribution with multiple sensors. The location information of each sensor is essential to the correct analysis of measurement results. Compared with the existing approach which gathers the location information by manually labelling sensors during deployment, the automatic localization can reduce the workload and improve the measurement efficiency. A novel and practical range-free localization algorithm for the localization of one-dimensional linear topology wireless networks in the electric field measurement system is presented. The algorithm utilizes unknown nodes' neighbor lists based on the Received Signal Strength Indicator (RSSI) values to determine the relative locations of nodes. The algorithm is able to handle the exceptional situation of the output permutation which can effectively improve the accuracy of localization. The performance of this algorithm under real circumstances has been evaluated through several experiments with different numbers of nodes and different node deployments in the China State Grid HVDC test base. Results show that the proposed algorithm achieves an accuracy of over 96% under different conditions.

  3. Relative Localization in Wireless Sensor Networks for Measurement of Electric Fields under HVDC Transmission Lines

    Directory of Open Access Journals (Sweden)

    Yong Cui

    2015-02-01

    Full Text Available In the wireless sensor networks (WSNs for electric field measurement system under the High-Voltage Direct Current (HVDC transmission lines, it is necessary to obtain the electric field distribution with multiple sensors. The location information of each sensor is essential to the correct analysis of measurement results. Compared with the existing approach which gathers the location information by manually labelling sensors during deployment, the automatic localization can reduce the workload and improve the measurement efficiency. A novel and practical range-free localization algorithm for the localization of one-dimensional linear topology wireless networks in the electric field measurement system is presented. The algorithm utilizes unknown nodes’ neighbor lists based on the Received Signal Strength Indicator (RSSI values to determine the relative locations of nodes. The algorithm is able to handle the exceptional situation of the output permutation which can effectively improve the accuracy of localization. The performance of this algorithm under real circumstances has been evaluated through several experiments with different numbers of nodes and different node deployments in the China State Grid HVDC test base. Results show that the proposed algorithm achieves an accuracy of over 96% under different conditions.

  4. A proposed method of measuring the electric-dipole moment of the neutron by ultracold neutron interferometry

    International Nuclear Information System (INIS)

    Freedman, M.S.; Peshkin, M.; Ringo, G.R.; Dombeck, T.W.

    1989-08-01

    The use of an ultracold neutron interferometer incorporating an electrostatic accelerator having a strong electric field gradient to accelerate neutrons by their possible electric dipole moment is proposed as a method of measuring the neutron electric dipole moment. The method appears to have the possibility of extending the sensitivity of the measurement by several orders of magnitude, perhaps to 10 -30 e-cm. 9 refs., 3 figs

  5. Modelling of Lunar Dust and Electrical Field for Future Lunar Surface Measurements

    Science.gov (United States)

    Lin, Yunlong

    Modelling of the lunar dust and electrical field is important to future human and robotic activities on the surface of the moon. Apollo astronauts had witnessed the maintaining of micron- and millimeter sized moon dust up to meters level while walked on the surface of the moon. The characterizations of the moon dust would enhance not only the scientific understanding of the history of the moon but also the future technology development for the surface operations on the moon. It has been proposed that the maintaining and/or settlement of the small-sized dry dust are related to the size and weight of the dust particles, the level of the surface electrical fields on the moon, and the impaction and interaction between lunar regolith and the solar particles. The moon dust distributions and settlements obviously affected the safety of long term operations of future lunar facilities. For the modelling of the lunar dust and the electrical field, we analyzed the imaging of the legs of the moon lander, the cover and the footwear of the space suits, and the envelope of the lunar mobiles, and estimated the size and charges associated with the small moon dust particles, the gravity and charging effects to them along with the lunar surface environment. We also did numerical simulation of the surface electrical fields due to the impaction of the solar winds in several conditions. The results showed that the maintaining of meters height of the micron size of moon dust is well related to the electrical field and the solar angle variations, as expected. These results could be verified and validated through future on site and/or remote sensing measurements and observations of the moon dust and the surface electrical field.

  6. Thermal strain measurement of EAST W/Cu divertor structure using electric resistance strain gauges

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xingli [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, 230031 (China); Science Island Branch of Graduate School, University of Science & Technology of China, Hefei, 230031 (China); Wang, Wanjing, E-mail: wjwang@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, 230031 (China); Wang, Jichao [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, 230031 (China); Wei, Ran; Sun, Zhaoxuan [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, 230031 (China); Science Island Branch of Graduate School, University of Science & Technology of China, Hefei, 230031 (China); Li, Qiang; Xie, Chunyi [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, 230031 (China); Chen, Hong-En; Wang, Kaiqiang; Wu, Lei; Chen, Zhenmao [State Key Lab for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University (China); Luo, Guang-Nan [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, 230031 (China); Science Island Branch of Graduate School, University of Science & Technology of China, Hefei, 230031 (China); Hefei Center for Physical Science and Technology, Hefei, 230022 (China); Hefei Science Center of Chinese Academy of Sciences, Hefei, 230027 (China)

    2016-12-15

    Highlights: • To understand the service behavior of W/Cu divertor, an electrical resistance strain gauge system had been introduced in a thermal strain measurement experiment. • The measurement system successfully finished the experiment and obtained valued thermal strain data. • Two thermomechanical analyses had also been carried out and compared with the measurement results. • Experiment results corresponded well to simulations and threw a light upon the failure of W/Cu divertor in the previous baking tests. - Abstract: W/Cu divertor has complex structure and faces extreme work environment in EAST Tokamak device. To measure its thermal strain shall be a valued way to understand its service behavior and then optimize its design and manufacturing process. This work presents a preliminary study on measuring thermal strain of EAST W/Cu divertor structure using electric resistance strain gauges. Eight gauges had been used in the experiment and the heating temperature had been set to 230 °C with respect to the work temperature. To realize the measuring experiment, an appropriate fixing method of gauges in divertor narrow spaces had been taken and tested, which could not only withstand high temperature but also had no damage to the divertor sample. The measurement results were that three gauges showed positive strain while other three showed negative strain after having been compensated, which corresponded to tensile stress and compressed stress respectively. Two thermomechanical simulations had also been carried out and used for comparing with the experiment.

  7. Measurement methods and interpretation algorithms for the determination of the remaining lifetime of the electrical insulation

    Directory of Open Access Journals (Sweden)

    Engster F.

    2005-12-01

    Full Text Available The paper presents a set of on-line and off-line measuring methods for the dielectric parameters of the electric insulation as well as the method of results interpretation aimed to determine the occurence of a damage and to set up the its speed of evolution. These results lead finally to the determination of the life time under certain imposed safety conditions. The interpretation of the measurement results is done based on analytical algorithms allowing also the calculation of the index of correlation between the real results and the mathematical interpolation. It is performed a comparative analysis between different measuring and interpretation methods. There are considered certain events occurred during the measurement performance including their causes. The working-out of the analytical methods has been improved during the during the dielectric measurements performance for about 25 years at a number of 140 turbo and hydro power plants. Finally it is proposed a measurement program to be applied and which will allow the correlation of the on-line and off-line dielectric measurement obtaining thus a reliable technology of high accuracy level for the estimation of the available lifetime of electrical insulation.

  8. A Soft Sensor Development for the Rotational Speed Measurement of an Electric Propeller

    Directory of Open Access Journals (Sweden)

    Fengchao Ye

    2016-12-01

    Full Text Available In recent decades, micro air vehicles driven by electric propellers have become a hot topic, and developed quickly. The performance of the vehicles depends on the rotational speed of propellers, thus, improving the accuracy of rotational speed measurement is beneficial to the vehicle’s performance. This paper presents the development of a soft sensor for the rotational speed measurement of an electric propeller. An adaptive learning algorithm is derived for the soft sensor by using Popov hyperstability theory, based on which a one-step-delay adaptive learning algorithm is further proposed to solve the implementation problem of the soft sensor. It is important to note that only the input signal and the commutation instant of the motor are employed as inputs in the algorithm, which makes it possible to be easily implemented in real-time. The experimental test results have demonstrated the learning performance and the accuracy of the soft sensor.

  9. Measurement of quasi-static and low frequency electric fields on the Viking satellite

    International Nuclear Information System (INIS)

    Block, L.P.; Faelthammar, C.G.; Lindqvist, P.A.; Marklund, G.T.; Mozer, F.S.; Pedersen, A.

    1987-03-01

    The instrument for measurement of quasi-static and low frequency (dc and slow varying) electric fields on the Viking satellite is described. The instrument uses three spherical probe pairs to measure the full three-dimensional electric field vector with 18.75 ms time resolution. The probes are kept near plasma potential by means of a controllable bias current. A guard covering part of the booms is biased to a negative voltage to prevent photoelectrons escaping from the probes from reaching the satellite body. Current-voltage sweeps are performed to determine the plasma density and temperature and to select the optimal bias current. The bias currents to the probes and the voltage offset on the guards as well as the current-voltage sweeps are controlled by an on-board microprocessor which can be programmed from the ground and allows great flexibility. (authors)

  10. Measuring the electric field of few-cycle laser pulses by attosecond cross correlation

    International Nuclear Information System (INIS)

    Bandrauk, Andre D.; Chelkowski, Szczepan; Shon, Nguyen Hong

    2002-01-01

    A new technique for directly measuring the electric field of linearly polarized few-cycle laser pulses is proposed. Based on the solution of the time-dependent Schroedinger equation (TDSE) for an H atom in the combined field of infrared (IR) femtosecond (fs) and ultraviolet (UV) attosecond (as) laser pulses we show that, as a function of the time delay between two pulses, the difference (or equivalently, asymmetry) of photoelectron signals in opposite directions (along the polarization vector of laser pulses) reproduces very well the profile of the electric field (or vector potential) in the IR pulse. Such ionization asymmetry can be used for directly measuring the carrier-envelope phase difference (i.e., the relative phase of the carrier frequency with respect to the pulse envelope) of the IR fs laser pulse

  11. Microwave measurement of electrical fields in different media – principles, methods and instrumentation

    International Nuclear Information System (INIS)

    St. Kliment Ohridski, Faculty of Physics, James Bourchier blvd., Sofia 1164 (Bulgaria))" data-affiliation=" (Sofia University St. Kliment Ohridski, Faculty of Physics, James Bourchier blvd., Sofia 1164 (Bulgaria))" >Dankov, Plamen I

    2014-01-01

    This paper, presented in the frame of 4th International Workshop and Summer School on Plasma Physics (IWSSPP'2010, Kiten, Bulgaria), is a brief review of the principles, methods and instrumentation of the microwave measurements of electrical fields in different media. The main part of the paper is connected with the description of the basic features of many field sensors and antennas – narrow-, broadband and ultra-wide band, miniaturized, reconfigurable and active sensors, etc. The main features and applicability of these sensors for determination of electric fields in different media is discussed. The last part of the paper presents the basic principles for utilization of electromagnetic 3-D simulators for E-field measurement purposes. Two illustrative examples have been given – the determination of the dielectric anisotropy of multi-layer materials and discussion of the selectivity of hairpin-probe for determination of the electron density in dense gaseous plasmas.

  12. Induced electric currents in the Alaska oil pipeline measured by gradient, fluxgate, and SQUID magnetometers

    Science.gov (United States)

    Campbell, W. H.; Zimmerman, J. E.

    1979-01-01

    The field gradient method for observing the electric currents in the Alaska pipeline provided consistent values for both the fluxgate and SQUID method of observation. These currents were linearly related to the regularly measured electric and magnetic field changes. Determinations of pipeline current were consistent with values obtained by a direct connection, current shunt technique at a pipeline site about 9.6 km away. The gradient method has the distinct advantage of portability and buried- pipe capability. Field gradients due to the pipe magnetization, geological features, or ionospheric source currents do not seem to contribute a measurable error to such pipe current determination. The SQUID gradiometer is inherently sensitive enough to detect very small currents in a linear conductor at 10 meters, or conversely, to detect small currents of one amphere or more at relatively great distances. It is fairly straightforward to achieve imbalance less than one part in ten thousand, and with extreme care, one part in one million or better.

  13. The measurement of magnetic properties of electrical sheet steel - survey on methods and situation of standards

    CERN Document Server

    Sievert, J

    2000-01-01

    A brief review of the different requirements for magnetic measurement techniques for material research, modelling of material properties and grading of the electrical sheet steel for trade purposes is presented. In relation to the main application of laminated electrical steel, this paper deals with AC measurement techniques. Two standard methods, Epstein frame and Single Sheet Tester (SST), producing different results, are used in parallel. This dilemma was analysed in detail. The study leads to a possible solution of the problem, i.e. the possibility of converting the results of one of the two methods into the results of the other in order to satisfy the users of the Epstein method and, at the same time, to improve the acceptance of the more economical SST method.

  14. Review of laser-induced fluorescence methods for measuring rf- and microwave electric fields in discharges

    International Nuclear Information System (INIS)

    Gavrilenko, V.; Oks, E.

    1994-01-01

    Development of methods for measuring rf- or μ-wave electric fields E(t) = E 0 cosωt in discharge plasmas is of a great practical importance. First, these are fields used for producing rf- or μ-wave discharges. Second, the fields E(t) may represent electromagnetic waves penetrating into a plasma from the outside. This paper reviews methods for diagnostics of the fields E(t) in low temperature plasmas based on Laser-Induced Fluorescence (LIF). Compared to emission (passive) methods, LIF-methods have a higher sensitivity as well as higher spatial and temporal resolutions. Underlying physical effects may be highlighted by an example of LIF of hydrogen atoms in a plasma. After a presentation of the underlying physical principles, the review focuses on key experiments where these principles were implemented for measurements of rf- and μ-wave electric fields in various discharges

  15. Termovision and electricity capacitance measurements as a evaluation of a helicopter rotor’s blades delamination

    Directory of Open Access Journals (Sweden)

    Gębura Andrzej

    2015-12-01

    Full Text Available The article presents essential elements reached during investigations of heat section of rotor blades which have been done in AFIT. The investigations were related to a valuation of helicopter’s rotor blades delamination. They used a method of thermal field measurement as well as a electricity capacitance between an airframe and a heat element of the installation. A suggestion of such measurements appeared during the disassembly of rotor blade heat sections when some local unglue of heat element’s tape from the structure of blade’s heating pack has seen. Spots nearby separation of adhesive are a potential area of a local temperature increase, both the electric heating element and the mechanical structure of the blade. This is especially dangerous for composite structures. Overheated composite structures characterized by reduced flexibility and becomes prone to cracking. Therefore, the possibility of non-invasive monitoring adhesive spots, without removing the blades would be particularly useful.

  16. A Test-Bench for Measurement of Electrical Static Parameters of Strip Silicon Detectors

    CERN Document Server

    Golutvin, I A; Danilevich, V G; Dmitriev, A Yu; Elsha, V V; Zamiatin, Y I; Zubarev, E V; Ziaziulia, F E; Kozus, V I; Lomako, V M; Stepankov, D V; Khomich, A P; Shumeiko, N M; Cheremuhin, A E

    2003-01-01

    An automated test-bench for electrical parameters input control of the strip silicon detectors, used in the End-Cap Preshower detector of the CMS experiment, is described. The test-bench application allows one to solve a problem of silicon detectors input control in conditions of mass production - 1800 detectors over 2 years. The test-bench software is realized in Delphi environment and contains a user-friendly operator interface for measurement data processing and visualization as well as up-to-date facilities for MS-Windows used for the network database. High operating characteristics and reliability of the test-bench were confirmed while more than 800 detectors were tested. Some technical solutions applied to the test-bench could be useful for design and construction of automated facilities for electrical parameters measurements of the microstrip detectors input control.

  17. Data-based method for creating electricity use load profiles using large amount of customer-specific hourly measured electricity use data

    International Nuclear Information System (INIS)

    Raesaenen, Teemu; Voukantsis, Dimitrios; Niska, Harri; Karatzas, Kostas; Kolehmainen, Mikko

    2010-01-01

    The recent technological developments monitoring the electricity use of small customers provides with a whole new view to develop electricity distribution systems, customer-specific services and to increase energy efficiency. The analysis of customer load profile and load estimation is an important and popular area of electricity distribution technology and management. In this paper, we present an efficient methodology, based on self-organizing maps (SOM) and clustering methods (K-means and hierarchical clustering), capable of handling large amounts of time-series data in the context of electricity load management research. The proposed methodology was applied on a dataset consisting of hourly measured electricity use data, for 3989 small customers located in Northern-Savo, Finland. Information for the hourly electricity use, for a large numbers of small customers, has been made available only recently. Therefore, this paper presents the first results of making use of these data. The individual customers were classified into user groups based on their electricity use profile. On this basis, new, data-based load curves were calculated for each of these user groups. The new user groups as well as the new-estimated load curves were compared with the existing ones, which were calculated by the electricity company, on the basis of a customer classification scheme and their annual demand for electricity. The index of agreement statistics were used to quantify the agreement between the estimated and observed electricity use. The results indicate that there is a clear improvement when using data-based estimations, while the new-estimated load curves can be utilized directly by existing electricity power systems for more accurate load estimates.

  18. Data-based method for creating electricity use load profiles using large amount of customer-specific hourly measured electricity use data

    Energy Technology Data Exchange (ETDEWEB)

    Raesaenen, Teemu; Niska, Harri; Kolehmainen, Mikko [Department of Environmental Sciences, University of Eastern Finland P.O. Box 1627, FIN-70211 Kuopio (Finland); Voukantsis, Dimitrios; Karatzas, Kostas [Department of Mechanical Engineering, Aristotle University of Thessaloniki, GR-54124 Thessaloniki (Greece)

    2010-11-15

    The recent technological developments monitoring the electricity use of small customers provides with a whole new view to develop electricity distribution systems, customer-specific services and to increase energy efficiency. The analysis of customer load profile and load estimation is an important and popular area of electricity distribution technology and management. In this paper, we present an efficient methodology, based on self-organizing maps (SOM) and clustering methods (K-means and hierarchical clustering), capable of handling large amounts of time-series data in the context of electricity load management research. The proposed methodology was applied on a dataset consisting of hourly measured electricity use data, for 3989 small customers located in Northern-Savo, Finland. Information for the hourly electricity use, for a large numbers of small customers, has been made available only recently. Therefore, this paper presents the first results of making use of these data. The individual customers were classified into user groups based on their electricity use profile. On this basis, new, data-based load curves were calculated for each of these user groups. The new user groups as well as the new-estimated load curves were compared with the existing ones, which were calculated by the electricity company, on the basis of a customer classification scheme and their annual demand for electricity. The index of agreement statistics were used to quantify the agreement between the estimated and observed electricity use. The results indicate that there is a clear improvement when using data-based estimations, while the new-estimated load curves can be utilized directly by existing electricity power systems for more accurate load estimates. (author)

  19. Laser Cooled YbF Molecules for Measuring the Electron's Electric Dipole Moment

    Science.gov (United States)

    Lim, J.; Almond, J. R.; Trigatzis, M. A.; Devlin, J. A.; Fitch, N. J.; Sauer, B. E.; Tarbutt, M. R.; Hinds, E. A.

    2018-03-01

    We demonstrate one-dimensional sub-Doppler laser cooling of a beam of YbF molecules to 100 μ K . This is a key step towards a measurement of the electron's electric dipole moment using ultracold molecules. We compare the effectiveness of magnetically assisted and polarization-gradient sub-Doppler cooling mechanisms. We model the experiment and find good agreement with our data.

  20. Electric field measurements on Cluster: comparing the double-probe and electron drift techniques

    Directory of Open Access Journals (Sweden)

    A. I. Eriksson

    2006-03-01

    Full Text Available The four Cluster satellites each carry two instruments designed for measuring the electric field: a double-probe instrument (EFW and an electron drift instrument (EDI. We compare data from the two instruments in a representative sample of plasma regions. The complementary merits and weaknesses of the two techniques are illustrated. EDI operations are confined to regions of magnetic fields above 30 nT and where wave activity and keV electron fluxes are not too high, while EFW can provide data everywhere, and can go far higher in sampling frequency than EDI. On the other hand, the EDI technique is immune to variations in the low energy plasma, while EFW sometimes detects significant nongeophysical electric fields, particularly in regions with drifting plasma, with ion energy (in eV below the spacecraft potential (in volts. We show that the polar cap is a particularly intricate region for the double-probe technique, where large nongeophysical fields regularly contaminate EFW measurments of the DC electric field. We present a model explaining this in terms of enhanced cold plasma wake effects appearing when the ion flow energy is higher than the thermal energy but below the spacecraft potential multiplied by the ion charge. We suggest that these conditions, which are typical of the polar wind and occur sporadically in other regions containing a significant low energy ion population, cause a large cold plasma wake behind the spacecraft, resulting in spurious electric fields in EFW data. This interpretation is supported by an analysis of the direction of the spurious electric field, and by showing that use of active potential control alleviates the situation.

  1. Measurements and simulations for peak electrical load reduction in cooling dominated climate

    International Nuclear Information System (INIS)

    Sadineni, Suresh B.; Boehm, Robert F.

    2012-01-01

    Peak electric demand due to cooling load in the Desert Southwest region of the US has been an issue for the electrical energy suppliers. To address this issue, a consortium has been formed between the University of Nevada Las Vegas, Pulte Homes (home builder) and NV Energy (local utility) in order to reduce the peak load by more than 65%. The implemented strategies that were used to accomplish that goal consist of energy efficiency in homes, onsite electricity generation through roof integrated PV, direct load control, and battery storage at the substation level. The simulation models developed using building energy analysis software were validated against measured data. The electrical energy demand for the upgraded home during peak period (1:00–7:00 PM) decreased by approximately 37% and 9% compared to a code standard home of the same size, due to energy efficiency and PV generation, respectively. The total decrease in electrical demand due to energy efficiency and PV generation during the peak period is 46%. Additionally, a 2.2 °C increase in thermostat temperature from 23.9 °C to 26.1 °C between 4:00 PM and 7:00 PM has further decreased the average demand during the peak period by 69% of demand from a standard home. -- Highlights: ► A study to demonstrate peak load reductions of 65% at the substation. ► A new residential energy efficient community named Villa Trieste is being developed. ► The peak demand from the homes has decreased by 37% through energy efficiency. ► A 1.8 kWp system along with energy efficiency measures decreased peak by 46%.

  2. Evaluation of electrical impedance ratio measurements in accuracy of electronic apex locators.

    Science.gov (United States)

    Kim, Pil-Jong; Kim, Hong-Gee; Cho, Byeong-Hoon

    2015-05-01

    The aim of this paper was evaluating the ratios of electrical impedance measurements reported in previous studies through a correlation analysis in order to explicit it as the contributing factor to the accuracy of electronic apex locator (EAL). The literature regarding electrical property measurements of EALs was screened using Medline and Embase. All data acquired were plotted to identify correlations between impedance and log-scaled frequency. The accuracy of the impedance ratio method used to detect the apical constriction (APC) in most EALs was evaluated using linear ramp function fitting. Changes of impedance ratios for various frequencies were evaluated for a variety of file positions. Among the ten papers selected in the search process, the first-order equations between log-scaled frequency and impedance were in the negative direction. When the model for the ratios was assumed to be a linear ramp function, the ratio values decreased if the file went deeper and the average ratio values of the left and right horizontal zones were significantly different in 8 out of 9 studies. The APC was located within the interval of linear relation between the left and right horizontal zones of the linear ramp model. Using the ratio method, the APC was located within a linear interval. Therefore, using the impedance ratio between electrical impedance measurements at different frequencies was a robust method for detection of the APC.

  3. Evaluation of electrical impedance ratio measurements in accuracy of electronic apex locators

    Directory of Open Access Journals (Sweden)

    Pil-Jong Kim

    2015-05-01

    Full Text Available Objectives The aim of this paper was evaluating the ratios of electrical impedance measurements reported in previous studies through a correlation analysis in order to explicit it as the contributing factor to the accuracy of electronic apex locator (EAL. Materials and Methods The literature regarding electrical property measurements of EALs was screened using Medline and Embase. All data acquired were plotted to identify correlations between impedance and log-scaled frequency. The accuracy of the impedance ratio method used to detect the apical constriction (APC in most EALs was evaluated using linear ramp function fitting. Changes of impedance ratios for various frequencies were evaluated for a variety of file positions. Results Among the ten papers selected in the search process, the first-order equations between log-scaled frequency and impedance were in the negative direction. When the model for the ratios was assumed to be a linear ramp function, the ratio values decreased if the file went deeper and the average ratio values of the left and right horizontal zones were significantly different in 8 out of 9 studies. The APC was located within the interval of linear relation between the left and right horizontal zones of the linear ramp model. Conclusions Using the ratio method, the APC was located within a linear interval. Therefore, using the impedance ratio between electrical impedance measurements at different frequencies was a robust method for detection of the APC.

  4. Electrical conductivity measurement of excised human metastatic liver tumours before and after thermal ablation.

    Science.gov (United States)

    Haemmerich, Dieter; Schutt, David J; Wright, Andrew W; Webster, John G; Mahvi, David M

    2009-05-01

    We measured the ex vivo electrical conductivity of eight human metastatic liver tumours and six normal liver tissue samples from six patients using the four electrode method over the frequency range 10 Hz to 1 MHz. In addition, in a single patient we measured the electrical conductivity before and after the thermal ablation of normal and tumour tissue. The average conductivity of tumour tissue was significantly higher than normal tissue over the entire frequency range (from 4.11 versus 0.75 mS cm(-1) at 10 Hz, to 5.33 versus 2.88 mS cm(-1) at 1 MHz). We found no significant correlation between tumour size and measured electrical conductivity. While before ablation tumour tissue had considerably higher conductivity than normal tissue, the two had similar conductivity throughout the frequency range after ablation. Tumour tissue conductivity changed by +25% and -7% at 10 Hz and 1 MHz after ablation (0.23-0.29 at 10 Hz, and 0.43-0.40 at 1 MHz), while normal tissue conductivity increased by +270% and +10% at 10 Hz and 1 MHz (0.09-0.32 at 10 Hz and 0.37-0.41 at 1 MHz). These data can potentially be used to differentiate tumour from normal tissue diagnostically.

  5. First in situ measurement of electric field fluctuations during strong spread F in the Indian zone

    Directory of Open Access Journals (Sweden)

    H. S. S. Sinha

    Full Text Available An RH-560 rocket flight was conducted from Sriharikota rocket range (SHAR (14°N, 80°E, dip 14°N along with other experiments, as a part of equatorial spread F (ESF campaign, to study the nature of irregularities in electric field and electron density. The rocket was launched at 2130 local time (LT and it attained an apogee of 348 km. Results of vertical and horizontal electric field fluctuations are presented here. Scale sizes of electric field fluctuations were measured in the vertical direction only. Strong ESF irregularities were observed in three regions, viz., 160-190 km, 210-257 km and 290-330 km. Some of the valley region vertical electric field irregularities (at 165 km and 168 km, in the intermediate-scale size range, observed during this flight, show spectral peak at kilometer scales and can be interpreted in terms of the image striation theory suggested by Vickrey et al. The irregularities at 176 km do not exhibit any peak at kilometer scales and appear to be of a new type. Scale sizes of vertical electric field fluctuations showed a decrease with increasing altitude. The most prominent scales were of the order of a few kilometers around 170 km and a few hundred meters around 310 km. Spectra of intermediate-scale vertical electric field fluctuations below the base of the F region (210-257 km showed a tendency to become slightly flatter (spectral index n = -2.1 ± 0.7 as compared to the valley region (n = -3.6 ± 0.8 and the region below the F peak (n = -2.8 ± 0.5. Correlation analysis of the electron density and vertical electric field fluctuations suggests the presence of a sheared flow of current in 160-330 km region.

    Keywords: Ionosphere (Electric fields and currents; ionospheric irregularities; Radio science (ionospheric physics

  6. Direct localised measurement of electrical resistivity profile in rat and embryonic chick retinas using a microprobe

    Directory of Open Access Journals (Sweden)

    Harald van Lintel

    2010-01-01

    Full Text Available We report an alternative technique to perform a direct and local measurement of electrical resistivities in a layered retinal tissue. Information on resistivity changes along the depth in a retina is important for modelling retinal stimulation by retinal prostheses. Existing techniques for resistivity-depth profiling have the drawbacks of a complicated experimental setup, a less localised resistivity probing and/or lower stability for measurements. We employed a flexible microprobe to measure local resistivity with bipolar impedance spectroscopy at various depths in isolated rat and chick embryo retinas for the first time. Small electrode spacing permitted high resolution measurements and the probe flexibility contributed to stable resistivity profiling. The resistivity was directly calculated based on the resistive part of the impedance measured with the Peak Resistance Frequency (PRF methodology. The resistivity-depth profiles for both rat and chick embryo models are in accordance with previous mammalian and avian studies in literature. We demonstrate that the measured resistivity at each depth has its own PRF signature. Resistivity profiles obtained with our setup provide the basis for the construction of an electric model of the retina. This model can be used to predict variations in parameters related to retinal stimulation and especially in the design and optimisation of efficient retinal implants.

  7. Measurement of DC electrical conductivity of alumina during spallation-neutron irradiation

    International Nuclear Information System (INIS)

    Farnum, E.H.; Clinard, F.W. Jr.; Kennedy, J.C. III; Sommer, W.F.; Dammeyer, M.D.

    1993-01-01

    An irradiation experiment was carried out during the summer of 1992 at the Los Alamos Spallation Radiation Effects Facility (LASREF). In situ measurements of electrical conductivity in alumina, sapphire and mineral-insulated electrical cables were made at 640 degrees C, 590 degrees C and 400 degrees C. Both DC and AC (100 Hz to 1 MHz) measurements were made to fluence of approximately 3 x 10 23 n/m 2 . Optical absorption from 200 nm to 800 nm was measured in pure silica - and OH-doped silica-core optical fibers during the irradiation. A large number of passive samples were included in the irradiation, some at the furnace temperatures and some at ambient temperature. This report describes preliminary analysis of the DC conductivity measurements. The AC measurements are analyzed in the companion report. All samples are being recovered for post-irradiation examination as this report is being written in May, 1993. Final analysis of the conductivity data awaits the results of measured fluence from activation foils and will be published at ICFRM-6

  8. Design and construction of an instrument for measuring thermistor electrical characteristic

    International Nuclear Information System (INIS)

    Budiono; Yudi Herdiana

    2007-01-01

    In this work an instrument for measuring the electrical characteristic of thermistor has been designed and constructed. The instrument was constructed from main components i.e. a micro controller AT89C51, 3 ADC-0804, a LM35 temperature sensor and IC MAX 232. The IC MAX 232 component is used to connect the micro controller to the personal computer serially by using RS-232 standard. While ADC-0804 was used to convert the analog data (DC voltage) to the digital one so that the data was readable by the micro controller. Digital data from 3 ADC-0804 circuit which have been read by the micro controller was sent directly to the personal computer. The data from the measurement which have been stored in the personal computer was then processed to know the value of temperature and measured thermistor resistance. The processed data could be either stored in a data base or displayed in a monitor or printed in the form of table data and in the form a graph of thermistor resistance as the function of temperature. The result of measurement from measuring instrument of the characteristic of thermistor electric's had been made, being compared by measuring calibrated instrument, the deviation is about 0.33 %. (author)

  9. Measurement Techniques Used for Study of Electrical Discharge Mechanisms in Insulating Ester Fluids under Lightning Impulse

    Directory of Open Access Journals (Sweden)

    ROZGA, P.

    2014-08-01

    Full Text Available This article describes the measurement techniques used for the study of mechanisms of electrical discharge development in ester fluids under lightning impulse voltage. These techniques were applied in a laboratory experimental system which enabled the acquisition of a wide range of experimental data. An analysis of the data gives the possibility of assessing the processes responsible for electrical discharge propagation in different types of dielectric liquids. The photographic registration system provides photographs of developing discharges. This uses the shadowgraph method with an impulse laser as a flash lamp. The system of light emission registration enables collection of the time courses of light emitted by the developing discharge. Both systems operating together are synchronized using light guide communication. They are also unaffected by external disturbances such as network overvoltages and high electrical field stress. Preliminary results obtained on the basis of the described techniques, in the field of electrical discharge development in synthetic and natural esters, are presented in the article. These results confirm suitability of the methods used and give the possibility to formulate first conclusions.

  10. Risk analysis and detection of thrombosis by measurement of electrical resistivity of blood.

    Science.gov (United States)

    Sapkota, Achyut; Asakura, Yuta; Maruyama, Osamu; Kosaka, Ryo; Yamane, Takashi; Takei, Masahiro

    2013-01-01

    Monitoring of thrombogenic process is very important in ventricular assistance devices (VADs) used as temporary or permanent measures in patients with advanced heart failure. Currently, there is a lack of a system which can perform a real-time monitoring of thrombogenic activity. Electrical signals vary according to the change in concentration of coagulation factors as well as the distribution of blood cells, and thus have potential to detect the thrombogenic process in an early stage. In the present work, we have made an assessment of an instrumentation system exploiting the electrical properties of blood. The experiments were conducted using bovine blood. Electrical resistance tomography with eight-electrode sensor was used to monitor the spatio-temporal change in electrical resistivity of blood in thrombogenic and non-thrombogenic condition. Under non-thrombogenic condition, the resistivity was uniform across the cross-section and average resistivity monotonically decreased with time before remaining almost flat. In contrary, under thrombogenic condition, there was non-uniform distribution across the cross-section, and average resistivity fluctuated with time.

  11. Drilling electrode for real-time measurement of electrical impedance in bone tissues.

    Science.gov (United States)

    Dai, Yu; Xue, Yuan; Zhang, Jianxun

    2014-03-01

    In order to prevent possible damages to soft tissues, reliable monitoring methods are required to provide valuable information on the condition of the bone being cut. This paper describes the design of an electrical impedance sensing drill developed to estimate the relative position between the drill and the bone being drilled. The two-electrode method is applied to continuously measure the electrical impedance during a drill feeding movement: two copper wire brushes are used to conduct electricity in the rotating drill and then the drill is one electrode; a needle is inserted into the soft tissues adjacent to the bone being drilled and acts as another electrode. Considering that the recorded electrical impedance is correlated with the insertion depth of the drill, we theoretically calculate the electrode-tissue contact impedance and prove that the rate of impedance change varies considerably when the drill bit crosses the boundary between two different bone tissues. Therefore, the rate of impedance change is used to determine whether the tip of the drill is located in one of cortical bone, cancellous bone, and cortical bone near a boundary with soft tissue. In vitro experiments in porcine thoracic spines were performed to demonstrate the feasibility of the impedance sensing drill. The experimental results indicate that the drill, used with the proposed data-processing method, can provide accurate and reliable breakthrough detection in the bone-drilling process.

  12. Electrical conductivity measurement and thermogravimetric study of chromium-doped uranium dioxide

    International Nuclear Information System (INIS)

    Matsui, Tsuneo; Naito, Keiji

    1986-01-01

    The electrical conductivity and nonstoichiometric composition of (Usub(1-y)Crsub(y))Osub(2+x) (y=0.001 and 0.05) were measured in the range 1173 -17 2 ) -2 Pa by the four inserted wires method and thermogravimetry, respectively. The electrical conductivities of (Usub(1-y)Crsub(y))Osub(2+x) (y=0.01 and 0.05) were about one-order lower than that of UOsub(2+x), probably due to the presence of the chromium ion as an electron donor. The activation energies of (Usub(0.99)Crsub(0.01))Osub(2+x) and (Usub(0.95)Crsub(0.05))Osub(2+x) for the extrinsic conduction in the low oxygen partial pressure region were calculated to be 24.7+-1.3 and 25.9+-1.0 kJ.mol -1 , respectively from the Arrhenius plots of the electrical conductivities. These small values of the activation energy of (Usub(1-y)Crsub(y))Osub(2+x) may suggest the presence of the hopping mechanism for hole conduction, similarly to the case of UOsub(2+x). From the oxygen partial pressure dependences of both the electrical conductivity and the deviation x in (Usub(1-y)Crsub(y))Osub(2+x), the defect structure was discussed with the complex defect model consisting of oxygen vacancies and two kinds of interstitial oxygens. (orig.)

  13. Ventilation inhomogeneity in obstructive lung diseases measured by electrical impedance tomography: a simulation study.

    Science.gov (United States)

    Schullcke, B; Krueger-Ziolek, S; Gong, B; Jörres, R A; Mueller-Lisse, U; Moeller, K

    2017-10-10

    Electrical impedance tomography (EIT) has mostly been used in the Intensive Care Unit (ICU) to monitor ventilation distribution but is also promising for the diagnosis in spontaneously breathing patients with obstructive lung diseases. Beside tomographic images, several numerical measures have been proposed to quantitatively assess the lung state. In this study two common measures, the 'Global Inhomogeneity Index' and the 'Coefficient of Variation' were compared regarding their capability to reflect the severity of lung obstruction. A three-dimensional simulation model was used to simulate obstructed lungs, whereby images were reconstructed on a two-dimensional domain. Simulations revealed that minor obstructions are not adequately recognized in the reconstructed images and that obstruction above and below the electrode plane may result in misleading values of inhomogeneity measures. EIT measurements on several electrode planes are necessary to apply these measures in patients with obstructive lung diseases in a promising manner.

  14. Analysis of electrical energy consumers operation in the heating plant with proposal of energy savings measures

    Directory of Open Access Journals (Sweden)

    Nikolić Aleksandar

    2016-01-01

    Full Text Available The results of power quality measurements, obtained during an energy audit in the heating plant Vreoci in the Electric Power System of Serbia, are presented in the paper. Two steam boilers, rated at 120MW each, are installed in this heating plant, using coal as a fuel. The energy audit encompassed the measurements of the complete set of parameters needed to determine the thermal efficacy of boilers and the entire heating plant. Based on the measurement results, several technical measures for improving energy efficiency of the plant are proposed. The measures evaluated in the paper should contribute to the reduction of fossil fuel usage and CO2 emissions, thereby resulting in a significant impact in both financial and ecological areas.

  15. Soil and groundwater VOCs contamination: How can electrical geophysical measurements help assess post-bioremediation state?

    Science.gov (United States)

    Kessouri, P.; Johnson, T. C.; Day-Lewis, F. D.; Slater, L. D.; Ntarlagiannis, D.; Johnson, C. D.

    2016-12-01

    The former Brandywine MD (Maryland, USA) Defense Reutilization and Marketing Office (DRMO) was designated a hazardous waste Superfund site in 1999. The site was used as a storage area for waste and excess government equipment generated by several U.S. Navy and U.S. Air Force installations, leading to soil and groundwater contamination by volatile organic compounds (VOCs). Active bioremediation through anaerobic reductive dehalogenation was used to treat the groundwater and the aquifer unconsolidated materials in 2008, with electrical geophysical measurements employed to track amendment injections. Eight years later, we used spectral induced polarization (SIP) and time domain induced polarization (TDIP) on 2D surface lines and borehole electrical arrays to assess the long term impact of active remediation on physicochemical properties of the subsurface. Within the aquifer, the treated zone is more electrically conductive, and the phase shift describing the polarization effects is higher than in the untreated zone. Bulk conductivity and phase shift are also locally elevated close to the treatment injection well, possibly due to biogeochemical transformations associated with prolonged bacterial activity. Observed SIP variations could be explained by the presence of biofilms coating the pore space and/or by-products of the chemical reactions catalyzed by the bacterial activity (e.g. iron sulfide precipitation). To investigate these possibilities, we conducted complementary well logging measurements (magnetic susceptibility [MS], nuclear magnetic resonance [NMR], gamma-ray) using 5 boreholes installed at both treated and untreated locations of the site. We also collected water and soil samples on which we conducted microbiological and chemical analyses, along with geophysical observations (SIP, MS and NMR), in the laboratory. These measurements provide further insights into the physicochemical transformations in the subsurface resulting from the treatment and highlight

  16. In-line bulk supersaturation measurement by electrical conductometry in KDP crystal growth from aqueous solution

    Science.gov (United States)

    Bordui, P. F.; Loiacono, G. M.

    1984-07-01

    A method is presented for in-line bulk supersaturation measurement in crystal growth from aqueous solution. The method is based on a computer-controlled concentration measurement exploiting an experimentally predetermined cross-correlation between the concentration, electrical conductivity, and temperature of the growth solution. The method was applied to Holden crystallization of potassium dihydrogen phosphate (KDP). An extensive conductivity-temperature-concentration data base was generated for this system over a temperature range of 31 to 41°C. The method yielded continous, automated bulk supersaturation output accurate to within ±0.05 g KDP100 g water (±0.15% relative supersaturation).

  17. Mobile TDR for geo-referenced measurement of soil water content and electrical conductivity

    DEFF Research Database (Denmark)

    Thomsen, Anton; Schelde, Kirsten; Drøscher, Per

    2007-01-01

    The development of site-specific crop management is constrained by the availability of sensors for monitoring important soil and crop related conditions. A mobile time-domain reflectometry (TDR) unit for geo-referenced soil measurements has been developed and used for detailed mapping of soil wat...... analysis of the soil water measurements, recommendations are made with respect to sampling strategies. Depending on the variability of a given area, between 15 and 30 ha can be mapped with respect to soil moisture and electrical conductivity with sufficient detail within 8 h...

  18. Improved method for measuring the electric fields in microwave cavity resonators

    International Nuclear Information System (INIS)

    Amato, J.C.; Herrmann, H.

    1985-01-01

    The electric field distribution in microwave cavities is commonly measured by frequency perturbation techniques. For many cavity modes which are important in accelerator applications, the standard bead-pulling technique cannot provide adequate discrimination between fields parallel and perpendicular to the particle trajectory, leading to inaccurate and ambiguous results. A method is described which substantially increases the directivity of the measurements. The method has been successfully used to determine the accelerator-related cavity parameters at frequencies up to three times the fundamental resonant frequency

  19. Single crystal growth and electrical and magnetic measurements on CeFe4Sb12

    International Nuclear Information System (INIS)

    Mori, I.; Sugawara, H.; Magishi, K.; Saito, T.; Koyama, K.; Kikuchi, D.; Tanaka, K.; Sato, H.

    2007-01-01

    We have succeeded in growing single crystals of CeFe 4 Sb 12 by a Sb-self-flux method and measured the electrical resistivity and magnetization. The residual resistivity is about two times smaller than that of polycrystalline ones, suggesting that the sample quality is highly improved. The magnetization measurements at low temperature revealed that the sample contains almost no magnetic impurities which are always observed in polycrystalline samples. The weak temperature dependence and a broad maximum around 115K in magnetic susceptibility, which is a typical feature of valence fluctuation compounds, have been observed

  20. Electrical conduction through surface superstructures measured by microscopic four-point probes

    DEFF Research Database (Denmark)

    Hasegawa, S.; Shiraki, I.; Tanabe, F.

    2003-01-01

    For in-situ measurements of the local electrical conductivity of well-defined crystal surfaces in ultra-high vacuum, we have developed two kinds of microscopic four-point probe methods. One involves a "four-tip STM prober," in which four independently driven tips of a scanning tunneling microscope...... (STM) are used for measurements of four-point probe conductivity. The probe spacing can be changed from 500 nm to 1 mm. The other method involves monolithic micro-four-point probes, fabricated on silicon chips, whose probe spacing is fixed around several mum. These probes are installed in scanning...

  1. Measurement of magnetic and electric field inhomogenities in a time projection chamber using laser tracks

    International Nuclear Information System (INIS)

    Benetta, M.; Froberger, J.P.; Lehraus, I.; Mathewson, R.; May, J.; Price, M.; Schlater, D.; Tejessi, W.; Witzeling, W.

    1985-01-01

    The large time projection chambers (TPC) for particle track measurements have their electric drift field parallel to the magnetic field which is needed for the momentum measurement of the particles. Small field inhomogeneities of the order of epsilon times the main field cause large track distortions (coordinate displacements) of the order of epsilon times the driftlength. It is therefore important for every TPC to know the inhomogeneities very well. Laser rays have proven to be useful to study them. We report here on our experience with a TPC having a maximum drift length of 1.3 m

  2. Variations in the electrical short-circuit current decay for recombination lifetime and velocity measurements

    Science.gov (United States)

    Jung, Tae-Won; Lindholm, Fredrik A.; Neugroschel, Arnost

    1987-01-01

    An improved measurement system for electrical short-circuit current decay is presented that extends applicability of the method to silicon solar cells having an effective lifetime as low as 1 microsec. The system uses metal/oxide/semiconductor transistors as voltage-controlled switches. Advances in theory developed here increase precision and sensitivity in the determination of the minority-carrier recombination lifetime and recombination velocity. A variation of the method, which exploits measurements made on related back-surface field and back-ohmic contact devices, further improves precision and sensitivity. The improvements are illustrated by application to 15 different silicon solar cells.

  3. Methodology to measure strains at high temperatures using electrical strain gages with free filaments

    International Nuclear Information System (INIS)

    Atanazio Filho, Nelson N.; Gomes, Paulo T. Vida; Scaldaferri, Denis H.B.; Silva, Luiz L. da; Rabello, Emerson G.; Mansur, Tanius R.

    2013-01-01

    An experimental methodology used for strains measuring at high temperatures is show in this work. In order to do the measurements, it was used electric strain gages with loose filaments attached to a stainless steel 304 beam with specific cements. The beam has triangular shape and a constant thickness, so the strain is the same along its length. Unless the beam surface be carefully prepared, the strain gage attachment is not efficient. The showed results are for temperatures ranging from 20 deg C to 300 deg C, but the experimental methodology could be used to measure strains at a temperature up to 900 deg C. Analytical calculations based on solid mechanics were used to verify the strain gage electrical installation and the measured strains. At a first moment, beam deformations as a temperature function were plotted. After that, beam deformations with different weighs were plotted as a temperature function. The results shown allowed concluding that the experimental methodology is trustable to measure strains at temperatures up to 300 deg C. (author)

  4. Monitoring of In-Situ Remediation By Time Lapse 3D Geo-Electric Measurements

    Science.gov (United States)

    Kanli, A. I.; Tildy, P.; Neducza, B.; Nagy, P.; Hegymegi, C.

    2017-12-01

    Injection of chemical oxidant solution to degrade the subsurface contaminants can be used for hydrocarbon contamination remediation. In this study, we developed a non-destructive measurement strategy to monitor oxidative in-situ remediation processes. The difficulties of the presented study originate from the small volume of conductive solution that can be used due to environmental considerations. Due to the effect of conductive groundwater and the high clay content of the targeted layer and the small volume of conductive solution that can be used due to environmental considerations, a site specific synthetic modelling is necessary for measurement design involving the results of preliminary 2D ERT measurements, electrical conductivity measurements of different active agents and expected resistivity changes calculated by soil resistivity modelling. Because of chemical biodegradation, the results of soil resistivity modelling have suggested that the reagent have complex effects on contaminated soils. As a result the plume of resistivity changes caused by the injected agent was determined showing strong fracturing effect because of the high pressure of injection. 3D time-lapse geo-electric measurements were proven to provide a usable monitoring tool for in-situ remediation as a result of our sophisticated tests and synthetic modelling.

  5. Land-ocean contrast on electrical characteristics of lightning discharge derived from satellite optical measurements

    Science.gov (United States)

    Adachi, T.; Said, R.; Cummer, S. A.; Li, J.; Takahashi, Y.; Hsu, R.; Su, H.; Chen, A. B.; Mende, S. B.; Frey, H. U.

    2010-12-01

    Comparative studies on the electrical properties of oceanic and continental lightning are crucial to elucidate air discharge processes occurring under different conditions. Past studies however have primarily focused on continental lightning because of the limited coverage of ground-based instruments. Recent satellite measurements by FORMOSAT-2/ISUAL provided a new way to survey the global characteristics of lightning and transient luminous events regardless of land and ocean. In this study, we analyze ISUAL/spectrophotometer data to clarify the electrical properties of lightning on a global level. Based on the results obtained by Cummer et al. [2006] and Adachi et al. [2009], the OI-777.4nm emission intensity is used to infer lightning electrical parameters. Results show a clear land-ocean contrast on the parameters of lightning discharge: in oceanic lightning, peak luminosity is 60 % higher and the time scale of return stroke is 30 % shorter. These results suggest higher peak current in oceanic lightning, which is consistent with the fact that elves, EMP-driven phenomena, also tend to occur over the ocean [Chen et al., 2008]. Further analysis of lightning events occurring around the Caribbean Sea shows that the transition-line of lightning electrical properties is precisely located along the coastline. We suggest that the differences in these electrical properties may be due to the boundary conditions (conductivity, surface terrain, etc). In this talk, based on the calibration with NLDN and Duke magnetometer data, current moment change and charge moment change will be globally evaluated using a complete set of the ISUAL-observed lightning events.

  6. Electric field metrology for SI traceability: Systematic measurement uncertainties in electromagnetically induced transparency in atomic vapor

    Science.gov (United States)

    Holloway, Christopher L.; Simons, Matt T.; Gordon, Joshua A.; Dienstfrey, Andrew; Anderson, David A.; Raithel, Georg

    2017-06-01

    We investigate the relationship between the Rabi frequency (ΩRF, related to the applied electric field) and Autler-Townes (AT) splitting, when performing atom-based radio-frequency (RF) electric (E) field strength measurements using Rydberg states and electromagnetically induced transparency (EIT) in an atomic vapor. The AT splitting satisfies, under certain conditions, a well-defined linear relationship with the applied RF field amplitude. The EIT/AT-based E-field measurement approach derived from these principles is currently being investigated by several groups around the world as a means to develop a new SI-traceable RF E-field measurement technique. We establish conditions under which the measured AT-splitting is an approximately linear function of the RF electric field. A quantitative description of systematic deviations from the linear relationship is key to exploiting EIT/AT-based atomic-vapor spectroscopy for SI-traceable field measurement. We show that the linear relationship is valid and can be used to determine the E-field strength, with minimal error, as long as the EIT linewidth is small compared to the AT-splitting. We also discuss interesting aspects of the thermal dependence (i.e., hot- versus cold-atom) of this EIT-AT technique. An analysis of the transition from cold- to hot-atom EIT in a Doppler-mismatched cascade system reveals a significant change of the dependence of the EIT linewidth on the optical Rabi frequencies and of the AT-splitting on ΩRF.

  7. CT-scan-monitored electrical-resistivity measurements show problems achieving homogeneous saturation

    International Nuclear Information System (INIS)

    Sprunt, E.S.; Davis, R.M.; Muegge, E.L.; Desai, K.P.

    1991-01-01

    This paper reports on x-ray computerized tomography (CT) scans obtained during measurement of the electrical resistivity of core samples which revealed some problems in obtaining uniform saturation along the lengths of the samples. The electrical resistivity of core samples is measured as a function of water saturation to determine the saturation exponent used in electric-log interpretation. An assumption in such tests is that the water saturation is uniformly distributed. Failure of this assumption can result in errors in the determination of the saturation exponent. Three problems were identified in obtaining homogeneous water saturation in two samples of a Middle Eastern carbonate grainstone: a stationary front formed in one sample at 1-psi oil/brine capillary pressure, a moving front formed at oil/brine capillary pressure ≤4 psi in samples tested in fresh mixed-wettability and cleaned water-wet states, and the heterogeneous fluid distribution caused by a rapidly moving front did not dissipate when the capillary pressure was eliminated in the samples

  8. CT-scan-monitored electrical resistivity measurements show problems achieving homogeneous saturation

    International Nuclear Information System (INIS)

    Sprunt, E.S.; Coles, M.E.; Davis, R.M.; Muegge, E.L.; Desai, K.P.

    1991-01-01

    X-ray CT scans obtained during measurement of the electrical resistivity of core samples revealed some problems in obtaining uniform saturation along the length of the sample. In this paper the electrical resistivity of core samples is measured as a function of water saturation to determine the saturation exponent, which is used in electric log interpretation. An assumption in such tests is that the water saturation is uniformly distributed. Failure of this assumption can result in errors in the determination of the saturation exponent. Three problems were identified in obtaining homogeneous water saturation in two samples of a Middle Eastern carbonate grainstone. A stationary front formed in one sample at 1 psi oil/brine capillary pressure. A moving front formed at oil/brine capillary pressures of 4 psi or less in both samples tested, in both a fresh mixed-wettability state and in a cleaned water-wet state. In these samples, the heterogeneous fluid distribution caused by a rapidly moving front did not dissipate when the capillary pressure was eliminated

  9. Effects of contact resistance on electrical conductivity measurements of SiC-based materials

    Energy Technology Data Exchange (ETDEWEB)

    Youngblood, G.E.; Thomsen, E.C.; Henager, C.H., E-mail: chuck.henager@pnnl.gov

    2013-11-15

    A combination 2/4-probe method was used to measure electrical resistances across a pure, monolithic CVD-SiC disc sample with contact resistance at the SiC/metallic electrode interfaces. By comparison of the almost simultaneous 2/4-probe measurements, the specific contact resistance (R{sub c}) and its temperature dependence were determined for two types (sputtered gold and porous nickel) electrodes from room temperature (RT) to ∼973 K. The R{sub c}-values behaved similarly for each type of metallic electrode: R{sub c} > ∼1000 Ω cm{sup 2} at RT, decreasing continuously to ∼1–10 Ω cm{sup 2} at 973 K. The temperature dependence of the inverse R{sub c} indicated thermally activated electrical conduction across the SiC/metallic interface with an apparent activation energy of ∼0.3 eV. For the flow channel insert application in a fusion reactor blanket, contact resistance potentially could reduce the transverse electrical conductivity by about 50%.

  10. On the detectability of transverse cracks in laminated composites through measurements of electrical potential change

    KAUST Repository

    Selvakumaran, Lakshmi

    2015-01-07

    For structures made of laminated composites, real-time structural health monitoring is necessary as significant damage may occur without any visible signs on the surface. Inspection by electrical tomography seems a viable approach as the technique relies on voltage measurements from a network of electrodes over the boundary of the inspected domain to infer the change in conductivity within the bulk material. The change in conductivity, if significant, can be correlated to the degradation state of the material, allowing damage detection. We focus here on the detection of the transverse cracking mechanism which modifies the in-plane transverse conductivity of ply. The quality of detection is directly related to the sensitivity of the voltage measurements with respect to the presence of cracks. We demonstrate here from numerical experiments that the sensitivity depends on several parameters, such as the anisotropy in the electrical conductivity of the baseline composite ply or the geometricalparameters of the structure. Based on these results, applicability of electrical tomography to detect transverse cracks in a laminate is discussed.

  11. The detection and measurement of the electrical mobility size distributions associated with radon decay products

    International Nuclear Information System (INIS)

    Fei, Lin.

    1996-04-01

    The potential risk of lung cancer has evoked interest in the properties of radon decay products. There are two forms of this progeny: either attached to ambient aerosols, or still in the status of ions/molecules/small clusters. This ''unattached'' activity would give a higher dose per unit of airborne activity than the ''attached'' progeny that are rather poorly deposited. In this thesis, a system for determining unattached radon decay products electrical mobility size distribution by measuring their electrical mobilities was developed, based on the fact that about 88% of 218 Po atoms have unit charge at the end of their recoil after decay from 222 Rn, while the remainder are neutral. Essential part of the setup is the radon-aerosol chamber with the Circular Electrical Mobility Spectrometer (CEMS) inside. CEMS is used for sampling and classifying the charged radioactive clusters produced in the chamber. An alpha- sensitive plastic, CR-39 disk, is placed in CEMS as an inlaid disk electrode and the alpha particle detector. CEMS showed good performance in fine inactive particles' classification. If it also works well for radon decay products, it can offer a convenient size distribution measurement for radioactive ultrafine particles. However, the experiments did not obtain an acceptable resolution. Suggestions are made for solving this problem

  12. Measurement of electroosmotic and electrophoretic velocities using pulsed and sinusoidal electric fields.

    Science.gov (United States)

    Sadek, Samir H; Pimenta, Francisco; Pinho, Fernando T; Alves, Manuel A

    2017-04-01

    In this work, we explore two methods to simultaneously measure the electroosmotic mobility in microchannels and the electrophoretic mobility of micron-sized tracer particles. The first method is based on imposing a pulsed electric field, which allows to isolate electrophoresis and electroosmosis at the startup and shutdown of the pulse, respectively. In the second method, a sinusoidal electric field is generated and the mobilities are found by minimizing the difference between the measured velocity of tracer particles and the velocity computed from an analytical expression. Both methods produced consistent results using polydimethylsiloxane microchannels and polystyrene micro-particles, provided that the temporal resolution of the particle tracking velocimetry technique used to compute the velocity of the tracer particles is fast enough to resolve the diffusion time-scale based on the characteristic channel length scale. Additionally, we present results with the pulse method for viscoelastic fluids, which show a more complex transient response with significant velocity overshoots and undershoots after the start and the end of the applied electric pulse, respectively. © 2016 The Authors. Electrophoresis published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A novel approach to measure the electric dipole moment of 129Xenon

    Energy Technology Data Exchange (ETDEWEB)

    Kuchler, Florian; Feldmeier, Wolfhardt; Fierlinger, Peter; Taubenheim, Bernd [Excellence Cluster Universe, Technische Universitaet Muenchen, Garching (Germany)

    2012-07-01

    Permanent electric dipole moments (EDM) are promising systems to find new CP violation. The properties of the diamagnetic atom 129-Xe make it a particularly interesting candidate for an EDM search, as it enables new experimental strategies. Although the current experimental limit of d{sub Xe} < 4.0.10{sup -27} ecm is many orders of magnitude higher than the Standard Model (SM) prediction, theories beyond the SM usually require larger EDMs. Our experiment is based on microscopic hyper-polarized liquid xenon droplets, placed in a low-field NMR setup. Implementation of rotating electric fields enables a conceptually new EDM measurement technique, allowing thorough investigation of systematic effects. Still, a Ramsey-type spin precession experiment with static electric field can be realized at similar sensitivity within the same setup. Employing superconducting pick-up coils and highly sensitive LTc-SQUIDs, a large array of independent measurements can be performed simultaneously with different field configurations. With our novel approach we aim to be sensitive to an EDM of 129-Xe on the order of 10{sup -30} ecm. The talk gives an update on the current status of the xenon EDM experiment.

  14. Extraction of the neutron electric form factor from measurements of inclusive double spin asymmetries

    Science.gov (United States)

    Sulkosky, V.; Jin, G.; Long, E.; Zhang, Y.-W.; Mihovilovic, M.; Kelleher, A.; Anderson, B.; Higinbotham, D. W.; Širca, S.; Allada, K.; Annand, J. R. M.; Averett, T.; Bertozzi, W.; Boeglin, W.; Bradshaw, P.; Camsonne, A.; Canan, M.; Cates, G. D.; Chen, C.; Chen, J.-P.; Chudakov, E.; De Leo, R.; Deng, X.; Deur, A.; Dutta, C.; El Fassi, L.; Flay, D.; Frullani, S.; Garibaldi, F.; Gao, H.; Gilad, S.; Gilman, R.; Glamazdin, O.; Golge, S.; Gomez, J.; Hansen, J.-O.; Holmstrom, T.; Huang, J.; Ibrahim, H.; de Jager, C. W.; Jensen, E.; Jiang, X.; Jones, M.; Kang, H.; Katich, J.; Khanal, H. P.; King, P.; Korsch, W.; LeRose, J.; Lindgren, R.; Lu, H.-J.; Luo, W.; Markowitz, P.; Meekins, D.; Meziane, M.; Michaels, R.; Moffit, B.; Monaghan, P.; Muangma, N.; Nanda, S.; Norum, B. E.; Pan, K.; Parno, D.; Piasetzky, E.; Posik, M.; Punjabi, V.; Puckett, A. J. R.; Qian, X.; Qiang, Y.; Qui, X.; Riordan, S.; Saha, A.; Sawatzky, B.; Shabestari, M.; Shahinyan, A.; Shoenrock, B.; John, J. St.; Subedi, R.; Tobias, W. A.; Tireman, W.; Urciuoli, G. M.; Wang, D.; Wang, K.; Wang, Y.; Watson, J.; Wojtsekhowski, B.; Ye, Z.; Zhan, X.; Zhang, Y.; Zheng, X.; Zhao, B.; Zhu, L.; Jefferson Lab Hall A Collaboration

    2017-12-01

    Background: Measurements of the neutron charge form factor, GEn, are challenging because the neutron has no net charge. In addition, measurements of the neutron form factors must use nuclear targets which require accurately accounting for nuclear effects. Extracting GEn with different targets and techniques provides an important test of our handling of these effects. Purpose: The goal of the measurement was to use an inclusive asymmetry measurement technique to extract the neutron charge form factor at a four-momentum transfer of 1 (GeV/c ) 2 . This technique has very different systematic uncertainties than traditional exclusive measurements and thus serves as an independent check of whether nuclear effects have been taken into account correctly. Method: The inclusive quasielastic reaction 3He ⃗(e ⃗,e') was measured at Jefferson Laboratory. The neutron electric form factor, GEn, was extracted at Q2=0.98 (GeV/c ) 2 from ratios of electron-polarization asymmetries measured for two orthogonal target spin orientations. This Q2 is high enough that the sensitivity to GEn is not overwhelmed by the neutron magnetic contribution, and yet low enough that explicit neutron detection is not required to suppress pion production. Results: The neutron electric form factor, GEn, was determined to be 0.0414 ±0.0077 (stat)±0.0022 (syst) , providing the first high-precision inclusive extraction of the neutron's charge form factor. Conclusions: The use of the inclusive quasielastic 3He ⃗(e ⃗,e') with a four-momentum transfer near 1 (GeV/c ) 2 has been used to provide a unique measurement of GEn. This new result provides a systematically independent validation of the exclusive extraction technique results and implies that the nuclear corrections are understood. This is contrary to the proton form factor where asymmetry and differential cross section measurements have been shown to have large systematic differences.

  15. Electro-location, tomography and porosity measurements in geotechnical centrifuge models based on electrical resistivity concepts

    Science.gov (United States)

    Li, Zhihua

    This research was focused on the development of electrical techniques for soil characterization and soil dynamic behavior assessment. The research carried out mainly includes (1) development of a needle probe tool for assessment of soil spatial variability in terms of porosity with high-resolution in the centrifuge testing; (2) development of an electro-location technique to accurately detect buried objects' movements inside the soil during dynamic events; (3) collaborative development of a new electrode switching system to implement electrical resistivity tomography, and electro-location with high speed and high resolution. To assess soil spatial variability with high-resolution, electrical needle probes with different tip shapes were developed to measure soil electrical resistivity. After normalizing soil resistivity by pore fluid resistivity, this information can be correlated to soil porosity. Calibrations in laboratory prepared soils were conducted. Loosening due to insertion of needle probes was evaluated. A special needle probe tool, along with data acquisition and data processing tools were developed to be operated by the new NEES robot on the centrifuge. The needle probes have great potential to resolve interfaces between soil layers and small local porosity variations with a spatial resolution approximately equal to the spacing between electrodes (about half of the probe diameter). A new electrode switching system was developed to accurately detect buried objects' movements using a new electro-location scheme. The idea was to establish an electromagnetic field in a centrifuge model by injecting low-frequency alternating currents through pairs of boundary electrodes. The locations of buried objects are related to the potentials measured on them. A closed form expression for the electric field in a rectangular specimen with insulated boundaries was obtained based on the method of images. Effects of sampling parameters on spatial resolution and tradeoffs

  16. A test-bench for measurement of electrical static parameters of strip silicon detectors

    International Nuclear Information System (INIS)

    Golutvin, I.A.; Dmitriev, A.Yu.; Elsha, V.V.

    2003-01-01

    An automated test-bench for electrical parameters input control of the strip silicon detectors, used in the End-Cap Preshower detector of the CMS experiment, is described. The test-bench application allows one to solve a problem of silicon detectors input control in conditions of mass production - 1800 detectors over 2 years. The test-bench software is realized in Delphi environment and contains a user-friendly operator interface for data processing and visualization as well as up-to-date facilities for MS-Windows used for the network database. High operating characteristics and reliability of the test-bench were confirmed while more than 800 detectors were tested. Some technical solutions applied to the test-bench could be useful for design and construction of automated facilities for electrical parameters measurements of the microstrip detectors input control. (author)

  17. Inferring convective responses to El Niño with atmospheric electricity measurements at Shetland

    International Nuclear Information System (INIS)

    Harrison, R G; Pascoe, K; Joshi, M

    2011-01-01

    Pacific ocean temperature anomalies associated with the El Niño–Southern Oscillation (ENSO) modulate atmospheric convection and hence thunderstorm electrification. The generated current flows globally via the atmospheric electric circuit, which can be monitored anywhere on Earth. Atmospheric electricity measurements made at Shetland (in Scotland) display a mean global circuit response to ENSO that is characterized by strengthening during ‘El Niño’ conditions, and weakening during ‘La Niña’ conditions. Examining the hourly varying response indicates that a potential gradient (PG) increase around noon UT is likely to be associated with a change in atmospheric convection and resultant lightning activity over equatorial Africa and Eastern Asia. A secondary increase in PG just after midnight UT can be attributed to more shower clouds in the central Pacific ocean during an ‘El Niño’.

  18. Coupled stress-strain and electrical resistivity measurements on copper based shape memory single crystals

    Directory of Open Access Journals (Sweden)

    Gonzalez Cezar Henrique

    2004-01-01

    Full Text Available Recently, electrical resistivity (ER measurements have been done during some thermomechanical tests in copper based shape memory alloys (SMA's. In this work, single crystals of Cu-based SMA's have been studied at different temperatures to analyse the relationship between stress (s and ER changes as a function of the strain (e. A good consistency between ER change values is observed in different experiments: thermal martensitic transformation, stress induced martensitic transformation and stress induced reorientation of martensite variants. During stress induced martensitic transformation (superelastic behaviour and stress induced reorientation of martensite variants, a linear relationship is obtained between ER and strain as well as the absence of hys teresis. In conclusion, the present results show a direct evidence of martensite electrical resistivity anisotropy.

  19. Broadband measurements of high-frequency electric field levels and exposure ratios determination

    Directory of Open Access Journals (Sweden)

    Vulević Branislav

    2017-01-01

    Full Text Available The exposure of people to high-frequency electromagnetic fields (over 100 kHz that emanate from modern wireless information transmission systems is inevitable in modern times. Due to the rapid development of new technologies, measuring devices and their connection to measuring systems, the first fifteen years of the 21st century are characterized by the appearance of different approaches to measurements. This prompts the need for the assessment of the exposure of people to these fields. The main purpose of this paper is to show how to determine the exposure ratios based on the results of broadband measurements of the high-frequency electric field in the range of 3 MHz to 18 GHz in the environment.

  20. Thermal pulse measurements of space charge distributions under an applied electric field in thin films

    International Nuclear Information System (INIS)

    Zheng, Feihu; An, Zhenlian; Zhang, Yewen; Liu, Chuandong; Lin, Chen; Lei, Qingquan

    2013-01-01

    The thermal pulse method is a powerful method to measure space charge and polarization distributions in thin dielectric films, but a complicated calibration procedure is necessary to obtain the real distribution. In addition, charge dynamic behaviour under an applied electric field cannot be observed by the classical thermal pulse method. In this work, an improved thermal pulse measuring system with a supplemental circuit for applying high voltage is proposed to realize the mapping of charge distribution in thin dielectric films under an applied field. The influence of the modified measuring system on the amplitude and phase of the thermal pulse response current are evaluated. Based on the new measuring system, an easy calibration approach is presented with some practical examples. The newly developed system can observe space charge evolution under an applied field, which would be very helpful in understanding space charge behaviour in thin films. (paper)

  1. Factors influencing the reliability of non-electric detonating circuit in underground uranium mines and preventive measures of misfiring

    International Nuclear Information System (INIS)

    Li Qin

    2010-01-01

    Characteristics of non-electric detonating circuit are introduced. The main factors influencing the reliability of non-electric detonating circuit are described. Taking an underground blasting of a uranium mine for example, the reliability of various kinds of detonating network system is calculated using the reliability theory and numerical analysis method. The reasons that cause the misfiring in non-electric detonating circuit system are analyzed, and preventive measures are put forward.(authors)

  2. Artificially injected charged particles as a tool for the measurement of the electric field in the magnetosphere

    International Nuclear Information System (INIS)

    Pirre, M.

    1982-01-01

    Two methods of measuring the parallel electric field in the magnetosphere using artificially injected charged particles are discussed. One method uses electrons to measure the parallel electric field in the vicinity of the spacecraft. It is shown that a very good accuracy can be achieved for such a measurement. The principle of this method is briefly reviewed, the minimum theoretical value measurable by the method is shown, and the limitations on it due to the spacecraft environment are discussed. Most important among the latter is the high level of turbulence about the spacecraft. The second method uses ions to measure the electric potential along the magnetic field lines if the associated parallel electric field is directed downward. For such a field at a lower altitude, Li ions are used to maximize the returning fluxes and to increase the probability of detection. Rockets are more suitable than satellites to make such measurements. 17 references

  3. A new contact electric resistance technique for in-situ measurement of the electric resistance of surface films on metals in electrolytes at high temperatures and pressures

    International Nuclear Information System (INIS)

    Saario, T.; Marichev, V.A.

    1993-01-01

    Surface films play a major role in corrosion assisted cracking. A new Contact Electric Resistance (CER) method has been recently developed for in situ measurement of the electric resistance of surface films. The method has been upgraded for high temperature high pressure application. The technique can be used for any electrically conductive material in any environment including liquid, gas or vacuum. The technique has been used to determine in situ the electric resistance of films on metals during adsorption of water and anions, formation and destruction of oxides and hydrides, electroplating of metals and to study the electric resistance of films on semiconductors. The resolution of the CER technique is 10 -9 Ω, which corresponds to about 0.03 monolayers of deposited copper during electrochemical deposition Cu/Cu 2+ . Electric resistance data can be measured with a frequency of the order of one hertz, which enables one to follow in situ the kinetics of surface film related processes. The kinetics of these processes and their dependence on the environment, temperature, pH and electrochemical potential can be investigated

  4. Measurement of permanent electric dipole moments of charged hadrons in storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Pretz, Joerg, E-mail: pretz@physik.rwth-aachen.de [III. Physikalisches Institut (Germany); Collaboration: JEDI Collaboration

    2013-03-15

    Permanent Electric Dipole Moments (EDMs) of elementary particles violate two fundamental symmetries: time reversal invariance ( T ) and parity ( P ). Assuming the CPT theorem this implies CP violation. The CP violation of the Standard Model is orders of magnitude too small to be observed experimentally in EDMs in the foreseeable future. It is also way too small to explain the asymmetry in abundance of matter and anti-matter in our universe. Hence, other mechanisms of CP violation outside the realm of the Standard Model are searched for and could result in measurable EDMs. Up to now most of the EDM measurements were done with neutral particles. With new techniques it is now possible to perform dedicated EDM experiments with charged hadrons at storage rings where polarized particles are exposed to an electric field. If an EDM exists the spin vector will experience a torque resulting in change of the original spin direction which can be determined with the help of a polarimeter. Although the principle of the measurement is simple, the smallness of the expected effect makes this a challenging experiment requiring new developments in various experimental areas. Complementary efforts to measure EDMs of proton, deuteron and light nuclei are pursued at Brookhaven National Laboratory and at Forschungszentrum Juelich with an ultimate goal to reach a sensitivity of 10{sup - 29}e{center_dot}cm.

  5. Twelve years of continuous measurements of atmospheric electrical activity in Mexico's Tropical highland

    Energy Technology Data Exchange (ETDEWEB)

    Troncoso Lozada, O. [Centro de Ciencias de la Atmosfera, Universidad Nacional Autonoma de Mexico (UNAM), Mexico, D.F. (Mexico)

    2004-04-01

    Atmospheric electric activity measurements have been recorded continuously by a punctual lightning system at a tropical highland observatory from 1988 onwards, and were analyzed to obtain lightning statistical confident results for thunderstorms occurrence on the leeward side of the southern mountain ridge of Mexico's Valley. Shown, as examples, are individual profiles of the atmospheric electrical activity, associated with severe storms. The results make clear that the fastest possible sequence of electrical measurements is required to obtain significant and applications oriented data in connection with a whole series of thunderstorms taking into account the mean time variation of the atmospheric electricity measurements at an altitude of 2270 m a.s.l. The seasonal variation indicates that the lightning flash peak currents were found to be larger in summer with less than 10% occurring in the autumn and winter. With rainfall data from a network of 66 stations, we obtained a significant correlation with the lightning frequency. Special attention was undertaken concerning the question of the atmospheric electrical activity and climate at Valley of Mexico. [Spanish] Se midieron ininterrumpidamente las variaciones de la actividad electrica en la atmosfera, de enero de 1988 a diciembre de 1999, en un observatorio de altura (2,250 m s.n.m.), y se analizaron para obtener resultados estadisticos confiables con relacion a la ocurrencia de tormentas en la region sur del Valle de Mexico. Como ejemplos, se muestran los perfiles individuales de la actividad electrica atmosferica asociada con tormentas severas. Los resultados dejan claro que se requiere de la secuencia de medidas electricas lo mas rapida posible para obtener datos significativos y aplicables en relacion con una serie completa de tormentas, considerando la media del tiempo de variacion de las mediciones de la actividad electrica atmosferica a una altitud de 2,270 m s.n.m. La validacion estacional indica que

  6. Electric field measurements in the sheath of an argon RF discharge by probing with microparticles under varying gravity conditions

    NARCIS (Netherlands)

    Beckers, J.; Stoffels, W.W.; Kroesen, G.M.W.; Ockenga, T.; Wolter, M.; Kersten, H.

    2010-01-01

    The electric field profile in the plasma sheath of an argon rf plasma has been determined by measuring the equilibrium height and the resonance frequency of plasma-confined microparticles. In order to determine the electric field structure at any position in the plasma sheath without the discharge

  7. The artificially injected charged particles as a tool for the measurement of the electric field in the magnetosphere

    International Nuclear Information System (INIS)

    Pirre, M.

    1982-01-01

    This chapter discusses two methods of measuring the parallel electric field using artificially injected charged particles. The first method uses electrons to measure the parallel electric field in the vicinity of the spacecraft. The second method uses ions to measure electric potential along the magnetic field lines if the associated parallel electric field is directed downward. The use of electrons for the measurement has many limitations due to the disturbed regions surrounding the spacecraft and to the high level of turbulence which could significantly reduce accuracy. Even if the parallel electric fields are too low to be measured owing to the broadening of the fluxes by turbulence, the electrons can still be used to study the turbulence. It is demonstrated that if parallel electric fields are predominantly directed upward at high altitude, a downward parallel electric field can exist at lower altitude. Lithium ions can be used to maximize the returning fluxes and to increase the probability of detection. Rockets are shown to be more suitable than satellites with regard to measurement

  8. A technique for precise electrical-transport measurements under pressure above 10 GPa

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, M [Division of Civil and Enviromental Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan)], E-mail: ohashi@t.kanazawa-u.ac.jp

    2008-07-15

    We report a technique for the precise measurement of electrical resistivity at high pressures up to 15 GPa by using Bridgman anvils. The relatively large size of the pressure chamber (1.0 mm in diameter) allows the use of large specimens and simple experimental procedures rather than using a standard diamond anvil cell. A SUS310 gasket is pressed by two tungsten carbide anvils. A sample with typical dimensions of approximately 0.5x0.2x0.1mm{sup 3} is placed in a small hole of the gasket. In order to obtain a quasi-hydrostatic pressure, the pressure chamber is filled with a 1:1 mixture of Fluorinert FC70 and FC77 as the pressure transmitting medium. Electrical leads are introduced through shallow grooves milled into the anvil. The grooves are filled with a mixture of alumina powder for insulation. Accurate data of the resistance values of Bi and Fe at room temperature are available. We observe sharp transitions for Bi at 2.55, 2.7 and 7.7 GPa. The electrical resistance of Fe shows a sudden increase due to a structural transition near 14 GPa.

  9. The measurement and analysis of electric fields in glow discharge plasmas

    International Nuclear Information System (INIS)

    Lawler, J.E.; Doughty, D.A.

    1994-01-01

    Interest in glow discharge plasmas has remained high for many decades because of their widespread application as a source of incoherent and coherent light, in plasma processing materials, in pulsed power devices, and in other technologies. Plasma etching of semiconductors and various plasma deposition process emerged as major applications during the 1980s. The technological significance of plasma processing is described in Plasma Processing of Materials. More fundamental work on glow discharges also advanced greatly during the 1980s. For example, substantial progress was made through the use of laser diagnostics to study glow discharges and as a result of the dramatically increased computing power that became available in the 1980s to model glow discharges. Many of the laser diagnostics are described in Radiative Processes in Discharge Plasmas. Kinetic theory models, in particular, became far more sophisticated and realistic during the 1980s. This article is a review of recent work that used optical diagnostics to study electric fields in glow discharge plasmas. Alternative methods for measuring electric electric fields in plasmas include electron beam deflection and electrostatic probes. Optical techniques have important advantages over these methods: They can be used at higher pressures and discharge current densities than electron beam deflection; and they are noninvasive, unlike electrostatic probes. In addition, optical techniques are usually easier to apply in a highly pure system than either of the alternative methods. 46 refs., 23 figs., 1 tab

  10. Development of a Pain Measurement Device Using Electrical Stimulation and Pressure: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Seung Ho Lee

    2018-01-01

    Full Text Available Understanding and precise assessment of pain level are key factors in rehabilitation therapy. Pain is a complex and subjective experience that is affected by an individual’s emotion and health conditions. Various methods have been developed for quantitative evaluation of pain level; however, these methods have several drawbacks. In this work, we developed a pain measurement device for quantitative pain assessment. The system consists of two parts, a component for electrical stimulation and a pressure dolorimeter, for application of two different stresses. Regarding electrical stimulation, the degree of pain is assessed by the applied current. Skin resistance was also analyzed by applying current to remove the effects caused by skin conditions. The electrical stimulation did not induce any histological changes or inflammation in the tissues. Using the pressure dolorimeter, the pain level was assessed according to the degree of inflammation. This system could be used for the quantitative assessment of pain induced by inflammation, wounds, and other factors. Since the described system is the first of its kind, there are many problems that remain to be solved. However, with continuous development, our system could provide more accurate pain assessment by removing skin condition effects and through cross-validation.

  11. Measurement of ac electrical characteristics of SSC dipole magnets at Brookhaven

    International Nuclear Information System (INIS)

    Smedley, K.

    1992-04-01

    The SSC collider is designed to have circumference of 87 km. The superconducting magnets along the collider ring are grouped into ten sectors. Each sector, a string of average length of 8.7 km,m is powered by one power source located near the center of the sector. Because of the alternating-current (ac) electrical characteristics of the magnets, the power supply ripple currents and transients form a time and space distribution in the magnet string which affects particle motions. Additionally, since the power supply load is a magnet string, the current regulation loop design is highly dependent upon the ac electrical characteristics of the magnets. A means is needed to accurately determine the ac electrical characteristics of the superconducting magnets. The ac characteristics of magnets will be used to predict the ripple distribution of the long string of superconducting magnets. Magnet ac characteristics can also provide necessary information for the regulation loop design. This paper presents a method for measuring the ac characteristics of superconducting magnets. Two collider dipole magnets, one superconducting and one at room temperature, were tested at Brookhaven National Lab

  12. Electrical Maxwell demon and Szilard engine utilizing Johnson noise, measurement, logic and control.

    Directory of Open Access Journals (Sweden)

    Laszlo Bela Kish

    Full Text Available We introduce a purely electrical version of Maxwell's demon which does not involve mechanically moving parts such as trapdoors, etc. It consists of a capacitor, resistors, amplifiers, logic circuitry and electronically controlled switches and uses thermal noise in resistors (Johnson noise to pump heat. The only types of energy of importance in this demon are electrical energy and heat. We also demonstrate an entirely electrical version of Szilard's engine, i.e., an information-controlled device that can produce work by employing thermal fluctuations. The only moving part is a piston that executes work, and the engine has purely electronic controls and it is free of the major weakness of the original Szilard engine in not requiring removal and repositioning the piston at the end of the cycle. For both devices, the energy dissipation in the memory and other binary informatics components are insignificant compared to the exponentially large energy dissipation in the analog part responsible for creating new information by measurement and decision. This result contradicts the view that the energy dissipation in the memory during erasure is the most essential dissipation process in a demon. Nevertheless the dissipation in the memory and information processing parts is sufficient to secure the Second Law of Thermodynamics.

  13. Electrical Maxwell demon and Szilard engine utilizing Johnson noise, measurement, logic and control.

    Science.gov (United States)

    Kish, Laszlo Bela; Granqvist, Claes-Göran

    2012-01-01

    We introduce a purely electrical version of Maxwell's demon which does not involve mechanically moving parts such as trapdoors, etc. It consists of a capacitor, resistors, amplifiers, logic circuitry and electronically controlled switches and uses thermal noise in resistors (Johnson noise) to pump heat. The only types of energy of importance in this demon are electrical energy and heat. We also demonstrate an entirely electrical version of Szilard's engine, i.e., an information-controlled device that can produce work by employing thermal fluctuations. The only moving part is a piston that executes work, and the engine has purely electronic controls and it is free of the major weakness of the original Szilard engine in not requiring removal and repositioning the piston at the end of the cycle. For both devices, the energy dissipation in the memory and other binary informatics components are insignificant compared to the exponentially large energy dissipation in the analog part responsible for creating new information by measurement and decision. This result contradicts the view that the energy dissipation in the memory during erasure is the most essential dissipation process in a demon. Nevertheless the dissipation in the memory and information processing parts is sufficient to secure the Second Law of Thermodynamics.

  14. Analyzing degradation effects of organic light-emitting diodes via transient optical and electrical measurements

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Tobias D., E-mail: Tobias.Schmidt@physik.uni-augsburg.de; Jäger, Lars; Brütting, Wolfgang, E-mail: Wolfgang.Bruetting@physik.uni-augsburg.de [Institute of Physics, University of Augsburg, Augsburg (Germany); Noguchi, Yutaka [Department of Electronics and Bioinformatics, School of Science and Technology, Meiji University, Kawasaki (Japan); Center of Frontier Science, Chiba University, Chiba (Japan); Ishii, Hisao [Center of Frontier Science, Chiba University, Chiba (Japan)

    2015-06-07

    Although the long-term stability of organic light-emitting diodes (OLEDs) under electrical operation made significant progress in recent years, the fundamental underlying mechanisms of the efficiency decrease during operation are not well understood. Hence, we present a comprehensive degradation study of an OLED structure comprising the well-known green phosphorescent emitter Ir(ppy){sub 3}. We use transient methods to analyze both electrical and optical changes during an accelerated aging protocol. Combining the results of displacement current measurements with time-resolved investigation of the excited states lifetimes of the emitter allows for a correlation of electrical (e.g., increase of the driving voltage due to trap formation) and optical (e.g., decrease of light-output) changes induced by degradation. Therewith, it is possible to identify two mechanisms resulting in the drop of the luminance: a decrease of the radiative quantum efficiency of the emitting system due to triplet-polaron-quenching at trapped charge carriers and a modified charge carrier injection and transport, as well as trap-assisted non-radiative recombination resulting in a deterioration of the charge carrier balance of the device.

  15. Detection of estrus in dairy cows by electrical measurements of vaginal mucus and by milk progesterone.

    Science.gov (United States)

    Gartland, P; Schiavo, J; Hall, C E; Foote, R H; Scott, N R

    1976-05-01

    Electrical resistance (ohms) of mucus were analyzed in 20 postpartum Holstein cows by use of a probe inserted into the anterior vagina every other day for 30 days. Composite milk samples were taken on the same day, and progesterone was determined by radioimmunoassay. Cows were observed twice daily for standing estrus and reproductive organs palpated weekly per rectum (rectal palpation). Fifteen cows which were cycling showed increasing progesterone 6 to 7 days after the onset of estrus with values of 8.1 to 10.0 ng progesterone/ml milk on days 10 to 17. Concentrations had declined rapidly 2 days before onset of the next estrus. Progesterone in milk was affected by cow and by day of the cycle. Electrical resistance followed a similar cyclical pattern, but variability was large and only cows differed. The correlation between milk progesterone and mucus resistance was .22. Progesterone concentrations for four cows with follicular cysts fluctuated randomly with a mean of 2.6 ng/ml. Mean resistance of vaginal mucus was 44 omega for both cycling and cystic cows, indicating that a single measurement of electrical resistance every 2nd day was unreliable in distinguishing physiological states. One cow had high progesterone in milk on days 19 to 25 and was diagnosed pregnant by rectal palpation 3 wk later. Cows were not seen in estrus 28% of the time when milk progesterone and rectal palpation indicated they were in the follicular phase of the estrous cycle and were cycling.

  16. Electrical Maxwell Demon and Szilard Engine Utilizing Johnson Noise, Measurement, Logic and Control

    Science.gov (United States)

    Kish, Laszlo Bela; Granqvist, Claes-Göran

    2012-01-01

    We introduce a purely electrical version of Maxwell's demon which does not involve mechanically moving parts such as trapdoors, etc. It consists of a capacitor, resistors, amplifiers, logic circuitry and electronically controlled switches and uses thermal noise in resistors (Johnson noise) to pump heat. The only types of energy of importance in this demon are electrical energy and heat. We also demonstrate an entirely electrical version of Szilard's engine, i.e., an information-controlled device that can produce work by employing thermal fluctuations. The only moving part is a piston that executes work, and the engine has purely electronic controls and it is free of the major weakness of the original Szilard engine in not requiring removal and repositioning the piston at the end of the cycle. For both devices, the energy dissipation in the memory and other binary informatics components are insignificant compared to the exponentially large energy dissipation in the analog part responsible for creating new information by measurement and decision. This result contradicts the view that the energy dissipation in the memory during erasure is the most essential dissipation process in a demon. Nevertheless the dissipation in the memory and information processing parts is sufficient to secure the Second Law of Thermodynamics. PMID:23077525

  17. Electrical Resistance and Acoustic Emission Measurements for Monitoring the Structural Behavior of CFRP Laminate

    KAUST Repository

    Zhou, Wei

    2015-07-12

    Electrical resistance and acoustic emission (AE) measurement are jointly used to monitor the degradation in CFRP laminates subjected to tensile tests. The objective of this thesis is to perform a synergertic analysis between a passive and an active methods to better access how these perform when used for Structural Health Moni- toring (SHM). Laminates with three different stacking sequences: [0]4, [02/902]s and [+45/ − 45]2s are subjected to monotonic and cyclic tensile tests. In each laminate, we carefully investigate which mechanisms of degradation can or cannot be detect- ed by each technique. It is shown that most often, that acoustic emission signals start before any electrical detection is possible. This is is explained based on the redundance of the electrical network that makes it less sensitive to localized damages. Based on in depth study of AE signals clustering, a new classification is proposed to recognize the different damage mechanims based on only two parameters: the RA (rise time/amplitude) and the duration of the signal.

  18. Measurement of the hot electrical conductivity in the PBX-M tokamak

    International Nuclear Information System (INIS)

    Giruzzi, G.; Barbato, E.; Cardinali, A.; Bernabei, S.

    1997-01-01

    A new method for the analysis of tokamak discharges in which the plasma current is driven by the combination of high-power rf waves and a dc electric field is presented. In such regimes, which are the most usual in rf current drive experiments, it is generally difficult to separate the different components of the plasma current, i.e., purely Ohmic, purely noninductive and cross terms. If the bilinear (in wave power and electric field) cross term is the dominant one, an explicit relation between the loop voltage drop and the injected power can be found. This relation involves two parameters, the purely rf current drive efficiency and the hot (power dependent) electrical conductivity. These can be simultaneously determined from a simple two-parameter fit, if the loop voltage drop is measured at several rf power levels. An application to lower hybrid current drive experiments in the PBX-M tokamak is presented. It is shown that the method also allows the independent evaluation of the average power absorption fraction and n parallel upshift

  19. New Directions in EEG Measurement: an Investigation into the Fidelity of Electrical Potential Sensor Signals

    Directory of Open Access Journals (Sweden)

    M. FATOORECHI

    2015-01-01

    Full Text Available Low frequency noise performance is the key indicator in determining the signal to noise ratio of a capacitively coupled sensor when used to acquire electroencephalogram signals. For this reason, a prototype Electric Potential Sensor device based on an auto-zero operational amplifier has been developed and evaluated. The absence of 1/f noise in these devices makes them ideal for use with signal frequencies ~10 Hz or less. The active electrodes are designed to be physically and electrically robust and chemically and biochemically inert. They are electrically insulated (anodized and have diameters of 12 mm or 18 mm. In both cases, the sensors are housed in inert stainless steel machined housings with the electronics fabricated in surface mount components on a printed circuit board compatible with epoxy potting compounds. Potted sensors are designed to be immersed in alcohol for sterilization purposes. A comparative study was conducted with a commercial wet gel electrode system. These studies comprised measurements of both free running electroencephalogram and Event Related Potentials. Quality of the recorded electroencephalogram was assessed using three methods of inspection of raw signal, comparing signal to noise ratios, and Event Related Potentials noise analysis. A strictly comparable signal to noise ratio was observed and the overall conclusion from these comparative studies is that the noise performance of the new sensor is appropriate.

  20. Electrical conductivity of pyroxene which contains trivalent cations: Laboratory measurements and the lunar temperature profile

    International Nuclear Information System (INIS)

    Huebner, J.S.; Duba, A.; Wiggins, L.B.

    1979-01-01

    Three natural orthopyroxene single crystals, measured in the laboratory over the temperature range 850 0 --1200 0 C, are more than 1/2 order of magnitude more electrically conducting than previously measured crystals. Small concentrations (1--2%) of Al 2 O 3 and Cr 2 O 3 present in these crystals may be responsible for their relatively high conductivity. Such pyroxenes, which contain trivalent elements, are more representative of pyroxenes expected to be present in the lunar mantle than those which have been measured by other investigators. The new conductivity values for pyroxene are responsible for a relatively large bulk conductivity calculated for (polymineralic) lunar mantle assemblages. The results permit a somewhat cooler lunar temperature profile than previously proposed. Such lower profiles, several hundred degrees Celsius below the solidus, are quite consistent with low seismic attenuation and deep moonquakes observed in the lunar mantle

  1. Electrical characterization of thin SOI wafers using lateral MOS transient capacitance measurements

    International Nuclear Information System (INIS)

    Wang, D.; Ueda, A.; Takada, H.; Nakashima, H.

    2006-01-01

    A novel electrical evaluation method was proposed for crystal quality characterization of thin Si on insulator (SOI) wafers, which was done by measurement of minority carrier generation lifetime (τ g ) using transient capacitance method for lateral metal-oxide-semiconductor (MOS) capacitor. The lateral MOS capacitors were fabricated on three kinds of thin SOI wafers. The crystal quality difference among these three wafers was clearly shown by the τ g measurement results and discussed from a viewpoint of SOI fabrication. The series resistance influence on the capacitance measurement for this lateral MOS capacitor was discussed in detail. The validity of this method was confirmed by comparing the intensities of photoluminescence signals due to electron-hole droplet in the band-edge emission

  2. Measurement of electric field distribution along the plasma column in Microwave jet discharges at atmospheric pressure

    International Nuclear Information System (INIS)

    Razzak, M. Abdur; Takamura, Shuichi; Tsujikawa, Takayuki; Shibata, Hideto; Hatakeyama, Yuto

    2009-01-01

    A new technique for the direct measurement of electric field distribution along the plasma column in microwave jet discharges is developed and employed. The technique is based on a servomotor-controlled reciprocating antenna moving along the nozzle axis and plasma column. The measurement technique is applied to a rectangular waveguide-based 2.45 GHz argon and helium plasma jets generated by using the modified TIAGO nozzle at atmospheric pressure with a microwave power of less than 500 W. The measurement has been done with and without igniting the plasma jet in order to investigate the standing wave propagation along the nozzle axis and plasma column. It is observed that the electric field decay occurs slowly in space with plasma ignition than that of without plasma, which indicates the surface electromagnetic wave propagation along the plasma column in order to sustain the plasma jet. This study enables one to design, determine and optimize the size and structure of launcher nozzle, which plays an important role for the stable and efficient microwave plasma generators. (author)

  3. Measurements of electric charge and screening length of microparticles in a plasma sheath

    International Nuclear Information System (INIS)

    Nakamura, Y.; Ishihara, O.

    2009-01-01

    An experiment is described in which microparticles are levitated within a rf sheath above a conducting plate in argon plasma. The microparticles forming a two-dimensional crystal structure are considered to possess Debye screening Coulomb potential φ(r)=(Q/4πε 0 r)exp(-r/λ), where Q is the electric charge, r is distance, and λ is the screening length. When the crystal structure is slanted with an angle θ, a particle experiences a force Mg sin θ, where M is the mass of the particle and g is acceleration due to gravity, which must be equal to the Debye screened Coulomb force from other particles. By changing θ, relations for λ(Q) are measured. The screening length λ and Q are determined uniquely from the crossing points of several relations. The electric charge Q is also estimated from a floating potential measured with a probe. The measured λ is nearly equal to an ion Debye length.

  4. On the detectability of transverse cracks in laminated composites using electrical potential change measurements

    KAUST Repository

    Selvakumaran, Lakshmi

    2015-03-01

    Real-time health monitoring of structures made of laminated composites is necessary as significant damage may occur without any visible signs on the surface. Inspection by electrical tomography (ET) seems a viable approach that relies on voltage measurements from a network of electrodes across the inspected domain to infer conductivity change within the bulk material. If conductivity decreases significantly with increasing damage, the obtained conductivity map can be correlated to the degradation state of the material. We focus here on detection of transverse cracks. As transverse cracks modify the in-plane transverse conductivity of a single ply, we expect them to be detectable by electrical measurements. Yet, the quality of detection is directly related to the sensitivity of the measurements to the presence of cracks. We use numerical experiments to demonstrate that the sensitivity depends on several material and geometrical parameters. Based on the results, the applicability of ET to detect transverse cracks is discussed. One conclusion from the study is that detecting transverse cracks using ET is more reliable in some laminate configurations than in others. Recommendations about the properties of either the pristine material or the inspected structures are provided to establish if ET is reliable in detecting transverse cracks.

  5. Automated criterion-based analysis for Cole parameters assessment from cerebral neonatal electrical bioimpedance spectroscopy measurements

    International Nuclear Information System (INIS)

    Seoane, F; Lindecrantz, Kaj; Ward, L C; Lingwood, B E

    2012-01-01

    Hypothermia has been proven as an effective rescue therapy for infants with moderate or severe neonatal hypoxic ischemic encephalopathy. Hypoxia-ischemia alters the electrical impedance characteristics of the brain in neonates; therefore, spectroscopic analysis of the cerebral bioimpedance of the neonate may be useful for the detection of candidate neonates eligible for hypothermia treatment. Currently, in addition to the lack of reference bioimpedance data obtained from healthy neonates, there is no standardized approach established for bioimpedance spectroscopy data analysis. In this work, cerebral bioimpedance measurements (12 h postpartum) in a cross-section of 84 term and near-term healthy neonates were performed at the bedside in the post-natal ward. To characterize the impedance spectra, Cole parameters (R 0 , R ∞ , f C and α) were extracted from the obtained measurements using an analysis process based on a best measurement and highest likelihood selection process. The results obtained in this study complement previously reported work and provide a standardized criterion-based method for data analysis. The availability of electrical bioimpedance spectroscopy reference data and the automatic criterion-based analysis method might support the development of a non-invasive method for prompt selection of neonates eligible for cerebral hypothermic rescue therapy. (paper)

  6. Heat dissipation due to ferromagnetic resonance in a ferromagnetic metal monitored by electrical resistance measurement

    International Nuclear Information System (INIS)

    Yamanoi, Kazuto; Yokotani, Yuki; Kimura, Takashi

    2015-01-01

    The heat dissipation due to the resonant precessional motion of the magnetization in a ferromagnetic metal has been investigated. We demonstrated that the temperature during the ferromagnetic resonance can be simply detected by the electrical resistance measurement of the Cu strip line in contact with the ferromagnetic metal. The temperature change of the Cu strip due to the ferromagnetic resonance was found to exceed 10 K, which significantly affects the spin-current transport. The influence of the thermal conductivity of the substrate on the heating was also investigated

  7. Device for the measurement of electrically conductive bulk goods led through a pipeline

    International Nuclear Information System (INIS)

    Thyssen, H.; Breuer, G.

    1978-01-01

    The measuring section employed to detect the passage of spherical, graphite coated, electrically conducting fuel and/or blanket elements consists of a metal tube as the first electrode and another electrode, which is insulated from the first one, between which a spark gap is triggered by a sphere passing between them. The circuitry of the two electrodes includes a DC generator and a high ohmic resistor. The indication signals are generated by amplitude modulation by the interaction of the high ohmic resistor, the spark gap and a stray capacitance connected in parallel with the spark gap. The signals can be fed to the data processing system. (RW) [de

  8. Floating liquid bridge tensile behavior: Electric-field-induced Young's modulus measurements

    Science.gov (United States)

    Teschke, Omar; Mendez Soares, David; Valente Filho, Juracyr Ferraz

    2013-12-01

    A floating bridge is formed spontaneously when high voltage is applied to polar fluids in two capillary tubes that were in contact and then separated. This bridge bends under its own weight, and its bending profile was used to calculate its Young's modulus. For electric field intensities of ˜106 V/m, water bridges exhibit viscoelastic behavior, with Young's moduli of ˜24 MPa; dimethylsulfoxide (DMSO) bridges exhibited Young's moduli of ˜60 kPa. The scheme devised to measure the voltage drop across the water bridge for high voltages applied between the electrodes shows that the bulk water resistance decreases with increasing voltage.

  9. Sensitivity analysis of magnetic field measurements for magnetic resonance electrical impedance tomography (MREIT)

    DEFF Research Database (Denmark)

    Göksu, Cihan; Scheffler, Klaus; Ehses, Philipp

    2017-01-01

    Purpose: Clinical use of magnetic resonance electrical impedance tomography (MREIT) still requires significant sensitivity improvements. Here, the measurement of the current-induced magnetic field (DBz,c) is improved using systematic efficiency analyses and optimization of multi-echo spin echo...... (MESE) and steady-state free precession free induction decay (SSFP-FID) sequences. Theory and Methods: Considering T1, T2, and T 2 relaxation in the signal-to-noise ratios (SNRs) of the MR magnitude images, the efficiency of MESE and SSFP-FID MREIT experiments, and its dependence on the sequence...

  10. Response of residential electricity demand to price: The effect of measurement error

    International Nuclear Information System (INIS)

    Alberini, Anna; Filippini, Massimo

    2011-01-01

    In this paper we present an empirical analysis of the residential demand for electricity using annual aggregate data at the state level for 48 US states from 1995 to 2007. Earlier literature has examined residential energy consumption at the state level using annual or monthly data, focusing on the variation in price elasticities of demand across states or regions, but has failed to recognize or address two major issues. The first is that, when fitting dynamic panel models, the lagged consumption term in the right-hand side of the demand equation is endogenous. This has resulted in potentially inconsistent estimates of the long-run price elasticity of demand. The second is that energy price is likely mismeasured. To address these issues, we estimate a dynamic partial adjustment model using the Kiviet corrected Least Square Dummy Variables (LSDV) (1995) and the Blundell-Bond (1998) estimators. We find that the long-term elasticities produced by the Blundell-Bond system GMM methods are largest, and that from the bias-corrected LSDV are greater than that from the conventional LSDV. From an energy policy point of view, the results obtained using the Blundell-Bond estimator where we instrument for price imply that a carbon tax or other price-based policy may be effective in discouraging residential electricity consumption and hence curbing greenhouse gas emissions in an electricity system mainly based on coal and gas power plants. - Research Highlights: → Updated information on price elasticities for the US energy policy. → Taking into account measurement error in the price variable increase price elasticity. → Room for discouraging residential electricity consumption using price increases.

  11. Response of residential electricity demand to price: The effect of measurement error

    Energy Technology Data Exchange (ETDEWEB)

    Alberini, Anna [Department of Agricultural Economics, University of Maryland (United States); Centre for Energy Policy and Economics (CEPE), ETH Zurich (Switzerland); Gibson Institute and Institute for a Sustainable World, School of Biological Sciences, Queen' s University Belfast, Northern Ireland (United Kingdom); Filippini, Massimo, E-mail: mfilippini@ethz.ch [Centre for Energy Policy and Economics (CEPE), ETH Zurich (Switzerland); Department of Economics, University of Lugano (Switzerland)

    2011-09-15

    In this paper we present an empirical analysis of the residential demand for electricity using annual aggregate data at the state level for 48 US states from 1995 to 2007. Earlier literature has examined residential energy consumption at the state level using annual or monthly data, focusing on the variation in price elasticities of demand across states or regions, but has failed to recognize or address two major issues. The first is that, when fitting dynamic panel models, the lagged consumption term in the right-hand side of the demand equation is endogenous. This has resulted in potentially inconsistent estimates of the long-run price elasticity of demand. The second is that energy price is likely mismeasured. To address these issues, we estimate a dynamic partial adjustment model using the Kiviet corrected Least Square Dummy Variables (LSDV) (1995) and the Blundell-Bond (1998) estimators. We find that the long-term elasticities produced by the Blundell-Bond system GMM methods are largest, and that from the bias-corrected LSDV are greater than that from the conventional LSDV. From an energy policy point of view, the results obtained using the Blundell-Bond estimator where we instrument for price imply that a carbon tax or other price-based policy may be effective in discouraging residential electricity consumption and hence curbing greenhouse gas emissions in an electricity system mainly based on coal and gas power plants. - Research Highlights: > Updated information on price elasticities for the US energy policy. > Taking into account measurement error in the price variable increase price elasticity. > Room for discouraging residential electricity consumption using price increases.

  12. Quantitation of 24-Hour Moisturization by Electrical Measurements of Skin Hydration.

    Science.gov (United States)

    Wickett, R Randall; Damjanovic, Bronson

    The purpose of this study was to quantify the effects of several moisturizers on hydration of the stratum corneum by measuring their effect on electrical conductance over a 24-hour period. Double-blind, randomized controlled trial. Twenty-five healthy female volunteers aged 18 to 65 years with dry skin on the lower legs and no other known dermatologic pathology participated in the study. Additional exclusion criteria were pregnant or taking anti-inflammatory steroids. The study was carried out in a clinical research facility in Winnipeg, Manitoba, Canada. Subjects underwent a 3-day conditioning period using a natural soap bar on the lower legs and no application of moisturizer to the skin. Participants then came to the test site and equilibrated for at least 30 minutes under controlled conditions of temperature and humidity. After baseline hydration measurements on test sites on the lower legs of each subject, a single application of each of 5 test products at a dose of 2 mg/cm was made. Skin hydration was assessed by electrical conductance measurements with a specialized probe. The probe was briefly placed on the skin surface with light pressure, and the measurement recorded in units of microsiemens (μS). Conductance was measured at 2, 4, 6, 8, and 24 hours after product applications. Although all but 1 of the test products increased conductance at 2 hours, only 2 moisturizers containing high levels of glycerin (products C and E) maintained increased conductance relative to baseline at 24 hours, +37.8 (P skin conductance for at least 24 hours after a single application.

  13. In situ electrical conductivity measurements of H{sub 2}O under static pressure up to 28 GPa

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bao, E-mail: liubao@nedu.edu.cn [Institute of Materials Physics, College of Science, Northeast Dianli University, Jilin 132012 (China); State Key Laboratory of Superhard Materials, Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012 (China); Gao, Yang [State Key Laboratory of Superhard Materials, Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012 (China); Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79409 (United States); Han, Yonghao [State Key Laboratory of Superhard Materials, Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012 (China); Ma, Yanzhang [Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79409 (United States); Gao, Chunxiao, E-mail: cc060109@qq.com [State Key Laboratory of Superhard Materials, Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012 (China)

    2016-08-26

    Highlights: • We conduct in situ electrical conductivity measurements on water in a diamond anvil cell (DAC) under high pressure up to 28 GPa and study the electrical transport properties of water and ices. • In liquid state, the increasing rate of electrical conductivity with pressure is slower than that obtained in shock-waves measurements. • In solid phase, the relationship between electrical conductivity and pressure is discontinuous, which is corresponding to phase transformation from ice VIII to ice VII. • The difference in electrical conductivity of VI, VII, and VIII may associate with different orientational ordering in these ices. • The electrical conduction in these ices is dominated by already existing ions and Bjerrum defects, which play an important role in electrical transport properties of ices. - Abstract: The in situ electrical conductivity measurements on water in both solid state and liquid state were performed under pressure up to 28 GPa and temperature from 77 K to 300 K using a microcircuit fabricated on a diamond anvil cell (DAC). Water chemically ionization mainly contributes to electrical conduction in liquid state, which is in accord with the results obtained under dynamic pressure. Energy band theory of liquid water was used to understand effect of static pressure on electrical conduction of water. The electric conductivity of H{sub 2}O decreased discontinuously by four orders of magnitude at 0.7–0.96 GPa, indicating water frozen at this P–T condition. Correspondingly, the conduction of H{sub 2}O in solid state is determined by arrangement and bending of H-bond in ice VI and ice VII. Based on Jaccard theory, we have concluded that the charge carriers of ice are already existing ions and Bjerrum defects.

  14. Measurement of the spectrum of electric-field fluctuations in a plasma by laser-fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Hildebrandt, J.; Kunze, H.

    1980-01-01

    Laser-fluorescence spectroscopy has been applied to measure the spectrum of electric wave fields with high temporal resolution in a pulsed hollow-cathode discharge. A low-frequency and a high-frequency component can be identified

  15. Development of electrical conductivity measurement technology for key plant physiological information using microneedle sensor

    International Nuclear Information System (INIS)

    Jeon, Eunyong; Lee, Junghoon; Choi, Seungyul; Yeo, Kyung-Hwan; Park, Kyoung Sub; Rathod, Mitesh L

    2017-01-01

    Impedance measurement is a widely used technique for monitoring ion species in various applications. In plant cultivation, the impedance system is used to measure the electrical conductivity (EC) of nutrient solutions. Recent research has shown that the quality and quantity of horticultural crops, e.g. tomato, can be optimized by controlling the salinity of nutrient solutions. However, understanding the detailed response of a plant to a nutrient solution is not possible until the fruit is fully grown or by sacrificing the stem. To overcome this issue, horticultural crop cultivation requires real-time monitoring of the EC inside the stem. Using this data, the growth model of a plant could be constructed, and the response of the plant to external environment determined. In this paper, we propose an implantable microneedle device equipped with a micro-patterned impedance measurement system for direct measurement of the EC inside the tomato stem. The fabrication process includes silicon-based steps such as microscale deposition, photolithography, and a deep etching process. Further, microscale fabrication enables all functional elements to fulfill the area budget and be very accurate with minimal plant invasion. A two-electrode geometry is used to match the measurement condition of the tomato stem. Real-time measurement of local sap condition inside the plant in which real-time data for tomato sap EC is obtained after calibration at various concentrations of standard solution demonstrate the efficacy of the proposed device. (paper)

  16. Assessment of short/long term electric field strength measurements for a pilot district

    Science.gov (United States)

    Kurnaz, Cetin; Yildiz, Dogan; Karagol, Serap

    2018-03-01

    The level of electromagnetic radiation (EMR) exposure increases day by day as natural consequences of technological developments. In recent years, the increasing use of cellular systems has made it necessary to measure and evaluate EMR originating from base stations. In this study, broadband and band selective electric field strength (E) measurements were taken at four different times in order to evaluate the change of short term E in Atakum district of Samsun, Turkey. The measurements were collected from 46 different locations using a SRM 3006 and a PMM 8053 EMR meter in a band from 100 kHz to 3 GHz, and the maximum E (Emax) and the average E (Eavg) were recorded. The highest values have been noticed in these measurements at 9.45 V/m and 17.53 V/m for Eavg and Emax respectively. Apart from these measurements, 24 hour long term E measurements were taken at a location where the highest value was observed and analyzed, to observe the change of Es during a day. At the end of the study, a tentative mathematical model that helps in computing the total E of the medium with 95% accuracy, was obtained.

  17. Pyramidal resistor networks for electrical impedance tomography with partial boundary measurements

    International Nuclear Information System (INIS)

    Borcea, L; Mamonov, A V; Druskin, V; Vasquez, F Guevara

    2010-01-01

    We introduce an inversion algorithm for electrical impedance tomography (EIT) with partial boundary measurements in two dimensions. It gives stable and fast reconstructions using sparse parameterizations of the unknown conductivity on optimal grids that are computed as part of the inversion. We follow the approach in Borcea et al (2008 Inverse Problems 24 035013) and Vasquez (2006 PhD thesis Rice University, Houston, TX, USA) that connects inverse discrete problems for resistor networks to continuum EIT problems, using optimal grids. The algorithm in Borcea et al (2008 Inverse Problems 24 035013) and Vasquez (2006 PhD Thesis Rice University, Houston, TX, USA) is based on circular resistor networks, and solves the EIT problem with full boundary measurements. It is extended in Borcea et al (2010 Inverse Problems 26 045010) to EIT with partial boundary measurements, using extremal quasi-conformal mappings that transform the problem to one with full boundary measurements. Here we introduce a different class of optimal grids, based on resistor networks with pyramidal topology, that is better suited for the partial measurements setup. We prove the unique solvability of the discrete inverse problem for these networks and develop an algorithm for finding them from the measurements of the Dirichlet to Neumann map. Then, we show how to use the networks to define the optimal grids and to approximate the unknown conductivity. We assess the performance of our approach with numerical simulations and compare the results with those in Borcea et al (2010)

  18. Measurement of ultra-low ion energy of decelerated ion beam using a deflecting electric field

    Energy Technology Data Exchange (ETDEWEB)

    Thopan, P.; Suwannakachorn, D.; Tippawan, U. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Yu, L.D., E-mail: yuld@thep-center.org [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand)

    2015-12-15

    In investigation on ultra-low-energy ion bombardment effect on DNA, an ion beam deceleration lens was developed for high-quality ultra-low-energy ion beam. Measurement of the ion energy after deceleration was necessary to confirm the ion beam really decelerated as theoretically predicted. In contrast to conventional methods, this work used a simple deflecting electrostatic field after the deceleration lens to bend the ion beam. The beam bending distance depended on the ion energy and was described and simulated. A system for the measurement of the ion beam energy was constructed. It consisted of a pair of parallel electrode plates to generate the deflecting electrical field, a copper rod measurement piece to detect ion beam current, a vernier caliper to mark the beam position, a stepping motor to translate the measurement rod, and a webcam-camera to read the beam bending distance. The entire system was installed after the ion-beam deceleration lens inside the large chamber of the bioengineering vertical ion beam line. Moving the measurement rod across the decelerated ion beam enabled to obtain beam profiles, from which the beam bending distance could be known and the ion beam energy could be calculated. The measurement results were in good agreement with theoretical and simulated results.

  19. Development of electrical conductivity measurement technology for key plant physiological information using microneedle sensor

    Science.gov (United States)

    Jeon, Eunyong; Choi, Seungyul; Yeo, Kyung-Hwan; Park, Kyoung Sub; Rathod, Mitesh L.; Lee, Junghoon

    2017-08-01

    Impedance measurement is a widely used technique for monitoring ion species in various applications. In plant cultivation, the impedance system is used to measure the electrical conductivity (EC) of nutrient solutions. Recent research has shown that the quality and quantity of horticultural crops, e.g. tomato, can be optimized by controlling the salinity of nutrient solutions. However, understanding the detailed response of a plant to a nutrient solution is not possible until the fruit is fully grown or by sacrificing the stem. To overcome this issue, horticultural crop cultivation requires real-time monitoring of the EC inside the stem. Using this data, the growth model of a plant could be constructed, and the response of the plant to external environment determined. In this paper, we propose an implantable microneedle device equipped with a micro-patterned impedance measurement system for direct measurement of the EC inside the tomato stem. The fabrication process includes silicon-based steps such as microscale deposition, photolithography, and a deep etching process. Further, microscale fabrication enables all functional elements to fulfill the area budget and be very accurate with minimal plant invasion. A two-electrode geometry is used to match the measurement condition of the tomato stem. Real-time measurement of local sap condition inside the plant in which real-time data for tomato sap EC is obtained after calibration at various concentrations of standard solution demonstrate the efficacy of the proposed device.

  20. Circular resistor networks for electrical impedance tomography with partial boundary measurements

    International Nuclear Information System (INIS)

    Borcea, L; Mamonov, A V; Druskin, V

    2010-01-01

    We introduce an algorithm for the numerical solution of electrical impedance tomography (EIT) in two dimensions, with partial boundary measurements. The algorithm is an extension of the one in Borcea et al (2008 Inverse Problems 24 035013 (31pp)) and Vasquez (2006 PhD Thesis Rice University, Houston, TX, USA) for EIT with full boundary measurements. It is based on resistor networks that arise in finite volume discretizations of the elliptic partial differential equation for the potential on so-called optimal grids that are computed as part of the problem. The grids are adaptively refined near the boundary, where we measure and expect better resolution of the images. They can be used very efficiently in inversion, by defining a reconstruction mapping that is an approximate inverse of the forward map, and acts therefore as a preconditioner in any iterative scheme that solves the inverse problem via optimization. The main result in this paper is the construction of optimal grids for EIT with partial measurements by extremal quasiconformal (Teichmüller) transformations of the optimal grids for EIT with full boundary measurements. We present the algorithm for computing the reconstruction mapping on such grids, and we illustrate its performance with numerical simulations. The results show an interesting trade-off between the resolution of the reconstruction in the domain of the solution and distortions due to artificial anisotropy induced by the distribution of the measurement points on the accessible boundary

  1. Development of measurement apparatus for high resolution electrical surveys; Komitsudo denki tansa sokuteiki no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Moriuchi, H; Matsuda, Y; Shiokawa, Y [Sumiko Consultants Co. Ltd., Tokyo (Japan); Uchino, Y [Cosmic Co. Ltd., Tokyo (Japan)

    1996-05-01

    For the enforcement of the {rho}a-{rho}u survey method which is a type of high-density electrical survey, a multichannel resistivity measuring instrument has been developed. This instrument, in addition to the above, conducts resistivity tomography and various other kinds of high-density electrical survey. A potential produced by a low frequency rectangular current of 1Hz or lower outputted by the transmitter of this instrument is received and measured by the receiver connected to electrodes positioned at 100 or less locations. The receiver comprises a scanner that automatically switches from electrode to electrode, conditioner that processes signals, and controller. A transmitter of the standard design outputs a maximum voltage of 800V and maximum current of 2A, making a device suitable for probing 50 to several 100m-deep levels. The receiver is operated by a personal computer that the controller is provided with. The newly-developed apparatus succeeded in presenting high-precision images of the result of a {rho}a-{rho}u analysis for an apparent resistivity section and of the underground structure, verifying the high quality of the data collected by this apparatus. 10 refs., 5 figs., 1 tab.

  2. Vapor cell geometry effect on Rydberg atom-based microwave electric field measurement

    Science.gov (United States)

    Zhang, Linjie; Liu, Jiasheng; Jia, Yue; Zhang, Hao; Song, Zhenfei; Jia, Suotang

    2018-03-01

    The geometry effect of a vapor cell on the metrology of a microwave electric field is investigated. Based on the splitting of the electromagnetically induced transparency spectra of cesium Rydberg atoms in a vapor cell, high-resolution spatial distribution of the microwave electric field strength is achieved for both a cubic cell and a cylinder cell. The spatial distribution of the microwave field strength in two dimensions is measured with sub-wavelength resolution. The experimental results show that the shape of a vapor cell has a significant influence on the abnormal spatial distribution because of the Fabry–Pérot effect inside a vapor cell. A theoretical simulation is obtained for different vapor cell wall thicknesses and shows that a restricted wall thickness results in a measurement fluctuation smaller than 3% at the center of the vapor cell. Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA03044200 and 2016YFF0200104), the National Natural Science Foundation of China (Grant Nos. 91536110, 61505099, and 61378013), and the Fund for Shanxi “331 Project” Key Subjects Construction, China.

  3. Multi-station synthesis of early twentieth century surface atmospheric electricity measurements for upper tropospheric properties

    Directory of Open Access Journals (Sweden)

    R. G. Harrison

    2007-07-01

    Full Text Available The vertical columnar current density in the global atmospheric electrical circuit depends on the local columnar resistance. A simple model for the columnar resistance is suggested, which separates the local boundary layer component from the upper troposphere cosmic ray component, and calculates the boundary layer component from a surface measurement of air conductivity. This theory is shown to provide reasonable agreement with observations. One application of the simple columnar model theory is to provide a basis for the synthesis of surface atmospheric electrical measurements made simultaneously at several European sites. Assuming the ionospheric potential to be common above all the sites, the theoretical air-earth current density present in the absence of a boundary layer columnar resistance can be found by extrapolation. This is denoted the free troposphere limit air-earth current density, J0. Using early surface data from 1909 when no ionospheric potential data are available for corroboration, J0 is found to be ~6 pA m−2, although this is subject to uncertainties in the data and limitations in the theory. Later (1966–1971 European balloon and surface data give J0=2.4 pA m−2.

  4. A silicon-on-insulator vertical nanogap device for electrical transport measurements in aqueous electrolyte solution

    Energy Technology Data Exchange (ETDEWEB)

    Strobel, Sebastian [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall, D-85748 Garching (Germany); Arinaga, Kenji [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall, D-85748 Garching (Germany); Hansen, Allan [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall, D-85748 Garching (Germany); Tornow, Marc [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall, D-85748 Garching (Germany)

    2007-07-25

    A novel concept for metal electrodes with few 10 nm separation for electrical conductance measurements in an aqueous electrolyte environment is presented. Silicon-on-insulator (SOI) material with 10 nm buried silicon dioxide serves as a base substrate for the formation of SOI plateau structures which, after recess-etching the thin oxide layer, thermal oxidation and subsequent metal thin film evaporation, feature vertically oriented nanogap electrodes at their exposed sidewalls. During fabrication only standard silicon process technology without any high-resolution nanolithographic techniques is employed. The vertical concept allows an array-like parallel processing of many individual devices on the same substrate chip. As analysed by cross-sectional TEM analysis the devices exhibit a well-defined material layer architecture, determined by the chosen material thicknesses and process parameters. To investigate the device in aqueous solution, we passivated the sample surface by a polymer layer, leaving a micrometre-size fluid access window to the nanogap region only. First current-voltage characteristics of a 65 nm gap device measured in 60 mM buffer solution reveal excellent electrical isolation behaviour which suggests applications in the field of biomolecular electronics in a natural environment.

  5. Electric field measurement of two commercial active/sham coils for transcranial magnetic stimulation.

    Science.gov (United States)

    Smith, James Evan; Peterchev, Angel V

    2018-06-22

    Sham TMS coils isolate the ancillary effects of their active counterparts, but typically induce low-strength electric fields (E-fields) in the brain, which could be biologically active. We measured the E-fields induced by two pairs of commonly-used commercial active/sham coils. Approach: E-field distributions of the active and sham configurations of the Magstim 70 mm AFC and MagVenture Cool-B65 A/P coils were measured over a 7-cm-radius, hemispherical grid approximating the cortical surface. Peak E-field strength was recorded over a range of pulse amplitudes. Main results: The Magstim and MagVenture shams induce peak E-fields corresponding to 25.3% and 7.72% of their respective active values. The MagVenture sham has an E-field distribution shaped like its active counterpart. The Magstim sham induces nearly zero E-field under the coil's center, and its peak E-field forms a diffuse oval 3-7 cm from the center. Electrical scalp stimulation paired with the MagVenture sham is estimated to increase the sham E-field in the brain up to 10%. Significance: Different commercial shams induce different E-field strengths and distributions in the brain, which should be considered in interpreting outcomes of sham stimulation. © 2018 IOP Publishing Ltd.

  6. Planning and Prototyping for a Storage Ring Measurement of the Proton Electric Dipole Moment

    Energy Technology Data Exchange (ETDEWEB)

    Talman, Richard [Cornell Univ., Ithaca, NY (United States)

    2015-07-01

    Electron and proton EDM's can be measured in "frozen spin" (with the beam polarization always parallel to the orbit, for example) storage rings. For electrons the "magic" kinetic energy at which the beam can be frozen is 14.5 MeV. For protons the magic kinetic energy is 230 MeV. The currently measured upper limit for the electron EDM is much smaller than the proton EDM upper limit, which is very poorly known. Nevertheless, because the storage ring will be an order of magnitude cheaper, a sensible plan is to first build an all-electric electron storage ring as a prototype. Such an electron ring was successfully built at Brookhaven, in 1954, as a prototype for their AGS ring. This leaves little uncertainty concerning the cost and performance of such a ring. (This is documentedin one of the Physical Review papers mentioned above.)

  7. Rocket measurements within a polar cap arc - Plasma, particle, and electric circuit parameters

    Science.gov (United States)

    Weber, E. J.; Ballenthin, J. O.; Basu, S.; Carlson, H. C.; Hardy, D. A.; Maynard, N. C.; Kelley, M. C.; Fleischman, J. R.; Pfaff, R. F.

    1989-01-01

    Results are presented from the Polar Ionospheric Irregularities Experiment (PIIE), conducted from Sondrestrom, Greenland, on March 15, 1985, designed for an investigation of processes which lead to the generation of small-scale (less than 1 km) ionospheric irregularities within polar-cap F-layer auroras. An instrumented rocket was launched into a polar cap F layer aurora to measure energetic electron flux, plasma, and electric circuit parameters of a sun-aligned arc, coordinated with simultaneous measurements from the Sondrestrom incoherent scatter radar and the AFGL Airborne Ionospheric Observatory. Results indicated the existence of two different generation mechanisms on the dawnside and duskside of the arc. On the duskside, parameters are suggestive of an interchange process, while on the dawnside, fluctuation parameters are consistent with a velocity shear instability.

  8. The Method of Measured Electrical Resistivity in Studying Phase Transformations in Zr1Nb Alloy

    International Nuclear Information System (INIS)

    Gritsina, V.M.; Klimenko, S.P.; Chernyaeva, T.P.

    2006-01-01

    The paper systematically arranges and analyzes the data on the methods of research into α ↔ β transformation process in zirconium alloys, as well as capabilities and information provided by each method. A special emphasis is put on the method of measured electrical resistivity. The authors also present the results of their own research into α ↔ β transformation process in Zr1Nb alloy (in the material of Zr+1% Nb tubing produced in Ukraine from calciothermal zirconium). The ρ →T curve was used to define the maximum and minimum values for transformation temperatures. Combined processing of the phase data on Zr+1% Nb found in literature and obtained from measured resistivity suggests that transformation process happens in several stages. The maximum value on the ρ → T curve corresponds to the beginning of stage 3, whereas the minimum - to its completion; as suggested by the pooled data, accounts for over 95% of the total volume of the material

  9. Measurement of black carbon emissions from in-use diesel-electric passenger locomotives in California

    Science.gov (United States)

    Tang, N. W.; Kirchstetter, T.; Martien, P. T.; Apte, J.

    2015-12-01

    Black carbon (BC) emission factors were measured for a California commuter rail line fleet of diesel-electric passenger locomotives (Caltrain). The emission factors are based on BC and carbon dioxide (CO2) concentrations in the exhaust plumes of passing locomotives, which were measured from pedestrian overpasses using portable analyzers. Each of the 29 locomotives in the fleet was sampled on 4-20 separate occasions at different locations to characterize different driving modes. The average emission factor expressed as g BC emitted per kg diesel consumed was 0.87 ± 0.66 g kg-1 (±1 standard deviation, n = 362 samples). BC emission factors tended to be higher for accelerating locomotives traveling at higher speeds with engines in higher notch settings. Higher fuel-based BC emission factors (g kg-1) were measured for locomotives equipped with separate "head-end" power generators (SEP-HEPs), which power the passenger cars, while higher time-based emission factors (g h-1) were measured for locomotives without SEP-HEPs, whose engines are continuously operated at high speeds to provide both head-end and propulsion power. PM10 emission factors, estimated assuming a BC/PM10 emission ratio of 0.6 and a typical power output-to-fuel consumption ratio, were generally in line with the Environmental Protection Agency's locomotive exhaust emission standards. Per passenger mile, diesel-electric locomotives in this study emit only 20% of the CO2 emitted by typical gasoline-powered light-duty vehicles (i.e., cars). However, the reduction in carbon footprint (expressed in terms of CO2 equivalents) due to CO2 emissions avoidance from a passenger commuting by train rather than car is appreciably offset by the locomotive's higher BC emissions.

  10. Textrode-enabled transthoracic electrical bioimpedance measurements - towards wearable applications of impedance cardiography

    Directory of Open Access Journals (Sweden)

    Juan Carlos Márquez Ruiz

    2013-10-01

    Full Text Available During the last decades the use of Electrical Bioimpedance (EBI in the medical field has been subject of extensive research, especially since it is an affordable, harmless and non-invasive technology. In some specific applications such as body composition assessment where EBI has proven a good degree of effectiveness and reliability, the use of textile electrodes and measurement garments have shown a good performance and reproducible results. Impedance Cardiography (ICG is another modality of EBI that can benefit from the implementation and use of wearable sensors. ICG technique is based on continuous impedance measurements of a longitudinal segment across the thorax taken at a single frequency. The need for specific electrode placement on the thorax and neck can be easily ensured with the use of a garment with embedded textile electrodes, textrodes. The first step towards the implementation of ICG technology into a garment is to find out if ICG measurements with textile sensors give a good enough quality of the signal to allow the estimation of the fundamental ICG parameters. In this work, the measurement performance of a 2-belt set with incorporated textrodes for thorax and neck was compared against ICG measurements obtained with Ag/AgCl electrodes. The analysis was based on the quality of the fundamental ICG signals (∆Z, dZ/dt and ECG, systolic time intervals and other ICG parameters. The obtained results indicate the feasibility of using textrodes for ICG measurements with consistent measurements and relatively low data dispersion. Thus, enabling the development of measuring garments for ICG measurements.

  11. Measurements of intermediate-frequency electric and magnetic fields in households

    Energy Technology Data Exchange (ETDEWEB)

    Aerts, Sam, E-mail: sam.aerts@intec.ugent.be [Department of Information Technology, Ghent University/iMinds, iGent, Technologiepark-Zwijnaarde 15, B-9052 Ghent (Belgium); Calderon, Carolina [Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot, Oxon OX11 0RQ (United Kingdom); Valič, Blaž [Institute of Non-Ionizing Radiation (INIS), Pohorskega bataljona 215, Ljubljana 1000 (Slovenia); Maslanyj, Myron; Addison, Darren; Mee, Terry; Goiceanu, Cristian [Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot, Oxon OX11 0RQ (United Kingdom); Verloock, Leen; Van den Bossche, Matthias [Department of Information Technology, Ghent University/iMinds, iGent, Technologiepark-Zwijnaarde 15, B-9052 Ghent (Belgium); Gajšek, Peter [Institute of Non-Ionizing Radiation (INIS), Pohorskega bataljona 215, Ljubljana 1000 (Slovenia); Vermeulen, Roel [Institute for Risk Assessment Sciences, Department of Environmental Epidemiology, Utrecht University, Yalelaan 2, 3508 Utrecht (Netherlands); Röösli, Martin [Swiss Tropical and Public Health Institute (Swiss TPH), Socinstrasse 57, P.O. Box, 4002 Basel (Switzerland); University of Basel, Petersplatz 1, 4003 Basel (Switzerland); Cardis, Elisabeth [Barcelona Institute for Global Health (ISGlobal) and Municipal Institute of Medical Research (IMIM-Hospital del Mar), Doctor Aiguader, 88, 08003 Barcelona (Spain); Martens, Luc; Joseph, Wout [Department of Information Technology, Ghent University/iMinds, iGent, Technologiepark-Zwijnaarde 15, B-9052 Ghent (Belgium)

    2017-04-15

    Historically, assessment of human exposure to electric and magnetic fields has focused on the extremely-low-frequency (ELF) and radiofrequency (RF) ranges. However, research on the typically emitted fields in the intermediate-frequency (IF) range (300 Hz to 1 MHz) as well as potential effects of IF fields on the human body remains limited, although the range of household appliances with electrical components working in the IF range has grown significantly (e.g., induction cookers and compact fluorescent lighting). In this study, an extensive measurement survey was performed on the levels of electric and magnetic fields in the IF range typically present in residences as well as emitted by a wide range of household appliances under real-life circumstances. Using spot measurements, residential IF field levels were found to be generally low, while the use of certain appliances at close distance (20 cm) may result in a relatively high exposure. Overall, appliance emissions contained either harmonic signals, with fundamental frequencies between 6 kHz and 300 kHz, which were sometimes accompanied by regions in the IF spectrum of rather noisy, elevated field strengths, or much more capricious spectra, dominated by 50 Hz harmonics emanating far in the IF domain. The maximum peak field strengths recorded at 20 cm were 41.5 V/m and 2.7 A/m, both from induction cookers. Finally, none of the appliance emissions in the IF range exceeded the exposure summation rules recommended by the International Commission on Non-Ionizing Radiation Protection guidelines and the International Electrotechnical Commission (IEC 62233) standard at 20 cm and beyond (maximum exposure quotients EQ{sub E} 1.0 and {sub E}Q{sub H} 0.13). - Highlights: • Survey of residential electric and magnetic fields at intermediate frequencies (IF). • IF-EF and -MF emitted by 280 household appliances were characterised. • Strongest emitters were induction cookers, CFLs, LCD-TVs, and microwave ovens. • No

  12. Measurements of intermediate-frequency electric and magnetic fields in households

    International Nuclear Information System (INIS)

    Aerts, Sam; Calderon, Carolina; Valič, Blaž; Maslanyj, Myron; Addison, Darren; Mee, Terry; Goiceanu, Cristian; Verloock, Leen; Van den Bossche, Matthias; Gajšek, Peter; Vermeulen, Roel; Röösli, Martin; Cardis, Elisabeth; Martens, Luc; Joseph, Wout

    2017-01-01

    Historically, assessment of human exposure to electric and magnetic fields has focused on the extremely-low-frequency (ELF) and radiofrequency (RF) ranges. However, research on the typically emitted fields in the intermediate-frequency (IF) range (300 Hz to 1 MHz) as well as potential effects of IF fields on the human body remains limited, although the range of household appliances with electrical components working in the IF range has grown significantly (e.g., induction cookers and compact fluorescent lighting). In this study, an extensive measurement survey was performed on the levels of electric and magnetic fields in the IF range typically present in residences as well as emitted by a wide range of household appliances under real-life circumstances. Using spot measurements, residential IF field levels were found to be generally low, while the use of certain appliances at close distance (20 cm) may result in a relatively high exposure. Overall, appliance emissions contained either harmonic signals, with fundamental frequencies between 6 kHz and 300 kHz, which were sometimes accompanied by regions in the IF spectrum of rather noisy, elevated field strengths, or much more capricious spectra, dominated by 50 Hz harmonics emanating far in the IF domain. The maximum peak field strengths recorded at 20 cm were 41.5 V/m and 2.7 A/m, both from induction cookers. Finally, none of the appliance emissions in the IF range exceeded the exposure summation rules recommended by the International Commission on Non-Ionizing Radiation Protection guidelines and the International Electrotechnical Commission (IEC 62233) standard at 20 cm and beyond (maximum exposure quotients EQ E 1.0 and E Q H 0.13). - Highlights: • Survey of residential electric and magnetic fields at intermediate frequencies (IF). • IF-EF and -MF emitted by 280 household appliances were characterised. • Strongest emitters were induction cookers, CFLs, LCD-TVs, and microwave ovens. • No emissions exceeded

  13. Electrical conductivity and transport properties of cement-based materials measured by impedance spectroscopy

    Science.gov (United States)

    Shane, John David

    The use of Impedance Spectroscopy (IS) as a tool to evaluate the electrical and transport properties of cement-based materials was critically evaluated. Emphasis was placed on determining the efficacy of IS by applying it as a tool to investigate several families of cement-based materials. Also, the functional aspects of electroding and null corrections were also addressed. The technique was found to be advantageous for these analyses, especially as a non-destructive, in-situ, rapid test. Moreover, key insights were gained into several cement-based systems (e.g., cement mortars and oil-well grouts) as well as the effect that certain testing techniques can have on materials (e.g., the rapid chloride permeability test). However, some limitations of IS were identified. For instance, improper electroding of samples can lead to erroneous results and incorrect interpretations for both two-point and multi-point measurements. This is an area of great importance, but it has received very little attention in the literature. Although the analysis of cement/electrode techniques is in its infancy, much progress was made in gaining a full understand of how to properly and reliably connect electrodes to cement-based materials. Through the application of IS to materials such as oil-well grouts, cement mortars and concretes, a great deal of valuable information about the effectiveness of IS has been gained. Oil-well cementing is somewhat limited by the inability to make measurements in the well-bore. By applying IS to oil-well grouts in a laboratory environment, it was demonstrated that IS is a viable technique with which to test the electrical and transport properties of these materials in-situ. Also, IS was shown to have the ability to measure the electrical conductivity of cement mortars with such accuracy, that very subtle changes in properties can be monitored and quantified. Through the use of IS and theoretical models, the complex interplay between the interfacial transition

  14. An electrical load measurements dataset of United Kingdom households from a two-year longitudinal study.

    Science.gov (United States)

    Murray, David; Stankovic, Lina; Stankovic, Vladimir

    2017-01-05

    Smart meter roll-outs provide easy access to granular meter measurements, enabling advanced energy services, ranging from demand response measures, tailored energy feedback and smart home/building automation. To design such services, train and validate models, access to data that resembles what is expected of smart meters, collected in a real-world setting, is necessary. The REFIT electrical load measurements dataset described in this paper includes whole house aggregate loads and nine individual appliance measurements at 8-second intervals per house, collected continuously over a period of two years from 20 houses. During monitoring, the occupants were conducting their usual routines. At the time of publishing, the dataset has the largest number of houses monitored in the United Kingdom at less than 1-minute intervals over a period greater than one year. The dataset comprises 1,194,958,790 readings, that represent over 250,000 monitored appliance uses. The data is accessible in an easy-to-use comma-separated format, is time-stamped and cleaned to remove invalid measurements, correctly label appliance data and fill in small gaps of missing data.

  15. Correlation between near infrared spectroscopy and electrical techniques in measuring skin moisture content

    International Nuclear Information System (INIS)

    Mohamad, M; Sabbri, A R M; Jafri, M Z Mat; Omar, A F

    2014-01-01

    Near infrared (NIR) spectroscopy technique serves as an important tool for the measurement of moisture content of skin owing to the advantages it has over the other techniques. The purpose of the study is to develop a correlation between NIR spectrometer with electrical conventional techniques for skin moisture measurement. A non-invasive measurement of moisture content of skin was performed on different part of human face and hand under control environment (temperature 21 ± 1 °C, relative humidity 45 ± 5 %). Ten healthy volunteers age between 21-25 (male and female) participated in this study. The moisture content of skin was measured using DermaLab ® USB Moisture Module, Scalar Moisture Checker and NIR spectroscopy (NIRQuest). Higher correlation was observed between NIRQuest and Dermalab moisture probe with a coefficient of determination (R 2 ) above 70 % for all the subjects. However, the value of R 2 between NIRQuest and Moisture Checker was observed to be lower with the R 2 values ranges from 51.6 to 94.4 %. The correlation of NIR spectroscopy technique successfully developed for measuring moisture content of the skin. The analysis of this correlation can help to establish novel instruments based on an optical system in clinical used especially in the dermatology field

  16. An electrical load measurements dataset of United Kingdom households from a two-year longitudinal study

    Science.gov (United States)

    Murray, David; Stankovic, Lina; Stankovic, Vladimir

    2017-01-01

    Smart meter roll-outs provide easy access to granular meter measurements, enabling advanced energy services, ranging from demand response measures, tailored energy feedback and smart home/building automation. To design such services, train and validate models, access to data that resembles what is expected of smart meters, collected in a real-world setting, is necessary. The REFIT electrical load measurements dataset described in this paper includes whole house aggregate loads and nine individual appliance measurements at 8-second intervals per house, collected continuously over a period of two years from 20 houses. During monitoring, the occupants were conducting their usual routines. At the time of publishing, the dataset has the largest number of houses monitored in the United Kingdom at less than 1-minute intervals over a period greater than one year. The dataset comprises 1,194,958,790 readings, that represent over 250,000 monitored appliance uses. The data is accessible in an easy-to-use comma-separated format, is time-stamped and cleaned to remove invalid measurements, correctly label appliance data and fill in small gaps of missing data.

  17. Measuring leg movements during sleep using accelerometry: comparison with EMG and piezo-electric scored events.

    Science.gov (United States)

    Terrill, Philip I; Leong, Matthew; Barton, Katrina; Freakley, Craig; Downey, Carl; Vanniekerk, Mark; Jorgensen, Greg; Douglas, James

    2013-01-01

    Periodic Limb Movements during Sleep (PLMS) can cause significant disturbance to sleep, resulting in daytime sleepiness and reduced quality of life. In conventional clinical practice, PLMS are measured using overnight electromyogram (EMG) of the tibialis anterior muscle, although historically they have also been measured using piezo-electric gauges placed over the muscle. However, PLMS counts (PLM index) do not correlate well with clinical symptomology. In this study, we propose that because EMG and piezo derived signals measure muscle activation rather than actual movement, they may count events with no appreciable movement of the limb and therefore no contribution to sleep disturbance. The aim of this study is thus to determine the percentage of clinically scored limb movements which are not associated with movement of the great toe measured using accelerometry. 9 participants were studied simultaneously with an overnight diagnostic polysomnogram (including EMG and piezo instrumentation of the right leg) and high temporal resolution accelerometry of the right great toe. Limb movements were scored, and peak acceleration during each scored movement was quantified. Across the participant population, 54.9% (range: 26.7-76.3) and 39.0% (range: 4.8-69.6) of limb movements scored using piezo and EMG instrumentation respectively, were not associated with toe movement measured with accelerometry. If sleep disturbance is the consequence of the limb movements, these results may explain why conventional piezo or EMG derived PLMI is poorly correlated with clinical symptomology.

  18. 3D ion velocity distribution function measurement in an electric thruster using laser induced fluorescence tomography

    Science.gov (United States)

    Elias, P. Q.; Jarrige, J.; Cucchetti, E.; Cannat, F.; Packan, D.

    2017-09-01

    Measuring the full ion velocity distribution function (IVDF) by non-intrusive techniques can improve our understanding of the ionization processes and beam dynamics at work in electric thrusters. In this paper, a Laser-Induced Fluorescence (LIF) tomographic reconstruction technique is applied to the measurement of the IVDF in the plume of a miniature Hall effect thruster. A setup is developed to move the laser axis along two rotation axes around the measurement volume. The fluorescence spectra taken from different viewing angles are combined using a tomographic reconstruction algorithm to build the complete 3D (in phase space) time-averaged distribution function. For the first time, this technique is used in the plume of a miniature Hall effect thruster to measure the full distribution function of the xenon ions. Two examples of reconstructions are provided, in front of the thruster nose-cone and in front of the anode channel. The reconstruction reveals the features of the ion beam, in particular on the thruster axis where a toroidal distribution function is observed. These findings are consistent with the thruster shape and operation. This technique, which can be used with other LIF schemes, could be helpful in revealing the details of the ion production regions and the beam dynamics. Using a more powerful laser source, the current implementation of the technique could be improved to reduce the measurement time and also to reconstruct the temporal evolution of the distribution function.

  19. Measuring corporate social responsibility using composite indices: Mission impossible? The case of the electricity utility industry

    Directory of Open Access Journals (Sweden)

    Juan Diego Paredes-Gazquez

    2016-01-01

    Full Text Available Corporate social responsibility is a multidimensional concept that is often measured using diverse indicators. Composite indices can aggregate these single indicators into one measurement. This article aims to identify the key challenges in constructing a composite index for measuring corporate social responsibility. The process is illustrated by the construction of a composite index for measuring social outcomes in the electricity utility industry. The sample consisted of seventy-four companies from twenty-three different countries, and one special administrative region operating in the industry in 2011. The findings show that (1 the unavailability of information about corporate social responsibility, (2 the particular characteristics of this information and (3 the weighting of indicators are the main obstacles when constructing the composite index. We highlight than an effective composite index should has a clear objective, a solid theoretical background and a robust structure. In a practical sense, it should be reconsidered how researchers use composite indexes to measure corporate social responsibility, as more transparency and stringency is needed when constructing these tools.

  20. Visualized Multiprobe Electrical Impedance Measurements with STM Tips Using Shear Force Feedback Control

    Directory of Open Access Journals (Sweden)

    Luis Botaya

    2016-05-01

    Full Text Available Here we devise a multiprobe electrical measurement system based on quartz tuning forks (QTFs and metallic tips capable of having full 3D control over the position of the probes. The system is based on the use of bent tungsten tips that are placed in mechanical contact (glue-free solution with a QTF sensor. Shear forces acting in the probe are measured to control the tip-sample distance in the Z direction. Moreover, the tilting of the tip allows the visualization of the experiment under the optical microscope, allowing the coordination of the probes in X and Y directions. Meanwhile, the metallic tips are connected to a current–voltage amplifier circuit to measure the currents and thus the impedance of the studied samples. We discuss here the different aspects that must be addressed when conducting these multiprobe experiments, such as the amplitude of oscillation, shear force distance control, and wire tilting. Different results obtained in the measurement of calibration samples and microparticles are presented. They demonstrate the feasibility of the system to measure the impedance of the samples with a full 3D control on the position of the nanotips.

  1. Thermal transport of carbon nanotubes and graphene under optical and electrical heating measured by Raman spectroscopy

    Science.gov (United States)

    Hsu, I.-Kai

    This thesis presents systematic studies of thermal transport in individual single walled carbon nanotubes (SWCNTs) and graphene by optical and electrical approaches using Raman spectroscopy. In the work presented from Chapter 2 to Chapter 6, individual suspended CNTs are preferentially measured in order to explore their intrinsic thermal properties. Moreover, the Raman thermometry is developed to detect the temperature of the carbon nanotube (CNT). A parabolic temperature profile is observed in the suspended region of the CNT while a heating laser scans across it, providing a direct evidence of diffusive thermal transport in an individual suspended CNT. Based on the curvature of the temperature profile, we can solve for the ratio of thermal contact resistance to the thermal resistance of the CNT, which spans the range from 0.02 to 17. The influence of thermal contact resistance on the thermal transport in an individual suspended CNT is also studied. The Raman thermometry is carried out in the center of a CNT, while its contact length is successively shortened by an atomic force microscope (AFM) tip cutting technique. By investigating the dependence of the CNT temperature on its thermal contact length, the temperature of a CNT is found to increase dramatically as the contact length is made shorter. This work reveals the importance of manipulating the CNT thermal contact length when adopting CNT as a thermal management material. In using a focused laser to induce heating in a suspended CNT, one open question that remains unanswered is how many of the incident photons are absorbed by the CNT of interest. To address this question, micro-fabricated platinum thermometers, together with micro-Raman spectroscopy are used to quantify the optical absorption of an individual CNT. The absorbed power in the CNT is equal to the power detected by two thermometers at the end of the CNT. Our result shows that the optical absorption lies in the range between 0.03 to 0.44%. In

  2. Influence and Correction from the Human Body on the Measurement of a Power-Frequency Electric Field Sensor

    Directory of Open Access Journals (Sweden)

    Dongping Xiao

    2016-06-01

    Full Text Available According to the operating specifications of existing electric field measuring instruments, measuring technicians must be located far from the instruments to eliminate the influence of the human body occupancy on a spatial electric field. Nevertheless, in order to develop a portable safety protection instrument with an effective electric field warning function for working staff in a high-voltage environment, it is necessary to study the influence of an approaching human body on the measurement of an electric field and to correct the measurement results. A single-shaft electric field measuring instrument called the Type LP-2000, which was developed by our research team, is used as the research object in this study. First, we explain the principle of electric field measurement and describe the capacitance effect produced by the human body. Through a theoretical analysis, we show that the measured electric field value decreases as a human body approaches. Their relationship is linearly proportional. Then, the ratio is identified as a correction coefficient to correct for the influence of human body proximity. The conclusion drawn from the theoretical analysis is proved via simulation. The correction coefficient kb = 1.8010 is obtained on the basis of the linear fitting of simulated data. Finally, a physical experiment is performed. When no human is present, we compare the results from the Type LP-2000 measured with Narda EFA-300 and the simulated value to verify the accuracy of the Type LP-2000. For the case of an approaching human body, the correction coefficient kb* = 1.9094 is obtained by comparing the data measured with the Type LP-2000 to the simulated value. The correction coefficient obtained from the experiment (i.e., kb* is highly consistent with that obtained from the simulation (i.e., kb. Two experimental programs are set; under these programs, the excitation voltages and distance measuring points are regulated to produce different

  3. Influence and Correction from the Human Body on the Measurement of a Power-Frequency Electric Field Sensor.

    Science.gov (United States)

    Xiao, Dongping; Liu, Huaitong; Zhou, Qiang; Xie, Yutong; Ma, Qichao

    2016-06-10

    According to the operating specifications of existing electric field measuring instruments, measuring technicians must be located far from the instruments to eliminate the influence of the human body occupancy on a spatial electric field. Nevertheless, in order to develop a portable safety protection instrument with an effective electric field warning function for working staff in a high-voltage environment, it is necessary to study the influence of an approaching human body on the measurement of an electric field and to correct the measurement results. A single-shaft electric field measuring instrument called the Type LP-2000, which was developed by our research team, is used as the research object in this study. First, we explain the principle of electric field measurement and describe the capacitance effect produced by the human body. Through a theoretical analysis, we show that the measured electric field value decreases as a human body approaches. Their relationship is linearly proportional. Then, the ratio is identified as a correction coefficient to correct for the influence of human body proximity. The conclusion drawn from the theoretical analysis is proved via simulation. The correction coefficient kb = 1.8010 is obtained on the basis of the linear fitting of simulated data. Finally, a physical experiment is performed. When no human is present, we compare the results from the Type LP-2000 measured with Narda EFA-300 and the simulated value to verify the accuracy of the Type LP-2000. For the case of an approaching human body, the correction coefficient kb* = 1.9094 is obtained by comparing the data measured with the Type LP-2000 to the simulated value. The correction coefficient obtained from the experiment (i.e., kb*) is highly consistent with that obtained from the simulation (i.e., kb). Two experimental programs are set; under these programs, the excitation voltages and distance measuring points are regulated to produce different electric field

  4. Improved characterisation and modelling of measurement errors in electrical resistivity tomography (ERT) surveys

    Science.gov (United States)

    Tso, Chak-Hau Michael; Kuras, Oliver; Wilkinson, Paul B.; Uhlemann, Sebastian; Chambers, Jonathan E.; Meldrum, Philip I.; Graham, James; Sherlock, Emma F.; Binley, Andrew

    2017-11-01

    Measurement errors can play a pivotal role in geophysical inversion. Most inverse models require users to prescribe or assume a statistical model of data errors before inversion. Wrongly prescribed errors can lead to over- or under-fitting of data; however, the derivation of models of data errors is often neglected. With the heightening interest in uncertainty estimation within hydrogeophysics, better characterisation and treatment of measurement errors is needed to provide improved image appraisal. Here we focus on the role of measurement errors in electrical resistivity tomography (ERT). We have analysed two time-lapse ERT datasets: one contains 96 sets of direct and reciprocal data collected from a surface ERT line within a 24 h timeframe; the other is a two-year-long cross-borehole survey at a UK nuclear site with 246 sets of over 50,000 measurements. Our study includes the characterisation of the spatial and temporal behaviour of measurement errors using autocorrelation and correlation coefficient analysis. We find that, in addition to well-known proportionality effects, ERT measurements can also be sensitive to the combination of electrodes used, i.e. errors may not be uncorrelated as often assumed. Based on these findings, we develop a new error model that allows grouping based on electrode number in addition to fitting a linear model to transfer resistance. The new model explains the observed measurement errors better and shows superior inversion results and uncertainty estimates in synthetic examples. It is robust, because it groups errors together based on the electrodes used to make the measurements. The new model can be readily applied to the diagonal data weighting matrix widely used in common inversion methods, as well as to the data covariance matrix in a Bayesian inversion framework. We demonstrate its application using extensive ERT monitoring datasets from the two aforementioned sites.

  5. Indirect measurement of lung density and air volume from electrical impedance tomography (EIT) data.

    Science.gov (United States)

    Nebuya, Satoru; Mills, Gary H; Milnes, Peter; Brown, Brian H

    2011-12-01

    This paper describes a method for estimating lung density, air volume and changes in fluid content from a non-invasive measurement of the electrical resistivity of the lungs. Resistivity in Ω m was found by fitting measured electrical impedance tomography (EIT) data to a finite difference model of the thorax. Lung density was determined by comparing the resistivity of the lungs, measured at a relatively high frequency, with values predicted from a published model of lung structure. Lung air volume can then be calculated if total lung weight is also known. Temporal changes in lung fluid content will produce proportional changes in lung density. The method was implemented on EIT data, collected using eight electrodes placed in a single plane around the thorax, from 46 adult male subjects and 36 adult female subjects. Mean lung densities (±SD) of 246 ± 67 and 239 ± 64 kg m(-3), respectively, were obtained. In seven adult male subjects estimates of 1.68 ± 0.30, 3.42 ± 0.49 and 4.40 ± 0.53 l in residual volume, functional residual capacity and vital capacity, respectively, were obtained. Sources of error are discussed. It is concluded that absolute differences in lung density of about 30% and changes over time of less than 30% should be detected using the current technology in normal subjects. These changes would result from approximately 300 ml increase in lung fluid. The method proposed could be used for non-invasive monitoring of total lung air and fluid content in normal subjects but needs to be assessed in patients with lung disease.

  6. Analysis of breakdown on thermal and electrical measurements for SPIDER accelerating grids

    Energy Technology Data Exchange (ETDEWEB)

    Pesce, Alberto, E-mail: alberto.pesce@igi.cnr.it [Consorzio RFX - Associazione EURATOM-ENEA per la fusione, Corso Stati Uniti 4, 35127 Padova (Italy); Pomaro, Nicola [Consorzio RFX - Associazione EURATOM-ENEA per la fusione, Corso Stati Uniti 4, 35127 Padova (Italy)

    2011-10-15

    The PRIMA test facility, under realization in Padova, includes a full size plasma source prototype for ITER, called SPIDER (Source for the Production of Ions of Deuterium Extracted from Radio Frequency plasma). The effects of breakdown in the electrical insulation inside the ion source are analyzed with particular care to the embedded diagnostic system, i.e. the thermal and electrical measurements installed on the grids and ion source case and transferred by multipolar cables to the acquisition system, located inside the 100 kV insulated deck and hosting the ion source power supply, the signal conditioning and the acquisition cubicles. The breakdown affects strongly the measurements, so it has to be mitigated in order to guarantee adequate reliability of the whole measurement set. A parametric study has been carried out on a detailed circuital model for fast transients, implemented using SimPowerSystems{sup TM} tool of Matlab Simulink code. The model includes all the relevant conductors of the subsystems downstream the insulating transformer of the Accelerating Grids Power Supply (AGPS), i.e. the AGPS rectifier, the multipolar transmission line, the 100 kV High Voltage Deck, the ion source power supply and the ion source itself. In particular all the magnetic and capacitive couplings have been computed by a proper 2D fem model. The optimization of the cabling layout, of the wire screening and of the protection devices, like surge arresters and resistors, has been carried out through the accurate modeling of the circuit. The energy dissipated on each ion source surge arrester is estimated and adequate TSD (transient suppression devices) are selected. A peculiar and difficult to satisfy requirement is the high number of surges that the TSD has to withstand. Breakdowns between components polarized at different voltages have been considered, in order to inspect the worst condition during a breakdown.

  7. Measurements of electrical conductivity for characterizing and monitoring nuclear waste repositories

    International Nuclear Information System (INIS)

    Morrison, H.F.; Becker, A.; Lee, K.H.

    1986-11-01

    The detection of major fractures is one topic of this study but another equally important problem is to develop quantitative relationships between large scale resistivity and fracture systems in rock. There has been very little work done on this central issue. Empirical relations between resistivity and porosity have been derived on the basis of laboratory samples or from well logging, but there are no comparable 'laws' for rock masses with major fracture or joint patterns. Hydrologic models for such rocks have been recently been derived but the corresponding resistivity models have not been attempted. Resistivity due to fracture distributions with preferred orientation could be determined with such models, as could quantitative interpretation of changes as fracture aperature varies with load. This study is not only important for the assessment of a repository site, but has far ranging implications in reservoir studies for oil, gas, and geothermal resources. The electrical conductivity can be measured in two ways. Current can be injected into the ground through pairs of electrodes and corresponding voltage drops can be measured in the vicinity with other pairs of electrodes. The electrical conductivity can also be measured inductively. Instead of injecting current into the ground as described in the dc resistivity method, currents can be induced to flow by a changing magnetic field. In these inductive or electromagnetic (em) methods the interpretation depends both on transmitter-receiver geometry and frequency of operation. In principle the interpretation should be more definitive than with the dc resistivity methods. Rigorous confirmation of this statement in inhomogeneous media awaits the development of generalized inversion techniques for em methods

  8. Electricity-saving measures for electrical drives - Market analysis; Massnahmen zum Stromsparen bei elektrischen Antrieben. Marktanalyse in der Industrie. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Baumgartner, W.; Ebert Bolla, O.; Puenzieux, P.

    2006-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) presents the results of work done on an empirical analysis of the results of a small-scale survey of industries as well as on various interviews with experts. Topics covered include the number of electrical motors in use in Switzerland, the number held in reserve, power consumption, part-load and over-dimensioning, operational factors, control strategies and the use of standardised motors. The data collected is presented in tabular and graphical form. Possibilities of making savings are discussed, as are obstacles to such work. Finally, ideas for an efficiency campaign are presented.

  9. Characterisation of a micro-plasma device sensor using electrical measurements and emission spectroscopy

    International Nuclear Information System (INIS)

    Mariotti, D.

    2002-04-01

    This thesis reports on research undertaken on the characterisation of a micro-plasma device to be used for gas analysis by mean of plasma emission spectroscopy. The work covers aspects related to the micro-plasma electrical and optical emission parameters, and their importance for the utilisation of the micro-plasma device in gas analysis. Experimental results have been used to analyse the fundamental micro-plasma processes and to develop a model, which could provide additional information. This dissertation contains a general literature review of topics related to plasma physics, plasma emission spectroscopy, gas analysis (chemical analysis and artificial olfaction) and other micro-plasma applications. Experimental work focuses on two main areas: electrical measurements and emission measurements. Firstly, electrical measurements are taken and interpretations are given. Where necessary, new theoretical treatments are suggested in order to describe better the physical phenomena. Plasma emission has been considered under different working conditions. This allowed the characterisation of the micro-plasma emission and also a better understanding of the micro-plasma processes. On the basis of the experimental data obtained and other assumptions a model has been developed. A computer simulation based on this model provided additional useful information on the micro- plasma behaviour. The first fundamental implication of this new research is the peculiar behaviour of the micro-plasma. This micro-plasma exhibited deviations from Paschen law and strong dependency on cathode material, which contributed to the formation of a low current stable regime. These results have been followed by physical interpretations and theoretical descriptions. The second implication is the establishment of the boundaries and of the influencing parameters for plasma emission spectroscopy as an analytical tool in this particular micro-plasma. From the applied perspective this study has shown that

  10. Decomposition of Composite Electric Field in a Three-Phase D-Dot Voltage Transducer Measuring System

    Directory of Open Access Journals (Sweden)

    Xueqi Hu

    2016-10-01

    Full Text Available In line with the wider application of non-contact voltage transducers in the engineering field, transducers are required to have better performance for different measuring environments. In the present study, the D-dot voltage transducer is further improved based on previous research in order to meet the requirements for long-distance measurement of electric transmission lines. When measuring three-phase electric transmission lines, problems such as synchronous data collection and composite electric field need to be resolved. A decomposition method is proposed with respect to the superimposed electric field generated between neighboring phases. The charge simulation method is utilized to deduce the decomposition equation of the composite electric field and the validity of the proposed method is verified by simulation calculation software. With the deduced equation as the algorithm foundation, this paper improves hardware circuits, establishes a measuring system and constructs an experimental platform for examination. Under experimental conditions, a 10 kV electric transmission line was tested for steady-state errors, and the measuring results of the transducer and the high-voltage detection head were compared. Ansoft Maxwell Stimulation Software was adopted to obtain the electric field intensity in different positions under transmission lines; its values and the measuring values of the transducer were also compared. Experimental results show that the three-phase transducer is characterized by a relatively good synchronization for data measurement, measuring results with high precision, and an error ratio within a prescribed limit. Therefore, the proposed three-phase transducer can be broadly applied and popularized in the engineering field.

  11. Lightning Prediction using Electric Field Measurements Associated with Convective Events at a Tropical Location

    Science.gov (United States)

    Jana, S.; Chakraborty, R.; Maitra, A.

    2017-12-01

    Nowcasting of lightning activities during intense convective events using a single electric field monitor (EFM) has been carried out at a tropical location, Kolkata (22.65oN, 88.45oE). Before and at the onset of heavy lightning, certain changes of electric field (EF) can be related to high liquid water content (LWC) and low cloud base height (CBH). The present study discusses the utility of EF observation to show a few aspects of convective events. Large convective cloud showed by high LWC and low CBH can be detected from EF variation which could be a precursor of upcoming convective events. Suitable values of EF gradient can be used as an indicator of impending lightning events. An EF variation of 0.195 kV/m/min can predict lightning within 17.5 km radius with a probability of detection (POD) of 91% and false alarm rate (FAR) of 8% with a lead time of 45 min. The total number of predicted lightning strikes is nearly 9 times less than that measured by the lightning detector. This prediction technique can, therefore, give an estimate of cloud to ground (CG) and intra cloud (IC) lighting occurrences within the surrounding area. This prediction technique involving POD, FAR and lead time information shows a better prediction capability compared to the techniques reported earlier. Thus an EFM can be effectively used for prediction of lightning events at a tropical location.

  12. Ion permeability of artificial membranes evaluated by diffusion potential and electrical resistance measurements.

    Science.gov (United States)

    Shlyonsky, Vadim

    2013-12-01

    In the present article, a novel model of artificial membranes that provides efficient assistance in teaching the origins of diffusion potentials is proposed. These membranes are made of polycarbonate filters fixed to 12-mm plastic rings and then saturated with a mixture of creosol and n-decane. The electrical resistance and potential difference across these membranes can be easily measured using a low-cost volt-ohm meter and home-made Ag/AgCl electrodes. The advantage of the model is the lack of ionic selectivity of the membrane, which can be modified by the introduction of different ionophores to the organic liquid mixture. A membrane treated with the mixture containing valinomycin generates voltages from -53 to -25 mV in the presence of a 10-fold KCl gradient (in to out) and from -79 to -53 mV in the presence of a bi-ionic KCl/NaCl gradient (in to out). This latter bi-ionic gradient potential reverses to a value from +9 to +20 mV when monensin is present in the organic liquid mixture. Thus, the model can be build stepwise, i.e., all factors leading to the development of diffusion potentials can be introduced sequentially, helping students to understand the quantitative relationships of ionic gradients and differential membrane permeability in the generation of cell electrical signals.

  13. Electrical transport measurements and degradation of graphene/n-Si Schottky junction diodes

    International Nuclear Information System (INIS)

    Park, No-Won; Lee, Won-Yong; Lee, Sang-Kwon; Koh, Jung-Hyuk; Kim, Dong-Joo; Kim, Gil-Sung; Hyung, Jung-Hwan; Hong, Chang-Hee; Kim, Keun-Soo

    2015-01-01

    We report on the electrical properties, such as the ideality factors and Schottky barrier heights, that were obtained by using current density - voltage (J - V ) and capacitance - voltage (C - V ) characteristics. To fabricate circularly- and locally-contacted Au/Gr/n-Si Schottky diode, we deposited graphene through the chemical vapor deposition (CVD) growth technique, and we employed reactive ion etching to reduce the leakage current of the Schottky diodes. The average values of the barrier heights and the ideality factors from the J .V characteristics were determined to be ∼0.79 ± 0.01 eV and ∼1.80 ± 0.01, respectively. The Schottky barrier height and the doping concentration from the C - V measurements were ∼0.85 eV and ∼1.76 x 10 15 cm -3 , respectively. From the J - V characteristics, we obtained a relatively low reverse leakage current of ∼2.56 x 10 -6 mA/cm -2 at -2 V, which implies a well-defined rectifying behavior. Finally, we found that the Gr/n-Si Schottky diodes that were exposed to ambient conditions for 7 days exhibited a ∼3.2-fold higher sheet resistance compared with the as-fabricated Gr/n-Si diodes, implying a considerable electrical degradation of the Gr/n-Si Schottky diodes.

  14. Oxygen vacancy doping of hematite analyzed by electrical conductivity and thermoelectric power measurements

    Science.gov (United States)

    Mock, Jan; Klingebiel, Benjamin; Köhler, Florian; Nuys, Maurice; Flohre, Jan; Muthmann, Stefan; Kirchartz, Thomas; Carius, Reinhard

    2017-11-01

    Hematite (α -F e2O3 ) is known for poor electronic transport properties, which are the main drawback of this material for optoelectronic applications. In this study, we investigate the concept of enhancing electrical conductivity by the introduction of oxygen vacancies during temperature treatment under low oxygen partial pressure. We demonstrate the possibility of tuning the conductivity continuously by more than five orders of magnitude during stepwise annealing in a moderate temperature range between 300 and 620 K. With thermoelectric power measurements, we are able to attribute the improvement of the electrical conductivity to an enhanced charge-carrier density by more than three orders of magnitude. We compare the oxygen vacancy doping of hematite thin films with hematite nanoparticle layers. Thereby we show that the dominant potential barrier that limits charge transport is either due to grain boundaries in hematite thin films or due to potential barriers that occur at the contact area between the nanoparticles, rather than the potential barrier within the small polaron hopping model, which is usually applied for hematite. Furthermore, we discuss the transition from oxygen-deficient hematite α -F e2O3 -x towards the magnetite F e3O4 phase of iron oxide at high density of vacancies.

  15. Energy Efficiency of Electrical Appliances - Effects of Instruments and Measures; Energieeffizienz bei Elektrogeraeten

    Energy Technology Data Exchange (ETDEWEB)

    Brunner, C.U.; Bush, E.; Gasser, S.; Lingenhel, S.; Nipkow, J.

    2001-07-01

    This comprehensive report for the Swiss Federal Office of Energy presents the results of an analysis made of the market for electrical appliances in Switzerland with the aim of understanding the instruments and measures needed to improve energy efficiency better. The paper reports on reviews made of previous studies that were made in Switzerland and Germany and on interviews made with important persons and institutions in this field. Eight basic findings are listed concerning market expansion, technical progress, user behaviour, efficiency, possibilities for intervention, market forces, efficient appliances as a niche market and the competence lacking in the energy-efficiency area. Twelve basic points to be considered in the implementation of an energy-efficiency strategy are discussed and a list of requirements to be fulfilled by politics is presented. The results of the analysis for various sectors and the recommendations made for an implementation organisation are presented in detail. The report is concluded with a extract from the data base on the energy consumption of electrical appliances.

  16. Reliable electricity. The effects of system integration and cooperative measures to make it work

    International Nuclear Information System (INIS)

    Hagspiel, Simeon; Koeln Univ.

    2017-01-01

    We investigate the effects of system integration for reliability of supply in regional electricity systems along with cooperative measures to support it. Specifically, we set up a model to contrast the benefits from integration through statistical balancing (i.e., a positive externality) with the risk of cascading outages (a negative externality). The model is calibrated with a comprehensive dataset comprising 28 European countries on a high spatial and temporal resolution. We find that positive externalities from system integration prevail, and that cooperation is key to meet reliability targets efficiently. To enable efficient solutions in a non-marketed environment, we formulate the problem as a cooperative game and study different rules to allocate the positive and negative effects to individual countries. Strikingly, we find that without a mechanism, the integrated solution is unstable. In contrast, proper transfer payments can be found to make all countries better off in full integration, and the Nucleolus is identified as a particularly promising candidate. The rule could be used as a basis for compensation payments to support the successful integration and cooperation of electricity systems.

  17. Reliable electricity. The effects of system integration and cooperative measures to make it work

    Energy Technology Data Exchange (ETDEWEB)

    Hagspiel, Simeon [Koeln Univ. (Germany). Energiewirtschaftliches Inst.; Koeln Univ. (Germany). Dept. of Economics

    2017-12-15

    We investigate the effects of system integration for reliability of supply in regional electricity systems along with cooperative measures to support it. Specifically, we set up a model to contrast the benefits from integration through statistical balancing (i.e., a positive externality) with the risk of cascading outages (a negative externality). The model is calibrated with a comprehensive dataset comprising 28 European countries on a high spatial and temporal resolution. We find that positive externalities from system integration prevail, and that cooperation is key to meet reliability targets efficiently. To enable efficient solutions in a non-marketed environment, we formulate the problem as a cooperative game and study different rules to allocate the positive and negative effects to individual countries. Strikingly, we find that without a mechanism, the integrated solution is unstable. In contrast, proper transfer payments can be found to make all countries better off in full integration, and the Nucleolus is identified as a particularly promising candidate. The rule could be used as a basis for compensation payments to support the successful integration and cooperation of electricity systems.

  18. Field Measurements of Heating Efficiency of Electric Forced-Air Furnaces in Six Manufactured Homes.

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Bob; Palmiter, Larry S.; Siegel, Jeff

    1994-07-26

    This report presents the results of field measurements of heating efficiency for six manufactured homes in the Pacific Northwest heated with electric forced-air systems. This is the first in a series of regional and national efforts to measure in detail the heating efficiency of manufactured homes. Only six homes were included in this study because of budgetary constraints; therefore this is not a representative sample. These investigations do provide some useful information on the heating efficiency of these homes. Useful comparisons can be drawn between these study homes and site-built heating efficiencies measured with a similar protocol. The protocol used to test these homes is very similar to another Ecotope protocol used in the study conducted in 1992 and 1993 for the Bonneville Power Administration to test the heating efficiency of 24 homes. This protocol combined real-time power measurements of furnace energy usage with energy usage during co-heat periods. Accessory data such as house and duct tightness measurements and tracer gas measurements were used to describe these homes and their heating system efficiency. Ensuring that manufactured housing is constructed in an energy and resource efficient manner is of increasing concern to manufactured home builders and consumers. No comparable work has been done to measure the heating system efficiency of MCS manufactured homes, although some co-heat tests have been performed on manufactured homes heated with natural gas to validate HUD thermal standards. It is expected that later in 1994 more research of this kind will be conducted, and perhaps a less costly and less time-consuming method for testing efficiencies will be develops.

  19. A New system for Measuring Electrical Conductivity of Water as a Function of Admittance

    Directory of Open Access Journals (Sweden)

    Haval Yacoob

    2011-12-01

    Full Text Available This paper presents a new system for measuring water conductivity as a function of electrophysical property (admittance. The system is cheap and its manufacturing is easy. In addition, it dose not require any sort of electrolysis and calibration. The system consists of four electrodes made of silver (Ag 92.5 g to Cu 7.5 g fixed in a plastic tube filled by water which allows the use of two and four electrode setups. The admittance (reciprocal of impedance is measured for different water sources (distilled, rainfall, mineral, river and tap water using different frequencies between 50 Hz and 100 kHz. These measurements were taken twice, once with four electrodes and another with two electrodes of two modes (inner and outer electrodes. The results have shown good correlation between the measured admittance and the conductivity of all the water sources and the best correlation was found at low frequencies between 50 Hz and 20 kHz. The highest efficiency can be achieved by performing the four electrodes system which allows circumventing the effect of the electrode impedance. This result makes the system efficient compared to traditional conductivity meters which usually require high frequencies for good operation. doi:10.5617/jeb.203 J Electr Bioimp, vol. 2, pp. 86-92, 2011

  20. Electrical Capacitance Tomography Measurement of the Migration of Ice Frontal Surface in Freezing Soil

    Directory of Open Access Journals (Sweden)

    Liu J.

    2016-12-01

    Full Text Available The tracking of the migration of ice frontal surface is crucial for the understanding of the underlying physical mechanisms in freezing soil. Owing to the distinct advantages, including non-invasive sensing, high safety, low cost and high data acquisition speed, the electrical capacitance tomography (ECT is considered to be a promising visualization measurement method. In this paper, the ECT method is used to visualize the migration of ice frontal surface in freezing soil. With the main motivation of the improvement of imaging quality, a loss function with multiple regularizers that incorporate the prior formation related to the imaging objects is proposed to cast the ECT image reconstruction task into an optimization problem. An iteration scheme that integrates the superiority of the split Bregman iteration (SBI method is developed for searching for the optimal solution of the proposed loss function. An unclosed electrodes sensor is designed for satisfying the requirements of practical measurements. An experimental system of one dimensional freezing in frozen soil is constructed, and the ice frontal surface migration in the freezing process of the wet soil sample containing five percent of moisture is measured. The visualization measurement results validate the feasibility and effectiveness of the ECT visualization method

  1. 'A thorn in the side of European geodesy': measuring Paris-Greenwich longitude by electric telegraph.

    Science.gov (United States)

    Kershaw, Michael

    2014-12-01

    The difference in longitude between the observatories of Paris and Greenwich was long of fundamental importance to geodesy, navigation and timekeeping. Measured many times and by many different means since the seventeenth century, the preferred method of the later nineteenth and early twentieth centuries made use of the electric telegraph. I describe here for the first time the four Paris-Greenwich telegraphic longitude determinations made between 1854 and 1902. Despite contemporary faith in the new technique, the first was soon found to be inaccurate; the second was a failure, ending in Anglo-French dispute over whose result was to be trusted; the third failed in exactly the same way; and when eventually the fourth was presented as a success, the evidence for that success was far from clear-cut. I use this as a case study in precision measurement, showing how mutual grounding between different measurement techniques, in the search for agreement between them, was an important force for change and improvement. I also show that better precision had more to do with the gradually improving methods of astronomical, time determination than with the singular innovation of the telegraph, thus emphasizing the importance of what have been described as 'observatory techniques' to nineteenth-century practices of precision measurement.

  2. Electrically Cooled Germanium System for Measurements of Uranium Enrichments in UF6 Cylinders

    International Nuclear Information System (INIS)

    Dvornyak, P.; Koestlbauer, M.; Lebrun, A.; Murray, M.; Nizhnik, V.; Saidler, C.; Twomey, T.

    2010-01-01

    Measurements of Uranium enrichment in UF6 cylinders is a significant part of the IAEA Safeguards verification activities at enrichment and conversion plants. Nowadays, one of the main tools for verification of Uranium enrichment in UF6 cylinders used by Safeguards inspectors is the gamma spectroscopy system with HPGe detector cooled with liquid nitrogen. Electrically Cooled Germanium System (ECGS) is a new compact and portable high resolution gamma spectrometric system free from liquid nitrogen cooling, which can be used for the same safeguards applications. It consists of the ORTEC Micro-trans-SPEC HPGe Portable Spectrometer, a special tungsten collimator and UF6 enrichment measurement software. The enrichment of uranium is determined by of quantifying the area of the 185.7 keV peak provided that the measurement is performed with a detector viewing an infinite thickness of material. Prior starting the verification of uranium enrichment at the facility, the ECGS has to be calibrated with a sample of known uranium enrichment, material matrix, container wall thickness and container material. Evaluation of the ECGS capabilities was performed by carrying out a field test on actual enrichment verification of uranium in UF6 cylinder or other forms of uranium under infinite thickness conditions. The results of these evaluations allow to say that the use of ECGS will enhance practicality of the enrichment measurements and support unannounced inspection activities at enrichment and conversion plants. (author)

  3. A system for gas electrical breakdown time delay measurements based on a microcontroller

    International Nuclear Information System (INIS)

    Todorović, Miomir; Vasović, Nikola D; Ristić, Goran S

    2012-01-01

    A new system, called gasmem v1.0, for the measurements of gas electrical breakdown time delay (t d ), with significantly better characteristics than older systems, has been developed and realized. It is based on the PIC 18F4550 microcontroller and could measure the minimal t d of about 1.5 μs with the resolution of 83.33 ns. The relaxation (afterglow) period (τ) could vary from 1 to 2 32 ms (≈50 days). The successive series of t d measurements with various τ could be performed, giving very reliable t d data that are stored on the personal computer (PC) hard drive via the USB interface. The t d and τ values enable the drawing of memory curves ((t d ) = f(τ)) and the analysis of memory effects in the gases. The randomness of t d values measured by the gasmem system for more τ values was tested using the nonparametric Wald–Wolfowitz test showing the stochastic nature of obtained results. The memory curves obtained by this system have shown very high reproducibility. In addition, the system has a capability of operating as a stand-alone system (independently of a PC), with the possibility for the implementation of a touch screen for controlling the system and additional memory (e.g. memory card) for data storage

  4. Stepwise data envelopment analysis (DEA); choosing variables for measuring technical efficiency in Norwegian electricity distribution

    International Nuclear Information System (INIS)

    Kittelsen, S.A.C.

    1993-04-01

    Electric power distribution is an activity that in principle delivers a separate product to each customer. A specification of products for a utility as a whole leads potentially to a large number of product aspects including topographic and climatic conditions, and the level of disaggregation of factors and products may give the production and cost functions a high dimensionality. Some aggregation is therefore necessary. Non-parametric methods like Data Envelopment Analysis (DEA) have the advantage that they may give meaningful results when parametric methods would not have enough degrees of freedom, but will have related problems if the variables are collinear or are irrelevant. Although aggregate efficiency measures will not be much affected, rates of transformation will be corrupted and observations with extreme values may be measured as efficient by default. Little work has been done so far on the statistical properties of the non-parametric efficiency measure. This paper utilizes a suggestion by Rajiv Banker to measure the significance of the change in results when disaggregating or introducing an extra variable, and shows how one can let the data participate in deciding which variables should be included in the analysis. 32 refs., 7 figs., 4 tabs

  5. Simulation of spin dynamics to measure electric dipole moments in storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, Marcel; Lehrach, Andreas [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Kernphysik; Collaboration: JEDI-Collaboration

    2013-07-01

    CP violation in the baryon sector, which is predicted by the Standard Model of Particle Physics, is too small to explain the matter and antimatter asymmetry in our universe. Permanent Electric Dipole Moments (EDMs) violate both P and T symmetries and are therefore, through the CPT theorem, also CP violating. No direct EDM measurements for protons, deuterons and light nuclei have been performed up to now. The JEDI collaboration at Forschungszentrum Juelich (FZJ) and the BNL-EDM collaboration at Brookhaven National Laboratory (BNL) pursue the goal to measure the EDMs of these particles in dedicated storage rings. Therefore different approaches are studied to reach an ultimate sensitivity of 10{sup -29} e.cm. A first direct measurement of the proton and deuteron EDM at a sensitivity level of 10{sup -24} e.cm will be performed in the existing conventional storage ring at FZJ, the Cooler Synchrotron COSY. Particle tracking simulations to explore the motion-correlated spin dynamics are a crucial part of feasibility studies of the planned storage ring EDM experiments. In a first step, a benchmarking of simulation codes with measurements at the Cooler Synchrotron COSY is performed.

  6. Measures taken by electric power companies for the accident at JCO

    International Nuclear Information System (INIS)

    Taniguchi, Kazufumi

    2000-01-01

    Activities for the JCO accident were done by 700 electric company personnel/day at the maximum, who were mainly the experts of radiation management and were from the whole Japanese regions. The major activities were as follows. Monitoring of body surface contamination of people at the refuge, which was done on request from Tokaimura, showed no radioactive contamination over detection limit. Activities based on the request from the national counter-planning headquarters involved environmental monitoring, which only showed the higher ambient dose rate than usual at the boundary of JCO site. Monitoring of toy equipments in kindergartens and primary and junior schools showed no contamination over detection limit. Measurement of dose equivalent of the personnel showed 0.0 mSv exposure by γ-, β-ray and neutron. In summary, questions and requests raised by people mainly concerned the influence of radiation exposure. (K.H.)

  7. Electrical, electrochemical and isotopic exchange measurements on lanthanum gallate based ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Bronin, D.I.; Gorelov, V.P. [RAS, Ekaterinburg (Russian Federation). Inst. of High-Temperature Electrochemistry]|[Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany); Kuzin, B.L.; Kurumchin, E.Kh.; Vdovin, G.K.; Sokolova, Ju.V.; Beresnev, S.M. [RAS, Ekaterinburg (Russian Federation). Inst. of High-Temperature Electrochemistry; Keppeler, M.; Naefe, H.; Aldinger, F. [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany)

    2000-07-01

    The solubility limits of Sr and Mg in La{sub 1-x}Sr{sub x}Ga{sub 1-y}Mg{sub y}O{sub 3-{delta}} (LSGM) and the electrical conductivity of LSGM and La{sub 1-x}Sr{sub x}Ga{sub 1-y-z}Mg{sub y}Co{sub z}O{sub 3-{delta}} (LSGMC) were studied. By electrochemical and isotopic exchange measurements on both LSGM material and on an LSGM pellet whose surface was modified by Co-doping, it was shown that the oxygen exchange rate between the solids and the surrounding gas phase is much higher in the case of the modified electrolyte material. A single fuel cell with an LSGM electrolyte was constructed and tested. (orig.)

  8. Transfer of electrical space charge from corona between ground and thundercloud: Measurements and modeling

    Science.gov (United States)

    Soula, Serge

    1994-01-01

    The evolution of the vertical electric field profile deduced from simultaneous field measurements at several levels below a thundercloud shows the development of a space charge layer at least up to 600 m. The average charge density in the whole layer from 0 m to 600 m can reach about 1 nC m(exp -3). The ions are generated at the ground by corona effect and the production rate is evaluated with a new method from the comparison of field evolutions at the ground and at altitude after a lightning flash. The modeling of the relevant processes shows tht ground corona accounts for the observed field evolutions and that the aerosol particles concentration has a very large effect on the evolution of corona ions. However, with a realistic value for this concentration a large amount of ground corona ions reach the level of 600 m.

  9. Electric measurements of PV heterojunction structures a-SiC/c-Si

    Science.gov (United States)

    Perný, Milan; Šály, Vladimír; Janíček, František; Mikolášek, Miroslav; Váry, Michal; Huran, Jozef

    2018-01-01

    Due to the particular advantages of amorphous silicon or its alloys with carbon in comparison to conventional crystalline materials makes such a material still interesting for study. The amorphous silicon carbide may be used in a number of micro-mechanical and micro-electronics applications and also for photovoltaic energy conversion devices. Boron doped thin layers of amorphous silicon carbide, presented in this paper, were prepared due to the optimization process for preparation of heterojunction solar cell structure. DC and AC measurement and subsequent evaluation were carried out in order to comprehensively assess the electrical transport processes in the prepared a-SiC/c-Si structures. We have investigated the influence of methane content in deposition gas mixture and different electrode configuration.

  10. Progress Towards an Order of Magnitude Improvement on the Measurement of the Electron Electric Dipole Moment

    Science.gov (United States)

    Ang, Daniel; Demille, David; Doyle, John; Gabrielse, Gerald; Haefner, Jonathan; Lasner, Zack; Meisenhelder, Cole; Panda, Cristian; West, Adam; West, Elizabeth

    2017-04-01

    The search for the electron electric dipole moment (eEDM) is a powerful probe of fundamental physics beyond the Standard Model. In 2014, the first generation of the ACME experiment set the most stringent upper limit on the eEDM of |de | < 1 ×10-28 e . cm by means of measuring spin precession in a beam of thorium monoxide. Since then, we have implemented various improvements, such as STIRAP preparation of the experimental H state, rotational cooling, optimized apparatus geometry, and enhanced detection efficency, boosting our signal by a factor of about 400. We have also devised means to reduce the leading systematics we found in the Generation I experiment. We describe the recent progress in taking data using our Generation II apparatus and our ongoing efforts to investigate various systematics. NSF Grant 1404146.

  11. The Study on the Communication Network of Wide Area Measurement System in Electricity Grid

    Science.gov (United States)

    Xiaorong, Cheng; Ying, Wang; Yangdan, Ni

    Wide area measurement system(WAMS) is a fundamental part of security defense in Smart Grid, and the communication system of WAMS is an important part of Electric power communication network. For a large regional network is concerned, the real-time data which is transferred in the communication network of WAMS will affect the safe operation of the power grid directly. Therefore, WAMS raised higher requirements for real-time, reliability and security to its communication network. In this paper, the architecture of WASM communication network was studied according to the seven layers model of the open systems interconnection(OSI), and the network architecture was researched from all levels. We explored the media of WAMS communication network, the network communication protocol and network technology. Finally, the delay of the network were analyzed.

  12. Electric field computation and measurements in the electroporation of inhomogeneous samples

    Science.gov (United States)

    Bernardis, Alessia; Bullo, Marco; Campana, Luca Giovanni; Di Barba, Paolo; Dughiero, Fabrizio; Forzan, Michele; Mognaschi, Maria Evelina; Sgarbossa, Paolo; Sieni, Elisabetta

    2017-12-01

    In clinical treatments of a class of tumors, e.g. skin tumors, the drug uptake of tumor tissue is helped by means of a pulsed electric field, which permeabilizes the cell membranes. This technique, which is called electroporation, exploits the conductivity of the tissues: however, the tumor tissue could be characterized by inhomogeneous areas, eventually causing a non-uniform distribution of current. In this paper, the authors propose a field model to predict the effect of tissue inhomogeneity, which can affect the current density distribution. In particular, finite-element simulations, considering non-linear conductivity against field relationship, are developed. Measurements on a set of samples subject to controlled inhomogeneity make it possible to assess the numerical model in view of identifying the equivalent resistance between pairs of electrodes.

  13. Measurement of the Electric Form Factor of the Neutron at MAMI

    International Nuclear Information System (INIS)

    Seimetz, M.

    2005-01-01

    At the Mainz Microtron the electric form factor of the neutron, G E,n , has been measured in two kinds of double polarisation experiments. The most recent results have been obtained by recoil polarimetry from the quasi-elastic D(e->,e ' n->)p reaction at squared four-momentum transfers Q 2 =0.3,0.6, and 0.8(GeV/c) 2 . A further data point at 0.67(GeV/c) 2 has been extracted from quasi-elastic scattering of polarised electrons on H->e3. We present the methods and results of our experiments as well as an overview on the precise G E,n data available at present

  14. Precision Measurement of the Electron's Electric Dipole Moment Using Trapped Molecular Ions

    Science.gov (United States)

    Cairncross, William B.; Gresh, Daniel N.; Grau, Matt; Cossel, Kevin C.; Roussy, Tanya S.; Ni, Yiqi; Zhou, Yan; Ye, Jun; Cornell, Eric A.

    2017-10-01

    We describe the first precision measurement of the electron's electric dipole moment (de) using trapped molecular ions, demonstrating the application of spin interrogation times over 700 ms to achieve high sensitivity and stringent rejection of systematic errors. Through electron spin resonance spectroscopy on 180Hf 19F+ in its metastable 3Δ1 electronic state, we obtain de=(0.9 ±7. 7stat±1. 7syst)×10-29 e cm , resulting in an upper bound of |de|<1.3 ×10-28 e cm (90% confidence). Our result provides independent confirmation of the current upper bound of |de|<9.4 ×10-29 e cm [J. Baron et al., New J. Phys. 19, 073029 (2017), 10.1088/1367-2630/aa708e], and offers the potential to improve on this limit in the near future.

  15. Solid deuterium and UCN factory: application to the neutron electric dipole moment measurement

    CERN Document Server

    Serebrov, A P

    2000-01-01

    Present experiments which search for an electric dipole moment (EDM) of the neutron use ultra-cold neutrons (UCN) and are limited by counting statistics. One way to solve this problem is to improve the source of UCN. The present article briefly reviews two possibilities which employ solid deuterium at the temperature of liquid helium. The possibility of installing a solid deuterium UCN source at the FRM-II reactor and at spallation neutron sources at PSI, LANL and KEK is discussed. An increase of the UCN density up to the level of 10 sup 3 -10 sup 4 cm sup - sup 3 is expected. Compared to existing sources, this corresponds to an improvement by two to three orders of magnitude. Such experimental facilities will make it possible to improve measurements of the EDM of the neutron down to the level of 10 sup - sup 2 sup 7 e cm.

  16. Subauroral Polarization Streams (SAPS) Duration as Determined From Van Allen Probe Successive Electric Drift Measurements

    Science.gov (United States)

    Lejosne, Solène; Mozer, F. S.

    2017-09-01

    We examine a characteristic feature of the magnetosphere-ionosphere coupling, namely, the persistent and latitudinally narrow bands of rapid westward ion drifts called the subauroral polarization streams (SAPS). Despite countless works on SAPS, information relative to their durations is lacking. Here we report on the first statistical analysis of more than 200 near-equatorial SAPS observations based on more than 2 years of Van Allen Probe electric drift measurements. First, we present results relative to SAPS radial locations and amplitudes. Then, we introduce two different ways to estimate SAPS durations. In both cases, SAPS activity is estimated to last for about 9 h on average. However, our estimates for SAPS duration are limited either by the relatively long orbital periods of the spacecraft or by the relatively small number of observations involved. Fifty percent of the events fit within the time interval [0;18] hours.

  17. Precision optical systems for the control and measurement of electric power

    International Nuclear Information System (INIS)

    MacKellar, R.

    2000-01-01

    Development od three optical systems for use in the measurement of electric power -- the optical current transducer (NXCT), the optical voltage transducer (NCVT) and the optical voltage and current transducer (NXVCT) -- are discussed. Market for these systems is estimated at $ 600 million and growing, based on the aging infrastructure, the effects of deregulation and application in other market areas. Some competing products by other developers are also described, along with some discussion of the economic advantages to NxtPhase customers in terms of lower acquisition and installation cost, accuracy, and bandwidth. The importance of strategic partnerships and the strengths that strategic partners bring to a enterprise (domain knowledge, access, site for installation, investment capital, critical feedback) are reviewed. Preliminary results of field trials of NxtPhase's NXVCT are also discussed

  18. A new linear back projection algorithm to electrical tomography based on measuring data decomposition

    Science.gov (United States)

    Sun, Benyuan; Yue, Shihong; Cui, Ziqiang; Wang, Huaxiang

    2015-12-01

    As an advanced measurement technique of non-radiant, non-intrusive, rapid response, and low cost, the electrical tomography (ET) technique has developed rapidly in recent decades. The ET imaging algorithm plays an important role in the ET imaging process. Linear back projection (LBP) is the most used ET algorithm due to its advantages of dynamic imaging process, real-time response, and easy realization. But the LBP algorithm is of low spatial resolution due to the natural ‘soft field’ effect and ‘ill-posed solution’ problems; thus its applicable ranges are greatly limited. In this paper, an original data decomposition method is proposed, and every ET measuring data are decomposed into two independent new data based on the positive and negative sensing areas of the measuring data. Consequently, the number of total measuring data is extended to twice as many as the number of the original data, thus effectively reducing the ‘ill-posed solution’. On the other hand, an index to measure the ‘soft field’ effect is proposed. The index shows that the decomposed data can distinguish between different contributions of various units (pixels) for any ET measuring data, and can efficiently reduce the ‘soft field’ effect of the ET imaging process. In light of the data decomposition method, a new linear back projection algorithm is proposed to improve the spatial resolution of the ET image. A series of simulations and experiments are applied to validate the proposed algorithm by the real-time performances and the progress of spatial resolutions.

  19. A new linear back projection algorithm to electrical tomography based on measuring data decomposition

    International Nuclear Information System (INIS)

    Sun, Benyuan; Yue, Shihong; Cui, Ziqiang; Wang, Huaxiang

    2015-01-01

    As an advanced measurement technique of non-radiant, non-intrusive, rapid response, and low cost, the electrical tomography (ET) technique has developed rapidly in recent decades. The ET imaging algorithm plays an important role in the ET imaging process. Linear back projection (LBP) is the most used ET algorithm due to its advantages of dynamic imaging process, real-time response, and easy realization. But the LBP algorithm is of low spatial resolution due to the natural ‘soft field’ effect and ‘ill-posed solution’ problems; thus its applicable ranges are greatly limited. In this paper, an original data decomposition method is proposed, and every ET measuring data are decomposed into two independent new data based on the positive and negative sensing areas of the measuring data. Consequently, the number of total measuring data is extended to twice as many as the number of the original data, thus effectively reducing the ‘ill-posed solution’. On the other hand, an index to measure the ‘soft field’ effect is proposed. The index shows that the decomposed data can distinguish between different contributions of various units (pixels) for any ET measuring data, and can efficiently reduce the ‘soft field’ effect of the ET imaging process. In light of the data decomposition method, a new linear back projection algorithm is proposed to improve the spatial resolution of the ET image. A series of simulations and experiments are applied to validate the proposed algorithm by the real-time performances and the progress of spatial resolutions. (paper)

  20. Investigating bioremediation of petroleum hydrocarbons through landfarming using apparent electrical conductivity measurements

    Science.gov (United States)

    Van De Vijver, Ellen; Van Meirvenne, Marc; Seuntjens, Piet

    2015-04-01

    Bioremediation of soil contaminated with petroleum hydrocarbons through landfarming has been widely applied commercially at large scale. Biodegradation is one of the dominant pollutant removal mechanisms involved in landfarming, but strongly depends on the environmental conditions (e.g. presence of oxygen, moisture content). Conventionally the biodegradation process is monitored by the installation of field monitoring equipment and repeated sample collection and analysis. Because the presence of petroleum hydrocarbons and their degradation products can affect the electrical properties of the soil, proximal soil sensors such as electromagnetic induction (EMI) sensors may provide an alternative to investigate the biodegradation process of these contaminants. We investigated the relation between the EMI-based apparent electrical conductivity (ECa) of a landfarm soil and the presence and degradation status of petroleum hydrocarbons. The 3 ha study area was located in an oil refinery complex contaminated with petroleum hydrocarbons, mainly composed of diesel. At the site, a landfarm was constructed in 1999. The most recent survey of the petroleum hydrocarbon concentrations was conducted between 2011 and 2013. The sampling locations were defined by a grid with a 10 m by 10 m cell size and on each location a sample was taken from four successive soil layers with a thickness of 0.5 m each. Because the survey was carried out in phases using different georeferencing methods, the final dataset suffered from uncertainty in the coordinates of the sampling locations. In September 2013 the landfarm was surveyed for ECa with a multi-receiver electromagnetic induction sensor (DUALEM-21S) using motorized conveyance. The horizontal measurement resolution was 1 m by 0.25 m. On each measurement location the sensor recorded four ECa values representative of measurement depths of 0.5 m, 1.0 m, 1.6 m and 3.2 m. After the basic processing, the ECa measurements were filtered to remove

  1. PIEZOELECTRIC WAVEGUIDE SENSOR FOR MEASURING PULSE PRESSURE IN CLOSED LIQUID VOLUMES AT HIGH VOLTAGE ELECTRIC DISCHARGE

    Directory of Open Access Journals (Sweden)

    V. G. Zhekul

    2017-10-01

    Full Text Available Purpose. Investigations of the characteristics of pressure waves presuppose the registration of the total profile of the pressure wave at a given point in space. For these purposes, various types of «pressure to the electrical signal» transmitters (sensors are used. Most of the common sensors are unsuitable for measuring the pulse pressure in a closed water volume at high hydrostatic pressures, in particular to study the effect of a powerful high-voltage pulse discharge on increasing the inflow of minerals and drinking water in wells. The purpose of the work was to develop antijamming piezoelectric waveguide sensor for measuring pulse pressure at a close distance from a high-voltage discharge channel in a closed volume of a liquid. Methodology. We have applied the calibration method as used as a secondary standard, the theory of electrical circuits. Results. We have selected the design and the circuit solution of the waveguide pressure sensor. We have developed a waveguide pulse-pressure sensor DTX-1 with a measuring loop. This sensor makes it possible to study the spectral characteristics of pressure waves of high-voltage pulse discharge in closed volumes of liquid at a hydrostatic pressure of up to 20 MPa and a temperature of up to 80 °C. The sensor can be used to study pressure waves with a maximum amplitude value of up to 150 MPa and duration of up to 80 µs. According to the results of the calibration, the sensitivity of the developed sensor DTX-1 with a measuring loop is 0.0346 V/MPa. Originality. We have further developed the theory of designing the waveguide piezoelectric pulse pressure sensors for measuring the pulse pressure at a close distance from a high-voltage discharge channel in a closed fluid volume by controlling the attenuation of the amplitude of the pressure signal. Practical value. We have developed, created, calibrated, used in scientific research waveguide pressure pulse sensors DTX-1. We propose sensors DTX-1 for sale

  2. 77 FR 47043 - Work Group on Measuring Systems for Electric Vehicle Fueling

    Science.gov (United States)

    2012-08-07

    ... Systems for Electric Vehicle Fueling AGENCY: National Institute of Standards and Technology, Commerce... electric vehicle fuel. There is no cost for participating in the Work Group. No proprietary information... and sell electricity dispensed as a vehicle fuel) and to ensure that the prescribed methodologies and...

  3. Productivity measurement in the presence of externalities: An example from the electric power industry

    Science.gov (United States)

    Chaston, Kelly Ann

    Traditional productivity measures have ensured that environmental regulations were seen as deterrents to productivity growth. Such measures are constructed in a manner which make this conclusion inevitable. Traditional productivity measures include the regulation-induced additions to inputs, whether qualitatively or quantitatively, while continuing to ignore the value of the pollution emitted. The measure proposed in this thesis is derived formally from a model of social welfare. With the exception of 'prices' for emitted pollutants, for which marginal damage estimates will proxy, the proposed measure relies upon market prices, which are then incorporated into a conventional Divisia framework. Data from the electricity generation industry are used to construct both the conventional and newly proposed TFP growth rates. The industry provides an ideal framework within which this growth measure can be tested. It is a large industry that affects a majority of society as it is both consumed as a final good and pervasively used as an intermediate good. The industry is also a large polluter. On an annual basis it has been responsible for approximately one-third of the emissions of carbon-dioxide, one-third of the emissions of nitrous oxides, and two-thirds of the sulfur dioxides emissions, nationally. Furthermore, performance of the proposed measure across various samples was allowed by the diversity of utilities in the industry both with respect to location and fuel mix. Incorporating the value of externalities results in a productivity growth measure which is substantially improved. The difference in calculated productivity gains between the two measures is shown to be sizable under a number of circumstances. As well, the empirical analysis offers some general lessons as to the treatment of various pollutants--it is clearly demonstrated that movement in one pollutant cannot be used to proxy movements in others, or be used as an indicator as to the bias of traditional TFP

  4. Development of distributed measurement and control systems for application in electrical energy systems

    Directory of Open Access Journals (Sweden)

    Gajić Tomislav

    2013-01-01

    Full Text Available In this paper LPC1766 microcontroller based network capable application processor (NCAP system, is described. This system is intended to be used in modern distributed control and monitoring systems for application in power plants and industry, as well as in modern electricity distribution networks. In order to do that it is necessary to analyze different aspects of the system, like signal processing part or communication requirements. The chosen microcontroller has enough resources to satisfy requirements of an transducer interface module (TIM. Beside the realization of NCAp and TIM controllers it is necessary to develop the necessary measurement modules, in order to realize measurement-control systems. The developed layout could be connected to actuators to the local area network (LAN, as well. If the local LAN is connected to the internet it is possible to monitor and configure measurement modules form the remote site. Having in mind the growing complexity in control systems, it has been a real challenge to detect a diagnose problems in today's large scale distributed systems. Implementation of the proposed module could potentially reduce the time necessary to extract necessary information from the abundant quantity of information that are usually provided by the complex distributed systems.

  5. Electrical limit of silver nanowire electrodes: Direct measurement of the nanowire junction resistance

    KAUST Repository

    Selzer, Franz; Floresca, Carlo; Kneppe, David; Bormann, Ludwig; Sachse, Christoph; Weiß , Nelli; Eychmü ller, Alexander; Amassian, Aram; Mü ller-Meskamp, Lars; Leo, Karl

    2016-01-01

    We measure basic network parameters of silvernanowire (AgNW) networks commonly used as transparent conductingelectrodes in organic optoelectronic devices. By means of four point probing with nanoprobes, the wire-to-wire junction resistance and the resistance of single nanowires are measured. The resistanceRNW of a single nanowire shows a value of RNW=(4.96±0.18) Ω/μm. The junction resistanceRJ differs for annealed and non-annealed NW networks, exhibiting values of RJ=(25.2±1.9) Ω (annealed) and RJ=(529±239) Ω (non-annealed), respectively. Our simulation achieves a good agreement between the measured network parameters and the sheet resistanceRS of the entire network. Extrapolating RJ to zero, our study show that we are close to the electrical limit of the conductivity of our AgNW system: We obtain a possible RS reduction by only ≈20% (common RS≈10 Ω/sq). Therefore, we expect further performance improvements in AgNW systems mainly by increasing NW length or by utilizing novel network geometries.

  6. Gravity-dependent ventilation distribution in rats measured with electrical impedance tomography

    International Nuclear Information System (INIS)

    Rooney, Daniel; Fraser, John F; R Dunster, Kimble; Schibler, Andreas; Friese, Marlies

    2009-01-01

    Ventilation in larger animals and humans is gravity dependent and mainly distributed to the dependent lung. Little is known of the effect of gravity on ventilation distribution in small animals such as rodents. The aim of this study was to investigate gravity-dependent ventilation distribution and regional filling characteristics in rats. Ventilation distribution and regional lung filling were measured in six rats using electrical impedance tomography (EIT). Measurements were performed in four body positions (supine, prone, left and right lateral), and all animals were ventilated with increasing tidal volumes from 3 to 8 mL kg −1 . The effect of gravity on regional ventilation distribution was assessed with profiles of relative impedance change and calculation of the geometric centre. Regional filling was measured by calculating the slope of the plot of regional versus global relative impedance change on a breath-by-breath basis. Ventilation was significantly distributed to the non-dependent lung regardless of body position and tidal volume used. The geometric centre was located in the dependent lung in all but prone position. The regional filling characteristics followed an anatomical pattern with the posterior and the right lung generally filling faster. Gravity had little impact on regional filling. Ventilation distribution in rats is gravity dependent, whereas regional filling characteristics are dependent on anatomy

  7. Electrical limit of silver nanowire electrodes: Direct measurement of the nanowire junction resistance

    KAUST Repository

    Selzer, Franz

    2016-04-19

    We measure basic network parameters of silvernanowire (AgNW) networks commonly used as transparent conductingelectrodes in organic optoelectronic devices. By means of four point probing with nanoprobes, the wire-to-wire junction resistance and the resistance of single nanowires are measured. The resistanceRNW of a single nanowire shows a value of RNW=(4.96±0.18) Ω/μm. The junction resistanceRJ differs for annealed and non-annealed NW networks, exhibiting values of RJ=(25.2±1.9) Ω (annealed) and RJ=(529±239) Ω (non-annealed), respectively. Our simulation achieves a good agreement between the measured network parameters and the sheet resistanceRS of the entire network. Extrapolating RJ to zero, our study show that we are close to the electrical limit of the conductivity of our AgNW system: We obtain a possible RS reduction by only ≈20% (common RS≈10 Ω/sq). Therefore, we expect further performance improvements in AgNW systems mainly by increasing NW length or by utilizing novel network geometries.

  8. A rate-equation model for polarized laser-induced fluorescence to measure electric field in glow discharge He plasmas

    International Nuclear Information System (INIS)

    Takiyama, K.; Watanabe, M.; Oda, T.

    1998-01-01

    Possibility of applying polarized laser-induced fluorescence (LIF) spectroscopy for measuring the electric field in a plasma with a large collisional depolarization has been investigated. A rate equation model including the depolarization process was employed to analyze the time evolution of LIF polarization components. The polarized LIF pulse shapes observed in the sheath of a He glow discharge plasma were successfully reproduced, and the electric field distribution was obtained with high accuracy. (author)

  9. Fertilization effects on the electrical conductivity measured by EMI, ERT, and GPR

    Science.gov (United States)

    Weihermueller, L.; Kaufmann, M.; Steinberger, P.; Pätzold, S.; Vereecken, H.; Van Der Kruk, J.

    2017-12-01

    Near surface geophysics such as electromagnetic induction (EMI), electrical resistivity tomography (ERT), and ground penetrating radar (GPR) are widely used for field characterization, to delineate soil units, and to estimate soil texture, bulk densities and/or soil water contents. Hereby, the measured soil apparent conductivity (ECa) is often used. Soil ECa is governed by horizontal and vertical changes in soil texture, mineralogy, soil water content, and temperature, and the single contributions are not easy to disentangle. Within single fields and between fields fertilization management may vary spatially, which holds especially for field trials. As a result, ECa might vary due to differences in electrolyte concentration and subsequent pore fluid conductivity, but secondary fertilization effects might also play a major role in ECa differences such as differences in soil water uptake by growing plants. To study the direct effect of mineral fertilization on ECa, a field experiment was performed on 21 bare soil plots each of a size of 9 m2, where 7 different fertilization treatments were established in triplicates. As mineral fertilizers, commercial calcium ammonium nitrate and potassium chloride were chosen and applied in dosages of 200, 400, and 2000 kg ha-1 N equivalent. Additionally, soil water, soil temperature, and EC were recorded in a pit at different depths using commercial sensors. Changes in ECa were measured every 10 days using EMI and monthly using GPR and ERT. Additionally, soil samples were monthly taken at all plots and nitrate, chloride, and potassium contents were measured in the lab. The poster will show the effect of ECa changes due to fertilization and corresponding leaching of the fertilized elements over time. The experimental results provide information of how fertilization is influencing ECa readings and how long the fertilizers are influencing ECa measurements with geophysical instruments. This study helps to overcome restricted

  10. Neutron activation analysis measurements of sub micron aerosol deposition onto a cylinder energized with an alternating electric field

    Energy Technology Data Exchange (ETDEWEB)

    Fila, M S [Toronto Univ., ON (Canada). Dept. of Chemical Engineering and Applied Chemistry

    1994-12-31

    Experimental measurements of aerosol deposition onto a cylinder energized with a 60 Hz electric field were conducted using a neutron activation analysis technique with a hafnium salt aerosol. The measured collection efficiencies were compared to theoretical expressions based on an electrostatic collection mechanism and fair agreement was found. (author). 5 refs., 1 tab., 2 figs.

  11. On the construct validity of measures of willingness to pay for green electricity : Evidence from a South African case

    NARCIS (Netherlands)

    Chan, A.; Oerlemans, Leon; Volschenk, J.

    2015-01-01

    The price consumers are willing to pay (WTP) extra for green electricity (GE) is one of the uncertainties possibly impacting on the overall feasibility of its market introduction. In the literature, several measurements of WTP are used. However, the number of studies comparing WTP measures is

  12. The Flanitzhuette project - solar island electricity supply combined with comprehensive electricity saving measures; Projekt Flanitzhuette - solare Inselstromversorgung in Kombination mit umfassenden Stromsparmassnahmen

    Energy Technology Data Exchange (ETDEWEB)

    Eingartner, M. [Abt. Marketing, Energiedienstleistungen, Regenerative Energien, Bayernwerk AG, Muenchen (Germany); Knapp, R. [Abt. Marketing, Energiedienstleistungen, Regenerative Energien, Bayernwerk AG, Muenchen (Germany); Kranz, U. [Abt. Marketing, Energiedienstleistungen, Regenerative Energien, Bayernwerk AG, Muenchen (Germany)

    1995-10-02

    Since 1992, Bayernwerk AG has been operating a solar island network at Flanitzhuette in the Bavarian Forest, to supply a remote hamlet. The plant is based on a photo-electric system together with a battery and a gas unit. The plant was designed by the least cost planning (LCP) process, ie: The electricity demand was first reduced by economy measures on the customers` side (demand side management, DSM) and then largely coverd by photo-electric supply. In the case of the `Flanitzhuette solar island`, the application of LCP was able to contribute to minimising the supply costs. The authors report on the project and the results in the electricity generation and saving areas. (orig.) [Deutsch] Die Bayernwerk AG betreibt seit 1992 in Flanitzhuette im Bayerischen Wald ein solares Inselstromnetz zur Versorgung eines abgelegenen Weilers. Die Anlage basiert auf einem Photovoltaik-System in Verbindung mit einer Batterieanlage und einem Gasaggregat. Bei der Konzeption der Anlage wurde nach dem Verfahren des Least-Cost Planning (LCP) vorgegangen, d.h. der Strombedarf wurde zunaechst durch wirtschaftliche Massnahmen auf der Kundenseite (Demand-Side Management, DSM) reduziert und erst anschliessend weitgehend photovoltaisch gedeckt. Im Falle der `Solarinsel Flanitzhuette` konnte die Anwendung von LCP zu einer Minimierung der Versorgungskosten beitragen. Die Verfasser berichten ueber das Projekt und die Ergebnisse im Stromerzeugungs- und Stromsparbereich. (orig.)

  13. Understanding effects of topical ingredients on electrical measurement of skin hydration.

    Science.gov (United States)

    Crowther, J M

    2016-12-01

    Methods that assess skin hydration based on changes in its electrical properties are widely used in both cosmetic and medical research. However, the devices themselves often give results which are significantly different to each other. Although some work has previously been carried out to try and understand what these devices are actually reading, it was based on a technique for measuring the devices' responses to filter discs impregnated with different liquids, which could in itself be influencing the measurements. Presented here is a new method for measuring the devices' direct responses to different materials and solutions which removes any other confounding effects, thereby providing a clearer insight into their operation. The responses of a variety of different liquids and solutions were measured using the Corneometer ® and Skicon ® . A new method is presented, based on the use of a custom-designed PTFE block to hold the liquids, allowing their measurement without using a filter paper. This method was developed and tested against the existing filter paper-based approach. Differences were observed in results between filter paper- and PTFE block-based approach, indicating that the filter paper itself is capable of influencing the measurements and as such is not to be recommended for assessing how different liquids impact on results from the devices. A positive correlation was observed between Corneometer ® and Skicon ® readings for certain solutions and under certain conditions. A large influence of salt concentration was noted for the Skicon ® device with no or minimal impact from the actual water itself, humectants and emollients. Salts, emollients, water and humectants were observed to have an effect on Corneometer ® readings. Both the Corneometer ® and Skicon ® were influenced to different extents by chemicals other than water and therefore cannot be seen purely as measures of skin 'hydration'. Although there is strong evidence that the devices do

  14. Electrical characterization of the JET A2 antenna: Comparison of model with measurements

    International Nuclear Information System (INIS)

    Ryan, P.M.; Goulding, R.H.; Bhatnagar, V.; Kaye, A.; Wade, T.

    1993-01-01

    The JET experiment is replacing its previous (Al) antennas with upgraded designs (A2) for its upcoming ''pumped diverter'' operation. These antennas are more directional than the previous two-strap Al antennas when operated as a phased array. The frequency range is 23 to 57 MHz. A full-scale low power ''flat'' mockup was tested at JET; strap lengths were adjusted to give balanced operation with resonance at 42 MHz. A second mockup module, differing only slightly from the original, was subsequently fabricated and both modules were sent to ORNL for additional measurements and to test the operation of the power compensator circuit. There are benefits to using a transmission line model to characterize coupled antenna systems, primarily in the ease of incorporating the antennas into the overall analysis of the transmission, tuning, and matching system. The characteristics of the array under arbitrary phasing are also needed for the design, analysis, and control of the power compensator. There are aspects of the JET A2 antenna geometry that differ considerably from previously modeled cases. Each transmission line feeds two poloidally-stacked straps connected in parallel. The parallel straps present different electrical loads at the match point due to geometrical differences. Currents in one section of the strap influence other sections of the same strap as well as in neighboring straps due to internal inductive coupling. The lengths of the inner and outer straps differ; moreover, the inner straps are fed from ports located behind the outer straps, resulting in increased coupling between the inner and outer straps due to the long feed lines and in greater disparity between the electrical loads presented at the inner and outer feed ports. The present effort is to determine whether a more general coupled transmission line model can characterize the array response with sufficient accuracy for the purpose of design and analysis

  15. Assessment of human body influence on exposure measurements of electric field in indoor enclosures.

    Science.gov (United States)

    de Miguel-Bilbao, Silvia; García, Jorge; Ramos, Victoria; Blas, Juan

    2015-02-01

    Personal exposure meters (PEMs) used for measuring exposure to electromagnetic fields (EMF) are typically used in epidemiological studies. As is well known, these measurement devices cause a perturbation of real EMF exposure levels due to the presence of the human body in the immediate proximity. This paper aims to model the alteration caused by the body shadow effect (BSE) in motion conditions and in indoor enclosures at the Wi-Fi frequency of 2.4 GHz. For this purpose, simulation techniques based on ray-tracing have been carried out, and their results have been verified experimentally. A good agreement exists between simulation and experimental results in terms of electric field (E-field) levels, and taking into account the cumulative distribution function (CDF) of the spatial distribution of amplitude. The Kolmogorov-Smirnov (KS) test provides a P-value greater than 0.05, in fact close to 1. It has been found that the influence of the presence of the human body can be characterized as an angle of shadow that depends on the dimensions of the indoor enclosure. The CDFs show that the E-field levels in indoor conditions follow a lognormal distribution in the absence of the human body and under the influence of BSE. In conclusion, the perturbation caused by BSE in PEMs readings cannot be compensated for by correction factors. Although the mean value is well adjusted, BSE causes changes in CDF that would require improvements in measurement protocols and in the design of measuring devices to subsequently avoid systematic errors. © 2014 Wiley Periodicals, Inc.

  16. Measuring and testing natural gas and electricity markets volatility : evidence from Alberta's deregulated markets

    International Nuclear Information System (INIS)

    Serletis, A.; Shahmoradi, A.

    2005-01-01

    A number of innovative methods for modelling spot wholesale electricity prices have recently been developed. However, these models have primarily used a univariate time series approach to the analysis of electricity prices. This paper specified and estimated a multivariate GARCH-M model of natural gas and electricity price changes and their volatilities, using data over the deregulated period between January 1996 to November 2004 from Alberta's spot power and natural gas markets. The primary objective of the model was to investigate the relationship between electricity and natural gas prices. It was noted that the model allows for the possibilities of spillovers and asymmetries in the variance-covariance structure for natural gas and electricity price changes, and also for the separate examination of the effects of the volatility of anticipated and unanticipated changes in natural gas and electricity prices. Section 2 of the paper provided a description of the model used to test for causality between natural gas and electricity price changes, while section 3 discussed the data and presented the empirical results. It was concluded that there is a bidirectional causality between natural gas and electricity price changes. However, neither anticipated nor unanticipated natural gas price volatility causes electricity price changes. Anticipated electricity price volatility has a causal effect on natural gas. 10 refs., 2 tabs., 3 figs

  17. Measuring the costs of photovoltaics in an electric utility planning framework

    International Nuclear Information System (INIS)

    Awerbuch, Shimon

    1993-01-01

    Utility planning models evaluate alternative generating options using the revenue requirements method-an engineering-oriented, discounted cash-flow (DCF) methodology that has been widely used for over three decades. Discounted cash-flow techniques were conceived in the context of active expense-intensive technologies, such as conventional, fuel-intensive power generation. Photovoltaic (PV) technology, by contrast, is passive and capital intensive-attributes that are similar to those of other new process technologies, such as computer-integrated manufacturing. Discounted cash-flow techniques have a dismal record for correctly valuing new technologies with these attributes, in part because their benefits cannot be easily measured using traditional accounting concepts. This paper examines how these issues affect cost measurement in both conventional and PV-based electricity, and presents kWh-cost estimates for three technologies (coal, gas and PV) using risk-adjusted approaches, which suggest that PV costs are generally equivalent to the gas/combined cycle and about twice the cost of base-load coal (environmental externalities are ignored). Finally, the paper evaluates independent power purchases for a typical US utility and finds that in such a setting the cost of PV-based power is comparable to the firm's published avoided costs. (author)

  18. Nuclear magnetic resonance and electrical conductivity measurements of diffusion and disorder in LiBr

    International Nuclear Information System (INIS)

    Hamann, H.; Reininghaus, J.; Richtering, H.

    1980-01-01

    Electrical conductivity and nuclear magnetic relaxation rates were measured with pure and doped LiBr between 400 K and the melting point (824 K). Prevalent intrinsic disorder was observed down to 470 K. The degree of thermal disorder is 5 X 10 -7 at 470 K and 5 X 10 -3 at the melting point. From the relaxation rates of 7 Li, which are caused by Li-diffusion and nuclear dipole interaction, mean jump frequencies of the cations are derived. Conductivities calculated from these frequencies for a jump process via neighbouring cation vacancies are in perfect agreement with directly measured conductivities. From relaxation rates of 81 Br with MgBr 2 -doped crystals jump frequencies of vacancies were obtained which are again in good agreement with those derived from the conductivity data. From motional narrowing of the 81 Br absorption line the jump frequency of the anions is obtained, which is much smaller than for the cations. Since this motional narrowing is not influenced by any doping, it is concluded that anion transport mainly occurs via pairs of cation and anion vacancies. (Auth.)

  19. Electrical-conductivity measurements of leachates for the rapid assessment of wasteform corrosion resistance

    International Nuclear Information System (INIS)

    Sales, B.C.; Petek, M.; Boatner, L.A.

    1982-01-01

    Measurements of the electrical conductivity of leachate solutions as a function of time can be used as an efficient, informative means of evaluation and comparison in the development of nuclear waste forms and in the preliminary analysis of their corrosion resistance in distilled water. Three separate applications of this technique are described in this work. These are: (1) its use in the optimization of the corrosion resistance of a crystalline wasteform (monazite); (2) a study of the protective ability of the surface layer (gel layer) which forms on the nuclear waste glass Frit 21 + 20 wt % SRW in distilled water; and (3) making comparisons of the overall corrosion resistance of three different nuclear wasteforms (i.e., monazite, SYNROC, and borosilicate glass). A complete solution analysis of the borosilicate glass leachate and a straightforward analysis of the conductivity results agree to within +-20%. In the absence of a complete, time consuming solution analysis, conductivity measurements can be used to estimate reliably the total ionic concentration in the leachate to within a factor of 2

  20. High temperature thermal conductivity measurements of UO2 by Direct Electrical Heating. Final report

    International Nuclear Information System (INIS)

    Bassett, B.

    1980-10-01

    High temperature properties of reactor type UO 2 pellets were measured using a Direct Electrical Heating (DEH) Facility. Modifications to the experimental apparatus have been made so that successful and reproducible DEH runs may be carried out while protecting the pellets from oxidation at high temperature. X-ray diffraction measurements on the UO 2 pellets have been made before and after runs to assure that sample oxidation has not occurred. A computer code has been developed that will model the experiment using equations that describe physical properties of the material. This code allows these equations to be checked by comparing the model results to collected data. The thermal conductivity equation for UO 2 proposed by Weilbacher has been used for this analysis. By adjusting the empirical parameters in Weilbacher's equation, experimental data can be matched by the code. From the several runs analyzed, the resulting thermal conductivity equation is lambda = 1/4.79 + 0.0247T/ + 1.06 x 10 -3 exp[-1.62/kT/] - 4410. exp[-3.71/kT/] where lambda is in w/cm K, k is the Boltzman constant, and T is the temperature in Kelvin

  1. The corrosion rate of copper in a bentonite test package measured with electric resistance sensors

    Energy Technology Data Exchange (ETDEWEB)

    Rosborg, Bo [Division of Surface and Corrosion Science, KTH, Stockholm (Sweden); Kosec, Tadeja; Kranjc, Andrej; Kuhar, Viljem; Legat, Andraz [Slovenian National Building and Civil Engineering Institute, Ljubljana (Slovenia)

    2012-12-15

    LOT1 test parcel A2 was exposed for six years in the Aespoe Hard Rock Laboratory, which offers a realistic environment for the conditions that will prevail in a deep repository for high-level radioactive waste disposal in Sweden. The test parcel contained copper electrodes for real-time corrosion monitoring in bentonite ring 36, where the temperature was 24 deg C, and copper coupons in bentonite rings 22 and 30, where the temperature was higher. After retrieval of the test parcel in January 2006, a bentonite test package consisting of bentonite rings 35 - 37 was placed in a container and sealed with a thick layer of paraffin. Later the same year new copper electrodes were installed in the test package. In January 2007 electric resistance (ER) sensors of pure copper with a thickness of 35 {mu}m were also installed in the test package mainly to facilitate the interpretation of the results from the real-time corrosion monitoring with electrochemical techniques. The ER measurements have shown that the corrosion rate of pure copper exposed in an oxic bentonite/ saline groundwater environment at room temperate decreases slowly with time to low but measurable values. The corrosion rates estimated from the regularly performed EIS measurements replicate the ER data. Thus, for this oxic environment in which copper acquires corrosion potentials of the order of 200 mV (SHE) or higher, electrochemical measurements provide believable data. Comparing the recorded ER data with an estimate of the average corrosion rate based on comparing cross-sections from exposed and protected sensor elements, it is obvious that the former overestimates the actual corrosion rate, which is understandable. It seems as if electrochemical measurements can provide a better estimate of the corrosion rate; however, this is quite dependent on the use of proper measuring frequencies and evaluation methods. In this respect ER measurements are more reliable. It has been shown that real-time corrosion

  2. The corrosion rate of copper in a bentonite test package measured with electric resistance sensors

    International Nuclear Information System (INIS)

    Rosborg, Bo; Kosec, Tadeja; Kranjc, Andrej; Kuhar, Viljem; Legat, Andraz

    2012-12-01

    LOT1 test parcel A2 was exposed for six years in the Aespoe Hard Rock Laboratory, which offers a realistic environment for the conditions that will prevail in a deep repository for high-level radioactive waste disposal in Sweden. The test parcel contained copper electrodes for real-time corrosion monitoring in bentonite ring 36, where the temperature was 24 deg C, and copper coupons in bentonite rings 22 and 30, where the temperature was higher. After retrieval of the test parcel in January 2006, a bentonite test package consisting of bentonite rings 35 - 37 was placed in a container and sealed with a thick layer of paraffin. Later the same year new copper electrodes were installed in the test package. In January 2007 electric resistance (ER) sensors of pure copper with a thickness of 35 μm were also installed in the test package mainly to facilitate the interpretation of the results from the real-time corrosion monitoring with electrochemical techniques. The ER measurements have shown that the corrosion rate of pure copper exposed in an oxic bentonite/ saline groundwater environment at room temperate decreases slowly with time to low but measurable values. The corrosion rates estimated from the regularly performed EIS measurements replicate the ER data. Thus, for this oxic environment in which copper acquires corrosion potentials of the order of 200 mV (SHE) or higher, electrochemical measurements provide believable data. Comparing the recorded ER data with an estimate of the average corrosion rate based on comparing cross-sections from exposed and protected sensor elements, it is obvious that the former overestimates the actual corrosion rate, which is understandable. It seems as if electrochemical measurements can provide a better estimate of the corrosion rate; however, this is quite dependent on the use of proper measuring frequencies and evaluation methods. In this respect ER measurements are more reliable. It has been shown that real-time corrosion

  3. Internal electric-field-lines distribution in CdZnTe detectors measured using X-ray mapping

    International Nuclear Information System (INIS)

    Bolotnikov, A.E.; Camarda, G.S.; Cui, Y.; Hossain, A.; Yang, G.; Yao, H.W.; James, R.B.

    2009-01-01

    The ideal operation of CdZnTe devices entails having a uniformly distributed internal electric field. Such uniformity especially is critical for thick long-drift-length detectors, such as large-volume CPG and 3-D multi-pixel devices. Using a high-spatial resolution X-ray mapping technique, we investigated the distribution of the electric field in real devices. Our measurements demonstrate that in thin detectors, 1 cm, with a large aspect ratio (thickness-to-width ratio), we observed two effects: the electric field lines bending away from or towards the side surfaces, which we called, respectively, the focusing field-line distribution and the defocusing field-line distribution. In addition to these large-scale variations, the field-line distributions were locally perturbed by the presence of extended defects and residual strains existing inside the crystals. We present our data clearly demonstrating the non-uniformity of the internal electric field

  4. Measuring international electricity integration: a comparative study of the power systems under the Nordic Council, MERCOSUR, and NAFTA

    International Nuclear Information System (INIS)

    Pineau, P.-O.; Hira, Anil; Froschauer, Karl

    2004-01-01

    Many regions of the world feel the pressure to interconnect electric power systems internationally. Regional integrations of the electricity sector have become part of free trade and common market initiatives, though the steps individual national jurisdictions take towards developing integrated systems vary. In this article, we review three regions concerned with common market initiatives and at different stages of integration processes that involve infrastructural, regulatory, and commercial decisions. First, we examine the North European countries in the Nordic Council, then countries in the Southern Cone of South America in MERCOSUR, and finally Mexico, the United States and Canada, linked under NAFTA. This comparative study highlights the potential, but also the many hurdles, that electricity sector integrations face. The study suggests a framework for measuring the level of electricity sector integration that could be applied to other regions

  5. Electric probe diagnostics for measuring SOL parameters, wall and divertor fluxes in KSTAR

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Heung-Su, E-mail: kimhs@nfri.re.kr [National Fusion Research Institute, Daejeon (Korea, Republic of); Bak, Jun-Gyo [National Fusion Research Institute, Daejeon (Korea, Republic of); Bae, Min-Keun; Chung, Kyu-Sun [Hanyang University, Seoul (Korea, Republic of); Hong, Suk-Ho [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2016-11-01

    Highlights: • Some components in EPDs were improved to investigate characteristics of the SOL plasmas and to measure wall and divertor fluxes in the KSTAR tokamak plasmas. From the upgrades in the EPDs, the measured error of the elapsed distance for the evaluation of the SOL profiles can be reduced up to 1%. • In the SOL parameter measurement during IWL plasma, the e-folding lengths in the main SOL region lTe and lne were evaluated as 3.5 cm and 2.1 cm, respectively. • From flux measurement at the far SOL during a diverted ELMy H-mode, peaked heat flux toward to outboard wall during ELMs might be less than 1% of the peaked divertor heat flux. • The movement of an OSP during a diverted H-mode can be detected from the divertor probe measurement, and the peaked heat flux near the OSP was estimated as few MW m-2. - Abstract: Some components in electric probe diagnostics (EPDs) are improved in order to investigate characteristics of edge plasmas in the upstream scrape-off-layer (SOL) region and to measure wall and divertor fluxes during L-mode and H-mode plasma discharges in the Korea Superconducting Tokamak Advanced Research (KSTAR). From the upgrades in the EPDs, the measured error of the elapsed distance for the evaluation of the SOL profiles can be reduced up to 1% and the ion saturation current of up to 1.0 A near an outer strike point (OSP) can be measured at the divertor region. In the SOL profile measurements during L-mode and inner wall limited plasma (B{sub T} = 2.0 T, I{sub p} = 0.4 MA), the e-folding lengths in the main SOL region λ{sub Te} and λ{sub ne} are evaluated as 3.5 cm and 2.1 cm, respectively. From particle flux measurement at the far SOL region during a diverted ELMy H-mode discharge (B{sub T} = 1.8 T, I{sub p} = 0.65 MA), peaked heat flux toward to outboard wall during ELM bursts is estimated up to ∼20 k Wm{sup −2}, which may be less than 1% of the peaked divertor heat flux expected for the neutral beam (NB) heating power P{sub NB

  6. Fluid Distribution in Synthetic Wet Halite Rocks : Inference from Measured Elastic Wave Velocity and Electrical Conductivity

    Science.gov (United States)

    Watanabe, T.; Kitano, M.

    2011-12-01

    Intercrystalline fluid can significantly affect rheological and transport properties of rocks. Its influences are strongly dependent on its distribution. The dihedral angle between solid and liquid phases has been widely accepted as a key parameter that controls solid-liquid textures. The liquid phase is not expected to be interconnected if the dihedral angle is larger than 60 degree. However, observations contradictory to dihedral angle values have been reported. Watanabe (2010) suggested the coexistence of grain boundary fluid with a positive dihedral angle. For good understanding of fluid distribution, it is thus critical to study the nature of grain boundary fluid. We have developed a high pressure and temperature apparatus for study of intercrystalline fluid distribution. It was specially designed for measurements of elastic wave velocities and electrical conductivity. The apparatus mainly consists of a conventional cold-seal vessel with an external heater. The pressure medium is silicon oil of the viscosity of 0.1 Pa s. The pressure and temperature can be controlled from 0 to 200 MPa and from 20 to 200 C, respectively. Dimensions of a sample are 9 mm in diameter, and 15 mm in length. Halite-water system is used as an analog for crustal rocks. The dihedral angle has been studied systematically at various pressure and temperature conditions [Lewis and Holness, 1996]. The dihedral angle is larger than 60 degree at lower pressure and temperature. It decreases to be smaller than 60 degree with increasing pressure and temperature. A sample is prepared by cold-pressing and annealing of wet NaCl powder. Optical examination has shown that synthesized samples are microstructurally homogeneous. Grains are polygonal and equidimensional with a mean diameter of 100 micrometer. Grain boundaries vary from straight to bowed and 120 degree triple junctions are common. Gas and fluid bearing inclusions are visible on the grain boundaries. There are spherical inclusions or

  7. Seyle’s biological stressors influence dramatically skin physiology: our experiences with electrical admittance magnitude measurements

    Directory of Open Access Journals (Sweden)

    Lorenzo Martini

    2014-04-01

    Full Text Available Introduction: Abrupt changes of environmental temperatures and assault of chemical and physical assaults belong to the series of biological stresses recorded by the austro-canadian endocrinologist Seyle onto skin, phenomena that are progressively overset all natural events and anthropological lifestyles, are too often depreciated and underestimated by dermatologists and cosmetologists at all. Aims of our study is to evaluate by electrical admittance magnitude measurements the influence these two irrefutable afflictions, designed as stressors, influence negatively human skin and to do this we have selected, to conduct the study, peculiar individuals that, owing to their choice of living, may or not be injured by extreme changes of temperatures and aggressions by chemical and physical pollutants. Materials and Methods: We have recruited 20 nuns in a cloistered convent in Mid Italy: ten of these have been always accustomed to live inside the cloister and their life-style permits the good conservation of the intact skin physiology (that is living at air temperature and medium-low relative humidity and the other ten are accustomed to live and work outdoor and to be assaulted by abrupt and extreme changes of environmental temperature and pollutants. Cloistered nuns have the chance to choose where to live, indoor or aoutdoor. We measured the electrical admittance magnitude (in μmho at the beginning and at the end of the experiment that lasts 29 weeks, using an appropriate instrument based on the system developed by Feldman, working at a single frequency of 30kHz. Results and Conclusion: It is self evident that after the simulation of phyto-induced cortisol release onto the skins of all the 20 volunteers, the subjects that which live outdoor show an exaggerated value of dehydration with regard to the subjects that live indoor. Changes of environmental temperatures and chemical pollutants, is self evident, jeopardize human skin integrity and safety, but

  8. Detectability of underground electrical cables junction with a ground penetrating radar: electromagnetic simulation and experimental measurements

    Science.gov (United States)

    Liu, Xiang; serhir, mohammed; kameni, abelin; lambert, marc; pichon, lionel

    2016-04-01

    For a company like Electricity De France (EDF), being able to detect accurately using non-destructive methods the position of the buried junction between two underground cables is a crucial issue. The junction is the linking part where most maintenance operations are carried out. The challenge of this work is to conduct a feasibility study to confirm or deny the relevance of Ground Penetrating Radar (GPR) to detect these buried junctions in their actual environment against clutter. Indeed, the cables are buried in inhomogeneous medium at around 80cm deep. To do this, the study is conducted in a numerical environment. We use the 3D simulation software CST MWS to model a GPR scenario. In this simulation, we place the already optimized bowtie antennas operating in the frequency band [0.5 GHz - 3 GHz] in front of wet soil (dispersive) and dry soil where the underground cable is placed at 80cm deep. We collect the amplitude and phase of the reflected waves in order to detect the contrast provoked by the geometric dimensions variation of the cable [1] (diameter of the cable is 48mm and the diameter of the junction 74mm). The use of an ultra-wideband antenna is necessary to reconcile resolution and penetration of electromagnetic waves in the medium to be characterized. We focus on the performance of the GPR method according to the characteristics of the surrounding medium in which the electric cables are buried, the polarization of the Tx and Rx antennas. The experimental measurement collected in the EDF site will be presented. The measured data are processed using the clutter reduction method based on digital filtering [2]. We aim at showing that using the developed bowtie antennas that the GPR technique is well adapted for the cable junction localization even in cluttered environment. References [1] D. J. Daniels, "Surface-Penetrating Radar", London, IEE 1996. [2] Potin, D.; Duflos, E.; Vanheeghe, P., "Landmines Ground-Penetrating Radar Signal Enhancement by Digital

  9. Experimental validation of a method for removing the capacitive leakage artifact from electrical bioimpedance spectroscopy measurements

    International Nuclear Information System (INIS)

    Buendia, R; Seoane, F; Gil-Pita, R

    2010-01-01

    Often when performing electrical bioimpedance (EBI) spectroscopy measurements, the obtained EBI data present a hook-like deviation, which is most noticeable at high frequencies in the impedance plane. The deviation is due to a capacitive leakage effect caused by the presence of stray capacitances. In addition to the data deviation being remarkably noticeable at high frequencies in the phase and the reactance spectra, the measured EBI is also altered in the resistance and the modulus. If this EBI data deviation is not properly removed, it interferes with subsequent data analysis processes, especially with Cole model-based analyses. In other words, to perform any accurate analysis of the EBI spectroscopy data, the hook deviation must be properly removed. Td compensation is a method used to compensate the hook deviation present in EBI data; it consists of multiplying the obtained spectrum, Z meas (ω), by a complex exponential in the form of exp(–jωTd). Although the method is well known and accepted, Td compensation cannot entirely correct the hook-like deviation; moreover, it lacks solid scientific grounds. In this work, the Td compensation method is revisited, and it is shown that it should not be used to correct the effect of a capacitive leakage; furthermore, a more developed approach for correcting the hook deviation caused by the capacitive leakage is proposed. The method includes a novel correcting expression and a process for selecting the proper values of expressions that are complex and frequency dependent. The correctness of the novel method is validated with the experimental data obtained from measurements from three different EBI applications. The obtained results confirm the sufficiency and feasibility of the correcting method

  10. Development of instrumentation with application to sounding rocket electric and magnetic field measurements above thunderstorms

    Science.gov (United States)

    Baker, Steven D.

    1999-06-01

    The thunderstorm campaigns led by Cornell University in 1981 and 1988 both measured large-amplitude (10 to 40 mV/m), long duration (1 ms) electric-field pulses parallel to the earth's magnetic field. To investigate the mechanism responsible for these pulses, the instrumentation bandwidth was increased from the VLF range to MF frequencies. The design for a Helmholtz coil developed to calibrate magnetometers from DC to 10 MHz is given in Chapter 3. This coil generates a spatially uniform field with for frequencies up to at least 10 MHz with amplitudes of up to 1.1 mA/m. Coincident with the need for higher bandwidth sensors, a burst-memory data acquisition system was developed to intelligently select the 1.25% of the available data to send to the telemetry encoder. This system uses the optical flash of the lightning as a trigger and has a back-up mode to ensure data is transmitted in the event no triggers occur. The higher-frequency instruments allowed the first rocket-borne measurement of nose- whistlers caused by the plasma frequency resonance (as opposed to the more common electron cyclotron frequency resonance), and what may have been the first observation of a TIPP at MF frequencies. Triggered emission from the second campaign, Thunderstorm-II, are identified as lower hybrid emissions. These emissions enhanced the whistler by several decibels in the lower hybrid frequency band and in bands above the emission. No emissions seen above the lower hybrid frequency. The Thunderstorm-III payloads also measured triggered emissions and long-duration pulses. The former were found in several altitude-independent frequency bands for which the source could not be identified. The long duration pulses, while of interest, have not been studied in sufficient depth for inclusion in this work.

  11. Thermal conductivity, electric resistivity, and Lorenz function for some transition metals measured by a direct electric heating technique

    International Nuclear Information System (INIS)

    Binkele, Ludolf

    1985-01-01

    The validity of the Wiedemann-Franz-Lorenz law in its standard form is disputed in the case of transition metals. However, normal behaviour could be demonstrated for the transition metals molybdenum, tantalum, and niobium by the application of an already tried and tested, and recently improved, modified Kohlrausch measuring method; that is, the high-temperature Lorenz number of these metals takes the Sommerfeld value, within measuring uncertainties of approx. 3%. In the case of tungsten, saturation was observed 16.7% above the Sommerfeld value. Even the Lorenz number of platinum seems to take on a saturation value at that level at temperatures above 1400 K. The lattice conductivity separated by various processes displays a temperature dependence describable by an exponential law for all the metals studied, in contrast to previous assumptions. (author)

  12. SQUIDs as detectors in a new experiment to measure the neutron electric dipole moment

    International Nuclear Information System (INIS)

    Espy, M.A.; Cooper, M.; Lamoreaux, S.; Kraus, R.H. Jr.; Matlachov, A.; Ruminer, P.

    1998-01-01

    A new experiment has been proposed at Los Alamos National Laboratory to measure the neutron electric dipole moment (EDM) to 4x10 -28 ecm, a factor of 250 times better than the current experimental limit. Such a measure of the neutron EDM would challenge the theories of supersymmetry and time reversal violation as the origin of the observed cosmological asymmetry in the ratio of baryons to antibaryons. One possible design for this new experiment includes the use of LTC SQUIDs coupled to large (∼100 cm 2 ) pick-up coils to measure the precision frequency of the spin-polarized 3 He atoms that act as polarizer, spin analyzer, detector, and magnetometer for the ultra-cold neutrons used in the experiment. The method of directly measuring the 3 He precession signal eliminates the need for very uniform magnetic fields (a major source of systematic error in these types of experiments). It is estimated that a flux of ∼2x10 -16 Tm 2 (0.1 Φ 0 ) will be coupled into the pick-up coils. To achieve the required signal-to-noise ratio one must have a flux resolution of dΦ SQ = 2x10 -6 Φ 0 /√Hz at 10 Hz. While this is close to the sensitivity available in commercial devices, the effects of coupling to such a large pick-up coil and flux noise from other sources in the experiment still need to be understood. To determine the feasibility of using SQUIDs in such an application the authors designed and built a superconducting test cell, which simulates major features of the proposed EDM experiment, and they developed a two-SQUID readout system that will reduce SQUID noise in the experiment. They present an overview of the EDM experiment with SQUIDs, estimations of required SQUID parameters and experimental considerations. The authors also present the measured performance of a single magnetometer in the test cell as well as the performance of the two SQUID readout technique

  13. Realization of an automatic set up to measure electrical characteristic of solid state detectors

    International Nuclear Information System (INIS)

    Manfredotti, C.; Crosetto, D.; Gabutti, A.; Gervino, G.; Varesio, R.

    1986-01-01

    An automatic set-up is described to study electrical properties of silicon detectors for nuclear research. Particularly, I-V characteristics from silicon junction prototype detectors and amorphous samples to test the data acquisition system, are presented. This set-up joins a low cost to good versatility that makes it very useful in wide application ranges in silicon detector electrical characterization

  14. Measurements on a solar greenhouse combining cooling and electrical energy production

    NARCIS (Netherlands)

    B. van Tuijl; Piet Sonneveld; H. Janssen; J. van Campen; G. Bot; Gert-Jan Swinkels

    2010-01-01

    Performance results are given of a new type of greenhouse, which combines reflection of near infrared radiation (NIR) with electrical power generation using hybrid photovoltaic cell/thermal collector modules. Besides the generation of electrical and thermal energy, the reflection of the NIR will

  15. Non-Contact Circuit for Real-Time Electric and Magnetic Field Measurements

    Science.gov (United States)

    2015-10-01

    response, noise spectral density, and dynamic range. 15. SUBJECT TERMS electric field, magnetic field, 1Wire, low-power microcontroller 16. SECURITY...4 Fig. 4 Altium DesignerTM schematic showing the pin connections of our MSP430 microcontroller ...electrical characteristics of the attached cable. 2. Methods and Procedures The circuit’s primary design consists of a microcontroller , 8-channel digital-to

  16. In situ measurement system of electric resistivity for outcrop investigation; Roto de shiyodekiru denkihi teiko keisoku system

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, K; Tamura, T [Osaka City Univ., Osaka (Japan). Faculty of Science; Morikawa, T [Osaka Prefectural Government, Osaka (Japan)

    1997-05-27

    A simplified electrical resistivity measuring device has been developed as a trial for field and laboratory uses, and some measurements were conducted. For this device, four probe electrodes are penetrated in the clay specimen, to calculate the resistivity from the voltage between both ends of the reference resistance connected with current electrodes in a series and the voltage between intermediate two voltage electrodes. It can be used in the field measurements. For the measurements, specimens of marine and lacustrine clayey sediments with clear stratigraphic levels in southern Osaka Group were used. In the laboratory, in addition to basic physical tests, diatom analysis and measurements of conductivity of clay suspension were also conducted. As a result of the experiments, the electric resistivity of marine clay obtained at the outcrop was lower than lacustrine clay as expected. The value of the former was a half of that of the latter. The frequency dependence in the high frequency region above 1 MHz was the reverse. The difference in electrical resistivity values between non-agitated specimens was about four times. The electrical resistivity of clay suspensions varied in two orders. 3 refs., 9 figs.

  17. In-situ measurements of wave electric fields in the equatorial electrojet

    International Nuclear Information System (INIS)

    Pfaff, R.F.; Kelley, M.C.; Fejer, B.G.; Maynard, N.C.; Baker, K.D.

    1982-01-01

    Electric field wave measurements have been performed on two sounding rockets in the equatorial ionosphere. During a daytime flight from Chilca, Peru, intense electrostatic waves were detected on the upward directed electron density gradient. During a nighttime flight from Kwajalein Atoll, similar waves were detected on a downward directed gradient. These results are in agreement with a gradient drift instability explanation of the generation of the waves. The wave amplitudes were as high as 5 mV/m implying perturbation drifts comparable to the driving drift velocities. Power spectra from the turbulent region show a peak at long wavelengths, followed by a nearly flat spectral region before breaking into a power law form with negative index of 3.6--3.7 for lambda< or =30 m. Similarities between the spectra of the two flights suggest that the fundamental processes of the instabilities are the same in the day and nighttime conditions. The rocket data are consistent with radar results presented in a companion paper which show coherent, kilometer scale waves present in the electrojet

  18. Study by electrical resistivity measurements of the radiation induced defects in gold-copper alloys

    International Nuclear Information System (INIS)

    Alamo, A.

    1983-09-01

    Point defect production rate in Cu 3 Au and CuAu ordered and disordered alloys was studied by electrical resistivity measurements, as function of electron energy ranging from 0.4 to 2.5 MeV. The irradiations were performed at 20 K. The production curves are analysed using a displacement model for diatomic materials and the following values are found for the average displacement threshold energies: Esub(d)sup(Cu) approximately 22 eV and Esub(d)sup(Au) approximately 18 eV, for both alloys. Elementary defect migration was examined during isochronal annealing performed after irradiations. A simple type of self-interstitial seems to migrate in the ordered alloys: probably a split-interstitial of Cu-Cu type. Interstitial migration seems to be very difficult and complex in the disordered alloys. Vacancy mobility was detected after recovery at temperature above 300 K and was responsible of an increase of long range order. Fast neutron irradiations at 20 K produce disordering in the initially ordered alloys. Ratios of 38 and 18 antistructure defects per atomic displacement are estimated for Cu 3 Au and CuAu respectively [fr

  19. Studies on Al-Mg solid solutions using electrical resistivity and microhardness measurements

    Energy Technology Data Exchange (ETDEWEB)

    Gaber, A.; Afify, N.; El-Halawany, S.M.; Mossad, A. [Assiut Univ. (Egypt). Dept. of Physics

    1999-08-01

    Al-C at% Mg alloys (C = 0.82, 1.84, 3.76, 5.74 and 12.18) have been selected for this study. From the electrical resistivity measurements it is concluded that the resistivity increment of Al-Mg alloys (in a solid solution state) is proportional to the atomic fractional constituents (Mg and Al) as {delta}{rho}{sub all} = 64.66 c(1-c) {mu}{omega} cm. In addition, both the temperature coefficient of resistivity, {alpha}{sub all} and the relaxation time of the free electrons {tau}{sub all} in the alloys diminish with increasing the solute Mg concentration. The increase of the scattering power, {eta}, with increasing C is interpreted to be due to the contribution of electron-impurity scattering. The percentage increase due to electron-impurity scattering per one atomic percent Mg has been determined as 12.99%. The Debye temperature {theta} decreases as the Mg concentration increases. The microhardness results showed that the solid solution hardening obeys the relation {delta}HV{sub s} = 135.5C{sup 0.778} MPa which is comparable to the theory of solid solution hardening for all alloys; {delta}HV{sub s} {approx} C{sup 0.5-0.67} MPa. (orig.)

  20. Evaluation of the Mechanical Properties of Gray Cast Iron Using Electrical Resistivity Measurement

    Directory of Open Access Journals (Sweden)

    Bieroński M.

    2016-12-01

    Full Text Available In this paper an attempt to determine the relationship between the electrical resistivity and the tensile strength and hardness of cast iron of carbon equivalent in the range from 3.93% to 4.48%. Tests were performed on the gray cast iron for 12 different melts with different chemical composition. From one melt poured 6 samples. Based on the study of mechanical and electro-resistive determined variation characteristics of tensile strength, hardness and resistivity as a function of the carbon equivalent. Then, regression equations were developed as power functions describing the relationship between the resistivity of castings and their tensile strength and hardness. It was found a high level of regression equations to measuring points, particularly with regard to the relationship Rm=f(ρ. The obtained preliminary results indicate the possibility of application of the method of the resistance to rapid diagnostic casts on the production line, when we are dealing with repeatable production, in this case non variable geometry of the product for which it has been determinated before a regression equation.