WorldWideScience

Sample records for electrically insulating oil

  1. A Study of the Properties of Electrical Insulation Oils and of the Components of Natural Oils

    Directory of Open Access Journals (Sweden)

    Milan Spohner

    2012-01-01

    Full Text Available This paper presents a study of the electrical and non-electrical properties of insulating oils. For the correct choice of an electrical insulation oil, it is necessary to know its density, dynamic viscosity, dielectric constant, loss number and conductivity, and the effects of various exposure factors. This paper deals with mathematical and physical principles needed for studying and making correct measurements of the dynamic viscosity, density and electrical properties of insulation oils. Rheological properties were measured using an A&D SV-10 vibratory viscometer, and analytical balance with density determination kit, which operates on the principle of Archimedes’ law. Dielectric properties were measured using a LCR meter Agilent 4980A with connected with the Agilent 16452A test fixture for dielectric liquids.

  2. Solvothermal synthesis and electrical conductivity model for the zinc oxide-insulated oil nanofluid

    International Nuclear Information System (INIS)

    Shen, L.P.; Wang, H.; Dong, M.; Ma, Z.C.; Wang, H.B.

    2012-01-01

    A new kind of nanofluid, ZnO-insulated oil nanofluid was prepared from ZnO nanoparticles synthesized by solvothermal method. Electrical property measurement shows that the electrical conductivity increases by 973 times after adding 0.75% volumetric fraction of ZnO nanoparticles into the insulated oil. A linear dependence of the electrical conductivity on the volumetric fraction has been observed, while the temperature dependence of the electrical conductivity reveals a nonlinear relationship. An electrical conductivity model is established for the nanofluid by considering both the Brownian motion and electrophoresis of the ZnO nanoparticles. -- Highlights: ► Stable ZnO-insulated oil nanofluid was successfully prepared. ► The electrical conductivity of the ZnO nanofluid is investigated. ► A new model is established to explain the electrical properties of the nanofluid.

  3. Insulating oil, electrical for transformers and switches : a national standard of Canada

    International Nuclear Information System (INIS)

    Paniri, S.; Burford, G.; Martin, A.; Adragna, M.

    1997-01-01

    Standard specifications for insulating oil used in power transformers, instrument transformers, bushings, bulk oil circuit breakers, oil circuit reclosers, and switches were provided. The specifications are divided into Class A and Class B depending on the requirement for kinematic viscosity at -40 degrees C. A Class S oil is also introduced for oil circuit breakers. The standards were prepared by the Technical Committee on Transformer and Switch Oils under the jurisdiction of the Steering Committee on Electrical Engineering, and has been formally approved by these committees. It has been also approved as a National Standard of Canada by the Standards Council of Canada. The document provides a list of reference publications, describes the samples and test procedures, properties and delivery requirements. 1 tab

  4. Insulating oil, electrical for transformers and switches : a national standard of Canada; 5. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Paniri, S; Burford, G; Martin, A; Adragna, M [eds.

    1997-09-01

    Standard specifications for insulating oil used in power transformers, instrument transformers, bushings, bulk oil circuit breakers, oil circuit reclosers, and switches were provided. The specifications are divided into Class A and Class B depending on the requirement for kinematic viscosity at -40 degrees C. A Class S oil is also introduced for oil circuit breakers. The standards were prepared by the Technical Committee on Transformer and Switch Oils under the jurisdiction of the Steering Committee on Electrical Engineering, and has been formally approved by these committees. It has been also approved as a National Standard of Canada by the Standards Council of Canada. The document provides a list of reference publications, describes the samples and test procedures, properties and delivery requirements. 1 tab.

  5. Use and benefit summary of General Electric Company thermocase insulated tubulars for steam enhanced oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Traynor, B.V. Jr.; Hawley, J.R.; Marziani, V.J.; Prevost, W.M.

    1982-01-01

    General Electric Co.'s (GE) first well-bore insulation in 1969 resulted from the industry's need to produce hot oil on Alaska's North Slope without damaging the permafrost. In the past 3 yr, over 500,000 linear ft of GE's Thermocase has been sold. Thermocase tubulars are in use in California, Wyoming, Texas, Canada, Venezuela, and the USSR. Thermocase insulated tubulars are being used in a wide range of reservoirs under a variety of completion designs. This study discusses field experience, thermal completion benefits afforded by Thermocase tubulars, a quantified economic evaluation in a 1000-ft application, as well as GE's product verification, test and rigid quality control program.

  6. Review of Research Progress on the Electrical Properties and Modification of Mineral Insulating Oils Used in Power Transformers

    Directory of Open Access Journals (Sweden)

    Xiaobo Wang

    2018-02-01

    Full Text Available In November 2017, the first ±1100 kV high-voltage direct-current power transformer in the world, which was made by Siemens in Nurnberg, passed its type test. Meanwhile, in early 2017, a ±1000 kV ultra-high voltage (UHV substation was officially put into operation in Tianjin, China. These examples illustrate that the era of UHV power transmission is coming. With the rapid increase in power transmission voltage, the performance requirements for the insulation of power transformers are getting higher and higher. The traditional mineral oils used inside power transformers as insulating and cooling agents are thus facing a serious challenge to meet these requirements. In this review, the basic properties of traditional mineral insulating oil are first introduced. Then, the variation of electrical properties such as breakdown strength, permittivity, and conductivity during transformer operation and aging is summarized. Next, the modification of mineral insulating oil is investigated with a focus on the influence of nanoparticles on the electrical properties of nano-modified insulating oil. Recent studies on the performance of mineral oil at molecular and atomic levels by molecular dynamics simulations are then described. Finally, future research hotspots and notable research topics are discussed.

  7. Space Charge Modulated Electrical Breakdown of Oil Impregnated Paper Insulation Subjected to AC-DC Combined Voltages

    Directory of Open Access Journals (Sweden)

    Yuanwei Zhu

    2018-06-01

    Full Text Available Based on the existing acknowledgment that space charge modulates AC and DC breakdown of insulating materials, this investigation promotes the related investigation into the situations of more complex electrical stress, i.e., AC-DC combined voltages. Experimentally, the AC-DC breakdown characteristics of oil impregnated paper insulation were systematically investigated. The effects of pre-applied voltage waveform, AC component ratio, and sample thickness on AC-DC breakdown characteristics were analyzed. After that, based on an improved bipolar charge transport model, the space charge profiles and the space charge induced electric field distortion during AC-DC breakdown were numerically simulated to explain the differences in breakdown characteristics between the pre-applied AC and pre-applied DC methods under AC-DC combined voltages. It is concluded that large amounts of homo-charges are accumulated during AC-DC breakdown, which results in significantly distorted inner electric field, leading to variations of breakdown characteristics of oil impregnated paper insulation. Therefore, space charges under AC-DC combined voltages must be considered in the design of converter transformers. In addition, this investigation could provide supporting breakdown data for insulation design of converter transformers and could promote better understanding on the breakdown mechanism of insulating materials subjected to AC-DC combined voltages.

  8. Electric fields and electrical insulation

    DEFF Research Database (Denmark)

    McAllister, Iain Wilson

    2002-01-01

    The adoption of a field-theoretical approach to problems arising in the framework of electrical insulation is discussed with reference to six main topics, which have been addressed over the last 30 years. These include uniform field electrodes, Green's differential equation, electrode surface...... roughness, induced charge, electrostatic probes, and partial discharge transients, together with several follow-on aspects. Each topic is introduced and thereafter the progress achieved through the use of a field-theoretical approach is reviewed. Because the topics cover a wide spectrum of conditions......, it is amply demonstrated that such an approach can lead to significant progress in many areas of electrical insulation....

  9. Electrical insulating liquid: A review

    Directory of Open Access Journals (Sweden)

    Deba Kumar Mahanta

    2017-08-01

    Full Text Available Insulating liquid plays an important role for the life span of the transformer. Petroleum-based mineral oil has become dominant insulating liquid of transformer for more than a century for its excellent dielectric and cooling properties. However, the usage of petroleum-based mineral oil, derived from a nonrenewable energy source, has affected the environment for its nonbiodegradability property. Therefore, researchers direct their attention to renewable and biodegradable alternatives. Palm fatty acid ester, coconut oil, sunflower oil, etc. are considered as alternatives to replace mineral oil as transformer insulation liquid. This paper gives an extensive review of different liquid insulating materials used in a transformer. Characterization of different liquids as an insulating material has been discussed. An attempt has been made to classify different insulating liquids-based on different properties.

  10. Electrical machining method of insulating ceramics

    International Nuclear Information System (INIS)

    Fukuzawa, Y.; Mohri, N.; Tani, T.

    1999-01-01

    This paper describes a new electrical discharge machining method for insulating ceramics using an assisting electrode with either a sinking electrical discharge machine or a wire electrical discharge machine. In this method, the metal sheet or mesh is attached to the ceramic surface as an assisting material for the discharge generation around the insulator surface. When the machining condition changes from the attached material to the workpiece, a cracked carbon layer is formed on the workpiece surface. As this layer has an electrical conductivity, electrical discharge occurs in working oil between the tool electrode and the surface of the workpiece. The carbon is formed from the working oil during this electrical discharge. Even after the material is machined, an electrical discharge occurs in the gap region between the tool electrode and the ceramic because an electrically conductive layer is generated continuously. Insulating ceramics can be machined by the electrical discharge machining method using the above mentioned surface modification phenomenon. In this paper the authors show a machined example demonstrating that the proposed method is available for machining a complex shape on insulating ceramics. Copyright (1999) AD-TECH - International Foundation for the Advancement of Technology Ltd

  11. Electrical breakdown studies with Mycalex insulators

    International Nuclear Information System (INIS)

    Waldron, W.; Greenway, W.; Eylon, S.; Henestroza, E.; Yu, S.

    2003-01-01

    Insulating materials such as alumina and glass-bonded mica (Mycalex) are used in accelerator systems for high voltage feedthroughs, structural supports, and barriers between high voltage insulating oil and the vacuum beam pipe in induction accelerator cells. Electric fields in the triple points should be minimized to prevent voltage breakdown. Mechanical stress can compromise seals and result in oil contamination of the insulator surface. We have tested various insulator cleaning procedures including ultrasonic cleaning with a variety of aqueous-based detergents, and manual scrubbing with various detergents. Water sheeting tests were used to determine the initial results of the cleaning methods. Ultimately, voltage breakdown tests will be used to quantify the benefits of these cleaning procedures

  12. Insulation assembly for electric machine

    Science.gov (United States)

    Rhoads, Frederick W.; Titmuss, David F.; Parish, Harold; Campbell, John D.

    2013-10-15

    An insulation assembly is provided that includes a generally annularly-shaped main body and at least two spaced-apart fingers extending radially inwards from the main body. The spaced-apart fingers define a gap between the fingers. A slot liner may be inserted within the gap. The main body may include a plurality of circumferentially distributed segments. Each one of the plurality of segments may be operatively connected to another of the plurality of segments to form the continuous main body. The slot liner may be formed as a single extruded piece defining a plurality of cavities. A plurality of conductors (extendable from the stator assembly) may be axially inserted within a respective one of the plurality of cavities. The insulation assembly electrically isolates the conductors in the electric motor from the stator stack and from other conductors.

  13. Electrical resistivity study of insulators

    International Nuclear Information System (INIS)

    Liesegang, J.; Senn, B.C.; Holcombe, S.R.; Pigram, P.J.

    1998-01-01

    Full text: Conventional methods of electrical resistivity measurement of dielectric materials involve the application of electrodes to a sample whereby a potential is applied and a current through the material is measured. Although great care and ingenuity has often been applied to this technique, the recorded values of electrical resistivity (p), especially for insulator materials, show great disparity. In earlier work by the authors, a method for determining surface charge decay [Q(t)], using a coaxial cylindrical capacitor arrangement interfaced to a personal computer, was adapted to allow the relatively straightforward measurement of electrical resistivity in the surface region of charged insulator materials. This method was used to develop an ionic charge transport theory, based on Mott-Gurney diffusion to allow a greater understanding into charge transport behaviour. This theory was extended using numerical analysis to produce a two dimensional (2-D) computational model to allow the direct comparison between experimental and theoretical charge decay data. The work also provided a means for the accurate determination of the diffusion coefficient (D) and the layer of thickness of surface charge (Δz) on the sample. The work outlined here involves an extension of the theoretical approach previously taken, using a computational model based more closely on the 3-D experimental set-up, to reinforce the level of confidence in the results achieved for the simpler 2-D treatment. Initially, a 3-D rectangular box arrangement similar to the experimental set-up was modelled and a theoretical and experimental comparison of voltage decay results made. This model was then transferred into cylindrical coordinates to allow it to be almost identical to the experiment and again a comparison made. In addition, theoretical analysis of the coupled non-linear partial differential equations governing the charge dissipation process has led to a simplification involving directly, the

  14. Chemical oxidation of cable insulating oil contaminated soil

    NARCIS (Netherlands)

    Jinlan Xu,; Pancras, T.; Grotenhuis, J.T.C.

    2011-01-01

    Leaking cable insulating oil is a common source of soil contamination of high-voltage underground electricity cables in many European countries. In situ remediation of these contaminations is very difficult, due to the nature of the contamination and the high concentrations present. Chemical

  15. Biodegradation performance of environmentally-friendly insulating oil

    Science.gov (United States)

    Yang, Jun; He, Yan; Cai, Shengwei; Chen, Cheng; Wen, Gang; Wang, Feipeng; Fan, Fan; Wan, Chunxiang; Wu, Liya; Liu, Ruitong

    2018-02-01

    In this paper, biodegradation performance of rapeseed insulating oil (RDB) and FR3 insulating oil (FR3) was studied by means of ready biodegradation method which was performed with Organization for Economic Co-operation and Development (OECD) 301B. For comparison, the biodegradation behaviour of 25# mineral insulating oil was also characterized with the same method. The testing results shown that the biodegradation degree of rapeseed insulating oil, FR3 insulating oil and 25# mineral insulating oil was 95.8%, 98.9% and 38.4% respectively. Following the “new chemical risk assessment guidelines” (HJ/T 154 - 2004), which illustrates the methods used to identify and assess the process safety hazards inherent. The guidelines can draw that the two vegetable insulating oils, i.e. rapeseed insulating oil and FR3 insulating oil are easily biodegradable. Therefore, the both can be classified as environmentally-friendly insulating oil. As expected, 25# mineral insulating oil is hardly biodegradable. The main reason is that 25# mineral insulating oil consists of isoalkanes, cyclanes and a few arenes, which has few unsaturated bonds. Biodegradation of rapeseed insulating oil and FR3 insulating oil also remain some difference. Biodegradation mechanism of vegetable insulating oil was revealed from the perspective of hydrolysis kinetics.

  16. An investigation on rapeseed oil as potential insulating liquid

    Science.gov (United States)

    Katim, N. I. A.; Nasir, M. S. M.; Ishak, M. T.; Hamid, M. H. A.

    2018-02-01

    Insulation oils are a vital part in power transformers. Insulation oil is not only work as electrical insulation but also as a coolant inside the transformer. Due to the increasing tight regulations on the environment and safety in recent years, vegetable oils are being considered for insulation oils in power transformer. This paper presents two conditions of Rapeseed Oil (RO), which are as received (new) and dried (dry) under difference uniform field electrodes configuration (mushroom-to-mushroom and sphere-to-sphere) with gap distance at 2.5 mm as recommended by the international standards. A comparative study of AC breakdown voltage, dissipation factor (tan δ), and resistivity under variation of temperature were investigated. The experimental works were done according to the IEC 60156 and IEC 60247 standards. The results indicated that the breakdown voltages of both condition are comparable to mineral oil. The dielectric constant and resistivity of two conditions are decreased along with the increasing temperature. However, the dissipation factor properties rose up along with the temperature. The Weibull distribution was used to determine the withstand voltages at 1% and 50% for RO in two probabilities conditions.

  17. Influences of Corrosive Sulfur on Copper Wires and Oil-Paper Insulation in Transformers

    Directory of Open Access Journals (Sweden)

    Jian Li

    2011-10-01

    Full Text Available Oil-impregnated paper is widely used in power transmission equipment as a reliable insulation. However, copper sulphide deposition on oil-paper insulation can lead to insulation failures in power transformers. This paper presents the influences of copper sulfur corrosion and copper sulphide deposition on copper wires and oil-paper insulation in power transformers. Thermal aging tests of paper-wrapped copper wires and bare copper wires in insulating oil were carried out at 130 °C and 150 °C in laboratory. The corrosive characteristics of paper-wrapped copper wires and bare copper wires were analyzed. Dielectric properties of insulation paper and insulating oil were also analyzed at different stages of the thermal aging tests using a broadband dielectric spectrometer. Experiments and analysis results show that copper sulfide deposition on surfaces of copper wires and insulation paper changes the surface structures of copper wires and insulation paper. Copper sulfur corrosion changes the dielectric properties of oil-paper insulation, and the copper sulfide deposition greatly reduces the electrical breakdown strength of oil-paper insulation. Metal passivator is capable of preventing copper wires from sulfur corrosion. The experimental results are helpful for investigations for fault diagnosis of internal insulation in power transformers.

  18. Effects of γ-radiation on the properties of insulating oil

    International Nuclear Information System (INIS)

    Abdel Aziz, M.M.; Elshazly-Zaghloul, M.; Zaghloul, A.R.M.; Fikry, L.; Raieh, M.

    1986-01-01

    Electrical Equipment used in an irradiated environment suffer from ionization and other effects. Insulating oil, e.g. of transformers, in a nuclear power station is subjected to γ-radiation. In this communication we provide a detailed experimental study of insulating oil subjected to γ-radiation. Unused oil samples of the type used in Egypt were subjected to γ-radiation for different time periods. The electrical properties of these samples are measured; dielectric constant and breakdown strength

  19. Electrical insulators for the theta-pinch fusion reactor

    International Nuclear Information System (INIS)

    Clinard, F.W. Jr.

    1976-01-01

    The five major applications for electrical insulators in the Reference Theta Pinch Reactor are as follows: (1) first-wall insulator, (2) blanket intersegment insulator, (3) graphite encapsulating insulator, (4) implosion coil insulator, and (5) compression coil insulator. Insulator design proposals and some preliminary test results are given for each application

  20. Fate and transport of petroleum hydrocarbons in the environment case study: insulating oil

    International Nuclear Information System (INIS)

    Richards, S. L.

    1997-01-01

    A series of studies were conducted to develop the technical basis for establishing soil cleanup levels for electrical insulating oil that would protect human health and the environment in the State of Washington. Samples of insulating oil and ground water from electric utility sites were analyzed for physical and chemical properties. Oil dissolution and soil leachability tests were conducted to evaluate the mobility of the oil in the aqueous state. Results indicate that insulating oil is relatively immobile in the subsurface. As a result of this study, soil cleanup level for insulating oil at operating electrical substations in the State of Washington was increased from 200 mg/kg to 2000 mg/kg. 6 refs., 3 tabs

  1. Partial Discharge Phase Distribution Of Palm Oil As Insulating Liquid

    Directory of Open Access Journals (Sweden)

    Abdul Rajab

    2011-04-01

    Full Text Available Due to the low biodegradability level of mineral oil and its susceptibility to the fire, palm oil was proposed as alternative insulating liquid. This paper discusses partial discharge (PD in palm oil under sinusoidal voltages and the comparison with mineral oil. PD was generated using a needle-plane electrode configuration which is enable enhancing electric field at the needle tip. PD pulses were detected using RC detector and they were measured using a Computer-based partial discharge measurement system. The results showed that PD activities in both oils are similar. The PD was initiated at the negative polarity of applied voltage. The discharges took place in both polarity’s of applied voltage with PD number was higher at negative one. Several discharges phenomena showed the presence of space charge which changed electric field and governed PD activities besides the main field introduced by voltage application.

  2. Electricity/oil substitution

    International Nuclear Information System (INIS)

    Melvin, J.G.

    1980-09-01

    The extent to which electricity could substitute for imported oil in Canada is assessed and it is concluded that the bulk of projected oil imports could be displaced. This substitution of electricity for oil could be largely completed within two decades, with existing technology, using Canadian resources. The substitution of electricity for imported oil would result in relatively low energy costs and would stimulate economic growth. Energy self-sufficiency through the substitution of electricity for oil is uniquely a Canadian option; it is not open to other industrial countries. The option exists because of Canada's resources of oil sands for essential liquid fuels, hydraulic and nuclear electrical potential, and natural gas as an interim source of energy. While other countries face an energy crisis due to declining supplies of oil, Canada faces opportunities. The policies of Federal and Provincial governments, as perceived by individual decision makers, will have a major influence on Canada's ability to realize opportunities. (auth)

  3. Electrical insulator requirements for mirror fusion reactors

    International Nuclear Information System (INIS)

    Condit, R.H.; Van Konynenburg, R.A.

    1977-01-01

    The requirements for mirror fusion electrical insulators are discussed. Insulators will be required at the neutral beam injectors, injector power supplies, direct converters, and superconducting magnets. Insulators placed at the neutral beam injectors will receive the greatest radiation exposure, 10 14 to 10 16 neutrons/m 2 .s and 0.3 to 3 Gy/s (10 5 to 10 6 R/h) of gamma rays, with shielding. Direct converter insulators may receive the highest temperature (up to 1300 0 K), but low voltage holding requirements. Insulators made from organic materials (e.g., plastics) for the magnet coils may be satisfactory. Immediate conductivity increases of all insulators result from gamma irradiation. With an upper limit to gamma flux exposures of 300 Gy/s in a minimally shielded region, the conductivity could reach 10 -6 S/m. Damage from neutron irradiation may not be serious during several years' exposure. Surface changes in ceramics at the neutral beam injector may be serious. The interior of the injector will contain atomic hydrogen, and sputtering may transfer material away from or onto the ceramic insulators. Unknown and potentially damaging interactions between irradiation, electric fields, temperature gradients, cycling of temperature, surface and joint reactions, sputtering, polarization, and electrotransport in the dielectrics are of concern. Materials research to deal with these problems is needed

  4. CONTRIBUTIONS TO EVALUATION OF THE BIODEGRADABILITY BY ASPERGILLUS NIGER AND OTHER FUNGI’S OF SOME INSULATING OILS

    Directory of Open Access Journals (Sweden)

    RADU E.

    2015-06-01

    Full Text Available Mineral insulating oils used in electrical equipment because of their toxic organic substances and xenobiotic, represents a major risk to the environment - to accidental spills pollute soil, groundwater and surface water. By microbiological tests were evaluated the biodegradability of some insulating oils used in electrical equipment. The assays were performed in comparison with edible sunflower oil and with a control sample (culture medium - without oil. The experimental results indicate that the mineral oils are more readily biodegradable than synthetic ester oil and vegetable oils. It was also found that oils with high sulfur content are more readily biodegradable.

  5. Electrical insulator assembly with oxygen permeation barrier

    Science.gov (United States)

    Van Der Beck, Roland R.; Bond, James A.

    1994-01-01

    A high-voltage electrical insulator (21) for electrically insulating a thermoelectric module (17) in a spacecraft from a niobium-1% zirconium alloy wall (11) of a heat exchanger (13) filled with liquid lithium (16) while providing good thermal conductivity between the heat exchanger and the thermoelectric module. The insulator (21) has a single crystal alumina layer (SxAl.sub.2 O.sub.3, sapphire) with a niobium foil layer (32) bonded thereto on the surface of the alumina crystal (26) facing the heat exchanger wall (11), and a molybdenum layer (31) bonded to the niobium layer (32) to act as an oxygen permeation barrier to preclude the oxygen depleting effects of the lithium from causing undesirable niobium-aluminum intermetallic layers near the alumina-niobium interface.

  6. Surface electrical resistivity of insulators

    International Nuclear Information System (INIS)

    Senn, B. C.; Liesegang, J.

    1996-01-01

    A method is presented here for measuring surface charge decay, and theory has been developed so as to produce determinations of resistivity in the surface region of insulator films or wafers. This method incorporates the use of a coaxial cylindrical capacitor arrangement and an electrometer interfaced to a PC. The charge transport theory given here is based on Mott-Gurney diffusion, and allows easy interpretation of the experimental data, especially for the initial phase of surface charge decay. Resistivity measurements are presented for glass, mica, perspex and polyethylene, covering a range of 10 9 to 10 18 Ωm, as an illustration of the useful range of the instrument for static and antistatic materials, particularly in film or sheet form. Values for the surface charge diffusion constants of the materials are also presented. The charge transport theory has also been extended to allow the experimental and computational theoretical comparison of surface charge decay not only over the initial phase of charge decay, but also over longer times. The theoretical predictions show excellent agreement with experiment using the values for the diffusion constants referred to above

  7. Development of Electrical Breakdown in Transformer Oil

    Directory of Open Access Journals (Sweden)

    Jozef Kudelcik

    2006-01-01

    Full Text Available Power transformers are key equipment for transfer and distribution of the electric power. Considering the significance of the power transformers in the electric system, their price and possible damages occurred by accidents, it is necessary to pay attention to their higher prevention. To prevent failure states of transformers, we perform different types ofmeasurements. They shall illustrate a momentary state of the measured equipment and if necessary to draw attention in advance to changes of parameters, which have specific relationship to no-failure operation of the equipment. The conditions under which breakdown of composite liquid/ solid insulation can occur, e.g. in transformer, play an important role in designing such insulation. The liquid, mainly mineral oil, generally constitutes the weakest part of insulation and a great amount of work has been devoted to the study of streamers, which appear in the gaseous phase, and most often are triggering the failure of insulation.

  8. Recent Progress in Electrical Insulation Techniques for HTS Power Apparatus

    Science.gov (United States)

    Hayakawa, Naoki; Kojima, Hiroki; Hanai, Masahiro; Okubo, Hitoshi

    This paper describes the electrical insulation techniques at cryogenic temperatures, i.e. Cryodielectrics, for HTS power apparatus, e.g. HTS power transmission cables, transformers, fault current limiters and SMES. Breakdown and partial discharge characteristics are discussed for different electrical insulation configurations of LN2, sub-cooled LN2, solid, vacuum and their composite insulation systems. Dynamic and static insulation performances with and without taking account of quench in HTS materials are also introduced.

  9. Electrical-Based Diagnostic Techniques for Assessing Insulation Condition in Aged Transformers

    Directory of Open Access Journals (Sweden)

    Issouf Fofana

    2016-08-01

    Full Text Available The condition of the internal cellulosic paper and oil insulation are of concern for the performance of power transformers. Over the years, a number of methods have been developed to diagnose and monitor the degradation/aging of the transformer internal insulation system. Some of this degradation/aging can be assessed from electrical responses. Currently there are a variety of electrical-based diagnostic techniques available for insulation condition monitoring of power transformers. In most cases, the electrical signals being monitored are due to mechanical or electric changes caused by physical changes in resistivity, inductance or capacitance, moisture, contamination or aging by-products in the insulation. This paper presents a description of commonly used and modern electrical-based diagnostic techniques along with their interpretation schemes.

  10. Transport of electric charge in insulators

    International Nuclear Information System (INIS)

    Lopez C, E.

    1979-01-01

    In this work a review is made of important concepts in the study of the transport of electric charge in insulators. These concepts are: electrical contacts, transport regimes as viewed in the I-V characteristics, and photoinjection processes by internal photemission of holes or electrons from metals or semiconductors into insulators or by a virtual electrode using strongly absorbed light. Experimental results of photoinjection of holes and electrons into sulfur single crystals are analyzed using these concepts. The observation of the Mott-Gurney transition is reported for the first time. This is the transition between the region of space charge limited currents (SCLC) and the region of saturation of the current as a function of the applied voltage. A modified Mott-Gurney theoretical model is presented that is able to explain the whole I-V characteristic for uv and the internal photoemission of hopes and uv photoinjection of electrons. For the case of internal photoemission of electrons the conventional space charge limited current theory for an exponential distribution of traps is able to explain the experimental data. It is found that the crystals are of high purity since the total density of traps, as calculated from their exponential distribution, is Nsub(t) equals 1.8 X 10 14 cm -3 . (author)

  11. Characterization of dielectric properties of nanocellulose from wood and algae for electrical insulator applications.

    Science.gov (United States)

    Le Bras, David; Strømme, Maria; Mihranyan, Albert

    2015-05-07

    Cellulose is one of the oldest electrically insulating materials used in oil-filled high-power transformers and cables. However, reports on the dielectric properties of nanocellulose for electrical insulator applications are scarce. The aim of this study was to characterize the dielectric properties of two nanocellulose types from wood, viz., nanofibrillated cellulose (NFC), and algae, viz., Cladophora cellulose, for electrical insulator applications. The cellulose materials were characterized with X-ray diffraction, nitrogen gas and moisture sorption isotherms, helium pycnometry, mechanical testing, and dielectric spectroscopy at various relative humidities. The algae nanocellulose sample was more crystalline and had a lower moisture sorption capacity at low and moderate relative humidities, compared to NFC. On the other hand, it was much more porous, which resulted in lower strength and higher dielectric loss than for NFC. It is concluded that the solid-state properties of nanocellulose may have a substantial impact on the dielectric properties of electrical insulator applications.

  12. Optimization of Refining Craft for Vegetable Insulating Oil

    Science.gov (United States)

    Zhou, Zhu-Jun; Hu, Ting; Cheng, Lin; Tian, Kai; Wang, Xuan; Yang, Jun; Kong, Hai-Yang; Fang, Fu-Xin; Qian, Hang; Fu, Guang-Pan

    2016-05-01

    Vegetable insulating oil because of its environmental friendliness are considered as ideal material instead of mineral oil used for the insulation and the cooling of the transformer. The main steps of traditional refining process included alkali refining, bleaching and distillation. This kind of refining process used in small doses of insulating oil refining can get satisfactory effect, but can't be applied to the large capacity reaction kettle. This paper using rapeseed oil as crude oil, and the refining process has been optimized for large capacity reaction kettle. The optimized refining process increases the acid degumming process. The alkali compound adds the sodium silicate composition in the alkali refining process, and the ratio of each component is optimized. Add the amount of activated clay and activated carbon according to 10:1 proportion in the de-colorization process, which can effectively reduce the oil acid value and dielectric loss. Using vacuum pumping gas instead of distillation process can further reduce the acid value. Compared some part of the performance parameters of refined oil products with mineral insulating oil, the dielectric loss of vegetable insulating oil is still high and some measures are needed to take to further optimize in the future.

  13. Electric Cars and Oil Prices

    OpenAIRE

    Azar, Jose

    2009-01-01

    This paper studies the joint dynamics of oil prices and interest in electric cars, measured as the volume of Google searches for related phrases. Not surprisingly, I find that oil price shocks predict increases in Google searches for electric cars. Much more surprisingly, I also find that an increase in Google searches predicts declines in oil prices. The high level of public interest in electric cars between April and August of 2008 can explain approximately half of the decline in oil prices...

  14. Electrical insulation for large multiaxis superconducting magnets

    International Nuclear Information System (INIS)

    Harvey, A.R.; Rinde, J.A.

    1975-01-01

    The selection of interturn and interlayer insulation for superconducting magnets is discussed. The magnet problems of the Baseball II device are described. Manufacture of the insulation and radiation damage are mentioned. A planned experimental program is outlined

  15. Analysis of acidic properties of distribution transformer oil insulation ...

    African Journals Online (AJOL)

    This paper examined the acidic properties of distribution transformer oil insulation in service at Jericho distribution network Ibadan, Nigeria. Five oil samples each from six distribution transformers (DT1, DT2, DT3, DT4 and DT5) making a total of thirty samples were taken from different installed distribution transformers all ...

  16. Improvements to the electrical insulation resistance of high quality magnesia insulated cables

    International Nuclear Information System (INIS)

    Mauger, R.A.; Goodings, A.

    1984-03-01

    Mineral insulated signal cables for nuclear reactor instrumentation schemes have to meet stringent electrical insulation requirements at high temperatures. This report discusses the factors which influence the attainment of this objective and the way in which it has been reached under industrial manufacturing conditions. It emphasises the importance of moisture and gives details of the improvements achieved as a result of moisture reduction. (author)

  17. Magnetohydrodynamic flow in ducts with discontinuous electrical insulation

    International Nuclear Information System (INIS)

    Mistrangelo, C.; Bühler, L.

    2015-01-01

    Highlights: • Liquid metal MHD flows in ducts with flow channel inserts. • Study of the influence of local interruption of electrical insulation. • 3D numerical simulations. - Abstract: In liquid metal blankets the interaction of the moving breeder with the intense magnetic field that confines the fusion plasma results in significant modifications of the velocity distribution and increased pressure drop compared to hydrodynamic flows. Those changes are due to the occurrence of electromagnetic forces that slow down the core flow and which are balanced by large driving pressure heads. The resulting magnetohydrodynamic (MHD) pressure losses are proportional to the electric current density induced in the fluid and they can be reduced by electrically decoupling the wall from the liquid metal. For applications to dual coolant blankets it is foreseen to loosely insert electrically insulating liners into the ducts. In long channels the insulation could consist of a number of shorter inserts, which implies a possible local interruption of the insulation. Three dimensional numerical simulations have been performed to investigate MHD flows in electrically well-conducting channels with internal discontinuous insulating inserts. The local jump in the electric conductivity of the duct wall results in induced 3D electric currents and related electromagnetic forces yielding additional pressure losses and increased velocity in boundary layers parallel to the magnetic field.

  18. Impact of steep-front short-duration impulse on electric power system insulation

    Energy Technology Data Exchange (ETDEWEB)

    Burrage, L M; Veverka, E F; Shaw, J H [Cooper Industries, Inc., Franksville, WI (USA). Cooper Power Systems; McConnell, B W [Oak Ridge National Lab., TN (USA)

    1991-04-01

    This research effort required the performance evaluation of three specific insulation systems in common usage by electric power transmission and distribution utilities under stresses imposed by: three characteristic impulse waveforms (two waves representative of steep-front short duration (SFSD) impulses and one representative of lightning), the cumulative effect of multiple shots'' of each pulse, 60 Hz voltage, and, where appropriate, and mechanical load. The insulation systems evaluated are the cellulose-paper/oil combination typical of power transformer and condenser bushing usage, the cellulose-paper/enamel/oil combination used in distribution transformer construction, and the porcelain/air combination representing transmission and distribution line structural insulation. 4 refs., 94 figs., 11 tabs.

  19. Inducing magneto-electric response in topological insulator

    International Nuclear Information System (INIS)

    Zeng, Lunwu; Song, Runxia; Zeng, Jing

    2013-01-01

    Utilizing electric potential and magnetic scalar potential formulas, which contain zero-order Bessel functions of the first kind and the constitutive relations of topological insulators, we obtained the induced magnetic scalar potentials and induced magnetic monopole charges which are induced by a point charge in topological insulators. The results show that infinite image magnetic monopole charges are generated by a point electric charge. The magnitude of the induced magnetic monopole charges are determined not only by the point electric charge, but also by the material parameters. - Highlights: ► Electric potential and magnetic scalar potential which contain zero-order Bessel function of the first kind were derived. ► Boundary conditions of topological insulator were built. ► Induced monopole charges were worked out.

  20. Inducing magneto-electric response in topological insulator

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Lunwu, E-mail: 163.sin@163.com [Jiangsu Key Laboratory for Intelligent Agricultural Equipment, College of Engineering, Nanjing Agricultural University, Nanjing 210031 (China); Song, Runxia [Jiangsu Key Laboratory for Intelligent Agricultural Equipment, College of Engineering, Nanjing Agricultural University, Nanjing 210031 (China); Zeng, Jing [Faculty of Business and Economics, Macquarie University, NSW 2122 (Australia)

    2013-02-15

    Utilizing electric potential and magnetic scalar potential formulas, which contain zero-order Bessel functions of the first kind and the constitutive relations of topological insulators, we obtained the induced magnetic scalar potentials and induced magnetic monopole charges which are induced by a point charge in topological insulators. The results show that infinite image magnetic monopole charges are generated by a point electric charge. The magnitude of the induced magnetic monopole charges are determined not only by the point electric charge, but also by the material parameters. - Highlights: Black-Right-Pointing-Pointer Electric potential and magnetic scalar potential which contain zero-order Bessel function of the first kind were derived. Black-Right-Pointing-Pointer Boundary conditions of topological insulator were built. Black-Right-Pointing-Pointer Induced monopole charges were worked out.

  1. The effects of fillers on polyurethane resin-based electrical insulators

    Directory of Open Access Journals (Sweden)

    Altafim Ruy Alberto Corrêa

    2003-01-01

    Full Text Available The increasingly widespread use of polymeric insulators in vehicle distributors and transmission systems has led to an ongoing quest for quality and low costs. This quest has, in turn, resulted in improved performance and cost benefits, brought about by the use of new polymeric and composite resins. Occasionally, however, while some properties are improved, others may show a loss of optimal performance. Therefore, to understand the behavior of fillers, such as carbon black, silica and mica added to castor oil-derived polyurethane resins, several thermal, mechanical and electrical tests were conducted on samples and insulators produced specifically for this purpose, using these new materials. The results of these tests clearly demonstrated that this type of resin and its composites can be used to manufacture indoor electrical insulators and that the fillers analyzed in this study improve or maintain the characteristics of the pure resins.

  2. Electrically tuned magnetic order and magnetoresistance in a topological insulator.

    Science.gov (United States)

    Zhang, Zuocheng; Feng, Xiao; Guo, Minghua; Li, Kang; Zhang, Jinsong; Ou, Yunbo; Feng, Yang; Wang, Lili; Chen, Xi; He, Ke; Ma, Xucun; Xue, Qikun; Wang, Yayu

    2014-09-15

    The interplay between topological protection and broken time reversal symmetry in topological insulators may lead to highly unconventional magnetoresistance behaviour that can find unique applications in magnetic sensing and data storage. However, the magnetoresistance of topological insulators with spontaneously broken time reversal symmetry is still poorly understood. In this work, we investigate the transport properties of a ferromagnetic topological insulator thin film fabricated into a field effect transistor device. We observe a complex evolution of gate-tuned magnetoresistance, which is positive when the Fermi level lies close to the Dirac point but becomes negative at higher energies. This trend is opposite to that expected from the Berry phase picture, but is intimately correlated with the gate-tuned magnetic order. The underlying physics is the competition between the topology-induced weak antilocalization and magnetism-induced negative magnetoresistance. The simultaneous electrical control of magnetic order and magnetoresistance facilitates future topological insulator based spintronic devices.

  3. Industrial manufacturing of electric insulators; Fabricacion industrial de aisladores electricos

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Lucia [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1988-12-31

    Porcelain is the insulating material more extensively used for electric insulators manufacturing, due to its dielectric properties; nevertheless, it presents fragility problems of manufacture and of resistance to the thermal shock, among others. For this reason studies are being conducted for the substitution of porcelain in the electric insulators manufacturing. In this area, the Instituto de Investigaciones Electricas developed an improved insulating formulation - the polymeric concrete- and an industrial prototype machine for the manufacture of high voltage electric insulators for outdoors use. [Espanol] La porcelana es el material aislante electrico mas utilizado en la elaboracion de aisladores electricos, debido a sus propiedades dielectricas; sin embargo, presenta problemas de fragilidad, de fabricacion y de baja resistencia al choque termico, entre otros. Es por ello que se realizan estudios para sustituir la porcelana en la fabricacion de aisladores electricos. En este campo, el Instituto de Investigaciones Electricas desarrollo una formulacion aislante mejorada -el concreto polimerico- y una maquina prototipo industrial para fabricar aisladores electricos de alto voltaje para uso en exteriores.

  4. Industrial manufacturing of electric insulators; Fabricacion industrial de aisladores electricos

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Lucia [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1987-12-31

    Porcelain is the insulating material more extensively used for electric insulators manufacturing, due to its dielectric properties; nevertheless, it presents fragility problems of manufacture and of resistance to the thermal shock, among others. For this reason studies are being conducted for the substitution of porcelain in the electric insulators manufacturing. In this area, the Instituto de Investigaciones Electricas developed an improved insulating formulation - the polymeric concrete- and an industrial prototype machine for the manufacture of high voltage electric insulators for outdoors use. [Espanol] La porcelana es el material aislante electrico mas utilizado en la elaboracion de aisladores electricos, debido a sus propiedades dielectricas; sin embargo, presenta problemas de fragilidad, de fabricacion y de baja resistencia al choque termico, entre otros. Es por ello que se realizan estudios para sustituir la porcelana en la fabricacion de aisladores electricos. En este campo, el Instituto de Investigaciones Electricas desarrollo una formulacion aislante mejorada -el concreto polimerico- y una maquina prototipo industrial para fabricar aisladores electricos de alto voltaje para uso en exteriores.

  5. New Method for Shallow and Deep Trap Distribution Analysis in Oil Impregnated Insulation Paper Based on the Space Charge Detrapping

    Directory of Open Access Journals (Sweden)

    Jian Hao

    2018-01-01

    Full Text Available Space charge has close relation with the trap distribution in the insulation material. The phenomenon of charges trapping and detrapping has attracted significant attention in recent years. Space charge and trap parameters are effective parameters for assessing the ageing condition of the insulation material qualitatively. In this paper, a new method for calculating trap distribution based on the double exponential fitting analysis of charge decay process and its application on characterizing the trap distribution of oil impregnated insulation paper was investigated. When compared with the common first order exponential fitting analysis method, the improved dual-level trap method could obtain the energy level range and density of both shallow traps and deep traps, simultaneously. Space charge decay process analysis of the insulation paper immersed with new oil and aged oil shows that the improved trap distribution calculation method can distinguish the physical defects and chemical defects. The trap density shows an increasing trend with the oil ageing, especially for the deep traps mainly related to chemical defects. The greater the energy could be filled by the traps, the larger amount of charges could be trapped, especially under higher electric field strength. The deep trap energy level and trap density could be used to characterize ageing. When one evaluates the ageing condition of oil-paper insulation using trap distribution parameters, the influence of oil performance should not be ignored.

  6. Substituting oil by electric power

    International Nuclear Information System (INIS)

    Lichtenberg, H.

    1981-01-01

    Parting from the development of primary energy use the author refers to the latest investigations and results presented on the 1980 World Energy Conference and with special regard to oil points out the threatening exhaustion of fossil energy resources. Maintaining the economic structure of the Federal Republic of Germany implies an orientation away from oil. Due to its flexible application technology and quasi-inexhaustible energy resources electric power may substantially contribute to oil substitution which as a matter of fact is of particular interest in connection with the heat market. Coal alone cannot substitute both oil and nuclear energy. Thus, the above postulates the use of the latter. Leaving nuclear energy inactive today will effect an increase in the demand for oil the negative consequences of which would weight heavily upon the anyhow unbalanced import/export ratio of the Federal Republic of Germany. (orig.) [de

  7. Electrically and Thermally Insulated Joint for Liquid Nitrogen Transfer

    DEFF Research Database (Denmark)

    Rasmussen, Carsten; Jensen, Kim Høj; Holbøll, Joachim T.

    1999-01-01

    A prototype of a superconducting cable is currently under construction. The cable conductor is cooled by liquid nitrogen in order to obtain superconductivity. The peripheral cooling circuit is kept at ground potential. This requires a joint which insulates both electrically and thermally...

  8. SAFETY ALERT: Electrical insulation defect on safety helmets

    CERN Multimedia

    HSE Unit

    2013-01-01

    Contrarily to the information provided until 31 May 2013, some “Euro Protection” safety helmets do not respect any of the requirements for electrical insulation.   This alert concerns the safety helmets identified under the following SCEM numbers: 50.43.30.050.4 white 50.43.30.060.2 yellow 50.43.30.070.0 blue This amounts up to several hundreds of helmets on the CERN site. People who need to wear an electrically insulated safety helmet for their activities, must from now on acquire a duly insulated item to be found on the CERN store under the following SCEM numbers: 50.43.30.210.6: Petzl Vertex ST Helmet (without vent) 50.43.30.300.1: IDRA Helmet with a visor for electrical work As for the people who do not need to wear an electrically insulated helmet for their activities, they can continue working with the aforementioned helmets. For your information, please take note of the maximum use limit of each helmet: “Euro Protection” Safety Helme...

  9. Development of electrical insulator coatings for fusion power applications

    International Nuclear Information System (INIS)

    Park, J.H.; Domenico, T.; Dragel, G.; Clark, R.

    1995-01-01

    In the design of liquid-metal cooling systems for fusion blanket applications, the corrosion resistance of structural materials and the magnetohydrodynamic (MHD) force and its subsequent influence on thermal hydraulics and corrosion are major concerns. The objective of this study was to develop stable corrosion-resistant electrical insulator coatings at the liquid-metal-structural-material interface, with emphasis on electrically insulating coatings that prevent adverse MHD-generated currents from passing through the structural walls. Vanadium and V-base alloys (V-Ti or V-Ti-Cr) are leading candidate materials for structural applications in fusion reactors. When the system is cooled by liquid metals, insulator coatings are required on piping surfaces in contact with the coolant. Various intermetallic films were produced on V, V-5Ti, and V-20Ti, V-5Cr-5Ti, and V-15Cr-5Ti, and Ti, and on types 304 and 316 stainless steel. The intermetallic layers were developed by exposure of the materials to liquid Li containing 3-5at.% dissolved metallic solute (e.g. Al, Be, Mg, Si, Ca, Pt, and Cr) at temperatures of 416-880 C. Subsequently, electrical insulator coatings were produced by reaction of the reactive layers with dissolved N in liquid Li or by air oxidation under controlled conditions at 600-1000 C. These reactions converted the intermetallic layers to electrically insulating oxide-nitride or oxynitride layers. This coating method is applicable to reactor components. The liquid metal can be used over and over because only the solutes are consumed within the liquid metal. The technique can be applied to various shapes (e.g. inside or outside of tubes, complex geometrical shapes) because the coating is formed by liquid-phase reaction. This paper discusses initial results on the nature of the coatings (composition, thickness, adhesion, surface coverage) and their in situ electrical resistivity characteristics in liquid Li at high temperatures. (orig.)

  10. Influence of copper on the by-products of different oil-paper insulations

    International Nuclear Information System (INIS)

    Hao Jian; Liao Ruijin; Chen, George; Ma Chao

    2011-01-01

    Transformer failure caused by the corrosion of copper material in transformer attracts great attention of researchers and engineers. In this paper, Karamay No. 25 naphthenic mineral oil, Karamay No. 25 paraffinic mineral oil, Kraft paper and copper were used to compose four combinations of oil-paper insulation samples. The ageing by-products and dielectric properties of the four combinations of oil-paper insulation samples were compared after they were thermally aged at 130 deg. C. The influence of copper on the by-products and dielectric properties of different oil-paper insulations was obtained. The results show that copper can accelerate the ageing rate of insulation oils and reduce their AC breakdown voltage. The content of copper substance dissolved in insulating oil increases with ageing time at first and then decreases. The paper aged in the oil-paper insulation sample with copper has higher moisture content than the one without copper. Results of energy dispersive spectroscopy (EDS) in the scanning electron microscope (SEM) show that there is copper product deposited on the surface of insulation paper. The insulation oil and paper aged in the oil-paper insulation sample with copper have higher dielectric loss and conductivity than that without copper.

  11. Influence of copper on the by-products of different oil-paper insulations

    Energy Technology Data Exchange (ETDEWEB)

    Hao Jian; Liao Ruijin [State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University (China); Chen, George [School of Electronics and Computer Science, University of Southampton (United Kingdom); Ma Chao, E-mail: cquhaojian@126.com [Gansu Electric Power Research Institute (China)

    2011-08-12

    Transformer failure caused by the corrosion of copper material in transformer attracts great attention of researchers and engineers. In this paper, Karamay No. 25 naphthenic mineral oil, Karamay No. 25 paraffinic mineral oil, Kraft paper and copper were used to compose four combinations of oil-paper insulation samples. The ageing by-products and dielectric properties of the four combinations of oil-paper insulation samples were compared after they were thermally aged at 130 deg. C. The influence of copper on the by-products and dielectric properties of different oil-paper insulations was obtained. The results show that copper can accelerate the ageing rate of insulation oils and reduce their AC breakdown voltage. The content of copper substance dissolved in insulating oil increases with ageing time at first and then decreases. The paper aged in the oil-paper insulation sample with copper has higher moisture content than the one without copper. Results of energy dispersive spectroscopy (EDS) in the scanning electron microscope (SEM) show that there is copper product deposited on the surface of insulation paper. The insulation oil and paper aged in the oil-paper insulation sample with copper have higher dielectric loss and conductivity than that without copper.

  12. Electrical insulation and conduction coating for fusion experimental devices

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, Masanori; Tsujimura, Seiji; Toyoda, Masahiko; Inoue, Masahiko [Mitsubishi Heavy Industries, Ltd., Yokohama (Japan); Abe, Tetsuya; Murakami, Yoshio [Japan Atomic Energy Research Inst., Naka (Japan)

    1996-01-01

    The development of electrical insulation and conduction coating methods that can be applied to large components of fusion experimental devices has been investigated. A thermal spraying method is used to coat the insulation or conduction materials on the structural components because of its applicability for large surfaces. The insulation material chosen was Al{sub 2}O{sub 3}, while Cr{sub 3}C{sub 2}-NiCr and WC-NiCr were chosen as conduction materials. These materials were coated on stainless steel substrates to examine the basic characteristics of the coated layers, such as their adhesive strength to the substrate, thermal shock resistance, electrical resistance, dielectric breakdown voltage, and thermal conductivity. It was found that they have sufficient electrical insulation and conduction properties, respectively. In addition, the sliding tests of the coated layers showed adequate frictional properties. The spraying method was tested on a 100- x 1000-mm surface and found to be applicable for large surfaces of experimental fusion devices. 9 refs., 6 figs., 15 tabs.

  13. Electrical insulation and conduction coating for fusion experimental devices

    International Nuclear Information System (INIS)

    Onozuka, Masanori; Tsujimura, Seiji; Toyoda, Masahiko; Inoue, Masahiko; Abe, Tetsuya; Murakami, Yoshio

    1996-01-01

    The development of electrical insulation and conduction coating methods that can be applied to large components of fusion experimental devices has been investigated. A thermal spraying method is used to coat the insulation or conduction materials on the structural components because of its applicability for large surfaces. The insulation material chosen was Al 2 O 3 , while Cr 3 C 2 -NiCr and WC-NiCr were chosen as conduction materials. These materials were coated on stainless steel substrates to examine the basic characteristics of the coated layers, such as their adhesive strength to the substrate, thermal shock resistance, electrical resistance, dielectric breakdown voltage, and thermal conductivity. It was found that they have sufficient electrical insulation and conduction properties, respectively. In addition, the sliding tests of the coated layers showed adequate frictional properties. The spraying method was tested on a 100- x 1000-mm surface and found to be applicable for large surfaces of experimental fusion devices. 9 refs., 6 figs., 15 tabs

  14. Magnetically insulated fission electric cells for direct energy conversion

    International Nuclear Information System (INIS)

    Slutz, S.A.; Seidel, D.B.; Lipinski, R.J.; Rochau, G.E.; Brown, L.C.

    2003-01-01

    The principles of fission electric cells are reviewed. A detailed Monte Carlo model of the efficiency of a fission electric cell is presented and a theory of magnetically insulated fission electric cells (MIFECs) is developed. It is shown that the low operating voltages observed in previous MIFEC experiments were due to nonoptimal magnetic field profiles. Improved magnetic field profiles are presented. It is further shown that the large electric field present in a MIFEC limits the structure of the cathode and can lead to a displacement instability of the cathode toward the anode. This instability places constraints on the number of cells that can be strung together without some external cathode support. The large electric field stress also leads to electrical surface breakdown of the cathode. It is shown that this leads to the formation of a virtual cathode resulting in geometry constraints for spherical cells. Finally it is shown that the requirements of magnetic insulation and high efficiency leads to very low average density of the fissile material. Thus a reactor using fission electric cells for efficient direct energy conversion will be large and require a very large number of cells. This could be mitigated somewhat by the use of exotic fuels

  15. Effects of ionizing radiation of electrical properites of refractory insulators

    International Nuclear Information System (INIS)

    van Lint, V.A.J.; Bunch, J.M.

    1975-01-01

    The Los Alamos Reference Theta Pinch Reactor (RTPR) requires on the first wall an electrical insulator which will withstand transient high voltage at high temperature 10 sec after severe neutron and ionizing irradiation. Few measurements of electrical parameters for heavily disordered refractory insulators have been reported; estimates are made as to whether breakdown strength or conductivity will be degraded by the irradiation. The approach treats separately short-term ionization effects (free and trapped electrons and holes) and long-term gross damage effects (transmutation products and various lattice defects). The following processes could produce unacceptable conduction across the first wall insulator: (a) delayed electronic conductivity 10 sec after the prompt ionization by bremsstrahlung; (b) prompt electronic conductivity from delayed ionization; (c) electronic breakdown; (d) electronic or ionic conductivity due to thermal motion in the disordered material, possibly leading to thermal breakdown. Worst-case calculations based on lower limits to recombination coefficients limit process (a) to sigma much less than 5 x 10 -14 mho/cm. Data on ionization-induced conductivity in insulators predict for process (b) sigma much less than 10 -8 mho/cm. Electronic breakdown generally occurs at fields well above the 10 5 V/cm required for RTPR. Thermal breakdown is negligible due to the short voltage pulse. Ionic and electronic conduction must be studied theoretically and experimentally in the type of highly disordered materials that result from neutron irradiation of the first wall

  16. High voltage diagnostics on electrical insulation of supersonducting magnets

    International Nuclear Information System (INIS)

    Irmisch, M.

    1995-12-01

    The high voltage (HV) performance of superconducting magnets of large dimensions, e.g. as needed in fusion reactors, is a challange in the field of high voltage technology, i.e. especially in the field of cryogenic high voltage components and with respect to questions of HV insulation diagnostics at low temperature. By using the development of POLO - a superconducting prototype coil of a tokamak poloidal field coil - as an example, this work deals with special problems of how to get use of conventional HV test techniques for diagnostics under special cryogenic boundary conditions. As a first approach to gain experience in the field of phase resolved partial discharge (PRPD) measurements during operation of a superconductive coil, the POLO coil was subject to several high voltage tests. Compared with DC insulation resistance measurements and capacitive impulse voltage discharges to the coil, the AC PD measurements have been the only way to observe special characteristics of the electrical insulation with respect to the cooling down of the coil from 300 K to 4.2 K. The PRPD measurement technique thereby has proofed as a suitable diagnostic tool. This work can serve as basic data to be comparable within further projects of electrical insulation diagnostics at cryogenic temperatures. (orig.)

  17. Degradation diagnosis of transformer insulating oils with terahertz time-domain spectroscopy

    Science.gov (United States)

    Kang, Seung Beom; Kim, Won-Seok; Chung, Dong Chul; Joung, Jong Man; Kwak, Min Hwan

    2017-12-01

    We report the frequency-dependent complex optical constants, refractive index and absorption, and complex dielectric properties over the frequency range from 0.2 to 3.0 THz for aged power transformer mineral insulating oils. These results have been obtained using terahertz time-domain spectroscopy (THz-TDS) and demonstrate the double-Debye relaxation behavior of the mineral insulating oil. The measured complex optical and dielectric characteristics can be important benchmarks for liquid molecular dynamics and theoretical studies of insulating oils. Due to clear differences in THz responses of aged mineral insulating oils, THz-TDS can be used as a novel on-site diagnostic technique to monitor the insulation condition in aged power transformers and may be valuable alternative to characterize other developing eco-friendly insulating oils and industrial liquids.

  18. Raman Spectral Characteristics of Oil-Paper Insulation and Its Application to Ageing Stage Assessment of Oil-Immersed Transformers

    Directory of Open Access Journals (Sweden)

    Jingxin Zou

    2016-11-01

    Full Text Available The aging of oil-paper insulation in power transformers may cause serious power failures. Thus, effective monitoring of the condition of the transformer insulation is the key to prevent major accidents. The purpose of this study was to explore the feasibility of confocal laser Raman spectroscopy (CLRS for assessing the aging condition of oil-paper insulation. Oil-paper insulation samples were subjected to thermal accelerated ageing at 120 °C for up to 160 days according to the procedure described in the IEEE Guide. Meanwhile, the dimension of the Raman spectrum of the insulation oil was reduced by principal component analysis (PCA. The 160 oil-paper insulation samples were divided into five aging stages as training samples by clustering analysis and with the use of the degree of polymerization of the insulating papers. In addition, the features of the Raman spectrum were used as the inputs of a multi-classification support vector machine. Finally, 105 oil-paper insulation testing samples aged at a temperature of 130 °C were used to further test the diagnostic capability and universality of the established algorithm. Results demonstrated that CLRS in conjunction with the PCA-SVM technique provides a new way for aging stage assessment of oil-paper insulation equipment in the field.

  19. A percolation approach to study the high electric field effect on electrical conductivity of insulating polymer

    Science.gov (United States)

    Benallou, Amina; Hadri, Baghdad; Martinez-Vega, Juan; El Islam Boukortt, Nour

    2018-04-01

    The effect of percolation threshold on the behaviour of electrical conductivity at high electric field of insulating polymers has been briefly investigated in literature. Sometimes the dead ends links are not taken into account in the study of the electric field effect on the electrical properties. In this work, we present a theoretical framework and Monte Carlo simulation of the behaviour of the electric conductivity at high electric field based on the percolation theory using the traps energies levels which are distributed according to distribution law (uniform, Gaussian, and power-law). When a solid insulating material is subjected to a high electric field, and during trapping mechanism the dead ends of traps affect with decreasing the electric conductivity according to the traps energies levels, the correlation length of the clusters, the length of the dead ends, and the concentration of the accessible positions for the electrons. A reasonably good agreement is obtained between simulation results and the theoretical framework.

  20. Progress of Space Charge Research on Oil-Paper Insulation Using Pulsed Electroacoustic Techniques

    Directory of Open Access Journals (Sweden)

    Chao Tang

    2016-01-01

    Full Text Available This paper focuses on the space charge behavior in oil-paper insulation systems used in power transformers. It begins with the importance of understanding the space charge behavior in oil-paper insulation systems, followed by the introduction of the pulsed electrostatic technique (PEA. After that, the research progress on the space charge behavior of oil-paper insulation during the recent twenty years is critically reviewed. Some important aspects such as the environmental conditions and the acoustic wave recovery need to be addressed to acquire more accurate space charge measurement results. Some breakthroughs on the space charge behavior of oil-paper insulation materials by the research team at the University of Southampton are presented. Finally, future work on space charge measurement of oil-paper insulation materials is proposed.

  1. Note: A high-energy-density Tesla-type pulse generator with novel insulating oil

    Science.gov (United States)

    Liu, Sheng; Su, Jiancang; Fan, Xuliang

    2017-09-01

    A 10-GW high-energy-density Tesla-type pulse generator is developed with an improved insulating liquid based on a modified Tesla pulser—TPG700, of which the pulse forming line (PFL) is filled with novel insulating oil instead of transformer oil. Properties of insulating oil determining the stored energy density of the PFL are analyzed, and a criterion for appropriate oil is proposed. Midel 7131 is chosen as an application example. The results of insulating property experiment under tens-of-microsecond pulse charging demonstrate that the insulation capability of Midel 7131 is better than that of KI45X transformer oil. The application test in Tesla pulser TPG700 shows that the output power is increased to 10.5 GW with Midel 7131. The output energy density of TPG700 increases for about 60% with Midel 7131.

  2. Testing electrical insulation of LCT coils and instrumentation

    International Nuclear Information System (INIS)

    Luton, J.N.; Ulbricht, A.R.; Ellis, J.F.; Shen, S.S.; Wilson, C.T.; Okuno, K.; Siewerdt, L.O.; Zahn, G.R.; Zichy, J.A.

    1986-09-01

    Three of the superconducting test coils in the Large Coil Task (LCT) use conductors cooled internally by forced flow of helium. In the other three coils, the conductors are cooled externally by a bath of helium. The coils and facility are designed for rapid discharges (dumps) at voltages up to 2.5 kV, depending on coil design. Many coil sensors are connected electrically to the conductors. These sensor leads and signal conditioning equipment also experience high voltage. High-potential tests of ground insulation were performed on all components of the International Fusion Superconducting Magnet Test Facility (IFSMTF). Coil insulation was also tested by ring-down tests that produced voltage distributions within the coils like those occurring during rapid discharge. Methods were developed to localize problem areas and to eliminate them. The effect on breakdown voltage near the Paschen minimum of magnetic fields up to 2 T was investigated

  3. Residual life estimation of electrical insulation system for rotating equipment

    International Nuclear Information System (INIS)

    Vashishtha, Y.D.; Gupta, A.K.; Bhattacharyya, A.K.; Verma, A.K.

    1994-01-01

    Residual life assessment gains significance towards the end of designed life for granting plant life extensions and resource planning for costly equipment replacement. A critical review of all the diagnostic techniques presently used to assess either health of insulation system or to infer qualitatively the remaining life for rotating machines is presented. However more emphasis is required on developing quantitative methods. This paper also formulates the experimental plan for progressively censored ageing tests, measurement of partial discharge parameters, micro-structural study for delamination and electrical tree growth and measurement of electrical breakdown strength. Partial discharge (PD) patterns, electrical tree growth and time to failure data shall be taken as training set for the neural network learning which can be useful to predict residual life with only one candidate parameter i.e. PD patterns. (author). 9 refs

  4. Electric breakdown of high polymer insulating materials at cryogenic temperature

    International Nuclear Information System (INIS)

    Kim, Sanhyon; Yoshino, Katsumi

    1985-01-01

    Cryogenic properties : temperature dependence of E sub(b) and effects of media upon E sub(b) were investigated on several high polymers. Temperature conditions were provided by liquid He (4.2 K), liquid N 2 (77 K) and cryogen (dry ice-methyl alcohol, 194 K). Silicone oil was used also at ambient temperature and elevated temperature. Polymer film coated with gold by vacuum evaporation was placed in cryostat, and high tension from pulse generator was applied to the film. Dielectric breakdowns were detected by oscilloscope and observed visually. The results of experiment are summerized as follow. (1) E sub(b) of film in He is affected by medium remarkably, and covering with 3-methyl pentane is effective for increasing E sub(b). (2) Temperature dependence of E sub(b) was not recognized in cryogenic temperature below liquid N 2 . (3) Temperature characteristic of E sub(b) changes considerably at the critical temperature T sub(c), and T sub(c) is dependent on material. (4) Strength against dielectric breakdown under cryogenic temperature is not affected by bridging caused by irradiation of electron beam. (5) Dielectric breakdown is thought to be caused by electronic process such as electron avalanche. Consequently, for designing insulation for the temperature below liquid He, insulation design for liquid N 2 is thought to be sufficient. However, the degradation and breakdown by mechanical stress under cryogenic temperature must be taken into consideration. (Ishimitsu, A.)

  5. The electrical characteristics of solid insulators for 154 kV class HTS transformer

    International Nuclear Information System (INIS)

    Cheon, H.G.; Choi, J.H.; Pang, M.S.; Kim, W.J.; Kim, S.H.

    2011-01-01

    HTS transformer, without any loss of insulation lifetime due to the reduction in terms of size and weight, can increase the overload capacity, and have some benefits such as the improvement in efficiency, minimization of environmental pollution, and convenient spatial arrangement, which contribute a lot to electric power system operation. However, for practical insulation design of the HTS transformer, it is necessary to establish the research on electrical properties LN 2 as well as solid insulators. These solid insulators have been used as main insulations for HTS transformer. In this paper, we discussed breakdown and V-t characteristics of glass fiber reinforced plastics (GFRP) and pressboard in LN 2 .

  6. Insulation design of cryogenic bushing for superconducting electric power applications

    Energy Technology Data Exchange (ETDEWEB)

    Koo, J.Y., E-mail: koojy@hanyang.ac.kr [Department of Electronics, Electrical, Control and Instrumentation Engineering, Hanyang University, Ansan 426-791 (Korea, Republic of); Lee, Y.J.; Shin, W.J.; Kim, Y.H. [Department of Electronics, Electrical, Control and Instrumentation Engineering, Hanyang University, Ansan 426-791 (Korea, Republic of); Kim, J.T. [Department of Electrical Engineering, Daejin University, Pocheon 487-711 (Korea, Republic of); Lee, B.W. [Department of Electronics, Electrical, Control and Instrumentation Engineering, Hanyang University, Ansan 426-791 (Korea, Republic of); Lee, S.H., E-mail: k720lsh@kins.re.kr [Expert Group Electric and Control Department, Korea Institute of Nuclear Safety, Daejeon 305-600 (Korea, Republic of)

    2013-01-15

    Highlights: ► In this paper, design factors of cryogenic bushings were discussed and test results of specimen were introduced in detail. ► We focused on the comparative study of breakdown characteristics of different electrode materials. ► Puncture and creepage breakdown characteristics were analyzed based on the withstand voltage. ► We obtained the basic design factors of extra high voltage condenser bushing. ► We obtained the basic design factors of extra high voltage condenser bushing, which could be used in cryogenic environment. -- Abstract: Recently, the superconductivity projects to develop commercial superconducting devices for extra high voltage transmission lines have been undergoing in many countries. One of the critical components to be developed for high voltage superconducting devices, including superconducting transformers, cables, and fault current limiters, is a high voltage bushing, to supply high current to devices without insulating difficulties, that is designed for cryogenic environments. Unfortunately, suitable bushings for HTS equipment were not fully developed for some cryogenic insulation issues. Such high voltage bushings would need to provide electrical insulation capabilities from room temperature to cryogenic temperatures. In this paper, design factors of cryogenic bushings were discussed and test results of specimen were introduced in detail. First, the dielectric strength of three kinds of metals has been measured with uniform and non-uniform electrodes by withstand voltage of impulse and AC breakdown test in LN{sub 2}. Second, puncture breakdown voltage of glass fiber reinforced plastics (GFRPs) plates has been analyzed with non-uniform electrodes. Finally, creepage discharge voltages were measured according to the configuration of non-uniform and uniform electrode on the FRP plate. From the test results, we obtained the basic design factors of extra high voltage condenser bushing, which could be used in cryogenic

  7. Electrical actuation of electrically conducting and insulating droplets using ac and dc voltages

    International Nuclear Information System (INIS)

    Kumari, N; Bahadur, V; Garimella, S V

    2008-01-01

    Electrical actuation of liquid droplets at the microscale offers promising applications in the fields of microfluidics and lab-on-chip devices. Much prior research has targeted the electrical actuation of electrically conducting liquid droplets using dc voltages (classical electrowetting). Electrical actuation of conducting droplets using ac voltages and the actuation of insulating droplets (using dc or ac voltages) has remained relatively unexplored. This paper utilizes an energy-minimization-based analytical framework to study the electrical actuation of a liquid droplet (electrically conducting or insulating) under ac actuation. It is shown that the electromechanical regimes of classical electrowetting, electrowetting under ac actuation and insulating droplet actuation can be extracted from the generic electromechanical actuation framework, depending on the electrical properties of the droplet, the underlying dielectric layer and the frequency of the actuation voltage. This paper also presents experiments which quantify the influence of the ac frequency and the electrical properties of the droplet on its velocity under electrical actuation. The velocities of droplets moving between two parallel plates under ac actuation are experimentally measured; these velocities are then related to the actuation force on the droplet which is predicted by the electromechanical model developed in this work. It is seen that the droplet velocities are strongly dependent on the frequency of the ac actuation voltage; the cut-off ac frequency, above which the droplet fails to actuate, is experimentally determined and related to the electrical conductivity of the liquid. This paper then analyzes and directly compares the various electromechanical regimes for the actuation of droplets in microfluidic applications

  8. Simulation of Heating of an Oil-Cooled Insulated Gate Bipolar Transistors Converter Model

    National Research Council Canada - National Science Library

    Ovrebo, Gregory

    2004-01-01

    I used SolidWorks a three-dimensional modeling software, and FloWorks, a fluid dynamics analysis tool, to simulate oil flow and heat transfer in a heat sink structure attached to three insulated gate bipolar transistors...

  9. The electric strength of high-voltage transformers insulation at effect of partial dischargers

    International Nuclear Information System (INIS)

    Khoshravan, E.; Zeraatparvar, A.; Gashimov, A.M.; Mehdizadeh, R.N.

    2001-01-01

    Full text : In paper the change of electric strength of high-voltage transformers insulation at the effect of partial discharges with space charge accumulation was investigated. It is revealed that the effect of partial discharges of insulation materials results the reduction of their pulsing electric strength which can restore the own initial value at releasing of saved charge the volume of a material under condition of absence the ineversible structural changes in it. Researches of high-voltage transformers insulation's non-failure operation conditions show, that at increasing of insulation work time in a strong electrical field the reduction of average breakdown voltages with simultaneous increasing of spread in discharge voltage values takes place. It authentically testifies to reduction of short-time discharge voltage of insulation materials during their electrical aging. As the basic reason of insulation electrical aging the partial discharges occurring in gas cavities inside insulation were considered. It is known that the space charges will be formed in insulation elements of high-voltage devices which effects in dielectrical property of these elements including the electric strength and the space charge formation can occur also at partial discharges in an alternating voltage while the service of high-voltage transformers. In the given work the experiments in revealing separate influence partial discharges in pulsing electric strength of insulation materials at presence and at absence inside them the space charge were spent

  10. A Novel Approach for Analyzing Water Diffusion in Mineral and Vegetable Oil-Paper Insulation

    Directory of Open Access Journals (Sweden)

    Bin Du

    2014-04-01

    Full Text Available Water diffusion characteristics of mineral and vegetable oil-paper insulation systems are important for insulation condition evaluation of oil-filled transformers. In this paper, we describe a novel application method of in situ attenuated total reflection Fourier transform infrared (ATR-FTIR approach for analyzing the diffusion process of water molecules in oil-immersed insulating paper. Two-dimensional correlation was used to analyze the 3700 cm-1 to 3000 cm- 1 hydroxyl peak. The observed results indicated that water molecules form two types of hydroxyl (OH with oil-impregnated paper in the diffusion process are weak and strong hydrogen bonds, respectively. 2D infrared correlation analysis revealed that three OH stretching vibration spectra absorption peaks was existed in hygroscopic vegetable oil-immersed insulating paper. And there are four OH stretching vibration spectra absorption peaks in mineral oil-immersed insulation paper. Furthermore, mineral oil-impregnated paper and vegetable oil-impregnated paper diffusion coefficients were obtained by nonlinear fitting.

  11. Electric cable insulation pyrolysis and ignition resulting from potential hydrogen burn scenarios for nuclear containment buildings

    International Nuclear Information System (INIS)

    Berlad, A.L.; Jaung, R.; Pratt, W.T.

    1982-01-01

    Electric cable insulation in nuclear containment buildings may participate in pyrolysis and combustion processes engendered by hydrogen burn phenomena. This paper examines these pyrolysis/ignition processes of those polymeric materials present in the electric cable insulation and their possible relation to hydrogen burn scenarios

  12. Converters and electric machines. Solid insulating materials. Electrical characteristics; Convertisseurs et machines electriques. Materiaux isolants solides. Caracteristiques electriques

    Energy Technology Data Exchange (ETDEWEB)

    Anton, A. [Institut National Superieur de Chimie Industrielle, 76 - Rouen (France)

    2003-08-01

    The aim of this article is to allow a preselection of a solid insulating material using the most common electrical characteristics: tangent of the loss angle, relative permittivity, dielectric rigidity, superficial resistivity, transverse resistivity, resistance to high voltage creeping spark currents, index of creeping resistance. The characteristics of the main solid insulating materials are presented in tables for: thermoplastics, thermosetting materials, natural insulating materials, mineral insulating materials, rubber and synthetic elastomers, stratified insulating materials, thermoplastic films, composite synthetic papers. A comparison is made between the different materials using the three properties: tangent of the loss angle, relative permittivity and resistance to HV spark creeping currents. (J.S.)

  13. Moisture effect on the dielectric response and space charge behaviour of mineral oil impregnated paper insulation

    International Nuclear Information System (INIS)

    Hao Jian; Liao Ruijin; Chen, George

    2011-01-01

    Dielectric response and space charge behaviour of oil-paper insulation sample with different moisture contents were investigated using the frequency dielectric spectroscopy (FDS) and the pulsed electroacoustic (PEA) technique, respectively. The influence of moisture on the dielectric response and space charge behaviour of oil impregnated paper insulation was analysed. Results show that the moisture has great effect on the FDS and space charge behaviour of oil impregnated paper insulation. In the frequency range of 10 -2 ∼10 6 Hz, the conductivity and the capacitance of oil impregnated paper increases with its moisture content. The space charge distribution of oil-paper sample with lower and higher moisture contents is very different from each other. The higher the moisture concentration of the oil impregnated paper, the easier the negative charge penetration into the insulation paper. There is a significant amount of positive charge accumulated at the paper-paper interface near to the cathode for oilpaper sample with lower moisture content. However, the positive charge appears in the middle layer paper for oil-paper sample with higher moisture content. Due to the high conductivity, the charge trapped in the oil-paper sample with higher moisture content disappears much faster than that in the oil-paper sample with lower moisture content after removing the voltage.

  14. Moisture effect on the dielectric response and space charge behaviour of mineral oil impregnated paper insulation

    Energy Technology Data Exchange (ETDEWEB)

    Hao Jian; Liao Ruijin [State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University (China); Chen, George, E-mail: jh210v@ecs.soton.ac.uk [School of Electronics and Computer Science, University of Southampton (United Kingdom)

    2011-08-12

    Dielectric response and space charge behaviour of oil-paper insulation sample with different moisture contents were investigated using the frequency dielectric spectroscopy (FDS) and the pulsed electroacoustic (PEA) technique, respectively. The influence of moisture on the dielectric response and space charge behaviour of oil impregnated paper insulation was analysed. Results show that the moisture has great effect on the FDS and space charge behaviour of oil impregnated paper insulation. In the frequency range of 10{sup -2}{approx}10{sup 6}Hz, the conductivity and the capacitance of oil impregnated paper increases with its moisture content. The space charge distribution of oil-paper sample with lower and higher moisture contents is very different from each other. The higher the moisture concentration of the oil impregnated paper, the easier the negative charge penetration into the insulation paper. There is a significant amount of positive charge accumulated at the paper-paper interface near to the cathode for oilpaper sample with lower moisture content. However, the positive charge appears in the middle layer paper for oil-paper sample with higher moisture content. Due to the high conductivity, the charge trapped in the oil-paper sample with higher moisture content disappears much faster than that in the oil-paper sample with lower moisture content after removing the voltage.

  15. NAA of an egyptian ceramic electric insulator sample

    International Nuclear Information System (INIS)

    ASHMAWY, L.S.; EISSA, E.A.; ROFAIL, N.B.; HASSAN, A.M.

    2000-01-01

    In this work a sample of a ceramic electric insulator material used in Egypt in the production of transformers and indoor electric equipment has been elementally analyzed by Neutron Activation Analysis (NAA) technique. The Pneumatic Rabbit Transfer System (PRTS) of the 10 MW Budapest Research Reactor (BRR) was used, for short time irradiation of 120 s. Long time irradiation was performed at the reactor core periphery for 24 hours, The thermal neutron fluxes at full reactor power in both cases were 6 x 1013 n/cm 2.s and 3 x 1013 n/cm 2 .s, respectively. The gamma-ray spectra obtained have been measured for several times by means of the Hyper Pure Germanium Detection System (HPGe). The ko computer programs were used for data analysis. A total of 42 elements have been identified as: Na, Al, Cl, K, Sc, Ti, V, Mn, Fe, Co, Zn, Ga, As, Br, Rb, Sr, Zr, Mo, Ag, Sb, Te, Cs, Ba, La, Ce, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Tm, Yb, Lu, Hf, Ta, W, Ir, Au, Th and U

  16. Insulation co-ordination in high-voltage electric power systems

    CERN Document Server

    Diesendorf, W

    2015-01-01

    Insulation Co-ordination in High-Voltage Electric Power Systems deals with the methods of insulation needed in different circumstances. The book covers topics such as overvoltages and lightning surges; disruptive discharge and withstand voltages; self-restoring and non-self-restoring insulation; lightning overvoltages on transmission lines; and the attenuation and distortion of lightning surges. Also covered in the book are topics such as the switching surge designs of transmission lines, as well as the insulation coordination of high-voltage stations. The text is recommended for electrical en

  17. Design Improvements on Graded Insulation of Power Transformers Using Transient Electric Field Analysis and Visualization Technique

    OpenAIRE

    Yamashita, Hideo; Nakamae, Eihachiro; Namera, Akihiro; Cingoski, Vlatko; Kitamura, Hideo

    1998-01-01

    This paper deals with design improvements on graded insulation of power transformers using transient electric field analysis and a visualization technique. The calculation method for transient electric field analysis inside a power transformer impressed with impulse voltage is presented: Initially, the concentrated electric network for the power transformer is concentrated by dividing transformer windings into several blocks and by computing the electric circuit parameters.

  18. Parametric and non-parametric models for lifespan modeling of insulation systems in electrical machines

    OpenAIRE

    Salameh , Farah; Picot , Antoine; Chabert , Marie; Maussion , Pascal

    2017-01-01

    International audience; This paper describes an original statistical approach for the lifespan modeling of electric machine insulation materials. The presented models aim to study the effect of three main stress factors (voltage, frequency and temperature) and their interactions on the insulation lifespan. The proposed methodology is applied to two different insulation materials tested in partial discharge regime. Accelerated ageing tests are organized according to experimental optimization m...

  19. Insulated Solar Electric Cooking – Tomorrow's healthy affordable stoves?

    Directory of Open Access Journals (Sweden)

    T. Watkins

    Full Text Available We present a cooking technology consisting of a solar panel directly connected to an electric heater inside of a well-insulated chamber. Assuming continued decrease in solar panel prices, we anticipate that in a few decades Solar Electric Cooking (SEC technologies will be the most common cooking technology for the poor. Appropriate use of insulation reduces the power demand making low-power Insulated Solar Electric Cooking (ISEC systems already cost competitive. We present a $100 prototype and preliminary results of two implementations in Uganda.

  20. Electrical Insulation of 500-m High-Tc Superconducting Power Cable

    International Nuclear Information System (INIS)

    Takahashi, T; Ichikawa, M; Suzuki, H; Okamoto, T; Akita, S; Mukoyama, S; Yagi, M; Maruyama, S; Kimura, A

    2006-01-01

    Electrical insulation is one of the essential technologies for the electric power apparatus. Determination of testing voltages and design method of the electrical insulation layer are inextricably linked each other, and are critical to developing and realizing a cold dielectric (CD) type high-Tc superconducting (HTS) power cable. The authors had proposed the electrical insulation design method with concepts of partial discharge-free designs for ac voltage condition. This paper discusses the testing voltages for a 77 kV 1000 A HTS power cable with a length of 500 m, and describes results of various voltage withstand test. As a result, it is concluded that the proposed electrical insulation design method is appropriate for the HTS power cable

  1. Effect of pollutant gases on electrical insulators deterioration

    Directory of Open Access Journals (Sweden)

    Zamarad, A.

    2000-06-01

    Full Text Available In this work ceramic materials as electrical insulators have been exposed in laboratory-based chambers. Water contact angle and FTIR of the surface before and after pollutant exposures have been studied. The results indicated that the reaction between the policrete and the atmospheric pollutant produce some salts deposits, some hydrolysis over the resin surface, modifying water contact angle.

    En este trabajo se exponen en cámaras atmosféricas de laboratorio materiales cerámicos usados como aislantes eléctricos. Se realiza un estudio de la superficie expuesta a la degradación medioambiental a través del ángulo de contacto de una gota de agua y de las sales depositadas, determinándose éstas últimas por espectroscopia infrarroja. Los resultados revelan el depósito de varias sales sobre la superficie de la muestra, e hidrólisis sobre la superficie de la resina, modificando el ángulo de contacto.

  2. Palm-Based Neopentyl Glycol Diester: A Potential Green Insulating Oil.

    Science.gov (United States)

    Raof, Nurliyana A; Yunus, Robiah; Rashid, Umer; Azis, Norhafiz; Yaakub, Zaini

    2018-01-01

    The transesterification of high oleic palm oil methyl ester (HOPME) with neopentyl glycol (NPG) has been investigated. The present study revealed the application of low-pressure technology as a new synthesis method to produce NPG diesters. Single variable optimization and response surface methodology (RSM) were implemented to optimize the experimental conditions to achieve the maximum composition (wt%) of NPG diesters. The main objective of this study was to optimize the production of NPG diesters and to characterize the optimized esters with typical chemical, physical and electrical properties to study its potential as insulating oil. The transesterification reaction between HOPME and NPG was conducted in a 1L three-neck flask reactor at specified temperature, pressure, molar ratio and catalyst concentration. For the optimization, four factors have been studied and the diester product was characterized by using gas chromatography (GC) analysis. The synthesized esters were then characterized with typical properties of transformer oil such as flash point, pour point, viscosity and breakdown voltage and were compared with mineral insulating oil and commercial NPG dioleate. For formulation, different samples of NPG diesters with different concentration of pour point depressant were prepared and each sample was tested for its pour point measurement. The optimum conditions inferred from the analyses were: molar ratio of HOPME to NPG of 2:1.3, temperature = 182°C, pressure = 0.6 mbar and catalyst concentration of 1.2%. The synthesized NPG diesters showed very important improvement in fire safety compared to mineral oil with flash point of 300°C and 155°C, respectively. NPG diesters also exhibit a relatively good viscosity of 21 cSt. The most striking observation to emerge from the data comparison with NPG diester was the breakdown voltage, which was higher than mineral oil and definitely in conformance to the IEC 61099 limit at 67.5 kV. The formulation of synthesized

  3. Breakdown Characteristic Analysis of Paper- Oil Insulation under AC and DC Voltage

    Science.gov (United States)

    Anuar, N. F.; Jamail, N. A. M.; Rahman, R. A.; Kamarudin, M. S.

    2017-08-01

    This paper presents the study of breakdown characteristic of Kraft paper insulated with two different types of insulating fluid, which are Palm oil and Coconut oil. Palm oil and Coconut oil are chosen as the alternative fluid to the transformer oil because it has high potential and environmentally-friendly. The Segezha Kraft papers with various thicknesses (65.5 gsm, 75 gsm, 85gsm, 90 gsm) have been used in this research. High Voltage Direct Current (HVDC), High Voltage Alternating Current (HVAC) and carbon track and severity analysis is conducted to observe the sample of aging Kraft paper. These samples have been immersed using Palm oil and Coconut oil up to 90 days to observe the absorption rate. All samples started to reach saturation level at 70 days of immersion. HVDC and HVAC breakdown experiments have been done after the samples had reached the saturation level based on normal condition, immersed in Palm oil and immersed in Coconut oil. All samples immersed in liquid show different breakdown voltage reading compared to normal condition. The analysis of carbon track and severity on surface has been done using Analytical Scanning Electron Microscope (SEM) Analysis. The results of the experiment show that the sample of Kraft paper immersed in Palm oil was better than Coconut oil immersed sample. Therefore the sample condition was the main factor that determines the value of breakdown voltage test. Introduction

  4. Methods for the improvement of electrical insulation in vacuum in the presence of transverse magnetic field

    International Nuclear Information System (INIS)

    Hara, Masanori; Suehiro, Junya; Shigematsu, Hidetaka; Yano, Shinsuke

    1989-01-01

    At present in electrical energy field, aiming at the development and operation of new energy sources for the future, the research on nuclear fusion reactors, MHD electricity generation, and electromagnetic energy storage is in progress, and in ordeer to form strong magnetic fields over wide space, large superconducting magnets are expected to be employed. In these magnets, when exciting current changes, voltage is induced internally, therefore, the operation sequence is deeply related to coil insulation, in pulse operation, coil insulation is one of the important factors determining the rating, and the withstand voltage design against the abnormal voltage at the time of quenching is related to the protection of coils. Therefore, the electrical insulation design of large superconducting magnets is an important subject of study. Their electrical insulation system is the compound system of liquid helium, gaseous helium, vacuum and solid insulators. When a cross magnetic field is applied, insulation breakdown characteristics are aggravated. The mechanism of vacuum insulation breakdown and characteristics, the method of improving withstand voltage using spacers or the electrodes for controlling electric field and so on are reported. (K.I.)

  5. Determination of the characteristics of an electric arc plasma contaminated by vapors from insulators

    International Nuclear Information System (INIS)

    Abbaoui, M.; Cheminat, B.

    1991-01-01

    An experimental study at atmospheric pressure carried out on plasma penetrated by vapors from different industrial insulators allowed the showing of the influence of the nature of the insulator upon the characteristics of the electric arc plasma; i.e., an increase of the temperature, electron density, electric field, and extinction velocity of the arc. Measurements have been made spectrometrically and by means of probes

  6. Structural health monitoring of high voltage electrical switch ceramic insulators in seismic areas

    OpenAIRE

    REBILLAT, Marc; BARTHES, Clément; MECHBAL, Nazih; MOSALAM, Khalid M.

    2014-01-01

    International audience; High voltage electrical switches are crucial components to restart rapidly the electrical network right after an earthquake. But there currently exists no automatic procedure to check if these ceramic insulators have suffered after an earthquake, and there exists no method to recertify a given switch. To deploy a vibration-based structural health monitoring method on ceramic insulators a large shake table able to generate accelerations up to 3 g was used. The idea unde...

  7. The effect of nanoparticle surfactant polarization on trapping depth of vegetable insulating oil-based nanofluids

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jian, E-mail: lijian@cqu.edu.cn; Du, Bin; Wang, Feipeng; Yao, Wei; Yao, Shuhan

    2016-02-05

    Nanoparticles can generate charge carrier trapping and reduce the velocity of streamer development in insulating oils ultimately leading to an enhancement of the breakdown voltage of insulating oils. Vegetable insulating oil-based nanofluids with three sizes of monodispersed Fe{sub 3}O{sub 4} nanoparticles were prepared and their trapping depths were measured by thermally stimulated method (TSC). It is found that the nanoparticle surfactant polarization can significantly influence the trapping depth of vegetable insulating oil-based nanofluids. A nanoparticle polarization model considering surfactant polarization was proposed to calculate the trapping depth of the nanofluids at different nanoparticle sizes and surfactant thicknesses. The results show the calculated values of the model are in a fairly good agreement with the experimental values. - Highlights: • Three different sized Fe{sub 3}O{sub 4} vegetable-oil based nanofluids was successfully prepared. • The trapping depth of the Fe{sub 3}O{sub 4} nanofluids was investigated. • A new model considering surfactant polarization was proposed to calculate the trapping depth of the nanofluids.

  8. High Temperature Electrical Insulation Materials for Space Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's future space science missions cannot be realized without the state of the art high temperature insulation materials of which higher working temperature, high...

  9. Defect Pattern Recognition Based on Partial Discharge Characteristics of Oil-Pressboard Insulation for UHVDC Converter Transformer

    Directory of Open Access Journals (Sweden)

    Wen Si

    2018-03-01

    Full Text Available The ultra high voltage direct current (UHVDC transmission system has advantages in delivering electrical energy over long distance at high capacity. UHVDC converter transformer is a key apparatus and its insulation state greatly affects the safe operation of the transmission system. Partial discharge (PD characteristics of oil-pressboard insulation under combined AC-DC voltage are the foundation for analyzing the insulation state of UHVDC converter transformers. The defect pattern recognition based on PD characteristics is an important part of the state monitoring of converter transformers. In this paper, PD characteristics are investigated with the established experimental platform of three defect models (needle-plate, surface discharge and air gap under 1:1 combined AC-DC voltage. The different PD behaviors of three defect models are discussed and explained through simulation of electric field strength distribution and discharge mechanism. For the recognition of defect types when multiple types of sources coexist, the Random Forests algorithm is used for recognition. In order to reduce the computational layer and the loss of information caused by the extraction of traditional features, the preprocessed single PD pulses and phase information are chosen to be the features for learning and test. Zero-padding method is discussed for normalizing the features. Based on the experimental data, Random Forests and Least Squares Support Vector Machine are compared in the performance of computing time, recognition accuracy and adaptability. It is proved that Random Forests is more suitable for big data analysis.

  10. Development of electrical insulation and conduction coating for fusion experimental devices

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, M. [Mitsubishi Heavy Industries Ltd., Yokohama (Japan); Tsujimura, S. [Mitsubishi Heavy Industries Ltd., Yokohama (Japan); Toyoda, M. [Mitsubishi Heavy Industries Ltd., Yokohama (Japan); Inoue, M. [Mitsubishi Heavy Industries Ltd., Yokohama (Japan); Abe, T. [Japan Atomic Energy Research Inst., Naka (Japan); Murakami, Y. [Japan Atomic Energy Research Inst., Naka (Japan)

    1995-12-31

    Development of electrical insulation and conduction methods that can be applied for large components have been investigated for future large fusion experimental devices. A thermal spraying method is employed to coat the insulation or conduction materials on the structural components. Al{sub 2}O{sub 3} has been selected as an insulation material, while Cr{sub 3}C{sub 2}-NiCr and WC-NiCr have been chosen as conduction materials. These materials were coated on stainless steel base plates to examine the basic characteristics of the coated layers, such as their adhesive strength to the base plate and electrical resistance. It was found that they have sufficient electrical insulation and conduction properties, respectively. In addition, the sliding tests of the coated layers showed sufficient frictional properties. The applicability of the spraying method was examined on a 100mm x 1000mm surface and found to be applicable for large surfaces in fusion experimental devices. (orig.).

  11. Development of electrical insulation and conduction coating for fusion experimental devices

    International Nuclear Information System (INIS)

    Onozuka, M.; Tsujimura, S.; Toyoda, M.; Inoue, M.; Abe, T.; Murakami, Y.

    1995-01-01

    Development of electrical insulation and conduction methods that can be applied for large components have been investigated for future large fusion experimental devices. A thermal spraying method is employed to coat the insulation or conduction materials on the structural components. Al 2 O 3 has been selected as an insulation material, while Cr 3 C 2 -NiCr and WC-NiCr have been chosen as conduction materials. These materials were coated on stainless steel base plates to examine the basic characteristics of the coated layers, such as their adhesive strength to the base plate and electrical resistance. It was found that they have sufficient electrical insulation and conduction properties, respectively. In addition, the sliding tests of the coated layers showed sufficient frictional properties. The applicability of the spraying method was examined on a 100mm x 1000mm surface and found to be applicable for large surfaces in fusion experimental devices. (orig.)

  12. Electrical and structural R&D activities on high voltage dc solid insulator in vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Pilan, N., E-mail: nicola.pilan@igi.cnr.it [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti 4, I-35127 Padova (Italy); Marcuzzi, D.; Rizzolo, A.; Grando, L.; Gambetta, G. [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti 4, I-35127 Padova (Italy); Rosa, S. Dalla [Umicore – Italbras S.p.A., Strada del Balsego, n.6, 36100 Vicenza (Italy); Kraemer, V.; Quirmbach, T. [FRIATEC Ceramics Division, Steinzeugstrasse 50, 68229 Mannheim (Germany); Chitarin, G. [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti 4, I-35127 Padova (Italy); Gobbo, R.; Pesavento, G. [DII, Università di Padova, v. Gradenigo 6/A, I-35131 Padova (Italy); De Lorenzi, A.; Lotto, L.; Rizzieri, R.; Fincato, M.; Romanato, L.; Trevisan, L.; Cervaro, V.; Franchin, L. [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti 4, I-35127 Padova (Italy)

    2015-10-15

    Highlights: • A thorough R&D activity on the MITICA post insulator prototypes is being carried out. • The design has been numerically verified considering both mechanical and electrical aspects. • Experimental validation has been started, with positive results in both involved fields. • Alternative design solutions thickness have been proposed and successfully tested. - Abstract: This paper describes the R&D work performed in support of the design of the alumina insulators for the MITICA Neutral Beam Injector. The ceramic insulators are critical elements, both from the structural and electrical point of view, of the 1 MV electrostatic accelerator of the MITICA injector, as they are required to sustain both the mechanical loads due to the cantilevered weight of the ion source and the high electric field between the accelerator grids. This paper presents the results of numerical simulations and experimental tests on prototypes that have been carried out to validate the insulator design under realistic operating conditions.

  13. Electrical and structural R&D activities on high voltage dc solid insulator in vacuum

    International Nuclear Information System (INIS)

    Pilan, N.; Marcuzzi, D.; Rizzolo, A.; Grando, L.; Gambetta, G.; Rosa, S. Dalla; Kraemer, V.; Quirmbach, T.; Chitarin, G.; Gobbo, R.; Pesavento, G.; De Lorenzi, A.; Lotto, L.; Rizzieri, R.; Fincato, M.; Romanato, L.; Trevisan, L.; Cervaro, V.; Franchin, L.

    2015-01-01

    Highlights: • A thorough R&D activity on the MITICA post insulator prototypes is being carried out. • The design has been numerically verified considering both mechanical and electrical aspects. • Experimental validation has been started, with positive results in both involved fields. • Alternative design solutions thickness have been proposed and successfully tested. - Abstract: This paper describes the R&D work performed in support of the design of the alumina insulators for the MITICA Neutral Beam Injector. The ceramic insulators are critical elements, both from the structural and electrical point of view, of the 1 MV electrostatic accelerator of the MITICA injector, as they are required to sustain both the mechanical loads due to the cantilevered weight of the ion source and the high electric field between the accelerator grids. This paper presents the results of numerical simulations and experimental tests on prototypes that have been carried out to validate the insulator design under realistic operating conditions.

  14. Evaluation of kraft paper chemical byproducts in insulating mineral oil of energized transformers; Avaliacao de subprodutos quimicos de papel tipo kraft em oleo mineral isolante de transformadores energizados

    Energy Technology Data Exchange (ETDEWEB)

    Portella, Mariana d' Orey Gaivao; Portella, Kleber Franke; Swinka Filho, Vitoldo; Silva, Guilherme Cunha da; Stocco, Guilherme Barrachina; Batista, Douglas Antonio; Sabec, Daiane Cristina; Deger, Claudio Adriano [Instituto de Tecnologia para o Desenvolvimento (LATEC), Curitiba, PR (Brazil)], E-mails: mariana.portella@lactec.org.br, portella@laclec.org.br; Andreoli, Mario Carlos [Centro de Transmissao de Energia Eletrica Paulista (CTEEP), Sao Paulo, SP (Brazil)], E-mail: mandreoli@cteep.com.br

    2011-10-15

    The insulating paper is a major determinant of the remaining lifetime of an electrical transformer, since it is not possible to analyse or replace this equipment during operation. However, using the quantification of the furanic compounds concentration formed in mineral oil, it is possible to infer about the quality of the material, confirming the presence of degradation. Given the existence of new kinds of solid insulation, this research aimed at studying a new analytical methodology, using the techniques of liquid chromatography with mass detection of these substances in order to increase the reliability of the results, assisting the preventive maintenance. (author)

  15. A real-time insulation detection method for battery packs used in electric vehicles

    Science.gov (United States)

    Tian, Jiaqiang; Wang, Yujie; Yang, Duo; Zhang, Xu; Chen, Zonghai

    2018-05-01

    Due to the energy crisis and environmental pollution, electric vehicles have become more and more popular. Compared to traditional fuel vehicles, the electric vehicles are integrated with more high-voltage components, which have potential security risks of insulation. The insulation resistance between the chassis and the direct current bus of the battery pack is easily affected by factors such as temperature, humidity and vibration. In order to ensure the safe and reliable operation of the electric vehicles, it is necessary to detect the insulation resistance of the battery pack. This paper proposes an insulation detection scheme based on low-frequency signal injection method. Considering the insulation detector which can be easily affected by noises, the algorithm based on Kalman filter is proposed. Moreover, the battery pack is always in the states of charging and discharging during driving, which will lead to frequent changes in the voltage of the battery pack and affect the estimation accuracy of insulation detector. Therefore the recursive least squares algorithm is adopted to solve the problem that the detection results of insulation detector mutate with the voltage of the battery pack. The performance of the proposed method is verified by dynamic and static experiments.

  16. Passive elimination of static electricity in oil industry

    Directory of Open Access Journals (Sweden)

    Gaćanović Mićo

    2014-01-01

    Full Text Available This study explains the existing and real conditions of a possible passive elimination of static electricity when loading oil and oil derivatives. We are considering the formation and survival of gas bubbles both in the volume of oil in its depth, but also at the surface of oil and oil derivatives of the partly filled reservoir, and formation of both volume and surface electric charge in oil and oil derivatives. The study presents the research of formation and survival of static electricity in both reservoirs and tank trucks of different geometric shapes partly filled with oil and oil derivatives. We are proposing a new original possibility of passive elimination of static electricity when loading oil and oil derivatives in reservoirs and tank trucks. The proposed passive device for elimination of static electricity is protected at the international level in the domain of intellectual property (with a patent, model and distinctive mark.

  17. Removal of Corrosive Sulfur from Insulating Oils by Natural Sorbent and Liquid-Liquid.

    Czech Academy of Sciences Publication Activity Database

    Matějková, Martina; Kaštánek, František; Maléterová, Ywetta; Kužílek, V.; Košanová, L.; Šolcová, Olga

    2017-01-01

    Roč. 24, č. 4 (2017), s. 2383-2389 ISSN 1070-9878 R&D Projects: GA TA ČR(CZ) TA04020151 Institutional support: RVO:67985858 Keywords : oil insulation * sorption * bentonite Subject RIV: CI - Industrial Chemistry, Chemical Engineering OBOR OECD: Chemical process engineering Impact factor: 2.115, year: 2016

  18. analysis of acidic properties of distribution transformer oil insulation

    African Journals Online (AJOL)

    user

    The system detects when the acid- ... rated above 500 kVA are classed as power transformers. Transformers rated at ... generate great impact in safety, reliability and cost of the electric ... the primary voltage of the electric distribution system to.

  19. DOE Task Force meeting on Electrical Breakdown of Insulating Ceramics in a High Radiation Field

    International Nuclear Information System (INIS)

    Green, P.H.

    1991-08-01

    This volume contains the abstracts and presentation material from the Research Assistance Task Force Meeting ''Electrical Breakdown of Insulating Ceramics in a High-Radiation Field.'' The meeting was jointly sponsored by the Office of Basic Energy Sciences and the Office of Fusion Energy of the US Department of Energy in Vail, Colorado, May 28--June 1, 1991. The 26 participants represented expertise in fusion, radiation damage, electrical breakdown, ceramics, and semiconductor and electronic structures. These participants came from universities, industries, national laboratories, and government. The attendees represented eight nations. The Task Force meeting was organized in response to the recent discovery that a combination of temperature, electric field, and radiation for an extended period of time has an unexplained adverse effect in ceramics, termed radiation-enhanced electrical degradation (REED). REED occurs after an incubation period and continues to accelerate with irradiation until the ceramics can no longer be regarded as insulators. It appears that REED is irreversible and the ceramic insulators cannot be readily annealed or otherwise repaired for future services. This effect poses a serious threat for fusion reactors, which require electrical insulators in diagnostic devices, in radio frequency and neutral beam systems, and in magnetic assemblies. The problem of selecting suitable electrical insulating materials in thus far more serious than previously anticipated

  20. Influence of dose rate of ionizing radiation on working capacity of the oil-filled electrical equipment for NPP; Vliyanie moshchnosti dozy ioniziruyushchego oblucheniya na rabotosposobnost` maslonapolnennogo ehlektrooborudovaniya dlya AEhS

    Energy Technology Data Exchange (ETDEWEB)

    Tyutnev, A P [and others

    1994-12-31

    Dependence of radiation electric conductivity transformer oil on the gamma radiation absorbed dose rate and on the energy proton flux is investigated. It is ascertained that the electrical reliability of oil and oil-barrier insulation does not depend on the absorbed dose rate up to the maximum achieved values of 200 rad/s.

  1. Trial fabrication and preliminary characterization of electrical insulator for liquid metal system

    International Nuclear Information System (INIS)

    Nakamichi, Masaru; Kawamura, Hiroshi; Oyamada, Rokuro

    1995-03-01

    In the design of the liquid metal blanket, MHD pressure drop is one of critical issues. Ceramic coating on the surface of structural material is considered as an electrical insulator to reduce the MHD pressure drop. Ceramic coating such as Y 2 O 3 is a promising electrical insulator due to its high electrical resistivity and good compatibility with liquid lithium. This report describes the trial fabrication and preliminary characterization of electrical insulator for a design study of the liquid metal system. From the results of trial fabrication and preliminary characterization, it is concluded that densified atmospheric plasma spray Y 2 O 3 coating with 410SS undercoating between 316SS substrate and Y 2 O 3 coating is suitable for Y 2 O 3 coating fabrication. (author)

  2. Mathematical Model of Lifetime Duration at Insulation of Electrical Machines

    Directory of Open Access Journals (Sweden)

    Mihaela Răduca

    2009-10-01

    Full Text Available Abstract. This paper present a mathematical model of lifetime duration at hydro generator stator winding insulation when at hydro generator can be appear the damage regimes. The estimation to make by take of the programming and non-programming revisions, through the introduction and correlation of the new defined notions.

  3. Design principles for handmade electrical insulation of superconducting joints in W7-X

    Energy Technology Data Exchange (ETDEWEB)

    Rummel, K., E-mail: kerstin.rummel@ipp.mpg.de [Max Planck Institute for Plasma Physics, EURATOM Association, Wendelsteinstr. 1, 17491 Greifswald (Germany); John, A. [Max Planck Institute for Plasma Physics, EURATOM Association, Wendelsteinstr. 1, 17491 Greifswald (Germany); Sulek, Z. [Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Radzikowskiego 152 (Poland)

    2013-10-15

    Highlights: ► In W-7X there are several types of handmade electrical insulation. ► In general insulation based on impregnated glass tapes and special G10 pieces. ► A proper overlapping of glass tapes turned out to be mandatory. ► Detailed qualification and training helps to minimize the failure rate. ► Visual inspection and Paschen tests after every insulation steps are important. -- Abstract: The superconducting magnet system of the Wendelstein 7-X (W7-X) experiment consists of 50 non-planar and 20 planar coils, 121 bus bars and 14 current leads. The connection between bus bars, coils and current leads will be provided by 198 joints. The joints have to be insulated manually during the assembly of the machine in constraint positions and a tight environment. In general the insulation is based on glass tapes impregnated with epoxy resin and special G10 insulating pieces embedded in the glass tape insulation. In critical areas Kapton{sup ®}-foils are embedded in the insulation. All types of insulation were qualified at mock-ups in a 1:1 model of the expected environment in W7-X. The qualification programme comprises thermal cycling between room temperature and 77 K and high voltage tests under air, under vacuum and under reduced pressure (Paschen test). The paper describes the main principles used for different types of handmade Paschen-tight insulations in W7-X and the visual and electrical tests during and after assembly.

  4. Microscopic Void Detection for Predicting Remaining Life in Electric Cable Insulation

    International Nuclear Information System (INIS)

    Horvath, David A.; Avila, Steven M.

    2003-01-01

    A reliable method of testing for remaining life in electric cable insulation has continued to elude the nuclear industry as it seeks to extend the life and license of its nuclear stations. Until recently, a trendable, measurable electrical property has not been found, and unexpected cable failures continue to be reported. Most reliable approaches to date rely on monitoring mechanical properties, which are assumed to degrade faster than the insulation's electrical properties. This paper introduces a promising technique based on void characterization, which is dependent on an electrical property related to dielectric strength. A relationship between insulation void characteristics (size and density) and the onset of partial discharge is known to exist. A similar relationship can be shown between void characteristics and unacceptable leakage currents (another typical cable failure criterion). For low-voltage cables, it is believed void content can be correlated to mechanical property degradation.This paper will report on an approach for using void information, research results showing the existence of trendable void characteristics in commonly used electric insulation materials, and techniques for detecting the voids (both laboratory- and field-based techniques). Acoustical microscopy was found to be potentially more suitable than conventional ultrasound for nondestructive in situ detection and monitoring of void characteristics in jacketed multiconductor insulation while ignoring the jacket. Also, optical and scanning electron microscope techniques will play an essential role in establishing the database necessary for continued development and implementation of this promising technique

  5. Investigation of deterioration mechanism of electrical ceramic insulating materials under high temperature

    International Nuclear Information System (INIS)

    Mizutani, Yoshinobu; Ito, Tetsuo; Okamoto, Tatsuki; Kumazawa, Ryoji; Aizawa, Rie; Moriyama, Hideshige

    2000-01-01

    It is thought that ceramic insulator can be applied to electric power equipments that are under high temperature not to be able use organic materials. Our research has suggested components of mica-alumina combined insulation. As the results of and carried out temperature accelerating test, combined insulation life is expected long term over 40 years at over 500-Celsius degrees. However to construct high reliable insulating system, it is clarified deterioration mechanism on combined insulation and evaluates life of that. Therefore we carried out metal behavior test and voltage aging test using mica-sheet and alumina-cloth that are components of combined insulation under high temperature in nitrogen gas atmosphere. It is cleared two metal behavior mechanisms: One is that the opening of insulator are filled up with copper that is oxidized, the other is the metal diffuses in alumina-cloth through surface. And distance of metal behavior is able to be estimated at modulate temperature and in modulate time. It is also cleared that alumina-cloth is deteriorated by metal behavior into alumina-cloth. These results indicate that combined insulation is deteriorated from electrode side by metal behavior and is finally broken down through alumina-cloth. (author)

  6. The ESKSISO diagnostic system intended for assessment of insulating system of the oil-filled equipment

    Directory of Open Access Journals (Sweden)

    Chernyshev V. A.

    2015-12-01

    Full Text Available The expert system (ES intended for assessment of condition of the insulating system of oil-filled transformers has been presented. ES is based on the analysis of the processes of polarization and depolarization proceeding in volume of insulating intervals of the power equipment; it allows to create effectively the conclusion about a condition of controlled object as parameters of control act not so much as characteristics of materials but as characteristics of processes of dielectric designs' aging. A distinctive feature of expert system is the possibility to obtain necessary information about operation parameters defining reliability and duration of work and providing high efficiency of power equipment service

  7. High Voltage Hybrid Electric Propulsion - Multilayered Functional Insulation System (MFIS) NASA-GRC

    Science.gov (United States)

    Lizcano, M.

    2017-01-01

    High power transmission cables pose a key challenge in future Hybrid Electric Propulsion Aircraft. The challenge arises in developing safe transmission lines that can withstand the unique environment found in aircraft while providing megawatts of power. High voltage AC, variable frequency cables do not currently exist and present particular electrical insulation challenges since electrical arcing and high heating are more prevalent at higher voltages and frequencies. Identifying and developing materials that maintain their dielectric properties at high voltage and frequencies is crucial.

  8. Dissolved Gas Analysis of Insulating Transformer Oil Using Optical Fiber

    OpenAIRE

    Overby, Alan Bland

    2014-01-01

    The power industry relies on high voltage transformers as the backbone of power distribution networks. High voltage transformers are designed to handle immense electrical loads in hostile environments. Long term placement is desired, however by being under constant heavy load transformers face mechanical, thermal, and electrical stresses which lead to failures of the protection systems in place. The service life of a transformer is often limited by the life time of its insulati...

  9. Ageing of insulation and diagnosis of electrical equipment through detection of partial discharge

    International Nuclear Information System (INIS)

    Lopez Vergara, T.; Velasco Bernal, C.

    1994-01-01

    Ageing in electrical equipment affects mainly its insulation system. Such ageing in the insulation system is determined by its organic nature, basically constituted by three families of materials: cellulose, resin and hydrocarbon. All of these are affected by high temperatures, which tend to produce a break in the molecular chains (if the temperatures are not too high) or carbonization and gasification of the material (if they are). The radiation absorbed by the insulating materials also destroys molecular chains, causing degradation of the material. The break of the molecular chains, especially in the polymer-based materials, fragments the material, mainly in areas subjected to mechanical forces and stresses. From the electrical point of view, fissures occurring the insulating material lead to a much lower dielectric strength in certain parts of the materials, which could produce partial discharge conditions. Therefore, the growth of partial discharges in electrical equipment items is frequently the consequences of ageing, and be used to evaluate their residual life. Empresarios Agrupados has developed a system to detect partial discharges which can be used while equipment is still in operation. The measurements taken with this system are sufficiently accurate and repetitive to be used in evaluating the condition of medium-voltage electrical equipment insulation. (Author)

  10. Effect of Nano Al2O3 Doping on Thermal Aging Properties of Oil-Paper Insulation

    Directory of Open Access Journals (Sweden)

    Ningchuan Liang

    2018-05-01

    Full Text Available The thermal aging property of oil-paper insulation is a key factor affecting the service life of transformers. In this study, nano-Al2O3 was added to insulating paper to improve its anti-thermal aging property and delay the aging rate of the insulating oil. The composite paper containing 2% nano-Al2O3 had the highest tensile strength and therefore was selected for the thermal aging test. The composite and normal papers were treated with an accelerated thermal aging experiment at the temperature of 130 °C for 56 days. The variations of the degree of polymerization (DP and tensile strength of the insulating papers with aging time were obtained. The characteristics of the insulating oil, including color, acid content, breakdown voltage, and dielectric loss were analyzed. The results revealed that compared with a plain paper, the composite paper maintained a higher DP, and its tensile strength decreased more slowly during the aging process. The oil-impregnated composite paper presented a lighter-colored oil, less viscosity changes, and a considerably lower quantity of thermal aging products. In addition, nano-Al2O3 can effectively adsorb copper compounds and keep part of the acid products and water away from the thermal aging process. This characteristic restrained the catalysis of copper compounds and H+ in the thermal aging reaction and reduced the thermal aging speed of both the insulating paper and the insulating oil.

  11. Molecular dynamics study of water molecule diffusion in oil-paper insulation materials

    International Nuclear Information System (INIS)

    Liao Ruijin; Zhu Mengzhao; Yang Lijun; Zhou Xin; Gong Chunyan

    2011-01-01

    Moisture is an important factor that influences the safe operation of transformers. In this study, molecular dynamics was employed to investigate the diffusion behavior of water molecules in the oil-paper insulation materials of transformers. Two oil-cellulose models were built. In the first model, water molecules were initially distributed in oil, and in the second model, water molecules were distributed in cellulose. The non-bonding energies of interaction between water molecules and oil, and between water molecules and cellulose, were calculated by the Dreiding force field. The interaction energy was found to play a dominant role in influencing the equilibrium distribution of water molecules. The radial direction functions of water molecules toward oil and cellulose indicate that the hydrogen bonds between water molecules and cellulose are sufficiently strong to withstand the operating temperature of the transformer. Mean-square displacement analysis of water molecules diffusion suggests that water molecules initially distributed in oil showed anisotropic diffusion; they tended to diffuse toward cellulose. Water molecules initially distributed in cellulose diffused isotropically. This study provides a theoretical contribution for improvements in online monitoring of water in transformers, and for subsequent research on new insulation materials.

  12. Molecular dynamics study of water molecule diffusion in oil-paper insulation materials

    Energy Technology Data Exchange (ETDEWEB)

    Liao Ruijin [State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing 400044 (China); Zhu Mengzhao, E-mail: xiaozhupost@163.co [State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing 400044 (China); Yang Lijun; Zhou Xin; Gong Chunyan [State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing 400044 (China)

    2011-03-01

    Moisture is an important factor that influences the safe operation of transformers. In this study, molecular dynamics was employed to investigate the diffusion behavior of water molecules in the oil-paper insulation materials of transformers. Two oil-cellulose models were built. In the first model, water molecules were initially distributed in oil, and in the second model, water molecules were distributed in cellulose. The non-bonding energies of interaction between water molecules and oil, and between water molecules and cellulose, were calculated by the Dreiding force field. The interaction energy was found to play a dominant role in influencing the equilibrium distribution of water molecules. The radial direction functions of water molecules toward oil and cellulose indicate that the hydrogen bonds between water molecules and cellulose are sufficiently strong to withstand the operating temperature of the transformer. Mean-square displacement analysis of water molecules diffusion suggests that water molecules initially distributed in oil showed anisotropic diffusion; they tended to diffuse toward cellulose. Water molecules initially distributed in cellulose diffused isotropically. This study provides a theoretical contribution for improvements in online monitoring of water in transformers, and for subsequent research on new insulation materials.

  13. Oil, Gas, Coal and Electricity - Quarterly statistics. Second Quarter 2012

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-15

    This publication provides up-to-date and detailed quarterly statistics on oil, coal, natural gas and electricity for the OECD countries. Oil statistics cover production, trade, refinery intake and output, stock changes and consumption for crude oil, NGL and nine selected oil product groups. Statistics for electricity, natural gas, hard coal and brown coal show supply and trade. Import and export data are reported by origin and destination. Moreover, oil and hard coal production are reported on a worldwide basis.

  14. Study of application of Si2 and TiO2 nanofluids in electric oil transformers for performance analysis of thermal conductivity and dielectric rigidity

    International Nuclear Information System (INIS)

    Lopes, Daniel R.P.; Oliveira, Otávio L. de; Rocha, Marcelo da S.

    2017-01-01

    Electric transformers are essential equipment in the distribution of electrical energy as they are used for the continuous supply of electricity. For this reason it is important to study the possibilities of improving your insulation and cooling systems. The application of nanofluids in insulating mineral oils, which have a cooling and electrical insulation function, is a relevant issue in this area. In this work, the characteristics of the base mineral oil used in electric transformers with colloidal samples (nanofluids) made with the same base oil are compared using different concentrations of SiO 2 and TiO 2 nanoparticles. The characteristics of thermal conductivity and dielectric strength of nanofluid depend on nanoparticle concentrations, but the fluid must maintain all the insulation characteristics to be used in electrical transformers. The analysis will be performed through computational simulations using FEMM 2D software, applying its thermal conductivity module. The input data were taken from the characterization of samples produced with different concentrations of SiO 2 and TiO 2 nanoparticles (using the same mineral base oil). The parameters were applied in a computational model of a 50 kVA transformer, with usual geometry and natural circulation of oil (by convection) referencing electric transformers used in the market for energy conversion. This paper presents some of the results of a study of the dielectric properties and thermal conductivity of a mineral oil based nanofluid

  15. Transfer-free electrical insulation of epitaxial graphene from its metal substrate.

    Science.gov (United States)

    Lizzit, Silvano; Larciprete, Rosanna; Lacovig, Paolo; Dalmiglio, Matteo; Orlando, Fabrizio; Baraldi, Alessandro; Gammelgaard, Lauge; Barreto, Lucas; Bianchi, Marco; Perkins, Edward; Hofmann, Philip

    2012-09-12

    High-quality, large-area epitaxial graphene can be grown on metal surfaces, but its transport properties cannot be exploited because the electrical conduction is dominated by the substrate. Here we insulate epitaxial graphene on Ru(0001) by a stepwise intercalation of silicon and oxygen, and the eventual formation of a SiO(2) layer between the graphene and the metal. We follow the reaction steps by X-ray photoemission spectroscopy and demonstrate the electrical insulation using a nanoscale multipoint probe technique.

  16. Transfer-Free Electrical Insulation of Epitaxial Graphene from its Metal Substrate

    DEFF Research Database (Denmark)

    Lizzit, Silvano; Larciprete, Rosanna; Lacovig, Paolo

    2012-01-01

    High-quality, large-area epitaxial graphene can be grown on metal surfaces, but its transport properties cannot be exploited because the electrical conduction is dominated by the substrate. Here we insulate epitaxial graphene on Ru(0001) by a stepwise intercalation of silicon and oxygen......, and the eventual formation of a SiO2 layer between the graphene and the metal. We follow the reaction steps by X-ray photoemission spectroscopy and demonstrate the electrical insulation using a nanoscale multipoint probe technique....

  17. Evaluation of diagnostic technique for degradation of low-voltage electric cables with silicone rubber insulator

    International Nuclear Information System (INIS)

    Mikami, Masao

    2005-01-01

    As a part of countermeasures against ageing problems of nuclear power plants, it is requested to establish non-destructive diagnostic technique for their degradation of low voltage electric cables and assessment standard of their life. Having aimed at investigating the degradation of low-voltage electric cable with silicone rubber insulator, change of its surface hardness at elevated temperature were measured by indenter modules. Moreover, we also measured the elongation at break, which is regarded as general degradation index of electric cables, and the surface hardness with a micro hardness meter. Consequently, it is seen that the indenter modulus measurement is (1) capable to obtain general feature of the thermal degradation of silicone rubber insulator, (2) applicable to diagnose the degree of degradation of the electric cable by converting the result to elongation at break, (3) well correlated with the hardness measurement of the electric cable with the micro hardness meter. (author)

  18. Electrical Performance of Distribution Insulators with Chlorella vulgaris Growth on its Surface

    Directory of Open Access Journals (Sweden)

    Herbert Enrique Rojas Cubides

    2015-06-01

    Full Text Available This paper presents a study about electrical performance of ceramic and polymeric insulators bio-contaminated with alga Chlorella vulgaris. The performed tests involve ANSI 55-2 and ANSI 52-1 ceramic insulators and ANSI DS-15 polymeric insulators, all of them used in distribution systems of Colombia. Biological contamination of insulators is realized using a controlled environment chamber that adjusts the temperature, humidity and light radiation. The laboratory tests include measurements of flashover voltages and leakage currents and they were performed to determine how insulators are affected by biological contamination. After a series of laboratory tests, it was concluded that the presence of Chlorella vulgaris on the contaminated ceramic insulators reduces the wet flashover voltage up to 12% and increases their leakage currents up to 80%. On the other hand, for polymeric insulators the effect of algae growth on flashover voltages was not to strong, although the leakage currents increase up to 60%.

  19. Radiaton-resistant electrical insulation on the base of cement binders

    International Nuclear Information System (INIS)

    Afanas'ev, V.V.; Korenevskij, V.V.; Pisachev, S.Yu.

    1985-01-01

    The problems of designing radiation-resistant electrical insulations on the base of BATs and Talum cements for the UNK magnets operating under constant and pulse modes are discussed. The data characterizing dielectrical ad physico-mechanical properties of 25 various compositions are given. Two variants of manufacturing coils are considered: solid and with the use of asbestos tape impregnated with aluminous cement solution. The data obtained testify to the fact that the advantages of insulation on Talum cement are raised radiation resistance, high strength (particularly compression strength), weak porosity, high elasticity modulus and high thermal conductivity. BATs cement insulation is characterized by high radiation resistance, absence of shrinkage, rather low elasticity modulus and high dielectrical characteristics under normal conditions. The qualities of the solid insulation variant are its high technological effectiveness and posibility to fill up the spaces of complex configuration. In case of using as solid insulation Talum cement, however special measures for moisture removal are required. The advantage of insulation on the base of the asbestos tape is its reliability. For complex configuration magnets, however to realize is such insulation somewhat difficult

  20. Recovery of reactor electrical assemblies using differential de-encapsulation to remove dielectric insulation systems

    International Nuclear Information System (INIS)

    Hubrig, J.G.; Hammerstone, E.B.

    1986-01-01

    State-of-the-art de-encapsulation technologies associated with the conventional dielectric insulation systems employed in the construction of electrical coils and power distribution systems do not allow for accurate fatigue/failure analysis or reliable recovery of costly assembly components. Differential de-encapsulation allows for the selective removal of contemporary thermoset resin based insulation systems to allow non-destructive penetration of insulation wall thicknesses to both examine critical areas and recover high performance metallic and non-metallic inserts for remanufacture; significantly reducing replacement costs and reactor downtime. The authors' analysis describes how the availability of engineering data from the selective and non-destructive removal of insulation materials will aid in the evaluation of original manufacture, materials and procedures; enabling redesign to enhance subsequent on line performance. They also discuss why the ability to recover coil and core assemblies for remanufacture will have a major economic impact on reactor management costs

  1. Radiation Crosslinking of Small Electrical Wire Insulator Fabricated from NR-LDPE Blend

    International Nuclear Information System (INIS)

    Chyagrit, S.

    2006-01-01

    Blending of block natural rubber (STR-5L) and LDPE with phthalic anhydride (PA) as copatibilizer was put to the test for the purpose of a fabrication into small electrical wire insulator. It was found that PA at concentration of 1.0 - 1.5% in NR/PE of 50/50 so fabricated into the insulator, after gamma ray cross-linked at a dose of 180 kGy in limited air, could meet Thai Industrial Standard (TIS) 11-2531 of small eletrical insulator (<300 V). Effect of radiation dose on tensile, hardness, elongation at break, modulus 100%, limiting oxigen index (LOI) were investigated. It was noted that to comply with TIS 11-2531 for vertical flame retardance test, a suitable flame retardance was needed for the insulator

  2. Oil leakage detection for electric power equipment based on ultraviolet fluorescence effect

    Science.gov (United States)

    Zhang, Jing; Wang, Jian-hui; Xu, Bin; Huang, Zhi-dong; Huang, Lan-tao

    2018-03-01

    This paper presents a method to detect the oil leakage of high voltage power equipment based on ultraviolet fluorescence effect. The method exploits the principle that the insulating oil has the fluorescent effect under the irradiation of specific ultraviolet light. The emission spectrum of insulating oil under excitation light with different wavelengths is measured and analyzed first. On this basis, a portable oil leakage detective device for high voltage power equipment is designed and developed with a selected 365 nm ultraviolet as the excitation light and the low light level camera as the fluorescence image collector. Then, the feasibility of the proposed method and device in different conditions is experimentally verified in the laboratory environment. Finally, the developed oil leakage detective device is applied to 500 kV Xiamen substation and Quanzhou substation. And the results show that the device can detect the oil leakage of high voltage electrical equipment quickly and conveniently even under the condition of a slight oil leakage especially in the low light environment.

  3. Measurement of full-field deformation induced by a dc electrical field in organic insulator films

    Directory of Open Access Journals (Sweden)

    Boudou L.

    2010-06-01

    Full Text Available Digital image correlation method (DIC using the correlation coefficient curve-fitting for full-field surface deformation measurements of organic insulator films is investigated in this work. First the validation of the technique was undertaken. The computer-generated speckle images and the measurement of coefficient of thermal expansion (CTE of aluminium are used to evaluate the measurement accuracy of the technique. In a second part the technique is applied to measure the mechanical deformation induced by electrical field application to organic insulators. For that Poly(ethylene naphthalene 2,6-dicarboxylate (PEN thin films were subjected to DC voltage stress and DIC provides the full-field induced deformations of the test films. The obtained results show that the DIC is a practical and robust tool for better comprehension of mechanical behaviour of the organic insulator films under electrical stress.

  4. Stressed state of a cement electrical insulation of a pulsed magnet

    International Nuclear Information System (INIS)

    Korenevskij, V.V.; Sugak, E.B.; Fedorenko, L.I.

    1985-01-01

    The stresses arising in cement electrical insulation of a pulsed magnet intended for separation and scanning of beam of secondary particles with 5-10 MeV energy are investigated during its switching. The magnet represents a single-turn construction. During its switching repulsion forces arise in copper buses which affect the core consisting of a set of iron plates. In its turn two cores trying to separate transmit impact load onto cement electrical insulation, the mechanical strength of which determines the construction durability on the whole. For selection of calculation technique the method of photoelasticity is used on models of transparent polymeric materials. Epoxy resin served as material for insulation model, duraluminium for the rest of magnet parts. It is concluded that the calculation technique for the magnet under investigation is a hingeless circular arc

  5. Analysis of electrical tree propagation in XLPE power cable insulation

    International Nuclear Information System (INIS)

    Bao Minghui; Yin Xiaogen; He Junjia

    2011-01-01

    Electrical treeing is one of the major breakdown mechanisms for solid dielectrics subjected to high electrical stress. In this paper, the characteristics of electrical tree growth in XLPE samples have been investigated. XLPE samples are obtained from a commercial XLPE power cable, in which electrical trees have been grown from pin to plane in the frequency range of 4000-10,000 Hz, voltage range of 4-10 kV, and the distances between electrodes of 1 and 2 mm. Images of trees and their growing processes were taken by a CCD camera. The fractal dimensions of electric trees were obtained by using a simple box-counting technique. The results show that the tree growth rate and fractal dimension was bigger when the frequency or voltage was higher, or the distance between electrodes was smaller. Contrary to our expectation, it has been found that when the distance between electrodes changed from 1 to 2 mm, the required voltage of the similar electrical trees decreased only 1or 2 kV. In order to evaluate the difficulties of electrical tree propagation in different conditions, a simple energy threshold analysis method has been proposed. The threshold energy, which presents the minimum energy that a charge carrier in the well at the top of the tree should have to make the tree grow, has been computed considering the length of electrical tree, the fractal dimension, and the growth time. The computed results indicate that when one of the three parameters of voltage, frequency, and local electric field increase, the trends of energy threshold can be split into 3 regions.

  6. A Classroom Activity for Teaching Electric Polarization of Insulators and Conductors

    Science.gov (United States)

    Deligkaris, Christos

    2018-01-01

    The phenomenon of electric polarization is crucial to student understanding of forces exerted between charged objects and insulators or conductors, the process of charging by induction, and the behavior of electroscopes near charged objects. In addition, polarization allows for microscopic-level models of everyday-life macroscopic-level phenomena.…

  7. First-principles calculation of electric field gradients in metals, semiconductors, and insulators

    Energy Technology Data Exchange (ETDEWEB)

    Zwanziger, J.W. [Dalhousie Univ, Dept Chem, Halifax, NS (Canada); Dalhousie Univ, Inst Res Mat, Halifax, NS (Canada); Torrent, M. [CEA Bruyeres-le-Chatel, Dept Phys Theor and Appl, Bruyeres 91 (France)

    2008-07-01

    A scheme for computing electric field gradients within the projector augmented wave (PAW) formalism of density functional theory is presented. On the basis of earlier work (M. Profeta, F. Mauri, C.J. Pickard, J. Am. Chem. Soc. 125, 541, 2003) the present implementation handles metallic cases as well as insulators and semiconductors with equal efficiency. Details of the implementation, as well as applications and the discussion of the limitations of the PAW method for computing electric field gradients are presented. (authors)

  8. Effect of applied DC voltages and temperatures on space charge behaviour of multi-layer oil-paper insulation

    Energy Technology Data Exchange (ETDEWEB)

    Tang Chao; Liao Ruijin [The State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University (China); Chen, G [School of Electronics and Computer Science, University of Southampton (United Kingdom); Fu, M, E-mail: tangchao_1981@163.co [AVERA T and D Technology Centre, Stafford (United Kingdom)

    2009-08-01

    In this paper, space charge in a multi-layer oil-paper insulation system was investigated using the pulsed electroacoustic (PEA) technique. A series of measurements had been carried following subjection of the insulation system to different applied voltages and different temperatures. Charge behaviours in the insulation system were analyzed and the influence of temperature on charge dynamics was discussed. The test results shows that homocharge injection takes place under all the test conditions, the applied DC voltage mainly affects the amount of space charge, while the temperature has greater influence on the distribution and mobility of space charge inside oil-paper samples.

  9. Estimation of the diameter-charge distribution in polydisperse electrically charged sprays of electrically insulating liquids

    Science.gov (United States)

    Rigit, A. R. H.; Shrimpton, John S.

    2009-06-01

    The majority of scientific and industrial electrical spray applications make use of sprays that contain a range of drop diameters. Indirect evidence suggests the mean drop diameter and the mean drop charge level are usually correlated. In addition, within each drop diameter class there is every reason to suspect a distribution of charge levels exist for a particular drop diameter class. This paper presents an experimental method that uses the joint PDF of drop velocity and diameter, obtained from phase Doppler anemometry measurements, and directly obtained spatially resolved distributions of the mass and charge flux to obtain a drop diameter and charge frequency distribution. The method is demonstrated using several data-sets obtained from experimental measurements of steady poly-disperse sprays of an electrically insulating liquid produced with the charge injection technique. The space charge repulsion in the spray plume produces a hollow cone spray structure. In addition an approximate self-similarity is observed, with the maximum radial mass and charge flow occurring at r/ d ~ 200. The charge flux profile is slightly offset from the mass flux profile, and this gives direct evidence that the spray specific charge increases from approximately 20% of the bulk mean spray specific charge on the spray axis to approximately 200% of the bulk mean specific charge in the periphery of the spray. The results from the drop charge estimation model suggest a complex picture of the correlation between drop charge and drop diameter, with spray specific charge, injection velocity and orifice diameter all contributing to the shape of the drop diameter-charge distribution. Mean drop charge as a function of the Rayleigh limit is approximately 0.2, and is invariant with drop diameter and also across the spray cases tested.

  10. Estimation of the diameter-charge distribution in polydisperse electrically charged sprays of electrically insulating liquids

    Energy Technology Data Exchange (ETDEWEB)

    Rigit, A.R.H. [University of Sarawak, Faculty of Engineering, Kota Samarahan, Sarawak (Malaysia); Shrimpton, John S. [University of Southampton, Energy Technology Research Group, School of Engineering Sciences, Southampton (United Kingdom)

    2009-06-15

    The majority of scientific and industrial electrical spray applications make use of sprays that contain a range of drop diameters. Indirect evidence suggests the mean drop diameter and the mean drop charge level are usually correlated. In addition, within each drop diameter class there is every reason to suspect a distribution of charge levels exist for a particular drop diameter class. This paper presents an experimental method that uses the joint PDF of drop velocity and diameter, obtained from phase Doppler anemometry measurements, and directly obtained spatially resolved distributions of the mass and charge flux to obtain a drop diameter and charge frequency distribution. The method is demonstrated using several data-sets obtained from experimental measurements of steady poly-disperse sprays of an electrically insulating liquid produced with the charge injection technique. The space charge repulsion in the spray plume produces a hollow cone spray structure. In addition an approximate self-similarity is observed, with the maximum radial mass and charge flow occurring at r/d{proportional_to}200. The charge flux profile is slightly offset from the mass flux profile, and this gives direct evidence that the spray specific charge increases from approximately 20% of the bulk mean spray specific charge on the spray axis to approximately 200% of the bulk mean specific charge in the periphery of the spray. The results from the drop charge estimation model suggest a complex picture of the correlation between drop charge and drop diameter, with spray specific charge, injection velocity and orifice diameter all contributing to the shape of the drop diameter-charge distribution. Mean drop charge as a function of the Rayleigh limit is approximately 0.2, and is invariant with drop diameter and also across the spray cases tested. (orig.)

  11. Intermetallic and electrical insulator coatings on high-temperature alloys in liquid-lithium environments

    International Nuclear Information System (INIS)

    Park, J.H.

    1994-06-01

    In the design of liquid-metal cooling systems for fusion-reactor blanket, applications, the corrosion resistance of structural materials and the magnetohydrodynamic (MHD) force and its subsequent influence on thermal hydraulics and corrosion are major concerns. When the system is cooled by liquid metals, insulator coatings are required on piping surfaces in contact with the coolant. The objective of this study is to develop stable corrosion-resistant electrical insulator coatings at the liquid-metal/structural-material interface, with emphasis on electrically insulating coatings that prevent adverse MHD-generated currents from passing through the structural wall, and Be-V intermetallic coatings for first-wall components that face the plasma. Vanadium and V-base alloys are leading candidate materials for structural applications in a fusion reactor. Various intermetallic films were produced on V-alloys and on Types 304 and 316 stainless steel. The intermetallic layers were developed by exposure of the materials to liquid Li containing 2 at temperatures of 500--1030 degree C. CaO electrical insulator coatings were produced by reaction of the oxygen-rich layer with <5 at. % Ca dissolved in liquid Li at 400--700 degree C. The reaction converted the oxygen-rich layer to an electrically insulating film. This coating method is applicable to reactor components because the liquid metal can be used over and over; only the solute within the liquid metal is consumed. This paper will discuss initial results on the nature of the coatings and their in-situ electrical resistivity characteristics in liquid Li at high temperatures

  12. Electrical Insulation Of Carbon Nanotube Separation Columns For Microchip Electrochromatography

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo; Chen, Miaoxiang Max; Mølhave, Kristian

    2011-01-01

    Carbon nanotubes (CNT) have been grown in microfluidic glass channels for chemical analysis based on electrokinetic separations. A limitation of CNTs for this type of application is their high conductivity, which prevent them from being used for electroosmotic pumping with electrical field streng...

  13. Development of high-mechanical strength electrical insulations for tokamak toroidal field coils

    International Nuclear Information System (INIS)

    Burke, C.

    1977-01-01

    The electrical insulation for the TF (Toroidal Field) coils is subjected to a high interlaminar shear, tensile and compressive stresses. Two candidate epoxy/glass fiber systems using prepreg and vacuum impregnation techniques were evaluated. Specimens were prepared and processed under controlled conditions to simulate specification manufacturing procedures. The strengths of the insulation were measured in interlaminar shear, tension, compression, and combined shear and compression statically. Shear modulus determinations were also made. Various techniques of surface treatments to increase bond strengths with three resin primers were tested

  14. Electroluminescence and electrical degradation of insulating polymers at electrode interfaces under divergent fields

    Science.gov (United States)

    Zhang, Shuai; Li, Qi; Hu, Jun; Zhang, Bo; He, Jinliang

    2018-04-01

    Electrical degradation of insulating polymers at electrode interfaces is an essential factor in determining long-term reliability. A critical challenge is that the exact mechanism of degradation is not fully understood, either experimentally or theoretically, due to the inherent complex processes. Consequently, in this study, we investigate electroluminescence (EL) at the interface of an electrode and insulator, and determine the relationship between EL and electrical degradation. Using a tip-plate electrode structure, the unique features of EL under a highly divergent field are investigated. The voltage type (alternating or direct current), the polymer matrix, and the time of pressing are also investigated separately. A study of EL from insulators under a divergent field is provided, and the relationship between EL spectra and degradation is discussed. It is shown that EL spectra under a divergent field have unique characteristics compared with EL spectra from polymer films under a uniform field and the most obvious one is the UV emission. The results obtained in the current investigation bring us a step closer to understanding the process of electrical degradation and provide a potential way to diagnose insulator defects.

  15. Electrically insulating films deposited on V-4%Cr-4%Ti by reactive CVD

    International Nuclear Information System (INIS)

    Park, J.H.

    1998-04-01

    In the design of liquid-metal blankets for magnetic fusion reactors, corrosion resistance of structural materials and the magnetohydrodynamic forces and their influence on thermal hydraulics and corrosion are major concerns. Electrically insulating CaO films deposited on V-4%Cr-4%Ti exhibit high-ohmic insulator behavior even though a small amount of vanadium from the alloy become incorporated into the film. However, when vanadium concentration in the film is > 15 wt.%, the film becomes conductive. When the vanadium concentration is high in localized areas, a calcium vanadate phase that exhibits semiconductor behavior can form. The objective of this study is to evaluate electrically insulating films that were deposited on V-4%Cr-4%Ti by a reactive chemical vapor deposition (CVD) method. To this end, CaO and Ca-V-O coatings were produced on vanadium alloys by CVD and by a metallic-vapor process to investigate the electrical resistance of the coatings. The authors found that the Ca-V-O films exhibited insulator behavior when the ratio of calcium concentration to vanadium concentration R in the film > 0.9, and semiconductor or conductor behavior when R 0.98 were exposed in liquid lithium. Based on these studies, they conclude that semiconductor behavior occurs if a conductive calcium vanadate phase is present in localized regions in the CaO coating

  16. Epoxy/α-alumina nanocomposite with high electrical insulation performance

    Directory of Open Access Journals (Sweden)

    Yun Chen

    2017-10-01

    Full Text Available An experimental study was conducted to improve the electrical insulation of epoxy resin. The effects of boehmite, γ-alumina and α-alumina nanoparticles on the volume resistivity, dielectric strength and glass transition temperature of epoxy nanocomposites were investigated. The results showed that α-alumina nanoparticles displayed obvious advantages in enhancing electrical insulation performance of epoxy nanocomposites, compared to boehmite and γ-alumina nanoparticles. The direct current volume resistivity and breakdown strength of epoxy nanocomposite with 2.0 wt% α-alumina nanoparticles was improved to 2.2 × 1018 Ω cm and 76.1 kV mm−1 respectively. And these improved values of electrical insulation properties are much higher than these of epoxy nanocomposites reported in previous studies. The main reason of these improvements may be that the epoxy/α-alumina interaction zone was enhanced by crosslink. Keywords: Nanocomposite, Epoxy resin, Insulation, α-alumina

  17. The research of full automatic oil filtering control technology of high voltage insulating oil

    Science.gov (United States)

    Gong, Gangjun; Zhang, Tong; Yan, Guozeng; Zhang, Han; Chen, Zhimin; Su, Chang

    2017-09-01

    In this paper, the design scheme of automatic oil filter control system for transformer oil in UHV substation is summarized. The scheme specifically includes the typical double tank filter connection control method of the transformer oil of the UHV substation, which distinguishes the single port and the double port connection structure of the oil tank. Finally, the design scheme of the temperature sensor and respirator is given in detail, and the detailed evaluation and application scenarios are given for reference.

  18. Field-dependent molecular ionization and excitation energies: Implications for electrically insulating liquids

    Directory of Open Access Journals (Sweden)

    N. Davari

    2014-03-01

    Full Text Available The molecular ionization potential has a relatively strong electric-field dependence as compared to the excitation energies which has implications for electrical insulation since the excited states work as an energy sink emitting light in the UV/VIS region. At some threshold field, all the excited states of the molecule have vanished and the molecule is a two-state system with the ground state and the ionized state, which has been hypothesized as a possible origin of different streamer propagation modes. Constrained density-functional theory is used to calculate the field-dependent ionization potential of different types of molecules relevant for electrically insulating liquids. The low singlet-singlet excitation energies of each molecule have also been calculated using time-dependent density functional theory. It is shown that low-energy singlet-singlet excitation of the type n → π* (lone pair to unoccupied π* orbital has the ability to survive at higher fields. This type of excitation can for example be found in esters, diketones and many color dyes. For alkanes (as for example n-tridecane and cyclohexane on the other hand, all the excited states, in particular the σ → σ* excitations vanish in electric fields higher than 10 MV/cm. Further implications for the design of electrically insulating dielectric liquids based on the molecular ionization potential and excitation energies are discussed.

  19. Effect of thermal insulation on the electrical characteristics of NbOx threshold switches

    Science.gov (United States)

    Wang, Ziwen; Kumar, Suhas; Wong, H.-S. Philip; Nishi, Yoshio

    2018-02-01

    Threshold switches based on niobium oxide (NbOx) are promising candidates as bidirectional selector devices in crossbar memory arrays and building blocks for neuromorphic computing. Here, it is experimentally demonstrated that the electrical characteristics of NbOx threshold switches can be tuned by engineering the thermal insulation. Increasing the thermal insulation by ˜10× is shown to produce ˜7× reduction in threshold current and ˜45% reduction in threshold voltage. The reduced threshold voltage leads to ˜5× reduction in half-selection leakage, which highlights the effectiveness of reducing half-selection leakage of NbOx selectors by engineering the thermal insulation. A thermal feedback model based on Poole-Frenkel conduction in NbOx can explain the experimental results very well, which also serves as a piece of strong evidence supporting the validity of the Poole-Frenkel based mechanism in NbOx threshold switches.

  20. Insulating wall materials for MHD electric power generating channels, 1

    International Nuclear Information System (INIS)

    Nakamura, Kazuo; Okubo, Tsutomu; Maeda, Minoru

    1984-01-01

    The various kinds of ceramic specimens were soaked in molten K 2 SO 4 at 1300 0 C for 300 hrs, the changes in porosity, volume and weight before and after the tests (hereafter, referred as the amount of change) were measured and the corrosion resistance was examined from the calculated corrosion velocity. 1) MgO and MgO-Al 2 O 3 System. Reaction products were not found, the amount of change was small, and the electrical resistivity and corrosion resistance were good. 2) MgO-BN, ZrO 2 -BN and MgO-SrZrO 3 -BN System. Of all these systems, BN in the specimens disappeared, and it turned into B 2 O 3 or other boron compounds. This reaction caused the cracking and collapse of the specimens. 3) MgO-Si 3 N 4 and MgAl 2 O 4 -Si 3 N 4 System. The specimens were attacked by molten K 2 SO 4 , resulting in the large amount of change, and the reaction layer was formed on the surface. 4) Al 2 O 3 -AlN-Si 3 N 4 System. Although the specimens were attacked by molten K 2 SO 4 , the dense specimens with about 40 mol % Si 3 N 4 showed a very small amount of change, and the deterioration of electrical resistivity was small. The durability of MHD power generating operation might be improved by further controlling the production process and composition. (author)

  1. Updated Aging Assessment Approach and Use with Electric Cable Insulation

    International Nuclear Information System (INIS)

    Horvath, David A.; Colaianni, R. Paul

    2003-01-01

    The service life of nuclear power plant equipment may include operation beyond the original design or qualified life. A technical basis is necessary to demonstrate that critical equipment is capable of continued safe operation for any life extension and renewed license term. Such a technical basis is also useful in addressing initial license term aging degradation, age-related failures, and maintenance issues. Early approaches for addressing aging effects developed for environmental qualification programs in the 1980s were incorporated into the Institute of Electrical and Electronic Engineers' (IEEE) IEEE Std. 1205-1993. However, subsequently, a number of events (including promulgation of the Maintenance Renewal Rule, the new License Renewal Rule, and initial plant owner submittals of License Renewal applications) have resulted in improved aging management approaches, which focus on addressing aging effects rather than attempting to identify and mitigate every possible aging mechanism.An example of a major issue facing nuclear power plants as they mature is the general health of the plant electrical cables. This issue came to the forefront as plants began preparing for license renewal, which requires an evaluation of cables to demonstrate that they will perform their function 20 yr beyond the original 40-yr license period. When the two lead plants started preparing for license renewal, there was no generally accepted approach to the bulk evaluation of plant cables, and there were many who thought it not possible to perform a complete plant cable evaluation. The approaches that emerged from the lead plant reviews demonstrated that an assessment of the general health of plant cables could be performed.IEEE's Nuclear Power Engineering Committee recognized the need to capture these improved approaches. A 2 1/2-yr effort of the IEEE Subcommittee-3 Working Group 3.4 culminating in IEEE Std. 1205-2000 is the consensus of representatives from the two lead license renewal

  2. Insulating and sheathing materials of electric and optical cables - Common test methods - Part 5-1: Methods specific to filling compounds - Drop-point - Separation of oil - Lower temperature brittleness - Total acid number - Absence of corrosive components - Permittivity at 23 °C - DC resistivity at 23 °C and 100 °C

    CERN Document Server

    International Electrotechnical Commission. Geneva

    2004-01-01

    Specifies the test methods for filling compounds of electric cables used with telecommunication equipment. Gives the methods for drop-point, separation of oil, lower temperature brittleness, total acid number, absence of corrosive components, permittivity at 23 °C, d.c. resistivity at 23°C and 100°C.

  3. Effect of resin composition to the electrical and mechanical properties of high voltage insulator material

    International Nuclear Information System (INIS)

    Totok Dermawan; Elin Nuraini; Suyamto

    2012-01-01

    A solid insulator manufacture of resins for high voltage with a variation of resin and hardener composition has been made. The purpose of research to know electrical and mechanical properties of high voltage insulator material of resin. To determine its electric properties, the material is tested its breakdown voltage and the flashover voltage that occurred on the surface. While to determine the mechanical properties were tested by measuring its strength with a tensile test. From testing with variety of mixed composition it is known that for composition between hardener and resin of 1 : 800 has most advantageous properties because it has good strength with a tensile strength of 19.86 MPa and enough high dielectric strength of 43.2 kV / mm). (author)

  4. Investigation of electrophysical properties of electrical insulating materials under neutron irradiation

    International Nuclear Information System (INIS)

    Skornyakov, Yu.A.; Stepanov, A.N.; Lapenas, A.A.

    1978-01-01

    The possibilities of applicaiton of insulating materials on the basis of glass cloths in electric windings for operation under neutron radiation of thermonuclear devices are studied. Changes in the specimen resistance, tangent of the angle of dielectric losses, electric strength according to the value of neutron fluence are determined. The temperature regimes are also studied. The data indicate the irreversible changes in the composition and structure of the polymer material under irradiation. The LSMI 228L-80 glass cloth has the highest radiation resistance. The necessity of forced cooling of large-sized specimens under the neutron radiation the IRT-200 reactor is established. The presence of impurities leading to the long-term induced activity of the insulating materials ( 59 Fe, 60 Co) is determined

  5. Radiation resistance of insulating materials for electric wires

    International Nuclear Information System (INIS)

    Kanemitsuya, Kazuhiko; Okuda, Tomoaki; Tachibana, Tadao; Yagi, Toshiaki; Seguchi, Tadao.

    1990-01-01

    In no halogen incombustible materials, smoke and poisonous gas generation at the time of burning is small, and corrosive gas rarely arises. Since no halogen electric wires and cables which use these material maintain safety for people and equipment in the case of fires, those are used for ships, tunnels, subways and so on. Also in nuclear power stations, the demand for no halogen cables becomes high although the condition of adoption is difficult. In this study, for the purpose of developing the no halogen cables for nuclear power stations, the basic data on the radiation resistance of no halogen incombustible materials were collected, and by using chemical analysis method, the radiation deterioration behavior was examined. The samples were those with base polymers of VLDPE, ULDPE, EEA, EMA and EVA. Gamma ray irradiation, tensile test, chemi-luminescence measurement, and the determination of gel fraction and swelling rate were carried out. The results are reported, In no halogen materials, when ethylene system copolymer is used as the base polymer instead of PE, the composition with good radiation resistance can be obtained, and by combining amine oxidation inhibitor, it is further improved. (K.I.)

  6. Electric properties of semi-insulating crystals CdTe:Cl

    International Nuclear Information System (INIS)

    Arkadyeva, E.N.; Matveev, O.A.

    1977-01-01

    Hall effect and conductivity measurement were carried out on chlorine doped semi-insulating CdTe crystals, of p and n electric type. In p type crystals the depth of the dominating level was determined (+0.7eV) as well as the concentration of associated centres (10 13 -10 14 cm -3 ). The mobility values are limited by a process of diffusion on heterogeneities

  7. Features of electric drive sucker rod pumps for oil production

    Science.gov (United States)

    Gizatullin, F. A.; Khakimyanov, M. I.; Khusainov, F. F.

    2018-01-01

    This article is about modes of operation of electric drives of downhole sucker rod pumps. Downhole oil production processes are very energy intensive. Oil fields contain many oil wells; many of them operate in inefficient modes with significant additional losses. Authors propose technical solutions to improve energy performance of a pump unit drives: counterweight balancing, reducing of electric motor power, replacing induction motors with permanent magnet motors, replacing balancer drives with chain drives, using of variable frequency drives.

  8. Ageing Study of Palm Oil and Coconut Oil in the Presence of Insulation Paper for Transformers Application

    Science.gov (United States)

    Mohamad, Nur Aqilah; Azis, Norhafiz; Jasni, Jasronita; Yunus, Robiah; Yaakub, Zaini

    2018-01-01

    This paper presents a sealed ageing study of palm oil (PO) and coconut oil (CO) in the presence of insulation paper. The type of PO under study is refined, bleached, and deodorized palm oil (RBDPO) olein. Three different variations of RBDPO and one sample of CO are aged at temperatures of 90 °C, 110 °C, and 130 °C. The properties of RBDPO and CO as well as paper under ageing are then analysed through dielectric and physicochemical measurements. It is found that the effect of ageing is not significant on the alternating current (AC) breakdown voltages and relative permittivities of RBDPO and CO. There is a slight increment trend of the resistivity for CO, while for all of the RBDPO, the resistivity slightly decreases as the ageing progresses. Only CO shows an apparent reduction of the dielectric dissipation factor. Throughout the ageing time, the acidities of all of the RBDPO and CO remain at low level, while the moisture in oils decreases. The tensile index (TI) of the papers for all of the RBDPO and CO retain more than 50% of the TI. A significant increment of the paper ageing rates of all of the RBDPO and CO is observed at an ageing temperature of 130 °C. PMID:29601520

  9. Ageing Study of Palm Oil and Coconut Oil in the Presence of Insulation Paper for Transformers Application

    Directory of Open Access Journals (Sweden)

    Nur Aqilah Mohamad

    2018-03-01

    Full Text Available This paper presents a sealed ageing study of palm oil (PO and coconut oil (CO in the presence of insulation paper. The type of PO under study is refined, bleached, and deodorized palm oil (RBDPO olein. Three different variations of RBDPO and one sample of CO are aged at temperatures of 90 °C, 110 °C, and 130 °C. The properties of RBDPO and CO as well as paper under ageing are then analysed through dielectric and physicochemical measurements. It is found that the effect of ageing is not significant on the alternating current (AC breakdown voltages and relative permittivities of RBDPO and CO. There is a slight increment trend of the resistivity for CO, while for all of the RBDPO, the resistivity slightly decreases as the ageing progresses. Only CO shows an apparent reduction of the dielectric dissipation factor. Throughout the ageing time, the acidities of all of the RBDPO and CO remain at low level, while the moisture in oils decreases. The tensile index (TI of the papers for all of the RBDPO and CO retain more than 50% of the TI. A significant increment of the paper ageing rates of all of the RBDPO and CO is observed at an ageing temperature of 130 °C.

  10. Ageing Study of Palm Oil and Coconut Oil in the Presence of Insulation Paper for Transformers Application.

    Science.gov (United States)

    Mohamad, Nur Aqilah; Azis, Norhafiz; Jasni, Jasronita; Ab Kadir, Mohd Zainal Abidin; Yunus, Robiah; Yaakub, Zaini

    2018-03-30

    This paper presents a sealed ageing study of palm oil (PO) and coconut oil (CO) in the presence of insulation paper. The type of PO under study is refined, bleached, and deodorized palm oil (RBDPO) olein. Three different variations of RBDPO and one sample of CO are aged at temperatures of 90 °C, 110 °C, and 130 °C. The properties of RBDPO and CO as well as paper under ageing are then analysed through dielectric and physicochemical measurements. It is found that the effect of ageing is not significant on the alternating current (AC) breakdown voltages and relative permittivities of RBDPO and CO. There is a slight increment trend of the resistivity for CO, while for all of the RBDPO, the resistivity slightly decreases as the ageing progresses. Only CO shows an apparent reduction of the dielectric dissipation factor. Throughout the ageing time, the acidities of all of the RBDPO and CO remain at low level, while the moisture in oils decreases. The tensile index (TI) of the papers for all of the RBDPO and CO retain more than 50% of the TI. A significant increment of the paper ageing rates of all of the RBDPO and CO is observed at an ageing temperature of 130 °C.

  11. Experimental study on the effects of AC electric fields on flame spreading over polyethylene-insulated electric-wire

    KAUST Repository

    Jin, Young Kyu

    2010-11-01

    In this present study, we experimentally investigated the effects of electric fields on the characteristics of flames spreading over electric-wires with AC fields. The dependence of the rate at which a flame spreads over polyethylene-insulated wires on the frequency and amplitude of the applied AC electric field was examined. The spreading of the flame can be categorized into linear spreading and non-linearly accelerated spreading of flame. This categorization is based on the axial distribution of the field strength of the applied electric field. The rate at which the flame spreads is highly dependent on the inclined direction of the wire fire. It could be possible to explain the spreading of the flame on the basis of thermal balance. © 2010 The Korean Society of Mechanical Engineers.

  12. Formation of electrically insulating coatings on aluminided vanadium-base alloys in liquid lithium

    International Nuclear Information System (INIS)

    Park, J.H.; Dragel, G.

    1993-01-01

    Aluminide coatings were produced on vanadium and vanadium-base alloys by exposure of the materials to liquid lithium that contained 3-5 at.% dissolved aluminum in sealed capsules at temperatures between 775 and 880 degrees C. Reaction of the aluminide layer with dissolved nitrogen in liquid lithium provides a means of developing an in-situ electrical insulator coating on the surface of the alloys. The electrical resistivity of A1N coatings on aluminided V and V-20 wt.% Ti was determined in-situ

  13. Low Frequency Dispersion Mechanism of Dielectric Response for Oil-paper Insulation Diagnosis

    Institute of Scientific and Technical Information of China (English)

    ZHOU Lijun; LI Xianlang; WU Guangning

    2013-01-01

    Both the real part and imaginary part of complex permittivity approximately have a log-linear frequency dependency at low frequencies,especially at ultra-low frequencies under conditions of different moisture concentrations and temperatures,which is recognized as the low frequency dispersion (LFD).In order to explain this dispersion,a new mechanism of dielectric response of LFD of oil-paper insulation is proposed.A simplified one-dimensional mathematical model of concentration polarization carrier caused by slow migration is developed and solved,which indicates that ion mobility is closely related to the size of gap and the adsorption capacity of cellulose molecular chains to ions.A stochastic statistical model of the carrier mobility induced LFD is also developed.Moreover,actual tests under 50 ℃and 2% moisture content were put forward,as well as simulations with according current waveforms.The simulation results agreed well with the experimental data in that concentration polarization of carriers caused by slow migration is the probable cause of low frequency dispersion ofdielectric response for oil-paper insulation diagnosis.

  14. Improved model of activation energy absorption for different electrical breakdowns in semi-crystalline insulating polymers

    Science.gov (United States)

    Sima, Wenxia; Jiang, Xiongwei; Peng, Qingjun; Sun, Potao

    2018-05-01

    Electrical breakdown is an important physical phenomenon in electrical equipment and electronic devices. Many related models and theories of electrical breakdown have been proposed. However, a widely recognized understanding on the following phenomenon is still lacking: impulse breakdown strength which varies with waveform parameters, decrease in the breakdown strength of AC voltage with increasing frequency, and higher impulse breakdown strength than that of AC. In this work, an improved model of activation energy absorption for different electrical breakdowns in semi-crystalline insulating polymers is proposed based on the Harmonic oscillator model. Simulation and experimental results show that, the energy of trapped charges obtained from AC stress is higher than that of impulse voltage, and the absorbed activation energy increases with the increase in the electric field frequency. Meanwhile, the frequency-dependent relative dielectric constant ε r and dielectric loss tanδ also affect the absorption of activation energy. The absorbed activation energy and modified trap level synergistically determine the breakdown strength. The mechanism analysis of breakdown strength under various voltage waveforms is consistent with the experimental results. Therefore, the proposed model of activation energy absorption in the present work may provide a new possible method for analyzing and explaining the breakdown phenomenon in semi-crystalline insulating polymers.

  15. Theory of the electric current transmission coefficient in the superconductor-insulator-superconductor geometry

    International Nuclear Information System (INIS)

    Navani, R.

    1974-01-01

    Tunneling in the superconductor-insulator-superconductor (S'-I-S) geometry, where the two superconductors are not necessarily the same, is studied theoretically. Two different models of the S'-I-S geometry - which we call the ''initial model'' and the ''improved model'' are discussed. For the initial model the potential barrier is flat. In the improved model, however, the differing material properties of the three regions - S', I, and S - are taken into account in an approximate fashion. In addition, applied, contact, and image potentials in the insulator are included. The solid state material properties that are taken to be different are the effective electronic masses in the three regions and the Fermi energies in the two superconductors. The quasiparticle wave functions in the S', I, and S regions are determined for both models as solutions to the Bogoliubov-de Gennes equations. The electric current transmission coefficients (also the reflection coefficient for the initial model) are derived and their behavior is extensively analyzed. Their forms in the thick barrier limit - where L greater than or approximately equal to 5 A - are related to the BCS densities of states. The tunneling current density is found to depend strongly on the tunneling angle. A relation between the angular position of the tunneling current peak and the barrier thickness is given. Finally, it is shown that the choice of insulator material effects the tunneling current, and the effect is greater the thicker the insulating film

  16. Radiation cross-linking of small electrical wire insulator fabricated from NR/LDPE blends

    Energy Technology Data Exchange (ETDEWEB)

    Siri-Upathum, Chyagrit [Department of Nuclear Technology, Faculty of Engineering Chulalongkorn University, Bangkok 10330 (Thailand)], E-mail: chyagrit@chula.ac.th; Punnachaiya, Suvit [Department of Nuclear Technology, Faculty of Engineering Chulalongkorn University, Bangkok 10330 (Thailand)

    2007-12-15

    A low voltage, radiation-crosslinked wire insulator has been fabricated from blends of natural rubber block (STR-5L) and LDPE with phthalic anhydride (PA) as a compatibilizer. Physical properties of the NR/LDPE blend ratios of 50/50 and 60/40 with 0.5, 1.0, and 1.5 wt% PA were evaluated. The gel content increased as the radiation dose increased. Tensile at break exhibited a maximum value of 12 MPa at 120 kGy for 1.0 and 1.5 wt% PA of both blend ratios. A higher PA content yielded a higher modulus for the same blend ratio. Blends of 60/40 ratio with 1.0 wt% PA and 0.8 wt% antimony oxide flame retardant gave the highest limiting oxygen index (LOI) of >30% at above 150 kGy. Other electrical properties of the wire insulator were investigated. It was found that an insulator fabricated from a PA content of 1.0 wt% in the NR/LDPE blend ratio of 50/50, after gamma ray cross-linked at a dose of 180 kGy in low vacuum (1 mm Hg), met the Thai Industrial Standard 11-2531 for low voltage wire below 1.0 kV. To comply with the standard for vertical flame test, a more suitable flame retardant was needed for the insulator.

  17. Electrical insulation characteristics of liquid helium under high speed rotating field

    International Nuclear Information System (INIS)

    Ishii, I.; Fuchino, S.; Okano, M.; Tamada, N.

    1996-01-01

    Electrical breakdown behavior of liquid helium was investigated under high speed rotating field. In the development of superconducting turbine generator it is essential to get the knowledge of electrical insulation characteristics of liquid helium under high speed rotating field. When the current of the field magnet of a superconducting generator is changed, changing magnetic field generates heat in the conductor and it causes bubbles in the liquid helium around the conductor. The behavior of the bubbles is affected largely by the buoyancy which is generated by the centrifugal force. Electrical breakdown behavior of the liquid helium is strongly dependent on the gas bubbles in the liquid. Electrical breakdown voltage between electrodes was measured in a rotating cryostat with and without heater input for bubble formation. Decrease of the breakdown voltage by the heater power was smaller in the rotating field than that in the non rotating field

  18. World electricity generation, nuclear power, and oil markets

    International Nuclear Information System (INIS)

    1990-01-01

    Striking changes have characterized the world's production and use of energy over the past 15 years. Most prominent have been the wide price fluctuations, politicization of world oil prices and supply, along with profound changes in patterns of production and consumption. This report, based on a study by energy analysts at Science Concepts, Inc., in the United States, traces changes in world energy supply since 1973-74 - the time of the first oil ''price shocks''. In so doing, it identifies important lessons for the future. The study focused in particular on the role of the electric power sector because the growth in fuel use in it has been accomplished without oil. Instead, the growth has directly displaced oil. In the pre-1973 era, the world relied increasingly on oil for many energy applications, including the production of electricity. By 1973, more than on-fourth of the world's electricity was produced by burning oil. By 1987, however, despite a large increase in electric demand, the use of oil was reigned back to generating less than 10% of the world's electricity. Nuclear power played a major role in this turnaround. From 1973-87, analysts at Science Concepts found, nuclear power displaced the burning of 11.7 billion barrels of oil world-wide and avoided US $323 billion in oil purchases

  19. Characterization of ceramic electrical insulators discarded by the electricity distribution networks and compared with similar products without use

    International Nuclear Information System (INIS)

    Franco, C.S.; Mantovani, V.A.; Favero, M.; Morales, J.; Hasegawa, H.L.

    2010-01-01

    The maintenance of distribution networks for electricity generates a large amount of waste. Among these, one of the most representative weights is from porcelain, found in para-rays, braces, insulators. The aim of this study was to evaluate the recycling potential of two models of ceramic insulators, new and used. It had been subjected to comparative tests of scanning electron microscopy, coupled with Energy Dispersive Spectroscopy, x-ray diffraction, contact angle, volatile content and density. In general, samples of new and used ceramic showed no differences that might be associated of material degradation by using. This indicates that the materials discarded and new ones are very close, which may encourage the reuse and recycling. (author)

  20. Ideology of a multiparametric system for estimating the insulation system of electric machines on the basis of absorption testing methods

    Science.gov (United States)

    Kislyakov, M. A.; Chernov, V. A.; Maksimkin, V. L.; Bozhin, Yu. M.

    2017-12-01

    The article deals with modern methods of monitoring the state and predicting the life of electric machines. In 50% of the cases of failure in the performance of electric machines is associated with insulation damage. As promising, nondestructive methods of control, methods based on the investigation of the processes of polarization occurring in insulating materials are proposed. To improve the accuracy of determining the state of insulation, a multiparametric approach is considered, which is a basis for the development of an expert system for estimating the state of health.

  1. Effect of artificial aging on polymeric surge arresters and polymer insulators for electricity distribution networks

    Directory of Open Access Journals (Sweden)

    Carlos A. Ferreira

    2011-01-01

    Full Text Available A study was conducted to evaluate new and laboratory-aged samples of surge arresters and anchorage polymeric insulators, for 12 and 24 kV networks, which are used by the Rio Grande Energia (RGE. Power Utility Polymeric compounds were analyzed by Differential Scanning Calorimetry (DSC, Thermogravimetric Analysis (TG, Dynamic-Mechanic Analysis (DMA, Fourier Transformed Infrared Spectroscopy (FTIR and Scanning Electronic Microscopy (SEM to verify changes in the insulator properties due to degradation occurred during the experiments. The analyses were carried out before and after 6 months of aging in laboratory devices (weatherometer, 120 °C, salt spray, immersion in water. After the aging experiments, high-voltage electrical tests were also conducted: a radio interference voltage test and, simultaneously, the total and the internal leakage currents were measured to verify the surface degradation of the polymeric material used in the housing. The impulse current test was applied with current values close to 5, 10 and 30 kA, in order to force an internal degradation. Results showed that only surface degradation is detected at the polymer. The main properties of the parts were not affected by the aging. It confirms that polymer insulator and surge arrestor are appropriate for use in electricity distribution networks.

  2. Effect of artificial aging on polymeric surge arresters and polymer insulators for electricity distribution networks

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Carlos A.; Coser, E. [Laboratorio de Materiais Polimericos, Departamento de Engenharia de Materiais, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil)], e-mail: ferreira.carlos@ufrgs.br; Angelini, Joceli M.G. [Departamento de Materiais Eletricos, CPqD, Campinas, SP (Brazil); Rossi, Jose A.D. [Materiais Alta Tensao, CPqD, Campinas, SP (Brazil); Martinez, Manuel L.B. [Departamento de Engenharia Eletrica, UNIFEI, Itajuba, MG (Brazil)

    2011-07-01

    A study was conducted to evaluate new and laboratory-aged samples of surge arresters and anchorage polymeric insulators, for 12 and 24 kV networks, which are used by the Rio Grande Energia (RGE). Power utility polymeric compounds were analyzed by Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TG), Dynamic-Mechanic Analysis (DMA), Fourier Transformed Infrared Spectroscopy (FTIR) and Scanning Electronic Microscopy (SEM) to verify changes in the insulator properties due to degradation occurred during the experiments. The analyses were carried out before and after 6 months of aging in laboratory devices (weather meter, 120 deg C, salt spray, immersion in water). After the aging experiments, high-voltage electrical tests were also conducted: a radio interference voltage test and, simultaneously, the total and the internal leakage currents were measured to verify the surface degradation of the polymeric material used in the housing. The impulse current test was applied with current values close to 5, 10 and 30 k A, in order to force an internal degradation. Results showed that only surface degradation is detected at the polymer. The main properties of the parts were not affected by the aging. It confirms that polymer insulator and surge arrester are appropriate for use in electricity distribution networks. (author)

  3. Trapping-charging ability and electrical properties study of amorphous insulator by dielectric spectroscopy

    International Nuclear Information System (INIS)

    Mekni, Omar; Arifa, Hakim; Askri, Besma; Yangui, Béchir; Raouadi, Khaled; Damamme, Gilles

    2014-01-01

    Usually, the trapping phenomenon in insulating materials is studied by injecting charges using a Scanning Electron Microscope. In this work, we use the dielectric spectroscopy technique for showing a correlation between the dielectric properties and the trapping-charging ability of insulating materials. The evolution of the complex permittivity (real and imaginary parts) as a function of frequency and temperature reveals different types of relaxation according to the trapping ability of the material. We found that the space charge relaxation at low frequencies affects the real part of the complex permittivity ε ′ and the dissipation factor Tan(δ). We prove that the evolution of the imaginary part of the complex permittivity against temperature ε ″ =f(T) reflects the phenomenon of charge trapping and detrapping as well as trapped charge evolution Q p (T). We also use the electric modulus formalism to better identify the space charge relaxation. The investigation of trapping or conductive nature of insulating materials was mainly made by studying the activation energy and conductivity. The conduction and trapping parameters are determined using the Correlated Barrier Hopping (CBH) model in order to confirm the relation between electrical properties and charge trapping ability.

  4. Electrical and mechanical properties of highly elongated high density polyethylene as cryogenic insulation materials

    International Nuclear Information System (INIS)

    Yoshino, Katsumi; Park, Dae-Hee; Miyata, Kiyomi; Yamaoka, Hitoshi; Itoh, Minoru; Ichihara, Syouji.

    1989-01-01

    Electrical and mechanical properties of highly elongated high density polyethylene were investigated in the temperature range between 4.2 K and 400 K from a viewpoint of electrical insulation at low temperature and the following properties have been clarified. (1) The electrical conductivity of samples decreases with increasing draw ratio, and also decreases at cryogenic temperature. (2) Breakdown strength of highly elongated sample is similar to that of non-elongated sample. It is nearby temperature independent below 300 K but at higher temperature it falls steeply. (3) Mechanical breakdown stress and elastic modulus of high density polyethylene increase with increasing draw ratio. Their values at liquid nitrogen temperature are much higher than that at room temperature. On the other hand, strains decreases at liquid nitrogen temperature. (4) Break of the sample develops in the direction of 45deg from the direction of stress both at room temperature and at cryogenic temperature. (5) The characteristic of mechanical breakdown at liquid nitrogen temperature can be explained by a brittleness fracture process. (6) Toughness of high density polyethylene increases with increasing draw ratio until draw ratio of 5, and it decreased, and increase at higher draw ratio. However at extremely high draw ratio of 10 it again increases. These findings clearly indicate that highly elongated high density polyethylene has good electrical and mechanical properties at cryogenic temperature and can be used as the insulating materials at cryogenic temperature. (author)

  5. Experimental Study on Downwardly Spreading Flame over Inclined Polyethylene-insulated Electrical Wire with Applied AC Electric Fields

    KAUST Repository

    Lim, Seung Jae

    2014-12-30

    An experimental study on downwardly spreading flame over slanted electrical wire, which is insulated by Polyethylene (PE), was conducted with applied AC electric fields. The result showed that the flame spread rate decreased initially with increase in inclination angle of wire and then became nearly constant. The flame shape was modified significantly with applied AC electric field due to the effect of ionic wind. Such a variation in flame spread rate could be explained by a thermal balance mechanism, depending on flame shape and slanted direction of flame. Extinction of the spreading flame was not related to angle of inclination, and was described well by a functional dependency upon the frequency and voltage at extinction.

  6. Insulating materials for cables: state of the technology and future developments

    Energy Technology Data Exchange (ETDEWEB)

    Blechschmidt, H H [Hessische Elektrizitaets-A.G., Darmstadt (Germany, F.R.)

    1977-02-01

    This article gives a summary of old and new insulating materials for electrical cables. The electrical properties of some polymer insulating materials (PVC, polyethelene (PE), polymerised polyethelene (VPE), polypropylene) are compared in a table with the properties of paper insulation. The changeover from oiled paper to plastic insulation is almost complete for low voltage cables. Soft PVC is the dominant insulating material in this field. For medium voltage cables (10 kV and 20 kV supplies) and for high voltage cables (60 kV and 110 kV supplies) there is a trend to plastic PE/VPE, because these insulating materials have better electrical properties than PVC.

  7. Electrically controlled crossing of energy levels in quantum dots in two-dimensional topological insulators

    Energy Technology Data Exchange (ETDEWEB)

    Sukhanov, Aleksei A.

    2017-05-15

    We study the energy spectra of bound states in quantum dots (QDs) formed by an electrostatic potential in two-dimensional topological insulator (TI) and their transformation with changes in QD depth and radius. It is found that, unlike a trivial insulator, the energy difference between the levels of the ground state and first excited state can decrease with decreasing the radius and increasing the depth of the QD so that these levels intersect under some critical condition. The crossing of the levels results in unusual features of optical properties caused by intraceneter electron transitions. In particular, it leads to significant changes of light absorption due to electron transitions between such levels and to the transient electroluminescence induced by electrical tuning of QD and TI parameters. In the case of magnetic TIs, the polarization direction of the absorbed or emitted circularly polarized light is changed due to the level crossing.

  8. Electrically controlled crossing of energy levels in quantum dots in two-dimensional topological insulators

    Science.gov (United States)

    Sukhanov, Aleksei A.

    2017-05-01

    We study the energy spectra of bound states in quantum dots (QDs) formed by an electrostatic potential in two-dimensional topological insulator (TI) and their transformation with changes in QD depth and radius. It is found that, unlike a trivial insulator, the energy difference between the levels of the ground state and first excited state can decrease with decreasing the radius and increasing the depth of the QD so that these levels intersect under some critical condition. The crossing of the levels results in unusual features of optical properties caused by intraceneter electron transitions. In particular, it leads to significant changes of light absorption due to electron transitions between such levels and to the transient electroluminescence induced by electrical tuning of QD and TI parameters. In the case of magnetic TIs, the polarization direction of the absorbed or emitted circularly polarized light is changed due to the level crossing.

  9. Complex studies of mockups of electric insulators of cryoresistive coils of the T-15 device electromagnet system

    International Nuclear Information System (INIS)

    Aksenov, O.E.; Gringof, V.G.; Il'in, G.V.; Lapenas, A.A.; Stepanov, A.N.; Ulmanis, U.A.

    1982-01-01

    The test results are presented for multilayer electrical insulation of coils in the T-15 thermonuclear device electromagnet system. The insulation is made ion the base of polyimide tape with adhesive coating. In the 77-93 K range the tape insulating strength is 35 MV/m, the dielectric loss tangent is less than 10 -5 , dielectric permeability is 2.5, volume resistivity is more than 10 5 Ohmxcm. The insulation has been tested for radiation effects in the IRT-2000 nuclear reactor. Different batches of insulation mockups 0.7 mm thick have been irradiated up to the integral fast neutron flux within the 10 16 -5x10 18 neutr./cm 2 range (E >= 0.1 MeV), (J=10 11 -10 12 neutr./cm 2 xs) at the corresponding temperature between 390 and 420 K. The given data on insulating strength point to a high radiation resistance of the multilayer polyimide insulation. To make sure finally that the developed insulation system meets the requirements of the operating conditions for thermonuclear device electromagnet system coils the device has been tested for operational life. On the basis of the test results a conclusion can be made that at the present development stage the multilayer polyimide insulation based on the adhesive tape meets to the utmost degree the requirements corresponding to the complicated operating conditions of the T-15 thermonuclear devices

  10. A flexible Li-ion battery with design towards electrodes electrical insulation

    Science.gov (United States)

    Vieira, E. M. F.; Ribeiro, J. F.; Sousa, R.; Correia, J. H.; Goncalves, L. M.

    2016-08-01

    The application of micro electromechanical systems (MEMS) technology in several consumer electronics leads to the development of micro/nano power sources with high power and MEMS integration possibility. This work presents the fabrication of a flexible solid-state Li-ion battery (LIB) (~2.1 μm thick) with a design towards electrodes electrical insulation, using conventional, low cost and compatible MEMS fabrication processes. Kapton® substrate provides flexibility to the battery. E-beam deposited 300 nm thick Ge anode was coupled with LiCoO2/LiPON (cathode/solid-state electrolyte) in a battery system. LiCoO2 and LiPON films were deposited by RF-sputtering with a power source of 120 W and 100 W, respectively. LiCoO2 film was annealed at 400 °C after deposition. The new design includes Si3N4 and LiPO thin-films, providing electrode electrical insulation and a battery chemical stability safeguard, respectively. Microstructure and battery performance were investigated by scanning electron microscopy, electric resistivity and electrochemical measurements (open circuit potential, charge/discharge cycles and electrochemical impedance spectroscopy). A rechargeable thin-film and lightweight flexible LIB using MEMS processing compatible materials and techniques is reported.

  11. Measurement of Deterioration of Frying Oil Using Electrical Properties

    OpenAIRE

    羽倉, 義雄; 佐々木, 芳浩; 鈴木, 寛一

    2006-01-01

    In this study, the relationship between the electrical properties of frying oil (relative dielectric constant and conductance) and its deterioration indicators (acid value, amounts of polymerized triacylglycerols and chromaticity) were examined, focusing on the changes in electrical properties that accompany deterioration. The samples of frying oil used in this experiment were collected from fried food processing sites (school, hospital and factory feeding centers) and were collected at closi...

  12. Electrical desalting - preparing of the crude oil for further processing

    International Nuclear Information System (INIS)

    Asadi, Nadija; Minovski, Mino; Sokolovski, Aleksandar

    1999-01-01

    Desalting as well as dewatering of the crude oil is important preparing process, which takes place in crude units on the refinery plants. One of the most efficient ways of desalting is use of high voltage electricity. In this work attention is paid on the principals of this process, illustrated with practically gained results from the OKTA Crude Oil Refinery in Macedonia. (Original)

  13. Development of electrically insulating self-healing coatings in vanadium alloys for lithium fusion reactor

    International Nuclear Information System (INIS)

    1999-01-01

    Problems on electrically insulating self-healing coatings (SHC) on vanadium alloys for lithium fusion reactor systems are considered. In particular, the SHC stability and radiation resistance in lithium and effect of magnetic field on the efficiency of the TNR lithium systems are studied. New technological methods for application of self-healing coatings and study on their properties are developed. The vanadium-lithium materials testing in pile loops for solution of the above problems under conditions of the lithium TNR is described [ru

  14. Vivitron 1995, transient voltage simulation, high voltage insulator tests, electric field calculation

    International Nuclear Information System (INIS)

    Frick, G.; Osswald, F.; Heusch, B.

    1996-01-01

    Preliminary investigations showed clearly that, because of the discrete electrode structure of the Vivitron, important overvoltage leading to insulator damage can appear in case of a spark. The first high voltage tests showed damage connected with such events. This fact leads to a severe voltage limitation. This work describes, at first, studies made to understand the effects of transients and the associated over-voltage appearing in the Vivitron. Then we present the high voltage tests made with full size Vivitron components using the CN 6 MV machine as a pilot machine. Extensive field calculations were made. These involve simulations of static stresses and transient overvoltages, on insulating boards and electrodes. This work gave us the solutions for arrangements and modifications in the machine. After application, the Vivitron runs now without any sparks and damage at 20 MV. In the same manner, we tested column insulators of a new design and so we will find out how to get to higher voltages. Electric field calculation around the tie bars connecting the discrete electrodes together showed field enhancements when the voltages applied on the discrete electrodes are not equally distributed. This fact is one of the sources of discharges and voltage limitations. A scenario of a spark event is described and indications are given how to proceed towards higher voltages, in the 30 MV range. (orig.)

  15. Electric control of emergent magnonic spin current and dynamic multiferroicity in magnetic insulators at finite temperatures

    Science.gov (United States)

    Wang, Xi-guang; Chotorlishvili, L.; Guo, Guang-hua; Berakdar, J.

    2018-04-01

    Conversion of thermal energy into magnonic spin currents and/or effective electric polarization promises new device functionalities. A versatile approach is presented here for generating and controlling open circuit magnonic spin currents and an effective multiferroicity at a uniform temperature with the aid of spatially inhomogeneous, external, static electric fields. This field applied to a ferromagnetic insulator with a Dzyaloshinskii-Moriya type coupling changes locally the magnon dispersion and modifies the density of thermally excited magnons in a region of the scale of the field inhomogeneity. The resulting gradient in the magnon density can be viewed as a gradient in the effective magnon temperature. This effective thermal gradient together with local magnon dispersion result in an open-circuit, electric field controlled magnonic spin current. In fact, for a moderate variation in the external electric field the predicted magnonic spin current is on the scale of the spin (Seebeck) current generated by a comparable external temperature gradient. Analytical methods supported by full-fledge numerics confirm that both, a finite temperature and an inhomogeneous electric field are necessary for this emergent non-equilibrium phenomena. The proposal can be integrated in magnonic and multiferroic circuits, for instance to convert heat into electrically controlled pure spin current using for example nanopatterning, without the need to generate large thermal gradients on the nanoscale.

  16. An effect of heat insulation parameters on thermal losses of water-cooled roofs for secondary steelmaking electric arc furnaces

    Directory of Open Access Journals (Sweden)

    E. Mihailov

    2016-07-01

    Full Text Available The aim of this work is research in the insulation parameters effect on the thermal losses of watercooled roofs for secondary steelmaking electric arc furnaces. An analytical method has been used for the investigation in heat transfer conditions in the working area. The results of the research can be used to choose optimal cooling parameters and select a suitable kind of insulation for water-cooled surfaces.

  17. Morphology and crystalline-phase-dependent electrical insulating properties in tailored polypropylene for HVDC cables

    Science.gov (United States)

    Zha, Jun-Wei; Yan, Hong-Da; Li, Wei-Kang; Dang, Zhi-Min

    2016-11-01

    Polypropylene (PP) has become one promising material to potentially replace the cross-link polyethylene used for high voltage direct current cables. Besides the isotactic polypropylene, the block polypropylene (b-PP) and random polypropylene (r-PP) can be synthesized through the copolymerization of ethylene and propylene molecules. In this letter, the effect of morphology and crystalline phases on the insulating electrical properties of PP was investigated. It was found that the introduction of polyethylene monomer resulted in the formation of β and γ phases in b-PP and r-PP. The results from the characteristic trap energy levels indicated that the β and γ phases could induce deep electron traps which enable to capture the carriers. And the space charge accumulation was obviously suppressed. Besides, the decreased electrical conductivity was observed in b-PP and r-PP. It is attributed to the existence of deep traps which can effectively reduce the carrier mobility and density in materials.

  18. Two-dimensional hexagonal boron nitride as lateral heat spreader in electrically insulating packaging

    International Nuclear Information System (INIS)

    Bao, Jie; Huang, Shirong; Zhang, Yong; Lu, Xiuzhen; Yuan, Zhichao; Jeppson, Kjell; Liu, Johan; Edwards, Michael; Fu, Yifeng

    2016-01-01

    The need for electrically insulating materials with a high in-plane thermal conductivity for lateral heat spreading applications in electronic devices has intensified studies of layered hexagonal boron nitride (h-BN) films. Due to its physicochemical properties, h-BN can be utilised in power dissipating devices such as an electrically insulating heat spreader material for laterally redistributing the heat from hotspots caused by locally excessive heat flux densities. In this study, two types of boron nitride based heat spreader test structures have been assembled and evaluated for heat dissipation. The test structures separately utilised a few-layer h-BN film with and without graphene enhancement drop coated onto the hotspot test structure. The influence of the h-BN heat spreader films on the temperature distribution across the surface of the hotspot test structure was studied at a range of heat flux densities through the hotspot. It was found that the graphene-enhanced h-BN film reduced the hotspot temperature by about 8–10 °C at a 1000 W cm −2 heat flux density, a temperature decrease significantly larger than for h-BN film without graphene enhancement. Finite element simulations of the h-BN film predict that further improvements in heat spreading ability are possible if the thermal contact resistance between the film and test chip are minimised. (paper)

  19. Measurement methods and interpretation algorithms for the determination of the remaining lifetime of the electrical insulation

    Directory of Open Access Journals (Sweden)

    Engster F.

    2005-12-01

    Full Text Available The paper presents a set of on-line and off-line measuring methods for the dielectric parameters of the electric insulation as well as the method of results interpretation aimed to determine the occurence of a damage and to set up the its speed of evolution. These results lead finally to the determination of the life time under certain imposed safety conditions. The interpretation of the measurement results is done based on analytical algorithms allowing also the calculation of the index of correlation between the real results and the mathematical interpolation. It is performed a comparative analysis between different measuring and interpretation methods. There are considered certain events occurred during the measurement performance including their causes. The working-out of the analytical methods has been improved during the during the dielectric measurements performance for about 25 years at a number of 140 turbo and hydro power plants. Finally it is proposed a measurement program to be applied and which will allow the correlation of the on-line and off-line dielectric measurement obtaining thus a reliable technology of high accuracy level for the estimation of the available lifetime of electrical insulation.

  20. Development of electrically insulating coatings for service in a lithium environment

    International Nuclear Information System (INIS)

    Natesan, K.; Uz, M.; Wieder, S.

    2000-01-01

    Several experiments were conducted to develop electrically insulating CaO coatings on a V-4Cr-4Ti alloy for application in an Li environment. The coatings were developed by vapor phase transport external to Li, and also in-situ in an Li-Ca environment at elevated temperature. In the vapor phase study, several geometrical arrangements were examined to obtain a uniform coating of Ca on the specimens, which were typically coupons measuring 5 to 10 x 5 x 1 mm. After Ca deposition from the vapor phase, the specimens were oxidized in a high-purity argon environment at 600 C to convert the deposited metal into oxide. The specimens exhibited insulating characteristics after this oxidation step. Several promising coated specimens were then exposed to high-purity Li at 500 C for 48--68 h to determine coating integrity. Microstructural characteristics of the coatings were evaluated by scanning electron microscopy and energy-dispersive X-ray analysis. Electrical resistances of the coatings were measured by a two-probe method between room temperature and 700 C before and after exposure to Li

  1. Electric field-triggered metal-insulator transition resistive switching of bilayered multiphasic VOx

    Science.gov (United States)

    Won, Seokjae; Lee, Sang Yeon; Hwang, Jungyeon; Park, Jucheol; Seo, Hyungtak

    2018-01-01

    Electric field-triggered Mott transition of VO2 for next-generation memory devices with sharp and fast resistance-switching response is considered to be ideal but the formation of single-phase VO2 by common deposition techniques is very challenging. Here, VOx films with a VO2-dominant phase for a Mott transition-based metal-insulator transition (MIT) switching device were successfully fabricated by the combined process of RF magnetron sputtering of V metal and subsequent O2 annealing to form. By performing various material characterizations, including scanning transmission electron microscopy-electron energy loss spectroscopy, the film is determined to have a bilayer structure consisting of a VO2-rich bottom layer acting as the Mott transition switching layer and a V2O5/V2O3 mixed top layer acting as a control layer that suppresses any stray leakage current and improves cyclic performance. This bilayer structure enables excellent electric field-triggered Mott transition-based resistive switching of Pt-VOx-Pt metal-insulator-metal devices with a set/reset current ratio reaching 200, set/reset voltage of less than 2.5 V, and very stable DC cyclic switching upto 120 cycles with a great set/reset current and voltage distribution less than 5% of standard deviation at room temperature, which are specifications applicable for neuromorphic or memory device applications. [Figure not available: see fulltext.

  2. Production of a nuclear radiation resistant and mechanically tough electrically insulating material

    International Nuclear Information System (INIS)

    Brechna, H.

    1975-01-01

    According to the invention, an electrically insulating material of high mechanical strength and resistance to nuclear radiation may be made of a hardenable plastic material coated on an inorganic supporting tissue. The synthetic resin serving as binder - duroplasts, e.g. epoxide resins, polyester resins or silicon resins - is heated, mixed with a catalyst, a wetting agent and a filler (and, if required, with 0.5-1.5 weight % thixotropic material) and coated, under reduced pressure (o.4 to 0.6 mm Hg), on the supporting tissue whose surface is cleaned before this by heating. It is then hardened. Hardening may also take place directly on the electric conductor to be insulated. One obtains a bubble-free wire coating. The inorganic supporting material is glas fibre tissue, also in combination with mica, while Al 2 O 3 , zirconium, zirconia, magnesium oxide, mica and silica (grain size 10-20 μ). The invention is illustrated by a number of examples. (UWI) [de

  3. Investigation of Technological Operations Affecting the Determination of Concentration of Ionol Additive in Insulating Oil in High-Voltage Equipment

    Directory of Open Access Journals (Sweden)

    Korobeynikov S.M.

    2018-04-01

    Full Text Available Ionol oxidation inhibitor level control is included into normative indicators list for diagnostics of internal insulation condition of any oil-filled high voltage device. Concentration of oxidation inhibitor in dielectric liquid should be from 0,08 % to 0,40 % mass. Power supply network chemistry laboratories use such methods as spectroscopy, spectrometry, chromatography and many others. Russian insulation service specialists use the method of ionol concentration measurement in oils based on gas-liquid chromatography. In the first place it is related to the fact that gas chromatographs are installed for several tasks, including definition of inhibitor’s mass concentration. However, as practice shows, the use of this method for additive analysis, especially in old acidified mineral oils is linked to some difficulties. The aim of this work is identify technologic faults that may occur during definition of ionol inhibitive additive in dielectric liquid with gas-liquid chromatography method, and, as a consequence, may lead to incorrect calculation of ionol additional concentration to oil, necessary for its antioxygenic properties maintenance and high insulation quality provision during high voltage device functioning. The object of the research is insulating oil with more than 35 years’ operating cycle, presenting a complex multiplex matrix of hydrocarbons and oxygenates preventing reliable determination of ionol additive with gas-liquid chromatography method. Executed researches show that the main input into “correct” final result obtention during calculation of additional additive concentration was made by such technological operations as water content in extractant and technology of sample introduction into chromatograph’s evaporation tank

  4. Survival of the insulator under the electrical stress condition at cryogenic temperature

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Seung Myeong [Dept. of Fire Protection Engineering, Changwon Moonsung University, Changwon (Korea, Republic of); Kim, Sang Hyun [Dept. of Electrical Engineering, Gyeongsang National University, Jinju (Korea, Republic of)

    2013-12-15

    We have clearly investigated with respect to the survival of the insulator at cryogenic temperature under the electrical stress. The breakdown and voltage-time characteristics of turn-to-turn models for point contact geometry and surface contact geometry using copper multi wrapped with polyimide film for an HTS transformer were investigated under AC and impulse voltage at 77 K. Polyimide film (Kapton) 0.025 mm thick is used for multi wrapping of the electrode. As expected, the breakdown voltages for the surface contact geometry are lower than that of the point contact geometry, because the contact area of the surface contact geometry is lager than that of the point contact geometry. The time to breakdown t50 decreases as the applied voltage is increased, and the lifetime indices increase slightly as the number of layers is increased. The electric field amplitude at the position where breakdown occurs is about 80% of the maximum electric field value. The relationship between survival probability and the electrical stress at cryogenic temperature was evident.

  5. Development of a prototype for investigation of moisture in insulation of oil pipelines based on neutron backscattering method

    International Nuclear Information System (INIS)

    Tran Thanh Minh; Vuong Duc Phung; Mai Cong Thanh; Le Van Loc

    2017-01-01

    The moisture in the insulations is the main reason causing the corrosion on the surfaces of pipeline systems in the petrochemical and fertilizer plants. Therefore, the moisture inspection is one of high demands as operation procedure of the plants. Based on the essential demand on the moisture inspection in insulation, a portable moisture detection system including a He-3 proportion detector and a Am-Be neutron source has been researched and developed at CANTI in the national project. The system can detect the moisture in insulation with Limit of Detection-LOD about 32%, 48%, 63%, 76%, 86%, 90%, 93%, 94% at the oil level 0 cm, 2 cm, 4 cm, 6 cm, 8 cm, 10 cm, 12 cm, 14 cm respectively. (author)

  6. Assessment of Eco-friendly Gases for Electrical Insulation to Replace the Most Potent Industrial Greenhouse Gas SF6.

    Science.gov (United States)

    Rabie, Mohamed; Franck, Christian M

    2018-01-16

    Gases for electrical insulation are essential for the operation of electric power equipment. This Review gives a brief history of gaseous insulation that involved the emergence of the most potent industrial greenhouse gas known today, namely sulfur hexafluoride. SF 6 paved the way to space-saving equipment for the transmission and distribution of electrical energy. Its ever-rising usage in the electrical grid also played a decisive role in the continuous increase of atmospheric SF 6 abundance over the last decades. This Review broadly covers the environmental concerns related to SF 6 emissions and assesses the latest generation of eco-friendly replacement gases. They offer great potential for reducing greenhouse gas emissions from electrical equipment but at the same time involve technical trade-offs. The rumors of one or the other being superior seem premature, in particular because of the lack of dielectric, environmental, and chemical information for these relatively novel compounds and their dissociation products during operation.

  7. Microstructural characterization of XLPE electrical insulation in power cables: determination of void size distributions using TEM

    International Nuclear Information System (INIS)

    Markey, L; Stevens, G C

    2003-01-01

    In an effort to progress in our understanding of the ageing mechanisms of high voltage cables submitted to electrical and thermal stresses, we present a quantitative study of voids, the defects which are considered to be partly responsible for cable failure. We propose a method based on large data sets of transmission electron microscopy (TEM) observations of replicated samples allowing for the determination of void concentration distribution as a function of void size in the mesoscopic to microscopic range at any point in the cable insulation. A theory is also developed to calculate the effect of etching on the apparent size of the voids observed. We present the first results of this sort ever obtained on two industrial cables, one of which was aged in an AC field. Results clearly indicate that a much larger concentration of voids occur near the inner semiconductor compared to the bulk of the insulation, independently of ageing. An effect of ageing can also be seen near the inner semiconductor, resulting in an increase in the total void internal surface area and a slight shift of the concentration curve towards larger voids, with the peak moving from about 40 nm to about 50 nm

  8. Improving the cooling performance of electrical distribution transformer using transformer oil – Based MEPCM suspension

    Directory of Open Access Journals (Sweden)

    Mushtaq Ismael Hasan

    2017-04-01

    Full Text Available In this paper the electrical distribution transformer has been studied numerically and the effect of outside temperature on its cooling performance has been investigated. The temperature range studied covers the hot climate regions. 250 KVA distribution transformer is chosen as a study model. A novel cooling fluid is proposed to improve the cooling performance of this transformer, transformer oil-based microencapsulated phase change materials suspension is used with volume concentration (5–25% as a cooling fluid instead of pure transformer oil. Paraffin wax is used as a phase change material to make the suspension, in addition to the ability of heat absorption due to melting, the paraffin wax considered as a good electrical insulator. Results obtained show that, using of MEPCM suspension instead of pure transformer oil lead to improve the cooling performance of transformer by reducing its temperature and as a consequence increasing its protection against the breakdown. The melting fraction increased with increasing outside temperature up to certain temperature after which the melting fraction reach maximum constant value (MF = 1 which indicate that, the choosing of PCM depend on the environment in which the transformer is used.

  9. Carbon nanotubes integrated in electrically insulated channels for lab-on-a-chip applications

    International Nuclear Information System (INIS)

    Mogensen, K B; Boggild, P; Kutter, J P; Gangloff, L; Teo, K B K; Milne, W I

    2009-01-01

    A fabrication process for monolithic integration of vertically aligned carbon nanotubes in electrically insulated microfluidic channels is presented. A 150 nm thick amorphous silicon layer could be used both for anodic bonding of a glass lid to hermetically seal the microfluidic glass channels and for de-charging of the wafer during plasma enhanced chemical vapor deposition of the carbon nanotubes. The possibility of operating the device with electroosmotic flow was shown by performing standard electrophoretic separations of 50 μM fluorescein and 50 μM 5-carboxyfluorescein in a 25 mm long column containing vertical aligned carbon nanotubes. This is the first demonstration of electroosmotic pumping and electrokinetic separations in microfluidic channels with a monolithically integrated carbon nanotube forest.

  10. All-electric spin modulator based on a two-dimensional topological insulator

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Xianbo; Ai, Guoping [School of Computer Science, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004 (China); Liu, Ying; Yang, Shengyuan A., E-mail: shengyuan-yang@sutd.edu.sg [Research Laboratory for Quantum Materials, Singapore University of Technology and Design, Singapore 487372 (Singapore); Liu, Zhengfang [School of Science, East China Jiaotong University, Nanchang 330013 (China); Zhou, Guanghui, E-mail: ghzhou@hunnu.edu.cn [Key Laboratory for Low-Dimensional Structures and Quantum Manipulation (Ministry of Education), and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081 (China)

    2016-01-18

    We propose and investigate a spin modulator device consisting of two ferromagnetic leads connected by a two-dimensional topological insulator as the channel material. It exploits the unique features of the topological spin-helical edge states, such that the injected carriers with a non-collinear spin-polarization direction would travel through both edges and show interference effect. The conductance of the device can be controlled in a simple and all-electric manner by a side-gate voltage, which effectively rotates the spin-polarization of the carrier. At low voltages, the rotation angle is linear in the gate voltage, and the device can function as a good spin-polarization rotator by replacing the drain electrode with a non-magnetic material.

  11. A Classroom Activity for Teaching Electric Polarization of Insulators and Conductors

    Science.gov (United States)

    Deligkaris, Christos

    2018-04-01

    The phenomenon of electric polarization is crucial to student understanding of forces exerted between charged objects and insulators or conductors, the process of charging by induction, and the behavior of electroscopes near charged objects. In addition, polarization allows for microscopic-level models of everyday-life macroscopic-level phenomena. Textbooks may adequately discuss polarization, but there is little material in active learning labs and tutorials on this topic. Since polarization of materials is a microscopic phenomenon, instructors often use diagrams and figures on the classroom board to explain the process in a lecture setting. In this paper I will describe a classroom activity where the students play the role of electrons as an alternative option.

  12. Carbon nanotubes integrated in electrically insulated channels for lab-on-a-chip applications

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo; Gangloff, L.; Bøggild, Peter

    2009-01-01

    A fabrication process for monolithic integration of vertically aligned carbon nanotubes in electrically insulated microfluidic channels is presented. A 150 nm thick amorphous silicon layer could be used both for anodic bonding of a glass lid to hermetically seal the microfluidic glass channels...... and for de-charging of the wafer during plasma enhanced chemical vapor deposition of the carbon nanotubes. The possibility of operating the device with electroosmotic flow was shown by performing standard electrophoretic separations of 50 mu M fluorescein and 50 mu M 5-carboxyfluorescein in a 25 mm long...... column containing vertical aligned carbon nanotubes. This is the first demonstration of electroosmotic pumping and electrokinetic separations in microfluidic channels with a monolithically integrated carbon nanotube forest....

  13. Electric-field induced spin accumulation in the Landau level states of topological insulator thin films

    Science.gov (United States)

    Siu, Zhuo Bin; Chowdhury, Debashree; Basu, Banasri; Jalil, Mansoor B. A.

    2017-08-01

    A topological insulator (TI) thin film differs from the more typically studied thick TI system in that the former has both a top and a bottom surface where the states localized at both surfaces can couple to one other across the finite thickness. An out-of-plane magnetic field leads to the formation of discrete Landau level states in the system, whereas an in-plane magnetization breaks the angular momentum symmetry of the system. In this work, we study the spin accumulation induced by the application of an in-plane electric field to the TI thin film system where the Landau level states and inter-surface coupling are simultaneously present. We show, via Kubo formula calculations, that the in-plane spin accumulation perpendicular to the magnetization due to the electric field vanishes for a TI thin film with symmetric top and bottom surfaces. A finite in-plane spin accumulation perpendicular to both the electric field and magnetization emerges upon applying either a differential magnetization coupling or a potential difference between the two film surfaces. This spin accumulation results from the breaking of the antisymmetry of the spin accumulation around the k-space equal-energy contours.

  14. Electrical Detection of Spin-to-Charge Conversion in a Topological Insulator Bi2Te3

    Science.gov (United States)

    Li, Connie H.; van't Erve, Olaf M. J.; Li, Yaoyi; Li, Lian; Jonker, Berry T.

    Spin-momentum locking in topological insulators (TIs) dictates that an unpolarized charge current creates a net spin polarization. We recently demonstrated the first electrical detection of this spontaneous polarization in a transport geometry, using a ferromagnetic (FM) / tunnel barrier contact, where the projection of the TI surface state spin on the magnetization of detector is measured as a voltage [1]. Alternatively, if spins are injected into the TI surface state system, it is distinctively associated with a unique carrier momentum, and hence should generated a charge accumulation, similar to that of inverse spin Hall effect. Here we experimentally demonstrate both effects in the same device fabricated in Bi2Te3: the electrical detection of the spin accumulation generated by an unpolarized current flowing through the surface states, and that of the charge accumulation generated by spins injected into the surface states system. This reverse measurement is an independent confirmation of spin-momentum locking in the TI surface states, and offers additional avenue for spin manipulation. It further demonstrates the robustness and versatility of electrical access to the TI surface state spin system, an important step towards its utilization in TI-based spintronics devices. C.H. Li et al., Nat. Nanotech. 9, 218 (2014). Supported by NRL core funds and Nanoscience Institute.

  15. Evaluating electrically insulating films deposited on V-4% Cr-4% Ti by reactive CVD

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.H.; Cho, W.D. [Argonne National Lab., IL (United States)

    1997-04-01

    Previous CaO coatings on V-4%Cr-4%Ti exhibited high-ohmic insulator behavior even though a small amount of vanadium from the alloy was incorporated in the coating. However, when the vanadium concentration in the coatings is > 15 wt%, the coating becomes conductive. When the vanadium concentration is high in localized areas, a calcium vanadate phase that exhibits semiconductor behavior can form. To explore this situation, CaO and Ca-V-O coatings were produced on vanadium alloys by chemical vapor deposition (CVD) and by a metallic-vapor process to investigate the electrical resistance of the coatings. Initially, the vanadium alloy specimens were either charged with oxygen in argon that contained trace levels of oxygen, or oxidized for 1.5-3 h in a 1% CO-CO{sub 2} gas mixture or in air to form vanadium oxide at 625-650{degrees}C. Most of the specimens were exposed to calcium vapor at 800-850{degrees}C. Initial and final weights were obtained to monitor each step, and surveillance samples were removed for examination by optical and scanning electron microscopy and electron-energy-dispersive and X-ray diffraction analysis; the electrical resistivity was also measured. The authors found that Ca-V-O films exhibited insulator behavior when the ratio of calcium concentration to vanadium concentration R in the film was > 0.9, and semiconductor or conductor behavior for R < 0.8. However, in some cases, semiconductor behavior was observed when CaO-coated samples with R > 0.98 were exposed in liquid lithium. Based on these studies, the authors conclude that semiconductor behavior occurs if a conductive calcium vanadate phase is present in localized regions in the CaO coating.

  16. The Dynamics of the Electric Field Distribution in the Surface of Insulating Film Irradiated by Air Ions

    Directory of Open Access Journals (Sweden)

    Julionas KALADE

    2016-05-01

    Full Text Available When deposited on a surface, electric charge usually accumulates near the tips of surface irregularities, from where it can be transferred to nearby objects due to ionization of ambient air. The amount of transferred charge, the rate of charge transfer, the size of the charged spot (e.g., on the surface of an insulator and its tendency to spread will depend on properties of air during electric discharge, on the magnitude of charge accumulated at the tip of an object, on possibilities for replenishing that charge, on the time spent for charge transfer from the tip onto the insulating layer, on properties of the insulating layer, etc. Those properties are discussed in this work by comparing the results of measurements and theoretical analysis.

  17. Polyurethane Foams for Thermal Insulation Uses Produced from Castor Oil and Crude Glycerol Biopolyols.

    Science.gov (United States)

    Carriço, Camila S; Fraga, Thaís; Carvalho, Vagner E; Pasa, Vânya M D

    2017-07-02

    Rigid polyurethane foams were synthesized using a renewable polyol from the simple physical mixture of castor oil and crude glycerol. The effect of the catalyst (DBTDL) content and blowing agents in the foams' properties were evaluated. The use of physical blowing agents (cyclopentane and n-pentane) allowed foams with smaller cells to be obtained in comparison with the foams produced with a chemical blowing agent (water). The increase of the water content caused a decrease in density, thermal conductivity, compressive strength, and Young's modulus, which indicates that the increment of CO₂ production contributes to the formation of larger cells. Higher amounts of catalyst in the foam formulations caused a slight density decrease and a small increase of thermal conductivity, compressive strength, and Young's modulus values. These green foams presented properties that indicate a great potential to be used as thermal insulation: density (23-41 kg·m -3 ), thermal conductivity (0.0128-0.0207 W·m -1 ·K -1 ), compressive strength (45-188 kPa), and Young's modulus (3-28 kPa). These biofoams are also environmentally friendly polymers and can aggregate revenue to the biodiesel industry, contributing to a reduction in fuel prices.

  18. New Electric Online Oil Condition Monitoring Sensor – an Innovation in Early Failure Detection of Industrial Gears

    Directory of Open Access Journals (Sweden)

    Manfred Mauntz

    2013-02-01

    Full Text Available A new online diagnostics system for the continuous condition monitoring of lubricating oils in industrial gearboxes is presented. Characteristic features of emerging component damage, such as wear, contamination or chemical aging, are identified in an early stage. The OilQSens® sensor effectively controls the proper operation conditions of bearings and cogwheels in gears. Also, the condition of insulating oils in transformers can be monitored. The online diagnostics system measures components of the specific complex impedance of oils. For instance, metal abrasion due to wear debris, broken oil molecules, forming acids or oil soaps result in an increase of the electrical conductivity, which directly correlates with the degree of contamination in the oil. The dielectrical properties of the oils are particularly determined by the water content that becomes accessible via an additional accurate measurement of the dielectric constant. For additivated oils, statements on the degradation of additives can also be derived from changes in the dielectric constant. For an efficient machine utilization and targeted damage prevention, the new OilQSens® online condition monitoring sensor system allows for timely preventative maintenance on demand rather than in rigid inspection intervals. The determination of impurities or reduction in the quality of the oil and the quasi continuous evaluation of wear and chemical aging follow the holistic approach of a real-time monitoring of a change in the condition of the oil-machine system. Once the oil condition monitoring sensors are installed on the plants, the measuring data can be displayed and evaluated elsewhere. The measuring signals are transmitted to a web-based condition monitoring system via LAN, WLAN or serial interfaces of the sensor system. Monitoring of the damage mechanisms during proper operation below the tolerance limits of the components enables specific preventive maintenance independent of rigid

  19. Marketing BTUs: Gas, electricity lead oil in innovation

    International Nuclear Information System (INIS)

    Krapels, E.N.

    1996-01-01

    The transformation in relations between energy providers and users--powered by reform of electric utilities and by continuation of natural gas deregulation--is challenging several fundamental precepts of how oil companies managed their deregulation. In the wake of the price decontrol completed by the Reagan administration in 1981, oil companies (1) retreated from national business structures, (2) focused on limited range core businesses, and (3) provided minimal oil price risk management services for their customers. By contrast, the electric and natural gas industry is consolidating for the purpose of playing a role in ever-larger markets, diversifying its products and services, and providing innovative hedging instruments to itself as well as its customers. From Enron, one can purchase physical and paper energy, delivered in whatever form desired, nationwide and internationally, with or without mechanisms to manage price risk. What will impede the newly integrated energy companies--which are composite electric plus natural gas firms--from also delivering products and services now rendered by the oil companies? Could utilities organize gasoline consumers better than oil companies? If the Price Club can sell gasoline at 10 cents below market, why can't the new energy companies do so? The paper discusses what consumers want, procurement and costs, and innovations and lessons

  20. A silicon-on-insulator vertical nanogap device for electrical transport measurements in aqueous electrolyte solution

    Energy Technology Data Exchange (ETDEWEB)

    Strobel, Sebastian [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall, D-85748 Garching (Germany); Arinaga, Kenji [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall, D-85748 Garching (Germany); Hansen, Allan [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall, D-85748 Garching (Germany); Tornow, Marc [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall, D-85748 Garching (Germany)

    2007-07-25

    A novel concept for metal electrodes with few 10 nm separation for electrical conductance measurements in an aqueous electrolyte environment is presented. Silicon-on-insulator (SOI) material with 10 nm buried silicon dioxide serves as a base substrate for the formation of SOI plateau structures which, after recess-etching the thin oxide layer, thermal oxidation and subsequent metal thin film evaporation, feature vertically oriented nanogap electrodes at their exposed sidewalls. During fabrication only standard silicon process technology without any high-resolution nanolithographic techniques is employed. The vertical concept allows an array-like parallel processing of many individual devices on the same substrate chip. As analysed by cross-sectional TEM analysis the devices exhibit a well-defined material layer architecture, determined by the chosen material thicknesses and process parameters. To investigate the device in aqueous solution, we passivated the sample surface by a polymer layer, leaving a micrometre-size fluid access window to the nanogap region only. First current-voltage characteristics of a 65 nm gap device measured in 60 mM buffer solution reveal excellent electrical isolation behaviour which suggests applications in the field of biomolecular electronics in a natural environment.

  1. Electric controlling of surface metal-insulator transition in the doped BaTiO3 film

    Directory of Open Access Journals (Sweden)

    Wei Xun

    2017-07-01

    Full Text Available Based on first-principles calculations, the BaTiO3(BTO film with local La-doping is studied. For a selected concentration and position of doping, the surface metal-insulator transition occurs under the applied electric field, and the domain appears near the surface for both bipolar states. Furthermore, for the insulated surface state, i.e., the downward polarization state in the doped film, the gradient bandgap structure is achieved, which favors the absorption of solar energy. Our investigation can provide an alternative avenue in modification of surface property and surface screening effect in polar materials.

  2. Moisture Migration in an Oil-Paper Insulation System in Relation to Online Partial Discharge Monitoring of Power Transformers

    Directory of Open Access Journals (Sweden)

    Wojciech Sikorski

    2016-12-01

    Full Text Available Most power transformers operating in a power system possess oil-paper insulation. A serious defect of this type of insulation, which is associated with long operation time, is an increase in the moisture content. Moisture introduces a number of threats to proper operation of the transformer, e.g., ignition of partial discharges (PDs. Due to the varying temperature of the insulation system during the unit’s normal operation, a dynamic change (migration of water takes place, precipitating the oil-paper system from a state of hydrodynamic equilibrium. This causes the PDs to be variable in time, and they may intensify or extinguish. Studies on model objects have been conducted to determine the conditions (temperature, humidity, time that will have an impact on the ignition and intensity of the observed phenomenon of PDs. The conclusions of this study will have a practical application in the evaluation of measurements conducted in the field, especially in relation to the registration of an online PD monitoring system.

  3. Safety techniques of lightning rod and static electricity in oil tanks and oil trucks

    International Nuclear Information System (INIS)

    Ilievska, Tatjana

    1999-01-01

    In this article the ways and examples of lightning rod installation of small tanks for storage of both oil and oil derivates used by petrol stations are presented (an example of some petrol stations in the wider region in Bitola is given ). Also, a lightning rod protection of big tanks and terminals as well as protection of static electricity of tank trucks during transportation of fuel is represented. Special review is given to the protection of static electricity during transforming (decanting) of the fuel. (Author)

  4. Relationship of Cure Temperature to Mechanical, Physical, and Dielectric Performance of PDMS Glass Composite for Electric Motor Insulation

    Science.gov (United States)

    Miller, Sandi G.; Becker, Kathleen; Williams, Tiffany S.; Scheiman, Daniel A.; McCorkle, Linda S.; Heimann, Paula J.; Ring, Andrew; Woodworth, Andrew

    2017-01-01

    Achieving NASAs aggressive fuel burn and emission reduction for N-plus-3 aircraft will require hybrid electric propulsion system in which electric motors driven by either power generated from turbine or energy storage system will power the fan for propulsion. Motors designed for hybrid electric aircraft are expected to operate at medium to high voltages over long durations in a high altitude service environment. Such conditions have driven research toward the development of wire insulation with improved mechanical strength, thermal stability and increased breakdown voltage. The silicone class of materials has been considered for electric wire insulation due to its inherent thermal stability, dielectric strength and mechanical integrity. This paper evaluates the dependence of these properties on the cure conditions of a polydimethyl-siloxane (PDMS) elastomer; where both cure temperature and base-to-catalyst ratio were varied. The PDMS elastomer was evaluated as a bulk material and an impregnation matrix within a lightweight glass veil support. The E-glass support was selected for mechanical stiffness and dielectric strength. This work has shown a correlation between cure conditions and material physical properties. Tensile strength increased with cure temperature whereas breakdown voltage tended to be independent of process variations. The results will be used to direct material formulation based on specific insulation requirements.

  5. Phase-field model of insulator-to-metal transition in VO2 under an electric field

    Science.gov (United States)

    Shi, Yin; Chen, Long-Qing

    2018-05-01

    The roles of an electric field and electronic doping in insulator-to-metal transitions are still not well understood. Here we formulated a phase-field model of insulator-to-metal transitions by taking into account both structural and electronic instabilities as well as free electrons and holes in VO2, a strongly correlated transition-metal oxide. Our phase-field simulations demonstrate that in a VO2 slab under a uniform electric field, an abrupt universal resistive transition occurs inside the supercooling region, in sharp contrast to the conventional Landau-Zener smooth electric breakdown. We also show that hole doping may decouple the structural and electronic phase transitions in VO2, leading to a metastable metallic monoclinic phase which could be stabilized through a geometrical confinement and the size effect. This work provides a general mesoscale thermodynamic framework for understanding the influences of electric field, electronic doping, and stress and strain on insulator-to-metal transitions and the corresponding mesoscale domain structure evolution in VO2 and related strongly correlated systems.

  6. Condition Assessment of Paper Insulation in Oil-Immersed Power Transformers Based on the Iterative Inversion of Resistivity

    Directory of Open Access Journals (Sweden)

    Jiangjun Ruan

    2017-04-01

    Full Text Available The resistivity of oil impregnated paper will decrease during its aging process. This paper takes paper resistivity as an assessment index to evaluate the insulation condition of oil impregnated paper in power transformer. The feasibility of this method are discussed in two aspects: reliability and sensitivity. Iterative inversion of paper resistivity was combined with finite element simulation. Both the bisection method and Newton’s method were used as iterative methods. After the analysis and comparison, Newton’s method was selected as the first option of paper resistivity iteration for its faster convergence. In order to consider the spatial distribution characteristic of paper aging and enhance the calculation accuracy, the resistivity calculation is expanded to a multivariate iteration based on Newton’s method, in order to consider the spatial distribution characteristic of paper aging and improve the calculation accuracy. This paper presents an exploratory research on condition assessment of oil impregnated paper insulation, and provides some reference to the security and economy operation of power transformers.

  7. Accelerated thermal and radiation-oxidation combined degradation of electric cable insulation materials

    International Nuclear Information System (INIS)

    Yagi, Toshiaki; Seguchi, Tadao; Yoshida, Kenzo

    1986-03-01

    For the development of accelerated testing methodology to estimate the life time of electric cable, which is installed in radiation field such as a nuclear reactor containment vessel, radiation and thermal combined degradation of cable insulation and jacketing materials was studied. The materials were two types of formulated polyethylene, ethylene-propylene rubber, Hypalon, and Neoprene. With Co-60 γ-rays the materials were irradiated up to 0.5 MGy under vacuum and in oxygen under pressure, then exposed to thermal aging at elevated temperature in oxygen. The degradation was investigated by the tensile test, gelfraction, and swelling measurements. The thermal degradation rate for each sample increases with increase of oxygen concentration, i.e. oxygen pressure, during the aging, and tends to saturate above 0.2 MPa of oxygen pressure. Then, the effects of irradiation and the temperature on the thermal degradation rate were investigated at the oxygen pressure of 0.2 MPa in the temperature range from 110 deg C to 150 deg C. For all of samples irradiated in oxygen, the following thermal degradation rate was accelerated by several times comparing with unirradiated samples, while the rate of thermal degradation for the sample except Neoprene irradiated under vacuum was nearly equal to that of unirradiated one. By the analysis of thermal degradation rate against temperature using Arrhenius equation, it was found that the activation energy tends to decrease for the samples irradiated in oxidation condition. (author)

  8. Electric alignment of plate shaped clay aggregates in oils

    Science.gov (United States)

    Castberg, Rene; Rozynek, Zbigniew; Måløy, Knut Jørgen; Flekkøy, Eirik

    2016-01-01

    We experimentally investigate the rotation of plate shaped aggregates of clay mineral particles immersed in silicone oil. The rotation is induced by an external electric field. The rotation time is measured as a function of the following parameters: electric field strength, the plate geometry (length and width) and the dielectric properties of the plates. We find that the plates always align with their longest axis parallel to the direction of the electric field (E), independently of the arrangement of individual clay -2 mineral particles within the plate. The rotation time is found to scale as E and is proportional to the viscosity (μ), which coincides well with a model that describes orientation of dipoles in electric fields. As the length of the plate is increased we quantify a difference between the longitudinal and transverse polarisability. Finally, we show that moist plates align faster. We attribute this to the change of the dielectric properties of the plate due to the presence of water.

  9. Diagnosis by acetone for deterioration of breathing transformers containing an adsorbent in the insulating oil; Acetone ni yoru kyuchakuzai iri kaihogata hen`atsuki no keinen rekkado shindan

    Energy Technology Data Exchange (ETDEWEB)

    Awata, M.; Mizuno, K.; Ueda, T. [Chubu Electric Power Co. Ltd., Nagoya (Japan); Ota, N.; Ishii, T.; Tsukioka, H.

    1997-04-20

    The high-precision diagnosis for deterioration of a breathing transformer containing an adsorbent was investigated. An adsorbent (activated alumina) may be contained in oil to eliminate the deterioration product in insulating oil or the moisture. In this case, the deterioration component furfural in insulating paper is adsorbed. The concentration in furfural oil cannot be thus used for deterioration diagnosis. Acetone and furan with good relation between the adsorption characteristics for activated alumina and the insulating paper deterioration in an accelerated deterioration test can be effectively used as a new deterioration index component of insulating paper. The disassembly survey showed that acetone is valid as the index component of deterioration diagnosis. Furan is not detected in a breathing transformer, but effective in diaphragm-type and nitrogen-sealed transformers. The adsorption of acetone by activated alumina requires no correction for the change in oil temperature at about 10{degree}C. The solubility of acetone for insulating oil is 60 times at 20{degree}C as high as CO2, and the discharge rate from a breather is little (1/25). Therefore, acetone is much more excellent than CO2 as the precision of a deterioration index. 21 refs., 15 figs., 4 tabs.

  10. Electric-field driven insulator-metal transition and tunable magnetoresistance in ZnO thin film

    Science.gov (United States)

    Zhang, Le; Chen, Shanshan; Chen, Xiangyang; Ye, Zhizhen; Zhu, Liping

    2018-04-01

    Electrical control of the multistate phase in semiconductors offers the promise of nonvolatile functionality in the future semiconductor spintronics. Here, by applying an external electric field, we have observed a gate-induced insulator-metal transition (MIT) with the temperature dependence of resistivity in ZnO thin films. Due to a high-density carrier accumulation, we have shown the ability to inverse change magnetoresistance in ZnO by ionic liquid gating from 10% to -2.5%. The evolution of photoluminescence under gate voltage was also consistent with the MIT, which is due to the reduction of dislocation. Our in-situ gate-controlled photoluminescence, insulator-metal transition, and the conversion of magnetoresistance open up opportunities in searching for quantum materials and ZnO based photoelectric devices.

  11. Advanced-fueled fusion reactors suitable for direct energy conversion. Project note: temperature-gradient enhancement of electrical fields in insulators

    International Nuclear Information System (INIS)

    Blum, A.S.; Mancebo, L.

    1976-01-01

    Direct energy converters for use on controlled fusion reactors utilize electrodes operated at elevated voltages and temperatures. The insulating elements that position these electrodes must support large voltages and under some circumstances large thermal gradients. It is shown that even modest thermal gradients can cause major alterations of the electric-field distribution within the insulating element

  12. Sizing of the thermal and electrical systems for an FED bundle divertor design with MgO insulation

    International Nuclear Information System (INIS)

    Schultz, J.H.

    1981-01-01

    The high-order dependence of toroidal ripple from a bundle divertor on the magnet shield thickness increases the desirability of a magnet technology with minimal shielding requirements. A jacketed conductor with MgO powder insulation has been used successfully in highly irradiated environments. Its properties and limitations are described. A thermal and electrical sizing code has been developed for magnet design with this technology. Two design examples for ETF and FED missions show reduced recirculating power from previously reported designs

  13. Ultra high-temperature solids-free insulating packer fluid for oil and gas production, steam injection and geothermal wells

    Energy Technology Data Exchange (ETDEWEB)

    Ezell, R.G.; Harrison, D.J. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[Halliburton Energy Services, Calgary, AB (Canada)

    2008-10-15

    Uncontrolled heat transfer from production/injection tubing during thermal oil recovery via steam injection can be detrimental to the integrity of the casing and to the quality of the steam that is injected into the reservoir. An aqueous-based insulating packer fluid (IPF) was introduced to improve the steam injection process by controlling the total heat loss from the produced fluids to the surrounding wellbore, internal annuli and formation. The IPF was developed for elevated temperature environments through extensive investigation across multidisciplinary technology. The innovative system delivers performance beyond conventional systems of comparable thermal conductivity. Its density range and conductivity measurements were presented in this paper. High-temperature static aging tests showed superior gel integrity without any phase separation after exposure to temperatures higher than 260 degrees C. The new fluids are hydrate inhibitive, non-corrosive and pass oil and grease testing. They are considered to be environmentally sound by Gulf of Mexico standards. It was concluded that the new ultra high-performance insulating packer fluid (HTIPF) reduced the heat loss significantly by both conduction and convection. Heat transfer within the aqueous-based HTIPF was 97 per cent less than that of pure water. It was concluded that the HTIPF can be substituted for conventional packer fluids without compromising any well control issues. 21 refs., 1 tab., 4 figs.

  14. Effect of electric field configuration on streamer and partial discharge phenomena in a hydrocarbon insulating liquid under AC stress

    International Nuclear Information System (INIS)

    Liu, Z; Liu, Q; Wang, Z D

    2016-01-01

    This paper concerns pre-breakdown phenomena, including streamer characteristics from a fundamental perspective and partial discharge (PD) measurements from an industrial perspective, in a hydrocarbon insulating liquid. The aim was to investigate the possible changes of the liquid’s streamer and PD characteristics and their correlations when the uniformity of the AC electric field varies. In the experiments, a plane-to-plane electrode system incorporating a needle protrusion was used in addition to a needle-to-plane electrode system. When the applied electric field became more uniform, fewer radial branches occurred and streamer propagation towards the ground electrode was enhanced. The transition from streamer propagation dominated breakdown in divergent fields to streamer initiation dominated breakdown in uniform fields was evidenced. Relationships between streamer and PD characteristics were established, which were found to be electric field dependent. PD of the same apparent charge would indicate longer streamers if the electric field is more uniform. (paper)

  15. Performance monitoring of electric shovels digging oil sands

    Energy Technology Data Exchange (ETDEWEB)

    Patnayak, S. [Alberta Univ., Edmonton, AB (Canada). Natural Resources Engineering Facility; Tannant, D.D. [Alberta Univ., Edmonton, AB (Canada). School of Mining and Petroleum Engineering; Parsons, I. [Syncrude Canada Ltd., Edmonton, AB (Canada). Edmonton Research Centre; Del Valle, V. [Syncrude Canada Ltd., Fort McMurray, AB (Canada)

    2005-07-01

    Some of the largest available mining equipment is used for oil sand mining operations. However, the performance of electric cable shovels varies with the diggability characteristics of the ground. In particular, oil sands diggability with cable shovels depends on structural geology, the depositional environment and geotechnical parameters. This paper described some of the key shovel performance indicators such as dig cycle time, digging energy and digging power. In winter, frost penetration can also affect oil sands diggability. The challenge of hard digging in oil sands is often addressed by blasting or ripping, which increases the cost of production and impedes productivity. The shovel performance is also influenced by other parameters such as operator skills, bucket and tooth design and shovel dipper trajectory. This paper demonstrated that hoist and crowd motor voltages and currents are useful in identifying the beginning and end of dig cycles. Performance indicators such as dig cycle time, hoist motor energy and power, and crowd motor energy and power were considered to assess material diggability. It was suggested that hoist power represents the ground diggability better than other performance indicators. 5 refs., 1 tab., 10 figs.

  16. Voltage- and current-activated metal–insulator transition in VO2-based electrical switches: a lifetime operation analysis

    Directory of Open Access Journals (Sweden)

    Aurelian Crunteanu, Julien Givernaud, Jonathan Leroy, David Mardivirin, Corinne Champeaux, Jean-Christophe Orlianges, Alain Catherinot and Pierre Blondy

    2010-01-01

    Full Text Available Vanadium dioxide is an intensively studied material that undergoes a temperature-induced metal–insulator phase transition accompanied by a large change in electrical resistivity. Electrical switches based on this material show promising properties in terms of speed and broadband operation. The exploration of the failure behavior and reliability of such devices is very important in view of their integration in practical electronic circuits. We performed systematic lifetime investigations of two-terminal switches based on the electrical activation of the metal–insulator transition in VO2 thin films. The devices were integrated in coplanar microwave waveguides (CPWs in series configuration. We detected the evolution of a 10 GHz microwave signal transmitted through the CPW, modulated by the activation of the VO2 switches in both voltage- and current-controlled modes. We demonstrated enhanced lifetime operation of current-controlled VO2-based switching (more than 260 million cycles without failure compared with the voltage-activated mode (breakdown at around 16 million activation cycles. The evolution of the electrical self-oscillations of a VO2-based switch induced in the current-operated mode is a subtle indicator of the material properties modification and can be used to monitor its behavior under various external stresses in sensor applications.

  17. Possibility of direct electricity production from waste canola oil

    Science.gov (United States)

    Włodarczyk, Paweł P.; Włodarczyk, Barbara; Kalinichenko, Antonina

    2017-10-01

    Powering high-efficiency devices, such as fuel cells, with waste products will allow for a broader development of renewable energy sources and utilisation of by- products. This publication presents the possibility of electrooxidation of the emulsion of waste rapeseed oil, prepared on the basis of the detergent Syntanol DS-10. The process of electrooxidation was carried out on platinum electrode in alkaline (KOH) and acidic (H2SO4) electrolyte, in the temperature range of 293-333 K. In each analysed case the process of electrooxidation took place. The maximum current density obtained was 7 mA cm-2. Thus, it has been shown that it is possible to generate electricity directly from the emulsion of the waste rapeseed oil.

  18. Possibility of direct electricity production from waste canola oil

    Directory of Open Access Journals (Sweden)

    Włodarczyk Paweł P.

    2017-01-01

    Full Text Available Powering high-efficiency devices, such as fuel cells, with waste products will allow for a broader development of renewable energy sources and utilisation of by- products. This publication presents the possibility of electrooxidation of the emulsion of waste rapeseed oil, prepared on the basis of the detergent Syntanol DS-10. The process of electrooxidation was carried out on platinum electrode in alkaline (KOH and acidic (H2SO4 electrolyte, in the temperature range of 293-333 K. In each analysed case the process of electrooxidation took place. The maximum current density obtained was 7 mA cm-2. Thus, it has been shown that it is possible to generate electricity directly from the emulsion of the waste rapeseed oil.

  19. Diagnosis of aging deterioration of oil filled transformers by detection of furfural dissolved in insulating oil. Furfural ni yoru aburairi hen prime atsuki no keinen rekkado shindan no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Harigae, T.; Goto, K.; Ota, N.; Tsukioka, H. (Yuka Industries, Co. Ltd., Tokyo (Japan))

    1992-06-20

    The diagnosis method of aging deterioration was proposed for oil filled transformers based on detection of furfural in insulating oil. Vacuum, oxygen-added and water-added specimens of insulating paper immersed in insulating oil were thermally deteriorated at 120-180 {degree}C for 1-120 days to measure average polymerization degrees of the insulating paper and furfural contents in the oil and paper. As a result, the addition of oxygen or water accelerated forming of furfural, and the average polymerization degree considerably decreased in the early stage of heating. There was also the certain relation between the furfural content and average polymerization degree. In addition, various kinds of subjects were discussed which were required to apply these experimental results to diagnosis of aging deterioration in real oil filled transformers, and rough furfural contents corresponding to aging deterioration degrees of the insulating paper were given. As combined with a CO{sub 2} + CO method, the proposed method was expected to be more reliable. 9 refs., 8 figs., 2 tabs.

  20. Overview and statistical failure analyses of the electrical insulation system for the SSC long dipole magnets from an industrialization point of view

    International Nuclear Information System (INIS)

    Roach, J.F.

    1992-01-01

    The electrical insulation system of the SSC long dipole magnets is reviewed and potential dielectric failure modes discussed. Electrical insulation fabrication and assembly issues with respect to rate production manufacturability are addressed. The automation required for rate assembly of electrical insulation components will require critical online visual and dielectric screening tests to insure production quality. Storage and assembly areas must bc designed to prevent foreign particles from becoming entrapped in the insulation during critical coil winding, molding, and collaring operations. All hand assembly procedures involving dielectrics must be performed with rigorous attention to their impact on insulation integrity. Individual dipole magnets must have a sufficiently low probability of electrical insulation failure under all normal and fault mode voltage conditions such that the series of magnets in the SSC rings have acceptable Mean Time Between Failure (MTBF) with respect to dielectric mode failure events. Statistical models appropriate for large electrical system breakdown failure analysis are applied to the SSC magnet rings. The MTBF of the SSC system is related to failure data base for individual dipole magnet samples

  1. Determination of copper in liquid and solid insulation for large electrical equipment by ICP-OES. Application to copper contamination assessment in power transformers.

    Science.gov (United States)

    Bruzzoniti, Maria Concetta; De Carlo, Rosa Maria; Sarzanini, Corrado; Maina, Riccardo; Tumiatti, Vander

    2012-09-15

    Copper is one of the main constituents of the components in power transformers and its presence both in liquid (mineral oil) and in solid (Kraft paper) insulators can lead to enhanced dielectric losses and to the subsequent deterioration of their insulating properties. Recently the latter have been correlated to plant failures which in turn may have severe impact on the environment. This paper describes the direct analysis of copper in insulating mineral oil by ICP-OES and how it was first optimized compared to the official American Society for Testing and Materials (ASTM) D7151 method. Detection and quantification limits of 8.8 μg kg(-1) and 29.3 μg kg(-1) were obtained. Secondly, copper determination was improved by coupling a microwave assisted dissolution procedure of the mineral oil which avoided the problems, in the real samples, due to the presence of solid species of copper which cannot be nebulized following traditional methods described in literature. Sixteen mineral insulating oils sampled from transformers in service were analyzed before and after dissolution. In order to evaluate copper speciation, size fractionation was performed by filtration on PTFE filters (0.45, 1 and 5 μm). This test was performed on all the oil samples. Finally, because of the key role of the solid insulator in failed transformers, the Authors applied the developed method to study the copper deposition tendency onto the insulating Kraft paper tapes exerted by two unused oils (a corrosive and a non-corrosive one) under defined ageing conditions. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Utilization of oil wells for electricity generation: Performance and economics

    International Nuclear Information System (INIS)

    Kharseh, Mohamad; Al-Khawaja, Mohammed; Hassani, Ferri

    2015-01-01

    There is a general agreement that the climate change, which is the most important challenge facing humanity, is anthropogenic and attributed to fossil fuel consumption. Therefore, deploying more renewable energy resources is an urgent issue to be addressed. Geothermal refers to existing heat energy in deep rock and sedimentary basins. Traditionally, geothermal energy has been exploited in places with plentiful hot water at relatively shallow depth. Unfortunately, the high exploration and drilling costs of boreholes is the main barrier to the commerciality of geothermal worldwide. In oil producing countries, such problems can be overcome by utilizing oil or gas wells. The current study presents thermodynamic and economic analyses of a binary geothermal power generation system for commercial electricity generation. Two different source temperatures (100 and 120 °C) and constant sink temperature (29 °C) were considered. The optimal working fluid and optimal design that improve the performance of the plant are determined. For the current costs in Qatar, the economical analysis of 5 MW geothermal plant shows that the levelized cost of electricity for the plant varies from 5.6 to 5.2 ¢/kW. Whereas, the payback period of such plants lies between 5.8 and 4.8 years. - Highlights: • Utilizing oil well makes geothermal plant competitive with other resources. • R32 seems to be the best working fluid. • The levelized cost of electricity for geothermal plant is less than 5.6 ¢/kWh. • The payback time of geothermal plant is less than 6 years.

  3. Effect of electric field in the characterization of pultruded GFRP boron-free composite insulator for the extra high voltage by the ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, Hissae; Silva Junior, Edmilson Jose; Shinohara, Armando Hideki [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Xavier, Gustavo Jose Vasconcelos [CHESF, Recife, PE (Brazil); Costa, Edson Guedes [Universidade Federal de Campina Grande (UFCG), PB (Brazil); Lott Neto, Henrique Batista Duffles Teixeira; Britto, Paulo Roberto Ranzan; Fontan, Marcio A.B. [Sistema de Transmissao do Nordeste S.A., Recife, PE (Brazil)

    2016-07-01

    Full text: The pultruded boron-free glass fiber reinforced polymer (GFRP) composite has been widely used material for the electrical insulators in the high, extra and ultra high voltage overhead lines worldwide. In terms of design, the composite insulator has a highly complex geometry and large size. Aging of materials begin as soon as the insulators start their operation due to the strong electric field, mechanical load due to the weight of conductor cables, environment, corona discharge, generation of acids, and as a result, GFRP can fail mechanically by the stress corrosion crack (SCC) and electrical breakdown known as flashover. In order to mitigate the mechanical and electrical failures, the insulators in the field are frequently monitored by visual inspection, infrared thermography, UV detection, variation of measurement of distribution of electric field variation. However, new technologies for characterization and inspection of the composite insulator in the field are required for reliable operation. Imaging characterization using ionizing radiation (X-ray or g-ray) is an interesting technique, however, it can reduce drastically breakdown voltage due to the Townsend discharge, which free electrons are accelerated by an electric field, collide with gas molecules of air, and free additional electrons resulting in an avalanche multiplication that allows an electrical conduction through the air. In this study, in order to evaluate the potential application of ionization radiation for characterization of composite insulator under electric field, testing were conducted in high voltage laboratory by applying voltages up to 640 kV and varying radiation area of the composite insulator. As a result, even though there was an occurrence of flame on Imaging Plate (IP) detector case when it was located near the phase, corona discharge, but no breakdown discharge (flashover) occurred and high quality imaging of radiography could be obtained when X-ray source was employed

  4. Application of Fenton process to remove organic matter and PCBs from waste (fuller's earth) contaminated with insulating oil.

    Science.gov (United States)

    da Silva, Milady Renata Apolinário; Rodrigues, Eduardo de Oliveira; Espanhol-Soares, Melina; Silva, Flavio Soares; Kondo, Márcia Matiko; Gimenes, Rossano

    2018-01-09

    Polychlorinated biphenyls (PCBs) are carcinogenic to humans and can be found in fuller's earth used for the treatment of used transformer oil. This work describes an optimization of the Fenton process for the removal of contaminants from fuller's earth. The effects of pH (2.5 and 4.0), [H 2 O 2 ] (1.47 and 2.07 mol L -1 ), and [Fe 2+ ] (1.7 and 40 mmol L -1 ) were studied. The Fenton process efficiency was monitored using the decreases in the chemical oxygen demand (COD) and the concentrations of oil and grease, total carbon (TC), PCBs, and H 2 O 2 . The fuller's earth contaminated with insulating oil presented 35% (w/w) of TC, 34% (w/w) of oil and grease, 297.0 g L -1 COD, and 64 mg of PCBs per kg. The material could therefore be considered a dangerous waste. After Fenton treatment, using a slurry mode, there was a removal of 55% of COD, 20% of oil and grease, and 20% of TC, achieved at pH 2.5 using 2.07 mol L -1 of H 2 O 2 and 40.0 mmol L -1 of Fe 2+ . No PCBs were detected in the samples after the Fenton treatment, even using smaller amounts of Fenton reagents (1.47 mol L -1 of H 2 O 2 , 1.7 mmol L -1 of Fe 2+ , pH 2.5). The results indicated that the treated fuller's earth was free from PCB residues and could be disposed of in a simple landfill, in accordance with Brazilian PCB regulations.

  5. Proceedings of the second meeting on electrical insulators for fusion magnets

    International Nuclear Information System (INIS)

    1983-07-01

    To guide the formulation of this program, nineteen speakers generally representing the magnet community - manufacturers, designers, and materials people - met and presented a series of talks in six sessions. Sessions topics included: magnet insulator environment, current testing activities, irradiation sources, failure modes, test parameters, and insulator design. Each presentation was discussed by the meeting, at-large, and the concensus opinions of these discussions were noted. After the conclusion of the talks, the meeting was subdivided into four subcommittees to consider and make recommendations on the following topics: irradiation facilities and dosimetry, insulator compositions and specimen sizes and shapes, test procedures and equipment, and specimen loads, influence of magnet mechanical and thermal cycles on test program, and international cooperation

  6. Influence of LOCA simulating conditions on the variation of electrical characteristics of insulating materials

    International Nuclear Information System (INIS)

    Okada, Sohei; Yoshikawa, Masato; Ito, Masayuki; Kusama, Yasuo; Yagi, Toshiaki

    1982-01-01

    The authors have examined the variation of insulation resistance when the sheets of insulating materials and cables were exposed to various LOCA simulating environment. This report describes the summarized results obtained so far for ethylene propylene rubber (EPR) which is important as an insulating material of cables. The samples used were an EPR sheet of standard compound ratio, 2 kinds of EPR sheets of practical compound ratio, 6 types of PH cables (fire-retardant, EPR insulated, chlorosulphonated polyethylene sheathed cable) produced for trial as reactor use, and 6 kinds of EPR sheets of the same composition as the cable core. To discuss the difference of insulation resistance change, the logarithmic mean of the ratio of 1 min values to initial insulation resistance rho/rhosub(o) was used. PWR LOCA-simulating environment was used, while the thermal aging in the air at 121 deg C for 7 days and 50 Mrad irradiation in the air at room temperature were given as the predeterioration. The effect of LOCA-simulation period in the simultaneous method without air, in which steam and radiation were given in parallel, the difference in the experimental results of cables and sheets, the effect of air, the comparison of the simultaneous method with the sequential method in which LOCA-simulating steam was applied after the irradiation in the air and the reverse sequential method (dielectric property measurements) are described. Under the existence of air, the sequential method seems to be a good simulation condition for the simultaneous method, though many experiments are required further. (Wakatsuki, Y.)

  7. Influence of LOCA simulating conditions on the variation of electrical characteristics of insulating materials

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Sohei; Yoshikawa, Masato; Ito, Masayuki; Kusama, Yasuo; Yagi, Toshiaki

    1982-12-01

    The authors have examined the variation of insulation resistance when the sheets of insulating materials and cables were exposed to various LOCA simulating environment. This report describes the summarized results obtained so far for ethylene propylene rubber (EPR) which is important as an insulating material of cables. The samples used were an EPR sheet of standard compound ratio, 2 kinds of EPR sheets of practical compound ratio, 6 types of PH cables (fire-retardant, EPR insulated, chlorosulphonated polyethylene sheathed cable) produced for trial as reactor use, and 6 kinds of EPR sheets of the same composition as the cable core. To discuss the difference of insulation resistance change, the logarithmic mean of the ratio of 1 min values to initial insulation resistance rho/rhosub(o) was used. PWR LOCA-simulating environment was used, while the thermal aging in the air at 121 deg C for 7 days and 50 Mrad irradiation in the air at room temperature were given as the predeterioration. The effect of LOCA-simulation period in the simultaneous method without air, in which steam and radiation were given in parallel, the difference in the experimental results of cables and sheets, the effect of air, the comparison of the simultaneous method with the sequential method in which LOCA-simulating steam was applied after the irradiation in the air and the reverse sequential method (dielectric property measurements) are described. Under the existence of air, the sequential method seems to be a good simulation condition for the simultaneous method, though many experiments are required further.

  8. Electric alignment of plate shaped clay aggregates in oils

    Directory of Open Access Journals (Sweden)

    Rene Christian Castberg

    2016-01-01

    Full Text Available We experimentally investigate the rotation of plate shaped aggregates of clay mineral particles immersed in silicone oil. The rotation is induced by an external electric field. The rotation time is measured as a function of the following parameters: electric field strength, the plate geometry (length and width and the dielectric properties of the plates. We find that the plates always align with their longest axis parallel to the direction of the electric field (E, independently of the arrangement of individual clay−2 mineral particles within the plate. The rotation time is found to scale as E and is proportional to the viscosity (μ, which coincides well with a model that describes orientation of dipoles in electric fields. As the length of the plate is increased we quantify a difference between the longitudinal and transverse polarisability. Finally, we show that moist plates align faster. We attribute this to the change of the dielectric properties of the plate due to the presence of water.

  9. Spin-related tunneling through a nanostructured electric-magnetic barrier on the surface of a topological insulator.

    Science.gov (United States)

    Wu, Zhenhua; Li, Jun

    2012-01-27

    We investigate quantum tunneling through a single electric and/or magnetic barrier on the surface of a three-dimensional topological insulator. We found that (1) the propagating behavior of electrons in such system exhibits a strong dependence on the direction of the incident electron wavevector and incident energy, giving the possibility to construct a wave vector and/or energy filter; (2) the spin orientation can be tuned by changing the magnetic barrier structure as well as the incident angles and energies.PACS numbers: 72.25.Dc; 73.20.-r; 73.23.-b; 75.70.-i.

  10. DYNAMICS MODEL OF MOISTURE IN PAPER INSULATION-TRANSFORMER OIL SYSTEM IN NON-STATIONARY THERMAL MODES OF THE POWER TRANSFORMER

    Directory of Open Access Journals (Sweden)

    V.V. Vasilevskij

    2016-06-01

    Full Text Available Introduction. An important problem in power transformers resource prognosis is the formation of moisture dynamics trends of transformer insulation. Purpose. Increasing the accuracy of power transformer insulation resource assessment based on accounting of moisture dynamics in interrelation with temperature dynamics. Working out of moisture dynamics model in paper insulation-transformer oil system in conjunction with thermodynamic model, load model and technical maintenance model. Methodology. The mathematical models used for describe the moisture dynamics are grounded on nonlinear differential equations. Interrelation moisture dynamics model with thermodynamic, load and technical maintenance models described by UML model. For confirming the adequacy of model used computer simulation. Results. We have implemented the model of moisture dynamics in power transformers insulation in interrelation with other models, which describe the state of power transformer in operation. The proposed model allows us to form detailed trends of moisture dynamics in power transformers insulation basing on monitoring data or power transformers operational factors simulation results. We have performed computer simulation of moisture exchange processes and calculation of transformer insulation resource for different moisture trends. Originality. The offered model takes into account moisture dynamics in power transformers insulation under the influence of changes of the power transformers thermal mode and operational factors. Practical value. The offered model can be used in power transformers monitoring systems for automation of resource assessment of oil-immersed power transformers paper insulation at different phase of lifecycle. Model also can be used for assessment of projected economic efficiency of power transformers exploitation in projected operating conditions.

  11. Spin- and valley-dependent electrical conductivity of ferromagnetic group-IV 2D sheets in the topological insulator phase

    Science.gov (United States)

    Hoi, Bui Dinh; Yarmohammadi, Mohsen; Mirabbaszadeh, Kavoos; Habibiyan, Hamidreza

    2018-03-01

    In this work, based on the Kubo-Greenwood formalism and the k . p Hamiltonian model, the impact of Rashba spin-orbit coupling on electronic band structure and electrical conductivity of spin-up and spin-down subbands in counterparts of graphene, including silicene, stanene, and germanene nanosheets has been studied. When Rashba coupling is considered, the effective mass of Dirac fermions decreases significantly and no significant change is caused by this coupling for the subband gaps. All these nanosheets are found to be in topological insulator quantum phase at low staggered on-site potentials due to the applied perpendicular external electric field. We point out that the electrical conductivity of germanene increases gradually with Rashab coupling, while silicene and stanene have some fluctuations due to their smaller Fermi velocity. Furthermore, some critical temperatures with the same electrical conductivity values for jumping to the higher energy levels are observed at various Rashba coupling strengths. For all structures, a broad peak appears at low temperatures in electrical conductivity curves corresponding to the large entropy of systems when the thermal energy reaches to the difference between the energy states. Finally, we have reported that silicene has the larger has the larger electrical conductivity than two others.

  12. Scenarios for shale oil, syncrude and electricity production in Estonia in the interim 1995-2025

    International Nuclear Information System (INIS)

    Oepik, I.

    1992-01-01

    This paper is based on the author's pre-feasibility studies of oil shale utilization in oil production, electricity generation and cement industry. The electricity generation has been calculated on the basis of 1.4 and 1.6 GW oil shale power plants with pulverized fuel combustion today. The three scenarios OILMIN, OILMED and OILMAX differ by annual oil production and different investment costs. The investments in the oil shale processing industry seem to be more profitable than those in electricity generation. It is also important to take into account that the very high sensitivity of oil market to geopolitical aspects of resources and to sudden crises, makes the crude price a stochastic parameter, which loses its indicative character for long term economic choice. Therefore it will be very important to have the electric power plants with flexible combined oil shale and coal combustion. 4 figs., 4 tabs., 6 refs

  13. An indirect method to measure the electric charge deposited on insulators during PIXE analysis

    Energy Technology Data Exchange (ETDEWEB)

    Dinator, M.I.; Cancino, S.A.; Miranda, P.A. [Departamento de Fisica, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Nunoa, Santiago (Chile); Morales, J.R. [Departamento de Fisica, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Nunoa, Santiago (Chile)], E-mail: rmorales@uchile.cl; Seelenfreund, A. [Universidad Academia de Humanismo Cristiano, Condell 343, Providencia, Santiago (Chile)

    2007-10-15

    Total charge deposited by a proton beam in an insulator during PIXE analysis has been indirectly determined using a Mylar film coated with cobalt. Elemental concentrations in the samples, pieces of volcanic glass, were obtained and compared to concentrations determined by ICP OES on the same samples. The strong agreement between these results shows the accuracy of the charge determined by this method.

  14. The Effect of Moisture and Fungus on Electrical and Mechanical Properties of Plastic Insulating Materials

    Science.gov (United States)

    1945-10-01

    0110 106 280000 46000 7.6 30000 6.2 27000 4.2 24000 1.2 10000 Samples and eleotrode arrangement were humidity exposure tests« aa...VARIOUS INSULATING MATERIALS TEMPERATURE 25°C.; RELATIVE HUMIDITY 979b; EXCEPT WHERE NOTED OTHERWISE 140 160 ISO 200 220 240 260 270

  15. Review of Physicochemical-Based Diagnostic Techniques for Assessing Insulation Condition in Aged Transformers

    Directory of Open Access Journals (Sweden)

    Janvier Sylvestre N’cho

    2016-05-01

    Full Text Available A power transformer outage has a dramatic financial consequence not only for electric power systems utilities but also for interconnected customers. The service reliability of this important asset largely depends upon the condition of the oil-paper insulation. Therefore, by keeping the qualities of oil-paper insulation system in pristine condition, the maintenance planners can reduce the decline rate of internal faults. Accurate diagnostic methods for analyzing the condition of transformers are therefore essential. Currently, there are various electrical and physicochemical diagnostic techniques available for insulation condition monitoring of power transformers. This paper is aimed at the description, analysis and interpretation of modern physicochemical diagnostics techniques for assessing insulation condition in aged transformers. Since fields and laboratory experiences have shown that transformer oil contains about 70% of diagnostic information, the physicochemical analyses of oil samples can therefore be extremely useful in monitoring the condition of power transformers.

  16. Study of application of Si{sub 2} and TiO{sub 2} nanofluids in electric oil transformers for performance analysis of thermal conductivity and dielectric rigidity; Estudo da aplicação de nanofluidos de SiO{sub 2} e TiO{sub 2} em transformadores elétricos a óleo para análise de desempenho da condutividade térmica e rigidez dielétrica

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Daniel R.P.; Oliveira, Otávio L. de; Rocha, Marcelo da S., E-mail: daniel.lopes@ipen.br, E-mail: otavioluis@ipen.br, E-mail: msrocha@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    Electric transformers are essential equipment in the distribution of electrical energy as they are used for the continuous supply of electricity. For this reason it is important to study the possibilities of improving your insulation and cooling systems. The application of nanofluids in insulating mineral oils, which have a cooling and electrical insulation function, is a relevant issue in this area. In this work, the characteristics of the base mineral oil used in electric transformers with colloidal samples (nanofluids) made with the same base oil are compared using different concentrations of SiO{sub 2} and TiO{sub 2} nanoparticles. The characteristics of thermal conductivity and dielectric strength of nanofluid depend on nanoparticle concentrations, but the fluid must maintain all the insulation characteristics to be used in electrical transformers. The analysis will be performed through computational simulations using FEMM 2D software, applying its thermal conductivity module. The input data were taken from the characterization of samples produced with different concentrations of SiO{sub 2} and TiO{sub 2} nanoparticles (using the same mineral base oil). The parameters were applied in a computational model of a 50 kVA transformer, with usual geometry and natural circulation of oil (by convection) referencing electric transformers used in the market for energy conversion. This paper presents some of the results of a study of the dielectric properties and thermal conductivity of a mineral oil based nanofluid.

  17. Focused ion beam (FIB) milling of electrically insulating specimens using simultaneous primary electron and ion beam irradiation

    International Nuclear Information System (INIS)

    Stokes, D J; Vystavel, T; Morrissey, F

    2007-01-01

    There is currently great interest in combining focused ion beam (FIB) and scanning electron microscopy technologies for advanced studies of polymeric materials and biological microstructures, as well as for sophisticated nanoscale fabrication and prototyping. Irradiation of electrically insulating materials with a positive ion beam in high vacuum can lead to the accumulation of charge, causing deflection of the ion beam. The resultant image drift has significant consequences upon the accuracy and quality of FIB milling, imaging and chemical vapour deposition. A method is described for suppressing ion beam drift using a defocused, low-energy primary electron beam, leading to the derivation of a mathematical expression to correlate the ion and electron beam energies and currents with other parameters required for electrically stabilizing these challenging materials

  18. Electrical insulation design and evaluation of 60 kV prototype condenser cone bushing for the superconducting equipment

    International Nuclear Information System (INIS)

    Shin, Woo-Ju; Lee, Jong-Geon; Hwang, Jae-Sang; Seong, Jae-Kyu; Lee, Bang-Wook

    2013-01-01

    Highlights: •The optimum design of condenser cone cryogenic bushing was investigated. •Multi-layer aluminum foils in the bushing insulation body was designed and analyzed. •The optimum electric field distribution was selected by simulation. •The 60 kV FRP condenser cone cryogenic bushing was fabricated and tested. •BIL test corresponding to IEC 60137 was successfully performed for the bushing. -- Abstract: A cryogenic bushing is an essential component to be developed for commercial applications of high voltage (HV) superconducting devices. Due to the steep temperature gradient of the ambient of cryogenic bushing, general gas bushing adopting SF6 gas as an insulating media could not be directly used due to the freezing of SF6 gas. Therefore, condenser type bushing with special material considering cryogenic environment would be better choice for superconducting equipment. Considering these circumstance, we focused on the design of condenser bushing made of fiber reinforced plastic (FRP). In case of the design of the condenser bushing, it is very important to reduce the electric field intensification on the mounted flange part of the cryostat, which is the most vulnerable part of bushings. In this paper, design factors of cryogenic bushing were analyzed, and finally 60 kV condenser bushing was fabricated and tested. In order to achieve optimal electric field configuration, the configuration of condenser cone was determined using 2D electric field simulation results. Based on the experimental and the analytical works, 60 kV FRP condenser bushing was fabricated. Finally, the fabricated condenser bushing has been tested by applying lightning impulse and AC overvoltage test. From the test results, it was possible to get satisfactory results which confirm the design of cryogenic bushing in cryogenic environment

  19. Electrical insulation design and evaluation of 60 kV prototype condenser cone bushing for the superconducting equipment

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Woo-Ju, E-mail: shinwooju@hanyang.ac.kr; Lee, Jong-Geon; Hwang, Jae-Sang; Seong, Jae-Kyu; Lee, Bang-Wook, E-mail: bangwook@hanyang.ac.kr

    2013-11-15

    Highlights: •The optimum design of condenser cone cryogenic bushing was investigated. •Multi-layer aluminum foils in the bushing insulation body was designed and analyzed. •The optimum electric field distribution was selected by simulation. •The 60 kV FRP condenser cone cryogenic bushing was fabricated and tested. •BIL test corresponding to IEC 60137 was successfully performed for the bushing. -- Abstract: A cryogenic bushing is an essential component to be developed for commercial applications of high voltage (HV) superconducting devices. Due to the steep temperature gradient of the ambient of cryogenic bushing, general gas bushing adopting SF6 gas as an insulating media could not be directly used due to the freezing of SF6 gas. Therefore, condenser type bushing with special material considering cryogenic environment would be better choice for superconducting equipment. Considering these circumstance, we focused on the design of condenser bushing made of fiber reinforced plastic (FRP). In case of the design of the condenser bushing, it is very important to reduce the electric field intensification on the mounted flange part of the cryostat, which is the most vulnerable part of bushings. In this paper, design factors of cryogenic bushing were analyzed, and finally 60 kV condenser bushing was fabricated and tested. In order to achieve optimal electric field configuration, the configuration of condenser cone was determined using 2D electric field simulation results. Based on the experimental and the analytical works, 60 kV FRP condenser bushing was fabricated. Finally, the fabricated condenser bushing has been tested by applying lightning impulse and AC overvoltage test. From the test results, it was possible to get satisfactory results which confirm the design of cryogenic bushing in cryogenic environment.

  20. Electric Field and Current Density Performance Analysis of Sf6, C4f8 and CO2 Gases As An Insulation

    Science.gov (United States)

    Mazli, Ahmad Danial Ahmad; Jamail, Nor Akmal Mohd; Azlin Othman, Nordiana

    2017-08-01

    SF6 gases are not only widely used as an insulating component in electric power industry but also as an arc extinguishing performance in high voltage (HV) gas-insulated circuit breaker (GCB). SF6 gases is generally used in the production of semiconductor materials and devices. Though these gasses is widely used in many application, the presences of temperature hotspot in the insulations may affect the insulation characteristics particularly electric field and current density. Therefore, it is important to determine the relationship between electric field and current density of gasses used in the insulator in the presence of hotspot. In this paper, three types of gases in particular Sulphur Hexafluoride (SF6), Octafluorocylobutane (C4F8), and Carbon Dioxide (CO2) was used in the insulator for gas insulation with the presence of two hotspots. These two hotspost were detected by referring the rising temperature in the insulator which are 1000 and 2000 Kelvin temperature for hotspot 1 and hotspot 2, respectively. From the simulation results, it can be concluded that Sulphur Hexafluoride (SF6) is the best choice for gas insulation since it had the lowest current density and electric field compared to Octafluorocylobutane (C4F8), and Carbon Dioxide (CO2). It is observed that the maximum current density and electric field for SF6 during normal condition are 358.94 × 103 V/m and 0.643 × 109 A/m2, respectively. Meanwhile, during temperature rising at hotspot 1 and hotspot 2, SF6 also had lowest current density and electric field compared to the other gasses where the results for Emax and Jmax at hotspot 1 are 322.34 × 103 V/m and 1.934 × 109 A/m2, respectively; While, Emax and Jmax at hotspot 2 are 259.77× 103 V/m and 2.824 × 109 A/m2. The results of this analysis can be used to find the best choices of gas that can be used in the insulator.

  1. Structural and electrical evaluation for strained Si/SiGe on insulator

    International Nuclear Information System (INIS)

    Wang Dong; Ii, Seiichiro; Ikeda, Ken-ichi; Nakashima, Hideharu; Ninomiya, Masaharu; Nakamae, Masahiko; Nakashima, Hiroshi

    2006-01-01

    Three strained Si/SiGe on insulator wafers having different Ge fractions were evaluated using dual-metal-oxide-semiconductor (dual-MOS) deep level transient spectroscopy (DLTS) and transmission electron microscopy (TEM) methods. The interface of SiGe/buried oxide (BOX) shows roughness less than 1 nm by high resolution TEM observation. The interface states densities (D it ) of SiGe/BOX are approximately 1 x 10 12 cm -2 eV -1 , which is approximately one order of magnitude higher than that of Si/BOX in a Si on insulator wafer measured as reference by the same method of dual-MOS DLTS. The high D it of SiGe/BOX is not due to interface roughness but due to Ge atoms. The threading dislocations were also clearly observed by TEM and were analyzed

  2. Feasibility of using electrical downhole heaters in Faja heavy oil reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, R.; Bashbush, J.L.; Rincon, A. [Society of Petroleum Engineers, Richardson, TX (United States)]|[Schlumberger, Sugar Land, TX (United States)

    2008-10-15

    Numerical models were used to examine the effect of downhole heaters in enhanced oil recovery (EOR) processes in Venezuela's Orinoco reservoir. The downhole heaters were equipped with mineral-insulated cables that allowed alternating currents to flow between 2 conductors packed in a resistive core composed of polymers and graphite. The heaters were used in conjunction with steam assisted gravity drainage (SAGD) processes and also used in horizontal wells for limited amounts of time in order to accelerate production and pressure declines. The models incorporated the petrophysical and fluid characteristics of the Ayacucho area in the Faja del Orinoco. A compositional-thermal simulator was used to describe heat and fluid flow within the reservoir. A total of 8 scenarios were used to examine the electrical heaters with horizontal and vertical wells with heaters of various capacities. Results of the study were then used in an economic analysis of capitalized and operating costs. Results of the study showed that downhole heaters are an economically feasible EOR option for both vertical and horizontal wells. Use of the heaters prior to SAGD processes accelerated production and achieved higher operational efficiencies. 5 refs., 9 tabs., 15 figs.

  3. Porous silicon formation by hole injection from a back side p+/n junction for electrical insulation applications

    International Nuclear Information System (INIS)

    Fèvre, A; Menard, S; Defforge, T; Gautier, G

    2016-01-01

    In this paper, we propose to study the formation of porous silicon (PS) in low doped (1 × 10 14 cm −3 ) n-type silicon through hole injection from a back side p + /n junction in the dark. This technique is investigated within the framework of electrical insulation. Three different types of junctions are investigated. The first one is an epitaxial n-type layer grown on p + doped silicon wafer. The two other junctions are carried out by boron diffusion leading to p + regions with junction depths of 20 and 115 μm. The resulting PS morphology is a double layer with a nucleation layer (NL) and macropores fully filled with mesoporous material. This result is unusual for low doped n-type silicon. Morphology variations are described depending on the junction formation process, the electrolyte composition, the anodization current density and duration. In order to validate the more interesting industrial potentialities of the p + /n injection technique, a comparison is achieved with back side illumination in terms of resulting morphology and experiments confirm comparable results. Electrical characterizations of the double layer, including NL and fully filled macropores, are then performed. To our knowledge, this is the first electrical investigation in low doped n type silicon with this morphology. Compared to the bulk silicon, the measured electrical resistivities are 6–7 orders of magnitude higher at 373 K. (paper)

  4. Radiation tests on selected electrical insulating materials for high-power and high voltage application

    International Nuclear Information System (INIS)

    Liptak, G.; Schuler, R.; Haberthuer, B.; Mueller, H.; Zeier, W.; Maier, P.; Schoenbacher, H.

    1985-01-01

    This report presents a comprehensive set of test results on the irradiation of insulating materials and systems used for the windings of rotating machines, dry-type transformers, and magnet coils. The materials were: Novolac, bisphenol-A, and cycloaliphatic types of epoxy; saturated and unsaturated polyesterimide; silicone, phenolic, and acrylic resins. The reinforcement consisted of glass mat, glass roving, glass cloth, mica paper, polyester mat, polyester roving, polyester cloth, aromatic polyamide paper, or combinations thereof. The materials were irradiated in an 8 MW pool reactor up to integrated doses of 10 8 Gy. On most samples, flexural properties were examined as recommended by IEC Standard 544. For tapes and varnishes, the breakdown voltage was measured. The adhesion of copper bars glued together with an epoxy resin was examined by means of a lap-shear test. A cupping test by means of the Erichsen apparatus was used to measure the flexibility of varnishes. The results are presented in tables and graphs for each of the materials tested. Those from mechanical tests show that the radiation resistance of composite resin-rich insulations depends not only on the base resin combination and the reinforcement material but, to a large degree, also on the adhesion between the two. It appears that better adhesion, and consequently higher radiation resistance, is obtained by special surface treatments of glass fibres. For laminates, higher radiation resistance is obtained with glass mat and resin combinations than with glass cloth as reinforcing materials. The breakdown voltage tests show that the application of mechanical stress to most irradiated samples causes the insulation layer to crack, resulting in lower dielectric strength. For a number of materials, the critical properties of flexural strength and breakdown voltage are above 50% of the initial value at doses between 10 7 and 10 8 Gy, i.e. a radiation index of 7 to 8 at 10 5 Gy/h. (orig.)

  5. A Design Method for Graded Insulation of Transformers by Transient Electric Field Intensity Analysis

    OpenAIRE

    Yamashita, Hideo; Cingoski, Vlatko; Namera, Akihiro; Nakamae, Eihachiro; Kitamura, Hideo

    2000-01-01

    In this paper, a calculation method for transient electric field distribution inside a transformer impressed with voltage is proposed: The concentrated electric network for the transformer is constructed by dividing transformer windings into several blocks, and the transient voltage and electric field intensity distributions inside the transformer are calculated by using the axisymmetrical finite element method. Moreover, an animated display of the distributions is realized: The visualization...

  6. Physical processes in high field insulating liquid conduction

    Science.gov (United States)

    Mazarakis, Michael; Kiefer, Mark; Leckbee, Joshua; Anderson, Delmar; Wilkins, Frank; Obregon, Robert

    2017-10-01

    In the power grid transmission where a large amount of energy is transmitted to long distances, High Voltage DC (HVDC) transmission of up to 1MV becomes more attractive since is more efficient than the counterpart AC. However, two of the most difficult problems to solve are the cable connections to the high voltage power sources and their insulation from the ground. The insulating systems are usually composed of transformer oil and solid insulators. The oil behavior under HVDC is similar to that of a weak electrolyte. Its behavior under HVDC is dominated more by conductivity than dielectric constant. Space charge effects in the oil bulk near high voltage electrodes and impeded plastic insulators affect the voltage oil hold-off. We have constructed an experimental facility where we study the oil and plastic insulator behavior in an actual HVDC System. Experimental results will be presented and compared with the present understanding of the physics governing the oil behavior under very high electrical stresses. Sandia National Laboratories managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. D.O.E., NNSA under contract DE-NA-0003525.

  7. Metal-insulator transition in tin doped indium oxide (ITO thin films: Quantum correction to the electrical conductivity

    Directory of Open Access Journals (Sweden)

    Deepak Kumar Kaushik

    2017-01-01

    Full Text Available Tin doped indium oxide (ITO thin films are being used extensively as transparent conductors in several applications. In the present communication, we report the electrical transport in DC magnetron sputtered ITO thin films (prepared at 300 K and subsequently annealed at 673 K in vacuum for 60 minutes in low temperatures (25-300 K. The low temperature Hall effect and resistivity measurements reveal that the ITO thin films are moderately dis-ordered (kFl∼1; kF is the Fermi wave vector and l is the electron mean free path and degenerate semiconductors. The transport of charge carriers (electrons in these disordered ITO thin films takes place via the de-localized states. The disorder effects lead to the well-known ‘metal-insulator transition’ (MIT which is observed at 110 K in these ITO thin films. The MIT in ITO thin films is explained by the quantum correction to the conductivity (QCC; this approach is based on the inclusion of quantum-mechanical interference effects in Boltzmann’s expression of the conductivity of the disordered systems. The insulating behaviour observed in ITO thin films below the MIT temperature is attributed to the combined effect of the weak localization and the electron-electron interactions.

  8. Metal-insulator transition in tin doped indium oxide (ITO) thin films: Quantum correction to the electrical conductivity

    Science.gov (United States)

    Kaushik, Deepak Kumar; Kumar, K. Uday; Subrahmanyam, A.

    2017-01-01

    Tin doped indium oxide (ITO) thin films are being used extensively as transparent conductors in several applications. In the present communication, we report the electrical transport in DC magnetron sputtered ITO thin films (prepared at 300 K and subsequently annealed at 673 K in vacuum for 60 minutes) in low temperatures (25-300 K). The low temperature Hall effect and resistivity measurements reveal that the ITO thin films are moderately dis-ordered (kFl˜1; kF is the Fermi wave vector and l is the electron mean free path) and degenerate semiconductors. The transport of charge carriers (electrons) in these disordered ITO thin films takes place via the de-localized states. The disorder effects lead to the well-known `metal-insulator transition' (MIT) which is observed at 110 K in these ITO thin films. The MIT in ITO thin films is explained by the quantum correction to the conductivity (QCC); this approach is based on the inclusion of quantum-mechanical interference effects in Boltzmann's expression of the conductivity of the disordered systems. The insulating behaviour observed in ITO thin films below the MIT temperature is attributed to the combined effect of the weak localization and the electron-electron interactions.

  9. Effect of surface states on electrical characteristic of metal - insulator - semiconductor (MIS) diodes

    International Nuclear Information System (INIS)

    Altindal, S.; Doekme, I.; Tataroglu, A.; Sahingoez, R.

    2002-01-01

    The current-voltage (I-V) characteristics of Metal-Insulator-Semiconductor (MIS) Schottky barrier diodes which is consider distribution of interface states in equilibrium with semiconductor were determined at two (low and high) temperature. The interface states were responsible for non-ideal behavior of the forward I-V characteristic of diodes. Both diodes (n and p type Si) showed non-ideal behavior with an ideality factor 1.6 and 1.85 respectively at room temperature. The higher values of n-type Si were attributed to an order of magnitude higher density of interface states in the both diodes. The effect of an interfacial insulator layer between the metal and semiconductor are also studied. The high density of interface states also caused a reduction in the barrier height of the MIS diode. It is shown that by using Norde function at low and high temperature, barrier height □ b , series resistance R s and ideality factor n can be determined even in the case 1 s obtained from Norde function strongly depend on temperature, and decrease with increasing temperature. In addition, the potential barrier height increases with increasing temperature. The mean density of interface states N ss decreases with increasing temperature. Particularly at low temperature the I-V characteristics are controlled by interface states density

  10. Flame spread over electrical wire with AC electric fields: Internal circulation, fuel vapor-jet, spread rate acceleration, and molten insulator dripping

    KAUST Repository

    Lim, Seungjae

    2015-04-01

    The effect of electric field on the characteristics of flame spread along a polyethylene (PE) insulated electrical wire was investigated experimentally by varying the AC frequency and voltage applied to the wire. The results showed that the flame spread rate was accelerated due to the convergence of electric flux near the end of wire, having three distinct regimes depending on applied voltage. In each regime, several subregimes could be identified depending on AC frequency. Flame shape (height and width) and slanted direction of the spreading flame were influenced differently. Fuel-vapor jets were ejected from the molten PE surface even for the baseline case without the application of an electric field; this could be attributed to the bursting of fuel vapor bubbles generated from internal boiling at the molten PE surface. An internal circulation of molten-PE was also observed as a result of non-uniform heating by the spreading flame. In the high voltage regime with a high AC frequency, excessive dripping of molten PE led to flame extinction.

  11. Life cycle of transformer oil

    Directory of Open Access Journals (Sweden)

    Đurđević Ksenija R.

    2008-01-01

    Full Text Available The consumption of electric power is constantly increasing due to industrialization and population growth. This results in much more severe operating conditions of transformers, the most important electrical devices that make integral parts of power transmission and distribution systems. The designed operating life of the majority of worldwide transformers has already expired, which puts the increase of transformer reliability and operating life extension in the spotlight. Transformer oil plays a very important role in transformer operation, since it provides insulation and cooling, helps extinguishing sparks and dissolves gases formed during oil degradation. In addition to this, it also dissolves moisture and gases from cellulose insulation and atmosphere it is exposed to. Further and by no means less important functions of transformer are of diagnostic purpose. It has been determined that examination and inspection of insulation oil provide 70% of information on transformer condition, which can be divided in three main groups: dielectric condition, aged transformer condition and oil degradation condition. By inspecting and examining the application oil it is possible to determine the condition of insulation, oil and solid insulation (paper, as well as irregularities in transformer operation. All of the above-mentioned reasons and facts create ground for the subject of this research covering two stages of transformer oil life cycle: (1 proactive maintenance and monitoring of transformer oils in the course of utilization with reference to influence of transformer oil condition on paper insulation condition, as well as the condition of the transformer itself; (2 regeneration of transformer oils for the purpose of extension of utilization period and paper insulation revitalization potential by means of oil purification. The study highlights advantages of oil-paper insulation revitalization over oil replacement. Besides economic, there are

  12. Heat conduction coefficient and coefficient of linear thermal expansion of electric insulation materials for superconducting magnetic system

    International Nuclear Information System (INIS)

    Deev, V.I.; Sobolev, V.P.; Kruglov, A.B.; Pridantsev, A.I.

    1984-01-01

    Results of experimental investigation of heat conduction coefficient and coefficient of linear thermal expansion and thermal shrinkages of the STEF-1 textolite-glass widely used in superconducting magnetic systems as electric insulating and structural material are presented. Samples of two types have been died: sample axisa is perpendicular to a plae of fiberglass layers ad sample axis is parallel to a plane of fiberglass layers. Heat conduction coefficient was decreased almost a five times with temperature decrease from 300 up to 5K and was slightly dependent on a sample type. Temperature variation of linear dimensions in a sample of the first type occurs in twice as fast as compared to the sample of the second type

  13. Localization of Electrical Insulation Failures in Superconducting Collared Coils by Analysis of the Distortion of a Pulsed Magnetic Field

    CERN Document Server

    Komorowski, P A

    2000-01-01

    The localization of possible electrical faults in superconducting accelerator magnets may, in most cases, be a complex, expensive and time-consuming process. In particular, inter-turn short circuits and failures of the ground insulation are well detectable when the magnet is collared, but often disappear after disassembly for repair due to the release of the pre-stress in the coils. The fault localization method presented in this paper is based on the measurement and analysis of the magnetic field generated inside the magnet aperture by a high voltage pulse. The presence of the fault modifies the distribution of the current in the coils and produces a distortion of the magnetic field. The described method aims at locating both the longitudinal and azimuthal position of the fault-affected area. The test method, the transient case FEM models and the implemented experimental set-up are presented and discussed for the LHC dipole models.

  14. Electricity Breakdown Management for Sarawak Energy: Use of Condition-Based Equipment for Detection of Defective Insulator

    Science.gov (United States)

    Tan, J. K.; Abas, N.

    2017-07-01

    Managing electricity breakdown is vital since an outage causes economic losses for customers and the utility companies. However, electricity breakdown is unavoidable due to some internal or external factors beyond our control. Electricity breakdown on overhead lines tend occur more frequently because it is prone to external disturbances such as animal, overgrown vegetation and defective pole top accessories. In Sarawak Energy Berhad (SEB), majority of the network are composed of overhead lines and hence, is more prone to failure. Conventional method of equipment inspection and fault finding are not effective to quickly identify the root cause of failure. SEB has engaged the use of corona discharge camera as condition-based monitoring equipment to carry out condition based inspection on the line in order to diagnose the condition of the lines prior to failure. Experimental testing has been carried out to determine the correlation between the corona discharge count and the level of defect on line insulator. The result shall be tabulated and will be used as reference for future scanning and diagnostic on any defect on the lines.

  15. Multilayered Functional Insulation System (MFIS) for AC Power Transmission in High Voltage Hybrid Electrical Propulsion

    Science.gov (United States)

    Lizcano, Maricela

    2017-01-01

    High voltage hybrid electric propulsion systems are now pushing new technology development efforts for air transportation. A key challenge in hybrid electric aircraft is safe high voltage distribution and transmission of megawatts of power (>20 MW). For the past two years, a multidisciplinary materials research team at NASA Glenn Research Center has investigated the feasibility of distributing high voltage power on future hybrid electric aircraft. This presentation describes the team's approach to addressing this challenge, significant technical findings, and next steps in GRC's materials research effort for MW power distribution on aircraft.

  16. Determinação de ascarel em óleo isolante de transformadores Ascarel determination in insulating oil of transformers

    Directory of Open Access Journals (Sweden)

    Izoldir Antonello

    2007-06-01

    Full Text Available The contamination level of silicon oil used as insulation liquid in high-voltage transformers by ascarel (PCBs is above those permitted by the Brazilian law. Thus new techniques able to detect ascarel, with low operational costs, are very attractive. The present work proposes an analysis of the contamination levels of silicon oil using the following techniques: naphthalene anion radical reaction for ascarel dechlorination; and potentiometry with an ion-selective electrode for chloride ion determination. The data obtained with the proposed methodology agree well with those from the official methodology, (method IEC 61619.

  17. Microwave heating of electric cable insulated wires before their impregnation with a hydrophobic material

    Energy Technology Data Exchange (ETDEWEB)

    Niculae, D; Mihailescu, A [Romanian Electricity Authority (Romania); Indreias, I; Martin, D [Institute of Atomic Physics, Bucharest (Romania); Margaritescu, A [ICPE Electrostatica, Bucharest, (Romania); Zlatonovici, D

    1998-12-31

    Underground insulated telecommunication cables must be impregnated with a hydrophobic material in order to prevent water penetration damage. To do so, the cable wire bundle must be heated to a temperature of 60 to 90 degrees C to ensure proper fluidity of the hydrophobic material that must fill the free spaces between the copper wires of the telephone cable. This paper described the microwave heating method of the wires before their impregnation. A cylindrical applicator was designed to perform a telephone bundle heating test. 800 W of microwave power were used on a telephone cable made up of 800 wires of 0.4 mm in diameter. A uniform heating was obtained throughout the section. Microwave heating was also found to be 53 per cent more energy efficient than hot air heating. 4 refs., 4 figs.

  18. Effects of thermal ageing and gamma radiations on ethylene-propylene based insulator of electric cables

    International Nuclear Information System (INIS)

    Baccaro, S.; D'Atanasio, P.

    1986-01-01

    This paper describes the effects of gamma radiation and thermal aging on cable insulator. The elastic properties degrade rapidly as the absorbed dose increases: the percent elongation at break attains nearly 100% value at 0.5 MGy absorbed dose. The gases evolved during the irradiation are mainly H 2 and CO 2 ; CO, CH 4 and C 2 H 6 are present in much lower concentrations. The damage undergone depends strongly on sequential radiation and thermal aging; the analysis of accelerated life test data by means of the Arrhenius model gave (1.23+-0.25) eV for the activation energy, about 1 eV higher than the values reported in the literature

  19. Electrical analysis of high dielectric constant insulator and metal gate metal oxide semiconductor capacitors on flexible bulk mono-crystalline silicon

    KAUST Repository

    Ghoneim, Mohamed T.; Rojas, Jhonathan Prieto; Young, Chadwin D.; Bersuker, Gennadi; Hussain, Muhammad Mustafa

    2015-01-01

    We report on the electrical study of high dielectric constant insulator and metal gate metal oxide semiconductor capacitors (MOSCAPs) on a flexible ultra-thin (25 μm) silicon fabric which is peeled off using a CMOS compatible process from a standard

  20. Correlation between electrical, mechanical and chemical properties of fresh and used aircraft engine oils

    Science.gov (United States)

    Gajewski, Juliusz B.; Głogowski, Marek J.; Paszkowski, Maciej; Czarnik-Matusewicz, Bogusława

    2011-06-01

    In this paper the results are presented of measurements of electrical, mechanical and chemical properties of fresh and used aircraft engine oils. Oils were used in a four-stroke aircraft engine and their samples were taken after the 50-hour work of the engine. The resistivity, permittivity and viscosity of oils were measured as a function of temperature. Additionally, some measurements of the absorbance spectra and size of particles contained in the oils were carried out. The significant reduction in the resistivity of the used Total oil was observed. The relative permittivity of both used oils was slightly increased. The oil's relative viscosity depends on temperature of oil and given time that elapsed from the very first moment when the shear force was applied in a rheometer. The results obtained allowed one to identify more precisely the chemical and physico-chemical interactions occurring in the tested samples, as compared with a typical infrared spectroscopy.

  1. Correlation between electrical, mechanical and chemical properties of fresh and used aircraft engine oils

    International Nuclear Information System (INIS)

    Gajewski, Juliusz B; Glogowski, Marek J; Paszkowski, Maciej; Czarnik-Matusewicz, Boguslawa

    2011-01-01

    In this paper the results are presented of measurements of electrical, mechanical and chemical properties of fresh and used aircraft engine oils. Oils were used in a four-stroke aircraft engine and their samples were taken after the 50-hour work of the engine. The resistivity, permittivity and viscosity of oils were measured as a function of temperature. Additionally, some measurements of the absorbance spectra and size of particles contained in the oils were carried out. The significant reduction in the resistivity of the used Total oil was observed. The relative permittivity of both used oils was slightly increased. The oil's relative viscosity depends on temperature of oil and given time that elapsed from the very first moment when the shear force was applied in a rheometer. The results obtained allowed one to identify more precisely the chemical and physico-chemical interactions occurring in the tested samples, as compared with a typical infrared spectroscopy.

  2. Measurement Techniques Used for Study of Electrical Discharge Mechanisms in Insulating Ester Fluids under Lightning Impulse

    Directory of Open Access Journals (Sweden)

    ROZGA, P.

    2014-08-01

    Full Text Available This article describes the measurement techniques used for the study of mechanisms of electrical discharge development in ester fluids under lightning impulse voltage. These techniques were applied in a laboratory experimental system which enabled the acquisition of a wide range of experimental data. An analysis of the data gives the possibility of assessing the processes responsible for electrical discharge propagation in different types of dielectric liquids. The photographic registration system provides photographs of developing discharges. This uses the shadowgraph method with an impulse laser as a flash lamp. The system of light emission registration enables collection of the time courses of light emitted by the developing discharge. Both systems operating together are synchronized using light guide communication. They are also unaffected by external disturbances such as network overvoltages and high electrical field stress. Preliminary results obtained on the basis of the described techniques, in the field of electrical discharge development in synthetic and natural esters, are presented in the article. These results confirm suitability of the methods used and give the possibility to formulate first conclusions.

  3. Degradation of electrical insulation of polyethylene under thermal and radiation environment, (4). [Gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Shuhei; Murabayashi, Fumio; Sawa, Goro [Mie Univ., Tsu (Japan); Yamaguchi, Shinji; Ieda, Masayuki

    1982-12-01

    Although the quality assurance guideline for the cables used for the safety and protection systems of nuclear power plants is given by IEEE Standards 323 and 383-1974, in addition, it is important to clarify the aging process under the complex environment of heat and radiation and the equivalence of the accelerated aging test of insulating materials. The authors performed the sequential (H.T-..gamma.. or ..gamma..-HT) and simultaneous (..gamma.., HT) application of respective aging factors of heat and radiation to non-additive low density polyethylene films by changing dose rate as the first stage, to clarify the dose rate dependence of the aging. They mainly investigated the dielectric properties, and forwarded investigation based on the change of carbonyl group by infrared spectrometry and residual free radicals by ESR analysis. In the samples irradiated with ..gamma..-ray only and those irradiated with ..gamma..-ray after thermal treatment for 7 hours at 90 deg C, the absorption coefficient ..cap alpha.. of carbonyl group increased with dose in the range from 3 Mrad to 60 Mrad, and both samples showed approximately the same ..cap alpha.. value. The ..cap alpha.. value of the samples thermally treated after irradiation was larger than that of the samples treated in the reverse order, and the difference between them increased with the increase of dose. The values of dielectric tangent delta at room temperature and 1 kHz for the samples (..gamma..) and (HT-..gamma..) increased with dose, and were almost the same, but those for the samples (..gamma..-HT) and (..gamma.., HT) were larger than the former two.

  4. Water Tree Influence on Space Charge Distribution and on the Residual Electric Field in Polyethylene Insulation

    Directory of Open Access Journals (Sweden)

    Cristina Stancu

    2009-10-01

    Full Text Available A computation method of the electricfield and ionic space charge density in planeinsulations with water trees (using a ComsolMultiphysics software and the thermal step currents(Im(t measured with Thermal Step Method ispresented. A parabolic spatial variation of volumecharge density, an exponential spatial variation ofthe electric permittivity ε and a linear dependency ofε and the temperature coefficient of permittivity αεwith the average water concentration in trees, areconsidered. For a water tree with a known length,different values of charge density are consideredand the electric field and the thermal step currentsIc(t are calculated. The currents Ic(t and Im(t arecompared and the volume of charge density andelectric field for which Ic(t is identical with Im(t arekept.

  5. Conductance fluctuations and distribution at metal-insulator transition induced by electric field in disordered chain

    International Nuclear Information System (INIS)

    Senouci, Khaled

    2000-08-01

    A simple Kronig-Penney model for 1D mesoscopic systems with δ peak potentials is used to study numerically the influence of a constant electric field on the conductance fluctuations and distribution at the transition. We found that the conductance probability distribution has a system-size independent form with large fluctuations in good agreement with the previous works in 2D and 3D systems. (author)

  6. Do clinical examination gloves provide adequate electrical insulation for safe hands-on defibrillation? I: Resistive properties of nitrile gloves.

    Science.gov (United States)

    Deakin, Charles D; Lee-Shrewsbury, Victoria; Hogg, Kitwani; Petley, Graham W

    2013-07-01

    Uninterrupted chest compressions are a key factor in determining resuscitation success. Interruptions to chest compression are often associated with defibrillation, particularly the need to stand clear from the patient during defibrillation. It has been suggested that clinical examination gloves may provide adequate electrical resistance to enable safe hands-on defibrillation in order to minimise interruptions. We therefore examined whether commonly used nitrile clinical examination gloves provide adequate resistance to current flow to enable safe hands-on defibrillation. Clinical examination gloves (Kimberly Clark KC300 Sterling nitrile) worn by members of hospital cardiac arrest teams were collected immediately following termination of resuscitation. To determine the level of protection afforded by visually intact gloves, electrical resistance across the glove was measured by applying a DC voltage across the glove and measuring subsequent resistance. Forty new unused gloves (control) were compared with 28 clinical (non-CPR) gloves and 128 clinical (CPR) gloves. One glove in each group had a visible tear and was excluded from analysis. Control gloves had a minimum resistance of 120 kΩ (median 190 kΩ) compared with 60 kΩ in clinical gloves (both CPR (median 140 kΩ) and non-CPR groups (median 160 kΩ)). Nitrile clinical examination gloves do not provide adequate electrical insulation for the rescuer to safely undertake 'hands-on' defibrillation and when exposed to the physical forces of external chest compression, even greater resistive degradation occurs. Further work is required to identify gloves suitable for safe use for 'hands-on' defibrillation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  7. Producing electricity from Israel oil shale with PFBC technology

    International Nuclear Information System (INIS)

    Grinberg, A.; Keren, M.; Podshivalov, V.; Anderson, J.

    2000-01-01

    Results of Israeli oil shale combustion at atmospheric pressure in the AFBC commercial boiler manufactured by Foster Wheeler Energia Oy (Finland) and in the pressurized test facility of ABB Carbon AB (Finspong, Sweden) confirm suitability of fluidized-bed technologies in case of oil shale. The results approve possibility to use the PFBC technology in case of oil shale after solving of some problems connected with great amounts of fine fly ash. (author)

  8. The Efficiency Improvement by Combining HHO Gas, Coal and Oil in Boiler for Electricity Generation

    Directory of Open Access Journals (Sweden)

    Chia-Nan Wang

    2017-02-01

    Full Text Available Electricity is an essential energy that can benefit our daily lives. There are many sources available for electricity generation, such as coal, natural gas and nuclear. Among these sources, coal has been widely used in thermal power plants that account for about 41% of the worldwide electricity supply. However, these thermal power plants are also found to be a big pollution source to our environment. There is a need to explore alternative electricity sources and improve the efficiency of electricity generation. This research focuses on improving the efficiency of electricity generation through the use of hydrogen and oxygen mixture (HHO gas. In this research, experiments have been conducted to investigate the combined effects of HHO gas with other fuels, including coal and oil. The results show that the combinations of HHO with coal and oil can improve the efficiency of electricity generation while reducing the pollution to our environment.

  9. The change of electric field and of some other insulating properties during isochronal annealing in thermally poled Ge-doped silica films

    DEFF Research Database (Denmark)

    Liu, Q.M.; Poumellec, B.; Braga, D.

    2005-01-01

    induced electric field and other insulating properties like electron traps population and conductivity in high field. Concerning the change of the contrast at low dose arising from the poling electric field, we show that this field begins to disappear at around 450 degrees C and is erased completely...... at 650 degrees C. Using a larger dose allows measuring the change in conductivity contrast. We find a stability similar to the electric field with a disappearance around 450 similar to 650 degrees C. On the contrary, for intermediate dose, the contrast remains for larger annealing temperature. It allows...

  10. Experimental and numerical modeling of heavy-oil recovery by electrical heating

    Energy Technology Data Exchange (ETDEWEB)

    Hascakir, B.; Akin, S. [Middle East Technical Univ., Ankara (Turkey); Babadagli, T. [Alberta Univ., Edmonton, AB (Canada)

    2008-10-15

    This study examined the applicability of electrical heating as a heavy oil recovery system in 2 heavy oil fields in Turkey. The physical and chemical properties of samples from the 2 fields were compiled and measured. The samples were then subjected to electrical heating. A retort technique was used to determine oil recovery performance under various conditions. Different types of iron powders were also applied in order to reduce oil viscosity. In situ viscosity reduction levels during the heating process were measured using a history matching procedure that considered data obtained during the laboratory experiments. The study demonstrated that the addition of iron power to the oil samples caused the polar components of the oil to decrease. Oil viscosity was strongly influenced by the magnetic fields created by the iron powders. An analysis of the experimental data showed that significant viscosity reductions of 88 per cent were obtained for the samples when iron additions of 0.5 per cent were used. Data from the experiments were used to develop mathematical models in order to consider thermal diffusion coefficients, oil viscosity, and relative permeability parameters. It was concluded that the cost of producing 1 barrel of oil using the method cost approximately US $5. After a period of 70 days, 320 barrels of petroleum were produced using the method. Oil production rates increased to 440 barrels over the same time period when iron additions were used. 30 refs., 6 tabs., 12 figs.

  11. Electrically Insulated Sensing of Respiratory Rate and Heartbeat Using Optical Fibers

    Directory of Open Access Journals (Sweden)

    Ernesto Suaste-Gómez

    2014-11-01

    Full Text Available Respiratory and heart rates are among the most important physiological parameters used to monitor patients’ health. It is important to design devices that can measure these parameters without risking or altering the subject’s health. In this context, a novel sensing method to monitor simultaneously the heartbeat and respiratory rate signals of patients within an electrically safety environment was developed and tested. An optical fiber-based sensor was used in order to detect two optical phenomena. Photo-plethysmography and the relation between bending radius and attenuation of optical fiber were coupled through a single beam light traveling along this fiber.

  12. Influence of ultrasound on the electrical breakdown of transformer oil

    Science.gov (United States)

    Isakaev, E. Kh; Tyuftyaev, A. S.; Gadzhiev, M. Kh; Demirov, N. A.; Akimov, P. L.

    2018-01-01

    When the transformer oil is exposed to low power ultrasonic waves (cavitation bubbles. With the increase of sonication time the breakdown voltage also increases, nonlinearly. The experimental data indicate the possibility of using ultrasonic waves of low power for degassing of transformer oil.

  13. Cooling of electrically insulated high voltage electrodes down to 30 mK Kühlung von elektrisch isolierten Hochspannungselektroden bis 30 mK

    CERN Document Server

    Eisel, Thomas; Bremer, J

    2011-01-01

    The Antimatter Experiment: Gravity, Interferometry, Spectroscopy (AEGIS) at the European Organization for Nuclear Research (CERN) is an experiment investigating the influence of earth’s gravitational force upon antimatter. To perform precise measurements the antimatter needs to be cooled to a temperature of 100 mK. This will be done in a Penning trap, formed by several electrodes, which are charged with several kV and have to be individually electrically insulated. The trap is thermally linked to a mixing chamber of a 3He-4He dilution refrigerator. Two link designs are examined, the Rod design and the Sandwich design. The Rod design electrically connects a single electrode with a heat exchanger, immersed in the helium of the mixing chamber, by a copper pin. An alumina ring and the helium electrically insulate the Rod design. The Sandwich uses an electrically insulating sapphire plate sandwiched between the electrode and the mixing chamber. Indium layers on the sapphire plate are applied to improve the ther...

  14. The annealing influence onto the electrical and magnetic behavior of magnetoresistive/insulator system

    International Nuclear Information System (INIS)

    Ahmed, A.M.; Mohamed Abd El-Mo'ez A; Mohamed, H.F.; Diab, A.K.; Mohamed Ami M; Mazen, A.E.A.

    2016-01-01

    This investigation is mainly concerned with the effect of annealing temperature (600, 700, 800 and 900 deg C) in air for (La 0. 7Ba 0.3 MnO 3 ) 1-x /(NiO) x with x = 0 and x = 0.10 samples. It was shown that the annealing temperature does not affect the structure and parameters of rhombohedral lattice of the samples. However, it is observed that the annealing treatment has a notable effect on the electrical resistivity and the metal-semiconductor transition temperature Tms. Temperature dependent magnetization measurements showed a decrease in Curie temperature TC with annealing temperature. In the same time, annealing process decreases the magnetoresistance of La 0.7 Ba 0.3 MnO 3 , in contrast to (La 0.7 Ba 0.3 MnO 3 ) 0.9 /(NiO) 0.1 composite.

  15. Radiation Stability of a Connecting Compound of the Electric Insulation of Superconducting Accelerator Magnets

    International Nuclear Information System (INIS)

    Cherevatenko, E.

    2006-01-01

    The strength limits of the samples of epoxy containing the fillers and antioxidants have been measured after γ-irradiation at dose rate of 10 - 1 / 10 2 Gy x s - 1. It is shown that different fillers, especially special cement, essentially increase radiation stability of the compound. Using 'Time-dose-temperature superposition' method and on the base of 'Recognition Theory' the limiting doses, corresponding to 25% losses of the yield strength (at electrical parameters conservation) were first determined by means of extrapolation to the dose rate of 10 - 3 Gy x s - 1. It is ractically impossible to receive the value of the limiting dose in experiment for these conditions because it requires a very long time of irradiation of the samples to achieve necessary effect

  16. Electrical transport and capacitance characteristics of metal-insulator-metal structures using hexagonal and cubic boron nitride films as dielectrics

    Science.gov (United States)

    Teii, Kungen; Kawamoto, Shinsuke; Fukui, Shingo; Matsumoto, Seiichiro

    2018-04-01

    Metal-insulator-metal capacitor structures using thick hexagonal and cubic boron nitride (hBN and cBN) films as dielectrics are produced by plasma jet-enhanced chemical vapor deposition, and their electrical transport and capacitance characteristics are studied in a temperature range of 298 to 473 K. The resistivity of the cBN film is of the order of 107 Ω cm at 298 K, which is lower than that of the hBN film by two orders of magnitude, while it becomes the same order as the hBN film above ˜423 K. The dominant current transport mechanism at high fields (≥1 × 104 V cm-1) is described by the Frenkel-Poole emission and thermionic emission models for the hBN and cBN films, respectively. The capacitance of the hBN film remains stable for a change in alternating-current frequency and temperature, while that of the cBN film has variations of at most 18%. The dissipation factor as a measure of energy loss is satisfactorily low (≤5%) for both films. The origin of leakage current and capacitance variation is attributed to a high defect density in the film and a transition interlayer between the substrate and the film, respectively. This suggests that cBN films with higher crystallinity, stoichiometry, and phase purity are potentially applicable for dielectrics like hBN films.

  17. From oil sands to transportation fuels, to electricity, to hydrogen

    International Nuclear Information System (INIS)

    Yildirim, E.

    1993-01-01

    The Alberta Chamber of Resources programs and initiatives on oil sands and heavy oil, and strategies for revitalizing oilsands development in Alberta are described. The regional upgrader and satellite production facilities concept, and technology requirements for mineable oil sands by the year 2010 are discussed. Strategic alliances in furtherence of oil sands research and development and the National Task Force on Oil Sands Strategies are described. Changes in requirements for transportation fuels due to stricter regulations and environmental initiatives will cause a trend to lighter fuels with more hydrogen content, less aromatics, nitrogen, sulfur and metals. A preferred refinery configuration will be able to process heavier crudes and synthetic crudes, have no heavy fuel oil product, low sulfur products, low aromatics with high octane, and low operating cost. A regional or central facility that combines the processing capabilities of a bitumen upgrader with the process units of a refinery is preferred. Advantages of this concept are: value addition to the feedstock is maximized; dependence on refineries is eliminated; restriction on synthetic crude oil volumes due to capacity limitations at refineries is eliminated; directly marketable finished products are produced; more stringent quality specifications are satisfied; and the synergies between upgrading and refining improve overall economics of processing. It is recommended that the concept of regional upgraders be adopted for Alberta, strategic alliances be encouraged, incentives for bitumen production be provided, and a bitumen pipeline network be developed. 12 refs

  18. Investigation of Corrosion of Buried Oil Pipeline by the Electrical ...

    African Journals Online (AJOL)

    MICHAEL

    ABSTRACT: The delineation of possible areas of corrosion along an underground oil pipeline in Ubeji, ... prevention of pipeline failure with its attendant environmental, human and economic consequences. @ JASEM .... Cathodic protection as.

  19. Thermally conductive, electrically insulating and melt-processable polystyrene/boron nitride nanocomposites prepared by in situ reversible addition fragmentation chain transfer polymerization

    International Nuclear Information System (INIS)

    Huang, Xingyi; Wang, Shen; Zhu, Ming; Yang, Ke; Jiang, Pingkai; Bando, Yoshio; Golberg, Dmitri; Zhi, Chunyi

    2015-01-01

    Thermally conductive and electrically insulating polymer/boron nitride (BN) nanocomposites are highly attractive for various applications in many thermal management fields. However, so far most of the preparation methods for polymer/BN nanocomposites have usually caused difficulties in the material post processing. Here, an in situ grafting approach is designed to fabricate thermally conductive, electrically insulating and post-melt processable polystyrene (PS)/BN nanosphere (BNNS) nanocomposites by initiating styrene (St) on the surface functionalized BNNSs via reversible addition fragmentation chain transfer polymerization. The nanocomposites exhibit significantly enhanced thermal conductivity. For example, at a St/BN feeding ratio of 5:1, an enhancement ratio of 1375% is achieved in comparison with pure PS. Moreover, the dielectric properties of the nanocomposites show a desirable weak dependence on frequency, and the dielectric loss tangent of the nanocomposites remains at a very low level. More importantly, the nanocomposites can be subjected to multiple melt processing to form different shapes. Our method can become a universal approach to prepare thermally conductive, electrically insulating and melt-processable polymer nanocomposites with diverse monomers and nanofillers. (paper)

  20. Heat transfer through the flat surface of Rutherford superconducting cable samples with novel pattern of electrical insulation immersed in He II

    Science.gov (United States)

    Strychalski, M.; Chorowski, M.; Polinski, J.

    2014-05-01

    Future accelerator magnets will be exposed to heat loads that exceed even by an order of magnitude presently observed heat fluxes transferred to superconducting magnet coils. To avoid the resistive transition of the superconducting cables, the efficiency of heat transfer between the magnet structure and the helium must be significantly increased. This can be achieved through the use of novel concepts of the cable’s electrical insulation wrapping, characterized by an enhanced permeability to helium while retaining sufficient electrical resistivity. This paper presents measurement results of the heat transfer through Rutherford NbTi cable samples immersed in a He II bath and subjected to the pressure loads simulating the counteracting of the Lorentz forces observed in powered magnets. The Rutherford cable samples that were tested used different electrical insulation wrapping schemes, including the scheme that is presently used and the proposed scheme for future LHC magnets. A new porous polyimide cable insulation with enhanced helium permeability was proposed in order to improve the evacuation of heat form the NbTi coil to He II bath. These tests were performed in a dedicated Claudet-type cryostat in pressurized He II at 1.9 K and 1 bar.

  1. Research on vacuum insulation for cryocables

    International Nuclear Information System (INIS)

    Graneau, P.

    1974-01-01

    Vacuum insulation, as compared with solid insulation, simplifies the construction of both resistive or superconducting cryogenic cables. The common vacuum space in the cable can furnish thermal insulation between the environment and the cryogenic coolant, provide electrical insulation between conductors, and establish thermal isolation between go- and return-coolant streams. The differences between solid and vacuum high voltage insulation are discussed, and research on the design, materials selection, and testing of vacuum insulated cryogenic cables is described

  2. Electricity in lieu of nautral gas and oil for industrial thermal energy: a preliminary survey

    Energy Technology Data Exchange (ETDEWEB)

    Tallackson, J. R.

    1979-02-01

    In 1974, industrial processors accounted for nearly 50% of the nation's natural gas consumption and nearly 20% of its consumption of petroleum. This report is a preliminary assessment of the potential capability of the process industries to substitute utility-generated electricity for these scarce fuels. It is tacitly assumed that virtually all public utilities will soon be relying on coal or nuclear fission for primary energy. It was concluded that the existing technology will permit substitution of electricity for approximately 75% of the natural gas and petroleum now being consumed by industrial processors, which is equivalent to an annual usage of 800 million barrels of oil and 9 trillion cubic feet of gas at 1974 levels. Process steam generation, used throughout industry and representing 40% of its energy usage, offers the best near-term potential for conversion to electricity. Electric boilers and energy costs for steam are briefly discussed. Electrically driven heat pumps are considered as a possible method to save additional low-grade energy. Electrical reheating at high temperatures in the primary metals sector will be an effective way to conserve gas and oil. A wholesale shift by industry to electricity to replace gas and oil will produce impacts on the public utilities and, perhaps, those of a more general socio-economic nature. The principal bar to large-scale electrical substitution is economics, not technology. 174 references.

  3. A Non-Destructive Optical Method for the DP Measurement of Paper Insulation Based on the Free Fibers in Transformer Oil

    Directory of Open Access Journals (Sweden)

    Lei Peng

    2018-03-01

    Full Text Available In order to explore a non-destructive method for measuring the polymerization degree (DP of paper insulation in transformer, a new method that based on the optical properties of free fiber particles in transformer oil was studied. The chromatic dispersion images of fibers with different aging degree were obtained by polarizing microscope, and the eigenvalues (r, b, and Mahalanobis distance of the images were extracted by the RGB (red, blue, and green tricolor analysis method. Then, the correlation between the three eigenvalues and DP of paper insulation were simulated respectively. The results showed that the color of images changed from blue-purple to orange-yellow gradually with the increase of aging degree. For the three eigenvalues, the relationship between Mahalanobis distance and DP had the best goodness of fit (R2 = 0.98, higher than that of r (0.94 and b (0.94. The mean square error of the relationship between Mahalanobis distance and DP (52.17 was also significantly lower than that of r and b (97.58, 98.05. Therefore, the DP of unknown paper insulation could be calculated by the simulated relationship of Mahalanobis distance and DP.

  4. Analysis of the electrical characteristic of linseed oil films exposed to humidity

    Energy Technology Data Exchange (ETDEWEB)

    Palummo, Lucrezia [Rome University Tor Vergata, Physic Department, Rome (Italy); Bearzotti, Andrea [IMM-CNR, Area di Ricerca di Roma Tor Vergata, Rome (Italy)

    2009-12-15

    Linseed oil is a material widely used in various applications as a protecting layer for surfaces in industry, in scientific research, for medical use, and finally for artistic purpose. This natural origins substance has a particular application as a protective and smoothing layer on phenolic-melaminic laminate electrodes on Resistive Plate Chamber (RPC) detectors used in various particle physic experiments. In such electronic applications where linseed oil could be exposed to water vapours, an electrical characterization should result useful for having an overall control of the process involving the oil. In this paper, we studied the electrical behaviour towards relative humidity variations of linseed oil films deposited on interdigitated metal electrodes. Moreover, I/V characterisation both in air and vacuum, current vs. temperature and relative humidity was performed. (orig.)

  5. Silanization of boron nitride nanosheets (BNNSs) through microfluidization and their use for producing thermally conductive and electrically insulating polymer nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Seyhan, A.Tuğrul, E-mail: atseyhan@anadolu.edu.tr [Department of Materials Science and Engineering, Anadolu University - AU, Iki Eylul Campus, 26550 Eskisehir (Turkey); Composite Materials Manufacturing Science Laboratory (CMMSL), Research and Application Center of Civil Aviation (RACCA), Anadolu University - AU, Iki Eylul Campus, 26550 Eskisehir (Turkey); Göncü, Yapıncak; Durukan, Oya; Akay, Atakan; Ay, Nuran [Department of Materials Science and Engineering, Anadolu University - AU, Iki Eylul Campus, 26550 Eskisehir (Turkey)

    2017-05-15

    to make it possible to utilize them as promising filler constituent in manufacturing thermally conductive and electrically insulating polymer nanocomposites that could be considered as whole or a part of a heat-releasing device.

  6. Study of heat transfer in superconducting cable electrical insulation of accelerator magnet cooled by superfluid helium; Etude des transferts de chaleur dans les isolations electriques de cables supraconducteurs d'aimant d'accelerateur refroidi par helium superfluide

    Energy Technology Data Exchange (ETDEWEB)

    Baudouy, B

    1996-10-04

    Heat transfer studies of electrical cable insulation in superconducting winding are of major importance for stability studies in superconducting magnets. This work presents an experimental heat transfer study in superconducting cables of Large Hadron Collider dipoles cooled by superfluid helium and submitted to volume heat dissipation due to beam losses. For NbTi magnets cooled by superfluid helium the most severe heat barrier comes from the electrical insulation of the cables. Heat behaviour of a winding is approached through an experimental model in which insulation characteristics can be modified. Different tests on insulation patterns show that heat transfer is influenced by superfluid helium contained in insulation even for small volume of helium (2 % of cable volume). Electrical insulation can be considered as a composite material made of a solid matrix with a helium channels network which cannot be modelled easily. This network is characterised by another experimental apparatus which allows to study transverse and steady-state heat transfer through an elementary insulation pattern. Measurements in Landau regime ({delta}T{approx}10{sup -5} to 10{sup -3} K) and in Gorter-Mellink regime ({delta}T>10{sup -3} K) and using assumptions that helium thermal paths and conduction in the insulation are decoupled allow to determine an equivalent channel area (10{sup -6} m{sup 2}) and an equivalent channel diameter (25 {mu}). (author)

  7. Study of heat transfer in superconducting cable electrical insulation of accelerator magnet cooled by superfluid helium; Etude des transferts de chaleur dans les isolations electriques de cables supraconducteurs d'aimant d'accelerateur refroidi par helium superfluide

    Energy Technology Data Exchange (ETDEWEB)

    Baudouy, B

    1996-10-04

    Heat transfer studies of electrical cable insulation in superconducting winding are of major importance for stability studies in superconducting magnets. This work presents an experimental heat transfer study in superconducting cables of Large Hadron Collider dipoles cooled by superfluid helium and submitted to volume heat dissipation due to beam losses. For NbTi magnets cooled by superfluid helium the most severe heat barrier comes from the electrical insulation of the cables. Heat behaviour of a winding is approached through an experimental model in which insulation characteristics can be modified. Different tests on insulation patterns show that heat transfer is influenced by superfluid helium contained in insulation even for small volume of helium (2 % of cable volume). Electrical insulation can be considered as a composite material made of a solid matrix with a helium channels network which cannot be modelled easily. This network is characterised by another experimental apparatus which allows to study transverse and steady-state heat transfer through an elementary insulation pattern. Measurements in Landau regime ({delta}T{approx}10{sup -5} to 10{sup -3} K) and in Gorter-Mellink regime ({delta}T>10{sup -3} K) and using assumptions that helium thermal paths and conduction in the insulation are decoupled allow to determine an equivalent channel area (10{sup -6} m{sup 2}) and an equivalent channel diameter (25 {mu}). (author)

  8. Volatility spillover from world oil spot markets to aggregate and electricity stock index returns in Turkey

    International Nuclear Information System (INIS)

    Soytas, Ugur; Oran, Adil

    2011-01-01

    This study examines the inter-temporal links between world oil prices, ISE 100 and ISE electricity index returns unadjusted and adjusted for market effects. The traditional approaches could not detect a causal relationship running from oil returns to any of the stock returns. However, when we examine the causality using Cheung-Ng approach we discover that world oil prices Granger cause electricity index and adjusted electricity index returns in variance, but not the aggregate market index returns. Hence, our results show that the Cheung-Ng procedure with the use of disaggregated stock index returns can uncover new information that went unnoticed with the traditional causality tests using aggregated market indices. (author)

  9. Investigation of Corrosion of Buried Oil Pipeline by the Electrical ...

    African Journals Online (AJOL)

    The low apparent resistivity and high negative spontaneous potential values are indications that the soil is very corrosive and there is the possibility of the pipeline failure and oil spillage around these hot spots in the future. These methods applied in the study are quick, economic and efficient for detecting likely anodic hot ...

  10. Redistribution of charged aluminum nanoparticles on oil droplets in water in response to applied electrical field

    Energy Technology Data Exchange (ETDEWEB)

    Li, Mengqi; Li, Dongqing, E-mail: dongqing@mme.uwaterloo.ca [University of Waterloo, Department of Mechanical and Mechatronics Engineering (Canada)

    2016-05-15

    Janus droplets with two opposite faces of different physical or chemical properties have great potentials in many fields. This paper reports a new method for making Janus droplets by covering one side of the droplet with charged nanoparticles in an externally applied DC electric field. In this paper, aluminum oxide nanoparticles on micro-sized and macro-sized oil droplets were studied. In order to control the surface area covered by the nanoparticles on the oil droplets, the effects of the concentration of nanoparticle suspension, the droplet size as well as the strength of electric field on the final accumulation area of the nanoparticles are studied.Graphical abstract.

  11. Electrical transport across nanometric SrTiO3 and BaTiO3 barriers in conducting/insulator/conducting junctions

    Science.gov (United States)

    Navarro, H.; Sirena, M.; González Sutter, J.; Troiani, H. E.; del Corro, P. G.; Granell, P.; Golmar, F.; Haberkorn, N.

    2018-01-01

    We report the electrical transport properties of conducting/insulator/conducting heterostructures by studying current-voltage IV curves at room temperature. The measurements were obtained on tunnel junctions with different areas (900, 400 and 100 μm2) using a conducting atomic force microscope. Trilayers with GdBa2Cu3O7 (GBCO) as the bottom electrode, SrTiO3 or BaTiO3 (thicknesses between 1.6 and 4 nm) as the insulator barrier, and GBCO or Nb as the top electrode were grown by DC sputtering on (100) SrTiO3 substrates For SrTiO3 and BaTiO3 barriers, asymmetric IV curves at positive and negative polarization can be obtained using electrodes with different work function. In addition, hysteretic IV curves are obtained for BaTiO3 barriers, which can be ascribed to a combined effect of the FE reversal switching polarization and an oxygen vacancy migration. For GBCO/BaTiO3/GBCO heterostructures, the IV curves correspond to that expected for asymmetric interfaces, which indicates that the disorder affects differently the properties at the bottom and top interfaces. Our results show the role of the interface disorder on the electrical transport of conducting/insulator/conduction heterostructures, which is relevant for different applications, going from resistive switching memories (at room temperature) to Josephson junctions (at low temperatures).

  12. Effect of oil-pipelines existed in HVTL corridor on the electric field distribution

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, H.M. [College of Technological Studies, Kuwait (Kuwait). Dept. of Electrical Engineering

    2007-07-01

    The overhead transmission of large amounts of electricity over long distances requires high transmission voltages which can generate high electric fields that may have harmful effects on both human and animals. Therefore, corridors or right-of-way are left on both sides along the route of transmission lines. Overhead power transmission lines need strips of land to be designated as rights-of-way. These strips of land can also support other uses such as pipelines, railroads and highways. The primary purpose for minimizing the field effects of high voltage AC lines is to reduce the electric field at ground level. This study investigated the effects of oil-pipelines running parallel to the lines in the rights-of-way corridors on the electric fields generated from high voltage electrical networks in Kuwait. In order to examine the impact of certain design parameters on the electric field distribution near the ground surface, this study varied the oil pipelines diameter, the proximity of the pipeline from the transmission line center and the number of pipelines. The objective was to determine if the amount of land which is required as right-of-way can be reduced. This study also examined the effect of two parallel oil pipelines on the field distribution. Both pipelines were separated by a given distance and ran parallel to the transmission line conductors. The charge simulation method (CSM) was used to simulate and model both the conductors of the transmission lines and the oil-pipelines. Graphs for the electric field distribution profiles at the ground surface, at transmission line conductors' surfaces and at the surfaces of the oil pipelines were presented and evaluated for each scenario. 10 refs., 12 figs.

  13. Partial discharge characteristics of polymer nanocomposite materials in electrical insulation: a review of sample preparation techniques, analysis methods, potential applications, and future trends.

    Science.gov (United States)

    Izzati, Wan Akmal; Arief, Yanuar Z; Adzis, Zuraimy; Shafanizam, Mohd

    2014-01-01

    Polymer nanocomposites have recently been attracting attention among researchers in electrical insulating applications from energy storage to power delivery. However, partial discharge has always been a predecessor to major faults and problems in this field. In addition, there is a lot more to explore, as neither the partial discharge characteristic in nanocomposites nor their electrical properties are clearly understood. By adding a small amount of weight percentage (wt%) of nanofillers, the physical, mechanical, and electrical properties of polymers can be greatly enhanced. For instance, nanofillers in nanocomposites such as silica (SiO2), alumina (Al2O3) and titania (TiO2) play a big role in providing a good approach to increasing the dielectric breakdown strength and partial discharge resistance of nanocomposites. Such polymer nanocomposites will be reviewed thoroughly in this paper, with the different experimental and analytical techniques used in previous studies. This paper also provides an academic review about partial discharge in polymer nanocomposites used as electrical insulating material from previous research, covering aspects of preparation, characteristics of the nanocomposite based on experimental works, application in power systems, methods and techniques of experiment and analysis, and future trends.

  14. High-Temperature Electrical Insulation Behavior of Alumina Films Prepared at Room Temperature by Aerosol Deposition and Influence of Annealing Process and Powder Impurities

    Science.gov (United States)

    Schubert, Michael; Leupold, Nico; Exner, Jörg; Kita, Jaroslaw; Moos, Ralf

    2018-04-01

    Alumina (Al2O3) is a widely used material for highly insulating films due to its very low electrical conductivity, even at high temperatures. Typically, alumina films have to be sintered far above 1200 °C, which precludes the coating of lower melting substrates. The aerosol deposition method (ADM), however, is a promising method to manufacture ceramic films at room temperature directly from the ceramic raw powder. In this work, alumina films were deposited by ADM on a three-electrode setup with guard ring and the electrical conductivity was measured between 400 and 900 °C by direct current measurements according to ASTM D257 or IEC 60093. The effects of film annealing and of zirconia impurities in the powder on the electrical conductivity were investigated. The conductivity values of the ADM films correlate well with literature data and can even be improved by annealing at 900 °C from 4.5 × 10-12 S/cm before annealing up to 5.6 × 10-13 S/cm after annealing (measured at 400 °C). The influence of zirconia impurities is very low as the conductivity is only slightly elevated. The ADM-processed films show a very good insulation behavior represented by an even lower electrical conductivity than conventional alumina substrates as they are commercially available for thick-film technology.

  15. Life cycle study. Carbon dioxide emissions lower in electric heating than in oil heating

    Energy Technology Data Exchange (ETDEWEB)

    Heikkinen, A.; Jaervinen, P.; Nikula, A.

    1996-11-01

    A primary objective of energy conservation is to cut carbon dioxide emissions. A comparative study on the various heating forms, based on the life cycle approach, showed that the carbon dioxide emissions resulting form heating are appreciably lower now that electric heating has become more common. The level of carbon dioxide emissions in Finland would have been millions of tonnes higher had oil heating been chosen instead of electric heating. (orig.)

  16. A study of heterogeneous systems which retard the processes of motor oil aging. VI. The effect of the composition of the oil medium on its electric conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Zhdanov, V V; Ashkinazi, L A; Chkalov, V A; Filanovskiy, B K; Grilikhes, M S; Nikolayenko, A V; Poray-Koshits, A B; Ravdel, A A

    1982-01-01

    A method of contact conductometry is used to study the effect of the composition of an oil medium on its electric conductivity and the factors to which this parameter is the most sensitive was determined. It is shown that the electric conductivity is a sensitive parameter, which reacts to a change in the water content in the oil, the length of operation in an internal combustion engine, to the volume of additives in the base oil and to the acid and base properties of the oil medium.

  17. Structure and viscosity of a transformer oil-based ferrofluid under an external electric field

    Energy Technology Data Exchange (ETDEWEB)

    Rajnak, M., E-mail: rajnak@saske.sk [Institute of Experimental Physics SAS, Watsonova 47, 04001 Košice (Slovakia); Faculty of Electrical Engineering and Informatics, Technical University of Košice, Letná 9, 04200 Košice (Slovakia); Timko, M.; Kopcansky, P.; Paulovicova, K. [Institute of Experimental Physics SAS, Watsonova 47, 04001 Košice (Slovakia); Tothova, J.; Kurimsky, J.; Dolnik, B.; Cimbala, R. [Faculty of Electrical Engineering and Informatics, Technical University of Košice, Letná 9, 04200 Košice (Slovakia); Avdeev, M.V. [Joint Institute for Nuclear Research, Joliot-Curie 6, Moscow region, 141980 Dubna (Russian Federation); Petrenko, V.I. [Joint Institute for Nuclear Research, Joliot-Curie 6, Moscow region, 141980 Dubna (Russian Federation); Taras Shevchenko Kyiv National University, Volodymyrska Street 64, 01601 Kyiv (Ukraine); Feoktystov, A. [Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, 85748 Garching (Germany)

    2017-06-01

    Various structural changes of ferrofluids have been intensively studied under external magnetic fields. In this work we present an experimental evidence of similar changes induced by an electric field. In the context of the electric field effect on ferrofluids structure, we studied a simple ferrofluid consisting of iron oxide nanoparticles coated with oleic acid and dispersed in transformer oil. The structural changes have been observed both on macroscopic and microscopic scale. We also demonstrate a remarkable impact of the electric field on the ferrofluid viscosity in relation to the reported structural changes. It was found that the electric field induced viscosity changes are analogous to the magnetoviscous effect. These changes and the electroviscous effect are believed to stem from the dielectric permittivity contrast between the iron oxide nanoparticles and transformer oil, giving rise to the effective electric polarization of the nanoparticles. It is highlighted that this electrorheological effect should be considered in studies of ferrofluids for high voltage engineering applications, as it can have impact on the thermomagnetic convection or the dielectric breakdown performance. - Highlights: • An experimental evidence of the electric field induced structural changes in a ferrofluid is presented. • An electroviscous effect in the transformer oil-based ferrofluid is shown. • The dielectric contrast between the particles and the carrier fluid is the key factor. • The potential impact on the thermomagnetic convection of ferrofluids in power transformers is highlighted.

  18. Electrical and proximity-magnetic effects induced quantum Goos–Hänchen shift on the surface of topological insulator

    Energy Technology Data Exchange (ETDEWEB)

    Kuai, Jian [School of Physics and Electronics, Yancheng Teachers College, Yancheng, 224002 Jiangsu (China); Da, H.X., E-mail: haixia8779@163.com [Electrical and Computer Engineering Department, National University of Singapore, 4 Engineering Drive 3, 117576 (Singapore)

    2014-03-15

    We use scattering matrix method to theoretically demonstrate that the quantum Goos–Hänchen shift of the surface on three-dimensional topological insulator coated by ferromagnetic strips is sensitive to the magnitude of ferromagnetic magnetization. The dependence of quantum Goos–Hänchen shift on magnetization and gate bias is investigated by performing station phase approach. It is found that quantum Goos–Hänchen shift is positive and large under the magnetic barrier but may be positive as well as negative values under the gate bias. Furthermore, the position of quantum Goos–Hänchen peak can also be modulated by the combination of gate bias and proximity magnetic effects. Our results indicate that topological insulators are another candidates to support quantum Goos–Hänchen shift. - Highlights: • Quantum Goos–Hänchen shift of the surface on three-dimensional topological insulators is first investigated. • The magnetization affects quantum Goos–Hänchen shift of the surface on three-dimensional topological insulators. • Quantum Goos–Hänchen shift of the surface on three-dimensional topological insulators can be manipulated by the gate voltages.

  19. Management plan for electrical insulation, transformers and bulbs high pressure sodium retired from electrical distribution lines of the Unidad Estrategica de Negocios Servicio al Cliente Electricidad of the Instituto Costarricense de Electricidad

    International Nuclear Information System (INIS)

    Badilla Sanabria, Daniela; Chaves Morales, Angelica; Rodriguez Mendez, Susan

    2012-01-01

    The Unidad Estrategica de Negocios Servicio al Cliente Electricidad of Instituto Costarricense de Electricidad has completed a management plan for electrical insulation, transformers and sodium vapor bulbs high pressure, that are retired from electrical distribution lines. The three residues have been characterized and identified in its physical composition, chemical and hazardous properties, generating selection, analysis and proposals for alternative of recovery, treatment or final disposal, viable from an environmental, technical and economic view. A series of recommendations and procedures have been performed using tabs and instructions for the purpose of unifying management practices appropriate in the Area de Sostenibilidad Ambiental of the ICE. (author) [es

  20. Fabrication and Measurement of Electroluminescence and Electrical Properties of Organic Light-Emitting Diodes Containing Mott Insulator Nanocrystals.

    Science.gov (United States)

    Nozoe, Soichiro; Kinoshita, Nobuaki; Matsuda, Masaki

    2016-04-01

    By using the short-time electrocrystallization technique, phthalocyanine (Pc)-based Mott insulator Co(Pc)(CN)2 . 2CHCl3 nanocrystals were fabricated and applied to organic light-emiting diodes (OLEDs). The fabricated device having the configuration ITO/Co(Pc)(CN)2 . 2CHCl3/Alq3/Al, in which ITO is indium-tin oxide and Alq3 is tris(8-hydroxyquinolinato)aluminum, showed clear emission from Alq3, suggesting the Mott insulator Co(Pc)(CN)2 . 2CHCl3 can work as useful hole-injection and transport material in OLEDs.

  1. Achieving emissions reduction through oil sands cogeneration in Alberta’s deregulated electricity market

    International Nuclear Information System (INIS)

    Ouellette, A.; Rowe, A.; Sopinka, A.; Wild, P.

    2014-01-01

    The province of Alberta faces the challenge of balancing its commitment to reduce CO 2 emissions and the growth of its energy-intensive oil sands industry. Currently, these operations rely on the Alberta electricity system and on-site generation to satisfy their steam and electricity requirements. Most of the on-site generation units produce steam and electricity through the process of cogeneration. It is unclear to what extent new and existing operations will continue to develop cogeneration units or rely on electricity from the Alberta grid to meet their energy requirements in the near future. This study explores the potential for reductions in fuel usage and CO 2 emissions by increasing the penetration of oil sands cogeneration in the provincial generation mixture. EnergyPLAN is used to perform scenario analyses on Alberta’s electricity system in 2030 with a focus on transmission conditions to the oil sands region. The results show that up to 15–24% of CO 2 reductions prescribed by the 2008 Alberta Climate Strategy are possible. Furthermore, the policy implications of these scenarios within a deregulated market are discussed. - Highlights: • High levels of cogeneration in the oil sands significantly reduce the total fuel usage and CO 2 emissions for the province. • Beyond a certain threshold, the emissions reduction intensity per MW of cogeneration installed is reduced. • The cost difference between scenarios is not significant. • Policy which gives an advantage to a particular technology goes against the ideology of a deregulated market. • Alberta will need significant improvements to its transmission system in order for oil sands cogeneration to persist

  2. Online monitoring of oil film using electrical capacitance tomography and level set method

    International Nuclear Information System (INIS)

    Xue, Q.; Ma, M.; Sun, B. Y.; Cui, Z. Q.; Wang, H. X.

    2015-01-01

    In the application of oil-air lubrication system, electrical capacitance tomography (ECT) provides a promising way for monitoring oil film in the pipelines by reconstructing cross sectional oil distributions in real time. While in the case of small diameter pipe and thin oil film, the thickness of the oil film is hard to be observed visually since the interface of oil and air is not obvious in the reconstructed images. And the existence of artifacts in the reconstructions has seriously influenced the effectiveness of image segmentation techniques such as level set method. Besides, level set method is also unavailable for online monitoring due to its low computation speed. To address these problems, a modified level set method is developed: a distance regularized level set evolution formulation is extended to image two-phase flow online using an ECT system, a narrowband image filter is defined to eliminate the influence of artifacts, and considering the continuity of the oil distribution variation, the detected oil-air interface of a former image can be used as the initial contour for the detection of the subsequent frame; thus, the propagation from the initial contour to the boundary can be greatly accelerated, making it possible for real time tracking. To testify the feasibility of the proposed method, an oil-air lubrication facility with 4 mm inner diameter pipe is measured in normal operation using an 8-electrode ECT system. Both simulation and experiment results indicate that the modified level set method is capable of visualizing the oil-air interface accurately online

  3. Predicting the electricity demand of an oil industry region on the basis of a stochastic model

    Energy Technology Data Exchange (ETDEWEB)

    Ragimova, R A; Khaykin, I Ye

    1979-01-01

    A justified decision to accept a particular development design may be made only on the basis of a scientific prediction of the basic technical and economic indicators. Used as the basic factor which impacts on the electricity demand is the total oil production and the flow of the total liquid pumped from the bowels of the earth. The initial information is statistical data about the expenditure of electricity, the oil and liquid production for 8-10 years. The existence is accepted of a direct relation between the resultive and the factorial signs. Based on a normal law of distribution of random errors, reliable probabilities are found for determining the electricity demand of an object with an assigned degree of precision. Calculations through the proposed model in the practical work of the energy services make it possible to expose the degree of quantitative influence of the basic parameters of the development of a deposit on the value of the expenditure of electricity and to justifiably predict the electricity demand for oil production.

  4. Insulator applications in a Tokamak reactor

    International Nuclear Information System (INIS)

    Leger, D.

    1986-06-01

    Insulators, among which insulators ceramics, have great potential applications in fusion reactors. They will be used for all plasma-facing components as protection and, magnetic fusion devices being subject to large electrical currents flowing in any parts of the device, for their electrical insulating properties

  5. Electrical analysis of high dielectric constant insulator and metal gate metal oxide semiconductor capacitors on flexible bulk mono-crystalline silicon

    KAUST Repository

    Ghoneim, Mohamed T.

    2015-06-01

    We report on the electrical study of high dielectric constant insulator and metal gate metal oxide semiconductor capacitors (MOSCAPs) on a flexible ultra-thin (25 μm) silicon fabric which is peeled off using a CMOS compatible process from a standard bulk mono-crystalline silicon substrate. A lifetime projection is extracted using statistical analysis of the ramping voltage (Vramp) breakdown and time dependent dielectric breakdown data. The obtained flexible MOSCAPs operational voltages satisfying the 10 years lifetime benchmark are compared to those of the control MOSCAPs, which are not peeled off from the silicon wafer. © 2014 IEEE.

  6. Thermal conductivity and Kapitza resistance of cyanate ester epoxy mix and tri-functional epoxy electrical insulations at superfluid helium temperature

    CERN Document Server

    Pietrowicz, S; Jones, S; Canfer, S; Baudouy, B

    2012-01-01

    In the framework of the European Union FP7 project EuCARD, two composite insulation systems made of cyanate ester epoxy mix and tri-functional epoxy (TGPAP-DETDA) with S-glass fiber have been thermally tested as possible candidates to be the electrical insulation of 13 T Nb$_{3}$Sn high field magnets under development for this program. Since it is expected to be operated in pressurized superfluid helium at 1.9 K and 1 atm, the thermal conductivity and the Kapitza resistance are the most important input parameters for the thermal design of this type of magnet and have been determined in this study. For determining these thermal properties, three sheets of each material with different thicknesses varying from 245 μm to 598 μm have been tested in steady-state condition in the temperature range of 1.6 K - 2.0 K. The thermal conductivity for the tri-functional epoxy (TGPAP-DETDA) epoxy resin insulation is found to be k=[(34.2±5.5).T-(16.4±8.2)]×10-3 Wm-1K-1 and for the cyanate ester epoxy k=[(26.8±4.8).T- (9...

  7. A comparative study of Mg and Pt contacts on semi-insulating GaAs: electrical and XPS characterization

    Czech Academy of Sciences Publication Activity Database

    Dubecký, F.; Kindl, Dobroslav; Hubík, Pavel; Mičušík, M.; Dubecký, M.; Boháček, P.; Vanko, G.; Gombia, E.; Nečas, V.; Mudroň, J.

    2017-01-01

    Roč. 395, Feb (2017), s. 131-135 ISSN 0169-4332 Institutional support: RVO:68378271 Keywords : semi-insulating GaAs * metal -semiconductor contact * interface * work function * electron transport * XPS Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.387, year: 2016

  8. Electrical transformer handbook

    Energy Technology Data Exchange (ETDEWEB)

    Hurst, R.W.; Horne, D. (eds.)

    2005-07-01

    This handbook is a valuable user guide intended for electrical engineering and maintenance personnel, electrical contractors and electrical engineering students. It provides current information on techniques and technologies that can help extend the life of transformers. It discusses transformer testing, monitoring, design, commissioning, retrofitting and other elements involved in keeping electrical transformers in safe and efficient operation. It demonstrates how a power transformer can be put to use and common problems faced by owners. In addition to covering control techniques, testing and maintenance procedures, this handbook covers the power transformer; control electrical power transformer; electrical power transformer; electrical theory transformer; used electrical transformer; down electrical step transformer; electrical manufacturer transformer; electrical picture transformer; electrical transformer work; electrical surplus transformer; current transformer; step down transformer; voltage transformer; step up transformer; isolation transformer; low voltage transformer; toroidal transformer; high voltage transformer; and control power transformer. The handbook includes articles from leading experts on overcurrent protection of transformers; ventilated dry-type transformers; metered load factors for low-voltage, and dry-type transformers in buildings. The maintenance of both dry-type or oil-filled transformers was discussed with reference to sealing, gaskets, oils, moisture and testing. The adoption of dynamic load practices was also discussed along with the reclamation or recycling of used lube oil, transformer dielectric fluids and aged solid insulation. A buyer's guide and directory of transformer manufacturers and suppliers was also included. refs., tabs., figs.

  9. A Greenhouse Gas Balance of Electricity Production from Co-firing Palm Oil Products from Malaysia

    International Nuclear Information System (INIS)

    Wicke, B.; Dornburg, V.; Faaij, A.; Junginger, M.

    2007-05-01

    The Netherlands imports significant quantities of biomass for energy production, among which palm oil has been used increasingly for co-firing in existing gas-fired power plants for renewable electricity production. Imported biomass, however, can not simply be considered a sustainable energy source. The production and removal of biomass in other places in the world result in ecological, land-use and socio-economic impacts and in GHG emissions (e.g. for transportation). As a result of the sustainability discussions, the Cramer Commission in the Netherlands has formulated (draft) criteria and indicators for sustainable biomass production. This study develops a detailed methodology for determining the GHG balance of co-firing palm oil products in the Netherlands based on the Cramer Commission methodology. The methodology is applied to a specific bio-electricity chain: the production of palm oil and a palm oil derivative, palm fatty acid distillate (PFAD), in Northeast Borneo in Malaysia, their transport to the Netherlands and co-firing with natural gas for electricity production at the Essent Claus power plant

  10. Comparison of electrical capacitance tomography and gamma densitometer measurement in viscous oil-gas flows

    Energy Technology Data Exchange (ETDEWEB)

    Archibong Eso, A.; Zhao, Yabin; Yeung, Hoi [Department of Offshore Process and Energy Systems Engineering, Cranfield University, Cranfield (United Kingdom)

    2014-04-11

    Multiphase flow is a common occurrence in industries such as nuclear, process, oil and gas, food and chemical. A prior knowledge of its features and characteristics is essential in the design, control and management of such processes due to its complex nature. Electrical Capacitance Tomography (ECT) and Gamma Densitometer (Gamma) are two promising approaches for multiphase visualization and characterization in process industries. In two phase oil and gas flow, ECT and Gamma are used in multiphase flow monitoring techniques due to their inherent simplicity, robustness, and an ability to withstand wide range of operational temperatures and pressures. High viscous oil (viscosity > 100 cP) is of interest because of its huge reserves, technological advances in its production and unlike conventional oil (oil viscosity < 100 cP) and gas flows where ECT and Gamma have been previously used, high viscous oil and gas flows comes with certain associated concerns which include; increased entrainment of gas bubbles dispersed in oil, shorter and more frequent slugs as well as oil film coatings on the walls of flowing conduits. This study aims to determine the suitability of both devices in the visualization and characterization of high-viscous oil and gas flow. Static tests are performed with both devices and liquid holdup measurements are obtained. Dynamic experiments were also conducted in a 1 and 3 inch facility at Cranfield University with a range of nominal viscosities (1000, 3000 and 7500 cP). Plug, slug and wavy annular flow patterns were identified by means of Probability Mass Function and time series analysis of the data acquired from Gamma and ECT devices with high speed camera used to validate the results. Measured Liquid holdups for both devices were also compared.

  11. Search for free fractional electric charge elementary particles using an automated millikan oil drop technique

    Science.gov (United States)

    Halyo; Kim; Lee; Lee; Loomba; Perl

    2000-03-20

    We have carried out a direct search in bulk matter for free fractional electric charge elementary particles using the largest mass single sample ever studied-about 17.4 mg of silicone oil. The search used an improved and highly automated Millikan oil drop technique. No evidence for fractional charge particles was found. The concentration of particles with fractional charge more than 0. 16e ( e being the magnitude of the electron charge) from the nearest integer charge is less than 4.71x10(-22) particles per nucleon with 95% confidence.

  12. The efficiency improvement potential for coal, oil and electricity in China's manufacturing sectors

    International Nuclear Information System (INIS)

    Li, Ke; Lin, Boqiang

    2015-01-01

    This paper introduces an improved total-factor ESTR (energy-saving target ratio) index, which combines the sequence technique and the “energy direction” to a DEA (data envelopment analysis) model, in order to measure the possible energy saving potential of a manufacturing sector. Afterward, the energy saving potentials of four different energy carriers, namely coal, gasoline, diesel oil and electricity, for 27 manufacturing sectors during the period of 1998–2011 in China are calculated. The results and its policy implications are as follows: (1) the average ESTRs of coal, gasoline, diesel oil and electricity are 1.714%, 49.939%, 24.465% and 3.487% respectively. Hence, energy saving of manufacturing sectors should put more emphasis on gasoline and diesel oil. (2) The key sectors for gasoline saving is the energy-intensive sectors, while the key sectors for diesel oil saving is the equipment manufacturing sectors. (3) The manufacture of raw chemical materials and chemical products sector not only consumes a large amount of oil, but also has a low efficiency of oil usage. Therefore, it is the key sector for oil saving. (4) Manufacture of tobacco and manufacture of communication equipment, computers and other electronic equipment are the benchmark for the four major energy carriers of energy-saving ratios. - Highlights: • An improved total-factor energy-saving target ratio is proposed. • Energy saving potentials of energy carriers for sectors in 1998–2011 are calculated. • Policy implications for energy savings in sectors and energy carriers are discussed. • Some suggestions for the energy policies of China's economy are discussed

  13. Development of Nuclear Renewable Oil Shale Systems for Flexible Electricity and Reduced Fossil Fuel Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Daniel Curtis; Charles Forsberg; Humberto Garcia

    2015-05-01

    We propose the development of Nuclear Renewable Oil Shale Systems (NROSS) in northern Europe, China, and the western United States to provide large supplies of flexible, dispatchable, very-low-carbon electricity and fossil fuel production with reduced CO2 emissions. NROSS are a class of large hybrid energy systems in which base-load nuclear reactors provide the primary energy used to produce shale oil from kerogen deposits and simultaneously provide flexible, dispatchable, very-low-carbon electricity to the grid. Kerogen is solid organic matter trapped in sedimentary shale, and large reserves of this resource, called oil shale, are found in northern Europe, China, and the western United States. NROSS couples electricity generation and transportation fuel production in a single operation, reduces lifecycle carbon emissions from the fuel produced, improves revenue for the nuclear plant, and enables a major shift toward a very-low-carbon electricity grid. NROSS will require a significant development effort in the United States, where kerogen resources have never been developed on a large scale. In Europe, however, nuclear plants have been used for process heat delivery (district heating), and kerogen use is familiar in certain countries. Europe, China, and the United States all have the opportunity to use large scale NROSS development to enable major growth in renewable generation and either substantially reduce or eliminate their dependence on foreign fossil fuel supplies, accelerating their transitions to cleaner, more efficient, and more reliable energy systems.

  14. Forming Refractory Insulation On Copper Wire

    Science.gov (United States)

    Setlock, J.; Roberts, G.

    1995-01-01

    Alternative insulating process forms flexible coat of uncured refractory insulating material on copper wire. Coated wire formed into coil or other complex shape. Wire-coating apparatus forms "green" coat on copper wire. After wire coiled, heating converts "green" coat to refractory electrical insulator. When cured to final brittle form, insulating material withstands temperatures above melting temperature of wire. Process used to make coils for motors, solenoids, and other electrical devices to be operated at high temperatures.

  15. Influence of the barite tenors of the Jaicos, Piaui, Brazil, clays on the ceramic properties of electric insulator porcelains

    International Nuclear Information System (INIS)

    Correa, W.L.P.; Lima, M.B.; Carvalho, F.M.S.

    2009-01-01

    The clays of the Municipality of Jaicos, Piaui, has been used as raw materials for the manufacture of insulators for company located in the municipality of Pedreira - Sao Paulo. It can be noticed in the clay blocks and consolidated, 'lenses' of barite. The mineralogical composition of clay and the nature of these 'lenses' were studied by chemical analysis, X-ray diffraction for mineralogical characterization. The clays are composed primarily by kaolinite, quartz, and some amount of illite and orthoclase. The presence of orthoclase does believe in a recent deposition of these clays. The 'lenses' were characterized as barite, BaSO 4 . To check the influence of barite in the composition of bodies of porcelain to insulators made up six compositions with different levels of barite, obtained their own clay. It applies, then the tests of ceramic fracture to bending, water absorption, apparent porosity to determine the effect of the introduction of barite in the compositions. (author)

  16. Effect of the Ignition Method on the Extinction Limit for a Flame Spreading over Electric Wire Insulation

    DEFF Research Database (Denmark)

    Mitsui, Fumiya; Nagachi, Masashi; Citerne, Jean-Marie

    . The experimental results show that the LOC of NiCr core wires assume an almost constant value under normal gravity conditions once ignition occurred, whereas under microgravity conditions, the LOC gradually decreases as the ignition power or heating time increases and eventually it reaches an almost constant value......Flame spread experiments with wire insulation were conducted in microgravity (parabolic flights) and in normal gravity to understand the effect of the ignition condition on the Limiting Oxygen Concentration (LOC) for an opposed air flow condition of 100 mm/s (typical flow velocity on ISS). Both...... the ignition power (50-110 W) and the igniter heating time (5-15 s) were varied. Polyethylene-coated Nickel-Chrome or copper wires with inner core diameter of 0.50 mm and insulation thickness of 0.30 mm were used as sample wires, and a 0.50 mm diameter coiled Kanthal wire was used as the igniter...

  17. Dielectric materials for electrical engineering

    CERN Document Server

    Martinez-Vega, Juan

    2013-01-01

    Part 1 is particularly concerned with physical properties, electrical ageing and modeling with topics such as the physics of charged dielectric materials, conduction mechanisms, dielectric relaxation, space charge, electric ageing and life end models and dielectric experimental characterization. Part 2 concerns some applications specific to dielectric materials: insulating oils for transformers, electrorheological fluids, electrolytic capacitors, ionic membranes, photovoltaic conversion, dielectric thermal control coatings for geostationary satellites, plastics recycling and piezoelectric poly

  18. Study of high field Nb3Sn superconducting dipoles: electrical insulation based made of ceramic and magnetic design

    International Nuclear Information System (INIS)

    Rochepault, E.

    2012-01-01

    In the framework of LHC upgrades, significant efforts are provided to design accelerator magnets using the superconducting alloy Nb 3 Sn, which allows to reach higher magnetic fields (≥12 T). The aim of this thesis is to propose new computation and manufacturing methods for high field Nb 3 Sn dipoles. A ceramic insulation, previously designed at CEA Saclay, has been tested for the first time on cables, in an accelerator magnet environment. Critical current measures, under magnetic field and mechanical stress, have been carried out in particular. With this test campaign, the current ceramic insulation has been shown to be too weak mechanically and the critical current properties are degraded. Then a study has been conducted, with the objective to improve the mechanical strength of the insulation and better distribute the stress inside the cable. Methods of magnetic design have also been proposed, in order to optimize the coils shape, while fulfilling constraints of field homogeneity, operational margins, forces minimization... Consequently, several optimization codes have been set up. They are based on new methods using analytical formulas. A 2D code has first been written for block designs. Then two 3D codes have been realized for the optimization of dipole ends. The former consists in modeling the coil with elementary blocs and the latter is based on a modeling of the superconducting cables with ribbons. These optimization codes allowed to propose magnetic designs for high field accelerator magnets. (author) [fr

  19. Improving the cooling performance of electrical distribution transformer using transformer oil – Based MEPCM suspension

    OpenAIRE

    Mushtaq Ismael Hasan

    2017-01-01

    In this paper the electrical distribution transformer has been studied numerically and the effect of outside temperature on its cooling performance has been investigated. The temperature range studied covers the hot climate regions. 250 KVA distribution transformer is chosen as a study model. A novel cooling fluid is proposed to improve the cooling performance of this transformer, transformer oil-based microencapsulated phase change materials suspension is used with volume concentration (5–25...

  20. Method of recovering oil from alum shales. [heating by electric currents

    Energy Technology Data Exchange (ETDEWEB)

    Wennerstrom, K G

    1918-06-04

    A method of treating alum shale and other bituminous shales in order to extract oil et cetera, is characterized by bringing the shale to a temperature at which it melts, and at which the necessary amount of heat is transferred to the molten shale to be distilled. The patent claim is characterized by heating the shale by means of electric current. The patent has one additional claim.

  1. Static Electric Field Mapping Using a Mosquito Racket and Baby Oil

    Science.gov (United States)

    Rediansyah, Herfien; Khairurrijal; Viridi, Sparisoma

    2015-01-01

    The aim of this research was to design a simple experimental device to see electric field force lines using common components which are readily available in everyday life. A solution of baby oil was placed in a plastic container, 4.5 × 4.5 × 1 inches, with both ends of the electrodes (metal wire) immersed in the solution at a depth of 0.2 inches.…

  2. Aluminum nitride insulating films for MOSFET devices

    Science.gov (United States)

    Lewicki, G. W.; Maserjian, J.

    1972-01-01

    Application of aluminum nitrides as electrical insulator for electric capacitors is discussed. Electrical properties of aluminum nitrides are analyzed and specific use with field effect transistors is defined. Operational limits of field effect transistors are developed.

  3. Cooper Pairs in Insulators?

    International Nuclear Information System (INIS)

    Valles, James

    2008-01-01

    Nearly 50 years elapsed between the discovery of superconductivity and the emergence of the microscopic theory describing this zero resistance state. The explanation required a novel phase of matter in which conduction electrons joined in weakly bound pairs and condensed with other pairs into a single quantum state. Surprisingly, this Cooper pair formation has also been invoked to account for recently uncovered high-resistance or insulating phases of matter. To address this possibility, we have used nanotechnology to create an insulating system that we can probe directly for Cooper pairs. I will present the evidence that Cooper pairs exist and dominate the electrical transport in these insulators and I will discuss how these findings provide new insight into superconductor to insulator quantum phase transitions.

  4. Hot Spot Temperature and Grey Target Theory-Based Dynamic Modelling for Reliability Assessment of Transformer Oil-Paper Insulation Systems: A Practical Case Study

    Directory of Open Access Journals (Sweden)

    Lefeng Cheng

    2018-01-01

    Full Text Available This paper develops a novel dynamic correction method for the reliability assessment of large oil-immersed power transformers. First, with the transformer oil-paper insulation system (TOPIS as the target of evaluation and the winding hot spot temperature (HST as the core point, an HST-based static ageing failure model is built according to the Weibull distribution and Arrhenius reaction law, in order to describe the transformer ageing process and calculate the winding HST for obtaining the failure rate and life expectancy of TOPIS. A grey target theory based dynamic correction model is then developed, combined with the data of Dissolved Gas Analysis (DGA in power transformer oil, in order to dynamically modify the life expectancy calculated by the built static model, such that the corresponding relationship between the state grade and life expectancy correction coefficient of TOPIS can be built. Furthermore, the life expectancy loss recovery factor is introduced to correct the life expectancy of TOPIS again. Lastly, a practical case study of an operating transformer has been undertaken, in which the failure rate curve after introducing dynamic corrections can be obtained for the reliability assessment of this transformer. The curve shows a better ability of tracking the actual reliability level of transformer, thus verifying the validity of the proposed method and providing a new way for transformer reliability assessment. This contribution presents a novel model for the reliability assessment of TOPIS, in which the DGA data, as a source of information for the dynamic correction, is processed based on the grey target theory, thus the internal faults of power transformer can be diagnosed accurately as well as its life expectancy updated in time, ensuring that the dynamic assessment values can commendably track and reflect the actual operation state of the power transformers.

  5. Neutron scattering studies of crude oil viscosity reduction with electric field

    Science.gov (United States)

    Du, Enpeng

    topic. Dr. Tao with his group at Temple University, using his electro or magnetic rheological viscosity theory has developed a new technology, which utilizes electric or magnetic fields to change the rheology of complex fluids to reduce the viscosity, while keeping the temperature unchanged. After we successfully reduced the viscosity of crude oil with field and investigated the microstructure changing in various crude oil samples with SANS, we have continued to reduce the viscosity of heavy crude oil, bunker diesel, ultra low sulfur diesel, bio-diesel and crude oil and ultra low temperature with electric field treatment. Our research group developed the viscosity electrorheology theory and investigated flow rate with laboratory and field pipeline. But we never visualize this aggregation. The small angle neutron scattering experiment has confirmed the theoretical prediction that a strong electric field induces the suspended nano-particles inside crude oil to aggregate into short chains along the field direction. This aggregation breaks the symmetry, making the viscosity anisotropic: along the field direction, the viscosity is significantly reduced. The experiment enables us to determine the induced chain size and shape, verifies that the electric field works for all kinds of crude oils, paraffin-based, asphalt-based, and mix-based. The basic physics of such field induced viscosity reduction is applicable to all kinds of suspensions.

  6. Influence of void defects on partial discharge behavior of superconducting busbar insulation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chunyu; Huang, Xiongyi, E-mail: huangxy@ipp.ac.cn; Lu, Kun; Li, Guoliang; Zhu, Haisheng; Wang, Jun; Wang, Cao; Dai, Zhiheng; Fang, Linlin; Song, Yuntao

    2017-06-15

    Highlights: • PD detection method was used to check the quality of the superconducting busbar insulation. • The samples with different void fraction were manufactured for comparing. • The discharge inception voltage, PRPD pattern was tested and studied for the samples with different void content. • The PD behaviors in oil bath and air condition were compared. - Abstract: For a magnetic confinement fusion device, the superconducting magnets and busbars need to be insulated with one layer of solid insulation to isolate the high voltage potential from the ground. The insulation layer commonly consists of several interleaved layers of epoxy resin-impregnated glass fiber tapes and polyimide films. The traditional electrical inspection methods for such solidified insulation on the magnet and busbar are a DC voltage test or a Paschen test. These tests measure the quality of the insulation based on the value of leakage currents. However, even if there is a larger quantity of high dielectric strength material implemented, if there are some microcavities or delaminations in the insulation system, the leakage current may be limited to microampere levels under testing levels over dozens of kilovolts. Therefore, it is difficult to judge the insulation quality just by the magnitudes of leakage current. Under long-term operation, such imperceptible defects will worsen and finally completely break down the insulation because of partial discharge (PD) incidents. Therefore, a PD detection test is an important complement to the DC voltage and Paschen tests for magnet and busbar insulations in the field of fusion. It is known that the PD detection test is a mature technique in the electric power industry. In this paper, the PD characteristics of samples containing glass fiber-reinforced composite insulations for use with the superconducting busbar were presented and discussed. Various samples with different void contents were prepared and the PD behaviors were tested.

  7. Influence of void defects on partial discharge behavior of superconducting busbar insulation

    International Nuclear Information System (INIS)

    Wang, Chunyu; Huang, Xiongyi; Lu, Kun; Li, Guoliang; Zhu, Haisheng; Wang, Jun; Wang, Cao; Dai, Zhiheng; Fang, Linlin; Song, Yuntao

    2017-01-01

    Highlights: • PD detection method was used to check the quality of the superconducting busbar insulation. • The samples with different void fraction were manufactured for comparing. • The discharge inception voltage, PRPD pattern was tested and studied for the samples with different void content. • The PD behaviors in oil bath and air condition were compared. - Abstract: For a magnetic confinement fusion device, the superconducting magnets and busbars need to be insulated with one layer of solid insulation to isolate the high voltage potential from the ground. The insulation layer commonly consists of several interleaved layers of epoxy resin-impregnated glass fiber tapes and polyimide films. The traditional electrical inspection methods for such solidified insulation on the magnet and busbar are a DC voltage test or a Paschen test. These tests measure the quality of the insulation based on the value of leakage currents. However, even if there is a larger quantity of high dielectric strength material implemented, if there are some microcavities or delaminations in the insulation system, the leakage current may be limited to microampere levels under testing levels over dozens of kilovolts. Therefore, it is difficult to judge the insulation quality just by the magnitudes of leakage current. Under long-term operation, such imperceptible defects will worsen and finally completely break down the insulation because of partial discharge (PD) incidents. Therefore, a PD detection test is an important complement to the DC voltage and Paschen tests for magnet and busbar insulations in the field of fusion. It is known that the PD detection test is a mature technique in the electric power industry. In this paper, the PD characteristics of samples containing glass fiber-reinforced composite insulations for use with the superconducting busbar were presented and discussed. Various samples with different void contents were prepared and the PD behaviors were tested.

  8. Effect of ZrO2 on the sintering behavior, strength and high-frequency dielectric properties of electrical ceramic porcelain insulator

    Science.gov (United States)

    Singh Mehta, Niraj; Sahu, Praveen Kumar; Ershad, Md; Saxena, Vipul; Pyare, Ram; Ranjan Majhi, Manas

    2018-01-01

    In the present study, the effect of ZrO2 on the sintering, strength and dielectric behavior of electrical ceramic porcelain insulator with substituting alumina content by zirconia (in weight percentage from 0% to 30%) is investigated. The different composition of samples containing different zirconia (ZrO2) contents of 0, 10, 20, and 30 wt% are prepared using the uniaxial pressure technique applying 160 MPa pressure. Further, the prepared samples are also analyzed for sintering temperatures (1350 °C), and effects are observed on mechanical and electric properties of porcelain insulator. Different characterizations such as Dilatometer, x-ray diffraction, scanning electron microscopy and differential thermal analysis/thermo gravimetric analysis were used to evaluate the thermal, phase detection, micro structural and weight loss changes by increasing concentration of ZrO2 on base porcelain composition. At 1350 °C, for the composition having 20 wt% ZrO2 with 10 wt% alumina, the maximum density was observed 2.81 g cm-3 with a porosity of 2.23%. The highest tensile strength of 41 ± 3 MPa is observed for the same sample composition. The minimum value of thermal expansion coefficient is found to be in the range of 10-6 for the sample with 30 wt% ZrO2 content sintered at 1350 °C compared to other prepared samples. Similarly, the highest dielectric value (5.1-4.4) having dielectric loss (0.08-0.12) is achieved for the sample with 30 wt% ZrO2 content sintered at 1350 °C in the frequency range of 4-20 GHz at room temperature. According to the mechanical properties, the composition having 20 wt% ZrO2 on base ceramic porcelain composition has enormous potential to serve as a high strength refractory material. For dielectric properties, the composition having 30 wt% ZrO2 is more suitable for the electrical application.

  9. Impact of oil prices, economic diversification policies and energy conservation programs on the electricity and water demands in Kuwait

    International Nuclear Information System (INIS)

    Wood, Michael; Alsayegh, Osamah A.

    2014-01-01

    This paper describes the influences of oil revenue and government's policies toward economic developments and energy efficiency on the electricity and water demands. A Kuwait-specific electricity and water demand model was developed based on historic data of oil income, gross domestic product (GDP), population and electric load and water demand over the past twelve years (1998–2010). Moreover, the model took into account the future mega projects, annual new connected loads and expected application of energy conservation programs. It was run under six circumstances representing the combinations of three oil income scenarios and two government action policies toward economic diversification and energy conservation. The first government policy is the status quo with respect to economic diversification and applying energy conservation programs. The second policy scenario is the proactive strategy of raising the production of the non-oil sector revenue and enforcing legislations toward energy demand side management and conservation. In the upcoming 20 years, the average rates of change of the electric load and water demand increase are 0.13 GW and 3.0 MIGD, respectively, per US dollar oil price increase. Moreover, through proactive policy, the rates of average load and water demand decrease are 0.13 GW and 2.9 MIGD per year, respectively. - Highlights: • Kuwait-specific electricity and water demand model is presented. • Strong association between oil income and electricity and water demands. • Rate of change of electric load per US dollar oil price change is 0.13 GW. • Rate of change of water demand per US dollar oil price change is 3.0 MIGD. • By 2030, efficiency lowers electric load and water demand by 10 and 6%, respectively

  10. Cogeneration of heat and electricity from rape oil with a little CHP unit in a car wash

    International Nuclear Information System (INIS)

    Pilz, H.D.; Thomas, S.; Zeilinger, J.

    2002-01-01

    Environmentally friendly energy supply system for smaller houses is described. In Elsbett system the so-called multi fuel engine starts the combined electricity and heat production unit. In such a system one can use also natural fuels, animal oils and fats besides heating oil. Therefore no additional CO 2 is produced, but it will be brought to the balanced natural circle

  11. Thermal insulation

    International Nuclear Information System (INIS)

    Aspden, G.J.; Howard, R.S.

    1988-01-01

    The patent concerns high temperature thermal insulation of large vessels, such as the primary vessel of a liquid metal cooled nuclear reactor. The thermal insulation consists of multilayered thermal insulation modules, and each module comprises a number of metal sheet layers sandwiched between a back and front plate. The layers are linked together by straps and clips to control the thickness of the module. (U.K.)

  12. Structural and electrical properties of Ge(111) films grown on Si(111) substrates and application to Ge(111)-on-Insulator

    Energy Technology Data Exchange (ETDEWEB)

    Sawano, K., E-mail: sawano@tcu.ac.jp [Advanced Research Laboratories, Tokyo City University, 8-15-1 Todoroki, Setagaya-ku, Tokyo (Japan); Hoshi, Y.; Kubo, S. [Advanced Research Laboratories, Tokyo City University, 8-15-1 Todoroki, Setagaya-ku, Tokyo (Japan); Arimoto, K.; Yamanaka, J.; Nakagawa, K. [Center for Crystal Science and Technology, University of Yamanashi, 7 Miyamae-cho, Kofu (Japan); Hamaya, K. [Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka (Japan); Miyao, M. [Department of Electronics, Kyushu University, 744 Motooka, Fukuoka (Japan); Shiraki, Y. [Advanced Research Laboratories, Tokyo City University, 8-15-1 Todoroki, Setagaya-ku, Tokyo (Japan)

    2016-08-31

    Structural and electrical properties of a Ge(111) layer directly grown on a Si(111) substrate are studied. Via optimized two-step growth manner, we form a high-quality relaxed Ge layer, where strain-relieving dislocations are confined close to a Ge/Si interface. Consequently, a density of holes, which unintentionally come from crystal defects, is highly suppressed below 4 × 10{sup 16} cm{sup −3}, which leads to significantly high hole Hall mobility exceeding 1500 cm{sup 2}/Vs at room temperature. By layer transfer of the grown Ge layer, we also fabricate a Ge(111)-on-Insulator, which is a promising template for high-performance Ge-based electronic and photonic devices. - Highlights: • A high-quality Ge layer is epitaxially grown on a Si(111) by two-step growth manner. • Growth conditions, such as growth temperatures, are optimized. • Very high hole mobility is obtained from Ge(111) grown on Si(111). • High-quality thin Ge-on-Insulator with (111) orientation is obtained.

  13. Cellulose Insulation

    Science.gov (United States)

    1980-01-01

    Fire retardant cellulose insulation is produced by shredding old newspapers and treating them with a combination of chemicals. Insulating material is blown into walls and attics to form a fiber layer which blocks the flow of air. All-Weather Insulation's founders asked NASA/UK-TAP to help. They wanted to know what chemicals added to newspaper would produce an insulating material capable of meeting federal specifications. TAP researched the query and furnished extensive information. The information contributed to successful development of the product and helped launch a small business enterprise which is now growing rapidly.

  14. Economic comparison of nuclear, coal, and oil-fired electric generation in the Chicago area

    International Nuclear Information System (INIS)

    Corey, G.R.

    1981-01-01

    The current and historical performances of 17 large nuclear and coal- and oil-fired steam-electric generating units now operated by Commonwealth Edison Company are examined, and the actual busbar costs of electricity generated by these units in recent years are summarized. Cost estimates for future steam-electric units are provided, and attempts are made to deal realistically with the effect of inflation. Social and regulatory constraints are seen to affect the economics of future units and the willingness of the industry to finance them. It is concluded that, given the uncertainties, utility managers have an incentive to diversify their sources of power generation when society seems to discourage such a course of action. 6 refs

  15. Electric long-term behaviour of polyethylene insulations for medium-voltage cables cross-linked chemically or by radiation

    International Nuclear Information System (INIS)

    Scharff, C.; Eberhardt, M.

    1989-01-01

    The electric long-term behaviour of cross-linked polyethylene (CLPE) was studied at room temperature by measuring the channel operating time under needling and the total charge before channel operation. It is found that the decomposition products formed in CLPE act as tension stabilizers. They have a dominating influence on the electric long-term behaviour

  16. Electricity

    International Nuclear Information System (INIS)

    Tombs, F.

    1983-01-01

    The subject is discussed, with particular reference to the electricity industry in the United Kingdom, under the headings; importance and scope of the industry's work; future fuel supplies (estimated indigenous fossil fuels reserves); outlook for UK energy supplies; problems of future generating capacity and fuel mix (energy policy; construction programme; economics and pricing; contribution of nuclear power - thermal and fast reactors; problems of conversion of oil-burning to coal-burning plant). (U.K.)

  17. Thermal insulation

    International Nuclear Information System (INIS)

    Pinsky, G.P.

    1977-01-01

    Thermal insulation for vessels and piping within the reactor containment area of nuclear power plants is disclosed. The thermal insulation of this invention can be readily removed and replaced from the vessels and piping for inservice inspection, can withstand repeated wettings and dryings, and can resist high temperatures for long periods of time. 4 claims, 3 figures

  18. Electric detection of the spin-Seebeck effect in magnetic insulator in the presence of interface barrier

    International Nuclear Information System (INIS)

    Uchida, K; Ota, T; Kajiwara, Y; Saitoh, E; Umezawa, H; Kawai, H

    2011-01-01

    The spin-Seebeck effect (SSE), the spin-voltage generation as a result of a temperature gradient, has recently been observed in ferrimagnetic insulator LaY 2 Fe 5 O 12 films by means of the inverse spin-Hall effect in Pt films. Here we investigate the SSE using LaY 2 Fe 5 O 12 /SiO 2 (Cu)/Pt systems, where the LaY 2 Fe 5 O 12 and Pt layers are separated by SiO 2 (Cu) thin-film barriers. The experimental results show that the SSE signal disappears in the LaY 2 Fe 5 O 12 /SiO 2 /Pt system, but the finite signal appears in the LaY 2 Fe 5 O 12 /Cu/Pt system, indicating that the direct contacts between the LaY 2 Fe 5 O 12 and normal metals is necessary for generating the SSE signal.

  19. A comparative study of Mg and Pt contacts on semi-insulating GaAs: Electrical and XPS characterization

    Energy Technology Data Exchange (ETDEWEB)

    Dubecký, F., E-mail: elekfdub@savba.sk [Institute of Electrical Engineering, SAS, Dúbravská cesta 9, Bratislava, SK-84104 (Slovakia); Kindl, D.; Hubík, P. [Institute of Physics CAS, v.v.i., Cukrovarnická 10, CZ-16200 Prague (Czech Republic); Mičušík, M. [Polymer Institute, SAS, Dúbravská cesta 9, Bratislava, SK-84541 (Slovakia); Dubecký, M. [Department of Physics, Faculty of Science, University of Ostrava, 30. dubna 22, CZ-70103 Ostrava 1 (Czech Republic); Boháček, P.; Vanko, G. [Institute of Electrical Engineering, SAS, Dúbravská cesta 9, Bratislava, SK-84104 (Slovakia); Gombia, E. [IMEM-CNR, Parco area delle Scienze 37/A, Parma, I-43010 (Italy); Nečas, V. [Faculty of Electrical Engineering and Information Technology, SUT, Ilkovičova 3, Bratislava, SK-81219 (Slovakia); Mudroň, J. [Department of Electronics, Academy of Armed Forces, Demänová 393, Liptovský Mikuláš, SK-03106 (Slovakia)

    2017-02-15

    Highlights: • Explored were diodes with full-area low/high work function metal contacts on semi-insulating GaAs (S). • The Mg-S-Mg diode is promising for radiation detectors for its low high-field current. • The XPS analysis of Mg-S interface shows presence of MgO instead of Mg metal. - Abstract: We present a comparative study of the symmetric metal-SI GaAs-metal (M-S-M) diodes with full-area contacts on both device sides, in order to demonstrate the effect of contact metal work function in a straightforward way. We compare the conventional high work function Pt contact versus the less explored low work function Mg contact. The Pt-S-Pt, Mg-S-Mg and mixed Mg-S-Pt structures are characterized by the current-voltage measurements, and individual Pt-S and Mg-S contacts are investigated by the X-ray photoelectron spectroscopy (XPS). The transport measurements of Mg-S-Pt structure show a significant current decrease at low bias while the Mg-S-Mg structure shows saturation current at high voltages more than an order of magnitude lower with respect to the Pt-S-Pt reference. The phenomena observed in Mg-containing samples are explained by the presence of insulating MgO layer at the M-S interface, instead of the elementary Mg, as confirmed by the XPS analysis. Alternative explanations of the influence of MgO layer on the effective resistance of the structures are presented. The reported findings have potential applications in M-S-M sensors and radiation detectors based on SI GaAs.

  20. Limiting oxygen concentration for extinction of upward spreading flames over inclined thin polyethylene-insulated NiCr electrical wires with opposed-flow under normal- and micro-gravity

    KAUST Repository

    Hu, Longhua; Lu, Yong; Yoshioka, Kosuke; Zhang, Yangshu; Fernandez-Pello, Carlos; Chung, Suk-Ho; Fujita, Osamu

    2016-01-01

    . The experiments reported here used polyethylene (PE)-insulated (thickness of 0.15 mm) Nichrome (NiCr)-core (diameter of 0.5 mm) electrical wires. Limiting oxygen concentrations (LOC) at extinction were measured for upward spreading flame at various forced opposed-flow

  1. Insulators for fusion applications

    International Nuclear Information System (INIS)

    1987-04-01

    Design studies for fusion devices and reactors have become more detailed in recent years and with this has come a better understanding of requirements and operating conditions for insulators in these machines. Ceramic and organic insulators are widely used for many components of fusion devices and reactors namely: radio frequency (RF) energy injection systems (BeO, Al 2 O 3 , Mg Al 2 O 4 , Si 3 N 4 ); electrical insulation for the torus structure (SiC, Al 2 O 3 , MgO, Mg Al 2 O 4 , Si 4 Al 2 O 2 N 6 , Si 3 N 4 , Y 2 O 3 ); lightly-shielded magnetic coils (MgO, MgAl 2 O 4 ); the toroidal field coil (epoxies, polyimides), neutron shield (B 4 C, TiH 2 ); high efficiency electrical generation; as well as the generation of very high temperatures for high efficiency hydrogen production processes (ZrO 2 and Al 2 O 3 - mat, graphite and carbon - felt). Timely development of insulators for fusion applications is clearly necessary. Those materials to be used in fusion machines should show high resistance to radiation damage and maintain their structural integrity. Now the need is urgent for a variety of radiation resistant materials, but much effort in these areas is required for insulators to be considered seriously by the design community. This document contains 14 papers from an IAEA meeting. It was the objective of this meeting to identify existing problems in analysing various situations of applications and requirements of electrical insulators and ceramics in fusion and to recommend strategies and different stages of implementation. This meeting was endorsed by the International Fusion Research Council

  2. First Brazilian patent for dielectric vegetable oil for transformers; Primeira patente brasileira de oleo dieletrico vegetal para transformadores

    Energy Technology Data Exchange (ETDEWEB)

    Carioca, Jose O.B.; Carvalho, Paulo C.M.; Correa, Raimundo G.C.; Bernardo, Francisco A.B. [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil); Coelho Junior, Luiz G. [2 Companhia Energetica do Ceara (COELCE), Fortaleza, CE (Brazil); Abreu, Rosa F.A. [Universidade Estadual do Ceara (UECE), Fortaleza, CE (Brazil)

    2008-07-01

    The present paper discuss the development of different insulating oils for electric power transformers during the last hundred years and analyze comparatively the potential for the use of vegetable oils as a source for green dielectric oils, due to its high level of biodegradability, nontoxic, material compatibility, good electric strength and insulation properties, long-term oxidative and thermal stability, relatively low pour point and reasonable cost. Based on these premises, the authors developed a new type of insulating fluid based on Brazilian vegetable oils never used before for this purpose. This product is competitive with similar and patented products developed from canola and soya vegetable oils. Recently a new patent related with the process for the production of this fluid was submitted to the World Industrial Property Organization - WIPO. (author)

  3. Symmetry analysis of strain, electric and magnetic fields in the Bi2Se3-class of topological insulators

    DEFF Research Database (Denmark)

    Brems, Mathias Rosdahl; Paaske, Jens; Lunde, Anders Mathias

    2018-01-01

    Based on group theoretical arguments we derive the most general Hamiltonian for the Bi2Se3-class of materials including terms to third order in the wave vector, first order in electric and magnetic fields, first order in strain and first order in both strain and wave vector. We determine analytic......Based on group theoretical arguments we derive the most general Hamiltonian for the Bi2Se3-class of materials including terms to third order in the wave vector, first order in electric and magnetic fields, first order in strain and first order in both strain and wave vector. We determine...... for the effective mass tensor of the Bi2Se3 class of materials as a function of strain and electric field....

  4. Label-free electrical determination of trypsin activity by a silicon-on-insulator based thin film resistor.

    Science.gov (United States)

    Neff, Petra A; Serr, Andreas; Wunderlich, Bernhard K; Bausch, Andreas R

    2007-10-08

    A silicon-on-insulator (SOI) based thin film resistor is employed for the label-free determination of enzymatic activity. We demonstrate that enzymes, which cleave biological polyelectrolyte substrates, can be detected by the sensor. As an application, we consider the serine endopeptidase trypsin, which cleaves poly-L-lysine (PLL). We show that PLL adsorbs quasi-irreversibly to the sensor and is digested by trypsin directly at the sensor surface. The created PLL fragments are released into the bulk solution due to kinetic reasons. This results in a measurable change of the surface potential allowing for the determination of trypsin concentrations down to 50 ng mL(-1). Chymotrypsin is a similar endopeptidase with a different specificity, which cleaves PLL with a lower efficiency as compared to trypsin. The activity of trypsin is analyzed quantitatively employing a kinetic model for enzyme-catalyzed surface reactions. Moreover, we have demonstrated the specific inactivation of trypsin by a serine protease inhibitor, which covalently binds to the active site of the enzyme.

  5. Progress and challenges in utilization of palm oil biomass as fuel for decentralized electricity generation

    Energy Technology Data Exchange (ETDEWEB)

    Bazmi, Aqeel Ahmed [Process Systems Engineering Centre (PROSPECT), Department of Chemical Engineering, Faculty of Chemical and Natural Resources Engineering, University Technology Malaysia, Skudai 81310, Johor Bahru, JB (Malaysia); Biomass Conversion Research Center (BCRC), Department of Chemical Engineering, COMSATS Institute of Information Technology, Lahore (Pakistan); Zahedi, Gholamreza; Hashim, Haslenda [Process Systems Engineering Centre (PROSPECT), Department of Chemical Engineering, Faculty of Chemical and Natural Resources Engineering, University Technology Malaysia, Skudai 81310, Johor Bahru, JB (Malaysia)

    2011-01-15

    It has been broadly accepted worldwide that global warming, indeed, is the greatest threat of the time to the environment. Renewable energy (RE) is expected as a perfect solution to reduce global warming and to endorse sustainable development. Progressive release of greenhouse gases (GHG) from increasing energy-intensive industries has eventually caused human civilization to suffer. Realizing the exigency of reducing emissions and simultaneously catering to needs of industries, researchers foresee the RE as the perfect entrant to overcome these challenges. RE provides an effective option for the provision of energy services from the technical point of view while biomass, a major source of energy in the world until before industrialization when fossil fuels become dominant, appears an important renewable source of energy and researches have proven from time to time its viability for large-scale production. Being a widely spread source, biomass offers the execution of decentralized electricity generation gaining importance in liberalized electricity markets. The decentralized power is characterized by generation of electricity nearer to the demand centers, meeting the local energy needs. Researchers envisaged an increasing decentralization of power supply, expected to make a particular contribution to climate protection. This article investigates the progress and challenges for decentralized electricity generation by palm oil biomass according to the overall concept of sustainable development. (author)

  6. Progress and challenges in utilization of palm oil biomass as fuel for decentralized electricity generation

    International Nuclear Information System (INIS)

    Bazmi, Aqeel Ahmed; Zahedi, Gholamreza; Hashim, Haslenda

    2011-01-01

    It has been broadly accepted worldwide that global warming, indeed, is the greatest threat of the time to the environment. Renewable energy (RE) is expected as a perfect solution to reduce global warming and to endorse sustainable development. Progressive release of greenhouse gases (GHG) from increasing energy-intensive industries has eventually caused human civilization to suffer. Realizing the exigency of reducing emissions and simultaneously catering to needs of industries, researchers foresee the RE as the perfect entrant to overcome these challenges. RE provides an effective option for the provision of energy services from the technical point of view while biomass, a major source of energy in the world until before industrialization when fossil fuels become dominant, appears an important renewable source of energy and researches have proven from time to time its viability for large-scale production. Being a widely spread source, biomass offers the execution of decentralized electricity generation gaining importance in liberalized electricity markets. The decentralized power is characterized by generation of electricity nearer to the demand centers, meeting the local energy needs. Researchers envisaged an increasing decentralization of power supply, expected to make a particular contribution to climate protection. This article investigates the progress and challenges for decentralized electricity generation by palm oil biomass according to the overall concept of sustainable development. (author)

  7. Biomass analysis at palm oil factory as an electric power plant

    Science.gov (United States)

    Yusniati; Parinduri, Luthfi; Krianto Sulaiman, Oris

    2018-04-01

    Biomassa found in palm oil mill industryis a by-product such as palm shell, fiber, empty fruit bunches and pome. The material can be used as an alternative fuel for fossil fuel. On PTPN IVpalm oil millDolokSinumbah with a capacity of 30 tons tbs/hour of palm fruit fiber and palm shells has been utilized as boiler fuel to produce steam to supplyboilers power plant. With this utilization, the use of generators that using fossil fuel can be reduced, this would provide added value for the company. From the analysis, the fiber and shell materials were sufficient to supply 18 tons/hoursteam for the boiler. Shell material even excess as much as 441,5 tons per month. By utilizing the 2 types of biomass that is available alone, the electricity needs of the factory of 734 Kwh can be met. While other materials such as empty bunches and pome can be utilized to increase the added value and profitability for the palm oil mill.

  8. The effects of deep level traps on the electrical properties of semi-insulating CdZnTe

    Energy Technology Data Exchange (ETDEWEB)

    Zha, Gangqiang; Yang, Jian; Xu, Lingyan; Feng, Tao; Wang, Ning; Jie, Wanqi [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an (China)

    2014-01-28

    Deep level traps have considerable effects on the electrical properties and radiation detection performance of high resistivity CdZnTe. A deep-trap model for high resistivity CdZnTe was proposed in this paper. The high resistivity mechanism and the electrical properties were analyzed based on this model. High resistivity CdZnTe with high trap ionization energy E{sub t} can withstand high bias voltages. The leakage current is dependent on both the deep traps and the shallow impurities. The performance of a CdZnTe radiation detector will deteriorate at low temperatures, and the way in which sub-bandgap light excitation could improve the low temperature performance can be explained using the deep trap model.

  9. Electrical insulation properties of RF-sputtered LiPON layers towards electrochemical stability of lithium batteries

    OpenAIRE

    Vieira, E. M. F.; Ribeiro, J. F.; Silva, Maria Manuela; Barradas, N. P.; Alves, E.; Alves, A.; Correia, M. R.; Gonçalves, L. M.

    2016-01-01

    Electrochemical stability, moderate ionic conductivity and low electronic conductivity make the lithium phosphorous oxynitride (LiPON) electrolyte suitable for micro and nanoscale lithium batteries. The electrical and electrochemical properties of thin-film electrolytes can seriously compromise full battery performance. Here, radio-frequency (RF)-sputtered LiPON thin films were fabricated in nitrogen plasma under different working pressure conditions. With a slight decrease in ...

  10. New Developments in the Field of Materials for Electric Power Engineering. Paper presented at the ETG Conference (Energy Technology Society) 1981

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    The Conference Proceedings comprise 21 papers divided into 4 theme groups: insulating materials and insulating systems; structural materials; magnetic materials; conductor and contact materials. Individual papers deal with: the search for a new insulating system for transformers; insulating oils and liquids; an insulating system for electric machines of high heat resistance: progress in insulation of exciter winding in hydroelectic generators and other large synchronous machines; insulating systems for extreme envronmental conditions; behavior of silicon elastomer, organic, and polyethylene insulating materials; development of new magnetic materials, in particular: metallic glasses; amorphous magnetic materials; pressed iron powder parts; modern permanent magnetic materials; development of new contact materials for power switchgear; alternative switchgear technologies; a new cryogenic conductor structured element based on V/sub 2/O/sub 3/ ceramic; choice of material for fuses.

  11. Insulation systems for superconducting transmission cables

    DEFF Research Database (Denmark)

    Tønnesen, Ole

    1996-01-01

    the electrical insulation is placed outside both the superconducting tube and the cryostat. The superconducting tube is cooled by liquid nitrogen which is pumped through the hollow part of the tube.2) The cryogenic dielectric design, where the electrical insulation is placed inside the cryostat and thus is kept...

  12. Improved Thermal-Insulation Systems for Low Temperatures

    Science.gov (United States)

    Fesmire, James E.; Augustynowicz, Stanislaw D.

    2003-01-01

    Improved thermal-insulation materials and structures and the techniques for manufacturing them are undergoing development for use in low-temperature applications. Examples of low-temperature equipment for which these thermal insulation systems could provide improved energy efficiency include storage tanks for cryogens, superconducting electric-power-transmission equipment, containers for transport of food and other perishable commodities, and cold boxes for low-temperature industrial processes. These systems could also be used to insulate piping used to transfer cryogens and other fluids, such as liquefied natural gas, refrigerants, chilled water, crude oil, or low-pressure steam. The present thermal-insulation systems are layer composites based partly on the older class of thermal-insulation systems denoted generally as multilayer insulation (MLI). A typical MLI structure includes an evacuated jacket, within which many layers of radiation shields are stacked or wrapped close together. Low-thermal-conductivity spacers are typically placed between the reflection layers to keep them from touching. MLI can work very well when a high vacuum level (less than 10(exp-4) torr) is maintained and utmost care is taken during installation, but its thermal performance deteriorates sharply as the pressure in the evacuated space rises into the soft vacuum range [pressures greater than 0.1 torr (greater than 13 Pa)]. In addition, the thermal performance of MLI is extremely sensitive to mechanical compression and edge effects and can easily decrease from one to two orders of magnitude from its ideal value even when the MLI is kept under high vacuum condition. The present thermal-insulation systems are designed to perform well under soft vacuum level, in particular the range of 1 to 10 torr. They are also designed with larger interlayer spacings to reduce vulnerability to compression (and consequent heat leak) caused by installation and use. The superiority of these systems is the

  13. Investigations of Electrical Trees in the Inner Layer of XLPE Cable Insulation Using Computer-aided Image Recording Monitoring

    OpenAIRE

    Xie, Ansheng; Zheng, Xiaoquan; Li, Shengtao; Chen, George

    2010-01-01

    Using a computer-aided image recording monitoring system, extensive measurements have been performed in the inner layer of 66 kV cross-linked polyethylene (XLPE)cables. It has been found that there are three kinds of electrical trees in the samples,the branch-like tree, the bush-like tree and the mixed tree that is a mixture of the above two kinds. When the applied voltage frequency is less than or equal to 250 Hz, only the mixed tree appears in XLPE samples, when the frequency is greater tha...

  14. Metal-insulator transition in tin doped indium oxide (ITO) thin films: Quantum correction to the electrical conductivity

    OpenAIRE

    Deepak Kumar Kaushik; K. Uday Kumar; A. Subrahmanyam

    2017-01-01

    Tin doped indium oxide (ITO) thin films are being used extensively as transparent conductors in several applications. In the present communication, we report the electrical transport in DC magnetron sputtered ITO thin films (prepared at 300 K and subsequently annealed at 673 K in vacuum for 60 minutes) in low temperatures (25-300 K). The low temperature Hall effect and resistivity measurements reveal that the ITO thin films are moderately dis-ordered (kFl∼1; kF is the Fermi wave vector and l ...

  15. Determination of optimum insulation thicknesses using economical analyse for exterior walls of buildings with different masses

    Directory of Open Access Journals (Sweden)

    Okan Kon

    2017-07-01

    Full Text Available In this study, five different cities were selected from the five climatic zones according to Turkish standard TS 825, and insulation thicknesses of exterior walls of sample buildings were calculated by using optimization. Vertical perforated bricks with density of 550 kg/m3 and 1000 kg/m3 were chosen within the study content. Glass wool, expanded polystyrene (XPS, extruded polystyrene (EPS were considered as insulation materials. Additionally, natural gas, coal, fuel oil and LPG were utilized as fuel for heating process while electricity was used for cooling.  Life cycle cost (LCC analysis and degree-day method were the approaches for optimum insulation thickness calculations. As a result, in case of usage vertical perforated bricks with density of 550 kg/m3 and 1000 kg/m3 resulted different values in between 0.005-0.007 m (5-7 mm in the optimum insulation thickness calculations under different insulation materials.  Minimum optimum insulation thickness was calculated in case XPS was preferred as insulation material, and the maximum one was calculated in case of using glass wool.

  16. Transient Processes in Electric Power Supply System for Oil Terminal with Own Gas-Turbine Power Station

    Directory of Open Access Journals (Sweden)

    A. M. Hаshimov

    2009-01-01

    Full Text Available The paper contains results of the investigations concerning influence of symmetrical and non-symmetrical short circuits at main power network on electric power supply system of a huge oil terminal which is powered by own gas-turbine power station. Calculations have been made in accordance with the IEC and IEEЕ requirements. Estimations for voltage level and distribution of short circuit current in the electric power supply system of the Sangachal oil terminal being operated in parallel with the AzerEnerji grid are presented in the paper

  17. Symmetry analysis of strain, electric and magnetic fields in the Bi2Se3-class of topological insulators

    Science.gov (United States)

    Rosdahl Brems, Mathias; Paaske, Jens; Lunde, Anders Mathias; Willatzen, Morten

    2018-05-01

    Based on group theoretical arguments we derive the most general Hamiltonian for the Bi2Se3-class of materials including terms to third order in the wave vector, first order in electric and magnetic fields, first order in strain and first order in both strain and wave vector. We determine analytically the effects of strain on the electronic structure of Bi2Se3. For the most experimentally relevant surface termination we analytically derive the surface state (SS) spectrum, revealing an anisotropic Dirac cone with elliptical constant energy contours giving rise to a direction-dependent group velocity. The spin-momentum locking of strained Bi2Se3 is shown to be modified. Hence, strain control can be used to manipulate the spin degree of freedom via the spin–orbit coupling. We show that for a thin film of Bi2Se3 the SS band gap induced by coupling between the opposite surfaces changes opposite to the bulk band gap under strain. Tuning the SS band gap by strain, gives new possibilities for the experimental investigation of the thickness dependent gap and optimization of optical properties relevant for, e.g., photodetector and energy harvesting applications. We finally derive analytical expressions for the effective mass tensor of the Bi2Se3 class of materials as a function of strain and electric field.

  18. Low energy gamma induced radiation damage in YBCO: electrical resistivity and the induced metal - insulator transition behaviors

    International Nuclear Information System (INIS)

    Cruz, Carlos M.; Pinnera, Ibrahin; Leyva, Antonio; Abreu, Yamiel; Sirgado, Nicolas

    2015-01-01

    In the present contribution the superconducting YBCO ρ(T) dependence behavior on the irradiation dose and accumulative time are studied for gamma quanta of E γ = 132 keV ( 57 Co) and 1,25 MeV ( 60 Co) at room temperature. In both cases, possible radiation effects on grain boundary and intragrain zones are evaluated by means of different gamma ray microscopic interaction models. It was conclude that 57 Co gamma quanta (E γ = 132 keV) modules YBCO ρ(T) dependence behavior through enhanced oxygen vacancy diffusion motions which collapse the electron percolative conduction paths in the grain boundary zones, effects which are not observed by irradiation with 60 Co gamma quanta (E γ = 1,25 MeV), in which case main irradiation effects on the electrical conduction mechanisms are limited to the intragrain zones. (Author)

  19. Device for protecting the section of the airline electricity transmission with insulated neutral from incomplete phase modes

    Energy Technology Data Exchange (ETDEWEB)

    Sagutdinov, R.Sh.; Batoyev, D.

    1982-01-01

    The device for USSR certificate of authorship 792439 is improved in order to raise reliability of isolating the damage zone by including into operation an antenna filter for voltage of zero sequence (AFNIP) only during the operating time of the electrical unit in incomplete phase mode. The newly introduced circuit breaker contract of the inlet relay of the voltage filter for reverse sequence is connected between the outlet of the AFNIP and the ground. The device additionally has a time relay which is connected to the outlet of the voltage filter of reverse sequence. The circuit breaker contact of the inlet relay AFNIP is connected in series to the closure contact of the time relay and the winding of the second outlet relay of the actuating mechanism.

  20. Modeling all-electrical detection of the inverse Edelstein effect by spin-polarized tunneling in a topological-insulator/ferromagnetic-metal heterostructure

    Science.gov (United States)

    Dey, Rik; Register, Leonard F.; Banerjee, Sanjay K.

    2018-04-01

    The spin-momentum locking of the surface states in a three-dimensional topological insulator (TI) allows a charge current on the surface of the TI induced by an applied spin current onto the surface, which is known as the inverse Edelstein effect (IEE), that could be achieved either by injecting pure spin current by spin-pumping from a ferromagnetic metal (FM) layer or by injecting spin-polarized charge current by direct tunneling of electrons from the FM to the TI. Here, we present a theory of the observed IEE effect in a TI-FM heterostructure for the spin-polarized tunneling experiments. If an electrical current is passed from the FM to the surface of the TI, because of density-of-states polarization of the FM, an effective imbalance of spin-polarized electrons occurs on the surface of the TI. Due to the spin-momentum helical locking of the surface states in the TI, a difference of transverse charge accumulation appears on the TI surface in a direction orthogonal to the direction of the magnetization of the FM, which is measured as a voltage difference. Here, we derive the two-dimensional transport equations of electrons on the surface of a diffusive TI, coupled to a FM, starting from the quantum kinetic equation, and analytically solve the equations for a rectangular geometry to calculate the voltage difference.

  1. Thermal insulation

    International Nuclear Information System (INIS)

    Durston, J.G.; Birch, W.; Facer, R.I.; Stuart, R.A.

    1977-01-01

    Reference is made to liquid metal cooled nuclear reactors. In the arrangement described the reactor vessel is clad with thermal insulation comprising a layer of insulating blocks spaced from the wall and from each other; each block is rigidly secured to the wall, and the interspaces are substantially closed against convectional flow of liquid by resilient closure members. A membrane covering is provided for the layer of blocks, with venting means to allow liquid from the reactor vessel to penetrate between the covering and the layer of blocks. The membrane covering may comprise a stainless steel sheet ribbed in orthogonal pattern to give flexibility for the accommodation of thermal strain. The insulating blocks may be comprised of stainless steel or cellular or porous material and may be hollow shells containing ceramic material or gas fillings. (U.K.)

  2. Dielectric and Insulating Technology 2005 : Reviews & Forecasts

    Science.gov (United States)

    Okamoto, Tatsuki

    This article reports the state-of-art of TC-DEI ( Technical Committee of Dielectrics and Electrical Insulation of IEEJ) activites. The activiteis are basically based on the activites of 8-10 investigation committees under TC-DEI. Recent activites were categorized into three functions in this article and remarkable activity or trend for each category is mentioned as was done in the article of 2003. Thoese are activities on asset management (AI application and insulation diagnosis), activities on new insulating and functional materials (Nano composite) and activities on new insulation technology for power tansmission (high Tc superconducting cable insulation).

  3. Dielectric and Insulating Technology 2006 : Review & Forecast

    Science.gov (United States)

    Okamoto, Tatsuki

    This article reports the state-of-art of TC-DEI ( Technical Committee of Dielectrics and Electrical Insulation of IEEJ) activites. The activiteis are basically based on the activites of 8-10 investigation committees under TC-DEI. Recent activites were categorized into three functions in this article and remarkable activity or trend for each category is mentioned as was seen in the articles of 2005. Those are activities on asset management (AI application and insulation diagnosis), activities on new insulating and functional materials (Nano composite) and activities on new insulation technology for power tansmission (high Tc superconducting cable insulation).

  4. Topological insulators

    CERN Document Server

    Franz, Marcel

    2013-01-01

    Topological Insulators, volume six in the Contemporary Concepts of Condensed Matter Series, describes the recent revolution in condensed matter physics that occurred in our understanding of crystalline solids. The book chronicles the work done worldwide that led to these discoveries and provides the reader with a comprehensive overview of the field. Starting in 2004, theorists began to explore the effect of topology on the physics of band insulators, a field previously considered well understood. However, the inclusion of topology brings key new elements into this old field. Whereas it was

  5. In situ regeneration of dielectric oil of electric transformers; Regeneracion in situ y en carga del aceite dielectrico de los transformadores electricos

    Energy Technology Data Exchange (ETDEWEB)

    Solis, A.

    2000-07-01

    Depuroil, S. A., a company founded in 1975, presents in this article treatment to control the quality and regenerate the Electric Transformers oil in order to lengthen the useful life of the oil and have an environmentally correct treatment of the residuals that the oil generates. (Author) 5 refs.

  6. Oil Coking Prevention Using Electric Water Pump for Turbo-Charge Spark-Ignition Engines

    Directory of Open Access Journals (Sweden)

    Han-Ching Lin

    2014-01-01

    Full Text Available Turbocharger has been widely implemented for internal combustion engine to increase an engine's power output and reduce fuel consumption. However, its operating temperature would rise to 340°C when engine stalls. This higher temperature may results in bearing wear, run-out, and stick, due to oil coking and insufficient lubrication. In order to overcome these problems, this paper employs Electric Water Pump (EWP to supply cool liquid to turbocharger actively when the engine stalls. The system layout, operating timing, and duration of EWP are investigated for obtaining optimal performance. The primarily experimental results show that the proposed layout and control strategy have a lower temperature of 100°C than the conventional temperature 225°C.

  7. Algorithm to determine electrical submersible pump performance considering temperature changes for viscous crude oils

    Energy Technology Data Exchange (ETDEWEB)

    Valderrama, A. [Petroleos de Venezuela, S.A., Distrito Socialista Tecnologico (Venezuela); Valencia, F. [Petroleos de Venezuela, S.A., Instituto de Tecnologia Venezolana para el Petroleo (Venezuela)

    2011-07-01

    In the heavy oil industry, electrical submersible pumps (ESPs) are used to transfer energy to fluids through stages made up of one impeller and one diffuser. Since liquid temperature increases through the different stages, viscosity might change between the inlet and outlet of the pump, thus affecting performance. The aim of this research was to create an algorithm to determine ESPs' performance curves considering temperature changes through the stages. A computational algorithm was developed and then compared with data collected in a laboratory with a CG2900 ESP. Results confirmed that when the fluid's viscosity is affected by the temperature changes, the stages of multistage pump systems do not have the same performance. Thus the developed algorithm could help production engineers to take viscosity changes into account and optimize the ESP design. This study developed an algorithm to take into account the fluid viscosity changes through pump stages.

  8. Fabrication, structural and electrical properties of (1 1 0) localized silicon-on-insulator devices

    International Nuclear Information System (INIS)

    Destefanis, V; Huguenin, J L; Samson, M P; Morand, Y; Arvet, C; Monfray, S; Skotnicki, T; Hartmann, J M; Delaye, V; Boulitreau, P; Brianceau, P; Gautier, P

    2010-01-01

    The aim being to fabricate (1 1 0) localized silicon-on-insulator (L-SOI) devices, we have first of all completed the Semicond. Sci. Technol. 23 105018 (2008) study of the differences between (1 1 0) and (1 0 0) surfaces in terms of (i) HCl etch kinetics and (ii) SiGe growth kinetics (with a chlorinated chemistry). The core layers of a L-SOI device are indeed obtained thanks to the in situ HCl etching (on patterned wafers) of the Si active areas followed by the selective epitaxial growth of a Si 0.7 Ge 0.3 /Si stack. Given that SiGe(1 1 0) layers grown at 650 °C in windows of patterned wafers are rough, we have first of all studied the 600 °C growth kinetics of SiGe(1 1 0). As expected, the SiGe growth rate decreases as the growth temperature decreases from 650 °C down to 600 °C (irrespective of the surface orientation). The SiGe(1 0 0) growth rate increases linearly with the germane mass flow. Meanwhile, the SiGe(1 1 0) growth rate increases in a sub-linear fashion and then saturates at much lower values than on (1 0 0). The Ge concentration x dependence on the F(GeH 4 )/F(SiH 2 Cl 2 ) mass flow ratio is parabolic on (1 0 0) and linear on (1 1 0), with lower values on the latter than on the former. We have then used those data to fabricate (1 0 0) and (1 1 0) L-SOI structures. The high HCl partial pressure recessing of the Si(1 1 0) and Si(1 0 0) active areas was performed at 675 °C and 725 °C, respectively. An increase of both the Si(1 1 0) HCl etch rate and the SiGe growth rate (be it at 650 °C on (1 0 0) or at 600 °C on (1 1 0)) was noticed when switching from blanket to patterned wafers (factors of 2.5–3 for HCI and 1.5 for SiGe). Finally, Si(1 1 0) growth times were multiplied by 4/3 compared to the Si(1 0 0) growth time in order to obtain similar thickness Si caps. Subsequent process steps were very similar on (1 0 0) and (1 1 0). Almost the same etch rates were

  9. Development of insulating coatings for liquid metal blankets

    International Nuclear Information System (INIS)

    Malang, S.; Borgstedt, H.U.; Farnum, E.H.; Natesan, K.; Vitkovski, I.V.

    1994-07-01

    It is shown that self-cooled liquid metal blankets are feasible only with electrically insulating coatings at the duct walls. The requirements on the insulation properties are estimated by simple analytical models. Candidate insulator materials are selected based on insulating properties and thermodynamic consideration. Different fabrication technologies for insulating coatings are described. The status of the knowledge on the most crucial feasibility issue, the degradation of the resisivity under irradiation, is reviewed

  10. Key performance indicators for electric mining shovels and oil sands diggability

    Science.gov (United States)

    Patnayak, Sibabrata

    A shovel performance monitoring study was undertaken in two oil sands mines operated by Syncrude Canada Ltd. using performance data obtained from P&H 4100 TS and BOSS electric mining shovels. One year of shovel performance data along with geological, geotechnical, and climatic data were analyzed. The approach adopted was to use current and voltage data collected from hoist and crowd motors and to calculate the energy and/or power associated with digging. Analysis of performance data along with digital video records of operating shovels indicated that hoist and crowd motor voltages and currents can be used to identify the beginning and the end of individual dig cycles. A dig cycle identification algorithm was developed. Performance indicators such as dig cycle time, hoist motor energy and power, and crowd motor energy and power were determined. The shovel performance indicators provide important insight into how geology, equipment and operators affect the digging efficiency. The hoist motor power is a useful key performance indicator for assessing diggability. Hoist motor energy consumption per tonne of material excavated and the number of dig cycles required for loading a truck can be useful key performance indicators for assessing operator performance and productivity. Analysis of performance data along with operators team schedules showed that the performance of a shovel can be significantly influenced by the operator's digging technique while digging uniform material. Up to 25% variability in hoist motor power consumption and 50% variability in productivity was noted between different operators. Shovel type and dipper teeth configuration can also influence the power draw on electrical motors during digging. There is no common agreement existing on the influence of bitumen content on oil sands diggability. By comparing the hoist motor power consumption, it was found that the rich ore was more difficult to dig than the lean ore. Similarly, estuarine ore was more

  11. RoadRail: An economically viable infrastructure which facilitates the transition from oil to electricity for all forms of road transport

    DEFF Research Database (Denmark)

    Connolly, David

    2012-01-01

    to convert road transport from oil to electricity. This involves the electrification of major roads so that electric cars, vans, busses, and trucks can use electricity as their primary fuel over long distance, which in this study is referred to as ‘RoadRail’. This is a new and radical alternative......In recent decades, economic renewable energy technologies have been developed for the electricity and heat sectors. Although there has been some development in the transport sector, there is still no well-establish sustainable alternatives to oil. In this study, a new alternative is proposed...... and electricity/oil costs, Denmark is presented as a case study for the installation of RoadRail. The results indicate that based on 2020 cost assumptions, RoadRail is a more socio-economic alternative than a business-as-usual using oil. This is primarily due to decreasing electric vehicle costs, decreasing...

  12. Damages of electrical insulation of cable products used at NPP`s and technique of their detection and operative control; Povrezhdeniya v ehlektricheskoj izolyatsii kabel`nykh izdulij, ehkspluatirue mykh na atomnykh ehlektrostantsiyakh i metody ikh obnaruzheniya i operativnogo kontro lya

    Energy Technology Data Exchange (ETDEWEB)

    Valeev, R S; Filatov, N I

    1994-12-31

    Analysis of possible damages in electrical insulation of cable products under their application at NPP`s is conducted. Basic methods for detecting such damages and rapid control of technical condition of cable products during the operation are considered.

  13. Effect of annealing temperature on the electrical properties of Au/Ta{sub 2}O{sub 5}/n-GaN metal-insulator-semiconductor (MIS) structure

    Energy Technology Data Exchange (ETDEWEB)

    Prasanna Lakshmi, B.; Rajagopal Reddy, V.; Janardhanam, V. [Sri Venkateswara University, Department of Physics, Tirupati (India); Siva Pratap Reddy, M.; Lee, Jung-Hee [Kyungpook National University, School of Electrical Engineering and Computer Science, Daegu (Korea, Republic of)

    2013-11-15

    We report on the effect of an annealing temperature on the electrical properties of Au/Ta{sub 2}O{sub 5}/n-GaN metal-insulator-semiconductor (MIS) structure by current-voltage (I-V) and capacitance-voltage (C-V) measurements. The measured Schottky barrier height ({Phi} {sub bo}) and ideality factor n values of the as-deposited Au/Ta{sub 2}O{sub 5}/n-GaN MIS structure are 0.93 eV (I-V) and 1.19. The barrier height (BH) increases to 1.03 eV and ideality factor decreases to 1.13 upon annealing at 500 {sup circle} C for 1 min under nitrogen ambient. When the contact is annealed at 600 {sup circle} C, the barrier height decreases and the ideality factor increases to 0.99 eV and 1.15. The barrier heights obtained from the C-V measurements are higher than those obtained from I-V measurements, and this indicates the existence of spatial inhomogeneity at the interface. Cheung's functions are also used to calculate the barrier height ({Phi} {sub bo}), ideality factor (n), and series resistance (R{sub s}) of the Au/Ta{sub 2}O{sub 5}/n-GaN MIS structure. Investigations reveal that the Schottky emission is the dominant mechanism and the Poole-Frenkel emission occurs only in the high voltage region. The energy distribution of interface states is determined from the forward bias I-V characteristics by taking into account the bias dependence of the effective barrier height. It is observed that the density value of interface states for the annealed samples with interfacial layer is lower than that of the density value of interface states of the as-deposited sample. (orig.)

  14. Effect of moisture on the electrical performance of transition-joints for medium voltage paper-insulated cables; Elektrische Beeintraechtigung durch Feuchtigkeit an oelgetraenkten Isolierpapieren. Mittelspannungsuebergangsmuffen

    Energy Technology Data Exchange (ETDEWEB)

    Cardinaels, Jos [Nexans Network Solution, Erembodegem (Belgium). Produktentwicklung; Baesch, Manfred [Nexans Power Accessories Germany, Dortmund (Germany). Produkt- und Qualitaetsmanagement

    2009-06-15

    Paper-insulated cables are constructed with an impervious metallic outer jacket in order to protect them against ingress of moisture. On 'modern' transition-joints to XLPE-insulated cables, this metal barrier is interrupted, hence, a risk of moisture penetration exists. This text presents measurements of water-vapour permeability of used materials and discusses the results of ageing tests. (orig.)

  15. In-service inspection of electrical items

    International Nuclear Information System (INIS)

    Sastry, M.S.N.

    2002-01-01

    Power Supply and Distribution System caters to electrical power requirements of all drives and other equipment. The system also provides control power. Main equipment in the system are Transformers, Switch gear, cables, motors, emergency D- G sets, UPS, and storage battery banks. The talk is covered under the following broad heads: 1. Brief description of typical power supply system, 2. Insulation checks in LV, MV, and HV systems, 3. Monitoring the insulating oil of transformer, 4. Eddy current checking of the motor cores, 5. Checking of cable and bus bar joints, 6. Periodic check on batteries

  16. Olive oil pilot-production assisted by pulsed electric field: impact on extraction yield, chemical parameters and sensory properties.

    Science.gov (United States)

    Puértolas, Eduardo; Martínez de Marañón, Iñigo

    2015-01-15

    The impact of the use of pulsed electric field (PEF) technology on Arroniz olive oil production in terms of extraction yield and chemical and sensory quality has been studied at pilot scale in an industrial oil mill. The application of a PEF treatment (2 kV/cm; 11.25 kJ/kg) to the olive paste significantly increased the extraction yield by 13.3%, with respect to a control. Furthermore, olive oil obtained by PEF showed total phenolic content, total phytosterols and total tocopherols significantly higher than control (11.5%, 9.9% and 15.0%, respectively). The use of PEF had no negative effects on general chemical and sensory characteristics of the olive oil, maintaining the highest quality according to EU legal standards (EVOO; extra virgin olive oil). Therefore, PEF could be an appropriate technology to improve olive oil yield and produce EVOO enriched in human-health-related compounds, such as polyphenols, phytosterols and tocopherols. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. A Review on Properties, Opportunities, and Challenges of Transformer Oil-Based Nanofluids

    Directory of Open Access Journals (Sweden)

    Muhammad Rafiq

    2016-01-01

    Full Text Available The mineral oil or synthetic oil in conjunction with paper is mainly being applied as dielectric medium in many of the high voltage apparatus. However, the advent of high voltage levels such high voltage alternating current (HVAC and high voltage direct current (HVDC has prompted researchers to direct their focus onto an insulation system which can bear the rising high voltage levels. The modern insulating liquid material development is guided by various factors such as high electrical insulation requirements and other safety and economic considerations. Therefore transformer manufacturer companies have to design transformers with these new specific requirements. The transformer oil-based nanofluids with improved dielectric and thermal properties have the potential to replace mineral oil base products in the market place. They are favorable because they function more superior than mineral oil and they contribute definite insulating and thermal gains. This paper reviews recent status of nanofluids use as transformer oils. The nanofluids used as transformer oils are presented and their advantages are described in comparison with mineral oil. The multiple experimental works carried out by different researchers are described, providing an overview of the current research conducted on nanofluids. In addition scope and challenges being confronted in this area of research are clearly presented.

  18. Electrical Power Supply to Offshore Oil Installations by High Voltage Direct Current Transmission

    Energy Technology Data Exchange (ETDEWEB)

    Myhre, Joergen Chr.

    2001-07-01

    This study was initiated to investigate if it could be feasible to supply offshore oil installations in the North Sea with electrical power from land. A prestudy of alternative converter topologies indicated that the most promising solution would be to investigate a conventional system with reduced synchronous compensator rating. The study starts with a summary of the state of power supply to offshore installations today, and a short review of classical HVDC transmission. It goes on to analyse how a passive network without sources influences the inverter. The transmission, with its current controlled rectifier and large inductance, is simulated as a current source. Under these circumstances the analysis shows that the network frequency has to adapt in order to keep the active and reactive power balance until the controllers are able to react. The concept of firing angle for a thyristor is limited in a system with variable frequency, the actual control parameter is the firing delay time. Sensitivity analysis showed some astonishing consequences. The frequency rises both by an increase in the active and in the reactive load. The voltage falls by an increase in the active load, but rises by an increase in the inductive load. Two different control principles for the system of inverter, synchronous compensator and load are defined. The first takes the reference for the firing delay time from the fundamental voltage at the point of common coupling. The second takes the reference for the firing delay time from the simulated EMF of the synchronous compensator. Of these, the second is the more stable and should be chosen as the basis for a possible control system. Two simulation tools are applied. The first is a quasi-phasor model running on Matlab with Simulink. The other is a time domain model in KREAN. The time domain model is primarily used for the verification of the quasi-phasor model, and shows that quasi-phasors is still a valuable tool for making a quick analysis

  19. Technique eliminates high voltage arcing at electrode-insulator contact area

    Science.gov (United States)

    Mealy, G.

    1967-01-01

    Coating the electrode-insulator contact area with silver epoxy conductive paint and forcing the electrode and insulator tightly together into a permanent connection, eliminates electrical arcing in high-voltage electrodes supplying electrical power to vacuum facilities.

  20. THE ELECTROSTATIC CHARACTERISTICS OF LINEAR INSULATORS FOR CONTACT NETWORKS OF RAILWAYS

    Directory of Open Access Journals (Sweden)

    Ye. D. Kim

    2009-03-01

    Full Text Available On the base of numeric investigations on mathematical models of stationary electric field the basic electric performances of insulating suspensions from porcelain and polymeric insulators for contact nets of alternating and direct current are compared.

  1. Electricity generation from palm oil tree empty fruit bunch (EFB) using dual chamber microbial fuel cell (MFC)

    Science.gov (United States)

    Ghazali, N. F.; Mahmood, N. A. B. N.; Ibrahim, K. A.; Muhammad, S. A. F. S.; Amalina, N. S.

    2017-06-01

    Microbial fuel cell (MFC) has been discovered and utilized in laboratory scale for electricity production based on microbial degradation of organic compound. However, various source of fuel has been tested and recently complex biomass such as lignocellulose biomass has been focused on. In the present research, oil palm tree empty fruit bunch (EFB) has been tested for power production using dual chamber MFC and power generation analysis has been conducted to address the performance of MFC. In addition, two microorganisms (electric harvesting microbe and cellulose degrading microbe) were used in the MFC operation. The analysis include voltage produced, calculated current and power. The first section in your paper

  2. Thermal diffusivity of electrical insulators at high temperatures: Evidence for diffusion of bulk phonon-polaritons at infrared frequencies augmenting phonon heat conduction

    Science.gov (United States)

    Hofmeister, Anne M.; Dong, Jianjun; Branlund, Joy M.

    2014-04-01

    We show that laser-flash analysis measurements of the temperature (T) dependence of thermal diffusivity (D) for diverse non-metallic (e.g., silicates) single-crystals is consistently represented by D(T) = FT-G + HT above 298 K, with G ranging from 0.3 to 2, depending on structure, and H being ˜10-4 K-1 for 51 single-crystals, 3 polycrystals, and two glasses unaffected by disorder or reconstructive phase transitions. Materials exhibiting this behavior include complex silicates with variable amounts of cation disorder, perovskite structured materials, and graphite. The high-temperature term HT becomes important by ˜1300 K, above which temperature its contribution to D(T) exceeds that of the FT-G term. The combination of the FT-G and HT terms produces the nearly temperature independent high-temperature region of D previously interpreted as the minimal phonon mean free path being limited by the finite interatomic spacing. Based on the simplicity of the fit and large number of materials it represents, this finding has repercussions for high-temperature models of heat transport. One explanation is that the two terms describing D(T) are associated with two distinct microscopic mechanisms; here, we explore the possibility that the thermal diffusivity of an electrical insulator could include both a contribution of lattice phonons (the FT-G term) and a contribution of diffusive bulk phonon-polaritons (BPP) at infrared (IR) frequencies (the HT term). The proposed BPP diffusion exists over length scales smaller than the laboratory sample sizes, and transfers mixed light and vibrational energy at a speed significantly smaller than the speed of light. Our diffusive IR-BPP hypothesis is consistent with other experimental observations such as polarization behavior, dependence of D on the number of IR peaks, and H = 0 for Ge and Si, which lack IR fundamentals. A simple quasi-particle thermal diffusion model is presented to begin understanding the contribution from bulk phonon

  3. RESEARCH OF THE INFLUENCE OF VARIOUS FACTORS ON THE ACCURACY OF DETERMINING OF PARAMETERS AND PLACE OF INSULATION DAMAGE IN THE ELECTRIC NETWORKS OF 6 TO 35 KV

    Directory of Open Access Journals (Sweden)

    Naraeva R.R

    2013-12-01

    Full Text Available The present paper is devoted to the research of the method for determining the parameters and plot of insulation damage in the networks of 6 to 35 kV with isolated neutral on the basis of measuring the operating parameters of the network. In the considered three-phase circuit with a symmetric source of EMF and symmetric loading there was a damage of insulation in one of the phases. The calculations are carried out for the transmission line equivalent circuit with a branch line by means of node-potential method. An investigation of the influence of the magnitude of insulation conductivity in the place of damage of different sections of the network upon the accuracy of determining the insulation conductivity is conducted using the data from digital models. The research of this method is performed by advancing hypotheses about the place of damage and by considering the influence of the multiplicity of increasing insulation conductivity of the damaged section and accuracy class of measuring devices.

  4. Tank Insulation

    Science.gov (United States)

    1979-01-01

    For NASA's Apollo program, McDonnell Douglas Astronautics Company, Huntington Beach, California, developed and built the S-IVB, uppermost stage of the three-stage Saturn V moonbooster. An important part of the development task was fabrication of a tank to contain liquid hydrogen fuel for the stage's rocket engine. The liquid hydrogen had to be contained at the supercold temperature of 423 degrees below zero Fahrenheit. The tank had to be perfectly insulated to keep engine or solar heat from reaching the fuel; if the hydrogen were permitted to warm up, it would have boiled off, or converted to gaseous form, reducing the amount of fuel available to the engine. McDonnell Douglas' answer was a supereffective insulation called 3D, which consisted of a one-inch thickness of polyurethane foam reinforced in three dimensions with fiberglass threads. Over a 13-year development and construction period, the company built 30 tanks and never experienced a failure. Now, after years of additional development, an advanced version of 3D is finding application as part of a containment system for transporting Liquefied Natural Gas (LNG) by ship.

  5. Insulating materials resistance in intense radiation beams

    International Nuclear Information System (INIS)

    Oproiu, Constantin; Martin, Diana; Scarlat, Florin; Timus, Dan; Brasoveanu, Mirela; Nemtanu, Monica

    2002-01-01

    The paper emphasizes the main changes of the mechanical and electrical properties of some organic insulating materials exposed to accelerated electron beams. These materials are liable to be used in nuclear plants and particle accelerators. The principal mechanical and electrical properties analyzed were: tensile strength, fracture strength, tearing on fracture, dielectric strength, electrical resistivity, dielectric constant and tangent angle of dielectric losses. (authors)

  6. PD-pulse characteristics in rotating machine insulation

    DEFF Research Database (Denmark)

    Holbøll, Joachim; Henriksen, Mogens; Jensen, A

    1994-01-01

    In this paper results are presented from investigations on partial discharges (PD) in insulation systems, resembling the stator insulation in high voltage rotating machines. A model, simulating a stator winding in a slot, has been developed, consisting of simple rotating machine insulation test...... bars with epoxy/mica insulation, mounted between steel sheets forming a dot, in order to investigate the fundamental behaviour of PD in insulation defects in epoxy/mica insulation and the characteristics of the resulting electrical pulses. Stator slot couplers (SSC) were used to detect pulses coming...

  7. High-performance insulator structures for accelerator applications

    International Nuclear Information System (INIS)

    Sampayan, S.E.; Caporaso, G.J.; Sanders, D.M.; Stoddard, R.D.; Trimble, D.O.; Elizondo, J.; Krogh, M.L.; Wieskamp, T.F.

    1997-05-01

    A new, high gradient insulator technology has been developed for accelerator systems. The concept involves the use of alternating layers of conductors and insulators with periods of order 1 mm or less. These structures perform many times better (about 1.5 to 4 times higher breakdown electric field) than conventional insulators in long pulse, short pulse, and alternating polarity applications. We describe our ongoing studies investigating the degradation of the breakdown electric field resulting from alternate fabrication techniques, the effect of gas pressure, the effect of the insulator-to-electrode interface gap spacing, and the performance of the insulator structure under bi-polar stress

  8. Integrated Assessment of Palm Oil Mill Residues to Sustainable Electricity System (POMR-SES): A Case Study from Peninsular Malaysia

    Science.gov (United States)

    Jaye, I. F. Md; Sadhukhan, J.; Murphy, R. J.

    2018-05-01

    Generating electricity from biomass are undeniably gives huge advantages to the energy security, environmental protection and the social development. Nevertheless, it always been negatively claimed as not economically competitive as compared to the conventional electricity generation system using fossil fuel. Due to the unfair subsidies given to renewable energy based fuel and the maturity of conventional electricity generation system, the commercialization of this system is rather discouraging. The uniqueness of the chemical and physical properties of the biomass and the functionality of the system are fully depending on the availability of the biomass resources, the capital expenditure of the system is relatively expensive. To remain competitive, biomass based system must be developed in their most economical form. Therefore the justification of the economies of scale of such system is become essential. This study will provide a comprehensive review of process to select an appropriate size for electricity generation plant from palm oil mill (POM) residues through the combustion of an empty fruit bunch (EFB) and biogas from the anaerobic digestion of palm oil mill effluent (POME) in Peninsular Malaysia using a mathematical model and simulation using ASPEN Plus software package. The system operated at 4 MW capacity is expected to provide a return on investment (ROI) of 20% with a payback period of 6.5 years. It is notably agreed that the correct selection of generation plant size will have a significant impact on overall economic and environmental feasibility of the system.

  9. Comparison of electricity and heat production in combined and single-purpose systems against the background of energy saving by means of thermal insulation. Pt. 1. System comparison and general results; Vergleich der Strom- und Heizenergieerzeugung in gekoppelten und ungekoppelten Anlagen vor dem Hintergrund der Einsparmoeglichkeiten durch Waermedaemmung. T. 1. Systemvergleich und allgemeine Ergebnisse

    Energy Technology Data Exchange (ETDEWEB)

    Damberger, S.; Guenther, M.; Kluender, M.; Moeller, K.P.; Wenk, N.

    1994-06-01

    The study comprises investigations for the purpose of increasing the generation of electricity and heat in dual-purpose power plants and for promoting thermal insulation of buildings: Methods for comparatiave calculations; economic aspects; separate generation of electric power and heat; cogeneration of electric power and heat; economic efficiency of thermal insulation measures in domestic buildings; comparison of results. (HW) [Deutsch] Die Studie umfasst Untersuchungen zur Erhoehung des Anteils der gekoppelten Erzeugung von Strom und Waerme und zur vermehrten Waermedaemmung von Gebaeuden: - Methoden fuer Vergleichsrechnungen - Ekonomie - getrennte Erzeugung von Strom und Waerme - gekoppelte Erzeugung von Strom und Waerme - Wirtschaftlichkeit von Massnahmen einer Waermedaemmung von Wohngebaeuden - Vergleich der Ergebnisse. (HW)

  10. Investigation of 35-110 kV line and equipment exterior insulation and oil-filled power transformers under high-mountain conditions

    Energy Technology Data Exchange (ETDEWEB)

    Karapetyan, M.M.; Sanagyan, R.T.

    1980-01-01

    Flashover characteristics have been obtained for 35-110 kV external insulation at heights of up to 2000 m above sea level. The utilization of 35-110 kV equipment for heights of up to 2000 m above sea level is recommended. The dependence of the increase in flashover voltage in rain with increasing resistivity and the tendency toward an increase in the latter with increasing height above sea level are examined.

  11. Climate-related electricity demand-side management in oil-exporting countries--the case of the United Arab Emirates

    International Nuclear Information System (INIS)

    Al-Iriani, Mahmoud A.

    2005-01-01

    The oil crisis of the 1970s has increased the concern about the continuity of oil imports flow to major oil-importing developed countries. Numerous policy measures including electricity demand-side management (DSM) programs have been adopted in such countries. These measures aim at reducing the growing need for electricity power that increases the dependency on imported foreign oil and damages the environment. On the other hand, the perception that energy can be obtained at very low cost in oil-rich countries led to less attention being paid to the potential of DSM policies in these countries. This paper discusses such potential using the case of the United Arab Emirates (UAE). Since air conditioning is a major source of electric energy consumption, the relationship between climate conditions and electric energy consumption is considered. An electricity demand model is constructed using time series techniques. The fitted model seems to represent these relationships rather well. Forecasts for electricity consumption using the estimated model indicate that a small reduction in cooling degrees requirement might induce a significant reduction in electric energy demand. Hence, a DSM program is proposed with policy actions to include, among others, measures to reduce cooling degrees requirement

  12. Using Expert Systems in Evaluation of the State of High Voltage Machine Insulation Systems

    Directory of Open Access Journals (Sweden)

    K. Záliš

    2000-01-01

    Full Text Available Expert systems are used for evaluating the actual state and future behavior of insulating systems of high voltage electrical machines and equipment. Several rule-based expert systems have been developed in cooperation with top diagnostic workplaces in the Czech Republic for this purpose. The IZOLEX expert system evaluates diagnostic measurement data from commonly used offline diagnostic methods for the diagnostic of high voltage insulation of rotating machines, non-rotating machines and insulating oils. The CVEX expert system evaluates the discharge activity on high voltage electrical machines and equipment by means of an off-line measurement. The CVEXON expert system is for evaluating the discharge activity by on-line measurement, and the ALTONEX expert system is the expert system for on-line monitoring of rotating machines. These developed expert systems are also used for educating students (in bachelor, master and post-graduate studies and in courses which are organized for practicing engineers and technicians and for specialists in the electrical power engineering branch. A complex project has recently been set up to evaluate the measurement of partial discharges. Two parallel expert systems for evaluating partial dischatge activity on high voltage electrical machines will work at the same time in this complex evaluating system.

  13. Fermi surfaces in Kondo insulators

    Science.gov (United States)

    Liu, Hsu; Hartstein, Máté; Wallace, Gregory J.; Davies, Alexander J.; Ciomaga Hatnean, Monica; Johannes, Michelle D.; Shitsevalova, Natalya; Balakrishnan, Geetha; Sebastian, Suchitra E.

    2018-04-01

    We report magnetic quantum oscillations measured using torque magnetisation in the Kondo insulator YbB12 and discuss the potential origin of the underlying Fermi surface. Observed quantum oscillations as well as complementary quantities such as a finite linear specific heat capacity in YbB12 exhibit similarities with the Kondo insulator SmB6, yet also crucial differences. Small heavy Fermi sections are observed in YbB12 with similarities to the neighbouring heavy fermion semimetallic Fermi surface, in contrast to large light Fermi surface sections in SmB6 which are more similar to the conduction electron Fermi surface. A rich spectrum of theoretical models is suggested to explain the origin across different Kondo insulating families of a bulk Fermi surface potentially from novel itinerant quasiparticles that couple to magnetic fields, yet do not couple to weak DC electric fields.

  14. Magnetic and electrical response of Co-doped La{sub 0.7}Ca{sub 0.3}MnO{sub 3} manganites/insulator system

    Energy Technology Data Exchange (ETDEWEB)

    Debnath, J.C., E-mail: Jyotish.debnath@deakin.edu.au [Institute for Frontier Materials, Deakin University, Geelong, VIC 3216 (Australia); Wang, Jianli, E-mail: jcd341@uowmail.edu.au [Institute for Superconductivity and Electronic Materials, University of Wollongong, Wollongong, NSW 2522 (Australia)

    2017-01-01

    We present a systematic study of the structural, magnetic and electrical properties of La{sub 0.7}Ca{sub 0.3}MnO{sub 3} (LCMO) and La{sub 0.7}Ca{sub 0.3}Mn{sub 0.95}Co{sub 0.05}O{sub 3} (LCMCO0 perovskite manganites. Most of the work is devoted to the electrical properties with a thorough discussion about different models for both the metallic and insulator states. With a view to understand the conduction mechanism in these materials, the resistivity of both materials was measured over a temperature range 5–300 K and in a magnetic field up to 1 T and the data were analysed by using several theoretical models. It has been observed that the metallic part of the temperature dependent resistivity (ρ) curve fits well with ρ=ρ{sub 0} +ρ{sub 2,5}Τ{sup 2,5}, indicating the electron–magnon scattering processes in the conduction of these materials. On the other hand, in the high temperature paramagnetic insulating regime, the adiabatic small polaron and VRH models fit well, thereby indicating that polaron hopping might be responsible for the conduction mechanism.

  15. OPTIMIZATION OF PATCHOULI OIL (POGOSTEMON CABLIN, BENTH WITH STEAM DISTILLATION ASSISTED BY PULSED ELECTRIC FIELD VIA RESPONSE SURFACE METHODOLOGY

    Directory of Open Access Journals (Sweden)

    SUKARDI

    2017-08-01

    Full Text Available The study was aimed to determine the role of pulsed electric field (PEF treatment before hydro-distillation of the patchouli oil. Response Surface Methodology (RSM was employed to optimize PEF treatment (voltages, frequencies and times of distillation of patchouli oil from dried patchouli crops. The experimental design and analysis the result to obtain the optimal processing parameters was a Box-Behnken Design (BBD. Three variables were examined in this study: voltages (1,000-2,000 volt; frequencies (1,000-2,000 Hz; and distillation time (4-8 hours. The results showed that the voltage greatly affects the volume of patchouli oil obtained and optimum condition of PEF was voltages of 2,000 volts, frequencies of 1,874 Hz, and 8 hours distillation. The patchouli oil obtained is 8.037 ml of 300 g of dry material (±2.7%. The verification of the model shows that 96.6% (7.76±0.15 ml can adequately for reflecting the expected optimization.

  16. The Efficiency Improvement by Combining HHO Gas, Coal and Oil in Boiler for Electricity Generation

    OpenAIRE

    Chia-Nan Wang; Min-Tsong Chou; Hsien-Pin Hsu; Jing-Wein Wang; Sridhar Selvaraj

    2017-01-01

    Electricity is an essential energy that can benefit our daily lives. There are many sources available for electricity generation, such as coal, natural gas and nuclear. Among these sources, coal has been widely used in thermal power plants that account for about 41% of the worldwide electricity supply. However, these thermal power plants are also found to be a big pollution source to our environment. There is a need to explore alternative electricity sources and improve the efficiency of elec...

  17. Measurement of electrical impedance of a Berea sandstone core during the displacement of saturated brine by oil and CO2 injections

    Science.gov (United States)

    Liu, Yu; Xue, Ziqiu; Park, Hyuck; Kiyama, Tamotsu; Zhang, Yi; Nishizawa, Osamu; Chae, Kwang-seok

    2015-12-01

    Complex electrical impedance measurements were performed on a brine-saturated Berea sandstone core while oil and CO2 were injected at different pressures and temperatures. The saturations of brine, oil, and CO2 in the core were simultaneously estimated using an X-ray computed tomography scanner. The formation factor of this Berea core and the resistivity indexes versus the brine saturations were calculated using Archie's law. The experimental results found different flow patterns of oil under different pressures and temperatures. Fingers were observed for the first experiment at 10 MPa and 40 °C. The fingers were restrained as the viscosity ratio of oil and water changed in the second (10 MPa and 25 °C) and third (5 MPa and 25 °C) experiments. The resistivity index showed an exponential increase with a decrease in brine saturation. The saturation exponent varied from 1.4 to 4.0 at different pressure and temperature conditions. During the oil injection procedure, the electrical impedance increased with oil saturation and was significantly affected by different oil distributions; therefore, the impedance varied whether the finger was remarkable or not, even if the oil saturation remained constant. During the CO2 injection steps, the impedance showed almost no change with CO2 saturation because the brine in the pores became immobile after the oil injection.

  18. Oils

    Energy Technology Data Exchange (ETDEWEB)

    Fabbri, S

    1909-11-29

    Mineral, shale, and like oils are treated successively with sulfuric acid, milk of lime, and a mixture of calcium oxide, sodium chloride, and water, and finally a solution of naphthalene in toluene is added. The product is suitable for lighting, and for use as a motor fuel; for the latter purpose, it is mixed with a light spirit.

  19. On effective holographic Mott insulators

    Energy Technology Data Exchange (ETDEWEB)

    Baggioli, Matteo; Pujolàs, Oriol [Institut de Física d’Altes Energies (IFAE), Universitat Autònoma de Barcelona,The Barcelona Institute of Science and Technology,Campus UAB, 08193 Bellaterra (Barcelona) (Spain)

    2016-12-20

    We present a class of holographic models that behave effectively as prototypes of Mott insulators — materials where electron-electron interactions dominate transport phenomena. The main ingredient in the gravity dual is that the gauge-field dynamics contains self-interactions by way of a particular type of non-linear electrodynamics. The electrical response in these models exhibits typical features of Mott-like states: i) the low-temperature DC conductivity is unboundedly low; ii) metal-insulator transitions appear by varying various parameters; iii) for large enough self-interaction strength, the conductivity can even decrease with increasing doping (density of carriers) — which appears as a sharp manifestation of ‘traffic-jam’-like behaviour; iv) the insulating state becomes very unstable towards superconductivity at large enough doping. We exhibit some of the properties of the resulting insulator-superconductor transition, which is sensitive to the momentum dissipation rate in a specific way. These models imply a clear and generic correlation between Mott behaviour and significant effects in the nonlinear electrical response. We compute the nonlinear current-voltage curve in our model and find that indeed at large voltage the conductivity is largely reduced.

  20. On effective holographic Mott insulators

    International Nuclear Information System (INIS)

    Baggioli, Matteo; Pujolàs, Oriol

    2016-01-01

    We present a class of holographic models that behave effectively as prototypes of Mott insulators — materials where electron-electron interactions dominate transport phenomena. The main ingredient in the gravity dual is that the gauge-field dynamics contains self-interactions by way of a particular type of non-linear electrodynamics. The electrical response in these models exhibits typical features of Mott-like states: i) the low-temperature DC conductivity is unboundedly low; ii) metal-insulator transitions appear by varying various parameters; iii) for large enough self-interaction strength, the conductivity can even decrease with increasing doping (density of carriers) — which appears as a sharp manifestation of ‘traffic-jam’-like behaviour; iv) the insulating state becomes very unstable towards superconductivity at large enough doping. We exhibit some of the properties of the resulting insulator-superconductor transition, which is sensitive to the momentum dissipation rate in a specific way. These models imply a clear and generic correlation between Mott behaviour and significant effects in the nonlinear electrical response. We compute the nonlinear current-voltage curve in our model and find that indeed at large voltage the conductivity is largely reduced.

  1. Compact gas-insulated transformer. Fourteenth quarterly report

    Energy Technology Data Exchange (ETDEWEB)

    1983-08-01

    Objective is to develop a compact, more efficient, quieter transformer which does not rely on mineral oil insulation. Compressed SF/sub 6/ is used as the external insulation and polymer film as the insulation between turns. A separate liquid cooling system is also provided. This document reports progress made in design, mechanical, dielectric, short circuit, thermal, materials, prototype, accessories, commercialization, and system studies. (DLC)

  2. Improvement in electrical insulating properties of 10-nm-thick Al2O3 film grown on Al/TiN/Si substrate by remote plasma annealing at low temperatures

    International Nuclear Information System (INIS)

    Kim, Jihoon; Song, Jaewon; Kwon, Ohsung; Kim, Sungkeun; Hwang, Cheol Seong; Park, Sang-Hee'Ko; Yun, Sun Jin; Jeong, Jaehack; Hyun, Kwang Soo

    2002-01-01

    The electrical conduction properties of 10-nm-thick atomic-layer deposited Al 2 O 3 thin films with Al bottom and Pt top electrodes were characterized for use in field emission display. The as-deposited films, grown at 300 deg. C, exhibited such a high electrical leakage that their electrical properties could not be measured. However, post-treatment at 300 deg. C under a remote O 2 or H 2 O plasma for 30 min improved the insulating properties of the Al 2 O 3 films. However, the electrical conduction mechanism, particularly in the high field (>4 MV/cm) was not Fowler-Nordheim (F-N) tunneling but was influenced by space charge limited conduction implying that there were many traps inside the dielectric film or the electrode interfaces. Postannealing of the top electrode at 300 deg. C in an oxygen atmosphere resulted in a F-N conduction mechanism by removing the interfacial traps. The calculated barrier height at the Al/Al 2 O 3 interface from the F-N fitting of the current density versus voltage curves using the electron effective mass (m * ) of 0.5 m 0 was approximately 2.0 eV

  3. Status of surface conduction in topological insulators

    International Nuclear Information System (INIS)

    Barua, Sourabh; Rajeev, K. P.

    2014-01-01

    In this report, we scrutinize the thickness dependent resistivity data from the recent literature on electrical transport measurements in topological insulators. A linear increase in resistivity with increase in thickness is expected in the case of these materials since they have an insulating bulk and a conducting surface. However, such a trend is not seen in the resistivity versus thickness data for all the cases examined, except for some samples, where it holds for a range of thickness

  4. High-voltage polymeric insulated cables

    Energy Technology Data Exchange (ETDEWEB)

    Ross, A

    1987-01-01

    Reviews developments in high-voltage (here defined as 25 kV, 66 kV and 132 kV) polymeric insulated cables in the UK over the period 1979-1986, with particular reference to the experience of the Eastern Electricity Board. Outlines the background to the adoption of XPLE-insulated solid cable, and the design, testing, terminations, jointing and costs of 25 kV, 66 kV and 132 kV cables.

  5. Electrical properties of GaN-based metal-insulator-semiconductor structures with Al2O3 deposited by atomic layer deposition using water and ozone as the oxygen precursors

    Science.gov (United States)

    Kubo, Toshiharu; Freedsman, Joseph J.; Iwata, Yasuhiro; Egawa, Takashi

    2014-04-01

    Al2O3 deposited by atomic layer deposition (ALD) was used as an insulator in metal-insulator-semiconductor (MIS) structures for GaN-based MIS-devices. As the oxygen precursors for the ALD process, water (H2O), ozone (O3), and both H2O and O3 were used. The chemical characteristics of the ALD-Al2O3 surfaces were investigated by x-ray photoelectron spectroscopy. After fabrication of MIS-diodes and MIS-high-electron-mobility transistors (MIS-HEMTs) with the ALD-Al2O3, their electrical properties were evaluated by current-voltage (I-V) and capacitance-voltage (C-V) measurements. The threshold voltage of the C-V curves for MIS-diodes indicated that the fixed charge in the Al2O3 layer is decreased when using both H2O and O3 as the oxygen precursors. Furthermore, MIS-HEMTs with the H2O + O3-based Al2O3 showed good dc I-V characteristics without post-deposition annealing of the ALD-Al2O3, and the drain leakage current in the off-state region was suppressed by seven orders of magnitude.

  6. Oils

    Energy Technology Data Exchange (ETDEWEB)

    Cobbett, G T.B.

    1907-07-08

    Crude petroleum having a density of 850 to 900 is purified with sulfuric acid, decanted, mixed with benzine or petrol, and again treated with sulfuric acid and decanted. The remaining acid and coloring-matter are removed by washing with water, or treating with oxalic acid, zinc carbonate, lead carbonate, calcium carbonate, or oxide of zinc. The product is used as a fuel for internal-combustion engines. Specifications No. 28,104, A.D. 1906, and No. 12,606, A.D. 1907, are referred to. According to the Provisional Specification, the process is applicable to shale or schist oil.

  7. The second advanced lead lithium blanket concept using ODS steel as structural material and SiCf/SiC flow channel inserts as electrical and thermal insulators (Task PPA 2.5). Final report

    International Nuclear Information System (INIS)

    Norajitra, P.; Buehler, L.; Fischer, U.

    1999-12-01

    Preparatory work on the advanced dual coolant (A-DCL) blanket concept using SiC f /SiC flow channel inserts as electrical and thermal insulators has been carried out at the Forschungszentrum Karlsruhe in co-operation with CEA as a conceptual design proposal to the EU fusion power plant study planned to be launched in 2000 within the framework of the EU fusion programme with the main objective of specifying the characteristics of an attractive and viable commercial D-T fusion power plant. The basic principles and design characteristics of this A-DCL blanket concept are presented and its potential with regard to performance (neutron wall load, lifetime, availability) is discussed in this report. The results of this study show that the A-DCL blanket concept has a high potential for further development due to its high thermal efficiency and its simple concept solution. (orig.) [de

  8. Analysis and comparison of magnetic sheet insulation tests

    Science.gov (United States)

    Marion-Péra, M. C.; Kedous-Lebouc, A.; Cornut, B.; Brissonneau, P.

    1994-05-01

    Magnetic circuits of electrical machines are divided into coated sheets in order to limit eddy currents. The surface insulation resistance of magnetic sheets is difficult to evaluate because it depends on parameters like pressure and covers a wide range of values. Two methods of measuring insulation resistance are analyzed: the standardized 'Franklin device' and a tester developed by British Steel Electrical. Their main drawback is poor local repeatability. The Franklin method allows better quality control of industrial process because it measures only one insulating layer at a time. It also gives more accurate images of the distribution of possible defects. Nevertheless, both methods lead to similar classifications of insulation efficiency.

  9. Sustainable electricity generation from oil palm biomass wastes in Malaysia: An industry survey

    International Nuclear Information System (INIS)

    Umar, Mohd Shaharin; Jennings, Philip; Urmee, Tania

    2014-01-01

    The biomass wastes from the palm oil industry offer great potential for large-scale power generation in Malaysia. It has been estimated that 85.5% of available biomass in the country comes from oil palm agriculture. The introduction of the FiT (Feed-in Tariff) regime in 2011, which superseded the underperforming SREP (Small Renewable Energy Power) scheme, is expected to catalyse and accelerate the development of the renewable energy industry, including biomass technology. Despite a major overhaul of the market structure under the new scheme, the sustainability of the grid-connected oil palm biomass renewable energy industry downstream components remains questionable. Hence, this paper aims to investigate and analyse the market response to six sustainability-related topics. The research methods include electronic and conventional postal modes to disseminate questionnaires to all of the palm oil producers. The returned questionnaires were then analysed with a statistical tool and inferences were drawn to identify the gaps in the existing policy system. The survey identified several key factors for the government's consideration. - Highlights: • Establishing a fuel collection hub. • Centralising a technology hub facility. • Smart-partnership collaboration for building a large scale biomass plant. • Adopting decentralised generation

  10. The Development and Application of Simulative Insulation Resistance Tester

    Science.gov (United States)

    Jia, Yan; Chai, Ziqi; Wang, Bo; Ma, Hao

    2018-02-01

    The insulation state determines the performance and insulation life of electrical equipment, so it has to be judged in a timely and accurate manner. Insulation resistance test, as the simplest and most basic test of high voltage electric tests, can measure the insulation resistance and absorption ratio which are effective criterion of part or whole damp or dirty, breakdown, severe overheating aging and other insulation defects. It means that the electrical test personnel need to be familiar with the principle of insulation resistance test, and able to operate the insulation resistance tester correctly. At present, like the insulation resistance test, most of electrical tests are trained by physical devices with the real high voltage. Although this allows the students to truly experience the test process and notes on security, it also has certain limitations in terms of safety and test efficiency, especially for a large number of new staves needing induction training every year. This paper presents a new kind of electrical test training system based on the simulative device of dielectric loss measurement and simulative electrical testing devices. It can not only overcome the defects of current training methods, but also provide other advantages in economical efficiency and scalability. That makes it possible for the system to be allied in widespread.

  11. 5th Duisburg thermal insulation days. Fuenfte Duisburger Waermedaemm-Tage

    Energy Technology Data Exchange (ETDEWEB)

    Agst, J. (ed.)

    1989-01-01

    This volume contains 18 specialist lectures mainly about the problems of thermal insulation in industrial furnaces and facility engineering. Among the subjects are: formed parts, monolithic lining materials and fillers of vermiculite; pyro-block-modular systems for furnaces (of the company DYKO-Morgan Fasertechnik); microporous insulating materials (KAOWOOL); properties of lightweight refractory bricks; thermal insulation in induction furnaces; vacuum moulded parts in electric furnace engineering; high temperature insulating materials with ceramic fibres; microtherm insulating materials. (MM).

  12. Improved DC Gun Insulator Assembly

    International Nuclear Information System (INIS)

    Neubauer, M.L.; Dudas, A.; Sah, R.; Poelker, M.; Surles-Law, K.E.L.

    2010-01-01

    Many user facilities such as synchrotron radiation light sources and free electron lasers require accelerating structures that support electric fields of 10-100 MV/m, especially at the start of the accelerator chain where ceramic insulators are used for very high gradient DC guns. These insulators are difficult to manufacture, require long commissioning times, and often exhibit poor reliability. Two technical approaches to solving this problem will be investigated. Firstly, inverted ceramics offer solutions for reduced gradients between the electrodes and ground. An inverted design will be presented for 350 kV, with maximum gradients in the range of 5-10 MV/m. Secondly, novel ceramic manufacturing processes will be studied, in order to protect triple junction locations from emission, by applying a coating with a bulk resistivity. The processes for creating this coating will be optimized to provide protection as well as be used to coat a ceramic with an appropriate gradient in bulk resistivity from the vacuum side to the air side of an HV standoff ceramic cylinder. Example insulator designs are being computer modelled, and insulator samples are being manufactured and tested

  13. Economically optimal thermal insulation

    Energy Technology Data Exchange (ETDEWEB)

    Berber, J.

    1978-10-01

    Exemplary calculations to show that exact adherence to the demands of the thermal insulation ordinance does not lead to an optimal solution with regard to economics. This is independent of the mode of financing. Optimal thermal insulation exceeds the values given in the thermal insulation ordinance.

  14. Effects of the TiO2 high-k insulator material on the electrical characteristics of GaAs based Schottky barrier diodes

    Science.gov (United States)

    Zellag, S.; Dehimi, L.; Asar, T.; Saadoune, A.; Fritah, A.; Özçelik, S.

    2018-01-01

    The effects of the TiO2 high-k insulator material on Au/n-GaAs/Ti/Au Schottky barrier diodes have been studied by means of the numerical simulation and experimental results at room temperature. The Atlas-Silvaco-TCAD numerical simulator has been used to explain the behavior of different physical phenomena of Schottky diode. The experimental values of ideality factor, barrier height, and series resistance have been determined by using the various techniques such as Cheung's method, forward bias ln I- V and reverse capacitance-voltage behaviors. The experimental ideality factor and barrier height values have been found to be 4.14 and 0.585 eV for Au/n-GaAs/Ti/Au Schottky barrier diode and 4.00 and 0.548 eV for that structure with 16 nm thick TiO2 film and 3.92, 0.556 eV with 100 nm thick TiO2 film. The diodes show a non-ideal current-voltage behavior that of the ideality factor so far from unity. The extraction of N ss interface distribution profile as a function of E c -E ss is made using forward-bias I- V measurement by considering the bias dependence of ideality factor, the effective barrier height, and series resistance for Schottky barrier diodes. The N ss calculated values with consideration of the series resistance are lower than the calculated ones without series resistance. The current-voltage results of diodes reveal an abnormal increase in leakage current with an increase in thickness of high-k interfacial insulator layer. However, the simulation agrees in general with the experimental results.

  15. Temperature dependent electrical characterisation of Pt/HfO{sub 2}/n-GaN metal-insulator-semiconductor (MIS) Schottky diodes

    Energy Technology Data Exchange (ETDEWEB)

    Shetty, Arjun, E-mail: arjun@ece.iisc.ernet.in; Vinoy, K. J. [Electrical Communication Engineering, Indian Institute of Science, Bangalore, India 560012 (India); Roul, Basanta; Mukundan, Shruti; Mohan, Lokesh; Chandan, Greeshma; Krupanidhi, S. B. [Materials Research Centre, Indian Institute of Science, Bangalore, India 560012 (India)

    2015-09-15

    This paper reports an improvement in Pt/n-GaN metal-semiconductor (MS) Schottky diode characteristics by the introduction of a layer of HfO{sub 2} (5 nm) between the metal and semiconductor interface. The resulting Pt/HfO{sub 2}/n-GaN metal-insulator-semiconductor (MIS) Schottky diode showed an increase in rectification ratio from 35.9 to 98.9(@ 2V), increase in barrier height (0.52 eV to 0.63eV) and a reduction in ideality factor (2.1 to 1.3) as compared to the MS Schottky. Epitaxial n-type GaN films of thickness 300nm were grown using plasma assisted molecular beam epitaxy (PAMBE). The crystalline and optical qualities of the films were confirmed using high resolution X-ray diffraction and photoluminescence measurements. Metal-semiconductor (Pt/n-GaN) and metal-insulator-semiconductor (Pt/HfO{sub 2}/n-GaN) Schottky diodes were fabricated. To gain further understanding of the Pt/HfO{sub 2}/GaN interface, I-V characterisation was carried out on the MIS Schottky diode over a temperature range of 150 K to 370 K. The barrier height was found to increase (0.3 eV to 0.79 eV) and the ideality factor decreased (3.6 to 1.2) with increase in temperature from 150 K to 370 K. This temperature dependence was attributed to the inhomogeneous nature of the contact and the explanation was validated by fitting the experimental data into a Gaussian distribution of barrier heights.

  16. Insulating fcc YH

    International Nuclear Information System (INIS)

    Molen, S. J. van der; Nagengast, D. G.; Gogh, A. T. M. van; Kalkman, J.; Kooij, E. S.; Rector, J. H.; Griessen, R.

    2001-01-01

    We study the structural, optical, and electrical properties of Mg z Y 1-z switchable mirrors upon hydrogenation. It is found that the alloys disproportionate into essentially pure YH 3-δ and MgH 2 with the crystal structure of YH 3-δ dependent on the Mg concentration z. For 0 3-δ are observed, whereas for z≥0.1 only cubic YH 3-δ is present. Interestingly, cubic YH 3-δ is expanded compared to YH 2 , in disagreement with theoretical predictions. From optical and electrical measurements we conclude that cubic YH 3-δ is a transparent insulator with properties similar to hexagonal YH 3-δ . Our results are inconsistent with calculations predicting fcc YH 3-δ to be metallic, but they are in good agreement with recent GW calculations on both hcp and fcc YH 3 . Finally, we find an increase in the effective band gap of the hydrided Mg z Y 1-z alloys with increasing z. Possibly this is due to quantum confinement effects in the small YH 3 clusters

  17. Electric Power Transmission Lines

    Data.gov (United States)

    Department of Homeland Security — Transmission Lines are the system of structures, wires, insulators and associated hardware that carry electric energy from one point to another in an electric power...

  18. Electricity

    CERN Document Server

    Basford, Leslie

    2013-01-01

    Electricity Made Simple covers the fundamental principles underlying every aspect of electricity. The book discusses current; resistance including its measurement, Kirchhoff's laws, and resistors; electroheat, electromagnetics and electrochemistry; and the motor and generator effects of electromagnetic forces. The text also describes alternating current, circuits and inductors, alternating current circuits, and a.c. generators and motors. Other methods of generating electromagnetic forces are also considered. The book is useful for electrical engineering students.

  19. Thermal insulating panel

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, J.T.

    1985-09-11

    A panel of thermal insulation material has at least one main portion which comprises a dry particulate insulation material compressed within a porous envelope so that it is rigid or substantially rigid and at least one auxiliary portion which is secured to and extends along at least one of the edges of the main portions. The auxiliary portions comprise a substantially uncompressed dry particulate insulation material contained within an envelope. The insulation material of the auxiliary portion may be the same as or may be different from the insulation material of the main portion. The envelope of the auxiliary portion may be made of a porous or a non-porous material. (author).

  20. Analytical method of polychlorinated biphenyls(PCBs) in transformer oil

    Energy Technology Data Exchange (ETDEWEB)

    Shin, S.K. [National Institute of Environmental Research, Incheon (Korea); Kim, H.J.; Chung, D.; Kim, K.S.; Kim, J.K.; Chung, Y.H.; Chung, I.R.

    2004-09-15

    Polychlorinated biphenyls (PCBs) is a chlorinated biphenyl compound with the general formula C{sub 12}H{sub 10-n}/Cl{sub n}. PCBs generally occur as mixtures, where n can vary from 1 to 10. The 10 sites available for possible chlorine substitution result in 209 possible PCB congeners. There is now considerable concern regarding; the presence of PCB congeners in insulating oils used within large-scale electrical supply systems. Due to its outstanding chemical and thermal stabilities and electrical insulation properties, the commercial and industrial products of polychlorinated biphenyls (PCBs), such as Aroclors, Kaneclors, Clophens, Phenaclors etc., had been widely used as thermal oil and transformer oil from 1930s until the 1970s. PCBs from a group of persistent organic pollutants of the environment, especially dangerous to living organisms due to high toxicity, persistency, and bio-concentration in adipose tissue. Despite of this fact, PCB-contaminated oils are still commonly encountered partly because PCBs used as dielectric liquids in transformer and condenser. The source of PCBs in environments can range from used transformer oils or dielectric liquids to liquid wastes, and some PCBs contamination is occurred due to the re-use of incompletely reconditioned oil. The current action plan of Republic of Korea dictates that organizations with electrical equipment contaminated with more than 2 mg/L PCBs will need to treat as PCBs-containing wastes, and 50mg/L of PCBs or PCBs equivalent to be treated as a pure PCB preparation. In this study, transformer oils analyzed based on guideline for PCBs analytical method of transformer oil in Korea.

  1. Effect of Aromatic Essential Oil of Lavender on the Electrical Activity of Healthy Girls’ Heart during Exercise

    Directory of Open Access Journals (Sweden)

    M. Torabi

    2017-02-01

    Full Text Available Aims: Some of the herbal supplementations consumed by the athletes in order to improve their athletic functions are selected to affect the cardio-vascular system. The aim of the study was to investigate the aromatic effects of lavender essential oils on the heart electrical functions during exercises in the healthy girls. Materials & Methods: In the repeated pretest-posttest semi-experimental study, 9 active healthy girls studying sport sciences in Shahid Rajaei University were studied in 2015. The subjects were selected via purposeful sampling method. As counter balance, either ethanol soaked cotton or lavender oil essence were exposed to each subject, and the Conconi test was conducted as a sport activity. Both electrocardiogram waves and blood pressure data were recorded before the activities and immediately after and one minute after the end of the activity (recovery. Data were analyzed by SPSS 20 software using repeated ANOVA and student T tests. Findings: Immediately after the test, the systolic blood pressure in experimental group was significantly higher than control group (p<0.05. In addition, the inhalation of the lavender oil in experimental group increased R wave height during the final moments of exercises compared to control group (p<0.05. Nevertheless, the systolic blood pressure, T wave height, and R-R and Q-T distances did not significantly change in response to the exercises. Conclusion: During the sport activities, the inhalation of lavender affects the heart ventricular function, as well as the heart beat and the systolic blood pressure.

  2. Thermal and electrical properties of polymers produced from methyl oleate and bio diesel of sunflower and linseed oils

    International Nuclear Information System (INIS)

    Nicolau, Aline; Reiznautt, Quelen B.; Martini, Denise D.; Samios, Dimitrios

    2011-01-01

    Polyesters were prepared from epoxidized biodiesel with different unsaturation degrees. The polymerisation was performed using epoxidized methyl esters of oleic acid (EPOAME), sunflower oil (EPSOME) and linseed oil (EPLOME) with cis-1,2-cyclohexanedicarboxylic anhydride and triethylamine. Differential Scanning Calorimetry (DSC) demonstrated that reaction enthalpy was proportional to the unsaturation degree of each methyl ester. With an increase in unsaturation degree, the activation energy linearly decreased. The intermediate structures and the polyesters were characterised using Nuclear Magnetic Resonance (NMR) techniques. The molecular weight of the polymers synthesised with EPOAME, EPSOME and EPLOME were, respectively, 2.5x103, 5.3x103 and 14x103 g/mol. The glass transition of the product obtained from EPOAME was -59 degree C. The polymers based on EPSOME and EPLOME exhibited higher Tg values, which were -11 and -6 degree C, respectively. Electric impedance measurements of the polyesters showed that an increase in unsaturation degree resulted in an increase in resistivity and a decrease in capacitance. (author)

  3. Prospect and policy of palm oil mill effluents for future electricity in east kalimantan (utilization of pome as renewable energy)

    Science.gov (United States)

    Aipassa, M. I.; Kristiningrum, R.; Tarukan, V. Y.

    2018-04-01

    East Kalimantan economy for four decades was mainly based on natural resources extraction and dominated by primary sectorwith the six highest GDP in 2013. But, the contribution of oil and gas were decreasing production due to the absence of new wells.One of the mission was create natural resources and renewable energy based economic people oriented. The Goverment of EK Province chose a strategy of socio-economic transformation based on renewable natural resources. This strategy has been applied in the regional development plan by mainstreaming climate change issues. Data related to energy source and its potential, remote rural electrification, bioenergy feedstock, etc including from the Palm Oil company was collected and subsequently analized in line with the EK Governor Letter. Currently (2014) available of Biogas-Pome as bioenergy feedstock is 162 million m3year-1, where as currently utilized is only 22 millionm3year-1. Power demand supply status in January 2015 indicated as available capacity is 467 MW where the peak demand is 444 MW. About 22% of households without electricity are difficult to be electrified without breakthrough efforts. About 215 thousand households are un-electrified, with more power need about 150 MW in total capacity. As business opportunity, high demand for rural electrification, particularly in Kutai Kartanegera, Kutai Timur, Kutai Barat, Berau and Paser.

  4. Developing a green lending model for renewable energy project (case study electricity from biogas fuel at Palm Oil Industry)

    Science.gov (United States)

    Sukirman, Y. A.

    2018-03-01

    In the last two decades, development initiatives solely aimed to generate economic growth has been placed under scrutiny, particularly amidst the rampant discussion on the quality decline of the environment, growing social divide and climate change along with its implications thereof. Considerations of the negative impacts brought about by the economic development process prompted the move to adopt the sustainable financing model that gives precedence to economic, environmental and social aspects. We introduced Green Lending Model for Renewable Energy Project (Case Study Electricity From Biogas at Palm Oil Industry) based on sustainability financing, which is used as variable to implementing financial institutions’ lending policies. There are two major trends in the literature relating to sustainability and the banking industry: external and internal practices. The external practices strand analyzes the relevance of sustainability to the bank’s communication with shareholders and other stakeholders, and how investors use it as a measure to help achieve optimal portfolio allocation. The internal practices literature, more relevant to the present work, studies how sustainability criteria are integrated into risk management models and lending practices. Its first implementation is in the Palm Oil industry at South Sumatera. The results explained that sustainability is not related to profit either from a short- or long-term perspective. The Sustainable Green Lending Model is related to the Equator Principles and its application is driven to project financing. It also related with short- and long-term risks and opportunities, instead of short-term sustainability impacts.

  5. Magnetically insulated transmission line oscillator

    Science.gov (United States)

    Bacon, L.D.; Ballard, W.P.; Clark, M.C.; Marder, B.M.

    1987-05-19

    A magnetically insulated transmission line oscillator employs self-generated magnetic fields to generate microwave energy. An anode of the oscillator includes slow-wave structures which are formed of a plurality of thin conductive vanes defining cavities therebetween, and a gap is formed between the anode and a cathode of the oscillator. In response to a pulsed voltage applied to the anode and cathode, self-generated magnetic fields are produced in a cross-field orientation with respect to the orientation of the electric field between the anode and the cathode. The cross-field magnetic fields insulate the flow of electrons in the gap and confine the flow of electrons within the gap. 11 figs.

  6. MHD pressure drop of imperfect insulation of liquid metal flow

    International Nuclear Information System (INIS)

    Horiike, H.; Nishiura, R.; Inoue, S.; Miyazaki, K.

    2000-01-01

    An experiment was performed to study magnetohydrodynamic (MHD) pressure gradient in the case of an imperfect electric insulation coating when using NaK loop. Test channels with uniform defects in their coating were made by painting inner surface with acrylic lacquer insulation. It was found that the exponent to B -- which is 1 for insulated walls, and 2 for conducting ones, was very sensitive to crack fractions lower than 25%. The pressure gradient was found to increase almost linearly with the fraction

  7. Inverse participation ratio and localization in topological insulator phase transitions

    International Nuclear Information System (INIS)

    Calixto, M; Romera, E

    2015-01-01

    Fluctuations of Hamiltonian eigenfunctions, measured by the inverse participation ratio (IPR), turn out to characterize topological-band insulator transitions occurring in 2D Dirac materials like silicene, which is isostructural with graphene but with a strong spin–orbit interaction. Using monotonic properties of the IPR, as a function of a perpendicular electric field (which provides a tunable band gap), we define topological-like quantum numbers that take different values in the topological-insulator and band-insulator phases. (paper)

  8. Design and construction of the mineral insulated magnets

    International Nuclear Information System (INIS)

    Kurokawa, S.; Hirabayashi, H.; Taino, M.; Tsuchiya, K.; Yamamoto, A.

    1978-01-01

    The radiation resistant magnets with mineral insulated coils are designed and constructed. The electrical insulation of the cable is maintained by magnesium oxide in the form of a powder held around the copper hollow conductor by a copper shieth. By the direct water cooling through a hollow conductor the sometimes conflicting requirements of good insulation and high field are fulfilled. The magnets can with stand more than 10 12 rad of absorbed dose. (author)

  9. Application of static electricity radioisotope eliminators in oil-processing and petrochemical industry

    International Nuclear Information System (INIS)

    Zhuravlev, V.S.; Evmenov, A.K.; Bondarev, L.M.; Kharlamov, O.V.

    1977-01-01

    Examples are discussed of the use of radioisotope eliminators of the static electricity on the basis of the 239 Pu apha radiation sources in the technological processes of the production and processing synthetic caoutchoucs, rubbers and film materials. The efficiency of different types of eliminators is testified; prospects of their application in the industry are outlined

  10. Improved thermal monitoring of rotating machine insulation

    International Nuclear Information System (INIS)

    Stone, G.C.; Sedding, H.G.; Bernstein, B.S.

    1991-01-01

    Aging of motor and generator insulation is most often induced as a result of operation at high temperatures. In spite of this knowledge, stator and rotor temperatures are only crudely monitored in existing machines. In EPRI project RP2577-1, three new means of detecting machine temperatures were successfully developed. Two of the techniques, the Electronic Rotor Temperature Sensor and the Passive Rotor Temperature Sensor, were specifically developed to give point temperature readings on turbine generator rotor windings. The Insulation Sniffer allows operators to determine when any electrical insulation in a motor is overheating. Another electronic device, called the Thermal Life Indicator, helps operators and maintenance personnel determine how accumulated operation has affected the remaining life of the insulation in rotating machines. These new devices permit nuclear station operators to avoid hazardous operating conditions and will help to determine priorities for maintenance and plant life extension programs

  11. Investigation of Vacuum Insulator Surface Dielectric Strength with Nanosecond Pulses

    International Nuclear Information System (INIS)

    Nunnally, W.C.; Krogh, M.; Williams, C.; Trimble, D.; Sampayan, S.; Caporaso, G.

    2003-01-01

    The maximum vacuum insulator surface dielectric strength determines the acceleration electric field gradient possible in a short pulse accelerator. Previous work has indicated that higher electric field strengths along the insulator-vacuum interface might be obtained as the pulse duration is decreased. In this work, a 250 kV, single ns wide impulse source was applied to small diameter, segmented insulators samples in a vacuum to evaluate the multi-layer surface dielectric strength of the sample construction. Resonances in the low inductance test geometry were used to obtain unipolar, pulsed electric fields in excess of 100 MV/m on the insulator surface. The sample construction, experimental arrangement and experimental results are presented for the initial data in this work. Modeling of the multi-layer structure is discussed and methods of improving insulator surface dielectric strength in a vacuum are proposed

  12. Fractal analysis of the electrical discharges' surface paths in polymeric insulation considering different pollution levels; Analisis fractal de las trayectorias de descargas electricas superficiales en aislamiento polimerico considerando diferentes niveles de contaminacion

    Energy Technology Data Exchange (ETDEWEB)

    Palacios Lopez, Arturo

    2002-07-01

    In this thesis tree patterns of superficial breakdown in polymeric insulator of Silicon Rubber are generated. Experimental arrangement rod-rod was used on the basis of norm ASTM D 2303-85. Pollution levels on the basis of norm IEC 507 were also used. The experimental values of Fractal Dimension for each case of pollution were reported. A self similar method called Box Counting for the fractal dimension calculus and for the self affine methods an R/S and Variogram were used. According to the results, it was concluded that the tree patterns of superficial electric breakdown in Silicon Rubber is self similar and its value does not depend on the degree of pollution, that is equivalent to the concentration of salt for liter of water or to the Equivalent Salt Deposition (ESDD), in the surface of an insulator. [Spanish] En el presente trabajo se inducen descargas electricas superficiales en un aislamiento polimerico de Hule Silicon, el arreglo experimental que se utilice es punta-punta con base en la norma ASTM D 2303-85 y los niveles de contaminacion con base en la norma IEC 507. Se reportan los valores experimentales de la Dimension Fractal para cada caso de contaminacion, se utilice el metodo auto similar de conteo de cuadros, para el calculo de la Dimension Fractal y para metodos auto afines se utilice analisis R/S y variograma. Con los resultados obtenidos se concluye que la trayectoria de la descarga electrica superficial en un polimero de Hule Silicon es auto similar y su valor no depende del grado de contaminacion, el cual es equivalente a la concentracion de gramos de sal por litro de agua o a la densidad de sal depositada (DESD), en la superficie de un aislador.

  13. Induced electric currents in the Alaska oil pipeline measured by gradient, fluxgate, and SQUID magnetometers

    Science.gov (United States)

    Campbell, W. H.; Zimmerman, J. E.

    1979-01-01

    The field gradient method for observing the electric currents in the Alaska pipeline provided consistent values for both the fluxgate and SQUID method of observation. These currents were linearly related to the regularly measured electric and magnetic field changes. Determinations of pipeline current were consistent with values obtained by a direct connection, current shunt technique at a pipeline site about 9.6 km away. The gradient method has the distinct advantage of portability and buried- pipe capability. Field gradients due to the pipe magnetization, geological features, or ionospheric source currents do not seem to contribute a measurable error to such pipe current determination. The SQUID gradiometer is inherently sensitive enough to detect very small currents in a linear conductor at 10 meters, or conversely, to detect small currents of one amphere or more at relatively great distances. It is fairly straightforward to achieve imbalance less than one part in ten thousand, and with extreme care, one part in one million or better.

  14. Analysis of electrical property changes of skin by oil-in-water emulsion components

    Science.gov (United States)

    Jeong, CB; Han, JY; Cho, JC; Suh, KD; Nam, GW

    2013-01-01

    Synopsis ObjectivesAs the ‘Dry Skin Cycle’ produces continuous deterioration, cosmetic xerosis (flaky, dry skin) is one of the major concerns to most consumers. The purpose of this study was to investigate the moisturizing effect of oil-in-water (O/W) emulsion components. There are numerous types of oils, waxes, polyols and surfactants used as ingredients in skincare products. However, the moisturizing effect of each ingredient and understanding each use to make an effective moisturizing products are still not well understood. Methods To provide answers to these questions, we investigated the moisturizing effect of widely used 41 components (four different classes) in a simple O/W emulsion using capacitance methods. 106 different single oils, and combinations of oil with oil, wax, humectants, and surfactant were formulated and tested. Results In this study, we found that most of the O/W emulsion components had hydration effects on the skin. (i) The average relative water content increase (RWCI) rate of a single oil-based emulsion was 11.8 ± 5.2% (SE) and 7.9 ± 6.0% (SE) at 3 and 6 h, respectively. (ii) An oil combination emulsion showed an average RWCI rate similar to that of a single oil-based emulsion, 12.6 ± 6.0% (SE) and 12.1 ± 6.4% (SE) at 3 and 6 h, respectively (iii) A combination of waxes with oil showed an average RWCI rate of 16 ± 5.6% (SE) and 12.4 ± 4.5% (SE) at 3 and 6 h, respectively. (iv) Humectant combinations showed the highest average RWCI rate 28 ± 7.3% (SE) and 22.2 ± 7.5% (SE) at 3 and 6 h, respectively (v) Surfactant combinations had an average RWCI of 10.8 ± 4.5% (SE) and 6.0 ± 4.0% (SE) at 3 and 6 h, respectively. Conclusion Interestingly, it was difficult to find moisturizing power differences among samples in the same group. Only the humectants group showed significant differences among samples. Glycerine and urea showed significant skin hydration effects compared with other humectants. We also found

  15. Design of the Yang magnetically-insulated transmission line

    International Nuclear Information System (INIS)

    Gu Yuanchao; Song Shenyi

    2002-01-01

    The authors have designed a new magnetically insulated transmission line (MITL) for the Yang accelerator. The differences between the existing line and the designing one are given. The electric strength of some special regions on the lines and the inductance of the lines have been calculated. The authors have checked the states of magnetic insulation on the designing line

  16. Bonded stacked-ring insulator for the Antares electron gun

    International Nuclear Information System (INIS)

    Stine, R.D.; Allen, G.R.; Eaton, E.; Weinstein, B.

    1982-01-01

    A large diameter insulator utilizing epoxy bonding which has sufficient mechanical strength to support the 3000 kg cathode/grid assembly was developed. Bonding the insulator simplifies the handling and reduces the number of 0-ring seals to a minimum. We have described the material selection, bonding techniques and electrical design approach

  17. Limiting oxygen concentration for extinction of upward spreading flames over inclined thin polyethylene-insulated NiCr electrical wires with opposed-flow under normal- and micro-gravity

    KAUST Repository

    Hu, Longhua

    2016-10-02

    Materials, such as electrical wire, used in spacecraft must pass stringent fire safety standards. Tests for such standards are typically performed under normal gravity conditions and then extended to applications under microgravity conditions. The experiments reported here used polyethylene (PE)-insulated (thickness of 0.15 mm) Nichrome (NiCr)-core (diameter of 0.5 mm) electrical wires. Limiting oxygen concentrations (LOC) at extinction were measured for upward spreading flame at various forced opposed-flow (downward) speeds (0−25 cm/s) at several inclination angles (0−75°) under normal gravity conditions. The differences from those previously obtained under microgravity conditions were quantified and correlated to provide a reference for the development of fire safety test standards for electrical wires to be used in space exploration. It was found that as the opposed-flow speed increased for a specified inclination angle (except the horizontal case), LOC first increased, then decreased and finally increased again. The first local maximum of this LOC variation corresponded to a critical forced flow speed resulted from the change in flame spread pattern from concurrent to counter-current type. This critical forced flow speed correlated well with the buoyancy-induced flow speed component in the wire\\'s direction when the flame base width along the wire was used as a characteristic length scale. LOC was generally higher under the normal gravity than under the microgravity and the difference between the two decreased as the opposed-flow speed increases, following a reasonably linear trend at relatively higher flow speeds (over 10 cm/s). The decrease in the difference in LOC under normal- and microgravity conditions as the opposed-flow speed increases correlated well with the gravity acceleration component in the wire\\'s direction, providing a measure to extend LOC determined by the tests under normal gravity conditions (at various inclination angles and opposed

  18. Panels of microporous insulation

    Energy Technology Data Exchange (ETDEWEB)

    McWilliams, J.A.; Morgan, D.E.; Jackson, J.D.J.

    1990-08-07

    Microporous thermal insulation materials have a lattice structure in which the average interstitial dimension is less than the mean free path of the molecules of air or other gas in which the material is arranged. This results in a heat flow which is less than that attributable to the molecular heat diffusion of the gas. According to this invention, a method is provided for manufacturing panels of microporous thermal insulation, in particular such panels in which the insulation material is bonded to a substrate. The method comprises the steps of applying a film of polyvinyl acetate emulsion to a non-porous substrate, and compacting powdery microporous thermal insulation material against the film so as to cause the consolidated insulation material to bond to the substrate and form a panel. The polyvinyl acetate may be applied by brushing or spraying, and is preferably allowed to dry prior to compacting the insulation material. 1 fig.

  19. Wall insulation system

    Energy Technology Data Exchange (ETDEWEB)

    Kostek, P.T.

    1987-08-11

    In a channel specially designed to fasten semi-rigid mineral fibre insulation to masonry walls, it is known to be constructed from 20 gauge galvanized steel or other suitable material. The channel is designed to have pre-punched holes along its length for fastening of the channel to the drywall screw. The unique feature of the channel is the teeth running along its length which are pressed into the surface of the butted together sections of the insulation providing a strong grip between the two adjacent pieces of insulation. Of prime importance to the success of this system is the recent technological advancements of the mineral fibre itself which allow the teeth of the channel to engage the insulation fully and hold without mechanical support, rather than be repelled or pushed back by the inherent nature of the insulation material. After the insulation is secured to the masonry wall by concrete nail fastening systems, the drywall is screwed to the channel.

  20. SF6 gas insulated power substations. Effects of fast transients (VFT) on the equipment and adjacent equipment of the Itaipu Binacional SF6 insulated power substations; Subestaciones aisladas a gas SF6. Efectos de los transitorios rapidos (VFT's) sobre equipos y equipos adyacentes de las SE's SF6 de Itaipu Binacional

    Energy Technology Data Exchange (ETDEWEB)

    Santacruz Martinez, Miguel [Usina Hidroelectrica de Itaipu, Assuncao (Paraguay)]. E-mail: santcruz@itaipu.gov.py

    2001-07-01

    With the operation starting of the S F6 gas substations in high voltage systems occurs a new form of overvoltage presently known as Very Fast Transients. This paper aims the phenomenon characterization, defining the origins and the behaviour of the electric systems, and briefly presents the damages caused by the phenomenon on the equipment and adjacent equipment of S F6 gas insulated substations of the Itaipu Binacional, mainly on the power transformers and oil/S F6 isolators of the step-up transformers. These equipment was modified or are been modified as a consequence of the this overvoltage effects.

  1. Oil substitution and energy conservation in passenger transport - by the use of electric multiple units

    Energy Technology Data Exchange (ETDEWEB)

    Padiyar, K P

    1983-11-01

    India's National Transport Policy of accelerating the electrification of railways to a target of 1000 route kilometers per year and phasing out diesel engines is justified because of indigenous coal for power generation and the flexibility and better performance of electric equipment. This article examines the growth of passenger traffic and the corresponding decline in rail's share of that traffic since 1950 to illustrate the urgency of pursuing rail electrification. Traffic forecasts through the year 2000 emphasize that railway capacity is not keeping pace with demand, which results in discouraging public use. 8 tables. (DCK)

  2. Avalanches in insulating gases

    International Nuclear Information System (INIS)

    Verhaart, H.F.A.

    1982-01-01

    Avalanches of charged particles in gases are often studied with the ''electrical method'', the measurement of the waveform of the current in the external circuit. In this thesis a substantial improvement of the time resolution of the measuring setup, to be used for the electrical method, is reported. The avalanche is started by an N 2 -laser with a pulse duration of only 0.6 ns. With this laser it is possible to release a high number of primary electrons (some 10 8 ) which makes it possible to obtain sizeable signals, even at low E/p values. With the setup it is possible to analyze current waveforms with a time resolution down to 1.4 ns, determined by both the laser and the measuring system. Furthermore it is possible to distinguish between the current caused by the electrons and the current caused by the ions in the avalanche and to monitor these currents simultaneously. Avalanche currents are measured in N 2 , CO 2 , O 2 , H 2 O, air of varying humidity, SF 6 and SF 6 /N 2 mixtures. Depending on the nature of the gas and the experimental conditions, processes as diffusion, ionization, attachment, detachment, conversion and secondary emission are observed. Values of parameters with which these processes can be described, are derived from an analysis of the current waveforms. For this analysis already published theories and new theories described in this thesis are used. The drift velocity of both the electrons and the ions could be easily determined from measured avalanche currents. Special attention is paid to avalanches in air becasue of the practical importance of air insulation. (Auth.)

  3. Radiation-resistant plastic insulators

    International Nuclear Information System (INIS)

    Sturm, B.J.; Parkinson, W.W.

    1975-01-01

    A high molecular weight organic composition useful as an electric insulator in radiation fields is provided and comprises normally a solid polymer of an organic compound having a specific resistance greater than 10 19 ohm-cm and containing phenyl groups and 1 to 7.5 weight percent of a high molecular weight organic phosphite. In one embodiment the composition comprises normally solid polystyrene having 7.5 weight percent tris-β-chloroethyl phosphite as an additive; the composition exhibited an increase in the post-irradiation resistivity of over an order of magnitude over the post-irradiation resistivity of pure polystyrene. (Patent Office Record)

  4. An Investigation into the Physico-chemical Properties of Transformer Oil Blends with Antioxidants extracted from Turmeric Powder

    Science.gov (United States)

    Dukhi, Veresha; Bissessur, Ajay; Ngila, Catherine Jane; Ijumba, Nelson Mutatina

    2013-07-01

    The blending of transformer oil (used mainly as an insulating oil) with appropriate synthetic antioxidants, such as BHT (2,6-di-tert-butyl-4-methylphenol) and DBP (2,6-di-tert-butylphenol) have been previously reported. This article is focused on the use of antioxidant extracts from turmeric (Curcuma longa), a natural source. Turmeric is well known for its antimicrobial, antioxidant and anticarcinogenic properties owing to the active nature of its components. Extracts from powdered turmeric were subsequently blended into naphthenic-based uninhibited virgin transformer oil, hereinafter referred to as extract-oil blends (E-OB). Thin-layer chromatography (TLC) of the oil blends revealed that five components extracted from turmeric powder were successfully blended into the oil. Subsequent gas chromatography-mass spectrometry (GC-MS) analysis confirmed the presence of the compounds: curcumene, sesquiphellandrene, ar-turmerone, turmerone and curlone. Thermogravimetric analysis (TGA) of the extract-oil blends, containing various levels of extracts, revealed an average temperature shift of ˜8.21°C in the initial onset of degradation in comparison to virgin non-blended oil. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay showed that an increase in the mass aliquot of turmeric extracts in the transformer oil increased the free radical scavenging activity of the oil. Electrical properties of the oil investigated showed that the dissipation factor in the blended oil was found to be lower than that of virgin transformer oil. Evidently, a lower dissipation value renders the oil blend as a superior insulator over normal virgin non-blended oil. This investigation elucidated improved physico-chemical properties of transformer oil blended with turmeric antioxidant extracts.

  5. Insulating and sheathing materials of electric and optical cables: common test methods part 4-1: methods specific to polyethylene and polypropylene compounds – resistance to environmental stress cracking – measurement of the melt flow index – carbon black and/or mineral filler content measurement in polyethylene by direct combustion – measurement of carbon black content by thermogravimetric analysis (TGA) – assessment of carbon black dispersion in polyethylene using a microscope

    CERN Document Server

    International Electrotechnical Commission. Geneva

    2004-01-01

    Specifies the test methods to be used for testing polymeric insulating and sheathing materials of electric cables for power distribution and telecommunications including cables used on ships. Gives the methods for measurements of the resistance to environmental stress cracking, for wrapping test after thermal ageing in air, for measurement of melt flow index and for measurement of carbon black and/or mineral filler content, which apply to PE and PP coumpounds, including cellular compounds and foam skin for insulation.

  6. Costs of producing electricity from nuclear, coal-fired and oil-fired power stations

    International Nuclear Information System (INIS)

    1980-07-01

    The Board publishes generation costs per kW h incurred at recently commissioned power stations so that the costs and performance of nuclear and conventional stations of roughly the same date of construction can be compared. The term 'conventional power station' is used to describe coal-fired and oil-fired steam power stations. The Board has now decided: (A) to supplement the past method of calculating costs at main stations commissioned between 1965 and 1977 by giving the associated figures for interest during construction, for research, and for training; (B) to give similar figures for the contemporary stations Hinkley Point B and the first half of Drax, (C) to provide estimates of generating costs of stations under construction; (D) to set out explicitly the relationship of this method of calculation to that employed in taking investment decisions on future stations. In this way the figures for stations in commission and under construction are arrived at more in line with the general principles of evaluating investment proposals. The present document provides this information. (author)

  7. Electrical, thermal and structural properties of plasticized waste cooking oil-based polyurethane solid polymer electrolyte

    Science.gov (United States)

    Huzaizi, Rahmatina Mohd; Tahir, Syuhada Mohd; Mahbor, Kamisah Mohamad

    2017-12-01

    Waste cooking oil-based polyol was synthesized using epoxidation and hydroxylation methods. The polyol was combined with 4,4-diphenylmethane diisocyanate to produce polyurethane (PU) to be used as polymer host in solid polymer electrolyte. 30 wt% LiClO4 was added as doping salt and two types of plasticizers were used; ethylene carbonate (PU-EC) and polyethylene glycol (PU-PEG). The SPE films were characterized using Fourier transform infrared spectroscopy, electrochemical impedance spectroscopy, differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The highest conductivity achieved was 8.4 x 10-8 S cm-1 upon addition of 10 wt% EC. The XRD results showed a decrease of crystalline peaks in PU-EC and the increase in PU-PEG. DSC results revealed that the films; PU, PU-EC and PU-PEG had glass transition temperatures of 159.7, 106.0 and 179.7 °C, respectively. The results showed that the addition of EC increased the amorphous region and the free volume in the SPE structure, thus resulted in higher ionic conductivity.

  8. Temperature dependence of refractive index and of electrical impedance of grape seed (Vitis vinifera, Vitis labrusca) oils extracted by Soxhlet and mechanical pressing

    OpenAIRE

    Vieira, D. S.; Menezes, M.; Gonçalves, G.; Mukai, H.; Lenzi, E. K.; Pereira, N. C.; Fernandes, P. R.G.

    2015-01-01

    In this report, the temperature dependence of the refractive index and electric impedance of vegetable oil grape seeds extracted from Vitis vinifera (v. Cabernet) and Vitis labrusca (v. Bordo) are investigated by means of experimental techniques. The seeds were collected from wineries located in two cities in the south of Brazil. In both extraction methods, the seeds were dried at 40.0 °C and at 80.0 °C, respectively, before the oil extraction. From optical microscopy and refractometry result...

  9. Translucent insulating building envelope

    DEFF Research Database (Denmark)

    Rahbek, Jens Eg

    1997-01-01

    A new type of translucent insulating material has been tested. This material is made of Celulose-Acetat and have a honey-comb structure. The material has a high solar transmittance and is highly insulating. The material is relatively cheap to produce. Danish Title: Translucent isolerende klimaskærm....

  10. Defect design of insulation systems for photovoltaic modules

    Science.gov (United States)

    Mon, G. R.

    1981-01-01

    A defect-design approach to sizing electrical insulation systems for terrestrial photovoltaic modules is presented. It consists of gathering voltage-breakdown statistics on various thicknesses of candidate insulation films where, for a designated voltage, module failure probabilities for enumerated thickness and number-of-layer film combinations are calculated. Cost analysis then selects the most economical insulation system. A manufacturing yield problem is solved to exemplify the technique. Results for unaged Mylar suggest using fewer layers of thicker films. Defect design incorporates effects of flaws in optimal insulation system selection, and obviates choosing a tolerable failure rate, since the optimization process accomplishes that. Exposure to weathering and voltage stress reduces the voltage-withstanding capability of module insulation films. Defect design, applied to aged polyester films, promises to yield reliable, cost-optimal insulation systems.

  11. Sheath insulator final test report, TFE Verification Program

    International Nuclear Information System (INIS)

    1994-07-01

    The sheath insulator in a thermionic cell has two functions. First, the sheath insulator must electrically isolate the collector form the outer containment sheath tube that is in contact with the reactor liquid metal coolant. Second, The sheath insulator must provide for high uniform thermal conductance between the collector and the reactor coolant to remove away waste heat. The goals of the sheath insulator test program were to demonstrate that suitable ceramic materials and fabrication processes were available, and to validate the performance of the sheath insulator for TFE-VP requirements. This report discusses the objectives of the test program, fabrication development, ex-reactor test program, in-reactor test program, and the insulator seal specifications

  12. Development and preliminary experimental study on micro-stacked insulator

    International Nuclear Information System (INIS)

    Ren Chengyan; Yuan Weiqun; Zhang Dongdong; Yan Ping; Wang Jue

    2009-01-01

    High gradient insulating technology is one of the key technologies in new type dielectric wall accelerator(DWA). High gradient insulator, namely micro-stacked insulator, was developed and preliminary experimental study was done. Based on the finite element and particle simulating method, surface electric field distribution and electron movement track of micro-stacked insulator were numerated, and then the optimized design proposal was put forward. Using high temperature laminated method, we developed micro-stacked insulator samples which uses exhaustive fluorinated ethylene propylene(FEP) as dielectric layer and stainless steel as metal layer. Preliminary experiment of vacuum surface flashover in nanosecond pulse voltage was done and micro-stacked insulator exhibited favorable vacuum surface flashover performance with flashover field strength of near 180 kV/cm. (authors)

  13. Sheath insulator final test report, TFE Verification Program

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    The sheath insulator in a thermionic cell has two functions. First, the sheath insulator must electrically isolate the collector form the outer containment sheath tube that is in contact with the reactor liquid metal coolant. Second, The sheath insulator must provide for high uniform thermal conductance between the collector and the reactor coolant to remove away waste heat. The goals of the sheath insulator test program were to demonstrate that suitable ceramic materials and fabrication processes were available, and to validate the performance of the sheath insulator for TFE-VP requirements. This report discusses the objectives of the test program, fabrication development, ex-reactor test program, in-reactor test program, and the insulator seal specifications.

  14. Conformally encapsulated multi-electrode arrays with seamless insulation

    Energy Technology Data Exchange (ETDEWEB)

    Tabada, Phillipe J.; Shah, Kedar G.; Tolosa, Vanessa; Pannu, Satinderall S.; Tooker, Angela; Delima, Terri; Sheth, Heeral; Felix, Sarah

    2016-11-22

    Thin-film multi-electrode arrays (MEA) having one or more electrically conductive beams conformally encapsulated in a seamless block of electrically insulating material, and methods of fabricating such MEAs using reproducible, microfabrication processes. One or more electrically conductive traces are formed on scaffold material that is subsequently removed to suspend the traces over a substrate by support portions of the trace beam in contact with the substrate. By encapsulating the suspended traces, either individually or together, with a single continuous layer of an electrically insulating material, a seamless block of electrically insulating material is formed that conforms to the shape of the trace beam structure, including any trace backings which provide suspension support. Electrical contacts, electrodes, or leads of the traces are exposed from the encapsulated trace beam structure by removing the substrate.

  15. Sound Insulation between Dwellings

    DEFF Research Database (Denmark)

    Rasmussen, Birgit

    2011-01-01

    Regulatory sound insulation requirements for dwellings exist in more than 30 countries in Europe. In some countries, requirements have existed since the 1950s. Findings from comparative studies show that sound insulation descriptors and requirements represent a high degree of diversity...... and initiate – where needed – improvement of sound insulation of new and existing dwellings in Europe to the benefit of the inhabitants and the society. A European COST Action TU0901 "Integrating and Harmonizing Sound Insulation Aspects in Sustainable Urban Housing Constructions", has been established and runs...... 2009-2013. The main objectives of TU0901 are to prepare proposals for harmonized sound insulation descriptors and for a European sound classification scheme with a number of quality classes for dwellings. Findings from the studies provide input for the discussions in COST TU0901. Data collected from 24...

  16. Development of a Biodegradable Electro-Insulating Liquid and Its Subsequent Modification by Nanoparticles

    Directory of Open Access Journals (Sweden)

    Vaclav Mentlik

    2018-02-01

    Full Text Available The paper is focused on the possibility of replacing petroleum-based oils used as electro-insulating fluids in high voltage machinery. Based on ten years of study the candidate base oil for the central European region is rapeseed (Brassica napus oil. Numerous studies on the elementary properties of pure natural esters have been published. An advantage of natural ester use is its easy biodegradability, tested according to OECD–301D (Organisation for Economic Co-operation and Development standard, and compliance with sustainable development visions. A rapeseed oil base has been chosen for its better resistance to degradation in electric fields and its higher oxidation stability. The overall ester properties are not fully competitive with petroleum-based oils and therefore have to be improved. Percolation treatment and oxidation inhibition by a phenolic-type inhibitor is proposed and the resulting final properties are discussed. These resulting fluid properties are further improved using titanium dioxide (TiO2 nanoparticles with a silica surface treatment. This fluid has properties suitable for use in sealed distribution transformers with the advantage of a lower price in comparison with other currently used biodegradable fluids.

  17. Research of long pulse high current diode radial insulation

    International Nuclear Information System (INIS)

    Tan Jie; Chang Anbi; Hu Kesong; Liu Qingxiang; Ma Qiaosheng; Liu Zhong

    2002-01-01

    A radial insulation structure which is used in long pulse high current diode is introduced. The theory of vacuum flashover and the idea of design are briefly introduced. In the research, cone-shaped insulator was used. The geometry structure parameters were optimized by simulating the static electrical field distribution. Experiment was done on a pulse power source with 200 ns pulse width. The maximum voltage 750 kV was obtained, and the average stand-off electrical field of insulator is about 50 kV/cm

  18. Detection of UV Pulse from Insulators and Application in Estimating the Conditions of Insulators

    Science.gov (United States)

    Wang, Jingang; Chong, Junlong; Yang, Jie

    2014-10-01

    Solar radiation in the band of 240-280 nm is absorbed by the ozone layer in the atmosphere, and corona discharges from high-voltage apparatus emit in air mainly in the 230-405 nm range of ultraviolet (UV), so the band of 240-280 nm is called UV Solar Blind Band. When the insulators in a string deteriorate or are contaminated, the voltage distribution along the string will change, which causes the electric fields in the vicinity of insulators change and corona discharge intensifies. An UV pulse detection method to check the conditions of insulators is presented based on detecting the UV pulse among the corona discharge, then it can be confirmed that whether there exist faulty insulators and whether the surface contamination of insulators is severe for the safe operation of power systems. An UV-I Insulator Detector has been developed, and both laboratory tests and field tests have been carried out which demonstrates the practical viability of UV-I Insulator Detector for online monitoring.

  19. Application of EM holographic methods to borehole vertical electric source data to map a fuel oil spill

    International Nuclear Information System (INIS)

    Bartel, L.C.

    1993-01-01

    The multifrequency, multisource holographic method used in the analysis of seismic data is to extended electromagnetic (EM) data within the audio frequency range. The method is applied to the secondary magnetic fields produced by a borehole, vertical electric source (VES). The holographic method is a numerical reconstruction procedure based on the double focusing principle for both the source array and the receiver array. The approach used here is to Fourier transform the constructed image from frequency space to time space and set time equal to zero. The image is formed when the in-phase part (real part) is a maximum or the out-of-phase (imaginary part) is a minimum; i.e., the EM wave is phase coherent at its origination. In the application here the secondary magnetic fields are treated as scattered fields. In the numerical reconstruction, the seismic analog of the wave vector is used; i.e., the imaginary part of the actual wave vector is ignored. The multifrequency, multisource holographic method is applied to calculated model data and to actual field data acquired to map a diesel fuel oil spill

  20. Applications of EM holographic methods to borehole vertical electric source data to map a fuel oil spill

    International Nuclear Information System (INIS)

    Bartel, L.C.

    1993-01-01

    The multifrequency, multisource holographic method used in the analysis of seismic data is to extended electromagnetic (EM) data within the audio frequency range. The method is applied to the secondary magnetic fields produced by a borehole, vertical electric source (VES). The holographic method is a numerical reconstruction procedure based on the double focusing principle for both the source array and the receiver array. The approach used here is to Fourier transform the constructed image from frequency space to time space and set time equal to zero. The image is formed when the in-phase part (real part) is a maximum or the out-of-phase (imaginary part) is a minimum; i.e., the EM wave is phase coherent at its origination. In the application here the secondary magnetic fields are treated as scattered fields. In the numerical reconstruction, the seismic analog of the wave vector is used; i.e., the imaginary part of the actual wave vector is ignore. The multifrequency, multisource holographic method is applied to calculated model data and to actual field data acquired to map a diesel fuel oil spill

  1. Cyber-Spatial Academic Networking for Energy (Oil, Natural Gas, Electricity Development in Nigeria

    Directory of Open Access Journals (Sweden)

    Richard INGWE

    2014-01-01

    Full Text Available Philosophers of society/sociology recently espoused the concept of a new society and its new paradigm distinguished from the old that was based on industry and the energy forms that drove them since the industrial revolution. The new society which is driven by information and communications technologies (ICTs has created the network society whereby cyber-spatial (internet-based platforms operate in leveraging previous and conventional interaction among researchers concerned with single subjects and/or multi-disciplinary research projects, exchanges of ideas, opinions, concerns/worries, viewpoints, project management, among other issues in the nexus of developing and applying academic knowledge. While most of those that are popularly used are of the universal (non-specific nationality or global character, fairly country-specific (i.e. restricted membership or nation-focused cyber-spatial platforms present opportunities for enhancing or optimizing the profit of academic interaction and exchanges that concentrate on challenges that are limited to one country but promote greater understanding among those academics involved compared to the rather universal cyber-spatial platforms. Here, we conceive and hypothetically theorize a cyber-spatial platform for enhancing interaction among Nigerian scholars and academics concerned with energy which has been driving industry. Examined in this article are: contexts of scholarship in Nigeria (tertiary educational institutions, research and knowledge needs for sustainable development; the network society as a suitable framework for theoretically framing the cyber-spatial platform; an exemplary multi-disciplinary approach for multi-disciplinary petroleum oil, natural gas and energy concentrating on (or drawing from the social sciences; management of the program; discussion and conclusion. The implications of this article for policy is that while the National Universities’ Commission and the Federal Ministry of

  2. Heat insulation support device

    International Nuclear Information System (INIS)

    Takahashi, Hiroyuki; Koda, Tomokazu; Motojima, Osamu; Yamamoto, Junya.

    1994-01-01

    The device of the present invention comprises a plurality of heat insulation legs disposed in a circumferential direction. Each of the heat insulative support legs has a hollow shape, and comprises an outer column and an inner column as support structures having a heat insulative property (heat insulative structure), and a thermal anchor which absorbs compulsory displacement by a thin flat plate (displacement absorber). The outer column, the thermal anchor and the inner column are connected by a support so as to offset the positional change of objects to be supported due to shrinkage when they are shrunk. In addition, the portion between the superconductive coils as the objects to be supported and the inner column is connected by the support. The superconductive thermonuclear device is entirely contained in a heat insulative vacuum vessel, and the heat insulative support legs are disposed on a lower lid of the heat insulative vacuum vessel. With such a constitution, they are strengthened against lateral load and buckling, thereby enabling to reduce the amount of heat intrusion while keeping the compulsory displacement easy to be absorbed. (I.N.)

  3. Ex situ bioremediation of mineral oil in soils: Aerated pile treatment. Final report

    International Nuclear Information System (INIS)

    Graves, D.

    1998-04-01

    Under a contract with Southern Company Services, a pilot-scale evaluation of mineral oil biodegradation was conducted at Plant Mitchell. The evaluation consisted of two demonstrations to examine land treatment and aerated pile treatment of soil contaminated with the mineral insulating oil used in electrical transformers. Treatment of mineral oil contaminated soil is problematic in the State of Georgia and throughout the US because current practice is to excavate and landfill the contaminated soil. In many cases, the cost associated with these activities far exceeds the environmental risk of mineral oil in soil. This project was designed to evaluate the performance of bioremediation for the treatment of mineral oil in soil. Testing was carried out in a demonstration facility prepared by Georgia Power Company. The facility consisted of 12 independent treatment cells constructed on a concrete pad and covered with a roof

  4. Electrical engineer's reference book

    CERN Document Server

    Laughton, M A

    1985-01-01

    Electrical Engineer's Reference Book, Fourteenth Edition focuses on electrical engineering. The book first discusses units, mathematics, and physical quantities, including the international unit system, physical properties, and electricity. The text also looks at network and control systems analysis. The book examines materials used in electrical engineering. Topics include conducting materials, superconductors, silicon, insulating materials, electrical steels, and soft irons and relay steels. The text underscores electrical metrology and instrumentation, steam-generating plants, turbines

  5. Vacuum foil insulation system

    International Nuclear Information System (INIS)

    Hanson, J.P.; Sabolcik, R.E.; Svedberg, R.C.

    1976-01-01

    In a multifoil thermal insulation package having a plurality of concentric cylindrical cups, means are provided for reducing heat loss from the penetration region which extends through the cups. At least one cup includes an integral skirt extending from one end of the cup to intersection with the penetration means. Assembly of the insulation package with the skirted cup is facilitated by splitting the cup to allow it to be opened up and fitted around the other cups during assembly. The insulation is for an implantable nuclear powered artificial heart

  6. Analysis of Insulating Material of XLPE Cables considering Innovative Patterns of Partial Discharges

    Directory of Open Access Journals (Sweden)

    Fernando Figueroa Godoy

    2017-01-01

    Full Text Available This paper aims to analyze the quality of insulation in high voltage underground cables XLPE using a prototype which classifies the following usual types of patterns of partial discharge (PD: (1 internal PD, (2 superficial PD, (3 corona discharge in air, and (4 corona discharge in oil, in addition to considering two new PD patterns: (1 false contact and (2 floating ground. The tests and measurements to obtain the patterns and study cases of partial discharges were performed at the Testing Laboratory Equipment and Materials (LEPEM of the Federal Electricity Commission of Mexico (CFE using a measuring equipment LDIC and norm IEC60270. To classify the six patterns of partial discharges mentioned above a Probabilistic Neural Network Bayesian Modified (PNNBM method having the feature of using a large amount of data will be used and it is not saturated. In addition, PNN converges, always finding a solution in a short period of time with low computational cost. The insulation of two high voltage cables with different characteristics was analyzed. The test results allow us to conclude which wire has better insulation.

  7. Electric power and vegetable oil for the sustainable development of the Rio Ouro Preto, Rondonia, BR extractive reservation; Eletricidade e oleo vegetal para o desenvolvimento sustentavel da reserva extrativista do Rio Ouro Preto em Rondonia

    Energy Technology Data Exchange (ETDEWEB)

    Melo, Ana Teresa Siqueira; Lascio, Marco Alfredo Di; Dias, Elizabete Moreira; Hutin, Jill Rochelle Anahita [Universidade de Brasilia (UnB), DF (Brazil). Faculdade de Tecnologia. Depto. de Eng. Eletrica]. E-mails: anateresa22@bol.com.br; marcodilascio@unb.br; bete.cead@gmail.com; bete.cead@gmail.com

    2006-07-01

    This article gives an option of sustainable development of the area, through the implementation of two small vegetable oil extraction industries, use of the residues for electric power generation, commercialization of ecological tourism products and two small furniture industries.

  8. Flame spread over inclined electrical wires with AC electric fields

    KAUST Repository

    Lim, Seung J.; Park, Sun H.; Park, Jeong; Fujita, Osamu; Keel, Sang I.; Chung, Suk-Ho

    2017-01-01

    Flame spread over polyethylene-insulated electrical wires was studied experimentally with applied alternating current (AC) by varying the inclination angle (θ), applied voltage (VAC), and frequency (fAC). For the baseline case with no electric field

  9. A Simplified Top-Oil Temperature Model for Transformers Based on the Pathway of Energy Transfer Concept and the Thermal-Electrical Analogy

    Directory of Open Access Journals (Sweden)

    Muhammad Hakirin Roslan

    2017-11-01

    Full Text Available This paper presents an alternative approach to determine the simplified top-oil temperature (TOT based on the pathway of energy transfer and thermal-electrical analogy concepts. The main contribution of this study is the redefinition of the nonlinear thermal resistance based on these concepts. An alternative approximation of convection coefficient, h, based on heat transfer theory was proposed which eliminated the requirement of viscosity. In addition, the lumped capacitance method was applied to the thermal-electrical analogy to derive the TOT thermal equivalent equation in differential form. The TOT thermal model was evaluated based on the measured TOT of seven transformers with either oil natural air natural (ONAN or oil natural air forced (ONAF cooling modes obtained from temperature rise tests. In addition, the performance of the TOT thermal model was tested on step-loading of a transformer with an ONAF cooling mode obtained from previous studies. A comparison between the TOT thermal model and the existing TOT Thermal-Electrical, Exponential (IEC 60076-7, and Clause 7 (IEEE C57.91-1995 models was also carried out. It was found that the measured TOT of seven transformers are well represented by the TOT thermal model where the highest maximum and root mean square (RMS errors are 6.66 °C and 2.76 °C, respectively. Based on the maximum and RMS errors, the TOT thermal model performs better than Exponential and Clause 7 models and it is comparable with the Thermal-Electrical 1 (TE1 and Thermal-Electrical 2 (TE2 models. The same pattern is found for the TOT thermal model under step-loading where the maximum and RMS errors are 5.77 °C and 2.02 °C.

  10. Oils; gas

    Energy Technology Data Exchange (ETDEWEB)

    Day, D T

    1922-09-18

    Oils and gas are obtained from shale or oil-bearing sand by immersing the shale in and passing it through a bath of liquid oil, cracking the oil-soaked shale, and condensing the vapor and using the condensate to replenish the bath, preferably by passing the gases and vapors direct into the oil-bath container. Shale is fed continuously from a hopper to a bath of oil in an inclined chamber, is carried to the outlet by a conveyer, and through cracking tubes to an outlet pipe by conveyers. The gases and vapors escape by the pipe, a part condensing in the chamber and a run-back pipe and replenishing the bath, and the remainder passing through a condensing tower and condenser connected to reservoirs; the gas is further passed through a scrubber and a pipe to the burner of the retort. The oil condensed in the chamber overflows to the reservoir through a pipe provided with an open pipe to prevent siphoning. The conveyers and a valve on the pipe are operated by gearing. The operation may be conducted at reduced, normal, or increased pressure, e.g., 70 lbs. The temperature of the retort should be about 900 to 1400/sup 0/F, that of the inside of the tubes about 550 to 700/sup 0/F, and that of the chamber about 300/sup 0/F. The chamber and pipe may be insulated or artificially cooled.

  11. Optimisation of Multilayer Insulation an Engineering Approach

    CERN Document Server

    Chorowski, M; Parente, C; Riddone, G

    2001-01-01

    A mathematical model has been developed to describe the heat flux through multilayer insulation (MLI). The total heat flux between the layers is the result of three distinct heat transfer modes: radiation, residual gas conduction and solid spacer conduction. The model describes the MLI behaviour considering a layer-to-layer approach and is based on an electrical analogy, in which the three heat transfer modes are treated as parallel thermal impedances. The values of each of the transfer mode vary from layer to layer, although the total heat flux remains constant across the whole MLI blanket. The model enables the optimisation of the insulation with regard to different MLI parameters, such as residual gas pressure, number of layers and boundary temperatures. The model has been tested with experimental measurements carried out at CERN and the results revealed to be in a good agreement, especially for insulation vacuum between 10-5 Pa and 10-3 Pa.

  12. Insulating Foams Save Money, Increase Safety

    Science.gov (United States)

    2009-01-01

    Scientists at Langley Research Center created polyimide foam insulation for reusable cryogenic propellant tanks on the space shuttle. Meanwhile, a small Hialeah, Florida-based business, PolyuMAC Inc., was looking for advanced foams to use in the customized manufacturing of acoustical and thermal insulation. The company contacted NASA, licensed the material, and then the original inventors worked with the company's engineers to make a new material that was better for both parties. The new version, a high performance, flame retardant, flexible polyimide foam, is used for insulating NASA cryogenic propellant tanks and shows promise for use on watercraft, aircraft, spacecraft, electronics and electrical products, automobiles and automotive products, recreation equipment, and building and construction materials.

  13. Evaluation of emissions in gas powered electric generator engine with vegetable oil; Avaliacao das emissoes de gases em motor gerador eletrico alimentado com oleo vegetal

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Thalita C. de; Cunha, Joao Paulo Barreto; Cotrim, Suzane Santana; Brito, Gustavo Mendes; Delmond, Josue Gomes [Universidade Estadual de Goias (UNUCET/UEG), Anapolis, GO (Brazil). Unidade Universitaria de Ciencias Exatas e Tecnologicas], E-mail: thalitacarrijo@gmail.com

    2012-11-01

    The use of vegetable oils as fuel in diesel engines is a good alternative to reduce emissions of greenhouse gases in the atmosphere from the use of fossil fuels, either in pure form or as biodiesel. The soybean, oilseed single high-availability in Brazil, is the most viable feedstock for the production of oil and its use as a fuel because of the structure of production, distribution and grain crushing. This study aimed to evaluate the performance of a duty diesel generator fueled with blends of diesel and soybean oil at concentrations of 10%, 25%, 50% and 75%, and soybean oil pure, 100%. During the tests we evaluated the energy consumption of the generator and the emission of greenhouse gases (O{sub 2}, CO, CO{sub 2}, NO{sub x} and SO{sub 2}), according to the demand of electric charges (0, 500, 1000, 1500 and 2000 Watts) connected to the group generator. The results, using the F test, showed that the hourly consumption of fuel increased with increasing concentration in the mixture of diesel fuel and engine load demand from the generator. It follows that in the environment, increasing the oil concentration in the mixture caused a reduction in emissions, except for the emission of oxygen. The best choice for the operation for the engine generator using vegetable oil soya be provided for up to 60 % oil in the mixture and load demand up to 1000W, in which occurred lower emissions of carbon monoxide (CO) and therefore improved efficiency in the combustion process. (author)

  14. Topological Field Theory of Time-Reversal Invariant Insulators

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Xiao-Liang; Hughes, Taylor; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-03-19

    We show that the fundamental time reversal invariant (TRI) insulator exists in 4 + 1 dimensions, where the effective field theory is described by the 4 + 1 dimensional Chern-Simons theory and the topological properties of the electronic structure is classified by the second Chern number. These topological properties are the natural generalizations of the time reversal breaking (TRB) quantum Hall insulator in 2 + 1 dimensions. The TRI quantum spin Hall insulator in 2 + 1 dimensions and the topological insulator in 3 + 1 dimension can be obtained as descendants from the fundamental TRI insulator in 4 + 1 dimensions through a dimensional reduction procedure. The effective topological field theory, and the Z{sub 2} topological classification for the TRI insulators in 2+1 and 3+1 dimensions are naturally obtained from this procedure. All physically measurable topological response functions of the TRI insulators are completely described by the effective topological field theory. Our effective topological field theory predicts a number of novel and measurable phenomena, the most striking of which is the topological magneto-electric effect, where an electric field generates a magnetic field in the same direction, with an universal constant of proportionality quantized in odd multiples of the fine structure constant {alpha} = e{sup 2}/hc. Finally, we present a general classification of all topological insulators in various dimensions, and describe them in terms of a unified topological Chern-Simons field theory in phase space.

  15. Gas insulated substations

    CERN Document Server

    2014-01-01

    This book provides an overview on the particular development steps of gas insulated high-voltage switchgear, and is based on the information given with the editor's tutorial. The theory is kept low only as much as it is needed to understand gas insulated technology, with the main focus of the book being on delivering practical application knowledge. It discusses some introductory and advanced aspects in the meaning of applications. The start of the book presents the theory of Gas Insulated Technology, and outlines reliability, design, safety, grounding and bonding, and factors for choosing GIS. The third chapter presents the technology, covering the following in detail: manufacturing, specification, instrument transformers, Gas Insulated Bus, and the assembly process. Next, the book goes into control and monitoring, which covers local control cabinet, bay controller, control schemes, and digital communication. Testing is explained in the middle of the book before installation and energization. Importantly, ...

  16. Caracterização físico-química e dielétrica de óleos biodegradáveis para transformadores elétricos Physico-chemical and dielectric characterization of biodegradable oils for electric transformers

    Directory of Open Access Journals (Sweden)

    Claudia R Silva

    2012-02-01

    Full Text Available O óleo mineral, originário do petróleo, é o fluido isolante tradicionalmente utilizado em transformadores elétricos. Diante do apelo por fontes de energia limpa e renovável o setor elétrico também é pressionado a apresentar alternativas ao fluido de origem fóssil. Neste estudo, óleos de algodão, babaçu, girassol, milho e soja, foram avaliados quanto ao seu potencial para utilização como fluido dielétrico. As propriedades avaliadas foram densidade, viscosidade, acidez, tensão de ruptura, fator de perda, teor de água e corrosividade. Os resultados obtidos foram comparados aos limites estabelecidos na NBR 15422. Os óleos vegetais apresentaram densidade e viscosidade dentro dos limites recomendados; além disso, não se mostraram corrosivos mas devem ser submetidos a tratamentos específicos que os conduzam a atender outras especificações; o tratamento dos óleos com solução de hidróxido de sódio diminuiu a acidez, melhorou a tensão de ruptura e diminuiu o fator de perda.The mineral oil, originated from petroleum, is the insulating fluid traditionally used in electrical transformers. Responding to appeals for clean and renewable energy sources, the electrical sector is also under pressure to present alternatives to the fluid of fossil origin. In this study, cotton, `babassu', sunflower, corn and soybean oils were evaluated for their potential of utilization as a dielectric fluid. The properties investigated were density, viscosity, acidity, breakdown voltage, loss factor, water content and corrosivity. The results were compared with the values of the limits established in NBR 15422. Vegetable oils showed density and viscosity within the limits set by standard, however, higher than those presented by the studied mineral oil. It was found that vegetable oils have to pass through improvements to meet other specifications required. The treatment of oils with sodium hydroxide solution reduced the acidity, improved the breakdown

  17. Dielectric properties of transformer paper impregnated by mineral oil based magnetic fluid

    International Nuclear Information System (INIS)

    Timko, M; Marton, K; Tomco, L; Kopcansky, P; Koneracka, M

    2010-01-01

    The influence of combined magnetic and electric field on permittivity of transformer paper used in power transformers was observed. Transformer paper was impregnated by pure transformer oil ITO 100 and magnetic fluids based on transformer oil ITO 100 with different concentrations of magnetite nanoparticles. The measurements were carried out with help of high precision capacitance bridge. The electric intensity between circular planar electrodes was in the region of weak electric field (E > 10 6 V/m). The increase of electric permittivity of transformer paper impregnated by magnetic fluid opposite pure transformer paper was observed. The experiments showed that permittivity of insulator system consisting of pure transformer paper and impregnated transformer paper naturally depends on number of paper layers. The magnetodielectric effect was found to be dependent on magnetite nanoparticles concentration in magnetic fluids.

  18. Correlation analysis between ceramic insulator pollution and acoustic emissions

    Directory of Open Access Journals (Sweden)

    Benjamín Álvarez-Nasrallah

    2015-01-01

    Full Text Available Most of the studies related to insulator pollution are normally performed based on individual analysis among leakage current, relative humidity and equivalent salt deposit density (ESDD. This paper presents a correlation analysis between the leakage current and the acoustic emissions measured in a 230 kV electrical substations in the city of Barranquilla, Colombia. Furthermore, atmospheric variables were considered to develop a characterization model of the insulator contamination process. This model was used to demonstrate that noise emission levels are a reliable indicator to detect and characterize pollution on high voltage insulators. The correlation found amount the atmospheric, electrical and sound variables allowed to determine the relations for the maintenance of ceramic insulators in high-polluted areas. In this article, the results on the behavior of the leakage current in ceramic insulators and the sound produced with different atmospheric conditions are shown, which allow evaluating the best time to clean the insulator at the substation. Furthermore, by experimentation on site and using statistical models, the correlation between ambient variables and the leakage current of insulators in an electrical substation was obtained. Some of the problems that bring the external noise were overcome using multiple microphones and specialized software that enabled properly filter the sound and better measure the variables.

  19. Application to the system of insulated of diagnosis in high-voltage motors by partial discharge

    International Nuclear Information System (INIS)

    Mikami, M.

    2005-01-01

    In order to detect electric insulators degradation of high-voltage electric motors at an early stage, measurements of partial discharge of operating high-voltage electric motors (about 150 units) in the nuclear power plants were conducted from 2001 to 2004 by the use of on-line monitoring systems that could measure partial discharge of electric insulators. Influencing factors for measured values were identified from measured data and evaluation criteria of electric insulators integrity were established based on variations of partial discharge values. (T. Tanaka)

  20. Wrapped Multilayer Insulation

    Science.gov (United States)

    Dye, Scott A.

    2015-01-01

    New NASA vehicles, such as Earth Departure Stage (EDS), Orion, landers, and orbiting fuel depots, need improved cryogenic propellant transfer and storage for long-duration missions. Current cryogen feed line multilayer insulation (MLI) performance is 10 times worse per area than tank MLI insulation. During each launch, cryogenic piping loses approximately 150,000 gallons (equivalent to $300,000) in boil-off during transfer, chill down, and ground hold. Quest Product Development Corp., teaming with Ball Aerospace, developed an innovative advanced insulation system, Wrapped MLI (wMLI), to provide improved thermal insulation for cryogenic feed lines. wMLI is high-performance multilayer insulation designed for cryogenic piping. It uses Quest's innovative discrete-spacer technology to control layer spacing/ density and reduce heat leak. The Phase I project successfully designed, built, and tested a wMLI prototype with a measured heat leak 3.6X lower than spiral-wrapped conventional MLI widely used for piping insulation. A wMLI prototype had a heat leak of 7.3 W/m2, or 27 percent of the heat leak of conventional MLI (26.7 W/m2). The Phase II project is further developing wMLI technology with custom, molded polymer spacers and advancing the product toward commercialization via a rigorous testing program, including developing advanced vacuuminsulated pipe for ground support equipment.

  1. Survey of thermal insulation systems

    International Nuclear Information System (INIS)

    Kinoshita, Izumi

    1983-01-01

    Better thermal insulations have been developed to meet the growing demands of industry, and studies on thermal insulation at both high temperature and low temperature have been widely performed. The purpose of this survey is to summarize data on the performances and characteristics of thermal insulation materials and thermal insulation structures (for instance, gas cooled reactors, space vehicles and LNG storage tanks), and to discuss ravious problems regarding the design of thermal insulation structures of pool-type LMFBRs. (author)

  2. Bio-oil production from dry sewage sludge by fast pyrolysis in an electrically-heated fluidized bed reactor

    Directory of Open Access Journals (Sweden)

    Renato O. Arazo

    2017-01-01

    Full Text Available The optimization of bio-oil produced from sewage sludge using fast pyrolysis in a fluidized bed reactor was investigated. Effects of temperature, sludge particle size and vapor residence time on bio-oil properties, such as yield, high heating value (HHV and moisture content were evaluated through experimental and statistical analyses. Characterization of the pyrolysis products (bio-oil and biogas was also done. Optimum conditions produced a bio-oil product with an HHV that is nearly twice as much as lignocellulosic-derived bio-oil, and with properties comparable to heavy fuel oil. Contrary to generally acidic bio-oil, the sludge-derived bio-oil has almost neutral pH which could minimize the pipeline and engine corrosions. The Fourier Transform Infrared and gas-chromatography and mass spectrometry analyses of bio-oil showed a dominant presence of gasoline-like compounds. These results demonstrate that fast pyrolysis of sewage sludge from domestic wastewater treatment plant is a favorable technology to produce biofuels for various applications.

  3. Study on Oil Pressure Characteristics and Trajectory Tracking Control in Shift Process of Wet-Clutch for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Junqiu Li

    2016-01-01

    Full Text Available Accurate control of oil pressure of wet-clutch is of great importance for improving shift quality. Based on dynamic models of two-gear planetary transmission and hydraulic control system, a trajectory tracking model of oil pressure was built by sliding mode control method. An experiment was designed to verify the validity of hydraulic control system, through which the relationship between duty cycle of on-off valve and oil pressure of clutch was determined. The tracking effect was analyzed by simulation. Results showed that oil pressure could follow well the optimal trajectory and the shift quality was effectively improved.

  4. 77 FR 23399 - National Emission Standards for Hazardous Air Pollutants From Coal- and Oil-Fired Electric...

    Science.gov (United States)

    2012-04-19

    ... consistent with other rule text. 28. The definitions of ``Non-mercury (Hg) HAP metals'' and ``Oil'' in...-mercury (Hg) HAP metals'' and add the definition ``Oil'' to read as follows: Sec. 63.10042 What definitions apply to this subpart? * * * * * Non-mercury (Hg) HAP metals means Antimony (Sb), Arsenic (As...

  5. Organic insulator studies at Los Alamos

    International Nuclear Information System (INIS)

    Parkin, D.M.; Clinard, F.W.

    1981-01-01

    The effects of radiation on the structural and electrical properties of organic insulators to be used in superconducting magnets in fusion devices has been identified as a critical materials problem. These materials will be exposed to both γ-ray and neutron radiation. LANL has been asked by the OFE Materials Branch to look at the relationship between the effects of γ-ray and neutron radiation effects. Some thoughts on planning the program are outlined

  6. D.B.S. in disordered insulators

    International Nuclear Information System (INIS)

    Bunch, J.M.

    1976-01-01

    These studies were undertaken in order to determine insulator properties for the CTR program. Most of the d.b.s. studies so far have been with various forms of Al 2 O 3 . Some work using fission neutrons and 15-MeV protons along with some high-energy heavy ions is briefly described. Attempts to measure d.b.s. and other electrical properties are mentioned

  7. NDE of ceramic insulator blanks by radiography

    International Nuclear Information System (INIS)

    Sarvanan, S.; Venkatraman, B.; Jayakumar, T.; Baldev Raj

    1996-01-01

    The production of ceramic insulators in electrical industry involves a number of steps, one of which is the green blank. The defects such as voids and crack can be present in the extruded green blank. One of the best non-destructive evaluation (NDE) technique radiography. This paper deals with the development of methodology based on theoretical modeling for the examination of ceramics by high sensitivity radiography. (author)

  8. Reusable Surface Insulation

    Science.gov (United States)

    1997-01-01

    Advanced Flexible Reusable Surface Insulation, developed by Ames Research Center, protects the Space Shuttle from the searing heat that engulfs it on reentry into the Earth's atmosphere. Initially integrated into the Space Shuttle by Rockwell International, production was transferred to Hi-Temp Insulation Inc. in 1974. Over the years, Hi-Temp has created many new technologies to meet the requirements of the Space Shuttle program. This expertise is also used commercially, including insulation blankets to cover aircrafts parts, fire barrier material to protect aircraft engine cowlings and aircraft rescue fire fighter suits. A Fire Protection Division has also been established, offering the first suit designed exclusively by and for aircraft rescue fire fighters. Hi-Temp is a supplier to the Los Angeles City Fire Department as well as other major U.S. civil and military fire departments.

  9. Electricity generation analyses in an oil-exporting country: Transition to non-fossil fuel based power units in Saudi Arabia

    International Nuclear Information System (INIS)

    Farnoosh, Arash; Lantz, Frederic; Percebois, Jacques

    2014-01-01

    In Saudi Arabia, fossil-fuel is the main source of power generation. Due to the huge economic and demographic growth, the electricity consumption in Saudi Arabia has increased and should continue to increase at a very fast rate. At the moment, more than half a million barrels of oil per day is used directly for power generation. Herein, we assess the power generation situation of the country and its future conditions through a modelling approach. For this purpose, we present the current situation by detailing the existing generation mix of electricity. Then we develop an optimization model of the power sector which aims to define the best production and investment pattern to reach the expected demand. Subsequently, we will carry out a sensitivity analysis so as to evaluate the robustness of the model's by taking into account the integration variability of the other alternative (non-fossil fuel based) resources. The results point out that the choices of investment in the power sector strongly affect the potential oil's exports of Saudi Arabia. For instance, by decarbonizing half of its generation mix, Saudi Arabia can release around 0.5 Mb/d barrels of oil equivalent per day from 2020. Moreover, total power generation cost reduction can reach up to around 28% per year from 2030 if Saudi Arabia manages to attain the most optimal generation mix structure introduced in the model (50% of power from renewables and nuclear power plants and 50% from the fossil power plants). - Highlights: • We model the current and future power generation situation of Saudi Arabia. • We take into account the integration of the other alternative resources. • We consider different scenarios of power generation structure for the country. • Optimal generation mix can release considerable amount of oil for export

  10. Radiation processing of polymer insulators as a method of improving their properties and performance

    International Nuclear Information System (INIS)

    Ivanov, V.S.; Migunova, L.I.; Kalinina, N.A.; Aleksandrov, G.N.

    1995-01-01

    Polymer insulators for electric apparatus and high-voltage overhead lines are promising for replacing porcelain and glass insulators. The possibility of application of radiation-chemical technology was showed by manufacture of rod-shaped polymer insulators. In this work, an ethylene and vinyl acetate copolymer was used as the polymer basis of the composition for insulators. By forming a three-dimensional network in polymer bulk radiation processing improves service properties of polymer insulators: shape and heat stability > 200 degree C and stability to tracking erosion > 200 h

  11. HgTe based topological insulators

    International Nuclear Information System (INIS)

    Bruene, Christoph

    2014-01-01

    This PhD thesis summarizes the discovery of topological insulators and highlights the developments on their experimental observations. The work focuses on HgTe. The thesis is structured as follows: - The first chapter of this thesis will give a brief overview on discoveries in the field of topological insulators. It focuses on works relevant to experimental results presented in the following chapters. This includes a short outline of the early predictions and a summary of important results concerning 2-dimensional topological insulators while the final section discusses observations concerning 3-dimensional topological insulators. - The discovery of the quantum spin Hall effect in HgTe marked the first experimental observation of a topological insulator. Chapter 2 focuses on HgTe quantum wells and the quantum spin Hall effect. The growth of high quality HgTe quantum wells was one of the major goals for this work. In a final set of experiments the spin polarization of the edge channels was investigated. Here, we could make use of the advantage that HgTe quantum well structures exhibit a large Rashba spin orbit splitting. - HgTe as a 3-dimensional topological insulator is presented in chapter 3. - Chapters 4-6 serve as in depth overviews of selected works: Chapter 4 presents a detailed overview on the all electrical detection of the spin Hall effect in HgTe quantum wells. The detection of the spin polarization of the quantum spin Hall effect is shown in chapter 5 and chapter 6 gives a detailed overview on the quantum Hall effect originating from the topological surface state in strained bulk HgTe.

  12. Effects of oil and oil burn residues on seabird feathers

    DEFF Research Database (Denmark)

    Fritt-Rasmussen, Janne; Linnebjerg, Jannie Fries; Sørensen, Martin X.

    2016-01-01

    It is well known, that in case of oil spill, seabirds are among the groups of animals most vulnerable. Even small amounts of oil can have lethal effects by destroying the waterproofing of their plumage, leading to loss of insulation and buoyancy. In the Arctic these impacts are intensified...

  13. Análisis de criticidad de grupos electrógenos de la tecnología fuel oil en Cuba

    OpenAIRE

    María Bárbara Hourné Calzada; María Lucía Brito-Vallina; Alfredo Manuel del Castillo-Serpa; Elena Fraga-Guerra; Armando Díaz-Concepción

    2012-01-01

    En el 2004, Cuba pone en marcha un nuevo programa que consiste en un esquema de generación eléctrica distribuida que emplea la instalación de emplazamientos compuestos por grupos electrógenos, que operan con diesel o fuel-oil, constituyendo uno de los más profundos cambios conceptuales en esta esfera. El presente trabajo tiene como objetivo la obtención del modelo matemático para el Análisis de Criticidad que permita la clasificación jerarquizada de los sistemas en este proceso de generación ...

  14. Temperature dependence of refractive index and of electrical impedance of grape seed (Vitis vinifera, Vitis labrusca oils extracted by Soxhlet and mechanical pressing

    Directory of Open Access Journals (Sweden)

    Vieira, D. S.

    2015-09-01

    Full Text Available In this report, the temperature dependence of the refractive index and electric impedance of vegetable oil grape seeds extracted from Vitis vinifera (v. Cabernet and Vitis labrusca (v. Bordo are investigated by means of experimental techniques. The seeds were collected from wineries located in two cities in the south of Brazil. In both extraction methods, the seeds were dried at 40.0 °C and at 80.0 °C, respectively, before the oil extraction. From optical microscopy and refractometry results, one can see that the grape seed oil extracted by mechanical pressing shows a linear dependence between the refractive index and temperature and has no birefringent residues. From the fitting of the EIS (Electrical Impedance Spectroscopy data, an equivalent electric circuit composed of a parallel RC in series with a resistor is proposed. The circuit model is in good agreement with the experimental data and provides the electrical permittivity of the vegetable oils investigated.Se investiga mediante técnicas experimentales la dependencia del índice de refracción y la impedancia eléctrica de aceites vegetales extraídos de semillas de uva Vitis vinifera (v. Cabernet y Vitis labrusca (v. Bordo. Las semillas fueron recolectadas de bodegas situadas en dos ciudades al sur de Brasil. Antes de la extracción del aceite, mediante dos métodos de extracción, las semillas fueron secadas a 40,0 °C y 80,0 °C. De los resultados de refractometria y microscopía óptica, se comprueba que el aceite de semilla de uva extraída por prensado mecánico obedece a una relación lineal del índice de refracción con la temperatura y no presentan resíduos birrefringentes. Con los datos de impedancia eléctrica, se propone un circuito eléctrico equivalente formado por una resistencia y un condensador en paralelo, a su vez ligado a otra resistencia en serie. El modelo de circuito tiene una alta correlación con los datos experimentales y permite obtener la constante diel

  15. Electricity generation using vegetal oils: the implantation model for the isolated communities in the Amazon Region; Geracao de eletricidade a partir de oleos vegetais: um modelo de implantacao para comunidades isoladas amazonicas

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, Suani Teixeira; Silva, Orlando Cristiano; Velazquez, Silvia M.S.G.; Monteiro, Maria Beatriz C.A.; Silotto, Carlos Eduardo G [Centro Nacional de Referencia em Biomassa - CENBIO, Sao Paulo, SP (Brazil)

    2004-07-01

    The territorial occupation from the Amazon region is characterized by isolated communities, which makes the conventional electric distribution economically and technically impracticable. To solve the electric problem of these communities, it is necessary for them to produce their own fuel in order to generate electric energy and promote the development. These are the premises that have guided the elaboration of the project PROVEGAM - which has as objective, the installation and performance testing of a conventional diesel engine, adapted to operate with palm oil 'in natura' at the community of Vila Soledade, city of Moju, Para State. Vila Soledade is an isolated community that has, approximately, 700 inhabitants. The PROVEGAM project installed a diesel generator adapted with a conversion kit to operate with 'in natura' palm oil. The operation begins and finishes with diesel oil, in order to heat the palm oil and cleaning possible residues. During the diesel generator installation, diesel oil emissions and performance were compared with the palm oil. Analysing the results, this electric model of generating energy is already recommended to be implemented in others Amazon region communities. (author)

  16. Electricity generation using vegetal oils: the implantation model for the isolated communities in the Amazon Region; Geracao de eletricidade a partir de oleos vegetais: um modelo de implantacao para comunidades isoladas amazonicas

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, Suani Teixeira; Silva, Orlando Cristiano; Velazquez, Silvia M.S.G.; Monteiro, Maria Beatriz C.A.; Silotto, Carlos Eduardo G. [Centro Nacional de Referencia em Biomassa - CENBIO, Sao Paulo, SP (Brazil)

    2004-07-01

    The territorial occupation from the Amazon region is characterized by isolated communities, which makes the conventional electric distribution economically and technically impracticable. To solve the electric problem of these communities, it is necessary for them to produce their own fuel in order to generate electric energy and promote the development. These are the premises that have guided the elaboration of the project PROVEGAM - which has as objective, the installation and performance testing of a conventional diesel engine, adapted to operate with palm oil 'in natura' at the community of Vila Soledade, city of Moju, Para State. Vila Soledade is an isolated community that has, approximately, 700 inhabitants. The PROVEGAM project installed a diesel generator adapted with a conversion kit to operate with 'in natura' palm oil. The operation begins and finishes with diesel oil, in order to heat the palm oil and cleaning possible residues. During the diesel generator installation, diesel oil emissions and performance were compared with the palm oil. Analysing the results, this electric model of generating energy is already recommended to be implemented in others Amazon region communities. (author)

  17. Application of surface enhanced Raman scattering and competitive adaptive reweighted sampling on detecting furfural dissolved in transformer oil

    Directory of Open Access Journals (Sweden)

    Weigen Chen

    2018-03-01

    Full Text Available Detecting the dissolving furfural in mineral oil is an essential technical method to evaluate the ageing condition of oil-paper insulation and the degradation of mechanical properties. Compared with the traditional detection method, Raman spectroscopy is obviously convenient and timesaving in operation. This study explored the method of applying surface enhanced Raman scattering (SERS on quantitative analysis of the furfural dissolved in oil. Oil solution with different concentration of furfural were prepared and calibrated by high-performance liquid chromatography. Confocal laser Raman spectroscopy (CLRS and SERS technology were employed to acquire Raman spectral data. Monte Carlo cross validation (MCCV was used to eliminate the outliers in sample set, then competitive adaptive reweighted sampling (CARS was developed to select an optimal combination of informative variables that most reflect the chemical properties of concern. Based on selected Raman spectral features, support vector machine (SVM combined with particle swarm algorithm (PSO was used to set up a furfural quantitative analysis model. Finally, the generalization ability and prediction precision of the established method were verified by the samples made in lab. In summary, a new spectral method is proposed to quickly detect furfural in oil, which lays a foundation for evaluating the ageing of oil-paper insulation in oil immersed electrical equipment.

  18. Application of surface enhanced Raman scattering and competitive adaptive reweighted sampling on detecting furfural dissolved in transformer oil

    Science.gov (United States)

    Chen, Weigen; Zou, Jingxin; Wan, Fu; Fan, Zhou; Yang, Dingkun

    2018-03-01

    Detecting the dissolving furfural in mineral oil is an essential technical method to evaluate the ageing condition of oil-paper insulation and the degradation of mechanical properties. Compared with the traditional detection method, Raman spectroscopy is obviously convenient and timesaving in operation. This study explored the method of applying surface enhanced Raman scattering (SERS) on quantitative analysis of the furfural dissolved in oil. Oil solution with different concentration of furfural were prepared and calibrated by high-performance liquid chromatography. Confocal laser Raman spectroscopy (CLRS) and SERS technology were employed to acquire Raman spectral data. Monte Carlo cross validation (MCCV) was used to eliminate the outliers in sample set, then competitive adaptive reweighted sampling (CARS) was developed to select an optimal combination of informative variables that most reflect the chemical properties of concern. Based on selected Raman spectral features, support vector machine (SVM) combined with particle swarm algorithm (PSO) was used to set up a furfural quantitative analysis model. Finally, the generalization ability and prediction precision of the established method were verified by the samples made in lab. In summary, a new spectral method is proposed to quickly detect furfural in oil, which lays a foundation for evaluating the ageing of oil-paper insulation in oil immersed electrical equipment.

  19. Coke fouling monitoring by electrical resistivity

    Energy Technology Data Exchange (ETDEWEB)

    Bombardelli, Clovis; Mari, Livia Assis; Kalinowski, Hypolito Jose [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil). Programa de Pos-Graduacao em Engenharia Eletrica e Informatica Industrial (CPGEI)

    2008-07-01

    An experimental method to simulate the growth of the coke fouling that occurs in the oil processing is proposed relating the thickness of the encrusted coke to its electrical resistivity. The authors suggest the use of the fouling electrical resistivity as a transducer element for determining its thickness. The sensor is basically two electrodes in an electrically isolated device where the inlay can happen in order to compose a purely resistive transducer. Such devices can be easily constructed in a simple and robust form with features capable to face the high temperatures and pressures found in relevant industrial processes. For validation, however, it is needed a relationship between the electrical resistivity and the fouling thickness, information not yet found in the literature. The present work experimentally simulates the growth of a layer of coke on an electrically insulating surface, equipped with electrodes at two extremities to measure the electrical resistivity during thermal cracking essays. The method is realized with a series of consecutive runs. The results correlate the mass of coke deposited and its electrical resistivity, and it can be used to validate the coke depositions monitoring employing the resistivity as a control parameter. (author)

  20. Insulation Reformulation Development

    Science.gov (United States)

    Chapman, Cynthia; Bray, Mark

    2015-01-01

    The current Space Launch System (SLS) internal solid rocket motor insulation, polybenzimidazole acrylonitrile butadiene rubber (PBI-NBR), is a new insulation that replaced asbestos-based insulations found in Space Shuttle heritage solid rocket boosters. PBI-NBR has some outstanding characteristics such as an excellent thermal erosion resistance, low thermal conductivity, and low density. PBI-NBR also has some significant challenges associated with its use: Air entrainment/entrapment during manufacture and lay-up/cure and low mechanical properties such as tensile strength, modulus, and fracture toughness. This technology development attempted to overcome these challenges by testing various reformulated versions of booster insulation. The results suggest the SLS program should continue to investigate material alternatives for potential block upgrades or use an entirely new, more advanced booster. The experimental design was composed of a logic path that performs iterative formulation and testing in order to maximize the effort. A lab mixing baseline was developed and documented for the Rubber Laboratory in Bldg. 4602/Room 1178.